

Oracle® Communications MetaSolv Solution
CORBA API Developer's Reference

Release 6.3

E69847-02

February 2017

Oracle Communications MetaSolv Solution CORBA API Developer's Reference, Release 6.3

E69847-02

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xv

Audience... xv
Related Documents ... xv
Documentation Accessibility ... xvi

1 The MetaSolv Solution Architecture

What Does MetaSolv Solution Do? .. 1-1
How Do the MetaSolv Solution APIs Work with MetaSolv Solution?... 1-2

Overview of Essential Terminology.. 1-3
Solicited Messages Vs. Unsolicited Messages... 1-4
Events Vs. Signals ... 1-4
Inbound Signals Vs. Outbound signals ... 1-4
Synchronous Vs. Asynchronous... 1-4

API Integration ... 1-4
MetaSolv Solution API Technical Overview.. 1-5

Understanding Events... 1-6
Synchronous and Asynchronous Invocation Modes .. 1-7

Synchronous Operations.. 1-7
Asynchronous Operations... 1-7

Transaction Model Used By the APIs ... 1-8
Transaction Objects... 1-8

Determining the Role Your Application Performs.. 1-9
Importing and Exporting Using the APIs.. 1-9
Responsibilities When Developing With the APIs .. 1-10
Naming Conventions in the APIs .. 1-10

IDL Versioning for MetaSolv Solution... 1-11

2 Developing Applications Using the APIs

MetaSolv Solution Interface Architecture... 2-1
Design Architecture ... 2-2
Deployment Architecture ... 2-3
Relationship of APIs, API Server Names, and IDL Files ... 2-3
MetaSolv Solution APIs Require Instance References to Notification Objects 2-3
Development Environment .. 2-4

Before Compiling IDL files ... 2-4

iv

Determining Which IDL Files Are Required for a Given API... 2-4
CORBA Development ... 2-5
Implementation Patterns .. 2-5

Basic API Setup Pattern... 2-5
Purpose... 2-6
When Used... 2-6
Description... 2-6

Synchronous Interaction Pattern ... 2-9
Purpose... 2-9
When Used... 2-9
Description... 2-9

Asynchronous Interaction Pattern.. 2-10
Purpose.. 2-10
When Used.. 2-10
Description.. 2-10

CORBA Client/Server Pattern .. 2-15
Purpose.. 2-15
When Used.. 2-16

Signal Handling Pattern... 2-16
Purpose.. 2-16
When Used.. 2-16
Description.. 2-17
General Remarks On Outbound Signals ... 2-17
Outbound Signals – Gateway Events.. 2-17
Outbound Signals – Application Events .. 2-21
Inbound Signals.. 2-22

Error Handling Pattern .. 2-23
Purpose.. 2-23
When Used.. 2-23
Description.. 2-23
Exception... 2-23
Error Array.. 2-24
Status.. 2-24

Sample Applications... 2-25
HelloAPI: Sample Application that Exports Data .. 2-25

Implementation Notes... 2-26
HelloGateway: Sample Application that Handles Application and Gateway Events.......... 2-26

Migrating to MetaSolv Solution 6.3.x from 6.2.x... 2-27
Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x... 2-28

Implementing SSL in JacORB 3.8 .. 2-31

3 Common Architecture

WDIRoot Interface ... 3-2
Connection to the MetaSolv Solution Application Server ... 3-2
Connection to the CORBA Daemon .. 3-2
Connection to the Root Object.. 3-3

WDIManager Interface.. 3-3

v

API Session Interfaces (Session Processing)... 3-4
WDITransaction Interface (Database Transactions).. 3-5
WDISignal Interface (Outbound Signal Processing)... 3-6
WDIInSignal Interface (Inbound Signal Processing) .. 3-7
WDINotification Interface (Callback Mechanism).. 3-8

4 The Infrastructure API

Implementation Concepts .. 4-1
Infrastructure Operational Differences... 4-1

Latitude and Longitude Fields Are Not Calculated and Validated 4-1
Switch Network Area Field Defaults to First Switch Network Area 4-1
Query Across All Address Formats ... 4-2

Key MetaSolv Solution Concepts ... 4-2
Infrastructure API Files... 4-2
Infrastructure Interface ... 4-2

WDIManager .. 4-3
InfrastructureSession Interface... 4-3
InfrastructureSession Operation Descriptions... 4-5

Query Operation ... 4-5
Export Operations... 4-5

NetworkLocationSubSession.. 4-8
NetworkLocationSubSession Interface Operations .. 4-8
NetworkLocationSubSession Operation Descriptions .. 4-10

Query Operations .. 4-10
Get Operations ... 4-11
Create Operation.. 4-12
Update Operation .. 4-12
Delete Operation .. 4-12
Associate Operations... 4-12
Unassociate Operations... 4-13

Process Flows ... 4-13
Solicited Messages... 4-13
Unsolicited Messages ... 4-13

Sample Unsolicited Message Process Flow for Exporting Infrastructure Information . 4-13

5 The Inventory and Capacity Management API

Key MetaSolv Solution Concepts ... 5-2
Equipment Types, Equipment Specifications, and Equipment... 5-2
Equipment Network Elements... 5-2
Equipment Name Aliases ... 5-3
Equipment Installation in MetaSolv Solution.. 5-3
Mounting Positions.. 5-4
Ports and Port Addresses.. 5-4
Virtual Port Addresses .. 5-4
Enabled Ports and Enabled Port Addresses... 5-5
Port Address Placeholders.. 5-5

vi

Port Address Aliases.. 5-6
Nodes and Node Addresses ... 5-6

Sequential Port Address Numbering... 5-6
Hard-Wired Cross-Connects .. 5-7
Condition Codes... 5-8
IP Address Management in MetaSolv Solution... 5-9
Overview of Assigning IP Addresses to Ports.. 5-10
Some Common Questions About Equipment in MetaSolv Solution 5-11

ICM API Implementation Concepts .. 5-11
Transaction Management and the ICM API ... 5-11
Network Inventory Gateway Events and the ICM API .. 5-12
DLR Mass Reconcile ... 5-13
ICM API IDL files.. 5-13

ICM API Interfaces ... 5-13
WDIManager Interface... 5-14
CircuitHierarchySession Interface .. 5-15
EquipmentSession Interface Operations.. 5-17
SpecificationSubSession Interface Operations .. 5-17
InstallationSubSession Interface Operations... 5-18

Comments Concerning Specific InstallationSubSession Operations 5-19
CrossConnectSubSession Interface Operations .. 5-21

Formats for Specifying FROM Side Port Addresses... 5-21
Formats for Specifying TO-Side Port Addresses... 5-22
Comments concerning specific CrossConnectSubSession operations 5-23

NetworkElementSubSession Interface Operations .. 5-23
Comments Concerning Specific NetworkElementSubSession Operations..................... 5-23

DLRSession Interface Operations ... 5-24
Process Flows ... 5-25

Solicited Messages... 5-26
Sample Solicited Message Process Flow... 5-26

Unsolicited Messages ... 5-26
Sample Unsolicited Message Process Flow for Exporting... 5-26

6 The Number Inventory API

Number Inventory API Interfaces .. 6-2
WDIManager Interface.. 6-2
NumberInventorySession Interface Operations .. 6-3

Process Flow .. 6-4
Unsolicited Messages .. 6-4

Sample Unsolicited Process Flow for Importing a Customer .. 6-4
Import Notifications .. 6-5
Number Inventory API Date Handling .. 6-5

7 The Activation API

Connections ... 7-1
Network System Information ... 7-1
Order Processing .. 7-2

vii

Single Connection .. 7-2
Retrieval ... 7-2
MetaSolv Solution Key Concepts ... 7-3
Activation API IDL files ... 7-3
Activation API Interface Relationships ... 7-3
Activation API Operation Descriptions .. 7-4

8 The Plant API

Plant implementation Concepts .. 8-1
Order Management.. 8-1
Recommendations for Assigning Gateway Events to Provisioning Plan Tasks....................... 8-2
Options for Modify Cable Pair Assignment Preference ... 8-3
Transaction Management and the Plant API ... 8-3
Associating Separations Route to Plant Transport.. 8-3
Consequential Equipment Assignments .. 8-4

Key MetaSolv Solution Concepts ... 8-4
Plant API IDL Files .. 8-4
Plant API Interface Relationships... 8-4
PlantSession Interface ... 8-5
Plant API Operation Descriptions .. 8-6
MetaSolv Solution API Software and Mediation Server Processes ... 8-9

Request for Plant Assignment... 8-10
Request for Plant Assignment Change .. 8-11
Request to Cancel Plant Assignment ... 8-13
Request to Disconnect Plant Assignment .. 8-14
Request to Cancel Plant Disconnect ... 8-15
Request for Change to Due Date... 8-16
Request for Plant Assignment Exception .. 8-17
Request to Complete Plant Assignment .. 8-18
Import Plant Assignment Failed... 8-19
Obtain Network Location Details ... 8-20
Query for Network Location ID ... 8-20
Query for Plant Specification ID ... 8-21
Obtain Valid Values for Plant Import and Export ... 8-21

9 The PSR Ancillary API

Implementation Concepts .. 9-1
Essential Terminology... 9-1

PSR Ancillary API Interfaces.. 9-1
E911Session Interface Operations.. 9-2
CNAMSession Interface Operations ... 9-2
LIDBSession Interface Operations ... 9-2

Implementation Concepts .. 9-3
The PSR Ancillary API and Smart Tasks .. 9-3
Field by Field Matching Between Extract Row and Response Record....................................... 9-3
Rules of Operation ... 9-4

viii

Extract Sequence Matching ... 9-5
Extract and Respond Scenario.. 9-5
Error Logging Changes.. 9-6
Process Flow .. 9-7

Unsolicited Messages .. 9-7
Sample Unsolicited Message Process Flow.. 9-8

Auto Respond Preference ... 9-9
Glossary of Terms and Abbreviations ... 9-9

10 The PSR Order Entry API

PSR Order Entry API Interfaces ... 10-2
WDIManager Interface... 10-2
PSRSession Interface Operations .. 10-3
PSRSession Operation Descriptions ... 10-6
PSR Order Entry API Preferences... 10-6

Bypass PSR API Switch Validation for TN assignment ... 10-6
Bypass Selected PSR API Import Structure Validation .. 10-6
Override Default Value on PSR API Import When Label Exists on Import Structure .. 10-6
Use Copy Item When Importing PSR Order.. 10-7
Using Metasolv Solution Inventory as the Primary Inventory for Telephone Numbers.........
10-7

PSRProductCatalogSession Interface Operations .. 10-7
PSRProductCatalogSession Operation Descriptions ... 10-7
PSRProvisioningSession Interface Operations ... 10-7

Process flow .. 10-8
Unsolicited Messages ... 10-8

Sample Unsolicited Process Flow for Importing a Customer ... 10-8
Import Notifications ... 10-9
PSR API Date Handling ... 10-9
Batch Operations in PSR API Exports.. 10-9
Export Search Criteria .. 10-10

MetaSolv Solution Product Specification and Product Catalog .. 10-10
Products.. 10-10

Item Types... 10-10
Product Specifications ... 10-10

Product Catalog... 10-11
More About Products ... 10-11

More About Product Specifications .. 10-11
More About Product Catalogs ... 10-14

Packages ... 10-15

11 The Switch Provisioning Activation API

Functionality .. 11-1
Essential Terminology.. 11-1
Switch Provisioning Activation Interface .. 11-1

DLRSession Interfaces .. 11-1
DLRSession Interface Operations .. 11-2

ix

Process Flows ... 11-2
Solicited Messages... 11-2

Sample Solicited Message Process Flow... 11-2
Unsolicited Messages ... 11-3

Process Flow for Exporting Switch Provisioning Activation Information...................... 11-3
Implementation Concepts ... 11-4

What Are Network Nodes and Network Node Types? .. 11-4
What are Flow-through Provisioning Plans and Commands?... 11-4
What Are Design Layout Records (DLRs)?... 11-5
What are Tech Translation Sheets?... 11-5
What are Virtual Layout Records (VLRs)? .. 11-5
Software Modules and Subsystems Used in Flow-through Provisioning.............................. 11-5

Equipment Administration Module.. 11-6
Infrastructure Module ... 11-6
Product Service Request Module... 11-6
Service Provisioning Subsystem.. 11-6
Work Management Subsystem .. 11-7

Flow-through Provisioning Process .. 11-7
Signal Handler.. 11-7
Request Handler... 11-8
Formatting/Translation Module ... 11-8
Response Handler.. 11-8
Date/Time Format... 11-8
CORBA Substructures... 11-8

Design Considerations ... 11-9

12 The Transport Provisioning Activation API

Functionality .. 12-1
Essential Terminology.. 12-1
Transport Provisioning Activation Interface ... 12-2

DLRSession Interfaces .. 12-2
DLRSession Interface Operation .. 12-2

Process Flows ... 12-2
Solicited Messages... 12-2

Sample Solicited Message Process Flow... 12-3
Unsolicited Messages ... 12-3

Sample Unsolicited Message Process Flow for Exporting Transport Provisioning
Activation Information 12-4

Implementation Concepts ... 12-4
What are Network Nodes and Network Node Types? ... 12-4
What are Flow-through Provisioning Plans and Commands?... 12-5
What Are Design Layout Records (DLRs)?... 12-5
What Are Tech Translation Sheets?.. 12-5
What Are Virtual Layout Records (VLRs)? ... 12-6
Software Modules and Subsystems Used in Flow-through Provisioning.............................. 12-6

Equipment Administration Module.. 12-6
Infrastructure Module ... 12-6

x

Product Service Request Module... 12-6
Service Provisioning Subsystem.. 12-7
Work Management Subsystem .. 12-7

Flow-through Provisioning Process .. 12-7
Reference Architecture ... 12-8

Signal Handler.. 12-8
Request Handler... 12-9
Formatting/Translation Module ... 12-10
Response Handler.. 12-10

Design Considerations ... 12-10

13 The Trouble Management API

Functionality .. 13-1
TroubleSession Interface ... 13-2

WDIManager ... 13-2
TroubleSession Interface Operations ... 13-2

TroubleSession Operation Descriptions ... 13-5
Trouble Management API IDL Files ... 13-12
Process Flows ... 13-12

Solicited Messages... 13-12
Sample: Solicited Message Process Flow.. 13-12

Unsolicited Messages ... 13-13
Sample Flows for Business Tasks ... 13-13

Process Flow for Updating a Trouble Ticket ... 13-13
Process Flow for Clearing a Trouble Ticket ... 13-15
Process Flow for Closing a Trouble Ticket... 13-16
Process Flow for Canceling a Trouble Ticket... 13-16

Using the Service Item Test Button Functionality.. 13-17
Implementation Concepts.. 13-17
Interaction Life Cycle.. 13-17
Session User ID Can Be Used to Verify Workforce Employee .. 13-18
Date Field Types.. 13-19
The createTicket_v3 Operation ... 13-19

Import Ticket Attributes ... 13-19
Required Fields in createTicket_v3 Request .. 13-19
Business Rules in Processing createticket_v3 Request ... 13-19
Notifications Upon Ticket Creation .. 13-21
Escalation Levels for createTicket_v3 Request .. 13-21
Ticket Linkage .. 13-21
Creating Duplicate Tickets ... 13-21
Customer Must Be Passed as a Party ID... 13-21
Customer is Defaulted Based On the Service Item ... 13-21
Non-inventoried Service Items Are Not Created.. 13-21
Certain Codes Are Passed as ID Values ... 13-22
Ticket Dates and Times Are Imported in GMT ... 13-22
Telcordia Preference and Trouble Management API ... 13-22

Setting or Changing the Affected Service Item On a Trouble Ticket 13-22

xi

Passing the Service Item Type and Service Item Identifier.. 13-23
Identifying a Circuit/Connection Service Item Type... 13-23
Identifying an Equipment Service Item Type.. 13-24
Identifying an Network Element Service Item Type .. 13-25
Identifying a Network System Service Item Type .. 13-25
Identifying a Telephone Number Service Item Type ... 13-25
Clearing the service item from a ticket ... 13-25

The updateTicket_v2 Operation ... 13-25
Updateable Ticket Attributes ... 13-25
ExportDateTime Field is Used to Check Concurrency... 13-26
Required Fields in updateTicket Request... 13-26
Business Rules in Processing updateTicket_v2 Request .. 13-26
Notifications Upon Ticket Update .. 13-28
Ticket Linkage and Ticket Update... 13-28
Updating Duplicate Tickets.. 13-29

About Customer Information and Updating Tickets .. 13-29
Customer Must Be Passed as a Party ID... 13-29
Customer is Defaulted Based On the Service Item .. 13-29
Non-inventoried Service Items Are Not Created.. 13-29
Certain Codes are Passed as ID Values .. 13-29
Ticket Dates and Times Are Exported and Imported in GMT.. 13-30
Audit Note Date/Time Display... 13-30
Telcordia Preference and Trouble Management API ... 13-30

The clearTicket Operation.. 13-30
Ticket Linkage and Clear Ticket .. 13-31

Details Concerning Use of the closeTicket Operation ... 13-31
Ticket Linkage and Close Ticket .. 13-32
Closing an Open/Active Trouble Ticket .. 13-33

Notifications for Cleared and Closed Tickets ... 13-33
Details Concerning Use of the cancelTicket Operation ... 13-33

Ticket Linkage and Cancel Ticket.. 13-34
Details Concerning Use of the getTickets_v2 Operation... 13-34
Details Concerning Use of the Service Item Query Operations ... 13-36
Structure Format Criteria for the getTelephoneNumberServItem Operation 13-37
MetaSolv Solution Software Concepts ... 13-38

Overview of the Trouble Management Subsystem .. 13-38
Permitted Trouble Ticket State Changes .. 13-38

Trouble Management Operational Differences .. 13-40
Escalation Organizations and Levels and the Trouble Management API..................... 13-40
External Referrals and the Trouble Management API ... 13-41
User-required Optional Trouble Management Subsystem Fields and the Trouble
Management API 13-41
User-defined Fields and the Trouble Management API .. 13-41
Certain Field Values Not Defaulted .. 13-41
No Default of ETTR, Priority Level or Customer Status Minutes for a Circuit Service Item ..
13-41

Repeat and Chronic Trouble Ticket Types .. 13-42

xii

Effect of Data Errors in Trouble Reports on Trouble Management API Processing........... 13-42

14 The Work Management API

WMSession Interfaces .. 14-1
WDIManager ... 14-2
WMSession Interfaces... 14-3

WMSession Interface Operation Descriptions... 14-3
TaskGenerationSubSession Interfaces.. 14-3

TaskGenerationSubSession Interface Operation Descriptions.. 14-4
TaskViewingSubSession Interface Operations ... 14-4

TaskViewingSubSession Interface Operation Descriptions .. 14-6
TaskCompletionSubSession Interface Operations ... 14-9

TaskCompletionSubSession Interface Operation Descriptions 14-10
Work Management API IDL Files.. 14-11
Process Flows ... 14-11

Solicited Messages... 14-11
Sample Solicited Message Process Flow... 14-12

Unsolicited Messages ... 14-12
Enhanced Off-net Automation Functionality and the Work Management API.................. 14-12

Implementation Concepts ... 14-13
Overview of the MetaSolv Solution Work Management Subsystem 14-13
Work Management Operational Differences .. 14-14
Tasks That Cannot be Completed Through the Work Management API 14-15
Work Management API Support for NET DSGN Task... 14-16
Work Management API Support for Date Ready System Tasks.. 14-16
Work Management API Support for Backdated and Forward-dated Tasks........................ 14-16

A API Error Messages and Exceptions

B Tips And Techniques

Understanding IOR Files ... B-1
Configuring the IOR File to Enable External Systems to Connect to the CORBA Server B-1
CORBA.INV_OBJREF and CORBA.OBJECT_NOT_EXIST Exceptions.................................... B-2
CORBA.COMM_FAILURE Exception ... B-2

Using the MetaSolv Solution APIs With Multi-Threaded Clients ... B-2
Developing Using C++... B-2

C++ Troubleshooting.. B-2
Troubleshooting Tips for API Developers... B-3

Using API Server Logging ... B-3
Using SQL Logging... B-4
Using Console Logging .. B-4
Using CORBA Logging .. B-4

C Sample Code

IOR Bind Method.. C-1
Background .. C-1

xiii

IOR Bind Method Sample Code.. C-1
NameService Bind Method ... C-3

Background .. C-3
Binding to the NameServer With an IOR Sample Code.. C-4
Binding to the NameService with resolve_initial_references Sample Code C-5

URL Bind Method Sample Code.. C-6
Sample Code .. C-7

Gateway Events Functionality Changes .. C-8
Middle-tier Triggering.. C-8

New Binding Methods ... C-9
Background .. C-9
Defining a Gateway .. C-9

IOR Binding to Third-party Applications.. C-12
NameService Binding to Third-party Applications ... C-13
New Event Signal ... C-13

D The PSR End User Billing API

Essential Terminology.. D-1
PSREUBSession Interface.. D-2

WDIRoot Interface .. D-2
WDIManager Interface... D-2
PSREUBSession Interface Operations .. D-2

Process Flows ... D-3
Process Flow for Send Bill Cust Gateway Event .. D-3
Process Flow for Send Bill Ord Gateway Event ... D-4
Process Flow for Customer Change Application Event .. D-5
Viewing PSREUB API Event Errors in MetaSolv Solution ... D-6
Solicited Messages... D-6
Additional Process Flow Information.. D-6

Interface Point 1: SBC Event ... D-7
Information Passed to the Server... D-7
Interface Point 2: SBO Event... D-7
Information Passed to the Server... D-7

Implementation Concepts ... D-7
Signal Handler Module Design... D-8
Request Handler Module Design ... D-9
Response Handler Module Design... D-9
Transaction Handling... D-9
PSR Service Item Vs. the Billing Service Instance .. D-9
Pricing ... D-10
Transfer of Products Between Customer Accounts ... D-10
Using the ELEMENT, CONNECTOR, SYSTEM and PRDBUNDLE Item Types.................. D-11

Glossary

xiv

xv

Preface

This document accompanies the application programming interfaces (APIs) that form
the Oracle Communications MetaSolv Solution (MSS) interface architecture.
Information includes how the MSS APIs work, high-level information about each API,
and instructions for using the MSS APIs to perform specific tasks.

Audience
This document is intended for CORBA developers who are developing applications
that use the MSS APIs.

This document assumes you have a working knowledge of the Common Object
Request Broker Architecture (CORBA) standards, including an understanding of
interface definition language (IDL). For details about CORBA fundamentals and
programming or IDL syntax, refer to the documentation for your CORBA
implementation.

This document helps you develop:

■ A high-level understanding of the general principles that govern the use of the
APIs.

■ An understanding of the details of implementing an application that uses a
specific API.

This document is not intended as a training tool, nor does it address the installation or
use of any Oracle products.To fully integrate the MSS APIs with your product often
requires knowledge of a specific MSS functional area. For information about training
or consulting services, contact your MSS representative.

This document contains:

■ Key concepts

■ Details about specific APIs

■ Sample code that illustrates key concepts

Related Documents
For more information, see the following documents in the MSS documentation set:

■ MSS Planning Guide: Describes information you need to consider in planning your
MSS environment before installation.

■ MSS Installation Guide: Describes system requirements and installation procedures
for installing MSS.

xvi

■ MSS System Administrator’s Guide: Describes postinstallation tasks and
administrative tasks such as maintaining user security.

■ MSS Security Guide: Provides guidelines and recommendations for setting up MSS
in a secure configuration.

■ MSS Database Change Reference: Provides information on the database changes in
MSS releases.

■ MSS Network Grooming User’s Guide: Provides information about the MSS Network
Grooming tool.

■ MSS Address Correction Utility User's Guide: Provides information about the MSS
Address Correction utility.

■ MSS Technology Module Guide: Describes each of the MSS technology modules.

■ MSS Data Selection Tool How-to Guide: Provides an overview of the Data Selection
Tool, and procedures on how it used to migrate the product catalog, equipment
specifications, and provisioning plans from one release of your environment to
another.

■ MSS Custom Extensions Developer’s Reference: Describes how to extend the MSS
business logic with custom business logic through the use of custom extensions.

■ MSS Web Services Developer's Guide: Describes the MSS Web Services and provides
information about the MSS Web Service framework that supports web services,
the various web services that are available, and how to migrate existing XML API
interfaces to web service operations.

For step-by-step instructions for tasks you perform in MSS, log in to the application to
see the online Help.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

1

The MetaSolv Solution Architecture 1-1

1The MetaSolv Solution Architecture

This chapter provides a general understanding of the Oracle Communications
MetaSolv Solution interface architecture, a group of APIs that allow access to the data
in the MetaSolv Solution database. This chapter tells you how MetaSolv Solution
provides access to information and software functionality to external applications.

What Does MetaSolv Solution Do?
Oracle is a leading provider of operations support system (OSS) solutions and
professional services for service providers in the local exchange, interexchange,
wireless, data, and Internet markets. MetaSolv Solution enables service providers to
automate and manage their ordering, service activation, and service assurance (trouble
management) processes.

The MetaSolv Solution product line is set of subsystems integrated by a common
repository, a database, of business data and processes. Each subsystem supports a
critical aspect of the service provider's business:

■ Order Management: Enables the service provider to manage the end-to-end
service delivery process. This often involves more than one type of service request
or transaction within the organization, as well as transactions with other service or
network providers.

■ Service Provisioning: Facilitates delivery of a full spectrum of services, from
simple circuit assignments to complex circuit design and configuration. The
integration of the Service Provisioning subsystem with other MetaSolv Solution
subsystems provides the service provider with an accurate view of what their
customer ordered and what their network can support.

■ Network Design: Brings together the geographical, physical, electrical, and logical
dimensions of the network into a single, cohesive view supported by a set of
integrated equipment administration and network design modules. This
subsystem supports the design of networks and fulfillment of services across
multiple providers and technologies.

■ Trouble Management: Supports the reporting, tracking, and resolution of trouble
associated with providing telecommunication products and services. This
subsystem tracks a reported problem from its initial identification to its resolution.

■ Interface Management: Supports accurate, reliable, and timely exchange of
information between MetaSolv Solution and the service provider's other systems
and external organizations.

■ Work Management: Enables work to flow electronically across the organization.
This subsystem provides the capability to manage provisioning plans, which are

How Do the MetaSolv Solution APIs Work with MetaSolv Solution?

1-2 MetaSolv Solution CORBA API Developer's Reference

groups of tasks needed to manage the flow of work and information required for
the service fulfillment process.

MetaSolv Solution provides a flexible and open architecture. MetaSolv Solution uses
an integrated database, where all data is collected and shared across all MetaSolv
Solution subsystems. This single database provides a high-level information about the
customer's profile.

How Do the MetaSolv Solution APIs Work with MetaSolv Solution?
MetaSolv Solution is developed on an open architecture that recognizes the need to
electronically exchange information with a wide array of systems such as the managed
network, other enterprise systems, and external trading or service partners and their
operations support systems. The MetaSolv Solution APIs were to permit a flow of data
between the MetaSolv Solution database and external applications.

Automatic and manual export event triggers exist within MetaSolv Solution providing
end users with the capability to send work to the MetaSolv Solution Application
Server or to third-party gateways.

The MetaSolv Solution interface architecture provides APIs that enable access to
specific parts of data in the MetaSolv Solution database.

Table 1–1 describes the APIs that are available in MetaSolv Solution.

Table 1–1 MetaSolv Solution APIs

API Description

End User Billing API The End User Billing API publishes information needed for
exporting data from the MetaSolv Solution database to support
end-user billing from PSRs. This API integrates MetaSolv Solution
order management and provisioning information with billing
solutions, defines a standard end-user billing interface, and allows
generic support for any billing vendor.

Inventory and Capacity
Management (ICM) API

The ICM API provides beginning-to-end visibility of service and
network assets, including facilities, equipment, and circuits.

Product Service Request
(PSR) Ancillary API

The PSR Ancillary API permits exposure of E911 and
LIDB/CNAM information to database providers.

Product Service Request
(PSR) Order Entry API

The PSR Order Entry API enables a customer or a customer's
third-party developer to insert customer account, service location,
and PSR order information into the MetaSolv Solution database.
This information is necessary for telecommunication products or
services to be provisioned through MetaSolv Solution.

Switch Provisioning
Activation API

The Switch Provisioning Activation API provides a
vendor-independent interface that enables the flow-through
provisioning of switch services such as POTS.

Transport Provisioning
Activation API

The Transport Provisioning Activation API provides a
vendor-independent interface that enables the flow-through
provisioning of Frame Relay, ATM circuits, xDSL, and SONET.
Transport provisioning reduces service turn-up time, staffing
needs, and provisioning errors.

Trouble Management
API

The Trouble Management API provides a mechanism for
integrating the MetaSolv Solution Trouble Management subsystem
with a third-party network or fault management system. This
integration allows for the automatic creation of trouble tickets in
the MetaSolv Solution Trouble Management subsystem from the
fault management system.

How Do the MetaSolv Solution APIs Work with MetaSolv Solution?

The MetaSolv Solution Architecture 1-3

Overview of Essential Terminology
Some terminology in the software and telecommunications industries differs from one
provider to another. To eliminate confusion, this guide includes a glossary. However;
as you read the remainder of this documentation, it is important that you understand
the distinctions between the following sets of terms:

Work Management API The Work Management API enables customers to generate tasks
for an order, view tasks in work queues, and complete, reopen,
transfer, or suspend tasks for an order through a web interface.

Infrastructure API The Infrastructure API provides operations for exporting lists of
information from the MetaSolv Solution database. The
Infrastructure API can export these types of information from the
database:

■ Structure formats and structure format components

■ Geographic areas and types

■ Code categories and code category values, including
languages

■ Network locations

Number Inventory API The Number Inventory API was created to more efficiently handle
the administration of telephone numbers and inventory items in
MetaSolv Solution. Operations are provided in the WDINI.IDL that
provide the following functionality:

■ Export Number Inventory

■ Import Number Inventory

■ Generate User ID

■ Generate User Password

■ Validate Password

■ Update Number Inventory Provisioning

■ Pre-assign Telephone Numbers

■ Remove Inventory Association

The following operations provide lookup and export functionality:

■ exportTopLevelDomains

■ exportInventoryTypes

■ exportInventorySubTypes

■ exportInventoryStatus

■ exportInventoryRelationTypes

■ exportInventoryItem

■ exportInventoryItems

■ exportInventoryItemAssociation

■ exportTelephoneNumbers

■ exportAccessTelephoneNumbers

The following operations provide import functionality:

■ importNewInventoryItem

■ importUpdatedInventoryItem

■ importInventoryAssociation

Table 1–1 (Cont.) MetaSolv Solution APIs

API Description

How Do the MetaSolv Solution APIs Work with MetaSolv Solution?

1-4 MetaSolv Solution CORBA API Developer's Reference

Solicited Messages Vs. Unsolicited Messages
The point of reference for this guide is the MetaSolv Solution product line. Therefore,
when reading material about messages, whether the API is the initiator of the request
determines whether a message is solicited or unsolicited. When MetaSolv Solution
initiates the request and your software receives, that request is a solicited message.
When your application initiates the request and the API receives the request, that
request is called an unsolicited message.

Where the documentation does not refer specifically to solicited or unsolicited
messages, the information applies to both solicited and unsolicited messages.

Events Vs. Signals
In the scope of the APIs, an event is the occurrence of something in MetaSolv Solution
or in your application that is significant to the MetaSolv Solution user, such as:

■ A request to export an LSR

■ A request to send billing information

■ A change in the status of the import of an LSC

A signal is a logical artifact that communicates information about an event.

Where appropriate or necessary, this documentation refers explicitly to gateway events
or application events. If no such distinction is drawn, the information applies to either
type of event. See "Understanding Events" for an explanation of the distinctions
between application and gateway events.

Inbound Signals Vs. Outbound signals
The point of reference for this guide is the MetaSolv Solution product line. Therefore,
when reading material about signals, the direction of the signal in relation to MetaSolv
Solution determines whether it is an inbound or outbound signal. When MetaSolv
Solution sends the signal, that signal is an outbound signal. When MetaSolv Solution
receives the signal, that signal is an inbound signal. Where the documentation does
not refer specifically to inbound or outbound signals, the information applies to both
types of signals.

Synchronous Vs. Asynchronous
In the scope of this documentation, synchronous operations are those where the
application that invokes the operation gets the results of the operation immediately
upon the return of the call. No callback mechanism is used in this method.
Asynchronous operations are those where control returns to the application that
invokes the operation before the operation is acted upon, and the results (if any) are
returned to the calling application after the operation is completed. The invoked
application uses a callback mechanism to communicate the results to the invoking
application. See "Synchronous and Asynchronous Invocation Modes" for more
information about the synchronous and asynchronous modes of processing.

API Integration
MetaSolv Solution provides APIs that allow the importing and exporting of data,
through the use of the MetaSolv Solution Application Server, to the MetaSolv Solution
database. This provides support for interconnection with third-party and legacy
applications and allows development of customized interfaces to the MetaSolv
Solution database. The APIs are built on the CORBA protocol. MetaSolv Solution
defines the APIs using CORBA's IDL.

MetaSolv Solution API Technical Overview

The MetaSolv Solution Architecture 1-5

To provide interconnection, a MetaSolv Solution API provides a data pipe mechanism
between your application and the MetaSolv Solution data model. This connection
enables you to import and export data without programming language or
methodology restrictions. Your software must implement an architecture that provides
access to data and, if required, provides a mechanism for updating MetaSolv Solution
data.

In addition to importing and exporting data, the APIs ensure the integrity of data in
the MetaSolv Solution database by verifying that all imported data meets the MetaSolv
Solution data rules. Using an API, MetaSolv Solution can be integrated into a
customer's environment. Oracle consultants, third-party consultants, or customers
themselves can complete the integration work.

Figure 1–1 shows the process by which the APIs communicate with client applications
and other server applications.

Figure 1–1 API Communication Process Overview

MetaSolv Solution API Technical Overview
The MetaSolv Solution interface architecture provides APIs that enable access to
specific information in the MetaSolv Solution database. This architecture meets
requirements for customers connecting to MetaSolv Solution. Using this architecture,
you or third-party developers can easily connect to MetaSolv Solution, providing
add-on products and custom solutions.

MetaSolv Solution APIs are IDL files that provide a blueprint for communication
between MetaSolv Solution and your software. The third-party server environment
can be on any platform and operating system that supports CORBA.

The APIs are bidirectional, they send requests to other software and receive requests
from other software. To initiate processing, MetaSolv Solution has defined an event
mechanism that sends out pre-defined signals, called application events, and signals

MetaSolv Solution API Technical Overview

1-6 MetaSolv Solution CORBA API Developer's Reference

defined by you or a third-party developer, called gateway events. See "Understanding
Events" for more information.

Understanding Events
One of the most important tools provided by the APIs is the ability for your
applications to integrate with the Work Management subsystem. This integration is
provided by the exchange of events and signals between the APIs and your
applications. An event is a significant occurrence within the workflow of either the
Work Management subsystem or your application. A signal is the logical artifact used
to communicate information about an event between MetaSolv Solution and your
application.

Two types of events are implemented in the Work Management subsystem:

■ Application events

■ Gateway events

Application events are pre-defined within MetaSolv Solution and occur at fixed points
in the workflow. Application events are always sent by MetaSolv Solution to external
applications through an outbound signal that carries MetaSolv Solution-defined data
pertaining to the event. The signal that represents an application event carries
pre-defined data specific to that event.

Gateway events provide a powerful mechanism for you to insert hooks into the Work
Management subsystem. The signal that represents a gateway event can carry only
generic data such as a document reference for a document in the MetaSolv Solution
database.

Except for the system-defined gateway events used by the PSR Ancillary API, all
gateway events are defined by your application and set up in the MetaSolv Solution
database using the user interface provided in the Work Management subsystem.

Unlike application events, which can only occur within MetaSolv Solution, gateway
events can occur within either MetaSolv Solution or your application. Therefore,
gateway events must be defined in the MetaSolv Solution database as either outbound
or inbound events. Outbound gateway events occur within MetaSolv Solution and are
communicated to your application through outbound signals. Inbound gateway
events occur in your application and are communicated to the MetaSolv Solution
Application Server through inbound signals.

Your application communicates the status of outbound gateway events to the
MetaSolv Solution database through the APIs. These statuses indicate changes in the
state of the event. The actual status values available for your use are defined in the
event-signaling structure of the MetaSolv Solution IDL.

Gateway events must be tied to a task in a provisioning plan in the Work Management
subsystem. When that provisioning plan is associated with a new order, the plan
ensures that the Work Management subsystem sends or receives the gateway event at
the point defined within the provisioning plan.

Table 1–2 summarizes the differences between application events and gateway events.

Note: See "The PSR Ancillary API and Smart Tasks" for more
information about the system-defined gateway events supported by
the PSR Ancillary API.

MetaSolv Solution API Technical Overview

The MetaSolv Solution Architecture 1-7

For more information about Work Management integration, contact the Oracle
representative at the implementation site.

Synchronous and Asynchronous Invocation Modes
The MetaSolv Solution interface architecture uses two invocation modes for
operations:

■ Synchronous

■ Asynchronous

All external applications (those developed by you or a third party) that interact with
the APIs are required to handle both invocation modes.

Synchronous Operations
In the scope of this documentation, synchronous operations are those where the
application that invokes the operation gets the results of the operation immediately
upon the return of the call.

The general rules for synchronous operations are as follows:

■ All operations initiated by MetaSolv Solution or the API software against your
application are synchronous. This means your application is required to return the
results of the operation upon return of control.

■ All operations your application invokes on an API server are synchronous, except
for data import and export operations, which are asynchronous.

Asynchronous Operations
In the scope of this documentation, asynchronous operations are those where control
returns to the application immediately and the results (if any) are returned to the
invoking application at a later time. The APIs use a callback mechanism to implement
this paradigm. The callback mechanism works as follows:

1. Your application creates a unique callback object, then passes that object to the
appropriate API server along with the rest of the asynchronous operation's
parameters. Your application then awaits return of control.

2. The API server implements the operation and immediately returns the call. Results
of the operation are not returned at this time.

Table 1–2 Differences Between Application Events and Gateway Events

Difference Application Events Gateway Events

How Defined Pre-defined in MetaSolv
Solution

Defined by you (or a third-party developer)
and added to the MetaSolv Solution
database using the Work Management
subsystem's user interface

Association Tied to a specific MetaSolv
Solution application event
such as a button click or
menu selection

Tied to a task in a provisioning plan in the
Work Management subsystem

Signal Direction Always outbound Inbound or outbound as defined in the
MetaSolv Solution database

Content MetaSolv Solution-defined
data specific to the event

Only generic data such as a document
reference

MetaSolv Solution API Technical Overview

1-8 MetaSolv Solution CORBA API Developer's Reference

3. Control returns to your application, which now begins to listen to the callback
object while it waits on the results.

4. The asynchronous operation completes the requested task and returns the results
to the API server.

5. The API server invokes an operation on the callback object to return the results to
your application.

6. The callback object hands the results to your application

The general rule for asynchronous operations is that all operations involving
movement of data to and from the MetaSolv Solution database, data import and
export, are asynchronous.

Transaction Model Used By the APIs
The APIs use a transaction model; however, the APIs do not provide built-in support
for nested or linked transactions. With two exceptions, the API servers provide an
operation that external applications can invoke to generate a transaction object. The
exception is the ICM API and the End User Billing API. These two servers provide all
required transaction management functions internally.

Operations that involve movement of data into or out of the MetaSolv Solution
database require the external application to supply a transaction object. The
transaction object must support two operations:

■ A commit operation that unconditionally applies all database changes that were
performed during that transaction

■ A rollback operation that cancels all database changes made during that
transaction

The responsibility of organizing and managing units of work using the commit and
rollback operations rests solely with external applications that use the APIs.

Transaction Objects
Each API server maintains an internal table of all the transaction objects it generates.
The scope of a transaction object is ultimately limited to the lifetime of the API server
process that created it and the lifetime of the MetaSolv Solution database instance.
Transaction objects are re-usable but not portable. Therefore, the same transaction
object may be used multiple times while performing operations on the API server that
generated it, subject to the transaction lifespan limitations described earlier in this
paragraph. You can only use a transaction object on the API server from which it was
generated.

Note: If your application can handle multiple threads, the
application can continue generating threads, if it remains available to
accept and process the invocation of the callback object for each
thread.

Note: See "Synchronous Operations" and "Asynchronous
Operations" for more information about implementing synchronous
and asynchronous operations.

Importing and Exporting Using the APIs

The MetaSolv Solution Architecture 1-9

Determining the Role Your Application Performs
When developing an application to run against any of the APIs, it is very important to
understand the roles that application will be performing. Applications can be
developed against the APIs to perform in one of the following roles:

■ Client only

■ Server only

■ Both client and server

Because of the significant differences between developing for these roles, it is
important that you understand the differences between the roles. Before beginning
development you should determine which role your application will perform in
relation to the APIs.

For synchronous transactions each application's role remains constant throughout the
transaction and is either the client role or the server role. See "Synchronous
Operations" for more information.

The role each application plays is determined by the application that requests the
service:

■ The application that requests a service is the client

■ The application that supplies the service is the server

For example:

■ When your application invokes synchronous operations on the API servers to
update the status of gateway events, your application is the client. In this case,
your application requests the service and the API server supplies the service.

■ When the Work Management subsystem sends an outbound gateway event to
your application, your application is the server. MetaSolv Solution requests the
service (in this case, WDISignal::eventOccurred) and your application supplies the
service; in this case, whatever the application does when it receives that particular
gateway event.

For asynchronous operations, the server role is also determined by which application
requests the service, but the role each application plays can change, so role
determination is not as simple as in synchronous operations. When invoking
asynchronous API operations, perhaps your application will play any of the roles:
client only, server only, or both. Therefore, external applications that invoke
asynchronous operations against the APIs may have to be implemented with the
capability to function as CORBA servers. See "Asynchronous Operations" for more
information.

For example, when your application invokes an operation on the API server, your
application is the client. However, when the API server invokes operations on a
callback object that was provided by your application, the API server plays the client
role and your application plays the server role.

Importing and Exporting Using the APIs
The major processes supported by the APIs are the import and export of data.

Note: See "HelloAPI: Sample Application that Exports Data" for an
example of an external application that plays both the client and
server roles.

Responsibilities When Developing With the APIs

1-10 MetaSolv Solution CORBA API Developer's Reference

By providing access to specific MetaSolv Solution data, APIs enable you to implement
any required type of interface.

Two types of operations are provided by the APIs to enable external access to data
stored in the MetaSolv Solution database.

■ Data export operations are read-only and allow your application to extract data
out of the database.

■ Data import operations enable your applications to modify data stored inside the
database.

The APIs provide operations that allow your application to obtain transaction handles
to be used in data export and import operations.

Responsibilities When Developing With the APIs
An API provides a platform for integration, but it does not provide the complete
functionality required. As a developer of external applications intended to work with
the APIs, you should build in support for additional functionality as dictated by your
application's unique requirements. The APIs expect your application to perform the
following tasks:

■ Transaction management: You must start and destroy the transaction object. In
most cases, you must also define your own units of work and manage your
application's interactions with the APIs through the rollback and commit operations
provided by the API.

■ Event handling: Design your applications to receive and process the application
events and gateway events that the MetaSolv Solution clients send to your
applications.

Also, if you are developing a gateway application, you typically need to build in
support for service level agreement (SLA) functionality such as:

■ Scheduling

■ Field mapping/translation

■ Defining protocols

■ Transmission functionality retries, resends, recovery, and alternative transmission
channels

Naming Conventions in the APIs
MetaSolv Solution provides three types of IDL files for each API. The IDL files define
the interfaces your application can use to communicate with the MetaSolv Solution
product line.

The types of IDL files provided with MetaSolv Solution are:

■ The WDI.IDL file, a common API file distributed with each API. This file contains
the highest level interface structures and operations used by all APIs.

■ A WDIapiname.IDL file, where apiname represents the specific API name. This file
contains the highest level application-specific interfaces and operations for the
named API.

■ One or more WDIapinameTYPES files, where apiname represents the specific API
name. These files contain definitions of the data structures. There may be one
WDIapinameTYPES.IDL file that contains common access information or any

Naming Conventions in the APIs

The MetaSolv Solution Architecture 1-11

number of additional WDIapinameTYPESn.IDL files, where n represents the
types file number.

IDL Versioning for MetaSolv Solution
MetaSolv Solution ensures the backward compatibility of the IDL. IDL is versioned as
needed to support new functionality or to correct issues, leaving the original IDL
backward compatible. However, in some cases we cannot provide this compatibility.
Typically this occurs if an old function cannot be mapped to the new functionality or
in cases where the original function signature was incomplete or unusable.

The syntax of the new versioned IDL files, API operations and structures includes a “_
vX” at the end of the old name, where X represents a numeral; for example,
importPSROrder is represented as importPSROrder_v2 in the versioned form. For new
development use the most current version of an operation or structure. This means
you would use operationname_v3 or structurename_v3 instead of operation or
structurename_v2.

Note: The IDL types file for the Number Inventory API is named
NITYPESE.IDL. IDL types files for the PSR Order Entry APIs are
named PSRTYPES.IDL, PSRTYPES_v2.IDL, and PSRTYPES_v3.IDL.

Naming Conventions in the APIs

1-12 MetaSolv Solution CORBA API Developer's Reference

2

Developing Applications Using the APIs 2-1

2Developing Applications Using the APIs

This chapter introduces you to the steps involved in developing external applications
that make use of the Oracle Communications MetaSolv Solution APIs. This chapter
describes the various interaction paradigms and shows code examples for each.

This chapter also provides information on migrating from a previous release of
MetaSolv Solution. See "Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x" for
more information.

This chapter assumes that you that you are familiar with the technical concepts
presented in "Common Architecture".

Due to the variety of CORBA implementations available and the multitude of
programming languages that a developer may use to do CORBA programming, it is
not feasible to provide sample code for all possible combinations. The examples in this
guide use the following environment:

■ CORBA: JacORB

■ Language: Java JEE

The basic principles and design patterns described in this guide remain valid
regardless of the actual development environment used.

MetaSolv Solution 6.3.x uses JacORB 3.8, which includes CORBA versions 2.0, 2.3, 3.0,
and 3.1. The CORBA ORB used for your applications that interface with the MetaSolv
Solution API must support this standard. Typically that will mean you will need to
upgrade your ORB to a later version and recompile your code. For most third party
ORBs, this upgrade will not require code changes. Refer to your CORBA ORB vendors
documentation to identify the steps required to support CORBA 2.4.

MetaSolv Solution Interface Architecture
The APIs have been designed to meet two primary goals:

■ To enable external applications to perform on-demand data export and import
operations on the database

■ To allow external applications to tightly integrate with various modules and
subsystems of MetaSolv Solution

The MetaSolv Solution interface architecture is implemented on the Common Object
Request Broker Architecture (CORBA) standard and is designed to be open and
language-neutral. This enables you to develop your applications in any language that
has CORBA bindings available and to deploy your applications on any platform that
has CORBA support.

Design Architecture

2-2 MetaSolv Solution CORBA API Developer's Reference

Design Architecture
Unlike traditional APIs, the MetaSolv Solution APIs are not packaged as object code or
libraries. Instead, the API is delivered as a set of CORBA Interface Definition
Language (IDL) files that are installed when the MetaSolv Solution Application Server
is installed. CORBA implementation vendors supply IDL compilers that use these IDL
files to generate language bindings for the desired implementation language (for
example, Java or C++) and platform (for example, Windows NT or Oracle Solaris).

Figure 2–1 shows the API object architecture, which follows a layered, hierarchical
approach. The interfaces at each layer support operations that yield object references
to interfaces in the immediate subordinate layer (if any).

Figure 2–1 MetaSolv Solution API Design Architecture

The highest layer contains the Root interface, WDIRoot, which manages connections
from client applications.

The second layer contains the Manager interface, WDIManager, that provides
operations for session, transaction and signal management.

The third layer contains the various session interfaces. Typically, the operations that an
external application is interested in are in the session interfaces. For example,
operations that allow data export or import. However, some APIs are designed with a
fourth layer. In these APIs, the session interface in the third layer provides operations
that yield object references to interfaces in the fourth layer.

MetaSolv Solution APIs Require Instance References to Notification Objects

Developing Applications Using the APIs 2-3

Deployment Architecture
The MetaSolv Solution Application Server may be hosted on the same machine where
your application runs. However, in this case, the API class files must be loaded before
any other class files to prevent errors from occurring in the operation of the APIs.

Relationship of APIs, API Server Names, and IDL Files
This object architecture is reflected in the structure of all the API IDL files.

Table 2–1 lists the APIs and their corresponding IDL files.

MetaSolv Solution APIs Require Instance References to Notification
Objects

MetaSolv Solution APIs are written in Java and run under JDK 8. Due to JDK 8
requirements, the MetaSolv Solution APIs require your client-side application to pass
an instance reference to the ORB, rather than a static reference. If your application
passes a static reference to an ORB, the MetaSolv Solution APIs and the ORB cannot
communicate.

Static ORB references are commonly passed because some IDL compilers' default
behavior includes an implicit connect operation in generated constructors that is based

Table 2–1 Key IDL Files for MetaSolv Solution APIs

API Server Name Key IDL File

End User Billing API Determined by you and entered in
the MetaSolv Solution database
through the Gateway Events
window in the Work Management
subsystem.

WDIPSRBIL.IDL

Inventory and Capacity Management
API

DLRSERVER WDIDLR.IDL

LSR API LSRSERVER WDILSR.IDL

PSR Ancillary API PSRANCILLARYSERVER WDIPSRANCILLARY.IDL

PSR Order Entry API PSRSERVER WDIPSR.IDL

Switch Provisioning Activation API DLRSERVER WDIDLR.IDL

Transport Provisioning Activation API DLRSERVER WDIDLR.IDL

Trouble Management API TMSSERVER WDITROUBLE.IDL

Work Management API WMSERVER WDIWM.IDL

Infrastructure API INFRASTRUCTURESERVER WDIINFRASTRUCTURE.IDL

WDINETWORKLOCATION.IDL

Number Inventory API NUMBERINVENTORYSERVER WDINI.IDL

Note: When a MetaSolv Solution API attempts to communicate
through a static ORB reference, the error messages returned are often
cryptic and unintuitive. For example, OrbixWeb raises a security
violation rather than returning an exception indicating the requested
object was not found.

Development Environment

2-4 MetaSolv Solution CORBA API Developer's Reference

on a static ORB reference. However, the notification object must connect through an
instance ORB reference or your client-side application and a server-side MetaSolv
Solution API cannot both use the notification object.

Before compiling the IDL files for the MetaSolv Solution APIs, you should determine
whether your IDL compiler's default behavior is to include an implicit connect
operation in the generated constructors. If so, refer to your IDL compiler
documentation to determine how to suppress inclusion of the connect operation in
generated constructors.

Because the generated constructors intended for use with the MetaSolv Solution APIs
must be compiled without a connect operation, your application must explicitly
connect to each new notification object after instantiating the object. Make this
connection using the ORB.connect(<notification instance reference>) operation.

Development Environment
In order to develop applications using the APIs you must have at a minimum these
items installed on your workstation:

■ A CORBA development environment that includes an IDL compiler and
supporting classes and/or libraries, for example JacORB. The IDL compiler must
be namespace aware because the MetaSolv Solution APIs use hierarchical naming
conventions. Using an IDL compiler that is not namespace-aware causes naming
collisions.

■ A programming environment that includes a language compiler, runtime support
classes and/or libraries and a debugger. This can be an integrated development
environment (IDE) or could be composed of individual language components. For
example, Java’s JEE, the Sun JDK, and a C++ compiler.

When it is time to execute and test your applications, you must install the following:

■ Your application and any software, resources, or services it requires

■ The MetaSolv Solution client software with the API client components

■ The MetaSolv Solution Application Server

■ Oracle database server software and a MetaSolv Solution database that can be
used for testing

Before Compiling IDL files
Before compiling the IDL files for a given API, you should place all the IDL files
required for that API in the same folder, then execute your IDL compiler from within
that folder.

Determining Which IDL Files Are Required for a Given API
1. Identify the key IDL file for the API. See Table 2–1 for more information.

2. Read the key IDL file and look for #include statements. These statements identify
other IDL files that the IDL compiler must include when compiling.

3. Check each included IDL file for additional #include statements.

Implementation Patterns

Developing Applications Using the APIs 2-5

CORBA Development
This section describes the basic steps involved in developing CORBA applications. The
intent of this section is to set the stage for the subsequent sections. The actual
commands a user invokes to accomplish these steps varies depending on the
development environment. Refer to your development environment's documentation
for details.

The high-level steps involved in developing a CORBA application are as follows:

1. Compile the IDL.

Locate the required API IDL files and run them through your IDL compiler. The
compiler generates the following code in your language of choice:

■ Client-side stub: This is support code that you use to build a CORBA client
application.

■ Server-side skeleton: This is support code that you use to build a CORBA
server application.

2. Write code to implement the required IDL interface objects.

3. Write code to implement your client and server applications as applicable.

4. Compile your applications.

5. Register your CORBA server application with the ORB's implementation
repository.

6. Run your applications.

Implementation Patterns
This section introduces the basic patterns involved in developing external applications
that utilize the MetaSolv Solution APIs. Real-world applications usually involve a
combination of the basic patterns presented here.

Each implementation pattern is accompanied by a description that explains the
purpose of the pattern, where it is used, and includes code fragments and information
on how to write code to implement that pattern. The purpose of the code fragments is
to illustrate the basic principles involved without having to address the specific
requirements of individual APIs. Considerations for each API are provided in separate
chapters later in this guide.

Each implementation pattern highlights a different concept; however, there is a
considerable amount of overlap between the following sections because no one pattern
can work in isolation from the rest.

Basic API Setup Pattern
This section describes the basic API setup pattern.

Note: This step is essential in order for your server to start receiving
CORBA calls from a client application.

Implementation Patterns

2-6 MetaSolv Solution CORBA API Developer's Reference

Purpose
This pattern illustrates the basic steps involved in API interactions. The successful
completion of every operation invoked in this pattern is a precondition for working
with the APIs.

When Used
When your application initiates the interaction with the MetaSolv Solution
Application Server, as in a data export/import scenario, your application invokes the
operations specified in the basic pattern, and the application server provides the
implementation of these operations.

When MetaSolv Solution initiates the interaction with your application, such as when
sending a gateway event to your application, MetaSolv Solution invokes the
operations specified in this pattern. Your application provides the implementation of
the interface and operations supporting the basic setup pattern.

For information about working with specific APIs, see the individual chapter later in
this guide. For information about coordinating the MetaSolv Solution database and
API security.

Description
The following Java-language code sample shows a sample implementation of the basic
setup pattern. Table 2–2 lists the keys corresponding to the code samples.

package SampleCode.sample;
import java.io.*;
import org.omg.CORBA.*;
import MetaSolv.CORBA.WDI.WDIExcp;
import MetaSolv.CORBA.WDI.ConnectReq;
import MetaSolv.CORBA.WDI.WDITransaction;
import MetaSolv.CORBA.WDI.WDISignal;
import MetaSolv.CORBA.WDI.WDIInSignal;
import MetaSolv.CORBA.WDIDLR.*;
import MetaSolv.CORBA.WDIDLRTypes_v5.*;
/**
 * Hello API - Application Mainline
 * Description: Sample client application that demonstrates data
 * export operation.
 *
 */
public class HelloAPI
{
 private static final String DLR_IOR_FILE_PROPERTY = "TmsDlrIorFile";
 private static ORB orb;
 public static ORB getORB() {
 return orb;
 }
 public static void main(String [] args)
 {
 System.out.println(System.getProperties().toString());
(1) orb = ORB.init(args, null);
 Utils.initORB(orb);
 try {
 int circuitId = 21; // (pk of design_layout_report)
 int issueNo = 1;
 DLR aDLR = getCircuitIssue(circuitId, issueNo);
 if (aDLR != null)

Implementation Patterns

Developing Applications Using the APIs 2-7

 System.out.println("Circuit ECCKT:" + aDLR.dlrAdminInfo.ECCKT);
 } catch (Throwable t) {
 System.out.println("Error: "+ t.toString());
 }
 System.out.println("Exiting application");
 System.exit(0); // Some ORBs start non-daemon threads running.
 }
 public static DLR getCircuitIssue(int circuitId, int issueNo) throws Exception
 {
 DLR aDLR = null;
 // Connect to the DLR API Server and construct a proxy for root object
 String iorfile = System.getProperties().getProperty(DLR_IOR_FILE_PROPERTY);
// Set a system property on command line using -D (for Sun) or /d: (for MS)
 if (iorfile == null)
 throw new Exception("'" + DLR_IOR_FILE_PROPERTY +
"' system property not set on command line.");
(2) System.out.println("IOR file="+iorfile);
 String ior = Utils.readIOR(iorfile);
 System.out.println("DLR IOR="+ior);
 org.omg.CORBA.Object obj = orb.string_to_object(ior);
 WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow(obj);
(3) MetaSolv.CORBA.WDI.ConnectReq req = new MetaSolv.CORBA.WDI.ConnectReq();
//The following values are only examples of the user name and password values.
 req.userName = "ASAP";
 req.passWord = "ASAP";
 System.out.println("Connecting to MetaSolv Solution API Server...");
(4) WDIManager aWDIManager = aWDIRoot.connect(req);
 try {
 System.out.println("Starting transaction...");
(5) WDITransaction aWDITransaction = aWDIManager.startTransaction();
 try {
 System.out.println("Starting session...");
(6) DLRSession aDLRSession = aWDIManager.startDLRSession();
 try {
(7) WDIExampleNotificationImpl aWDINotificationImpl =
new WDIExampleNotificationImpl();
 // Need to connect the NotificationImpl Object to the ORB for callbacks.
 MetaSolv.CORBA.WDIDLR.WDINotification aWDINotification =
 (MetaSolv.CORBA.WDIDLR.WDINotification)
MetaSolv.CORBA.WDIDLR.WDINotificationHelper.narrow(Utils.connect(aWDINotificationI
mpl));
(8) System.out.println("Sending request...");
 aDLRSession.getDLR_v5(aWDITransaction, aWDINotification,
new DLRRequest(circuitId, issueNo));
 System.out.println("Sent request. Waiting on notify callback ...");
 aWDINotificationImpl.waitForResponse();
 aDLR = aWDINotificationImpl.getDLR_v5();
(9) // Do not need to commit for exporting data but to be consistent
 try {
 aWDITransaction.commit();
 } catch (Throwable t) {
 System.out.println("Error: " + t.toString());
 }
 if (aWDINotificationImpl.hasErrors())
 aWDINotificationImpl.printErrors();
(10) // Need to disconnect to prevent memory leaks
 Utils.disconnect(aWDINotification);
 }
(11) catch (Throwable t)
 {

Implementation Patterns

2-8 MetaSolv Solution CORBA API Developer's Reference

 System.out.println("Error " + t.toString());
 } finally {
 aWDIManager.destroyDLRSession(aDLRSession);
 }
(12) } catch(Throwable t) {
 System.out.println("Error " + t.toString());
 } finally {
 aWDIManager.destroyTransaction(aWDITransaction);
 }
 }
(13) finally {
 aWDIRoot.disconnect(aWDIManager);
 }
 return aDLR;
 }
}

Table 2–2 Keys for Basic API Setup Pattern Example Code

Key Description

(1) Initialize the Object Request Broker (ORB). The actual call used to do so varies
depending on the ORB vendor.

(2) Establish a CORBA connection with your server application. The sample code
connects to DLRSERVER that is running on a machine with TCP/IP host name
MetaSolv Solutionapihost.

The bind operation is specific to the CORBA implementation.Information about the
ORB connections can be found in the MSS System Administrator’s Guide.

(3) Create a connection object to use when obtaining an instance of the WDIManager
interface from DLRSERVER. This instance is actually a proxy object that is created in
the application's program space, and not the actual instance of the interface that is
created on the server. The proxy object simulates the real instance, and forwards all
operation invocations to the real instance using the CORBA protocol. See MSS
Security Guide for security information.

It is mandatory that you populate the user name and password fields on the
ConnectReq object when you create it and pass it to the WDIRoot object.

(4) Perform the connect operation to obtain an instance of the WDIManager interface.
This instance provides specialized operations provided by the MetaSolv Solution
Application Server; in this example, the DLR server.

(5) Obtain a transaction handle from DLRSERVER.

This step is only required when the invoked operation requires a transaction handle,
as defined in the interface specification. For example, WDIDLR.IDL requires
transaction handles, and WDIPSRBIL.IDL does not.

(6) Obtain an instance of the DLRSession interface. In most of the APIs, the session
interface supports all data export and import operations.

(7) Instantiate a WDINotification object and tie it to the ORB so the calling server can
make notification callbacks.

(8) The core activity, the actual work, performed by your application is performed at this
point. All of the actual work to be performed must be done within this section of the
code.

(9) Call the commit operation so the API commits your changes to the database.

(10) Destroy the instance of the session interface.

This begins the process of tearing down the communications infrastructure built in
above Steps (2)–(6). Tearing down the infrastructure must be done in the reverse
order in which it was built.

(11) Clean up the objects no longer used.

Implementation Patterns

Developing Applications Using the APIs 2-9

Synchronous Interaction Pattern
This section describes the synchronous interaction pattern.

Purpose
This pattern illustrates synchronous interaction between your application and
MetaSolv Solution. For a complete explanation of synchronous interaction, see
"Synchronous Operations" for more information.

When Used
All operations initiated by MetaSolv Solution against your application are
synchronous. Except for data import and export operations, which are asynchronous.

Description
See "Basic API Setup Pattern" for examples of synchronous operation invocations. For
instance, the following code fragment shows an application invoking a synchronous
operation startTransaction.

// Obtain a transaction handle from MetaSolv Solution API server.
try {
 WDITransaction aWDITransaction = aWDIManager.startTransaction();
}
catch (WDIExcp ex) {
 System.err.println("Error getting transaction handle: " + ex.getMessage());
}

The result of the operation invocation, in this case, a transaction handle, is
immediately available to the caller upon completion of the operation. If the invocation
fails, the API immediately raises an exception and the result, the exception that
indicates failure, is immediately available to the caller upon return of control. See
"Error Handling Pattern" for more information.

In the scenario where the MetaSolv Solution client communicates a gateway event to
your application, the MetaSolv Solution client follows the steps in "Basic API Setup
Pattern" with the exception of Step (5) of that pattern. In this scenario, your application
implements all the required operations in synchronous mode. Upon invoking a
synchronous operation on your software, the MetaSolv Solution client displays the
hourglass icon to the user and suspends user interaction until the call returns.

(12) Destroy the transaction handle.

Warning: You must always perform all transaction management steps, such as
commit or rollback, prior to destroying the transaction handle.

(13) Destroy the instance of WDIManager interface.

Warning: Establishing a connection with a CORBA server [performed above in Step
(2)] is an expensive operation in terms of performance. To keep this overhead to a
minimum, consider performing server connection operations only at application
startup time. However, your application’s design should be driven by your specific
requirements.

Table 2–2 (Cont.) Keys for Basic API Setup Pattern Example Code

Key Description

Implementation Patterns

2-10 MetaSolv Solution CORBA API Developer's Reference

See "HelloGateway: Sample Application that Handles Application and Gateway
Events" for a complete working example of the synchronous interaction pattern.

Asynchronous Interaction Pattern
This section describes the asynchronous interaction pattern.

Purpose
This pattern illustrates the asynchronous mode of interaction between your
application and MetaSolv Solution. The MetaSolv Solution Application Server
mandates the use of this pattern by your application when invoking the import and
export operations.

When Used
The asynchronous mode of interaction is only used when your application interacts
with the APIs to request the export or import of data. All data export and import
operations involving the APIs are defined as asynchronous.

To determine from the IDL whether an operation is asynchronous, look at the
operation specification in the corresponding IDL file. If that specification defines one
of the operation parameters as type WDINotification, then the operation is
asynchronous. For such operations, the return type is void, that is, they do not return
anything to the caller.

Description
Asynchronous interaction is achieved through a callback mechanism. The caller of the
operation, your application, creates a unique callback object and passes it to the
provider, the MetaSolv Solution Application Server, along with the rest of the
operation's parameters. To return the result of the operation, the provider invokes
operations on that callback object.

The crux of implementing code to handle asynchronous mode interactions is to
develop a robust mechanism to handle callback invocations from the API. The basic
requirement here is that you must provide an implementation of the WDINotification
interface as defined by the particular API’s IDL file. When an asynchronous operation
on that API is invoked, the API calls one of the operations defined in the
WDINotification interface.

For example, if your application invokes the getDLR_v5 asynchronous operation on
the DLRSERVER, you must provide an implementation of the WDINotification
interface as defined in the WDIDLR.IDL file. A fragment of this IDL file is reproduced
below. In that fragment, notice that the only operations that the DLRSERVER would
invoke on your application's callback object are: DLRGetSucceeded_v5 and
DLRGetFailed_v5.

Table 2–3 lists the keys for WDINotification Example IDL.

Warning: If your application fails to return the call to the MetaSolv
Solution client as expected, that failure causes MetaSolv Solution to
hang. The user must reboot.

Implementation Patterns

Developing Applications Using the APIs 2-11

Example 2–1 WDIDLR.IDL fragment

// CCM#40525 Circuit Query API
void getDLRsByQuerySucceeded_v3(in MetaSolv::CORBA::WDIDLRQueryTypes_
v3::DLRQuery aDLRQuery,
 in MetaSolv::CORBA::WDIDLRQueryTypes_v3::DLRResultSeq aDLRResults);
void getDLRsByQueryFailed_v3(in MetaSolv::CORBA::WDIDLRQueryTypes_
v3::DLRQuery aDLRQuery,
 in WDI::WDIErrSeq aWDIErrSeq);
 /// Deprecated - DLRGetSucceeded_v2, DLRGetFailed_v2 in future release will be
removed.
 /// You should use the latest version of this method.
void DLRGetSucceeded_v2(in MetaSolv::CORBA::WDIDLRTypes_v2::DLRRequest
aDLRRequest,
 in MetaSolv::CORBA::WDIDLRTypes_v2::DLR aDLR);
void DLRGetFailed_v2(in MetaSolv::CORBA::WDIDLRTypes_v2::DLRRequest
aDLRRequest,
 in WDI::WDIErrSeq aWDIErrSeq);
// CCM#40030
 void DLRGetSucceeded_v3(in MetaSolv::CORBA::WDIDLRTypes_v3::DLRRequest
aDLRRequest,
 in MetaSolv::CORBA::WDIDLRTypes_v3::DLR aDLR);
void DLRGetFailed_v3(in MetaSolv::CORBA::WDIDLRTypes_v3::DLRRequest
aDLRRequest,
 in WDI::WDIErrSeq aWDIErrSeq);
// CCM#30450
void DLRGetSucceeded_v4(in MetaSolv::CORBA::WDIDLRTypes_v4::DLRRequest
aDLRRequest,
 in MetaSolv::CORBA::WDIDLRTypes_v4::DLR aDLR);
void DLRGetFailed_v4(in MetaSolv::CORBA::WDIDLRTypes_v4::DLRRequest
aDLRRequest,
 in WDI::WDIErrSeq aWDIErrSeq);
// CCM#43899
(1) void DLRGetSucceeded_v5(in MetaSolv::CORBA::WDIDLRTypes_v5::DLRRequest
aDLRRequest,
 in MetaSolv::CORBA::WDIDLRTypes_v5::DLR aDLR);
(2) void DLRGetFailed_v5(in MetaSolv::CORBA::WDIDLRTypes_v5::DLRRequest
aDLRRequest,
 in WDI::WDIErrSeq aWDIErrSeq);

void switchGetSucceeded_v2(in MetaSolv::CORBA::WDIDLRTypes_v2::DLRRequest
aDLRRequest,
 in MetaSolv::CORBA::WDIDLRTypes_v2::DLRSwitchTranslation aDLRSwitchTranslation);
void switchGetFailed_v2(in MetaSolv::CORBA::WDIDLRTypes_v2::DLRRequest
aDLRRequest,
 in WDI::WDIErrSeq aWDIErrSeq);
void
 in MetaSolv::CORBA::WDIDLRTypes_v2::DLRRequest aDLRRequest,
 in MetaSolv::CORBA::WDIDLRTypes_v2::DLREndUserSpecialTrunkTranslation
aDLREndUserSpecialTrunkTranslation);
void
 in MetaSolv::CORBA::WDIDLRTypes_v2::DLRRequest aDLRRequest,

Table 2–3 Notes for WDINotification Example IDL

Key Description

(1) Callback upon successful completion of the operation

(2) Callback to indicate failure of the operation

Implementation Patterns

2-12 MetaSolv Solution CORBA API Developer's Reference

 in WDI::WDIErrSeq aWDIErrSeq);

Each asynchronous operation defined in an API’s session interface has two
counterparts in the WDINotification interface: one to callback upon successful
completion of the operation and the other to indicate failure. In short, although the
basic rules of interaction are consistent across the MetaSolv Solution APIs, each
specific API defines this interface differently.

The following Java-language code fragment illustrates how the callback mechanism
can be implemented.

Table 2–4 lists the keys for the callback mechanism implementation example codes.

(1)public class WDIExampleNotificationImpl extends WDINotificationPOA
{
 DLR aDLR = null;
 WDIError[] aWDIErrSeq = null;
 boolean done = false;
 public WDIExampleNotificationImpl ()
 {
 super();
 }
 /**
 * Gets the DLR object that was returned from the API
 * @return DLR
 */
(2) public DLR getDLR()
 {
 return aDLR;
 }
 /**
 * Checks to see if any errors were returned by the API
 * @return boolean true if there are errors, false otherwise
 */
 public boolean hasErrors()
 {
 if (aWDIErrSeq == null)
 return false;
 return true;
 }
 /**
 * Prints any errors to the console
 */
 public void printErrors()
 {
 // Should use hasErrors to check if there are any errors
 for(int i = 0; i < aWDIErrSeq.length; i++)
 {
 System.out.println("Code: " + aWDIErrSeq[i].code
 + " Reason: " + aWDIErrSeq[i].reason);
 }
 }
(3) // Utility method: Force thread to wait on callback from DLRSERVER
 public synchronized void waitForResponse()
 {
 try { if (!done) wait(); } catch (InterruptedException e){}
 }
(4) // Interface methods: Implement all the operations defined in the
 // WDINotification interface as defined in WDIDLR.IDL file.
 // Note: Provide trivial implementations for methods that the server will not

Implementation Patterns

Developing Applications Using the APIs 2-13

 // invoke in this scenario.
 public int getMaximumReturnedRows()
 {
 return 0;
 }
 public void getDLRsByServiceRequestSucceeded_v2(int documentNumber,
 MetaSolv.CORBA.WDIDLRQueryTypes_v2.DLRResult[] results)
 {
 }
 public void getDLRsByServiceRequestFailed(int documentNumber,
 MetaSolv.CORBA.WDI.WDIError[] aWDIErrSeq)
 {
 }
 public void getDLRsByCircuitSucceeded_v2(int circuitId,
 MetaSolv.CORBA.WDIDLRQueryTypes_v2.DLRResult[] results)
 {
 }
 public void getDLRsByCircuitFailed(int circuitId, MetaSolv.CORBA.WDI.WDIError[]
 aWDIErrSeq)
 {
 }
 public void getDLRsByQuerySucceeded_v3(MetaSolv.CORBA.WDIDLRQueryTypes_
v3.DLRQuery
 aDLRQuery, MetaSolv.CORBA.WDIDLRQueryTypes_v3.DLRResult[] results)
 {
 }
 public void getDLRsByQueryFailed_v3(MetaSolv.CORBA.WDIDLRQueryTypes_v3.DLRQuery
aDLRQuery,
 MetaSolv.CORBA.WDI.WDIError[] aWDIErrSeq)
 {
 }
 // DLRSERVER callback for the case when getDLR operation is successful
(5) public synchronized void DLRGetSucceeded_v5(MetaSolv.CORBA.WDIDLRTypes_
v5.DLRRequest
 aDLRRequest, MetaSolv.CORBA.WDIDLRTypes_v5.DLR aDLR)
 {
 System.out.println("DLRGetSucceeded notification called");
 this.aDLR = aDLR;
 this.aWDIErrSeq = null;
 done = true;
 try { notifyAll(); } catch (Throwable t){}
 }
(6) // DLRSERVER callback for the case when getDLR operation fails
 public synchronized void DLRGetFailed_v5(MetaSolv.CORBA.WDIDLRTypes_
v5.DLRRequest aDLRRequest,
 MetaSolv.CORBA.WDI.WDIError[] aWDIErrSeq)
 {
 System.out.println("DLRGetFailed notification called");
 this.aDLR = null;
 this.aWDIErrSeq = aWDIErrSeq;
 done = true;
 try { notifyAll(); } catch (Throwable t){}
 }

Implementation Patterns

2-14 MetaSolv Solution CORBA API Developer's Reference

This example may easily be extended to provide support for other asynchronous
DLRSERVER operations by building in non-trivial implementations of the other
callback operations.

The following code fragment shows how an application might invoke an
asynchronous operation on an API. This fragment continues from the previous
example. At this point in the code, your application invokes the getDLR_v5 operation
on DLRSERVER. However, the code must first obtain a transaction handle from
DLRSERVER since the getDLR_v5 operation requires that you supply one. Next, the
code creates a proxy for the DLRSession interface. Table 2–5 lists the keys for the for
extended callback mechanism implementation example codes.

try {
 WDITransaction aWDITransaction = aWDIManager.startTransaction();
 try {
 DLRSession aDLRSession = aWDIManager.startDLRSession();
 try {
(1) WDIExampleNotificationImpl
 aWDINotification = new WDIExampleNotificationImpl();
(2) aDLRSession.getDLR_v5 (aWDITransaction, aWDINotification,
 new DLRRequest(circuitId, issueNo));
 System.out.println("Sent request to " + servername +
(3) ". Waiting on notify callback ...");
 try {
 aWDINotification.waitForResponse();
 aDLR = aWDINotification.getDLR_v5 ();
 }

Table 2–4 Notes for Callback Mechanism Implementation Example Code

Key Description

(1) Support for server callback is implemented by extending (sub-classing) the
WDINotificationPOA class. The IDL compiler generates this class when it compiles
the WDIDLR.IDL file to create Java language bindings. The specialized class
(sub-class) is named WDIExampleNotificationImpl. This class implements all the
operations specified in the DLRSession interface defined in WDIDLR.IDL.

(2) Since the class in this example is the one that receives the callback and the results of
the getDLR_v5 operation from DLRSERVER, an accessor operation is provided to
enable the users of the class to retrieve the results.

(3) This method may be called by users of the class to suspend activity in their threads
pending callback invocation from the API. Towards that end, this sample code uses
method synchronization mechanisms supported by the Java language. Alternate
synchronization mechanisms can be used to achieve the same effect.

(4) This sample provides trivial implementations for operations that are defined in the
DLRSession interface, but will never be invoked by the DLRSERVER for the export
operation that this sample invokes. This is necessary because the Java compiler
requires these implementations since the compiler defines the base class for this
sample, WDINotificationPOA, as an abstract class.

(5) The code sample implements the DLRGetSucceeded_v5 operation that the
DLRSERVER invokes if the getDLR_v5 operation invocation is successful. The server
returns results in the second parameter of this operation through an object of type
WDIDLRTYPES_v5.DLR. In the code sample, the results are stored in a private
attribute.

(6) The code sample implements the DLRGetFailed_v5 operation invoked by the
DLRSERVER if the getDLR operation invocation resulted in failure. The reasons for
the failure are communicated to the class through the second parameter of this
operation, an object of type WDI.WDIError.

Implementation Patterns

Developing Applications Using the APIs 2-15

 catch(Exception ex) {
 System.err.println("getDLR()_v5 failed: " + ex);
 }

Your application that performs data import/export operations using an API could fire
off a number of requests in a burst, without waiting on the results. It would
subsequently receive a number of results through callback invocations. Your
application would then perform the required steps to collate the results.

The third-party application's developer must also compile the application code with
the server-side skeleton and implementation code.

CORBA Client/Server Pattern
This section describes the CORBA client/server pattern.

Purpose
The intent of this section is to show, at a high level, what it takes to develop a CORBA
client and CORBA server and to highlight the differences between these two.

The MetaSolv Solution interface architecture is built on the CORBA standard. As the
developer of an application developed to use the APIs, you must determine whether
your application will be required to play the roles of a CORBA client, a CORBA server,
or both.

To define these roles in simple terms, the application that invokes an operation on a
CORBA interface is the client. The application that implements the invoked operation
is the CORBA server. See "Determining the Role Your Application Performs" for more
information.

When MetaSolv Solution initiates the interaction with your application, your
application plays the role of the server.

Table 2–5 Notes for Extended Callback Mechanism Implementation Example Code

Key Description

(1) Create a new instance of the callback object that was implemented previously.

(2) Invoke the getDLR_v5 operation, supplying the callback object along with the other
input parameters to the operation. The operation returns without the results, as it
should.

(3) Next, suspend activity to wait on response from DLRSERVER in the form of a
callback operation invocation.

Warning: If the MetaSolv Solution Application Server terminates for any reason
while a callback is pending, the pending call back will never be satisfied unless your
application takes steps to clean up and retry the operation (if required) when the
server is restarted.

Note: You should review the documentation provided by your ORB
vendor for an in-depth discussion on this topic as it relates to your
ORB environment.

Note: The client code and the server code do not have to run in
separate program spaces. The same application can play the role of a
client and server.

Implementation Patterns

2-16 MetaSolv Solution CORBA API Developer's Reference

When Used
Your application plays the role of a client when it invokes operations on the MetaSolv
Solution Application Server, as in the following scenarios:

■ When invoking data export/import operations

■ When updating status of gateway events received from MetaSolv Solution clients

■ When invoking operations to communicate inbound signals

Your application plays the role of a server in these scenarios:

■ When handling outbound signals, whether the signals represent application
events or gateway events

■ When handling callback operations from the MetaSolv Solution Application
Server

Your application plays both roles when it performs functionality for both of the
scenarios described above. In practice, such dual-mode applications are more common
than pure client or server applications. Common examples are:

■ An application that invokes an asynchronous operation on an API

■ An application that receives a gateway event from a MetaSolv Solution client and
subsequently updates the status of that event based on work performed outside
MetaSolv Solution.

Signal Handling Pattern
This section describes the signal handling pattern.

Purpose
Events are the means by which external applications can integrate with the Work
Management subsystem. Signals are the mechanisms used to communicate events
between MetaSolv Solution and the external applications. The signal-handling pattern
describes how external applications can implement signal handling.

When Used
MetaSolv Solution clients use outbound signals to communicate application events
and gateway events to external applications. External applications use inbound signals
to communicate external events to MetaSolv Solution.

Note: Using a CORBA naming service implementation avoids the
necessity of hard-coding the physical location of MetaSolv Solution
into external applications. The naming service provides white pages
functionality allowing clients to query, at runtime, the location of
servers they wish to use.

Note: The Trouble Management API uses the fundamental concepts
of the signal handling pattern that are implemented by the other APIs.
However, the Trouble API requires a different set of attribute values to
uniquely identify an instance of an event within a trouble ticket. Using
this variation of the signaling mechanism enables the Trouble
Management API to support multiple concurrent events for a given
trouble ticket.

Implementation Patterns

Developing Applications Using the APIs 2-17

Description
A general observation to be made here is that all operations involved in handling
signals are synchronous. Because of the inherent difference between inbound and
outbound signals and between application and gateway events, the following section
is divided as indicated below:

■ Outbound Signals – Gateway Events

■ Outbound Signals – Application Events

■ Inbound Signals

The types of signaling supported by the various APIs can vary. Some APIs support one
or more kinds while there are some for which signaling is not applicable.

General Remarks On Outbound Signals
Whenever your application handles outbound signals, it plays the role of a CORBA
server. In such a scenario, you should design your application to handle multiple
incoming requests. Remember that there may be any number of client machines in
your environment that could potentially communicate events to your application.

A MetaSolv Solution client only establishes connection with your application once,
when the first outbound signal is sent to your application. If your application were to
terminate subsequently, the client would get an error the next time it sends an
outbound signal. This requires a restart of the client. In other words, your application
should be running during all of the business hours when you expect clients to be
active.

Outbound Signals – Gateway Events
These signals originate from MetaSolv Solution clients and carry a standard data
payload that is bound for your application. The structure of this payload is defined in
the WDIEvent data structure in file WDI.IDL, which is reproduced below.

struct WDIEvent
{
 long eventVersion;
 string eventName;
 long documentNumber;
 long taskNumber;
 long servItemID;
 string userID;
};

The eventName field identifies the event. The value populated in this field is picked
up from the gateway event definition in the MetaSolv Solution database. The
documentNumber field is a database-generated sequence number that uniquely
identifies a service request in the database.

The example code shown in "Example Code for Implementing WDIManager and
WDISignal Interfaces" demonstrates how an application can handle outbound signals.
The goal of the sample code is to develop a CORBA server that handles all the
operations that a client may invoke on it in order to communicate gateway events. The
first detail to be worked out is what specific operations should be implemented out of
the complete IDL file. Table 2–6 lists the mandatory operations for all MetaSolv
Solution APIs. The Trouble Management API also requires implementation of the
startSignal2 and destroySignal2 operations.

Implementation Patterns

2-18 MetaSolv Solution CORBA API Developer's Reference

The actual API used in the implementation would depend on how the gateway event
is defined in MetaSolv Solution.

The other half of handling gateway events is the work of updating status of events in
database. It is your application’s responsibility to update event statuses, based on
external activity that is applicable to the situation.

The following list identifies the main steps in developing applications that update
event statuses:

1. Write server mainline. See "CORBA Client/Server Pattern" for the sample server
mainline code.

2. Implement WDIRoot. See "CORBA Client/Server Pattern" for the sample code.

3. Implement WDIManager and WDISignal interfaces. See "Example Code for
Implementing WDIManager and WDISignal Interfaces" for the sample code.

4. Implement code to update event status. See "Example Code for Updating Status of
Events" for the sample code.

The following Java-language code fragment shows a sample implementation of the
WDIManager and WDISignal interfaces. Table 2–7 lists the keys for the WDIManager
and WDISignal Implementation example codes.

Example Code for Implementing WDIManager and WDISignal Interfaces

(1)package SampleCode.sample;
import MetaSolv.CORBA.WDI.WDIExcp;
import MetaSolv.CORBA.WDI.ConnectReq;
import MetaSolv.CORBA.WDI.WDITransaction;
import MetaSolv.CORBA.WDI.WDISignal;
import MetaSolv.CORBA.WDI.WDIInSignal;
import MetaSolv.CORBA.WDI.WDIEvent;
import MetaSolv.CORBA.WDI.WDIStatus;
import MetaSolv.CORBA.WDI.WDIError;
/**

Table 2–6 Outbound Gateway Event Operations Required For All APIs

Interface Operations Remarks

WDIRoot connect A client requests to establish a connection.

WDIRoot disconnect MetaSolv Solution requests to destroy the connection.

WDIManager startSignal MetaSolv Solution indicates start of signal. Your
application generates a WDIEvent instance.

WDIManager destroySignal MetaSolv Solution indicates end of signal.

WDISignal eventOccurred MetaSolv Solution indicates the occurrence of an event
within the Work Management subsystem and passes
the data payload.

WDISignal eventTerminated MetaSolv Solution indicates the user opted to bypass
processing for this event. This indicates that your
application is to stop processing this event.

Note: Your compiler may force you to supply placeholder
implementations for the remaining operations defined in the IDL files
for these interfaces

Implementation Patterns

Developing Applications Using the APIs 2-19

 * Hello Gateway -- Gateway Event Handler
 * Description: This class implements the WDISignal interface as defined in the
WDI.IDL
 * When a gateway event occurs, MetaSolv Solution Client invokes the
following operations on
 * this interface: eventOccurred, eventTerminated.
 * @version 5.0.0
 */
public class WDIGatewaySignalImpl extends MetaSolv.CORBA.WDI.WDISignalPOA
{
 public WDIGatewaySignalImpl() {
 super();
 }
 // This method is invoked when a MetaSolv Solution client transmits a gateway
 // event to our server.
(2) public void eventOccurred(WDIEvent aWDIEvent)
 {
 System.out.println("WDIGatewaySignalImpl.eventOccurred");
 // Start a new thread to handle this gateway event.
 new RequestThread(aWDIEvent).start();
 // In practice, this method should not return until the
 // event is successfully placed in persistent storage.
 }
 // This method is invoked when a MetaSolv Solution client requests that a
 // previously transmitted event be cancelled.
(3) public void eventTerminated(WDIEvent aWDIEvent)
 {
 System.out.println("WDIGatewaySignalImpl.eventTerminated");
 // In practice, this method should not return until the request
 // is safely persisted in a queue.
 }
 // NOTE: The following three operations on WDISignal interface are
 // implemented by the MetaSolv Solution API servers. However, we need to
 // provide trivial implementations to satisfy the compiler.
(4) public WDIStatus eventInProgress(WDITransaction aWDITransaction, WDIEvent
aWDIEvent)
 {
 return null;
 }
 public WDIStatus eventCompleted(WDITransaction aWDITransaction, WDIEvent
aWDIEvent)
 {
 return null;
 }
 public WDIStatus eventErrored(WDITransaction aWDITransaction,
 WDIEvent aWDIEvent, WDIError[] aWDIErrorSeq)
 {
 return null;
 }
 /**
 * @since 5.0.0
 */
 public WDIStatus eventInProgress2(WDIEvent aWDIEvent)
 {
 return null;
 }
 /**
 * @since 5.0.0
 */
 public WDIStatus eventCompleted2(WDIEvent aWDIEvent)

Implementation Patterns

2-20 MetaSolv Solution CORBA API Developer's Reference

 {
 return null;
 }
 /**
 * @since 5.0.0
 */
 public WDIStatus eventErrored2(WDIEvent aWDIEvent, WDIError aWDIError[])
 {
 return null;
 }
}

The following sample code addresses the second part of this implementation,
updating the status of events.

Example Code for Updating Status of Events

String hostname = "MetaSolv Solutionapihost"; // machine name of MetaSolv
Solution API host
String servername = "DLRSERVER"; // MetaSolv Solution API CORBA server name
try {
(1) WDIRoot aWDIRoot = WDIRootHelper.bind(":"+servername, hostname);
}
catch (SystemException se) {
 System.out.println("Unable to bind to server: " + se);
}
ConnectReq req = new ConnectReq();
//The following values are only examples of the user name and password values.
req.userName = "ASAP";
req.passWord = "ASAP";
WDIManager aWDIManager = null;
try {
 aWDIManager = aWDIRoot.connect(req);
}
catch (WDIExcp ex) {
 System.err.println("connect failed: " + ex.reason);

Table 2–7 Keys for WDIManager and WDISignal Implementation Example Codes

Key Description

(1) Extend the WDIManager interface. Subclass the WDISignalPOA class generated by the
IDL compiler to create the specialized class that provides implementations of the
required operations on WDIManager interface.

(2) Implement WDISignal interface. Subclass the WDISignalPOA class generated by the
IDL compiler to create the specialized class that provides implementations of the
required operations on WDISignal interface.

Note: The sample code provides placeholder implementations for operations that are
not invoked in this scenario.

(3) Implement eventOccurred operation. This is where you would want to store this event
in some form of persistent storage for future processing. It is recommended that you
return from this call only upon successful completion of the persistence operation. The
sample code starts a new thread instance to process this event.

(4) Implement eventTerminated operation. This operation is invoked to indicate that the
user has chosen to bypass this gateway event. In practice, you would remove the
specified event from persistent storage and desist from further processing of that event.

Note: The sample code provides placeholder implementations for operations that are
not invoked in this scenario.

Implementation Patterns

Developing Applications Using the APIs 2-21

}
try {
 WDITransaction aWDITransaction = aWDIManager.startTransaction();
 try {
 WDISignal aWDISignal = aWDIManager.startSignal();
 try {
(2) WDIStatus myStatus = aWDISignal.eventInProgress(aWDITransaction,
 aWDIEvent);

Outbound Signals – Application Events
These signals occur in response to application events. They are dispatched from the
MetaSolv Solution client to your application. For the duration of processing of these
signals, the client behaves like a client of your application, invoking operations in the
same manner as your application might interact with the MetaSolv Solution
Application Server.

Application events have significant differences from gateway events. See
"Understanding Events" for more information. Unlike gateway events, application
events have no uniform data payload structure and the operations involved differ
from one API to the next. In order to handle application events, your application must
essentially mimic the behavior of the APIs in terms of implementing the WDIRoot,
WDIManager and APINameSession interfaces.

Table 2–9 lists the operations related to outbound application events.

Table 2–8 Keys for WDIManager and WDISignal Implementation Example Codes

Key Description

(1) Connect to DLRSERVER, since the gateway event was defined to use the Inventory and
Capacity Management (ICM) API interface.

(2) Set event status to In Progress to indicate that the external activity triggered by this
event is in progress. Following this, you can set the event status to Completed or
Errored using operations defined on the WDISignal interface.

Note: See "HelloGateway: Sample Application that Handles
Application and Gateway Events" for more information.

Table 2–9 Operations Related to Outbound Application Events

Interface Operations Remarks

WDIRoot connect MetaSolv Solution Application Server
requests a connection.

WDIRoot disconnect MetaSolv Solution Application Server
requests to destroy connection.

WDIManager startAPINameSession MetaSolv Solution Application Server
indicates start of signal. Your application
generates an instance of the session
interface.

WDIManager destroyAPINameSession MetaSolv Solution Application Server
indicates end of signal.

APINameSession As required by the
application event

No remarks.

Implementation Patterns

2-22 MetaSolv Solution CORBA API Developer's Reference

The operations that your application needs to implement for the APINameSession
interface will depend on the definition of the application event by the MetaSolv
Solution Application Server. This will be a subset of the operations defined in the
API’s IDL file. In certain cases, the session interface implementation may need to
provide operations to generate object references to sub-session interfaces. The
sub-session interfaces would then support the lowest level operations.

The following list identifies the main steps in implementing outbound signals for
application events:

1. Write server mainline. See "CORBA Client/Server Pattern" for the sample server
mainline code.

2. Implement WDIRoot. See "CORBA Client/Server Pattern" for the sample code.

3. Implement WDIManager interface. See "Example Code for Implementing
WDIManager and WDISignal Interfaces" for the sample code.

4. Implement APINameSession interface and operations as determined by the
definition of the application event.

5. Implement sub-session interfaces, if required.

Outbound signals for application events can be handled in the same manner as
described in the code sample shown in "Example Code for Updating Status of Events".

Inbound Signals
MetaSolv Solution enables you to define gateway events as inbound. Inbound signals
are the means by which the status of such gateway events may be updated by your
application. In contrast to the implementation for outbound signals, where your
application is a CORBA server, the implementation for handling inbound signals
follows the CORBA client pattern.

The data payload carried by inbound signals is defined in WDI.IDL, reproduced
below.

struct WDIInEvent
{
 string gatewayName;
 string eventName;
 long documentNumber;
 long servItemID;
 char updateMany;
 string userID;
};

Note: External applications are not required to perform any status
updates for application events.

Note: Although the steps described above cover the immediate task
of handling application event signals sent by the MetaSolv Solution
Application Server, you should be aware that the processing of
application events usually has a broader scope that extends beyond
the signal-handling scenario. Typically, external applications will
receive deferred notifications from other external systems (for
example, NPAC SMS) that need to be communicated to MetaSolv
Solution through the MetaSolv Solution Application Server.

Implementation Patterns

Developing Applications Using the APIs 2-23

The signaling operations are defined in the WDIInSignal interface in WDI.IDL,
reproduced below.

interface WDIInSignal
{
 WDIStatus eventInProgress(in WDITransaction aWDITransaction,
 in WDIInEvent aWDIInEvent);
 WDIStatus eventCompleted(in WDITransaction aWDITransaction,
 in WDIInEvent aWDIInEvent);

WDIStatus eventErrored(in WDITransaction aWDITransaction,
 in WDIInEvent aWDIInEvent, in WDIErrSeq aWDIErrSeq);
};

Your implementation for handling inbound signals is no different from the invocation
of a synchronous operation on the MetaSolv Solution Application Server.

Error Handling Pattern
This section describes the error handling pattern.

Purpose
The APIs ensure that no data changes applied to the MetaSolv Solution database
violate any of the business rules. By the same token, your application should
incorporate a robust error-handling scheme to ensure it is in sync MetaSolv Solution
with regard to the status of operations and the state of data in the MetaSolv Solution
database.

When Used
Any time an operation is invoked, whether the operation is invoked by your
application or by MetaSolv Solution, error handling is involved. Specifically, your
application should:

■ Ensure that the status of all operations invoked on the APIs is captured and
examined for errors. This minimizes the possibility of these errors being
propagated downstream.

■ Ensure that meaningful status information is returned to the API in those instances
where the API initiates the interaction with your application.

Description
The data structures used to communicate the status of operations are defined in IDL
file WDI.IDL. These are:

■ WDIExcp: Exception

■ WDIErrSeq: Error Array

■ WDIStatus: Status

These are reproduced in the following paragraphs.

Exception
exception WDIExcp
{
 long code;
 string reason;

Implementation Patterns

2-24 MetaSolv Solution CORBA API Developer's Reference

};

Exceptions are the most commonly employed mechanism to indicate errors. The
WDIExcp exception object contains an error code and error description. Exceptions are
used in the following scenarios:

■ All operations on WDIRoot, WDIManager and WDITransaction interfaces

■ Most operations on APINameSession interface, except WDIPSRSession

The following code fragment shows how exceptions may be caught.

try {
 aWDIManager = aWDIRoot.connect(req);
}
catch (WDIExcp ex) {
 System.err.println("connect failed [" + ex.code + "]: " + ex.reason);
}

Error Array
struct WDIError
{
 long code;
 string reason;
};
typedef sequence<WDIError> WDIErrSeq;

The error array WDIErrSeq is defined as an array of error objects of type WDIError.
Each element of the array contains an error code and error description. The error array
is also contained in the status object WDIStatus. The error array is used to
communicate errors in the following scenarios:

■ For callback operations on the WDINotify interface that indicate failure

■ When your application sets the status of gateway events to Errored

The following Java code fragment shows an example of how the error array is used by
the APIs. The DLRGetFailed_v5 operation gets called back by DLRSERVER to indicate
failure of the getDLR_v5 operation.

public void DLRGetFailed_v5(MetaSolv.CORBA.WDIDLRTypes_v5.DLRRequest aDLRRequest,
 MetaSolv.CORBA.WDI.WDIError[] aWDIErrSeq)
 {
 // In practice, you may want to persist the error array somewhere
 // and indicate operation failure to the interested parties.
 //
 // This code displays all error messages on the console
 System.err.println(“getDLR()_v5 failed. Errors returned by server:”);
 for (int I=0; i<aWDIErrSeq.length; i++) {
 System.err.println(“\tReason: “ + aWDIErrSeq[i].reason +
 “ [Code: “ + aWDIErrSeq[i].code + “]”);
 }

Status
struct WDIStatus
{
 boolean aResult;
 WDIErrSeq aWDIErrSeq;
};

Sample Applications

Developing Applications Using the APIs 2-25

The WDIStatus object defines operation status. This object comprises a Boolean
element aResult that indicates success or failure and an error vector aWDIErrSeq. The
status object is used in the following scenarios:

■ All inbound signaling operations (the operations on WDIInSignal)

■ Outbound signaling operations with the exception of eventOccurred and
eventTerminated

This concept is illustrated with the following code fragment that shows use of
WDIStatus in signaling. The code fragment shows how an external application that
updates status of gateway events might handle error status returned by the MetaSolv
Solution Application Server.

try {
 WDIStatus myStatus = aWDISignal.eventInProgress(aWDITransaction, aWDIEvent);
 if (myStatus.aResult == true) { // operation successful
 aWDITransaction.commit();
 }
 else { // operation failed
 aWDITransaction.rollback();
 String msg = "Error updating event status: \n";
 for (int i=0; I<myStatus.aWDIErrSeq.length; i++) {
 msg = msg + “\tReason: “ + myStatus.aWDIErrSeq[i].reason +
 “ [Code: “ + myStatus.aWDIErrSeq[i].code + “]\n”;
 System.err.println(msg);

It is your application's responsibility to capture, log and interpret all errors received
from MetaSolv Solution. See "API Error Messages and Exceptions" for more
information about error messages that can be returned from the APIs.

If required, the API administrator can configure the MetaSolv Solution Application
Server to send notifications of specific errors by e-mail and/or by pager e-mail to one
or more e-mail or pager addresses. Instructions for setting up notifications are
provided in the MSS System Administrator’s Guide.

Your applications that communicate errors to MetaSolv Solution must do so through
the Error Array and WDIStatus data structures. MetaSolv Solution records and display
these errors for the user, but cannot interpret or act on third-party error messages
directly.

Sample Applications
The following sections discuss two sample applications.

HelloAPI: Sample Application that Exports Data
This section describes the development of a simple application, HelloAPI.

HelloAPI builds upon several of the implementation patterns discussed earlier in this
chapter:

■ Basic API Setup Pattern

■ Asynchronous Interaction Pattern

■ CORBA Client/Server Pattern

■ Error Handling Pattern

Sample Applications

2-26 MetaSolv Solution CORBA API Developer's Reference

HelloAPI invokes the Inventory and Capacity Management (ICM) API to perform a
simple data export operation.

The HelloAPI consists of two files. The first file, HelloAPI.java, contains Java code that
performs mainline functions for the sample application. This application:

■ Sets up a connection with DLRSERVER

■ Invokes a data export operation on DLRSERVER

■ Waits on a callback from DLRSERVER that returns the results of the export
operation that was requested

■ Displays the results on the console, then exits

The second file, WDIExampleNotificationImpl.java, contains Java code that
implements the callback interface required to support the asynchronous export
operation performed in the server mainline code.

The output from the application should resemble the sample below; however, actual
data values may vary.

Sent request to DLRSERVER. Waiting on notify callback ...
Circuit ECCKT: /HCG-/000026/ /MGCM/
Exiting application

Implementation Notes
This example uses the object access serialization mechanisms supported by the Java
language to suspend thread activity pending callback invocation from the API server.
Alternate synchronization mechanisms that achieve the same effect can be used
instead.

In the scenario used for this sample, the HelloAPI application is not registered with the
ORB and the application's host machine does not run the ORB daemon.

The code for this sample application can be modified to invoke operations on other
API. However, when invoking asynchronous operations on other APIs, the WDINotify
interface that is implemented must be the one defined in that specific API’s IDL file.

The HelloGateway sample application consists of these Java files:

■ HelloAPI.java contains the application’s mainline code.

■ WDIExampleNotificationImpl.java implements callback interfaces.

■ Utils.java contains the code that connects to the ORB.

HelloGateway: Sample Application that Handles Application and Gateway Events
This section describes the development of a Java application, HelloGateway, that
handles signals originated by MetaSolv Solution clients when gateway events occur.

Note: Once compiled for the customer's environment, an application
of this sort may be used as a starter template for building applications
that interact with the APIs. Such an application may also be useful as
a simple diagnostic tool to determine whether the development, test,
or production environment is set up and configured correctly and has
all required applications running.

Migrating to MetaSolv Solution 6.3.x from 6.2.x

Developing Applications Using the APIs 2-27

HelloGateway builds upon all of the implementation patterns discussed earlier in this
chapter:

■ Basic API Setup Pattern

■ Synchronous Interaction Pattern

■ Asynchronous Interaction Pattern

■ CORBA Client/Server Pattern

■ Signal Handling Pattern

■ Error Handling Pattern

The HelloGateway sample application receives gateway events from MetaSolv
Solution clients. For the purpose of this sample, the application does not perform any
external processing based on the event. The application only receives the event, then
updates the event status to In Progress and then to Completed.

The HelloGateway application consists of these Java files:

■ HelloGatewayServer.java contains the server’s mainline code.

■ WDIGatewayRootImpl.java implements the WDIRoot interface.

■ WDIGatewayManagerImpl.java implements the WDIManager interface.

■ WDIGatewaySignalImpl.java implements the WDISignal interface.

■ RequestThread.java implements a Java thread that processes a single event. All the
thread does is update the event status.

■ SendSignal.java sends gateway event signals to the MetaSolv Solution Application
Server.

■ Utils.java contains the code that connects to the ORB.

Migrating to MetaSolv Solution 6.3.x from 6.2.x
The MetaSolv Solution 6.3.x CORBA APIs use JacORB 3.8. If you are migrating from
MetaSolv Solution 6.2.x, you must migrate the CORBA APIs to use this version of
JacORB.

If you are using your own independent ORB, you do not need to migrate the CORBA
APIs to use JacORB, because the client code depends on the ORB with which it is
communicating.

To migrate the CORBA APIs to use JacORB 3.8:

1. Install the following:

■ JacORB 3.8 (provided with the MSS 6.3.x installation)

■ JDK 8 (with the latest critical patches), you need to download and install this
separately

2. Remove the following JacORB JAR files from your classpath:

■ jacorb.jar (provided with an older JacORB version)

■ jacorb_stubs.jar (provided with Metasolv Solution 6.2.x)

■ slf4j-api-version.jar

■ slf4j-jdk14-version.jar

■ backport-util-concurrent.jar

Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x

2-28 MetaSolv Solution CORBA API Developer's Reference

where version is the existing version in the filename.

3. Add the following JacORB JAR files to your classpath:

■ jacorb.jar (provided with JacORB 3.8)

■ jacorb-omgapi-3.8.jar

■ jacorb-services-3.8.jar

■ jacorb_stubs.jar (provided with MetaSolv Solution 6.3.x)

■ slf4j-api-1.7.14.jar

■ slf4j-jdk14-1.7.14.jar

The jacorb_stubs.jar file is part of the MetaSolv Solution installation. The
remaining JAR files are located in the JacORB_home/lib directory, where JacORB_
home is the directory of where JacORB is installed.

Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x
MetaSolv Solution releases before 6.2.x, CORBA APIs used JBroker. The MetaSolv
Solution 6.3.x CORBA APIs use JacORB. If you are migrating from a previous release
of MetaSolv Solution, you may need to migrate the CORBA APIs to use JacORB, and
configure JacORB:

■ If you are using the JBroker ORB that was provided with the MSS version prior to
6.2.0, you must migrate the CORBA APIs to use JacORB, and configure JacORB, as
described in the following procedures.

■ If you are using your own independent ORB, you do not need to migrate the
CORBA APIs to use JacORB, or configure JacORB, because the client code depends
on the ORB with which it is communicating.

To migrate the CORBA APIs to use JacORB:

1. Install the following:

■ JacORB 3.8 (provided with the MSS 6.3.x installation)

■ JDK 8 (with the latest critical patches), you need to download and install this
separately

2. Remove the following JBroker JAR files from your classpath:

■ jbroker_stubs.jar

■ jbroker-rt.jar

■ jbroker-ssl.jar

■ jbroker-tools.jar

■ log4j.jar

3. Add the following JacORB JAR files to your classpath:

■ jacorb.jar

■ jacorb-omgapi.jar

■ jacorb-services.jar

■ jacorb_stubs.jar

■ slf4j-api-1.7.14.jar

Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x

Developing Applications Using the APIs 2-29

■ slf4j-jdk14-1.7.14.jar

The jacorb_stubs.jar file is part of the MetaSolv Solution installation. The
remaining JAR files are located in the JacORB_home/lib directory.

4. Pass the jacorb.home value as a virtual memory (VM) to the class where the
integration code resides. For example, the following shows the jacorb.home value
to be the directory where JacORB is installed:

-Djacorb.home=C:\MSS_Domains\BEA1213_WLS_SSL\AdminServer\jacORB

5. When initializing the orb, pass the org.omg.CORBA.ORBClass property value as
org.jacorb.orb.ORB instead of com.sssw.jbroker.ORB. For example:

Properties props = new Properties();
props.put("org.omg.CORBA.ORBClass", "org.jacorb.orb.ORB");
orb = ORB.init(new String[0], props);

If you install the MSS 6.3.x application in an SSL-enabled environment, you must
also enable SSL in JacORB. See "Implementing SSL in JacORB 3.8" for more
information.

6. When retrieving any CORBA object reference, convert the reference object to the
corresponding object type using its helper class. For example:

TestWDINotification iNotif;
WDINotification aTestWDINotification = null;

This works the same way with JBroker. For example:

iNotif = new TestWDINotification();
org.omg.CORBA.Object ref = this.connectObject(iNotif);
aTestWDINotification =
(WDINotification)WDINotificationHelper.narrow(ref);

In addition to migrating the CORBA APIs to JacORB, you also need to configure
JacORB.

To configure JacORB:

1. Edit the orb.properties file, located in the JacORB_home/etc directory. Provide
appropriate values for the following properties:

a. Set the jacorb.config.dir property value to the JacORB home directory. This is
generally <domain name>/<server name>/jacORB. For example:

//jacorb.config.dir=<Root directory of JacORB under the domain>
jacorb.config.dir= C:\MSS_Domains\MSS_HOME_BEA_MIGRATE\AdminServer\jacORB

This property enables the root directory of the JacORB.

b. Set the jacorb.config.log.verbosity property value to 4 for a testing
environment. Otherwise set the value to 1 (errors) or 2 (warnings).

c. Set the jacorb.log.default.verbosity property value to 4 for a testing
environment. Otherwise, set the value to 1 (errors) or 2 (warnings).

d. Comment the jacorb.naming.ior_filename property.

Note: If any of these properties are commented, uncomment them.

Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x

2-30 MetaSolv Solution CORBA API Developer's Reference

e. Set all the remaining log property values to 4 for a testing environment.
Otherwise set the values 1 (errors) or 2 (warnings).

2. Edit the jacorb.properties file, located in the JacORB_home/etc directory. Provide
appropriate values for the following properties:

a. Set the ORBInitRef.NameService property value to where the
NameService.ior is going to be available.

For example, the value can be a file on a shared drive:

file:/C:/MSS_Domains/MSS_HOME_BEA_
MIGRATE/AdminServer/appserver/ior/NameService.ior

For another example, the value can be a file available at a host and port:

http://192.0.2.66:15000/NameService

The latter example works only if the URLNamingServicePort property is
enabled and has a value in the gateway.ini file.

b. Set the jacorb.log.default.verbosity property value to 4 for a testing
environment. Otherwise, set the value to 1 (errors) or 2 (warnings).

c. Set all the remaining log property values to 4 for a testing environment.
Otherwise, set the values to 1 (errors) or 2 (warnings).

d. Set the jacorb.naming.ior_filename property value to where the
NameService.ior needs to be generated.

Typically, this is the JacORB home directory, which is generally domain
name/servername/appserver/ior folder. For example:

C:/MSS_Domains/MSS_HOME_BEA_
MIGRATE/AdminServer/appserver/ior/NameService.ior

This property tells the Name Service where to generate the IOR file. The value
of this property can be a file name and location path, or a URL. If the name
server is in a shared location, set the value to a URL (a logical location exists in
your domain, where the application server is running). Otherwise, set the
value to the file name and location path.

3. Copy the orb.properties file from the MSLV_Home\mslv01\jacORB\etc directory
to the MSLV_Home\mslv01\jacORB directory, where MSLV_Home is the directory
in which the MSS software is installed and mslv01 is the server home directory.

If SSL is enabled on JacORB, ensure that you provide the appropriate values for
the following properties in the MSLV_Home\mslv01\jacORB\orb.properties file
after you install and before you deploy the MSS application:

jacorb.security.keystore=C:/MSSSSL/identity.jks
jacorb.security.keystore_password=password
jacorb.security.default_user=mycert
jacorb.security.default_password=password

Note: If any of these properties are commented, uncomment them.

Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x

Developing Applications Using the APIs 2-31

Implementing SSL in JacORB 3.8
To enable SSL in JacORB, ensure that you provide the appropriate values for the
following properties in the MSLV_Home\mslv01\jacORB\orb.properties file after you
install and before you deploy the MSS application:

jacorb.security.keystore=C:/MSSSSL/identity.jks
jacorb.security.keystore_password=password
jacorb.security.default_user=mycert
jacorb.security.default_password=password

In the integration code, when instantiating the ORB instance, you must set the
following properties if SSL is enabled in JacORB.

Properties props = new Properties();
//Add the following properties to the ORB if SSL is enabled on JacORB.
props.put("jacorb.security.support_ssl", "on");
props.put("jacorb.ssl.socket_factory", "org.jacorb.security.ssl.sun_
jsse.SSLSocketFactory");
props.put("jacorb.ssl.server_socket_factory", "org.jacorb.security.ssl.sun_
jsse.SSLServerSocketFactory");
props.put("jacorb.security.keystore", "C:/MSSSSL/identity.jks"); //Location of
//the private keystore.
props.put("jacorb.security.keystore_user", "mycert"); //Private keystore alias
//name.
props.put("jacorb.security.keystore_password", "password"); //Private keystore
//password.
props.put("jacorb.security.jsse.trustees_from_ks", "on");
props.put("jacorb.security.truststore", "C:/MSSSSL/trust.jks"); //Location of
//the public keystore.
props.put("jacorb.security.truststore_user", "mycert"); //Public keystore alias
//name.
props.put("jacorb.security.truststore_password", "password"); //Public keystore
//password.
props.put("jacorb.security.ssl.client.supported_options", "20");
props.put("jacorb.security.ssl.client.required_options", "20");
props.put("jacorb.security.ssl.server.supported_options", "20");
props.put("jacorb.security.ssl.server.required_options", "20");
//General properties
props.put("org.omg.CORBA.ORBClass", "org.jacorb.orb.ORB");
//ORB instance creation
orb = ORB.init(new String[0], props);

You use Java KeyStore (.jks) to store security certificates, including private and public
keys.

The jacorb.security.keystore property looks for a private key containing a self-signed
digital certificate. This property is also known as identity key store.

The jacorb.security.truststore property looks for a key store containing a trusted
certificate authority (CA) certificate. This property is also known as public key.

For information about public and private key stores and how to create and configure
them in the WebLogic Administration Console, see the following website:

http://docs.oracle.com/cd/E24329_01/web.1211/e24422/identity_trust.htm

For more information, see “IIOP over SSL” in the JacORB Programming Guide 3.8 at:

http://www.jacorb.org/documentation.html

Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x

2-32 MetaSolv Solution CORBA API Developer's Reference

3

Common Architecture 3-1

3Common Architecture

Figure 3–1 shows the common interfaces of the Oracle Communications MetaSolv
Solution APIs.

Figure 3–1 Common IDL Architecture Interfaces

Table 3–1 lists the keys for common IDL architecture interfaces.

WDIRoot Interface

3-2 MetaSolv Solution CORBA API Developer's Reference

The session or subSession enables access to business application operations. These
operations are detailed business objects that vary by the business functions exposed.

WDIRoot Interface
The connect operation of the WDIRoot interface obtains the object reference to the
WDIManager.

Figure 3–2 shows the WDIRoot interface.

Figure 3–2 WDIRoot Interface

Connection to the MetaSolv Solution Application Server
To begin a connection, the third-party application must connect to the MetaSolv
Solution Application Server. This connection verifies the user ID and password, and
returns the object reference to the APIs WDIRoot. The connection operation returns a
reference to a WDIManager object.

Connection to the CORBA Daemon
By default, all APIs perform an impl is ready connection to the daemon in order to
register the availability of its object references. The MetaSolv Solution API system
administrator can set the StrictOMG system parameter to true in the MetaSolv
Solution Application Server INI file. The result is an OMG ORB connect on the
WDIRoot object.

Table 3–1 Keys for Common IDL Architecture Interfaces

Key Architecture Description

(1) At the highest level is the WDIRoot interface, which enables connection
management. The WDIRoot layer provides services that are used throughout the
architecture and serve as the connection factory. See "WDIRoot Interface" for more
information.

(2) The second level is the WDIManager interface, which enables session, signal, and
transaction management. The WDIManager object reference is obtained from a
successful connect to the WDIRoot. The connection operation of the WDIRoot
object returns an object reference to a WDIManager. WDIManager provides
services to start and destroy transaction objects, signal objects, and session objects.

(3) The third level contains the session, signal, and transaction interfaces, whose
object references are obtained from the WDIManager interface. See Figure 3–4,
"WDIManager Interface" for more information.

(4) The optional fourth level contains the more granular subSession object whose
object reference is obtained from the parent session interface. Refer to the sample
flows presented in each API chapter for examples.

(5) The API architecture defines a callback mechanism that is exposed by the
WDINotification interface.

Note: MetaSolv Solution APIs do not necessarily require every
interface defined in this document.

WDIManager Interface

Common Architecture 3-3

After performing the OMG ORB connection, the application server writes an OMG
stringified object reference for the WDIRoot object to a file, using the file name
specified by the IORPath system parameter in the application server INI file and the
name of the API server.

Connection to the Root Object
Figure 3–3 illustrates the connection process.

Figure 3–3 Connection Process

Table 3–2 lists the operations exposed by the WDIRoot interface.

WDIManager Interface
The object reference to the WDIManager is obtained by initiating the connect operation
of the WDIRoot interface, as shown in Figure 3–4.

Table 3–2 WDIRoot Interface Operations

Operation Name Description

connect Returns a reference to WDIManager

disconnect Terminates the connection

WDIManager Interface

3-4 MetaSolv Solution CORBA API Developer's Reference

Figure 3–4 WDIManager Interface

Table 3–3 lists the operations exposed by the WDIManager interface.

API Session Interfaces (Session Processing)
The object reference to the apinameSession is obtained by initiating the
startapinameSession operation of the WDIManager, as shown in Figure 3–5.

Table 3–3 WDIManager Interface Operations

Operation Description

startapinameSession Obtains the object reference of the apinameSession where apiname
designates the specific API, as in startLSRSession

destroyapinameSession Terminates the established session, as in destroyLSRSession

startTransaction Establishes a database connection using this process:

The Start operation makes the connection and establishes a
database transaction object.

The API returns a handle for that connection to the initiating
process. The term, handle, is synonymous with a
WDITransaction object reference.

destroyTransaction Invalidates a database transaction object. Any pending changes
are lost when this function is called if it was not preceded by a
commit.

startSignal Obtains the WDISignal object reference

destroySignal Terminates the Signal

startInSignal Obtains the WDI Insignal object reference

destroyInSignal Terminates the Insignal

Note: Some APIs do not define startSignal, destroySignal,
startInSignal, destroyInSignal, startTransaction, or destroyTransaction. For
details about a specific API, see the chapter of this guide that describes
that API.

WDIManager Interface

Common Architecture 3-5

Figure 3–5 Basic Session Interface

Operations in sessions and subsessions vary according to the API.

WDITransaction Interface (Database Transactions)
The object reference to the WDITransaction is obtained by initiating the startTransaction
operation of the WDIManager interface. Third-parties can use the API to coordinate
the database transactions because no assumed paths or commit points are built into
the API. Commit and rollback are operations of the WDITransaction interface.

Figure 3–6 shows the WDITransaction interface.

Figure 3–6 WDITransaction Interface

WDIManager Interface

3-6 MetaSolv Solution CORBA API Developer's Reference

The commit operation uses a database handle and saves any pending changes to the
database. Once a commit has occurred, all database updates are applied to the
database. After a commit, the transaction object is still valid and can continue to be
used.

The rollback operation uses a database handle and rolls back any pending changes to
the database. Once a rollback has occurred, any pending database changes are
discarded. After a rollback, the transaction object is no longer valid and cannot be used
for further operations.

In APIs that use the commit and rollback operations, your application must
specifically call commit and rollback. However, some APIs do not use the
WDITransaction interface. In these cases, MetaSolv Solution is responsible for database
transaction management.

WDISignal Interface (Outbound Signal Processing)
The object reference to the WDISignal is obtained by initiating the startSignal operation
of the WDIManager interface.

If the signal is a gateway event signal, certain key data as defined in the WDIEvent
structure (in the IDL) is passed. If the signal is an application event signal, the data to
be passed varies, depending on the application.

The third party is responsible for implementing the eventOccurred and eventTerminated
operations of the WDISignal interface. MetaSolv Solution is responsible for
implementing the remaining operations of the WDISignal interface.

Figure 3–7 shows the WDISignal interfaces.

Figure 3–7 WDISignal Interfaces

Table 3–4 lists the operations exposed by the WDISignal interface.

WDIManager Interface

Common Architecture 3-7

WDIInSignal Interface (Inbound Signal Processing)
The object reference to the WDIInSignal is obtained by initiating the startInSignal
operation of the WDIManager interface. The WDIInSignal interface allows the
third-party application to update statuses of unsolicited or inbound gateway events in
the Work Management subsystem. This is illustrated in Figure 3–8.

Figure 3–8 WDIInSignal Interfaces

Table 3–5 lists the operations exposed by the WDIInSignal interface.

Table 3–4 WDISignal Interface Operations

Operation Description

eventOccurred MetaSolv Solution initiates a signal indicating that a gateway event of
interest to the third-party software has occurred.

eventTerminated MetaSolv Solution terminates an event to notify the third-party
application that MetaSolv Solution is no longer interested in
completing the event and is no longer interested in receiving status
updates for the event.

eventInProgress The third-party application sets the status of the gateway event to In
Progress when it has received and begun processing the signal.

eventCompleted The third-party application sets the status of a gateway event to
Completed when it has successfully finished processing the event.

eventErrored The third-party application sets the status of the gateway event to
Error when an error has occurred while processing the event. This
operation also provides a mechanism for error information to be
communicated to the API.

Table 3–5 WDIInSignal Interface Operations

Operation Description

eventInProgress The third-party application sets the status of a gateway event to In
Progress when it has started processing an event.

WDIManager Interface

3-8 MetaSolv Solution CORBA API Developer's Reference

WDINotification Interface (Callback Mechanism)
Most operations implemented within the APIs require a WDINotification object
reference as the first input parameter. The third-party application instantiates a
WDINotification object.

The WDINotification interface enables a callback mechanism to notify the third-party
application of the result of an operation invoked against it. The callback mechanism is
used to communicate the results of an asychronous operation.

MetaSolv Solution uses JacOrb 3.8 to support the CORBA API. This software supports
the 2.4 CORBA Standard. This software is shipped as part of the MetaSolv Solution
product line and does not require you to purchase anything from a third party. This
ORB inter operates with all the available ORBs.

The WDINotification interface has operations defined indicating the success or failure
of an invoked operation. The parameters of the WDINotification interface include a
reference (which varies by application, for example a document number for
LSR-related callbacks) and an error structure where appropriate. The third-party
application is responsible for implementing the operations in the WDINotification
interface.

If an error is encountered during the processing of an API object implementation, a
callback is performed to the third-party application indicating that the operation has
failed and why the operation failed. The reasons for the failure are communicated by
an error structure (WDIErrSeq), which may contain multiple, detailed error messages.
Different errors can be encountered while attempting to process a given request, as
shown in Figure 3–9.

eventCompleted The third-party application sets the status of a gateway event to
Completed when it has successfully finished processing an event.

eventErrored The third-party application sets the status of a gateway event to Error
when an error has occurred while processing an event.

Note: Operations of the WDINotification interface vary according to
the application.

Table 3–5 (Cont.) WDIInSignal Interface Operations

Operation Description

WDIManager Interface

Common Architecture 3-9

Figure 3–9 Sample Flow for Successful and Error Conditions

Displaying errors is the responsibility of the third-party application because the
third-party application functionality and error processing differs among software
package. The API provides a mechanism for errors to be communicated back to the
Work Management subsystem through the eventErrored operation of the WDISignal
interface.

For example, with a third-party application importing a local service request
confirmation (LSC) to the LSR API, the following processes can occur:

1. The third-party application invokes the importLSC operation with the appropriate
data.

2. The importLSC operation processes the LSC data.

■ During the processing, the LSC is validated against the MetaSolv Solution
database business rules for the LSC.

■ If all data is valid, it is inserted into the MetaSolv Solution database, and the
successful operation is invoked on the notification interface.

■ No detail error messages are generated.

If the import LSC process encounters an error or errors, the LSC is not inserted into the
MetaSolv Solution database. The error code structure is populated with detailed error
message information. Examples of these include location code not in the database and

WDIManager Interface

3-10 MetaSolv Solution CORBA API Developer's Reference

NC/NCI codes are invalid. MetaSolv Solution invokes the failed operation of the
WDINotification interface.

The third-party application is responsible for logging the errors and making them
available to the user. Typically, this means the data displays to the user. The third-party
application may optionally communicate this error information back to MetaSolv
Solution through the error status update for an event.

4

The Infrastructure API 4-1

4The Infrastructure API

Much of the underlying information in the database is managed by the Oracle
Communications MetaSolv Solution Infrastructure subsystem.

Specific operations for exporting lists of information from the database are provided
by the Infrastructure API. These lists of information include:

■ Structured formats and structured format components

■ Geographic areas and types

■ Code categories and code category values, including languages

■ Network locations

Additional operations are provided and used to manage end-user and network
location information. See "NetworkLocationSubSession" for more information.

The CORBA server name used by the Infrastructure API is
INFRASTRUCTURESERVER.

Implementation Concepts
This section describes the implementation concepts for the Infrastructure API.

Infrastructure Operational Differences
This section describes the operational differences between the Infrastructure
subsystem and the API.

Latitude and Longitude Fields Are Not Calculated and Validated
Unlike the Infrastructure subsystem in MetaSolv Solution, the Infrastructure API does
not allow for calculation of the Latitude and Longitude fields if data is entered in the
Vertical and Horizontal fields of the associateLocationRelationships operation. Validation
also does not occur if data is entered into the Latitude and Longitude fields.

Switch Network Area Field Defaults to First Switch Network Area
The Infrastructure API does not support the Switch Network Area field selection in
the queryNetworkLocations_V2 operation.

If there is only one switch network area in the Switch Network Area field, the Switch
Network Area field is defaulted to it. If there are more than one switch network areas
in the Switch Network Area field, the first switch network area listed in the database,
populates that field.

Key MetaSolv Solution Concepts

4-2 MetaSolv Solution CORBA API Developer's Reference

Query Across All Address Formats
Unlike the Infrastructure subsystem in MetaSolv Solution, the Infrastructure API does
not allow you to query for all address formats when using the queryNetworkLocation_
V2 operation.

Key MetaSolv Solution Concepts
To understand the information made available through the Infrastructure API, you
must understand certain key concepts used in MetaSolv Solution. In particular, you
should understand how MetaSolv Solution uses these kinds of information:

■ Code categories and code category values

■ Geographic areas and types

■ Network locations

■ Structured formats and structured format components

■ Customized attributes (CAs) - CAs are what MetaSolv Solution users use to add
an attribute (or property, or value) to a building block. They offer a way to add
company-specific information to MetaSolv Solution. They are custom because
your company’s unique business processes and technological practices dictate
how CAs are used. Several CAs are included in the data that comes with MetaSolv
Solution, and those CAs are immediately available for association to building
blocks. MetaSolv Solution users can also create new CAs.

Building blocks are the only parts of the software with which CAs can be
associated. Templates, elements, connections, and connection allocations are the
four building block types from which MetaSolv Solution users can select building
blocks for association with a CA. Building block types are predefined and
unchangeable.

Infrastructure API Files
These IDL files are used in the Infrastructure API:

■ WDIInfrastructure.idl

■ WDIInfrastructureTypes.idl

■ WDINetworkLocation.idl

■ WDINetworkLocationTypes.idl

■ WDINetworkLocationTypes_v2.idl

■ WDI.idl

■ WDIUtil.idl

Infrastructure Interface
Figure 4–1 shows the relationship of the interfaces within the Infrastructure API.

Infrastructure Interface

The Infrastructure API 4-3

Figure 4–1 Infrastructure API Interfaces

WDIManager
Table 4–1 lists the operations available in the WDIManager interface of the
WDIInfrastructure.idl file.

InfrastructureSession Interface
Table 4–2 lists the operations that comprise the InfrastructureSession in the
WDIInfrastructure.idl file.

Table 4–1 WDIManager Interface Operations in the Infrastructure API

Operation Description

startInfrastructureSession Obtains the object reference of the
InfrastructureSession

destroyInfrastructureSession Terminates the InfrastructureSession

startTransaction commit

rollback

destroyTransaction Terminates the transaction

startNetworkLocationSubSession Returns the NetworkLocationSubSession

destroyNetworkLocationSubsession Destroys the NetworkLocationSubsession

Note: See "WDIManager Interface" for more information on the
WDIManager interface.

Infrastructure Interface

4-4 MetaSolv Solution CORBA API Developer's Reference

Table 4–2 Infrastructure API InfrastructureSession Interface Operations

Operation WDIInfrastructure::WDINotification Operations

getMaximumReturnedRows Implemented by caller to return maximum number of
records for Infrastructure API server to return for certain
queries (0 = no limit).

getStructureTypes getStructureTypesSucceeded

operationFailed

getStructureFormatsGivenType getStructureFormatsGivenTypeSucceeded

operationFailed

getStructureFormatsGivenTypeAndArea getStructureFormatsGivenTypeAndAreaSucceeded

operationFailed

getComponentsGivenStructureFormat getComponentsGivenStructureFormatSucceeded

operationFailed

getValidValuesGivenStructureFormat

Component

getValidValuesGivenStructureFormatComponent

Succeeded

operationFailed

getGeoAreaTypes getGeoAreaTypesSucceeded

operationFailed

getGeoAreaTypesGivenCountry getGeoAreaTypesGivenCountrySucceeded

operationFailed

getGeoAreasGivenType getGeoAreasGivenTypeSucceeded

operationFailed

getGeoAreasGivenTypeAndCountry getGeoAreasGivenTypeAndCountrySucceeded

operationFailed

getRelatedGeoAreasGivenAreaAndType getRelatedGeoAreasGivenAreaAndTypeSucceeded

operationFailed

getLanguages getLanguagesSucceeded

operationFailed

getCodeCategories getCodeCategoriesSucceeded

operationFailed

getCodeCategoryValues getCodeCategoryValuesSucceeded

operationFailed

queryConditionCode queryConditionCodeSucceeded

operationFailed

getConditionCode getConditionCodeSucceeded

operationFailed

getNetworkAreasGivenLocation getNetworkAreasGivenLocationSucceeded

operationFailed

startNetworkLocationSubSession Obtains the object reference of the
NetworkLocationSubSession

destroyNetworkLocationSubSession Terminates the NetworkLocationSubSession

Infrastructure Interface

The Infrastructure API 4-5

InfrastructureSession Operation Descriptions
This section describes the operations defined in the WDIInfrastructure.IDL file.

Query Operation
■ queryConditionCode

Retrieves a list of condition codes that can be added to a mounting position or a
port address. Criteria for the search is passed in the ConditionCode structure. See
the ConditionCode structure in WDIInfrastructureTypes.idl for rules concerning
the criteria. A WDITransaction object is intentionally not passed for this operation
and assumes responsibility for transaction management.

Export Operations
■ getStructureTypes

Retrieves a list of all structure types in the database.

■ getStructureFormatsGivenType

Retrieves a list of active structure formats bound by the input structure type.

■ getStructureFormatsGivenTypeAndArea

Retrieves a list of active structure formats bound by the input structure type for a
given input geographic area identifier.

■ getComponentsGivenStructureFormat

Retrieves a list of active structured format components based on the input active
structured format.

■ getValidValuesGivenStructureFormatComponent

Retrieves a list of active valid values based on the input structured format
component identifier.

■ getGeoAreaTypes

Retrieves a list of all geographic area types in the database.

■ getGeoAreaTypesGivenCountry

Retrieves a list of geographic area types used by the input country name.

getCaUsageSetInfoFromServiceItem getCaUsageSetInfoFromServiceItemSucceeded

operationFailed

getCaUsageSetInfoFromTemplate getCaUsageSetInfoFromTemplateSucceeded

operationFailed

getCaUsageSetInfoFromElement getCaUsageSetInfoFromElementSucceeded

operationFailed

getCaUsageSetInfoFromConnector getCaUsageSetInfoFromConnectorSucceeded

operationFailed

getMultipleCaUsageSetInfo getMultipleCaUsageSetInfoSucceeded

operationFailed

Table 4–2 (Cont.) Infrastructure API InfrastructureSession Interface Operations

Operation WDIInfrastructure::WDINotification Operations

Infrastructure Interface

4-6 MetaSolv Solution CORBA API Developer's Reference

■ getGeoAreasGivenType

Retrieves a list of the active geographic areas bound by the input geographic area
type.

■ getGeoAreasGivenTypeAndCountry

Retrieves a list of the active geographic areas used by the input country name and
bound by the input geographic area type.

■ getRelatedGeoAreasGivenAreaAndType

Retrieves a list of the active geographic areas related to the input geographic area
and bound by the input geographic area type.

■ getLanguages

Retrieves a list of all languages in the database.

■ getCodeCategories

Retrieves a list of code categories bound by the input language code.

■ getCodeCategoryValues

Retrieves a list of code category values bound by the input code category number
and language code. Only values with an effective from date on or before the
current date, and values with a populated effective to date after the current date
are returned. A null value is not returned.

■ getConditionCode

Retrieves the condition code, description, and warning type for a given condition
code. The conditionCode parameter is required, and must contain a valid
condition code, or an error is returned. This operation is intentionally not passed a
WDITransaction object and assumes responsibility for transaction management.

■ getNetworkAreasGivenLocation

Retrieves network areas based on the location ID passed in.

■ getNetworkAreasGivenLocation

Retrieves network areas based on the location ID passed in.

■ getCAUsageSetInfoFromServiceItem

Retrieves CA usages based on the service item id passed in.

■ getCAUsageSetInfoFromTemplate

Retrieves CA usages based on the template id passed in.

■ getCAUsageSetInfoFromElement

Retrieves CA usages based on the element type passed in.

■ getCAUsageSetInfoFromConnector

Retrieves CA usages based on the connector id passed in.

■ getMultipleCaUsageSetInfo

Retrieves CA usages for multiple items passed in.

Export Customized Attribute Process Point IDs

The export customized attribute (CA) operations require you to enter a value for the
process point ID. The following list describes the various process points in the
application where CAs may be exported or rendered for display or update.

Infrastructure Interface

The Infrastructure API 4-7

Table 4–3 lists the process point IDs.

processPointId is an input for several Infrastructure export methods:

//getCaUsageSetInfoFromServiceItem- Retrieves ca usages based on the service item
//id passed in.
 void getCaUsageSetInfoFromServiceItem(
 in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
 in WDINotification aWDINotification,
 in long serviceItemId,
 in long processPointId,
 in long referenceNumber)
 raises(MetaSolv::CORBA::WDI::WDIExcp);

//getCaUsageSetInfoFromTemplate- Retrieves ca usages based on the template
//id passed in.
 void getCaUsageSetInfoFromTemplate(
 in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
 in WDINotification aWDINotification,
 in long templateId,
 in long processPointId,
 in long referenceNumber)
 raises(MetaSolv::CORBA::WDI::WDIExcp);

Table 4–3 Process Point IDs

Export Customize Attribute
Operation

Process
Point ID Description

Activation 60 Used during connection design change to
request CAs for Connections.

Billing API 71 Used by the Billing API to request CAs.

Change Connection Design 60 Used during connection design change to
request CAs for Connections.

Connection Design History 62 Used during connection design to display
CAs for Connections history.

Disconnect Connection Design 61 Used during connection design for
disconnect to request CAs for Connections.

GLR-Network Design Properties 58 Used by the GLR to show properties for a
Connection.

Network Design - New 55 Used by Network Design to request CAs
for a Network System or Network Element.

New Connection Design 59 Used during connection design to request
CAs for New Connections.

Ordering - Change 51 Used by the Optimized Dialog to request
CAs for a Change Order for an existing
Network System, Network Element, or
Connection.

Ordering - Disconnect 52 Used by the Optimized Dialog to request
CAs for a Change Order for a disconnect of
a Network System, Network Element, or
Connection.

Ordering - New 50 Used by the Optimized Dialog to request
CAs for a New Network System, New
Network Element, or New Connection.

Infrastructure Interface

4-8 MetaSolv Solution CORBA API Developer's Reference

//getCaUsageSetInfoFromElement- Retrieves ca usages based on the element name
//passed in.
 void getCaUsageSetInfoFromElement(
 in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
 in WDINotification aWDINotification,
 in string elementType,
 in long processPointId,
 in long referenceNumber)
 raises(MetaSolv::CORBA::WDI::WDIExcp);

//getCaUsageSetInfoFromConnector- Retrieves ca usages based on the connector id
//passed in.
 void getCaUsageSetInfoFromConnector(
 in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
 in WDINotification aWDINotification,
 in long connectorId,
 in long processPointId,
 in long referenceNumber)
 raises(MetaSolv::CORBA::WDI::WDIExcp);

//getMultpleCaUsageSetInfo- Retrieves ca usages for multiple items passed in.
 void getMultipleCaUsageSetInfo(
 in MetaSolv::CORBA::WDI::WDITransaction aWDITransaction,
 in WDINotification aWDINotification,
 in MetaSolv::CORBA::WDIInfrastructureTypes::CaInputItemSeqitems,
 in long processPointId,
 in long referenceNumber)
 raises(MetaSolv::CORBA::WDI::WDIExcp);

NetworkLocationSubSession
The NetworkLocationSubSession is a subsession in the Infrastructure API that
manages network location database transactions in the Infrastructure subsystem.

The NetworkLocationSubSession includes the following functionality described in
detail in later sections:

■ Associate and disassociate location relationships with a network location

■ Associate and disassociate network areas from an end-user location

■ Associate and disassociate tandem types from a network location

■ Disassociate Secondary LSO’s from an end-user location.

■ Query, create, update and delete end-user locations

■ Query, create, update and delete network locations

■ Query network areas

The NetworkLocationSubSession interacts solely with the Infrastructure server which
is responsible for commit and rollback functionality. The WDITransaction parameter is
not a part of any operation used within this API. Prior operations that used the
WDITransaction parameter are deprecated and replaced with new versioned
operations.

NetworkLocationSubSession Interface Operations
Table 4–4 lists the operations in the NetworkLocationSubSession of the
WDINetworkLocation.IDL file.

Infrastructure Interface

The Infrastructure API 4-9

Table 4–4 Network Location Operations

Operation WDINotifications

queryNetworkLocations

This operation has been deprecated from the
WDIEquipment.IDL and is replaced by
queryNetworkLocations_V2

networkLocationQuerySucceeded - Deprecated

networkLocationQueryFailed - Deprecated

getNetworkLocation

This operation has been deprecated from the
WDIEquipment.IDL and is replaced by
getLocation

networkLocationGetSucceeded - Deprecated

networkLocationGetFailed - Deprecated

queryNetworkLocations_V2 queryNetworkLocationsSucceeded_v2

(replaces networkLocationQuerySucceeded)

operationFailed

(replaces networkLocationQueryFailed)

queryEnduserLocations queryEnduserLocationSucceeded

operationFailed

queryNetworkAreas queryNetworkAreaSucceeded

operationFailed

getLocation getLocationSucceeded

(replaces networkLocationGetSucceeded)

operationFailed (replaces networkLocationGetFailed)

createLocation createLocationSucceeded

operationFailed

updateLocation updateLocationSucceeded

operationFailed

deleteLocation deleteLocationSucceeded

operationFailed

getServingOfficeTypes getServingOfficeTypesSucceeded

operationFailed

getCentralOfficeExchangeAreas getCentralOfficeExchangeAreasSucceeded

operationFailed

getNetworkLocationCategories getNetworkLocationCategoriesSucceeded

operationFailed

getNetworkLocationTypes getNetworkLocationTypesSucceeded

operationFailed

getNetworkLocationRelationshipTypes getNetworkLocationRelationshipTypesSucceeded

operationFailed

getTandemTrafficCodes getTandemTrafficCodesSucceeded

operationFailed

getLocationCodeFormats getLocationCodeFormatsSucceeded

operationFailed

getTandemServices getTandemServicesSucceeded

operationFailed

Infrastructure Interface

4-10 MetaSolv Solution CORBA API Developer's Reference

NetworkLocationSubSession Operation Descriptions
This section describes the operations defined in the WDINetworkLocation.IDL file.

Query Operations
■ queryNetwork Locations (Deprecated from the WDIEquipment.IDL)

Requests and returns all network locations that match specific criteria.

■ queryNetworkLocations_V2

Requests and returns network locations for specific criteria, limiting the number of
records returned.

getBuildingLocations getBuildingLocationsSucceeded

operationFailed

getAssociatedNetworkAreas getAssociatedNetworkAreasSucceeded

operationFailed

getAvailableNetworkAreas getAvailableNetworkAreasSucceeded

operationFailed

getTelephoneNumberSwitchLocations getTelephoneNumberSwitchLocationsSucceeded

operationFailed

getDataSwitchLocations getDataSwitchLocationsSucceeded

operationFailed

getTandemLocations getTandemLocationsSucceeded

operationFailed

getIncorporatedCodes getIncorporatedCodesSucceeded

operationFailed

getMultipleAddressPatterns getMultipleAddressPatternsSucceeded

operationFailed

associateLocationRelationships associateLocationRelationshipsSucceeded

operationFailed

unassociateLocationRelationships unassociateLocationRelationshipsSucceeded

operationFailed

associateTandemTypes associateTandemTypesSucceeded

operationFailed

unassociateTandemTypes unassociateTandemTypesSucceeded

operationFailed

associateNetworkAreas associateNetworkAreasSucceeded

operationFailed

unassociateNetworkAreas unassociateNetworkAreasSucceeded

operationFailed

unassociateSecondaryLSOs unassociateSecondaryLSOsSucceeded

operationFailed

Table 4–4 (Cont.) Network Location Operations

Operation WDINotifications

Infrastructure Interface

The Infrastructure API 4-11

■ queryEnduserLocations

Requests and returns end-user locations based on specific criteria.

■ queryNetworkAreas

Requests and returns network areas based on specific criteria.

Get Operations
■ getNetworkLocation (Deprecated from the WDIEquipment.IDL)

Retrieves a specific network location based on its network location ID.

■ getLocation

Retrieves an existing network or end-user location, or end-user location with
network location alias.

■ getServingOfficeTypes

Retrieves servicing office types used with network location.

■ getCentralOfficeExchangeAreas

Retrieves central office exchange area values for use with network location.

■ getNetworkLocationCategories

Retrieves network location category values.

■ getNetworkLocationTypes

Retrieves types of network locations.

■ getNetworkLocationsRelationshipTypes

Retrieves types of network location relationships for use with network locations.

■ getTandemTrafficCodes

Retrieves tandem traffic code values used with network locations.

■ getTandemServices

Retrieves tandem service values used in network locations.

■ getBuildingLocations

Retrieves location codes for locations that are in buildings.

■ getAssociatedNetworkAreas

Retrieves network area associated with a particular end-user location.

■ getAvailableNetworkAreas

Retrieves available network areas that can be associated with a particular end-user
location. This parameter is optional when creating an end-user location. This
operation requires that a TN switch is associated with the end-user location.

■ getTelephoneNumberSwitchLocations

Retrieves location codes for telephone number switches used in end-user
locations.

The client application must specify a partial value that the API uses to filter values
and return location codes meeting this criteria. The telephoneNumberSwitchLocation
operation is optional when creating an end-user location. The user must specify at

Infrastructure Interface

4-12 MetaSolv Solution CORBA API Developer's Reference

least a partial value for the search. An end-user location can be created without a
TN switch.

■ getLocationCodeFormats

Retrieves location code formats for network locations.

■ getDataSwitchLocations

Retrieves location codes for data switches used in end-user locations.

The client application must specify a partial value that the API uses to filter values
and return location codes for data switches meeting this criteria. The
getDataSwitchLocations operation is operational when creating an end-user
location. You must specify at least a partial value for the search. An end-user
location can be created without the getDataSwitchLocations operation.

■ getTandemLocations

Retrieves location code values for tandem locations for network locations.

■ getIncorporatedCodes

Retrieves incorporated codes (inside incorporated area, outside incorporated area,
and none) used to create a new end-user location.

■ getMultipleAddressPatterns

Retrieves patterns (odd, even, or both) for a range of end-user locations. The user
provides the start and end range, and indicate if those within the range are odd
numbered, even numbered, or both.

Create Operation
■ createLocation

Creates a new network, end-user location, or end-user location with network
location alias and store it on the database.

Update Operation
■ updateLocation

Applies updates to a network, end-user location, or end-user location with
network location alias in the database.

Delete Operation
■ deleteLocation

Removes a network or end-user location from the database. If the location is an
end-user location with a network location alias, the user can choose to delete both
the network and end-user location entries, delete just the end-user location entry,
or delete the network location alias.

Associate Operations
■ associateLocationRelationships

Note: When network location type is B for an end-user location with
a network location code alias, the user can delete just the alias, delete
just the end-user, or delete both the end-user and network location
entries.

Process Flows

The Infrastructure API 4-13

Associates location relationships to a network location.

■ associateTandemTypes

Associates tandem types to a network location.

■ associateNetworkAreas

Associates network areas with a new or existing end-user location. Association of
network areas to an end-user location can occur at the time the location is created.
However, this class provides a more direct path for this association process so that
existing end-user locations can have the association done without having to go
through the update process. It assumes that a telephone number (TN) switch is
specified for this end-user location. A TN switch must be set for the end-user
location or an error will occur.

Unassociate Operations
■ unassociateLocationRelationships

Removes location relationships from a network location.

■ unassociateTandemTypes

Removes tandem types from a network location.

■ unassociateNetworkAreas

Removes network area associations from an end-user location. The switch network
area will not be removed or disassociated through this process.

■ unassociateSecondaryLSOs

This operation unassociates secondary local servicing offices associated with an
end-user location. Since end-user location is a type of network location, address
and related formatting are identical to that of network location.

Process Flows
This section contains sample process flows for each type of signal: solicited and
unsolicited. Use the sample flow as a template for developing your own process flows.

Solicited Messages
A solicited message is a message initiated by the MetaSolv Solution API servers. The
Infrastructure API does not support solicited messages at this time.

Unsolicited Messages
An unsolicited message is a message initiated by the third-party software. The
Infrastructure API plays the role of the server, and a third-party application plays the
role of the client with the exception of the callback processing.

Sample Unsolicited Message Process Flow for Exporting Infrastructure Information
The overall process flow for exporting infrastructure information is as follows:

1. The third-party application binds to the MetaSolv Solution Application Server to
get a WDIRoot object reference.

2. The third-party application invokes the connect operation of the WDIRoot
interface, which yields a WDIManager object reference.

Process Flows

4-14 MetaSolv Solution CORBA API Developer's Reference

3. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference and starts a database
transaction.

4. The third-party application invokes the startInfrastructureSession operation of the
WDIManager interface to get an InfrastructureSession object reference.

5. The third-party application instantiates a third-party implementation of a
WDINotification object.

6. The third-party application invokes the desired operation of the
InfrastructureSession object, passing the WDINotification object.

7. The Infrastructure server either returns the requested data structure
asynchronously through invocation of the appropriate Succeeded operation of the
WDINotification object, or returns exception information through invocation of
the operationFailed operation of the WDINotification object.

8. The third-party application invokes the destroyInfrastructureSession operation of the
WDIManager interface.

9. The third-party application invokes the destroyTransaction operation of the
WDIManager interface.

10. The third-party application invokes the disconnect operation of the WDIRoot
interface.

5

The Inventory and Capacity Management API 5-1

5The Inventory and Capacity Management API

The Inventory and Capacity Management (ICM) API provides the IDL for importing
equipment and exporting circuits and equipment. The ICM API provides
beginning-to-end visibility of service and network assets, including facilities,
equipment, and circuits. By exposing equipment specifications and installed locations,
as well as circuit, trunk, and facility capacity, the ICM API enables you to query for
your capacity on facilities, trunks, PVCs, and SONET networks.

The ICM API also enables you to query for all equipment located at a network
location, including all associated port information, hard-wired cross-connect
information, and software cross-connect information.

The ICM API also enables you to take these actions in the Oracle Communications
MetaSolv Solution database:

■ Assign and unassign IP addresses

■ Create, update, and delete network elements

■ Create and destroy hard-wired cross-connects

■ Create, update, and delete condition codes and comments for one or more
physical port addresses or equipment mounting positions on a piece of equipment

■ Install, update, move, copy, uninstall, and delete equipment

■ Query for condition codes

■ Query for IP addresses

■ Query for network elements

■ Query for network element types

■ Validate network element type references

The CORBA-registered name for the API server process used by the ICM API is
DLRSERVER.

Note: The ICM API does not include the getSwitchActivation_V5
and getTransportProvisioning_V5 operations that are described in the
IDL files used by the ICM API. The getSwitchActivation_V5
operations is enabled only if you have purchased a license for the
Switch Provisioning Activation API. The getTransportProvisioning_
V5 operation is enabled only if you have purchased a license for the
Transport Provisioning Activation API.

Key MetaSolv Solution Concepts

5-2 MetaSolv Solution CORBA API Developer's Reference

Key MetaSolv Solution Concepts
This section of the chapter identifies and describes key concepts used in MetaSolv
Solution that are also used by the ICM API.

Equipment Types, Equipment Specifications, and Equipment
In order to understand how MetaSolv Solution represents your equipment inventory
in its database, you must understand the distinction between equipment types,
equipment specifications, and individual pieces of equipment.

An equipment type is a broad categorization of the different kinds of equipment used
in a telecommunications network, such as the types RELAY RACK, CHANNEL
BANK, and CARD. All relay racks are categorized as type RELAY RACK, regardless of
the manufacturer or part number. Details that differentiate one relay rack from another
are defined in the equipment specifications for those pieces of equipment. Equipment
type is a property of an equipment specification.

An equipment specification is a reusable definition of a specific kind of equipment.
Equipment specifications identify the basic characteristics of a piece of equipment that
are shared with other pieces of the same model of equipment, including:

■ Equipment type

■ Manufacturer

■ Model number

■ Number of physical mounting positions

■ Number of logical port addresses

■ Number of port address placeholders for each mounting position

■ Transmission rates for each port address and port address placeholder

A piece of equipment is an instance of an equipment specification. An individual piece
of equipment is a single, concrete piece of equipment that performs a function, such as
a channel card, provides a service to other equipment, such as a jack panel, or houses
other pieces of equipment, such as a relay rack. Information that is specific to a specific
piece of equipment, such as serial number, is stored in the database record for that
piece of equipment.

Typically, the smallest piece of equipment tracked in the MetaSolv Solution database is
a card, such as a channel card. The individual electronic components that make up a
card, such as buttons, fuses, transistors, capacitors, and diodes, are not normally
included in the MetaSolv Solution equipment inventory. The physical connection ports
on a piece of equipment are discussed later in this chapter.

In MetaSolv Solution, the cables, wires, and fiber strands that are also part of your
network are not part of your equipment inventory. Instead, those items are part of
your plant inventory. Plant inventory information and operations are available in the
MetaSolv Solution Plant API. See "The Plant API" for more information.

Equipment Network Elements
Network elements represent intelligent devices that make up a telephony or data
network and allow communication and transmission between different types of
networks. A network element can be composed of a system with many shelves, such
as a switch or digital cross-connect system (DCS), or it can be a SONET node. SONET
nodes are defined in the MetaSolv Solution SONET network design module. Network
elements are defined in the MetaSolv Solution Equipment Administration module.

Key MetaSolv Solution Concepts

The Inventory and Capacity Management API 5-3

Network elements can also be defined as gateway network elements (GNEs), allowing
them to be communicated with locally, remotely, and through other network devices,
such as a Network Management System (NMS). Defining a network element as a
gateway network element enables you to log into that element, enabling
communication and exchange transactions, such as software cross-connect commands.
Defining remote access information is optional for network elements, but it is required
for GNEs. GNEs must have one of the following fields or field combinations defined
on the MetaSolv Solution Network Element Properties window - Node tab.

■ The IP Addr, Port, and Shelf fields

■ The Dial Up field

■ The Other field

Target identifiers (TIDs) can be associated with multiple shelves through the network
element, eliminating the need for separate identifiers at the shelf level when all the
shelves are part of the same system, such as in the case of a switch or a DCS. TIDs are
displayed on the CLR/DLR when an assignment is made to a card that is installed in a
shelf that is associated with the element. TIDs are also displayed on the CLR/DLR
when an assignment involves equipment that is associated with a node, whether it be
through a physical assignment or an enabled port assignment. This also applies to
network route assignments, network assignments, facility assignments, and
equipment assignments.

Equipment Name Aliases
You can use an equipment name alias to give a second name to a piece of equipment.
This enables you to refer to that piece of equipment by either name.

You might need to use equipment name aliases if a company you share data with uses
a different naming convention than you do. For example, equipment or circuits that
you do not own might be inventoried as part of your network. This might be required
if equipment is located in a collocated environment, such as an associated Local
Exchange Carrier’s (LECs) or Inter-Exchange Carrier’s (IXCs) building, where
different names are used for equipment.

Equipment name aliases are displayed on the CLR/DLR in the Notes section, but can
be suppressed when the associated design lines are suppressed.

Equipment Installation in MetaSolv Solution
Equipment installation is the process of selecting an equipment specification and
associating it with a specific network location.

When you install a piece of equipment in MetaSolv Solution, you must:

■ Indicate which equipment specification you want to use as the basis for the piece
of equipment you are installing

■ Specify additional details about the piece of equipment you are installing to
distinguish it from other pieces of equipment installed at the same network
location from the same equipment specification

Note: When importing equipment through the ICM API, you must
import only one piece of equipment at a time. You cannot import an
entire hierarchy of equipment with a single operation.

Key MetaSolv Solution Concepts

5-4 MetaSolv Solution CORBA API Developer's Reference

If the equipment has defined mounting positions, you can install other pieces of
equipment in those mounting positions.

In addition to installing equipment, you can:

■ Move equipment between mounting positions at the same network location

■ Move equipment between network locations

■ Uninstall equipment (move equipment from the installed equipment hierarchy to
the spare equipment hierarchy at a network location)

■ Copy equipment definitions to additional mounting positions or to other locations

■ Delete equipment from a network location

■ Specify hard-wired cross-connects between port addresses on two pieces of
equipment at the same network location

■ Specify condition codes for any physical port addresses and mounting positions
on an installed or spare piece of equipment

■ Assign and unassign IP addresses to physical and virtual port addresses

Mounting Positions
A mounting position is a physical place on a piece of equipment where other
equipment can be fastened or installed. For example, the mounting positions on a
relay rack are a series of boltholes, while the mounting positions in a channel bank are
a series of card slots. Other pieces of equipment can be fastened or installed in those
mounting positions.

Mounting positions are only specified for equipment that has one or more places
where other equipment is fastened or installed. For example, a D4 channel bank has 48
mounting positions. Therefore, the equipment specification for the D4 channel bank
card indicates that it has 48 mounting positions. The channel cards, which occupy the
D4 channel bank's 48 mounting positions, have no mounting positions. Therefore, the
equipment specifications for the channel card indicate that they do not have mounting
positions.

Ports and Port Addresses
Physical ports, also referred to as port addresses, usually provide the means to connect
equipment in a network by using a plug and socket connection. A physical port is a
physical location on a piece of equipment where signals enter or leave.

Because signals enter or exit, ports are assigned a rate code. The rate code assigned to a
port implies the ability to attach a circuit with a rate code of equal value.

Virtual Port Addresses
Virtual ports are conceptual ports that do not physically exist on a piece of equipment.
Virtual ports allow you to work with digital loop carrier (DLC) systems, where the
capacity of the system is greater than the transport channels available. Virtual ports

Note: The presence of a mounting position does not imply
programmed or engineered capability to recognize, process or
forward transmissions.

Key MetaSolv Solution Concepts

The Inventory and Capacity Management API 5-5

also allow you to assign an IP address to a piece of equipment rather than to a specific
physical port.

You can only assign circuits to the lowest level virtual ports. Once you assign a circuit
to the lowest level (child) virtual port, the status of the parent-level virtual port
remains unassigned and the status of the child-level virtual port changes as follows:

■ If the circuit is associated with a service request, the circuit goes into “Pending”
status immediately, and then into “In Service” status when the service request’s
Due Date task is completed.

■ If the circuit is not associated with a service request, the circuit goes directly into
“In Service” status.

Enabled Ports and Enabled Port Addresses
Unlike ordinary ports, an enabled port is not a physical place on a piece of equipment.
Instead, it is a port that the equipment creates through its internal software. For
example, a DCS is used to cross-connect channels from one facility to another. This
connection is accomplished digitally through enabled ports. A DCS with two physical
DS1 ports may have no mounting positions, but can still enable, through software, 24
ports for each DS1. The software-enabled ports are then used to cross-connect DS0
channels riding the DS1s.

The rate code for an enabled port address cannot exceed the rate code for the primary
port address. The DCS in the example has two primary port addresses with DS1
transmission rates. Therefore, the DCS can enable only a DS1 or DS0 transmission rate
port.

Port Address Placeholders
As a rule, mounting positions do not provide physical ports for attaching circuits. A
port address placeholder is a construct in the MetaSolv Solution database that enables
you to assign logical ports to mounting positions where equipment with physical ports
is scheduled to be installed. In short, port address placeholders allow circuit design
work to continue when equipment is not yet installed.

For example, you want to cross-connect a jack panel to a shelf before the shelf's cards
are installed. However, at this point there are no port addresses to cross-connect to,
because the port addresses are on the cards and the cards are not installed. The
solution is to define placeholders for the shelf's mounting positions (the potential
number of port addresses available once a card is installed in the mounting position).
As a result, you can cross-connect to the port address placeholders before a card is
installed. When you install a card, its port addresses are automatically associated with
the mounting position's port address placeholders.

The act of installing equipment in a mounting position that has port address
placeholders does associate the circuits as directed by the placeholders, but does not
remove the underlying placeholders themselves. This enables you to move cards in
and out of a mounting position without removing the underlying cross-connects.
When the equipment is removed, the port address placeholder remains, awaiting the
next equipment installed in that mounting position.

When you specify port address placeholders for a mounting position, verify that the
number of port address placeholders match the number of ports on the equipment that
is to be installed in those mounting positions. Also, the rate code assigned to the port
address placeholders must match the rate code of the ports on the equipment you
install.

Key MetaSolv Solution Concepts

5-6 MetaSolv Solution CORBA API Developer's Reference

Port Address Aliases
You can use a port address alias to give a second node address to a port. This enables
you to refer to that port address by either node address.

You may need to use port address aliases if a company you share data with uses a
different addressing format than the one you use. In a collocated environment,
equipment or circuits that you do not own may be inventoried as part of your
network.

Port aliases are included on the CLR/DLR in the Notes section, but can be suppressed
when the associated design lines are suppressed. Notes in the Notes section of the
CLR/DLR include port aliases to which circuits have been assigned or those that have
been cross-connected to a port address. If the cross-connected port address has an
alias, both aliases display.

Nodes and Node Addresses
A node is a piece of equipment on a network with the ability to recognize, process, or
forward signals to other equipment. For example, a node can be a router in a token
ring or an OC12 terminal in a SONET network.

A node is aware of other nodes on the network and is capable of receiving
transmissions from or forwarding transmissions to other nodes. Like a letter delivered
to its recipient through a series of postal centers, a communications signal travels
across a network among nodes to reach its destination.

A node address is an identifier that is unique to each node, distinguishing one node
from another. MetaSolv Solution can base node addresses on a hierarchy of the
physical components comprising the node: rack, shelf, and card. You can manually
replace or alter, override, this hierarchical (or concatenated) node address by using
hard and soft node address overrides on individual ports. You can also define a
sequential numbering scheme for mounting positions on an equipment specification in
order to automatically number ports sequentially across cards in a shelf.

Sequential Port Address Numbering
You can define a sequential numbering scheme for mounting positions on an
equipment specification in order to number ports sequentially across cards in a shelf.
You can use this automated numbering method, instead of hard and soft node address
overrides, when working with multiple shelves of a DCS system where sequential
numbering is applied to all ports of a given rate code. As with hard and soft node
address overrides, the sequential numbering scheme you define replaces the
concatenated node address.

Each shelf using sequential numbering is identified by a unique combination of unit
number, unit extension, and network element location ID. The unit number identifies a
piece or multiple pieces of equipment that contain cards. Every unit associated with a
network element has a unique unit number and unit extension identifier. If the unit
contains one shelf, that shelf has a unique unit number and a unit extension of zero.

For example, each of the 16 shelves in a Lucent DACSII Capacity Expansion Frame has
a unique unit number between one and 16 and has a unit extension of zero. If the unit
contains a group of shelves, each shelf in the group has the same unit number with a
unique unit extension. Therefore, each of the four ATM shelves in a Lucent DACSII
Single Bay has the same unit number with a unique unit extension. The first shelf is
unit number one, unit extension one. The second shelf is unit number one, unit
extension two, and so on.

Key MetaSolv Solution Concepts

The Inventory and Capacity Management API 5-7

The numbering sequence for card ports installed in a shelf’s mounting positions is
independent of the bay in which the unit is installed and independent of the order in
which the units are installed. Thus, you can install Unit 5 in Bay 1 before you install
Unit 4 in Bay 3 without affecting the numbering of the ports. Figure 5–1 illustrates
sequential numbering of port addresses for DSPU cards in a Lucent DACSII.

Figure 5–1 Example of Sequential Numbering of Port Addresses

The sequential numbering scheme for a DCS shelf is defined on the equipment
specification. You can create a variety of sequential numbering schemes, including
straight sequential (with or without channel assignments) and sequential with
augmentation. Upon installation of the shelf, you can disable numbering for selected
ports by checking the Disable PA check box in the MetaSolv Solution Equipment
window - Mounting Positions tab to create a sequential with skipped numbers
scheme. Once the shelf is installed and a unit number and unit extension are defined,
you cannot edit the sequential numbering scheme unless you uninstall the shelf. If a
shelf is installed without a unit number and unit extension, and you add a numbering
scheme to the equipment specification, the numbering scheme is not copied to the
installed shelf unless you assign a unit number and unit extension and associate the
shelf with a network element.

You can use the same specification to accommodate both sequential port numbering
and hierarchical port numbering schemes. If you want to use a concatenated
hierarchical port numbering scheme for a DCS systems, disable the numbering defined
in the specification for each shelf in the DCS by unchecking the Seq Port Numbering
check box on the MetaSolv Solution Equipment window - Mounting Positions tab.

Hard-Wired Cross-Connects
To a field engineer, a hard-wired cross-connect, also referred to as cabling, is the wiring
of one equipment port to another. The hard-wired cross-connects you create in the
MetaSolv Solution database represent the actual hard-wired cross-connects between
equipment ports. An example of a hard-wired cross-connect is the cabling between a
shelf and a DSX jack panel.

Hard-wired cross-connects remain intact as circuits are assigned or unassigned to
cross-connected ports. In other words, an equipment port is dedicated to another
equipment port so that when you assign a circuit to the first equipment port, through
Circuit Design, the other equipment port is also included on the DLR/CLR for that

Key MetaSolv Solution Concepts

5-8 MetaSolv Solution CORBA API Developer's Reference

circuit. When the circuit is disconnected, the hard-wired cross-connect remains,
awaiting the next circuit assignment.

You can create cross-connects in the MetaSolv Solution database to represent physical
cross-connects that exist in your equipment inventory. You can make cross-connects
between ports on a single piece of equipment or between ports on two separate pieces
of equipment. You can also create cross-connects between a port address placeholder
and a port address or port address placeholder. However, just as it is physically
impossible to connect a given port address to itself, you cannot cross-connect port
addresses and port address placeholders to themselves.

It is possible to cross-connect two pieces of equipment that have different Network
Locations, allowing you to cross-connect equipment in two different locations. For
example, in a collocated environment, you might want to cross-connect two pieces of
equipment that are physically located in the same place but have different Network
Location code assignments. When you use MetaSolv Solution to cross-connect
equipment in two different locations, an informational message reminds the user that
the locations are different.

The MetaSolv Solution cross-connect functionality enables you to create cross-connects
for enabled port addresses. This functionality enables you to cross-connect equipment
software to equipment hardware internally.

Several scenarios exist in which cross-connecting equipment is not allowed. Most of
these scenarios relate to the existence of circuit assignments to one or both of the ports
involved in the cross-connect.

The following scenarios describe instances when you cannot cross-connect equipment
due to the existence of circuits that are already assigned to the port addresses being
cross-connected.

■ You cannot cross-connect a physical port address to an enabled port address if the
physical port address has an assigned circuit and the enabled port address is
already mapped.

■ You cannot cross-connect a physical port address to an enabled port address if the
physical port address has a circuit assignment and the enabled port address was
not mapped.

■ You cannot cross-connect a physical port address to another physical port address
if both of the port addresses have different assigned circuits.

■ You cannot cross-connect a physical port address that has a circuit assignment to a
cross-connect chain that contains a mappable port.

■ You cannot cross-connect an enabled port address to another enabled port address
if both enabled port addresses are mapped to the same circuit and different circuit
assignments exist for each enabled port address being cross-connected.

■ You cannot cross-connect a physical port address to another physical port address
if the port addresses have different pending assignments.

In the ICM API, an additional condition applies: if there is a “Blocked” condition code
anywhere in the entire chain of circuits that would be created by a cross-connect, the
ICM API does not create the requested cross-connect.

Condition Codes
Condition codes identify the condition of certain mounting positions, port addresses,
or cable pairs. Using condition codes helps you prevent inventory from being used or
better defines its capabilities. For example, if you wanted to mark a cable pair to no

Key MetaSolv Solution Concepts

The Inventory and Capacity Management API 5-9

longer be in service, you could give it a condition code of Bad. A Local Assignment
condition code could denote that a port address has already been used on a local order.
You can assign the type of warning that is given when an assignment is made to a
circuit position, port address or cable pair with a certain condition code.

Circuit positions, mounting positions, and port addresses with condition codes are
labeled [Information] or [Blocked] when you view them in the Equipment Install
window or the Circuit Hierarchy window, depending on the condition code type.

IP Address Management in MetaSolv Solution
The MetaSolv Solution Infrastructure module includes an IP Address Management
function that inventories all IP addresses owned by an ISP. IP addresses are unique
numbers that identify a computer or device on a network. Public IP addresses are part
of a standardized plan for identifying machines connected to the Internet. Using the IP
Address Management function, you can keep track of IP addresses. The IP Address
Management function lets you:

■ Define base networks in your inventory

■ Create subnets or pools from base networks

■ Divide a subnet into more subnets

■ View host IP addresses within a subnet

■ Track the status of an IP address

■ Query for existing IP addresses

■ Combine subnets

■ Create IP pools

■ Delete subnets, IP pools, and base networks

■ Recall IP addresses for reuse

The American Registry for Internet Numbers (ARIN) or your upstream ISP allocates
base networks to you.

An IP address can be expressed as four decimal numbers separated by dots. Each
number can have a value of zero to 255. An example of an Internet address is
130.5.5.171.

The size of base networks, which can be displayed as an IP address followed by a
network prefix length (130.5.5.25/24). For example, a /24 network block has 256 IP
addresses, where the first address is the subnet network address, the last address is the
broadcast address and the remaining 254 addresses are host addresses. A network
prefix can also be displayed as a subnet mask. For example, /24 is the same as a
255.255.255.0 submask.

In MetaSolv Solution, you can define your base network in one of two ways:

■ You can divide your base network into two or more subnets of the same size.

■ You can leave your base network as a pool of available addresses from which you
can create subnets of varying sizes as you need them.

If you divide your base network into subnets and then divide any of the initial subnets
into multiple smaller subnets, you can reverse this process by combining subnets to
create a single larger subnet. You can delete a subnet if it is not assigned and none of
its host addresses are assigned. When you delete a subnet, its unassigned addresses

Key MetaSolv Solution Concepts

5-10 MetaSolv Solution CORBA API Developer's Reference

become pooled addresses. Pooled addresses are not available for assignment. To be
available for assignment, IP addresses must be part of a subnet.

When you define the base network, you can divide the IP address blocks into subnets
or IP pools based on your business needs. Your specific business needs determine the
number of subnets required and the size of each.

Overview of Assigning IP Addresses to Ports
You can assign an IP address to either a physical or virtual port. A physical port is a
physical location on a piece of equipment where you can connect the equipment to a
network by using a plug and socket connection. A virtual port is a conceptual port that
does not physically exist on a piece of equipment. Virtual ports allow you to assign IP
address generically to a piece of equipment, rather than to a specific physical port. You
can assign to either a physical or a virtual port, depending on the situation. For
example, if you are working with a router, you must assign an IP address to a specific
serial (or physical) port. If you are working with a Web server, you assign the IP
address for the customer's domain to the Web server and not to a specific port on that
server.

The following rules apply to assigning IP addresses to port addresses:

■ You can only assign one host number to a physical port.

■ You can assign any number of subnets and/or host IP addresses to a virtual port
address.

■ You cannot assign IP addresses to a physical enabled port address or to a virtual
enabled port address.

■ If a subnet is assigned to a virtual port address, it must be at the lowest subnet
level. The subnet cannot have any subnets defined below it.

■ You cannot individually unassign host number IP addresses from a virtual port
address once the subnet is assigned. You can only unassign the subnet.

■ If you unassign the subnet from a virtual port address, all of the host numbers are
also unassigned.

■ A port address or its related equipment and an IP address may be associated with
one or more network areas. The network area associated with a port address and
its related equipment does not have to be the same as the network area associated
with the IP address.

■ Equipment connected by the same circuit must have IP addresses from the same
subnet.

■ You cannot assign the same circuit to more than two pieces of equipment with IP
addresses.

An IP Address assigned to a physical port displays on the MetaSolv Solution
Equipment Install window at the port address level. If a circuit is also assigned to the
port address, the IP address displays before the Circuit ID. For example:

(STS1 –In Service), 123.123.123.123, 1515 /ST01 /PLANTXXA
/PLANTXXB(In Service)

An IP Address assigned to a virtual port also displays on the MetaSolv Solution
Equipment Install window at the port address level. Since multiple subnets and/or
host numbers can be associated with the virtual port address, an IP address displays
followed by the (…) symbol to indicate that more might exist. If a circuit is also

ICM API Implementation Concepts

The Inventory and Capacity Management API 5-11

assigned to the port address, the IP address displays before the Circuit ID. For
example:

(STS1 –In Service), 123.123.123.123 (...), 1515 /ST01 /PLANTXXA
/PLANTXXB (In Service)

Some Common Questions About Equipment in MetaSolv Solution
This section identifies a number of questions MetaSolv Solution users commonly ask
when first implementing the Equipment Administration module.

■ How can I more quickly install equipment with the same configuration?

If you have certain pieces of equipment that you install the same way repeatedly,
create a “template” Network Location and copy the equipment from the template
to real Network Locations.

■ Can I inventory equipment that is stored in my warehouse?

You can maintain a warehouse location that is used to inventory spare equipment.
Make up a warehouse Network Location in which to “install” the equipment, then
as the equipment is physically installed in its working location, move the
equipment from the warehouse location to the working location.

■ When I copy equipment, are associated condition codes also copied?

No. When you copy equipment from one location to another, condition codes
assigned to equipment positions are not copied.

■ Should I define Slot Node and Port Addresses on equipment specs or during
installation?

Several scenarios exist that determine at what point you want to define slot node
addresses and port addresses:

– If the node address for an equipment type will always be the same, regardless
of where it is installed, define the node address on the equipment
specification.

– If a single or common address exists for a specific piece of equipment, add the
addresses to the shelf into which the equipment is installed.

– If multiple ports exist on a card, and the address is always the same, add port
addresses on the card’s equipment specification.

– If the node address for any type of equipment is determined when the
equipment is installed in an office, add the slot node address or port address
to each piece of equipment when it is installed.

See the online Help for more information.

ICM API Implementation Concepts
This section identifies key concepts you must know and key issues you must consider
when developing applications that utilize the ICM API.

Transaction Management and the ICM API
The ICM API manages transaction processing on behalf of your application. That is,
the ICM API handles all commits and rollbacks to the MetaSolv Solution database
instead of requiring your application to explicitly commit or rollback transactions.
When an operation you requested succeeds, the ICM API immediately commits the

ICM API Implementation Concepts

5-12 MetaSolv Solution CORBA API Developer's Reference

results of the operation, then notifies you of the success of the operation. When an
operation you requested fails, the ICM API immediately rolls back the results of the
operation, then notifies you of the failure.

Network Inventory Gateway Events and the ICM API
The ICM API and the MetaSolv Solution Network Management module support the
use of gateway events for network inventory. Network inventory gateway events
signal a third party that significant additions, deletions, or changes have occurred in
the network inventory.

Network inventory gateway events are generated automatically based upon the
settings of the rules/behaviors functionality in the MetaSolv Solution Work
Management module. The actions in the Network Inventory module that can trigger
evaluation of rules are:

■ Installing or uninstalling equipment

■ Copying equipment to a new location

■ Modifying installed equipment

■ Modifying condition codes for equipment mounting positions or port addresses
individually

■ Modifying condition codes for equipment mounting positions or port addresses
by range

■ Modifying virtual ports for equipment

■ Moving equipment to an empty mounting position

■ Assigning or unassigning an IP Address to equipment

■ Assigning or unassigning a circuit to equipment

■ Modifying hard-wired cross connects on equipment

■ Modifying equipment specifications

■ Modifying network elements on equipment

The actions listed above only trigger an equipment gateway event when the Work
Management subsystem’s rules and behaviors functionality is configured to do so.

Deleting equipment cannot trigger gateway events. When you delete installed
equipment, the result of the deletion is that the equipment ID is removed from the
MetaSolv Solution database. No equipment event can be sent in this case, because
there is no equipment ID to pass.Therefore, you should uninstall the equipment to
move it to “Spare” status, which can generate an equipment event, then delete the
equipment.

Note: Some of the older ICM API export operations still require you
to supply a valid WDITransaction object reference. In these cases, you
should still call the commit operation when using these export
operations in order to release the read locks the database places on the
exported records. Also in these cases, you must call the
destroyTransaction operation in order to free the allocated resource.

ICM API Interfaces

The Inventory and Capacity Management API 5-13

DLR Mass Reconcile
When you edit equipment or equipment specifications, modify network elements, or
move equipment with assigned circuits, the design layout reports (DLRs) for those
circuits are reconciled to reflect the change, including pending assignments. The ICM
API sends these reconciliations to the Background Processor utility. The ICM API does
not support printing of design lines during DLR mass reconcile.

ICM API IDL files
The ICM API is described in these IDL files:

■ WDI.idl

■ WDICircuit.idl

■ WDICircuitTypes.idl

■ WDICircuitTypes_v2.idl

■ WDICircuitTypes_v3.idl

■ WDIDLR.IDL

■ WDIDLRQueryTypes.idl

■ WDIDLRQueryTypes_v2.idl

■ WDIDLRQueryTypes_v3.idl

■ WDIDLRTypes.idl

■ WDIDLRTypes_v2.idl

■ WDIDLRTypes_v3.idl

■ WDIDLRTypes_v4.idl

■ WDIDLRTypes_v5.idl

■ WDIEquipment.idl

■ WDIEquipmentTypes.idl

■ WDIEquipmentTypes_v2.idl

■ WDIEquipmentTypes_v3.idl

■ WDIVLRTypes.idl

■ WDIVLRTypes_v2.idl

The WDIPlant.idl and WDIPlantTypes.idl files are also included in the ICM API. See
"The Plant API" for a complete description of the operations in these files.

ICM API Interfaces
Figure 5–2 shows the relationships of the modules and interfaces in the ICM API.

ICM API Interfaces

5-14 MetaSolv Solution CORBA API Developer's Reference

Figure 5–2 ICM API Interfaces

WDIManager Interface
Table 5–1 lists the operations available in the WDIManager interface of the
WDIDLR.idl file.

Table 5–1 WDIManager Interface Operations

Operation Description

destroyCircuitHierarchySession Terminates the Circuit HierarchySession

destroyDLRSession Terminates the DLRSession

destroyEquipmentSession Terminates the EquipmentSession

destroyInSignal Terminates the InSignal

destroyPlantSession Terminates the PlantSession

destroySignal Terminates the Signal

destroySignal2 Terminates the Signal2

destroyTransaction Terminates the Transaction

startCircuitHierarchySession Obtains the object reference for the Circuit
HierarchySession

startDLRSession Obtains the object reference for the DLRSession

startEquipmentSession Obtains the object reference for the EquipmentSession

startInSignal eventInProgress

eventCompleted

eventErrored

startPlantSession Obtains the object reference for the PlantSession

ICM API Interfaces

The Inventory and Capacity Management API 5-15

CircuitHierarchySession Interface
Table 5–2 lists the operations available in the CircuitHierarchySession interface of the
WDICircuit.idl file.

startSignal eventOccurred

eventTerminated

eventInProgress

eventCompleted

eventErrored

startSignal2 eventOccurred

eventTerminated

eventInProgress

eventCompleted

eventErrored

startTransaction Obtains a handle to a database transaction

Note: See "Common Architecture" for a complete description of the
operations.

Table 5–2 CircuitHierarchySession WDINotification Operations

Operation WDINotification

getBandwidthCircuits getBandwidthCircuitsSucceeded

getBandwidthCircuitsFailed

getCircuitPositionConditionCodes getCircuitPositionConditionCodesSucceeded

getCircuitPositionConditionCodesFailed

getCircuitPositionHierarchy getCircuitPositionHierarchySucceeded

getCircuitPositionHierarchyFailed

getCircuitPositionHierarchy_v3 getCircuitPositionHierarchySucceeded_v3

getCircuitPositionHierarchyFailed_v3

getCircuitPositionPending getCircuitPositionPendingSucceeded

getCircuitPositionPendingFailed

getCircuitPositionPrevious getCircuitPositionPreviousSucceeded

getCircuitPositionPreviousFailed

getNetworkRouteSegments_v2 getNetworkRouteSegmentsSucceeded_v2

getNetworkRouteSegmentsFailed

getNetworkSegmentCircuits_v2 getNetworkSegmentCircuitsSucceeded_v2

getNetworkSegmentCircuitsFailed_v2

getNetworkSegmentCircuits_v3 getNetworkSegmentCircuitsSucceeded_v3

getNetworkSegmentCircuitsFailed_v3

Table 5–1 (Cont.) WDIManager Interface Operations

Operation Description

ICM API Interfaces

5-16 MetaSolv Solution CORBA API Developer's Reference

The following list contains a description of the operations available in the
CircuitHierarchySession interface:

■ getNetworkSegmentCircuits_v2

■ getCircuitPositionHierarchy

■ getTrunkGroupQueryValidValues_v2

If you pass empty criteria, the operation returns all valid values. If you pass match
criteria for a field, the operation will return one QueryField full of matches for that
field.

■ getMaximumReturnedRows

getTrunkGroup_v2 trunkGroupGetSucceeded_v2

trunkGroupGetFailed

queryNetworkRoutes_v2 queryNetworkRoutesSucceeded_v2

queryNetworkRoutesFailed_v2

queryTrunkGroups_v2 trunkGroupQuerySucceeded_v2

trunkGroupQueryFailed_v2

getTrunkGroupQueryValidValues_
v2. This value is returned when
implemented by the DLRSERVER.

N/A

getMaximumReturnedRows. This
operation is implemented by the
caller and returns a long. This
allows the server to return
maximum number of records for
certain queries (0 = no limit.)

N/A

Note: In MetaSolv Solution, when a SONET path-switched ring is
built, two SONET routes are created. For example, for a 4 node ring,
A-B-C-D, if the circuit requires entrance at node A and exit at node B,
then there are two paths that can be traversed. These are A-B and
A-D-C-B. Because of the rules surrounding a path-switched ring,
MetaSolv Solution displays only one route, but combines the mileage
and the connecting facilities under one segment tree item. This feature
occurs on the display, even though both SONET routes are extracted
from the database. However, the ICM API provides all of the SONET
routes, with the ability to query each route individually. The
assumption in the API is that, in the case of path-switched rings, the
client program can combine the mileage and circuits for display
purposes.

Note: Since hierarchy operations can return substantial amounts of
data, a oneLevelOnly parameter is provided in the request structure to
limit results to the first level of data directly beneath the request item
for tree-structured data.

Table 5–2 (Cont.) CircuitHierarchySession WDINotification Operations

Operation WDINotification

ICM API Interfaces

The Inventory and Capacity Management API 5-17

Implemented by caller, returns a long value. This operations allows the API server
to return the maximum number of records for certain queries (0 = no limit.)

EquipmentSession Interface Operations
Table 5–3 lists the operations available in the EquipmentSession interface of the
WDIEquipment.idl file.

SpecificationSubSession Interface Operations
The SpecificationSubSession interface exposes operations for querying equipment
specifications. Table 5–4 lists the operations and their corresponding WDINotification
operations available in the SpecificationSubSession interface of the
WDIEquipment.idl file. These operations reproduce the same type of functionality as
the corresponding function of MetaSolv Solution.

SoftwareSpecSubSession interface operations

Table 5–3 EquipmentSession WDINotification Operations

Operation Description

destroyCrossConnectSubSession Terminates the CrossConnectSubSession.

destroyInstallationSubSession Terminates the InstallationSubSession.

destroyNetworkElementSubSession Terminates the NetworkElementSubSession.

destroySoftwareSpecSubSession Terminates the SoftwareSpecSubSession.

destroySpecificationSubSession Terminates the SpecificationSubSession.

startCrossConnectSubSession Obtains the CrossConnectSubSession object reference.

startInstallationSubSession Obtains the InstallSubSession object reference.

startNetworkElementSubSession Obtains the NetworkElementSubSession object
reference.

startSoftwareSpecSubSession Obtains the SoftwareSpecSubSession object reference.

startSpecificationSubSession Obtains the SpecificationSubSession object reference.

Note: All failed operations in the SpecificationSubSession interface
are reported through the generic operationFailed notification.

Table 5–4 SpecificationSubSession and WDINotification Operations

Operation WDINotification

getEquipSpecQueryValidValues_v2. This value
is returned when implemented by the
DLRSERVER.

N/A

getEquipSpec_v2 getEquipSpecSucceeded_v2

getEquipType_v3 getEquipTypeSucceeded_v3

getUsageReport_v2 getUsageReportSucceeded_v2

queryEquipSpec_v2 queryEquipSpecSucceeded_v2

getEquipSpec_v3 getEquipSpecSucceeded_v3

ICM API Interfaces

5-18 MetaSolv Solution CORBA API Developer's Reference

The SoftwareSpecSubSession interface exposes operations for querying software
specifications. Table 5–5 lists the operations and their corresponding WDINotification
operations available in the SoftwareSpecSubSession interface of the
WDIEquipment.idl file. These operations reproduce the same type of functionality as
the corresponding function of MetaSolv Solution. All failed operations in the
SoftwareSpecSubSession interface are reported through the generic operationFailed
notification.

InstallationSubSession Interface Operations
The InstallationSubSession interface exposes operations for installing equipment and
querying on installed equipment. Table 5–6 lists the operations and their
corresponding WDINotification operations available in the InstallationSubSession
interface of the WDIEquipment.idl file. These operations reproduce the same type of
functionality as the corresponding function of MetaSolv Solution. All failed operations
in the InstallationSubSession interface are reported through the generic
operationFailed notification.

Table 5–5 SoftwareSpecSubSession and WDINotification Operations

Operation WDINotification

getSoftwareSpec getSoftwareSpecSucceeded

querySoftwareSpec querySoftwareSpecSucceeded

Table 5–6 InstallationSubSession and WDINotification Operations

Operation WDINotification

addMountPosConditionCode addMountPosConditionCodeSucceeded

addPortAddressConditionCode addPortAddressConditionCodeSucceeded

assignIPAddress assignIPAddressSucceeded

copyEquipment copyEquipmentSucceeded

deleteEquipment deleteEquipmentSucceeded

deleteMountPosConditionCode deleteMountPosConditionCodeSucceeded

deletePortAddressConditionCode deletePortAddressConditionCodeSucceeded

getEquipInstall_v2 getEquipInstallSucceeded_v2

getEquipInstall_v3 getEquipInstallSucceeded_v3

getEquipInstallMaint_v2 getEquipInstallMaintSucceeded_v2

getMountingPositionConditionCodes_v2 getMountingPositionConditionCodesSucceeded_
v2

getPortAddressConditionCodes_v2 getPortAddressConditionCodesSucceeded_v2

getPortAddressInstall_v2 getPortAddressInstallSucceeded_v2

getPortAddressInstall_v3 getPortAddressInstallSucceeded_v3

getPortAddressIPAddress getPortAddressIPAddressSucceeded

getPortAddressIPAddress_v2 getPortAddressIPAddressSucceeded_v2

installEquipment installEquipmentSucceeded

moveEquipment moveEquipmentSucceeded

queryEquipInstall_v2 queryEquipInstallSucceeded_v2

ICM API Interfaces

The Inventory and Capacity Management API 5-19

Comments Concerning Specific InstallationSubSession Operations
The ICM API does not support creation of equipment specifications. In order to install
a piece of equipment, the equipment specification must already be defined in the
MetaSolv Solution database.

Operations in the InstallationSubSession interface provide functionality equivalent to
what exists in MetaSolv Solution to:

■ Install a piece of equipment at a network location, including installing spare
equipment

■ Edit a piece of equipment at a network location

■ Copy a piece of equipment, including:

– Copying base equipment to a different location

– Copying any equipment to or from spare

– Copying non-base equipment to a different parent

– Copying non-base equipment to different mounting positions within the same
parent

■ Move a piece of equipment, including:

– Moving base equipment to a different location

– Moving any equipment to or from spare

– Moving non-base equipment to a different parent

– Moving non-base equipment to different mounting positions within the same
parent

■ Uninstall a piece of equipment from a network location

■ Delete a piece of equipment from a network location

You can use the InstallationSubSession interface operations listed below to perform the
indicated functions:

■ The queryEquipInstall_v2 operation queries first level equipment.

■ The searchEquipInstall_v2 operation searches for a specific piece of installed
equipment.

searchEquipInstall_v2 searchEquipInstallSucceeded_v2

unassignIPAddress unassignIPAddressSucceeded

uninstallEquipment uninstallEquipmentSucceeded

updateEquipment updateEquipmentSucceeded

updateMountPosConditionCode updateMountPosConditionCodeSucceeded

updatePortAddressConditionCode updatePortAddressConditionCodeSucceeded

validateNetworkElementMatch validateNetworkElementMatchSucceeded

getEquipInstallQueryValidValues_v2.
This operation is implemented by the
DLRSERVER. It returns all valid values.

N/A

Table 5–6 (Cont.) InstallationSubSession and WDINotification Operations

Operation WDINotification

ICM API Interfaces

5-20 MetaSolv Solution CORBA API Developer's Reference

■ The searchEquipInstall_v3 operation searches for a specific piece of installed
equipment.

■ The getEquipInstall_v2 operation returns the equipment tree for a piece of
equipment.

■ The getEquipInstall_v3 operation returns the equipment tree for a piece of
equipment.

■ The getPortAddressInstall_v2 operation returns port addresses for a piece of
equipment.

■ The getPortAddressInstall_v3 operation returns port addresses for a piece of
equipment.

■ The getEquipInstallMaint_v2 operation returns miscellaneous information for a
piece of equipment.

■ The getMountingPositionConditionCodes_v2 operation returns mounting position
condition codes for a mounting position.

■ The getPortAddressConditionCodes_v2 operation returns port address condition
codes for a port address.

■ The installEquipment operation installs a new piece of equipment.

■ The updateEquipment operation updates information on an existing piece of
equipment.

■ The copyEquipment operation copies a piece of equipment to another location or
mounting position.

■ The moveEquipment operation moves a piece of equipment to another location or
mounting position.

■ The deleteEquipment operation deletes a piece of equipment.

■ The uninstallEquipment operation move a piece of equipment to spare.

■ The addMountPosConditionCode operation adds one or more condition codes to
one or more mounting positions of a piece of equipment.

■ The addPortAddressConditionCode operation adds one or more condition codes
to one or more port addresses of a piece of equipment.

■ The deleteMountPosConditionCode operation deletes one or more condition
codes from one or more mounting positions of a piece of equipment.

■ The deletePortAddressConditionCode operation deletes one or more condition
codes from one or more port addresses of a piece of equipment.

■ The updateMountPosConditionCode operation updates the comment for one or
more condition codes on one or more mounting positions of a piece of equipment.

■ The updatePortAddressConditionCode operation updates the comment for one or
more condition codes for one or more port addresses of a piece of equipment.

■ The validateNetworkElementMatch operation validates that the network element
type associated to the input equipment specification is the same as the network
element type associated to the input network element.

■ The assignIPAddress operation assigns input IP addresses to the input equipment
port address.

■ The getPortAddressIPAddress operation retrieves IP addresses associated to the
input equipment port address.

ICM API Interfaces

The Inventory and Capacity Management API 5-21

■ The unassignIPAddress operation unassigns input IP addresses from the input
equipment port address.

CrossConnectSubSession Interface Operations
The CrossConnectSubSession interface exposes operations for installing and querying
on hardwired and software cross connects. Table 5–7 lists the operations and their
corresponding WDINotification operations available in the CrossConnectSubSession
interface of the WDICircuit.idl file. These operations reproduce the same type of
functionality as the corresponding function of MetaSolv Solution. All failed operations
in the CrossConnectSubSession interface are reported through the generic
operationFailed notification.

For the most part, the CrossConnectSubSession interface operations duplicate the
functionality of the MetaSolv Solution client. However, the API operations remove
some of the restrictions the client imposes on making cross connects.

Any given piece of equipment can have four different type of port addresses:

■ Port Addresses (PA)

■ Enabled Port Addresses (EPA)

■ Port Address Placeholders (PAPH)

■ Virtual Enabled Port Addresses (VEPA)

In the CrossConnectSubSession, each of those four types of port addresses is
considered a section. Hard-wired cross connections are made only for the ports
belonging to a section at a time. The ICM API requires that all ports in the sequence be
of the same type: PA, EPA, VEPA, or PAPH. Each section can repeat more than once,
but intermingling of ports from different sections is not allowed. However, the FROM
side port address type can be different from the TO side port address type.

For example, for two sets of starting port address numbers for cross connection on the
FROM side, you specify [32, 20] and [102, 50]. For the corresponding TO side port
addresses for connection, you specify [76, 20] and [210, 50]. The cross-connection
process builds a FROM side list of 20 assignable ports for cross-connection starting
from port 32, in ascending port order sequence, then builds a TO side list of 20
assignable ports starting from port number 76. Once both the FROM and TO lists are
ready, the ICM API attempts the requested cross-connects.

Formats for Specifying FROM Side Port Addresses
FROM port addresses for hardwired cross-connects are specified in one of three
formats. The FROM and TO side formats are independent, and any format on the
FROM side can be combined with format case on the TO side.

■ All ports format

Table 5–7 CrossConnectSubSession and WDINotification Operations

Operation WDINotification

getHardwiredCrossConnects_v2 getHardwiredCrossConnectSucceeded_v2

getSoftwareCrossConnects_v2 getSoftwareCrossConnectSucceeded_v2

hwccRequest hwccRequestSucceeded

ICM API Interfaces

5-22 MetaSolv Solution CORBA API Developer's Reference

The request is for cross-connecting all the ports on the FROM side equipment,
starting from the first port on the FROM side. In this case the PortAddrSeqFrom
has no entry.

■ Specified range format

The request is for cross-connecting a range of ports on the FROM side equipment.
In this case, PortAddrSeqFrom has the range of ports for cross-connection.
portAddrSeqStart contains the value of first port address of the range. nbrOfPorts
specifies the number of ports to be cross-connected, starting from the port
identified in portAddrSeqStart. For example, to cross-connect 100 ports from port
number 132, specify [132,100]. To cross-connect an additional range of 50 ports
starting from port number 760, follow the entry of [132,100] with a second entry of
[760, 50].

The range of specified ports cannot span across sections. To illustrate this using the
preceding preceding example, assume that port number 132 is an Enabled Port
Address (EPA). If port number 150 is NOT an EPA, the API gives a validation
error. For all ports in a range to be cross-connected, all of the ports must be in the
same section.

■ Specified list of ports format

The request is for cross-connecting a list of ports on the FROM side equipment.
This situation can be treated as a special situation of the specified range format. In
this case, the PortAddrSeqFrom has the list of ports for cross-connection. Each
portAddrSeqStart contains the value of the port address to be cross-connected
and the nbrOfPorts has a value of 1.

Formats for Specifying TO-Side Port Addresses
TO port addresses for hardwired cross-connects are specified in one of three formats.
The FROM and TO side formats are independent, and any format on the FROM side
can be combined with format case on the TO side.

■ All ports format

The request is for cross-connecting all the specified ports from the FROM side
equipment to the TO side equipment, starting from the first port on the TO side. In
this case, the PortAddrSeqTo has no entry.

■ Specified range format

The request is for cross-connecting all the specified ports from the FROM side
equipment to the specified range of ports on the TO side equipment. In this case,
the PortAddrSeqTo has the range of ports for cross-connection. Each
portAddrSeqStart contains the value of the first port address of the range. The
nbrOfPorts specifies the number of ports for cross-connection starting from the
portAddrSeqStart. For example, to cross-connect 20 ports starting from port
number 432, specify [432, 20]. To cross-connect an additional range of 75 ports
starting from port number 320, the first entry of [432, 20] is followed by a second
entry of [320, 75]. The range of specified ports can span across sections.

■ Specified list of ports format

Note: In the example, if you specify 0 (zero) as the brOfPorts, that is,
you specify [132,0], the operation connects all ports starting with port
number 132.

ICM API Interfaces

The Inventory and Capacity Management API 5-23

The request is for cross-connecting all the specified ports from the FROM side
equipment to the specified list of ports on the TO side equipment. This can be
treated as a special situation of the specified range format. In this case, the
PortAddrSeqTo has a list of ports for cross-connection. Each portAddrSeqStart
contains the value of the port address to be cross-connected to, and nbrOfPorts
has a value of 1.

Comments concerning specific CrossConnectSubSession operations
Operations available in the CrossConnectSubSession interface:

■ getHardwiredCrossConnects_v2

Queries for hard-wired cross-connects.

■ hwccRequest

Requests creation of new hard-wired cross-connects.

■ getSoftwareCrossConnects_v2

Queries for software cross-connects.

NetworkElementSubSession Interface Operations
Table 5–8 lists the operations and their corresponding WDINotification operations
available in the NetworkElementSubSession interface of the WDIEquipment.idl file.
These operations reproduce the same type of functionality as the corresponding
function of MetaSolv Solution. All failed operations in the NetworkElementSubSession
interface are reported through the generic operationFailed notification.

Comments Concerning Specific NetworkElementSubSession Operations
You can use the InstallationSubSession interface operations listed below to perform the
indicated functions:

■ The createNetworkElement operation creates a network element.

■ The createNetworkElement_v2 operation creates a network element.

■ The deleteNetworkElement operation deletes a network element.

Table 5–8 NetworkElementSubSession and WDINotification Operations

Operation WDINotification

createNetworkElement createNetworkElementSucceeded

createNetworkElement_v2 createNetworkElementSucceeded_v2

deleteNetworkElement deleteNetworkElementSucceeded

getNetworkElement getNetworkElementSucceeded

getNetworkElement_v2 getNetworkElementSucceeded_v2

getNetworkElementType getNetworkElementTypeSucceeded

queryNetworkElement queryNetworkElementSucceeded

queryNetworkElement_v2 queryNetworkElementSucceeded_v2

queryNetworkElementType queryNetworkElementTypeSucceeded

updateNetworkElement updateNetworkElementSucceeded

updateNetworkElement_v2 updateNetworkElementSucceeded_v2

ICM API Interfaces

5-24 MetaSolv Solution CORBA API Developer's Reference

■ The getNetworkElement operation retrieves the network element for the specified
network node ID.

■ The getNetworkElement_v2 operation retrieves the network element for the
specified network node ID.

■ The queryNetworkElement operation queries for a network element.

■ The queryNetworkElement_v2 operation queries for a network element.

■ The updateNetworkElement operation updates the specified network element.

■ The updateNetworkElement_v2 operation updates the specified network element.

DLRSession Interface Operations
Table 5–9 lists the operations available in the DLRSession interface of the WDIDLR.idl
file. These operations reproduce the same type of functionality as the corresponding
function of MetaSolv Solution.

Table 5–9 DLRSession WDINotification Operations

Operation WDINotification

getCircuitByWDIEvent getCircuitByWDIEventSucceeded

getCircuitByWDIEventFailed

getCircuitDLRs_v2 getDLRsByCircuitSucceeded_v2

getDLRsByCircuitFailed

getDLR_v2 DLRGetSucceeded_v2 (Deprecated)

DLRGetFailed_v2 (Deprecated)

getDLR_v3 DLRGetSucceeded_v3

DLRGetFailed_v3

getDLR_v4 DLRGetSucceeded_v4

DLRGetFailed_v4

getDLR_v5 DLRGetSucceeded_v5

DLRGetFailed_v5

getDLRQueryOptionValues This is a synchronous method so no notification
method exists

getEndUserSpecialTrunkActivation_v2 endUserSpecialTrunkActivationGetSucceeded_v2

endUserSpecialTrunkActivationGetFailed

getEndUserSpecialTrunkActiviation_v4 endUserSpecialTrunkActivationGetSucceeded_v4

endUserSpecialTrunkActivationGetFailed_v4

getEndUserSpecialTrunkActiviation_v5 endUserSpecialTrunkActivationGetSucceeded_v5

endUserSpecialTrunkActivationGetFailed_v5

getEndUserSpecialTrunkTranslation_v2 endUserSpecialTrunkTranslationGetSucceeded_v2

endUserSpecialTrunkTranslationGetFailed_v2

getFlowThrough_v2 flowThroughGetSucceeded_v2

flowThroughGetFailed_v2

getQueryCircuits . getQueryCircuitsSucceeded .

getQueryCircuitsFailed

Process Flows

The Inventory and Capacity Management API 5-25

The ICM API does not have a generic query operation. However, you can use the
getDLR_v5 query for most generic query purposes.

Process Flows
This section contains sample process flows for solicited and unsolicited messages. Use
the sample flow as a template for developing your own process flows.

getQueryCircuits_v2 getQueryCircuitsSucceeded_v2

getQueryCircuitsFailed_v2

getQueryDLRs_v2. getDLRsByQuerySucceeded_v2.

getDLRsByQueryFailed_v2.

getQueryDLRs_v3 getDLRsByQuerySucceeded_v3

getDLRsByQueryFailed_v3

getServiceRequestDLRs_v2 getDLRsByServiceRequestSucceeded_v2

getDLRsByServiceRequestFailed

getSwitchActivation_v2 switchActivationGetSucceeded_v2

switchActivationGetFailed_v2

getSwitchActivation_v4 switchActivationGetSucceeded_v4

switchActivationGetFailed_v4

getSwitchActivation_v5 switchActivationGetSucceeded_v5

switchActivationGetFailed_v5

getSwitchTranslation_v2 switchGetSucceeded_v2

switchGetFailed_v2

getTransportProvisioning_v2 transportProvisioningGetSucceeded_v2

transportProvisioningGetFailed

getTransportProvisioning_v4 transportProvisioningGetSucceeded_v4

transportProvisioningGetFailed_v4

getTransportProvisioning_v5 transportProvisioningGetSucceeded_v5

transportProvisioningGetFailed_v5

getVLR_v2 VLRGetSucceeded_v2

VLRGetFailed_v2

getDLRQueryOptionValues_v2. This
operation is implemented by the
DLRSERVER.

N/A

getMaskLocationCodes. This operation
is implemented by the DLRSERVER.

N/A

getMaximumReturnedRows: This
operation is implemented by the caller
and returns a long. This allows the
server to return maximum number of
records for certain queries (0 = no
limit.)

N/A

Table 5–9 (Cont.) DLRSession WDINotification Operations

Operation WDINotification

Process Flows

5-26 MetaSolv Solution CORBA API Developer's Reference

Solicited Messages
A solicited message is a message initiated by MetaSolv Solution. MetaSolv Solution
plays the role of the client and the third-party activation server plays the role of the
server.

Sample Solicited Message Process Flow
When MetaSolv Solution is the client, the overall process flows as follows:

1. The client binds to the third-party server to get a WDIRoot object reference.

2. The client invokes the connect operation of the WDIRoot interface, and the connect
operation yields a WDIManager object reference.

3. The client invokes the startSignal operation of the WDIManager interface to get a
WDISignal object reference.

4. The client invokes the eventOccurred operation of the WDISignal interface to notify
the third-party vendor that an event registered to them has occurred within
MetaSolv Solution.

5. The client invokes the destroySignal operation of the WDIManager interface.

6. The client invokes the disconnect operation of the WDIRoot interface.

If the third-party application encounters an error, it throws a WDIExcp as defined by
the IDL. The client handles CORBA system exceptions and WDIExcp exceptions.

Unsolicited Messages
An unsolicited message is a message initiated by the third-party application. MetaSolv
Solution plays the role of the server, and a third-party application plays the role of the
client with the exception of the callback processing.

Sample Unsolicited Message Process Flow for Exporting
The overall process flow for exporting a DLR follows:

1. The third-party application binds to the API server to get a WDIRoot object
reference.

2. The third-party application invokes the connect operation of the WDIRoot
interface, which then yields a WDIManager object reference.

3. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference and to start a database
transaction.

4. The third-party application invokes the startDLRSession operation of the
WDIManager interface to get a DLRSession object reference.

5. The third-party application instantiates a third-party implementation of a
WDINotification object. The internal state of the client-supplied WDINotification
object can be initialized, so the getMaximumReturnedRows function, when called by
the server, returns the maximum number of entries to the client. If the function
returns 0, entries for all objects matching the query criteria are returned.

6. The third-party application instantiates and populates a DLRQuery object. If
necessary, the third party invokes the getDLRQueryOptionValues to obtain valid
values to populate the DLRQuery object.

Process Flows

The Inventory and Capacity Management API 5-27

7. The third-party application then invokes the appropriate query operation on the
DLRSession interface. In this example, DLRQuery, WDITransaction, and
WDINotification are supplied as input parameters.

8. The API server invokes the operation DLRSession. The appropriate callback
operation of the input WDINotification is called upon completion of the
invocation of the DLRSession. In this example, the operations are
getDLRsByQuerySucceeded and getDLRsByQueryFailed. The third party determines
which circuit DLR to retrieve from the returned DLRResults.

9. The third-party application instantiates another WDINotification object and a
DLRRequest structure, populated with the desired circuit and issue.

10. The third-party application invokes the getDLR operation of the DLRSession
object, passing the DLRRequest and WDINotification object.

11. The DLR data structure is returned asynchronously through invocation of the
DLRGetSucceeded/Failed operation of the WDINotification object.

12. The third-party application invokes the destroyDLRSession operation of the
WDIManager interface.

13. The third-party application invokes the destroyTransaction operation on the
WDIManager interface.

14. The third-party application invokes the disconnect operation of the WDIRoot
interface.

Process Flows

5-28 MetaSolv Solution CORBA API Developer's Reference

6

The Number Inventory API 6-1

6The Number Inventory API

The Number Inventory API was created to more efficiently handle the administration
of telephone numbers and inventory items in Oracle Communications MetaSolv
Solution. Operations are provided in the WDINI.IDL that provide the following
functionality:

■ Export Number Inventory

■ Generate User ID

■ Generate User Password

■ Import Number Inventory

■ Pre-assign Telephone Numbers

■ Remove Inventory Association

■ Update Number Inventory Provisioning

■ Validate Password

The following operations provide lookup and export functionality:

■ exportAccessTelephoneNumbers

■ exportInventoryItem

■ exportInventoryItemAssociation

■ exportInventoryItems

■ exportInventoryRelationTypes

■ exportInventoryStatus

■ exportInventorySubTypes

■ exportInventoryTypes

■ exportTelephoneNumbers

■ exportTopLevelDomains

The following operations provide import functionality:

■ importInventoryAssociation

■ importNewInventoryItem

■ importUpdatedInventoryItem

The WDINI.IDL file contains structures to support a flexible query. Fields on which
you can specify search criteria include:

Number Inventory API Interfaces

6-2 MetaSolv Solution CORBA API Developer's Reference

■ Inventory Type Code

■ Inventory Subtype Code

■ Inventory Status Code

■ Network Area City

■ Network Area State

■ Identify Text

■ Identify Text Suffix.

Number Inventory API Interfaces
Figure 6–1 shows the relationship of the interfaces in the Number Inventory API.

Figure 6–1 Number Inventory API Session Interfaces

WDIManager Interface
Table 6–1 describes the operations in the WDIManager interface of the WDINI.IDL
file.

Table 6–1 Number Inventory WDIManager Operations

Operation Description

startNumberInventorySession Obtains the object reference of the NumberInventory
Session

destroyNumberInventorySession Terminates the NumberInventorySession

startTransaction commit

rollback

destroyTransaction Terminates the Transaction

startSignal eventOccurred

eventTerminated

eventInProgress

eventCompleted

eventErrored

destroySignal Terminates the Signal

Number Inventory API Interfaces

The Number Inventory API 6-3

NumberInventorySession Interface Operations
Table 6–2 lists the operations and their notification operations in the
NumberInventorySession.

startInSignal eventInProgress

eventCompleted

eventErrored

destroyInSignal Terminates the Insignal

Table 6–2 NumberInventorySession Interface Operations

Operation WDINotification

exportNumberInventory exportNumberInventorySucceeded

exportNumberInventoryFailed

importNumberInventory importNumberInventorySucceeded

importNumberInventoryFailed

generateUserId generateUserIdSucceeded

generateUserIdFailed

generateUserPassword generateUserPasswordSucceeded

generateUserPasswordFailed

validatePassword validatePasswordSucceeded

validatePasswordFailed

updateNumberInventoryProvisioning updateNumberInventoryProvisioningSucceeded

updateNumberInventoryProvisioningFailed

exportTopLevelDomains exportTopLevelDomainsSucceeded

exportFailed

exportInventoryTypes exportInventoryTypesSucceeded

exportFailed

exportInventorySubTypes exportInventorysubTypesSucceeded

exportFailed

exportInventoryStatus exportInventoryStatusSucceeded

exportFailed

exportInventoryRelationTypes exportInventoryRelationTypesSucceeded

exportFailed

exportInventoryItem exportInventoryItemSucceeded

exportFailed

exportInventoryItems

This operation uses the same succeeded
operation as exportInventoryItem

exportInventoryItemSucceeded

exportFailed

exportInventoryItemAssociation exportInventoryRelationSucceeded

exportFailed

Table 6–1 (Cont.) Number Inventory WDIManager Operations

Operation Description

Process Flow

6-4 MetaSolv Solution CORBA API Developer's Reference

Process Flow
The section that follows contains a sample process flow for unsolicited messages. Use
the sample flow as a template when you develop your own process flows.

Unsolicited Messages
When the message is initiated by the third party (unsolicited), MetaSolv Solution plays
the role of the server, and the third-party application plays the role of the client.
Unsolicited messages are processed asynchronously, meaning a callback mechanism is
used to report back the results of an operation invoked by the third-party application.

Sample Unsolicited Process Flow for Importing a Customer
The overall process flow for importing a customer is as follows:

1. The third-party application binds to the MetaSolv Solution Application Server to
get a WDIRoot object reference.

2. The third-party application invokes the startNumberInventorySession operation of
the WDIManager interface to get a NumberInventorySession object reference.

3. The third-party application invokes the connect operation of the WDIRoot
interface, which yields a WDIManager object reference.

4. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference.

5. The third-party application instantiates a WDINotification object.

6. The third-party application invokes the importNewCustomer operation on the
NumberInventorySession interface, providing WDITransaction, WDINotification,
and NumberInventory CustomerAccount objects.

importNewInventoryItem importInventoryItemSucceeded

importFailed

importUpdatedInventoryItem importInventoryItemSucceeded

importFailed

importInventoryAssociation importInventoryAssociationSucceeded

importInventoryAssociationFailed

removeInventoryAssociation removeInventoryAssociationSucceeded

removeInventoryAssociationFailed

exportTelephoneNumbers exportTelephoneNumbersSucceeded

exportTelephoneNumbersFailed *

* The operation returns a failed notification and
WDIError structure with an error when no data is
found for a certain criteria.

preAssignTelephoneNumber preAssignTelephoneNumberSucceeded

preAssignTelephoneNumberFailed

exportAccessTelephoneNumbers exportAccessTelephoneNumbersSucceeded

exportAccessTelephoneNumbersFailed

Table 6–2 (Cont.) NumberInventorySession Interface Operations

Operation WDINotification

Process Flow

The Number Inventory API 6-5

7. The MetaSolv Solution Application Server processes the invoked operation of the
NumberInventory Session and invokes the appropriate callback operation on the
input WDINotification. In this example, the operations are
NumberInventoryExportSucceeded or NumberInventoryExportFailed for exporting, and
NumberInventoryImportSucceeded or NumberInventoryImportFailed for imports.

8. If the NumberInventoryImportSucceeded operation is invoked, the third-party
application invokes the commit operation of the WDITransaction interface. If the
NumberInventoryExportFailed operation is invoked, a WDIError sequence
describing the error is returned to the third-party application. The third-party
application then performs the appropriate error handling routine. In the case of an
import failing, the third-party application should rollback the transaction.

9. The third-party application invokes the destroyNumberInventorySession operation of
the WDIManager interface.

10. The third-party application invokes the destroyTransaction operation on the
WDIManager interface.

11. The third-party application invokes the disconnect operation of the WDIRoot
interface.

Import Notifications
When the import of a new object succeeds, the document number is populated with
the ID of the new record.

Number Inventory API Date Handling
To indicate that a date should be considered null, send 0 for the day, 0 for the month,
and 0 for the year. If you supply a year that is less than four digits, 1900 is added to the
value to determine the year. If four digits are provided, it is assumed that this is the
exact year.

For example, if you provide 1/1/99, It is interpreted as January 1, 1999. If you provide
1/1/101, it is interpreted as January 1, 2001. If you provide 1/1/1, it is interpreted as
January 1, 1901. If you provide 1/1/2001, it is interpreted as January 1, 2001.

Process Flow

6-6 MetaSolv Solution CORBA API Developer's Reference

7

The Activation API 7-1

7The Activation API

The Activation API supports auto-activation for networks and connections. You must
activate these networks or connections after designing, ordering, and provisioning
them. Technologies include:

■ ATM (Asynchronous Transfer Mode)

■ DSL (Digital Subscriber Line)

■ DSL with POTS (Plain Old Telephone Service)

■ Ethernet

■ Frame Relay

■ MPLS (Multiple Protocol Label Switching)

■ Traditional POTS

■ VLAN

■ VoATM

■ VoDSL (Voice over DSL)

The export design provides the raw data that a third party's system needs to
automatically activate a previously provisioned network or connection. The data
includes information about system activation, activation of physical and virtual
connections, and the elements which the connections link.

Connections
The export presents connection information by grouping connection and port address
information under Network Elements. Connections represent the elements tied
together because connections cannot exist without elements or ports. For the VLAN
type of network, no connections exist like other systems, except for PortAddress
assignments on the NetworkElements that make up the system. For this case, the port
address assignments are shown on the NetworkElements separate from the individual
and group connections on the element.

Network System Information
The NetworkSystem structure is returned in the NetworkSystems sequence on the
Activation structure when a system is part of an order or the non-order specifies a
network system. In the case of an order, if no elements or connections are ordered with
the system, only the system information, including custom attributes, are returned. If
elements or connections are ordered with it, they are returned with the system. In the

Order Processing

7-2 MetaSolv Solution CORBA API Developer's Reference

non-order scenario, all elements and connections related to the system are retrieved to
show a complete view of the entire system.

Order Processing
Auto-activation provides the export of data necessary for activation and provides data
for the Activation Report presented to a user online. The processing for the Network
System Connection Export is predicated on gateway event processing. As part of the
provisioning plan, an activation gateway event fires. This event includes information
identifying activated networks or connections. In the case of processing by an order,
the gateway event includes the WDIEvent, which has the order number as part of its
data.

If this is a non-order activation, then the gateway event uses WDIEvent2 with the first
key specifying the type of item and the second key specifying the item. The third key
is used for the issue number where necessary.

The first key values are:

■ 1 = virtual connections

■ 2 = physical connections

■ 3 = service items

The second key contains:

■ For virtual connections, the design ID

■ For physical connections, the circuit design ID

■ For service items, the service item ID

The third key holds the issue number for the design in the case of virtuals and for the
circuit design ID for physicals. When the first key indicates the request is for a physical
connection, the third key representing the issue number is ignored because issue
numbers are not applicable to such connections in this release.

Single Connection
Processing outside the context of an order can occur. A typical scenario involves a
network already provisioned, active, and is reproduced within the MetaSolv Solution
as inventory. If the calling application knows the network system ID or the connection
in question, then export of the data for activation can occur. The calling application
sends the WDIEvent2 structure passed to it by the gateway event and echoes it back to
the API if:

■ The type (first key on WDIEvent2) is virtual, the second key on the WDIEvent2 is
the design ID of the virtual connection and the third key is the issue number.

■ The type is physical, the second key on the WDIEvent2 is the circuit design ID of
the physical connection and the third key is the issue number (ignored in this
release).

■ The type is service item, the second key is the service item ID and the third key is
ignored.

Retrieval
In an order activation scenario, the order number passed in through the WDIEvent
object drives the process. The document number is used to retrieve all level one service

Activation API Interface Relationships

The Activation API 7-3

items for the order and the types are evaluated. If the type is System, the child service
items for that level one are retrieved and those types are evaluated. If the type is
Connector or Element, the information for those items is retrieved. Connectors are
represented by the elements which the connections bring together. All elements and
any connectors grouped with those elements, associated with the network system, are
returned. If the level one item is Element or Connector type, those Element structures
are grouped on the Activation structure in the
NonSystemSpecificElementsAndConnections sequence because connections are
grouped under the elements they tie together. Switch Translation information is
retrieved, if any exists for the order, and returned in the SwitchTranslations sequence
on the Activation structure. Internet translation information, which appears on the
Activation Report, is not included on the export.

MetaSolv Solution Key Concepts
In order to understand the information made available through the Activation API,
you must understand certain key concepts. These concepts include:

■ MetaSolv Solution Work Management subsystem

■ MetaSolv Solution Gateway Event Server

■ Gateway events and the Activation API

■ Exporting data using the Activation API

■ Reference architecture

■ Design considerations

Activation API IDL files
The Activation API consists of the following IDL files:

■ WDIACTIVATIONTYPES.IDL

■ WDI.IDL

■ WDIUTIL.IDL

■ WDIDLR.IDL

Activation API Interface Relationships
Figure 7–1 illustrates the relationship of the Activation API interfaces.

Activation API Operation Descriptions

7-4 MetaSolv Solution CORBA API Developer's Reference

Figure 7–1 Activation API Interface Relationships

Activation API Operation Descriptions
The following IDL operations support the exporting of an activation assignment using
the Activation API.

Only physical connections that have been completely designed are included in the
Activation Report. Additionally, if the equipment used by a designed physical
connection does not have an element association, the physical connection information
for that element is not included on the Activation Report. The same is true for virtual
connections with port addresses.

■ getActivationInformationForOrder

This operation drives the processing for the retrieval of the activation information
using the data sent into the constructor. The operation performs the following
tasks:

– Retrieves the level one service item information for the document number.
Evaluates the type for each of the service items. Processes items that have the
type:

* SYSTEM

* PRDBUNDLE

– Retrieves SwitchTranslation information for the document number if any is
available.

Activation API Operation Descriptions

The Activation API 7-5

– Retrieves InternetTranslation information for the document number.

– Retrieves all of the notes for the document number.

– Retrieves the order information for the document number and populates the
OrderInformationData using the information retrieved.

– If the type is System, the operation retrieves the activation information for the
network by performing the following tasks:

* Obtains the Network System ID using the servItemId.

* Retrieves the NetworkSystemData.

* Retrieves the child service items for the system service item ID.

* If child type is Connector, uses the circuit design ID from the service item
record to retrieve a vector of NetworkElementData containers
representing the connection.

* If the child type is Element, retrieves the ID for the element. Retrieves the
Network ElementData container for that element.

– If the type is Product Bundle, the operation retrieves the activation
information for the bundle by performing the following tasks:

* Retrieves the child service items for the product bundle's service item ID
and processes each one.

* If the child type is Connector, uses the circuit design ID from the service
item record to retrieve a vector of NetworkElementData containers
representing the connection.

* If the child type is Element, retrieves the ID for the element. Retrieves the
NetworkElementData container for that element.

■ getActivationInformationForVirtualConnection

– Retrieves the NetworkElementData containers representing the virtual
connection that includes allocated physical connections and allocated port
addresses.

– Adds NetworkElementData containers obtained to the
NonSystemSpecificElementsAndConnections vector on the ActivationData
container, which is translated before being sent back to the calling application.

■ getActivationInformationForPhysicalConnection

– Retrieves the NetworkElementData containers representing the physical
connection.

– Adds NetworkElementData containers obtained to the
NonSystemSpecificElementsAndConnections vector on the ActivationData
container, which will be translated before being sent back to the calling
application.

■ getActivationInformationForServItem

■ Retrieves the service item record for the service item ID passed.

■ If the service item is a physical connection, data retrieved is the same as calling
getActivationInformationForPhysicalConnection.

■ If the service item is a virtual connection, data retrieved is the same as calling
getActivationInformationForVirtualConnection. The issue number used for the virtual

Activation API Operation Descriptions

7-6 MetaSolv Solution CORBA API Developer's Reference

connection is the most recent pending issue, or if no pending issue exists, the most
recent current issue.

■ If the type is SYSTEM, obtain the network system ID using the service item ID.

– Retrieves the NetworkSystemData for the network system ID.

– Obtains the related virtual connection IDs and obtains the
NetworkElementData containers representing those connections.

– Obtains the physical connection IDs for any physical connections that do not
have virtual allocations made to them. For each of these connections, obtains
the NetworkElementData containers representing the appropriate element.

– Obtains any remaining network element IDs. For each element ID, obtains the
NetworkElement information by invoking the getNetworkElementInformation.

– Adds the NetworkElementData containers for the elements and the
connections. Adds them to the NetworkElements vector on the
NetworkSystemData container.

– Adds the NetworkSystemData container to the ActivationData container.

■ If the type is Product Bundle, obtains the product bundle components by
performing the following tasks:

– Retrieves the child service items for the product bundle's service item ID and
processes each one.

– If the child type is Connector, uses the circuit design ID from the service item
record to retrieve a vector of NetworkElementData containers representing the
connection.

– If the child type is Element, retrieves the ID for the element. Retrieves the
NetworkElementData container for that element.

■ If the type is ELEMENT, obtains the element ID.

– Obtains the NetworkElementData container.

– Adds the NetworkElementData container to the
NonSystemSpecificElementsAndConnections on the ActivationData container.

– Returns the ActivationData container to be translated and returned to the
calling application.

■ getActivationInformationForServItemWithOrderHeader

Retrieves all of the data under the getActivationInformationForServItem heading. In
addition:

– Retrieves SwitchTranslation information for the document number if any is
available.

– Retrieves InternetTranslation information for the document number.

– Retrieves all of the notes for the document number.

– Retrieves the order information for the document number and populates the
OrderInformationData using the information retrieved.

■ getNetworkSystemInformation

– Obtains the service item ID for the Network System ID.

– Using the service item, invokes the getActivationInformationForServItem
operation.

Activation API Operation Descriptions

The Activation API 7-7

– Returns the NetworkSystemData container from the ActivationData container.

Activation API Operation Descriptions

7-8 MetaSolv Solution CORBA API Developer's Reference

8

The Plant API 8-1

8The Plant API

The telecommunications industry uses the term plant to describe two different
environments within the context of network inventory management and network
provisioning. These environments are outside plant (OSP) and inside plant (ISP). A
company's inside plant investment is sometimes referred to as central office equipment
(COE) or simply equipment.

The purpose of the Plant API is to enable the integration between an OSP system and
Oracle Communications MetaSolv Solution. The primary intent is for the OSP to
maintain plant inventory while the MetaSolv database retains assignment information.

The integration is achieved through gateway events, which are associated with tasks in
a provisioning plan.

Plant implementation Concepts
This section describes issues you must be familiar with when building an application
that interfaces with the Plant API.

Order Management
The MetaSolv Solution Work Management module assists MetaSolv Solution users in
managing the flow of work and information from service requests to provisioning
ordered services. Tasks are generated in the Order Management subsystem when the
MetaSolv Solution user selects a provisioning plan upon completion of the order entry
activities. A provisioning plan is a list of tasks required for each order type to be
considered complete. Each task has a time interval and an assigned work group,
responsible for completing the task.

The MetaSolv Solution Infrastructure module provides the MetaSolv Solution user
with the ability to build and customize provisioning plans specific to their needs. The
samples are primarily meant to reflect the sequential relationships between the PA,
RID/DLRD, DD, and PAC tasks.

Associating the plant assignment gateway event with the PA task instead of the
RID/DLRD task provides several advantages. The DLR/CLR lines do not show the
correct plant assignments until the gateway event is complete. If the gateway event is
associated with the RID/DLRD task, a MetaSolv Solution user opening the DLR/CLR
prior to the completion of the plant assignment gateway event is presented with
incomplete plant assignments. The user can avoid confusion if the gateway event is
separated from the RID/DLRD task. Keeping the gateway event task (the PA task)
separate from the RID/DLRD task enables smoother problem resolution if gateway
event errors exist.

Plant implementation Concepts

8-2 MetaSolv Solution CORBA API Developer’s Reference

A provisioning plan sample for a new or change PSR order can include the following
tasks:

■ APP: to process the order application from customer

■ CKTID: to identify circuit assignments and locations

■ PA: to send gateway event for auto-assignment of plant

■ RID: to complete the circuit design

■ PTD: to perform plant test activities

■ DD: to indicate the circuit is in service

■ PAC: to send gateway event to indicate the plant is in service

■ BILLING: to perform billing activities

A provisioning plan sample for an ASR or PSR disconnect order can include the
following tasks:

■ PA: to send gateway event for plant disassociation

■ RID/DLRD: to disassociate plant from circuit and to complete other circuit
disconnect activities

■ DD: to indicate the circuit is disconnected

■ PAC: to send gateway event to indicate plant is disconnected

■ BILLING: to perform billing activities

A provisioning plan sample for an ISR may include the following tasks:

■ PA: to send gateway event for auto-assignment of plant

■ RID: to complete the circuit design

■ PTD: to perform plant test activities

■ DD: to indicate the circuit is in service

■ PAC: to send gateway event to indicate the plant is in service

Recommendations for Assigning Gateway Events to Provisioning Plan Tasks
Before you can associate gateway events with a provisioning plan task, the MetaSolv
Solution user must first define the gateway and gateway event in the MetaSolv
Solution Work Management Gateway module. While developing a provisioning plan,
the MetaSolv Solution user can associate gateway events to specific provisioning plan
tasks.

You cannot associate gateway events with orders that already have provisioning plans
applied. Therefore, you should add gateway events to any task that might be used for
an electronic interface in the future. After task generation, a MetaSolv Solution user
can bypass a gateway event or reactivate a bypassed gateway event for a task that has
not completed. The MetaSolv Solution user can also reopen a task, and then reactivate
the gateway event for completed tasks.

Note: When creating a gateway event, the MetaSolv Solution user
must negotiate with the mediation server vendor to define
appropriate gateway event names and platform-related information.

Plant implementation Concepts

The Plant API 8-3

You can assign multiple gateway events to a single task. You can also assign a gateway
event to multiple tasks. When you assign a gateway event to a task, the task cannot be
completed until the gateway event is complete.

Provisioning plan tasks can be defined as system tasks. System tasks do not require
any action by the MetaSolv Solution user.

The plant assignment and inventory interface can be accomplished with only two
different gateway events: Plant assignment and plant assignment complete. According
to the provisioning plan samples illustrated above, the plant assignment gateway
event is associated with the PA task, and the plant assignment complete gateway event
is associated with the PAC task.

When defining these events, the following parameters are recommended. You should
check the Force Reopen check box so that the gateway event can be resubmitted in the
event that a task is reopened due to a supplement to the order prior to completing the
order. For the event level, select Order Level so that a single gateway event signal is
sent for all of the circuits requiring plant assignment. Specify the Direction as
outbound. You should associate the gateway events with all three of the activity
groups: new, change and disconnect. Check the Provisioning check box for the event
type.

Options for Modify Cable Pair Assignment Preference
The Plant API requires you to set the value for the system preference Options for
Modify Cable Pair Assignment to Create Pending Assignment. The four options
presented in this preference dictate how MetaSolv Solution is to manage the
assignment if the requested plant element is already assigned to another circuit. The
Plant API assumes a tight integration with the OSP system. It assumes that assignment
statuses are synchronized between the OSP system and MetaSolv Solution. Therefore,
the Plant API always attempts to create pending assignments when plant elements are
reassigned for future-use circuits. Plant API and Plant Administration software
options are mutually exclusive.

Transaction Management and the Plant API
The Plant API manages transaction processing on behalf of your application. That is,
the Plant API handles all commits and rollbacks to the MetaSolv Solution database
instead of requiring your application to explicitly commit or rollback transactions.
When you request an operation that succeeds, the Plant API immediately commits the
results of the operation, then notifies you of its success. When a requested operation
fails, the Plant API immediately rolls back the results of the operation, then notifies
you of the failure. The Plant API's importPlantAssignment operation, which allows
processing of multiple circuits, performs the commit or rollback separately for each
circuit as the import succeeds or fails, prior to notifying you of the result. If it fails, the
importPlantAssignmentFailed notification returns the list of circuits that were
successfully updated prior to the failure.

Associating Separations Route to Plant Transport
Plant API does not allow for the association of a separations route to the plant
transport (cable complement). In MetaSolv Solution, you can specify a separations
route for a given complement. The application uses the mileage in the separations
route to validate the length of the plant element properties.

Key MetaSolv Solution Concepts

8-4 MetaSolv Solution CORBA API Developer’s Reference

Consequential Equipment Assignments
The Plant API does not offer the ability to import equipment to assign along with the
plant element assignments. Typically, a plant element terminates at the CO by a piece
of line equipment or a fiber distribution panel. When the OSP sends the plant
assignment information, it might know the line equipment on which the plant element
terminates. The Plant API does not offer the capability to import, assign, and build
DLR blocks for line terminating equipment. You can create the hard-wired
cross-connect between the equipment you want to use for the assignment and the
line-terminating equipment and manually assign the line equipment. Otherwise, the
process of selecting and assigning the line-terminating equipment is manual.

Key MetaSolv Solution Concepts
In order to understand the information made available through the Plant API, you
must understand certain key concepts. These concepts include:

■ MetaSolv Solution Work Management subsystem

■ MetaSolv Solution Gateway Event Server

■ MetaSolv Solution Infrastructure API Server

■ Gateway events and the Plant API

■ Exporting data through the Plant API

■ Importing data through the Plant API

■ Reference architecture

■ Design considerations

■ Transaction management

■ Structured formats

Plant API IDL Files
The Plant API consists of the following IDL files:

■ WDIPlant.idl

■ WDIPlantTypes.idl

■ WDI.idl

■ WDIUtil.idl

Plant API Interface Relationships
Figure 8–1 illustrates the relationship of the Plant API interfaces.

PlantSession Interface

The Plant API 8-5

Figure 8–1 Plant API Interface Relationships

PlantSession Interface
Table 8–1 lists the operations that comprise the PlantSession interface.

Table 8–1 Plant API Interface Operations

Operation WDINotification Operations

getFunctionCodes getFunctionCodesSucceeded

operationFailed

getLoadingTypes getLoadingTypesSucceeded

operationFailed

getPlantTransportClasses getPlantTransportClassesSucceeded

operationFailed

queryPlantTransportPhysical

CompositionSpec

queryPlantTransportPhysicalCompositionSpec

Succeeded

operationFailed

getPlantElementAssignment

Statuses

getPlantElementAssignmentStatusesSucceeded

operationFailed

exportServiceRequestDetail exportServiceRequestDetailSucceeded

operationFailed

exportPlantAssignment exportPlantAssignmentSucceeded

operationFailed

Plant API Operation Descriptions

8-6 MetaSolv Solution CORBA API Developer’s Reference

Plant API Operation Descriptions
The following IDL operations support the importing of a plant assignment using the
Plant API.

■ getFunctionCodes

Retrieves a list of valid function codes for use with a plant assignment. The
referenceNumber argument is generated by the operation's client, allowing it to
match the asynchronous request to the corresponding result. The notification
argument is the callback reference necessary for the API to complete the request in
an asynchronous environment.

Function codes represent the uses for a plant element assigned to a circuit. You get
the list of valid function codes from a static list. The list is as follows:

– T = Transmit

– R = Receive

– S1 = Side One

– S2 = Side Two

– X2 = Two Wire

– X4 = Four Wire

■ getLoadingTypes

Obtains a list of valid loading types to use to query for a plant transport physical
composition spec. The referenceNumber argument is the number that generates by
the client of the operation, allowing the client to match the asynchronous request
to the corresponding result. The notification argument is the callback reference
necessary for the API to complete the request in an asynchronous environment.

Loading types represent the possible ways in which a plant element amplifies to
counteract signal loss. This list is user-definable and dynamic. The data provided
as base data to a new customer is as follows:

– D66: D indicates 4500 feet between load points with 66mh (millihenry).

– H88: H indicates 6000 feet between load points with 88mh (millihenry).

– NL: Non-loaded refers to cable pairs without load coils attached to them.

– L: Loaded refers to cable pairs with load coils attached to them.

■ getPlantTransportClasses

Obtains a list of valid classes to use to query for a plant transport physical
composition specification. The referenceNumber argument is the number that
generates by the client of the operation, allowing the client to match the
asynchronous request to the corresponding result. The notification argument is the
callback reference necessary for the API to complete the request in an
asynchronous environment.

importPlantAssignment importPlantAssignmentSucceeded

importPlantAssignmentFailed

Table 8–1 (Cont.) Plant API Interface Operations

Operation WDINotification Operations

Plant API Operation Descriptions

The Plant API 8-7

Plant transport classes represent the medium of the plant transport. This static list
has the following values:

– COPPER

– FIBER

– MICROWAVE

– SATELLITE

– COAX

■ queryPlantTransportPhysicalCompositionSpec

A success notification operation that corresponds to the
queryPlantTransportPhysicalCompositionSpec operation. The referenceNumber
argument is the number that generates by the client of the operation which allows
the client to match the asynchronous request to the corresponding result. The
plantTransportPhysicalCompositionSpecList is the list of plant transport physical
composition specs returned based on the query criteria you provide to the
queryPlantTransportPhysicalCompositionSpec operation.

The plant transport physical composition specifications describe the possible
gauge, loading type, medium, and frequency combinations you can use to
describe the physical aspects of a plant transport. This query equates to the Cable
Pair Properties Query you can find in the Infrastructure module. A new generic
query name now exists so that you can represent all mediums of plant transports
(cables) without a bias toward one specific medium.

■ getPlantElementAssignmentStatuses

A success notification operation that corresponds to the
PlantSession::getPlantElementAssignmentStatuses operation. The referenceNumber
argument is the number that generates by the client of the operation, allowing the
client to match the asynchronous request to the corresponding result. The
assignmentStatusList argument is the list of valid plant element assignment
statuses.

Plant element statuses represent the possible list of statuses that a plant element
(pair) can have. The possible values from this static list are:

– 1 = Unassigned

– 2 = Pending

– 3 = InService

– 4 = Pending Discount

– 6 = Reserved

– 7 = Reserved Capacity

■ exportServiceRequestDetail

Obtains a service request detail to determine how to process the gateway event
signal. The third-party server receives a generic notification from the gateway
event server and needs to determine the service request activity in order to decide
whether to obtain new connection information from the OSP system to pass to the
MetaSolv Solution Plant API or to disconnect the existing connection on the OSP
system. Additionally, this operation obtains the absolute originating and
terminating locations for a circuit on an order, not only the end point but also the
local serving offices, if appropriate. Given these two endpoints, the client must use

Plant API Operation Descriptions

8-8 MetaSolv Solution CORBA API Developer’s Reference

the Infrastructure API to gather the location details for the location identifiers
supplied.

Using these location details, the client must match the location with the same
location in the integrated third-party database. Once this work is complete, the
client must find the associated plant and location details to pass to the MetaSolv
Solution Plant API. If the client requires additional locations to complete the
connection, the client must once again use the MetaSolv Solution Infrastructure
API to find query for the internal MetaSolv Solution location identifier which
passes to the Plant API along with the other plant assignment information. The
referenceNumber argument is the number that generates by the client of the
operation which allows the client to match the asynchronous request to the
corresponding result. The notification argument is the callback reference necessary
for the API to complete the request in an asynchronous environment. The
documentNumber argument is the key to the service request.

You can obtain the document number from the
MetaSolv::WDI::WDIEvent.documentNumber member. The WDIEvent is sent as a
data payload from the gateway event server to the third-party server. If you are
using this operation to obtain the list of circuits associated with an order, and the
request to do so did not generate by the gateway event server, you must find the
document number in the MetaSolv Solution database by matching service request
details from the OSP to service request details in the MetaSolv Solution database,
with the query yielding a MetaSolv Solution document number for the service
request. You can either query using an existing API, such as PSR orders, or
through a direct database SQL call.

■ exportPlantAssignment

Obtains the plant element assignment information and plant transports used for
designing a given circuit. The referenceNumber argument is the number that
generates by the client of the operation, allowing the client to match the
asynchronous request to the corresponding result. The notification argument is the
callback reference necessary for the API to complete the request in an
asynchronous environment. The circuitDesignIdentifiers argument references the
internal circuit design ID for MetaSolv Solution. You must retain this information
on the OSP system for reconciliation purposes. The third-party server can pass
more than one circuit design identifier in order to retrieve the plant transport
assignment data for multiple circuits.

■ importPlantAssignment

Imports the plant assignment data that passes from the client (the third-party
mediation server). The concept is that an OSP system, other than MetaSolv
Solution, maintains plant inventory. The OSP decides the appropriate plant data to
use to complete the physical connection between the originating and terminating
locations for the circuit, and provides that information to the MetaSolv Solution
Plant API by means of the importPlantAssignment operation. The referenceNumber
argument is the number that is generated by the client of the operation, allowing
the client to match the asynchronous request to the corresponding result. The
notification argument is the callback reference necessary for the API to complete
the request in an asynchronous environment. The documentNumber argument is
the key to the service request. You can obtain the document number from the
MetaSolv::WDI::WDIEvent.documentNumber member or as output from the
exportServiceRequestDetail IDL operation.

The circuitDesignID argument represents one of the provisionable circuits that
appear on the service request represented by the document number argument. The
list of provisionable circuits can be determined using the exportServiceRequestDetail

MetaSolv Solution API Software and Mediation Server Processes

The Plant API 8-9

operation. The circuitPlantTransportList argument is the list of plant transport
details necessary to complete the physical connection between the two endpoints
of the circuit. The list can contain the connection details for an unlimited number
of circuits.

In the event of an error (importPlantAssignmentFailed is called), the Plant API
notifies the third-party server with the failed circuit design identifier.

Using that information, the third-party server can determine the success and
failure of all of the circuits. Also, the importPlantAssignmentFailed notification
returns a list of all the circuits designed successfully. This information can be
useful for resetting statuses on the OSP system. If the third-party server does not
want to handle the difficulties inherent in working with large sets of data, the
server can choose to call the IDL operation, once for each circuit found on the
service request.

MetaSolv Solution API Software and Mediation Server Processes
An essential advantage of the MetaSolv Solution API architecture is the integration
between the OSS Gateways and the MetaSolv Solution Work Management subsystem.
This integration is enabled by gateway events. Gateway events are inbound or
outbound signals between the Work Management subsystem and a third-party
gateway vendor. As tasks are started or completed, gateway event signals are initiated
to notify the third party vendor. Once notified, the third party software application can
take appropriate action based on the event.

The mediation server is responsible for implementing the MetaSolv Solution API
operations. Upon receipt of a gateway event signal, the mediation server takes
appropriate action. To support the MetaSolv Solution Plant API interface, the
mediation server is responsible for responding to two different gateway events: plant
assignment and plant assignment complete.

The following process flows illustrate sample interactions between the MetaSolv
Solution gateway event server, the Plant API server, the Infrastructure API server, the
third-party mediation server, and to some extent, the external Plant inventory
application. The integrator is ultimately responsible for designing, developing and
implementing the interface. The process flows are intended to present important
concepts, which should be considered by the integrator when developing the interface.
The flows are not intended to dictate how to implement the interface.

Note: The Plant API commits each circuit individually to avoid any
problems with filling rollback segments on the MetaSolv Solution
database.

Note: The Plant API does not offer the ability to restart processing
where it failed when the gateway event restarts. Because Plant API
does not have a way of knowing if the OSP wants to change its
allocation, the mediation server can resend all the circuits with the
original assignment information or send only those that had not
processed at the point of failure.

MetaSolv Solution API Software and Mediation Server Processes

8-10 MetaSolv Solution CORBA API Developer’s Reference

Request for Plant Assignment
Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal
a plant assignment request, and the user has associated the gateway event with the
appropriate work management task. The gateway event name must be coordinated
between the system integrator and the MetaSolv Solution user. The work management
task must be placed after the circuit identification task or activity and before the circuit
design task or activity. The name of the work management task is user defined;
however, the example process flow refers to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed an order for a new
circuit. The MetaSolv Solution Work Management module places the PA task into a
Ready status, determines if the gateway event rules are satisfied, and sends the signal
to the gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order even if it includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

5. The activity code returned from the exportServiceRequestDetail operation is equal to
New when a new circuit is ordered and plant facilities must be assigned to fulfill
the order.

6. The third-party mediation server performs a process to obtain network location
details, if necessary. See "Obtain Network Location Details" for more information.
The exportServiceRequestDetailSucceeded operation provides the internal MetaSolv
Solution location IDs for the absolute endpoints of a circuit. The third-party
mediation server might need to obtain the physical address attributes of each
endpoint location to synchronize the network locations between the integrated
systems.

7. The third-party mediation server presents the request for new plant assignment to
the external plant inventory application.

8. The external plant inventory user assigns the appropriate plant inventory and
network locations required for each transmission circuit.

9. The third-party mediation server or the external plant inventory application
associates the assigned plant inventory with the MetaSolv Solution circuit ID for
future reference and data synchronization processing. It places the plant inventory
into a pending assignment status.

10. The third-party mediation server performs a query for the network location ID, if
necessary. See "Query for Network Location ID" for more information. The
exportServiceRequestDetailSucceeded operation provides the absolute endpoints of a
circuit; however, the plant engineer can select a path, which requires additional
locations to complete the assignment. The internal MetaSolv Solution location IDs
are required for the importPlantAssignment operation.

MetaSolv Solution API Software and Mediation Server Processes

The Plant API 8-11

11. The third-party mediation server performs a query to obtain physical plant
specifications, if necessary. See "Query for Plant Specification ID" for more
information. The internal MetaSolv Solution plant specification IDs are required
for the importPlantAssignment operation.

12. The third-party mediation server performs a query to obtain valid values for plant
assignment, if necessary. See "Obtain Valid Values for Plant Import and Export" for
more information. The valid values for specific fields are dynamic, depending on
table entries maintained by the MetaSolv Solution user. You can obtain these
values by executing the operations described in this process.

13. The third-party mediation server sends the importPlantAssignment operation for
each circuit on the order that requires plant assignments. Plant assignments are
required for base circuits; however, they are not required for transmission circuits
that ride base circuits. The import operation includes the physical details about the
plant transport medium and the network and terminal locations involved in each
circuit assignment.

14. The MetaSolv Solution Plant API server assigns the plant inventory to the ordered
circuits.

15. The third-party mediation server sends an eventCompleted2 operation to the
MetaSolv Solution gateway event server after plant assignments are complete for
all of the ordered circuit items.

16. The Work Management module changes the PA task to complete. This automatic
activity relies on the user to correctly define the PA task and plant assignment
gateway event.

Request for Plant Assignment Change
Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal
a plant assignment request, and the user has associated the gateway event with the
appropriate work management task. The gateway event name must be coordinated
between the system integrator and the MetaSolv Solution user. The work management
task must be placed after the circuit identification task or activity and before the circuit
design task or activity. The name of the work management task is user defined;
however, the example process flow refers to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed a change order for an
in-service circuit. The MetaSolv Solution Work Management module places the PA
task into Ready status, determines if the gateway event rules are satisfied, and sends
the signal to the gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order, even if it includes multiple circuit items.

Note: The plant assignment change process might not require a
change in cable pair assignments. The third-party plan inventory
system must determine whether to assign the same or different cable
pair to the circuit based on the status of the cable pair. If plant
assignment changes are not required for a circuit, the
importPlantAssignment operation is not required for the circuit.

MetaSolv Solution API Software and Mediation Server Processes

8-12 MetaSolv Solution CORBA API Developer’s Reference

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API Server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

5. The activity code returned from the exportServiceRequestDetail operation is equal to
change when modifying an existing circuit. The change order within MetaSolv
Solution may not require a change to plant facilities. If problems exist with the
assigned plant (bad cable pair), the plant inventory assigned to the circuit should
be returned to inventory and new plant should be obtained from available
inventory.

6. The third-party mediation server performs a query for network location details, if
necessary. See "Obtain Network Location Details" for more information. The
exportServiceRequestDetailSucceeded operation provides the internal MetaSolv
Solution location IDs for the absolute endpoints of a circuit. The third-party
mediation server might require the physical address attributes of each endpoint
location to synchronize the network locations between the integrated systems.

7. The third-party mediation server presents the currently assigned plant for each of
the circuits on the change order to the external plant inventory application.

8. The external plant inventory user determines if a change in plant inventory and
network locations is required.

9. If a change in plant inventory is not required, the third-party mediation server
skips to step 14.

10. The third-party mediation server or the external plant inventory application
associates the assigned plant inventory with the MetaSolv Solution circuit ID for
future reference and data synchronization processing. It places the plant inventory
into a pending assignment status.

11. The third-party mediation server performs a query for the network location ID, if
necessary. See "Query for Network Location ID" for more information. The
exportServiceRequestDetailSucceeded operation provides the absolute end points of a
circuit; however, the plant engineer might select a path, which requires additional
locations to complete the assignment. The internal MetaSolv Solution location IDs
are required for the importPlantAssignment operation.

12. The third-party mediation server performs a query for physical plant
specifications, if necessary. See "Query for Plant Specification ID" for more
information. The internal MetaSolv Solution plant specification IDs are required
for the importPlantAssignment operation.

13. The third-party mediation server performs a query for valid values, if necessary.
See "Obtain Valid Values for Plant Import and Export" for more information. The
valid values for specific fields are dynamic, depending on table entries maintained
by the MetaSolv Solution user. You can obtain these values by executing the
operations described in this process.

14. The third-party mediation server sends the importPlantAssignment operation for
each circuit on the order that requires plant assignments. Plant assignments are
required for base circuits; however, they are not required for transmission circuits
that ride base circuits. The import operation includes the physical details about the

MetaSolv Solution API Software and Mediation Server Processes

The Plant API 8-13

plant transport medium and the network and terminal locations involved in each
circuit assignment.

15. The MetaSolv Solution Plant API server assigns the plant inventory to the ordered
circuits.

16. The third-party mediation server sends an eventCompleted2 operation to the
MetaSolv Solution gateway event server after plant assignments are complete for
all of the ordered circuit items.

17. The Work Management module changes the PA task to complete. This automatic
activity relies on the user to correctly define the PA task and plant assignment
gateway event.

Request to Cancel Plant Assignment
Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal
a plant assignment request, and the user has associated the gateway event with the
appropriate work management task. The gateway event name must be coordinated
between the system integrator and the MetaSolv Solution user. The work management
task must be placed after the circuit identification task or activity and before the circuit
design task or activity. The name of the work management task is user defined;
however, the example process flow refers to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed an order for a new
circuit, has completed the initial plant assignment task on the provisioning plan, and
has canceled the order. The MetaSolv Solution Work Management module places the
PA task into Ready status, determines if the gateway event rules are satisfied, and
sends the signal to the gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order even if it includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

5. The activity code returned from the exportServiceRequestDetail operation is equal to
Cancel when a new or changed order has been placed, plant assignment activity
has started, and the MetaSolv Solution user has canceled the order. This process
occurs after the new or change process is complete and before the confirmation
process is started.

Note: For the plant assignment change process, a change in cable
pair assignments might be required. The third-party plant inventory
system must determine if the same or different cable pair should be
assigned to the circuit based on the status of the cable pair. If plant
assignment changes are not required for a circuit, the
importPlantAssignment operation is not required for the circuit.

MetaSolv Solution API Software and Mediation Server Processes

8-14 MetaSolv Solution CORBA API Developer’s Reference

6. The third-party mediation server identifies all of the outside plant elements related
to the circuit or circuits provided in the exportServiceRequestDetailSucceeded
operation. The third-party mediation server uses the internal MetaSolv Solution
circuit ID for each circuit on the order to synchronize the plant elements between
the integrated systems.

7. The third-party mediation server presents the currently assigned plant for each of
the circuits on the cancel order to the external plant inventory application.

8. The external plant inventory user restores the plant assignments to their previous
state prior to the new plant order or change plant order.

9. The third-party mediation server or the external plant inventory application
disassociates the assigned plant inventory with the MetaSolv Solution circuit ID
and updates the plant inventory status.

10. The third-party mediation server sends an eventCompleted2 operation to the
MetaSolv Solution gateway event server after plant assignments are complete for
all of the ordered circuit items.

11. The Work Management module changes the PA task to complete. This automatic
activity relies on the user to correctly define the PA task and plant assignment
gateway event.

Request to Disconnect Plant Assignment
Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal
a plant assignment request, and the user has associated the gateway event with the
appropriate work management task. The gateway event name must be coordinated
between the system integrator and the MetaSolv Solution user. The work management
task must be placed after the circuit identification task or activity and before the circuit
design task or activity. The name of the work management task is user defined;
however, the example process flow refers to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed an order to
disconnect service on a circuit. The MetaSolv Solution Work Management module
places the PA task into Ready status, determines if the gateway event rules are
satisfied, and sends the signal to the gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order even if it includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

The activity code returned from the exportServiceRequestDetail operation is equal to
disconnect when the MetaSolv Solution user places an order to disconnect a circuit.

5. The third-party mediation server identifies all of the outside plant elements related
to the circuit or circuits provided in the exportServiceRequestDetailSucceeded
operation. The third-party mediation server uses the internal MetaSolv Solution

MetaSolv Solution API Software and Mediation Server Processes

The Plant API 8-15

circuit ID for each circuit on the order to synchronize the plant elements between
the integrated systems.

6. The third-party mediation server presents the currently assigned plant for each of
the circuits on the cancel order to the external plant inventory application.

7. The external plant inventory user removes the plant assignments and returns them
to available inventory.

8. The third-party mediation server or the external plant inventory application places
the plant inventory into a pending disconnect status.

9. The third-party mediation server sends an eventCompleted2 operation to the
MetaSolv Solution gateway event server after plant assignments are complete for
all of the ordered circuit items.

10. The Work Management module changes the PA task to complete. This automatic
activity relies on the user to correctly define the PA task and Plant assignment
gateway event.

Request to Cancel Plant Disconnect
Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal
a plant assignment request, and the user has associated the gateway event with the
appropriate work management task. The gateway event name must be coordinated
between the system integrator and the MetaSolv Solution user. The work management
task must be placed after the circuit identification task or activity and before the circuit
design task or activity. The name of the work management task is user defined;
however, the example process flow refers to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed an order to
disconnect service on a circuit, has completed the plant assignment task on the
provisioning plan, and has canceled the disconnect order. The MetaSolv Solution Work
Management module places the PA task into a Ready status, determines if the gateway
event rules are satisfied, and sends the signal to the gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order even if it includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

The activity code returned from the exportServiceRequestDetail operation is equal to
Cancel when a disconnect order is placed, plant assignment activity has started,
and the MetaSolv Solution user has canceled the disconnect order. This process
occurs after the disconnect process is complete and before the confirmation
process is started.

5. The third-party mediation server identifies all of the outside plant elements related
to the circuit or circuits provided in the exportServiceRequestDetailSucceeded
operation. The third-party mediation server uses the internal MetaSolv Solution

MetaSolv Solution API Software and Mediation Server Processes

8-16 MetaSolv Solution CORBA API Developer’s Reference

circuit ID for each circuit on the order to synchronize the plant elements between
the integrated systems.

6. The third-party mediation server presents the currently assigned plant for each of
the circuits on the cancel disconnect order to the external plant inventory
application.

7. The external plant inventory user restores the plant assignments to their previous
state prior to the disconnect plant order.

8. The third-party mediation server or the external plant inventory application
restores the assigned plant inventory with the MetaSolv Solution circuit ID for
future reference and data synchronization processing. It places the plant inventory
into the previous state prior to the disconnect order.

9. The third-party mediation server sends an eventCompleted2 operation to the
MetaSolv Solution gateway event server after plant assignments are complete for
all of the ordered circuit items.

10. The Work Management module changes the PA task to complete. This automatic
activity relies on the user to correctly define the PA task and plant assignment
gateway event.

Request for Change to Due Date
Setup prerequisite: The MetaSolv Solution user created a gateway event to signal a
plant assignment request, and the user has associated the gateway event with the
appropriate Work Management task. The gateway event name must be coordinated
between the system integrator and the MetaSolv Solution user. The Work Management
task must be placed after the circuit identification task or activity and before the circuit
design task or activity. The name of the Work Management task is user defined;
however, the example process flow refers to it as the PA task.

Processing prerequisite: The MetaSolv Solution user has placed an order, has
completed the plant assignment task on the provisioning plan, and has changed the
due date on the order. The MetaSolv Solution Work Management module places the
PA task into a Ready status, determines if the gateway event rules are satisfied, and
sends the signal to the gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order even if it includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

The activity code returned from the exportServiceRequestDetail operation is equal to
Due Date Change when the MetaSolv Solution user places a new, change, or
disconnect order, plant assignment activity has started, and the MetaSolv Solution
user has modified the due date for the order. This process occurs after the new,
change, or disconnect process is complete and before the confirmation process is
started.

MetaSolv Solution API Software and Mediation Server Processes

The Plant API 8-17

5. The third-party mediation server identifies all of the outside plant elements related
to the circuit or circuits provided in the exportServiceRequestDetailSucceeded
operation. The third-party mediation server uses the internal MetaSolv Solution
circuit ID for each circuit on the order to synchronize the plant elements between
the integrated systems.

6. The third-party mediation server presents the currently assigned plant for each of
the circuits on the due date change order to the external plant inventory
application.

7. The external plant inventory user updates the planned due date for the pending
plant assignments or plant disconnect.

8. The third-party mediation server or the external plant inventory application
updates the planned due date.

9. The third-party mediation server sends an eventCompleted2 operation to the
MetaSolv Solution gateway event server after plant assignments are complete for
all of the ordered circuit items.

10. The Work Management module changes the PA task to complete. This automatic
activity relies on the user to correctly define the PA task and plant assignment
gateway event.

Request for Plant Assignment Exception
Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal
a plant assignment request, and the user has associated the gateway event with the
appropriate work management task. The gateway event name must be coordinated
between the system integrator and the MetaSolv Solution user. The work management
task must be placed after the circuit identification task or activity and before the circuit
design task or activity. The name of the work management task is user defined;
however, the example process flow refers to it as the PA task.

Processing prerequisite: The MetaSolv Solution Work Management module places the
PA task into Ready status, determines if the gateway event rules are satisfied, and
sends the signal to the gateway event server.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order even if it includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

The activity code returned from the exportServiceRequestDetail operation is equal to
No Activity when the MetaSolv Solution user has placed a new, change, or
disconnect order; however, analysis of the requested circuit or circuits indicates no
plant inventory is required to fulfill the order.

MetaSolv Solution API Software and Mediation Server Processes

8-18 MetaSolv Solution CORBA API Developer’s Reference

This order activity code should not occur in normal situations; however, the
third-party mediation server should prepare for it. If this order activity is received
for a circuit, no action is required for the specific circuit item.

5. The third-party mediation server determines that no plant assignment activity is
required.

6. The third-party mediation server sends an eventCompleted2 operation to the
MetaSolv Solution gateway event server after plant assignments are complete for
all of the ordered circuit items.

7. The Work Management module changes the PA task to complete. This automatic
activity relies on the user to correctly define the PA task and plant assignment
gateway event.

Request to Complete Plant Assignment
Setup prerequisite: The MetaSolv Solution user has created a gateway event to signal
the due date task is complete. The user has also associated the gateway event with the
appropriate work management task. The gateway event name must be coordinated
between the system integrator and the MetaSolv Solution user. The work management
task must be placed after the due date task. The name of the work management task is
user defined; however, the example process flow refers to it as the plant assignment
complete task.

Processing prerequisite: The MetaSolv Solution user has placed an order and has
completed all work management tasks through the due date task. The MetaSolv
Solution Work Management module places the PAC task into Ready status, determines
if the gateway event rules are satisfied, and sends the signal to the gateway event
server.

This gateway event is sent to the mediation server when the plant assignments are
complete, all other equipment and facility assignments are complete, and the circuit
items are either in service or disconnect as requested by the order.

This gateway event should not be sent when the MetaSolv Solution user cancels the
original order. However, gateway event signals are largely user-controlled, so the
third-party mediation server should be prepared for such an event.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order even if it includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API Server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

5. The third-party mediation server identifies all of the outside plant elements related
to the circuit or circuits provided in the exportServiceRequestDetailSucceeded
operation. The third-party mediation server uses the internal MetaSolv Solution
circuit ID for each circuit on the order to synchronize the plant elements between
the integrated systems.

MetaSolv Solution API Software and Mediation Server Processes

The Plant API 8-19

6. The third-party mediation server sends the exportPlantAssignment operation to the
MetaSolv Solution Plant API server for each circuit to confirm the plant
assignments on the external plant inventory application are consistent with the
plant assignment in the MetaSolv Solution application. This is an important step
because MetaSolv Solution users have the option to reject the plant assignments
made with the importPlantAssignment operation.

7. The MetaSolv Solution Plant API server returns the
exportPlantAssignmentSucceeded operation to the third-party mediation server with
the list of transmission circuits and the actual plant assignments.

8. The third-party mediation server presents the pending plant assignments or
pending plant disconnects for each of the circuits on the order to the external plant
inventory application.

9. The external plant inventory user completes the assignment or disconnect actions.

10. The third-party mediation server or the external plant inventory application
updates the plant inventory status.

11. The third-party mediation server sends an eventCompleted2 operation to the
MetaSolv Solution gateway event server.

12. The Work Management module changes the PAC task to complete. This automatic
activity relies on the user to correctly define the PAC task and plant assignment
complete gateway event.

Import Plant Assignment Failed
Depending on the activities required by the external plant inventory application or the
interaction between the third-party mediation server and the external plant inventory
application, it might not be possible for the third-party mediation server to successfully
import plant assignment information for all of the circuits requested. If this situation
occurs, the third-party mediation server can implement the following process.

1. The MetaSolv Solution gateway event server sends the eventOccurred operation to
notify the third-party mediation server that plant assignment activity is required
for a specific service order. One gateway event signal is sent for the entire service
order even if it includes multiple circuit items.

2. The third-party mediation server sends an eventInProgress2 operation to the
MetaSolv Solution gateway event server.

3. The third-party mediation server sends a exportServiceRequestDetail operation to
the MetaSolv Solution Plant API server for the order.

4. The MetaSolv Solution Plant API Server returns the
exportServiceRequestDetailSucceeded operation to the third-party mediation server
with the list of transmission circuits, which require plant assignment action, and
the activity code, which indicates the plant assignment action to take.

5. The third-party mediation server sends the importPlantAssignment operation for
each circuit on the order that requires plant assignments.

6. The MetaSolv Solution Plant API server returns the importPlantAssignmentFailed
operation with an error operation and a list of circuits, for which the import was
successful.

7. The third-party mediation server, the external plant inventory application, and/or
the external plant inventory application user are unable to resolve the import
error.

MetaSolv Solution API Software and Mediation Server Processes

8-20 MetaSolv Solution CORBA API Developer’s Reference

8. The third-party mediation server sends the eventFailed2 operation to the MetaSolv
Solution gateway event server.

Obtain Network Location Details
The process provides the ability to obtain details about a specific network location
based on the internal MetaSolv Solution location ID.

1. The third-party mediation server sends a getLocation operation to the MetaSolv
Solution Infrastructure API server to obtain the physical address related to the
specific internal MetaSolv Solution location ID.

2. The MetaSolv Solution Infrastructure API server returns getLocationSucceeded
operation with the physical addresses and other network location data.

Query for Network Location ID
This process provides the ability to query for and derive the internal MetaSolv
Solution location ID for a specific network location based on the physical address or
other defining attributes.

1. The third-party mediation server prepares to send the queryNetworkLocations_v2
operation to the MetaSolv Solution Infrastructure server to obtain the internal
MetaSolv Solution network location ID based on one or more physical address
components.

A data structure is provided with this operation to specify search criteria.
Knowledge of The MetaSolv Solution structure formats is critical to specifying
physical address search criteria. Name and value pairs for physical address
components are user-defined. The names of the physical address components
must be coordinated between the MetaSolv Solution user and the systems
integrator.

2. The third-party mediation server, optionally, sends the getNetworkLocationTypes
operation to the MetaSolv Solution Infrastructure server to obtain the list of
network location types, which can be used as search criteria for the
queryNetworkLocations_v2 operation.

3. The MetaSolv Solution Infrastructure server returns the
getNetworkLocationTypesSucceeded operation with the list of internal MetaSolv
Solution network location type IDs along with their descriptions.

4. The third-party mediation server, optionally, sends the
getNetworkLocationCategories operation to the MetaSolv Solution Infrastructure
server to obtain the list of network location categories, which can be used as search
criteria for the queryNetworkLocations_v2 operation.

5. The MetaSolv Solution Infrastructure server returns the
getNetworkLocationTypesSucceeded operation with the list of internal MetaSolv
Solution network location category IDs along with their descriptions.

6. The third-party mediation server sends the queryNetworkLocations_v2 operation to
the MetaSolv Solution Infrastructure server to obtain the internal MetaSolv
Solution network location ID based on one or more physical address components
provided in the search criteria.

7. The MetaSolv Solution Infrastructure server sends the
queryNetworkLocationsSucceeded operation to the third-party mediation server with
the internal MetaSolv Solution network location ID.

MetaSolv Solution API Software and Mediation Server Processes

The Plant API 8-21

Query for Plant Specification ID
This process provides the ability to query for and derive the internal MetaSolv
Solution plant specification ID for a specific type of outside plant transport facilities.

1. The third-party mediation server sends queryPlantTransportPhysicalCompositionSpec
operation to obtain the internal MetaSolv Solution plant transport physical
composition specification code. In the query operation, one or more query values
can be specific to limit the size of the result set.

2. The MetaSolv Solution Plant API server returns the
queryPlantTransportPhysicalCompositionSpecSucceeded operation with all of the plant
transport specifications, which meet the query criteria. The plant element
specifications identify the physical properties of a plant transport medium such as
cable, fiber, or air.

Obtain Valid Values for Plant Import and Export
For specific fields used in the plant import process, the valid values are dynamic. The
operations included in this process provide the ability to export the valid values. There
are many different ways to implement these operations. An integrator can choose to
export the valid values each time he prepares the data for the import operation. An
integrator may also choose to export the valid values at fixed intervals or during the
server start-up routine and store the values for later reference.

1. The third-party mediation server sends the getFunctionCodes operation to the
MetaSolv Solution Plant API server to obtain a list of valid function codes.
Examples of function codes include transmit and receive.

2. The MetaSolv Solution Plant API server returns the getFunctionCodesSucceeded
operation with the valid function codes.

3. The getLoadingTypes operation can be used to obtain a list of valid loading types.
One of these loading types (NL for non-loading) can be passed in the
queryPlantTransportPhysicalCompositionSpec operation to limit the list of plant
transport physical composition specifications to a specific loading type.

4. The MetaSolv Solution Plant API Server returns the getLoadingTypesSucceeded
operation with the valid loading types.

5. You can use the getPlantTransportClasses operation to obtain a list of valid classes.
One of these classes (copper, fiber, microwave, or satellite) can be passed in the
queryPlantTransportPhysicalCompositionSpec operation to limit the list of plant
transport physical composition specifications to a specific class.

6. The MetaSolv Solution Plant API Server returns the
getPlantTransportClassesSucceeded operation with the valid transport classes.

7. The getPlantElementAssignmentStatuses operation can be used to obtain a list of
cable pair or fiber status codes.

8. The MetaSolv Solution Plant API server returns the
getPlantElementAssignmentStatusesSucceeded operation with the status codes and
definitions.

MetaSolv Solution API Software and Mediation Server Processes

8-22 MetaSolv Solution CORBA API Developer’s Reference

9

The PSR Ancillary API 9-1

9The PSR Ancillary API

The PSR Ancillary API provides a bi-directional interface for LIDB/CNAM
information and E911 data in National Emergency Numbering Association (NENA)
format for transfer to the area E911 provider. All fields needed for NENA 2.1
compliancy are provided by this API.

Implementation Concepts
The PSR Ancillary API only supports batch-mode interaction. Two types of operations
are provided for this purpose: extract and respond. The extract operation performs a
data export and the respond operation performs data import. The only minor variation
is the appearance of operations of the form extract{Function}Empty in the
WDINotification interface. Such notification callback operations are invoked by
PSRAncillaryServer to indicate the absence of candidate extract records for that day.

Essential Terminology
Table 9–1 lists the terms that identify information and concepts that are required to
understand the PSR Ancillary API.

PSR Ancillary API Interfaces
Figure 9–1 illustrates the relationship of the interfaces in the PSR Ancillary API.

Table 9–1 PSR Ancillary API Essential Terminology

Term Definition

CNAM A telephone service used to display the name and telephone number of the caller.

E911 A telephone service used to provide emergency (911) operators with the caller's
telephone number and location.

LIDB A telephone service used to verify a telephone number for toll service and
third-party billing, such as for validation of calling card numbers.

Essential Terminology

9-2 MetaSolv Solution CORBA API Developer’s Reference

Figure 9–1 PSR Ancillary API Interfaces

E911Session Interface Operations
Table 9–2 lists the operations available in the E911Session of the PSRANCILLARY.IDL
file.

CNAMSession Interface Operations
Table 9–3 lists the operations available in the CNAMSession of the
PSRANCILLARY.IDL file.

LIDBSession Interface Operations
Table 9–4 lists the operations available in the LIDBSession of the
PSRANCILLARY.IDL file.

Table 9–2 E911Session Interfacer Operations

Operation WDINotification

extract extractE911Succeeded

extractE911Failed

extractE911Empty

respond respondE911Succeeded

respondE911Failed

Table 9–3 CNAMSession Interface Operations

Operation WDINotification

extract extractCNAMSucceeded

extractCNAMFailed

extractCNAMEmpty

respond respondCNAMSucceeded

respondCNAMFailed

Implementation Concepts

The PSR Ancillary API 9-3

Implementation Concepts
All interfaces and operations for the PSR Ancillary API are defined in
WDIPSRANCILLARY.IDL. Some interfaces and operations are implemented in the
PSR Ancillary API server, PSRAncillaryServer, and the others must be implemented in
your application.

The PSR Ancillary API supports only batch-mode interaction. Two types of operations
are provided for this purpose: extract and respond. The extract performs a data export
and the respond operation performs data import. The only minor variation is the
appearance of operations of the form extract{Function}Empty in the WDINotification
interface. Such notification callback operations are invoked by PSRAncillaryServer to
indicate that there were no candidate extract records for that day.

The PSR Ancillary API and Smart Tasks
The PSRAncillary server E911 functionality does not use the Gateway Event Model.
An E911 Smart Task is used to create the row data and determine function codes. The
PSRAncillary server is now responsible for extracting the row data with the
PSRAncillary extract method and matching the extract data row to the response
records returned in the respond method call. The WDISignal interface is no longer
used. E911 Gateway Events still show up in the GUI and need to be removed from the
provisioning plans by whoever is responsible for modifying provisioning plans.

Field by Field Matching Between Extract Row and Response Record
The telephone number data in the database, which was sent out in the E911ExtRecord,
is matched to the data sent back for every calling telephone number (CTN)
(911RespRecord.ctn) in the respond method call. Every field sent back in the
E911RespRecord must exactly match the row data in the MetaSolv Solution database
for any record marked Complete (E911RespRecord.sti = ‘C’.) If a match does not occur
the E911 response code is changed to error and any mismatched fields are displayed in
the GUI.

Since this is a database matching system, the PSRAncillary server considers any data
field changes an error, but a succeeded notification is sent back to the gateway vendor
so the errors can be seen, corrected, and resent using the MetaSolv Solution GUI. Since
the CTN is the key field triggering matching, if any CTN cannot be matched to a
record in Sending status for an extractSeq, a failed notification is sent back to the
gateway vendor with error messages for all CTN fields not matched to a Sending
telephone number in the database.

Table 9–4 LIDBSession Interface Operations

Operation WDINotification

extract extractLIDBSucceeded

extractLIDBFailed

extractLIDBEmpty

respond respondLIDBSucceeded

respondLIDBFailed

Note: Do not use Gateway Events for E911.

Implementation Concepts

9-4 MetaSolv Solution CORBA API Developer’s Reference

The gateway vendor is responsible for removing the offending calling telephone
numbers and calling another respond method. It is impossible for the PSRAncillary
server to determine if the database information is correct without matching a
telephone number in Sending status to a valid CTN. It is the gateway vendor’s
responsibility to contact the appropriate party (either the customer or the third-party
provider) to correct any discrepancies between a CTN and the telephone numbers in
the MetaSolv Solution database.

Rules of Operation
1. Each extract and respond operation has an extractID parameter. This extractID is

generated by the third-party application and is transferred back to your
application as a parameter on the succeeded, failed and empty notifications for the
extract and respond. The extractID provides the third-party application with a
mechanism to match a notification with the corresponding extract or respond
request.

2. When an extract operation is invoked by your application, MetaSolv Solution
generates and returns a unique sequence number in the notify callback. This
sequence number is passed in the extractSeq parameter. When your application
sends the response for the extract, the extractSeq in the response structure must be
the same as the extractSeq sent in the corresponding extract structure. The
extractSeq provides the APIs with a mechanism to match an extract with a
response. The third-party application is responsible for managing database
transaction processing. This means the third-party application establishes the
MetaSolv Solution database connection through the WDITransaction interface of
the API and controls commit and rollback processing.

Each extract and respond structure has an extractSeq parameter. The extractSeq is
generated by MetaSolv Solution and sent to the third-party application through the
extract operation. When the third-party application sends the respond for the
extractSeq in the E911 Update respond structure, it must be the same as the extractSeq
sent in the corresponding extract.

The extractSeq provides a mechanism to match an extract with a response.

1. There is an extractID parameter for each extract and respond operation. This
extractID is generated by the third-party application and is transferred back to
your application as a parameter on the successful, failed, and empty notifications
for the extract and respond. The extractID provides the third-party application
with a mechanism to match a notification with the corresponding extract or
respond request.

2. When an extract operation is invoked by your application, MetaSolv Solution
generates and returns a unique sequence number in the notify callback. This
sequence number is passed in the extractSeq parameter. When your application
sends the response for the extract, the extractSeq in the response structure must be
the same as the extractSeq sent in the corresponding extract structure. The
extractSeq provides the APIs with a mechanism to match an extract with a
response.

The PSR Ancillary API defines the interfaces between MetaSolv Solution and a
third-party gateway. This API facilitates the sharing of E911, CNAM, and LIDB
information between MetaSolv Solution and the appropriate database provider.

The third-party application is responsible for managing database transaction
processing. This means the third-party application establishes the MetaSolv Solution
database connection through the WDITransaction interface of the API and controls
commit and rollback processing.

Extract and Respond Scenario

The PSR Ancillary API 9-5

There is an extractID parameter for each extract and respond operation. This extractID
is generated by the third-party application, then transferred back to the third-party
application as a parameter on the succeeded, failed, and empty notifications for the
extract and respond. The extractID provides the third-party vendor with a mechanism
to match a notification with the corresponding extract or respond request.

There is an extractSeq parameter within each extract and respond structure
(extractE911, respondE911, extractCNAM, respondCNAM, extractLIDB, and
respondLIDB). The extractSeq is generated by MetaSolv Solution and sent to the
third-party application through the extract operation. When the third-party
application sends the respond for the extractSeq, in the respond structure, it must be
the same as the extractSeq sent in the corresponding extract. The extractSeq provides a
mechanism to match an extract with a response.

Extract Sequence Matching
The E911Extract.extractSeq sent in the succeeded notification must be returned in the
E911Response.extractSeq in the respond method call. The extractSeq field allows
database rows in a Sending status to be matched to records in the E911RespRecords
array (see Field by Field Matching Between Extract Row and Response Record.) The
E911 Update extactSeq field allows multiple respond methods to be processed
simultaneously (if the extractSeq are different.) The respond method can be made any
time after the extract method is called, and can contain a partial set of records. The
response does not have to contain every record extracted previously if those records
contain the correct extractSeq. This allows the PSRAncillary server to match records
using unordered extract and respond method calls.

Extract method calls and/or respond method calls can be done daily, in any amount,
in any order. There are restrictions enforced by the PSRAncillary server as to how the
method calls are processed. If an extract method call has not finished processing before
another extract method call is received, the second (and subsequent) extract method
calls wait until the first has finished processing before being allowed to do further
processing. If a respond method call for an extractSeq is not finished processing before
another respond method call using the same extractSeq is received, the second (and
subsequent) respond method calls with the same extractSeq wait until the first has
finished processing before being allowed to do any further processing.

Extract and Respond Scenario
Rules for extract and response scenarios are summarized in the following list:

■ Extractseq matching on extract and respond is strictly enforced.

■ Extract and respond does not need a 24-hour turn around.

■ Respond does not have to follow extract (which means multiple extracts can be
done before a respond is sent back.

■ Respond does not have to contain all the records extracted for the extractSeq on
the extract.

■ Respond cannot contain telephone numbers (matched by CTN) that were not sent
in the extract or were previously processed by another respond with the same
extractSeq (no unmatched, if a telephone number is sent in the response that

Note: The previous restriction of a twenty-four hour turn around
time using one extract method call followed by one respond method
call containing every record extracted is no longer required.

Error Logging Changes

9-6 MetaSolv Solution CORBA API Developer’s Reference

cannot be matched to a telephone number in sending status, the respond method
fails until the CTN is removed).

■ Extract cannot have telephone numbers differing only by suffix (the CTN would
be the same which makes matching the CTN on the respond impossible), the
CTNs are errored but the extract still occurs with the offending telephone numbers
removed.

■ All fields are strictly matched in the respond, if any field sent in the extract has
changed, the record is errored but the respond is still considered a success.

Error Logging Changes
PSRAncillary server E911 errors are now logged to the E911.log file. If the error is
related to a data issue and can be corrected in the GUI, the error also appears in the
PSRAncillary Maintenance window. Errors displaying in the GUI include NENA
errors returned in the response, data integrity errors that can be corrected in the GUI,
or in the determination of the ordering of extract records. Errors written only to the
E911.log file are fatal server errors needing immediate attention. These errors cannot
be fixed using the GUI alone.

Any server error appearing in the PSRAncillary Maintenance window also appears in
the E911.log file, but not all errors written to the E911.log file appear in the
PSRAncillary Maintenance window. Both the E911.log file and the PSRAncillary
Maintenance window must be used to monitor errors logged by the server.

The PSRAncillary E911 error logging includes the following:

■ Logging the PSRAncillary server errors to the E911.log file in the path set up in the
gateway.ini file. Any previous log files used by the PSRAncillary server (MetaSolv
Solution.log/appserver.log, WDI.log, EventServer.log, and PSR Ancillary.log) no
longer contain any E911 related error logging (although CNAM and LIDB
information is still logged to these log files.)

■ Errors written to both the E911.log file and the MetaSolv Solution database E911
error table (writing to the error table allows the errors to be seen in the
PSRAncillary Maintenance window.) Scenarios where this is most likely to occur
include but are not limited to:

– Duplication of telephone numbers differing only by suffix on the extract
database table with an extract indicator set to Y.

– Respond record returning with an E in the sti field, indicating a NENA error.
The NENA error returned is written to the E911 error table with a prepended
‘NENA Error:’ stamp on the error message.

– Respond record returning with a C in the sti field and the record does not pass
field matching criteria. An error is written for each field that does not match
up with a prepended MSLV Error: stamp on the error message.

– Updating an extract database row while the E911 record is in ‘Sending’ status.

■ All E911 error rows are cleared when the gateway provider calls the extract
method on the PSRAncillary server. If the PSRAncillary server is not used as part
of the E911 solution, the E911 rows are never deleted from the database.

Note: Previously, customers set the exd field, which is stamped on
the extract record. This field should not be modified. The only
supported function codes are C or E Matching for STI (status indicator
or response code).

Process Flow

The PSR Ancillary API 9-7

If the System Queue is used to complete the task, errors can be written to the WM_
TskSv.log file and to the SERVER_LOG database table. An error written to the
SERVER_LOG table is displayed in the GUI. The PSRAncillary server logging occurs
independent of System Queue logging. Therefore, errors occurring in the PSRAncillary
server are logged by the PSRAncillary server and they can also be logged by the
System Queue. As a general rule, if an error occurs on the PSRAncillary server, it is
logged normally by the PSRAncillary server and then picked up by the System Queue
and logged on the SERVER_LOG table so it can be displayed in the GUI. If the error is
not written to the E911.log, then the error most likely occurred due to functional issues
on the System Queue, and is logged in the WM_TskSv.log file and possibly the
SERVER_LOG table (if the error is of a nature that needs to be displayed by the GUI.)

Process Flow
This section contains a sample process flow for an unsolicited message. Use the sample
flow as a template for developing your own process flows.

Unsolicited Messages
When the message is initiated by the third party (unsolicited), MetaSolv Solution plays
the role of the server, and the third-party application plays the role of the client.
Unsolicited messages are processed asynchronously, meaning a callback mechanism is
used to report back the results of an operation invoked by the third-party application.

Table 9–5 lists the interfaces and operations that MetaSolv Solution implements using
IDL files provided with the PSR Ancillary API.

Table 9–6 lists the interfaces and operations that your application can implement.

Table 9–5 PSR Ancillary API Operations

Interface Operations

WDIRoot connect

disconnect

WDIManager startE911Session

startCNAMSession

startLIDBSession

destroyE911Session

destroyCNAMSession

destroyLIDBSesion

startTransaction

destroyTransaction

startSignal

destroySignal

E911Session extract

respond

CNAMSession extract

respond

LIDBSession extract

respond

Process Flow

9-8 MetaSolv Solution CORBA API Developer’s Reference

Sample Unsolicited Message Process Flow
1. The third-party application binds to the PSR Ancillary server to get a WDIRoot

object reference.

2. The third-party application invokes the connect operation of the WDIRoot
interface, which yields a WDIManager object reference.

3. The third-party application invokes the startE911Session, startCNAMSession or
startLIDBSession operation of the WDIManager interface to get an E911Session,
CNAMSession, or LIDBSession object reference, respectively.

4. The third-party application instantiates a WDINotification object.

5. The third-party application invokes the startTransaction operation of the
WDIManager interface, which yields a WDITransaction object reference. This
object reference passes as a parameter on subsequent operations and is used by the
third-party application upon completion of processing to initiate the commit or
rollback operation.

6. The third-party application invokes the appropriate operation on the session
object reference returned in step 3 (that is, extract or respond). The WDINotification
and WDITransaction object references are passed as parameters.

7. The PSR Ancillary server processes the invoked operation of the session object and
invokes the appropriate failed, succeeded, or empty operation of the input
WDINotification upon completion. The empty notification is used only for the
extract operations.

8. If the failed operation was invoked in step 7, the third-party application initiates
the rollback operation of the WDITransaction interface.

9. If the succeeded or empty operations were invoked in step 7, the third-party
application initiates the commit operation of the WDITransaction interface.

Table 9–6 PSR Ancillary API Notification Operations

Interface Operations

WDINotification extractE911Succeeded

extractE911Failed

extractE911Empty

respondE911Succeeded

respondE911Failed

extractCNAMSucceeded

extractCNAMFailed

extractCNAMEmpty

respondCNAMSucceeded

respondCNAMFailed

extractLIDBSucceeded

extractLIDBFailed

extractLIDBEmpty

respondLIDBSucceeded

respondLIDBFailed

Glossary of Terms and Abbreviations

The PSR Ancillary API 9-9

10. The third-party application invokes the appropriate destroy session operation of
the WDIManager interface (destroyE911Session, destroyCNAMSession or
destroyLIDBSession).

11. The third-party application invokes the destroyTransaction operation of the
WDITransaction interface.

12. The third-party application invokes the disconnect operation of the WDIRoot
interface.

Auto Respond Preference
The auto respond functionality is now available to those who want to receive
responses from a third-party provider in a format other than the electronic respond
method provided by the PSRAncillary server. If a customer receives an error from a
third-party provider, in the form of a fax, email, letter, or other method, the
PSRAncillary Maintenance window is used to adjust the record and resend it to the
gateway vendor. The respond method cannot be used by the gateway vendor to
respond to records after the extract method is called, this causes a failed notification to
be sent to the gateway vendor. The third-party provider must be informed to send
ALL NENA errors directly to the customer.

When this preference is turned on, all records sent to the gateway vendor are
immediately marked as Complete as if a successful electronic response was received.
The auto respond preference is not a mix and match preference. The preference is
either turned on and no electronic responses are received using the respond method
call, or the preference is turned off and all records need to receive an electronic
response using the E911 Update PSRAncillary server respond method. The server
must be restarted after the new lines below are added to the gateway.ini file. This
registers the new preference with the PSRAncillary server. Add the following lines to
the gateway.ini exactly as they appear below to turn the preference on:

[PSRAncillary]
AutoRespond=true

Glossary of Terms and Abbreviations
■ ALI: Automatic Location Identification; automatic display at the PSAP of the

caller’s telephone number, the address/location of the telephone, and
supplementary emergency services information.

■ ALI database: The set of ALI records residing on a computer system.

■ E911: Used to refer to emergency 9-1-1.

■ E911 information: Any data that is captured by MetaSolv Solution and sent to the
E911 Service Provider by the gateway vendor. This data is any information in
MetaSolv Solution that needs to be formatted into a NENA specific transfer
protocol in order to be put into an ALI database.

■ E911 record: Collectively refers to any data passed from MetaSolv Solution
through the gateway vendor to the E911 service provider. The data can be in the
form of a database row, a JAVA object or a NENA specified transfer format The
data representation may be different but the E911 information remains consistent
unless a valid modification by a system occurs.

■ E911 Service Provider: System responsible for storing and maintaining E911
records on an ALI database and makes the information available to the PSAPs.
The gateway vendor forwards the E911 records to the E911 service provider, any

Glossary of Terms and Abbreviations

9-10 MetaSolv Solution CORBA API Developer’s Reference

reference to the E911 service provider should be considered a System as defined by
the UML specification.

■ E911 Smart Task: The task on a provisioning plan giving the user control of the
information that is sent to the E911 service provider.

■ Gateway Vendor: The system using the PSRAncillary server to obtain E911
information. The gateway vendor is responsible for taking the E911 information
and formatting it into the appropriate NENA transfer protocol and passing the
E911 information to the appropriate E911 service provider. Any reference should
be considered an actor to MetaSolv Solution as defined by UML specifications. In
this case, the actor is also a system.

■ MetaSolv Solution E911 Administrator: The person responsible for working E911
related issues in MetaSolv Solution. This person has domain knowledge about
NENA, emergency 9-1-1 processing, use of MetaSolv Solution to work E911
related issues and tasks. Any reference should be considered an actor to MetaSolv
Solution as defined by UML specifications. The MetaSolv Solution E911
administrator can be considered a more specialized role than that of the MetaSolv
Solution user.

■ MetaSolv Solution Database: Used to persist information for MetaSolv Solution.

■ MetaSolv Solution User: The person using MetaSolv Solution to do order entry or
location/customer maintenance. This person is not expected to know specific E911
related information other than the very basics needed in an order entry capacity.

■ NENA: National Emergency Number Association; organization responsible for
standardizing emergency 9-1-1 procedures.

■ PSAP: Public Safety Answering Point; a facility equipped and staffed to receive
9-1-1 calls.

■ PSRAncillary server: The MetaSolv Solution API server handling the E911
processing methods of the WDIPSRAncillary IDL interface. This term is used
when referring to the server portion of MetaSolv Solution.

10

The PSR Order Entry API 10-1

10The PSR Order Entry API

The Product Service Request (PSR) module integrates telephone number
administration, product catalog, and customer management with an ordering engine.
It captures and stores information required to reference and provision a service
request. Other modules in Oracle Communications MetaSolv Solution rely upon the
information in the PSR module to enable fulfillment of an order for a product or
service for a specific customer. The service request itself initiates several other
processes, such as service design and provisioning, telephone number assignment,
directory services, LIDB/CNAM, and E911. The PSR module is an ordering engine
that enables you to order and provision telephone and non-telephone products
including dial tone services, centrex, ISDN-BRI, ISDN-PRI, private line circuits,
ATM/frame services, travel cards, customer premise equipment, etc. Any product you
define in the product catalog can be ordered through the PSR module.

The PSR Order Entry API provides access to necessary data and business rules
underlying the order management functionality in the PSR module, which allows
orders to be provisioned. The PSR Order Entry API enables users to enter order
information in other systems, bypassing the data entry and data management
functionality of the PSR module. The other system is responsible for order entry and
validation of information that allows products to be provisioned. The other system is
also responsible for the initiation of the mediation layer and/or API. The API inserts
into the MetaSolv Solution database the customer account, service location and
product service request information necessary for any telecom products or services
that are provisioned. The functionality of the other MetaSolv Solution modules
remains intact and references the service request information in the same way as is
done for a service request that is entered through the PSR GUI.

The PSR Order Entry API provides IDL for PSR ordering, enabling, retrieval, creation,
updating, and deletion of PSR orders. The structure of the PSR API architecture is
based on the following assumptions:

■ Your application is responsible for following MetaSolv Solution business rules.
These business rules include:

– All static values are defined in the IDL files as ENUM types. MetaSolv
Solution does not provide valid values for user-defined values.

– Any customer can be exported from the database. The status is not checked
when exporting customers.

– Customers can be exported based on the customer ID.

– If an error is encountered at any point, the individual operation fails but the
process can continue.

– Import of an updated customer can be performed only on a customer that
currently exists in the database.

PSR Order Entry API Interfaces

10-2 MetaSolv Solution CORBA API Developer’s Reference

■ The third-party application is responsible for managing all database transactions,
including commit and rollback processing.

PSR Order Entry API Interfaces
Figure 10–1 shows the relationship of the interfaces in the PSR Order Entry API.

Figure 10–1 PSR API Session Interfaces

WDIManager Interface
Table 10–1 lists the operations in the WDIManager interface of the WDIPSR.IDL file
and their accompanying description or notification operations.

Table 10–1 PSR Order Entry API WDIManager Interface Operations

Operation Description

startPSRSession Obtains the object reference of the PSRSession

destroyPSRSession Terminates the PSRSession

startPSRSession2 Obtains the object reference of the PSRSession2

destroyPSRSession2 Terminates the PSRSession2

startPSRProductCatalogSession Obtains the object reference of the
PSRProductCatalogSession

destroyPSRProductCatalogSession Terminates the PSRProductCatalogSession

startPSRProvisioningSession Obtains the object reference of the
PSRProvisioningSession

destroyPSRProvisioningSession Terminates the PSRProvisioningSession

startInfrastructureSession Obtains the object reference of the
InfrastructureSession

destroyInfrastructureSession Terminates the InfrastructureSession

startTransaction commit

rollback

destroyTransaction Terminates the Transaction

PSR Order Entry API Interfaces

The PSR Order Entry API 10-3

PSRSession Interface Operations
Table 10–2 lists the operations in the PSRSession of the WDIPSR.IDL file and their
accompanying notification operations.

startSignal eventOccurred

eventTerminated

eventInProgress

eventCompleted

eventErrored

destroySignal Terminates the Signal

startInSignal eventInProgress

eventCompleted

eventErrored

destroyInSignal Terminates the Insignal

Table 10–2 PSRSession Interface Operations

Operation WDINotification

assignCFA_v2 assignCFASucceeded_v2

assignCFAFailed_v2

exportAccountProvisioningData_v2 accountProvisioningDataExportSucceeded_v2

accountProvisioningDataExportFailed

exportAccountServerDataPSR_v2 accountServerDataPSRExportSucceeded_v2

accountServerDataPSRExportFailed

exportAllServiceLocations_v2 -
Deprecated. Use the corresponding
Infrastructure API operation instead.

PSRExportFailed

exportCFAInfo_v2 exportCFAInfoSucceeded_v2

exportCFAInfoFailed_v2

exportCLLILocation_v2 - Deprecated. Use
the corresponding Infrastructure API
operation instead.

exportCLLILocationSucceeded_v2

exportCLLILocationFailed

exportCPNIConsents_v2 PSRexportCPNIConsentsSucceeded_v2

PSRexportCPNIConsentsFailed

exportCreditCardAuthorizationData_v2 creditCardAuthorizationDataExportSucceeded_
v2

creditCardAuthorizationDataExportFailed

exportCustomerAccount_v2 PSRCustomerExportSucceeded_v2

PSRExportFailed

exportCustomerAccount_v3 PSRCustomerExportSucceeded_v3

PSRExportFailed

exportCustomerAccounts_v2 PSRCustomerExportSucceeded

PSRExportFailed

Table 10–1 (Cont.) PSR Order Entry API WDIManager Interface Operations

Operation Description

PSR Order Entry API Interfaces

10-4 MetaSolv Solution CORBA API Developer’s Reference

exportCustomerAccounts_v3 PSRCustomerExportSucceeded

PSRExportFailed

exportCustomerOrders_v2 - Deprecated. PSRExportCustomerOrdersSucceeded_v2

exportCustomerOrders_v3 PSRExportCustomerOrdersSucceeded_v3

exportCustServiceLocations_v2 PSRExportFailed

exportDomainNameRegistrationData_v2 domainNameRegistrationDataExportSucceeded_
v2

domainNameRegistrationDataExportFailed

exportEMailProvisioningData_v2 emailProvisioningDataExportSucceeded_v2

emailProvisioningDataExportFailed

exportEMailServerDataPSR_v2 emailServerDataPSRExportSucceeded_v2

emailServerDataPSRExportFailed_v2

exportFTPServerDataPSR_v2 FTPServerDataPSRExportSucceeded

FTPServerDataPSRExportFailed_v2

exportNGNPSR exportNGNPSRSucceeded

exportNGNPSRNoDataFound

exportNGNPSRFailed

exportNGNServItem exportNGNServItemSucceeded

exportNGNServItemFailed

exportOrder_v2 - Deprecated. PSRExportOrderSucceeded_v2

exportOrder_v3 PSRExportOrderSucceeded_v3

exportOrderValues_v2 PSROrderValuesExportSucceeded_v2

exportProvisioningData_v2 provisioningDataExportSucceeded_v2

provisioningDataExportFailed

exportPSR_v2 - Deprecated. exportPSRSucceeded_v2

exportPSRFailed

exportPSR_v3 exportPSRSucceeded_v3

exportPSRNoDataFound_v3

exportPSRFailed_v3

exportServiceLocations_v2 - Deprecated.
Use the corresponding Infrastructure API
operation instead.

PSRSvcLocationExportSucceeded_v2

PSRExportFailed

exportServItem_v2 - Deprecated. PSRServItemSucceeded_v2

PSRExportFailed

exportServItem_v3 PSRServItemSucceeded_v3

PSRExportFailed

exportWebHostingProvisioningData_v2 webHostingProvisioningDataExportSucceeded_
v2

webHostingProvisioningDataExportFailed

exportWebHostingServerDataPSR_v2 webHostingServerDataPSRExportSucceeded

webHostingServerDataPSRExportFailed_v2

Table 10–2 (Cont.) PSRSession Interface Operations

Operation WDINotification

PSR Order Entry API Interfaces

The PSR Order Entry API 10-5

getOrderStatus_v2 getOrderStatusSucceeded_v2

getOrderStatusFailed_v2

importCPNIConsent_v2 PSRImportCPNIconsentSucceeded

PSRImportCPNIconsentFailed

importNewCustomerAccount_v2 PSRImportSucceeded

PSRImportFailed

ImportNewCustomerAccount_v3 PSRImportSucceeded

PSRImportFailed

importNewServiceLocation_v2 -
Deprecated. Use the corresponding
Infrastructure API operation instead.

PSRImportSucceeded

PSRImportFailed

importNGNPSR importPSROrderSucceeded

importPSROrderFailed

importPSR_v3 importPSROrderSucceeded_v3

importPSROrderFailed_v3

importPSROrder_v2 - Deprecated. importPSROrderSucceeded

importPSROrderFailed

importUpdatedCustomerAccount_v2 PSRImportSucceeded

PSRImportFailed

ImportUpdatedCustomerAccount_v3 PSRImportSucceeded

PSRImportFailed

importUpdatedServiceLocation_v2 -
Deprecated. Use the corresponding
Infrastructure API operation instead.

PSRImportSucceeded

PSRImportFailed

processBillingTelephoneNumber_v2 processBillingTelephoneNumberSucceeded_v2

processBillingTelephoneNumberFailed

searchMsag_v2 searchMsagSucceeded_v2

searchMsagFailed

surveyUpdate_v2 surveyUpdateImpactSucceeded_v2

surveyUpdateImpactFailed

unassignCFA_v2 unassignCFASucceeded_v2

unassignCFAFailed_v2

updateDomainProvisioning_v2 updateDomainProvisioningSucceeded_v2

updateDomainProvisioningFailed

validateCustomerAccount_v2 validateCustomerAccountSucceeded_v2

validateCustomerAccountFailed

validateCustomerAccount_v3 validateCustomerAccountSucceeded_v3

validateCustomerAccountFailed

verifySvcLoc_v2 - Deprecated. Use the
corresponding Infrastructure API
operation instead.

verifySvcLocSucceeded

verifySvcLocFailed

Table 10–2 (Cont.) PSRSession Interface Operations

Operation WDINotification

PSR Order Entry API Interfaces

10-6 MetaSolv Solution CORBA API Developer’s Reference

PSRSession Operation Descriptions
This section describes the operations defined in the WDIPSR.IDL file.

■ importNGNPSR

Enables import of orders with template-based service items (those with item types
of System, Element, Connector, or Equipment) and nontemplate-based service
items.

■ exportNGNPSR

Enables export of orders with template-based and nontemplate-based service
items. This export includes header information, such as customer identification
information.

■ exportNGNServItem

Enables export of template-based and nontemplate-based service items. This
export includes service items only; no header information is exported. Using this
operation, you can export all service items for a customer.

PSR Order Entry API Preferences
MetaSolv Solution defines several preferences that are specific to the PSR API. These
preferences are located in the Preferences window, in the API/PSR Order Entry API
Preferences directory.

Bypass PSR API Switch Validation for TN assignment
This system level preference is a check box that can be deselected (N) or selected (Y):

■ N: The PSR API switch validation is performed for a TN Assignment.

■ Y: The PSR API switch validation is not performed for a TN Assignment.

Bypass Selected PSR API Import Structure Validation
This system level preference is a check box that can be deselected (N) or selected (Y):

■ N: The software does not bypass any PSR API import structure validation.

■ Y: Selected PSR API validation is not as strict. This functionality currently exists
only for values and label validations. When a structure fails validation, it is not
processed by the APIs and the incorrect information is not entered into the
MetaSolv Solution database. However, the PSR is still saved in the system. The
PSR is subject to validation at the time of completion.

Note: You must be using the PSR Order Entry API for this preference to affect
MetaSolv’s software.

Override Default Value on PSR API Import When Label Exists on Import Structure
This system level preference is a check box that can be deselected (N) or selected (Y):

■ N: You must populate the default values and an activity code for delete.

■ Y: The importNGNPSR and importPSR_v3 methods overwrite the default values
before making the API call when the PSROrderItemValue2 structure is populated.

You do not have to populate the value structure with the default value and an activity
code for delete. You can populate it with the preferred value and an activity code of
New.

PSR Order Entry API Interfaces

The PSR Order Entry API 10-7

Note: You must be using the PSR Order Entry API for this preference to affect
MetaSolv’s software.

Use Copy Item When Importing PSR Order
This system level preference is a check box that can be deselected (N) or selected (Y):

■ N: When an item is copied during the import of a PSR order, the item, as well as
all child items, are copied.

■ Y: When an item is copied during the import of a PSR order, only the item itself is
copied.

Using Metasolv Solution Inventory as the Primary Inventory for Telephone Numbers
This system level preference is a check box that can be deselected (N) or selected (Y):

■ N: You can create a WTN while you are creating a service request.

■ Y: You can assign the working telephone number (WTN) from the telephone
number inventory to a service request, but you cannot create a WTN during
service request entry.

PSRProductCatalogSession Interface Operations
Table 10–3 lists the operations in the PSRProductCatalogSession of the WDIPSR.IDL
file and their accompanying notification operations.

PSRProductCatalogSession Operation Descriptions
This section describes the operations defined in the WDIPSR.IDL file.

■ exportProductCatalogWithTemplates

Enables export of product catalog information for template-based products (those
with an item type of System, Element, Connector, or Equipment).

PSRProvisioningSession Interface Operations
Table 10–4 lists the operations in the PSRProvisioningSession of the WDIPSR.IDL file
and their accompanying notification operations.

Table 10–3 PSRProductCatalogSession Interface Operations

Operation WDIProductCatalogNotification

exportProductCatalog_v2 -
Deprecated

exportProductCatalogSucceeded_v2

exportProductCatalogFailed

exportProductCatalog_v3 exportProductCatalogSucceeded_v3

exportProductCatalogFailed

exportProductGroups PSRExportProductGroupsSucceeded

PSRExportProductGroupsFailed

exportProductCatalogWith

Templates

PSRExportProductCatalogWithTemplatesSucceeded

exportProductCatalogFailed

Process flow

10-8 MetaSolv Solution CORBA API Developer’s Reference

Process flow
The section that follows contains a sample process flow for unsolicited messages. Use
the sample flow as a template when you develop your own process flows.

Unsolicited Messages
When the message is initiated by the third party (unsolicited), MetaSolv Solution plays
the role of the server, and the third-party application plays the role of the client.
Unsolicited messages are processed asynchronously, meaning a callback mechanism is
used to report back the results of an operation invoked by the third-party application.

Sample Unsolicited Process Flow for Importing a Customer
The overall process flow for importing a customer is as follows:

1. The third-party application binds to the MetaSolv Solution Application Server to
get a WDIRoot object reference.

2. The third-party application invokes the startPSRSession operation of the
WDIManager interface to get a PSRSession object reference.

3. The third-party application invokes the connect operation of the WDIRoot
interface, which yields a WDIManager object reference.

4. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference.

5. The third-party application instantiates a WDINotification object.

6. The third-party application invokes the importNewCustomer operation on the
PSRSession interface, providing WDITransaction, WDINotification, and
PSRCustomerAccount objects.

7. The MetaSolv Solution Application Server processes the invoked PSRSession
operation and invokes the appropriate callback operation on the input
WDINotification. In this example, the operations are PSRCustomerExportSucceeded
or PSRExportFailed for exporting, and PSRImportSucceeded or PSRImportFailed for
imports.

8. If the PSRImportSucceeded operation is invoked, the third-party application invokes
the commit operation of the WDITransaction interface. If the PSRExportFailed
operation is invoked, a WDIError sequence describing the error is returned to the
third-party application. The third-party application then performs the appropriate

Table 10–4 PSRProvisioningSession Interface Operations

Operation WDIProvisioningNotification

executeFinishOrder executeFinishOrderSucceeded

executeFinishOrderFailed

executeCLSCktIDAssignment executeCKTIDAssignmentSucceeded

executeCKTIDAssignmentFailed

exportCktItems exportCktItemsSucceeded

exportCktItemsFailed

exportLSOClli exportCktLSOClliSucceeded

exportCktLSOClliFailed

Process flow

The PSR Order Entry API 10-9

error handling routine. In the case of an import failing, the third-party application
should rollback the transaction.

9. The third-party application invokes the destroyPSRSession operation of the
WDIManager interface.

10. The third-party application invokes the destroyTransaction operation on the
WDIManager interface.

11. The third-party application invokes the disconnect operation of the WDIRoot
interface.

Import Notifications
When the import of a new object succeeds, the document number is populated with
the ID of the new record. For PSRCustomerAccount imports, it is custAcctID. For
PSRServiceOrder imports, it is documentNumber. For PSRSvcLocation imports, it is
endUserLocationID, endUserLocationType is whatever was provided during the
import.

The documentNumber field will never pass back a value other than 0 on any of the
failed notification operations. The success notification operations will return a value of
0, except in the following situations:

■ An existing PSR API operation has passed any unique integer value that would
allow the client to uniquely identify the success notification operation. This is
usually an API operation method using a specific customer account ID or order
(document) number to export/import data.

■ A new (not versioned _v2 or _v3) operation is added to the PSR API which can
correctly implement the field for the client to send the documentNumber to the
server.

PSR API Date Handling
To indicate that a date should be considered null, send "0" for the day, "0" for the
month, and "0" for the year. If you supply a year that is fewer than four digits, 1900 is
added to the value to determine the year. If four digits are provided, it is assumed that
this is the exact year.

Table 10–5 provides information on how the dates that you specify are interpreted.

Batch Operations in PSR API Exports
The failure of one item in an export of multiple items does not cause the failure of the
entire export. Instead, the items that succeed are returned, as well as a sequence of
error messages describing the failed operations. When the client requests an operation
that can result in multiple items being returned, both the exportSucceeded and
exportFailed operations can be called. The exportSucceeded operation is always called,
even if all items failed export, in which case the returned sequence is empty. Although

Table 10–5 Specified and Interpreted Dates

Specified Date Interpreted Date

1/1/99 January 1, 1999

1/1/101 January 1, 2001

1/1/1 January 1, 1901

1/1/2001 January 1, 2001

MetaSolv Solution Product Specification and Product Catalog

10-10 MetaSolv Solution CORBA API Developer’s Reference

the exportFailed operation is generally called first, it cannot be guaranteed in
multi-threaded environments.

The export of items such as Telephone Number Inventory Export result in a large
amount of data, which can be difficult to manage. Therefore, this operation was
broken into a series of exports. Groups of 100 telephone numbers at a time, minus
failed retrievals, are sent to the notification object with the PSRTelNbrBatchSucceeded
operation. After all such operations have finished, the notification object is sent with
the PSRTelNbrExportComplete operation.

Export Search Criteria
The PSR API provides a means to export data based on specific search criteria. You can
perform the search using the specifications identified in the SearchableField
enumerated type in the WDIPSR.IDL file. Additionally, there are specific operations
available to specify the criteria, such as EQUAL, LIKE, and so on. These are defined in
the SearchOperation enumerated type.

Finally, the SearchCriteria struct contains one SearchableField reference, one
SearchOperation reference, and a string value to search for. Note that all fields that can
be searched are not necessarily strings; in the cases of numeric values, a string
representation of the value is expected. In the case of enumerated values, a string
representation of the numeric value of the enumerated type is expected. It is possible
to provide multiple SearchCriteria for an operation, which means that the resulting
values must meet all of the specified criteria (an AND operation).

MetaSolv Solution Product Specification and Product Catalog
This section provides information on MetaSolv Solution product specification and
product catalog.

Products
MetaSolv Solution has the following product levels:

■ Item Types

■ Product Specifications

■ Product Catalog

Item Types
Think of item types as the MetaSolv Solution rules. These are items and relationships
that MetaSolv Solution has predefined for products and services. Examples include
line products, which can have attributes such as lines, system options, and features.
These attributes allow the MetaSolv Solution code to determine what kind of service a
product is and ensure certain data is collected and specific processing occurs. For
example, circuits are built (in the background) for dial tone lines so they can be
designed later.

Product Specifications
Product specifications are engineering rules defined by technical staff in conjunction
with product management. These specifications are supported by engineers and
network designers for specific implementations. Using the item type examples above
(line products, with attributes of lines, system options, and features), a customer could
create a product specification for dial tone (POTS) service as a line product with lines

MetaSolv Solution Product Specification and Product Catalog

The PSR Order Entry API 10-11

that have a system option of Hunt Groups. Each line may have several features such as
call waiting, call forwarding, caller identification, three way conferencing, and so on.
These specifications are building blocks that have pre-defined relationships designed
so that a product catalog can be built using these building blocks. People creating the
product catalog need not be worried about the provisioning/designing aspects of a
product.

Product Catalog
The product catalog is the marketing rules defined by product management. The
product catalog addresses three primary marketing issues: 1) Product availability (by
location or by business/market segment), 2) Pricing and 3) Packaging. Again,
continuing our earlier example, a residential dial tone product, a basic business dial
tone product and an enhanced business dial tone product could all be built from the
product specification example. Each product may have different pricing, market
segments, etc. Multiple product catalogs can be built from one product specification.

More About Products
An item is the generic name for products and options. Setting up products and options
is a two-step process. First, the product specifications and the rules for relationships
between product specifications must be defined. The next step is creating the product
catalog and designing how the items will be sold. The product catalogs must follow
the rules set up in the first step. When setting up product catalogs, the marketing item
is the level one item. Usually products are the level one items in the product catalog.
The highest level in the hierarchy of items is defined as a level one item.

More About Product Specifications
Figure 10–2 describes the basic process flow for setting up product specifications.

MetaSolv Solution Product Specification and Product Catalog

10-12 MetaSolv Solution CORBA API Developer’s Reference

Figure 10–2 Standard Item Setup

Figure 10–3 shows the standard item setup data model.

Figure 10–3 Standard Item Setup Data Model

Note: All references to standard item in this flow refer to product
specifications. References to item types refer to MetaSolv
Solution-defined item types.

MetaSolv Solution Product Specification and Product Catalog

The PSR Order Entry API 10-13

The item type and item relationship type entities are preloaded with MetaSolv
Solution. These two entities define the common characteristics that are handled in the
application. An item type and its characteristics are pre-defined. Characteristics might
include an item category (such as product, option, line, trunk, etc.), whether the item
type must have a premise, and the item type’s processing path. (The processing path
defines the processing that must take place for an item type.)

Table 10–6 describes the item types’s processing path.

For instance, a type of item might be “line product,” which would be characterized as
a product. Another type might be “line”, which would be characterized as a physical
item (meaning a circuit will be created for design purposes) with a premise. The
relationship between these two item types would be defined in the item type
relationship table with line product being the superior item and line being the
subordinate item.

When users define the product specifications, they delineate the actual items that can
be sold. For instance, a product specification of basic business line might be set up
with a type of line product. Some rules of use are defined here. For example, if you
want a disconnect reason to be entered when this item is disconnected, you could set
that here. Line types are another product specification that can be set up with a basic
business line. The rules that can be defined for this item include the disconnect reason
must be entered, and when the item is ordered the question “how many do you
want?” must be asked.

Table 10–7 lists the characteristics that you must define if you use the Arbor/BP billing
system or flow through provisioning with PSR.

Note: All entities with standard_item in the name hold the product
specification information. Entities with item_type in the name store
MetaSolv Solution-defined items.

Table 10–6 Item Type Processing Path

Processing Path Acronym Description

Local Telephone Line Service LTLS The item will have a premise and will have
lines.

Local Telephone Trunk Service LTTS The item will have a premise and trunks.

Non-Premise Service NPS Indicates the item will not have a service
location and the billing address will be used for
the service location.

Non Switched Services NSS Product catalogs that fall in this path will
require circuit assignments and two locations.

Table 10–7 Standard Items

Table Column Description

standard
Item

Arbor EMF Ind (called
Service Instance on the
window)

Indicates that the item translates to a service instance
in the billing system. These columns may be used for
any billing interface, not just the Kenan Arbor billing
system.

standard
Item

Arbor Usage Guiding
Key (called Guiding
Key on the window)

If the Arbor EMF Ind is set on, a usage guiding key is
necessary. These columns may be used for any billing
interface, not just the Kenan Arbor billing system.

MetaSolv Solution Product Specification and Product Catalog

10-14 MetaSolv Solution CORBA API Developer’s Reference

Next the standard item relationship must be defined. If basic business is set up as the
highest item in the hierarchy (a product), it would be defined in this table with basic
business having no superior item. Basic business line would be set up as a subordinate
to basic business. Valid values may also be specified during the product specification
setup process. If you have an item that requires one or more values to be collected, a
name (label) is setup for each value collected and a list or range of valid values
defined. A default value may also be defined. An example illustrating this feature
might be an item called Start Type. A product specification of Start Type would have a
label of “Type” and a value list of “ground” or “loop.”

More About Product Catalogs
Figure 10–4 describes the basic process flow for setting up product catalogs (things to
sell). All references to specifications in this flow refer to product catalogs. References to
items refer to product specifications.

Figure 10–4 Specification Setup

standard
Item

Flow Through
Provisioning Nm

The command recognized by the FTP Gateway for a
PSR item. If this column has a value, it can be used in
the flow-through provisioning process.

standard
Item

Switch Provisioning
Ind

Indicates that the product specification will be used
for switch provisioning. In an installation where the
FTP Gateway is used this indicator directs the item to
be used in the flow through provisioning process. If
the FTP Gateway is not used, this indicator directs the
item to be part of a report to be used to perform the
switch provisioning.

standard
Item

Circuit Design Ind Indicates that the product specification will be used in
the circuit design process.

Note: The standard item table is referring to product specifications

Table 10–7 (Cont.) Standard Items

Table Column Description

MetaSolv Solution Product Specification and Product Catalog

The PSR Order Entry API 10-15

Figure 10–5 shows the item specification data model.

Figure 10–5 Item Specification Data Model

When creating a product catalog for a product, choose the product you want to set up
from a list of standard items. The relationship (product specifications) of these items
must have no superior items, for example, basic business. Once you have chosen the
level one item, the next level of items may be selected from a list of standard items
whose relationship has basic business as the superior item. In our example, basic
business lines may be selected. This process sets up the product catalog relationship.
For level one items there is other information that needs to be collected such as type of
service, offering type (wholesale, resell, and retail), taxing information, and tariff
information. A product catalog name may be entered. Other information may be
specified about any item including information describing the availability of the item
(by Network Area), the from and to effective dates, and whether or not it is required or
standard. Pricing information may also be entered at this time (see the pricing area of
this document for specifics).

Packages
Defining a package is the same as defining a product. Currently, MetaSolv Solution
allows packages to be set up within a product for example packages of features for a
line. MetaSolv Solution does not currently support packages across products (for
example, packaging lines and trunk groups together).

Note: Entities with specification in the name store the product
catalog information.

MetaSolv Solution Product Specification and Product Catalog

10-16 MetaSolv Solution CORBA API Developer’s Reference

11

The Switch Provisioning Activation API 11-1

11The Switch Provisioning Activation API

The Switch Provisioning Activation API provides the IDL for switch provisioning
activation. The Switch Provisioning Activation API retrieves Design Layout Records
(DLRs), switch translation, and flow-through information for a given WDIEvent.

Your application is responsible for managing all database transactions, including
commit and rollback processing.

Functionality
The Switch Provisioning Activation API facilitates flow-through provisioning for
switched orders initiated from the PSR module of the Order Management subsystem,
and enables flow-through provisioning of dialtone orders. The Switch Provisioning
Activation API is directly involved with Oracle Communications MetaSolv Solution
and invokes the same rules.

Essential Terminology
Table 11–1 lists the terms that identify information and concepts that are required to
understand the flow-through provisioning using the APIs.

Switch Provisioning Activation Interface
This section provides information about the Switch Provisioning Activation interface.

DLRSession Interfaces
Table 11–2 lists the operations available in the DLRSession of the WDIDLR.IDL file
that is used by the Switch Provisioning Activation API.

Table 11–1 Switch Provisioning Terminology

Term Definition

Activation product A network management system (NMS), such as Lucent
Technology’s ACTIVEVIEW product line.

Activation server An application developed by you or a third party that integrates
with MetaSolv Solution to export provisioning data and
communicate the data to one or more activation products.

Process Flows

11-2 MetaSolv Solution CORBA API Developer’s Reference

DLRSession Interface Operations
The following list contains the DLRSession operations of the WDIDLR.IDL file that
relate to switch provisioning activation:

■ getSwitchActivation_v2, get SwitchActivation_v4, and get switch Activation_v5

Process Flows
This section contains sample process flows for each type of message: solicited and
unsolicited. Use the sample flow as a template for developing your own process flows.

Solicited Messages
A solicited message is a message initiated by MetaSolv Solution. MetaSolv Solution
plays the role of the client, and the third-party activation server plays the role of the
server.

Table 11–3 lists the interfaces and operations that the third-party application
implements using the IDL file provided with the DLR API.

Sample Solicited Message Process Flow
When MetaSolv Solution is the client, the overall process flows as follows:

1. The API client binds to the third-party server to get a WDIRoot object reference.

2. The API client invokes the connect operation of the WDIRoot interface, and the
connect operation yields a WDIManager object reference.

3. The API client invokes the startSignal operation of the WDIManager interface to
get a WDISignal object reference.

Table 11–2 DLRSession Interface Operations

Operations WDINotification

getSwitchActivation_v2 switchActivationGetSucceeded_v2

switchActivationGetFailed

getSwitchActivation_v4 SwitchActivationGetSucceeded_v4

SwitchActivationGetFailed_v4

getSwitchActivation_v5 SwitchActivationGetSucceeded_v5

SwitchActivationGetFailed_v5

Table 11–3 Switch Provisioning API Interfaces Solicited Messages Operations

Interface For Implementing These Operations

WDIRoot connect

disconnect

WDIManager startTransaction

destroyTransaction

WDITransaction N/A

WDISignal eventOccurred

eventTerminated

WDIInSignal N/A

Process Flows

The Switch Provisioning Activation API 11-3

4. The API client invokes the eventOccurred operation of the WDISignal interface to
notify the third-party application that an event registered to them has occurred
within MetaSolv Solution.

5. The API client invokes the destroySignal operation of the WDIManager interface.

6. The API client invokes the disconnect operation of the WDIRoot interface.

7. Once the third-party server completes processing, possibly involving additional
unsolicited messages to MetaSolv Solution, the third party performs a bind to the
MetaSolv Solution Application Server and follows the same process described
above for the client with the exception that the eventCompleted/Errored operations
are invoked passing the original WDIEvent structure.

If the third-party application encounters an error, it throws a WDIExcp as defined by
the IDL. The client handles CORBA system exceptions and WDIExcp exceptions.

Unsolicited Messages
An unsolicited message is a message initiated by the third-party application. MetaSolv
Solution plays the role of the server and a third-party application plays the role of the
client with the exception of the callback processing.

Table 11–4 lists the interfaces and operations that MetaSolv Solution implements using
the IDL file provided with the Switch Provisioning Activation API.

Table 11–5 lists the interfaces and operations for which the third-party application is
responsible.

Process Flow for Exporting Switch Provisioning Activation Information
The overall process flow for exporting a DLR follows:

1. The third-party application binds to the MetaSolv Solution Application Server to
get a WDIRoot object reference.

2. The third-party application invokes the connect operation of the WDIRoot
interface, which yields a WDIManager object reference.

Table 11–4 Switch Provisioning Interfaces Unsolicited Messages Operations

Interface For Implementing These Operations

WDIRoot connect

disconnect

WDIManager startTransaction

destroyTransaction

WDITransaction commit

rollback

DLRSession getSwitchActivation_v5

Table 11–5 Switch Provisioning Third-party Application Interfaces and Operations

Interface For Implementing These Operations

WDINotification switchActivationGetSucceeded_v5

switchActivationGetFailed_v5

Implementation Concepts

11-4 MetaSolv Solution CORBA API Developer’s Reference

3. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference and start a database transaction.

4. The third-party application invokes the startDLRSession operation of the
WDIManager interface to get a DLRSession object reference.

5. The third-party application instantiates a third-party implementation of a
WDINotification object.

6. The third-party application invokes the getSwitchActivation operation of the
DLRSession object, passing the WDINotification object.

7. The SwitchActivation data structure is returned asynchronously through
invocation of the switchActivationGetSucceeded/Failed) operation of the
WDINotification object.

8. The third-party application invokes the destroyDLRSession operation of the
WDIManager interface.

9. The third-party application invokes the destroyTransaction operation of the
WDIManager interface.

10. The third-party application invokes the disconnect operation of the WDIRoot
interface.

Implementation Concepts
This section describes the issues that you must be familiar with when building a
mediation server application for flow-through provisioning.

What Are Network Nodes and Network Node Types?
Network nodes are the equipment that manages the circuits in the network. They are
identified by a unique target identifier (TID). TIDs are used to search for devices on
the network. Commands are sent to the network node for flow-through provisioning.
For example, a user might designate one network node as the host network element
that communicates with the network management system. Essentially, a network node
is any device that can be provisioned through software. Network nodes can contain
one or more pieces of equipment, and can be directly associated with flow-through
provisioning plans on the Network Node Type window in the Infrastructure module.

If flow-through plans are used, the flow-through provisioning process cannot occur
without network nodes. Network node types are used in the flow-through
provisioning process to categorize network nodes into groups. Network node types
represent the activation vendor's requirements for activating the network element, and
they are used in the flow-through provisioning process to limit the number of
flow-through provisioning plans required.

What are Flow-through Provisioning Plans and Commands?
Flow-through provisioning plans and flow-through provisioning commands are
MetaSolv Solution concepts that define optional additional parameters used in the
flow-through provisioning process that are not a part of MetaSolv Solution. Below are
examples of some of the types of flow-through provisioning plans and commands that
can be created:

■ Plan

– Activate a DACS

Implementation Concepts

The Switch Provisioning Activation API 11-5

■ Command

– Config Port A

– Config Port B

■ Parameters

– Direction: 1 way

– Direction: 2 way

– Alarming

The number of flow-through provisioning plans, commands, and parameters that are
created will vary according to the requirements of the activation product used for the
flow-through provisioning process. The nature of flow-through provisioning plans
and commands is to allow MetaSolv Solution to work with any selected activation
product. That is, MetaSolv Solution only captures TID, port addresses, and
cross-connects for flow-through provisioning. Flow-through provisioning plans and
commands provide the ability to capture all the information the activation vendor
requires.

What Are Design Layout Records (DLRs)?
A design layout record (DLR) is a document that contains the technical information
that describes the physical layout of a circuit at a given location.

What are Tech Translation Sheets?
The tech translation sheet defines the items required to provision the service in the
switch. For switch provisioning activation, once the order is entered, the product and
options ordered are the basis for the tech translation sheet.

What are Virtual Layout Records (VLRs)?
A virtual layout record (VLR) is a MetaSolv Solution-defined document that contains
the technical information that describes the layout of the physical components of an
ATM or Frame Relay virtual circuit, and the relationship of the physical components to
the logical components (the cloud) of that circuit.

Software Modules and Subsystems Used in Flow-through Provisioning
The Switched Provisioning Activation and Transport Provisioning Activation APIs use
the following modules and subsystems in the to complete the flow-through
provisioning process:

■ Equipment Administration module

■ Infrastructure module

■ Product Service Request (PSR) module

■ Service Provisioning subsystem

■ Work Management subsystem

Note: If the selected activation product only requires the defaults for
flow-through provisioning, then it is not necessary to use the PSR
module in the flow-through provisioning process at all.

Implementation Concepts

11-6 MetaSolv Solution CORBA API Developer’s Reference

Equipment Administration Module
The flow-through provisioning process uses the Equipment Administration module to
define the following:

■ Target identifier (TID) that the activation vendor recognizes

■ Network node with which the equipment is associated

Infrastructure Module
The Infrastructure module is used in the flow-through provisioning process to:

■ Define new network node types

■ Associate network node types with flow-through provisioning plans and rate
codes

Additionally, the user can access the PSR module's Product Catalog function through
the Infrastructure module. The user will only use the Infrastructure module for
flow-through provisioning if they need to specify additional data for a network node.

Product Service Request Module
The Product Service Request (PSR) module is used in the flow-through provisioning
process to:

■ Set up flow-through provisioning plans and commands

■ Enter a service request

■ Provide service request information related to flow-through provisioning on the
tech translation sheet for switch translations

More specifically, the PSR module's Product Catalog function is used in the
flow-through provisioning process to define the features that appear on the PSR, as
well as the options on those features. Options on the service request used for the
flow-through provisioning process include flow-through provisioning plans and
commands. These options often have default values, and when a PSR is entered with
these options, the service request includes the required default values (also referred to
as parameters). The MetaSolv Solution user can use the Product Specifications window
to determine if the values or parameters appear on the tech translation sheet.

Service Provisioning Subsystem
The flow-through provisioning process uses the Service Provisioning subsystem to:

■ Design the circuit(s) on the PSR used for flow-through provisioning

■ Verify and modify the flow-through provisioning parameters that are set up in the
PSR module

Note: A network node must be associated with every piece of
equipment (or at a higher level in the equipment hierarchy) used for
flow-through provisioning. A network node type must be associated
with every network node used for flow-through provisioning.

Note: All parameters necessary to the flow-through provisioning
process (except equipment parameters) are defined in the Product
Catalog function.

Implementation Concepts

The Switch Provisioning Activation API 11-7

The Service Provisioning subsystem also provides the flow-through provisioning
information (such as network node type and network node address) that appears on
the CLR, DLR, VLR, and tech translation sheet.

Work Management Subsystem
The Work Management subsystem is used in the flow-through provisioning process to:

■ Associate a gateway event with a provisioning plan task

■ Initiate a gateway event

■ Verify the gateway event is complete

Gateway events define when MetaSolv Solution should send flow-through
provisioning information to the activation application for processing.

Flow-through Provisioning Process
The flow-through provisioning process is used in MetaSolv Solution to:

■ Order and provision services associated with the line side of a switch

■ Engineer a service request and provision it without re-entering activation
information

See the online Help for detailed instructions on using the flow-through provisioning
process.

Signal Handler
The signal handler module implements the interfaces required to handle standard
gateway events from MetaSolv Solution clients. This module is also responsible for
updating gateway event status to “In Progress”.

The outbound signals sent by the client to your activation server are the flow-through
provisioning gateway events. These events are defined at the service item level. Each
service item (for example, a phone line, a WATS line, or an ATM/Frame circuit) on the
order will have the flow-through provisioning gateway event associated with it. As a
result, when an order is processed by the Work Management subsystem, your
activation server can potentially receive as many gateway events as there are service
items in the order. For example, if a transport provisioning order for ASR equipment
comprises six special access circuits, your activation server receives six separate
gateway events from the client.

Each gateway event associated with a service item in a service request can be
processed independently of the gateway events for any other service item.

Ensure that the implementation conforms to the pattern described in "Outbound
Signals – Gateway Events". The signal handler module should implement a WDIDLR
module with all the interfaces and operations specified in Table 2–6, " Outbound
Gateway Event Operations Required For All APIs". Event status updates are
performed through DLRSERVER.

Upon receiving an outbound signal conveying gateway event information from the
client, the signal handler module activates the request handler module and hands off

Note: Line side activation includes provisioning dialtone services
through a switch. The activation process occurs outside of MetaSolv
Solution.

Implementation Concepts

11-8 MetaSolv Solution CORBA API Developer’s Reference

the event information that was received. In order to avoid locking up the client, it is
recommended that the signal handler should return control to the client immediately
upon activating the request handler module and updating the event status.

Request Handler
The request handler module retrieves activation data from the MetaSolv Solution
database by invoking the operation getSwitchActivation on DLRSERVER to retrieve
switch activation data.

The operation is a standard data export operation that conforms to "Asynchronous
Interaction Pattern". This provisioning operation accepts a WDIEvent parameter. This
allows the request handler to retrieve provisioning data from the database in a single
step.The request handler passes the gateway event structure that was received from
the client, and DLRSERVER retrieves the required provisioning data.

It is important to understand the data types that are involved in the two operations
listed above. Data type definitions can be found in file WDIDLRTYPES_v5.IDL. The
following Switch Activation data structure is returned to the caller (through callback
invocation):

Example 11–1 Switch Provisioning Data Structure Example

struct SwitchActivation {
 DLR dlr;
 DLRSwitchTranslation switchtranslation;
 ActivationCommandPlanSeq activationCommandPlans;
};

The ActivationCommandPlanSeq data type delivers the FTP Plan for this service item.

Formatting/Translation Module
The formatting/translation module handles two-way data translation and format
conversion required for communicating with the activation product. This module's
services are used by the other modules.

Response Handler
The response handler module handles responses received from the activation product.
It performs the necessary reverse translation/formatting using the
formatting/translation module and then determines the operation status. Based on the
success or failure determination, this module updates gateway event status to
“Completed” or “Errored”. Design of this module depends upon factors such as the
synchronous/asynchronous and online/batch nature of the interaction with activation
product.

Date/Time Format
Dates are returned using the MetaSolv:CORBA:WDIUtil:MSVDate structure, which
stores the date and time information as a string of the form YYYYMMDDHHMMSS.

CORBA Substructures
The CORBA specification does not allow uninitialized values for structures or types
embedded within other structures. In the case of no data, a sequence of length "0" is
returned.

Implementation Concepts

The Switch Provisioning Activation API 11-9

Design Considerations
To obtain the full benefit of the automated flow-through capabilities of these APIs,
gateway events must be associated with tasks in Work Management provisioning
plans. MetaSolv Solution is pre-configured with gateway templates and gateway event
templates for Switch Provisioning.

See the online Help for detailed instructions on using the flow-through provisioning
process.

In order to ensure that the provisioning information provided by the Switched
Provisioning Activation API is sufficiently completed to be used by your network
management system, care must be used when ordering the service.

The PSR module captures default values for items that have pick lists. With
flow-through provisioning, defaults are also needed for editable fields. If defaults are
not provided, a user would be required to manually enter the same value on every line
for an order. Providing a default value in the product catalog for product specifications
that are required for flow-through provisioning streamlines the ordering process.

For transport provisioning activation, the network node target identifier (TID) and the
equipment port address assignment identifier (AID) in the database identify the
equipment and port address. These items should either be used directly by your
application or your application should maintain a cross-reference between the
identifiers used by your application and the MetaSolv Solution-supplied TID and AID.

Just as the provisioning of switch features requires additional parameters, the
provisioning of transport equipment requires additional parameters as well. The
transport equipment for dialtone lines is usually digital loop carrier. The MetaSolv
Solution CLR represents the provisioning information for this type of equipment. The
CLR captures the TID and the AID for the DLC equipment, which is part of the
information that is required for activating the service. The TID is determined by
identifying the Network Node to which the equipment belongs. The AID is
determined using the assignment information that is gathered on the CLR. To
provision transport equipment, additional parameters are usually required. These
parameters will vary by type of equipment, by transmission rate, and by activation
vendor.

Implementation Concepts

11-10 MetaSolv Solution CORBA API Developer’s Reference

12

The Transport Provisioning Activation API 12-1

12The Transport Provisioning Activation API

The Transport Provisioning Activation API supports flow-through provisioning of
different kinds of circuit designs. This API enables third-party network management
systems to export provisioning information from the Oracle Communications
MetaSolv Solution database and use that information to physically implement the
design.

The Transport Provisioning Activation API:

■ Provides a vendor-independent interface to enable flow-through provisioning of
Frame Relay and ATM circuits.

■ Provides flow-through information about any transport equipment assigned to a
DLR (for example: SONET and DACS).

■ Exposes the VLR through an API so customers can write Web applications that
display the VLR through a thin client.

Functionality
The Transport Provisioning Activation API provides the IDL for retrieving DLR, VLR
and flow-through information for a given WDIEvent. If the value for the returned
“Type” data element is V, VLR information exists for the circuit; otherwise DLR
information exists.

The third-party application is responsible for managing all database transactions,
including commit and rollback processing.

Essential Terminology
Table 12–1 defines the terms that identify the concepts and information that are
required to understand flow-through provisioning using the APIs.

Table 12–1 Transport Provisioning API Terminology

Term Definition

Activation product A network management system (NMS), such as Lucent Technology’s
ACTIVEVIEW product line.

Activation server An application developed by you or a third party that integrates
with MetaSolv Solution to export provisioning data and
communicate the data to one or more activation products.

Transport Provisioning Activation Interface

12-2 MetaSolv Solution CORBA API Developer’s Reference

Transport Provisioning Activation Interface
This section provides information about the Transport Activation interface.

DLRSession Interfaces
Table 12–2 lists the operations available in the DLRSession of the WDIDLR.IDL file
that are used by the Transport Provisioning Activation API.

DLRSession Interface Operation
The following list contains the operation used in the DLRSession of the WDIDLR.IDL
file:

■ getTransportProvisioning_v2,getTransportProvisioning_v4, and
getTransportProvisionin_v5

■ getVLR_v2

This operation replaces the getVLR operation from earlier releases.

Process Flows
This section contains sample process flows for each type of signal: solicited and
unsolicited. Use the sample flow as a template for developing your own process flows.

Solicited Messages
A solicited message is a message initiated by MetaSolv Solution. With this scenario,
MetaSolv Solution plays the role of the client, and the third-party activation server
plays the role of the server.

Table 12–3 lists the interfaces and operations that the third-party application
implements using the IDL file provided with the DLR API.

Table 12–2 DLR Session WDINotification Operations

Operations WDINotification

getTransportProvisioning_v2 transportProvisioningGetSucceeded_v2

transportProvisioningGetFailed

getTransportProvisioning_v4 transportProvisioningGetSucceeded_v4

transportProvisioningGetFailed_v4

getTransportProvisioning_v5 transportProvisioningGetSucceeded_v5

transportProvisioningGetFailed_5

Table 12–3 Transport Provisioning API Interfaces Solicited Messages Operations

Interface Operations

WDIRoot connect

disconnect

WDIManager startTransaction

destroyTransaction

WDITransaction N/A

Process Flows

The Transport Provisioning Activation API 12-3

Sample Solicited Message Process Flow
When MetaSolv Solution is the client, the overall process flows as follows:

1. The API client binds to the third-party server to get a WDIRoot object reference.

2. The API client invokes the connect operation of the WDIRoot interface, and the
connect operation yields a WDIManager object reference.

3. The API client invokes the startSignal operation of the WDIManager interface to
get a WDISignal object reference.

4. The API client invokes the eventOccurred operation of the WDISignal interface
passing a WDIEvent structure to notify the third-party vendor that an event
registered to them has occurred within MetaSolv Solution.

5. The API client invokes the destroySignal operation of the WDIManager interface.

6. The API client invokes the disconnect operation of the WDIRoot interface.

7. Once the third-party server completes processing, possibly involving additional
unsolicited messages to the MetaSolv Solution Application Server, the third party
binds to the application server and follows the same process described above for
the MetaSolv Solution client with the exception that the eventCompleted/Errored
operations are invoked passing the original WDIEvent structure.

If the third-party application encounters an error, it throws a WDIExcp as defined by
the IDL. The client handles CORBA system exceptions and WDIExcp exceptions.

Unsolicited Messages
An unsolicited message is a message initiated by the third-party software. MetaSolv
Solution plays the role of the server, and a third-party application plays the role of the
client with the exception of the callback processing.

Table 12–4 lists the interfaces and operations that MetaSolv Solution implements using
the IDL files provided with the Transport Provisioning Activation API.

WDISignal eventOccurred

eventTerminated

WDIInSignal N/A

Table 12–4 Transport Provisioning API Interfaces Unsolicited Messages Operations

Interface Operations

WDIRoot connect

disconnect

WDIManager startTransaction

destroyTransaction

WDITransaction commit

rollback

DLRSession getTransportProvisioning

Table 12–3 (Cont.) Transport Provisioning API Interfaces Solicited Messages Operations

Interface Operations

Implementation Concepts

12-4 MetaSolv Solution CORBA API Developer’s Reference

Table 12–5 lists the interfaces and operations for which the third-party application is
responsible.

Sample Unsolicited Message Process Flow for Exporting Transport Provisioning
Activation Information
The overall process flow for exporting Transport Provisioning Activation is as follows:

1. The third-party application binds to the MetaSolv Solution Application Server to
get a WDIRoot object reference.

2. The third-party application invokes the connect operation of the WDIRoot
interface, which yields a WDIManager object reference.

3. The third-party application invokes the startTransaction operation of the WDIRoot
interface to get a WDITransaction object reference and starts a database
transaction.

4. The third-party application invokes the startDLRSession operation of the
WDIManager interface to get a DLRSession object reference.

5. The third-party application instantiates a third-party implementation of a
WDINotification object.

6. The third-party application invokes the getTransportProvisioning operation of the
DLRSession object, passing the WDINotification object.

7. The TransportProvisioning data structure is returned asynchronously through
invocation of the transportProvisioningGetSucceeded/Failed operation of the
WDINotification object.

8. The third-party application invokes the destroyDLRSession operation of the
WDIManager interface.

9. The third-party application invokes the destroyTransaction operation of the
WDIManager interface.

10. The third-party application invokes the disconnect operation of the WDIRoot
interface.

Implementation Concepts
This section describes the issues that you must be familiar with when building a
mediation server application for flow-through provisioning.

What are Network Nodes and Network Node Types?
Network nodes are the equipment that manages the circuits in the network. They are
identified by a unique target identifier (TID). TIDs are used to search for devices on
the network. Commands are sent to the network node for flow-through provisioning.
For example, a user might designate one network node as the host network element
that communicates with the network management system. Essentially, a network node
is any device that can be provisioned through software. Network nodes can contain

Table 12–5 Transport Provisioning API Third-party Interfaces and Operations

Interface For Implementing These Operations

WDINotification transportProvisioningGetSucceeded_v5

transportProvisioningGetFailed_v5

Implementation Concepts

The Transport Provisioning Activation API 12-5

one or more pieces of equipment, and can be directly associated with flow-through
provisioning plans on the Network Node Type window in the Infrastructure module.

If flow-through plans are used, the flow-through provisioning process cannot occur
without network nodes. Network node types are used in the flow-through
provisioning process to categorize network nodes into groups. Network node types
represent the activation vendor's requirements for activating the network element, and
they are used in the flow-through provisioning process to limit the number of
flow-through provisioning plans required.

What are Flow-through Provisioning Plans and Commands?
Flow-through provisioning plans and flow-through provisioning commands are
MetaSolv Solution concepts that define optional additional parameters used in the
flow-through provisioning process that are not a part of MetaSolv Solution. Below are
examples of some of the types of flow-through provisioning plans and commands that
can be created:

■ Plan

– Activate a DACS

■ Command

– Config Port A

– Config Port B

■ Parameters

– Direction: 1 way

– Direction: 2 way

– Alarming

The number of flow-through provisioning plans, commands, and parameters that are
created will vary according to the requirements of the activation product used for the
flow-through provisioning process. The nature of flow-through provisioning plans
and commands is to allow MetaSolv Solution to work with any selected activation
product. That is, MetaSolv Solution only captures TID, port addresses, and
cross-connects for flow-through provisioning. Flow-through provisioning plans and
commands provide the ability to capture all the information the activation vendor
requires.

What Are Design Layout Records (DLRs)?
A design layout record (DLR) is a document that contains the technical information
that describes the physical layout of a circuit at a given location.

What Are Tech Translation Sheets?
The tech translation sheet defines the items required to provision the service in the
switch. For switch provisioning activation, once the order is entered, the product and
options ordered are the basis for the tech translation sheet.

Note: If the selected activation product only requires what the
defaults for flow-through provisioning, then it is not necessary to use
the PSR module in the flow-through provisioning process at all.

Implementation Concepts

12-6 MetaSolv Solution CORBA API Developer’s Reference

What Are Virtual Layout Records (VLRs)?
A virtual layout record (VLR) is a MetaSolv Solution-defined document that contains
the technical information that describes the layout of the physical components of an
ATM or Frame Relay virtual circuit, and the relationship of the physical components to
the logical components (the cloud) of that circuit.

Software Modules and Subsystems Used in Flow-through Provisioning
The Transport Provisioning Activation API uses the following modules and
subsystems to complete the flow-through provisioning process:

■ Equipment Administration module

■ Infrastructure module

■ Product Service Request (PSR) module

■ Service Provisioning subsystem

■ Work Management subsystem

Equipment Administration Module
The flow-through provisioning process uses the Equipment Administration module to
define the following:

■ Target identifier (TID) that the activation vendor recognizes

■ Network node with which the equipment is associated

Infrastructure Module
The Infrastructure module is used in the flow-through provisioning process to:

■ Define new network node types

■ Associate network node types with flow-through provisioning plans and rate
codes

Additionally, the user can access the PSR module's Product Catalog function through
the Infrastructure module. The user will only use the Infrastructure module for
flow-through provisioning if they need to specify additional data for a network node.

Product Service Request Module
The Product Service Request (PSR) module is used in the flow-through provisioning
process to:

■ Set up flow-through provisioning plans and commands

■ Enter a service request

■ Provide service request information related to flow-through provisioning on the
tech translation sheet for switch translations

More specifically, the PSR module's Product Catalog function is used in the
flow-through provisioning process to define the features that appear on the PSR, as

Note: A network node must be associated with every piece of
equipment (or at a higher level in the equipment hierarchy) used for
flow-through provisioning. A network node type must be associated
with every network node used for flow-through provisioning.

Implementation Concepts

The Transport Provisioning Activation API 12-7

well as the options on those features. Options on the service request used for the
flow-through provisioning process include flow-through provisioning plans and
commands. These options often have default values, and when a PSR is entered with
these options, the service request includes the required default values (also referred to
as parameters). The user can use the Product Specifications window to determine if
the values or parameters appear on the tech translation sheet.

Service Provisioning Subsystem
The flow-through provisioning process uses the Service Provisioning subsystem to:

■ Design the circuit(s) on the PSR used for flow-through provisioning

■ Verify and modify the flow-through provisioning parameters that are set up in the
PSR module

The Service Provisioning subsystem also provides the flow-through provisioning
information (such as network node type and network node address) that appears on
the CLR, DLR, VLR, and tech translation sheet.

Work Management Subsystem
The Work Management subsystem is used in the flow-through provisioning process to:

■ Associate a gateway event with a provisioning plan task

■ Initiate a gateway event

■ Verify the gateway event is complete

Gateway events define when MetaSolv Solution should send flow-through
provisioning information to the activation application for processing.

Flow-through Provisioning Process
The flow-through provisioning process is used in the MetaSolv Solution client
software to:

■ Order and provision services associated with the line side of a switch

■ Engineer a service request and provision it without re-entering activation
information

See the online Help for detailed instructions on using the flow-through provisioning
process.

For flow-through provisioning, the Transport Provisioning API calculates and
provides the physical/logical port values for both the A location of the equipment and
the Z location of the equipment.

Note: All parameters necessary to the flow-through provisioning
process (except equipment parameters) are defined in the Product
Catalog function.

Note: Line side activation includes provisioning dialtone services
through a switch. The activation process occurs outside of MetaSolv
Solution.

Implementation Concepts

12-8 MetaSolv Solution CORBA API Developer’s Reference

The Transport Provisioning API provides the API user with physical/logical port
values and a list of circuit positions ridden for each bandwidth circuit that supports
the PVC.

When multiple circuit positions are ridden by a bandwidth circuit, the API throws an
exception if all of the circuit positions are not associated with the same logical port.

The API assumes the port calculations do not change when the physical ports are in a
virtual path.

Reference Architecture
The intent of the reference architecture is to provide a logical framework to describe
the various implementation concepts. It is not intended to suggest any particular
application design.

Figure 12–1 shows the reference architecture for flow-through provisioning.

Figure 12–1 Reference Architecture for Flow-Through Provisioning

Gateway events are utilized to allow your activation server to integrate with the Work
Management subsystem.

Signal Handler
The signal handler module implements the interfaces required to handle standard
gateway events from MetaSolv Solution clients. This module is also responsible for
updating gateway event status to “In Progress”.

Implementation Concepts

The Transport Provisioning Activation API 12-9

The outbound signals sent by the MetaSolv Solution client to your activation server are
the flow-through provisioning gateway events. These events are defined at the service
item level. Each service item (for example, a phone line, a WATS line, or an
ATM/Frame circuit) on the order will have the flow-through provisioning gateway
event associated with it. As a result, when an order is processed by the Work
Management subsystem, your activation server can potentially receive as many
gateway events as there are service items in the order. For example, if a transport
provisioning order for ASR equipment comprises six special access circuits, your
activation server receives six separate gateway events from the client.

Each gateway event associated with a service item in a service request can be
processed independently of the gateway events for any other service item.

Implementation should conform to the outbound signals gateway events pattern. See
"Outbound Signals – Gateway Events" for more information. The signal handler
module should implement a WDIDLR module with all the interfaces and operations
listed in Table 2–6, " Outbound Gateway Event Operations Required For All APIs".
Event status updates are performed through DLRSERVER.

Upon receiving an outbound signal conveying gateway event information from the
MetaSolv Solution client, the signal handler module activates the request handler
module and hands off the event information that was received. In order to avoid
locking up the client, it is recommended that the signal handler should return control
to the client immediately upon activating the request handler module and updating
the event status.

Request Handler
The request handler module retrieves activation data from the MetaSolv Solution
database by invoking the getTransportProvisioning operation on DLRSERVER to
retrieve transport provisioning data

The operations are standard data export operations. See "Synchronous Interaction
Pattern" for more information. This provisioning operation accepts a WDIEvent
parameter that allows the request handler to retrieve provisioning data from the
database in a single step. The request handler passes in the gateway event structure
that was received from the client and DLRSERVER retrieves the required provisioning
data.

It is important to understand the data types that are involved in the operation listed
above. Data type definitions can be found in file WDIDLRTYPES_v5.IDL. The
following Transport Provisioning data structure is returned to the caller (through
callback invocation):

Example 12–1 Transport Provisioning Data Structure Example

typedef sequence<DLR> DLRSeq;
typedef sequence<MetaSolv::CORBA::WDIVLRTypes::VLR> VLRSeq;
struct TransportProvisioning {
 char type; // CIRCUIT.TYPE CHAR(1)
 DLRSeq dlr;
 VLRSeq vlr;
 ActivationCommandPlanSeq activationCommandPlans ;
};

The ActivationCommandPlanSeq data type delivers the FTP Plan for this service item.

Implementation Concepts

12-10 MetaSolv Solution CORBA API Developer’s Reference

Formatting/Translation Module
The formatting/translation module handles two-way data translation and format
conversion required for communicating with the activation product. This module's
services are used by the other modules.

Response Handler
The response handler module handles responses received from the activation product.
It performs the necessary reverse translation/formatting using the
formatting/translation module and then determines the operation status. Based on the
success or failure determination, this module updates gateway event status to
“Completed” or “Errored”. Design of this module depends upon factors such as the
synchronous/asynchronous and online/batch nature of the interaction with activation
product.

Design Considerations
To obtain the full benefit of the automated flow-through capabilities of this API,
gateway events must be associated with tasks in Work Management provisioning
plans. MetaSolv Solution is pre-configured with gateway templates and gateway event
templates for Transport Provisioning.

See the online Help for detailed instructions on using the flow-through provisioning
process.

In order to ensure that the provisioning information provided by the Transport
Provisioning Activation API is sufficiently completed to be used by your network
management system, care must be used when ordering the service.

The PSR module captures default values for items that have pick lists. With
flow-through provisioning, defaults are also needed for editable fields. If defaults are
not provided, a user would be required to manually enter the same value on every line
for an order. Providing a default value in the product catalog for product specifications
that are required for flow-through provisioning streamlines the ordering process.

For transport provisioning activation, the network node target identifier (TID) and the
equipment port address assignment identifier (AID) in the database identify the
equipment and port address. These items should either be used directly by your
application or your application should maintain a cross-reference between the
identifiers used by your application and the MetaSolv Solution-supplied TID and AID.

Just as the provisioning of switch features requires additional parameters, the
provisioning of transport equipment requires additional parameters as well. The
transport equipment for dialtone lines is usually digital loop carrier. The CLR
represents the provisioning information for this type of equipment. The CLR captures
the TID and the AID for the DLC equipment, which is part of the information that is
required for activating the service. The TID is determined by identifying the Network
Node to which the equipment belongs. The AID is determined using the assignment
information that is gathered on the CLR. To provision transport equipment, additional
parameters are usually required. These parameters will vary by type of equipment, by
transmission rate, and by activation vendor.

13

The Trouble Management API 13-1

13The Trouble Management API

The Trouble Management API exposes Trouble Management subsystem functions and
information that an external (third-party) application can use to:

■ Create, update, and change the state of trouble tickets in the Trouble Management
subsystem

■ Query for trouble tickets using criteria similar to the Trouble Management
subsystem’s Ticket Search window

■ Query to retrieve the service item identifier for a ticket to facilitate triggering of
automatic testing through gateway events

■ Query to retrieve various service items, customer information, and other
information such as could be used to populate drop-down lists in a client
application

The Trouble Management API is designed to support development of applications that
integrate existing network management systems and the Trouble Management
subsystem. For example, when a piece of network equipment signals an alarm, your
application could use the Trouble Management API to create a trouble ticket in the
Trouble Management subsystem. Periodically, or on an as-needed basis, your
application could query the Trouble Management API to determine whether a trouble
ticket has cleared. Until the initial trouble ticket has cleared, your application can
ignore additional alarms from the faulty equipment.

The CORBA servername used by the Trouble Management API is TMSSERVER.

Functionality
Major functions for which you can use the Trouble Management API include:

■ Creating new trouble tickets

■ Clearing, closing, and canceling existing trouble tickets

■ Creating log entries for a given trouble ticket

■ Updating attributes on an existing ticket

■ Querying for information about a trouble ticket

■ Querying for tickets

Once a trouble ticket is created through the Trouble Management API, that ticket can
be processed in the Trouble Management subsystem as if it was created using the
Trouble Management subsystem. For example, Trouble Management subsystem users
can refer an API-generated ticket to multiple organizations, just as if the ticket was
entered using the Trouble Management subsystem.

TroubleSession Interface

13-2 MetaSolv Solution CORBA API Developer's Reference

TroubleSession Interface

WDIManager
Table 13–1 lists the operations available in the WDIManager interface of the
WDITROUBLE.IDL file.

The Trouble Management API uses the fundamental concepts of the signal handling
pattern implemented by the other APIs. However, the Trouble Management API
requires a different set of attribute values to uniquely identify an instance of an event
within a trouble ticket. Using this variation of the signaling mechanism enables the
Trouble Management API to support multiple concurrent events for a given trouble
ticket.

See "Common Architecture" for more information about WDIManager.

TroubleSession Interface Operations
Table 13–2 lists the operations available in the TroubleSession interface of the
WDITROUBLE.IDL file.

Note: The Trouble Management API and the Trouble Management
subsystem are separately licensed components of the Oracle
Communications MetaSolv Solution product line. The Trouble
Management API requires you have the Trouble Management
subsystem installed. To acquire licenses to use these products, contact
your Oracle representative.

Table 13–1 Trouble Management API WDIManager Interface Operations

Operation Description

startTroubleSession Obtains the object reference for the TroubleSession

destroyTroubleSession Terminates the TroubleSession

startTransaction commit

rollback

destroyTransaction Terminates the Transaction

startSignal2 eventCompleted

eventErrored

eventInProgress

eventOccurred

eventTerminated

destroySignal2 Terminates the Signal2

Table 13–2 Trouble Management API TroubleSession Interface Operations

Operation WDINotification Operations

getPartyByPartyName getPartyByPartyNameSucceeded

getPartyByPartyNameFailed

getCauseCodes getCauseCodesSucceeded

getCauseCodesFailed

TroubleSession Interface

The Trouble Management API 13-3

getTroubleFoundCodes getTroubleFoundCodesSucceeded

getTroubleFoundCodesFailed

getClearedCodes getClearedCodesSucceeded

getClearedCodesFailed

getServiceItemTypeCodes getServiceItemTypeCodesSucceeded

getServiceItemTypeCodesFailed

getTroubleTypeCodes2 getTroubleTypeCodes2Succeeded

getTroubleTypeCodes2Failed

getInitiatingModeCodes2 getInitiatingModeCodes2Succeeded

getInitiatingModeCodes2Failed

getTicketStatusCodes2 getTicketStatusCodes2Succeeded

getTicketStatusCodes2Failed

getParties2 getParties2Succeeded

getParties2Failed

getTicketTypeCodes2 getTicketTypeCodes2Succeeded

getTicketTypeCodes2Failed

createLogEntry createLogEntrySucceeded

createLogEntryFailed

getTicketServiceItem getTicketServiceItemSucceeded

getTicketServiceItemFailed

updateTicket--Deprecated.
Replaced by updateTicket_v2

updateTicketSucceeded--Deprecated. Replaced by
updateTicketSucceeded_v2

operationFailed

updateTicket_v2 updateTicketSucceeded_v2

operationFailed

getTicketForUpdate-- Deprecated.
Replaced by getTicketForUpdate_
v2.

getTicketForUpdateSucceeded--Deprecated. Replace by
getTicketForUpdateSucceeded_v2.

operationFailed

getTicketForUpdate_v2 getTicketForUpdateSucceeded_v2

operationFailed

getMsgTrnkGrpServItem getMsgTrnkGrpServItemNoDataFound

getMsgTrnkGrpServItemSucceeded

operationFailed

getEUSpecialTrnkGrpServItem getEUSpecialTrnkGrpServItemNoDataFound

getEUSpecialTrnkGrpServItemSucceeded

operationFailed

getDSLServItem--Deprecated. This
functionality is supported by the
getQueryCircuits_v2 operation
method in the DLR API.

getDSLServItemNoDataFound--Deprecated.

getDSLServItemSucceeded--Deprecated.

operationFailed

Table 13–2 (Cont.) Trouble Management API TroubleSession Interface Operations

Operation WDINotification Operations

TroubleSession Interface

13-4 MetaSolv Solution CORBA API Developer's Reference

getInternetCircuitServItem--Deprec
ated. This functionality is
supported by the
getQueryCircuits_v2 operation in
the DLR API.

getInternetCircuitServItemNoDataFound--Deprecated.

getInternetCircuitServItemSucceeded--Deprecated.

operationFailed

getInternetDialupServItem getInternetDialupServItemNoDataFound

getInternetDialupServItemSucceeded

operationFailed

getTelephoneNumberServItem getTelephoneNumberServItemNoDataFound

getTelephoneNumberServItemSucceeded

operationFailed

getCustomers getCustomersNoDataFound

getCustomersSucceeded

operationFailed

getTicketForClearClose getTicketForClearCloseSucceeded

operationFailed

clearTicket clearTicketSucceeded

operationFailed

closeTicket closeTicketSucceeded

operationFailed

cancelTicket cancelTicketSucceeded

operationFailed

getTickets_v2 getTicketsNoDataFound_v2

getTicketsSucceeded_v2

operationFailed

getTicketReport_v2 getTicketReportSucceeded_v2

operationFailed

getParties_v3 getPartiesSucceeded_v3

getPartiesFailed

getCustomerAddresses getCustomerAddressesSucceeded

operationFailed

getAssignedToParties getAssignedToPartiesSucceeded

operationFailed

getEscalationMethods getEscalationMethodsSucceeded

operationFailed

createTicket_v2--Deprecated.
Replaced by createTicket_v3

createTicketSucceeded_v2--Deprecated. Replaced by
createTicketSucceeded_v3.

operationFailed

createTicket_v3 createTicketSucceeded_v3

operationFailed

Table 13–2 (Cont.) Trouble Management API TroubleSession Interface Operations

Operation WDINotification Operations

TroubleSession Interface

The Trouble Management API 13-5

TroubleSession Operation Descriptions
The following list contains a description of the operations available in the
TroubleSession interface:

■ getPartyByPartyName

Given a Party Name and a Party Role as arguments, the getPartyByPartyName
operation retrieves information for an active party. This operation may be used to
get the party IDs for the Customer role (partyRole = ''CUST'), Responsible Org
(partyRole = 'RESP_ORG'), and Administrative Org (partyRole = 'ADMIN_ORG')
to pass as arguments in the createTicket_v3 operation. It returns successfully only
if the party and its associated party role are still active.

If the party is an individual, the Party Name must be formatted as Last Name,
First Name. The party name is stored in upper case in the MetaSolv Solution
database, so the API converts the value passed to upper case before performing
the search.

If the operation is called to get the Party ID for a customer (partyRole = 'CUST'), it
is possible that multiple customers may exist in the database with the same Party
Name.

If multiple party records are found for a given customer name, this operation
returns an error. If this occurs, it is recommended that the customerPartyID not be
passed when the createTicket_v3 operation is called. If a service item is included,
the Trouble Management API automatically identifies the customer associated
with the service item. The customer name can also be included in the logNotes
attribute.

■ getCauseCodes

The getCauseCodes operation retrieves a list of cause codes defined in the MetaSolv
Solution Infrastructure subsystem. This operation could be used to populate a
drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list
should contain only those codes that are currently listed in the database as active
codes. Only active codes should be included in drop-downs used on interfaces
where the code is updated for a ticket. Both active and inactive codes are retrieved
for drop-downs on query interfaces like the Ticket Query.

getNetworkElementServItem getNetworkElementServItemNoDataFound

getNetworkElementServItemSucceeded

operationFailed

getNetworkSystemServItem getNetworkSystemServItemNoDataFound

getNetworkSystemServItemSucceeded

operationFailed

Note: MetaSolv Solution does not allow multiple Responsible
Organizations or Administrative Organizations to have the same
name.

Table 13–2 (Cont.) Trouble Management API TroubleSession Interface Operations

Operation WDINotification Operations

TroubleSession Interface

13-6 MetaSolv Solution CORBA API Developer's Reference

The currentCauseCode parameter is used to return a given inactive code along
with all the active values when the activeOnly parameter is true. This parameter is
optional. It enables you to populate a dropdown field on a ticket that includes all
the active codes along with the ticket’s current value, even if that code was
inactivated after it was set on the ticket. Since both active and inactive codes are
returned when the activeOnly parameter is false, the currentCauseCode
parameter is ignored if the activeOnly parameter is false.

■ getTroubleFoundCodes

The getTroubleFoundCodes operation retrieves a list of trouble found codes defined
in the Trouble Management subsystem for a given cause code. This operation
could be used to populate a drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list
should contain only those codes that are currently listed in the database as active
codes. Only active codes should be included in drop-downs used on interfaces
where the code is updated for a ticket. Both active and inactive codes should be
retrieved for drop-downs on query interfaces like the Ticket Query.

The currentTroubleFoundID parameter is used to return a given inactive code
along with all the active values when the activeOnly parameter is true. This
parameter is optional. It enables you to populate a dropdown field on a ticket that
includes all the active codes along with the ticket’s current value, even if that code
was inactivated after it was set on the ticket. If passed, the
currentTroubleFoundID must be passed as a numeric value. Since both active and
inactive codes are returned when the activeOnly parameter is false, the
currentTroubleFoundID parameter is ignored if the activeOnly parameter is false.

The causeCode parameter limits the trouble found codes that are returned to only
those that are related to this cause code. If activeOnly is passed as true, the cause
code is required and must be a valid active or inactive cause code in the Trouble
Management subsystem.

■ getClearedCodes

The getClearedCodes operation retrieves a list of cleared codes and could be used to
populate a drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list
should contain only those codes that are currently listed in the database as active
codes. Only active codes should be included in drop-downs used on interfaces
where the code is updated for a ticket. Both active and inactive codes should be
retrieved for drop-downs on query interfaces like the Ticket Query.

The currentClearedCode parameter is used to return a given inactive code along
with all the active values when the activeOnly parameter is true. This parameter is
optional. It enables you to populate a dropdown field on a ticket that includes all
the active codes along with the ticket’s current value, even if that code was
inactivated after it was set on the ticket. Since both active and inactive codes are
returned when the activeOnly parameter is false, the currentClearedCode
parameter is ignored if the activeOnly parameter is false.

■ getServiceItemTypeCodes

The getServiceItemTypeCodes operation retrieves a list of service item type codes
supported by the Trouble Management subsystem. This operation could be used
to populate a drop-down list in a user interface. The set returned will depend on
the migration. See Table 13–6, " Service Item Type and Service Item Identifier" for
more information.

TroubleSession Interface

The Trouble Management API 13-7

■ getTroubleTypeCodes2

The getTroubleTypeCodes2 operation retrieves a list of trouble type codes defined in
the Trouble Management subsystem. This operation could be used to populate a
drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list
should contain only those codes that are currently listed in the database as active
codes. Only active codes should be included in drop-downs used on interfaces
where the code is updated for a ticket. Both active and inactive codes should be
retrieved for drop-downs on query interfaces like the Ticket Query.

The currentTroubleTypeID parameter is used to return a given inactive code
along with all the active values when the activeOnly parameter is true. This
parameter is optional. It enables you to populate a dropdown field on a ticket that
includes all the active codes along with the ticket’s current value, even if that code
was inactivated after it was set on the ticket. If passed, the currentTroubleTypeID
must be passed as a numeric value. Since both active and inactive codes are
returned when the activeOnly parameter is false, the currentTroubleTypeID
parameter is ignored if the activeOnly parameter is false.

■ getInitiatingModeCodes2

The getInitiatingModeCodes2 operation retrieves a list of initiating mode codes
defined in the Trouble Management subsystem. This operation could be used to
populate a drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list
should contain only those codes that are currently listed in the database as active
codes. Only active codes should be included in drop-downs used on interfaces
where the code is updated for a ticket. Both active and inactive codes should be
retrieved for drop-downs on query interfaces like the Ticket Query.

The currentInitiatingModeID parameter is used to return a given inactive code
along with all the active values when the activeOnly parameter is true. This
parameter is optional. It enables you to populate a dropdown field on a ticket that
includes all the active codes along with the ticket’s current value, even if that code
was inactivated after it was set on the ticket. If passed, the
currentInitiatingModeID must be passed as a numeric value. Since both active
and inactive codes are returned when the activeOnly parameter is false, the
currentInitiatingModeID parameter is ignored if the activeOnly parameter is
false.

■ getTicketTypeCodes2

The getTicketTypeCodes2 operation retrieves a list of ticket type codes defined in the
Trouble Management subsystem. This operation could be used to populate a
drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list
should contain only those codes that are currently listed in the database as active
codes. Only active codes should be included in drop-downs used on interfaces
where the code is updated for a ticket. Both active and inactive codes should be
retrieved for drop-downs on query interfaces like the Ticket Query.

The currentTicketTypeCode parameter is used to return a given inactive code
along with all the active values when the activeOnly parameter is true. This
parameter is optional. It enables you to populate a dropdown field on a ticket that
includes all the active codes along with the ticket’s current value, even if that code
was inactivated after it was set on the ticket. Since both active and inactive codes

TroubleSession Interface

13-8 MetaSolv Solution CORBA API Developer's Reference

are returned when the activeOnly parameter is false, the currentTicketTypeCode
parameter is ignored if the activeOnly parameter is false.

■ getTicketStatusCodes2

The getTicketStatusCodes2 operation retrieves a list of Ticket Status Codes defined
in the MetaSolv Solution Infrastructure subsystem. This operation could be used
to populate a drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list
should contain only those codes that are currently listed in the database as active
codes. Only active codes should be included in drop-downs used on interfaces
where the code is updated for a ticket. Both active and inactive codes should be
retrieved for drop-downs on query interfaces like the Ticket Query.

The currentTicketStatusID parameter is used to return a given inactive code along
with all the active values when the activeOnly parameter is true. This parameter is
optional. It enables you to populate a dropdown field on a ticket that includes all
the active codes along with the ticket’s current value, even if that code was
inactivated after it was set on the ticket. If passed, the currentTicketStatusID must
be passed as a numeric value. Since both active and inactive codes are returned
when the activeOnly parameter is false, the currentTicketStatusID parameter is
ignored if the activeOnly parameter is false.

The ticketStateCode parameter is used to return only ticket status codes that are
related to the given ticket state code. If activeOnly is passed as true, this parameter
is required and must be a valid ticket state code in MetaSolv Solution. If
activeOnly is passed as false, the ticketStateCode value is ignored. Valid ticket
state codes include openActive, deferred, extreferred, cleared, closed, and
canceled.

■ createLogEntry

The createLogEntry operation creates a log entry for a ticket. It is passed a sequence
of log note strings (of no more than 2000 characters each) and creates a single log
entry for the ticket. At least one log note string that does not equal spaces is
required.

Either the ticketID or documentNumber values are required as input key values. If
the documentNumber is not valid, and no valid ticketID is passed, the Trouble
Management API returns an exception through the createLogEntryFailed operation.

■ getTicketServiceItem

The getTicketServiceItem operation returns the ticket ID, current state code, current
status ID, for a given ticket document number along with the service item type
code, service item ID, and service item description if there is a service item
assigned to the ticket. This query is intended to be called in response to a gateway
event that is triggered when a user initiates a test of the service item on the ticket.

■ updateTicket

Deprecated. Replaced by updateTicket_v2.

■ updateTicket_v2

This operation updates attributes for an existing trouble ticket. This operation
supports new service item types of Network Element, Network System, and
Circuit/Connection. See "The updateTicket_v2 Operation" for more information.

■ getTicketForUpdate

Deprecated. Replaced by getTicketForUpdate_v2.

TroubleSession Interface

The Trouble Management API 13-9

■ getTicketForUpdate_v2

This operation gets information for a ticket so that an update can be requested. It
returns a structure of updateable ticket fields that may be modified and passed to
the updateTicket_v2 operation. It also returns the date and time of the report, which
must be passed to the updateTicket_v2 operation in order to verify that the ticket
has not changed since the information was retrieved.

■ getMsgTrnkGrpServItem

This operation returns a list of message trunk groups. The information returned
includes a circuit ID, which is the identifier passed for a message trunk group
service item in the createTicket_v3 and updateTicket_v2 operations.

■ getEUSpecialTrnkGrpServItem

This operation returns a list of end-user special trunk groups. The information
returned includes a two-six-code, which is the identifier passed for an end-user
special trunk group service item in the createTicket_v3 and updateTicket_v2
operations.

■ getDSLServItem

Deprecated. Replaced by getQueryCircuits_v2 in the DLR API.

■ getInternetCircuitServItem

Deprecated. Replaced by getQueryCircuits_v2 in the DLR API.

■ getInternetDialupServItem

This operation returns a list of Internet dial-ups. The information returned
includes a user ID, which is the identifier passed for an Internet dial-up service
item in the createTicket_v3 and updateTicket_v2 operations.

■ getTelephoneNumberServItem

This operation returns a list of telephone numbers. The information returned
includes an unformatted telephone number and a telephone number inventory id
either of which can be passed as the identifier for a telephone number service item
in the createTicket_v3 and updateTicket_v2 operations.

■ getCustomers

This operation gets a list of customers matching the criteria given by the caller. The
information returned includes a party id and party address sequence which can be
passed for the customer and customer address in the createTicket_v3 and
updateTicket_v2 operations.

■ getTicketForClearClose

This operation retrieves clear/close information for a ticket so that a clearTicket or
closeTicket operation can be requested.

■ clearTicket

This operation clears an existing trouble ticket. See "The clearTicket Operation" for
more information.

■ closeTicket

This operation closes an existing trouble ticket. See "Details Concerning Use of the
closeTicket Operation" for more information.

■ cancelTicket

TroubleSession Interface

13-10 MetaSolv Solution CORBA API Developer's Reference

This operation cancels an existing trouble ticket. See "Details Concerning Use of
the cancelTicket Operation" for more information.

■ getTickets_v2

This operation enables you to search for a trouble ticket or a collection of tickets
based on a set of criteria, similar to the Ticket Search window in MetaSolv
Solution. See "Details Concerning Use of the getTickets_v2 Operation" for more
information.

■ getTicketReport_v2

This operation returns a ticket report. You must pass the operation either a valid
document number or ticket ID. If a document number is passed, ticket ID is
ignored.

■ getParties_v3

The getParties_v3 operation retrieves a list of parties that have a given role type.
This operation could be used to populate a drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the list
should contain only those codes that are currently listed in the database as active
codes. Only active codes should be included in drop-downs used on interfaces
where the party is updated for a ticket. Both active and inactive parties should be
retrieved for drop-downs on query interfaces like the Ticket Query.

The currentPartyID parameter is used to return a given inactive party along with
all the active parties when the activeOnly parameter is true. This parameter is
optional. It enables you to populate a dropdown field on a ticket that includes all
the active parties along with the ticket’s current value, even if that party was
inactivated after it was set on the ticket. If passed, the currentPartyID must be
passed as a numeric value. Since both active and inactive parties are returned
when the activeOnly parameter is false, the currentPartyID parameter is ignored
if the activeOnly parameter is false.

The partyRole parameter is used to return only parties that have been assigned
that role type. This parameter is always required.

The enumerated type definition used for the partyRole parameter includes an
option for CUST (Customer). However, the CUST value is not supported by the
GetParties_v3 query, and results in an error if passed.

■ getCustomerAddresses

The getCustomerAddresses operation retrieves a list of active addresses for a given
customer. This operation may be used to populate a drop-down list of addresses
for a customer on a ticket. A customer address sequence number is returned with
each address. The sequence number is passed along with the customer party ID to
the createTicket_v3 or updateTicket_v2 operations to set the customer address on a
ticket.

The customerPartyID parameter is the party ID that identifies the customer whose
addresses are to be retrieved. This is a required parameter. The
customerAddressSeq parameter is used return a given address along with all the
active addresses. This parameter is optional. It enables you to populate a
dropdown field on a ticket that includes all the active customer addresses along
with the current address set on the ticket, even if that address was inactivated after
it was set on the ticket. If passed, the customerAddressSeq must be passed as a
numeric value.

■ getAssignedToParties

TroubleSession Interface

The Trouble Management API 13-11

The getAssignedToParties operation retrieves a list of active employees that are
associated with either a responsible organization or an administrative
organization. This operation may be used to populate a drop-down list of
Responsible Organization Assigned To parties or Administrative Organization
Assigned To parties on a ticket.

The orgPartyID parameter is the party ID that identifies the responsible
organization or administrative organization whose employees are to be retrieved.
This is a required parameter. The assignedToPartyID parameter is used return a
specific Assigned To party along with all the active employees. This parameter is
optional. It enables you to populate a dropdown field on a ticket that includes all
the active employees along with the current Assigned To party on the ticket, even
if that party was inactivated after it was set on the ticket.

■ getEscalationMethods

The getEscalationMethods operation retrieves a list of escalation methods defined in
the Trouble Management subsystem. This operation could be used to populate a
drop-down list in a user interface.

You can use the activeOnly Boolean parameter to specify whether or not the
operation should retrieve only active escalation methods. Only active values
should be included in drop-downs used on interfaces where the field is updated
for a ticket. Both active and inactive values should be retrieved for drop-downs on
query interfaces like the Ticket Query.

The escalationMethodID parameter is used to return a given inactive escalation
method along with all the active values when the activeOnly parameter is true.
This parameter is optional. It enables you to populate a dropdown field on a ticket
that includes all the active escalation methods along with the ticket’s current
value, even if that value was inactivated after it was set on the ticket. If passed, the
escalationMethodID must be passed as a numeric value. Since both active and
inactive escalation methods are returned when the activeOnly parameter is false,
the escalationMethodID parameter is ignored if the activeOnly parameter is false.

■ createTicket_v2

Deprecated. Replaced by createTicket_v3.

■ createTicket_v3

This operation creates a ticket. The createTicket_v3 operation supports the service
item types of Network Element, Network System, and Circuit/Connection. See
"The createTicket_v3 Operation" for more information.

■ getNetworkElementServItem

This operation returns a list of network elements. The information returned
includes a a service item ID and name, which are the identifiers passed for a
network element service item in the createTicket_v3 and updateTicket_v2
operations.

■ getNetworkSystemServItem

This operation returns a list of network systems. The information includes a
service item ID and name, which are the identifiers passed for a network system
service item in the createTicket_v3 and updateTicket_v2 operations.

Trouble Management API IDL Files

13-12 MetaSolv Solution CORBA API Developer's Reference

Trouble Management API IDL Files
The IDL files that describe the operations and data structures that comprise the
Trouble Management API are:

■ WDITROUBLE.IDL

■ WDITROUBLETYPES.IDL

■ WDITROUBLETYPES2.IDL

■ WDITROUBLETYPES_v3.IDL

■ WDITROUBLETYPES_v4.IDL

■ WDI.IDL

■ WDIUTIL.IDL

Process Flows
This section contains a sample process flow for a solicited message. Use the sample
flow as a template for developing your own process flows.

Refer to the next section for the process flow used when the Trouble Management API
is the client.

Solicited Messages
A solicited message is a message initiated by MetaSolv Solution. In this case, the
Trouble Management API plays the role of the client, and your application plays the
role of the server.

Table 13–3 lists the interfaces and operations that your application implements using
the IDL file provided with the Trouble API.

Sample: Solicited Message Process Flow
When the Trouble Management API is the client, the overall process flows as follows:

1. The Trouble Management API requests a WDIRoot object reference from your
application. The request is routed through the ORB.

2. Your application instantiates a WDIRoot and returns a WDIRoot object

3. The Trouble Management API invokes the connect operation of the WDIRoot
interface, which yields a WDIManager object reference.

Table 13–3 Trouble Management API Solicited Message Operations

Interface For Implementing These Operations

WDIRoot connect

disconnect

WDIManager startTransaction

destroyTransaction

WDITransaction N/A

WDISignal eventOccurred

eventTerminated

WDIInSignal N/A

Process Flows

The Trouble Management API 13-13

4. The Trouble Management API invokes the startSignal2 operation of the
WDIManager interface to get a WDISignal2 object reference.

5. The Trouble Management API invokes the eventOccurred operation of the
WDISignal2 interface, passing a WDIEvent2 structure to notify your application
that an event registered to them has occurred within MetaSolv Solution.

6. The Trouble Management API invokes the destroySignal2 operation of the
WDIManager interface.

7. The Trouble Management API invokes the disconnect operation of the WDIRoot
interface.

8. Once your application completes processing, possibly involving additional
unsolicited messages to the APIs, your application connects to the MetaSolv
Solution Application Server and follows the same process described above for the
API client with the exception that the eventCompleted/Errored operations are
invoked passing the original WDIEvent2 structure.

If your application encounters an error, it throws a WDIExcp as defined by the IDL.
The Trouble Management API handles CORBA system exceptions and WDIExcp
exceptions.

Unsolicited Messages
An unsolicited message is a message initiated by your application. In this case, the
Trouble Management API plays the role of the server and your application plays the
role of the client with the exception of the callback processing.

Table 13–4 lists the interfaces and operations that the Trouble Management API
implements.

Sample Flows for Business Tasks
This section provides a few sample flows for business tasks.

Process Flow for Updating a Trouble Ticket
This process flow demonstrates how your client application and the Trouble
Management API server must interact to update a trouble ticket.

Figure 13–1 illustrates the process flow for updating a trouble ticket.

Table 13–4 Trouble Management API Unsolicited Message Operations

Interface Implemented Operations

WDIRoot connect

disconnect

WDIManager startTransaction

destroyTransaction

WDITransaction commit

rollback

Process Flows

13-14 MetaSolv Solution CORBA API Developer's Reference

Figure 13–1 Process Flow for Updating a Trouble Ticket

The process flow for updating a trouble ticket is as follows:

1. The client calls the getTicketForUpdate operation to retrieve trouble ticket
information.

2. The server calls the getTicketForUpdateSucceeded operation to return a
TicketInfoForUpdate structure, which includes one structure of attributes that are
updateable and another structure of attributes that are read-only. The structure
also includes the date and time of the export.

3. The client makes modifications to the updateable data and calls the updateTicket
operation, passing it the modified UpdateableTicketInfo structure. In addition to
the WDITransaction and WDINotification objects, the updateTicket operation is
passed the following parameters:

■ The TicketImportInfo structure. This structure includes the ticket’s document
number and ticket ID.

■ The UpdateableTicketInfo structure with any modifications.

■ A ServiceItemSeq sequence, which is populated only if the service item is
changed. Only one ServiceItem structure can be passed. If more than one
structure is passed, an exception is returned.

■ A LogNoteInfoSeq sequence, which is included if the update includes log
notes.

■ A duplicateTicketAllowed Boolean that indicates whether a change to the
service item is allowed if another open ticket is found for the same service
item. Both the ticket found and the ticket being updated have a ticket type that
identifies repeat and chronic trouble (as defined for the ticket type in the
MetaSolv Solution Infrastructure). If it is set to false, an exception is returned if
another open ticket exists. The client can initially set it to false, and if an
exception is returned, present a message to the user asking if they wish to
create the ticket anyway (similar to the functionality in MetaSolv Solution). If

Note: You must pass either document number or ticket ID. If
document number is passed, ticket ID is ignored. If you pass neither,
an exception is returned.

Process Flows

The Trouble Management API 13-15

so, the UpdateTicket operation can be called again with
duplicateTicketAllowed set to true.

■ The export date and time that was returned from the export. The Trouble
Management API server uses this date and time to throw an exception if the
ticket was updated by some other process since the ticket information was first
exported.

4. The Trouble Management API server processes the update and indicates success or
failure by calling either the updateTicketSucceeded operation or the
operationFailed operation on WDINotification object.

5. Upon the successful update of the ticket, the client application should refresh its
user interface by again retrieving the ticket attributes using the
getTicketForUpdate operation. This action resets the export date and time.

Process Flow for Clearing a Trouble Ticket
This process flow demonstrates how your client application and the Trouble
Management API server must interact to clear a trouble ticket. Clearing a ticket is done
when the trouble has been resolved, and you are waiting for the customer to verify
that the service has been restored so the ticket may be closed.

1. The client calls the getTicketForClearClose operation to retrieve trouble ticket
information.

2. The server calls the getTicketForClearCloseSucceeded operation to return a
clearCloseTicketExportInfo structure, which includes a structure of attributes that
are updateable, the ticket’s document number, and the ticket’s unique Trouble
Management subsystem ID.

3. The client populates the ClearCloseTicketImportInfo structure, then calls the
clearTicket operation. In addition to the WDITransaction and WDINotification
objects, the clearTicket operation is passed the following parameters:

■ The ClearCloseTicketImportInfo structure. This structure includes the ticket’s
document number and ticket ID.

■ The export date and time that was returned from the export. The Trouble
Management API server uses this date and time to throw an exception if the
ticket was updated by some other process since the ticket information was first
exported.

■ An arbitrary reference number supplied by your client application that
identifies the transaction. If the clearTicket operation is successful, the Trouble
Management API returns this reference number through the
clearTicketSucceeded notification.

4. The Trouble Management API server processes the operation and indicates success
or failure by calling either the clearTicketSucceeded operation or the
clearTicketFailed operation on WDINotification object.

Note: You must pass either document number or ticket ID. If
document number is passed, ticket ID is ignored. If you pass neither,
an exception is returned.

Process Flows

13-16 MetaSolv Solution CORBA API Developer's Reference

Process Flow for Closing a Trouble Ticket
This process flow demonstrates how your client application and the Trouble
Management API server must interact to close a trouble ticket. Closing a ticket occurs
when the trouble is resolved and the customer verifies the service is restored.

1. The client calls the getTicketForClearClose operation to retrieve trouble ticket
information.

2. The server calls the getTicketForClearCloseSucceeded operation to return a
clearCloseTicketExportInfo structure, which includes a structure of updateable
attributes, the ticket’s document number, and the ticket’s unique Trouble
Management subsystem ID.

3. If the ticket is a parent (that is, ParentChildInd = Y), the client should prompt the
user to determine whether the child tickets should be closed with the parent. If so,
the processChildTickets field on the ClearCloseTicketImportInfo structure should
be passed as TRUE.

4. The client populates the ClearCloseTicketImportInfo structure then calls the
closeTicket operation. In addition to the WDITransaction and WDINotification
objects, the closeTicket operation is passed the following parameters:

■ The ClearCloseTicketImportInfo structure. This structure includes the ticket’s
document number and ticket ID.

■ The export date and time that was returned from the export. The Trouble
Management API server uses this date and time to throw an exception if the
ticket has been updated by some other process since the ticket information
was exported.

■ An arbitrary reference number supplied by your client application that
identifies the transaction. If the closeTicket operation is successful, the Trouble
Management API returns this reference number through the
closeTicketSucceeded notification.

5. The Trouble Management API server processes the operation and indicates success
or failure by calling either the closeTicketSucceeded operation or the
closeTicketFailed operation on WDINotification object.

Process Flow for Canceling a Trouble Ticket
1. This process flow demonstrates how your client application and the Trouble

Management API server must interact to cancel a trouble ticket. The cancelTicket
operation changes the ticket's state to Canceled.

2. Your client application populates the CancelTicketImportInfo structure then calls
the cancelTicket operation.

Note: You must pass either document number or ticket ID. If
document number is passed, ticket ID is ignored. If you pass neither,
an exception is returned.

Note: You must pass either document number or ticket ID. If
document number is passed, ticket ID is ignored. If you pass neither,
an exception is returned.

Process Flows

The Trouble Management API 13-17

3. The server processes the cancellation of the ticket. If the cancellation fails, the
server calls the operationFailed operation on the WDINotification object. If the
operation is successful, the server calls the cancelTicketSucceeded operation. In
this case the server also creates a log entry with an audit note for each attribute
changed when canceling the ticket, similar to the notes generated by the Trouble
Management subsystem.

Using the Service Item Test Button Functionality
The service item test button functionality of the Trouble Management subsystem
requires that your external application follow a particular sequence of events once it
receives a signal that indicates that the Test SI button has been clicked within the
Trouble Management subsystem. In order to use the service item test button
functionality:

1. Your external application must receive the gateway event signal that indicates that
the Test SI button has been clicked. The gateway event signal contains the trouble
ticket’s document number.

2. Your application must use the getTicketServiceItem operation to retrieve the
service item ID on the trouble ticket.

3. Once the test is completed, your application should update the status of the
gateway event to Completed. You can also have your application use the
createLogEntry operation to write a trouble ticket log entry that describes the
results of the test.

Implementation Concepts
See the following for more information on the Trouble Management API:

■ Developing Applications Using the APIs

■ HelloAPI: Sample Application that Exports Data

Interaction Life Cycle
1. The external application sends a message to the Trouble Management API through

the CORBA implementation. The message consists of the operation requested, the
data required by the operation's parameters, and a WDINotification object.

2. The Trouble Management API executes the requested operation.

Note: If the cancellation is successful, and the ticket is a parent ticket
(that is, the ticket's ParentChildInd = Y), then the associated child
tickets are also automatically canceled along with the parent ticket.
Because of the potential impact of inadvertently canceling many child
tickets, you may wish to have your client application display a
warning that all child tickets will also be canceled and request that
your user confirm the action.

Note: Your application may be able to make use of other API
operations that can return the TID, AID, or other identifier that
uniquely identifies the service item.

Process Flows

13-18 MetaSolv Solution CORBA API Developer's Reference

3. Based on the result of the operation, the Trouble Management API determines the
appropriate response to return to the external application then:

■ If the operation was successful, the Trouble Management API invokes the
corresponding succeeded operation on the WDINotification object. The
parameters passed with the invocation include any data that is appropriate for
the response.

■ If the operation was successful but the database contains no records that
match the criteria you specified, and the notification operations for that query
include a NoData operation, the Trouble Management API invokes the
NoData operation on the WDINotification object.

■ If the operation was unsuccessful, the Trouble Management API invokes the
corresponding failed operation on the WDINotification object. The parameters
that the Trouble Management API passes when invoking the operation include
appropriate error messages.

Session User ID Can Be Used to Verify Workforce Employee
When your client application calls the connect operation on the WDIManager object,
the ConnectReq structure must contain a valid User ID or the connect operation fails.
For the Trouble Management API, that User ID must be the workforce User ID for a
valid workforce employee. Workforce employees are set up through the MetaSolv
Solution Workforce Employee window. This is a different process than setting up an
employee with a MetaSolv Solution User ID, and an employee's MetaSolv Solution
User ID can be different from their workforce User ID.

For certain Trouble Management operations where an audit trail is desirable, the
Trouble Management API uses this session User ID instead of the global User ID that
is specified in the MetaSolv Solution Application Server's gateway.ini file. The session
User ID identifies the workforce user who made the changes to the ticket.

The Trouble Management API operations that require the session User ID are:

■ cancelTicket

■ clearTicket

■ closeTicket

■ createLogEntry

■ createTicket_v3

■ updateTicket_v2

When your client application successfully calls one of these TroubleSession interface
operations, the API stores the session User ID (workforce User ID) in the audit notes.
The User ID identifies the user who made the changes to the ticket. This mechanism

Note: The WDIManager object is a common object used by all the
MetaSolv Solution APIs, and the ConnectReq structure was designed
to support MetaSolv Solution User IDs and passwords. Unlike
MetaSolv Solution User IDs, the Trouble Management subsystem’s
workforce User IDs do not have a password. Therefore, when
populating the ConnectReq structure for use with the Trouble
Management API, you can populate the Password field with an
empty string,

Process Flows

The Trouble Management API 13-19

permits you to build client applications that implicitly verify that the requesting user is
authorized to perform the critical trouble management actions shown in the list above.
If you prefer not to use this verification approach, you should pass a session User ID
that is known to be set up in the Trouble Management subsystem as a workforce
employee.

Date Field Types
Date fields of type UTCDate are in Coordinated Universal Time (UTC) which can be
considered equivalent to GMT. Date fields of type MSVDate are in database server
time.

The createTicket_v3 Operation
This section provides information about the createTicket_v3 operation.

Import Ticket Attributes
The createTicket_v3 and updateTicket_v3 operations share the structure
UpdateableTicketInfo. Upon successful completion of the createTicket_v3 operation,
the ticket ID and the document number are returned with the notification
createTicketSucceeded_v3.

The createTicket_v3 operation also accepts an unlimited sequence of log notes. Each
note can be up to 2,000 characters long. The Trouble Management subsystem displays
these log notes as API Additional Info log notes. This replaces the
AdditionalTroubleInfo sequence in the previous release.

The createTicket_v3 operation supports the service item types of Network Element,
Network System, and Circuit/Connection.

Required Fields in createTicket_v3 Request
The following fields within the UpdateableTicketInfo structure must be populated
when any create ticket is requested:

■ Trouble Detection Date (troubleDetectionDate)

■ Ticket Type Code (ticketTypeCode)

■ Initiating Mode ID (initiatingModeID)

■ Ticket Status ID (ticketStatusID)

■ Priority Level ID (priorityLevelID)

■ Responsible Org Party ID (responsibleOrgPartyID)

■ Administrative Org Party ID (administrativeOrgPartyID)

■ Intrusive Testing Authorized Indicator (intrusiveTestingAuthInd)

■ Billing Type Code (billTypeCd)

Business Rules in Processing createticket_v3 Request
The following items list business rules used in validating and processing the
createTicket_v3 request:

■ All code and ID fields must exist and be active.

■ The Trouble Detection Date must be on or before the ticket open date.

■ The Ticket Status ID must be valid for the “openActive” ticket state.

Process Flows

13-20 MetaSolv Solution CORBA API Developer's Reference

■ Priority Level values are 0, 1, 2, and 3.

■ Severity Level values are 0, 1, 2, and 3.

■ Reported By and Ticket Contact Access Numbers are now taken as a string,
instead of in the previous release’s TelephoneNumber structure.

■ Reported By and Ticket Contact Access Numbers can only contain numeric
characters if the MetaSolv Solution Enable NPA/NXX Contact Telephone Number
Formatting preference is “Yes.” If this preference is “Yes” and the access number is
not numeric, the access number is not stored with the contact. Instead, a log note is
added to provide the telephone number information.

■ The Reported By and Ticket Contact Access Numbers are only stored when a
contact name is given. If the contact name is not given, a log note indicates that the
contact access number could not be stored. The log not includes the imported
access number.

■ The Customer Address Sequence can only be specified when the Customer Party
ID is specified.

■ Responsible Org Assigned To Accepted Indicator must be populated with Y or N
if the Responsible Org Assigned To Party ID is populated.

■ Administrative Org Assigned To Accepted Indicator must be populated with Y or
N if the Administrative Org Assigned To Party ID

■ Office Network Location must be a valid location.

■ Billing Type Code valid values are “bill” and “nonBill.”

■ The Next Customer Status Date cannot be prior to the current date (time is not
considered).

■ The Service Item Sequence (ServiceItemSeq) within the TicketImportInfo structure
can either contain 0 or 1 instances of the ServiceItem structure.

■ The Log Note Information Sequence (LogNoteInfoSeq) can contain any number of
entries. The log note text can only contain a maximum of 2000 character each.

■ These fields, if populated, are required to be numeric:

– Responsible Org ID (responsibleOrgPartyID)

– Responsible Org Assigned To ID (respOrgAssignedToPartyID)

– Administrative Org Party ID (administrativeOrgPartyID)

– Administrative Org Assigned To Party ID (adminOrgAssignedToPartyID)

– Customer Party ID (customerPartyID)

– Escalation Method ID (escalationMethodID)

– Initiating Mode ID (initiatingModeID)

– Ticket Status ID (ticketStatusID)

– Trouble Found ID (troubleFoundID)

– Trouble Type ID (troubleTypeID)

– Customer Status Minutes (customerStatusMinutes)

– ETTR (ettrSeconds)

– Priority Level (priorityLevelID)

– SeverityLevel (severityLevelID)

Process Flows

The Trouble Management API 13-21

See "Trouble Management Operational Differences" for more information.

Notifications Upon Ticket Creation
When the createTicket_v3 operation is used to change the Responsible Org,
Administrative Org, Resp Org Assigned To, or Admin Org Assigned To change, all
appropriate notifications are generated, just as if the change had been made from
within the MetaSolv Solution Trouble Management subsystem.

Escalation Levels for createTicket_v3 Request
The createTicket_v3 operation does not support input for escalation levels for the
Responsible Org and Administrative Org. It also does not support the input of other
escalation organizations on a ticket.

If the input Responsible Org and/or Administrative Org have an escalation profile
defined for the input Escalation Method (defined in the organization’s escalation
profile in Infrastructure), the initial escalation level for the organization is defaulted on
the new ticket by the API. If the input Escalation Method has a default escalation
organization defined in Infrastructure, that escalation organization and its initial
escalation level is defaulted on the new ticket by the API.

Ticket Linkage
Creating a parent-child relationship with another ticket through the Trouble
Management API is not supported.

Creating Duplicate Tickets
The duplicateTicketAllowed Boolean field in the TicketImportInfo structure
determines whether the API allows setting the service item on a ticket if an open ticket
already exists on the that service item, and both tickets have a ticket type that
identifies repeat and chronic trouble.

Customer Must Be Passed as a Party ID
In the Trouble Management subsystem, users optionally enter the customer name
directly instead of selecting the customer from the Customer Search window. If the
customer is not found, the Trouble Management subsystem displays an error when the
ticket is saved. The createTicket_v3 operation requires that the customer be passed in
the form of a party ID if a customer is being specified. A client may still allow the user
to enter the customer name directly and determine the ID by calling the
getPartyByPartyName operation. That operation returns a party ID which can then be
passed to the createTicket_v3 operation.

Customer is Defaulted Based On the Service Item
If the service item is changed, and there is no customer on the ticket, the API defaults
the customer to the customer associated in the MetaSolv Solution database with the
service item. If the defaulted customer has only one billing address, the address is also
defaulted.

Non-inventoried Service Items Are Not Created
A non-inventoried service item is not created if the service item on a ticket cannot be
found in inventory. If the service item cannot be found, the new service item type is set
on the ticket, but the service item description is set to null. A log note is created stating
that the service item could not be found. The log note includes the service item
identifier information passed in the ServiceItem structure.

Process Flows

13-22 MetaSolv Solution CORBA API Developer's Reference

Certain Codes Are Passed as ID Values
Changes to the following codes on a ticket are passed in the form of their numeric ID
values, not the code directly. Trouble Management API queries that return the numeric
ID and the code are available for each. This enables you to populate dropdown fields
on the client application.

■ Escalation Method ID

■ Initiating Mode ID

■ Ticket Status ID

■ Trouble Found ID

■ Trouble Type ID

Ticket Dates and Times Are Imported in GMT
The Trouble Management API assumes that all dates imported through the
createTicket_v3 operation are in GMT. It is the responsibility of the client application to
convert any imported dates from local time to GMT.

Telcordia Preference and Trouble Management API
MetaSolv Solution uses its Telcordia preference to determine if circuit identifier fields
should be formatted according to Telcordia specifications (for example, having the
proper number of spaces between virgules). The setting of the Telcordia preference has
no effect when you use the Trouble Management API to specify a circuit for the
createTicket_v2, createTicket_v3, updateTicket, or updateTicket_v2 operations, and the
service item type is one of the types shown in Table 13–5. In such a case, the Trouble
Management API searches the database for the value in the corresponding field as a
formatted circuit. If the API does not find that value as a formatted circuit, the API
searches again for that value as an unformatted circuit using the input provided in the
operation's parameters.

Table 13–5 lists the service item types and the field names.

Setting or Changing the Affected Service Item On a Trouble Ticket
The service item on a ticket may be set or changed through the createTicket_v3 or
updateTicket_v2 operations by passing a single ServiceItem structure in the
ServiceItemSeq sequence. If no change is to be made to the service item, no structure
should be sent. Only one structure may be passed in the sequence.

If the API finds the service item in the MetaSolv Solution inventory, the service item
type and appropriate service item description are set on the ticket. If the service item
cannot be found, the API processes the ticket creation or update without an error, but
sets only the service item type on the ticket and writes a log note indicating that the
service item could not be found. The log note includes the service item information

Table 13–5 Field Formatting

Service item type Field name

Circuit/Connection CircuitConnectionID

Internet Circuit InternetCircuitIdent

Internet DSL DSLCircuitIdent

Message Trunk Group MsgTrunkGroupIdent

Process Flows

The Trouble Management API 13-23

passed for the service item type. The API does not create non-inventoried service
items.

Passing the Service Item Type and Service Item Identifier
The ServiceItem structure includes a service item type attribute and a set of service
item identifier attributes. The service item type is an enumerated attribute that
categorizes the service items supported by the Trouble Management System. The API
uses the service item type to determine which service item identifier to use in
attempting to find the service item. Only the appropriate service item identifier is
used, and all other information passed is ignored. Table 13–6 lists the service item type
values and their corresponding service item identifiers from the ServiceItem structure.
One exception to this is the serviceItemID field. It can be used to specify any one of the
following service item types.

Identifying a Circuit/Connection Service Item Type
When a Trouble Management subsystem user creates a trouble ticket on a service item
that has a service item type of CIRCUIT, it enables you to identify the faulty circuit by
using the circuit ID. The Trouble Management API also enables you to use the circuit
ID to identify the faulty circuit.You can use the serviceItemId field to specify a circuit
or a connection, in addition to the fields in the CircuitConnectionInfo structure, which
was previously called CircuitInfo.The circuit ID can be retrieved from the
getQueryCircuits_v2 operation in the DLR API.

In addition, the Trouble Management API enables you to identify the faulty circuit by
using port information that is associated with the circuit's port address. The port
address information includes:

Table 13–6 Service Item Type and Service Item Identifier

Service item type Enumerated value Service item identifier

Equipment EQUIPMENT See "Identifying an Equipment Service Item
Type" for more information.

Circuit/Connection CIRCUIT See "Identifying a Circuit/Connection Service
Item Type" for more information.

Message Trunk Group MSG_TRNKGRP msgTrunkGroupIdent - This is the circuit ID
of the message trunk group.

End User Special
Trunk Group

EUS_TRNKGRP eusTrunkGroupIdent - This is the two six
code of the end user special trunk group

Telephone Number TELNBR See "Identifying a Telephone Number Service
Item Type" for more information.

Internet Dial-Up INTRNTDLP InternetDialupIdent - This is the user ID of
the internet dial up service

Internet Circuit INTRNTCKT InternetCircuitIdent - This is the circuit ID of
the internet circuit. After migration to the new
MSS graphical format, this service item type
moves to the Circuit/Connection service item
type.

Internet DSL BWCKT DSLCircuitIdent - This is the circuit ID of the
Digital Subscriber Line bandwidth circuit.
After migration to the new MSS graphical
format, this service item type moves to the
Circuit/Connection service item type.

Process Flows

13-24 MetaSolv Solution CORBA API Developer's Reference

■ Target Identifier (TID): The TID identifies a group of equipment associated as
part of a system or network element. In MetaSolv Solution, the TID information is
maintained on the Node tab of the Network Element Properties window.

■ Access Identifier (AID): The AID identifies the port address on a piece of
equipment within the network element identified by the TID. In MetaSolv
Solution, the AID information is stored as the concatenated node address for the
port address to which the circuit is assigned.

Using port address information enables you to create a trouble ticket on a circuit when
an alarm is triggered on a port address monitored by a fault management product.

Identifying an Equipment Service Item Type
When you use the Trouble Management API to create a trouble ticket on a service item
that has a service item type of EQUIPMENT, the Trouble Management API enables
you to use one of four methods to identify the faulty equipment:

■ Equipment ID: The equipment ID for an installed piece of equipment. The
equipment ID is retrieved from the queryEquipInstall_v2 operation in
WDIEquipment.

■ Equipment Name: The equipment name for an installed piece of equipment. The
equipment name is maintained in the Name field on the Equipment tab of the
Equipment window.

■ Serial Number: The serial number for an installed piece of equipment. The serial
number is maintained in the Serial Number field on the Equipment tab of the
Equipment window.

■ Serial Number and COMMON LANGUAGE Equipment Identifier (CLEI) Code: If
serial numbers are not unique among the vendors of your installed equipment,
you can pass the serial number and CLEI code for the faulty equipment.
Uniqueness of CLEI codes is enforced by Telcordia Technologies (formerly
Bellcore). However, the CLEI code alone does not sufficiently identify a single
piece of equipment. The CLEI code is maintained in the CLEI code field on the
Equipment Spec tab of the Equipment Spec window.

Neither the Trouble Management subsystem nor the Trouble Management API
support creating a trouble ticket on equipment that has a service item type of

Note: Using port address information for Circuit/Connection service
items enables you to use the Outage report to identify all customers
affected by the outage and contact the customers proactively to advise
them of the trouble. You can generate the Outage report from the
Active Ticket Queue window in the Trouble Management subsystem.

WARNING: The Trouble Management API can use these methods
to identify a specific piece of equipment only if you maintain a
unique equipment name or unique serial number values for each
installed piece of equipment. The Name and Serial Number fields
on the Equipment Maintenance window and the CLEI code field on
the Equipment Spec tab of the Equipment Spec window are not
required fields. Also, MetaSolv Solution does not enforce any
validation on the Name and Serial Number fields to ensure that
they are unique.

Process Flows

The Trouble Management API 13-25

EQUIPMENT at the port address level. The lowest level at which you can create a
trouble ticket for Equipment service items is the card on which the port address
resides. If you need to create trouble tickets for Equipment service items at a lower
level than the card, a work-around method is to create the ticket with a service item
type of CIRCUIT instead of EQUIPMENT and pass the TID and AID associated with
the port address.

Identifying an Network Element Service Item Type
You can specify a Network Element service item type by specifying the service item
type as Element in the servItemType field. You can then specify the specific element
by either populating the networkElementName field with the network element name,
or you can use the serviceItemId field. The serviceItemId field is preferred, because
the networkElementName field can refer to more than one element. Both fields are
returned by the getNetworkElementServItem query operation.

Identifying a Network System Service Item Type
You can specify a Network System service item type by specifying the service item
type as System in the servItemType field. You can then specify the specific system by
either populating the networkSystemShortName field with the unique network
system short name, or you can use the serviceItemId field. Both fields are returned by
the getNetworkSystemServItem query operation.

Identifying a Telephone Number Service Item Type
When you use the Trouble Management API to create a trouble ticket on a service item
that has a service item type of Telephone Number, the Trouble Management API
enables you to use one of two methods to identify the appropriate number:

■ UnformattedTelephoneNumber: The telephone number in a single string format,
without containing any formatting characters (that is, it should be all numeric
characters) for a telephone number.

■ TelephoneNbrInvId: The number inventory ID for telephone number. The
number inventory ID is retrieved from the operation within the Trouble API.

Clearing the service item from a ticket
A service item may be cleared from an existing ticket by passing a ServiceItem
structure with the service item type set to “none”. No service item identifiers need to
be populated in that case. The API clears both the service item type and the service
item description from the ticket.

The updateTicket_v2 Operation
This section provides information about the updateTicket_v2 operation.

Updateable Ticket Attributes
When executed successfully, the getTicketForUpdate_v2 operation returns a
TicketInfoForUpdate structure which contains an UpdateableTicketInfo structure and
a ReadOnlyTicketInfo structure. The trouble ticket attributes you can change through
the updateTicket_v2 operation are contained in the UpdateableTicketInfo structure.
For each ticket attribute that is changed, a log entry is created with an audit note.

The updateTicket_v2 operation also accepts an unlimited sequence of log notes. Each
note can be up to 2,000 characters long. The Trouble Management subsystem displays

Process Flows

13-26 MetaSolv Solution CORBA API Developer's Reference

log notes along with any audit notes that are generated by the Trouble Management
API.

ExportDateTime Field is Used to Check Concurrency
The export date and time (aExportDateTime) returned by the getTicketForUpdate_v2
succeeded notification (getTicketForUpdateSucceeded)is in the database server’s time
zone. You passed this information back unchanged in the updateTicket _v2 operation
and the API uses it to verify that the ticket has not been updated since the read
operation in the getTicketForUpdate_v2. If the ticket has been updated after the
getTicketForUpdate_v2 read, then an exception is returned.

Required Fields in updateTicket Request
The following fields within the updateableTicketInfo structure must be populated
when any update is requested:

■ Trouble Detection Date (troubleDetectionDate)

■ Ticket Type Code (ticketTypeCode)

■ Initiating Mode Id (initiatingModeID)

■ Ticket Status Id (ticketStatusID)

■ Priority Level Id (priorityLevelID)

■ Responsible Org Party Id (responsibleOrgPartyID)

■ Administrative Org Party Id (administrativeOrgPartyID)

■ Intrusive Testing Authorized Indicator (intrusiveTestingAuthInd)

■ Billing Type Code (billTypeCd)

Business Rules in Processing updateTicket_v2 Request
The following items list business rules used in validating and processing the
updateTicket_v2 request:

■ Closed tickets may not be edited.

■ All code and id fields must exist and be active.

■ The Trouble Detection Date must be on or before the ticket open date.

■ The Ticket Status Id must be valid for the current ticket state.

■ Priority Level values are 0, 1, 2, and 3.

■ Severity Level values are 0, 1, 2, and 3.

■ Contact Access Numbers can only contain numeric characters if the “Enable
NPA/NXX Contact Telephone Number Formatting” preference is Yes. Also, this
can only be stored when a contact name is given.

Note: In the Trouble Management subsystem, when the Responsible
Org, Resp Org Assigned To, Administrative Org, or Admin Org
Assigned To are changed on a ticket, a log note is required. The
Trouble Management API does not require a log note when these
fields are changed through the updateTicket_v2 operation. If necessary,
this may be enforced by the client.

Process Flows

The Trouble Management API 13-27

■ The Customer Address Sequence can only be specified when the Customer Party
Id is specified.

■ Responsible Org Assigned To Accepted Indicator must be populated with Y or N
if the Responsible Org Assigned To Party Id is populated.

■ Administrative Org Assigned To Accepted Indicator must be populated with Y or
N if the Administrative Org Assigned To Party Id

■ Office Network Location must be a valid location.

■ Billing Type Code valid values are “bill” and “nonBill.”

■ Cause Code field is required if the ticket is in a “cleared” state.

■ Trouble Found Id field is required if the ticket is in a “cleared” state.

■ If Trouble Found Id field is populated then the Cause Code must be populated.

■ The Trouble Found id field must be associated to the Cause Code.

■ Cleared Code is required if the ticket is in a “cleared” state.

■ The Defer Until Date may be changed only if the ticket is in a Deferred state, and
this date cannot be prior to the current date (time is not considered).

■ The Next Customer Status Date cannot be prior to the current date (time is not
considered).

■ The Service Item Sequence (ServiceItemSeq) within the TicketImportInfo structure
can either contain 0 or 1 instances of the ServiceItem structure. If the Service Item
Sequence is not given, then it is assumed that it has not changed.

■ The Log Note Information Sequence (LogNoteInfoSeq) can contain any number of
entries. The log note text can only contain a maximum of 2000 character each.

■ These fields, if populated, are required to be numeric:

– Responsible Org Id (responsibleOrgPartyID)

– Responsible Org Assigned To Id (respOrgAssignedToPartyID)

– Administrative Org Party Id (administrativeOrgPartyID)

– Administrative Org Assigned To Party Id (adminOrgAssignedToPartyID)

– Customer Party Id (customerPartyID)

– Escalation Method Id (escalationMethodID)

– Initiating Mode Id (initiatingModeID)

– Ticket Status Id (ticketStatusID)

– Trouble Found Id (troubleFoundID)

– Trouble Type Id (troubleTypeID)

– Customer Status Minutes (customerStatusMinutes)

– ETTR (ettrSeconds)

– Priority Level (priorityLevelID)

– SeverityLevel (severityLevelID)

See "Trouble Management Operational Differences" for more information.

Process Flows

13-28 MetaSolv Solution CORBA API Developer's Reference

Notifications Upon Ticket Update
When the updateTicket_v2 operation is used to change the Responsible Org,
Administrative Org, Resp Org Assigned To, or Admin Org Assigned To change, all
appropriate notifications are generated, just as if the change had been made from
within the MetaSolv Solution Trouble Management subsystem.

Ticket Linkage and Ticket Update
If the updated ticket is linked in a common cause relationship as a parent ticket, the
updateTicket_v2 operation synchronizes the child ticket(s) with the parent ticket. The
Trouble Management API does not include functionality to link or unlink tickets. It
only keeps the parent and child tickets synchronized when the parent ticket changes.

Attributes on a child ticket cannot be explicitly altered by an updateTicket_v2 request
on the child ticket itself. These updates must be made to the parent ticket. These child
ticket attributes are automatically updated when the corresponding attribute changes
on the parent ticket:

■ Ticket Status

■ Responsible Organization

■ Administrative Organization

■ Office Network Location

■ Priority Level

■ Severity Level

■ ETTR

■ Trouble Description

■ Trouble Detection Date

■ Admin Org Assigned To

■ Responsible Org Assigned To

■ Administrative Org Assigned To Acceptance Indicator

■ Responsible Org Assigned To Acceptance Indicator

■ Defer Until Date

■ Cause Code

■ Trouble Found

■ Cleared Code

These child ticket DMOQ attributes are updated only when closing ticket:

■ TTR (Total Time to Repair)

■ Total Customer Time

■ Total Duration

■ ETTR Provided Within 30 Mins of Ticket Open

■ Service Restored Within 30 Minutes of ETTR

■ Number Statuses Over 30 Minutes After Previous Status

■ Number of Statuses Given

■ Circuit In Service Date/Time

Process Flows

The Trouble Management API 13-29

■ Circuit In Service Within 30 Days of Ticket Open

■ Circuit In Service Within 60 Days of Ticket Open

Updating Duplicate Tickets
The duplicateTicketAllowed Boolean field in the TicketImportInfo structure
determines whether the API allows a change to the service item on a ticket if an open
ticket already exists on the new service item, and both tickets have a ticket type that
identifies repeat and chronic trouble.

About Customer Information and Updating Tickets
This section provides information about customer information and updating tickets.

Customer Must Be Passed as a Party ID
In the Trouble Management subsystem, users can optionally enter the Customer Name
directly instead of selecting the customer from the Customer Search window. If the
customer is not found, the Trouble Management subsystem displays an error when the
ticket is saved. The updateTicket_v2 operation requires that the customer be passed in
the form of a party ID if a customer is being specified. A client may still allow the user
to enter the customer name directly and determine the ID by calling the
getPartyByPartyName operation. That operation returns a party ID which can then be
passed to the updateTicket_v2 operation.

Customer is Defaulted Based On the Service Item
If the service item is changed, and there is no customer on the ticket, the API defaults
the customer to the customer associated in the MetaSolv Solution database with the
service item. The customer billing address is also defaulted. The API writes a log note
indicating that the customer was defaulted by the API.

Non-inventoried Service Items Are Not Created
A non-inventoried service item is not created if the service item on a ticket cannot be
found in the MetaSolv Solution inventory. If the service item cannot be found, the new
service item type is set on the ticket, but the service item description is set to null. A
log note is created stating that the service item could not be found. The log note
includes the service item identifier information passed in the ServiceItem structure.

Certain Codes are Passed as ID Values
Changes to the following codes on a ticket are passed in the form of their numeric ID
values, not the code directly. Trouble Management API queries that return the numeric
ID and the code are available for each. This enables you to populate dropdown fields
on the client application.

■ Escalation Method ID

■ Initiating Mode ID

■ Ticket Status ID

■ Trouble Found ID

■ Trouble Type ID

Process Flows

13-30 MetaSolv Solution CORBA API Developer's Reference

Ticket Dates and Times Are Exported and Imported in GMT
All dates exported by the getTicketForUpdate_v2 operation are exported in GMT. All
dates imported in the updateTicket_v2 operation are assumed to be in GMT. It is the
responsibility of the client to convert the exported dates to local time and the imported
dates to GMT.

The export date and time returned by the getTicketForUpdate_v2 and getTicketReport
operations are in the database server's time zone. The export date and time is passed
back unchanged in the updateTicket operation and compared to the ticket's last
modified date, which is stored in the database server's time zone.

Audit Note Date/Time Display
In the Trouble Management subsystem, the display of the date/time is determined by
the setting on the client workstation and therefore varies depending on the user's
individual settings. For the Trouble Management API, the standard format of
mm/dd/yyyy hh:mm:ss am/pm (GMT) is used when giving details about date/time
fields that have been updated, and these times are in GMT.

Telcordia Preference and Trouble Management API
MetaSolv Solution uses its Telcordia preference to determine if circuit identifier fields
should be formatted according to Telcordia specifications (for example, having the
proper number of spaces between virgules). The setting of the Telcordia preference has
no effect when you use the Trouble Management API to specify a circuit for the
createTicket_v2, createTicket_v3, updateTicket, or updateTicket_v2 operations, and the
service item type is one of the types shown in Table 13–7. In such a case, the Trouble
Management API searches the database for the value in the corresponding field as a
formatted circuit. If the API does not find that value as a formatted circuit, the API
searches again for that value as an unformatted circuit using the input provided in the
operation's parameters.

Table 13–7 lists the service item types and the field names.

The clearTicket Operation
The clearTicket operation clears the designated ticket. That is, it changes the state of
the ticket to 'Cleared'. This operation cannot be called on a ticket that is already in a
cleared, closed or canceled ticket state. In addition, it cannot be called on a ticket that is
an externally referred ticket state. You must first close (that is, verify) all the open
external referrals through MetaSolv Solution.

A valid document number or ticket ID is required when a ticket is cleared. If both are
passed, the ticket ID is ignored.

The following attributes are also required. These attributes may have already been set
through the ticket update process prior to being cleared:

■ Cause Code

Table 13–7 Field Formatting

Service item type Field name

Circuit/Connection CircuitConnectionID

Internet Circuit InternetCircuitIdent

Internet DSL DSLCircuitIdent

Message Trunk Group MsgTrunkGroupIdent

Process Flows

The Trouble Management API 13-31

■ Trouble Found ID

■ Cleared Code

■ Ticket Status ID

Cleared Comment is an optional field.

The Trouble Found ID is the numeric ID associated with the trouble found code, and
must be passed as a valid numeric value. The numeric ID values are returned with the
trouble found codes in the getTroubleFoundCodes operation. The Trouble Found ID
must be associated with the Cause Code as defined in the MetaSolv Solution
infrastructure.

Likewise, the Ticket Status ID is the numeric ID associated with the ticket status code,
and must be passed as a valid numeric value. The numeric ID values are returned with
the ticket status codes in the getTicketStatusCodes2 operation. The Ticket Status ID
must be associated with the Canceled ticket state as defined in the MetaSolv Solution
infrastructure.

The above information is passed to the clearTicket operation in the
UpdateableClearCloseInfo structure. Since this structure is also used by the closeTicket
operation, it contains attributes for closing a ticket, including close contact first and
last name, close contact access number, and close comment. These fields are ignored by
the clearTicket operation. If you wish to clear and close a ticket at the same time, you
can call the closeTicket operation.

You can also pass the clearTicket operation a sequence of log notes. These notes are
displayed in the Clear Ticket event log entry along with the audit notes that are
generated for each attribute that is changed. The log notes are not meant to replace the
Cleared Comment.

Ticket Linkage and Clear Ticket
If the ticket being cleared is linked in a common cause relationship as a parent ticket,
and the processChildTickets attribute is set to TRUE, the clearTicket operation
automatically clears any child tickets that have not been cleared. You can determine
whether the ticket is a parent or child by the ParentChildInd attribute returned by the
getTicketForClearClose operation. The attribute is P if it is a parent, C if it is a child,
and blank if it is not linked. If the ticket is a parent, the user should be prompt to ask if
they wish to clear all child tickets with the parent.

All of the input information is applied to the child tickets that are cleared with the
parent. The Cause Code, Trouble Found ID, and Cleared Code is applied to all child
tickets that have not been closed or canceled, regardless of whether they are cleared
with the parent.

If the ticket is a child ticket, the Cause Code, Trouble Found ID, and Cleared Code
cannot be changed if they are already populated on the parent ticket.

Details Concerning Use of the closeTicket Operation
The closeTicket operation closes the designated ticket. That is, it changes the state of
the ticket to 'Closed'. This operation cannot be called on a ticket that is already in a
cleared, closed or canceled ticket state. In addition, it cannot be called on a ticket that is
an externally referred ticket state. You must first close (i.e., verify) all the open external
referrals through MetaSolv Solution.

A valid document number or ticket ID is required when a ticket is cleared. If both are
passed, the ticket ID is ignored.

Process Flows

13-32 MetaSolv Solution CORBA API Developer's Reference

The following attributes are required, with the exception of Cleared Comment. These
attributes may have already been set through the ticket update process prior to being
cleared or when the ticket was cleared:

■ Ticket Status ID

■ Cause Code

■ Trouble Found ID

■ Cleared Code

■ Cleared Comment

The Trouble Found ID is the numeric ID associated with the trouble found code, and
must be passed as a valid numeric value. The numeric ID values are returned with the
trouble found codes in the getTroubleFoundCodes operation. The Trouble Found ID
must be associated with the Cause Code as defined in the MetaSolv Solution
infrastructure.

Likewise, the Ticket Status ID is the numeric ID associated with the ticket status code,
and must be passed as a valid numeric value. The numeric ID values are returned with
the ticket status codes in the getTicketStatusCodes2 operation. The Ticket Status ID
must be associated with the Canceled ticket state as defined in the MetaSolv Solution
infrastructure.

With the exception of Close Contact Access Number, the following attributes are
required when the state is changed to 'closed':

■ Close Contact Last Name

■ Close Contact First Name

■ Close Contact Access Number

■ Closed Comment

The API accepts a blank close contact first name or blank close contact last name, if one
is provided.

If Close Contact Access Number is provided, it must be accompanied by the close
contact first and/or last name. The close contact access number should be a telephone
number, and can only contain numeric characters if the Enable NPA/NXX Contact
Telephone Number Formatting preference is set to Y in MetaSolv Solution. This
preference determines whether or not edit masks are used for contact phone numbers
in MetaSolv Solution. If a telephone number is stored with formatting, it does not
appear correctly when displayed in a field with an edit mask. If this preference is set to
Y and the access number is not numeric, an error is returned.

You can also pass the closeTicket operation a sequence of log notes. These notes are
displayed in the Close Ticket event log entry along with the audit notes that are
generated for each attribute that is changed. The log notes are not meant to replace the
Closed Comment.

Ticket Linkage and Close Ticket
If the ticket being closed is linked in a common cause relationship as a parent ticket,
and the processChildTickets attribute is set to TRUE, the closeTicket operation
automatically closes any child tickets that have not been closed or canceled. You can
determine whether the ticket is a parent or child by the ParentChildInd attribute
returned by the getTicketForClearClose operation. The attribute is P if it is a parent, C
if it is a child, and blank if it is not linked. If the ticket is a parent, the user is prompted
to confirm when closing all child tickets in the parent ticket.

Process Flows

The Trouble Management API 13-33

All of the input information is applied to the child tickets that are closed with the
parent. The Cause Code, Trouble Found ID, and Cleared Code is applied to all child
tickets that have not been closed or canceled, regardless of whether they are closed
with the parent.

If the ticket is a child ticket, the Cause Code, Trouble Found ID, and Cleared Code
cannot be changed if they are already populated on the parent ticket.

Closing an Open/Active Trouble Ticket
As designed, the normal status life cycle of a trouble ticket proceeds from
Open/Active at ticket creation, to Cleared when the trouble has been resolved but the
customer has not yet verified that the service is restored, to Closed when the customer
has verified that the service is working again.

You can call the closeTicket operation on an Open/Active ticket, and the Trouble
Management API can successfully clear and close the ticket at the same time. In this
case, you must populate both the required fields for clearing a ticket and the required
fields for closing the ticket. From the standpoint of both the Trouble Management
subsystem and the Trouble Management API, there is no difference between calling
closeTicket on an Open/Active ticket and calling clearTicket and closeTicket separately
on the ticket.

Notifications for Cleared and Closed Tickets
When a ticket is cleared or closed through the Trouble Management API, the API
sends a cleared or closed ticket notification to all escalation levels to which that ticket
had been escalated, just as if the ticket had been cleared or closed in the Trouble
Management subsystem. For tickets that were in the Cleared state when closed, the
notification process is not called, because the notification process would have already
been called when the ticket was cleared.

Details Concerning Use of the cancelTicket Operation
The cancelTicket operation cancels the designated ticket. That is, it changes the state of
the ticket to 'Canceled'. This operation cannot be called on a ticket that is already
closed or canceled.

A valid document number or ticket ID is required. If both are passed, the ticket ID is
ignored.

With the exception of Close Contact Access Number, the following attributes are
required when a ticket is canceled:

■ Closed Comment

■ Close Contact First Name

■ Close Contact Last Name

■ Close Contact Access Number

■ Ticket Status ID

Note: As designed, the optional states Externally Referred and
Deferred are temporary diversions from that normal status life cycle.
The optional Canceled state indicates a permanent closure of the
ticket.

Process Flows

13-34 MetaSolv Solution CORBA API Developer's Reference

The API accepts a blank close contact first name or blank close contact last name, if one
is provided.

If Close Contact Access Number is provided, it must be accompanied by the close
contact first and/or last name. The close contact access number must be a telephone
number, and can only contain numeric characters if the Enable NPA/NXX Contact
Telephone Number Formatting preference is set to Y in MetaSolv Solution. This
preference determines whether or not edit masks are used for contact phone numbers
in MetaSolv Solution. If a telephone number is stored with formatting, it does not
appear correctly when displayed in a field with an edit mask. If this preference is set to
Y and the access number is not numeric, an error is returned.

The Ticket Status ID is the numeric ID associated with the ticket status code, and must
be passed as a valid numeric value. The numeric ID values are returned with the ticket
status codes in the getTicketStatusCodes2 operation. The Ticket Status ID must be
associated with the Canceled ticket state as defined in the MetaSolv Solution
infrastructure.

You can also pass the cancelTicket operation a sequence of log notes. These notes are
displayed in the Cancel Ticket event log entry along with the audit notes that are
generated for each attribute that is changed. The log notes are not meant to replace the
Closed Comment.

Ticket Linkage and Cancel Ticket
If the ticket being canceled is linked in a common cause relationship as a parent ticket,
the cancelTicket operation automatically cancels any child tickets that have not been
closed. All of the input information is applied to the child tickets.

If the ticket being canceled is a child ticket, it is automatically unlinked from the parent
ticket.

Details Concerning Use of the getTickets_v2 Operation
This operation enables you to query for a trouble ticket or a collection of tickets based
on an optional set of criteria and a required sequence of ticket states. This functionality
is similar to the MetaSolv Solution Ticket Search window.

The search criteria are passed in the form of a sequence of TicketQueryCriteria
structures and a sequence of TicketStateEnum values. The TicketQueryCriteria
structures are used to pass all of the searchable criteria that a ticket must meet to be
returned by the query. The TicketStateEnum values are used to pass all of the possible
ticket states that a ticket may be in to be returned by the query.

The TicketQueryCriteria structure includes three attributes: TicketSearchableField,
which is the field the criteria value must match against; TicketSearchOperation,
which is the operator used in the search comparison, and a string value used to

Note: When calling the getTickets_v2 operation, query criteria are
optional. However, you must pass at least one ticket state, represented
by a TicketStateEnum value, in the TicketStateQuerySeq structure.

If you pass no criteria but do pass a valid state, the response contains
all trouble tickets of that state. However, you should exercise caution
when doing so to avoid excessive processing time.

If you do not pass at least one valid state, the query fails regardless of
the number of criteria you pass

Process Flows

The Trouble Management API 13-35

compare against the searchable field. (See WDITroubleTypes_v3.idl for the enumerated
values for TicketSearchableFields and TicketSearchOperation values).

Use the maxRecords parameter to limit the number of records the query returns. The
operation limits the number of records returned to the lesser of the maxRecords
parameter and the MetaSolv Solution Query Retrieval Limit preference. The operation
returns the WDISearchResultsInfo structure which includes the limit used in the query
and a Boolean indicating whether the matching records in the database exceeded the
limit.

If no data is found given the query criteria, this operation returns the
getTicketsNoDataFound_v2 operation on the Notification object.

The following rules apply to the search criteria:

1. The following searchable fields must be passed as numeric values:

■ InitiatingModeID

■ TicketStatusID

■ TroubleTypeID

■ TroubleFoundID

■ PriorityLevelID

■ SeverityLevelID

■ ResponsibleOrgPartyID

■ AdministrativeOrgPartyID

■ RespOrgAssingedToPartyID

■ AdminOrgAssignedToPartyID

2. The valid values for ServiceItemTypeCode include:

■ EQUIPMENT (used for Equipment)

■ CIRCUIT (used for Circuit)

■ MSG_TRNKGRP (used for Message Trunk Group)

■ EUS_TRUNKGRP (used for End User Special Trunk Group)

■ TELNBR (used for Telephone Number)

■ INTRNTDLP (used for Internet Dial-Up)

■ INTRNTCKT (used for Internet Circuit)

■ BWCKT (used Digital Subscriber Line)

3. The value passed for ServiceItemDescription is compared against the service item
description on the trouble ticket. If ServiceItemDescription is passed, it must be
accompanied by a ServiceItemTypeCode.

4. The valid values for PriorityLevelID must be 0, 1, 2, or 3, where these values have
the following definitions:

■ 0 - Undefined

■ 1 - Minor

■ 2 - Major

■ 3 - Serious

Process Flows

13-36 MetaSolv Solution CORBA API Developer's Reference

5. The valid values for SeverityLevelID must be 0, 1, 2, or 3, where these values have
the following definitions:

■ 0 - Out of Service

■ 1 - Back in Service

■ 2 - Service Impairment

■ 3 - Non Service Affecting Trouble

6. The DateRangeType identifies which date field to apply the DateRangeFromDate
and DateRangeToDate criteria to. Valid values include:

■ OPEN DATE

■ TROUBLE DETECTION DATE

■ CLEARED DATE

■ CLOSE DATE

7. If DateRangeFromDate and DateRangeToDate criteria are passed, then
DateRangeType must also be passed.

8. If either DateRangeFromDate or DateRangeToDate criteria are passed, both must
be passed.

9. The values for DateRangeFromDate and DateRangeToDate must be valid dates
and time passed int the format of “YYYYMMDDHHMMSS” with the hours in
24-hour notation, sometimes referred to as military time. The date and time values
are expected to be passed in the GMT time zone. The previous getTickets version
expected only the date portion.

10. If passed, the DateRangeToDate cannot be a date and time prior to
DateRangeFromDate.

11. The TicketSearchableField values listed below may be used with all of the
TicketSearchOperation operators. All other ticket searchable fields may only be
used with the EQUAL operator.

■ DocumentNumber

■ TicketID

■ CustTroubleTicketNum (Customer Trouble Ticket Number)

■ ServiceItemDescription

■ CustomerName

■ ExtRefTicketNum (External Referral Ticket Number)

The causeCode parameter limits the trouble found codes that are returned to only
those that are related to this cause code. If activeOnly is passed as true, the cause code
is required and must be a valid active or inactive cause code in the Trouble
Management subsystem.

Details Concerning Use of the Service Item Query Operations
The Trouble Management subsystem provides a Service Item query window which
may be accessed when editing a trouble ticket in order to find a service item to
associate to the ticket. This window presents a different query for each service item
type. Query operations that provide similar functionality are available in the Trouble
Management API and ICM API. These queries can be used to retrieve the service item
identifier that is passed to the createTicket_v3 and updateTicket_v2 operations.

Process Flows

The Trouble Management API 13-37

The service item queries for the Circuit and Equipment service item types are not
located in the Trouble Management API. To query for circuits, you may use the
getQueryCircuits operation located in the ICM API (WDIEquipment.idl). To query for
equipment, use the queryEquipInstall_v2 operation, also located in the ICM API
(WDIEquipment.idl). For more information about these queries, see "The Inventory
and Capacity Management API".

The service item query operations for the remaining service item types, are located in
the Trouble Management API. These operations include:

■ getMsgTrnkGrpServItem (message trunk groups)

■ getEUSpecialTrnkGrpServItem (end user special trunk groups)

■ getTelephoneNumberServItem (telephone numbers)

■ getInternetCircuitServItem (Internet circuits)

■ getInternetDialupServItem (Internet dial-ups)

■ getDSLServItem (digital subscriber lines)

In each of these operations in the Trouble Management API, with the exception of
getTelephoneNumberServItem, the criteria are passed as a sequence of structures,
where the structure includes:

■ An enumerated field indicating the field to be searched. The enumerated values
for this field correspond to the criteria fields on the query window in the Trouble
Management subsystem. Only one structure may be passed for a given searchable
field.

■ An enumerated field representing the operator used in the search comparison. For
example, EQUAL or LIKE.

■ A string value which is compared against the field being searched

Each service item query operation in the Trouble Management API is also passed a
maxRecords parameter to limit the number of records the query returns. The operation
limits the number of records returned to the lesser of the maxRecords parameter and
the Query Retrieval Limit preference in MetaSolv Solution. Along with the query
results, each operation returns the WDISearchResultsInfo structure which includes the
limit used in the query and a Boolean indicating whether the matching records in the
database exceeded the limit.

If no data is found given the query criteria, these operations return a “NoDataFound”
operation on the Notification object. For example, getDSLServItemNoDataFound.

Structure Format Criteria for the getTelephoneNumberServItem Operation
To use the getTelephoneNumberServItem operation, you must identify the structure
format that applies to the telephone number(s) you are searching for. The structure
format defines the components that make up a telephone number. The criteria input
for this operation is passed in the StructureFormat structure, which consists of the
following attributes:

■ Structure Type: For this operation, the type must be set to TN (Telephone Number)

■ Structure Name: This identifies the structure format that applies to the telephone
number(s) for which you are searching. For example, TN-US. You can call the
getStructureFormatsGivenType operation in the Infrastructure API to get a list of
valid telephone number structure formats.

Process Flows

13-38 MetaSolv Solution CORBA API Developer's Reference

■ Components: This is a sequence component structures you want to include as
criteria. You can get the component details needed to fill out this structure by
calling the getComponentsGivenStructureFormat operation in the Infrastructure
API with the structure name. The following attributes are included in the
SFComponent structure:

– Component ID: This is an internal unique identifier for the component.

– Component Name: This is name of the telephone number component. For
example, NPA.

– Component Type: This is a categorization of the component. For example, “T”
(table driven).

– Component Value: This is the component criteria value to be used in the
search.

The component ID, name and type must be valid for the structure name, or an error is
returned. Only one SFComponent structure may be passed for a given component. A
structure format may contain components that are required as criteria in a search.
These components can be identified through the output of the
getComponentsGivenStructureFormat operation in the Infrastructure API. The
requiredIndicator attribute equals Y if the component must be included as criteria.

MetaSolv Solution Software Concepts
This section describes important concepts about the MetaSolv Solution software.

Overview of the Trouble Management Subsystem
Successful development using the Trouble Management API requires an
understanding of the Trouble Management subsystem.

The Trouble Management subsystem tracks a reported problem from its initial
identification to its resolution. The Trouble Management subsystem maintains
information such as contacts, trouble codes, cause codes, and priority and escalation
levels. The Trouble Management subsystem records the information necessary to allow
the creation of various reports, including DMOQ reports for trouble tickets.

Trouble tickets can be associated with existing circuits, telephone numbers, trunk
groups, and customers. The Trouble Management subsystem tracks all activities
associated with resolving a ticket and monitors the ticket's state, status and responsible
and administrative organizations throughout the ticket's life cycle.

See the online Help for more information.

Permitted Trouble Ticket State Changes
MetaSolv Solution users can change the ticket state of trouble tickets through menu
selections within the Trouble Management subsystem.

Figure 13–2 illustrates the ticket state changes permitted by the Trouble Management
subsystem.

Process Flows

The Trouble Management API 13-39

Figure 13–2 Ticket State Changes Permitted By The Trouble Management Subsystem

The rules that govern ticket state changes through the Trouble Management subsystem
are listed below:

■ Tickets are created in the Open/Active state.

■ Open Active tickets can be changed to any ticket state except Open Active.

■ Deferred tickets can be changed to any ticket state except Cleared.

■ Externally Referred tickets can be changed to any ticket state.

■ Cleared tickets can be changed to any ticket state except Deferred.

■ Closed and Canceled tickets cannot change state.

The Trouble Management API enables you to use the updateTicket_v2 operation to
change trouble ticket statuses, but only for a subset of the status changes possible
through MetaSolv Solution.

Figure 13–3 illustrates the ticket state changes permitted by the Trouble Management
API.

Note: Closed and canceled are terminal states. Once a trouble ticket
is placed in one of these states, the ticket state can never be changed
again. Non-reporting details for a closed or canceled trouble ticket can
be added or edited. Reportable details cannot be added or edited,
except as permitted by the setting of the Allow Editing of Task
Completion Date Within the Grace Period preference.

Process Flows

13-40 MetaSolv Solution CORBA API Developer's Reference

Figure 13–3 Ticket State Changes Permitted by The Trouble Management API

The rules that govern ticket state changes through the Trouble Management API are
listed below:

■ Tickets are created in the Open/Active state using the createTicket_v3 operation.

■ Open Active tickets can be changed to Cleared, Closed, and Canceled.

■ Deferred and Externally Referred tickets an only be changed to Canceled.

■ Cleared tickets can be changed to Closed and Canceled.

■ Closed and Canceled tickets cannot change state The updateTicket operation does
not permit changes to closed or canceled tickets.

Trouble Management Operational Differences
This section provides information about the operational differences between the
Trouble Management subsystem and the Trouble Management API.

Escalation Organizations and Levels and the Trouble Management API
The Trouble Management API does not accept import of the information that fills these
editable fields on the Escalations tab of the Trouble Management subsystem's New
Ticket window. The Trouble Management API defaults these values when a trouble
ticket is created:

■ Admin Org to Notify - Level

■ Admin Org to Notify - Notify Ind

■ Other Org to Notify - Level

■ Other Org to Notify - Notify Ind

■ Other Orgs to Notify - Org

■ Resp Org to Notify - Level

■ Resp Org to Notify - Notify Ind

The Trouble Management API defaults these values when a ticket is created or when
the Administrative Organization, Responsible Organization, or Escalation Method
is updated on a ticket.

Process Flows

The Trouble Management API 13-41

External Referrals and the Trouble Management API
The Trouble Management subsystem allows a ticket to be externally referred to
multiple maintenance center organizations.

The Trouble Management API does not support the creation or maintenance of
external referrals. If a ticket has been externally referred, it may be updated using the
updateTicket_v2 operation, and it may be canceled using the cancelTicket operation.
However, an externally referred ticket cannot be cleared or closed through the Trouble
Management API.

User-required Optional Trouble Management Subsystem Fields and the Trouble
Management API
The Trouble Management subsystem allows users to require entries for fields that the
Trouble Management subsystem defines as optional.

The Trouble Management API does not enforce user-defined requirement of optional
Trouble Management subsystem fields when you submit a trouble ticket through the
Trouble Management API. Instead, the Trouble Management subsystem requires the
first user who updates that trouble ticket in the Trouble Management subsystem to
enter the information for the user-required Trouble Management subsystem fields.

User-defined Fields and the Trouble Management API
The Trouble Management subsystem allows users to create user-defined fields and to
require entries in those fields on a trouble ticket.

The Trouble Management API does not support import of information for
user-defined fields, and user-defined fields are not returned by the getTicketReport_v2
operation.

If a user-defined field is required, the Trouble Management subsystem requires the
first user who updates that trouble ticket in the Trouble Management subsystem to
enter the information for the field.

Certain Field Values Not Defaulted
In the Trouble Management subsystem, the values of the Customer Status Minutes
field and the corresponding Next Customer Status Date and Time field are available
in the IDL for the Trouble Management API, which permits your client application to
set these values as required.

When you use the updateTicket _v2 operation to change the Customer Status Minutes
field, the updateTicket _v2 operation does not automatically calculate and set the Next
Customer Status Date/Time field. Likewise, when you use the updateTicket _v2
operation to clear the Customer Status Minutes field, the updateTicket_v2 operation
does not automatically clear the Next Customer Status Date/Time field.

No Default of ETTR, Priority Level or Customer Status Minutes for a Circuit Service
Item
In the Trouble Management subsystem, users can set up defaults for the Estimated
Time To Restore (ETTR), Priority Level or Customer Status Minutes fields, based on
the service type code, service type category, and trouble type for a circuit service item.
The updateTicket_v2 operation does not default these fields when an inventoried
circuit is set on a ticket.

Process Flows

13-42 MetaSolv Solution CORBA API Developer's Reference

Repeat and Chronic Trouble Ticket Types
Trouble tickets can either represent real service issues, such as service outages and
equipment failures, or can be informational in nature. Whether a given trouble ticket is
informational or represents a real service issue is determined by the setting of the
Identifies Repeat and Chronic Trouble Indicator check box on the Trouble
Management subsystem's Ticket Type window for the ticket's trouble ticket type.

■ If the Identifies Repeat and Chronic Trouble Indicator check box is selected, the
trouble ticket represents a real service issue.

■ If the Identifies Repeat and Chronic Trouble Indicator check box is deselected,
the trouble ticket is informational.

Whenever a new trouble ticket is entered into the database, whether through the
Trouble Management subsystem or the Trouble Management API, the ticket is
evaluated to determine whether it could constitute an instance of repeat trouble,
chronic trouble, or both. In order for a trouble ticket to represent an instance of repeat
or chronic trouble, the trouble ticket type's Identifies Repeat and Chronic Trouble
Indicator check box must be checked, and the appropriate condition below must be
met:

■ For repeat trouble, at a minimum one trouble ticket that represents a real service
issue must have been entered for that service item within the past 30, 60, 90, or
greater than 90 days.

■ For chronic trouble, the service item must have had a minimum number of trouble
tickets that represent real service issues within a maximum number of days in the
past. These minimum and maximum values are determined by the setting of the
Trouble Management subsystem's Chronic Trouble Number of Tickets and
Number of Days preference.

A given service item can have multiple informational trouble tickets in an open
ticket state at the same time. However, while a given service item has a trouble
ticket that represents a real service issue that is in a ticket state other than Closed or
Canceled:

■ The Trouble Management API cannot accept additional trouble tickets that
represent a real service issue for that service item.

■ The Trouble Management subsystem warns users who enter a trouble ticket that
represents a real service issue for that service item that the open ticket exists and
asks the user if they want to create the new ticket anyway.

Effect of Data Errors in Trouble Reports on Trouble Management API Processing
If your application submits, to the Trouble Management API, a trouble ticket that
omits non-critical information or has a non-critical error, the Trouble Management API
creates the trouble ticket and adds log notes to the trouble ticket that identify the
missing information or data errors. For example, a contact phone number was given,
but no contact name was supplied.

If your application submits to the Trouble Management API a trouble ticket that omits
critical information or has a critical error, the Trouble Management API rejects the
trouble report with an explanation, for example the ticket type code that is passed does
not exist in the database.

14

The Work Management API 14-1

14The Work Management API

The Work Management API exposes certain functions of the Oracle Communications
MetaSolv Solution Work Management subsystem and certain information in the
database that the Work Management subsystem uses.

■ Implementation of external applications that use the Work Management API
follows the pattern described in "Asynchronous Interaction Pattern".

The Work Management API can be used to provide limited access to Work
Management subsystem functions and information from remote and local locations for
both field personnel and other users of MetaSolv Solution. Possible examples of
applications that can be developed using the Work Management API are:

■ An application that electronically generates tasks for service requests that are
received electronically, which eliminates the need to generate tasks for these
service requests manually.

■ A Web interface or application that monitors a work queue, reports new tasks in
that queue to the user (an individual or work group), and reports completion of
specific tasks and gateway events by that user back to the Work Management API.
For example, if the credit department must complete a credit check task prior to
order completion, the credit department could use an application that notifies
them when credit check tasks have been assigned to them. As the assigned tasks
are completed, the credit department could use this application to report
completion of the tasks.

■ A thin client or Web interface for field personnel that displays their work queue,
displays the service request for which the task is performed, displays the
relationships and dependencies between tasks, and allows users to report task
completion and the reason that tasks were completed late. This type of application
could be used in situations where it is difficult or impossible to run the entire
MetaSolv Solution application remotely.

The CORBA servername used by the Work Management API is WMSERVER.

WMSession Interfaces
Figure 14–1 shows the relationship of the interfaces within the Work Management API.

WMSession Interfaces

14-2 MetaSolv Solution CORBA API Developer’s Reference

Figure 14–1 WMSession Interfaces

WDIManager
Table 14–1 lists the operations available in the WDIManager interface of the
WDIWM.IDL file.

Table 14–1 WDIManager Interface Operations in Work Management API

Operation Description

startWMSession Obtains the object reference of the WMSession

destroyWMSession Terminates the WMSession

startTransaction commit

rollback

destroyTransaction Terminates the transaction

startSignal eventOccurred

eventTerminated

eventInProgress

eventCompleted

eventErrored

destroySignal Terminates the signal

startInSignal eventInProgress

eventCompleted

eventErrored

destroyInSignal Terminates the InSignal

Note: See "Common Architecture" for more information on the
WDIManager interface.

WMSession Interfaces

The Work Management API 14-3

WMSession Interfaces
Table 14–2 lists the three operations that comprise the WMSession in the WDIWM.IDL
file.

WMSession Interface Operation Descriptions
■ startTaskGenerationSubSession

Obtains the object reference for the TaskGenerationSubSession

■ destroyTaskGenerationSubSession

Triggers destruction of the TaskGenerationSubSession object

■ startTaskViewingSubSession

Obtains the object reference for the TaskViewingSubSession

■ destroyTaskViewingSubSession

Triggers destruction of the TaskViewingSubSession object

■ startTaskCompletionSubSession

Obtains the object reference for the TaskCompletionSubSession

■ destroyTaskCompletionSubSession

Triggers destruction of the TaskCompletionSubSession object

The requestID parameter used by many of the operations in the Work Management API
is an arbitrary, user-defined number that provides a means of relating requests and
notifications when performing asynchronous operations. The Work Management
operations do not make use of this parameter. Instead, they return it unchanged and
unevaluated when executing the notification method.

Many of the descriptions of the operations in the Work Management API state that the
operation returns a value or values. In such cases, remember that the operation returns
that value by invoking the appropriate response operation on the notification object.

TaskGenerationSubSession Interfaces
Table 14–3 lists the operations available in the TaskGenerationSubSession session of
the WDIWM.IDL file.

Table 14–2 Work Management API WMSession Interface Operations

Operation Description

startTaskGenerationSubSession Obtains the object reference for the
TaskGenerationSubSession

destroyTaskGenerationSubSession Triggers destruction of the
TaskGenerationSubSession object

startTaskViewingSubSession Obtains the object reference for the
TaskViewingSubSession

destroyTaskViewingSubSession Triggers destruction of the TaskViewingSubSession
object

startTaskCompletionSubSession Obtains the object reference for the
TaskCompletionSubSession

destroyTaskCompletionSubSession Triggers destruction of the
TaskCompletionSubSession object

WMSession Interfaces

14-4 MetaSolv Solution CORBA API Developer’s Reference

TaskGenerationSubSession Interface Operation Descriptions
■ generateAndSaveTasks

Given an order (document_number), a provisioning plan ID, and the time zone of
the client, this operation generates tasks for that order along with completion
dates for each task. A sequence of tasks with their dates are returned along with a
sequence that contains the relationship between these tasks and a status.
generateAndSaveTasks supports the MetaSolv Solution rules and behaviors
functionality when generating tasks.

■ getAllQueues

This operation provides the functionality to return a sequence of all available work
queues in the MetaSolv Solution database if the work queues are to be manually
assigned.

■ getAllProvPlans

This operation provides the functionality to return a sequence of all available
provisioning plans in the MetaSolv Solution database if the provisioning plan is to
be assigned manually.

■ getPlanID

This operation provides the functionality to return a specific provisioning plan
name specified by the third party developer. This operation returns the ID of the
plan using a plan name. This is an alternative method to choosing a default
provisioning plan for internet services.

■ getAutoPlanID

This operation provides the functionality to automatically pick a provisioning plan
based on predefined third-party criteria. This operation returns the first plan ID
which is defined under the organization, jurisdiction, and the service group of the
given order (document_number.)

TaskViewingSubSession Interface Operations
Table 14–4 lists the operations available in the TaskViewingSubSession.

Table 14–3 Work Management API TaskGenerationSubSession Interface Operations

Operation WDINotification Operations

generateAndSaveTasks generateAndSaveTaskSucceeded

generateAndSaveTaskFailed

getAllQueues getAllQueuesSucceeded

getAllQueuesFailed

getAllProvPlans getAllProvPlansSucceeded

getAllProvPlansFailed

getPlanID getPlanIDSucceeded

getPlanIDFailed

getAutoPlanID getAutoPlanIDSucceeded

getAutoPlanIDFailed

WMSession Interfaces

The Work Management API 14-5

Table 14–4 TaskViewingSubSession Interface Operations

Operation WDINotification Operations

getUserWorkQueue getUserWorkQueueSucceeded

getUserWorkQueueFailed

getWorkGroupWorkQueue getWorkGroupWorkQueueSucceeded

getWorkGroupWorkQueueFailed

getTasks getTasksSucceeded

getTasksFailed

getPredecessorTasks getPredecessorTasksSucceeded

getPredecessorTasksFailed

getFollowerTasks getFollowerTasksSucceeded

getFollowerTasksFailed

getTaskCircuits getTaskCircuitsSucceeded

getTaskCircuitsFailed

getTaskChecklist getTaskChecklistSucceeded

getTaskChecklistFailed

getTaskGWEvent getTaskGWEventSucceeded

getTaskGWEventFailed

updateChecklist updateChecklistSucceeded

updateChecklistFailed

updateGWEvent updateGWEventSucceeded

updateGWEventFailed

getServReqTasks getServReqTasksFailed

getServReqTasksSucceeded

acceptTask acceptTaskFailed

acceptTaskSucceeded

updateEstCompDate updateEstCompDateFailed

updateEstCompDateSucceeded

transferTask transferTaskFailed

transferTaskSucceeded

rejectTask rejectTaskFailed

rejectTaskSucceeded

searchWorkQueue searchWorkQueueFailed

searchWorkQueueSucceeded

getTaskDetail getTaskDetailFailed

getTaskDetailSucceeded

getServReqDetail getServReqDetailFailed

getServReqDetailSucceeded

getServReqNotes getServReqNotesFailed

getServReqNotesSucceeded

WMSession Interfaces

14-6 MetaSolv Solution CORBA API Developer’s Reference

TaskViewingSubSession Interface Operation Descriptions
■ getUserWorkQueue

This operation provides the functionality to return all work queues owned by the
user ID passed in to the operation. This process uses some of the existing
functionality and SQL used in the Work Management subsystem to build a list of
personal work queues.

■ getWorkGroupWorkQueue

This operation provides the functionality to return all work queues except those
owned by the user ID passed in to the operation. This process uses some of the
existing functionality and SQL used in the Work Management subsystem to build
a list of work queues.

■ getTasks

This operation provides the functionality to return task information for the work
queue passed in to the operation. Date/time fields are converted to local time
using the local time zone that is passed in. Task information returned includes
task_type, task_status, revised_completion_date, queue_status, type_of_sr (type of
service request) pon, first_ecckt_id, document_number, and task_number.

■ getPredecessorTasks

This operation provides the functionality to return the task information of
predecessor tasks for a given task. Predecessor task information includes task_
type, task_status, scheduled_completion_date, actual_release_date, revised_
completion_date, estimated_completion_date, work_queue_id, actual_
completion_date, task_critical_date_ind (critical task ind), task_status_date,
document_number, task_number, first_jeopardy_id (jeopardy ind), and auto_
comp_ind (auto completion ind.)

■ getFollowerTasks

This operation provides the functionality to return follower task information for a
given task. Follower task information includes task_type, task_status, scheduled_

addServReqNote addServReqNoteFailed

addServReqNoteSucceeded

getTaskJeopardy getTaskJeopardyFailed

getTaskJeopardySucceeded

getTaskJeopardyDetail getTaskJeopardyDetailFailed

getTaskJeopardyDetailSucceeded

addTaskJeopardy addTaskJeopardyFailed

addTaskJeopardySucceeded

updateTaskJeopardy updateTaskJeopardyFailed

updateTaskJeopardySucceeded

deleteTaskJeopardy deleteTaskJeopardyFailed

deleteTaskJeopardySucceeded

getJeopardyCode getJeopardyCodeFailed

getJeopardyCodeSucceeded

Table 14–4 (Cont.) TaskViewingSubSession Interface Operations

Operation WDINotification Operations

WMSession Interfaces

The Work Management API 14-7

completion_date, actual_release_date, revised_completion_date, estimated_
completion_date, work_queue_id, actual_completion_date, task_critical_date_ind
(critical task ind), task_status_date, document_number, task_number, first_
jeopardy_id (jeopardy ind), and auto_comp_ind (auto completion ind.)

■ getTaskCircuits

This operation provides the functionality to return circuit information as it relates
to a given task. Task circuit information includes ecckt (circuit ID), act_comp_date
(circuit completion date), jeopardy_ind, ckt_design_id, complete_ind (circuit
completion ind) and, notes_ind (circuit notes ind.)

■ getTaskChecklist

This operation provides the functionality to return the checklist items for a given
task. Task checklist information includes check_code (checklist identifier code),
check_comp_date (checklist completion date), check_seq, check_desc (checklist
description), and complete_ind (checklist completion ind.)

■ getTaskGWEvent

This operation provides the functionality to return the gateway events for a given
work_queue_id. Task gateway event information includes event_id, event_nm
(event name), task_type, task_type_pre (predecessor task to gateway event’s task),
force_reopen_ind, status_cd, version, signal_ind, in_out_cd, event_detail,
document_number, task_number, task_number_pre, and serv_item_id.

■ updateChecklist

This operation updates the MetaSolv Solution database when the user changes the
Completion Indicator field. The completion date for the checklist item is set to
null if the completion indicator is set to N or it is set to the current date and time if
the completion indicator is set to Y.

■ updateGWEvent

This operation provides the functionality to update the Status field in the gateway
events tables.

■ getServReqTasks

This operation returns task information for a given document number (service
request). This operation is oriented more toward the view of the service request
than the getTasks method is. Date and time information is stored in the MetaSolv
Solution database in Greenwich Mean Time (GMT). The Work Management API
converts dates and times between the time zone identified by the timezone
parameter and the GMT equivalent. This allows coordination of tasks that will be
performed in different time zones.

■ acceptTask

In the Work Management subsystem, users acknowledge tasks that have been
placed in their work queue by accepting them. This operation enables you to
acknowledge a task that has been placed in a work queue.

■ updateEstCompDate

This operation updates the estimated completion date for a specified task. Date
and time information is stored in the database in Greenwich Mean Time (GMT).
The Work Management API converts dates and times between the time zone
identified by the timezone parameter and the GMT equivalent. This allows
coordination of tasks that will be performed in different time zones.

■ transferTask

WMSession Interfaces

14-8 MetaSolv Solution CORBA API Developer’s Reference

This operation transfers the specified task from the work queue identified by the
current WorkQueue parameter to work queue identified by the newWorkQueue
parameter.

■ rejectTask

This operation rejects a completed predecessor task. You reject a task to return it to
the work queue of the person who completed that task so they can rework the
task.

When you use the rejectTask method, the Work Management API changes the
rejected task's reject status to R (Rejected) and the task’s status to Ready. The API
also changes the reject status of all completed follower tasks to R and sets their
status to Pending.

■ searchWorkQueue

This operation takes a string or partial string passed in through the searchKey
parameter and tries to match it to existing work queues in the MetaSolv Solution
database. The operation returns a sequence of all work queues that match the
search criteria. The type of search is determined by the searchType parameter, a
value of “B” requests a “Begins with” search, and a value of “C” requests a
“Contains” search.

■ getTaskDetail

This operation returns task detail information for a given document number and
task number. Date and time information is stored in the MetaSolv Solution
database in Greenwich Mean Time (GMT). The Work Management API converts
dates and times between the time zone identified by the timezone parameter and
the GMT equivalent. This allows coordination of tasks that will be performed in
different time zones.

■ getServReqDetail

This operation returns basic service request information for a given document
number. Date/time information is returned using the timezone you specify in the
timezone parameter. Service request detail information includes type of service
request, service request status, responsible party, purchase order number, order
number, desired due date, supplement type, and CCNA.

■ getServReqNotes

This operation returns a sequence of all notes that have been entered for the
designated service request.

■ addServReqNote

This operation adds a service request note for the designated service request.

■ getTaskJeopardy

This operation returns a sequence of task jeopardy information for the document
number/task number passed in to the method. Jeopardy information is used to

Note: You can find a task's reject status in the rejectStatus field in the
predFollow structure and the taskRejectStatus field in the taskView
structure.

You can find a task's status in the taskStatus field in the predFollow
structure and the taskStatus field in the taskView structure.

WMSession Interfaces

The Work Management API 14-9

identify why a task is or was in jeopardy of being completed late. Date and time
information is stored in the MetaSolv Solution database in Greenwich Mean Time
(GMT). The Work Management API converts dates and times between the time
zone identified by the timezone parameter and the GMT equivalent. This allows
coordination of tasks that will be performed in different time zones.

■ getTaskJeopardyDetail

This operation returns task jeopardy information for a single jeopardy ID passed
in to the method. Jeopardy information is used to identify why a task is or was in
jeopardy of being completed late. Date and time information is stored in the
MetaSolv Solution database in Greenwich Mean Time (GMT). The Work
Management API converts dates and times between the time zone identified by
the timezone parameter and the GMT equivalent. This allows coordination of
tasks that will be performed in different time zones.

■ addTaskJeopardy

This operation adds task jeopardy information for the task number you designate.
Date and time information is stored in the MetaSolv Solution database in
Greenwich Mean Time (GMT). The Work Management API converts dates and
times between the time zone identified by the timezone parameter and the GMT
equivalent. This allows coordination of tasks that will be performed in different
time zones.

■ updateTaskJeopardy

This operation updates task jeopardy information for the task number you
designate. Date and time information is stored in the MetaSolv Solution database
in Greenwich Mean Time (GMT). The Work Management API converts dates and
times between the time zone identified by the timezone parameter and the GMT
equivalent. This allows coordination of tasks that will be performed in different
time zones.

■ deleteTaskJeopardy

This operation deletes jeopardy information for a given task on a given service
request.

■ getJeopardyCode

This operation returns a sequence of all available jeopardy codes in the MetaSolv
Solution database.

TaskCompletionSubSession Interface Operations
Table 14–5 lists the operations available in the TaskCompletionSubSession.

Table 14–5 TaskCompletionSubSession Interface Operations

Operation WDINotification Operations

getOrganization getOrganizationSucceeded

getOrganizationFailed

getWhyMissCode getWhyMissCodeSucceeded

getWhyMissCodeFailed

completeTask completeTaskSucceeded

completeTaskFailed

WMSession Interfaces

14-10 MetaSolv Solution CORBA API Developer’s Reference

TaskCompletionSubSession Interface Operation Descriptions
■ getOrganization

This operation returns a sequence of all available organization IDs for the
organization type defined in the MetaSolv Solution Jeopardy Code Organization
Type preference.

■ getWhyMissCode

This operation provides the functionality to return a sequence of whymissed codes
used when selecting a whymissed code in the task completion process.

■ completeTask

Given a document number and task number, this operation validates the task to
ensure it is ready to be completed. If it passes validation, and is on time, the task is
completed. If the task is being completed late, a whymissed code is assigned
before completing the task.

■ completeTaskOnDate

This operation completes the task represented by the passed document number
and task number, and sets the revised completion date to the passed
completionDate if the following conditions are true: The task is late, but not
beyond its grace period, and the Allow Edit of Task Completion within Grace
Period preference is set to Y. Otherwise, the passed completionDate is ignored.

■ validateEditActCompDate

This operation validates whether or not a task's actual completion date can be
edited.

■ reopenTask

Reopens the completed task that you identify by document number and task
number.

completeTaskOnDate completeTaskSucceeded

completeTaskFailed

reopenTask reopenTaskFailed

reopenTaskSucceeded

validateEditActCompDate validateEditActCompDateFailed

validateEditActCompDateSucceeded

searchCompletedTasks searchCompletedTasksFailed

searchCompletedTasksSucceeded

Note: The completeTaskOnDate operation uses the same return
codes as the completeTask operation.

Table 14–5 (Cont.) TaskCompletionSubSession Interface Operations

Operation WDINotification Operations

Process Flows

The Work Management API 14-11

■ searchCompletedTasks

This operation returns a sequence of completed tasks that meet the passed search
criteria. Date and time information is stored in the MetaSolv Solution database in
Greenwich Mean Time (GMT). The Work Management API converts dates and
times between the time zone identified by the timezone parameter and the GMT
equivalent. This allows coordination of tasks performed in different time zones.

Work Management API IDL Files
The following IDL files are included in the Work Management API:

■ WDIWM.IDL

■ WDIWMTYPES.IDL

■ WDIWMTYPES_V2.IDL

Process Flows
This section contains a sample process flow for a solicited message. Use the sample
flows as templates for developing your own process flows.

See "Unsolicited Messages" for the process flow that is used when the Work
Management API is the client.

Solicited Messages
A solicited message is a message initiated by MetaSolv Solution. The API plays the
role of the client, and the third party application plays the role of the server.

Table 14–6 lists the interfaces and operations that the third-party application
implements using the IDL files provided with the Work Management API.

WARNING: Reopening tasks is not recommended for the following
reasons:

■ There is no notification, to the owner of a queue, that a task is a
reopened task, and no indication in the status column that the
status is "Reopened".

■ If the reopened task has any associated gateway events, those
gateway events must be reactivated.

■ If the reopened task is a precondition for a gateway event on
another task, that gateway event must be reactivated.

■ If there are any completed follower tasks to the one you want to
reopen, you must reopen the follower tasks first. If the follower
tasks are not in your own work queue, they reappear, when
reopened, in their original work queues with a status of
Pending. The original queue's owner does not receive
notification of reopened tasks in their queue.

Process Flows

14-12 MetaSolv Solution CORBA API Developer’s Reference

Sample Solicited Message Process Flow
When the Work Management API is the client, the overall process flows as follows:

1. The API client binds to the third-party server to get a WDIRoot object reference.

2. The API client invokes the connect operation of the WDIRoot interface, which
yields a WDIManager object reference.

3. The API client invokes the startSignal operation of the WDIManager interface to
get a WDISignal object reference.

4. The API client invokes the eventOccurred operation of the WDISignal interface
passing a WDIEvent structure to notify the third-party application that an event
registered to them has occurred within the database.

5. The API client invokes the destroySignal operation of the WDIManager interface.

6. The API client invokes the disconnect operation of the WDIRoot interface.

7. Once the third-party server completes processing, possibly involving additional
unsolicited messages to the MetaSolv Solution Application Server, the third party
server binds to the application server and follows the same process described
above for the MetaSolv Solution client with the exception that the
eventCompleted/Errored operations are invoked passing the original WDIEvent
structure.

If the third-party application encounters an error, it throws a WDIExcp as defined by
the IDL. The client handles CORBA system exceptions and WDIExcp exceptions.

Unsolicited Messages
An unsolicited message is a message initiated by the third-party application. For an
unsolicited message, the Work Management API plays the role of the server and the
third-party application plays the role of the server with the exception of callback
processing.

See "Solicited Messages" for the process flow used when the Work Management API is
the client.

Enhanced Off-net Automation Functionality and the Work Management API
Table 14–7 lists the interfaces and operations that the Work Management API server
(DLRSERVER) implements using the IDL files provided with the Work Management
API.

Table 14–6 Work Management API Solicited Message Operations

Interface For Implementing These Operations

WDIRoot connect

disconnect

WDIManager startTransaction

destroyTransaction

WDITransaction N/A

WDISignal eventOccurred

eventTerminated

WDIInSignal N/A

Implementation Concepts

The Work Management API 14-13

The Work Management subsystem provides enhanced automation of off-net orders, as
follows:

■ Provisioning plan templates can define relationships between tasks on PSRs and
tasks on child LSRs. At task generation, when the defined conditions exist for the
orders, the Work Management subsystem automatically creates the relationships
between the tasks.

■ During the CONF or RCONF task, the due date for the DD task and due dates for
predecessor or child tasks can be adjusted automatically based on the FOC date
received from an external provider of an LSR or ASR child order.

The Work Management API supports the operation of both of these features. When
tasks are generated through the Work Management API, and the defined conditions
exist for the orders, the Work Management subsystem automatically creates the
relationships between the tasks. When you use the Work Management API to
complete a CONF task, and the appropriate conditions exist, the Work Management
API automatically adjusts the Due Dates for the order and its tasks as appropriate.

Before you can use these automated features of MetaSolv Solution, you must use
MetaSolv Solution to set up the relationships between the provisioning plans and to
identify for each ICSC whether automatic date adjustment is permitted. See the online
Help for more information.

Implementation Concepts
This section describes the concepts that enable you to implement the Work
Management API.

Overview of the MetaSolv Solution Work Management Subsystem
To successfully develop applications using the Work Management API, you must first
have a thorough understanding of the MetaSolv Solution Work Management
subsystem.

The Work Management subsystem provides users with the tools needed to complete
these activities:

■ Define a variety of provisioning plans, which are generic templates of tasks
needed to fulfill specific types of service requests

■ Define rules under which MetaSolv Solution can dynamically change a
provisioning plan at the time it applies the plan to a specific service request

■ Apply a provisioning plan to a specific service request and:

Table 14–7 Work Management API Unsolicited Message Operations

Interface For Implementing Only These Operations

WDIRoot connect

disconnect

WDIManager startTransaction

destroyTransaction

WDITransaction commit

rollback

WMSession getWMSession

Implementation Concepts

14-14 MetaSolv Solution CORBA API Developer’s Reference

■ Generate and modify the specific set of tasks needed to fulfill a service request

■ Define and modify the dependency relationships between tasks

■ Define and modify the due dates for tasks

■ Electronically schedule and assign tasks to individuals and work groups such as
departments and field offices across the organization

■ Track and report on task completion

■ Report why a task was completed late

After each service request is entered, a user generates the tasks for that service request.
During task generation, the user can add or remove tasks, change task due dates,
adjust the dependency relationships between tasks, and determine the work queue to
which each task is assigned.

After any needed adjustments are made to the tasks, and the work queues are selected,
the Work Management subsystem dispatches the tasks to the specific work queues.

In the Work Management subsystem, after a given task is completed:

■ The completed task's predecessor tasks and immediate follower tasks can no
longer be added to or removed from the service request

■ The dependency relationships between the completed task and its predecessor
tasks and immediate follower tasks can no longer be changed

After a worker is assigned to a task, the worker can use the Work Management
subsystem to monitor the status of the tasks assigned to them. When a task reaches
Ready status, the worker performs the work and changes the status of the task to
Completed. The Work Management subsystem then changes the status of any follower
tasks that directly depend on the task just completed from Pending to Ready.

Work Management Operational Differences
Table 14–8 lists the similarities and differences between the operation of the Work
Management API and the Work Management subsystem.

Table 14–8 Work Management Subsystem and Work Management API Differences

Key Work Management Function
WM
Subsystem WM API

Define provisioning plans Yes No

Define rules and behaviors by which MetaSolv Solution can
dynamically change a provisioning plan

Yes No

Apply previously defined provisioning plans to service
requests

Yes Yes

Add tasks to, copy tasks within, or remove tasks from a
service request after the provisioning plan has been applied

Yes No

Mark a task Required or Not Required Yes No

Define the dependency relationships among the tasks on a
provisioning plan

Yes No

Accept a task Yes Yes

Add, remove, or modify the dependency relationships
between the tasks assigned to a service request

Yes No

Define the default due dates and duration for tasks Yes No

Implementation Concepts

The Work Management API 14-15

Tasks That Cannot be Completed Through the Work Management API
The Work Management API cannot complete any tasks that are in Pending status.

When the tasks from the following list are in Ready status, they cannot be completed
through the Work Management API even though they can be completed through the
Work Management subsystem:

■ CAD: Carrier Access Billing System (CABS) Acknowledgment Date task

■ CID: CABS Issue Date task

■ DD: Due Date task

Modify the due date for tasks at the time of task generation Yes No

Change the estimated completion date for a task Yes Yes

Display task due times that are adjusted for the user's local
time

Yes Yes

Assign tasks to the default work queues defined in the
selected provisioning plan

Yes Yes

Override the default work queue assignments for one or
more tasks at the time of task generation

Yes Yes

Dispatch tasks into work queues Yes Yes

Track information for one or more of the tasks assigned to a
specified service request, including each task's current
status, due date, dependency relationships, and the work
queue to which it has been assigned

Yes Yes

Track the tasks in a specified work queue Yes Yes

Transfer tasks from one work queue to another Yes Yes

Set a task’s status to Complete using the current date/time Yes Yes

Set a task’s status to Complete using an earlier date/time Yes Yes

Auto-complete tasks marked as auto-completable when
their follower task is completed

Yes Yes

Auto-complete tasks marked as auto-completable at the
time of task generation when the task has no follower task

Yes No

Re-open a completed task Yes Yes

Reject a task that was completed earlier and return the
rejected task to the work queue of the employee or work
group that initially completed the task, along with the
reason for the rejection

Yes Yes

View task detail information for a given task Yes Yes

Assign jeopardy codes to tasks or to circuits associated with
a task

Yes Yes

Assign notes to an order or to circuits on a task Yes Yes

Report why a task was completed late Yes Yes

View the service request detail Yes Yes

View notes that have been added to the service request Yes Yes

Table 14–8 (Cont.) Work Management Subsystem and Work Management API

Key Work Management Function
WM
Subsystem WM API

Implementation Concepts

14-16 MetaSolv Solution CORBA API Developer’s Reference

■ EUAD: End User Billing Acknowledgement Date task

■ EUID: End User Billing Issue Date task

All other MetaSolv Solution-defined tasks in Ready status and all customer-defined
tasks in Ready status can be completed through the Work Management API.

Work Management API Support for NET DSGN Task
The Work Management API supports the NET DSGN (Network Design) task type. API
users are able to accept, complete, transfer, and reject NET DSGN tasks when the tasks
are included in a provisioning plan just as if they were using the MetaSolv Solution
GUI.

Work Management API Support for Date Ready System Tasks
The Work Management API supports the date ready system task feature in the
MetaSolv Solution Work Management subsystem.

When API users use the Work Management API to generate and assign a task that the
provisioning plan identifies as a date ready system task, the System Task Server does
not process that task until its scheduled start date, just as if the task had been
generated and assigned using the MetaSolv Solution windows.

Work Management API Support for Backdated and Forward-dated Tasks
The Work Management API supports the backdated and forward-dated task features
in the MetaSolv Solution Work Management subsystem.

When an access service request (ASR) or local service request (LSR) is created, the due
date (DD) task must be scheduled before the order recipient confirms the order.
Backdating and forward-dating means that the tasks after the CONF or RCONF task
are rolled forward or backward to accommodate the confirmed dates. See the online
Help for more information.

Note: When configured to do so, the MetaSolv Solution System Task
server can automatically complete DD tasks. However, the Work
Management API does not handle the completion of the DD task. If
you attempt to complete a DD task through the Work Management
API, the API returns an exception.

A

API Error Messages and Exceptions A-1

AAPI Error Messages and Exceptions

The APIs return error messages by raising exceptions that use the WDIExcp or
WDIError structures. The error number identifies the general area in which the error
occurred.

Table A–1 lists the error number ranges and their related areas.

The reason field in the WDIError and WDIExcp structures provides a text description
of the error condition.

Table A–1 Error Number Ranges and Related Areas

Error Range Impacted Area

10000 to 19999 System errors that can occur in all APIs.

20000 to 29999 LSR API

30000 to 39999 PSR API

40000 to 49999 PSR Ancillary API

60000 to 69999 Internet Services APIs

70000 to 79999 Trouble Management API

80000 to 89999 Work Management API

90000 to 99999 Miscellaneous errors. These are not necessarily system related but
could be encountered by multiple applications.

A-2 MetaSolv Solution CORBA API Developer’s Reference

B

Tips And Techniques B-1

BTips And Techniques

This section describes tips and techniques that you can implement to effectively use
the CORBA APIs.

Understanding IOR Files
The APIs can be configured to use IOR files to route events to external applications.
Your API System Administrator can tell you whether the APIs use IOR files in your
environment.

IOR files are either created or overwritten if they already exist when the Oracle
Communications MetaSolv Solution Application Server is brought up. IOR files
contain a Stringified object reference that encodes the IP address of the server that
hosts the object and additional information specific to the ORB vendor that identifies
the object reference.

Configuring the IOR File to Enable External Systems to Connect to the CORBA Server
When connecting to the CORBA server from external systems, you may receive the
following error message:

ERROR: Unable to Connect to Manager: org.omg.CORBA.TRANSIENT: Retries exceeded,
couldn't reconnect to 10.196.7.146:2512 vmcid: 0x0 minor code: 0 completed: No
ERROR: org.omg.CORBA.TRANSIENT: Retries exceeded, couldn't reconnect to <target ip
address>:<target port> vmcid: 0x0 minor code: 0 completed: No

You may observe this issue if the CORBA server is hosted on a computer that has
enabled two IP addresses; an internal IP address and an external IP address. If you
install the MSS application on such a computer and enable the CORBA server, the
internal IP address of the computer is copied in the IOR file when you create it.
However, the internal IP address is not detected by the external systems trying to
connect to the CORBA server on any given network. As a result, the external systems
fail to successfully connect to the CORBA server and you receive the error message.

The internal and external IP addresses of a computer may differ, but the host name of
the computer always remains constant. Therefore, for external systems to successfully
connect to the CORBA server, you must specify the host name of the computer
(instead of its IP address) in the IOR file.

To specify the host name of the computer in the IOR file, you must enable the
jacorb.dns.enable property in both the orb.properties and jacorb.properties files, as
follows.

jacorb.dns.enable=on

Using the MetaSolv Solution APIs With Multi-Threaded Clients

B-2 MetaSolv Solution CORBA API Developer’s Reference

The default value of the jacorb.dns.enable property is off.

CORBA.INV_OBJREF and CORBA.OBJECT_NOT_EXIST Exceptions
A CORBA client can receive CORBA.INV_OBJREF or CORBA.OBJECT_NOT_EXIST
exceptions when it attempts to use a Stringified IOR object reference or any other
remote object reference in any of the following cases:

■ The CORBA server that hosts the object has been brought down

■ The CORBA client has already called a destructor method in the IDL that destroys
that object

■ The CORBA server times out

A typical situation where this might occur is where the server is re-configured to write
IOR files to a new location, but the client is still reading old IOR files from the original
location.

CORBA.COMM_FAILURE Exception
The most common cause of a CORBA.COMM_FAILURE exception is the remote ORB
daemon being down, in addition to a server termination during a client operation. A
newly-obtained remote reference is generally not validated during the string_to_object
or narrow() operations. Instead, for the sake of efficiency, creation of a physical
connection to the remote host is delayed until the first IDL operation is actually
invoked. This is the point at which most remote exceptions occur. For Java ORBs,
NullPointerExceptions during these initial connection operations can be the result of
invalid mixed stub class and ORB class types or versions, as well as an attempt to
marshal a structure (that is, to pass a parameter to a remote object) that contains a null
string or other null element.

Using the MetaSolv Solution APIs With Multi-Threaded Clients
To use the API in a synchronous application such as a Web page, a multi-threaded
client may use a mechanism (such as Java's Object.wait) in the calling method and
Object.notify or Object.notifyAll in the notification object's result methods, which can be
called by the ORB in a separate thread. When the result is returned, the calling thread
wakes up, gets the data from the notification object, and continues processing. The
notification object itself can be used as the monitor object.

Developing Using C++
When your application is developed in C++, the general principles remain the same.
You must develop code to implement the callback object, and when linking object files
to create an executable, must link in both the client and server libraries provided by
the ORB vendor.Synchronization Primitives and C++.

The C++ language does not provide synchronization primitives. If you use C++, you
must use primitives supplied by the host operating system (for example, semaphores)
to achieve the desired result.

C++ Troubleshooting
If you are using C++ as your implementation language:

■ You must use a compiler version that supports the namespace feature.

Troubleshooting Tips for API Developers

Tips And Techniques B-3

■ You may encounter a problem while compiling the MetaSolv Solution
IDL-generated source in C++ where CORBA primitive types are not found.

This can be traced to a problem with the IDL generator. C++ namespace resolution
assumes that a CORBA::type, such as CORBA::char will be defined within the
MetaSolv::CORBA namespace. The MetaSolv Solution API naming conventions
and Java-based development do not permit this.

If you encounter this problem you must completely scope CORBA::types. For
example, if the generated code is:

typedef CORBA::char null;

You should change the code to:

typedef ::CORBA::char null;

Troubleshooting Tips for API Developers
1. Review the documentation.

2. Confirm that you have used appropriate development techniques:

3. Design application and exception logging and stack tracing into your application.
Make sure you have exception logging for all these cases:

■ CORBA exceptions

■ API exceptions

■ Logic exceptions

■ Control logging using .ini or command line parameters.

4. Dump structure traces before and after export or import.

5. Use existing logging capabilities:

■ API server logging

■ SQL logging

■ Console logging

■ CORBA logging

Using API Server Logging
There is only one log file (jacORB.mss.log) for all the CORBA API servers.

1. Check the appropriate server’s error log.

2. If required, set the LoggingOn parameter to true in the gateway.ini file.

3. If required, set the TraceLevel parameter in the gateway.ini file to the required
value:

■ 0 = High level logging. Only error information.

■ 1 = More detailed logging includes error information and some system
information.

■ 2 = Most detailed logging. Includes much more system information.

Troubleshooting Tips for API Developers

B-4 MetaSolv Solution CORBA API Developer’s Reference

4. Log returned data.

5. If required, set the PrintExportObjects parameter to true in the [Gateway] section
in the gateway.ini file. This logs the values in objects in IDL structure format.

Using SQL Logging
1. Log SQL statements.

2. If required, set the SQLLogging parameter to true in the [System] section in the
gateway.ini file.

3. Verify database related issues.

Using Console Logging
For system errors, use Oracle Administration Console logging. This option reports
extreme exception cases. For more information, see the documentation on logging.

Using CORBA Logging
1. Use CORBA diagnostics provided by the ORB.

2. Know your ORB Tracing mechanisms.

3. Check CORBA diagnostics:

4. Determine the source of connections.

5. Determine the methods invoked.

6. Diagnose connection information.

For more information, see ORB documentation.

Note: Only use high trace levels when debugging, because these
options generate significant amounts of information.

Note: This option generates significant amounts of information.

Note: This option generates significant amounts of information.

C

Sample Code C-1

CSample Code

This appendix provides sample code to help you gain a better understand of using the
Oracle Communications MetaSolv Solution APIs.

IOR Bind Method
This section provides information about the IOR bind method.

Background
The API architecture and the MetaSolv Solution Application Server architecture both
support IOR binding. This type of binding is supported by the server processes
creating a flat file containing the stringified object reference. A client can read this
object reference from the file, convert it to a real object reference using a CORBA
function, and connect to the server.

To create IOR files, the INI parameters are changed in the gateway.ini file. These
parameters are the StrictOMG (API only) and IORPath settings. In the API
architecture, the StrictOMG parameter needs to be set to true. In the Application
Server platform, this parameter is ignored and the IOR is always produced. The IOR is
written to the location specified in the IORPath statement. These files are named using
the server name with an extension of IOR. These files are produced when the server is
initialized.

The server writes the IOR file to disk. Client machines that want to use this mechanism
must access this file. There are two ways to accomplish this; distribute the IOR file to
the client machine or have the client and server access a shared-drive location.
Distributing the IOR can be very problematic because the IOR file is recreated every
time the server is restarted. The distribution process must account for this condition.
The shared-drive method avoids this problem because both the client and the server
access the same drive location. Oracle recommends using the shared-drive approach to
access the IOR file.

IOR Bind Method Sample Code
This code example illustrates how to use the IOR binding mechanism.The “Hello API”
sample application code provided with the MetaSolv Solution APIs uses the IOR
binding mechanism. The following steps are required to set up the IOR bind
mechanism:

1. First set gateway.ini parameters in order for MetaSolv Solution to create an IOR
file:

[System]
IORPath=<directoryname>

IOR Bind Method

C-2 MetaSolv Solution CORBA API Developer’s Reference

//Locate the bind code. The code should look something like this.
ORB.init(args, null);
String hostname = "MetaSolv Solutionapihost"; //machine name of API host
String servername = "DLRSERVER"; //MetaSolv Solution API CORBA
//server name
try {
WDIRoot aWDIRoot = WDIRootHelper.bind(":"+servername, hostname);
}
catch (SystemException se) {
System.out.println("Unable to bind to server: " + se);
)
MetaSolv.CORBA.WDI.ConnectReq req = new MetaSolv.CORBA.WDI.ConnectReq();
//The following values are only examples of the user name and password values.
req.userName = "ASAP";
req.passWord = "ASAP";
WDIManager aWDIManager = aWDIRoot.connect(req);

2. Change the code found in item two to read the IOR from a file, convert it to an
object, and narrow the scope of the object. After the object is narrowed, then
processing can continue as usual. This logic is not placed in program order. For the
exact code, reference the sample applications.

orb = ORB.init(args, null);
// Connect to the DLR API Server and construct a proxy for the
// root object.
String iorfile = System.getProperties().getProperty(DLR_IOR_FILE_PROPERTY);
// Set a system property on command line using -D (for Sun) or /d: (for MS)
// Block A ////////////////////////////////
if (iorfile == null)
throw new Exception("'" + DLR_IOR_FILE_PROPERTY + "' system
property not set on command line.");
System.out.println("IOR file="+iorfile);
String ior = readIOR(iorfile);
System.out.println("DLR IOR="+ior);
//

The block of code above marked Block A shows the changes required. Through
standard Java file operations, the IOR string produced by the server is inserted. The
name of the file is passed in from a command line parameter. Remember, the client
must have access to the IOR file produced by the server. The best way to do this is by
accessing a shared drive. The data is read using the readIOR function below.

Here is an extract of the readIOR function. This contains standard Java code to read a
file:

private static String readIOR(String fileName) throws IOException
 {
 byte[] iorBytes = new byte[5000];
int size = 0;
FileInputStream fs = new FileInputStream(fileName);
 try {
size = fs.read(iorBytes);
 } finally {
fs.close();
 }
 return new String(iorBytes, 0, size);}

//Block B////////////////////////////////
org.omg.CORBA.Object obj = orb.string_to_object(ior);
WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow(obj);

NameService Bind Method

Sample Code C-3

///

The block of code marked Block B above converts the string read from the file into an
object reference. This is done using the string_to_object reference. The narrow function
takes that object reference and casts it to the correct object type. Once this is done, the
remaining code is the same. The code captured below shows how the object reference
is used to access other methods. This is the same code used in the bind method
without any additional changes.

MetaSolv.CORBA.WDI.ConnectReq req = new
MetaSolv.CORBA.WDI.ConnectReq();
//The following values are only examples of the user name and password values.
req.userName = "ASAP";
req.passWord = "ASAP";
WDIManager aWDIManager = aWDIRoot.connect(req);

NameService Bind Method
This section provides information about the NameService bind method.

Background
A CORBA NameService is a mechanism defined in the CORBA standard for
connecting clients and servers. The NameService provides an “index” of available
servers to which it can connect. Each of these servers are found through the use of a
name.

The MetaSolv Solution Application Server enables a NameService to facilitate this
binding method. There are three methods used to locate the NameService: the IOR file
method, the ResolveInitialContext method, and the URL method.

The IOR method of finding the NameService is similar to the process described in the
previous section, a file is read that contains the IOR. The IOR is then converted to an
object reference for use by the NameService. Sample code is shown later in this section
for this bind mechanism.

The resolve_initial_references method of finding the NameService is also available.
The resolve_initial_references method is an OMG standard for identifying the
NameService. The configuration parameters used by various CORBA vendor’s
software to find the NameServer varies. Review the documentation provided by your
CORBA vendor for details on how the NameService is found. Sample code is shown
later in this section for this bind mechanism.

The third method a third party can use to bind to an API running in the MetaSolv
Solution Application Server is the URL Bind Method. With this method, an HTTP can
be used to get the stringified IOR from the NameService. This type of binding is only
supported in the new Application Server architecture.

1. Your first step is to locate the bind code. The code should look something like this:

ORB.init(args, null);
String hostname = "MetaSolv Solutionapihost"; // machine name of MetaSolv
//Solution API host
String servername = "DLRSERVER"; // MetaSolv Solution API
//CORBA server name
try {
//Block C//////////////////////////////////////
WDIRoot aWDIRoot = WDIRootHelper.bind(":"+servername, hostname);
//
}

NameService Bind Method

C-4 MetaSolv Solution CORBA API Developer’s Reference

catch (SystemException se) {
System.out.println("Unable to bind to server: " + se);
)
MetaSolv.CORBA.WDI.ConnectReq req = new MetaSolv.CORBA.WDI.ConnectReq();
//The following values are only examples of the user name and password values.
req.userName = "ASAP";
req.passWord = "ASAP";
WDIManager aWDIManager = aWDIRoot.connect(req);

2. The next step is to replace it with one of the following two methods:

Binding to the NameServer With an IOR Sample Code
//Block D ////////////////////////////////////
org.omg.CosNaming.NameComponent[] name;
///
// Connect to the NameService using the IOR. Published by the
// MetaSolv Solution Application Server
// get the command line parameter
String iorfile = System.getProperties().getProperty(NS_IOR_FILE_PROPERTY);
// Set a system property on command line using -D (for Sun) or /d: (for MS)
if (iorfile == null)
throw new Exception
("'" + NS_IOR_FILE_PROPERTY + "' system property not set on command line.");

The previous block of code defines the name component variable. The first line of the
sample code is an OMG standard variable used for the lookup in the NameService.
This variable is used later. The rest of this code obtains the location of the NameService
IOR file. The location is passed in as a parameter on the command line of the program.
The NameService IOR is written to the location specified in the IORPath statement of
the gateway.ini file. This NameService IOR file is named NAMESERVICE.IOR. The
best way to locate the file is to have the client and server access a shared-directory
location.

System.out.println("IOR file="+iorfile);
String ior = readIOR(iorfile); //read the IOR
System.out.println("NS IOR="+ior);
org.omg.CORBA.Object obj = orb.string_to_object(ior); //convert to object ref
org.omg.CosNaming.NamingContext rootContext =
org.omg.CosNaming.NamingContextHelper.narrow(obj); //narrow the object
System.out.println("loaded orb class:"+orb.getClass().getName());

The previous block of code reads the IOR contained in the file. It converts the IOR to
an object reference and narrows the object reference to a CosNaming object. After these
steps are completed, the program has the reference to the NameService that is running
on the Application Server. The program can now use the NameService to look up the
CORBA server it is using.

//populate the name component for lookup
(block A)

name = new org.omg.CosNaming.NameComponent[1];
name[0] = new org.omg.CosNaming.NameComponent("DLRSERVER", "");

// "lookup DLR Server";

(block B)

org.omg.CORBA.Object dlrobj = rootContext.resolve(name);
// narrow the object ref for dlr server

NameService Bind Method

Sample Code C-5

WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow(dlrobj);

The next step in the process is to look for the actual CORBA server you want to bind to
and obtain its object reference from the NameServer. This process is shown in the
previous block of code (code block A).

Create the objects used to query the NameService. The Application Server uses a single
level of naming. The gateway.ini file controls these names. The “servers” section
connects the name in the NameService to the object. For example:

DLRSERVER=MetaSolv.CORBA.WDIDLR.WDIRoot,MetaSolv.WDIDLR.WDIRootImpl

The name “DLRSERVER” is registered in the NameService for the object on the right
side of the "equals" sign. In the previous code fragment, “DLRSERVER” was used as
the name.

The resolve method is used to look up the object in the NameService (code block B).
The resolve method returns a standard CORBA object. This object then needs to be
further refined using the CORBA narrow method. After using this command, the root
object reference is obtained and the other methods on the server are used. The code
fragment below shows this functionality:

MetaSolv.CORBA.WDI.ConnectReq req = new MetaSolv.CORBA.WDI.ConnectReq();
//The following values are only examples of the user name and password values.
req.userName = "ASAP";
req.passWord = "ASAP";
System.out.println("Connecting to MetaSolv Solution API Server...");
WDIManager aWDIManager = aWDIRoot.connect(req);

Binding to the NameService with resolve_initial_references Sample Code
This method of finding the NameService relies on the CORBA standard of resolve_
initial_references. This method is available once the ORB has been initialized and
provides the object reference of the NameService. Although this method is a CORBA
standard, each CORBA vendor implements a different way to locate the NameService.
Most of the time configuration parameters such as .INI files are used. Refer to your
CORBA vendor’s documentation for more details. The following code sample shows
how to use this method to connect to the NameService. This code assumes the
configuration parameters are set to identify the location of the NameService:

org.omg.CosNaming.NameComponent[] name;

org.omg.CORBA.Object obj = orb.resolve_initial_references("NameService");
org.omg.CosNaming.NamingContext rootContext =
org.omg.CosNaming.NamingContextHelper.narrow(obj); //narrow the object
System.out.println("loaded orb class:"+orb.getClass().getName());

The previous block of code defines the name component variable. This variable is an
OMG standard variable used to do the look up in the NameService. It is used later.
Next, the object reference of the NameService is obtained and stored in a CORBA
object. This is done using the resolve_initial_references method passing in the service
name. The CORBA standard for the NameService service is the string “NameService.”
To be useful, cast it into a CosNaming object. This is accomplished using the narrow
method. The program can now use the NameService to look up the CORBA server it is
using.

//populate the name component for lookup
name = new org.omg.CosNaming.NameComponent[1];
name[0] = new org.omg.CosNaming.NameComponent("DLRSERVER", "");
// "lookup DLR Server";

URL Bind Method Sample Code

C-6 MetaSolv Solution CORBA API Developer’s Reference

org.omg.CORBA.Object dlrobj = rootContext.resolve(name);
// narrow the object ref for dlr server
WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow(dlrobj);

The next step in the process is to look for the actual CORBA server you want to bind to
and obtain its object reference from the nameserver. This process is shown in the
previous block of sample code. Now create the objects used to query the NameService.
The Application Server uses a single level of naming. The gateway.ini file controls
these names. The "servers" section connects the name in the NameService to the object.
For example:

DLRSERVER=MetaSolv.CORBA.WDIDLR.WDIRoot,MetaSolv.WDIDLR.WDIRootImpl

The name "DLRSERVER" is registered in the NameService for the object on the right
side of the "equals" sign. In the previous code fragment, "DLRSERVER" was used as
the name.

To look up the object in the NameService, the resolve_initial_references method is
used. The resolve method returns a standard CORBA object. This object is refined
further using the CORBA narrow method. After using this command, the root object
reference is obtained and the other methods on the server are used. The code fragment
below shows this process:

MetaSolv.CORBA.WDI.ConnectReq req = new MetaSolv.CORBA.WDI.ConnectReq();
//The following values are only examples of the user name and password values.
req.userName = "ASAP";
req.passWord = "ASAP";
System.out.println("Connecting to MetaSolv Solution API Server...");
WDIManager aWDIManager = aWDIRoot.connect(req);

URL Bind Method Sample Code
The third method used to bind to an API running in the MetaSolv Solution
Application Server is the URL Bind Method. With this method an HTTP can be used to
get the stringified IOR from the NameService. This type of binding is only supported
in the new Application Server architecture.

To use this method of obtaining the IOR, an .INI parameter is enabled in the
gateway.ini file. This parameter is the URLNamingServicePort settings. This
parameter is located in the system section of the gateway.ini file. By default this
parameter is commented. To uncomment it, remove the semicolon and restart the
machine.

Once the parameter is enabled, a standard URL request can be used to return the IOR
reference. The reference returned is to the API server. So you must format the URL
request in the following way:

http://hostname:15000/DLRSERVER

■ hostname: The hostname contains either the IP address or host name of the machine
running the API architecture.

■ 15000: The port defined in the gateway.ini file for the URLNamingServicePort
parameter. By default the value is 15000.

■ DLRSERVER: The name of the desired server object. This is defined in the
gateway.ini file in the servers section.

When this request is complete the IOR is returned. This method can be tested using
any browser by typing the URL address in the location field. The browser returns the
IOR. After the IOR is returned the same code used in the IOR bind method section is

URL Bind Method Sample Code

Sample Code C-7

used. The only difference in the procedure is the file access to read the IOR can be
omitted.

Sample Code
1. Set gateway.ini parameters to activate this processing in the MetaSolv Solution

Application Server. This activation is done by uncommenting the line in the .INI
file:

[System]
URLNamingServicePort=15000

2. Locate the bind code. This bind code should look something like this.

ORB.init(args, null);
String hostname = "MetaSolv Solutionapihost"; // machine name of MetaSolv
//Solution API host
String servername = "DLRSERVER"; // MetaSolv Solution API
//CORBA server name
try {
WDIRoot aWDIRoot = WDIRootHelper.bind(":"+servername, hostname);
}
catch (SystemException se) {
System.out.println("Unable to bind to server: " + se);
)
MetaSolv.CORBA.WDI.ConnectReq req = new MetaSolv.CORBA.WDI.ConnectReq();
//The following values are only examples of the user name and password values.
req.userName = "ASAP";
req.passWord = "ASAP";
WDIManager aWDIManager = aWDIRoot.connect(req);

3. Change the code found in item two to read the IOR from the naming service URL,
convert it to an object, and narrow the scope of the object. After the object is
narrowed the processing can continue as usual.

orb = ORB.init(args, null);

// Connect to the DLR API Server and construct a proxy for
// root object.
String URLref = System.getProperties().getProperty(URL_IOR_FILE_PROPERTY);
// Set a system property on command line using -D (for Sun) or /d: (for MS)
//Block E ///
URL url = new URL(URLref);
URLConnection conn = url.openConnection();
int len = conn.getContentLength();
if (len == -1) throw new IOException("URL not found: ["+sUrl+"]");
InputStream in = (InputStream)conn.getContent(); // get the data from the
request
byte[] bior = new byte[len];
in.read(bior);// read IOR from input stream
String ior = new String(bior);// convert to string
//

The block of code marked Block E above shows the required changes. The URL to
connect to is passed in from a command line parameter.

org.omg.CORBA.Object obj = orb.string_to_object(ior);
WDIRoot aWDIRoot = (WDIRoot)WDIRootHelper.narrow(obj);

The block of code above converts the string retrieved from the URL into an object
reference. This is done using the string_to_object reference. The narrow function takes

Gateway Events Functionality Changes

C-8 MetaSolv Solution CORBA API Developer’s Reference

that object reference and casts it to the correct object type. Once this is done the
remaining code is the same. The code captured below shows how the object reference
is used to access other methods. This is the same code used in the bind method:

MetaSolv.CORBA.WDI.ConnectReq req = new
MetaSolv.CORBA.WDI.ConnectReq();
//The following values are only examples of the user name and password values.
req.userName = "ASAP";
req.passWord = "ASAP";
WDIManager aWDIManager = aWDIRoot.connect(req);

Gateway Events Functionality Changes
The MetaSolv Solution gateway event functionality is also changing for this release.
The changes are being made to allow for better integration with the new Application
Server and to provide additional functionality. Unlike the changes described in
previous sections, these change impact both the API architecture and the MetaSolv
Solution Application Server architecture.

Gateway events provide a mechanism for MetaSolv Solution to notify a third-party
application to start an activity. The third-party application receives this event through
a CORBA method call. In this case, MetaSolv Solution is the client and the third-party
application is the server. After receiving the call, the third-party application performs
the appropriate actions. There are three types of gateway events in previous releases.
The gateway events are:

■ Standard Gateway Event: The standard gateway event is an event defined by a
third party. When the event is invoked, the third party is notified the event has
occurred and key related data is passed to the third party. These events can be
related to both work plans, PSRs, and trouble tickets.

■ Billing Gateway Events: The two billing gateway events send billing information
to the third party. These two events are Send Billing Customer (SBC) and Send
Billing Order (SBO). These events differ from the standard gateway event because
they contain billing data and are not defined by the third party.

■ SOA Gateway Events: The SOA application contains many gateway events and is
used to interact with a third-party LSOA application. These events differ from a
standard gateway event due to the type of data they send and the fact they are
tightly coupled to MetaSolv Solution. These events are not defined by the third
party.

For more detailed information on gateway events see "Signal Handling Pattern".

Middle-tier Triggering
MetaSolv Solution provides the ability to trigger standard gateway events from the
middle-tier server. This behavior occurs in both the API and Application Server
environments, which provides a robust triggering method that has many advantages,
including maintenance of fewer connections to the third party, enabling automatic
retries, and requiring minimum client configuration.

To enable this functionality, two new statuses were added to the gateway events. These
statuses indicate the intermediate state between the user asking for a triggering event
and the event actually being sent to the third-party applications. A user sees these
states in the gateway event status windows located in the work management queue,
the PSR order window, and the Trouble report window. These states are:

New Binding Methods

Sample Code C-9

■ Sending: An event in Pending status has been triggered by the user or
auto-signaled. The status of the event has changed, but not picked up by the
middle-tier triggering server and communicated to the third-party application.
When the middle-tier triggering server receives the event and communicates it to
a third-party application, the event status changes to "Waiting". If the event cannot
be communicated to the third-party application, the status of the event changes to
Error.

■ Terminating: An event in Waiting or In-progress status has been “reactivated” by
the user using the GUI. These two statuses indicate the third-party application is
processing the event. The fact the user has terminated the event must be
communicated to the third-party application. The terminating state is the
transition state before the event is returned to Pending status and indicates the
third-party application was not notified of the status canceling. Once the
middle-tier server can communicate this status, the event is changed to Pending.

No third-party coding changes are required to support this new processing. The
middle-tier server sending the events uses the same CORBA methods used in the past.
The only impact you see is a reduced number of connections. However, some
additional parameters are captured when a gateway is defined. This process is
described in the next section.

This change only applies to the standard gateway events. The billing and SOA events
are not yet converted to this architecture. These events are still invoked directly from
the client to the third-party application. This transition will be made in a later release.

New Binding Methods
This section provides information about the new binding methods.

Background
As with the MetaSolv Solution Application Server, the MetaSolv Solution gateway
event architecture is moving to an OMG standard for binding the client to the
server.The reason for this change is to enable the choice of open technologies for
Oracle and Oracle customers. IOR binding, and NameService binding are supported.

To enable this support the method of defining gateways in MetaSolv Solution has
changed. Additional parameters are defined. Changes are required in the third-party
applications to allow the CORBA standard binding. These changes are standard
CORBA coding techniques and detailed later in this section.

Defining a Gateway
The way you define a gateway in MSS enables you to trigger events from the
middle-tier server and define multiple bind locations.

Figure C–1 shows the Gateway Events window.

New Binding Methods

C-10 MetaSolv Solution CORBA API Developer’s Reference

Figure C–1 Gateway Events Window

The Gateway Events window contains the following fields:

■ Number of Retries: When a standard gateway event is in Sending status, the
middle-tier event server attempts to trigger the event to the third-party
application. If the event cannot trigger, a retry process is started. This field
indicates how many times a triggering event is retried before the event is marked
in error. The default is five.

■ Retry Interval (secs): This field indicates the delay before trying to resend an
event. This time interval is designed to enable the third-party application time to
recover. The default is 30 seconds.

■ User ID: This field is required to connect to the third-party application. This field
allows one user ID for all connections to the third-party application. This User ID
field was added because the middle-tier event server does not have the user ID
and password of the user who initiated the event or the definition of every
MetaSolv Solution user in the third-party application. The only impact to
third-party applications is if they used this user ID for identification of the person
initiating the event, this user ID needs to change to the user ID contained within
the WDIEvent occurred structure sent with the event (see below). This user ID
contains the identification of the actual user who initiated the event. See the code
sample below:

struct WDIEvent
{
long eventVersion;
string eventName;
long documentNumber; /// An oracle generated sequence that uniquely

/// identifies a Service Request in the MetaSolv
/// Solution database.

long taskNumber; /// An oracle generated sequence that uniquely
/// identifies a task in the MetaSolv Solution
/// database.

New Binding Methods

Sample Code C-11

long servItemID; /// An oracle generated sequence that uniquely
/// identifies a service item in the MetaSolv
/// Solution database.
/// Note this value is only supplied for an
/// item level gateway event.

string userID; /// A MetaSolv Solution user ID.
};

During the upgrade new data is created and the values are used as defaults. If the
defaults need to change, each gateway can be edited using the Gateway Events
window. The defaults are:

■ Number of Retries: 5

■ Retry Interval (secs): 30

■ UserID: Default

The second change made to gateway maintenance is to enable the definition of
multiple binding locations and type of binding to use for each gateway binding
location. The type of binding allows the identification of the connection to that
gateway. The options are IOR and NameService. Another change is functionality that
allows gateways to have multiple bind locations defined. This enables the MetaSolv
Solution event architecture to try different locations if it cannot bind to a server.
Figure C–2 illustrates binding options:

Figure C–2 MetaSolv Solution Gateway Binding Window

The treeview on the left now has the binding information defined. The multi-color
lightning bolt represents a binding option. For each binding option, detail information
is captured. This is shown on the right side of the window. The following list details
the information:

IOR Binding to Third-party Applications

C-12 MetaSolv Solution CORBA API Developer’s Reference

■ Binding Type: Indicates what binding mechanism to use for this binding location.
The options are IOR and NameService.

■ Binding Location: Indicates the path to locate the IOR for binding. This path is
used for IOR and NameService binding. This can be expressed as a standard
windows path (C:\ior\files) or a URL (http://srvg/ns.ior).

■ Binding Service Name: This field indicates the name of the service to request to
obtain the WDIRoot reference if using NameService binding.

When multiple binding locations are defined, the bind process attempts to connect
them in the order defined in the tree view on the left. Each bind location can use a
different binding approach.

During the upgrade, a binding location is created. This binding location has the same
host and server name used for previous release. Only one binding location is created.

IOR Binding to Third-party Applications
IOR binding requires the third-party application to produce an IOR read as a text file.
The gateway event application locates that file and connects to the server. The IOR
produced needs to represent the WDIRoot object of the server.

Ensure IOR published is the IOR of the WDIRoot object. This object reference is
available after the object is connected to the ORB. This object is then converted to a
string and written to a file. The following code shows this and is taken from the hello_
gateway server sample code shipped with the documentation. This code fragment is
often placed in the main class:

orb = ORB.init(args, null);
WDIRoot aWDIRoot = new WDIGatewayRootImpl();
 orb.connect(aWDIRoot); // Some ORBs (e.g. JacORB) require an explicit connect

The previous block of code creates the server and registers it to the ORB. The variable
string iorfile = System.getProperties().getProperty(GATEWAY_IOR_FILE_
PROPERTY);

// Set a system property on command line using -D (for Sun) or /d: (for MS)
 if (iorfile == null) {
 System.out.println("'" + GATEWAY_IOR_FILE_PROPERTY + "' system property not
set on command line.");
 return;
 }

The previous block of code determines where to write the IOR file. For this sample
program, the location is passed to the program by a command line parameter. This
location must be accessible by both the middle-tier event server and the server that
produces it. These requirements are detailed in the following section.

writeIOR(orb.object_to_string(aWDIRoot), iorfile);

WARNING: There is no immediate impact to third-party
applications by these changes. However, when a customer migrates
from the API architecture to the MetaSolv Solution Application
Server, the binding process should be changed to CORBA standard
binding. The third-party application must transition to either IOR
binding or NameService binding as detailed below.

New Event Signal

Sample Code C-13

The previous block of code calls a function to create the file. The object_to_string
function converts the object reference to a string. This string can then be written to a
file. The client that calls this server can then use this IOR to connect to the server. For
details on how this works, see the API Code Transition section of this document or
your CORBA documentation.

NameService Binding to Third-party Applications
NameService binding provides another method of locating the server. To use this type
of binding the third-party application must support a NameService. To accomplish
this, the NameService process must run in the ORB and the third-party application
must have registered its process in the NameService. For details on how to accomplish
this, refer to programming documentation provided by your CORBA vendor.

At this time, the gateway event architecture does not support the resolve_initial_
references process of finding the NameService of the third-party application. An IOR
of the NameService is required. As a result, the third-party application must capture
the IOR of the NameService and write this IOR to the file system. The following code
fragment shows how to capture the IOR of the NameService. This code must be run
immediately when a third-party environment is activated. It is not required for every
server since the NameService is global. Typically, this is done during a global start-up
process.

org.omg.CORBA.Object obj = orb.resolve_initial_references("NameService");
org.omg.CosNaming.NamingContext rootContext =
org.omg.CosNaming.NamingContextHelper.narrow(obj); //narrow the object

The previous block of code connects to the NameService. The object reference of the
NameService is captured in the obj variable.

String iorfile = System.getProperties().getProperty(GATEWAY_IOR_FILE_PROPERTY);
// Set a system property on command line using -D (for Sun) or /d: (for MS)
 if (iorfile == null) {
 System.out.println("'" + GATEWAY_IOR_FILE_PROPERTY + "' system property not
set on command line.");
 return;
 }

The previous block of code determines where to write the IOR file. For this sample
program, the location is passed to the program by a command line parameter. This
location must be accessible by both the middle-tier event server and the server that
produces it. These requirements are detailed in this section.

writeIOR(orb.object_to_string(obj), iorfile);

The previous block of code calls a function to create the file. The object_to_string
function converts the object reference to a string. This string is then written to a file.
The client that calls this server can then use this IOR to connect to the NameService.
For more detailed information, see the API Code Transition section of this document
or your CORBA documentation.

New Event Signal
MSS supports a new event signal. This server is used to support trouble events,
including other events. All event processing from previous releases continue to use the
same IDL methods used in previous releases. There should be no transition steps to
maintain existing functionality.

New Event Signal

C-14 MetaSolv Solution CORBA API Developer’s Reference

D

The PSR End User Billing API D-1

DThe PSR End User Billing API

The PSR End User Billing (PSREUB) API provides a mechanism for exporting data
from the Oracle Communications MetaSolv Solution database to support end-user
billing from product service requests (PSRs). This API defines a standard end-user
billing interface which enables you to develop applications that act as a mediation
layer to third-party billing systems. MetaSolv Solution facilitates integration with
third-party billing applications by notifying the billing application when:

■ Gateway events associated with end user billing are initiated

■ An existing customer account is modified

Implementing an third-party billing server requires a detailed understanding of the
PSREUB API as well the data communication and translation protocols involved in
communicating with the billing system. The scope of this documentation is confined to
a discussion of how to implement the interfaces required to integrate with the PSREUB
API.

Essential Terminology
Table D–1 defines the terms that identify the concepts and information that are
required to understand the PSREUB API.

Note: Before the PSREUB API can export any account or order
information, a considerable amount of information must be set up
correctly in the MetaSolv Solution database.

Table D–1 MetaSolv Solution Concept Terms and Information

Term Definition

Billing interface code A status code housed in the MetaSolv Solution database but
maintained by the third-party billing server. This code indicates
whether the customer account information has been
communicated to the billing system. Actual values used can vary
depending on the billing system used.

System-defined
gateway event

These are gateway events used by the PSREUB API. These events
are pre-defined in MetaSolv Solution. Users can view these events
on the MetaSolv Solution Gateway Maintenance window, but
cannot modify event attributes.

third-party billing
server

An application developed by you or a third party that allows
MetaSolv Solution to communicate end user billing data to a
third-party billing system.

PSREUBSession Interface

D-2 MetaSolv Solution CORBA API Developer’s Reference

PSREUBSession Interface
The PSREUBSession interface is defined in the WDIManager interface located in the
WDIPSREUB.IDL file.

Figure D–1 shows the PSREUB API interfaces.

Figure D–1 PSREUB API Interfaces

WDIRoot Interface
Table D–2 lists the operations available in the WDIRoot interface of the
WDIPSRBIL.IDL file.

WDIManager Interface
Table D–3 lists the operations available in the WDIManager interface of the
WDIPSRBIL.IDL file.

PSREUBSession Interface Operations
Table D–4 lists the operations and the accompanying notifications available in the
PSREUBSession interface of the WDIPSREUB.IDL file.

Table D–2 PSREUB API WDIRoot Interface Operations

Operations Description

connect Returns a reference object to the WDIManager interface.

disconnect Terminates the connection.

Table D–3 WDIManager Interface Operations

Operations Description

startPSREUBSession

destroyPSREUBSession

Start/destroy the PSREUBSession.

startSignal

destroySignal

Start/destroy the WDISignal interface.

startInSignal

destroyInSignal

Start/destroy the WDIInSignal interface.

Table D–4 PSREUBSession Interface Operations

Operation WDINotiication

exportCustomer exportCustomerSucceeded

operationFailed

Process Flows

The PSR End User Billing API D-3

Process Flows
This section describes business process flows associated with the PSREUB API. A
third-party billing server should be designed to handle these process flows.

Process Flow for Send Bill Cust Gateway Event
1. The EventServer is running and polling the MetaSolv Solution database for

gateway events in Sending status.

2. A new customer is created.

3. A new order is placed on that account and the SBC gateway event is initiated. This
sets the gateway event status to Sending.

4. The EventServer picks up the gateway event and processes it. This process
includes binding to the WDIRoot interface, connecting to WDIManager interface,
and starting a session on the third-party billing server based on the Work
Management gateway definition for PSRBilling.

5. The EventServer calls the eventOccurred operation on the third-party billing server
passing in the parameter structure WDIEvent. The WDIEvent structure includes
among other fields the document number and the gateway event name. The
eventOccured operation must be written as part of the third-party server
development.

6. The signal handler module on the third-party billing server activates the request
handler module and updates the gateway event status to In Progress.

7. The third-party billing server gets the root, connects to the manager, and starts the
session for the PSREUB server.

8. The third-party billing server gets the root, connects to the manager, and starts the
session for the PSR server.

9. The third-party billing server calls the exportCustomer_v2 operation on the PSREUB
server, which returns the cust_acct_id based on the documentNumber.

exportCustomer_v2 exportCustomerSucceeded_v2

operationFailed

exportOrder exportOrderSucceeded

operationFailed

exportOrder_v2 exportOrderSucceeded_v2

operationFailed

exportCustomerChange exportCustomerChangeSucceeded

operationFailed

exportCustomerChange_v2 exportCustomerChangeSucceeded_v2

operationFailed

setBillingInterfaceCode_v2 setBillingInterfaceCodeSucceeded_v2

operationFailed

Table D–4 (Cont.) PSREUBSession Interface Operations

Operation WDINotiication

Process Flows

D-4 MetaSolv Solution CORBA API Developer’s Reference

10. The third-party billing server calls the exportCustomerAccount_v2 operation on the
PSR server, which returns all the customer account data as defined in
PSRCustomerAccount structure in the WDIPSRTypes_v3.IDL file.

11. The third-party billing server imports the data into the billing system’s database
using the facilities provided by or supported by the billing system, such as an API,
SQL, or an ODBC interface. To determine what facilities are provided by or
supported by your billing system, and for information on how to use those
features, see your billing system’s documentation.

12. Depending on the success or failure of step 11, the signal handler module on the
third-party billing server activates the request handler module and updates the
gateway event status to Completed or Error.

13. Depending on the success or failure of step 12, the third-party billing server calls
the setBillingInterfaceCode_v2 operation on the PSREUB server. The successful call
results in the update of the customer account billing interface code from N,
meaning New, to A, meaning Accepted. This code should be left as is in the case of
a failure.

14. The third-party billing server destroys the session and disconnects from the
manager for both servers with which it is interfaced.

Process Flow for Send Bill Ord Gateway Event
1. The EventServer is up and running polling the MetaSolv Solution database for a

gateway event status of Sending.

2. A new order is placed and the SBO gateway event is initiated. This sets the
gateway event status to Sending.

3. The EventServer picks up the gateway event and processes it. This process
includes getting the root, connecting to the manager and starting the session of the
third-party billing server based on the Work Management gateway definition for
PSRBilling.

4. The EventServer calls the eventOccurred operation on the third-party billing server
passing in the WDIEvent parameter structure. This structure includes among other
fields the document number and gateway event name. The eventOccured operation
must be written as part of the third-party server development.

5. The signal handler module on the third-party billing server activates the request
handler module and updates the gateway event status to In Progress.

6. The third-party billing server gets the root, connects to the manager and starts the
session for the PSREUB server.

7. Based on the gateway event name of Send Bill Ord, the third-party billing server
calls the exportOrder_v2 operation on the PSREUB server. This call returns all the
information in the Order structure as defined in the PSREUBTYPES_V2.IDL file.

8. The third-party billing server sends the billing information to billing system’s
database.

9. Depending on the success or failure of step 8, the signal handler module on the
third-party billing server activates the request handler module and updates the
gateway event status to Completed or Error.

10. The third-party billing server destroys the session and disconnects from the
manager for the PSREUB server.

Process Flows

The PSR End User Billing API D-5

Process Flow for Customer Change Application Event
The process flow is for an application event, not a gateway event. The application
event is initiated by clicking the OK button on the Customer Maintenance window for
a customer who was previously sent to billing. The billing interface code for the
customer must be A, meaning Accepted, or E for Error. If it is A, PSR will set the code
to C, meaning Change, which is what invokes this interface point. If the billing
interface code is E, then it has been sent to billing but something was wrong, and the
user must change the information setting it back to C, so it will get resent to billing.

If the billing interface code for the customer is N, meaning New, the PSR module does
not set the code to C because this would result in an attempt to update a customer that
has not yet been sent to the billing system. Therefore, the PSR module only sets the
billing interface code from A to C, not from N to C. Any changes made to a customer
with a billing interface code of N are sent to the billing system through the Send Bill
Cust gateway event.

1. The Event2Server is up and running polling the MetaSolv Solution database for a
billing interface code C, meaning Change.

2. An existing account is updated on the Customer Maintenance window in
MetaSolv Solution. The Customer Change Application Event is initiated only if the
customer was previously added to the billing system’s database. In other words
only if the billing interface code is A, meaning Accepted or E, meaning Error.

3. When the OK button is clicked on the Customer Maintenance window in
MetaSolv Solution, the client updates the billing interface code from A or E to C.

4. The Event2Server picks up the application event and processes it. This processing
includes getting the root, connecting to the manager, and starting the session of the
third-party billing server. Since this is not a gateway event, determination of the
server is not based on the Work Management gateway definition for PSRBilling, it
assumes the PSRBilling gateway definition.

5. The Event2Server calls the eventOccurred operation on the third-party billing
server, passing in the WDIEvent parameter structure. The eventOccured operation
must be written as part of the third-party billing server development.

6. The third-party billing server gets the root, connects to the manager, and starts the
session for the PSREUB server.

7. The third-party billing server gets the root, connects to the manager, and starts the
session for the PSR server.

8. The third-party billing server calls the exportCustomerChange_v2 operation on the
PSREUB server. This call returns the customer account ID based on the given
document number.

9. The third-party billing server calls the exportCustomerAccount_v2 operation on the
PSR server, which returns the PSRCustomerAccount structure’s information as
defined in the WDIPSRTYPES_V3.IDL file.

10. The third-party billing server sends the information to the billing system’s
database.

11. Based on the success or failure of step 10, the third-party billing server calls the
setBillingInterfaceCd operation on the PSREUB server, which updates the customer
account billing interface code from C to A if successful. In the case of a failure the
billing interface code should not be changed.

12. If there is anything wrong then the billing interface code should be updated to E
for error.

Process Flows

D-6 MetaSolv Solution CORBA API Developer’s Reference

13. The third-party billing server destroys the session and disconnects from the
manager for both servers with which it is connected.

Viewing PSREUB API Event Errors in MetaSolv Solution
You can view errors for SBC and SBO gateway event on the MetaSolv Solution Work
Queue Manager Window - Gateway Events Tab.

Errors for Customer Change Application Events can be viewed on the MetaSolv
Solution Billing Discrepancies window. To open this window, select Infrastructure>
List> Interfaces> Billing Discrepancies from the MetaSolv Solution main menu. The
Billing Discrepancies window displays the error reported by the third-party billing
server for that Customer Change Application Event.

See the online Help for more information.

Solicited Messages
A solicited message is a message initiated by MetaSolv Solution. MetaSolv Solution
plays the role of the client, and the third-party application plays the role of the server.
The third-party application must use the IDL files provided with the PSR Order Entry
API to implement the interfaces and operations shown in the following table:

Additional Process Flow Information

Figure D–2 PSREUB API Processing Flow Diagram

As shown in Figure D–2, account information and order details are entered and tasks
for that order are generated in MetaSolv Solution. The PSREUB API passes this
information to the third-party billing server at the SBC (Send Bill Cust) event, SBO
(Send Bill Ord) event, and when account information is updated, which is also referred
to as a Customer Change Application Event.

Note: The PSREUB API does not provide a persistence layer that the
third-party billing server can use to update errors reported for
Customer Change Application Events.

Implementation Concepts

The PSR End User Billing API D-7

Interface Point 1: SBC Event
The PSREUB API enables account information to cross the interface at the SBC event to
accomplish the following:

1. To avoid having an account established in a billing system that did not request
service, and therefore would never bill.

2. To allow for pre-payments or deposits to be established on an account in a billing
system before the order has been due-date completed in MetaSolv Solution.

Information Passed to the Server
The PSREUB API passes customer information. PSR account-level information that is
passed to the server depends on the type of account. The product service request
defines three types of accounts: customer accounts, billing accounts, and internal
accounts.

Customer account information includes name, address, and contact information.
Billing account information includes the same information plus bill cycle, tax
exemptions, credit rating, auto payment information, and special handling codes.
Internal account information is a name and a number, as internal accounts are used for
departmental billing. Account information can be inserted, updated, and disconnected
by MetaSolv Solution.

Interface Point 2: SBO Event
The PSREUB API sends order information to the third-party billing server at the
completion of the SBO event. Users must select a provisioning plan that includes a
task with the SBO event when the PSREUB API software option is enabled.

Information Passed to the Server
Order information passed to the third-party server from the PSREUB server includes
products, services, features, and options, as well as the associated pricing, and
customized attributes associated with the PSREUB API process points. Users must
define products, services, features, and options as item types on the Product
Specifications window. Item types are then grouped together as product offerings on
the Product Catalog window. Product offerings, comprised of item types, are selected
for an order. For each instance of an item type on an order, the product service request
generates a unique service item ID. Every order can process New, Changed,
Disconnect, Transfer Add, and Transfer Delete service items.

Implementation Concepts
MetaSolv Solution utilizes system-defined gateway events as well as an application
event to notify the third-party billing server at specified points in the PSR workflow as
shown in Figure D–2.

The gateway events used by the PSREUB API are:

■ Send Bill Customer (SBC)

■ Send Bill Order (SBO)

The SBC gateway event communicates information about a new customer account to
the third-party billing server. This allows the third-party billing server to add the
customer account to the billing system (see Interface Point 1 in Figure D–2, "PSREUB
API Processing Flow Diagram"). The SBO gateway event communicates order

Implementation Concepts

D-8 MetaSolv Solution CORBA API Developer’s Reference

information to the third-party billing server. This allows order information to be added
to the billing system.

Within the Work Management subsystem, the SBC event should always precede the
SBO event.

The MetaSolv Solution client uses the Customer Change Application Event to notify
the third-party billing server, through the Event2Server, when a customer account is
modified after it was successfully sent to the billing server.

In order to interact successfully with the PSREUB API, your application must
implement three major functions:

■ A signal handler

■ A request handler

■ A response handler

The design you use when implementing these functions is entirely up to you.
However, this documentation refers to the code that handles these functions as
modules.

Signal Handler Module Design
The signal handler module implements the interfaces required to handle the SBC and
SBO gateway events as well as the Customer Change Application Event. This module
is also responsible for updating gateway event status to In Progress, Completed, or
Error.

A WDIEvent data parameter structure is passed in.

Table D–5 lists the values of several fields for the SBC and SBO gateway events, and
Customer Change Application Events.

Upon receiving a signal from the client, the signalhandler module activates the request
handler module. For all types of events, the signal handler module is expected to
return a WDIStatus data structure. In order to avoid locking up MetaSolv Solution, it is
recommended that the signal handler return a status immediately upon activating the
request handler module.

WARNING: Both the SBC and SBO events must be completed
before completion of the Due Date (DD) task. If you invoke SBC or
SBO events after the service request is due date completed, and the
third-party billing server reports an error; for example, "Invalid
data" MetaSolv Solution does not allow you to supp the original
service request to send the SBO or SBC again. This results in the
data in the two systems being out of sync, and someone must
manually change the data in one system to synchronize the data.

Table D–5 SBC, SBO, and Customer Change Events

Event
eventName on
WDIEvent

documentNumber
on WDIEvent

SBC "Send Bill Cust" non-zero

SBO "Send Bill Ord" non-zero

Customer Change Application Event "CCAE" 0 (zero)

Implementation Concepts

The PSR End User Billing API D-9

Request Handler Module Design
The request handler module addresses the functionality that the third-party billing
server should implement to handle the information communicated by the client. Upon
receiving event information from the signal handler, the request handler should
perform the following steps:

1. Extract customer information (as applicable) by calling the exportCustomerAccount
operation on the PSRSERVER.

2. Retrieve and examine the billing interface code before sending information to the
billing system.

3. After data extraction and necessary conversions, the account information is passed
to the billing system for processing. The UserPreference data structure received
from the server contains user preference information that may be used by the
third-party billing server. For example, user login information may be used to
connect to the billing system.

Response Handler Module Design
The response handler module handles responses received from the billing system. The
design of this module depends on factors such as the online/batch and
synchronous/asynchronous nature of the interaction with the billing application.

Upon receiving a response from the billing system, the response handler module
performs the necessary reverse translation/formatting using the
formatting/translation module and then determines the operation's status. Based on
the success or failure determination, this module should then:

1. Use the setBillingInterfaceCode operation in the PSREUBSession interface to update
the billing interface code as applicable for the billing system used.

2. Record billing errors as applicable for the billing system used.

3. Update event status to Completed or Error.

Transaction Handling
Units of work in the third-party billing server should be carefully designed using the
“all-or-nothing” principle. This is necessary so the billing system’s database and the
MetaSolv Solution database do not get out of sync.

PSR Service Item Vs. the Billing Service Instance
The PSREUB API does not process every service item in the same way. Instead, service
items are interrogated to determine whether they are a service instance. Not every
service item in a PSR is a service instance. Only service items that are service instances

Note: This step is essential because events may be initiated from
MetaSolv Solution regardless of the value of the billing interface code.
For example, new customer information needs to be sent to the billing
system only if it has not already been sent. If the billing interface code
indicates that it was successfully sent to the billing system, (status = A,
meaning Accepted), then no information needs to be sent to the billing
system and event status may be set to C, meaning Completed, or B,
meaning Bypassed.

Implementation Concepts

D-10 MetaSolv Solution CORBA API Developer’s Reference

are determined to be equipment. This determination is based on the definition of the
item type on the Product Specifications window.

Each service item that is determined to be a service instance is further interrogated to
determine the Usage Guide Key for the service instance. The usage guide key for the
service instance is also based on the definition of the item type on the Product
Specifications window.

The PSREUB API processes a service instance usage guide key as one of the following:

■ Authorization code

■ Auxiliary line

■ Circuit ID

■ Domain/Userid

■ Tel Nbr/Auth Cd

■ Telephone number

■ Travel card number

■ Universal

Pricing
Pricing can be associated with all service items. Each price associated with an item is
interrogated and processed accordingly. Prices are based on type (recurring,
non-recurring, usage) and level (account-level, service instance level). These price
characteristics are defined on the Product Catalog window. The PSREUB API
processes a service item price in PSR in one of five ways:

■ Account level recurring charge

■ Service instance level recurring charge

■ Account level non-recurring charge

■ Service instance level non-recurring charge

■ Service instance level usage charge

Transfer of Products Between Customer Accounts
The PSR module and the PSR API allow transfer of designated service items between
customer accounts. When a transfer order is entered in PSR the order is associated
with the recipient customer account. These enhancements required corresponding
updates to the PSREUB API.

For transfer PSRs, the donor customer account is the customer account from which the
service items are being transferred, and the recipient customer account is the customer
account to which the service items are being transferred.

A transfer PSR for a new customer (no previous service requests) has an order-level
activity code of N, meaning New. A transfer PSR for an existing customer (any
previous service requests) has an order-level activity code of C, meaning Changed.
When service items are transferred, each transferred service item must be deleted from
the donor customer account and added to the recipient customer account.

From a provisioning point of view, these services are not actually disconnected and
added, because the service itself continues to be available; it just belongs to a different
customer account. However, from a billing point of view the pricing associated with

Implementation Concepts

The PSR End User Billing API D-11

these services is disconnected for the donor customer account and added for the
recipient customer account. In other words the service itself remains uninterrupted or
unchanged, only the account that pays for the service changes.

Using the ELEMENT, CONNECTOR, SYSTEM and PRDBUNDLE Item Types
If a service item of type ELEMENT, CONNECTOR, SYSTEM, or PRDBUNDLE has
custom attributes, the PSREUB API passes the custom attributes. The structure that
houses custom attribute information is defined in PSREUBTYPES_V2.IDL. The
CustomAttribute structure itself is defined in WDIUTILS.IDL.

Items of type ELEMENT, SYSTEM, and PRDBUNDLE are never defined as billing
service instances and therefore never have guide-to information. Items of type
CONNECTOR are always defined as a billing service instance and therefore always
have guide-to information. The usage guiding key for the CONNECTOR item type is
always Universal.

Items of type ELEMENT, SYSTEM, or PRDBUNDLE never have PRILOC or SECLOC
information. Items of type CONNECTOR always have either a PRILOC, a SECLOC, or
both.

Implementation Concepts

D-12 MetaSolv Solution CORBA API Developer’s Reference

Glossary-1

Glossary

The following list contains definitions of Oracle Communications MetaSolv Solution
API terms as they relate to MetaSolv Solution documentation:

Access Carrier Name Abbreviation (ACNA)

A three-character abbreviation assigned by Telcordia to each Interexchange Carrier
(IXC) and listed in the Local Exchange Routing Guide (LERG).

This abbreviation represents the access customer name to which the exchange carrier
renders the access bill.

Access Customer Terminal Location (ACTL)

The COMMON LANGUAGE Location Identifier (CLLI) code of the Inter-Local Access
Transport Area (InterLATA) facility terminal location of the access customer providing
service.

ACNA (Access Carrier Name Abbreviation)

A three-character abbreviation assigned by Telcordia to each Interexchange Carrier
(IXC) and listed in the Local Exchange Routing Guide (LERG).

This abbreviation represents the access customer name to which the exchange carrier
renders the access bill.

ACTL (Access Customer Terminal Location)

The COMMON LANGUAGE Location Identifier (CLLI) code of the Inter-Local Access
Transport Area (InterLATA) facility terminal location of the access customer providing
service.

AID (Access Identifier)

Identifies the port address on a piece of equipment within the network element
identified by the target identifier (TID). In the MetaSolv Solution database, the AID
information is stored as the concatenated node address for the port address to which
the circuit is assigned.

API (Application Programming Interface)

Software that permits other applications to access a specific area of data in the
MetaSolv Solution database.

Application Programming Interface (API)

Software that permits other applications to access a specific area of data in the
MetaSolv Solution database.

asynchronous operations

Glossary-2

asynchronous operations

Operations in which control returns to the invoking application before the operation is
acted upon. The invoked application returns the results to the calling application
through a callback mechanism after the operation has been completed.

Asynchronous Transfer Mode (ATM)

A high bandwidth, low delay, packet-like switching and multiplexing technique.

ATM (Asynchronous Transfer Mode)

A high bandwidth, low delay, packet-like switching and multiplexing technique.

backup

The hardware and software resources available to recover data after a degradation or
failure of one or more system components.

A copy of computer data on an external storage modem, such as floppy disk or tape.

bandwidth

A term used in various areas of the telecommunications industry (such as with
facilities, SONET, Frame Relay, and ATM). In a channelized environment, (such as
with facilities and SONET), the circuit positions used in MetaSolv Solution act as the
discrete means of providing “bandwidth.” The term “allocation of bandwidth” is also
used in the industry. In MetaSolv Solution, “bandwidth” refers to a virtual circuit
being “allocated” to bandwidth circuits through the Bandwidth Allocation table based
on bit rates of each circuit rather than by a specific number of circuit positions (such as
channels).

bandwidth circuits

In PVC (Permanent Virtual Circuit), bandwidth circuits are circuits that have virtual
circuits assigned to them and have allocated capacity based on the digital bit rate as
opposed to the method of using a distinct number of circuit positions (channels).

batch processing

A mode of computer operation in which a complete program or set of instructions is
carried out from start to finish without any intervention from a user. Batch processing
is a highly efficient way of using computer resources, but it does not allow for any
input while the batch is running, or any corrections in the event of a flaw in the
program or a system failure. For these reasons, it is primarily used for CPU-intensive
tasks that are well established and can run reliably without supervision, often at night
or on weekends when other demands on the system are low.

CAB (Carrier Access Billing)

A system that bills Interexchange Carriers (IXCs) for access time and hardware
purchases.

carrier

A company that provides communications circuits. There are two types of carriers:
private and common. Private carriers are not regulated and they can refuse to provide
you service. Common carriers are regulated and they cannot refuse to provide you
service. Most carriers (for example, MCI, AT&T, and Sprint) are common carriers.

Carrier Access Billing (CAB)

A system that bills Interexchange Carriers (IXCs) for access time and hardware
purchases.

Common Object Request Broker Architecture (CORBA)

Glossary-3

CCNA (Customer Carrier Name Abbreviation)

A Telcordia-maintained industry-standard code used to identify access customers (for
example, AT&T and MCI).

Cell Relay Service (CRS)

An asynchronous transfer mode (ATM) term; a carrier service which supports the
receipt and transmission of ATM cells between end-users in compliance with ATM
standards and implementation specifications.

CLEI (Common Language Equipment Identifier)

Codes assigned by Telcordia (formerly Bellcore) to provide a standard method of
identifying telecommunications equipment in a uniform, feature-oriented language.
The code is a text/barcode label on the front of all equipment installed at Regional Bell
Operating Company (RBOC) facilities that facilitates inventory, maintenance,
planning, investment tracking, and circuit maintenance processes. Suppliers of
telecommunication equipment give Telcordia technical data on their equipment, and
Telcordia assigns a CLEI code to that specific product.

CNAM

CNAM is an acronym for:

Call Name Database (Sprint)

Calling Name (Caller ID)

Class Calling Name Delivery (Telcordia)

CBP (Convergent Billing Platform)

Allows for the bundling of services, such as long distance, cellular, paging, and cable,
together onto a single monthly invoice.

COM (COMbined file)

A combined file used by the ASR/ISI Gateway for transporting multiple types of files.
A COM file may contain various combinations of ASR Response files and ASR Error
files.

commit

The final step in the successful completion of a previously started database change.
The commit saves any pending changes to the database.

Common Language Equipment Identifier (CLEI)

Codes assigned by Telcordia (formerly Bellcore) to provide a standard method of
identifying telecommunications equipment in a uniform, feature-oriented language.
The code is a text/barcode label on the front of all equipment installed at Regional Bell
Operating Company (RBOC) facilities that facilitates inventory, maintenance,
planning, investment tracking, and circuit maintenance processes. Suppliers of
telecommunication equipment give Telcordia technical data on their equipment, and
Telcordia assigns a CLEI code to that specific product.

Common Object Request Broker Architecture (CORBA)

A standard architecture that allows different applications to communicate and
exchange commands and data.

A central element in CORBA is the Object Request Broker (ORB). An ORB makes it
possible for a client object to make a server request without having to know where in a
network the server object or component is located and exactly what its interfaces are.

Concatenate

Glossary-4

Concatenate

To allocate contiguous bandwidth for transport of a payload associated with a “super-
rate service.” The set of bits in the payload is treated as a single entity, as opposed to
being treated as separate bits, bytes or time slots. The payload, therefore, is accepted,
multiplexed, switched, transported and delivered as a single, contiguous “chunk” of
payload data.

Convergent Billing Platform (CBP)

Allows for the bundling of services, such as long distance, cellular, paging, and cable,
together onto a single monthly invoice.

CORBA (Common Object Request Broker Architecture)

A standard architecture that allows different applications to communicate and
exchange commands and data.

A central element in CORBA is the Object Request Broker (ORB). An ORB makes it
possible for a client object to make a server request without having to know where in a
network the server object or component is located and exactly what its interfaces are.

cross-connect

A way of connecting two objects together. Cross-connects may be hard-wired or
software based. Hard-wired cross-connects are used to connect two pieces of
equipment using a physical media. Software cross-connects represent the connections
made within a network node. The software cross-connect determines how a circuit is
connected through an intelligent network element.

CRS (Cell Relay Service)

An asynchronous transfer mode (ATM) term; a carrier service which supports the
receipt and transmission of ATM cells between end-users in compliance with ATM
standards and implementation specifications.

Customer Carrier Name Abbreviation (CCNA)

A Telcordia-maintained industry-standard code used to identify access customers (for
example, AT&T and MCI).

DACS (Digital Access and Cross-Connect Systems)

AT&T’s proprietary digital cross-connect system (DCS) product. DCS is a type of
switching/multiplexing equipment that permits per-channel DS0 electronic
cross-connects from one T1 transmission facility to another, directly from the DS1
signal. That is, the DCS allows the 24 DS0 channels in one T1 line to be distributed
among any of the other T1 lines connected to the DCS, without requiring external
cross-connects.

daemon

A program that runs continuously and exists for the purpose of handling periodic
service requests that a computer system expects to receive. The daemon program
forwards the requests to other programs (or processes) as appropriate.

dedicated plant

Describes a method used to build a telephone company’s facilities. It is used when
designated equipment, cables, and cable pairs are to be connected specifically to other
pieces of equipment or locations. Once those connections are made they are seldom
changed.

escalation method

Glossary-5

Design Layout Report (DLR)

A form designed according to the Industry Support Interface (ISI) standard originated
by the Ordering and Billing Forum (OBF) committee. This form contains pertinent
technical information sent to the access customer for review to ensure that the
appropriate design has been provided and for the recording of its contents for future
circuit activities. For MetaSolv Solution, this entity type and its dependents are used to
record when the DLR was issued and to make the necessary changes to defaulted ASR
values.

Digital Access and Cross-Connect Systems (DACS)

AT&T’s proprietary digital cross-connect system (DCS) product. DCS is a type of
switching/multiplexing equipment that permits per-channel DS0 electronic
cross-connects from one T1 transmission facility to another, directly from the DS1
signal. That is, the DCS allows the 24 DS0 channels in one T1 line to be distributed
among any of the other T1 lines connected to the DCS, without requiring external
cross-connects.

DLR (Design Layout Report)

A form designed according to the Industry Support Interface (ISI) standard originated
by the Ordering and Billing Forum (OBF) committee. This form contains pertinent
technical information sent to the access customer for review to ensure that the
appropriate design has been provided and for the recording of its contents for future
circuit activities. For MetaSolv Solution, this entity type and its dependents are used to
record when the DLR was issued and to make the necessary changes to defaulted ASR
values.

EC (exchange carrier)

A company providing telecommunication in a licensed area.

ECCKT (Exchange Carrier Circuit Identification)

An AP Circuit ID or multiple circuit Ids.

end user

A customer who uses (rather than provides) telecommunications services.

end user location

The terminating location of telephone services for residential and business customers.

equipment specs

Documents that identify the properties and functionality of a piece of hardware.
Equipment Specs are limited to items relevant to the operation of a circuit, such as
channel banks, channel units, VF equipment, switches, cards, and so on.

escalation

The process of elevating a trouble ticket and making the appropriate parties aware that
the resolution of the ticket is not progressing as well as expected and that assistance
may be needed.

escalation method

The type of outage that has prompted a trouble ticket.

event

Glossary-6

event

In the scope of the MetaSolv Solution APIs, an event represents the occurrence of
something in MetaSolv Solution or in a third-party application that is of significance to
the gateway user.

Exchange Carrier (EC)

A company providing telecommunication in a licensed area.

Exchange Carrier Circuit Identification (ECCKT)

An AP Circuit ID or multiple circuit Ids.

facility

Any one of the elements of a physical telephone plant required to provide service (for
example, a phone or data line, switching system, or cables and microwave radio
transmission systems).

fault management

Detects, isolates, and corrects network faults. It is also one of five categories of
network management defined by the ISO (International Standards Union).

fixed length records

A set of data records all having the same number of characters.

flow-through provisioning

The automating of the activation process used to remotely communicate with the
equipment in the field through Work Management tasks. MetaSolv Solution itself can
act as the Service Management Layer (SML) that sends commands to the Network
Management Layer (NML) where the commands are non-vendor specific. The NML
then passes these commands and translates them into vendor terms and
communicates these to the specific Network Element (NE), which is the actual
equipment in the field. Examples of Network Elements are C.O. switch, Digital Loop
Carrier (DLC), SONET node, and Digital Cross-connect System (DCS). MetaSolv
Solution may also serve as the NML.

FOC (Form Order Confirmation)

A form the Local Exchange Carrier (LEC) submits to the Interexchange Carrier (IXC) to
indicate the date when they will install ordered circuits.

Form Order Confirmation (FOC)

A form the Local Exchange Carrier (LEC) submits to the Interexchange Carrier (IXC) to
indicate the date when they will install ordered circuits.

frame relay

A telecommunication service designed for cost-efficient data transmission for
intermittent traffic between local area networks (LANs) and between end-points in a
wide area network (WAN).

header record

The portion of a message containing information that guides the message to the correct
destination. The header includes the sender’s address, the receiver’s address, the
precedence level, routing instructions, synchronization pulses, etc.

International Standards Organization (ISO)

Glossary-7

ICSC (Interexchange Customer Service Center)

The telephone company's primary point of contact for handling the service needs of all
long distance carriers. This center is responsible for outlining, configuring, and
installing basic service upon customer request.

IDL (Interface Definition Language)

A programming language that helps define interfaces. IDL is inherently object
oriented in nature.

IFR (Interface Repository)

A component of ORB that provides persistent storage of the interface definitions,
acting as an online database and managing and providing access to a collection of
object definitions.

INI file

An application-specific file that contains information about the initial configuration of
the application.

interconnection interface

Using an API, MetaSolv Solution can be tightly integrated with a customer's
proprietary software through software developed by third-party vendors like
TMForum Common Interconnection Gateway Platform (CIGP).

Interexchange Customer Service Center (ICSC)

The telephone company's primary point of contact for handling the service needs of all
long distance carriers. This center is responsible for outlining, configuring, and
installing basic service upon customer request.

interface

A mechanical or electrical link connecting two or more pieces of equipment. An
interface allows an independent system to interact with the MetaSolv Solution product
family.

In this guide, the term interface refers to the CORBA IDL interface that describes the
operations the interface object supports in a distributed application. These IDL
definitions provide the information needed by clients for accessing objects across a
network.

interface architecture

The collection of APIs and gateway integration software produced by Oracle e to
permit access to the MetaSolv Solution database.

Interface Definition Language (IDL)

A programming language that helps define interfaces. IDL is inherently object
oriented in nature.

Interface Repository (IFR)

A component of ORB that provides persistent storage of the interface definitions,
acting as an online database and managing and providing access to a collection of
object definitions.

International Standards Organization (ISO)

An international standards-setting organization.

Internet Service Provider (ISP)

Glossary-8

Internet Service Provider (ISP)

A company that provides individuals and other companies access to the Internet and
other related services such as web site building and hosting.

ISO (International Standards Organization)

An international standards-setting organization.

ISP (Internet Service Provider)

A company that provides individuals and other companies access to the Internet and
other related services such as web site building and hosting.

item types

Predefined types which can be used to build product specifications. Relationships
between the item types are also predefined; the item types and relationships together
are commonly called MetaSolv Solution Rules. MetaSolv Solution only allows product
specifications to be built that follow MetaSolv Solution Rules. These rules allow
specific processing to be applied to item types.

Java Database Connectivity (JDBC)

An application program interface (API) specification for connecting programs written
in Java to the data in popular databases.

JDBC (Java Database Connectivity)

An application program interface (API) specification for connecting programs written
in Java to the data in popular databases.

LATA (Local Access Transport Area)

One of 161 geographical areas in the United States within which a local telephone
company may offer local or long distance telecommunications service.

The LATA identifies which exchange carrier or Interexchange Carrier (IXC) may
provide service in a defined area.

LIDB (Line Information Database)

A service that provides customers the ability to query Access Provider (AP) databases
to determine whether a:

Caller is the authorized user of a valid AP calling card

Particular telephone number can accept collect or third-party billed calls before
transmitting any call

Line Information Database (LIDB)

A service that provides customers the ability to query Access Provider (AP) databases
to determine whether a:

Caller is the authorized user of a valid AP calling card

Particular telephone number can accept collect or third-party billed calls before
transmitting any call

LNP (Local Number Portability)

A circuit-switched network capability that allows an end user to change service
providers without having to change telephone numbers.

LSR (Local Service Request)

Glossary-9

Local Access Transport Area (LATA)

One of 161 geographical areas in the United States within which a local telephone
company may offer local or long distance telecommunications service.

The LATA identifies which exchange carrier or Interexchange Carrier (IXC) may
provide service in a defined area.

Local Number Portability (LNP)

A circuit-switched network capability that allows an end user to change service
providers without having to change telephone numbers.

Local Service Ordering Guidelines (LSOG)

A standardized set of guidelines used for ordering various local services. The local
service request (LSR) is the administrative form that must accompany any local service
request. This type of service request is used in a local competition environment to
order unbundled elements such as loop service, number portability, and loop service
with number portability. The local service provider sends a LSR to the network service
provider when the local service provider cannot fill the requirements of an end user
from owned resources.

Local Service Request (LSR)

The type of service request used in a local competition environment to order
unbundled elements such as loop service, number portability, and loop service with
number portability. An LSR is sent by the local service provider to the network service
provider when the local service provider cannot fill the requirements of an end user
from owned resources.

location

A physical location that is of interest for equipment inventory purposes. This location
may have a Telcordia CLLI, a location identifier that is not a CLLI code, or may simply
be identified by a street address. Circuit Design creates an entry in network location
for End User PRILOCs and SECLOCs if it does not exist. Network location is a
supertype of locations. Subtypes of locations include CLLI locations, end user
locations, or terminal locations.

LSOG (Local Service Ordering Guidelines)

A standardized set of guidelines used for ordering various local services. The local
service request (LSR) is the administrative form that must accompany any local service
request. This type of service request is used in a local competition environment to
order unbundled elements such as loop service, number portability, and loop service
with number portability. The local service provider sends a LSR to the network service
provider when the local service provider cannot fill the requirements of an end user
from owned resources.

LSR (Local Service Request)

The type of service request used in a local competition environment to order
unbundled elements such as loop service, number portability, and loop service with
number portability. An LSR is sent by the local service provider to the network service
provider when the local service provider cannot fill the requirements of an end user
from owned resources.

mapping

Glossary-10

mapping

The process of associating each bit transmitted by a service into the SONET payload
structure that carries the service. For example, mapping a DS1 service into a SONET
VT1.5 associates each bit of the DS1 with a location in the VT1.5.

network

The interconnection of equipment and outside plant components designed to provide
an infrastructure fabric of facilities to support the transport of circuits. Each
component of the network (Facilities, Equipment, Plant, and TFC Networks) may
stand alone in the individual circuit design/assignment process. Alternatively, the
components of the network may be combined to facilitate the designing process by
allowing one assignment to encompass many network components together.

network element

A system such as a switch or Digital Cross-connect System (DCS) or a single shelf such
as an Add-Drop Multiplexer (ADM). Another type of network element is a Digital
Loop Carrier (DLC).

network node

Maintains information on an intelligent network element that makes up a
telecommunications facility network.

NPAC SMS (Number Portability Administration Center and Service Management
System)

Assists in administering Local Number Portability (LNP).

OBF (Ordering and Billing Forum)

A subcommittee of the Exchange Carriers Standards Association (ECSA). This forum
discusses operational ordering, provisioning, billing, and presubscription.

Object Management Group (OMG)

Formed in 1989 by a group of vendors for the purpose of creating a standard
architecture for distributed objects (also known as components) in networks. The
architecture that resulted is the Common Object Request Broker Architecture
(CORBA).

Object Request Broker (ORB)

The programming that acts as a broker between a client request for a service from a
distributed object or component and the completion of that request. Having ORB
support in a network means that a client program can request a service without having
to understand where the server is in a distributed network or exactly what the
interface to the server program looks like. Components can find out about each other
and exchange interface information as they are running.

OMG (Object Management Group)

Formed in 1989 by a group of vendors for the purpose of creating a standard
architecture for distributed objects (also known as components) in networks. The
architecture that resulted is the Common Object Request Broker Architecture
(CORBA).

ORB (Object Request Broker)

The programming that acts as a broker between a client request for a service from a
distributed object or component and the completion of that request. Having ORB

repeat trouble

Glossary-11

support in a network means that a client program can request a service without having
to understand where the server is in a distributed network or exactly what the
interface to the server program looks like. Components can find out about each other
and exchange interface information as they are running.

Ordering and Billing Forum (OBF)

A subcommittee of the Exchange Carriers Standards Association (ECSA). This forum
discusses operational ordering, provisioning, billing, and presubscription.

Packet Internet Groper (PING)

A program used to test whether a particular network destination on the Internet is
online.

password

A word or string or characters recognized by automatic means, permitting a user
access to a place or to protected storage, files, or input/output devices.

ping (Packet Internet Groper)

A program used to test whether a particular network destination on the Internet is
online.

port address

Maintains information on an equipment's assignable ports for transmission purposes.
These ports can be either physical or virtual as in the relationship with the circuit
positions associated with virtual (ST or VT) facilities. Port addresses can be either
physical or enabled by the physical, as in the relationship with the circuit positions
associated with facilities.

The port address can also be identified with a node address used for assignment
selection. Other information can be maintained specific to the properties of the port,
such as whether the port is line or drop, or identified as east or west.

Product Service Request (PSR)

An order request for end user products provided by a LEC. End user products include
local dialtone services such as business lines and residential lines.

provisioning

The process of accomplishing the physical work necessary to implement the activity
requested on an order.

This normally includes the design and the activation processes. For an install of a
circuit, this would typically involve Circuit Design in MetaSolv Solution (making
assignments) and activating the circuit.

PSR (Product Service Request)

An order request for end user products provided by a LEC. End user products include
local dialtone services such as business lines and residential lines.

rate code

Identifies the bit rate associated with a circuit, facility, or equipment. For example,
DS0, DS1, or DS3.

repeat trouble

Trouble reported on a service item two or more times within a specific period.

rollback

Glossary-12

rollback

The undoing of partly completed database changes when a database transaction has
failed.

SBO (Send Bill Ord)

A gateway event which must be associated with a task in the provisioning plan
assigned to the service request.

scripts

The APIs use SQL (Structured Query Language) script. A script is a program or
sequence of instructions that is interpreted or carried out by another program rather
than by the computer processor (as a compiled program is).

Send Bill Ord (SBO)

A gateway event which must be associated with a task in the provisioning plan
assigned to the service request.

service bureau

A data processing center that does work for others.

service category

Identifies the class of cell relay service for the Permanent Virtual Circuit (PVC). This
information is identified in both directions of the PVC to support asymmetrical virtual
services.

service item

A specific instance of a product or service. For example, a telephone line.

signal

An artifact that communicates information about an event. The point of reference for
the API documentation is the MetaSolv Solution product line. Therefore, when reading
material about signals, the direction of the signal in relation to MetaSolv Solution
determines whether it is an inbound or outbound signal. When MetaSolv Solution
sends the signal, that signal is called an outbound signal. When MetaSolv Solution
receives the signal, that signal is called an inbound signal.

solicited message

A message issued by MetaSolv Solution acting as a client to another vendor.

SONET (Synchronous Optical NETwork)

An optical interface standard that allows interworking of transmission products from
multiple vendors. It is a family of fiber-optic transmission rates from 51.84 Mbps to
13.22 Gbps, created to provide the flexibility needed to transport many digital signals
with different capacities, and to provide a standard from which manufacturers can
design.

staging tables

A set of interim database tables used by the ASR/ISI gateway when processing access
service request (ASR) files.

virtual

Glossary-13

synchronous operations

An operation in which the invoking application gets the results of the operation
immediately upon the return of the call. The receiver of the operation acts upon that
operation and returns the results. No callback mechanism is used.

Synchronous Optical Network (SONET)

An optical interface standard that allows interworking of transmission products from
multiple vendors. It is a family of fiber-optic transmission rates from 51.84 Mbps to
13.22 Gbps, created to provide the flexibility needed to transport many digital signals
with different capacities, and to provide a standard from which manufacturers can
design.

Target Identifier (TID)

Identifies a group of equipment associated as part of a system or network element. In
MetaSolv Solution, the TID information is maintained on the Node tab of the Network
Element Properties window.

third-party

Describes developers who write interfaces to the MetaSolv Solution APIs for Oracle
customers, allowing customers to access specific areas of the MetaSolv Solution
database.

TID (Target Identifier)

Identifies a group of equipment associated as part of a system or network element. In
MetaSolv Solution, the TID information is maintained on the Node tab of the Network
Element Properties window.

transmission rate

The bit rates associated with a circuit, facility, or equipment. For example, DS0, DS1,
DS3, N/A etc.

trouble

Any cause that may lead to or contribute to an end-user perceiving a failure or
degradation on the quality of service of a telecommunications service.

VCI (Virtual Circuit Identifier)

The part of the logical connection address on the ATM switch port where the physical
NNI or UNI circuit terminates. The PVC may be assigned one VCI per physical circuit.
The VCI will accompany the virtual path identifier (VPI) if the PVC Connection Type
is Channel; it will not be used if the type is Path. In a combined identification, the two
will be displayed as VPI/VCI.

virtual

A term that has been used in various areas of the telecommunications industry such as
with SONET, Frame Relay, and ATM. In a SONET environment, MetaSolv Solution
uses virtual facilities the identify SONET auto-built ST and VT facilities as virtual
facilities because the Virtual Indicator on the Transmission Facility Circuit table. In the
MetaSolv Solution SONET application, the virtual facilities are used to transport other
signals such as DS3 and DS1 circuits. In Frame Relay and ATM, MetaSolv Solution has
used the virtual term for the permanent virtual circuit (PVC). In MetaSolv Solution,
therefore, a Virtual Facility is used in the realm of SONET auto-built STS and VT
facilities and Virtual Circuit is used when referring to the Frame Relay or ATM PVC.

Virtual Circuit Identifier (VCI)

Glossary-14

Virtual Circuit Identifier (VCI)

The part of the logical connection address on the ATM switch port where the physical
NNI or UNI circuit terminates. The permanent virtual circuit (PVC) may be assigned
one VCI per physical circuit. The VCI will accompany the virtual path identifier (VPI)
if the PVC Connection Type is Channel; it will not be used if the type is Path. In a
combined identification, the two will be displayed as VPI/VCI.

Virtual Path Identifier (VPI)

The logical connection address on the ATM switch port where the physical NNI or
UNI circuit terminates. The permanent virtual circuit (PVC) may be assigned one VPI
per physical circuit. The VPI will be accompanied by the virtual circuit identifier (VCI)
if the PVC Connection Type is Channel; the VPI alone will be used if the type is Path.
In a combined identification, the two will be displayed as VPI/VCI.

VPI (Virtual Path Identifier)

The logical connection address on the ATM switch port where the physical NNI or
UNI circuit terminates. The permanent virtual circuit (PVC) may be assigned one VPI
per physical circuit. The VPI will be accompanied by the virtual circuit identifier (VCI)
if the PVC Connection Type is Channel; the VPI alone will be used if the type is Path.
In a combined identification, the two will be displayed as VPI/VCI.

work queue

A collection place for tasks associated with a service request. There are two types of
work queues: child (individual) and parent (group). A child work queue is, typically,
set up for one person. A parent work queue is most often set up for a group,
department, or someone responsible for managing task assignments.

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility

	1 The MetaSolv Solution Architecture
	What Does MetaSolv Solution Do?
	How Do the MetaSolv Solution APIs Work with MetaSolv Solution?
	Overview of Essential Terminology
	Solicited Messages Vs. Unsolicited Messages
	Events Vs. Signals
	Inbound Signals Vs. Outbound signals
	Synchronous Vs. Asynchronous

	API Integration

	MetaSolv Solution API Technical Overview
	Understanding Events
	Synchronous and Asynchronous Invocation Modes
	Synchronous Operations
	Asynchronous Operations

	Transaction Model Used By the APIs
	Transaction Objects

	Determining the Role Your Application Performs
	Importing and Exporting Using the APIs
	Responsibilities When Developing With the APIs
	Naming Conventions in the APIs
	IDL Versioning for MetaSolv Solution

	2 Developing Applications Using the APIs
	MetaSolv Solution Interface Architecture
	Design Architecture
	Deployment Architecture
	Relationship of APIs, API Server Names, and IDL Files
	MetaSolv Solution APIs Require Instance References to Notification Objects
	Development Environment
	Before Compiling IDL files
	Determining Which IDL Files Are Required for a Given API

	CORBA Development
	Implementation Patterns
	Basic API Setup Pattern
	Purpose
	When Used
	Description

	Synchronous Interaction Pattern
	Purpose
	When Used
	Description

	Asynchronous Interaction Pattern
	Purpose
	When Used
	Description

	CORBA Client/Server Pattern
	Purpose
	When Used

	Signal Handling Pattern
	Purpose
	When Used
	Description
	General Remarks On Outbound Signals
	Outbound Signals – Gateway Events
	Outbound Signals – Application Events
	Inbound Signals

	Error Handling Pattern
	Purpose
	When Used
	Description
	Exception
	Error Array
	Status

	Sample Applications
	HelloAPI: Sample Application that Exports Data
	Implementation Notes

	HelloGateway: Sample Application that Handles Application and Gateway Events

	Migrating to MetaSolv Solution 6.3.x from 6.2.x
	Migrating to MetaSolv Solution 6.3.x from 5.x and 6.0.x
	Implementing SSL in JacORB 3.8

	3 Common Architecture
	WDIRoot Interface
	Connection to the MetaSolv Solution Application Server
	Connection to the CORBA Daemon
	Connection to the Root Object

	WDIManager Interface
	API Session Interfaces (Session Processing)
	WDITransaction Interface (Database Transactions)
	WDISignal Interface (Outbound Signal Processing)
	WDIInSignal Interface (Inbound Signal Processing)
	WDINotification Interface (Callback Mechanism)

	4 The Infrastructure API
	Implementation Concepts
	Infrastructure Operational Differences
	Latitude and Longitude Fields Are Not Calculated and Validated
	Switch Network Area Field Defaults to First Switch Network Area
	Query Across All Address Formats

	Key MetaSolv Solution Concepts
	Infrastructure API Files
	Infrastructure Interface
	WDIManager
	InfrastructureSession Interface
	InfrastructureSession Operation Descriptions
	Query Operation
	Export Operations

	NetworkLocationSubSession
	NetworkLocationSubSession Interface Operations
	NetworkLocationSubSession Operation Descriptions
	Query Operations
	Get Operations
	Create Operation
	Update Operation
	Delete Operation
	Associate Operations
	Unassociate Operations

	Process Flows
	Solicited Messages
	Unsolicited Messages
	Sample Unsolicited Message Process Flow for Exporting Infrastructure Information

	5 The Inventory and Capacity Management API
	Key MetaSolv Solution Concepts
	Equipment Types, Equipment Specifications, and Equipment
	Equipment Network Elements
	Equipment Name Aliases
	Equipment Installation in MetaSolv Solution
	Mounting Positions
	Ports and Port Addresses
	Virtual Port Addresses
	Enabled Ports and Enabled Port Addresses
	Port Address Placeholders
	Port Address Aliases
	Nodes and Node Addresses
	Sequential Port Address Numbering

	Hard-Wired Cross-Connects
	Condition Codes
	IP Address Management in MetaSolv Solution
	Overview of Assigning IP Addresses to Ports
	Some Common Questions About Equipment in MetaSolv Solution

	ICM API Implementation Concepts
	Transaction Management and the ICM API
	Network Inventory Gateway Events and the ICM API
	DLR Mass Reconcile
	ICM API IDL files

	ICM API Interfaces
	WDIManager Interface
	CircuitHierarchySession Interface
	EquipmentSession Interface Operations
	SpecificationSubSession Interface Operations
	InstallationSubSession Interface Operations
	Comments Concerning Specific InstallationSubSession Operations

	CrossConnectSubSession Interface Operations
	Formats for Specifying FROM Side Port Addresses
	Formats for Specifying TO-Side Port Addresses
	Comments concerning specific CrossConnectSubSession operations

	NetworkElementSubSession Interface Operations
	Comments Concerning Specific NetworkElementSubSession Operations

	DLRSession Interface Operations

	Process Flows
	Solicited Messages
	Sample Solicited Message Process Flow

	Unsolicited Messages
	Sample Unsolicited Message Process Flow for Exporting

	6 The Number Inventory API
	Number Inventory API Interfaces
	WDIManager Interface
	NumberInventorySession Interface Operations

	Process Flow
	Unsolicited Messages
	Sample Unsolicited Process Flow for Importing a Customer

	Import Notifications
	Number Inventory API Date Handling

	7 The Activation API
	Connections
	Network System Information
	Order Processing
	Single Connection
	Retrieval
	MetaSolv Solution Key Concepts
	Activation API IDL files
	Activation API Interface Relationships
	Activation API Operation Descriptions

	8 The Plant API
	Plant implementation Concepts
	Order Management
	Recommendations for Assigning Gateway Events to Provisioning Plan Tasks
	Options for Modify Cable Pair Assignment Preference
	Transaction Management and the Plant API
	Associating Separations Route to Plant Transport
	Consequential Equipment Assignments

	Key MetaSolv Solution Concepts
	Plant API IDL Files
	Plant API Interface Relationships
	PlantSession Interface
	Plant API Operation Descriptions
	MetaSolv Solution API Software and Mediation Server Processes
	Request for Plant Assignment
	Request for Plant Assignment Change
	Request to Cancel Plant Assignment
	Request to Disconnect Plant Assignment
	Request to Cancel Plant Disconnect
	Request for Change to Due Date
	Request for Plant Assignment Exception
	Request to Complete Plant Assignment
	Import Plant Assignment Failed
	Obtain Network Location Details
	Query for Network Location ID
	Query for Plant Specification ID
	Obtain Valid Values for Plant Import and Export

	9 The PSR Ancillary API
	Implementation Concepts
	Essential Terminology
	PSR Ancillary API Interfaces
	E911Session Interface Operations
	CNAMSession Interface Operations
	LIDBSession Interface Operations

	Implementation Concepts
	The PSR Ancillary API and Smart Tasks
	Field by Field Matching Between Extract Row and Response Record
	Rules of Operation
	Extract Sequence Matching

	Extract and Respond Scenario
	Error Logging Changes
	Process Flow
	Unsolicited Messages
	Sample Unsolicited Message Process Flow

	Auto Respond Preference
	Glossary of Terms and Abbreviations

	10 The PSR Order Entry API
	PSR Order Entry API Interfaces
	WDIManager Interface
	PSRSession Interface Operations
	PSRSession Operation Descriptions
	PSR Order Entry API Preferences
	Bypass PSR API Switch Validation for TN assignment
	Bypass Selected PSR API Import Structure Validation
	Override Default Value on PSR API Import When Label Exists on Import Structure
	Use Copy Item When Importing PSR Order
	Using Metasolv Solution Inventory as the Primary Inventory for Telephone Numbers

	PSRProductCatalogSession Interface Operations
	PSRProductCatalogSession Operation Descriptions
	PSRProvisioningSession Interface Operations

	Process flow
	Unsolicited Messages
	Sample Unsolicited Process Flow for Importing a Customer

	Import Notifications
	PSR API Date Handling
	Batch Operations in PSR API Exports
	Export Search Criteria

	MetaSolv Solution Product Specification and Product Catalog
	Products
	Item Types
	Product Specifications

	Product Catalog
	More About Products
	More About Product Specifications
	More About Product Catalogs

	Packages

	11 The Switch Provisioning Activation API
	Functionality
	Essential Terminology
	Switch Provisioning Activation Interface
	DLRSession Interfaces
	DLRSession Interface Operations

	Process Flows
	Solicited Messages
	Sample Solicited Message Process Flow

	Unsolicited Messages
	Process Flow for Exporting Switch Provisioning Activation Information

	Implementation Concepts
	What Are Network Nodes and Network Node Types?
	What are Flow-through Provisioning Plans and Commands?
	What Are Design Layout Records (DLRs)?
	What are Tech Translation Sheets?
	What are Virtual Layout Records (VLRs)?
	Software Modules and Subsystems Used in Flow-through Provisioning
	Equipment Administration Module
	Infrastructure Module
	Product Service Request Module
	Service Provisioning Subsystem
	Work Management Subsystem

	Flow-through Provisioning Process
	Signal Handler
	Request Handler
	Formatting/Translation Module
	Response Handler
	Date/Time Format
	CORBA Substructures

	Design Considerations

	12 The Transport Provisioning Activation API
	Functionality
	Essential Terminology
	Transport Provisioning Activation Interface
	DLRSession Interfaces
	DLRSession Interface Operation

	Process Flows
	Solicited Messages
	Sample Solicited Message Process Flow

	Unsolicited Messages
	Sample Unsolicited Message Process Flow for Exporting Transport Provisioning Activation Information

	Implementation Concepts
	What are Network Nodes and Network Node Types?
	What are Flow-through Provisioning Plans and Commands?
	What Are Design Layout Records (DLRs)?
	What Are Tech Translation Sheets?
	What Are Virtual Layout Records (VLRs)?
	Software Modules and Subsystems Used in Flow-through Provisioning
	Equipment Administration Module
	Infrastructure Module
	Product Service Request Module
	Service Provisioning Subsystem
	Work Management Subsystem

	Flow-through Provisioning Process
	Reference Architecture
	Signal Handler
	Request Handler
	Formatting/Translation Module
	Response Handler

	Design Considerations

	13 The Trouble Management API
	Functionality
	TroubleSession Interface
	WDIManager
	TroubleSession Interface Operations
	TroubleSession Operation Descriptions

	Trouble Management API IDL Files
	Process Flows
	Solicited Messages
	Sample: Solicited Message Process Flow

	Unsolicited Messages
	Sample Flows for Business Tasks
	Process Flow for Updating a Trouble Ticket
	Process Flow for Clearing a Trouble Ticket
	Process Flow for Closing a Trouble Ticket
	Process Flow for Canceling a Trouble Ticket

	Using the Service Item Test Button Functionality
	Implementation Concepts
	Interaction Life Cycle
	Session User ID Can Be Used to Verify Workforce Employee
	Date Field Types
	The createTicket_v3 Operation
	Import Ticket Attributes
	Required Fields in createTicket_v3 Request
	Business Rules in Processing createticket_v3 Request
	Notifications Upon Ticket Creation
	Escalation Levels for createTicket_v3 Request
	Ticket Linkage
	Creating Duplicate Tickets
	Customer Must Be Passed as a Party ID
	Customer is Defaulted Based On the Service Item
	Non-inventoried Service Items Are Not Created
	Certain Codes Are Passed as ID Values
	Ticket Dates and Times Are Imported in GMT
	Telcordia Preference and Trouble Management API

	Setting or Changing the Affected Service Item On a Trouble Ticket
	Passing the Service Item Type and Service Item Identifier
	Identifying a Circuit/Connection Service Item Type
	Identifying an Equipment Service Item Type
	Identifying an Network Element Service Item Type
	Identifying a Network System Service Item Type
	Identifying a Telephone Number Service Item Type
	Clearing the service item from a ticket

	The updateTicket_v2 Operation
	Updateable Ticket Attributes
	ExportDateTime Field is Used to Check Concurrency
	Required Fields in updateTicket Request
	Business Rules in Processing updateTicket_v2 Request
	Notifications Upon Ticket Update
	Ticket Linkage and Ticket Update
	Updating Duplicate Tickets

	About Customer Information and Updating Tickets
	Customer Must Be Passed as a Party ID
	Customer is Defaulted Based On the Service Item
	Non-inventoried Service Items Are Not Created
	Certain Codes are Passed as ID Values
	Ticket Dates and Times Are Exported and Imported in GMT
	Audit Note Date/Time Display
	Telcordia Preference and Trouble Management API

	The clearTicket Operation
	Ticket Linkage and Clear Ticket

	Details Concerning Use of the closeTicket Operation
	Ticket Linkage and Close Ticket
	Closing an Open/Active Trouble Ticket

	Notifications for Cleared and Closed Tickets
	Details Concerning Use of the cancelTicket Operation
	Ticket Linkage and Cancel Ticket

	Details Concerning Use of the getTickets_v2 Operation
	Details Concerning Use of the Service Item Query Operations
	Structure Format Criteria for the getTelephoneNumberServItem Operation
	MetaSolv Solution Software Concepts
	Overview of the Trouble Management Subsystem
	Permitted Trouble Ticket State Changes

	Trouble Management Operational Differences
	Escalation Organizations and Levels and the Trouble Management API
	External Referrals and the Trouble Management API
	User-required Optional Trouble Management Subsystem Fields and the Trouble Management API
	User-defined Fields and the Trouble Management API
	Certain Field Values Not Defaulted
	No Default of ETTR, Priority Level or Customer Status Minutes for a Circuit Service Item

	Repeat and Chronic Trouble Ticket Types
	Effect of Data Errors in Trouble Reports on Trouble Management API Processing

	14 The Work Management API
	WMSession Interfaces
	WDIManager
	WMSession Interfaces
	WMSession Interface Operation Descriptions

	TaskGenerationSubSession Interfaces
	TaskGenerationSubSession Interface Operation Descriptions

	TaskViewingSubSession Interface Operations
	TaskViewingSubSession Interface Operation Descriptions

	TaskCompletionSubSession Interface Operations
	TaskCompletionSubSession Interface Operation Descriptions

	Work Management API IDL Files
	Process Flows
	Solicited Messages
	Sample Solicited Message Process Flow

	Unsolicited Messages
	Enhanced Off-net Automation Functionality and the Work Management API

	Implementation Concepts
	Overview of the MetaSolv Solution Work Management Subsystem
	Work Management Operational Differences
	Tasks That Cannot be Completed Through the Work Management API
	Work Management API Support for NET DSGN Task
	Work Management API Support for Date Ready System Tasks
	Work Management API Support for Backdated and Forward-dated Tasks

	A API Error Messages and Exceptions
	B Tips And Techniques
	Understanding IOR Files
	Configuring the IOR File to Enable External Systems to Connect to the CORBA Server
	CORBA.INV_OBJREF and CORBA.OBJECT_NOT_EXIST Exceptions
	CORBA.COMM_FAILURE Exception

	Using the MetaSolv Solution APIs With Multi-Threaded Clients
	Developing Using C++
	C++ Troubleshooting

	Troubleshooting Tips for API Developers
	Using API Server Logging
	Using SQL Logging
	Using Console Logging
	Using CORBA Logging

	C Sample Code
	IOR Bind Method
	Background
	IOR Bind Method Sample Code

	NameService Bind Method
	Background
	Binding to the NameServer With an IOR Sample Code
	Binding to the NameService with resolve_initial_references Sample Code

	URL Bind Method Sample Code
	Sample Code

	Gateway Events Functionality Changes
	Middle-tier Triggering

	New Binding Methods
	Background
	Defining a Gateway

	IOR Binding to Third-party Applications
	NameService Binding to Third-party Applications
	New Event Signal

	D The PSR End User Billing API
	Essential Terminology
	PSREUBSession Interface
	WDIRoot Interface
	WDIManager Interface
	PSREUBSession Interface Operations

	Process Flows
	Process Flow for Send Bill Cust Gateway Event
	Process Flow for Send Bill Ord Gateway Event
	Process Flow for Customer Change Application Event
	Viewing PSREUB API Event Errors in MetaSolv Solution
	Solicited Messages
	Additional Process Flow Information
	Interface Point 1: SBC Event
	Information Passed to the Server
	Interface Point 2: SBO Event
	Information Passed to the Server

	Implementation Concepts
	Signal Handler Module Design
	Request Handler Module Design
	Response Handler Module Design
	Transaction Handling
	PSR Service Item Vs. the Billing Service Instance
	Pricing
	Transfer of Products Between Customer Accounts
	Using the ELEMENT, CONNECTOR, SYSTEM and PRDBUNDLE Item Types

	Glossary

