

Oracle® Communications
Provisioning

User Data Repository
REST Provisioning

Interface Specification

Release 12.2
E71788-03

June 2018

CAUTION: Use only the Installation procedure included in the Install Kit.

Before installing any system, access My Oracle Support (https://support.oracle.com)
and review any Technical Service Bulletins (TSBs) that relate to this procedure.

My Oracle Support (https://support.oracle.com) is your initial point of contact for all
product support and training needs. A representative at Customer Access Support
(CAS) can assist you with My Oracle Support registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle
Support hotline for your local country from the list at
http://www.oracle.com/us/support/contact/index.html.

See more information on My Oracle Support in Appendix C.

https://support.oracle.com/
https://support.oracle.com/
http://www.oracle.com/us/support/contact/index.html

Oracle Communications User Data Repository REST Provisioning Interface Specification, Release 12.2

E71788-03

Copyright ©2014, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under
license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the
AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of
The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any
kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Provisioning

3

Table of Contents

1. INTRODUCTION .. 10

1.1 Purpose and Scope ... 10

1.2 References .. 10

1.3 Glossary .. 10

2. SYSTEM ARCHITECTURE .. 12

2.1 Overview ... 12

2.2 Provisioning Interface .. 13

2.3 REST Application Server (RAS) .. 14

2.4 Provisioning Clients ... 14

2.5 Security ... 14

2.5.1 Client Server IP Address White List .. 14

2.5.2 Secure Connection using TLS ... 15

2.5.2.1 TLS Certificates and Public/Private Key Pairs ... 15

2.5.2.2 Supported TLS Cipher Suites ... 16

2.6 Multiple Connections ... 17

2.7 Request Queue Management ... 17

2.8 Database Transactions ... 18

2.8.1 ACID-Compliance .. 18

2.8.1.1 Atomicity ... 18
2.8.1.2 Consistency .. 18

2.8.1.3 Isolation .. 18

2.8.1.4 Durability ... 18

2.9 Connection Management .. 18

2.9.1 Connections Allowed ... 19

2.9.2 Disable Provisioning .. 19

2.9.3 Idle Timeout ... 19

2.9.4 Maximum Simultaneous Connections ... 19

2.9.5 TCP Port Number .. 19

2.10 Behavior during Low Free System Memory... 19

2.11 Congestion Control ... 19

2.12 Pools Spanning UDRs .. 20

2.13 Enterprise Pools ... 20

2.14 Rest Conventions.. 20

2.14.1 HTTP(S) Request Headers ... 21

2.14.1.1 HTTP version .. 21

Provisioning

4

2.14.1.2 Accept Header .. 21

2.14.1.3 Transfer-Encoding Header ... 21

2.14.1.4 Requests with body content ... 21
2.14.2 HTTP(S) Status Codes and Error Messages .. 21

3. REST INTERFACE MESSAGE DEFINITIONS ... 25

3.1 Message Conventions ... 25

3.1.1 HTTP Method .. 25

3.1.2 Base URI ... 25

3.1.3 REST URL ... 25

3.1.3.1 Subscriber or Pool in URL .. 25
3.1.3.2 Opaque Data Operations in URL ... 25

3.1.3.3 Field in URL .. 25

3.1.3.4 Transparent Data Row Operations in URL ... 26

3.1.3.5 Transparent Data Row Operations using an Instance Identifier in URL 26

3.1.3.6 Transparent Data Row Field Operations in URL .. 26

3.1.3.7 Transparent Data Row Field Operations using an Instance Identifier in URL 26
3.1.3.8 Transparent Data Field Operations in URL .. 26

3.1.4 URL Character Encoding ... 26

3.2 Case Sensitivity ... 27

3.3 XML Comments in a Request .. 27

3.4 Request Content in a Request .. 28

3.5 List of Messages ... 28

4. UDR DATA MODEL ... 32

4.1 Subscriber Data .. 34

4.1.1 Subscriber Profile .. 34

4.1.2 Quota ... 36

4.1.3 State .. 38

4.1.4 Dynamic Quota .. 39

4.2 Pool Data .. 40

4.2.1 Pool Profile .. 40

4.2.2 Pool Quota ... 41

4.2.3 Pool State .. 42

4.2.4 Pool Dynamic Quota .. 42

4.3 Date/Timestamp Format .. 42

5. SUBSCRIBER PROVISIONING ... 44

5.1 Subscriber Profile Commands ... 44

Provisioning

5

5.1.1 Create Subscriber .. 44

5.1.2 Get Profile .. 49

5.1.3 Update Profile .. 51
5.1.4 Delete Profile ... 53

5.2 Subscriber Profile Field Commands .. 55

5.2.1 Add Field Value ... 55

5.2.2 Get Field .. 59
5.2.3 Get Field Value .. 61

5.2.4 Update Field .. 63

5.2.5 Update Multiple Fields ... 67

5.2.6 Delete Field.. 69

5.2.7 Delete Field Value ... 72

5.3 Subscriber Opaque Data Commands .. 74

5.3.1 Set Opaque Data ... 75

5.3.2 Get Opaque Data .. 78

5.3.3 Delete Opaque Data .. 80

5.4 Subscriber Data Row Commands ... 82

5.4.1 Set Row ... 83

5.4.2 Get Row ... 88
5.4.3 Delete Row .. 92

5.5 Subscriber Data Row Field Commands ... 96

5.5.1 Get Row Field .. 97
5.5.2 Get Row Field Value .. 100

5.5.3 Update Row Field .. 105

5.5.4 Delete Row Field ... 109

5.6 Subscriber Data Field Commands ... 112

5.6.1 Set Data Field .. 113

5.6.2 Get Data Field.. 116

5.6.3 Delete Data Field ... 119

5.7 Subscriber Special Operation Commands ... 122

5.7.1 Reset Quota... 122

6. POOL PROVISIONING ... 127

6.1.1 Create Pool .. 127

6.1.2 Get Pool ... 130

6.1.3 Update Pool ... 132

6.1.4 Delete Pool .. 134

6.2 Pool Profile Field Commands .. 136

Provisioning

6

6.2.1 Add Field Value ... 136

6.2.2 Get Field .. 138

6.2.3 Get Field Value .. 140
6.2.4 Update Field .. 142

6.2.5 Update Multiple Fields ... 144

6.2.6 Delete Field.. 145

6.2.7 Delete Field Value ... 147

6.3 Pool Opaque Data Commands .. 150

6.3.1 Set Opaque Data ... 150

6.3.2 Get Opaque Data .. 153

6.3.3 Delete Opaque Data .. 156

6.4 Pool Data Row Commands ... 158

6.4.1 Set Row ... 158

6.4.2 Get Row ... 162

6.4.3 Delete Row .. 167

6.5 Pool Data Row Field Commands... 169

6.5.1 Get Row Field .. 170

6.5.2 Get Row Field Value .. 174

6.5.3 Update Row Field .. 178
6.5.4 Delete Row Field ... 181

6.6 Pool Data Field Commands ... 184

6.6.1 Set Data Field .. 185
6.6.2 Get Data Field.. 188

6.6.3 Delete Data Field ... 191

6.7 Additional Pool Commands ... 193

6.7.1 Add Member to Pool .. 194
6.7.2 Remove Member from Pool ... 197

6.7.3 Get Pool Members ... 199

6.7.4 Get Pool ID .. 202

6.7.5 Get All Pool Members .. 203

6.8 Pool Special Operation Commands ... 211

6.8.1 Reset Pool Quota .. 211

Provisioning

7

List of Figures
Figure 1: User Data Repository High Level Architecture ... 13
Figure 2: Data Model ... 34

Provisioning

8

List of Tables
Table 1: Glossary ... 10
Table 2: TLS X.509 Certificate and Key PEM-encoded Files ... 16
Table 3: TLS Supported Cipher Suites .. 17
Table 4: HTTP and HTTPS Status Codes ... 22
Table 5: Error Codes .. 22
Table 6: Summary of Subscriber Commands... 29
Table 7: Summary of Pool Commands .. 30
Table 8: Subscriber Profile Entity Definition ... 35
Table 9: Quota Entity Definition .. 37
Table 10: State Entity Definition .. 38
Table 11: Dynamic Quota Entity Definition ... 39
Table 12: Pool Profile Entity Definition ... 40
Table 13: Summary of Subscriber Profile Commands ... 44
Table 14: Create Subscriber Response Status/Error Codes ... 45
Table 15: Get Profile Response Status/Error Codes .. 50
Table 16: Update Profile Response Status/Error Codes .. 52
Table 17: Delete Profile Response Status/Error Codes ... 54
Table 18: Summary of Subscriber Profile Field Commands .. 55
Table 19: Add Field Value Response Status/Error Codes .. 56
Table 20: Response Status/Error Codes .. 59
Table 21: Get Field Value Response Status/Error Codes ... 62
Table 22: Update Field Response Status/Error Codes ... 64
Table 23: Update Multiple Fields Response Status/Error Codes ... 68
Table 24: Delete Field Response Status/Error Codes .. 70
Table 25: Delete Field Value Response Status/Error Codes .. 73
Table 26: Summary of Subscriber Opaque Data Commands .. 74
Table 27: Set Opaque Data Response Status/Error Codes .. 76
Table 28: Get Opaque Data Response Status/Error Codes ... 78
Table 29: Delete Opaque Data Response Status/Error Codes .. 81
Table 30: Summary of Subscriber Data Row Commands .. 83
Table 31: Set Row Response Status/Error Codes .. 84
Table 32: Get Row Response Status/Error Codes ... 89
Table 33: Delete Row Response Status/Error Codes ... 93
Table 34: Summary of Subscriber Data Row Field Commands ... 96
Table 35: Get Row Field Response Status/Error Codes ... 98
Table 36: Get Row Field Value Response Status/Error Codes ... 102
Table 37 Update Row Field Response Status/Error Codes .. 106
Table 38: Delete Row Field Response Status/Error Codes .. 110
Table 39: Summary of Subscriber Data Field Commands ... 112
Table 40: Set Data Field Response Status/Error Codes ... 114
Table 41: Get Data Field Response Status/Error Codes .. 117
Table 42: Delete Data Field Response Status/Error Codes.. 120
Table 43: Summary of Subscriber Special Operation Commands ... 122
Table 44: Reset Quota Response Status/Error Codes ... 123

Provisioning

9

Table 45: Summary of Pool Profile Commands ... 127
Table 46: Create Pool Response Status/Error Codes .. 128
Table 47: Get Pool Response Status/Error Codes ... 131
Table 48: Update Pool Response Status/Error Codes ... 133
Table 49: Delete Pool Response Status/Error Codes ... 135
Table 50: Summary of Pool Profile Field Commands .. 136
Table 51: Add Field Value Response Status/Error Codes .. 137
Table 52: Get Field Response Status/Error Codes ... 139
Table 53: Update Field Response Status/Error Codes ... 143
Table 54: Update Multiple Fields Response Status/Error Codes ... 145
Table 55: Delete Field Response Status/Error Codes .. 146
Table 56: Delete Field Value Response Status/Error Codes .. 148
Table 57: Summary of Pool Opaque Data Commands .. 150
Table 58: Set Opaque Data Response Status/Error Codes .. 151
Table 59: Get Opaque Data Response Status/Error Codes ... 154
Table 60: Delete Opaque Data Response Status/Error Codes .. 157
Table 61: Summary of Pool Data Row Commands .. 158
Table 62: Set Row Response Status/Error Codes .. 160
Table 63: Get Row Response Status/Error Codes ... 163
Table 64: Delete Row Response Status/Error Codes ... 168
Table 65: Summary of Pool Data Row Field Commands ... 169
Table 66: Get Row Field Response Status/Error Codes ... 171
Table 67: Get Row Field Value Response Status/Error Codes ... 175
Table 68: Update Row Field Response Status/Error Codes ... 179
Table 69: Delete Row Field Response Status/Error Codes .. 183
Table 70: Summary of Pool Data Field Commands ... 185
Table 71: Set Data Field Response Status/Error Codes ... 186
Table 72: Get Data Field Response Status/Error Codes .. 189
Table 73: Delete Data Field Response Status/Error Codes.. 192
Table 74: Summary of Additional Pool Commands ... 193
Table 75: Add Member to Pool Response Status/Error Codes ... 195
Table 76: Remove Member from Pool Response Status/Error Codes .. 198
Table 77: Get Pool Members Response Status/Error Codes ... 200
Table 78: Get Pool ID Response Status/Error Codes ... 202
Table 79 Get All Pool Members Response Status/Error Codes ... 205
Table 80: Summary of Pool Special Operation Commands ... 211
Table 81: Reset Pool Quota Response Status/Error Codes ... 212
Table 82: REST Interface System variables .. 216

Provisioning

10

1. INTRODUCTION

1.1 Purpose and Scope
This document presents the REST Provisioning interface to be used by provisioning client applications to
administer the Provisioning Database of the Oracle Communications User Data Repository (UDR) system.
Through REST interfaces, an external provisioning system supplied and maintained by the network operator may
add, change, or delete subscriber/pool information in the UDR database.

The primary audience for this document includes customers, Oracle customer service, software development,
and product verification organizations, and any other Oracle personnel who have a need to use the REST
interface.

1.2 References
These external document references list the source material used to create this document.

[1] IMS Sh interface; Signalling flows and message contents, 3GPP TS 29.328, Release 11
[2] Sh interface based on the Diameter protocol; Protocol details, 3GPP TS 29.329, Release 11
[3] User Data Convergence (UDC); Technical realization and information flows; Stage 2, 3GPP TS 23.335,

Release 11
[4] SDM v9.3 Subscriber Provisioning Reference Manual, 910-6870-001,Revision A, January 2014

1.3 Glossary
This section lists terms and acronyms specific to this document.

Table 1: Glossary

Acronym/Term Definition

ACID Atomic, Consistent, Isolatable, Durable

BLOB Binary Large Object

CFG Configuration Data – data for components and system identification and configuration

CPS Customer Provisioning System

DP Database Processor

FRS Feature Requirements Specification

FTP File Transfer Protocol

GUI Graphical User Interface

IMSI International Mobile Subscriber Identity

IP Internet Protocol

KPI Key Performance Indicator

http://www.3gpp.org/DynaReport/29328.htm
http://www.3gpp.org/DynaReport/29329.htm
http://www.3gpp.org/DynaReport/23335.htm
http://docs.oracle.com/cd/E48805_01/doc.93/910-6870-001_rev_a.pdf

Provisioning

11

Acronym/Term Definition

MEAL Measurements, Events, Alarms, and Logs

MP Message Processor

MSISDN Mobile Subscriber ISDN Number

NA Not Applicable

NE Network Element

NPA Numbering Plan Area (Area Code)

NPHO Non Pool Host UDR

OAMP Operations, Administration, Maintenance, and Provisioning

NOAM&P Network OAM&Provisioning

PCRF Policy Charging and Rules Function

PS Provisioning System

REST Representational State Transfer

PSO Pool Spanning UDRs

SDO Subscriber Data Object

SEC Subscriber Entity Configuration

SNMP Simple Network Management Protocol

SOAM System Operation, Administration, and Maintenance

SPR Subscriber Profile Repository

TCP Transmission Control Protocol

UDR User Data Repository

UTC Coordinated Universal Time

VIP Virtual IP

XML Extensible Markup Language

Provisioning

12

2. SYSTEM ARCHITECTURE

2.1 Overview
Oracle Communications User Data Repository (UDR) performs the function of an SPR, which is a database
system that acts as a single logical repository that stores subscriber data. The subscriber data that traditionally
was stored in the HSS, HLR, AuC, or Application Servers is stored in UDR as specified in 3GPP UDC information
model [3]. UDR facilitates the sharing and provisioning of user related data throughout services of 3GPP system.
Several applications front ends, such as one or more PCRF, HSS, HLR, or AuCFEs can be served by UDR.

The data stored in UDR can be permanent and temporary data. Permanent data is subscription data and relates
to the required information the system needs to perform the service. User identities (MSISDN, IMSI, NAI, or
AccountId), service data (service profile) and authentication data are examples of the subscription data. This
kind of user data has a lifetime as long as the user is permitted to use the service and may be modified by
administration means. Temporary subscriber data is dynamic data which may be changed as a result of normal
operation of the system or traffic conditions (for example, transparent data stored by Application Servers for
service execution, user status, usage, and so on).

UDR is a database system providing the storage and management of subscriber policy control data for PCRF
nodes. Subscriber/Pool data is created/retrieved/modified or deleted through the provisioning or by the Sh
interface peers (PCRF). The subscriber and pool data is stored in UDR.

• Subscriber

o Profile
o Quota
o State
o Dynamic Quota

• Pool

o Pool Profile
o Pool Quota
o Pool State
o Pool Dynamic Quota

Figure 1 illustrates a high level the UDR Architecture.

As illustrated in the figure, the UDR consists of several functional blocks. The Message Processors (MP) provide
support for a variety of protocols that entail the front-end signaling to peer network nodes. The back-end UDR
database resides on the NOAM&P servers. This release focuses on the development of the Sh messaging
interface for use with the UDR application.

As the product evolves forward, the Subscriber Profiles in UDR can be expanded to support data associated with
additional applications. Along with that, the MPs can be expanded to support additional Diameter interfaces
associated with these applications. The IPFE can be integrated with the product to facilitate signaling
distribution across multiple MP nodes.

The Network level OAMP server (NOAM&P) in Figure 1 provides the provisioning, configuration and
maintenance functions for all the network elements under it.

System level OAM server (SOAM) is a required functional block for each network element which gets data
replicated from NOAM&P and in turn replicates the data to the message processors.

The MP functions as the client-side of the network application, providing the network connectivity and hosting
network stack such as Diameter, SOAP, LDAP, SIP and SS7.

Provisioning

13

Figure 1: UDR High Level Architecture

2.2 Provisioning Interface
The REST provisioning interface provides data manipulation commands for subscriber and pool:

Subscriber:

• Subscriber Profile create, retrieve, modify, and delete
• Subscriber Profile field add, retrieve, modify, and delete
• Subscriber opaque data create, retrieve, modify, and delete

Quota, State, and Dynamic Quota

• Subscriber transparent data create, retrieve, modify, and delete

Quota, State, and Dynamic Quota

• Reset of a row in Subscriber Quota transparent data

Pool:

• Pool Profile create, retrieve, modify, and delete
• Pool Profile field add, retrieve, modify, and delete

Provisioning

14

• Pool opaque data create, retrieve, modify, and delete

Pool Quota, Pool State and Pool Dynamic Quota

• Pool transparent data create, retrieve, modify, and delete

Pool Quota, Pool State and Pool Dynamic Quota

• Reset of a row in Pool Quota transparent data
• Pool subscriber membership operations

o Add or remove from pool
o Get pool subscriber membership
o Get pool for subscriber

2.3 REST Application Server (RAS)
The application in the provisioning process interfacing to REST provisioning clients runs on every active
NOAM&P server. The RAS is responsible for:

• Accepting and authorizing REST provisioning client connections
• Processing and responding to REST requests received from provisioning clients
• Performing provisioning requests directly on the database
• Updating the provisioning command log with requests received and responses sent

2.4 Provisioning Clients
The RAS provides connections to Customer Provisioning Systems (CPS). These are independent information
systems supplied and maintained by the network operator to be used for provisioning the UDR system. Through
the RAS, the CPS may add, delete, change or retrieve information about any subscriber or pool.

CPSs use REST to send requests to manipulate and query data in the Provisioning Database. Provisioning Clients
establish TCP/IP connections to the RAS running on the active NOAM&P using the VIP for the primary NOAM&P.

Provisioning clients must re-establish connections with the RAS using the VIP for the primary UDR when
switching over from the active primary to the standby UDR server. Provisioning clients also redirect connections
to the VIP for the Secondary after switchover from the primary UDR site to the Disaster Recover UDR site.

If a response is not sent, provisioning clients must run a timeout for the response to a request. If a response is
not received, a client drops the connection and re-establishes it before trying again.

Provisioning clients are expected to re-send requests that resulted in a temporary error, or for which a response
was not received.

2.5 Security
The forms of security are provided for securing connections between the REST interface and provisioning clients
in an unsecure or untrusted network:

• Client Server IP Address White List
• Secure Connections using TLS

2.5.1 Client Server IP Address White List
For securing connections between the REST interface and provisioning clients in an unsecure/untrusted
network, a list of authorized IP addresses is provided.

Provisioning

15

The system configuration process maintains a white list of server IP addresses and/or IP address ranges from
which clients are authorized to establish a TCP/IP connection from.

The RAS verifies provisioning connections by utilizing the authorized IP address list. Any connect request coming
from an IP address that is not on the list is denied (connection is immediately closed). All active connections
established from an IP address which is removed from the Authorized IP list are immediately closed.

2.5.2 Secure Connection using TLS
The RAS supports secure (encrypted) connections between provisioning clients and the RAS using Transport
Layer Security version 1.0 (TLSv1.0) protocol implemented using OpenSSL based on SSLeay library developed by
Eric A. Young and Tim J. Hudson.

TLS is an industry standard protocol for clients needing to establish secure (TCP-based) TLS-enabled network
connections. TLS provides data confidentiality, data integrity, and server and client authentication based on
digital certificates that comply with X.509v3 standard and public/private key pairs. These services are used to
stop a wide variety of network attacks including: Snooping, Tampering, Spoofing, Hijacking, and Capture-replay.

The capabilities of TLS address several fundamental concerns about communication over TCP/IP networks:

• TLS server authentication

Allows a client application to confirm the identity of the server application. The client application
through TLS uses standard public-key cryptography to verify that the certificate and public key for the
server are valid and has been signed by a trusted certificate authority (CA) that is known to the client
application.

• TLS client authentication

Allows a server application to confirm the identity of the client application. The server application
through TLS uses standard public-key cryptography to verify that the certificate and public key for the
client are valid and has been signed by a trusted certificate authority (CA) that is known to the server
application.

• An encrypted TLS connection

Requires all information being sent between the client and server application to be encrypted. The
sending application is responsible for encrypting the data and the receiving application is responsible for
decrypting the data. In addition to encrypting the data, TLS provides message integrity. Message
integrity provides a means to determine if the data has been tampered with since it was sent by the
partner application.

Depending on the mode the RAS is configured to operate in (secure/unsecure), provisioning clients can connect
using unsecure or secure connections to the well-known TCP/TLS listening port for the RAS (configured using the
REST Secure Mode configuration variable using the UDR GUI).

NOTE: A TLS-enabled connection is slower than an unsecure TCP/IP connection. This is a direct result of
providing adequate security. On a TLS-enabled connection, more data is transferred than normal. Data is
transmitted in packets, which contain information required by the TLS protocol as well as any padding required
by the cipher that is in use. There is also the overhead of encryption and decryption for each read and write
performed on the connection.

2.5.2.1 TLS Certificates and Public/Private Key Pairs

TLS-enabled connections require TLS certificates. Certificates rely on asymmetric encryption (or public-key
encryption) algorithms that have two encryption keys (a public key and a private key). A certificate owner can
show the certificate to another party as proof of identity. A certificate has the public key for the owner. Any data

Provisioning

16

encrypted with this public key can be decrypted only using the corresponding, matching private key, which is
held by the owner of the certificate.

Oracle issues Privacy Enhanced Mail (PEM)-encoded TLS X.509v3 certificates and encryption keys to the REST
server and provisioning clients needing to establish a TLS-enabled connection with the REST server. These files
can be found on the UDR server in the /usr/TKLC/udr/ssl directory. These files are copied to the server running
the provisioning client.

Table 2: TLS X.509 Certificate and Key PEM-encoded Files

Certificate and Key PEM-
encoded Files Description

tklcCaCert.pem Oracle self-signed un-trusted root Certification Authority (CA) X.509v3 certificate.

serverCert.pem The X.509v3 certificate for the RAS and 2,048-bit RSA public key digitally signed by
Oracle Certification Authority (CA) using SHA-1 message digest algorithm.

serverKey.nopass.pem
The corresponding matching 2,048-bit RSA private key for RSA without passphrase
digitally signed by Oracle Certification Authority (CA) using SHA-1 message digest
algorithm.

clientCert.pem Provisioning X.509v3 certificate for the client and 2,048-bit RSA public key digitally
signed by Oracle Certification Authority (CA) using SHA-1 message digest algorithm.

clientKey.nopass.pem
Provisioning corresponding matching 2,048-bit RSA private key for the client without
passphrase digitally signed by Oracle Certification Authority (CA) using SHA-1
message digest algorithm.

Provisioning clients are required to send a TLS authenticating X.509v3 certificate when requested by the RAS
during the secure connection handshake protocol for mutual (two-way) authentication. If the provisioning client
does not submit a certificate that is issued or signed by Oracle Certification Authority (CA), it is not be able to
establish a secure connection with the RAS.

2.5.2.2 Supported TLS Cipher Suites

A cipher suite is a set (combination) of lower-level algorithms that a TLS-enabled connection uses to do
authentication, key exchange, and stream encryption. Table 3 lists the set of TLS cipher suites from the relevant
specification and their OpenSSL equivalents that are supported by the RAS to secure a TLS-enabled connection
with provisioning clients. The cipher suites are listed and selected for use in the order of key strength, from
highest to lowest. This ensures that during the handshake protocol of a TLS-enabled connection, cipher suite
negotiation selects the most secure suite possible from the list of cipher suites the client wishes to support, and
if necessary, back off to the next most secure, and so on down the list.

NOTE: Cipher suites containing anonymous DH ciphers, low bit-size ciphers (those using 64 or 56 bit encryption
algorithms but excluding export cipher suites), export-crippled ciphers (including 40 and 56 bits algorithms), or
the MD5 hash algorithm are not supported due to their algorithms having security vulnerabilities.

Provisioning

17

Table 3: TLS Supported Cipher Suites

Cipher Suite (RFC) OpenSSL
Equivalent

Key
Exchange

Signing/
Authentication

Encryption
(Bits)

MAC
(Hash)

Algorithms

TLS_RSA_WITH_AES_256_CBC_SHA AES256-SHA RSA RSA AES (256) SHA-1

TLS_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-
SHA RSA RSA 3DES(168) SHA-1

TLS_RSA_WITH_AES_128_CBC_SHA AES128-SHA RSA RSA AES(128) SHA-1

TLS_KRB5_WITH_RC4_128_SHA KRB5-RC4-
SHA KRB5 KRB5 RC4(128) SHA-1

TLS_RSA_WITH_RC4_128_SHA RC4-SHA RSA RSA RC4(128) SHA-1

TLS_KRB5_WITH_3DES_EDE_CBC_SHA KRB5-DES-
CBC3-SHA KRB5 KRB5 3DES(168) SHA-1

2.6 Multiple Connections
The RAS supports multiple connections and each connection is considered persistent unless declared otherwise.
The HTTP persistent connections do not use separate keep-alive messages, they just allow multiple requests to
use a same TCP/IP connection. However, connections are closed after being idle for a time limit configured in
idle timeout (See section 2.9.3).

If the client does not want to maintain a connection for more than that request, it sends a Connection header
including the connection-token close. If either the client or the server sends the close token in the Connection
header, that request becomes the last one for the connection.

The provisioning client establishes a TCP/IP connection to RAS before sending the first REST command. After the
execution of the request, the RAS sends a response message back and keeps the connection alive as long as a
request comes before idle timeout.

NOTE: In order to achieve the maximum provisioning TPS rate that the UDR REST interface is certified for,
multiple simultaneous provisioning connections are required.

For example, if the certified maximum provisioning TPS rate is 200 TPS, and the Maximum REST Connections
(see Appendix A) is set to 100, then up to 100 connections may be required in order to achieve 200 TPS. It is not
possible to achieve the maximum provisioning TPS rate on a single connection.

2.7 Request Queue Management
If multiple clients simultaneously issues requests, each request is queued and processed in the order in which it
was received on a per connection basis. The client must wait for a response from one request before issuing
another.

Incoming requests, whether multiple requests from a single client or requests from multiple clients, are not
prioritized. Multiple requests from a single client are handled on a first-in, first-out basis. Requests are
processed in the order in which they are received.

Provisioning

18

NOTE: All requests from a client sent on a single connection are processed by UDR serially. Multiple requests can
be sent without receiving a response, but each request is queued and not processed until the previous request
has completed. A client can send multiple requests across multiple connections, and these may run in parallel
but requests on each connection are still processed serially.

2.8 Database Transactions
Each create, update, delete, or request coming from the REST interface triggers a unique database transaction. A
database transaction started by a request is committed before sending a response.

2.8.1 ACID-Compliance
The REST interface supports Atomicity, Consistency, Isolation and Durability (ACID)-compliant database
transactions which guarantee transactions are processed reliably.

2.8.1.1 Atomicity

Database manipulation requests are atomic. If one database manipulation request in a transaction fails, all of
the pending changes can be rolled back by the client, leaving the database as it was before the transaction was
initiated. However, the client also has the option to close the transaction, committing only the changes in that
transaction that were successful. If any database errors are encountered while committing the transaction, all
updates are rolled back and the database is restored to its previous state.

2.8.1.2 Consistency

Data across all requests performed inside a transaction is consistent.

2.8.1.3 Isolation

All database changes made in a transaction by one client are not viewable by any other clients until the changes
are committed by closing the transaction. In other words, all database changes made in a transaction cannot be
seen by operations outside of the transaction.

2.8.1.4 Durability

After a transaction is committed and becomes durable, it persists and is not undone. Durability is achieved by
completing the transaction with the persistent database system before acknowledging commitment.
Provisioning clients only receive SUCCESS responses for transactions that have been successfully committed and
have become durable.

The system recovers committed transaction updates in spite of system software or hardware failures. If a failure
(loss of power) occurs in the middle of a transaction, the database returns to a consistent state when it is
restarted.

Data durability signifies the replication of the provisioned data to different parts of the system before a
response is provided for a provisioning transaction. These additive configurable levels of durability are
supported:

• Durability to the disk on the active provisioning server (just 1)
• Durability to the local standby server memory (1 + 2)
• Durability to the active server memory at the Disaster Recovery site (1 + 2 + 3)

2.9 Connection Management
It is possible to enable, disable, or limit the REST provisioning interface in a number of ways.

Provisioning

19

2.9.1 Connections Allowed
The configuration variable Allow REST Provisioning Connections (see Appendix A) controls whether REST
interface connections are allowed to the configured port. If this variable is set to NOT_ALLOWED, then all existing
connections are immediately dropped. Any attempts to connect are rejected.

When Allow REST Connections is set back to ALLOWED, the connections are accepted again.

2.9.2 Disable Provisioning
When the UDR GUI option to disable provisioning is selected, existing connections remain up, and new
connections are allowed. But, any provisioning request that is sent is rejected with a SERVICE_UNAVAILABLE
error indicating the service is unavailable.

For an example of a provisioning request/response when provisioning is disabled, see the last example in section
6.1.1.

2.9.3 Idle Timeout
HTTP connection between Provisioning client and RAS is handled persistent fashion. The configuration variable
REST Interface Idle Timeout (see Appendix A) indicates the time to wait before closing the connection due to
inactivity (requests are not received).

2.9.4 Maximum Simultaneous Connections
The configuration variable Maximum REST Connections (see Appendix A) defines the maximum number of
simultaneous REST interface client connections.

2.9.5 TCP Port Number
The configuration variable REST Interface Port (see Appendix A) defines the REST interface TCP listening port.

2.10 Behavior during Low Free System Memory
If the amount of free system memory available to the database falls below a critical limit, then requests that
create or update data may fail with the error MSR4068. Before this happens, memory threshold alarms are
raised indicating the impending behavior if the critical level is reached.

HTTP Status Code

The error returned by the REST interface when the critical level has been reached is 507.

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4068">errorText</error>

2.11 Congestion Control
If UDR starts to encounter congestion (based on high CPU usage), then based on the congestion level, UDR
rejects requests (based on the HTTP method, see section 4.1.1).

• If the minor CPU usage threshold is crossed (CL1), then UDR rejects GET requests
• If the major CPU usage threshold is crossed (CL2), then UDR rejects GET and PUT requests
• If the critical CPU usage threshold is crossed (CL3), then UDR rejects all requests

Provisioning

20

HTTP Status Code

The error returned by the REST interface when a request is rejected due to congestion is 503.

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4097">errorText</error>

2.12 Pools Spanning UDRs
Pools spanning UDRs allow subscribers to be a member of a pool that resides on a different UDR instance. A pool
network is defined containing the list of UDR instances across which pools may span. These UDR instances are
interconnected and networking/provisioning traffic passes between the instances.

A Pool Host UDR maintains pool data which may have pool members on other UDR instances. A Non Pool Host
UDR hosts pool members for which pool data resides on a Pool Host UDR.

Pools Spanning UDR feature is only supported in combination with Oracle Communications Policy Management
9.7.4 or higher. This feature cannot be deployed unless the UDR is interworking with policy release 9.7.4 or
higher.

2.13 Enterprise Pools
Enterprise Pools have the capability to support more than 25 members in a pool. Basic Pools maintain a
threshold of 25 members as the maximum number of subscribers that are allowed. Enterprise Pools are pools
containing more than 25 members and there is not a maximum number of pool members enforced.

A field in the Pool Profile called Type is used to distinguish between a basic pool and an enterprise pool. If the
Type field is not present, then this implies that the pool is a basic pool. A basic pool can be converted to an
enterprise pool by updating the profile to set the Type field to have a value of enterprise. An enterprise pool can
be converted to a basic pool by removing the Type field, as long as the number of members in the pool does not
exceed the maximum allowed for a basic pool.

Pools spanning UDRs support the Enterprise Pool feature. With this feature, a Pool Profile on a Pool Host UDR
can be provisioned as an enterprise pool (the Type field set to enterprise in the Pool Profile). A PSO that is
provisioned as an Enterprise pool on the Pool Host UDR is considered an Enterprise pool on a Non Pool Host
UDR. The Type field in the Pool Profile on the Non Pool Host UDR is not required to be explicitly provisioned.
Provisioning a Pool Profile with Type field on the NPHO is rejected with error Operation Not Allowed.

REST Interface Description

UDR provides an Application Programming Interface (API) for programmatic management of subscriber data.
This interface supports querying, creation, modification, and deletion of subscriber and pool data.

The API is an XML over HTTP or HTTPS interface that is designed based on RESTful concepts. This section defines
the operations that can be performed using the REST interface.

2.14 Rest Conventions
The REST interface uses these RESTful concepts:

• HTTP or HTTPS headers
• HTTP or HTTPS status codes
• Error message representation in the response content for all 4xx and 5xx codes.

Provisioning

21

2.14.1 HTTP(S) Request Headers
These HTTP and HTTPS requirements must be followed.

2.14.1.1 HTTP version

For non-secure HTTP requests, the client must set the header Request Version property to:
Request Version : HTTP/1.1

For secure HTTPS requests, the client must set the header Request Version property to:
Request Version : HTTPS TLS v1

2.14.1.2 Accept Header

Set the Accept header property to the correct MIME version using the one of these formats:

• Accept: application/camiant-msr-v1+xml <- version number is 1 or 2.0
• Accept: application/camiant-msr-v2.0+xml
• Accept :*/*
• Accept :application/*

The Accept header must match the version supported by the client. This is true even for requests that do not
expect entity response data so that any error content is accepted.

Operations in UDR support both versions 1 and 2.0.

The UDR response to an incorrect MIME version is a Bad Request, for example, with error code Invalid Accept:
application/camiant-msr-v1+xml.

Note: The Accept header is optional, and if omitted the value is treated as if the value */* was supplied.

2.14.1.3 Transfer-Encoding Header

If a client wishes to use chunked transfer encoding, then the Transfer-Encoding header must be set to:
Transfer-Encoding: chunked

2.14.1.4 Requests with body content

Requests, which contain body contents, must set the Content-Type header property to:
Content-Type: application/camiant-msr-v2.0+xml

An XML blob for an entity supplied in body contents must begin with an XML version and encoding element as
below:

<?xml version="1.0" encoding="UTF-8"?>

2.14.2 HTTP and HTTPS Status Codes and Error Messages
The REST interface uses standard HTTP and HTTPS status codes in the response messages. Any operation in the
REST interface that results in an HTTP error response in the 4xx or 5xx range includes response content that has
an error Message entity.

Table 4 provides a list of most common Status Codes that an operation may return under normal operating
conditions. A more detailed description of the response status codes are provided in each of the provisioning
command descriptions.

Provisioning

22

Table 4: HTTP and HTTPS Status Codes

Status Code Description

200—OK Indicates the successful completion of request processing.

201—Created Used for created entities.

204—No Content The request completed successfully and response content body is not sent back to
the client.

400—Bad Request This indicates there is a problem with how the request is formatted or that the data
in the request caused a validation error.

404—Not Found Indicates that the client tried to operate on a resource that did not exist.

409—Conflict Indicated that the client tried to operate on a resource where the operation was not
appropriate for that resource.

4xx—Other
Status codes in the 4xx range that are also client request issues. For example, the
client may be calling an operation that is not implemented/available or that is asking
for a mime type that is not supported.

500—Internal Server Error This error and other errors in the 5xx range indicate server problems.

503—Service Unavailable Indicates that the client tried to send a provisioning request when provisioning was
disabled.

507—Insufficient Storage Indicates that free system memory is low, and the database cannot store any more
data.

Besides the HTTP status codes, additional error codes (Table 5) are provided for the 4xx and 5xx range of Status
Codes.

NOTE: The Description column is for reference only, it is not included in the HTTP response. Additional text may
be included in the HTTP response.

Table 5: Error Codes

Error Code Description

MSR4000 Invalid content request data supplied

MSR4001 Subscriber/pool not found

MSR4002 Subscriber/pool/data field is not defined

MSR4003 A key is detected in the system for another subscriber/pool

MSR4004 Unique key not found for subscriber/pool

Provisioning

23

Error Code Description

MSR4005 Field does not support multiple values and value for field exists

MSR4049 Data type is not defined

MSR4050 Unknown key, the key provided in the request is invalid

MSR4051 The value provided for the field is invalid

MSR4053 Subscriber/pool exist, but the field value is incorrect

MSR4055 Subscriber is a member of a pool

MSR4056 Field is not updatable

MSR4057 Request only contains one field to update

MSR4058 Data type not found

MSR4059 Data row does not exist

MSR4060 Number of pool members exceeded

MSR4061 Specified pool does not exist

MSR4062 Subscriber is not a member of the pool

MSR4063 Entity cannot be reset

MSR4064 Occurrence constraint violation

MSR4065 Field is not set

MSR4066 Field value exists

MSR4067 Multiple matching rows found

MSR4068 Free system memory is low

MSR4069 At least one key is required

MSR4070 Operation not allowed

MSR4097 Request rejected due to system congestion

MSR4098 Provisioning is disabled

Provisioning

24

Error Code Description

MSR4099 Unexpected server error has occurred

MSR4100 Maximum number of Subscribers in a Basic Pool has been exceeded

MSR4101 Enterprise to Basic Pool Conversion failed threshold exceeded

MSR4102 Provisioning Request Timeout because a response was not received from remote UDR

MSR4103 A key is detected in the system for an AE subscriber

This example defines both an error code and additional error text to explain the error.
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4051">Field value not valid: Field: 'nextResetTime' Value:
'100'[MSISDN:9971701913]</error>

NOTE: The examples in the this document do not contain the error text associated with the MSRxxxx because
this information varies depending on the entity, key, or field values used.

Provisioning

25

3. REST INTERFACE MESSAGE DEFINITIONS
This section describes the syntax and parameters of XML requests and responses.

3.1 Message Conventions

3.1.1 HTTP Method
The POST, PUT, GET, and DELETE HTTP methods are used on the REST interface.

3.1.2 Base URI
The base URI ({baseURI}) that is the prefix for the documented URIs uses this syntax:

http(s)://{DNS Name or IP address}:<IP Port>/rs

The curly brackets denote replacement variables and are not part of the actual operation syntax. Any
replacement variable data that contains any special characters must be encoded. The value in the curly brackets
can be determined by how UDR is installed in the network.

For example, if UDR is installed with the DNS name udr.oracle.com on a system with IP address 1.2.3.4, with a
port number of 8787, the base URI could be either:

http://udr.oracle.com:8787/rs

Or
https://1.2.3.4:8787/rs

3.1.3 REST URL
The REST interface uses the XML conventions (sections 3.1.3.1to 3.1.3.8) in the REST command URL.

3.1.3.1 Subscriber or Pool in URL

Keyword sub indicates subscriber operations and pool indicates pool operations

For example, for a subscriber:
DELETE {baseURI}/msr/sub/IMSI/302370123456789/field/inputVolume

And for a pool:
DELETE {baseURI}/msr/pool/100000/field/Custom12

3.1.3.2 Opaque Data Operations in URL

For opaque data operations the keyword data is used. The data type indicated in the URL can be any valid
opaque or transparent data type.

NOTE: Opaque data operations can be performed on entities defined as opaque or transparent. An opaque data
operation works on the XML blob creating, getting, or deleting the blob.

For example when deleting the Quota data for a subscriber:
DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/quota

3.1.3.3 Field in URL

For field operations on the Subscriber Profile, the keyword field is used. A Field in the URL can be any field,
including key fields.

Provisioning

26

For example, to delete the outputVolume field for a subscriber:
DELETE {baseURI}/msr/sub/IMSI/302370123456789/field/outputVolume

3.1.3.4 Transparent Data Row Operations in URL

For transparent data row based operations the keyword data is also used. The data type indicated in the URL
can be any valid transparent data type which is row based. The data row name is also supplied.

For example when deleting a row in Quota data for a subscriber.
DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/quota/10GBMonth

3.1.3.5 Transparent Data Row Operations using an Instance Identifier in URL

For transparent data row based operations using an instance identifier the keywords data and row are used. The
data type indicated in the URL can be any valid transparent data type which is row based. The data row name is
also supplied. The instance identifier specified is the unique identifier used to identify the transparent object.

For example when deleting a row in Quota data for a subscriber using cid as an instance identifier.
DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/quota/10GBMonth/row/cid/9223372036854775807

3.1.3.6 Transparent Data Row Field Operations in URL

For transparent data row field based operations the keyword data is also used. The data type indicated in the
URL can be any valid transparent data type which is row based. The data row name and field name are also
supplied.

For example when deleting a row field in Quota data for a subscriber.
DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/quota/10GBMonth/totalVolume

3.1.3.7 Transparent Data Row Field Operations using an Instance Identifier in URL

For transparent data row field based operations using an instance identifier the keyword data and row are used.
The data type indicated in the URL can be any valid transparent data type which is row based. The data row
name and field name are also supplied. The instance identifier specified is the unique identifier used to identify
the transparent object.

For example when deleting a row field in Quota data for a subscriber using cid as an instance identifier.
DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/quota/10GBMonth/row/cid/
9223372036854775807/totalVolume

3.1.3.8 Transparent Data Field Operations in URL

For transparent data field based operations only the keyword data is used. The data type indicated in the URL
can be any valid transparent data type which has fields defined as a name value pair in an element. The data
field name and value are also supplied.

For example when deleting a data field in State data for a subscriber.
DELETE {baseURI}/msr/sub/IMSI/302370123456789/data/state/mcc/315

3.1.4 URL Character Encoding
Restricted character encoding is allowed in the URL using the % (percent) character. Forexample, the %3B for to
indicate a ; (semicolon) character. However, it is not permitted to use double encoding such as %253B in order
to first quote the % (percent) character.

Provisioning

27

3.2 Case Sensitivity
The URL constructs that REST requests are made up of (that is, msr, sub, pool, field, data, multipleFields) are
case-sensitive. Exact case must be used for all the commands described in this document, or the request fails.

For example, the URL is valid:
POST {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass

But this URL is not:
POST {baseURI}/msr/Sub/MSISDN/33123654862/field/Entitlement/DayPass

Key names, and entity field names are not case-sensitive, for example keyName, fieldName and setFieldName.

Entity field values, key values, and row identifiers are case-sensitive, for example fieldValue, setFieldValue,
keyValue, and rowIdValue.

Entity names as specified in an opaqueDataName or transparentDataType are not case sensitive.

Examples:

• When accessing a fieldName defined as inputVolume in the SEC, then inputvolume, INPUTVOLUME or
inputVolume are valid field names. Field names do not have to be specified in a request as they are
defined in the SEC.

• When a field is returned in a response, it is returned as defined in the SEC. For example, if the above
field is created using the name INPUTVOLUME, then it is returned in a response as inputVolume.

• When a fieldValue is used to find a field (such as when using the Delete Field Value command), the
field value is case-sensitive. If a multi-value field contained the values DayPass,Weekend,Evening and
the Delete Field Value command was used to delete the value WEEKEND, then this fails.

• When an attribute in the XML blob contains the row identifier name (rowIdName), for example for
Quota, the <quota name="AggregateLimit"> element contains the attribute called name the row
identifier name is not case-sensitive.

• When a rowIdValue is used to find a row (such as when using the Get Row command), the row identifier
value is case-sensitive. If an entity contained a row called DayPass, and the Get Row command was used
to get the row DAYPASS, then this fails.

• When a keyValue is specified in the URL (such as for an NAI), the value is case-sensitive. For example, for
a subscriber with an NAI of mum@foo.com, then Mum@foo.com, or MUM@FOO.COM does not find
the subscriber.

3.3 XML Comments in a Request
A REST request may not contain XML comments in the request or the content of the body. For example:

<!–-comment-->

HTTP Status Code

If a request contains a comment, the request is rejected with the error 400.

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4000">errorText</error>

Provisioning

28

3.4 Request Content in a Request
Some REST requests do not require Request Content to be provided in the body of the HTTP request. If Request
Content is provided when it is not required, the Request Content is ignored and the request is processed as
normal.

Examples

Request 1

Request URL
GET {baseURI}/msr/sub/AccountId/10404723525

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass</field>
</subscriber>

Response 1

The request is successful, and the subscriber was retrieved ignoring the request content.

Request 2

Request URL
PUT {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
</usage>

Response 2

The request is successful, and inputVolume is updated to an empty value ignoring the value specified in the
request content.

3.5 List of Messages
Table 6 lists the operations and messages for subscriber data. Each row of the table represents a command.
Parameters required for each command are in colored columns. Any blank (uncolored) column represents
unused parameter for corresponding command.

Provisioning

29

Table 6: Summary of Subscriber Commands

Operation
Data

Command
(Method) URL

Main
Object Key Name Key Value

subObject
Type subObject Name

subObject
Value

Instance Field
Name

Instance Field
Value Field Name Field Value

Additional
Input

Subscriber
Profile

Create Profile (POST)

{Base
URL}/msr sub

 Request
Content

Get Profile (GET)

{keyName}
MSISDN,

NAI,
IMSI,

AccountId

{keyValue}

Update Profile (PUT) Request
Content

Delete Profile (DELETE)

 Subscriber
Field

Add Field Value (POST)

field/
multipleFields {fieldName}

{fieldValue}

Get Field (GET)

Get Field Value (GET)
{fieldValue}

Update Field (PUT)

Delete Field (DELETE)

Delete Field Value
(DELETE) {fieldValue}

Subscriber
Opaque Data

Set Opaque Data (PUT)

data {opaqueDataType}

 Request
Content

Get Opaque Data (GET)
 Delete Opaque Data

(DELETE)

Subscriber
Data Row

Set Row (PUT)

{rowIdValue}

Request
Content

{instance
IdentifierField}

{instance
IdentifierValue}

Get Row (GET)

{instance
IdentifierField}

{instance
IdentifierValue}

Delete Row (DELETE)

{instance
IdentifierField}

{instance
IdentifierValue}

Reset Quota (POST)

{instance
IdentifierField}

{instance
IdentifierValue}

Subscriber
Data Row Field

Get Row Field (GET)

{fieldName} {FieldValue}

{instance
IdentifierField}

{instance
IdentifierValue}

Get Row Field Value
(GET)

{instance
IdentifierField}

{instance
IdentifierValue}

Update Row Field (PUT)

{instance
IdentifierField}

{instance
IdentifierValue}

Provisioning

30

Operation
Data

Command
(Method) URL Main

Object Key Name Key Value subObject
Type subObject Name subObject

Value
Instance Field
Name

Instance Field
Value Field Name Field Value Additional

Input

Delete Row Field
(DELETE)

{instance
IdentifierField}

{instance
IdentifierValue}

Delete Row Field
Value(DELETE)

{instance
IdentifierField}

{instance
IdentifierValue}

Subscriber
Data Field

Set Data Field (PUT or
POST)

 Get Data Field (GET)

Delete Data Field
(DELETE)

Table 7 lists operations and messages for pool data. Similar to the previous table, each row of the table represents a command. Parameters required for
each command are in colored columns. Any blank/uncolored column represents unused parameter for corresponding command.

Table 7: Summary of Pool Commands

Operation
Data Command (Method) URL Main

Object
Key
Name Key Value subObject

Type subObject Name subObject
Value

Instance Field
Name

Instance Field
Value Field Name Field Value Additional

Input

Pool Profile

Create Pool (POST)

{Base
URL}/msr pool Pool ID

 Request
Content

Get Pool (GET)

{keyValue}

Update Pool (PUT) Request
Content

Delete Pool (DELETE)

Pool Profile
Field

Add Field Value(POST)

field/
multipleFields

 {fieldName}

{fieldValue}

Get Field (GET)

Get Field Value (GET)
{fieldValue}

Update Field (PUT)

Delete Field (DELETE)

Delete Field Value (DELETE) {fieldValue}

Pool Opaque
Data

Set Opaque Data (PUT)

data {opaqueDataType}

 Request
Content

Get Opaque Data (GET)

 Delete Opaque Data
(DELETE)

Provisioning

31

Operation
Data Command (Method) URL Main

Object
Key
Name Key Value subObject

Type subObject Name subObject
Value

Instance Field
Name

Instance Field
Value Field Name Field Value Additional

Input

Pool Data Row

Set Row (PUT)

{rowIdValue}

Request
Content {instance

IdentifierField}
{instance

IdentifierValue}

Get Row (GET)

{instance
IdentifierField}

{instance
IdentifierValue}

Delete Row (DELETE)

{instance
IdentifierField}

{instance
IdentifierValue}

Reset Pool Quota (POST)

{instance
IdentifierField}

{instance
IdentifierValue}

Pool Data Row
Field

Get Row Field (GET)

{fieldName} {FieldValue}

{instance
IdentifierField}

{instance
IdentifierValue}

Get Row Field Value (GET)

{instance
IdentifierField}

{instance
IdentifierValue}

Update Row Field (PUT)

{instance
IdentifierField}

{instance
IdentifierValue}

Delete Row Field (DELETE)

{instance
IdentifierField}

{instance
IdentifierValue}

Delete Row Field
Value(DELETE)

{instance
IdentifierField}

{instance
IdentifierValue}

Pool Data
Field

Set Data Field (PUT or
POST)

 Get Data Field (GET)

Delete Data Field (DELETE)

Provisioning

32

4. UDR DATA MODEL
The UDR is a system used for the storage and management of subscriber policy control data. The UDR functions
as a centralized repository of subscriber data for the PCRF.

The subscriber-related data includes:

• Profile/Subscriber Data

Pre-provisioned information that describes the capabilities of each subscriber. This data is typically
written by the OSS system (via a provisioning interface) and referenced by the PCRF (via the Sh
interface).

• Quota

Information that represents the use of managed resources (quota, pass, top-up, roll-over) for the
subscriber. Although the UDR provisioning interfaces allow quota data to be manipulated, this data is
typically written by the PCRF and only referenced using the provisioning interfaces.

• State

Subscriber-specific properties. Like quota, this data is typically written by the PCRF, and referenced using
the provisioning interfaces.

• Dynamic Quota

Dynamically configured information related to managed resources (pass, top-up). This data may be
created or updated by either the provisioning interface or the Sh interface.

• Pool Membership

The pool to which the subscriber is associated. The implementation allows a subscriber to be associated
with a single pool.

The UDR can also be used to group subscribers using Pools. This feature allows wireless carriers to offer pooled
or family plans that allow multiple subscriber devices with different subscriber account IDs (MSISDN, IMSI, or
NAI) to share one quota.

The pool-related data includes:

• Pool Profile

Pre-provisioned information that describes a pool.

• Pool Quota
• Information that represents the use of managed resources (quota, pass, top-up, roll-over) for the pool.
• Pool State

Pool-specific properties

• Pool Dynamic Quota

Dynamically configured information related to managed resources (pass, top-up).

• Pool Membership

List of subscribers that are associated with a pool.

The data architecture supports multiple Network Applications. This flexibility is achieved though implementation
of a number of registers in a Subscriber Data Object (SDO) and storing the content as Binary Large Objects
(BLOB). An SDO exists for each individual subscriber, and an SDO exists for each pool.

Provisioning

33

The Index contains information on:

• Subscription

o A subscription exists for every individual subscriber
o Maps a subscription to the user identities through which it can be accessed
o Maps an individual subscription to the pool of which they are a member

• Pool Subscription

o A pool subscription exists for every pool
o Maps a pool subscription to the pool identity through which it can be accessed
o Maps a pool subscription to the individual subscriptions of the subscribers that are members of the

pool

• User Identities

Use to map a specific user identity to a subscription

o IMSI, MSISDN, NAI and AccountId map to an individual subscription
o Pool ID maps to a pool

• Pool Membership

Maps a pool to the list of the individual subscriber members

The Subscription Data Object (SDO):

• An SDO record contains a list of registers, holding a different type of entity data in each register
• An SDO record exists for:

o Each individual subscriber

Defined entities stored in the registers are:

 Profile
 Quota
 State
 Dynamic Quota

o Each pool

Defined entities stored in the registers are:

 Pool Profile
 Pool Quota
 Pool State
 Pool Dynamic Quota

Provisioning applications can create, retrieve, modify, and delete subscriber/pool data. The indexing system
allows access to the Subscriber SDO via IMSI, MSISDN, NAI or AccountId. The pool SDO can be accessed via Pool
ID.

• A field in an entity can be defined as mandatory, or optional. A mandatory field must exist, and cannot
be deleted.

• A field in an entity can have a default value. If an entity is created, and the field is not specified, it is
created with the default value.

• A field in an entity can be defined so that after it is created, it cannot be modified. Any attempt to
update the field after it is created fails.

Provisioning

34

• A field in an entity can have a reset value. If a reset command is used on the entity, those fields with a
defined reset value is set to the defined value. This is only applicable to field values in a row for the
Quota entity.

NOTE: This section describes the default UDR data model as defined in the Subscriber Entity Configuration (SEC).
The data model can be customized via the UDR GUI.

Figure 2: Data Model

4.1 Subscriber Data

4.1.1 Subscriber Profile
The Subscriber Profile represents the identifying attributes associated with the user. In addition to the base
fields indicated their level of service, it also includes a set of custom fields that the provisioning system can use
to store information associated with the subscriber. The values in custom fields are generally set by the OSS and
are read by the PCRF for use in policies.

Index

IMSI MSISDN NAI AccountId Pool ID

Individual Pool

Profile Quota

State Dynamic
Quota

Subscription

Pool Profile Pool Quota

Pool State Pool Dynamic
Quota

Individual Pool

Subscription Data Object (SDO)

Pool

Provisioning

35

The Subscriber Profile supports the sequence of attributes in Table 8. Each record must have at least one of
these key values: MSISDN, IMSI, NAI, or AccountId.

BillingDay must be defined with a default value if another value is not specified. The remaining fields are
optional, based on the description provided for each.

NOTE: UDR only supports an MSISDN with 8 to 15 numeric digits. A preceding + (plus) symbol is not supported,
and is rejected.

Table 8: Subscriber Profile Entity Definition

Name (XML tag) Type Description

subscriber — Sequence (multiplicity is 1)

 MSISDN String List of MSISDNs (8 to 15 numeric digits). A separate entry is included for each MSISDN
associated with the profile for the subscriber.

 IMSI String List of IMSIs (10 to 15 numeric digits). A separate entry is included for each IMSI
associated with the profile for the subscriber.

 NAI String User or Domain length is between 0 to 63 characters

NOTE: The limitation for 0 to 63 characters is because an NAI beyond 63 characters may
not be possible to transfer through all devices. The user needs to ensure the combination
of User and Domain does not exceed 63 characters (not including the @ character).

List of NAIs (in format user@domain, user, or @domain). A separate entry is included for
each NAI associated with the profile for the subscriber.

The user or domain can be empty.

Allowed characters for the user:

! % $ A to Z, a to z, 0 through 9, . - _ / * = ^ ` | # ‘ + ? { } ~
Allowed characters for the domain:

A to Z, a to z, 0 through 9, . - _
Example NAI Formats.

bob, @privatecorp.example.net

fred$@example.com

eng.example.net!nancy@example.net

eng%nancy@example.net

bob#+ ?@example.net

 AccountId String Any string that can be used to identify the account for the subscriber (1 to 255
characters).

Allowed values are any ASCII printable character, values x20 to x7e.

 BillingDay String Allowed values are 0 to 31.

The day of the month 1 to 31 that the associated quota for the subscriber is reset.

0 indicates that the default value configured at the PCRF level is used. This is
automatically set in any record where BillingDay is not specified.

Provisioning

36

Name (XML tag) Type Description

 Entitlement String List of entitlements. A separate entry is included for each entitlement associated with the
profile for the subscriber.

 Tier String Tier for the subscriber.

 Custom1 String Fields used to store customer-specific data.

 Custom2 String Fields used to store customer-specific data.

 Custom3 String Fields used to store customer-specific data.

 Custom4 String Fields used to store customer-specific data.

 Custom5 String Fields used to store customer-specific data.

 Custom6 String Fields used to store customer-specific data.

 Custom7 String Fields used to store customer-specific data.

 Custom8 String Fields used to store customer-specific data.

 Custom9 String Fields used to store customer-specific data.

 Custom10 String Fields used to store customer-specific data.

 Custom11 String Fields used to store customer-specific data.

 Custom12 String Fields used to store customer-specific data.

 Custom13 String Fields used to store customer-specific data.

 Custom14 String Fields used to store customer-specific data.

 Custom15 String Fields used to store customer-specific data.

 Custom16 String Fields used to store customer-specific data.

 Custom17 String Fields used to store customer-specific data.

 Custom18 String Fields used to store customer-specific data.

 Custom19 String Fields used to store customer-specific data.

 Custom20 String Fields used to store customer-specific data.

4.1.2 Quota
The Quota entity is used by the PCRF to record the current resource usage associated with a subscriber. A quota
entity may contain multiple quota elements, each one tracking a different resource.

The Quota entity is associated with a subscriber record and supports the sequence of attributes in Table 9.

Provisioning

37

The Quota entity contains a version number. Different attributes maybe be present based on the version
number value of the entity being accessed. In UDR, only v3 of Quota is supported.

Quota entity is generally created, updated, and deleted by Oracle Communications Policy Management,
therefore it is advised that operations on the Quota entity via SOAP or REST Provisioning Interfaces be avoided.

The default value in the table is used either:

• When a Quota instance is created, and a value is not supplied for the field. In this case, the field is
created with the value indicated

• When a Quota instance is reset using the Reset Quotas command. If a field is defined as resettable, and
the field exists, then it is set to the value indicated. If the field does not exist in the Quota, it is not
created.

NOTE: If a resettable field does not exist and the field is also defined as defaultable, then the field is
created with the value indicated.

Table 9: Quota Entity Definition

Name (XML tag) Type Default Value Description Quota
Versions

usage — — Sequence (multiplicity is 1) 1/2/3

 version String — Version of the schema. 1/2/3

 quota — — Sequence (multiplicity is N) 1/2/3

 name String — Quota name (identifier). 1/2/3

 cid String — Internal identifier used to identity a quota in a
Subscriber Profile.

1/2/3

 time String Empty string “” This element tracks the time-based resource
consumption for a Quota.

1/2/3

 totalVolume String 0 This element tracks the bandwidth volume-based
resource consumption for a Quota.

1/2/3

 inputVolume String 0 This element tracks the upstream bandwidth
volume-based resource consumption for a
Quota.

1/2/3

 outputVolume String 0 This element tracks the downstream bandwidth
volume-based resource consumption for a
Quota.

1/2/3

 serviceSpecific String Empty string “” This element tracks service-specific resource
consumption for a Quota.

1/2/3

 nextResetTime String Empty string “” When set, it indicates the time after which the
usage counters need to be reset.

See section 5.3 for format details.

1/2/3

Provisioning

38

Name (XML tag) Type Default Value Description Quota
Versions

 Type String Empty string “” Type of the resource in use. 2/3

 grantedTotalVolume String 0 Granted Total Volume

• For pool quota, it represents the granted
total volume of all the subscribers in the
pool.

• For individual quota, it represents the
granted volume to all the PDN connections
for that subscriber.

2/3

 grantedInputVolume String 0 Granted Input Volume. 2/3

 grantedOutputVolume String 0 Granted Output Volume. 2/3

 grantedTime String Empty string “” Granted Total Time. 2/3

 grantedServiceSpecific String Empty string “” Granted Service Specific Units. 2/3

 QuotaState String Empty string “” State of the resource in use. 3

 RefInstanceId String Empty string “” Instance-id of the associated provisioned pass,
top-up or roll-over.

3

4.1.3 State
The State entity is written by the PCRF to store the state of various properties managed as a part of the policy
for the subscriber. Each subscriber may have a state entity. Each state entity may contain multiple properties.

The State entity contains a version number. Different attributes maybe be present based on the version number
value of the entity being accessed. In UDR, there is only one version number of 1.

The default fields configured are not:

• Resettable
• Defaultable

The State entity supports the sequence of attributes in Table 10.

Table 10: State Entity Definition

Name (XML tag) Type Description

state — Sequence (multiplicity is 1)

 version String Version of the schema.

 property — Sequence (multiplicity is N)

 name String The property name.

 value String Value associated with the property.

Provisioning

39

4.1.4 Dynamic Quota
The DynamicQuota entity records usage associated with passes and top-ups. The DynamicQuota entity is
associated with the Subscriber Profile and may be created or updated by either the PCRF or the OSS system.

The DynamicQuota entity contains a version number. Different attributes maybe be present based on the
version number value of the entity being accessed. In UDR, there is only one version number of 1.

The default fields configured are not:

• Resettable
• Defaultable

The DynamicQuota entity supports the sequence of attributes listed in Table 11.

Table 11: Dynamic Quota Entity Definition

Name (XML tag) Type Description

definition — Sequence (multiplicity is 1)

 version String Version of the schema.

 DynamicQuota — Sequence (multiplicity is N)

 Type String Identifies the dynamic quota type.

 name String The class identifier for a pass or top-up. This name is used to match top-ups
to quota definitions on the PCRF. This name is used in policy conditions and
actions on the PCRF.

 InstanceId String A unique identifier to identify this instance of a dynamic quota object.

 Priority String An integer represented as a string. This number allows service providers to
specify when one pass or top-up is used before another pass or top-up.

 InitialTime String An integer represented as a string. The number of seconds initially granted
for the pass/top-up.

 InitialTotalVolume String An integer represented as a string. The number of bytes of total volume
initially granted for the pass/top-up.

 InitialInputVolume String An integer represented as a string. The number of bytes of input volume
initially granted for the pass/top-up.

 InitialOutputVolume String An integer represented as a string. The number of bytes of output volume
initially granted for the pass/top-up.

 InitialServiceSpecific String An integer represented as a string. The number of service specific units
initially granted for the pass/top-up.

 activationdatetime String The date/time after which the pass or top-up may be active.
See section 5.3 for format details.

 expirationdatetime String The date/time after which the pass or top-up is considered to be exhausted

Provisioning

40

Name (XML tag) Type Description

See section 5.3 for format details.

 purchasedatetime String The date/time when a pass was purchased
See section 5.3 for format details.

 Duration String The number of seconds after first use in which the pass must be used or
expired. If both Duration and expirationdatetime are present, the closest
expiration time is used.

 InterimReportingInterval String The number of seconds after which the GGSN, DPI, or Gateway revalidates
quota grants with the PCRF.

4.2 Pool Data

4.2.1 Pool Profile
The Pool profile includes a set of custom fields that the provisioning system can use to store information
associated with the pool. The values in custom fields are generally set by the OSS and are read by the PCRF for
use in policies.

Each Pool Profile must have a unique key value called Pool ID.

BillingDay must be defined with a default value if another value is not specified. The remaining fields are only
included in the record if they are specified when the record is created/updated.

The Pool profile record consists of the sequence of attributes in Table 12.

Table 12: Pool Profile Entity Definition

Name (XML tag) Type Description

pool — Sequence (multiplicity is 1)

 Pool ID String Pool identifier (1 to 22 numeric digits, minimum value 1).

 BillingDay Uint8 The day of the month (1 to 31) when the associated quota for the pool is reset.

0 indicates that the default value configured at the PCRF level is used.

 BillingType String The billing frequency, monthly, weekly, daily.

 Entitlement String List of entitlements. A separate entry is included for each entitlement associated with the
profile for the pool.

 Tier String Tier for the pool.

 Type String Field used to identify an Enterprise Pool.

Allowed value is enterprise and is not case-sensitive

 Custom1 String Fields used to store customer-specific data.

 Custom2 String Fields used to store customer-specific data.

Provisioning

41

Name (XML tag) Type Description

 Custom3 String Fields used to store customer-specific data.

 Custom4 String Fields used to store customer-specific data.

 Custom5 String Fields used to store customer-specific data.

 Custom6 String Fields used to store customer-specific data.

 Custom7 String Fields used to store customer-specific data.

 Custom8 String Fields used to store customer-specific data.

 Custom9 String Fields used to store customer-specific data.

 Custom10 String Fields used to store customer-specific data.

 Custom11 String Fields used to store customer-specific data.

 Custom12 String Fields used to store customer-specific data.

 Custom13 String Fields used to store customer-specific data.

 Custom14 String Fields used to store customer-specific data.

 Custom15 String Fields used to store customer-specific data.

 Custom16 String Fields used to store customer-specific data.

 Custom17 String Fields used to store customer-specific data.

 Custom18 String Fields used to store customer-specific data.

 Custom19 String Fields used to store customer-specific data.

 Custom20 String Fields used to store customer-specific data.

4.2.2 Pool Quota
The PoolQuota entity records usage associated with quotas, passes, top-ups, and roll-overs associated with the
pool. The PoolQuota entity is associated with the Pool Profile and may be created or updated by either the PCRF
or the OSS system.

The PoolQuota entity contains a version number. Different attributes maybe be present based on the version
number value of the entity being accessed. In UDR, there is only version number of 3.

The PoolQuota entity attributes are the same as defined for the Quota entity in section 5.1.2.

NOTE: Pool Quota entity is generally created, updated and deleted by Oracle Communications Policy
Management, therfore it is advised that operations on Pool Quota entity via SOAP or REST Provisioning
Interfaces be avoided.

Provisioning

42

4.2.3 Pool State
The PoolState entity is written by the PCRF to store the state of various properties managed as a part of the
policy for the pool. Each Pool Profile may have a PoolState entity. Each PoolState entity may contain multiple
properties.

The PoolState entity contains a version number. Different attributes maybe be present based on the version
number value of the entity being accessed. In UDR, there is only one version number of 1.

The default fields configured are not:

• Resettable
• Defaultable

The PoolState entity attributes are the same as defined for the State entity in section 5.1.3.

4.2.4 Pool Dynamic Quota
The PoolDynamicQuota entity records usage associated with passes and top-ups associated with the pool. The
PoolDynamicQuota entity is associated with the Pool Profile and may be created or updated by either the PCRF
or the OSS system.

The PoolDynamicQuota entity contains a version number. Different attributes maybe be present based on the
version number value of the entity being accessed. In UDR, there is only one version number of 1.

The default fields configured are not:

• Resettable
• Defaultable

The PoolDynamicQuota entity attributes are the same as defined for the DynamicQuota entity in section 5.1.4.

4.3 Date/Timestamp Format
The Date/Timestamp format used by many fields is:

CCYY-MM-DDThh:mm:ss[<Z|<+|->hh:mm>]

This corresponds to either:

1. CCYY-MM-DDThh:mm:ss (local time)

2. CCYY-MM-DDThh:mm:ssZ (UTC time)

3. CCYY-MM-DDThh:mm:ss+hh:mm (positive offset from UTC)

4. CCYY-MM-DDThh:mm:ss-hh:mm (negative offset from UTC)

Where:

• CC is century
• YY is year
• MM is month
• DD is day
• T is Date/Time separator
• hh is hour
• mm is minutes
• ss is seconds
• Z is UTC (Coordinated Universal Time)
• +|- is time offset from UTC

Provisioning

43

These are valid examples of a field in Date/Timestamp format:

• 2015-06-04T15:43:00 (local time)
• 2015-06-04T15:43:00Z (UTC time)
• 2015-06-04T15:43:00+02:00 (positive offset from UTC)
• 2015-06-04T15:43:00-05:00 (negative offset from UTC)

Provisioning

44

5. SUBSCRIBER PROVISIONING

5.1 Subscriber Profile Commands
Table 13: Summary of Subscriber Profile Commands

Command Description Keys Command Syntax
Create
Profile

Create a subscriber or
Subscriber Profile

MSISDN,
NAI, IMSI,
AccountId

POST {baseURI}/msr/sub

Get Profile Get Subscriber Profile data GET {baseURI}/msr/sub/keyName/keyValue

Update
Profile

Replace an existing
Subscriber Profile PUT {baseURI}/msr/sub/keyName/keyValue

Delete
Profile

Delete all Subscriber Profile
data and all opaque data
associated with the
subscriber

DELETE {baseURI}/msr/sub/keyName/keyValue

5.1.1 Create Subscriber

Description

This operation creates a Subscriber Profile using the field-value pairs that are specified in the request content.

Unlike other subscriber commands, keyName and keyValue are not specified in the URL. Request content
includes at least one key value (and up to 4 different key types), and field-value pairs, all as specified in the SEC.

NOTE: Multi-value fields can be specified by a single fieldNameX value with a delimited list of values, or multiple
fieldNameX fields each containing a single value.

Prerequisites

A subscriber with any of the keys supplied in the Profile must not exist

Request URL
POST {baseURI}/msr/sub

Request Content

A <subscriber> element that contains a <field> element for every field-value pair defined for the subscriber.
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="keyName1">keyValue1</field>
[
 <field name="keyName2">keyValue2</field>
 :
 <field name="keyNameN">keyValueN</field>
]
[
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</subscriber>

Provisioning

45

• keyNameX: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValueX: Corresponding key field value assigned to keyNameX.
• fieldNameX: A user defined field in the Subscriber Profile.
• fieldValueX: Corresponding field value assigned to fieldNameX.

NOTES:

• One key is mandatory. Any combination of key types are allowed. More than one occurrence of each key
type (IMSI, MSISDN, NAI, or AccountId) is supported, up to an engineering configured limit

• Key/field order in the request is not important

Response Content

None.

Table 14: Create Subscriber Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Successfully created

400 MSR4000 Invalid content request data supplied

400 MSR4003 A key is detected in the system for another subscriber

400 MSR4004 The field list does not contain at least one unique key

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

400 MSR4103 A key is detected in the system for an AE subscriber

404 MSR4002 Subscriber field is not defined

Examples

Request 1

A subscriber is created, with AccountId, MSISDN and IMSI keys. The BillingDay, Tier, Entitlement, and Custom15
fields are set.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="MSISDN">33123654862</field>

Provisioning

46

 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass,DayPassPlus</field>
 <field name="Custom15">allocate</field>
</subscriber>

Response 1

The request is successful, and the subscriber was created.

HTTP Status Code

201

Response Content

None.

Request 2

A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Location fields are set. Location is not a
valid field name for a subscriber.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">5141234567</field>
 <field name="IMSI">184126781623863</field>
 <field name="BillingDay">2</field>
 <field name="Location">Montreal</field>
</subscriber>

Response 2

The request fails. The error code indicates the field name is not valid.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4002">errorText</error>

Request 3

A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Entitlement fields are set. A subscriber
exists with the IMSI.

Request URL
POST {baseURI}/msr/sub

Provisioning

47

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">5141112223334</field>
 <field name="IMSI">184126781612121</field>
 <field name="BillingDay">2</field>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">DayPassPlus</field>
</subscriber>

Response 3

The request fails. The error code indicates the key exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4003">errorText</error>

Request 4

A subscriber is created. The BillingDay and Entitlement fields are set. No key values are supplied.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="BillingDay">2</field>
 <field name="Entitlement">DayPass</field>
</subscriber>

Response 4

The request fails because key values were not supplied.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4004">errorText</error>

Request 5

A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Custom15 fields are set. Provisioning has
been disabled.

Request URL
POST {baseURI}/msr/sub

Provisioning

48

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Custom15">allocate</field>
</subscriber>

Response 5

The request fails, because provisioning has been disabled.

HTTP Status Code

503

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4098">errorText</error>

Request 6

A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Entitlement fields are set. An AE
subscriber exists with the IMSI and enableAEKeyAlreadyExistsErrCode option is set to TRUE.

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">5141112223334</field>
 <field name="IMSI">184126781612121</field>
 <field name="BillingDay">2</field>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">DayPassPlus</field>
</subscriber>

Response 6

The request fails. The error code indicates the key exists for an AE subscriber.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4103">errorText</error>

Request 7

A subscriber is created, with MSISDN and IMSI keys. The BillingDay and Entitlement fields are set. An AE
subscriber exists with the IMSI and enableAEKeyAlreadyExistsErrCode option is set to FALSE.

Provisioning

49

Request URL
POST {baseURI}/msr/sub

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="MSISDN">5141112223334</field>
 <field name="IMSI">184126781612121</field>
 <field name="BillingDay">2</field>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">DayPassPlus</field>
</subscriber>

Response 7

The request fails. The error code indicates the key exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4003">errorText</error>

5.1.2 Get Profile

Description

This operation retrieves all field-value pairs created for a subscriber that is identified by the keyName and
keyValue.

A keyName and keyValue are required in the request in order to identify the subscriber. The response content
includes only valid field-value pairs which have been previously provisioned or created by default.

Prerequisites

A subscriber with a key of the keyName/keyValue supplied must exist.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.

Request Content

None.

Response Content

A <subscriber> element that contains a <field> element for every field-value pair defined for the subscriber.
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>

Provisioning

50

 <field name="keyName1">keyValue1</field>
[
 <field name="keyName2">keyValue2</field>
 :
 <field name="keyNameN">keyValueN</field>
]
[
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</subscriber>

• keyNameX: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValueX: Corresponding key field value assigned to keyNameX.
• fieldNameX: A user defined field in the Subscriber Profile.
• fieldValueX: Corresponding field value assigned to fieldNameX.

Key/field order in the response is not important

Table 15: Get Profile Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Successfully located the subscriber

400 MSR4051 Invalid value for a field

404 MSR4001 Could not find the subscriber by key

Examples

Request 1

The subscriber with the AccountId is retrieved. The subscriber exists.

Request URL
GET {baseURI}/msr/sub/AccountId/10404723525

Request Content

None.

Response 1

The request is successful, and the subscriber was retrieved.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>

Provisioning

51

<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="MSISDN">33123654862</field>
 <field name="IMSI">184569547984229</field>
 <field name="BillingDay">1</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass</field>
</subscriber>

Request 2

The subscriber with the IMSI is retrieved. The subscriber does not exist.

Request URL
GET {baseURI}/msr/sub/IMSI/184126781623863

Request Content

None.

Response 2

The request fails. The error code indicates the subscriber does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4001">errorText</error>

5.1.3 Update Profile

Description

This operation replaces an existing Subscriber Profile, for the subscriber identified by keyName and keyValue.

All existing data for the subscriber is completely removed and replaced by the request content.

NOTE:

• The key value specified by keyName and keyValue must be present in the request content.
• Multi-value fields can be specified by a single fieldNameX value with a delimited list of values, or

multiple fieldNameX fields each containing a single value.

Prerequisites

A subscriber with a key of the keyName/keyValue supplied must exist.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.

Provisioning

52

Request Content

A <subscriber> element that contains a <field> element for every field-value pair defined for the existing
subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="keyName1">keyValue1</field>
[
 <field name="keyName2">keyValue2</field>
 :
 <field name="keyNameN">keyValueN</field>
]
[
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</subscriber>

• keyNameX: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValueX: Corresponding key field value assigned to keyNameX.
• fieldNameX: A user defined field in the Subscriber Profile.
• fieldValueX: Corresponding field value assigned to fieldNameX.

NOTES:

• One key is mandatory. Any combination of key types are allowed. More than one occurrence of each key
type (IMSI, MSISDN, NAI, or AccountId) is supported, up to an engineering configured limit

• Key/field order in the request is not important

Response Content

None.

Table 16: Update Profile Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — The subscriber data was replaced successfully

400 MSR4000 Invalid content request data supplied

400 MSR4003 A key is detected in the system for another subscriber

400 MSR4004 The field list does not contain at least one unique key

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4001 Could not find the subscriber by key

Provisioning

53

HTTP Status
Code Error Code Description

404 MSR4002 Subscriber field is not defined

Examples

Request 1

A subscriber is updated using MSISDN. The AccountId, IMSI, BillingDay, Tier, and Entitlement fields are set. The
subscriber exists.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
 <field name="IMSI">184569547984229</field>
 <field name="MSISDN">33123654862</field>
 <field name="BillingDay">12</field>
 <field name="Tier"></field>
 <field name="Entitlement">DayPass,DayPassPlus</field>
</subscriber>

Response 1

The request is successful, and the subscriber was updated.

HTTP Status Code

204

Response Content

None.

5.1.4 Delete Profile

Description

This operation deletes all profile data (field-value pairs) and opaque data for the subscriber that is identified by
the keyName and keyValue.

Prerequisites

A subscriber with a key of the keyName/keyValue supplied must exist.

The subscriber must not be a member of a pool, or the request fails.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue

Provisioning

54

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.

Request Content

None.

Response Content

None.

Table 17: Delete Profile Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — The subscriber was successfully deleted

404 MSR4001 Could not find the subscriber by key

409 MSR4055 Cannot delete, subscriber belongs to a pool

Examples

Request 1

The subscriber with the MSISDN is deleted. The subscriber exists.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862

Request Content

None.

Response 1

The request is successful.

HTTP Status Code

204

Response Content

None.

Request 2

The subscriber with the NAI is deleted. The subscriber exists. The subscriber is a member of a pool.

Request URL
DELETE {baseURI}/msr/sub/NAI/mum@foo.com

Provisioning

55

Request Content

None.

Response 2

The request fails, because the subscriber is a member of a pool.

HTTP Status Code

409

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4055">errorText</error>

5.2 Subscriber Profile Field Commands
Table 18: Summary of Subscriber Profile Field Commands

Command Description Keys Command Syntax

Add Field
Value

Adds a value to the specified
field. This operation does
not affect any pre-existing
values for the field

MSISDN,
IMSI, NAI

or
AccountId

POST {baseURI}/msr/sub/keyName/keyValue/
field/fieldName/fieldValue

Get Field Retrieve the values for the
specified field

GET {baseURI}/msr/sub/keyName/keyValue/
field/fieldname

Get Field
Value

Retrieve the single value for
the specified field (if set as
specified)

GET {baseURI}/msr/sub/keyName/keyValue/
field/fieldName/fieldValue

Update
Field
Value

Updates field to the
specified value

PUT {baseURI}/msr/sub/
keyName/keyValue/field/fieldName/
fieldValue

Update
Multiple
Fields

Update multiple fields to the
specified values

PUT {baseURI}/msr/sub/keyName/keyValue/
multipleFields/fieldName1/
fieldValue1/fieldName2/fieldValue2/…

Delete
Field

Delete all the values for the
specified field

DELETE {baseURI}/msr/sub/keyName/keyValue/
field/fieldname

Delete
Field
Value

Delete a value for the
specified field

DELETE {baseURI}/msr/sub/keyName/keyValue/
field/fieldName/fieldValue

5.2.1 Add Field Value

Description

This operation adds one or more values to the specified multi-value field for the subscriber identified by the
keyName and keyValue.

This operation can only be executed for the fields defined as multi-value field in the SEC. Any pre-existing values
for the field are not affected.

Provisioning

56

All existing values are retained, and the values specified are inserted. For example, if the current value of a field
was a;b;c, and this command was used with value d, after the update the field has the value a;b;c;d.

If a value being added exists, the request fails.

NOTES:

• If the field to which the value is being added does not exist, it is created.
• The fieldValue is case-sensitive. An attempt to add the value a to the current field value of a;b;c fails.,

but an attempt to add the value A is successful and result in the field value being a;b;c;A

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The field fieldName must be a valid field in the Subscriber Profile, and must be a multi-value field.

The value fieldValue being added must not be present in the field.

Request URL
POST {baseURI}/msr/sub/keyName/keyValue/field/fieldName/fieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• fieldName: A user defined field in the Subscriber Profile.
• fieldValue: Corresponding field value assigned to fieldname.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

None.

Table 19: Add Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Successfully added field values

400 MSR4005 Field does not support multiple values

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

Provisioning

57

HTTP Status
Code Error Code Description

400 MSR4064 Occurrence constraint violation

400 MSR4066 Field value exists

404 MSR4001 Subscriber is not found

404 MSR4002 Subscriber field is not defined

Examples

Request 1

A request is made to add the value DayPass to the Entitlement field. The Entitlement field is a valid multi-value
field. The DayPass value is not present in the Entitlement field.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass

Request Content

None.

Response 1

The request is successful, and the value was added to the Entitlement field.

HTTP Status Code

200

Response Content

None.

Request 2

A request is made to add the values DayPass and HighSpeedData to the Entitlement field. The Entitlement field
is a valid multi-value field. The DayPass and HighSpeedData values are not present in the Entitlement field.

Request URL
POST {baseURI}/msr/sub/NAI/dad@op.com/field/Entitlement/DayPass;HighSpeedData

Request Content

None.

Response 2

The request is successful, and the values were added to the Entitlement field.

Provisioning

58

HTTP Status Code

200

Response Content

None.

Request 3

A request is made to add the value Gold to the Tier field. The Tier field is not a valid multi-value field.

Request URL
POST {baseURI}/msr/sub/NAI/dad@op.com/field/Tier/Gold

Request Content

None.

Response 3

The request fails because the Tier field is not a multi-value field.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4005">errorText</error>

Request 4

A request is made to update by adding two additional MSISDN values. The subscriber only has the MSISDN
15141234567.

Request URL
POST {baseURI}/msr/sub/MSISDN/5141234567/field/MSISDN/14161112222; 14505556666

Request Content

None.

Response 4

The request is successful, and the two additional MSISDNs were added. The subscriber has three MSISDNs:
15141234567, 14161112222, and 14505556666

HTTP Status Code

200

Response Content

None.

Provisioning

59

5.2.2 Get Field

Description

This operation retrieves the values of the specified fields for the subscriber identified by the specified keyName
and keyValue.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The requested field fieldName must be a valid field in the Subscriber Profile.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/field/fieldName

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• fieldName: A user defined field in the Subscriber Profile.

Request Content

None.

Response Content

A <subscriber> element that contains a <field> element for every field-value pair for the requested field
defined for the subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="fieldName">fieldValue1</field>
[
 <field name="fieldName">fieldValue2</field>
 :
 <field name="fieldName">fieldValueN</field>
]
</subscriber>

• fieldName: The requested user defined field in the Subscriber Profile.
• fieldValueX: Corresponding field value assigned to fieldname.

NOTE: For multi-value fields, more than one <field> element may be returned. One element per value.

Table 20: Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested field exists for subscriber

404 MSR4001 Subscriber is not found

404 MSR4002 Subscriber field is not defined

Provisioning

60

HTTP Status
Code Error Code Description

404 MSR4065 Field is not set

Examples

Request 1

A request is made to get the AccountId field for a subscriber.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/AccountId

Request Content

None.

Response 1

The request is successful, and the requested value is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
</subscriber>

Request 2

A request is made to get the Entitlement field for a subscriber. The Entitlement field is a multi-value field.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement

Request Content

None.

Response 2

The request is successful, and the requested value is returned. Two values are set for the multi-value field.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="Entitlement">DayPass</field>

Provisioning

61

 <field name="Entitlement">HighSpeedData</field>
</subscriber>

Request 3

A request is made to get the Custom11 field for a subscriber. The field is valid, but is not set for the subscriber.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/Custom11

Request Content

None.

Response 3

The request fails and an error is returned.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4065">errorText</error>

5.2.3 Get Field Value

Description

This operation retrieves the values for the specified field for the subscriber identified by the keyName and
keyValue in the request.

For a request where the presence of multiple values for a multi-value field is requested, a match is only
considered to have been made if the requested values form a subset of the values stored in the profile. That is, if
all of the values requested exist in the profile, return success, regardless of how many other values may exist in
the profile. If any or all of the values are not present as part of the profile, an error is returned.

NOTES:

• Depending on the field, there may be multiple field-value pairs returned by this operation.
• The fieldValue is case-sensitive. An attempt to get value a from the field value of a;b;c is successful, but

an attempt to get the value A fails.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The requested field fieldName must be a valid field in the Subscriber Profile.

The requested field must contain the values supplied in the fieldValue.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/field/fieldName/fieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

Provisioning

62

• keyValue: Corresponding key field value assigned to keyName.
• fieldName: A user defined field in the Subscriber Profile.
• fieldValue: Corresponding field value assigned to fieldname.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

A <subscriber> element that contains a <field> element for every field-value pair requested that matches the
value supplied for the existing subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="fieldName1">fieldValue1</field>
[
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</subscriber>

• fieldNameX: The requested user defined field in the Subscriber Profile.
• fieldValueX: Corresponding field value assigned to fieldNameX.

NOTE: For multi-value fields, more than one <field> element may be returned. One element per value.

Table 21: Get Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested field exists for subscriber with value

400 MSR4053 Subscriber and field exist, but values do not match

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1

A request is made to get the AccountId field with the value 10404723525. The field exists and has the specified
value.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/AccountId/10404723525

Provisioning

63

Request Content

None.

Response 1

The request is successful, and the requested value is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="AccountId">10404723525</field>
</subscriber>

Request 2

A request is made to get the Entitlement field with the values DayPass and HighSpeedData. The Entitlement field
is a multi-value field. The field exists and has the specified values.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass;HighSpeedData

Request Content

None.

Response 2

The request is successful, and the requested values are returned. Two values are set for the multi-value field.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">HighSpeedData</field>
</subscriber>

5.2.4 Update Field

Description

This operation updates a field to the specified value for the subscriber identified by the specified keyName and
keyValue.

This operation replaces (sets) the value of the field, which means that any existing values for the field are
deleted first. For multi-value fields, all previous values are erased and the set specified is inserted. Adding values
to a set is accomplished using Add Field Value.

Provisioning

64

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The field fieldName must all be a valid field in the Subscriber Profile.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue/field/fieldName/fieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• fieldName: A user defined field in the Subscriber Profile.

NOTE: A field name cannot be for a key value–that is, IMSI, MSISDN, NAI, or AccountId.

• fieldValue: Corresponding field value assigned to fieldname.

NOTE: For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

NOTE: The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

None.

Table 22: Update Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Fields were successfully updated

400 MSR4051 The value provided for the field is invalid

400 MSR4056 Field is not updatable

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1

A request is made to update the value of the Tier field to Silver.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/field/Tier/Silver

Provisioning

65

Request Content

None.

Response 1

The request is successful, and the Tier field was updated.

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to update the Entitlement field with the values DayPass and HighSpeedData. The Entitlement
field is a multi-value field.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass;HighSpeedData

Request Content

None.

Response 2

The request is successful, and the Entitlement field was updated.

HTTP Status Code

201

Response Content

None.

Request 3

A request is made to update the value of the subscribers MSISDN to 15145551234.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/field/MSISDN/15145551234

Request Content

None.

Response 3

The request is successful, and the MSISDN field was updated.

HTTP Status Code

201

Provisioning

66

Response Content

None.

Request 4

A request is made to update a subscriber, and replace the 3 existing IMSI values 302370123456789,
302370999888777, and 302370555555555 with a single value of 302370111111111.

Request URL
PUT {baseURI}/msr/sub/IMSI/302370123456789/field/IMSI/302370111111111

Request Content

None.

Response 4

The request is successful, and the IMSI field was updated. The subscriber has a single IMSI of 302370111111111.

HTTP Status Code

201

Response Content

None.

Request 5

A request is made to update the value of the subscribers NAI to two values of mum@foo.com and
cust514@op.com .

Request URL
PUT {baseURI}/msr/sub/MSISDN/15141234567/field/NAI/mum@foo.com;cust514@op.com

Request Content

None.

Response 5

The request is successful, and the NAI field was updated. The subscriber has 2 NAIs.

HTTP Status Code

201

Response Content

None.

Provisioning

67

5.2.5 Update Multiple Fields

Description

This operation updates 2 or 3 fields to the specified values for the subscriber identified by the specified
keyName and keyValue.

This operation replaces (sets) the value of the field, which means that any existing values for the field are
deleted first. For multi-value fields, all previous values are erased and the set specified is inserted. Adding values
to a set is accomplished using Add Field Value.

This command allows the update of multiple fields in a single command for subscriber data.

ALL fields that can be modified in the single field request can also be modified in the multiple field request. Two
or three fields can be updated at once. Updating only a single field results in an error.

All fields are updated at once in the DB. All fields and all values must be valid for the update to be successful. In
other words, as soon as one error is detected, processing the request is stopped (and return an error). For
example, if the third field fails validation, then none of the fields are updated.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The fieldNameX fields must all be valid in the Subscriber Profile.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue/multipleFields/fieldName1/fieldValue1/
fieldName2/fieldValue2/[fieldName3/fieldValue3]

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• fieldNameX: A user defined field in the Subscriber Profile.

NOTE: A field name cannot be for a key value–that is, IMSI, MSISDN, NAI, or AccountId.

• fieldValueX: Corresponding field value assigned to fieldNameX.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

None.

Provisioning

68

Table 23: Update Multiple Fields Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Fields were successfully updated

400 MSR4051 The value provided for the field is invalid

400 MSR4056 Field is not updatable

400 MSR4057 Request only contains one field to update

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1

A request is made to update the Entitlement field to YearPass, the Tier field to Silver, and the BillingDay field to
11.

Request URL
PUT
{baseURI}/msr/sub/MSISDN/33123654862/multipleFields/Entitlement/YearPass/Tier/Silver/BillingDay/11

Request Content

None.

Response 1

The request is successful, and the Entitlement, Tier, and BillingDay fields were all updated.

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to update the MSISDN field to 15145551234, the Tier field to Silver, and the NAI field to
mum@foo.com.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/multipleFields/
MSISDN/15145551234/Tier/Silver/NAI/mum@foo.com

Provisioning

69

Request Content

None.

Response 2

The request is successful, and the MSISDN, Tier, and NAI fields were all updated.

HTTP Status Code

201

Response Content

None.

5.2.6 Delete Field

Description

This operation deletes the specified field for the subscriber identified by keyName and keyValue in the request.

If the field is a multi-value field then all values are deleted. Deletion of a field results in removal of the field from
the Subscriber Profile. Meaning that the field is not present, not just the value is empty.

NOTES:

• The field being deleted does not need to have a value. It can be empty (deleted), and the request
succeeds.

• If the field being deleted is mandatory, and is defined as having a default value, then the field is not
removed, but has the default value assigned.

• If a key (IMSI, MSISDN, NAI, or AccountId) field is deleted for a subscriber, then afterwards, the
subscriber must still have at least one key type/value remaining or the request fails.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The requested field fieldName must be a valid field in the Subscriber Profile.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/field/fieldName

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• fieldName: A user defined field in the Subscriber Profile.

Request Content

None.

Response Content

None.

Provisioning

70

Table 24: Delete Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Field was successfully deleted

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4069 At least one key is required

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1

A request is made to delete the Tier field. The field is a valid Subscriber Profile field.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/field/Tier

Request Content

None.

Response 1

The request is successful, and the field was deleted.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the IMSI key field. The subscriber has MSISDN and IMSI key fields.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/15141234567/field/IMSI

Request Content

None.

Provisioning

71

Response 2

The request is successful, and the IMSI key field was deleted.

HTTP Status Code

204

Response Content

None.

Request 3

A request is made to delete the MSISDN key field. The subscriber only has a single MSISDN key field.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/15145551234/field/MSISDN

Request Content

None.

Response 3

The request fails, because the single MSISDN key field is the only existing key.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4069">errorText</error>

Request 4

A request is made to delete the MSISDN field. The subscriber has 2 MSISDN values, 15141234567 and
15145556666. The subscriber also has an IMSI value.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/15141234567/field/MSISDN

Request Content

None.

Response 4

The request is successful, and the MSISDN field is deleted. The subscriber does not have any MSISDN values, and
just has an IMSI

HTTP Status Code

204

Provisioning

72

Response Content

None.

5.2.7 Delete Field Value

Description

This operation deletes one or more values from the specified field for the subscriber identified by the keyName
and keyValue in the request.

This operation can only be used for the fields defined as multi-value field in the SEC.

Each individual value is removed from the Subscriber Profile. If a supplied value does not exist, then it is ignored.
For example, if a profile contains values a;b;c and a request to delete a;b is made, this succeeds and the profile is
left with c as the value. If the profile contains a;b;c and a request is made to delete c;d the request succeeds and
the profile is left with a;b as the value.

If all values are removed, the field is removed from the Subscriber Profile (an XML element is not present).

NOTE: The fieldValue is case-sensitive. An attempt to remove the value a from a field value of a;b;c is successful,
but an attempt to remove the value A fails.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The field fieldName must be a valid field in the Subscriber Profile, and set to the value supplied to be removed
successfully.

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/field/fieldName/fieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• fieldName: A user defined field in the Subscriber Profile.

NOTE: A field name cannot be for a key value–That is, IMSI, MSISDN, NAI, or AccountId

• fieldValue: Corresponding field value assigned to fieldname.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

None.

Provisioning

73

Table 25: Delete Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested fields were successfully deleted

400 MSR4005 Field does not support multiple values

400 MSR4056 Field is not updatable

400 MSR4069 At least one key is required

404 MSR4001 Subscriber does not exist

404 MSR4002 Subscriber field is not defined

Examples

Request 1

A request is made to delete the values DayPass and HighSpeedData from the Entitlement field. The Entitlement
field is a multi-value field. The field exists and contains the specified values.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/field/Entitlement/DayPass;HighSpeedData

Request Content

None.

Response 1

The request is successful, and the values were deleted from the field.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the Tier field which has the value Gold. The Tier field is not a multi-value field.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/field/Tier/Gold

Request Content

None.

Provisioning

74

Response 2

The request fails, because the Tier field is not a multi-value field.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4005">errorText</error>

Request 3

A request is made to delete the MSISDN fields with values of 14161112222 and 15141234567. The subscriber
has 3 MSISDN values, 15141234567, 14161112222, and 15145556666.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/15141234567/field/MSISDN/14161112222;15141234567

Request Content

None.

Response 3

The request is successful, and the MSISDN values 14161112222 and 15141234567 are deleted. The subscriber
has a single MSISDN of 15145556666.

HTTP Status Code

204

Response Content

None.

5.3 Subscriber Opaque Data Commands
The commands listed in Table 26 perform opaque data operations. They can be used on entities defined as
either opaque or transparent. The opaque data operation operates on the entity at the XML blob level. The
content of the entity is set, returned, or deleted.

Table 26: Summary of Subscriber Opaque Data Commands

Command Description Keys Command Syntax
Set
Opaque
Data

Create or update opaque
data of the specified type MSISDN,

IMSI, NAI
or
AccountId

PUT {baseURI}/msr/sub/keyName/keyValue/
data/opaqueDataType

Get
Opaque
Data

Retrieve opaque data of the
specified type

GET {baseURI}/msr/sub/keyName/keyValue/
data/opaqueDataType

Provisioning

75

Command Description Keys Command Syntax
Delete
Opaque
Data

Delete opaque data of the
specified type

DELETE {baseURI}/msr/sub/keyName/keyValue/
data/opaqueDataType

5.3.1 Set Opaque Data

Description

This operation updates (or creates if it not exists) the opaque data of the specified type for the subscriber
identified by the keyName and keyValue in the request.

The opaque data is provided in the request content.

NOTE: The opaque data provided in an XML blob is always checked to be valid XML. If the entity is defined as
transparent in the SEC, then the XML blob is fully validated against the definition in the SEC. If either validation
check fails, then the request is rejected.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The opaqueDataType must reference a valid entity in the Interface Entity Map table in the SEC.

Request URL
PUT {baseURI}/msr/sub/keyName/keyValue/data/opaqueDataType

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• opaqueDataType: A user defined type/name for the opaque data.

Value is either quota, state, or dynamicquota.

Request Content

A <subscriber> element that contains a <data> element, which contains the specified opaque data for the
identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="opaqueDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</subscriber>

• opaqueDataType: A user defined type/name for the opaque data.

Value is either quota, state, or dynamicquota.

• cdataFieldValue: Contents of the XML data blob.

NOTE: The opaqueDataType in the request content is ignored, and is not validated. The opaqueDataType in the
URL is used to identify the opaque data type.

Provisioning

76

Response Content

None.

Table 27: Set Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data was successfully created/updated

400 MSR4000 Request content is not valid

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4002 Field is not defined for this data type

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

Examples

Request 1

A request is made to create the quota opaque data. The subscriber does not have an existing Quota entity.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</subscriber>

Provisioning

77

Response 1

The request is successful, and the Quota opaque data was created.

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to update the state opaque data. The subscriber has an existing State entity.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/state

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="state">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </data>
</subscriber>

Response 2

The request is successful, and the State opaque data was updated.

HTTP Status Code

201

Response Content

None.

Provisioning

78

5.3.2 Get Opaque Data

Description

This operation retrieves the opaque data of the specified opaqueDataType for the subscriber identified by the
keyName and keyValue in the request.

The response contains the XML blob for the requested opaque data.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The opaqueDataType must reference a valid entity in the Interface Entity Map table in the SEC.

The opaque data of the opaqueDataType must exist for the subscriber.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/data/opaqueDataType

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• opaqueDataType: A user defined type/name for the opaque data.

Value is either quota, state, or dynamicquota.

Request Content

None.

Response Content

A <subscriber> element that contains a <data> element, which contains the requested opaque data for the
identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="opaqueDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</subscriber>

• opaqueDataType: A user defined type/name for the opaque data.

Value is either quota, state, or dynamicquota.

• cdataFieldValue: Contents of the XML data blob.

Table 28: Get Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data exists for subscriber

Provisioning

79

HTTP Status
Code Error Code Description

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4053 Data type is not set for this subscriber

Examples

Request 1

A request is made to get the quota opaque data for a subscriber.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/quota

Request Content

None.

Response 1

The request is successful, and the Quota opaque data is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</subscriber>

Request 2

A request is made to get the state opaque data for a subscriber.

Provisioning

80

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/state

Request Content

None.

Response 2

The request is successful, and the State opaque data is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="state">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </data>
</subscriber>

5.3.3 Delete Opaque Data

Description

This operation deletes the opaque data of the specified opaqueDataType for the subscriber identified by the
keyName and keyValue in the request.

Only one opaque data type can be deleted per request.

NOTE: If the opaque data of the opaqueDataType does not exist for the subscriber, this is not considered an
error and a successful result is returned.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The opaqueDataType must reference a valid entity in the Interface Entity Map table in the SEC.

Provisioning

81

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/data/opaqueDataType

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• opaqueDataType: A user defined type/name for the opaque data.

Value is either quota, state, or dynamicquota.

Request Content

None.

Response Content

None.

Table 29: Delete Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Data was successfully deleted

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

Examples

Request 1

A request is made to delete the quota opaque data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/quota

Request Content

None.

Response 1

The request is successful, and the Quota opaque data was deleted.

HTTP Status Code

204

Response Content

None.

Provisioning

82

Request 2

A request is made to delete the state opaque data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/state

Request Content

None.

Response 2

The request is successful, and the State opaque data was deleted.

HTTP Status Code

204

Response Content

None.

Request 3

A request is made to delete the state opaque data. The subscriber does not have any State opaque data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/state

Request Content

None.

Response 3

The request is successful although State opaque data was not deleted.

HTTP Status Code

204

Response Content

None.

5.4 Subscriber Data Row Commands
A transparent data entity may contain data that is organized in rows. An example of a row is a specific quota in
the Quota entity.

The row commands allow operations (create, retrieve, update, or delete) at the row level. The required row is
identified in the request by the RowIdValue.

NOTE: Subscriber data row commands may only be performed on entities defined as transparent in the SEC.
Attempting to perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an
MSR4070 error being returned.

Provisioning

83

Table 30: Summary of Subscriber Data Row Commands

Command Description Keys Command Syntax

Set Row

Create or update data row
in data of the specified type. (MSISDN,

IMSI, NAI
or

AccountId)
and Row
Identifier

or
(MSISDN,
IMSI, NAI

or
AccountId)
and Row
Identifier

and
Instance
Identifier

PUT {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue

Create or update data row
in data of the specified type

and instance identifier

PUT {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

Get Row

Retrieve data row from data
of the specified type.

GET {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue

Retrieve data row from data
of the specified type and

instance identifier

GET {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

Delete
Row

Delete data row in data of
the specified type

DELETE {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue

Delete data row in data of
the specified type and

instance identifier

DELETE {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

5.4.1 Set Row

Description

This operation creates a row or updates an existing data row for the subscriber identified by the keyName and
keyValue.

The data row identifier field value is specified in rowIdValue. All fieldNameX fields specified are set in the row.

If more than one existing row matches the requested rowIdValue, then the update request fails.

If the specified row does not exist, it is created. If the row does exist, it is updated/replaced.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to update an existing
row called DAYPASS is successful, and two rows called DayPass and DAYPASS are present

• If the transparent entity specified in entityName does not exist for the subscriber, it is created

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid transparent entity in the Interface Entity Map table in the SEC.

Request URL

Without Instance Identifier
PUT {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue

With Instance Identifier
PUT {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

Provisioning

84

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the Quota transparent data.
o Value is InstanceId or Type for the DynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.

Request Content
<?xml version="1.0" encoding="UTF-8"?>
rowValue

• rowValue: Contents of the XML data blob with the row data.

NOTE: The rowValue is the same format as a Quota entity only containing the row being added in a
single row.

NOTE: The data in the rowValue contains the same rowIdValue as specified in the URL. The rowIdValue in the
URL is ignored, and is not validated. The rowIdValue in the request content is solely used to identify the row.

Response Content

None.

Table 31: Set Row Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data row was successfully created/updated

400 MSR4000 Request content is not valid

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4067 Multiple matching rows found

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

Provisioning

85

HTTP Status
Code Error Code Description

404 MSR4049 Data type is not defined

Examples

Request 1

A request is made to create a data row in the quota transparent data for a subscriber. The data row identifier
field value is AggregateLimit. The subscriber does not have an existing Quota row called AggregateLimit.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota/AggregateLimit

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 1

The request is successful, and the data row AggregateLimit was created.

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to update a data row in the quota transparent data for a subscriber. The data row identifier
field value is Q1. The subscriber has an existing Quota row called Q1.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Q1">
 <cid>9223372036854775807</cid>

Provisioning

86

 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 2

The request is successful, and the data row Q1 was updated.

HTTP Status Code

201

Response Content

None.

Request 3

A request is made to update a data row in the quota transparent data for a subscriber. The data row identifier
field value is Weekday. Two instances of the Weekday data row exist.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 3

The request fails, as more than one row called Weekday exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

Provisioning

87

Request 4

A request is made to update a data row in the quota transparent data for a subscriber. The data row identifier
field value is Weekday. The subscriber does not have Quota transparent data.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 4

The request is successful, and the data row as well as the Quota entity is created.

HTTP Status Code

201

Response Content

None.

Request 5

A request is made to update a data row in the dynamicquota transparent data for a subscriber with data row
identifier field value AggregateLimit and InstanceId 15678. The AggregateLimit data row exists in the
DynamicQuota data, but there are two rows called AggregateLimit one with InstanceId of 15570, the other with
an InstanceId of 15678. The request is not required in the response.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/AggregateLimit/row/InstanceId/15678

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<definition>
 <version>1</version>
 <DynamicQuota name="AggregateLimit">
 <Type>pass</Type>
 <InstanceId>15678</InstanceId>
 <Priority>4</Priority>
 <InitialTime>135</InitialTime>
 <InitialTotalVolume>2000</InitialTotalVolume>
 <InitialInputVolume>1500</InitialInputVolume>
 <InitialOutputVolume>500</InitialOutputVolume>
 <InitialServiceSpecific>4</InitialServiceSpecific>

Provisioning

88

 <activationdatetime>2015-05-22T00:00:00-05:00</activationdatetime>
 <expirationdatetime>2015-05-29T00:00:00-05:00</expirationdatetime>
 <InterimReportingInterval>100</InterimReportingInterval>
 <Duration>10</Duration>
 </DynamicQuota>
</definition>

Response 5

The request is successful, and the data row AggregateLimit with InstanceId of 15678 was updated.

HTTP Status Code

201

Response Content

None.

5.4.2 Get Row

Description

This operation retrieves a transparent data row for the subscriber identified by the keyName and keyValue. The
data row identifier is specified in rowIdValue.

All data rows that match the requested rowIdValue are returned.

The transparent data row identifier field value is specified in rowIdValue.

NOTE: The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to get a row called
DayPass is successful, but an attempt to get a row called DAYPASS fails

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid entity in the Interface Entity Map table in the SEC.

A data row with the identifier in the transparent data must exist for the subscriber.

Request URL

Without Instance Identifier
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue

With Instance Identifier
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

Provisioning

89

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the Quota transparent data
o Value is InstanceId or Type for the DynamicQuota transparent data

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.

Request Content

None.

Response Content

A <subscriber> element that contains a <data> element, which contains the specified transparent data row (if
it exists) for the identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="transparentDataType">
<![CDATA[
cdataRowValue
]]>
 </data>
</subscriber>

• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• cdatarowValue: Contents of the XML data blob with the row data.

Table 32: Get Row Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row exists for subscriber

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1

A request is made to get the Q1 data row from the quota transparent data for a subscriber. The subscriber has
the Quota entity, and the Q1 data row exists.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Provisioning

90

Request Content

None.

Response 1

The request is successful, and the Quota transparent data row requested is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Q1">
 <cid>9223372036854775807</cid>
 <time>1</time>
 <totalVolume>0</totalVolume>
 <inputVolume>0</inputVolume>
 <outputVolume>0</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-12T16:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</subscriber>

Request 2

A request is made to get the Weekend data row from the quota transparent data for a subscriber. The
subscriber has the Quota entity, but the Weekend data row does not exist.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekend

Request Content

None.

Response 2

The request fails, as the data row does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

Provisioning

91

Request 3

A request is made to get the Weekday data row from the quota transparent data for a subscriber. The subscriber
has the Quota entity. Two instances of the Weekday data row exist.

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday

Request Content

None.

Response 3

The request is successful, and the Quota transparent data rows requested are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekend">
 <cid>9223372036854775807</cid>
 <time>1</time>
 <totalVolume>0</totalVolume>
 <inputVolume>0</inputVolume>
 <outputVolume>0</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-12T16:00:00-05:00</nextResetTime>
 </quota>
 <quota name="Weekend">
 <cid>7682364872564782343</cid>
 <time>32</time>
 <totalVolume>250</totalVolume>
 <inputVolume>4570</inputVolume>
 <outputVolume>11230</outputVolume>
 <serviceSpecific>29</serviceSpecific>
 <nextResetTime>2010-06-01T16:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</subscriber>

Request 4

A request is made to get the DQ1 data row from the dynamicquota transparent data for a subscriber with
InstanceId value of 11223344. The DynamicQuota data contains four rows called DQ1. Two with InstanceId of
11223344, one with an InstanceId of 99887766, and one with an InstanceId of 55556666. The request is not
required in the response.

Provisioning

92

Request URL
GET {baseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/DQ1/InstanceId/11223344

Request Content

None.

Response 4

The request is successful, and the DynamicQuota transparent data rows requested are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="dynamicquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<definition>
 <version>1</version>
 <DynamicQuota name="DQ1">
 <Type>topup</Type>
 <InstanceId>11223344</InstanceId>
 <Priority>4</Priority>
 <InterimReportingInterval>100</InterimReportingInterval>
 <Duration>10</Duration>
 </DynamicQuota>
 <DynamicQuota name="DQ1">
 <Type>pass</Type>
 <InstanceId>11223344</InstanceId>
 <Priority>5</Priority>
 <InterimReportingInterval>200</InterimReportingInterval>
 <Duration>20</Duration>
 </DynamicQuota>
 </definition>]]>
 </data>
</subscriber>

5.4.3 Delete Row

Description

This operation deletes a transparent data row for the subscriber identified by the keyName and keyValue.

The transparent data row identifier field value is specified in rowIdValue.

If more than one row matches the requested rowIdValue, then all matching rows are deleted.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to delete a row called
DayPass is successful, but an attempt to delete a row called DAYPASS fails

• The deletion of a non-existent data row is not considered an error.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

Provisioning

93

The transparentDataType must reference a valid entity in the Interface Entity Map table in the SEC.

Request URL

Without Instance Identifier
DELETE {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue

With Instance Identifier
DELETE {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the Quota transparent data
o Value is InstanceId or Type for the DynamicQuota transparent data

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.

Request Content

None.

Response Content

None.

Table 33: Delete Row Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Data row was successfully deleted

400 MSR4064 Occurrence constraint violation

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

Provisioning

94

Examples

Request 1

A request is made to delete the Q1 data row in the quota transparent data. The Q1 data row exists in the Quota
data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content

None.

Response 1

The request is successful, and the data row in the Quota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the Weekend data row in the quota transparent data. The Weekend data row does
not exist in the Quota transparent data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekend

Request Content

None.

Response 2

The request is successful, even though the Weekend Quota row does not exist.

HTTP Status Code

204

Response Content

None.

Request 3

A request is made to delete the Bonus data row in the quota transparent data The Quota opaque data is a valid
entity, but the requested subscriber does not contain any Quota opaque data.

Provisioning

95

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Bonus

Request Content

None.

Response 3

The request fails, because the specified subscriber does not contain Quota data.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4058">errorText</error>

Request 4

A request is made to delete the DQ1 data row in the dynamicquota transparent data. The DQ1 data row exists in
the DynamicQuota data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/DQ1

Request Content

None.

Response 4

The request is successful, and the data row in the DynamicQuota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

Request 5

A request is made to delete the DQ1 data row in the dynamicquota transparent data with an InstanceId 12345.
The DQ1 data row with InstanceId 12345 exists in the DynamicQuota data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/DQ1/row/InstanceId/12345

Request Content

None.

Provisioning

96

Response 5

The request is successful, and the data row in the DynamicQuota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

5.5 Subscriber Data Row Field Commands
A transparent data entity may contain data that is organized in rows. An example of a row is a specific quota in
the Quota entity.

The row/field commands allow operations (retrieve/update/delete) at the row/field level. The required row is
identified in the request by the rowIdValue, and the field is identified by the fieldName.

NOTE: Subscriber data row field commands may only be performed on entities defined as transparent in the
SEC. Attempting to perform a command on an entity defined as opaque results in HTTP Status Code 400, with an
MSR4070 error being returned.

Table 34: Summary of Subscriber Data Row Field Commands

Command Description Keys Command Syntax

Get Row

Field

Retrieve values for the
specified field

(MSISDN,
IMSI, NAI

or
AccountId)
and Row
Identifier
and Field

name

or
(MSISDN,
IMSI, NAI

or
AccountId)
and Row
Identifier,
Instance
Identifier
and Field

name

GET {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/fieldName

Retrieve values for the
specified field and instance
identifier

GET {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/row/instanceFieldName/
instanceFieldValue/fieldName

Get Row
Field
Value

Retrieve a single value for
the specified field

GET {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/fieldName/fieldValue

Retrieve a single value for
the specified field and
instance identifier

GET {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/row/instanceFieldName/
instanceFieldValue/fieldName/fieldValue

Update
Row Field

Update field to the specified
value

PUT {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/fieldName/fieldValue

Update field to the specified
value and instance identifier

PUT {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/row/instanceFieldName/
instanceFieldValue/fieldName/fieldValue

Delete
Row Field

Delete all values for the
specified field

DELETE {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/fieldName

Provisioning

97

Command Description Keys Command Syntax

Delete all values for the
specified field and instance
identifier

 DELETE {baseURI}/msr/sub/keyName/
keyValue/data/transparentDataType/
rowIdValue/row/instanceFieldName/
instanceFieldValue/fieldName

5.5.1 Get Row Field

Description

This operation retrieves a field in a transparent data row for the subscriber identified by the keyName and
keyValue.

All data rows that match the requested rowIdValue are returned.

If more than one row matches the requested rowIdValue, then all matching rows are returned.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName.

NOTE: The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to get a field in a row
called DayPass is successful, but an attempt to get a field in a row called DAYPASS fails

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid entity in the Interface Entity Map table in the SEC.

A data row with the identifier in the transparent data must exist for the subscriber.

The field name specified must be a valid field for the entity as defined in the SEC.

Request URL

Without Instance Identifier
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/
rowIdValue/fieldName

With Instance Identifier
GET
{baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/row/instanceFieldName/instan
ceFieldValue/fieldName

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the Quota transparent data

Provisioning

98

o Value is InstanceId or Type for the DynamicQuota transparent data

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.
• fieldName: A user defined field in the transparent data row.

Request Content

None.

Response Content

A <subscriber> element that contains a <data> element, which contains the specified transparent data row
field (if it exists) for the identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="transparentDataType">
<![CDATA[
cdataRowFieldValue
]]>
 </data>
</subscriber>

• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• cdataRowFieldValue: Contents of the XML data blob, with the field from the row data.

Table 35: Get Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row field exists for subscriber

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

404 MSR4065 Field is not set

Examples

Request 1

A request is made to get the inputVolume field in the Q1 data row of the quota transparent data for a
subscriber.

Provisioning

99

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/inputVolume

Request Content

None.

Response 1

The request is successful, and the requested field value is returned

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Q1">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>
</subscriber>

Request 2

A request is made to get the outputVolume field in the Weekday data row of the quota transparent data for a
subscriber. Two instances of the Weekday data row exist.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/outputVolume

Request Content

None.

Response 2

The request is successful, and the field from two matching Weekday rows are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">

Provisioning

100

 <inputVolume>980</outputVolume>
 </quota>
 <quota name="Weekday">
 <inputVolume>2140</outputVolume>
 </quota>
</usage>
]]>
</data>
</subscriber>

Request 3

A request is made to get the InitialInputVolume field in the DQ1 data row of the dynamicquota transparent data
having InstanceId value of 11223344.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/DQ1/row/InstanceId/11223344/
InitialInputVolume

Request Content

None.

Response 3

The request is successful, and the requested field value is returned

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="dynamicquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<definition>
 <version>1</version>
 <DynamicQuota name="DQ1">
 <InitialInputVolume>15678</InitialInputVolume>
 </DynamicQuota>
</definition>
]]>
</data>
</subscriber>

5.5.2 Get Row Field Value

Description

This operation retrieves a field with a value in a transparent data row for the subscriber identified by the
keyName and keyValue.

If more than one row matches the requested rowIdValue, then all matching rows are returned.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName. The field value is specified in fieldValue.

Provisioning

101

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to get a field value in a
row called DayPass is successful, but an attempt to get a field value in a row called DAYPASS fails

• The fieldValue is case-sensitive. An attempt to get the value Data from a field value of Data is successful,
but an attempt to get the value DATA fails.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid entity in the Interface Entity Map table in the SEC.

A data row with the identifier in the transparent data must exist for the subscriber.

The field name specified must be a valid field for the entity as defined in the SEC.

The field value in fieldValue must match the specified value in the request.

Request URL

Without Instance Identifier
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/fieldName/fieldValue

With Instance Identifier
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue/fieldName/fieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the Quota transparent data
o Value is InstanceId or Type for the DynamicQuota transparent data

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.
• fieldName: A user defined field in the transparent data row.
• fieldValue: Corresponding field value assigned to fieldname.

Request Content

None.

Response Content

A <subscriber> element that contains a <data> element, which contains the specified transparent data row
field (if it exists) for the identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>

Provisioning

102

 <data name="transparentDataType">
<![CDATA[
cdataRowFieldValue
]]>
 </data>
</subscriber>

• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• cdataRowFieldValue: Contents of the XML data blob, with the field from the row data.

The response content is only present if the requested field is present in the transparent data row, and the field is
set to the supplied value.

Table 36: Get Row Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row field/value exists for subscriber

400 MSR4053 Data row field value does not match

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1

A request is made to get the inputVolume field with the value of 980 in the Q1 data row of the quota
transparent data for a subscriber. The inputVolume field exists, and is set to the value 980.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/inputVolume/980

Request Content

None.

Response 1

The request is successful, and the requested field with the specified value is returned

Provisioning

103

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Q1">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>
</subscriber>

Request 2

A request is made to get the outputVolume field with the value of 2000 in the Q4 data row of the quota
transparent data for a subscriber. The outputVolume field exists, but is set to the value 1500.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/outputVolume/2000

Request Content

None.

Response 2

The request fails, because the requested field does not have the supplied value.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4053">errorText</error>

Request 3

A request is made to get the inputVolume field with the value of 3220 in the Weekday data row of the quota
transparent data for a subscriber. Two instances of the Weekday data row exist. The inputVolume field exists in
both rows, and is set to the value 3220 in both rows.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume/3220

Request Content

None.

Provisioning

104

Response 3

The request is successful, and the field from two matching Weekday rows are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
</usage>
]]>
</data>
</subscriber>

Request 4

A request is made to get the inputVolume field with the value of 980 in the Weekday data row of the quota
transparent data for a subscriber. Two instances of the Weekday data row exist. The inputVolume field exists in
both rows, and in one row is set to the value 980, and in the other row it is set to the value 3220.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume/980

Request Content

None.

Response 4

The request is successful, and the field from the single matching Weekday row is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="quota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>

Provisioning

105

</data>
</subscriber>

Request 5

A request is made to get the InitialInputVolume field with the value of 980 in the DQ1 data row of the
dynamicquota transparent data for a subscriber with an InstanceId of 345324534. The InitialInputVolume field
exists, and is set to the value 980.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/DQ1/row/InstanceId/345324534/
InitialInputVolume/980

Request Content

None.

Response 5

The request is successful, and the requested field with the specified value is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="dynamicquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<definition>
 <version>1</version>
 <DynamicQuota name="DQ1">
 <InitialInputVolume>980</InitialInputVolume>
 </DynamicQuota>
</definition>
]]>
</data>
</subscriber>

5.5.3 Update Row Field

Description

This operation updates fields in a transparent data row for the subscriber identified by the keyName and
keyValue.

The transparent data row identifier field is value is specified in rowIdValue. The field name is specified in
fieldName.

If the specified field is valid, but does not exist, it is created.

If more than one existing row matches the requested rowIdValue, then the update request fails.

NOTE: The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to update a field in a row
called DayPass is successful, but an attempt to update a field in a row called DAYPASS fails

Provisioning

106

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid entity in the Interface Entity Map table in the SEC.

A data row with the identifier in the transparent data must exist for the subscriber.

The field name specified must be a valid field for the entity as defined in the SEC. The field must be updatable.

Request URL

Without Instance Identifier
PUT {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/
rowIdValue/fieldName/fieldValue

With Instance Identifier
PUT {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/
rowIdValue/row/instanceFieldName/instanceFieldValue/fieldName/fieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the Quota transparent data.
o Value is InstanceId or Type for the DynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.
• fieldName: A user defined field in the transparent data row.
• fieldValue: Corresponding field value assigned to fieldname.

Request Content

None.

Response Content

None.

Table 37 Update Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Requested transparent data row field was successfully created

400 MSR4051 Invalid value for a field

Provisioning

107

HTTP Status
Code Error Code Description

400 MSR4056 Field is not updatable

400 MSR4067 Multiple matching rows found

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1

A request is made to update the inputVolume field in the Q1 data row of the quota transparent data for a
subscriber.

Request URL
PUT {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/inputVolume/0

Request Content

None.

Response 1

The request is successful, and the field in the data row in the Quota transparent data was updated.

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to update the cid field in the Q1 data row in the quota transparent data. The cid field is not
allowed to be updated.

Request URL
PUT {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/cid/45678

Provisioning

108

Request Content

None.

Response 2

The request fails, because the cid field cannot be updated.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4056">errorText</error>

Request 3

A request is made to update the inputVolume field in the Weekday data row of the quota transparent data for a
subscriber. Two instances of the Weekday data row exist.

Request URL
PUT {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume/0

Request Content

None.

Response 3

The request fails, as more than one row called Weekday exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

Request 4

A request is made to update the InitialTotalVolume field in the DQ1 data row of the dynamicquota transparent
data for a subscriber with a Type value of pass.

Request URL
PUT {BaseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/DQ1/row/Type/pass/
InitialTotalVolume/0

Request Content

None.

Response 4

The request is successful, and the field in the data row in the dynamicquota transparent data was updated.

Provisioning

109

HTTP Status Code

201

Response Content

None.

5.5.4 Delete Row Field

Description

This operation deletes a field in a transparent data row for the subscriber identified by the keyName and
keyValue.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName.

If more than one row matches the requested rowIdValue, then the delete request fails.

NOTES:

• If the specified row does not exist, the request fails. If the specified row exists, but the field does not
exist, this is not treated as an error, and row/field data is not deleted.

• If the field with opaque data of the opaqueDataType does not exist, this is not considered an error and a
successful result is returned.

• If the field being deleted is mandatory, and is defined as having a default value, then the field is not
removed, but has the default value assigned.

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to delete a field in a
row called DayPass is successful, but an attempt to delete a field in a row called DAYPASS fails

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid entity in the Interface Entity Map table in the SEC.

A data row with the identifier in the transparent data must exist for the subscriber.

The field name specified must be a valid field for the entity as defined in the SEC. The field must be updatable.

Request URL

Without Instance Identifier
DELETE {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/fieldName

With Instance Identifier
DELETE
{baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/rowIdValue/row/instanceFieldName/
instanceFieldValue/fieldName

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

Provisioning

110

o Value is quota for the Quota transparent data.
o Value is dynamicquota for the DynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the Quota transparent data.
o Value is InstanceId or Type for the DynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.
• fieldName: A user defined field in the transparent data row.

Request Content

None.

Response Content

None.

Table 38: Delete Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data row field was successfully deleted

400 MSR4056 Field is not updatable

400 MSR4067 Multiple matching rows found

400 MSR4064 Occurrence constraint violation

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1

A request is made to delete the inputVolume field in the Q1 data row of the quota transparent data for a
subscriber.

Request URL
DELETE {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/inputVolume

Provisioning

111

Request Content

None.

Response 1

The request is successful, and the field in the data row in the Quota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the inputVolume field in the Weekday data row of the quota transparent data for a
subscriber. Two instances of the Weekday data row exist.

Request URL
DELETE {BaseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday/inputVolume

Request Content

None.

Response 2

The request fails, as more than one row called Weekday exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

Request 3

A request is made to delete the InitialTotalVolume field in the DQ1 data row of the dynamicquota transparent
data for a subscriber.

Request URL
DELETE {BaseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/DQ1/InitialTotalVolume

Request Content

None.

Response 3

The request is successful, and the field in the data row in the dynamicquota transparent data was deleted.

Provisioning

112

HTTP Status Code

204

Response Content

None.

Request 4

A request is made to delete the InitialTotalVolume field in the DQ1 data row of the dynamicquota transparent
data for a subscriber with a Type value of pass.

Request URL
DELETE {BaseURI}/msr/sub/MSISDN/33123654862/data/dynamicquota/DQ1/row/Type/pass/InitialTotalVolume

Request Content

None.

Response 4

The request is successful, and the field in the data row in the dynamicquota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

5.6 Subscriber Data Field Commands
A transparent data entity may contain data that is organized in fields where each field is defined as a name value
pair in an element. For example, the State entity has a <name> element for the name, and a <value> element for
the value in a <property> element.

<property>
 <name>X</name>
 <value>Y</value>
</property>

The data field commands allow operations (create, retrieve, update, or delete) at the field level. The required
field is identified in the request by the FieldName.

NOTE: Subscriber data field commands may only be performed on entities defined as transparent in the SEC.
Attempting to perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an
MSR4070 error being returned.

Table 39: Summary of Subscriber Data Field Commands

Command Description Keys Command Syntax

Set Data
Field

Create or update data field
in transparent data of the

(MSISDN,
IMSI, NAI

or

POST {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/
fieldName/fieldValue

Provisioning

113

Command Description Keys Command Syntax
specified type. AccountId)

and Field
Name

PUT {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/
fieldName/fieldValue

Get Data
Field

Retrieve data field from
transparent data of the
specified type.

GET {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/fieldName

Delete
Data Field

Delete data field in
transparent data of the
specified type

DELETE {baseURI}/msr/sub/keyName/keyValue/
data/transparentDataType/fieldName

5.6.1 Set Data Field

Description

This operation creates a field or updates an existing field in a transparent data for the subscriber identified by
the keyName and keyValue.

The field name is specified in fieldName, and the field value is specified in fieldValue.

If more than one existing fields matches the requested fieldName, then the update request fails.

If the specified field does not exist, it is created. If the field does exist, it is updated/replaced.

NOTES:

• The fieldName is not case-sensitive. If a field called mcc exists, then an attempt to update an existing
field called MCC is successful.

• If the transparent entity specified in entityName does not exist for the subscriber, it is created

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid transparent entity in the Interface Entity Map table in the SEC.

Request URL

Format 1
PUT {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/fieldName/fieldValue

Format 2
POST {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/fieldname/fieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

Value is state for the State transparent data.

• fieldName: A user defined field in the transparent data.

Provisioning

114

o For the State entity, this corresponds to a property in the entity
o The fieldName is stored exactly as it is sent in the request. The case of fieldName changes if an

update is performed using a different case.

• fieldValue: Corresponding field value assigned to fieldName.

Request Content

None.

Response Content

None.

Table 40: Set Data Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data field was successfully created/updated

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4067 Multiple matching fields found

404 MSR4001 Subscriber is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

Examples

Request 1

A request is made to create a property in the state transparent data for a subscriber. The property name is mcc
and the property value is 315. The subscriber has an existing State transparent data, but not a State property
called mcc.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/state/mcc/315

Request Content

None.

Response 1

The request is successful, and the property mcc with value 315 was created.

Provisioning

115

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to create a property in the state transparent data for a subscriber. The property name is mcc
and the property value is 315. The subscriber does not have an existing State property called mcc. The
subscriber does not have the State transparent data.

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/state/mcc/315

Request Content

None.

Response 2

The request is successful, and the property mcc as well as the State entity is created.

HTTP Status Code

201

Response Content

None.

Request 3

A request is made to update a property in the state transparent data for a subscriber. The property name is mcc.
The subscriber has an existing State property called mcc.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/state/mcc/400

Request Content

None.

Response 3

The request is successful, and the property mcc was updated.

HTTP Status Code

201

Response Content

None.

Provisioning

116

Request 4

A request is made to update a property in the state transparent data for a subscriber. The property name is mcc.
Two properties with the name mcc exist.

Request URL

Request URL
PUT {baseURI}/msr/sub/MSISDN/33123654862/data/state/mcc

Request Content

None.

Response 4

The request fails, as more than one property called mcc exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

5.6.2 Get Data Field

Description

This operation retrieves a data field in a transparent data for the subscriber identified by the keyName and
keyValue.

All fields that match the requested fieldName are returned.

If more than one field matches the requested fieldName, then all matching fields are returned.

The transparent data field is specified in fieldName.

NOTE: The fieldName is not case-sensitive. If a field called mcc exists, then an attempt to retreive a field called
MCC is successful.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid transparent entity in the Interface Entity Map table in the SEC.

A field in the transparent data must exist for the subscriber.

Request URL
GET {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/fieldName

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.

Provisioning

117

• transparentDataType: A user defined type/name for the transparent data.

Value is state for the State transparent data.

• fieldName: A user defined field in the transparent data.

For the State entity this corresponds to a property in the entity.

Request Content

None.

Response Content

A <subscriber> element that contains a <data> element, which contains the specified transparent data field (if
it exists) for the identified subscriber.

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="transparentDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</subscriber>

• transparentDataType: A user defined type/name for the transparent data.

Value is state for the State transparent data.

• cdataFieldValue: Contents of the XML data blob with the field from the transparent data.

Table 41: Get Data Field Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data field exists for subscriber

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data field does not exist

Examples

Request 1

A request is made to get the property mcc in the state transparent data for a subscriber. The property mcc
exists.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/state/mcc

Provisioning

118

Request Content

None.

Response 1

The request is successful, and the requested property is returned

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="state">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
</state>
]]>
</data>
</subscriber>

Request 2

A request is made to get property with name mcc in the state transparent data for a subscriber. The property
with name mcc does not exist.

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/state/mcc

Request Content

None.

Response 2

The request fails, because the requested property does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

Request 3

A request is made to get property with name mcc in the state transparent data for a subscriber. The subscriber
has the State entity. Two properties with name mcc exist.

Provisioning

119

Request URL
GET {BaseURI}/msr/sub/MSISDN/33123654862/data/state/mcc

Request Content

None.

Response 3

The request is successful, and the both the properties are returned

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
<data name="state">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>mcc</name>
 <value>400</value>
 </property>
</state>
]]>
</data>
</subscriber>

5.6.3 Delete Data Field

Description

This operation deletes a data field in a transparent data for the subscriber identified by the keyName and
keyValue.

The field identifier is specified in fieldName.

If more than one data field matches the requested fieldName, then all matching fields are deleted.

NOTES:

• If the specified field does not exist, this is not considered an error and a successful result is returned.
• The fieldName is not case-sensitive. If a field called mcc exists, then an attempt to delete a field called

MCC is successful.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The transparentDataType must reference a valid transparent entity in the Interface Entity Map table in the SEC.

Provisioning

120

Request URL
DELETE {baseURI}/msr/sub/keyName/keyValue/data/transparentDataType/fieldName

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

o Value is state for the State transparent data.

• fieldName: A user defined field in the transparent data.

For the State entity this corresponds to a property in the entity.

Request Content

None.

Response Content

None.

Table 42: Delete Data Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data field was successfully deleted

400 MSR4064 Occurrence constraint violation

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

Examples

Request 1

A request is made to delete the mcc property in the state transparent data. The mcc property exists in the State
data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/state/mcc

Request Content

None.

Response 1

The request is successful, and the property in the State transparent data was deleted.

Provisioning

121

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the mcc property in the state transparent data. The mcc property does not exist in
the state transparent data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/state/mcc

Request Content

None.

Response 2

The request is successful, even though the mcc property does not exist.

HTTP Status Code

204

Response Content

None.

Request 3

A request is made to delete the mcc property in the state transparent data The State opaque data is a valid
entity, but the requested subscriber does not contain any State opaque data.

Request URL
DELETE {baseURI}/msr/sub/MSISDN/33123654862/data/state/mcc

Request Content

None.

Response 3

The request fails, because the specified subscriber does not contain State data.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4058">errorText</error>

Provisioning

122

5.7 Subscriber Special Operation Commands
A transparent data entity may contain data that is organized in rows. An example of a row is a specific quota in
the Quota entity.

The required row is identified in the request by the rowIdValue.

A specific instance of a quota (specified row) in the Quota transparent data entity can have its fields reset to pre-
defined values using a provisioning command.

Table 43: Summary of Subscriber Special Operation Commands

Command Description Keys Command Syntax

Reset
Quota

Reset the fields in the
specified Quota

(MSISDN, IMSI,
NAI or AccountId)
and Row
Identifier

or

(MSISDN, IMSI,
NAI or
AccountId), Row
Identifier and
Instance Identifier

POST {BaseURI}/msr/sub/keyName/KeyValue/
data/transparentDataType/rowIdValue

Reset the fields in the
specified Quota and
instance identifier

POST {BaseURI}/msr/sub/keyName/KeyValue/
data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

5.7.1 Reset Quota

Description

This operation resets a particular quota row in the Quota transparent data associated with a subscriber.

If more than one row matches the requested rowIdValue, then the reset request fails.

If the subscriber has Quota transparent data, then the configured values in the specified quota row are reset to
the configured reset values.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to reset a quota row
called DayPass is successful, but an attempt to reset a quota row called DAYPASS fails.

• When a Quota instance is reset using the Reset Quota command, each resettable field is set to its
defined reset value. If the field does not exist, it is not created. But, if a resettable field does not exist,
and the field has a default value, then the field is created with the default value.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The Quota transparent data must exist for the subscriber.

The specified Quota row must exist in the Quota transparent data.

Request URL

Without Instance Identifier
POST {BaseURI}/msr/sub/keyName/KeyValue/data/transparentDataType/rowIdValue

Provisioning

123

With Instance Identifier
POST {BaseURI}/msr/sub/keyName/KeyValue/data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

• keyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.
• transparentDataType: A user defined type/name for the transparent data.

Value is quota for the Quota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid for the Quota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.

Request Content

None.

Response Content

None.

Table 44: Reset Quota Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data row was successfully reset

400 MSR4067 Multiple matching rows found

404 MSR4001 Subscriber is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

409 MSR4063 Entity cannot be reset

Examples

Request 1

A request is made to reset the Q1 Quota row for a subscriber. The subscriber has Quota transparent data, and
the Quota transparent data contains a Quota row called Q1.

Provisioning

124

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content

None.

Response 1

The request is successful, and the specified Quota row was reset.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to reset the Q1 Quota row for a subscriber. The subscriber does not have Quota transparent
data.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1

Request Content

None.

Response 2

The request fails because the subscriber does not have Quota transparent data.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4058">errorText</error>

Request 3

A request is made to reset the Q6 quota row for a subscriber. The subscriber has quota transparent data, but the
quota transparent data does not contain a quota row called Q6.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q6

Request Content

None.

Provisioning

125

Response 3

The request fails, because the Q6 row does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

Request 4

A request is made to reset the Weekday Quota row for a subscriber. The subscriber has Quota transparent data,
and the Quota transparent data contains two instances of the Weekday data row exist.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Weekday

Request Content

None.

Response 4

The request fails, as more than one row called Weekday exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

Request 5

A request is made to reset the Q1 Quota row for a subscriber having cid of value 45678. The subscriber has
Quota transparent data, and the Quota transparent data contains a Quota row called Q1 having cid of value
45678.

Request URL
POST {baseURI}/msr/sub/MSISDN/33123654862/data/quota/Q1/row/cid/45678

Request Content

None.

Response 5

The request is successful, and the specified Quota row was reset.

HTTP Status Code

204

Provisioning

126

Request Content

None.

Provisioning

127

6. POOL PROVISIONING
Pools are used to group subscribers that share common data. Subscribers in a pool share all the entities of that
pool.

Provisioning clients can create, retrieve, modify, and delete pool data. Pool data is accessed via the Pool ID value
associated with the pool.

Table 45: Summary of Pool Profile Commands

Command Description Keys Command Syntax
Create
Pool Create a pool/Pool Profile — POST {baseURI}/msr/pool

Get Pool Get Pool Profile data

Pool ID

GET {baseURI}/msr/pool/poolId

Update
Pool Replace an existing Pool Profile PUT {baseURI}/msr/pool/poolId

Delete
Pool

Delete all Pool Profile data and all
opaque data associated with the
pool

DELETE {baseURI}/msr/pool/poolId

6.1.1 Create Pool

Description

This operation creates a Pool Profile using the field-value pairs that are specified in the request content.

Unlike other pool commands, the key value (Pool ID) is not specified in the URL. Request content includes
poolId, and field-value pairs, all as specified in the SEC.

NOTES:

• Multi-value fields can be specified by a single fieldNameX value with a delimited list of values, or
multiple fieldNameX fields each containing a single value.

• If the PSO feature is enabled and the Pool ID falls in a range that is maintained by a different UDR
instance, then the pool is created as a Non Pool Host UDR pool (remote pool); otherwise the pool is
created as a Pool Host UDR pool.

• If the PSO feature is enabled, a pool cannot be provisioned with the Type field on a Non Pool Host UDR
system.

Prerequisites

A pool with the supplied Pool ID must not exist.

Request URL
POST {baseURI}/msr/pool

Request Content

A <pool> element that contains a <field> element for every field-value pair defined for the pool.
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Pool ID">poolId</field>
[

Provisioning

128

 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</pool>

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldNameX: A user defined field in the Pool Profile.
• fieldValueX: Corresponding field value assigned to fieldNameX.

Pool ID/field order in the request is not important

Response Content

None.

Table 46: Create Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Successfully created

400 MSR4000 Invalid content request data supplied

400 MSR4003 A key is detected in the system for another pool

400 MSR4004 The field list does not contain at least one unique key

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4002 Pool field is not defined

400 MSR4070 Operation not allowed

Examples

Request 1

A pool is created, with a Pool ID key. The BillingDay, Tier, Entitlement, and Custom15 fields are set.

Request URL
POST {baseURI}/msr/pool

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Pool ID">100000</field>
 <field name="BillingDay">5</field>

Provisioning

129

 <field name="Tier">12</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allocate</field>
</pool>

Response 1

The request is successful, and the pool was created.

HTTP Status Code

201

Response Content

None.

Request 2

A pool is created, with a Pool ID key. The BillingDay and Entitlement fields are set. A pool exists with the Pool ID.

Request URL
POST {baseURI}/msr/pool

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Pool ID">100001</field>
 <field name="BillingDay">5</field>
 <field name="Entitlement">Weekpass,Daypass</field>
</pool>

Response 2

The request fails. The error code indicates the Pool ID exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4004">errorText</error>

Request 3

A pool is created, with a Pool ID key. PSO feature is enabled.The Pool ID falls in a range that is maintained by a
different UDR instance.

Request URL
POST {baseURI}/msr/pool

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Pool ID">100001</field>

Provisioning

130

 <field name="BillingDay">5</field>
 <field name="Entitlement">Weekpass,Daypass</field>
 <field name="Type">Enterprise</field>
</pool>

Response 3

The request fails. The error indicates this operation is not allowed on Non Pool Host UDR.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4070">errorText</error>

6.1.2 Get Pool

Description

This operation retrieves all field-value pairs created for a pool that is identified by the poolId.

The response content includes only valid field-value pairs which have been previously provisioned or created by
default.

Prerequisites

A pool with a key of the poolId supplied must exist.

Request URL
GET {baseURI}/msr/pool/poolId

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

Request Content

None.

Response Content

A <pool> element that contains a <field> element for every field-value pair defined for the pool.
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Pool ID">poolId</field>
[
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</pool>

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldNameX: A user defined field in the Pool Profile.

Provisioning

131

• fieldValueX: Corresponding field value assigned to fieldNameX.

Pool ID/field order in the request is not important

Table 47: Get Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Successfully located the pool

404 MSR4001 Could not find the pool by Pool ID

Examples

Request 1

The pool with the Pool ID is retrieved. The pool exists.

Request URL
GET {baseURI}/msr/pool/100000

Request Content

None.

Response 1

The request is successful, and the pool was retrieved.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Pool ID">100000</field>
 <field name="BillingDay">5</field>
 <field name="Tier">12</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allo</field>
</pool>

Request 2

The pool with the Pool ID is retrieved. The pool does not exist.

Request URL
GET {baseURI}/msr/pool/222200

Request Content

None.

Provisioning

132

Response 2

The request fails, as the pool does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4001">errorText</error>

6.1.3 Update Pool

Description

This operation replaces an existing Subscriber Profile, for the pool identified by poolId.

With the exception of the Pool ID, all existing data for the pool is completely removed and replaced by the
request content. Therefore, it is not necessary to include the Pool ID from the URI in the request content
(although it is not an error if it is included).

NOTES:

• If the Pool ID is included in the content, and it is different from the value specified in the URL, the
request fails.

• If the PSO feature is enabled, a pool cannot be updated with the Type field on a Non Pool Host UDR
system.

Prerequisites

A pool with a key of the poolId supplied must exist.

Request URL
PUT {baseURI}/msr/pool/poolId

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

Request Content

A <pool> element that contains a <field> element for every field-value pair defined for the pool.
<?xml version="1.0" encoding="UTF-8"?>
<pool>
[
 <field name="Pool ID">poolId</field>
 <field name="fieldName1">fieldValue1</field>
 <field name="fieldName2">fieldValue2</field>
 :
 <field name="fieldNameN">fieldValueN</field>
]
</pool>

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldNameX: A user defined field in the Pool Profile.

Provisioning

133

• fieldValueX: Corresponding field value assigned to fieldNameX.

Pool ID/field order in the request is not important

Response Content

None.

Table 48: Update Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — The pool data was replaced successfully

400 MSR4000 Invalid content/payload

400 MSR4000 The Pool ID supplied in URL and request content do not match

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4001 Could not find the pool by Pool ID

404 MSR4002 Pool field is not defined

400 MSR4070 Operation not allowed

Examples

Request 1

A pool is updated. The BillingDay, Tier, Entitlement, and Custom15 fields are set. The pool exists.

Request URL
PUT {BaseURI}/msr/pool/100000

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="BillingDay">5</field>
 <field name="Tier">12</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allo</field>
</pool>

Response 1

The request is successful, and the pool was updated.

Provisioning

134

HTTP Status Code

204

Response Content

None.

Request 2

A pool is updated with Type field being set. The pool exists.

Request URL
PUT {BaseURI}/msr/pool/100000

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="BillingDay">5</field>
 <field name="Type">Enterprise</field>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
 <field name="Custom15">allo</field>
</pool>

Response 1

The request fails. The error indicates this operation is not allowed on Non Pool Host UDR.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4070">errorText</error>

6.1.4 Delete Pool

Description

This operation deletes all Pool Profile data and opaque data for the pool that is identified by poolId.

Prerequisites

A pool with a key of the poolId supplied must exist.

The pool must not have any member subscribers, or the request fails.

Request URL
DELETE {baseURI}/msr/pool/poolId

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

Provisioning

135

Request Content

None.

Response Content

None.

Table 49: Delete Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — The pool was successfully deleted

404 MSR4001 Could not find the pool by Pool ID

409 MSR4055 The pool could not be deleted as it has member subscribers

Examples

Request 1

The pool with the Pool ID is deleted. The pool exists and doe not have and member subscribers.

Request URL
DELETE {baseURI}/msr/pool/100000

Request Content

None.

Response 1

The request is successful.

HTTP Status Code

204

Response Content

None.

Request 2

The pool with the Pool ID is deleted. The pool exists, but has member subscribers.

Request URL
DELETE {baseURI}/msr/pool/200000

Request Content

None.

Provisioning

136

Response 2

The request fails, because the pool has member subscribers.

HTTP Status Code

409

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4055">errorText</error>

6.2 Pool Profile Field Commands
Table 50: Summary of Pool Profile Field Commands

Command Description Keys Command Syntax

Add Field
Value

Adds a value to the specified
field. This operation does
not affect any pre-existing
values for the field

Pool ID

POST {baseURI}/msr/pool/poolId/field/fieldName/
fieldValue

Get Field Retrieve values for the
specified field GET {baseURI}/msr/pool/poolId/field/fieldName

Get Field
Value

Retrieve the single value for
the specified field (if set as
specified)

GET {baseURI}/msr/pool/poolId/field/fieldName/
fieldValue

Update
Field
Value

Update field to the specified
value

PUT {baseURI}/msr/pool/poolId/field/fieldName/
fieldValue

Update
Multiple
Fields

Update multiple fields to the
specified values

PUT {baseURI}/msr/pool/poolId/multipleFields/
fieldName1/fieldValue1/fieldName2/fieldValue2/…

Delete
Field

Delete all values for the
specified field DELETE {baseURI}/msr/pool/poolId/field/fieldName

Delete
Field
Value

Delete a value for the
specified field

DELETE
{baseURI}/msr/pool/poolId/field/fieldName/
fieldValue

6.2.1 Add Field Value

Description

This operation adds a value to the specified multi-value field for the pool identified by poolId.

This operation can only be used for the fields defined as multi-value field in the SEC. Any pre-existing values for
the field are not affected.

All existing values are retained, and the values specified are inserted. For example, if the value of a field is a;b;c,
and this command is used with value d, after the update the field has the value a;b;c;d.

If a value being added exists, the request fails.

Provisioning

137

NOTES:

• If the field to which the value is being added does not exist, it is created.
• The fieldValue is case-sensitive. An attempt to add the value a to a field value of a;b;c fails., but an

attempt to add the value A is successful and result in the field value being a;b;c;A

Prerequisites

A pool with the Pool ID of the poolId supplied must exist.

The field fieldName must be a valid field in the Pool Profile, and must be a multi-value field.

The value fieldValue being added must not be present in the field.

Request URL
POST {baseURI}/msr/pool/poolId/field/fieldName/fieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldName: A user defined field in the Pool Profile.
• fieldValue: Corresponding field value assigned to fieldname.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

None.

Table 51: Add Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Successfully added field values

400 MSR4005 Field does not support multiple values

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4066 Field value exists

404 MSR4001 Pool is not found

404 MSR4002 Pool field is not defined

Provisioning

138

Examples

Request 1

A request is made to add the value DayPass to the Entitlement field. The Entitlement field is a valid multi-value
field. The DayPass value is not present in the Entitlement field.

Request URL
POST {baseURI}/msr/pool/100000/field/Entitlement/DayPass

Request Content

None.

Response 1

The request is successful, and the value was added to the Entitlement field.

HTTP Status Code

200

Response Content

None.

Request 2

A request is made to add the values DayPass and HighSpeedData to the Entitlement field. The Entitlement field
is a valid multi-value field. The DayPass and HighSpeedData values are not present in the Entitlement field.

Request URL
POST {baseURI}/msr/pool/200000/field/Entitlement/DayPass;HighSpeedData

Request Content

None.

Response 2

The request is successful, and the values were added to the Entitlement field.

HTTP Status Code

200

Response Content

None.

6.2.2 Get Field

Description

This operation retrieves the values of the specified field for the pool identified by the poolId.

NOTE: Depending on the field, there may be multiple field-value pairs returned by this operation.

Provisioning

139

Prerequisites

A pool with the Pool ID of the poolId supplied must exist.

The requested field fieldName must be a valid field in the Pool Profile.

Request URL
GET {baseURI}/msr/pool/poolId/field/fieldName

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldName: A user defined field in the Pool Profile.

Request Content

None.

Response Content

A <pool> element that contains a <field> element for every value defined for the specified field in the pool.
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="fieldName">fieldValue1</field>
[
 <field name="fieldName">fieldValue2</field>
 :
 <field name="fieldName">fieldValueN</field>
]
</pool>

• fieldName: A user defined field in the Pool Profile.
• fieldValueX: Corresponding field value assigned to fieldname.

Table 52: Get Field Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested field exists for pool

404 MSR4001 Pool is not found

404 MSR4002 Pool field is not defined

404 MSR4065 Field is not set

Examples

Request 1

A request is made to get the Entitlement field for a pool.

Request URL
GET {BaseURI}/msr/pool/100000/field/Entitlement

Provisioning

140

Request Content

None.

Response 1

The request is successful, and the requested value is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Entitlement">Weekpass</field>
 <field name="Entitlement">Daypass</field>
</pool>

6.2.3 Get Field Value

Description

This operation retrieves the values for the specified field for the pool identified by the poolId in the request.

For a request where the presence of multiple values for a multi-value field is requested, a match is only
considered to have been made if the requested values form a subset of the values stored in the Pool Profile.
That is, if all of the values requested exist in the Pool Profile, return success, regardless of how many other
values may exist in the Pool Profile. If any or all of the values are not present as part of the Pool Profile, an error
is returned.

NOTES:

• Depending on the field, there may be multiple field-value pairs returned by this operation.
• The fieldValue is case-sensitive. An attempt to get the value a from a field value of a;b;c is successful,

but an attempt to get the value A fails.

Prerequisites

A pool with the Pool ID of the poolId supplied must exist.

The requested field fieldName must be a valid field in the Pool Profile.

The field value in fieldValue must match the specified value in the request.

Request URL
GET {baseURI}/msr/pool/poolId/field/fieldName/fieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldName: A user defined field in the Pool Profile.
• fieldValue: Corresponding field value assigned to fieldname.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

Provisioning

141

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

A <pool> element that contains a <field> element for every field-value pair requested that matches the value
supplied for the pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="fieldName">fieldValue1</field>
[
 <field name="fieldName">fieldValue2</field>
 :
 <field name="fieldName">fieldValueN</field>
]
</pool>

• fieldName: A user defined field in the Pool Profile.
• fieldValueX: Corresponding field value assigned to fieldname.

Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested field exists for pool

400 MSR4053 Pool and field exist, but values do not match

404 MSR4001 Pool is not found

404 MSR4002 Pool field is not defined

Examples

Request 1

A request is made to get the Tier field with the value Gold. The field exists and has the specified value.

Request URL
GET {BaseURI}/msr/pool/200000/field/Tier/Gold

Request Content

None.

Response 1

The request is successful, and the requested value is returned.

HTTP Status Code

200

Provisioning

142

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Tier">Gold</field>
</pool>

Request 2

A request is made to get the Entitlement field with the values DayPass and HighSpeedData. The Entitlement field
is a multi-value field. The field exists and has the specified values.

Request URL
GET {baseURI}/msr/pool/300000/field/Entitlement/DayPass;HighSpeedData

Request Content

None.

Response 2

The request is successful, and the requested values are returned. Two values are set for the multi-value field.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Entitlement">DayPass</field>
 <field name="Entitlement">HighSpeedData</field>
</pool>

6.2.4 Update Field

Description

This operation updates a field to the specified value for the pool identified by the specified poolId.

This operation replaces (sets) the value of the field, which means that any existing values for the field are
deleted first. For multi-value fields, all previous values are erased and the set specified is inserted. Adding values
to a current set is accomplished using Add Field Value.

NOTE: This command cannot be used to update the Pool ID.

Prerequisites

A pool with the key of the poolId supplied must exist.

The field fieldName must all be a valid field in the Pool Profile.

Request URL
PUT {baseURI}/msr/pool/poolId/field/fieldName/fieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

Provisioning

143

• fieldName: A user defined field in the Pool Profile.
• fieldValue: Corresponding field value assigned to fieldname.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

None.

Table 53: Update Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Field was successfully updated

400 MSR4051 The value provided for the field is invalid

400 MSR4056 Field is not updatable

404 MSR4001 Pool does not exist

404 MSR4002 Pool field is not defined

Examples

Request 1

A request is made to update the Entitlement field with the values DayPass and HighSpeedData. The Entitlement
field is a multi-value field.

Request URL
PUT {baseURI}/msr/pool/100000/field/Entitlement/DayPass;HighSpeedData

Request Content

None.

Response 1

The request is successful, and the Entitlement field was updated.

HTTP Status Code

201

Provisioning

144

Response Content

None.

6.2.5 Update Multiple Fields

Description

This operation updates fields to the specified values for the pool identified by the specified poolId.

This operation replaces (sets) the value of the field, which means that any existing values for the field are
deleted first. For multi-value fields, all previous values are erased and the set specified is inserted. Adding values
to a current set is accomplished using Add Field Value.

This command updates multiple fields in a single command for pool data. ALL fields that can be modified in the
single field request can also be modified in the multiple field request. Two or three fields can be updated at
once. Updating only a single field results in an error.

All fields are updated at once in the DB. All fields and all values must be valid for the update to be successful. In
other words, as soon as one error is detected, processing the request is stopped (and return an error). For
example, if the third field fails validation, then none of the fields are updated.

NOTE: This command cannot be used to update the Pool ID.

Prerequisites

A pool with the key of the poolId supplied must exist.

The fields fieldNameX must all be valid fields in the Pool Profile.

Request URL
PUT {baseURI}/msr/pool/poolId/multipleFields/fieldName1/fieldValue1/
fieldName2/fieldValue2/[fieldName3/fieldValue3]

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldNameX: A user defined field in the Pool Profile.
• fieldValueX: Corresponding field value assigned to fieldNameX.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

None.

Provisioning

145

Table 54: Update Multiple Fields Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Field was successfully updated

400 MSR4051 The value provided for the field is invalid

400 MSR4056 Field is not updatable

400 MSR4057 Request only contains one field to update

404 MSR4001 Pool does not exist

404 MSR4002 Pool field is not defined

Examples

Request 1

A request is made to update the Entitlement field to Weekend and YearPass, the Tier field to Silver, and the
BillingDay field to 11.

Request URL
PUT {baseURI}/msr/pool/300001/multipleFields/Entitlement/
Weekend;YearPass/Tier/Silver/BillingDay/11

Request Content

None.

Response 1

The request is successful, and the Entitlement, Tier, and BillingDay fields were all updated.

HTTP Status Code

201

Response Content

None.

6.2.6 Delete Field

Description

This operation deletes the specified field for the pool identified by poolId in the request.

If the field is multi-value field then all values are deleted. Deletion of a field results in the removal of the field
from the Pool Profile. The field is not present, not just the value is empty.

Provisioning

146

NOTES:

• The field being deleted does not need to have a current value. It can be empty (deleted), and the
request succeede.

• This command cannot be used to delete the Pool ID.
• If the field being deleted is mandatory, and is defined as having a default value, then the field is not

removed, but has the default value assigned.

Prerequisites

A pool with the key of the poolId supplied must exist.

The requested field fieldName must be a valid field in the Pool Profile.

Request URL
DELETE {baseURI}/msr/pool/poolId/field/fieldName

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldName: A user defined field in the Subscriber Profile.

Request Content

None.

Response Content

None.

Table 55: Delete Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Field was successfully deleted

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

404 MSR4001 Pool does not exist

404 MSR4002 Pool field is not defined

400 MSR4101 Enterprise to Basic Pool Conversion failed threshold exceeded

Examples

Request 1

A request is made to delete the Entitlement field. The field is a valid Pool Profile field.

Provisioning

147

Request URL
DELETE {BaseURI}/msr/pool/100000/field/Entitlement

Request Content

None.

Response 1

The request is successful, and the field was deleted.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the Type field from an enterprise pool that has > the maximum members allowed
for a basic pool. (Note: deleting the Type field triggers a conversion from an enterprise pool to a basic pool).

Request URL
DELETE {BaseURI}/msr/pool/100000/field/Type

Request Content

None.

Response 2

The request fails, because the enterprise to basic pool conversion failed because the pool has more members
than the maximum threshold for a basic pool.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4101">errorText</error>

6.2.7 Delete Field Value

Description

This operation deletes a single value from the specified field for the Pool Profile identified by the poolId in the
request.

This operation can only be used for the fields defined as multi-value field in the SEC.

Each individual value is removed from the Pool Profile. If a supplied value does not exist, then it is ignored. For
example, if a profile contains values a;b;c and a request to delete a;b is made, this succeeds and the profile is left

Provisioning

148

with c as the value. If the profile contains a;b;c and a request is made to delete c;d the request succeeds and the
profile is left with a;b as the value.

If all values are removed, the field is removed from the Pool Profile (an XML element is not present).

NOTE: The fieldValue is case-sensitive. An attempt to remove the value a from a current field value of a;b;c is
successful, but an attempt to remove the value A fails.

Prerequisites

A pool with the key of the poolId supplied must exist.

The field fieldName must be a valid field in the Pool Profile, and set to the value supplied to be removed
successfully.

Request URL
DELETE {baseURI}/msr/pool/poolId/field/fieldName/fieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• fieldName: A user defined field in the Pool Profile.
• fieldValue: Corresponding field value assigned to fieldname.

NOTES:

• For multi-value fields, the value contains a semicolon separated list of values on a single line. For
example, a;b;c.

• The semicolon between the field values may need to be encoded as %3B for certain clients.

Request Content

None.

Response Content

None.

Table 56: Delete Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested fields were successfully deleted

400 MSR4005 Field does not support multiple values

400 MSR4056 Field is not updatable

404 MSR4001 Pool does not exist

404 MSR4002 Pool field is not defined

Provisioning

149

Examples

Request 1

A request is made to delete the values DayPass and WeekendPass from the Entitlement field. The Entitlement
field is a multi-value field. The Entitlement field exists, but only contains the DayPass value, and not the
WeekendPass value.

Request URL
DELETE {baseURI}/msr/pool/200003/field/Entitlement/DayPass;WeekendPass

Request Content

None.

Response 1

The request is successful, because the Entitlement field does not contain the WeekendPass value.

HTTP Status Code

204

Request Content

None.

Request 2

A request is made to delete the values DayPass and HighSpeedData from the Entitlement field. The Entitlement
field is a multi-value field. The field exists and contains the specified values.

Request URL
DELETE {baseURI}/msr/pool/300003/field/Entitlement/DayPass;HighSpeedData

Request Content

None.

Response 2

The request is successful, and the values were deleted from the field.

HTTP Status Code

204

Response Content

None.

Provisioning

150

6.3 Pool Opaque Data Commands

Table 57: Summary of Pool Opaque Data Commands

Command Description Keys Command Syntax
Set
Opaque
Data

Create or update opaque
data of the specified type

Pool ID

PUT {baseURI}/msr/pool/poolId/data/opaqueDataType

Get
Opaque
Data

Retrieve opaque data of
the specified type GET {baseURI}/msr/pool/poolId/data/opaqueDataType

Delete
Opaque
Data

Delete opaque data of the
specified type DELETE {baseURI}/msr/pool/poolId/data/opaqueDataType

6.3.1 Set Opaque Data

Description

This operation updates (or creates if it not exists) the opaque data of the specified type for the pool identified by
the poolId in the request.

The opaque data is provided in the request content.

NOTES:

• The opaque data provided in an XML blob is always checked to be valid XML. If the entity is defined as
transparent in the SEC, then the XML blob is fully validated against the definition in the SEC. If either
validation check fails, then the request is rejected.

• If the PSO feature is enabled, this operation is ignored on an NPHO and a success is returned. No
updates are made to the database for these requests on NPHO.

Prerequisites

A pool with the key of the poolId supplied must exist.

The opaqueDataType must reference a valid pooled entity in the Interface Entity Map table in the SEC.

Request URL
PUT {baseURI}/msr/pool/poolId/data/opaqueDataType

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• opaqueDataType: A user defined type/name for the opaque data.

Value is either poolquota, poolstate, or pooldynamicquota.

Request Content

A <pool> element that contains a <data> element, which contains the specified opaque data for the identified
pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>

Provisioning

151

 <data name="opaqueDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</pool>

• opaqueDataType: A user defined type/name for the opaque data.

Value is either poolquota, poolstate, or pooldynamicquota.

• cdataFieldValue: Contents of the XML data blob.

NOTE: The opaqueDataType in the request content is currently ignored, and is not validated. The
opaqueDataType in the URL is solely used to identify the opaque data type.

Response Content

None.

Table 58: Set Opaque Data Response Status/Error Codes

Set Opaque
Data HTTP

Status Code
Error Code Description

201 — Data was successfully created/updated

400 MSR4000 Request content is not valid

400 MSR4051 Invalid value for a field

400 MSR4064 Occurrence constraint violation

404 MSR4002 Field is not defined for this data type

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

Example

Request 1

A request is made to create the poolquota opaque data. The pool does not have an existing PoolQuota entity.

Request URL
PUT {baseURI}/msr/pool/100000/data/poolquota

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>

Provisioning

152

 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</pool>

Response 1

The request is successful, and the PoolQuota opaque data was created.

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to update the poolstate opaque data. The pool has an existing PoolState entity.

Request URL
PUT {baseURI}/msr/pool/100002/data/poolstate

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolstate">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </data>
</pool>

Provisioning

153

Response 2

The request is successful, and the PoolState opaque data was updated.

HTTP Status Code

201

Response Content

None.

6.3.2 Get Opaque Data

Description

This operation retrieves the opaque data of the specified opaqueDataType for the pool identified by the poolId
in the request.

The response contains the XML blob for the requested opaque data.

NOTE: If the PSO feature is enabled, this operation on the Non Pool Host UDR for the specified pool would
return success with empty entity data as the pool entity data is only stored on the Pool Host UDR.

Prerequisites

A pool with the key of the poolId supplied must exist.

The opaqueDataType must reference a valid pooled entity in the Interface Entity Map table in the SEC.

The opaque data of the opaqueDataType must exist for the pool.

Request URL
GET {baseURI}/msr/pool/poolId/data/opaqueDataType

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• opaqueDataType: A user defined type/name for the opaque data.

Value is either poolquota, poolstate, or pooldynamicquota.

Request Content

None.

Response Content

A <pool> element that contains a <data> element, which contains the requested opaque data for the identified
pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="opaqueDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</pool>

Provisioning

154

• opaqueDataType: A user defined type/name for the opaque data.

Value is either poolquota, poolstate, or pooldynamicquota.

• cdataFieldValue: Contents of the XML data blob.

Table 59: Get Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested opaque data exists for pool

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

404 MSR4053 Data type is not set for this pool

204 — No Content returned

Example

Request 1

A request is made to get the poolquota opaque data for a pool.

Request URL
GET {baseURI}/msr/pool/100001/data/poolquota

Request Content

None.

Response 1

The request is successful, and the PoolQuota opaque data is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>

Provisioning

155

 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</pool>

Request 2

A request is made to get the poolstate opaque data for a pool.

Request URL
GET {baseURI}/msr/pool/100004/data/poolstate

Request Content

None.

Response 2

The request is successful, and the PoolState opaque data is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolstate">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>mcc</name>
 <value>315</value>
 </property>
 <property>
 <name>expire</name>
 <value>2010-02-09T11:20:32</value>
 </property>
 <property>
 <name>approved</name>
 <value>yes</value>
 </property>
</state>
]]>
 </data>
</pool>

Request 3

A request is made to get the poolquota opaque data for a PSO pool, where the UDR instance receiving the
request is not the Pool Host UDR for the pool in the request.

Request URL
GET {baseURI}/msr/pool/100000/data/poolquota

Provisioning

156

Request Content

None.

Response 3

The request is successful, and the specified pool on NPHO does not return poolquota data.

HTTP Status Code

204

Response Content

None.

6.3.3 Delete Opaque Data

Description

This operation deletes the opaque data of the specified opaqueDataType for the pool identified by the poolId in
the request.

Only one opaque data type can be deleted per request.

NOTES:

• If the opaque data of the opaqueDataType does not exist for the pool, this is not considered an error
and a successful result is returned.

• If PSO is enabled, this operation is ignored on an NPHO and a success is returned. No updates are made
to the database for these requests on NPHO.

Prerequisites

A pool with the key of the poolId supplied must exist.

The opaqueDataType must reference a valid entity in the Interface Entity Map table in the SEC.

Request URL
DELETE {baseURI}/msr/pool/poolId/data/opaqueDataType

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• opaqueDataType: A user defined type/name for the opaque data.

Value is either poolquota, poolstate, or pooldynamicquota.

Request Content

None.

Response Content

None.

Provisioning

157

Table 60: Delete Opaque Data Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Opaque data was successfully deleted

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

Example

Request 1

A request is made to delete the pooldynamicquota opaque data.

Request URL
DELETE {baseURI}/msr/pool/500005/data/pooldynamicquota

Request Content

None.

Response 1

The request is successful, and the PoolDynamicQuota opaque data was deleted.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the poolstate opaque data. The PoolState opaque data is a valid entity, but the
requested pool does not contain any PoolState opaque data.

Request URL
DELETE {baseURI}/msr/pool/600006/data/poolstate

Request Content

None.

Response 2

The request is successful although PoolState opaque data was not deleted.

HTTP Status Code

204

Provisioning

158

Response Content

None.

6.4 Pool Data Row Commands
A transparent data entity may contain data that is organized in rows. An example of a row is a specific quota in
the PoolQuota entity.

The row commands allow operations (create, retrieve, update, or delete) at the row level. The required row is
identified in the request by the RowIdValue.

NOTE: Pool data row commands may only be performed on entities defined as transparent in the SEC.
Attempting to perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an
MSR4070 error being returned.

Table 61: Summary of Pool Data Row Commands

Command Description Keys Command Syntax

Set Row

Create or update data row
in data of the specified type.

Pool ID
and Row
Identifier

Or

Pool ID
and Row
Identifier
and
Instance
Identifier

PUT {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue

Create or update data row
in data of the specified type
and instance identifier.

PUT {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

Get Row

Retrieve data row from data
of the specified type.

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue

Retrieve data row from data
of the specified type and
instance identifier.

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

Delete
Row

Delete data row in data of
the specified type

DELETE {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue

Delete data row in data of
the specified type and
instance identifier

 DELETE {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

6.4.1 Set Row

Description

This operation creates a data row or updates an existing data row for the pool identified by the poolId.

The data row identifier field value is specified in rowIdValue. All fieldNameX fields specified are set in the row.

If more than one existing row matches the requested rowIdValue, then the update request fails.

If the specified row does not exist, it is created. If the row does exist, it is updated/replaced.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to update an existing
row called DAYPASS is successful, and two rows called DayPass and DAYPASS would be present

• If the transparent entity specified in entityName does not exist for the pool, it is created

Provisioning

159

• If PSO is enabled, this operation is ignored on an NPHO and a success is returned. No updates are made
to the database for these requests on NPHO.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

Request URL

Without Instance Identifier
PUT {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue

With Instance Identifier
PUT {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/row/instanceFieldName/
instanceFieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquotafor the PoolDynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the data blob.

There is not a rowIdValue for State transparent data.

• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the PoolQuota transparent data.
o Value is InstanceId or Type for the PoolDynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.

Request Content
<?xml version="1.0" encoding="UTF-8"?>
rowValue

• rowValue: Contents of the XML data blob with the row data.

NOTE: The rowValue is the same format as a PoolQuota entity, the single row being added

NOTE: The data in rowValue contains the same rowIdValue as specified in the URL. The rowIdValue in the URL is
currently ignored, and is not validated. The rowIdValue in the request content is solely used to identify the row.

Response Content

None.

Provisioning

160

Table 62: Set Row Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data row was successfully created/updated

400 MSR4000 Request content is not valid

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4067 Multiple matching rows found

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

Examples

Request 1

A request is made to create a data row in the poolquota transparent data for a pool. The data row identifier field
value is AggregateLimit. The pool does not have an existing PoolQuota row called AggregateLimit.

Request URL
PUT {baseURI}/msr/pool/100000/data/poolquota/AggregateLimit

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="AggregateLimit">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 1

The request is successful, and the data row AggregateLimit was created.

Provisioning

161

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to update a data row in the poolquota transparent data for a pool. The data row identifier
field value is PQ1. The pool has an existing PoolQuota row called PQ1.

Request URL
PUT {baseURI}/msr/pool/100000/data/poolquota/PQ1

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="PQ1">
 <cid>9223372036854775807</cid>
 <time>3422</time>
 <totalVolume>1000</totalVolume>
 <inputVolume>980</inputVolume>
 <outputVolume>20</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2011-04-22T00:00:00-05:00</nextResetTime>
 </quota>
</usage>

Response 2

The request is successful, and the data row PQ1 was updated.

HTTP Status Code

201

Response Content

None.

Request 3

A request is made to update a data row in the pooldynamicquota transparent data for a pool. The data row
identifier field value is AggregateLimit. The AggregateLimit data row exists in the PoolDynamicQuota data, but
there are two rows called AggregateLimit one with InstanceId of 15570, the other with a InstanceId of 15678.
The request is not required in the response.

Request URL
PUT {baseURI}/msr/pool/10000/data/pooldynamicquota/AggregateLimit/row/InstanceId/15678

Request Content
<?xml version="1.0" encoding="UTF-8"?>
<definition>
 <version>1</version>

Provisioning

162

 <DynamicQuota name="AggregateLimit">
 <Type>pass</Type>
 <InstanceId>15678</InstanceId>
 <Priority>4</Priority>
 <InitialTime>135</InitialTime>
 <InitialTotalVolume>2000</InitialTotalVolume>
 <InitialInputVolume>1500</InitialInputVolume>
 <InitialOutputVolume>500</InitialOutputVolume>
 <InitialServiceSpecific>4</InitialServiceSpecific>
 <activationdatetime>2015-05-22T00:00:00-05:00</activationdatetime>
 <expirationdatetime>2015-05-29T00:00:00-05:00</expirationdatetime>
 <InterimReportingInterval>100</InterimReportingInterval>
 <Duration>10</Duration>
 </DynamicQuota>
</definition>

Response 3

The request is successful, and the data row AggregateLimit with InstanceId of 15678 was updated.

HTTP Status Code

201

Response Content

None.

6.4.2 Get Row

Description

This operation retrieves a transparent data row for the pool identified by the poolId. The data row identifier is
specified in rowIdValue.

All data rows that match the requested rowIdValue are returned.

The transparent data row identifier field value is specified in rowIdValue.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to get a row called
DayPass is successful, but an attempt to get a row called DAYPASS fails

• If PSO is enabled, this operation on the Non Pool Host UDR for the specified pool would return success
with empty data as the pool entity data is only stored on the Pool Host UDR.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

A data row with the identifier in the transparent data must exist for the pool.

Request URL

Without Instance Identifier
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue

Provisioning

163

With Instance Identifier
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/row/instanceFieldName/
instanceFieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the PoolQuota transparent data.
o Value is InstanceId or Type for the PoolDynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.

Request Content

None.

Response Content

A <pool> element that contains a <data> element, which contains the specified transparent data row (if it exists)
for the identifiedpool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="transparentDataType">
<![CDATA[
cdataRowValue
]]>
 </data>
</pool>

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicQuota transparent data.

• cdatarowValue: Contents of the XML data blob with the row data.

Table 63: Get Row Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row exists for pool

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

Provisioning

164

HTTP Status
Code Error Code Description

404 MSR4059 Data row does not exist

204 — No Content returned

Examples

Request 1

A request is made to get the PQ1 data row from the poolquota transparent data for a pool. The pool has the
PoolQuota entity, and the PQ1 data row exists.

Request URL
GET {baseURI}/msr/pool/100000/data/poolquota/PQ1

Request Content

None.

Response 1

The request is successful, and the PoolQuota transparent data row requested is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="PQ1">
 <cid>9223372036854775807</cid>
 <time>1</time>
 <totalVolume>0</totalVolume>
 <inputVolume>0</inputVolume>
 <outputVolume>0</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-12T16:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</pool>

Request 2

A request is made to get the Weekend data row from the poolquota transparent data for a pool. The pool has
the PoolQuota entity, but and the Weekend data row does not exist.

Provisioning

165

Request URL
GET {baseURI}/msr/pool/100000/data/poolquota/Weekend

Request Content

None.

Response 2

The request fails, as the data row does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

Request 3

A request is made to get the Weekday data row from the poolquota transparent data for a pool. The pool has
the PoolQuota entity. Two instances of the Weekday data row exist.

Request URL
GET {baseURI}/msr/pool/100000/data/poolquota/Weekday

Request Content

None.

Response 3

The request is successful, and the PoolQuota transparent data rows requested are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="poolquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekend">
 <cid>9223372036854775807</cid>
 <time>1</time>
 <totalVolume>0</totalVolume>
 <inputVolume>0</inputVolume>
 <outputVolume>0</outputVolume>
 <serviceSpecific>12</serviceSpecific>
 <nextResetTime>2010-05-12T16:00:00-05:00</nextResetTime>
 </quota>
 <quota name="Weekend">
 <cid>7682364872564782343</cid>

Provisioning

166

 <time>32</time>
 <totalVolume>250</totalVolume>
 <inputVolume>4570</inputVolume>
 <outputVolume>11230</outputVolume>
 <serviceSpecific>29</serviceSpecific>
 <nextResetTime>2010-06-01T16:00:00-05:00</nextResetTime>
 </quota>
</usage>
]]>
 </data>
</pool>

Request 4

A request is made to get the PDQ1 data row from the pooldynamicquota transparent data for a pool with the
InstanceId value of 11223344 . The PoolDynamicQuota data contains four rows called PDQ1. Two with
<InstanceId> of 11223344, one with an InstanceId of 99887766, and one with an InstanceId of 55556666. The
request is not required in the response.

Request URL
GET {baseURI}/msr/pool/10000/data/pooldynamicquota/PDQ1/InstanceId/11223344

Request Content

None.

Response 4

The request is successful, and the PoolDynamicQuota transparent data row requested is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="pooldynamicquota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<definition>
 <version>1</version>
 <DynamicQuota name="PDQ1">
 <Type>pass</Type>
 <InstanceId>11223344</InstanceId>
 <Priority>4</Priority>
 <InterimReportingInterval>100</InterimReportingInterval>
 <Duration>10</Duration>
 </DynamicQuota>
 <DynamicQuota name="PDQ1">
 <Type>topup</Type>
 <InstanceId>11223344</InstanceId>
 <Priority>4</Priority>
 <InterimReportingInterval>200</InterimReportingInterval>
 <Duration>20</Duration>
 </DynamicQuota>
</definition>]]>
 </data>
</pool>

Provisioning

167

6.4.3 Delete Row

Description

This operation deletes a transparent data row for the pool identified by the poolId.

The transparent data row identifier field value is specified in rowIdValue.

If more than one row matches the requested rowIdValue, then all matching rows are deleted.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to delete a row called
DayPass is successful, but an attempt to delete a row called DAYPASS fails

• The deletion of a non-existent data row is not considered an error.
• If PSO is enabled, this operation is ignored on an NPHO and a success is returned. No updates are made

to the database for these requests on NPHO.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

Request URL

Without Instance Identifier
DELETE {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue

With Instance Identifier
DELETE {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the PoolQuota transparent data.
o Value is InstanceId or Type for the PoolDynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.

Request Content

None.

Response Content

None.

Provisioning

168

Table 64: Delete Row Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Data row was successfully deleted

400 MSR4064 Occurrence constraint violation

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

Examples

Request 1

A request is made to delete the PQ1 data row in the poolquota transparent data. The PQ1 data row exists in the
PoolQuota data.

Request URL
DELETE {baseURI}/msr/pool/100000/data/poolquota/PQ1

Request Content

None.

Response 1

The request is successful, and the data row in the PoolQuota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the Weekend data row in the poolquota transparent data. The Weekend data row
does not exist in the PoolQuota transparent data.

Request URL
DELETE {baseURI}/msr/pool/100000/data/poolquota/Weekend

Request Content

None.

Provisioning

169

Response 2

The request is successful, even though the Weekend PoolQuota row does not exist.

HTTP Status Code

204

Response Content

None.

Request 3

A request is made to delete the PDQ1 data row in the pooldynamicquota transparent data. The PDQ1 data row
exists in the PoolDynamicQuota data.

Request URL
DELETE {baseURI}/msr/pool/10000/data/pooldynamicquota/PDQ1

Request Content

None.

Response 3

The request is successful, and the data row in the pooldynamicquota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

6.5 Pool Data Row Field Commands
A transparent data entity may contain data that is organized in rows. An example of a row is a specific quota in
the PoolQuota entity.

The row/field commands allow operations (retrieve/update/delete) at the row/field level. The required row is
identified in the request by the rowIdValue, and the field is identified by the fieldName.

NOTE: Pool data row field commands may only be performed on entities defined as transparent in the SEC.
Attempting to perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an
MSR4070 error being returned.

Table 65: Summary of Pool Data Row Field Commands

Command Description Keys Command Syntax

Get Row

Field

Retrieve values for the
specified field

Pool ID
and Row
Identifier
and Field
name

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/fieldName

Retrieve values for the
specified field and instance
identifier

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue/fieldName

Provisioning

170

Command Description Keys Command Syntax

Get Row
Field
Value

Retrieve a single value for
the specified field

Or

Pool ID
and Row
Identifier,
Instance
Identifier
and Field
name

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/
fieldName/fieldValue

Retrieve a single value for
the specified field and
instance identifier

GET {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue/
fieldName/fieldValue

Update
Row Field

Update field to the specified
value

PUT {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/
fieldName/fieldValue

Update field to the specified
value and instance identifier

PUT {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue/
fieldName/fieldValue

Delete
Row Field

Delete all values for the
specified field

DELETE {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/fieldName

Delete all values for the
specified field and instance
identifier

DELETE {baseURI}/msr/pool/poolId/data/
transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue/fieldName

6.5.1 Get Row Field

Description

This operation retrieves a field in a transparent data row for the pool identified by the poolId.

All data rows that match the requested rowIdValue are returned.

If more than one row matches the requested rowIdValue, then all matching rows are returned.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to get a field in a row
called DayPass is successful, but an attempt to get a field in a row called DAYPASS fails

• If PSO is enabled, this operation on the Non Pool Host UDR for the specified pool would return success
with empty data as the pool entity data is only stored on the Pool Host UDR.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

A data row with the identifier in the transparent data must exist for the pool.

The field name specified must be a valid field for the entity as defined in the SEC.

Provisioning

171

Request URL

Without Instance Identifier
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/fieldName

With Instance Identifier
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue/fieldName

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the PoolQuota transparent data.
o Value is InstanceId or Type for the PoolDynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.
• fieldName: A user defined field in the transparent data row.

Request Content

None.

Response Content

A <pool> element that contains a <data> element, which contains the specified transparent data row field (if it
exists) for the identified pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="transparentDataType">
<![CDATA[
cdataRowFieldValue
]]>
 </data>
</pool>

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicquota transparent data.

• cdataRowFieldValue: Contents of the XML data blob, with the field from the row data.

Table 66: Get Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row field exists for pool

Provisioning

172

HTTP Status
Code Error Code Description

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

404 MSR4065 Field is not set

204 — No Content returned

Examples

Request 1

A request is made to get the inputVolume field in the PQ1 data row of the pooluota transparent data for a pool.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/PQ1/inputVolume

Request Content

None.

Response 1

The request is successful, and the requested field value is returned

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="poolquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="PQ1">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>
</pool>

Provisioning

173

Request 2

A request is made to get the outputVolume field in the Weekday data row of the poolquota transparent data for
a pool. Two instances of the Weekday data row exist.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/Weekday/outputVolume

Request Content

None.

Response 2

The request is successful, and the field from two matching Weekday rows are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="poolquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>980</outputVolume>
 </quota>
 <quota name="Weekday">
 <inputVolume>2140</outputVolume>
 </quota>
</usage>
]]>
</data>
</pool>

Request 3

A request is made to get the InitialInputVolume field in the PDQ1 data row of the pooldynamicquota transparent
data having an InstanceId of value 11223344 for a pool.

Request URL
GET {BaseURI}/msr/pool/10000/data/pooldynamicquota/PDQ1/row/InstanceId/11223344/InitialInputVolume

Request Content

None.

Response 3

The request is successful, and the requested field value is returned

HTTP Status Code

200

Provisioning

174

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="pooldynamicquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<definition>
 <version>1</version>
 <DynamicQuota name="PDQ1">
 <InitialInputVolume>15678</InitialInputVolume>
 </DynamicQuota>
</definition>
]]>
</data>
</pool>

6.5.2 Get Row Field Value

Description

This operation retrieves a field with a value in a transparent data row for the pool identified by the poolId.

If more than one row matches the requested rowIdValue, then all matching rows are returned.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName. The field value is specified in fieldValue.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to get a field value in a
row called DayPass is successful, but an attempt to get a field value in a row called DAYPASS fails

• The fieldValue is case-sensitive. An attempt to get the value Data from a current field value of Data is
successful, but an attempt to get the value DATA fails.

• If PSO is enabled, this operation on the Non Pool Host UDR for the specified pool would return success
with empty data as the pool entity data is only stored on the Pool Host UDR.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

A data row with the identifier in the transparent data must exist for the pool.

The field name specified must be a valid field for the entity as defined in the SEC.

The field value in fieldValue must match the specified value in the request.

Request URL

Without Instance Identifier
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/fieldName/fieldValue

With Instance Identifier
GET {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/row/instanceFieldName/
instanceFieldValue/fieldName/fieldValue

Provisioning

175

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the PoolQuota transparent data.
o Value is InstanceId or Type for the PoolDynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.
• fieldName: A user defined field in the transparent data row.
• fieldValue: Corresponding field value assigned to fieldname.

Request Content

None.

Response Content

A <pool> element that contains a <data> element, which contains the specified transparent data row field (if it
exists) for the identified pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="transparentDataType">
<![CDATA[
cdataRowFieldValue
]]>
 </data>
</pool>

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicQuota transparent data.

• cdataRowFieldValue: Contents of the XML data blob, with the field from the row data.

NOTE: The response content is only present if the requested field is present in the transparent data row, and the
field is set to the supplied value.

Table 67: Get Row Field Value Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data row field/value exists for pool

400 MSR4053 Data row field value does not match

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

Provisioning

176

HTTP Status
Code Error Code Description

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

204 — No Content returned

Examples

Request 1

A request is made to get the inputVolume field with the value of 980 in the PQ1 data row of the poolquota
transparent data for a pool. The inputVolume field exists, and is set to the value 980.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/PQ1/inputVolume/980

Request Content

None.

Response 1

The request is successful, and the requested field with the specified value is returned

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="poolquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="PQ1">
 <inputVolume>980</inputVolume>
 </quota>
</usage>
]]>
</data>
</pool>

Request 2

A request is made to get the outputVolume field with the value of 2000 in the PQ4 data row of the poolquota
transparent data for a pool. The outputVolume field exists, but is set to the value 1500.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/PQ1/outputVolume/2000

Provisioning

177

Request Content

None.

Response 2

The request fails, because the requested field does not have the supplied value.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4053">errorText</error>

Request 3

A request is made to get the inputVolume field with the value of 3220 in the Weekday data row of the poolquota
transparent data for a pool. Two instances of the Weekday data row exist. The inputVolume field exists in both
rows, and is set to the value 3220 in both rows.

Request URL
GET {BaseURI}/msr/pool/100000/data/poolquota/Weekday/inputVolume/3220

Request Content

None.

Response 3

The request is successful, and the field from two matching Weekday rows are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="poolquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
 <quota name="Weekday">
 <inputVolume>3220</inputVolume>
 </quota>
</usage>
]]>
</data>
</pool>

Provisioning

178

Request 4

A request is made to get the InitialTotalVolume field with the value of 980 in the PDQ1 data row of the
pooldynamicquota transparent data for a pool. The InitialTotalVolume field exists, and is set to the value 980.

Request URL
GET {BaseURI}/msr/pool/33123654862/data/pooldynamicquota/PDQ1/row/InitialTotalVolume/2000

Request Content

None.

Response 4

The request is successful, and the requested field with the specified value is returned

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="pooldynamicquota">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<definition>
 <version>1</version>
 <DynamicQuota name="PDQ1">
 <InitialTotalVolume>2000</InitialTotalVolume>
 </DynamicQuota>
</denition>
]]>
</data>
</pool>

6.5.3 Update Row Field

Description

This operation updates a fields in a transparent data row for the pool identified by the poolId.

The transparent data row identifier field is value is specified in rowIdValue. The field name is specified in
fieldName.

If the specified field is valid, but does not currently exist, it is created.

If more than one existing row matches the requested rowIdValue, then the update request fails.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to update a field in a
row called DayPass is successful, but an attempt to update a field in a row called DAYPASS fails

• If PSO is enabled, this operation is ignored on an NPHO and a success is returned. No updates are made
to the database for these requests on NPHO.

Prerequisites

A pool with the key of the poolId supplied must exist.

Provisioning

179

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

A data row with the identifier in the transparent data exists for the pool.

The field name specified must be a valid field for the entity as defined in the SEC. The field must be updatable.

Request URL

Without Instance Identifier
PUT {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/fieldName/fieldValue

With Instance Identifier
PUT {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/row/instanceFieldName/
instanceFieldValue/fieldName/fieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the PoolQuota transparent data.
o Value is InstanceId or Type for the PoolDynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.
• fieldName: A user defined field in the transparent data row.
• fieldValue: Corresponding field value assigned to fieldname.

Request Content

None.

Response Content

None.

Table 68: Update Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Requested transparent data row field was successfully created

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4067 Multiple matching rows found

Provisioning

180

HTTP Status
Code Error Code Description

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1

A request is made to update the inputVolume field in the PQ1 data row of the poolquota transparent data for a
pool.

Request URL
PUT {BaseURI}/msr/pool/100000/data/poolquota/PQ1/inputVolume/0

Request Content

None.

Response 1

The request is successful, and the field in the data row in the PoolQuota transparent data was updated.

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to update the cid field in the PQ1 data row in the poolquota transparent data. The cid field is
not allowed to be updated.

Request URL
PUT {BaseURI}/msr/pool/100000/data/poolquota/PQ1/cid/45678

Request Content

None.

Response 2

The request fails, because the cid field cannot be updated.

Provisioning

181

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4056">errorText</error>

Request 3

A request is made to update the inputVolume field in the Weekday data row of the quota transparent data for a
pool. Two instances of the Weekday data row exist.

Request URL
PUT {BaseURI}/msr/pool/100000/data/poolquota/Weekday/inputVolume/0

Request Content

None.

Request 4

A request is made to update the InitialTotalVolume field in the PDQ1 data row of the PoolDynamicQuota
transparent data for a pool.

Request URL
PUT {BaseURI}/msr/pool/33123654862/data/pooldynamicquota/PDQ1/row/InitialTotalVolume/2000

Request Content

None.

Response 4

The request is successful, and the field in the data row in the PoolDynamicQuota transparent data was updated.

HTTP Status Code

201

Response Content

None.

6.5.4 Delete Row Field

Description

This operation deletes a field in a transparent data row for the pool identified by the poolId.

The transparent data row identifier field value is specified in rowIdValue. The field name is specified in
fieldName.

If more than one row matches the requested rowIdValue, then the delete request fails.

Provisioning

182

NOTES:

• If the specified row does not exist, the request fails. If the specified row exists, but the field does not
exist, this is not treated as an error, and row/field data is not deleted.

• If the field with opaque data of the opaqueDataType does not exist, this is not considered an error and a
successful result is returned.

• If the field being deleted is mandatory, and is defined as having a default value, then the field is not
removed, but has the default value assigned.

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to delete a field in a
row called DayPass is successful, but an attempt to delete a field in a row called DAYPASS fails

• If PSO is enabled, this operation is ignored on an NPHO and a success is returned. No updates are made
to the database for these requests on NPHO.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

A data row with the identifier in the transparent data must exist for the pool.

The field name specified must be a valid field for the entity as defined in the SEC. The field must be updatable.

Request URL

Without Instance Idenitifier
DELETE {baseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/fieldName

With Instance Identifier
DELETE {baseURI}/msr/pool/poolId/data/transparentDataType/row/instanceFieldName/
instanceFieldValue/rowIdValue/fieldName

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

o Value is poolquota for the PoolQuota transparent data.
o Value is pooldynamicquota for the PoolDynamicQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid or Type for the PoolQuota transparent data.
o Value is InstanceId or Type for the PoolDynamicQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.
• fieldName: A user defined field in the transparent data row.

Request Content

None.

Provisioning

183

Response Content

None.

Table 69: Delete Row Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data row field was successfully deleted

400 MSR4056 Field is not updatable

400 MSR4067 Multiple matching rows found

400 MSR4064 Occurrence constraint violation

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

Examples

Request 1

A request is made to delete the inputVolume field in the PQ1 data row of the poolquota transparent data for a
pool.

Request URL
DELETE {BaseURI}/msr/pool/100000/data/poolquota/PQ1/inputVolume

Request Content

None.

Response 1

The request is successful, and the field in the data row in the PoolQuota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

Provisioning

184

Request 2

A request is made to delete the inputVolume field in the Weekday data row of the poolquota transparent data
for a pool. Two instances of the Weekday data row exist.

Request URL
DELETE {BaseURI}/msr/pool/100000/data/poolquota/Weekday/inputVolume

Request Content

None.

Response 2

The request fails, as more than one row called Weekday exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

Request 3

A request is made to delete the InitialTotalVolume field in the PDQ1 data row of the pooldynamicquota
transparent data for a pool.

Request URL
DELETE {BaseURI}/msr/pool/33123654862/data/pooldynamicquota/PDQ1/InitialTotalVolume

Request Content

None.

Response 3

The request is successful, and the field in the data row in the PoolDynamicQuota transparent data was deleted.

HTTP Status Code

204

Response Content

None.

6.6 Pool Data Field Commands
A transparent data entity may contain data that is organized in fields where each field is defined as a name value
pair in an element. For example, the PoolState entity has a <name> element for the name, and a <value>
element for the value in a <property> element.

<property>
 <name>X</name>

Provisioning

185

 <value>Y</value>
</property>

The data field commands allow operations (create, retrieve, update, or delete) at the field level. The required
field is identified in the request by the FieldName.

NOTE: Pool data field commands may only be performed on entities defined as transparent in the SEC.
Attempting to perform a command on an entity defined as opaque results in an HTTP Status Code 400, with an
MSR4070 error being returned.

Table 70: Summary of Pool Data Field Commands

Command Description Keys Command Syntax

Set Data
Field

Create or update data field
in transparent data of the
specified type.

Pool ID
and Field
Name

POST {baseURI}/msr/pool/poolId/
data/transparentDataType/
fieldName/fieldValue

PUT {baseURI}/msr/pool/poolId/
data/transparentDataType/
fieldName/fieldValue

Get Data
Field

Retrieve data field from
transparent data of the
specified type.

GET {baseURI}/msr/pool/poolId/
data/transparentDataType/fieldName

Delete
Data Field

Delete data field in
transparent data of the
specified type

DELETE {baseURI}/msr/pool/poolId/
data/transparentDataType/fieldName

6.6.1 Set Data Field

Description

This operation creates a field or updates an existing field in a transparent data for the pool identified by the
poolId.

The field name is specified in fieldName, and the field value is specified in fieldValue.

If more than one existing fields matches the requested fieldName, then the update request fails.

If the specified field does not exist, it is created. If the field does exist, it is updated/replaced.

NOTES:

• The fieldName is not case-sensitive. If a field called mcc exists, then an attempt to update an existing
field called MCC is successful.

• If the transparent entity specified in entityName does not exist for the pool, it is created.
• If PSO is enabled, this operation is ignored on an NPHO and a success is returned. No updates are made

to the database for these requests on NPHO.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

Provisioning

186

Request URL

Format 1
PUT {baseURI}/msr/pool/poolId/data/transparentDataType/fieldName/fieldValue

Format 2
POST {baseURI}/msr/pool/poolId/data/transparentDataType/fieldName/fieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

Value is poolstate for the PoolState transparent data.

• fieldName: A user defined field in the transparent data.

o For the PoolState entity this corresponds to a property in the entity.
o The fieldName is stored exactly as it is sent in the request. The case of fieldName changes if an

update is performed using a different case.

• fieldValue: Corresponding field value assigned to fieldName.

Request Content

None.

Response Content

None.

Table 71: Set Data Field Response Status/Error Codes

HTTP Status
Code Error Code Description

201 — Data field was successfully created/updated

400 MSR4051 Invalid value for a field

400 MSR4056 Field is not updatable

400 MSR4064 Occurrence constraint violation

400 MSR4067 Multiple matching fields found

404 MSR4001 Pool is not found

404 MSR4002 Field is not defined for this data type

404 MSR4049 Data type is not defined

Provisioning

187

Examples

Request 1

A request is made to create a property in the poolstate transparent data for a pool. The property name is mcc
and the property value is 315. The pool does not have an existing PoolState property called mcc.

Request URL
POST {baseURI}/msr/pool/10000/data/poolstate/mcc/315

Request Content

None.

Response 1

The request is successful, and the property mcc with value 315 was created.

HTTP Status Code

201

Response Content

None.

Request 2

A request is made to create a property in the poolstate transparent data for a pool. The property name is mcc
and the property value is 315. The pool does not have an existing PoolState property called mcc. The pool does
not have the PoolState transparent data.

Request URL
PUT {baseURI}/msr/pool/10000/data/poolstate/mcc/315

Request Content

None.

Response 2

The request is successful, and the property mcc as well as the PoolState entity is created.

HTTP Status Code

201

Response Content

None.

Request 3

A request is made to update a property in the poolstate transparent data for a pool. The property name is mcc.
The pool has an existing PoolState property called mcc.

Provisioning

188

Request URL
POST {baseURI}/msr/pool/10000/data/poolstate/mcc/400

Request Content

None.

Response 3

The request is successful, and the property mcc was updated.

HTTP Status Code

201

Response Content

None.

Request 4

A request is made to update a property in the poolstate transparent data for a pool. The property name is mcc.
Two properties with the name mcc exist.

Request URL

 Request URL
PUT {baseURI}/msr/pool/10000/data/poolstate/mcc

Request Content

None.

Response 4

The request fails, as more than one property called mcc exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

6.6.2 Get Data Field

Description

This operation retrieves a data field in a transparent data for the pool identified by the poolId.

All fields that match the requested fieldName are returned.

If more than one field matches the requested fieldName, then all matching fields are returned.

The transparent data field is specified in fieldName.

Provisioning

189

NOTES:

• The fieldName is not case-sensitive. If a field called mcc exists, then an attempt to retreive a field called
MCC is successful.

• If the PSO feature is enabled, this operation on the Non Pool Host UDR for the specified pool would
return success with empty entity data as the pool entity data is only stored on the Pool Host UDR.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

A field in the transparent data must exist for the pool.

Request URL
GET {baseURI}/msr/pool/poolId/data/transparentDataType/fieldName

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

Value is poolstate for the PoolState transparent data.

• fieldName: A user defined field in the transparent data.

NOTE: For the PoolState entity this corresponds to a property in the entity.

Request Content

None.

Response Content

A <pool> element that contains a <data> element, which contains the specified transparent data field (if it
exists) for the identified pool.

<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <data name="transparentDataType">
<![CDATA[
cdataFieldValue
]]>
 </data>
</pool>

• transparentDataType: A user defined type/name for the transparent data.

Value is poolstate for the PoolState transparent data.

• cdataFieldValue: Contents of the XML data blob with the field from the transparent data.

Table 72: Get Data Field Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Requested data field exists for pool

Provisioning

190

HTTP Status
Code Error Code Description

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data field does not exist

204 — No Content returned

Examples

Request 1

A request is made to get the property mcc in the poolstate transparent data for a pool. The property mcc exists.

Request URL
GET {BaseURI}/msr/pool/10000/data/poolstate/mcc

Request Content

None.

Response 1

The request is successful, and the requested property is returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
<data name="poolstate">
<![CDATA[<?xml version="1.0" encoding="UTF-8"?>
<state>
 <version>1</version>
 <property>
 <name>P3</name>
 <value>200</value>
 </property>
</state>
]]>
</data>
</pool>

Request 2

A request is made to get property with name mcc in the poolstate transparent data for a pool. The property with
name mcc does not exist.

Provisioning

191

Request URL
GET {BaseURI}/msr/pool/10000/data/poolstate/mcc

Request Content

None.

Response 2

The request fails, because the requested property does not exist.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

6.6.3 Delete Data Field

Description

This operation deletes a data field in a transparent data for the pool identified by the poolId.

The field identifier is specified in fieldName.

If more than one data field matches the requested fieldName, then all matching fields are deleted.

NOTES:

• If the specified field does not exist, this is not considered an error and a successful result is returned.
• The fieldName is not case-sensitive. If a field called mcc exists, then an attempt to delete a field called

MCC is successful.
• If PSO is enabled, this operation is ignored on an NPHO and a success is returned. No updates are made

to the database for these requests on NPHO.

Prerequisites

A pool with the key of the poolId supplied must exist.

The transparentDataType must reference a valid pooled transparent entity in the Interface Entity Map table in
the SEC.

Request URL
DELETE {baseURI}/msr/pool/poolId/data/transparentDataType/fieldName

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

Value is poolstate for the PoolState transparent data.

• fieldName: A user defined field in the transparent data.

Note: For the PoolState entity this corresponds to a property in the entity.

Provisioning

192

Request Content

None.

Response Content

None.

Table 73: Delete Data Field Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data field was successfully deleted

400 MSR4067 Multiple matching fields found

400 MSR4064 Occurrence constraint violation

404 MSR4001 Pool is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

Examples

Request 1

A request is made to delete the mcc property in the poolstate transparent data. The mcc property exists in the
PoolState data.

Request URL
DELETE {baseURI}/msr/pool/10000/data/poolstate/mcc

Request Content

None.

Response 1

The request is successful, and the property in the PoolState transparent data was deleted.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to delete the mcc property in the poolstate transparent data. The mcc property does not exist
in the PoolState transparent data.

Provisioning

193

Request URL
DELETE {baseURI}/msr/pool/10000/data/poolstate/mcc

Request Content

None.

Response 2

The request is successful, even though the mcc property does not exist.

HTTP Status Code

204

Response Content

None.

Request 3

A request is made to delete the mcc property in the poolstate transparent data The PoolState opaque data is a
valid entity, but the requested pool does not contain any PoolState opaque data.

Request URL
DELETE {baseURI}/msr/pool/10000/data/poolstate/mcc

Request Content

None.

Response 3

The request fails, because the specified pool does not contain PoolState data.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4058">errorText</error>

6.7 Additional Pool Commands
Table 74: Summary of Additional Pool Commands

Command Description Keys Command Syntax
Add
Member
to Pool

Add subscriber to a Pool
Pool ID
and
(MSISDN,
IMSI, NAI
or
AccountId)

POST {BaseURI}/msr/pool/poolId/member/subKeyName/
subKeyValue

Remove
Member
from Pool

Remove subscriber from a
Pool

DELETE
{BaseURI}/msr/pool/poolId/member/subKeyName/
subKeyValue

Provisioning

194

Command Description Keys Command Syntax
Get Pool
Members

Retrieve pool member
subscribers by Pool ID Pool ID GET {BaseURI}/msr/pool/poolId/member

Get Pool
ID

Retrieve Pool ID for
specified member
subscriber

(MSISDN,
IMSI, NAI
or
AccountId

GET {BaseURI}/msr/sub/subKeyName/subKeyValue/pool

Get All
Pool
Members

Retrieve pool member
subscribers from all local
or local/remote systems
by Pool ID

Pool ID
GET
{BaseURI}/msr/pool/poolId/allmembers/AddressList/
addresslist/PSO/pso

6.7.1 Add Member to Pool

Description

This operation adds a Subscriber to a Pool.

When the PSO flag is enabled, a pool member added to a pool on a Non Pool Host UDR is not treated as a pool
member until the pool is created or Pool Profile updated on the Pool Host UDR when the connection between
the two is active. Subscribers are only treated as a pool member for REST behavior, not for signaling.

Prerequisites

A pool with the key of the poolId supplied must exist.

A subscriber with the key of the keyName/keyValue supplied must exist.

The subscriber must not be a member of a pool.

The pool must have less than the maximum number of member subscribers allowed.

Request URL
POST {BaseURI}/msr/pool/poolId/member/subKeyName/subKeyValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• subKeyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• subKeyValue: Corresponding key field value assigned to keyName.

Request Content

None.

Response Content

None.

Provisioning

195

Table 75: Add Member to Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Subscriber successfully added to pool

400 MSR4100 Maximum number of Subscribers in a Basic Pool has been exceeded

404 MSR4001 Subscriber is not found

404 MSR4061 Specified pool does not exist

409 MSR4055 Subscriber is a member of a pool

Examples

Request 1

A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber is not a
member of a pool.

Request URL
POST {BaseURI}/msr/pool/100000/member/MSISDN/380561234567

Request Content

None.

Response 1

The request is successful, and the subscriber is added to the pool.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to add a subscriber to a pool. The subscriber exists, but the pool does not.

Request URL
POST {BaseURI}/msr/pool/100009/member/IMSI/184569547984229

Request Content

None.

Provisioning

196

Response 2

The request fails because the pool does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4061">errorText</error>

Request 3

A request is made to add a subscriber to a pool. The pool exists, but the subscriber does not.

Request URL
POST {BaseURI}/msr/pool/900000/member/NAI/mum@foo.com

Request Content

None.

Response 3

The request fails because the subscriber does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4001">errorText</error>

Request 4

A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber is a
member of a pool.

Request URL
POST {BaseURI}/msr/pool/100000/member/AccountId/10404723525

Request Content

None.

Response 4

The request fails because the subscriber is a member of a pool.

HTTP Status Code

409

Provisioning

197

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4055">errorText</error>

Request 5

A request is made to add a subscriber to a basic pool. Both the pool and the subscriber exist. The subscriber is
not a member of a pool. The basic pool has the maximum number of members allowed.

Request URL
POST {BaseURI}/msr/pool/100000/member/MSISDN/15141234567

Request Content

None.

Response 5

The request fails because the pool has the maximum number of members allowed.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4100">errorText</error>

6.7.2 Remove Member from Pool

Description

This operation removes a Subscriber from a Pool.

Prerequisites

A pool with the key of the poolId supplied must exist.

A subscriber with the key of the keyName/keyValue supplied must exist.

The subscriber must be a member of the specified pool.

Request URL
DELETE {BaseURI}/msr/pool/poolId/member/subKeyName/subKeyValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• subKeyName: A key field in the Subscriber Profile.

Value is either IMSI, MSISDN, NAI, or AccountId.

• subKeyValue: Corresponding key field value assigned to keyName.

Request Content

None.

Provisioning

198

Response Content

None.

Table 76: Remove Member from Pool Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Subscriber successfully removed from pool

404 MSR4001 Subscriber is not found

404 MSR4061 Specified pool does not exist

404 MSR4062 Subscriber is not a member of the pool

Examples

Request 1

A request is made to remove a subscriber from a pool. Both the pool and the subscriber exist. The subscriber is a
member of the pool.

Request URL
DELETE {BaseURI}/msr/pool/100000/member/MSISDN/380561234567

Request Content

None.

Response 1

The request is successful, and the subscriber is removed from the pool.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to add a subscriber to a pool. Both the pool and the subscriber exist. The subscriber is not a
member of the pool.

Request URL
DELETE {BaseURI}/msr/pool/100000/member/MSISDN/380561234567

Request Content

None.

Provisioning

199

Response 2

The request fails because the subscriber is not a member of the pool.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4062">errorText</error>

6.7.3 Get Pool Members

Description

This operation gets the list of Subscriber members of a Pool by poolId. This operation only gets the list of
subscribers and addresses for a local pool on the UDR instance where the request was received, regardless if the
pool is a PSO pool or not.

Prerequisites

A pool with the key of the poolId supplied must exist.

Request URL
GET {BaseURI}/msr/pool/poolId/member

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

Request Content

None.

Response Content

A <members> element that contains a <member> element for every subscriber that is a member of the pool. The
<member> element is optional. There can be zero, one or many <member> elements. It is only present if the pool
has member subscribers. One instance is present for every subscriber that is a member of the pool. A <member>
element contains details about a single subscriber, containing all user identities for that subscriber, one user
identity per <id> element. There can be one or many <id> elements per <member> element.

<members>
[
 <member>
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>
 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
]
[
 <member>
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>

Provisioning

200

 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
 :
 <member>
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>
 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
]
</members>

• keyNameX: A key field for the member subscriber.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValueX: Corresponding key field value assigned to keyNameX.

Table 77: Get Pool Members Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Pool exists, and membership returned OK

404 MSR4061 Specified pool does not exist

Examples

Request 1

A request is made to get the list of subscribers for a pool.

Request URL
GET {BaseURI}/msr/pool/100000/member

Request Content

None.

Response 1

The request is successful, and the 3 member subscribers are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>
 <member>
 <id><name>IMSI</name><value>311480100000001</value></id>
 <id><name>IMSI</name><value>311480100532432</value></id>
 <id><name>NAI</name><value>dad@operator.com</value></id>

Provisioning

201

 </member>
 <member>
 <id><name>MSISDN</name><value>380561234777</value></id>
 <id><name>IMSI</name><value>311480100000999</value></id>
 </member>
 <member>
 <id><name>NAI</name><value>joe@wireless.com</value></id>
 <id><name>NAI</name><value>p12321@mynet.com</value></id>
 </member>
</members>

Request 2

A request is made to get the list of subscribers for a pool. The pool exists but does not have any member
subscribers.

Request URL
GET {BaseURI}/msr/pool/200000/member

Request Content

None.

Response 2

The request is successful and member subscribers are not returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>
</members>

Request 3

A request is made to get the list of subscribers for a pool. The pool does not exist.

Request URL
GET {BaseURI}/msr/pool/300000/member

Request Content

None.

Response 3

The request fails, because the pool was not found.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>

Provisioning

202

<error code="MSR4061">errorText</error>

6.7.4 Get Pool ID

Description

This operation gets the Pool ID related to a subscriber, based on the gien user identity of the subscriber.

Prerequisites

A subscriber with the key of the keyName/keyValue supplied must exist.

The subscriber must be a member of a pool.

Request URL
GET {BaseURI}/msr/sub/keyName/keyValue/pool

• keyName: A key field for the member subscriber.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValue: Corresponding key field value assigned to keyName.

Request Content

None.

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Pool ID">poolId</field>
</pool>

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

Table 78: Get Pool ID Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Subscriber pool membership successfully returned

404 MSR4001 Subscriber is not found

404 MSR4062 Subscriber is not a member of a pool

Examples

Request 1

A request is made to get the Pool ID for a subscriber. The subscriber is a member of a pool.

Request URL
GET {BaseURI}/msr/sub/MSISDN/380561234567/pool

Provisioning

203

Request Content

None.

Response 1

The request is successful, and the Pool ID value was returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<pool>
 <field name="Pool ID">100000</field>
</pool>

Request 2

A request is made to get the Pool ID for a subscriber. The subscriber is not a member of a pool.

Request URL
GET {BaseURI}/msr/sub/NAI/joe@foo.com/pool

Request Content

None.

Response 2

The request fails, because the subscriber is not a member of a pool.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4062">errorText</error>

6.7.5 Get All Pool Members

Description

This operation has the option to get the list of Subscriber members of a Pool by poolId, from the local or from
the local and all remote UDR systems. The Pool Spanning UDRs feature needs to be enabled in order to retrieve
remote pool members. This command can be used on a single local Pool Host UDR as well, when the Pool
Spanning UDRs feature is not enabled.

Prerequisites

A pool with the key of the poolId supplied must exist.

Request URL
GET {BaseURI}/msr/pool/poolId/allmembers/AddressList/addressList/PSO/pso

Provisioning

204

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• addressList: The requested address type of the subscriber for a pool is returned in the response

Values:

o IMSI

Only pool members with an IMSI address type is returned in the response

o All

All pool members are returned in the response (default).

• pso: Indicates whether the response includes pool members across all UDR instances in the pool
network or only the UDR instance where the request is received.

Values.

o yes

Response includes pool members across all UDR instances in the pool network.

o No

Response only includes pool members on the local UDR instance (default).

NOTES:

• If a timeout occurs while waiting for a response from a remote UDR instance, then UDR fails the request
with a REQUEST_TIMEOUT error.

• If a request fails to be sent to a remote UDR instance, then UDR fails the provisioning request with a
REQUEST_TIMEOUT.

• This request can be used even when the Pool Spanning UDRs feature is not enabled.

Request Content

None.

Response Content

A <members> element that contains a <member> element for every subscriber that is a member of the pool. The
<member> element is optional. There can be zero, one or many <member> elements. It is only present if the pool
has member subscribers. One instance is present for every subscriber that is a member of the pool. A <member>
element contains details about a single subscriber, containing requested user identities for that subscriber, one
user identity per <id> element. There can be one or many <id> elements per <member> element.

The response includes pool members across all UDR instances in the pool network if the pso parameter was set
to yes in the request and the PSO feature is enabled. Otherwise, only pool members on the local UDR instance
are returned.

The response includes only the address types specified in the addresslist parameter in the request. (that is,
those where keyNameX is in the list). Only the requested address types for a subscriber is returned in the
response. If a subscriber is a pool member but does not have any of the requested address types, then the pool
member is not included in the response.

If the PSO feature is enabled, then each pool member returned also includes the udrId corresponding to the UDR
instance where they reside in the pool network.

Provisioning

205

<members>
[
 <member>
[<udrId>udrId</udrId>]
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>
 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
]
[
 <member>
[<udrId>udrId</udrId>]
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>
 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
 :
 <member>
[<udrId>udrId</udrId>]
 <id><name>keyName1</name><value>keyValue1</value></id>
[
 <id><name>keyName2</name><value>keyValue2</value></id>
 :
 <id><name>keyNameN</name><value>keyValueN</value></id>
]
 </member>
]
</members>

• udrId (optional): A subscriber key range that is hosted by each UDR in the remote pool network. The
response only includes the udrId if the Pools Spanning UDRs feature is enabled.

Value: 1 to10 digits.

• keyNameX: A key field for the member subscriber.

Value is either IMSI, MSISDN, NAI, or AccountId.

• keyValueX: Corresponding key field value assigned to keyNameX.

Table 79 Get All Pool Members Response Status/Error Codes

HTTP Status
Code Error Code Description

200 — Pool exists, and membership returned OK

404 MSR4061 Specified pool does not exist

404 MSR4102 Provisioning Request Timeout, a response was not received from the remote UDR

Provisioning

206

Examples

Request 1

A request is made to get the list of subscriber members for a pool. The PSO feature is not enabled.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/All/PSO/no

Request Content

None.

Response 1

The request is successful, and the 3 subscriber members are returned. Only pool members from the local UDR
instance are returned.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>
 <member>
 <id><name>IMSI</name><value>311480100000001</value></id>
 <id><name>IMSI</name><value>311480100532432</value></id>
 <id><name>NAI</name><value>dad@operator.com</value></id>
 </member>
 <member>
 <id><name>MSISDN</name><value>380561234777</value></id>
 <id><name>IMSI</name><value>311480100000999</value></id>
 </member>
 <member>
 <id><name>NAI</name><value>joe@wireless.com</value></id>
 <id><name>NAI</name><value>p12321@mynet.com</value></id>
 </member>
</members>

Request 2

A request is made to get the list of subscriber members for a pool. The pool exists, but does not have any
subscriber members. The PSO feature is enabled.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/All/PSO/no

Request Content

None.

Response 2

The request is successful and subscriber members are not returned.

Provisioning

207

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>
</members>

Request 3

A request is made to get the list of subscriber members for a pool. The pool does not exist (local or any remote
UDR instances). The PSO feature is enabled and the pso parameter is set to yes.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/All/PSO/yes

Request Content

None.

Response 3

The request fails. The error value indicates that the pool does not exist on all queried UDR instances (local or
remote).

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4061">errorText</error>

Request 4

A request is made to get the list of subscriber members for a pool across all UDR instances in the pool network.
The PSO feature is enabled and the pso parameter is set to yes.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/All/PSO/yes

Request Content

None.

Response 4

The request is successful, and the 3 member subscribers are returned. The response includes pool members
across all UDR instances in the pool network.

HTTP Status Code

200

Provisioning

208

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>
 <member>
 <udrId>1</udrId>
 <id><name>IMSI</name><value>311480100000001</value></id>
 <id><name>IMSI</name><value>311480100532432</value></id>
 <id><name>NAI</name><value>dad@operator.com</value></id>
 </member>
 <member>
 <udrId>1</udrId>
 <id><name>MSISDN</name><value>380561234777</value></id>
 <id><name>IMSI</name><value>311480100000999</value></id>
 </member>
 <member>
 <udrId>2</udrId>
 <id><name>NAI</name><value>joe@wireless.com</value></id>
 <id><name>NAI</name><value>p12321@mynet.com</value></id>
 </member>
</members>

Request 5

A request is made to get the list of pool members across all UDR instances in the pool network. The pso
parameter is set to yes. The PSO feature is enabled. There is a connection issue between the local and remote
UDR systems.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/All/PSO/yes

Request Content

None.

Response 5

The request fails. The error value indicates a provisioning request timeout, the request could not be sent to the
remote UDR due to the connection being down.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4102">errorText</error>

Request 6

A request is made to get the list of subscribers for a pool on all UDRs. The PSO feature is enabled. For this case, a
response is not received from the remote UDR.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/All/PSO/yes

Provisioning

209

Request Content

None.

Response 6

The request fails. The error value indicates a provisioning request timeout; a response was not received from
the remote UDR.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4102">errorText</error>

Request 7

A request is made to get the list of subscriber members for a pool when the PSO feature is disabled and the pso
parameter is set to yes.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/All/PSO/yes

Request Content

None.

Response 7

The request is successful, and the 3 member subscribers are returned. The response includes local pool
members only.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>
 <member>
 <id><name>IMSI</name><value>311480100000001</value></id>
 <id><name>IMSI</name><value>311480100532432</value></id>
 <id><name>NAI</name><value>dad@operator.com</value></id>
 </member>
 <member>
 <id><name>MSISDN</name><value>380561234777</value></id>
 <id><name>IMSI</name><value>311480100000999</value></id>
 </member>
 <member>
 <id><name>NAI</name><value>joe@wireless.com</value></id>
 <id><name>NAI</name><value>p12321@mynet.com</value></id>
 </member>
</members>

Provisioning

210

Request 8

A request is made to get the list of subscriber members for a pool. The PSO feature is enabled. The pso
parameter is set to yes and addressList is set to IMSI.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/IMSI/PSO/yes

Request Content

None.

Response 8

The request is successful, and the 2 member subscribers are returned. The response includes only IMSI keys for
all pool members.

HTTP Status Code

200

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<members>
 <member>
 <udrId>1</udrId>
 <id><name>IMSI</name><value>311480100000001</value></id>
 <id><name>IMSI</name><value>311480100532432</value></id>
 </member>
 <member>
 <udrId>2</udrId>
 <id><name>IMSI</name><value>311480100000999</value></id>
 </member>
</members>

Request 9

A request is made to get the list of subscribers for a pool on all UDRs. The PSO feature is enabled and activated
on 4 UDRs. For this case, a response is not received from one remote UDR.

Request URL
GET {BaseURI}/msr/pool/100000/allmembers/AddressList/All/PSO/yes

Request Content

None.

Response 9

The request fails. The error value indicates a provisioning request timeout; a response was not received from a
remote UDR.

HTTP Status Code

404

Provisioning

211

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4102">errorText</error>

6.8 Pool Special Operation Commands
A transparent data entity may contain data that is organized in rows. An example of a row is a specific quota in
the PoolQuota entity.

The required row is identified in the request by the rowIdValue.

A specific instance of a quota (a specified row) in the PoolQuota transparent data entity can have its fields reset
to pre-defined values using a provisioning command.

Table 80: Summary of Pool Special Operation Commands

Command Description Keys Command Syntax

Reset Pool
Quota

Reset the fields in the
specified Pool Quota

Pool ID and Row
Identifier

or

Pool ID, Row
Identifier and
Instance Identifier

POST {BaseURI}/msr/pool/keyName/data/
transparentDataType/rowIdValue

Reset the fields in the
specified Pool Quota
and instance
identifier

POST {BaseURI}/msr/pool/keyName/data/
transparentDataType/rowIdValue/row/
instanceFieldName/instanceFieldValue

6.8.1 Reset Pool Quota

Description

This operation resets a particular quota row in the PoolQuota transparent data associated with a pool.

If more than one row matches the requested rowIdValue, then the reset request fails.

If the pool has PoolQuota transparent data, then the configured values in the specified quota row are reset to
the configured reset values.

NOTES:

• The rowIdValue is case-sensitive. If a row called DayPass exists, then an attempt to reset a quota row
called DayPass is successful, but an attempt to reset a quota row called DAYPASS fails.

• When a PoolQuota instance is reset using the Pool Reset Quota command, each resettable field is set
to its defined reset value. If the field does not currently exist, it is not created. But, if a resettable field
does not exist, and the field has a default value, then the field is created with the default value.

• If PSO is enabled, this operation is ignored on an NPHO and a success is returned. No updates are made
to the database for these requests on NPHO.

Prerequisites

A pool with the key of the keyName supplied must exist.

The PoolQuota transparent data must exist for the pool.

The specified quota row must exist in the PoolQuota transparent data.

Provisioning

212

Request URL

Without Instance Identifier
POST {BaseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue

With Instance Identifier
POST {BaseURI}/msr/pool/poolId/data/transparentDataType/rowIdValue/row/instanceFieldName/
instanceFieldValue

• poolId: Pool ID value of the pool. Numeric value, 1 to 22 digits in length.

Values: 1 to 9999999999999999999999

• transparentDataType: A user defined type/name for the transparent data.

Value is poolquota for the PoolQuota transparent data.

• rowIdValue: The row name value that identifies the row in the transparent data blob.
• instanceFieldName: A user defined field in the data row that is used to define a unique row instance.

o Value is cid for the PoolQuota transparent data.

• instanceFieldValue: Corresponding field value assigned to instanceFieldName.

Request Content

None.

Response Content

None.

Table 81: Reset Pool Quota Response Status/Error Codes

HTTP Status
Code Error Code Description

204 — Requested transparent data row was successfully reset

400 MSR4067 Multiple matching rows found

404 MSR4001 Pool ID is not found

404 MSR4049 Data type is not defined

404 MSR4058 Data type not found

404 MSR4059 Data row does not exist

409 MSR4063 Entity cannot be reset

Provisioning

213

Examples

Request 1

A request is made to reset the PQ1 PoolQuota row for a pool. The pool has PoolQuota transparent data, and the
PoolQuota transparent data contains a PoolQuota row called PQ1.

Request URL
POST {baseURI}/msr/pool/10000/data/poolquota/PQ1

Request Content

None.

Response 1

The request is successful, and the specified PoolQuota row was reset.

HTTP Status Code

204

Response Content

None.

Request 2

A request is made to reset the PQ1 PoolQuota row for a pool. The pool does not have PoolQuota transparent
data.

Request URL
POST {baseURI}/msr/pool/10000/data/poolquota/PQ1

Request Content

None.

Response 2

The request fails because the pool does not have PoolQuota transparent data.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4058">errorText</error>

Request 3

A request is made to reset the PQ6 PoolQuota row for a pool. The pool has PoolQuota transparent data, but the
PoolQuota transparent data does not contain a PoolQuota row called PQ6.

Provisioning

214

Request URL
POST {baseURI}/msr/pool/10000/data/poolquota/PQ6

Request Content

None.

Response 3

The request fails, because the PQ6 row does not exist.

HTTP Status Code

404

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4059">errorText</error>

Request 4

A request is made to reset the Weekday PoolQuota row for a pool. The pool has PoolQuota transparent data,
and the PoolQuota transparent data contains two rows called Weekday.

Request URL
POST {baseURI}/msr/pool/10000/data/poolquota/Weekday

Request Content

None.

Response 4

The request fails, as more than one row called Weekday exists.

HTTP Status Code

400

Response Content
<?xml version="1.0" encoding="UTF-8"?>
<error code="MSR4067">errorText</error>

Request 5

A request is made to reset the PQ1 PoolQuota row for a pool having cid of value 45678. The pool has PoolQuota
transparent data, and the PoolQuota transparent data contains a PoolQuota row called PQ1 having cid of value
45678.

Request URL
POST {baseURI}/msr/pool/10000/data/poolquota/PQ1/row/cid/45678

Request Content

None.

Provisioning

215

Response 5

The request is successful, and the specified PoolQuota row was reset.

HTTP Status Code

204

Response Content

None.

Provisioning

216

APPENDIX A. REST INTERFACE SYSTEM VARIABLES
The REST interface has a set of system variables that affect its operation as it runs. REST interface variables
(Table 28) can be set via the UDR GUI and can be changed at runtime to effect dynamic server reconfiguration.

Table 82: REST Interface System variables

Parameter Description

REST Interface Port

REST Interface TCP Listening Port. NOTE: Changes to the TCP
listening port do not take effect until the udrprov process is
restarted. Also, you must specify a different port than the SOAP
interface.

Default is 8787; range is 0 to 65535.

REST Interface Idle Timeout

The maximum time (in seconds) that an open REST connection
remains active without a request being sent, before the
connection is dropped.

Default is 1200; range is 1 to 86400.

Maximum REST Connections
Maximum number of simultaneous REST Interface client
connections.

Default is 100; range is 1 to 100.

Allow REST Connections
Whether or not to allow incoming provisioning connections on the
REST Interface.

Default is UNCHECKED.

REST Secure Mode

Whether the REST Interface operates in secure mode (using TLS),
or unsecure mode (plain text). NOTE: Changes to the Secure Mode
do not take effect until the udrprov process is restarted.

Default is Unsecure.

Transaction Durability Timeout*

The amount of time (in seconds) allowed between a transaction
being committed and it becoming durable. If Transaction
Durability Timeout lapse, DURABILITY_TIMEOUT response is sent
to the originating client. The associated request is resent to ensure
that the request was committed.

Default is 5; range is 2 to 3600.

Compatibility Mode*

Indicates whether backwards compatibility is enabled.

NOTE: Change to Compatibility Mode may cause the existing
provisioning connections to be dropped.

Default is R10.0+

Provisioning

217

APPENDIX B. LEGACY SPR COMPATIBILITY MODE
UDR can be configured to run in a compatibility mode with the legacy SPR.

When the Compatibility Mode system option (see Appendix A), which is configurable by the UDR GUI, is set to
R10.0+ then UDR behaves as described in the main body of this document. When Compatibility Mode is set to
R9.x, then the differences contained in this appendix apply.

Enabling this configuration option results in the format of some requests and responses being different to the
default UDR behavior. This appendix lists the different requests and responses that enabling the option applies
to.

B.1 Get Row Response Format
UDR returns a data row in the format (Field Based or Element Based) how it is defined or stored. The legacy SPR
returns a (Quota) data row in Element Based format, even though the Quota entity is Element Based.

When configured in legacy SPR mode, UDR returns the (Quota) data row in Field Based format, in the CDATA.
For example:

<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 <field name="cid"/>
 <field name="time"/>
 <field name="totalVolume">0</field>
 <field name="inputVolume">0</field>
 <field name="outputVolume">0</field>
 <field name="serviceSpecific"/>
 <field name="nextResetTime"/>
 <field name="Type">quota</field>
 <field name="grantedTotalVolume">0</field>
 <field name="grantedInputVolume">0</field>
 <field name="grantedOutputVolume">0</field>
 <field name="grantedTime"/>
 <field name="grantedServiceSpecific"/>
 <field name="QuotaState">Valid/Inactive</field>
 <field name="RefInstanceId"/>
 <field name="name">test</field>
</usage>
]]>
 </data>
</subscriber>

NOTE: If more than one matching row is found, then multiple <quota> rows are returned. For example:
<?xml version="1.0" encoding="UTF-8"?>
<subscriber>
 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 :
</usage>
]]>
 </data>
</subscriber>
<subscriber>

Provisioning

218

 <data name="quota">
<![CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<usage>
 <version>3</version>
 :
</usage>
]]>
 </data>
</subscriber>

Provisioning

219

APPENDIX C. MY ORACLE SUPPORT
My Oracle Support (https://support.oracle.com) is your initial point of contact for all product support and training
needs. A representative at Customer Access Support (CAS) can assist you with My Oracle Support registration.

Call the CAS main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support hotline for your
local country from the list at http://www.oracle.com/us/support/contact/index.html. When calling, perform the
selections in the sequence on the Support telephone menu:

1. Select 2 for New Service Request

2. Select 3 for Hardware, Networking and Solaris Operating System Support

3. Select one of the options:

o For Technical issues such as creating a Service Request (SR), Select 1
o For Non-technical issues such as registration or assistance with My Oracle Support, Select 2

You areconnected to a live agent who can assist you with My Oracle Support registration and opening a support
ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

https://support.oracle.com/
http://www.oracle.com/us/support/contact/index.html

Provisioning

220

APPENDIX D. LOCATE PRODUCT DOCUMENTATION ON THE ORACLE HELP CENTER
SITE
Oracle Communications customer documentation is available on the web at the Oracle Help Center (OHC) site,
http://docs.oracle.com. You do not have to register to access these documents. Viewing these files requires Adobe
Acrobat Reader, which can be downloaded at http://www.adobe.com.

1. Access the Oracle Help Center site at http://docs.oracle.com

2. Click Industries.

3. Under the Oracle Communications subheading, click the Oracle Communications documentation link.

4. The Communications Documentation page opens. Most products covered by these documentation sets
are under the headings Network Session Delivery and Control Infrastructure or Platforms.

5. Click on your product and then the release number.

A list of the documentation set for the selected product and release displays.

6. To download a file to your location, right-click the PDF link, select Save target as (or similar command
based on your browser), and save to a local folder.

http://docs.oracle.com/
http://www.adobe.com/
http://docs.oracle.com/

	Oracle® Communications
	Provisioning
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Purpose and Scope
	1.2 References
	1.3 Glossary

	2. System Architecture
	2.1 Overview
	2.2 Provisioning Interface
	2.3 REST Application Server (RAS)
	2.4 Provisioning Clients
	2.5 Security
	2.5.1 Client Server IP Address White List
	2.5.2 Secure Connection using TLS
	2.5.2.1 TLS Certificates and Public/Private Key Pairs
	2.5.2.2 Supported TLS Cipher Suites

	2.6 Multiple Connections
	2.7 Request Queue Management
	2.8 Database Transactions
	2.8.1 ACID-Compliance
	2.8.1.1 Atomicity
	2.8.1.2 Consistency
	2.8.1.3 Isolation
	2.8.1.4 Durability

	2.9 Connection Management
	2.9.1 Connections Allowed
	2.9.2 Disable Provisioning
	2.9.3 Idle Timeout
	2.9.4 Maximum Simultaneous Connections
	2.9.5 TCP Port Number

	2.10 Behavior during Low Free System Memory
	2.11 Congestion Control
	2.12 Pools Spanning UDRs
	2.13 Enterprise Pools
	2.14 Rest Conventions
	2.14.1 HTTP(S) Request Headers
	2.14.1.1 HTTP version
	2.14.1.2 Accept Header
	2.14.1.3 Transfer-Encoding Header
	2.14.1.4 Requests with body content

	2.14.2 HTTP and HTTPS Status Codes and Error Messages

	3. REST Interface Message Definitions
	3.1 Message Conventions
	3.1.1 HTTP Method
	3.1.2 Base URI
	3.1.3 REST URL
	3.1.3.1 Subscriber or Pool in URL
	3.1.3.2 Opaque Data Operations in URL
	3.1.3.3 Field in URL
	3.1.3.4 Transparent Data Row Operations in URL
	3.1.3.5 Transparent Data Row Operations using an Instance Identifier in URL
	3.1.3.6 Transparent Data Row Field Operations in URL
	3.1.3.7 Transparent Data Row Field Operations using an Instance Identifier in URL
	3.1.3.8 Transparent Data Field Operations in URL

	3.1.4 URL Character Encoding

	3.2 Case Sensitivity
	3.3 XML Comments in a Request
	3.4 Request Content in a Request
	3.5 List of Messages

	4. UDR Data Model
	4.1 Subscriber Data
	4.1.1 Subscriber Profile
	4.1.2 Quota
	4.1.3 State
	4.1.4 Dynamic Quota

	4.2 Pool Data
	4.2.1 Pool Profile
	4.2.2 Pool Quota
	4.2.3 Pool State
	4.2.4 Pool Dynamic Quota

	4.3 Date/Timestamp Format

	5. Subscriber Provisioning
	5.1 Subscriber Profile Commands
	5.1.1 Create Subscriber
	5.1.2 Get Profile
	5.1.3 Update Profile
	5.1.4 Delete Profile

	5.2 Subscriber Profile Field Commands
	5.2.1 Add Field Value
	5.2.2 Get Field
	5.2.3 Get Field Value
	5.2.4 Update Field
	5.2.5 Update Multiple Fields
	5.2.6 Delete Field
	5.2.7 Delete Field Value

	5.3 Subscriber Opaque Data Commands
	5.3.1 Set Opaque Data
	5.3.2 Get Opaque Data
	5.3.3 Delete Opaque Data

	5.4 Subscriber Data Row Commands
	5.4.1 Set Row
	5.4.2 Get Row
	5.4.3 Delete Row

	5.5 Subscriber Data Row Field Commands
	5.5.1 Get Row Field
	5.5.2 Get Row Field Value
	5.5.3 Update Row Field
	5.5.4 Delete Row Field

	5.6 Subscriber Data Field Commands
	5.6.1 Set Data Field
	5.6.2 Get Data Field
	5.6.3 Delete Data Field

	5.7 Subscriber Special Operation Commands
	5.7.1 Reset Quota

	6. Pool Provisioning
	6.1.1 Create Pool
	6.1.2 Get Pool
	6.1.3 Update Pool
	6.1.4 Delete Pool
	6.2 Pool Profile Field Commands
	6.2.1 Add Field Value
	6.2.2 Get Field
	6.2.3 Get Field Value
	6.2.4 Update Field
	6.2.5 Update Multiple Fields
	6.2.6 Delete Field
	6.2.7 Delete Field Value

	6.3 Pool Opaque Data Commands
	6.3.1 Set Opaque Data
	6.3.2 Get Opaque Data
	6.3.3 Delete Opaque Data

	6.4 Pool Data Row Commands
	6.4.1 Set Row
	6.4.2 Get Row
	6.4.3 Delete Row

	6.5 Pool Data Row Field Commands
	6.5.1 Get Row Field
	6.5.2 Get Row Field Value
	6.5.3 Update Row Field
	6.5.4 Delete Row Field

	6.6 Pool Data Field Commands
	6.6.1 Set Data Field
	6.6.2 Get Data Field
	6.6.3 Delete Data Field

	6.7 Additional Pool Commands
	6.7.1 Add Member to Pool
	6.7.2 Remove Member from Pool
	6.7.3 Get Pool Members
	6.7.4 Get Pool ID
	6.7.5 Get All Pool Members

	6.8 Pool Special Operation Commands
	6.8.1 Reset Pool Quota
	Appendix A. REST Interface System Variables
	Appendix B. Legacy SPR Compatibility Mode
	B.1 Get Row Response Format

	Appendix C. My Oracle Support
	Appendix D. Locate Product Documentation on the Oracle Help Center Site

