ORACLE

Oracle® Communications Design Studio
Developer’s Guide

Release 7.3.5

E79086-01

February 2017

Oracle Communications Design Studio Developer's Guide, Release 7.3.5
E79086-01
Copyright © 2013, 2017, Oracle and/ or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PUrOIACE ... e ettt ettt eeneeen iX
AN S Lo 1< V< T RSRRTT ix
REIATEA DIOCUINIEIES ...ttt ettt e et e s et e e e s ate e e st e eseaseesssseessaseesssseesassesssnseessnseessnanenan ix
Documentation AcCeSSIDILItYccovviiiiiiiiiiiiiiiiiic s X
Document Revision HiStOTYcccoiiiiiiiiiiiiiiiicccc s X

1 Creating, Packaging, and Distributing Plug-in Projects

About Plug-in Projects ..o 1-1
Creating Plug-in Projects ... 1-1
Packaging Plug-in Projects ... 1-2
Creating Feature Projects ..o 1-2
Creating Update Site ProJECtS........cccccuiiiiiiiiiiiiiiiiiiiiiiccccc e 1-2
Distributing Plug-in Projectscccooiiiiiiiiiiiiiiic e 1-3

2 Working with Design Patterns

About Design Patterns ..o 2-1
About the Design Pattern Frameworkcccoooriiiiiiicccc e 2-1
About the Design Pattern Development Life Cycle.........ccoooviiiiiiiiiiiiicccene 2-2
About the Design Pattern Development Environmentcccooriiiiiiiiiiniice, 2-2
About Design Pattern Folder Structure ..o 2-3

About the pattern.xml File.........ccccccooiiiiiiiirr e 2-4

Developing Custom Design Patternsccocooovvviniiiiiii, 2-7

Creating Design Pattern Plug-in Projects............ccccocoiiiiiiiiiiics 2-7

Modeling Design Patternsccococoviiiiiiiiiiiiiieeere ettt 2-9
Reviewing Design Pattern Configuration Data.........cccooviuiiiiiiiieiiiiiccce, 2-10
Defining a Description for a Design Patternccccccoeciiiiiiiiiiiiiiniiiiiccnne, 2-11
Leveraging Logic from Existing Design Patterns............cccccccoceeciiiiniiiincciccceccceee 2-12
Defining Context for Design Patternsccocooiiioiiiiiiiccc e, 2-13
Defining Target Projects for Design Patterns............ccccccccciiiiiiiiiiiiiiiiccccceeees 2-14
Working With TOKENSccooiiiiiiiiic e 2-17

ADOUL TOKENS ...t 2-17
ADOUL TOKEN TYPES ...t 2-18
About Entity Reference TOKENSccccceuiiiiiiiiiiiiiiiiccrcrccre s 2-18
About Element Reference TOKENScccciiiiiiiiiiiiiiiiiiccs 2-21
About Regular EXPressions ... 2-22

ADOUL TOKEN FUNCHONS......eviieeeiieeeeeceeee et eseaaesseaaeessnreeeenes 2-23

About Token Conditions...........cccciuiiiiiiiiiiiiiiiii s 2-23
Defining Tokens for Design Patternsc.cccoceieiieciiicieccceeeeeeeeeeeenenenenenenens 2-24
Defining Token Groups for Design Patterns...........cccoooiiiiiiiiciiiice, 2-26
Defining the Manifest for Design Patterns..........cccccocvvvnnviiiiniii, 2-26
Working with Design Pattern Actions ... 2-31
About Action EIementscccociiiiiiiiiiiiiiiii s 2-32
About Design Pattern Action TYPes ... 2-32
About Actions Used in Conceptual Modelingcccccoevvvviiriiiiiiiiic 2-33
About the Design Pattern Action Reference Tableccocooiiii 2-35
Defining Actions for Design Patterns ..o 2-36
Defining Custom ACHONS. ..o 2-36
ADbOUt CONAILIONS......cvoviiiiiiiii s 2-37
Defining Inputs for Design Patterns.............cccccovviviiiiiiiiiinnicnscs 2-38
Securing Design Pattern Information............ccooeiiiii 2-39
Invoking Custom Java Code from Design Patterns..............cccocooviiiiiiiiiiiiiiiccnas 2-39
About the IDesignPatternCustomAction Java Interfaceccocoovoveiiiiini, 2-39
About Registering Your Java Classcccccooerieiiiiniciiiccieci s 2-40
About Calling Your Custom Java Code.........cooruiiiiriiiiiiiiccc e 2-41
Testing Design Patterns ... 2-43
Applying Design Patternsccccccooviiiiiiiiiiiiiiii s 2-44
About the Design Pattern Summary Page............ccooeeuiiiiiniiiicciiccc 2-44
Design Pattern EXamplesococooiiiiiiiiiiiceeeee et 2-45
Example: Adding Project Dependencies ..ot 2-45
Example: Defining Tokens for RESOUICES..........ccccouiuiiiiiiiiiiiiiiiiiiciics 2-46
Example: Defining Tokens as Default Values............cccccociiiiiiiiiiiiiicccccceeeeeeees 2-47
Example: Defining Action Subjects or Participants With Values External to Design Patterns
2-47
Example: Supporting Multiple Selections for Entity Reference Tokens...........ccccccoueveunnnne. 2-48
Working with Cheat Sheets...............ccccocooiiiiiiii s 2-49

3 Working with Guided Assistance

Working with Guided ASSIStance..............cccocoeviiiiniiiiii e 3-1
About the Guided Assistance Dialog BOXccococcuiiiiiiiiiiiiiiiceccceeeeceeeeeeeenennes 3-1
Working with Guided Assistance Design Patterns.............coooooiiiiiiiiicce 3-2
Creating Guided Assistance Using Design Patterns.........c.c.cococoeeveiiiinininccieinccieeenen, 3-2
Working with the Guided Assistance Extension Point ... 3-3
Guided Assistance Extension Point Example.........c.cccooriiiiiiiiiiiicce 3-4
Distributing Guided ASSISTANCE.c.ccovvviiiiiiiiiccicrcrrrr e 3-5

About the Design Pattern and Guided Assistance SDK Folderccccocoiiviiiinniinnnn, 3-5

4 Working with the Design Studio Exchange Format

About the Design Studio Exchange Format ..., 4-1
About the Exchange Format Model Lifecycle............cccccocoviinniinnne, 4-2
About the Exchange Format Architecture................cococcooiiiiiiiiiiiicce 4-3
About the Design Studio Model Schemascccccooviniiiiiiiiiiiiis 4-4

Viewing the Design Studio Schemas..............cooooiiiiiiii 4-4

About the Design Studio Exchange Format Model.................ccococoviinnninnini, 4-5

Element Attributes and Children..........ccoioiiiiiieiiiicieceeeeeeeee et 4-5
Entity Attributes and Children ... 4-6
ELEMENE LISES ..etiiiiiieiecieieettce ettt ettt ettt et e s te et e e raesaesraesbeesaesbessaessaessesseessensansaessessaessenneas 4-6
ReElation AEIIDULESccveeeiiiiciceceeteetee ettt ettt ettt et e te e ae s veesaesteesbesssesbessensesseesnenseennas 4-7
INamed Relation LISESccveierireieriieiereecterie ettt et ste st e sseeaessessses e essessesssenseessessesssessenses 4-8

5 Extending Design Studio

About Extending Design Studio ... 5-1
Extending Design Studio with Action Commandscccoooviiiiiie 5-1
Adding the Design Studio Action Command Example to a Workspace..........c.cccoccoeueieincen. 5-1
About the design.studio.example.action.command Example Project........c.ccccccceueueviricinnnnes 5-2
Adding Commands to the Studio Ment ... 5-3
Adding Commands to the Design Studio Toolbar ... 5-3
Adding Commands to the Solution View Context Menu...........ccccccevvviiiiiniininnincncnn, 5-4
Adding Commands to the Studio Projects View Context Menu ..o 5-5
Adding Commands to the Package Explorer View Context Menu............cccccevcuiiuiinnnnns 5-7
Adding Commands to the Project Explorer View Context Menu..........cccccovvvivinininiiinnnn. 5-7
Configuring the Visibility of Commands Using the Property Tester ..o 5-8
Configuring the Visibility of Commands Using the File Extension of Resources.......... 5-10
Obtaining the Model From a Resource Using the Design Studio Model Java API........ 5-11
Obtaining the Model From an Entity Relation Using the Design Studio Model Java API......

5-12
Obtaining the Model From an Element Relation Using the Design Studio Model Java API ..

5-13
About Design Studio View Identifiers............cccocovviiiiiiiii 5-14
Adding Custom Logic to Design Studio Builds............cccccccoviiiiiiniii 5-14

6 Working with Reports

About Design Studio Reports...........cccccovvviiiiiiiiiiiiiiiiiii 6-1
About the Design Studio Reporting Architecture...........cccooevvireiiiniiiniiiecce 6-1
About the Design Studio Reporting Life Cyclecooiiiiiiiiiiececceeeeeeeeeneeeennes 6-2
About Report DESIZNSccuoiimiiiiiiiiciect 6-3
About the Report DeSIZNeTccoiiiiiiiiiiiii e 6-4

About the Expression BUilderccccociiiiiiiiiniinceeere e 6-4
About Report GeNeTration..........cccuoiiiiirieiiicieec e 6-5

ADOout Data SOUICEScooooviiiii s 6-6

ADout Data Setsccovoviiiiiiiiiii s 6-7

Adding the Report Design Example to the Workspace ..o, 6-8

Customizing Existing Design Studio Reports.............ccocooiiininiinicceceeeeeeeeee 6-8

Developing Custom Report Designs.............ccccovviiiiiiiiiiiiiiiii 6-9
Creating Report Design Files...........cooiiiiiii 6-11
Creating Design Studio Report Parametersc.ccccccccciciriiiiinnieirrnrcsreeeeesseeeeenes 6-12
Creating the Design Studio Data Source Entity..........cccccevviiiiiniiiiiiiiiiicc, 6-12
Creating Data Set ENtities ... 6-14
Defining the Data to Add to REPOIEScccouiiiiimiiiiiiiicccccccc s 6-15

Defining Computed Columns for Data Setsc.cccocevvvviiiiiiiiiiiiii 6-15

Defining Filtering Conditions for Data Sets............ccccoouoiiiiiiii 6-15
Merging Data Sets........cccviiiiiiiiiiiiiiii s 6-16
Filtering Data Sets for Tablescoooiiiii 6-18
INESHNG TaDIEScoviiiiiiiiii s 6-19
Concatenating Rows into Comma-Separated Values..........c.ccocooooinniiinniiiinnininnns 6-20
Defining Data Presentation in RepOrtsccccueviiiiiiiiiiii 6-21
Hiding Content Based on Output Format............ccooooiiiiii 6-21
Defining Value Mapping RULEScccccociiiiiiiiiiiiiicceeceeceeeeeeee e 6-21
Defining Value Highlighting Rules...............coooii 6-22
Adding Additional Report Design Elements............cccccoeuvivinnininiiiiinniiiiicicne, 6-23
Adding the Current Date to a Reportc.ccoeveiiieiiiiiiiiiiiiiicccces 6-23
Adding Page NUMDETS..........ccuoiiiiiiiicici s 6-23
Dynamically Selecting Imagesccccccvuviviviiiiiiininiiiiiiiiiiccccs 6-24
Creating Internal Links Between Report Itemscccccovvveiiniiiiinn 6-24
Creating Table of Contents Entries...........c.ocoooriiiiiiii 6-25
Defining Text as HTMLccccccooiiiiiiiiiiiiicccre s 6-26
Working with XPath Expression Patterns ..o 6-27
About XPath Expression Patterns for ROwW Mappingcccccceeeereiiiiiniciiciccieccieece, 6-27
About XPath Expression Patterns for Column Mappingccccceeveeiniieeininccnnicenenne, 6-28
About XPath Expression Parameterscoocevoiicieiiiiiciiiiicicec i 6-30
Working with Report Data Filters.............cccccocoviiiiiiiiiiiiis 6-30
Testing Report DeSIGNS..........ccouiiiiiiiiiiiicieccce et 6-31
Testing Custom Report Designs Using the Report Designercccoceouiieieiiiiciciecnnnen, 6-31
Testing Custom Report Designs Using the Generate Report Wizard ..o, 6-31
Working with the Design Studio Report Examples ..o 6-32
About the Design Studio Report Design Example..........c.c.coooiriiioiiiiiiiiicccccce, 6-32
Troubleshooting Report Designs............ccccccoviiiiiiiiiiiiiiiiiiiiiic s 6-33
Adding Reports and Report Categories to the Generate Report Wizardc.ccccoo. 6-33
Extending Design Studio Reporting ... 6-36
About the Design Studio Report Processor Exampleccccccoccvviniiiinnninnnnnnenes 6-36
Extending Reporting Tasks by Adding Report Processors..........ccccouoeeueiniiucieieiniciciciccnen, 6-37

7 Working with Design Studio Model Java API

8

vi

About the Design Studio Model Java APcccccooiiiiiiiiiiii e 7-1
About Design Studio Model Java API Utility Classes and Methodsccccoccivnniinnnnn. 7-2
About Design Studio Model Java API Package Dependenciescccccoovvinnninnnnnnininnnn. 7-3

Importing Entities Into Design Studio

Importing Inventory Entities ... 8-1
Adding the Design Studio Import Inventory Examples to a Workspace..........c.c..cocovuereiennnn. 8-1
About the design.studio.example.import.inventory Example Project........c.cccoevvrvvrinnincncnce. 8-2

Adding Import Commands to the Studio Projects View Context Menu............ccccueueuee. 8-2
Invoking the Import Inventory API Using an XML File........cccccocovoviiiiiiinncnicnnen 8-3
Invoking the Import Inventory API Using a Resource Objectcccccoeueueuiucuceicuiicinnnnnns 8-4
Adding External Data to an Inventory Project ... 8-5
Accessing Import Errors and Warningsccccccoeevviviininiinnnninnrnsssseseecseseeene 8-5

Viewing the Design Studio Inventory Data Schema...........cccoooiiiii

9 Working with Source Control

About Source CONLIOL...........cccoveviiiiiiiiiiiiii s
About Source Control Strategies for Design Studio Files ...,

10 Deploying Cartridges to Environments

Deploying Cartridges to Run-Time Environments with the Cartridge Management Tool ...
Working with Additional Cartridge Deployment Tools.............cccccccciviiiniiiniiiiiiiie,

11 Working with Externally Created Data Schemas

About Design Studio Data Schemasccccooiiiiiiiiii
Modeling Data Using XML Data Schemas...........cccccccoeviiiiiiiiiiiiiiiiiis
About Supported XML Schema Featurescccccoooviiiiiiniiiiii
About Unsupported Schema Directives and Elementscccoccveeinivnennennccnineineenes

12 Design Studio Platform Tools

Working with Oracle Enterprise Packet for Eclipse...........cccccccoooiiiiiiiiniiiniiiccce,
About Java Development TOOISccoiiiiiiiiiiiiiiic s
About Database Development TOOIS............cccoiuiiiiiiiiiiiic e,
About Application and WebLogic Server Tools.........ccccccvviniiiniiiiiiiniiiiiicce
About Web Application TOOIS.........ccceiiiiiiiiiiiiiiiiic s
About JPA and Oracle CORerence TOOIS........cceruerierieieieieiieiese sttt

About Third-Party TOOIS.............cccooiiiiiiiiiii s

10-1

vii

viii

Audience

Preface

This guide explains how to work with Oracle Communications Design Studio design
patterns, guided assistance, and externally created schemas. It explains how to
automate builds and provides information about implementing continuous integration
to design, create, and deliver operations support system (OSS) solutions across Oracle
Communications products.

This guide assumes that you have a conceptual understanding of Design Studio and
have read Design Studio Concepts.

This guide includes examples of typical development code used in given situations.
The guidelines and examples may not be applicable in every situation.

This guide is intended for developers who work with Design Studio to build the code
to support the metadata-driven components of Design Studio projects. You should
have a good working knowledge of development languages such as Java, XPath,
XQuery, or SQLcreate service fulfillment solutions.

Related Documents

For more information, see the following documents in the Design Studio
documentation set:

» Design Studio Installation Guide: Describes the requirements and procedures for
installing Design Studio.

» Design Studio Concepts: Explains how to use Design Studio to manage and
configure data for use across Oracle Communications service fulfillment products.
This guide provides a conceptual understanding of Design Studio.

» Design Studio System Administrator’s Guide: Describes information about
administering Design Studio. This guide includes information about configuring
deployment settings for test environments, backing up and restoring Design
Studio data, and automating builds.

» Design Studio Security Guide: Provides an overview of security considerations,
information about performing a secure installation, and information about
implementing security measures in Design Studio.

s Design Studio Help: Provides step-by-step instructions for tasks you perform in
Design Studio.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing

impaired.

Document Revision History

The following table lists the revision history for this guide:

Version

Date

Description

E79086-01

February 2017

Initial release.

1

Creating, Packaging, and Distributing Plug-in
Projects

This chapter provides information about how to work with plug-in projects in Oracle
Communications Design Studio. It provides a short overview of plug-in projects and
provides instructions for creating, packaging, and distributing plug-in projects.

About Plug-in Projects

A plug-in is a modular, extendable, and sharable unit of code that enables integration
of tools within Eclipse. Plug-ins are saved in Eclipse plug-in projects. You use plug-in
projects to package and deliver guided assistance, design patterns, and reports to other
design studio users.

Plug-in projects include a MANIFEST.MF file that describes the plug-in, the
dependencies, a plugin.xml file to identify the extension points, and a set of Java
classes to implement the extension points.

Plug-in projects are grouped into feature projects. Feature projects are groups of
plug-ins packaged together into a single unit. You use update sites to organize feature
projects and to make the feature projects available to your team members for
installation. In this manner, team members can install and update the groups of
plug-ins as a single unit.

For example, a plug-in project can include any number of design patterns or report
designs, and a feature project can be associated with any number of plug-in projects.
Feature projects are associated with update site projects, and update sites are
distributed to solution designers to enable access to the design patterns.

See the Eclipse Plug-in Development Environment Guide for more information.

Creating Plug-in Projects

To create a new plug-in project:

1. In Design Studio, from the File menu, select New, and then select Project.
The New Project dialog box appears.
Expand the Plug-in Development folder and then select Plug-in Project.
Click Next.

In the Project Name, enter a name for the plug-in project.

a » w0 Db

Set the values for the remaining fields with information specific to your
installation.

Creating, Packaging, and Distributing Plug-in Projects 1-1

Packaging Plug-in Projects

10.

For more information about the Plug-in Project wizard fields, see the Eclipse
Plug-in Development Environment Guide.

Click Next.
The Content page appears, which enables you to customize the plug-in data.
In the Options area, deselect the Generate an activator option.

Set the values for the remaining fields with information specific to your
installation.

For more information about the Plug-in Project wizard fields, see the Eclipse
Plug-in Development Environment Guide.

Click Finish.
Design Studio prompts you to open the Plug-in Development perspective.
Click Yes.

Design Studio switches to the Plug-in Development perspective and displays the
project manifest (MANIFEST.MF) in the Plug-in Project editor.

Packaging Plug-in Projects

To package a plug-in project:

Create a feature project to contain the plug-in project. See "Creating Feature
Projects” for more information.

Create an update site project in which you bundle the feature projects. See
"Creating Update Site Projects" for more information.

Creating Feature Projects

To create a feature project:

1.

a & 0N

From the File menu, select New and then select Other.
The New Project wizard appears.

Expand the Plug-in Development folder.

Select Feature Project and click Next.

In Project name field, enter a name for the feature project.

Accept the defaults for the remaining fields, or enter values specific to your feature
project.

Click Next.
The Referenced Plug-ins and Fragments page appears.
Select the plug-in projects to include in the feature.

Click Finish.

Creating Update Site Projects

To create an update site project:

1.

From the File menu, select New and then select Other.

The New Project wizard appears.

1-2 Design Studio Developer's Guide

Distributing Plug-in Projects

Expand the Plug-in Development folder.
Select Update Site Project and click Next.
In Project name field, enter a name for the update site project.

Click Finish.

o ©Dbd

The new project opens in the Update Site Map editor.
6. Click New Category.
The Category Properties area appears.
7. Inthe ID field, enter a unique ID for the new category.
8. In the Name field, enter a name that will appear for the category in the update site.
9. Inthe Managing the Site area, select the new category and click Add Feature.
The Feature Select dialog box appears.
10. Select the feature project that contains your plug-in projects and click OK.

If you do not see your feature listed, begin typing the name of the feature in the
Feature Selection dialog box.

11. In the Managing the Site area, click the Build All button.

Distributing Plug-in Projects

Plug-in projects are grouped into features, and features are made available to users
through update sites. To distribute custom functionality, such as report designs and
design patterns, you create a feature project using the Feature Project Creation wizard
and add the plug-in project to the feature project. When you are finished, contact your
system administrator to request that the new feature be added to the Design Studio
update site.

See Eclipse Plug-in Development Environment Guide for information about using the
Feature Project Creation wizards. Design Studio report design examples demonstrate
how to configure a feature project.

Creating, Packaging, and Distributing Plug-in Projects 1-3

Distributing Plug-in Projects

1-4 Design Studio Developer's Guide

2

Working with Design Patterns

This chapter provides information about design patterns, how to create design
patterns in Oracle Communications Design Studio, and how to distribute design
patterns.

About Design Patterns

Design Studio design patterns are wizards that automate complex, repeatable tasks,
and that enable team members with varying levels of skill to complete those tasks.
When extending solutions, you may be required to repeat design activities multiple
times and in a specific order. Design patterns enable you to define a generic pattern
that, when executed, automates the creation of model objects and their relationships in
a user’s workspace. Your teams can use design patterns to reduce errors, simplify
modeling, and increase productivity.

Typically, designers create design patterns using information identified from existing
reference implementations and sample solutions. For example, a designer can identify
common modeling tasks and the key resources included in those tasks, then create a
design pattern to formalize those tasks into a reusable modeling pattern (one that is
not specific to any domain). The designer then distributes the design pattern to
solution design teams.

Solution design teams install design patterns as Design Studio features and, using
wizards, apply the patterns to their workspace. These wizards ensure compliance with
the best practices and reduce the need for coding and complex configuration.

When a user runs a design pattern, a domain-specific implementation of the design
pattern is executed in the user workspace. For example, you might create a design
pattern that creates customer edges or provider edges in a VPN. Or, a user might run a
design pattern to set up a Technical Order Management layer or a Service Order
Management layer for a solution.

About the Design Pattern Framework

The design pattern framework includes:
= A Data Model

The data model includes all of the entities and data elements that realize the
pattern, how that data is organized in the workspace, the expected user input and
how the input is applied to the workspace, and the embedded Help available
when the user runs the design pattern.

m A User Interface

Working with Design Patterns 2-1

About Design Patterns

Users interact with design patterns using the Design Pattern wizard. The wizard
collects information from the user. The information that the design pattern
requires can be organized onto different wizard pages, can be augmented with
hints or embedded help, and can be validated when entered by the user.

= AnImplementation Processor

When a user completes the Design Pattern wizard and clicks the Finish button, the
design pattern applies the user input against the entities and data elements
defined in the design pattern data. The design pattern generates and organizes the
entities and data elements in the user workspace.

About the Design Pattern Development Life Cycle

The life cycle of a design pattern begins with the identification and isolation of the
pattern itself. Working from a reference implementation, designers identify the
repeatable pattern, which comprises the resources and the relationships of the
resources to the workspace.

The tasks in the life cycle of a design pattern are completed by two different actors, a
designer who creates and distributes design patterns, and a user (solution designer)
who installs the design patterns and then runs the patterns to facilitate solution
development.

Designers do the following:

1. Evaluate common modeling tasks and key resources in reference implementations,
sample solutions, and best practices. then identify which repeatable tasks can be
automated in a design pattern.

2. Develop design patterns using the identified resources as key components of the
design patterns.

3. Test design patterns by running them in the Design Studio environment.

4. Include design patterns in plug-in projects, associate the plug-in project to a
feature project, and associate the feature project to an update site.

5. Distribute update sites to Design Studio users.
Design pattern users do the following:
1. Install features based on their role and objectives.

2. Run design patterns to assist with solution design.

About the Design Pattern Development Environment

Design patterns are built into Eclipse plug-in projects, and plug-in projects are
associated with feature projects. See "About Plug-in Projects” for more information.

When creating feature projects, include all logically related design patterns. For
example, you might include in a single feature project all design patterns applicable to
OSM-IPSA integrations to ensure that the patterns are always installed together.
Oracle recommends that you create separate features for design patterns that target
different audiences.

2-2 Design Studio Developer's Guide

About Design Patterns

Figure 2-1 Design Pattern Development Environment

Feature

\ Plug-in

The number of plug-in projects that you use depends on the number of design pattern
designers and whether the team members prefer to own their own plug-in projects.
For example, team members may prefer to manage their own plug-in projects during
the development cycle to avoid difficult source code merges.

To facilitate ease of distribution and maintenance, partition the design patterns across
plug-ins so that common design patterns can be distributed to distinct audiences.

About Design Pattern Folder Structure

In a design pattern plug-in project, each pattern is assigned a folder:
plug-inID / pattern /patternlD

where plug-inID is the name of the plug-in project and patternID is the name of a
design pattern in the pattern folder.

Designers develop all of the design pattern resources in a folder structure. Figure 2-2
illustrates an example of the folder structure as viewed in the Package Explorer view
when you create a plug-in project using the Design Pattern Development design
pattern.

Working with Design Patterns 2-3

About Design Patterns

Figure 2-2 Design Pattern Folder Structure Example

[Package Explorer 52 | 2 Plug-ins B®| %
4 =2 SamplePattern_Plugin
B\ JRE System Library [J25E-1.5]
=), Plug-in Dependencies
> (2 src
(=% cheatSheet
(= META-INF
4 = pattern
4 (= SamplePattern

4 [~ cheatSheet
[SampleCheatSheet.xml
4 (= dataDictionary
|| Service_Data_companion.xsdc.pat
\E| Service_Data.xsd.pat
4 = model
4 (= entities
2| Assigned_Interface.devicelnterface.pat
2| Service_Configuration.configuration.pat
\2| Service_Spec.service.pat
4 = rules
\Z| DESIGN_ASSIGN_Service.rst.pat
\Z| DESIGN_ASSIGN Service.ruleset.pat
4 (= resource
4 (= functions
X Service2InterfaceBiParamMap.xml
X ServiceZlnterfaceBiParamMapChange.xr
|X] ServiceZInterfaceBiParamMapRemove.xr,
&) DESIGN_ASSIGN Service.drl
X| patternxml

In your plug-in project pattern folder, there exists a folder for each design pattern. For
example, in Figure 2-2, the pattern folder contains a single design pattern called
SamplePattern.

Each design pattern folder contains subfolders and a pattern.xml file:

= cheatSheet: include one or multiple cheat sheets. For example, you might include
a cheat sheet that the design pattern initiates to provide additional information to
the user who runs the design pattern.

= dataDictionary: include all data schemas and all data dictionary companion files
relevant to the entities generated by the design pattern.

= model: include the definitions of the entities generated by the design pattern. For
example, you include all of the resources (suffixed with .pat extension) generated
by the design pattern.

= resource: include the design pattern resources that are not Design Studio model
entities. For example, this folder can contain Java or XML files.

= pattern.xml: define the contents of the design pattern model.

About the pattern.xml File

Each design pattern has a pattern.xml file that defines the contents of the design
pattern model. In addition to the high-level attributes defined for the pattern.xml file
(for example, the namespace, pattern ID, and name attributes), the file also includes
the sections in Table 2-1.

2-4 Design Studio Developer's Guide

About Design Patterns

For detailed descriptions of the elements and attributes in the pattern.xml file, see the
Design Pattern XML Schema, which is named DesignPattern.xsd in the schema folder,
available in the Design Studio software package, which is available from the Oracle
software delivery website:

https://edelivery.oracle.com

Table 2-1 pattern.xml Sections

Element Description

version The version number of the design pattern. For example,
you can specify whether the design pattern is a major or
minor release, or part of a service pack release.

description The information that describes how the design pattern can
be used. This information is displayed to users on the
Design Pattern wizard Introduction page.

See "Defining a Description for a Design Pattern" for more
information.

includes The list of existing design patterns in a workspace from
which a design pattern leverages logic.

See "Leveraging Logic from Existing Design Patterns" for
more information.

contexts The places in the Design Studio user interface where the
design pattern is accessible. You can define multiple
contexts for a design pattern to enable users to access the
design pattern from multiple places in the application.

See "Defining Context for Design Patterns" for more
information.

projects The valid target projects into which resources are saved
when the design pattern is applied.

See "Defining Target Projects for Design Patterns" for more
information.

tokens Placeholders that represent information to be entered by
the user applying the design pattern. The information
entered by the user customizes the resources in the
manifest when the design pattern is applied. Tokens can be
embedded in the target locations of resources in the
manifest, in text documents that will be copied to a user’s
workspace, and in other tokens.

See "Working with Tokens" for more information.

tokenGroups The pages that appear in the Design Pattern wizard.
Design pattern tokens are organized as pages in the Design
Pattern wizard, where each page is a token group. You can
define any number of token groups in a design pattern,
and each token is associated with a single token group.

See "Defining Token Groups for Design Patterns" for more
information.

manifest The list of resources included in the design pattern. The
design pattern copies these resources to a user’s
workspace when the design pattern is applied. You can
include in a manifest any type of resource that is valid in
an Eclipse workspace.

See "Defining the Manifest for Design Patterns" for more
information.

Working with Design Patterns 2-5

About Design Patterns

Table 2-1 (Cont.) pattern.xml Sections

Element Description

actions The actions that a user can perform on resources or inputs,
such as creating relationships between or adding data
elements to inputs or resources.

See "Working with Design Pattern Actions" for more
information.

inputs The default information provided to the Design Pattern
wizard to automatically populate token names. For
example, if a design pattern creates actions for services,
when a user runs the design pattern they can specify an
existing service entity as input, and the design pattern uses
that entity to generate the action.

See "Defining Inputs for Design Patterns" for more
information.

customActions The custom actions that you define to call custom Java
code from a design pattern.

See "Defining Custom Actions" for more information.

Figure 2-3 displays part of an example pattern.xml file in the Design Studio default
XML editor:

Figure 2-3 pattern.xml File

<?xml version="1.8" encoding="UTF-8"?>
= <DesignPattern xmlns="http://oracle.communications/cgbu/sce/pattern/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"”
xsi:schemalocation="oracle.communications/cgbu/sce/pattern/DesignPatte,
id="reserveEquipment"
name="Reserve Eguipment™>
= <version>
<major>1</major>
<minor>@</minor>
<maintenance>@</maintenance>
</version>
= <description>&1t;b>Reserve Equipment&1t;br> &1t bré>
Explanation of the design pattern goes here.
&1t;br>
Remember to escape special characters if using html tags.</description
= <contexts>
= <context>
<scope>project</scope>
<id>0SM</id>
<id>UIM</id>
</context>
<cheatSheet>»cheatSheet</cheatSheet>
</contexts>
<projects>
= <project id="reserveEquipmentOSMProject” name="Reserve Equipmen
<description>Reserve Equipment Function Project</descriptio
<typeIld>0SM</typeld>
</project>
= <project id="reserveEquipmentUIMProject” name="Reserve Eqguipmen
<description>Reserve Equipment Inventory Project</descripti
<typeld>UIM</typeld>
</project>
</projects>

<tokens>
& <token id="equipment" name="Equipment" tokenGroup="reserveEquipme

Design Studio Developer's Guide

Creating Design Pattern Plug-in Projects

Developing Custom Design Patterns

You create custom design patterns using groups of resources identified from an
existing reference implementation or from a sample solution. After you create a design
pattern, you package and distribute it to solution design teams. Solution design teams
can install a design pattern as a Design Studio feature and, using a wizard, apply the
pattern to their workspace.

To develop a custom design pattern:

1.

Create and switch to a clean workspace.

See the Design Studio Help for information about switching workspaces.
Create a design pattern plug-in project.

See "Creating Design Pattern Plug-in Projects” for more information.
Model the design pattern.

You model design patterns in the pattern.xml file. See "Modeling Design Patterns"
for more information.

Create custom Java code.
See "Invoking Custom Java Code from Design Patterns” for more information.
Build the design pattern plug-in project.

A successful project build indicates that the design pattern is built and ready for
testing. See the Design Studio Help for more information about building projects.

Test the design pattern.

See "Testing Design Patterns” for more information.
Package the design pattern project.

See "Packaging Plug-in Projects" for more information.
Distribute the design pattern project.

See "Distributing Plug-in Projects" for more information.
Instruct team members to apply the design pattern.

See "Applying Design Patterns" for more information.

Creating Design Pattern Plug-in Projects

You can create design pattern plug-in projects using the Design Pattern Development
design pattern. This design pattern creates the basic structure for design pattern model
files.

To create new design pattern plug-in projects:

1.

Verify that the Oracle Communications Design Studio Design Pattern Feature is
installed.

Contact your system administrator if this feature is not available from your
organization’s update site.

In Design Studio, from the Studio menu, select Design Pattern.
The Design Pattern dialog box appears.

Expand the Others folder and then expand the Design Pattern Development
folder.

Working with Design Patterns 2-7

Creating Design Pattern Plug-in Projects

4. Select Design Pattern Development and then click Next.
The Design Pattern wizard Introduction page appears.

5. Read the information on the Information page, and then click Next.
The Select Project page appears.

6. Select an existing plug-in project to be used for the design pattern development or
create a new design pattern plug-in project.

To create a new project:
a. Click New.
The New Project page appears.
b. Expand the Plug-in Development folder and select Plug-in Project.
c. Click Next.
The Plug-in Project page appears.
d. In the Project Name, enter a name for the design pattern plug-in project.

e. Accept the default values for the remaining fields or replace the default values
with information specific to your installation.

f. Click Next.
The Content page appears.

9. Accept the default values for the remaining fields or replace the default values
with information specific to your installation.

h. Click Finish.

Design Studio prompts you to open the Plug-in Development perspective.
Oracle recommends that you develop design patterns using this perspective.
Click Yes to switch to the Plug-in Development perspective.

Design Studio populates the Design Pattern Plug-in Project field with the
project you created.

7. Click Next.
The Plug-in Information page appears.
8. Enter all required information, and then click Next.
The Summary page appears.
9. Review the summary information, and then click Finish.

Design Studio populates the project with information necessary to build a design
pattern. The information includes a manifest, a resource directory, and all
plug-in-related configuration for the packaging of the design pattern. Design
Studio opens the Design Pattern Development cheat sheet in the Help view.

10. In the Design Pattern Development cheat sheet, click the Click to Begin link and
complete the steps in the cheat sheet.

For example, the cheat sheet steps help you with tasks such as copying resources
to the project, populating the design pattern manifest, building the design pattern,
testing, and distributing the design pattern.

2-8 Design Studio Developer's Guide

Modeling Design Patterns

Modeling Design Patterns

Before you can begin to model the design pattern content, identify required resources
from a reference implementation or a sample solution and copy the required resources
to the location of your design pattern in your plug-in project.

To model design patterns:
1. Review the design pattern configuration data.
See "Reviewing Design Pattern Configuration Data" for more information.

2. Open the design pattern pattern.xml file.

Note: Use the Design Studio default XML editor to edit the
pattern.xml file. This default editor includes a Design tab with
right-click context menu options and a Source tab to view the XML.
Additionally, the default XML editor includes content assistance to
help with tag completion and tag documentation.

For detailed information about the elements and attributes in the
pattern.xml file, see the Design Pattern XML schema, which is named
DesignPattern.xsd and is located in the Design Studio software
package.

To open the pattern.xml file:

a. Open the Plug-in Development perspective. See the Design Studio Help for
information about opening perspectives.

b. Click the Package Explorer tab.

c. Navigate to the location of your design pattern.

d. Inthe design pattern root directory, double-click the pattern.xml file.
The pattern.xml file opens in an XML editor.

3. Add a description of the design pattern that displays on the design pattern
Introduction page.

See "Defining a Description for a Design Pattern” for more information.

4. (Optional) Enable designs patterns to leverage the logic defined in other design
patterns.

See "Leveraging Logic from Existing Design Patterns" for more information.
5. Define the context for the design pattern.
See "Defining Context for Design Patterns" for more information.
6. Define the types of projects into which the design pattern resources can be saved.
See "Defining Target Projects for Design Patterns” for more information.
7. Define the tokens for the design pattern.
See "Defining Tokens for Design Patterns" for more information.
8. Define the token groups for the design pattern.
See "Defining Token Groups for Design Patterns" for more information.

9. Define the manifest for the design pattern.

Working with Design Patterns 2-9

Modeling Design Patterns

10.
11.
12.
13.

14.

Reviewing Design

See "Defining the Manifest for Design Patterns" for more information.
Define actions for the design pattern.

See "Defining Actions for Design Patterns" for more information.
Define custom actions for the design pattern.

See "Defining Custom Actions" for more information.

Define the inputs for the design pattern.

See "Defining Inputs for Design Patterns" for more information.

Define a description for the design pattern.

See "Defining a Description for a Design Pattern" for more information.
(Optional) Write a new cheat sheet for the design pattern.

See "Working with Cheat Sheets" for more information.

Pattern Configuration Data

Before configuring design patterns, review the MANIFEST.MF, build.properties, and
plugin.xml files. The MANIFEST.MF file is in the META-INF directory. The
build.properties and plugin.xml files can be found at the root of the project. These
files contain dependencies to the required packages needed for design pattern
development. They also include the registration and specific build properties required
to build and package your design pattern.

Note: When you are working on design patterns, many of the
artifacts are not visible in standard Design Studio views. Use the
Plug-in Development perspective and the Package Explorer view
when working with design patterns. See the Design Studio Help for
information.

If you are configuring the plug-in project manually (and not creating the design
pattern plug-in project using the Design Pattern Development design pattern), ensure
that you configure the data noted in the following files:

MANIFEST.MF

The name and version of the project and the required plug-ins. The
oracle.communications.sce.pattern.core plug-in must be named as a dependency
or your design patterns will not be visible when your plug-in is installed.

build.properties

The content that will be visible to other plug-ins after you have packaged your
project. If you intend to locate design patterns in other folders, you must manually
configure the location in the bin.includes section of the document.

plugin.xml

The design patterns contained by this plug-in. The plugin.xml includes an
extension point named oracle.communications.sce.pattern.core.designPattern.
This extension point has one entry in the section that points to the location of the
pattern. You can add additional entries to package multiple design patterns within
a single plug-in project. The Name and ID fields of the registration of a design
pattern are not visible to Design Studio users. Rather, they are used only to add
clarity to the registration. The ID field must be unique.

2-10 Design Studio Developer's Guide

Modeling Design Patterns

You can edit the content of these files using the Plug-in Manifest editor. See the Eclipse
Plug-in Development Environment Guide for more information about using the Plug-in
Manifest editor.

Defining a Description for a Design Pattern

You can provide a description of a design pattern to describe what the design pattern
does when users apply the pattern, information that users require before running a
design pattern, and what is required from users after applying the pattern. The
description appears on the first page of the Design Pattern wizard.

To add a description to a design pattern:

1. With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

2. In the description element, provide a description of the design pattern.
Escape special characters if you use HTML tags.

3. (Optional) Insert images into the description.

The following is an example of the description element:

<description>
dpltitle< /b>

Enter explanation of the
design pattern here.

Escape special characters if
using HTML tags.
<img
src="images\sampleImage.jpg"
alt="This is a sample image"
style="width:128px;height:128px;display: block;margin-left:
auto; margin-right: auto;"
align="middle"><
/img>
</description>

Inserting Images into Description Elements

You can include images on a design pattern Introduction page by inserting the image
in the description element of the pattern.xml file.

To insert images into the Introduction page, you define an img attribute with the
following child attributes:

= Use the src attribute to specify the location of the image.

= Use the alt attribute to specify alternate text for an image. For example, you can
use this attribute to insert text if the original image cannot be displayed because of
slow connections or errors in the src attribute. This attribute is optional.

= Use the style attribute to specify the size of the image. Also, you use this attribute
in conjunction with the align attribute if you want more control over the image
alignment. This attribute is optional.

= Use the align to specify the alignment of an image on the page. You can align the
image with the left, middle or right of the page. If you don’t define an alignment,
the image is left-aligned. This attribute is optional.

Note: Inserting a high-resolution image may produce a horizontal
scroll in a browser. An HTML limitation prevents the appearance of
the horizontal scroll if the image is right-aligned.

Working with Design Patterns 2-11

Modeling Design Patterns

You can also add images on the design pattern Introduction page by inserting a
CDATA section:

<description>
&1lt;b>dpltitle< /b>

Enter explanation of the
design pattern here.

Escape special characters if using
HTML tags.

<! [CDATA[
<img src="images\HomePhoneService.jpg" alt="Home Phone Service
image is not available" style="width:128px;height:128px;display:
block;margin-left: auto; margin-right: auto;" align="middle">
11>

</description>

Leveraging Logic from Existing Design Patterns

You can create a design pattern, called a composite design pattern, that leverages the
logic of existing design patterns and combines that logic with its own configuration.
The ability to share logic among design patterns enables you to define common logic
in a single design pattern and leverage that logic, as required. When users run a
composite design pattern, the design pattern presents all of the fields, pages, and
custom logic defined in all of the leveraged design patterns.

About Composite Design Patterns
When creating and running composite design patterns, consider the following:

= You can leverage logic from any valid design pattern installed in the workspace.

= You can leverage logic only from the following design pattern elements: manifest,
projects, tokenGroups, tokens, actions, inputs, and customActions.

= When an element (such as a project element, token element, and so forth) defined
in a composite design pattern is defined with an id attribute that is identical to
that defined for an element in a leveraged design pattern, the element defined in
the composite design pattern is used.

» Ifidentical element id attribute values exist in multiple leveraged design patterns,
the value defined in the design pattern that appears first in composite design
pattern includes element list is used.

= When a user runs a composite design pattern, pages (tokenGroup elements)
defined in the composite design pattern appear before all pages defined in the
leveraged design patterns. When the composite design pattern leverages logic
from multiple existing design patterns, the pages defined in the leveraged design
patterns appear in the order defined by includes element list in the composite
design pattern.

= When a user runs a composite design pattern, the tokens defined in the composite
design pattern appear before all tokens defined in a leveraged design pattern.
When the composite design pattern leverages logic from multiple existing design
patterns, the tokens from the leveraged design patterns appear in the order
defined by includes element list in the composite design pattern.

Defining the <includes> Element List:

When creating a composite design pattern, you define an includes element in the
pattern.xml file to which you add the list of design patterns that contribute logic.

To define an includes element in the pattern.xml file:

2-12 Design Studio Developer's Guide

Modeling Design Patterns

1. With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

2. Add an includes element, and then add one or more child include elements.
3. Define the following attributes for each include element:

= For the id attribute, enter a value that uniquely identifies the leveraged design
pattern.

= For the pattern attribute, enter the unique identifier of the design pattern from
which this design pattern leverages logic.

The following is an example of the includes element:

<includes>
<include id="Add_New_ RFS_to_Tech_Domain" pattern="addRfstoExistingRfs" />
<include id="Add_New_Resource_to_Tech_Domain" pattern="addResourceToRfs" />
</includes>

Defining Context for Design Patterns

You define the context for a design pattern to specify where in the user interface the
design pattern will be accessible and to group design patterns in the Design Pattern
Selection dialog box.

Because there are a large number of design patterns delivered with Design Studio, and
because individual users can add to their environments additional custom design
patterns developed post-market, defining context for your design patterns provides
guidance to users by narrowing the scope of the design patterns that are available for a
task.

To define context for design patterns:

1. With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

2. Add a contexts element and then add a context child element.

3. In the context child element, add a scope element.
The scope identifies where in Design Studio the design pattern will be accessible.
Enter one of the following values:

= project: use this value to make the design pattern accessible when a project is
selected in the Studio Projects view.

= entity: use this value to make the design pattern accessible when an entity is
selected in the Studio Projects view or Solution view.

» folder: use this value to make a design pattern accessible when a folder is
selected.

= category: use this value to create an arbitrary grouping of design patterns that
appear in the Design Pattern wizard (in the other folder).

4. Add an id element and enter a value to filter the scope of the context.

For example, if you defined the scope as entity, then you specify the types of
entities in the id element.

Use the following values in the id element:

Working with Design Patterns 2-13

Modeling Design Patterns

If you defined scope as: Use the following values:
project = OSM, to filter for Order and Service Management
projects.

s OSM_COMP, to filter for Order and Service
Management Composite projects.

= UIM, to filter for Inventory projects.

= ACT, to filter for Activation projects.

s ACT_IPSA, to filter for Activation IPSA projects.
= ACT_SRT, to filter for Activation SRT projects.

= NI, to filter for Network Integrity projects.

= MODEL, to filter for Model projects.

entity Use the file extension defined for the type of Design Studio
entity for which you want to filter. For example, to filter for
an OSM manual task, define the id element as manualTask.

folder Define the id element with the file extension of the entity
and the folder name, separated by a period.

For example: productClass.fulfillmentPlan

category Define the id element with the text to be used as a category
heading in the Design Pattern wizard.

5. (Optional) Add a cheatSheet element and define the resource ID to identify the
cheat sheet in the manifest.

The cheat sheet must be defined as a resource in the manifest element and the
resource id element must be defined. The cheatSheet element must reference the
resource id element. Also, you can define the cheat sheet element with a token.

After the design pattern completes, design studio launches the cheat sheet in the
Cheat Sheets view. You can use cheat sheets to assist users with manual
configuration required after the design pattern completes, or to display the
user-specific resources that were created by the design pattern.

See "Working with Cheat Sheets" for more information.
The following is an example of the contexts element:

<contexts>
<context>
<scope>project</scope>
<id>08M</id>
<id>UIM</id>
</context>
<cheatSheet>cheatSheet</cheatSheet>
</contexts>

Defining Target Projects for Design Patterns

When a design pattern is applied, each resource in the design pattern is copied to a
single target project in a workspace. The projects element enables you to specify the
number and type of target projects required by your design pattern. The user applying
the design pattern can select an existing target project or create a new one. The type of
project the user can select or create is limited to the types that you specify in the design
pattern.

To define target projects for design patterns:

2-14 Design Studio Developer's Guide

Modeling Design Patterns

With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

Add a projects element, and then add a child project element.
Define the following attributes for the project element:

s For the id attribute, enter a value that uniquely identifies the project in a
design pattern. You use this value if you need to make a reference to the
project.

= For the name attribute, enter the value that appears in the Design Pattern
wizard for the project field.

(Optional) Add a tokenGroup attribute and enter the name of the token group to
which this project belongs.

A token group represents a page in the design pattern. You can group project
elements in a group so that a project field appears on a specified page in the
wizard.

If you do not define a token group, project tokens appear on the default project
token page, which appears to the user following the Introduction page.

(Optional) Add the Sealed attribute.

Add the Sealed attribute to determine whether the design pattern creates a sealed
or unsealed project, or whether to enable the user to determine the status after
applying the design pattern. Define the Seal attribute with one of the following
values:

= ALWAYS, to indicate that the design pattern creates a sealed project.

= NEVER, to indicate that the design pattern creates an unsealed project. This is
the default value.

= OPTIONAL, to add a check box to the Design Pattern wizard that enables the
user to seal the project after the design pattern completes.

(Optional) Add a defaultValue element and enter the information that appears
initially for the project field in the Design Pattern wizard.

Users applying the design pattern can override default values. You can embed
tokens in the defaultValue element, except for conditional tokens. See "Example:
Defining Tokens as Default Values" for more information.

If the user running the design pattern does not have a Project entity with the
default name defined in the workspace, then the user can click the Next button to
create a project with the default value name.

If you are defining a default value for an Activation Service cartridge, you must
also add the domain child element and the service child element. If you are
defining a default value for an Activation Network cartridge, you must also add
the vendor, the technology, and the softwareLoad child elements.

(Optional) Add a regularExpression element.

You can use regular expressions to enforce naming conventions. The value that
you define in the message element is displayed to the user if the condition that
you define in the expression element is not satisfied. See "About Regular
Expressions" for more information.

Add a typelD element and enter a value.

Working with Design Patterns 2-15

Modeling Design Patterns

The typelD element defines a project type to which this project belongs. Define
typelD with one of the following values:

= OSM, to associate the design pattern with Order and Service Management
projects.

s OSM_COMP, to associate the design pattern with Order and Service
Management Composite projects.

s UIM, to associate the design pattern with Inventory projects.

= ACT, to associate the design pattern with Activation projects.

s ACT_IPSA, to associate the design pattern with Activation IPSA projects.
s ACT_SRT, to associate the design pattern with Activation SRT projects.

= NI, to associate the design pattern with Network Integrity projects.

= MODEL, to associate the design pattern with Model projects.

s OTHER, to associate the design pattern with a project type not listed above
(for example, with a Java or plug-in project).

9. Add a description element and enter a description of the project.
The description appears in the Design Pattern wizard as embedded Help.

10. (Optional) Add a condition element and define a condition to dynamically control
the visibility of the project field in the Design Pattern wizard.

See "About Token Conditions" for more information.
11. (Optional) Add a modelVersion element.

Defining a model version assures compatibility with the solution loaded in the
user workspace by limiting the projects to only those with a specific set of target
version values. A project target version specifies the version of the server to which
a cartridge project is deployed.

For example, if you define the modelVersion as 7.3.0, then a user running the
design pattern can select only projects with target versions defined as 7.3.0.

12. (Optional) Add a projectVersion element.

Defining a project version assures compatibility of the design pattern with a user
development environment, ensuring that users cannot run the design pattern in an
incompatible version of Design Studio. The version number of a project is defined
in the .studio file, located at the root of a project.

See "Example: Adding Project Dependencies” for an example of a design pattern that
creates a dependency between a new project and an existing base project. The
following is an example of the projects element:

<projects>
<project name="Activation Network Cartridge"
id="DesignPatternProject"
tokenGroup="ProjectPage"
seal="ALWAYS">
<description>Create a first project</description>

<condition>

<equals v2="@@SelectProject@@" vl="true" />
</condition>
<typeId>ACT</typeld>

<defaultValue>COMVERSE_MMS</defaultValue>
<vendor>CMVT</vendor>

2-16 Design Studio Developer's Guide

Modeling Design Patterns

<technology>@@technology@@</technology>
<softwareLoad>3-5-X</softwareLoad>
</project>

Working with Tokens

The outcome of a design pattern is affected by the data that a user enters into the
Design Pattern wizard. When creating design patterns, you use a token to represent
each piece of data that you expect a user to add to the wizard. Tokens are placeholders
that represent information to be collected by the Design Pattern wizard from a user
applying a design pattern. You use tokens to ensure that the resources a design pattern
copies to a workspace are based on information supplied by the user who applies the
design pattern. You define tokens for resources in pattern.xml files.

You can use tokens to:
= Append the value of a token to the name of a Design Studio entity.

= Influence where in a target project an entity will be created by including the value
of a token in the location path.

= Influence the actions that create relationships, populate data elements, or
otherwise modify existing Design Studio entities.

= Automate design pattern decisions with the use of conditions.

s Provide default values to other tokens. You can use tokens in the defaultValue
element of other tokens to provide intelligent defaults based on previously
collected information.

s Customize the content of files.

About Tokens

Token elements include an id attribute that uniquely identifies the token in a design
pattern. To reference a token id in another element in a design pattern, you use the
following syntax:

@eilee
where id is the value that you defined for the token id attribute.

Token elements also include a name attribute, which appears in the Design Pattern
wizard as the field name, and a description attribute, which appears in the Design
Pattern wizard as embedded Help under the field.

The following example includes a token called service in a resource targetLocation
element:

targetLocation="/src/oracle/communications/services/@@service@@/@@service@@Interfa
ce.java"

If the user applying the design pattern enters the value VOIP for the service token, the
targetLocation element would appear as:

targetLocation="/src/oracle/communications/services/VOIP/VOIPInterface.java"

Note: Design Studio cannot detect embedded token name spelling
errors. Check for consistent token usage to ensure tokens are replaced
properly. Design Studio detects invalid tokens when a user attempts
to run design pattern.

Working with Design Patterns 2-17

Modeling Design Patterns

For a more detailed description of token types and their configuration, see the Design
Pattern XML schema (schema/DesignPattern.xsd).

About Token Types

Token types represent the type of data that you expect a design pattern user to supply
in the Design Pattern wizard. For example, a user may be expected to select from a list
of valid projects, to select or deselect a check box, or to specify an entity name with a
valid string of characters. When you create design patterns, the type of token that you
specify determines what child elements are available to define for the token element.

Define tokens with one of the following token types:

= StringToken, if you want the user to enter a string of text. The text accepted by the
token can be constrained by configuring regular expressions and by defining a
maxLength value to limit the string to a maximum number of characters. The
Design Pattern wizard displays each StringToken as a single-line text input field.

s NumericToken, if you want the user to enter numeric input. The number accepted
by the token can be constrained by configuring regular expressions and by
defining a minValue and a maxValue. The Design Pattern wizard displays each
NumericToken as an input field with up and down arrows that can be used to
increase or decrease the value.

Note: When defining numeric tokens, Oracle recommends that you
define the minimum and maximum values for the token.

= BooleanToken, if you want the user to select a true or false value. Boolean tokens
are displayed in the Design Pattern wizard as check boxes. When a token type is
defined as a Boolean, the design pattern ignores any values defined in the
regularExpression element. You can define the initial state of the check box by
defining the defaultValue element as true or false.

» EnumerationToken, if you want the user to select from a set of preconfigured
choices that you define using the values tag. Enumeration tokens appear in the
Design Pattern wizard as lists, from which the user must select a value. You can
define a default value from the list of values.

= EntityRefToken, if you want the user to select a Design Studio entity in a
workspace. The Design Pattern wizard displays a Select button next to entity
reference token fields, which enables a user to select an existing entity of a specific
type from the workspace. See "About Entity Reference Tokens" for more
information.

s ElementRefToken, if you want the user to select an element, such as a Data
Dictionary element, in a workspace. Design patterns can use element reference
tokens to associate entities created by a design pattern with elements that exist in
the workspace. The Design Pattern wizard displays a Select button next to
element reference token fields, which enables the user to select an existing element
from the workspace. See "About Element Reference Tokens" for more information.

About Entity Reference Tokens

You can use entity reference tokens to represent the name of a Design Studio entity in a
workspace. An entity reference token enables a user to select an existing entity of a
specific type from the workspace. EntityRefToken types include the following child
elements:

2-18 Design Studio Developer's Guide

Modeling Design Patterns

= entityType: Use to restrict the type of entity that a user can select. You specify the
type by defining this element with the file extension for an entity type.

= projectFilter: Use to restrict the type of entities that a user can select. This element
includes two mandatory child elements, filterType and id. For the filterType
element, select the value project or entityRef. For the id child element, enter the
unique identifier of the project element or of the EntityRefToken as defined in the
pattern.xml file. Depending on the mandatory element values, the project is
derived at run time and the user is restricted to select entities from this derived
project.

= entityFilter: Use to further restrict the entities available for selection. This element
includes one mandatory attribute, filterType, for which you can define one of the
following properties: entityName, entityReference, or referencedByEntity.
Depending on the property that you specified, you can define additional child
element criteria. See "About EntityRefToken Filtering" for more information.

= relationship: Use to construct the reference to the entity. You can determine the
relationship type by viewing the XML file of an entity where the reference is
embedded.

= allowMultiple: Use to enable design pattern users to select multiple entities from
a list. When you define this child element with the value true, design pattern users
can select multiple existing entities of the specified entityType from the
workspace. This element is optional. The default value of this element is false,
which limits a selection to one existing entity of the specified entity type from the
workspace. See "Example: Supporting Multiple Selections for Entity Reference
Tokens" for more information.

Restrictions that you define using regular expressions apply to the entity name.

You can use entity properties to enable a design pattern access to information about
the entity that is bound to an EntityRefToken. See "About Entity Properties" for more
information.

You can define a default value for an EntityRefToken. When a design pattern is run,
the pattern validates the default value to ensure that the value exists in the workspace.
If an entity with the default value name does not exist in the workspace, the Design
Pattern wizard displays a validation error and disables the Next button. In this
scenario, the user must select a different value.

Example 2-1 illustrates a token defined with a type of EntityRefToken.

Example 2-1 EntityRefToken

<token name="Service Order" tokenGroup="HelloWorldInfo"
id="Order" xsi:type="EntityRefToken">
<description>Select the service order defined for
your solution.</description>
<allowMultiple>true</allowMultiple>
<entityType>order</entityType>
<relationship>com.mslv.studio.provisioning.task.manual.orderType</relationship>
<defaultValue>VoiceMailService</defaultValue>
</token>

About EntityRefToken Filtering

When defining entity reference tokens, you can specify an entity type to limit the
available selections to the user running a design pattern. You can define additional
filtering criteria by using the entityFilter child element.

Working with Design Patterns 2-19

Modeling Design Patterns

The entityFilter element includes the property filterType, which you can define using
the following values:

s Use entityName to limit the selection based on an entity name. This filter option
supports additional child elements, such as equals, notEquals, beginsWith,
endsWith, and contains.

= Use entityReference to limit the selection to entities with a reference to the entity
type defined in the entityType child element and to those entities that meet the
entityName criteria.

= Use referencedByEntity to limit the selection to entities that are referenced by the
entity specified in the entityType element and to those that meet the entityName
criteria.

Example 2-2 demonstrates how to limit the selection to all Domain entities with name
Line.

Example 2-2 Filtering Entity Reference Tokens Using the entityName Property

<token id="domainl" name="Domain Entity Name Line"
tokenGroup="PSRModelInfo"
xsi:type="EntityRefToken">
<description>Choose a Domain entity of Name Line</description>
<entityType>cmnDomain</entityType>
<entityFilter filterType="entityName">
<entityName>
<equals>Line</equals>
</entityName>
</entityFilter>
</token>

Example 2-3 demonstrates how to limit the selection to all Domain entities that
contain references to Functional Area entities that are named Service.

Example 2-3 Filtering Entity Reference Tokens Using the entityReference Property

<token id="domainl" name="Service Domain"
tokenGroup="PSRModelInfo"
xsi:type="EntityRefToken">
<entityType>cmnDomain</entityType>
<entityFilter filterType="entityReference">
<entityType>funcArea</entityType>
<entityName>
<equals>Service</equals>
</entityName>
</entityFilter>
</token>

Example 2—4 demonstrates how to limit a selection to all the Customer Facing Service
entities that are referenced by Domain entities with a name that begins with Line.

Example 2-4 Filtering Entity Reference Tokens Using the referencedByEntity Property

<token id="domainl" name="Service Domain"
tokenGroup="PSRModelInfo"
xsi:type="EntityRefToken">
<entityType>custSrve</entityType>
<entityFilter filterType="referencedByEntity">
<entityType>cmnDomain</entityType>
<entityName>

2-20 Design Studio Developer's Guide

Modeling Design Patterns

<beginsWith>Line</beginsWith>
</entityName>
</entityFilter>
</token>

About Entity Properties

You use entity properties to enable the design pattern to acquire information from
conceptual model entities that are bound to an entity token. Using a token substitution
string, you can instruct the design pattern to acquire the value entered for the entity
token.

Use the following format:
@@tokenid.propertyName@@

where tokenid is the id attribute defined for the token, and propertyName is the
supported property.

Design Studio supports the use of entity properties for project and resourceType
properties for all entity types, and for implementationMethod and
implementationSystem properties for conceptual model entities that support
realization.

In Example 2-5, the design pattern queries the Implementation Method and the
Implementation System properties of the entities that are selected for the tokens with
IDs defined as resourceEntity. The design pattern compares the properties to the value
DEVICE. If both properties evaluate to true, the design pattern adds the resource to
the workspace.

Example 2-5 Entity Properties
<resource id="resImpl" overwritePolicy="NEVER">
<condition>
<All>
<equals vl="@@resourceEntity.implementationMethod@@" v2="DEVICE"/>
<equals vl="@@resourceEntity.implementationSystem@@" v2="UIM"/>
</All>
</condition>

About Element Reference Tokens

You can use element reference tokens to represent the name of a data element defined
in a workspace. An element reference token enables a user to select an existing data
element from the workspace.

You can use element reference tokens to embed a reference to the select element in the
other Design Studio entities.

ElementRefToken types include the following child elements:

= entityType: Use to restrict the type of entity for data element selection. You specify
the type by defining this element with the file extension for an entity type.

= elementType: Use to restrict the type of elements for selection. An elementType is
defined with an ID, for example com.mslv.studio.provisioning.order.node or
com.mslv.studio.core.data.dictionary.node. You can determine the element type
by viewing the XML file of an entity where the reference is embedded.

= projectFilter: Use to restrict the type of entities that a user can select. This element
includes two mandatory child elements, filterType and id. For the filterType
element, select the value project or entityRef. For the id child element, enter the

Working with Design Patterns 2-21

Modeling Design Patterns

unique identifier of the project element or of the ElementRefToken as defined in
the pattern.xml file. Depending on the mandatory element values, the project is
derived at run time and the user is restricted to select elements from this derived
project.

= relationship: Use to construct the reference to the entity. You can determine the
relationship type by viewing the XML file of an entity where the reference is
embedded.

Example 2-6 illustrates a token defined with a type of ElementRefToken.

Example 2-6 ElementRefToken

<token name="Data Element for Order Template" tokenGroup="HelloWorldInfo"
id="OTDataRef" xsi:type="ElementRefToken">
<description>Select a data element for the order template.</description>
<entityType>order</entityType>
<elementType>com.mslv.studio.provisioning.order.node</elementType>
<relationship>ora.task.orderTemplateRef</relationship>

</token>

Element reference tokens return XML instead of a simple value (and therefore, you
cannot embed element references in default values or in target locations). Design
Studio returns XML to ensure that the token can be embedded in a Design Studio
entity document, where it replaces a reference to an element.

The format of the return XML is:

<com:entity>--from selection--</com:entity>
<com:entityType>--from selection--</com:entityType>
<com:relationship>--from token configuration--</com:relationship>
<com:element>--from selection--</com:element>
<com:elementType>--from token configuration--</com:elementType>

Use the token to replace a section of XML in a Design Studio entity document with the
corresponding structure.

About Regular Expressions

When configuring design patterns, you can use regular expressions to ensure that the
information a user enters for a token is valid. When using String tokens, Oracle
recommends that you restrict the valid input using regular expressions, because some
character-based input is not valid for use in a token definition. For example, if you use
a token as a file name, then it must contain only characters that are valid for a file
name. If you use a token as a Design Studio entity name or in an XML document, you
must restrict the use of XML special characters. Embedded tokens are the most
common place where errors are introduced into a design pattern. If a design pattern is
not working properly, first ensure that all tokens are properly replaced when the
pattern was applied.

Example 2-7 illustrates a how a regular expression can be used to ensure that a user
enters a valid entity name. The example also includes a message that will appear to the
user if they enter invalid values.

Example 2-7 Regular Expression

<regularExpression>
<expression>”[a-zA-Z_] [a-zA-Z0-9_-[.]1]1{0,255}$</expression>
<message>Invalid value for Name. The first character should be
an alphabetic character or underscore. The second and
following characters can be alphanumeric characters,

2-22 Design Studio Developer's Guide

Modeling Design Patterns

underscores, hyphens, and periods. The length should not
exceed 255 characters.
</message>
</regularExpression>

About Token Functions

You can use the following functions with any token (except for element reference
tokens) in a design pattern:

s toUpper
= toLower

These functions enable design patterns to force token values to upper case or to lower
case when required by naming conventions. Use the following format:

@@tokenld.toUpper@@
@@tokenld.toLower@@
where tokenid is the id attribute defined for the token.

Note: You can not use entity properties and entity functions in the
same token expression. See "About Entity Properties" for more
information.

About Token Conditions

Conditions enable you to dynamically control the visibility of a token that appears in
the Design Pattern wizard. You use conditions with tokens to optimize the user
experience by displaying only the tokens relevant to the specific task and context from
which the pattern is initiated.

When a design pattern is executed, the Design Pattern wizard evaluates the conditions
defined for the tokens. Additionally, the Design Pattern wizard evaluates conditions
before each page in the wizard is displayed. This behavior enables you to control
whether a token appears on a page based on user input values and entity selections
made on previous pages.

Example 2-8 is a small piece of XML from a design pattern that creates a new Service
specification entity in an Inventory project. The design pattern also optionally creates a
reference to an existing Resource Facing Service (RFS) entity in a model project.

When initiated, the design pattern displays a check box (in this example, represented
by the Boolean token isRFS) that a user selects if they want to add the optional RFS
reference. If the user selects the check box (and the Boolean token evaluates to true),
the design pattern displays a list of available RFS entities (in this example, represented
by the entityRef token rfsToken). If the user does not select the check box, the design
pattern does not display the list of RFS entities.

Example 2-8 Conditional Token

<token id="isRFS" name="Create RFS" tokenGroup="rfsDetails"
xsi:type="BooleanToken">
<description>Add a reference to an existing
Resource Facing Service entity.
</description>
<defaultValue>false</defaultValue>
</token>

Working with Design Patterns 2-23

Modeling Design Patterns

<token id="rfsToken" name="Resource Facing Service" tokenGroup="taDetails"
xsi:type="EntityRefToken">
<description>The Resource Facing Service</description>

<condition>
<equals v1="Q@@isRFS@@" v2="true"/>
</condition>
<entityType>rsrcSrvc</entityType>
</token

Tokens referenced by conditions that evaluate to false do not appear in the Design
Pattern wizard (and a user, therefore, has no opportunity to enter or select a value). A
design pattern will display an error if a condition that references an EntityRefToken or
ElementRefToken type evaluates to false and if the same EntityRefToken or
ElementRefToken type is included in a subsequent condition definition of another
token. Therefore, conditional tokens that support default values must specify a default
value.

Conditions are optional for tokens, and condition statements can be arbitrarily
complex.

Defining Tokens for Design Patterns

You define tokens to ensure that the resources a design pattern copies to a workspace
are based on information supplied by the user who applies the design pattern. See
"Working with Tokens" for more information.

To define tokens in a design pattern:

1. With the pattern.xml file open in the Design Studio default XML editor, click the
Design tab.

2. Add a tokens element, and then add a child token element for each piece of
information that the design pattern must obtain from a user.

3. Add and define values for the following token attributes:

a. For the name attribute, enter the name of the field to appear in the Design
Pattern wizard.

b. For the tokenGroup attribute, enter the name of the token group to which this
token belongs.

A token group represents a page in the design pattern. You can group tokens
in a group so that the tokens all appear on the same page in the wizard.

c. For the id attribute, enter a unique value to represent the token. You use the
value in this attribute to reference the token in the design pattern. See "About
Tokens" for more information.

4. In the token element, add a type attribute.
See "About Token Types" for more information.
5. Add child elements to all token elements.

Some elements are common to all tokens, and some are available only to specific
token types.

» For the description element, enter a description of the information being
requested from the user.

The description appears in the Design Pattern wizard and provides
information or instructions to the user about the values that they must
provide.

2-24 Design Studio Developer's Guide

Modeling Design Patterns

7.

For the defaultValue element, enter the information that appears initially for
the token in the Design Pattern wizard.

You can embed other tokens in the defaultValue element, except for
conditional tokens. Default values are optional. Users applying the design
pattern can override default values. See "Example: Defining Tokens as Default
Values" for more information.

When applying design patterns, users can click the Reset Page button to reset
all of a page’s token values to their initial default values. When a user clicks
the Reset Page button, all token values on the current page are reset to the
default value. All token values on previous pages remain as defined by the
user.

For the regularExpression element, define an expression to validate or restrict
the token values entered by users in the Design Pattern wizard. Regular
expressions are optional and may not apply to all token types. You can also
define the message that appears to the user if the input text fails to conform to
the regular expression. See "About Regular Expressions" for more information.

For the value element, define one of the enumerated values that appears in a
list of enumeration tokens. This element appears for EnumerationToken types
only.

For the entityType element, specify the type of Design Studio entity that a
user must select. The value that you define here is determined by the file
extension of the Design Studio entity. For example, to indicate that a user must
select an OSM manual task, you define this element as manualTask. The
entityType element appears for entity reference tokens only. See "About Entity
Reference Tokens" for more information.

For the elementType element, specify the element ID for the type of element
that the user must select. The elementType element appears for element
reference tokens only. See "About Element Reference Tokens" for more
information.

For the relationship element, specify the relationship type used in a reference.

For the condition element, define a condition to dynamically control the
visibility of a token that appears in the Design Pattern wizard. See "About
Token Conditions" for more information.

Add token functions to ensure that all characters in a token value are forced to
upper case or to lower case.

See "About Token Functions" for more information.

Click Save.

The following is an example of the tokens element:

<tokens>

<token id="equipment" name="Equipment" tokenGroup="reserveEquipmentInfo"

xsi:type="StringToken">

<description>Name of the equipment you want to reserve.rn.</description>
<regularExpression>

<expression>[a-zA-70-9_]+</expression>
<message>Reserve Equipment IDs should only contain letters, numbers and
underscores.</message>

</regularExpression>
<regularExpression>

<expression>[a-zA-7Z] [a-zA-Z0-9_]*</expression>
<message>Reserve Equipment IDs should start with a letter.</message>

Working with Design Patterns 2-25

Modeling Design Patterns

</regularExpression>
<regularExpression>
<expression>[a-zA-70-9_]1{0,20}$</expression>
<message>Reserve Equipment IDs should be 20 characters or less.</message>
</regularExpression>
</token>
</tokens>

See the following topics for examples that demonstrate token use:
» Example: Defining Tokens for Resources

= Example: Defining Tokens as Default Values

» Example: Defining Action Subjects or Participants With Values External to Design
Patterns

Defining Token Groups for Design Patterns

A token group represents a page in the Design Pattern wizard. You organize design
pattern tokens into pages to control the manner in which information is collected by
the Design Pattern wizard. You can define any number of token groups in a design
pattern, and each token is associated with a single token group.

You can use token groups, for example, to group related input fields together on a
single Design Pattern wizard page or to limit the number of input fields on each page
to improve usability.

To define token groups for design patterns:

1. With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

2. Add a tokenGroups element and then add a child tokenGroup element for each
page that you want to appear in the Design Pattern wizard.

3. Add and define values for the following tokenGroup attributes:

a. For the name attribute, enter the name of the page that will appear at the top
of the Design Pattern wizard.

b. For the id attribute, enter a unique value to represent the token group. The
token elements included in this group reference the value that you enter here.

4. In the tokenGroup element, add a child description element.

5. In the description element, enter the description of the page as it should appear in
the Design Pattern wizard.

6. Click Save.
The following is an example of the tokenGroups element:

<tokenGroups>
<tokenGroup name="Plug-in Information" id="reserveEquipmentInfo">
<description>Define the information on this page to create reserved
equipment.</description>
</tokenGroup>
</tokenGroups>

Defining the Manifest for Design Patterns

A design pattern manifest is the list of resources included in a design pattern. You
define the manifest for a design pattern to determine how resources are generated and

2-26 Design Studio Developer's Guide

Modeling Design Patterns

where they generated when the pattern is applied. A design pattern can generate
Design Studio entities, cheat sheets, Java files, XML files, and so forth, in specified
target projects.

When defining resources that you copied from an existing reference implementation,
you can change the names of those resources to be less specific, which enables you to
use the resources across different service domains. For example, if you copy a
specification named ADSL_Port from a Broadband Internet reference implementation,
you can rename the resource to Assigned_Interface for use in a design pattern that
applies across service domains.

To define the manifest in design patterns:

1.

Identify all required resources from a reference implementation or a sample
solution.

Open the pattern.xml file in the Design Studio default XML editor and click the
Source tab.

Add a manifest element, and then add child resource elements.
When adding child resource elements, you can:

s Copy existing resources to your design pattern. You can copy resources from a
reference implementation or from a sample solution or your can create new
resource elements. You can copy any source file that you require in your
solution, such as Design Studio entities, XML content, rules, and so forth.

» Define new child resource elements for additional required resources.

In the location child element, enter the path and file name from the pattern root to
the copied resource.

You must retain the original name of all Design Studio entities in the source
location of the resource (do not embed tokens). The location is the relative path of
the resource from the location of the design pattern. For example, if the location of
the design pattern is:

/pattern/myPattern
and one of the resources for the pattern from the project root is:
/pattern/myPattern/dataDictionary/pattern.xsd

then you define the value for the location element for the corresponding resource
as:

dataDictionary/pattern.xsd

Append the extension .pat to all Design Studio entity file names in the resources
element location element.

Working with Design Patterns 2-27

Modeling Design Patterns

Important: You must append the extension .pat to the Design Studio
entity file names when working with Design Studio entity resources in
a plug-in project. Resources that are not Design Studio entities, such as
Java or XML files, do not need the .pat extension.

For example, if you add to the resource list an Order and Service
Management order called myOrder.order, you must rename that
order entity to myOrder.order.pat.

Design Studio refers to the original entity name while processing the
design pattern to update references to entities in the pattern. Failure to
append the .pat extension to the resource may result in problem
markers and entries in your error log. When working with Data
Dictionary companion files, Design Studio automatically deletes the
resource from the workspace when it cannot resolve correctly to its
associated schema file.

6. In the resource element, add an id attribute and enter an ID that is unique among
all resources in the manifest.

Components in the design pattern use the id attribute when referencing the
resource.

7. In the projectld element, enter the ID of the project into which the design pattern
should save the resource when the design pattern is applied.

Note: The ID that you define here must also be defined in the
projects element of the pattern.xml file, which describes the projects
that the design pattern can place resources into when the design
pattern is applied. See "Defining Target Projects for Design Patterns”
for more information.

8. (Optional) In the resource element, add a condition child element.

You use conditions to include simple or complex conditional logic when
determining whether a design pattern adds the resource the workspace. See
"About Conditions" for more information.

9. In the resource element, add a targetLocation child element.

10. In the targetLocation element, enter a path and file name of the location (in the
user’s workspace) where the design pattern-generated artifacts will be saved
when the design pattern is applied.

The path is relative to the target project.

The targetLocation element can contain embedded tokens. Embedding tokens
enables the user applying the design pattern to influence the name and location of
the generated resource, implement naming conventions, and maintain referential
integrity across resources that are included in a design pattern. When executed,
the design pattern substitutes the token references in the path with the values
entered by the user.

For example, the following targetLocation includes a declared token called service
to be used in the path and name of a Java class resource:

targetLocation="/src/oracle/communications/services/@@service@@/@@service@@Inte
rface.java"

2-28 Design Studio Developer's Guide

Modeling Design Patterns

11.
12.

13.
14.

15.

16.

17.

If the user applying the design pattern entered VOIP as the value for the service
token, targetLocation would expand to:

targetLocation="/src/oracle/communications/services/VOIP/VOIPInterface.java"

and the design pattern copies the file into the workspace using this location and
name.

In the resource element, add a type attribute.

In the type attribute, specify the type of resource to be copied to the user’s
workspace.

Use one of the following values:

s TEXT: use to identify the resource as a text file. You can use tokens in the
content of text files. If you specify no resource type, the design pattern uses
TEXT as the default value. For example, you can identify Design Studio
entities, XML, XQuery, XSLT, and Java resources as TEXT types.

= DIRECTORY: use to identify the resource as a directory that will be created in
the user’s workspace.

= BINARY: use to identify the resource as a binary file (for example, a JPEG file).
You cannot use tokens in binary resources.

= LIBRARY: use to identify the resource as a Java library (for example, a JAR
file). After the design pattern copies the library to the user’s workspace, the
design pattern adds the library to the classpath of the appropriate project.

In resource element, add an overwritePolicy attribute.

In the overwritePolicy attribute, specify the design pattern response if a resource
with the same name and location exists in the target project.

Use one of the following values:

= ALWAYS: use to specify that the existing file is to be overwritten by the
resource contained in the design pattern. However, if the resource in the
workspace is read-only, the design pattern cannot overwrite the existing
resource. The log produced after the design pattern is completed lists all
resources that cannot be overwritten. ALWAYS is the default value.

= NEVER: use to specify that the existing file is not to be overwritten by the
resource contained in the design pattern. The design pattern performs no
token substitutions for the resource when the overwritePolicy is defined with
this value.

In resource element, add an overrideDisplayName attribute.

By default, the display name of a resource is generated from the resource name if
the resource is Design Studio entity.

If you are using a token to define the display name of a resource, change the value
of the overrideDisplayName attribute to true.

Changing the value of the overrideDisplayName attribute to true prevents Design
Studio from overriding the display name value with the Design Studio entity
name.

Click Save.

The following is an example of the manifest element:

<manifest>

Working with Design Patterns 2-29

Modeling Design Patterns

<resource id="cheatSheet">
<location>cheatSheet/reserveEquipmentCheatSheet.xml</location>
<targetLocation>cheatSheet/reserveEquipment /DesignPatternCreation.xml
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="dd_companion" >
<location>dataDictionary/reserveHardware_companion.xsdc.pat</location>
<targetLocation>
dataDictionary/@Requipment@@/reserve@@equipment@@_ companion.xsdc
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>
</resource>

<resource id="dd" >
<location>dataDictionary/reserveHardware.xsd.pat</location>
<targetLocation>dataDictionary/@Requipment@@/reserve@@equipment@@.xsd
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="automation" >
<location>model /OSM/reserveHardware.automationTask.pat</location>
<targetLocation>model/@@equipment@@/reserve@@equipment@@.automationTask
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="baseTask" >
<location>model/0SM/reserveHardwareBaseTask.manualTask.pat</location>
<targetLocation>model/@Requipment@@/reserve@@equipment@@BaseTask.manualTask
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="falloutTask" >
<location>model /0SM/reserveHardwareFallout.manualTask.pat</location>
<targetLocation>model/@R@equipment@@/reserve@@equipment@@FalloutTask.manualTask
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="function" >
<location>model/0SM/reserveHardwareFunction.orderComponentSpec.pat</location>
<targetLocation>
model /@Requipment@@/reserve@@equipment@@Function.orderComponentSpec
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>
</resource>

<resource id="process" >
<location>model /0SM/reserveHardwareProcess.process.pat</location>
<targetLocation>model /@@equipment@@/reserve@@equipment@@Process.process
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="query" >

2-30 Design Studio Developer's Guide

Modeling Design Patterns

<location>model /0SM/reserveHardwareQueryTask.manualTask.pat</location>
<targetLocation>model/@R@equipment@@/reserve@@equipment@@QueryTask.manualTask
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="role" >
<location>model/0OSM/reserveHardwareRole.rolePermissions.pat</location>
<targetLocation>model/@@equipment@@/reserve@@equipment@@Role.rolePermissions
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="summary" >
<location>model/0SM/reserveHardwareSummaryTask.manualTask.pat</location>
<targetLocation>model/@Requipment@@/reserve@@equipment@@SummaryTask.manualTask
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>

</resource>

<resource id="compositeView" >
<location>model/0SM/reserveHardwareView.compositeCartridgeView.pat</location>
<targetLocation>
model/@@equipment@@/reserve@@equipment@@View.compositeCartridgeView
</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>
</resource>

<resource id="java" >
<location>resource/reserveHardware.java</location>
<targetLocation>src/oracle/communications/services/reservation/@Requipment@@/
Reserve@@equipment@@.java</targetLocation>
<projectId>reserveEquipmentOSMProject</projectId>
</resource>

<resource id="equip" >
<location>model /UIM/reservable.equipment.pat</location>
<targetLocation>model/@Requipment@@/@Requipment@@.equipment</targetLocation>
<projectId>reserveEquipmentUIMProject</projectId>

</resource>

</manifest>

Working with Design Pattern Actions

You define actions to enable design patterns to perform actions on entities, such as
creating relationships between or adding data elements to inputs or resources.

Actions affect entities that exist in the target workspace, but the actions do not cause
the existing entities to be replaced in the target workspace. This enables users who run
design patterns and subsequently enrich the model to re-run patterns without losing
the changes they make during an iterative design cycle.

Actions have two main components:

= A subject: An action subject is the entity or element that is affected by the action.
The subject is the entity or element to which, for example, a reference is added or
data elements are added.

Working with Design Patterns 2-31

Modeling Design Patterns

A participant: An action participant is the entity or element that provides the
information for the action. For example, the participant is the entity providing the
data elements to the subject.

About Action Elements

You include action elements in the pattern.xml file to define the action attributes. You
define the following elements:

condition: Add simple or complex conditional logic to enable the design pattern to
perform the action only under specific conditions. See "About Conditions" for
more information.

actionType: Specify the type of action to be performed. See "About Design Pattern
Action Types" for more information.

subject and participant: Specify the entity or data element that is affected by the
action, and the entity or data element that provides the information for the action,
respectively. The subject and participant elements require you to define a:

- participantType: Specify whether the subject or participant entity is a resource
that is internal to the design pattern, or whether the subject or participant
entity is input that the design pattern selects during the pattern execution. See
"Defining Inputs for Design Patterns" for more information.

- id: specify a unique identification for the subject and participant entities.
name: Specify the name of the action.

actionKey: Specify the type of relationship that the action creates between the
subject and participant. See "About the Design Pattern Action Reference Table" for
more information.

executeOnExistingEntity: Specify whether to run actions on entities that already
exist in the workspace. The default is true. Define this value as false to prevent
actions on entities that exist in the workspace.

Note: Resource definitions include an attribute called
OverwritePolicy that specifies a design pattern response if a resource
with the same name and the same location exists in the target project.

If the OverwritePolicy attribute for a resource is defined as Always,
the existing resource is overwritten by the resource contained in the
design pattern. In this scenario, a design pattern executes actions on
the resource even when the executeOnExistingEntity attribute is
defined as false. See "Defining the Manifest for Design Patterns" for
more information.

About Design Pattern Action Types

Action types represent a category of action to be performed. For example, an action
type can represent a relationship that is created between entities and elements, a copy
action that copies data between entities, or an extend action that extends source
entities.

You can define design pattern action types with one of the following values:

relationship: Use to create a relation between entities, between elements, or
between elements and entities. For example, you can use this action type to
establish a relationship between a conceptual model entity in the conceptual
model and a resource in an application model.

2-32 Design Studio Developer's Guide

Modeling Design Patterns

= interface: Use to copy data elements from a participant entity to a subject entity.
For example, the data configured in a customer facing service in a conceptual
model can be copied to an Inventory Service specification in an application model.

= parameter: Use to pass a participant entity as an input to a subject entity. For
example, a customer facing service in a conceptual model can be passed as an
input to an Action entity that is supported on an Inventory Service specification in
an application model.

When using the parameter action type, the data elements in the subject entity
reference the participant entity (whereas in the interface action type, the data
elements are copied to the subject entity).

= extension: Use to define an extension relationship between a participant and a
subject entity (the subject entity extends from the participant entity).

When applying design patterns that include this action type, existing subject
entities must be writable and must not be included in a sealed project.

About Actions Used in Conceptual Modeling

You can use actions to realize entities in a conceptual model. For example, you can use
actions to realize customer and resource facing services, resources, locations, and
conceptual model actions.

You can use action type and action key combinations that are specific to the following
conceptual modeling tasks.

For more information about action types and action keys, see the Design Pattern
Action Reference table, which is available on the Oracle Help Center. Click the
following link and then click the link for the current Design Studio version:

http://docs.oracle.com/en/industries/communications/design-studio/index.ht
ml

Copying Changeable Elements from Participant to Subject

You use the interface action type with the action key noted below if you want to copy
from the participant to the subject configuration only those data elements that are
tagged with Changeable tag.

Data elements are that are not defined with the Characteristic tag or with the
Changeable tag are copied to the Service specification but not to the corresponding
Service Configuration.

= Action Key: oracle.communications.common.configuration
= Action Type: interface
= Subject: configuration

= Participant: customer facing service, location, product, resource, or resource facing
service

Adding Components as Configuration Items to Service Configuration
Specifications

You use the relationship action type with the action key noted below if you want to
realize a conceptual model entity that includes components and add those components
as configuration items to the Service Configuration specification.

= Action Key: oracle.communications.common.configuration

= Action Type: relationship

Working with Design Patterns 2-33

Modeling Design Patterns

= Subject: configuration

s Participant: customer facing service, location, product, resource, or resource facing
service

Copying Data Elements as Virtual Root Nodes to Conceptual Model Actions

You use the parameter action type with the action key noted below if you want to copy
data elements from a conceptual model entity to a conceptual model action. The data
elements are copied to the action, in this scenario, as virtual root nodes.

= Action Key:
oracle.communications.sce.common.entity.entities.action.actionclassification.actio
n.parameter.helper

= Action Type: parameter
= Subject: action

= Participant: customer facing service, location, product, resource, or resource facing
service

Realizing Technical Actions for Inventory Entities

When working with Inventory entities, you can realize technical actions but maintain
(rather than override) the data elements previously saved on the technical action by
using the interface action type and action key noted below. Using this combination,
you can keep existing data elements and save new data elements to the Data
Dictionary.

s Action Key:
oracle.communications.sce.common.entity.action.relalization.ta.helper

= Action Type: interface
= Subject: technical action generation helper

= Participant: service action

Copying Changeable Data Elements from a CFS to an RFS

You use the interface action type with the action key noted below if you want to copy
data elements tagged as Changeable from a customer facing service to a resource
facing service. This functionality is reserved for customer facing services and resource
facing services only.

= Action Key: oracle.communications.sce.common.entity.rfs.interface.helper
= Action Type: interface
= Subject: resource facing service

s Participant: customer facing service

Copying Changeable Elements from a Service to a Service Specification

You use the interface action type with the action key noted below if you want to copy
data elements tagged as Changeable from a service to a service configuration
specification. Data elements not tagged as Changeable are copied from the service to
the service specification.

= Action Key: oracle.communications.common.configuration.enabled
= Action Type: interface

= Subject: service specification

2-34 Design Studio Developer's Guide

Modeling Design Patterns

s Participant: customer facing service, location, product, resource, or resource facing
service

Extending Actions

You use the extension action type with the action key noted below to extend one
action from another (the subject action extends from the participant action). In this
scenario, the data elements are copied from the participant to the subject only if the
Extends option is not selected for the participant on the Conceptual Model Editor
Properties tab.

= Action Key: oracle.communications.sce.common.entity.entities.action.extends
= Action Type: extension
= Subject: action

» Participant: action

Using Order Item Parameter Bindings to Link Conceptual Model Entities to OSM
Projects

You use the relationship action type with the action key noted below to link
conceptual model entities with an OSM project through an order item parameter
binding. In this scenario, when a user applies a design pattern using a conceptual
model entity as input and associates to that entity an order item parameter binding,
the design pattern creates an XML file containing the attributes of the conceptual
model entity, as well as an XQuery file.

= Action Key:
oracle.communications.studio.osm.transformation.entities.binding.psrentity.handl
er

= Action Type: relationship
= Subject: order item parameter binding

= Participant: conceptual model entities

Filtering Action Codes

You use the relationship action type with the action key noted below to filter action
codes when creating a relationship between an action and an action code. In this
scenario, only those action codes defined in the associated functional area are added to
the action.

s Action Key:
oracle.communications.sce.common.entity.entities.action.actioncodes.actionTypeR
ef

= Action Type: relationship
= Subject: action

s Participant: action code

About the Design Pattern Action Reference Table

You use the Design Pattern Action Reference table to review all of the information
required to define an action in a design pattern for Design Studio entities, including
the valid relationship types and target entities for the actions that can affect each entity

type.
For each entity type, the table lists the:

Working with Design Patterns 2-35

Modeling Design Patterns

= relationship name
= action key

= subject

» participant

= action type

The Design Pattern Action Reference table is available on the Oracle Help Center. Click
the following link and then click the link for the current Design Studio version:

http://docs.oracle.com/en/industries/communications/design-studio/index.ht
ml

Defining Actions for Design Patterns

You include actions in a design pattern to define which actions to perform on entities
in a workspace. See "Working with Design Pattern Actions" for more information.

To define actions for design patterns:

1. With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

2. Add an actions element, and then add an action element for each action that you
want the design pattern to perform.

3. In the action element, add and define values for the following action attributes.

a. For the name attribute, enter the name of the field to appear in the design
pattern.

b. For the id attribute, enter a unique value to represent the action.
4. Add and define the action child elements.

Some elements are common to all actions, and some are available only to specific
action types. See "About Action Elements" for more information.

5. Click Save.

Defining Custom Actions

You define custom actions to call custom Java code from a design pattern.

Design patterns invoke custom actions last because custom actions can have
dependencies on other design pattern artifacts. Design Studio performs a build before
running the custom actions to ensure that the custom actions receive up-to-date
Exchange Format model information. See "Invoking Custom Java Code from Design
Patterns" for more information.

To define custom actions for design patterns:

1. With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

2. Add a customActions element, and then add a customAction element.

3. Inthe customAction element, add and define values for the following action
attributes:

a. For the name attribute, enter the name of the field to appear in the design
pattern.

b. For the id attribute, enter a unique value to represent the action.

2-36 Design Studio Developer's Guide

Modeling Design Patterns

4. Add and define the customAction child elements.

5.

About Conditions

a. In the condition element, add simple or complex conditional logic to enable
the design pattern to perform the custom action only under specific
conditions. See "About Conditions" for more information.

b. In the exchangeFormat element, add model child elements for each studio
model entity required for the custom action. A model element can be of type
entityRef, project, or resource.

c. In the parameters element, add parameter child elements required by the
custom action. A parameter element consists of name and value pairs.

d. In the classld element, enter a registered Java class ID.
Click Save.

You use conditions to build design patterns that can produce variable outcomes,
depending on user input and the existing state of the solution. Conditions enable the
design pattern user to define how resources are created and how actions are
performed on those resources.

When creating design patterns, you can include simple conditional logic using
common String operations, and you can include complex conditions by combining
simple conditions using the Any and All operators and by nesting conditions. A
condition must evaluate to true for Design Studio to add the associated resource to the
workspace or for Design Studio to perform the associated action.

To define design pattern conditions:

1.

With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

(Optional) In the resource element or in the action element, add a condition child
element.

Expand the condition element, then select the All child element.
Add logical expressions for simple conditions.

Logical expressions include v1 and v2 string operands. You can embed tokens and
token functions in the operand values. Token types are resolved to a string
representation for evaluation.

The following simple conditions are supported:

s Equals: the expression evaluates to true when v1 and v2 are identical.

= Not Equals: the expression evaluates to true when v1 and v2 are different.
= Begins With: the expression evaluates to true when v1 begins with v2.

= Ends With: the expression evaluates to true when v1 ends with v2.

= Contains: the expression evaluates to true when v1 contains v2.

Add logical expressions for complex conditions.

The following complex conditions are supported:

= Any: the expression evaluates to true when any of the component expressions
are true.

Working with Design Patterns 2-37

Modeling Design Patterns

= All the expression evaluates to true when all of the component expressions
are true.

In the following example, an All condition is defined to ensure that a design pattern
adds a resource to a workspace only when the implementation method of the resource
is defined as a device and when the implementation system is UIM.

<resource id="resImpl" overwritePolicy="NEVER">
<condition>
<All>
<equals vl="@@resource.implementationMethod@@" v2="DEVICE"/>
<equals vl="@@resource.implementationSystem@@" v2="UIM"/>
</All>
</condition>

Defining Inputs for Design Patterns

You can use design pattern inputs to create design patterns that enable users to select
and perform actions against existing entities in the workspace. The design pattern can
use the selected entities or elements as the subject of an action if the design pattern
includes an input defined for the selected entity or element type.

For example, if a design pattern is launched from a selected customer facing service
(CFS), and in the design pattern there is an input defined for a CFS type, the design
pattern can use the selected CFS as the subject of an action defined in the design
pattern. The design pattern uses the selected CFS entity name as a default value in the
appropriate fields in the Design Pattern wizard.

Design pattern input types can be defined as entityRefToken or as elementRefToken.
See "Working with Tokens" for more information.

To define inputs for design patterns:

1. With the pattern.xml file open in the Design Studio default XML editor, click the
Source tab.

2. Add an inputs element, and then add an input element for each type of element or
entity for which you want to automatically populate token names in a design
pattern.

3. Inthe input element, add and define values for the following attributes.

a. For the name attribute, enter the name of the field to appear in the design
pattern.

b. For the id attribute, enter a unique value to represent the input.
4. Add and define values for the following input child elements.
s For the entityRefToken element, specify an entity for which to create an input.

» For the elementRefToken element, specify a data element for which to create
an input.

Note: You can define entity and element reference tokens for the
same input element. When a user selects multiple entities or elements
in a Design Studio view and launches a design pattern, the pattern
randomly picks one of the entities or elements to display in token
fields if multiple selected entities or elements match the design pattern
input definitions.

2-38 Design Studio Developer's Guide

Invoking Custom Java Code from Design Patterns

5. Click Save.

Securing Design Pattern Information

Design patterns have no security for the information they include, and any user can
apply design patterns. Do not include sensitive information in design patterns. If
sensitive information is needed to complete the configuration of a design pattern,
include a cheat sheet to run after the pattern is applied to manually configure the
sensitive information.

Oracle recommends that you use model variables in design pattern templates to
replace any sensitive information. Design Studio users can be prompted to configure a
sensitive model variable with the name used in the template. See the Design Studio
Help for information about working with model variables.

Invoking Custom Java Code from Design Patterns

You can create a design pattern that invokes custom Java code. For example, you can
create a design pattern that accesses the Design Studio Exchange Format and generates
artifacts based on the Exchange Format model information that is passed to the design
pattern.

To invoke custom Java code from a design pattern:

1. Create a Java class that implements the IDesignPatternCustomAction Java
interface.

See "About the IDesignPatternCustomAction Java Interface" for more information.
2. Register your Java class.

When you register your Java class, you define parameter attributes and Exchange
Format model entity attributes. See "About Registering Your Java Class" for more
information.

3. Call the Java code.

The code must pass values to the parameters and to the Exchange Format model
entities in the design pattern. See "About Calling Your Custom Java Code" for
more information.

About the IDesignPatternCustomAction Java Interface

Design Studio provides a Java interface, named IDesignPatternCustomAction, to
facilitate the use of custom Java code. The interface contains one method, named
performCustomAction, which provides parameters and Design Studio Exchange
Format model entity information. Write your custom Java class to implement this
interface and to use the values from the parameters and from the Exchange Format
model entities to perform your business logic.

Example 2-9 demonstrates how to write a Java class that implements the
IDesignPatternCustomAction Java interface.

Example 2-9 IDesignPatternCustomAction Java Interface Example
/ * %
* DesignPatternCustomActionRITest demonstrates how to write a custom action class

and how to access the Design Studio Exchange Format APIs.
*

*/

Working with Design Patterns 2-39

Invoking Custom Java Code from Design Patterns

public class DesignPatternCustomActionRITest implements IDesignPatternCustomAction

{
ModelLocator modelLocator = new ModelLocator (true);

@override
public void performCustomAction(final Map<String, Object> parameters, final
Map<String, Model> models) {

CustomerFacingService cfs = null;
Project project = null;

// Output parameter details
Set<String> keys = parameters.keySet();
for (String key : keys) {
StudioLog.logInfo ("Parameter Key: " + key + "\t\tParameter Value: " +
parameters.get (key)) ;

}

// Get models: CFS and project
Set<String> modelKeys = models.keySet();
for (String key : modelKeys) {
Model model = models.get (key);
Entity entity = model.getEntity().get(0);
StudioLog.logInfo("Model Key: " + key + "\t\tModel Entity Name: " +
entity.getName());
if (entity instanceof CustomerFacingService) {

cfs = (CustomerFacingService) entity;
} else if (entity instanceof Project) {
project = (Project) entity;

// Output CFS name and components
if (cfs !'= null) {
StudioLog.logInfo("CFS name = " + cfs.getName());
List<ResourceFacingService> rfsList = getAllRFSComponentsFromCFS (cfs);
for (ResourceFacingService rfs : rfsList) {
StudioLog.logInfo("RFS name = " + rfs.getName());

List<CGBUResource> resourceList =
getAllResourceComponentsFromCFS (cfs) ;
for (CGBUResource resource : resourcelList) ({
StudioLog.logInfo("Resource name = " + resource.getName());

// Output project details
if (project != null) {
StudioLog.logInfo("Project name = " + project.getName());

About Registering Your Java Class

You register your Java class to enable Design Studio to validate the input from the
design pattern.

2-40 Design Studio Developer's Guide

Invoking Custom Java Code from Design Patterns

You define the parameters with the following attributes:
= name, which is the key used by the performCustomAction method.

= type, which you define with one of the following values: boolean, string, date,
dateTime, int, float, double, long.

= optional, which is a boolean that indicates whether the parameter is optional (if
omitted, the parameter is mandatory).

You define the Exchange Format model information with the following attributes:
= name, which is the key used by the performCustomAction method.

= entityType, which specifies the entity file extension. For example, you can define
an entityType for actions (cmnAction), resources (cmnResource), locations
(cmnLocation), customer facing services (custSrvc), resource facing services
(rsrcSrvc), and model projects (ddCartridge).

= optional, which is a boolean that indicates whether the parameter is optional (if
omitted, the parameter is mandatory).

Note:

oracle.communications.sce.integration.test.design.pattern.apply.Des
ignPatternCustomActionRITest must implement
IDesignPatternCustomAction.

Example 2-10 shows an example of how to register your Java class.

Example 2-10 Registering a Java Class

<extension point="oracle.communications.sce.pattern.core.customActionClass">
<customActionClass
id="oracle.communications.sce.integration.test.design.
pattern.apply.DesignPatternCustomActionTest.ri"
class="oracle.communications.sce.integration.test.design.
pattern.apply.DesignPatternCustomActionRITest">

<!-- Parameter hasPrefix is a boolean, and it is mandatory -->
<parameter name="usePrefix" type= "boolean"/>

<!-- Parameter prefix is a string, and it is optional -->
<parameter name="prefix" type="string" optional = "true"/>

<!-- Exchange Format model cfs is a customer facing service defined

with an extension custSrvc, and it is mandatory -->
<model name="cfs" entityType="custSrvc"/>
<!-- Exchange format model uimProject is an inventory cartridge defined
with an extension inventoryCartridge, and it is mandatory -->
<model name="uimProject" entityType="inventoryCartridge"/>
</customActionClass>
</extension>

About Calling Your Custom Java Code

To call your custom Java code, you add a customActions element to your design
pattern. Because custom actions can have dependencies on other design pattern
artifacts, the design pattern invokes custom actions last. Design Studio builds the
projects before running the custom actions to ensure that the custom actions receive
up-to-date Exchange Format model information.

The customAction element requires:

Working with Design Patterns 2-41

Invoking Custom Java Code from Design Patterns

A condition child element.

A list of Design Studio model entities, which can be entityRef, project, or
resource. The design pattern generates an error if a model entity is not in the
workspace and if a model entity in the design pattern does not match a model
entity registered in the Exchange Format.

A list of parameters, which are name and value pairs.

The design pattern generates a validation error if the parameters in the design
pattern do not match the registered parameters.

A registered Java class ID.

oracle.communications.sce.integration.test.design.pattern.apply.DesignPatternC
ustomActionTest.ri is the ID of the registered Java class
oracle.communications.sce.integration.test.design.pattern.apply.DesignPatternC
ustomActionTest

Example 2-11 displays an example of the customActions element in the

DesignPattern.xsd file.

Example 2-11 customActions Element

<customActions>
<customAction id="riCustomAction" name="RI Custom Action">
<condition>
<equals vl="@QusePrefix@@" v2="true"/>
</condition>
<exchangeFormat>
<model>
<name>cfs</name>
<id>cfs</id>
<type>entityRef</type>
</model>
<model>

<name>uimProject</name>
<id>uimCfsProject</id>
<type>project</type>
</model>
</exchangeFormat>
<parameters>
<parameter>
<name>usePrefix</name>
<value>@@usePrefix@@</value>
</parameter>
<parameter>
<name>prefix</name>
<value>@@prefix@@</value>
</parameter>
</parameters>
<classId>oracle.communications.sce.integration.test.design.
pattern.apply.DesignPatternCustomActionTest.ri</classId>
</customAction>

<customAction id="riCustomActionNoPrefix"
name="RI Custom Action With No Prefix">

<condition>

<equals vl="@@usePrefix@@" v2="false"/>
</condition>
<exchangeFormat>

<model>

2-42 Design Studio Developer's Guide

Testing Design Patterns

<name>cfs</name>
<id>cfs</id>
<type>entityRef</type>
</model>
<model>
<name>uimProject</name>
<id>uimCfsProject</id>
<type>project</type>
</model>
</exchangeFormat>
<parameters>
<parameter>
<name>usePrefix</name>
<value>@@usePrefix@@</value>
</parameter>
</parameters>
<classId>oracle.communications.sce.integration.test.design.
pattern.apply.DesignPatternCustomActionTest.ri</classId>
</customAction>

</customActions>

Testing Design Patterns

You test design patterns by running them in the Design Pattern wizard. Testing design
patterns directly in Design Studio shortens the design-test cycles by eliminating the
need to build and deploy design patterns as features.

To test design patterns:
1. In Design Studio, from the Studio menu, select Design Pattern.
The Design Pattern wizard appears.
2. Select the Select a Design Pattern from File option.
3. Click Browse and locate and select the design pattern that you want to test.

Select the design pattern root folder for the design pattern project. The design
pattern root folder contains the pattern.xml file.

4. Click Next.

Design Studio validates the integrity of the design pattern. If the selected design
pattern contains structural problems (such as schema validation errors or invalid
XML), an error message appears. The error message displays a specific schema
validation error and the line and column in the document where the error exists.
You must fix all errors before testing a design pattern.

If there are no errors, the Introduction page appears.
5. Navigate through the wizard to ensure that the design pattern works as intended.
6. Review the summary of changes on the Summary page.

Ensure that the entities created by the design pattern meet your expectations.

7. Finish running the design pattern and review the resources added to the
workspace.

After the design pattern completes, examine the files that have been added to the
workspace to ensure they are named correctly and that they contain the expected
configuration. If they are configured incorrectly, review the token substitution
configuration.

Working with Design Patterns 2-43

Applying Design Patterns

8.

When the wizard completes, verify that all token replacements work as intended.

For example, you may need to correct any misspelled tokens in the pattern.xml
file and all other documents.

(Optional) If the design pattern doesn’t meet with your expectations, roll back to a
previous version.

Oracle recommends that you use a version control system and employ a backup
strategy to roll back to previous versions and to ensure against data loss if the
design pattern creates unexpected results.

Applying Design Patterns

Design Studio users apply design patterns by accessing the Design Pattern wizard in
the Design Studio user interface. Design patterns do not require reinstallation when
changing workspaces or when importing or deleting projects.

Note: Design patterns may overwrite resources or skip existing
resources. Re-running a design pattern with the same input may result
in a different output depending on the current state of the workspace
and the configuration details of the design pattern.

Some design patterns can overwrite existing resources. Oracle
recommends that you use a version control system and employ a
backup strategy to ensure against data loss. See Design Studio System
Administrator’s Guide for more information about backing up and
restoring Design Studio data.

See Design Studio Help for information about applying design patterns.

About the Design

Pattern Summary Page

When design pattern users navigate through the Design Pattern wizard to completion,
Design Studio displays the Design Pattern Summary page.

Users can review the Summary page to ensure that the pattern is applying the correct
resources to the workspace, performing the correct actions, and recognizing
appropriate inputs. The Summary page also displays expanded condition evaluations,
enabling users to debug condition behaviors. Design Studio saves the Summary page
in the root of the workspace.

The Summary page displays the following:

All field values that you provided.

All resources to be copied to the workspace. The original name, new name,
resource type, and target project displays for each resource. This section also
indicates whether any resources with identical names exist in the workspace and
whether the design pattern will overwrite the existing values. For example, if a
resource with the same name and type exist in the workspace and the resource
override value is defined as true, when the design pattern is applied the local
resource file will be overwritten.

All actions. The subject entity, the participant entity, and action type appear for
each action. This information includes whether the relationships and parameters
in existing entities can be overwritten by the design pattern. Restricted actions that

2-44 Design Studio Developer's Guide

Design Pattern Examples

cannot be performed because of the configuration appear in the Restricted Actions
section.

= Allinputs. The input entity or element appears for each input.

= All conditions, entity properties, and token functions used in a design pattern.

Design Pattern Examples
Use the following examples to help you create your design patterns.
» Example: Adding Project Dependencies
= Example: Defining Tokens for Resources
» Example: Defining Tokens as Default Values

» Example: Defining Action Subjects or Participants With Values External to Design
Patterns

= Example: Supporting Multiple Selections for Entity Reference Tokens

Example: Adding Project Dependencies

Example 2-12 demonstrates how to make a new project created in a design pattern
dependent on an existing base cartridge.

In the example, the design pattern creates a dependency from a newly created project
to the existing base project OracleComms_Model_base. The user running the design
pattern is not required to specify the name of the base project to create the dependency.

When a user runs the design pattern, and if the cartridge entity specified in the
entityreftoken element (OracleComms_Model_base.ddCartridge) does not exist in
the workspace, Design Studio displays the following message for the Action Add
Dependency on the summary page:

This Action cannot be executed

Reason : Either subject or participant or both is/are evaluated as
NULL/do(es) not exist.

Example 2-12 Adding Project Dependencies

<input id="DPProjectl" name="inputl">
<entityRefToken>refl</entityRefToken>
</input>
<input id="DPProject2" name="input2">
<entityRefToken>ref2</entityRefToken>
</input>
<project id="DPProject" name="DS Project" tokenGroup="ProjectCreation">
<description>Model Project</description>
<typeId>MODEL</typeId>
<defaultValue>Test_CFS</defaultValue>
</project>
<tokenGroup name="Project Creation" id="ProjectCreation">
<description>Create project silently using default value.</description>
</tokenGroup>
<tokenGroup name="Project Creation" id="DependencyCreation">
<description>Create project silently using default value.</description>
</tokenGroup>
<token name="EntityNamel" tokenGroup="DependencyCreation"
id="refl" xsi:type="EntityRefToken">

Working with Design Patterns 2-45

Design Pattern Examples

<condition>
<equals v2="1" v1="2"/>
</condition>
<defaultValue>@@DPProject@@</defaultValue>
<entityType>ddCartridge</entityType>
<relationship>xxx</relationship>
</token>
<token name="EntityName2" tokenGroup="DependencyCreation"
id="ref2" xsi:type="EntityRefToken">
<condition>
<equals v2="1" vl1="3"/>
</condition>
<defaultValue>OracleComms_Model_base</defaultValue>
<entityType>ddCartridge</entityType>
<relationship>xxx</relationship>
</token>

<action name="Add dependency" id="dependendyaction">
<actionType>relationship</actionType>
<subject>
<participantType>input</participantType>
<id>DPProjectl</id>
</subject>
<participant>
<participantType>input</participantType>
<id>DPProject2</id>
</participant>
<actionKey>unknown</actionKey>
</action>

Example: Defining Tokens for Resources

Consider that you want to define a token called equipmentName and use it to give an
equipment specification in a design pattern a different name.

<token name="Equipment ID" tokenGroup="Resources" id="equipmentName">
<description> The Equipment specification</description>
</token>

In this example, you would define the resource element targetLocation element for the
specification as:
<targetLocation>model/equipment/@RequipmentName@@.equipment</targetLocation>

If the user (who runs the design pattern) enters the value opticalDevice for the

equipmentName token, the targetLocation value in this example expands to the
following when the pattern is applied:

<targetLocation>model/equipment/opticalDevice.equipment</targetLocation>
You can also define tokens in other locations of the path in the targetLocation. For

example, you might define a token named deviceVendor and use it to expand the
previous example:

<targetLocation>model/equipment/@@deviceVendor@@/@RequipmentName@@.equipment</targ
etLocation>

If the user enters the value oracle for the deviceVendor token, the targetLocation
value in this example expands to:

<targetLocation>model/equipment/oracle/opticalDevice.equipment</targetLocation>

2-46 Design Studio Developer's Guide

Design Pattern Examples

Note: Design Studio automatically creates directories as needed
when copying resources into a workspace.

Example: Defining Tokens as Default Values

You can define tokens as default values of other tokens. For example, you might define
a token called deviceGateway and define it with the following default value:

<defaultValue>@@equipmentName@@_gateway</defaultValue>

If the user enters the value opticalDevice for the equipmentName token, the default
value in this example expands to:

<defaultValue>opticalDevice_gateway</defaultValue>

Note: When using embedded tokens as default values for other
tokens, ensure that the embedded token appears in an earlier token
group than where it is used. If a value has not been assigned before
the token is displayed to a user, the Design Pattern wizard displays
the embedded token ID in the defaultValue element.

Example: Defining Action Subjects or Participants With Values External to Design

Patterns

In design patterns, action subjects and participants can be populated with values
provided by the user or populated with resources generated by the design pattern. If
you have a project or entity to which you need to make a reference or with which you
need to create a dependency, and that entity or project exists in the workspace and is
not a resource generated by the design pattern or the result of user input, you can use
a default value of a hidden token to populate a field that references the entity.

Example 2-13 demonstrates how you can define a token element default value with a
pre-populated value (rather than with inputs captured during design pattern
execution). By defining a condition that always evaluates to false, the token does not
appear as a field in the design pattern, but the token value can be used by the design
pattern to reference an existing entity in the workspace.

Example 2-13 Defining Action Subjects or Participants With Values External to Design
Patterns

<token name="projectNameTokenl" tokenGroup="PDHiddenInfo" id="projectNamel"
xsi:type="EntityRefToken">
<condition>

<equals vl="test" v2="testl"/>

</condition>
<defaultValue>testProjectl</defaultvalue>
<entityType>ddCartridge</entityType>
<relationship>unknown</relationship>

</token>

<token name="projectCommon" tokenGroup="PDHiddenInfo" id="projectCommon"
xsi:type="EntityRefToken">
<condition>
<equals vl="test" v2="test2"/>
</condition>
<defaultValue>OracleComms_Model_ Base</defaultValue>
<entityType>ddCartridge</entityType>

Working with Design Patterns 2-47

Design Pattern Examples

<relationship>unknown</relationship>
</token>
<input id="projectNamel_input" name="Project">
<entityRefToken>projectNamel</entityRefToken>
</input>

<input id="projectOracleComm_input" name="Project">
<entityRefToken>projectCommon</entityRefToken>
</input>

<action id="AssociateDependencyProject" name="Associate Dependency Project">
<actionType>relationship</actionType>
<subject>
<participantType>input</participantType>
<id>projectNamel_input</id>
</subject>
<participant>
<participantType>input</participantType>
<id>projectOracleComm_input</id>
</participant>
<actionKey>unknown</actionKey>
<executeOnExistingEntity>true</executeOnExistingEntity>
</action>

Example: Supporting Multiple Selections for Entity Reference Tokens

Example 2-14 illustrates how to use inputs, entity reference tokens, and actions in the
pattern.xml file to enable a user to select multiple entities when defining a project
dependency.

Example 2-14 defines two entity reference tokens that are used in two different inputs.
When the user runs this design pattern, the Add dependency action creates a
dependency from the Cartridge Project entity the user selects in the Conceptual Model
Project field (specified in inputl) to each Cartridge Project entity they select in the
Conceptual Model Project Dependencies field (specified in input2).

Example 2-14 Supporting Multiple Selections for Entity Reference Tokens

<inputs>
<input id="inputl" name="inputl">
<entityRefToken>modelEntity</entityRefToken>
</input>
<input id="input2" name="input2">
<entityRefToken>entityContainer</entityRefToken>
</input>
</inputs>
<tokens>
<token name="Conceptual Model Project"
tokenGroup="ProjectCreation"
id="modelEntity"
xsi:type="EntityRefToken">
<entityType>ddCartridge</entityType>
</token>
<token name="Conceptual Model Project Dependencies"
tokenGroup="ProjectCreation"
id="entityContainer" xsi:type="EntityRefToken">
<allowMultiple>true</allowMultiple>
<entityType>ddCartridge</entityType>
</token>
</tokens>

2-48 Design Studio Developer's Guide

Working with Cheat Sheets

<actions>
<action name="Add dependency" id="dependencyaction">
<actionType>relationship</actionType>
<subject>
<participantType>input</participantType>
<id>inputl</id>
</subject>
<participant>
<participantType>input</participantType>
<id>input2</id>
</participant>
<actionKey>unknown</actionKey>
</action>
</actions>

Working with Cheat Sheets

Design Studio supports cheat sheets, which refers to the integration of documented
procedures with wizards in the application. Cheat sheets are XML documents that can
be interpreted by the Eclipse Cheat Sheet framework, and developers can map cheat
sheets to specific points in the Design Studio user interface (for example, in editors and
views). You access the cheat sheets that are relevant to current tasks, and complete
those tasks using the included instructions. Cheat sheets enable you to find
documentation for relevant solution design procedures and facilitate the learning of
those procedures.

For example, you can use cheat sheets with design patterns to describe the resources
added to a workspace and to assist users with any manual steps required after a
design pattern is applied. Cheat sheets are not mandatory for design patterns, but they
are recommended.

You can develop and edit cheat sheets using the Eclipse Cheat Sheet editor.

For information about creating and developing cheat sheets, see "Building Cheat
Sheets in Eclipse" on the Oracle Technology Network:

http://www.oracle.com/technetwork/articles/entarch/eclipse-cheat-sheets-09
2351 .html

Working with Design Patterns 2-49

Working with Cheat Sheets

2-50 Design Studio Developer's Guide

3

Working with Guided Assistance

This chapter provides information about guided assistance, how to create guided
assistance in Oracle Communications Design Studio, and how to distribute guided
assistance.

Working with Guided Assistance

Design Studio guided assistance is a range of context-sensitive learning aides mapped
to specific editors and views in the user interface. For example, when working in
editors, you can open the Guided Assistance dialog box for Help topics, cheat sheets,
and recorded presentations that are applicable to that editor.

When working with guided assistance, you can review the learning aids delivered
with Design Studio, and you can create your own and map them to projects and
entities by using design patterns or by defining values for attributes directly in the
guided assistance extension point.

About the Guided Assistance Dialog Box

You can access learning aids delivered in Design Studio by opening the Guided
Assistance dialog box, which is available from the Studio menu, the main tool bar, and
from the Studio Projects view context menu.

The learning aids included in the Guided Assistance dialog box are organized into
categories that reflect a specific domain. For example, the Order and Service
Management Project directory includes a category called Order, which includes
learning aids that help you define and configure orders.

The Guided Assistance dialog box is organized in the following hierarchy:

= The root level contains global guided assistance that is not specific to any cartridge
project.

s The second level is organized by project type and contains guided assistance for
specific cartridge projects.
» The third level contains entity-specific guided assistance for each project type.

» The fourth level contains folders that include learning aids that are specific to
functionality within an entity.

Folders appear only when there is guided assistance available at the corresponding
folder level. When you first open the Guided Assistance dialog box, the hierarchy
expands to the folder relevant to the context in focus. If no guided assistance is
mapped to the active context, the hierarchy will appear fully collapsed. You can
navigate to any folder level in the hierarchy, regardless of the context in focus.

Working with Guided Assistance 3-1

Working with Guided Assistance

Working with Guided Assistance Design Patterns

You can create and implement new guided assistance by using design patterns
delivered with Design Studio.

These design patterns are preconfigured for guided assistance development and can
help you create a directory structure where Design Studio users can save guided
assistance learning aids. After applying a guided assistance design pattern, this
directory structure appears in the plugin.xml file.

Creating Guided Assistance Using Design Patterns

The following procedure describes how to create your own guided assistance using
design patterns.

To create new guided assistance using design patterns:

1.

10.

In Design Studio, verify that the Oracle Communications Design Studio Design
Pattern Feature is installed.

Contact your system administrator if this feature is not available.
From the Studio menu, select Design Pattern.

The Design Pattern dialog box appears.

Expand the Others folder.

A list of guided assistance folders appears, one for each Design Studio project
type.

Expand the folder for the project type for which you want to add guided
assistance.

For example, if you are adding guided assistance for model projects, expand the
Guided Assistance Design Pattern for Model folder.

Select the design pattern and click Next.

The Design Pattern wizard Introduction page appears.

Read the information on the Information page, and then click Next.
The Select Project page appears.

Do one of the following:

= To use an existing project for guided assistance development, select a plug-in
project in the Guided Assistance Plug-in Project field.

» To create a new project for guided assistance development, click New.
Click Next.

The Plug-in Information page appears.

Enter all required information, and then click Next.

The Summary page appears.

Review the summary information, and then click Finish.

Design Studio populates the project with information necessary to build the
guided assistance for the designated project type. The information includes a
manifest and a guidedAssistance directory, which contains the folder structure for
the project type and all plug-in related configuration for the packaging of the
guided assistance. When you finish the wizard, Design Studio opens the Guided
Assistance cheat sheet in the Help view.

3-2 Design Studio Developer's Guide

Working with Guided Assistance

11. (Optional) Modify the cheat sheets in the

Working with the Guided Assistance Extension Point

oracle.communications.sce.guided.assistance.feature.

The cheat sheets should provide help to users who apply the guided assistance
design pattern. The information should describe how to copy guided assistance
learning aids to the folder structure created by applying the design pattern.

You use the guided assistance extension point
(com.mslv.studio.core.ui.studioGuidedAssistance) to register the learning aid content
locations.

In the plugin.xml file (located at the root of the plug-in project), you define attributes
for the extension point to register guided assistance (for example, cheat sheets, HTML
files, and Help documents) content locations that are applicable to:

Table 3—1

All project types (globalGuided Assistance)

A specific project type (cartridgeGuided Assistance)

A specific entity type (entityGuidedAssistance)

A specific functionality in an entity type (guidedAssistanceContent, which is a
child element of entityGuided Assistance)

Guided Assistance Extension Point Attributes

Attribute

Element Used In

Use

guideName

globalGuidedAssistance
cartridgeGuided Assistance

guidedAssistanceContent

Enter the display name that appears in the
Guided Assistance dialog box for the
learning aid. If you define no value for
helpContextld, the name you define here is
displayed for the contentLocation, but only
when the location refers to a single file;
otherwise this value is ignored.

contentLocation

globalGuidedAssistance
cartridgeGuided Assistance

guidedAssistanceContent

Enter the folder location for the learning aid.

helpContextId

globalGuidedAssistance
cartridgeGuided Assistance

guided AssistanceContent

Enter a unique ID that represents the
learning aid. Design Studio uses this value
to display the appropriate Help page.
Optionally, you can specify the Help URL.

Use the following format to define a Help
context ID:

pluginld.contextld
For example:

com.company.product.help.myContextld

projectTypeld

cartridgeGuided Assistance

(optional)
entityGuided Assistance

Enter a fully qualified ID of the project type
to which the learning aid is related. The
projectType extension can be defined in any
plug-in (that is, it does not need to be
defined in the same plug-in as
cartridgeGuided Assistance).

Working with Guided Assistance 3-3

Working with Guided Assistance

3-4

Table 3—-1 (Cont.) Guided Assistance Extension Point Attributes

Attribute Element Used In Use

entityld entityGuided Assistance Enter the fully qualified name of a
modelType extension. The extension can be
defined in any plug-in (that is, it does not
need to be defined in the same plug-in as
entityGuided Assistance).

The Package Explorer view model folder
includes an entityld for each entity in a
project.

folderId guidedAssistanceContent | Enter the name of the folder in which the
learning aid should appear in the Guided
Assistance dialog box.

Guided Assistance Extension Point Example

Example 3-1 shows how you can configure the attributes for the guided assistance
extension point:

Example 3—-1 Example: Guided Assistance Extension Point

<extension
point="com.mslv.studio.core.ui.studioGuidedAssistance">
<globalGuidedAssistance
contentLocation="guidedassistances/"
guideName="Global Guides Location">
</globalGuidedAssistance>

<cartridgeGuidedAssistance
contentLocation="guidedassistances/ModelProject/"
guideName="Data Dictionary Wizard Help"
helpContextId="com.mslv.studio.core.help.DataDictionaryWizard"
projectTypeld="com.mslv.studio.core.datadictionary.project">
</cartridgeGuidedAssistance>
<entityGuidedAssistance
entityId="com.mslv.studio.core.dataDictionary">
projectTypeld="com.mslv.studio.core.datadictionary.project">
<guidedAssistanceContent
contentLocation="guidedassistances/ModelProject/DataSchema/"
guideName="Data Schema Guides"></guidedAssistanceContent>
</entityGuidedAssistance>

<cartridgeGuidedAssistance
contentLocation="guidedassistances/0SM/"
guideName="0SM Guides"
projectTypeld="com.mslv.studio.provisioning.project">
</cartridgeGuidedAssistance>

<entityGuidedAssistance
entityId="com.mslv.studio.provisioning.process">
<guidedAssistanceContent
contentLocation="guidedassistances/0SM/order/"
folderId="com.mslv.studio.provisioning.order">
</guidedAssistanceContent>
<guidedAssistanceContent
contentLocation="guidedassistances/0SM/process/creationTask/"
folderId="orderCreationTask">
</guidedAssistanceContent>
</entityGuidedAssistance>

Design Studio Developer's Guide

About the Design Pattern and Guided Assistance SDK Folder

<entityGuidedAssistance
entityId="com.mslv.studio.provisioning.order">
<guidedAssistanceContent
contentLocation="guidedassistances/0OSM/order/">
</guidedAssistanceContent>
<guidedAssistanceContent
contentLocation="guidedassistance/0SM/video/722_whats_new.htm"
guideName="Design Studio 7.2.2 What’s New Video">
</guidedAssistanceContent>
</entityGuidedAssistance>

</extension>

Distributing Guided Assistance

You save guided assistance in Eclipse plug-in projects. Plug-in projects are grouped
into features, and your system administrator can make these features available to other
users by adding the feature to your Design Studio update site.

To distribute guided assistance:

1.

From the File menu, select New and then select Project.

The New wizard appears.

Expand the Plug-in Development folder.

Select Feature Project, and then click Next.

The New Feature wizard appears.

Enter the information required by the wizard, and then click Finish.
The new feature appears in the Feature editor.

Click the Plug-ins tab.

Click Add.

Add the plug-in project in which you saved the guided assistance.
You can add any number of projects to the feature.

Contact your system administrator to request that the new feature be added to the
Design Studio update site.

See Eclipse Plug-in Development Environment Guide for information about using feature
projects. The samples included in the Design Studio software package demonstrate
how your system administrator can configure feature projects.

About the Design Pattern and Guided Assistance SDK Folder

The design pattern and guided assistance SDK folder is a root-level folder included in
the Design Studio software package available on the Oracle software delivery website:

https://edelivery.oracle.com

It includes the following;:

A samples folder
This folder contains the Pattern folder and a Guided Assistance folder.

The Pattern folder contains the oracle.communications.sce.pattern.sample.zip
archive file, which includes the following projects:

Working with Guided Assistance 3-5

About the Design Pattern and Guided Assistance SDK Folder

oracle.communications.sce.pattern.sample contains the plug-in project
(plug-in.xml) that includes a single design pattern.

oracle.communications.sce.pattern.sample.feature contains the feature
project (feature.xml) that you can use for building and distributing the plug-in
project.

oracle.communications.sce.pattern.update.site contains an update site project
(site.xml) that illustrates how your system administrator can build an update
site for delivering your feature to end users.

The Guided Assistance folder contains the
oracle.communications.sce.guidedassistance.sample.zip archive file, which
includes the following projects:

oracle.communications.sce. guidedassistance.sample contains the plug-in
project (plug-in.xml) that includes guided assistance mappings.

oracle.communications.sce. guidedassistance.sample.feature contains the
feature project (feature.xml) that you can use for building and distributing the
plug-in project.

oracle.communications.sce. guidedassistance.update.site contains an update
site project (site.xml) that illustrates how your system administrator can build
an update site for delivering your feature to end users.

See the Design Studio Help for information about importing projects into your
workspace.

s A schema folder

This folder contains the Design Pattern XML schema (DesignPattern.xsd), which
is a standard XML Schema document. You can review the contents of this
document using any schema or XML editor.

3-6 Design Studio Developer's Guide

4

Working with the Design Studio Exchange
Format

This chapter describes the Oracle Communications Design Studio Exchange Format,
the Exchange Format data schemas, and the modeling patterns that facilitate custom
extensions when working with the Design Studio Exchange Format.

About the Design Studio Exchange Format

The Design Studio Exchange Format is an XML document based on the data model
defined for Design Studio projects. The XML document is generated by a project build.

The Exchange Format represents the output of Design Studio configuration in a
published XML format, facilitates the exchange of solution modeling information
between Design Studio and other systems or applications, and enables you to extend
Design Studio functionality.

For example, you can use the Exchange Format when:

= Driving a run-time engine, such as for the Calculate Technical Action or for the
Design and Assign provider functions.

= Driving a third-party application, such as when generating reports from a
solution.

= Synchronizing with another catalog, such as when refining a catalog external to
Design Studio.

= Generating Java code in a reference implementation, especially for an
implementation that is repetitive or pattern-based.

The Exchange Format represents all entities, elements, and relationships in Design
Studio, and is used to produce an XML file (ending in .studioModel) for every Design
Studio entity type in a solution. Each entity type, such as Product, Customer Facing
Service, and Order entities, has an XML schema that describes the content of the XML
file that is produced for the entity type. The XML files are generated every time you
run a full or incremental build. Design Studio saves the XML files in a project
generated folder, which you can access from the Project Explorer view.

Working with the Design Studio Exchange Format 4-1

About the Exchange Format Model Lifecycle

Note: Design Studio generates Exchange Format XML files for a
sealed project during the initial import if the sealed project directory
does not contain any .studioModel XML files in the project generated
folder. Design Studio does not update the generated folder XML files
for sealed projects during subsequent builds.

Before distributing sealed projects, Oracle recommends that you
generate the project Exchange Format XML files to reduce initial build
times when team members import the sealed projects.

The XML output that is generated from the Exchange Format is the same as the XML
input used in the Design Studio reporting framework. Report designers can use the
Exchange Format XML files to design custom reports. See "Working with Reports" for
more information.

You can leverage the Exchange Format information by referencing the published XML
format and data schemas, or you can use the Design Studio Model Java API to access
the information in the Exchange Format. The Design Studio Model Java APl is a
wrapper that reads the Exchange Format XML files produced by Design Studio. When
combined with other public Eclipse APIs, the Design Studio Model Java API enables
you to extend Design Studio with custom functionality and features. For example, you
can use the Design Studio Model Java API to add a new action to a Design Studio
menu. See "Working with Design Studio Model Java API" for more information.

You can leverage the Exchange Format information when working with:

= XML technologies, such as XQuery, XSLT, JavaScript, Java, and so forth
s TheJava model API

= Action command extensions

» Eclipse Builder and Packager extensions

» Other Eclipse extensions

About the Exchange Format Model Lifecycle

Figure 4-1 illustrates the Exchange Format model lifecycle, which includes the
following phases:

= Design: You define data models in a project in Design Studio.
= Generate: You produce the Exchange Format by building the project.

= Consume: You use the Exchange Format to extend Design Studio or to integrate
with external systems.

4-2 Design Studio Developer's Guide

About the Exchange Format Architecture

Figure 4-1 Exchange Format Lifecycle

mm

: Produce the Use the
Define) Exchange) Exchange
Data Models 9 9
Format Format

When integrating with third-party applications, you can:

s Add commands to Design Studio menus, which can be invoked to read the
Exchange Format and run the integration logic necessary to propagate the model
to an external system. Using action commands enables you to interactively invoke
custom logic while designing a solution, such as validating an XQuery path
provided in the solution design.

= Add Model Processors to Design Studio, which run as background processes
when you build a project. Model Processors can consume the Exchange Format
and integrate with external systems. Using Model Processors enables you to
embed custom logic in the solution design and to invoke that logic while building
or compiling the solution. For example, you can generate custom artifacts or
validate third-party components.

Additionally, external systems can interact with custom Design Studio extensions to
access the Java Model API, from which the external system can consume the Exchange
Format. Also, external systems can use the Java Model API or the XML files directly to
consume the Exchange Format.

About the Exchange Format Architecture
Figure 4-2 illustrates the Exchange Format architecture:

s The Action Commands, Model Processor, and three Custom blocks represent
architecturally distinct components that provide custom logic using the Exchange
Format XML or using the Design Studio Model Java APIL.

s The Exchange Format block represents the fundamental definition of the Exchange
Format (using XML technologies). The Model Locator Service block and the set of
Model blocks directly under the Model Locator Service block represent the parts of
the Java API which provide simplified access to the Exchange Format XML.

= The Eclipse Extensions block represents the metadata that describes extensions to
the Eclipse platform and to Design Studio. Typically, the extensions are supported
by Java implementations. The Action Commands, Model Processor, and Custom
Java code represent the Java implementation supporting those extensions.

s The Custom block built on the Design Studio Java API (represented by the Model
Locator Service block and the set of Model blocks directly under the Model
Locator Service block) represents a custom Java implementation built
independently of the Eclipse platform and of the Design Studio features.

s The Custom block noted as Other and built directly on the Exchange Format
represents an implementation that utilizes the Exchange Format XML directly.

Working with the Design Studio Exchange Format 4-3

About the Design Studio Model Schemas

This type of custom implementation may use XML transformation technologies
(such as XQuery and XSLT) and represents any integration with the Design Studio
platform for which you elect to use the Exchange Format.

Figure 4-2 Exchange Format Architecture

Meta Eclipse Extensions
data
Action Commands | Model Processor

Java - Model Locator Service

Other

I_H

Custom

Core OSM | Activation] Inventory | Integrity
Model Model Model Model Model
XML = Exchange Format

About the Design Studio Model Schemas

Design Studio includes schemas that describe the XML files generated from the
published Exchange Format. These schemas are bundled in a schemas folder in the
Design Studio Report Design example and in the Design Studio Action Command
example.

If, after you add the examples to your workspace, you move these schemas to a new
location, ensure that you copy and move the full set of schemas in the schemas folder,
as these schemas have dependencies defined among them.

You can review the details of the full Design Studio model by opening and reviewing
the Design Studio schemas (you can also review the model by browsing the Design
Studio Model Java API). For example, you can browse the schemas to review details
about named attributes, named lists, and cardinality.

Viewing the Design Studio Schemas

You can review the details of the full Design Studio model by viewing the Design
Studio schemas.

4-4 Design Studio Developer's Guide

About the Design Studio Exchange Format Model

Note: To view the Design Studio schemas, you must first add the
Design Studio Report Design example or the Design Studio Action
Command example to your workspace. See "Adding the Report
Design Example to the Workspace" or "Adding the Design Studio
Action Command Example to a Workspace" for more information.

To view the Design Studio schemas:
1. In Design Studio, switch to the Java perspective.
2. Click the Package Explorer tab.
The Package Explorer view becomes active.
3. Do one of the following:
= Expand the design.studio.example.action.command folder.
= Expand the design.studio.example.report.designs folder.
4. Expand the schemas folder.

5. Double-click one of the schema files to open the file in the Data Schema editor.

About the Design Studio Exchange Format Model

The Design Studio Exchange Format represents all entities, elements, and relationships
in the Design Studio model. The information in the following sections describe model
patterns that are useful when designing reports and when extending Design Studio
with custom functionality.

Element Attributes and Children

The Design Studio Exchange Format includes XML elements named <element>, and
these elements are called base elements.

All base elements in the Exchange Format model include the following base attributes:
= @id (unique locator)

= @name

. @type

s @typeName

= @kind (Project, Entity, Element)

= @path

Base elements also define the following child elements:

» displayName (localizedString)

= Note (localizedString)

A localizedString is a string value with an @lang attribute. The @lang attribute
defines the related language. You use the @lang value default to define the default
string value.

Example 4-1 Element Base Attributes and Children

<element

Working with the Design Studio Exchange Format 4-5

About the Design Studio Exchange Format Model

id=v"
name=""
type=""
typeName=""
kind=""
path: ANEN

<note
lang=“en-ca”>
</note>

<displayName
lang="default”>
</displayName>

</element>

Entity Attributes and Children

Element Lists

You can extend entities to add additional children. Entity base attributes include all
base element attributes, and the following:

= @resource
= extends (relationSingle)

= project (relationSingle)

Child elements are contained in a list even when there is only one occurrence. The
content of an element list is always an element. The elements in the list are usually of
the same type. Mixing element types in a list is supported as well, and the element
type attribute can be used to filter for specific element types when the list includes
mixed types.

Nested entity and elements have the following modeling pattern:

Example 4-2 Element Lists

<element..>
<elementListl ..>
<element..>
<elementList2 ..>
<element.../>
</elementList2>
<elementList3 ..>
<element.../>
</elementList3>
</element>
</elementListl>
</element>

For nested elements, parent element details exist two levels up from the current
element.

Element list cardinality indicates whether an element list is mandatory or optional. For
zero or more elements, the element container is defined with a 0..1 cardinality. For zero
or one elements, the element container element is defined with a 1..1 cardinality. Lists
will always contain at least one element.

4-6 Design Studio Developer's Guide

About the Design Studio Exchange Format Model

In Table 4-1:

s Opverall cardinality is the effective combined cardinality of the list element and its
child elements.

s The list element cardinality represents the first level of containment and indicates
whether the list element is required or optional. List elements are elements with a
specific type of child element. There is, at most, one occurrence of a list element in
a parent element.

s The child element cardinality indicates the number of instances of a child element
that can appear in the list element. The child element is an instance of a standard
element and its type is appropriate for the list element in which it is contained. An
instance of a list element will always contain at least one child element. If the list is
empty, the list element is not present.

Table 4-1 Element List Cardinality

Overall Cardinality List Element Cardinality Child Element Cardinality
0.1 0..1 (Optional) 1.1
1.1 1..1 (Required) 1.1
0..* 0..1 (Optional) 1.%
1.% 1..1 (Required) 1.%
Relation Attributes

The target and inEntity attributes provide contextual information from the target
entity or element.

The inEntity attribute is optional. This element appears only when the relation is to an
element (the kind attribute is defined as Element).

Relation attributes include the following:
= @ref (represents an entity or element ID)
@type
@name
@kind (Project, Entity, Element)
= target
@name
@typeName
= inEntity
@name

@typeName

Example 4-3 Relation Attributes

<relation
ref:\\ "
type=""
name=""
kind="">

<target

Working with the Design Studio Exchange Format 4-7

About the Design Studio Exchange Format Model

name=""
typeName=""/>

<inEntity
name=
typeName=""/>

wn

</relation>

Named Relation Lists

Lists of named relations can appear in elements and entities. A list can be optional or
required and can contain one or more relations. The objects that can be referenced by a
list are projects, entities, and elements.

Each relation list is typed as:
= relationSingle: This list has one child defined as type relation.
= relationMultiple: This list has multiple children defined as type relation.

The relation list cardinality defines whether the relation list is mandatory or optional.
For zero or more relations, the relation container element is defined with 0..1
cardinality and with the type relationMultiple. For zero or one relations, the relation
container element is defined with a 0..1 cardinality and with a type of relationSingle.
Lists always contain at least one element.

Example 4-4 Named Relation Lists

<entity ..>
<relationListl ..>
<relation../>
</relationListl>

<relationList2 ..>
<relation../>
<relation../>

</relationList2>

<elementListl ..>
<element..>
<relationList3 ..>
<relation../>
</relationList3>
</element>
</elementListl>
</entity>

4-8 Design Studio Developer's Guide

O

Extending Design Studio

This chapter describes how to extend Oracle Communications Design Studio using
action commands. It provides the identifiers necessary to make additions to
components in the Design Studio user interface. Also, this chapter describes how to
extend Design Studio by adding custom logic to builds.

About Extending Design Studio

You can extend the functionality of Design Studio. For example, you create custom
report designs that are included in the Design Studio installation and you can create
custom action commands that you add to a Design Studio menu. You can extend
Design Studio functionality by working directly with the Design Studio Exchange
Format published XML files or by using the Design Studio Model Java API to access
the information in the Exchange Format.

Extending Design Studio with Action Commands

Action commands are custom menu commands that you can add to Design Studio
menus and toolbars. When extending Design Studio with action commands, you use
the following extension points:

= org.eclipse.ui.commands
= org.eclipse.ui.menus
= eclipse.core.extensions.propertyTester

See the Eclipse Platform Developer Guide for more information about these extension
points.

The Design Studio Action Command example includes details about these extension
points. See "About the design.studio.example.action.command Example Project" for
more information about the Action Command Examples project.

Adding the Design Studio Action Command Example to a Workspace

Design Studio includes the Design Studio Action Command example, which includes
example projects that demonstrate how to extend Design Studio with action
commands. These example projects are included in the Design Studio installation and
can be added to your workspace.

To add the Design Studio Action Command example projects to a workspace:
1. From the Design Studio File menu, select New, and then select Example.

The New Example wizard appears.

Extending Design Studio 5-1

Extending Design Studio with Action Commands

2.

Expand the Design Studio Examples folder and select Design Studio Action
Command Examples.

Click Next.

The Example Projects page appears. The Design Studio Action Command
example includes three example projects.

Click each of the following example projects to read a summary of the example
project:

s The design.studio.example.action. command.update.site project creates a
project that demonstrates how to export installable features into an update
site.

s The design.studio.example.action.command.feature project creates a project
that demonstrates how action commands can be packaged into a feature for
installation into Design Studio.

s The design.studio.example.action.command project creates a project that
contains sample action commands that you can add to Design Studio.

Click Finish.

The example projects are added to the current workspace.

About the design.studio.example.action.command Example Project

The design.studio.example.action.command example project includes a plug.xml file
that illustrates how to create actions that appear in the user interface and that leverage
the information published by the Design Studio Exchange Format.

Note: The examples presented in this chapter are displayed in text
form, such as that displayed on the plugin.xml tab of the Plug-in
Manifest editor. You can configure extensions in the Plug-in Manifest
editor using the form-based representation that appears on the
Extensions tab as well. The plugin.xml tab and the Extensions tab
display two views of the same information.

The design.studio.example.action.command example project illustrates how to
complete the following tasks:

Adding Commands to the Studio Menu

Adding Commands to the Design Studio Toolbar

Adding Commands to the Solution View Context Menu

Adding Commands to the Studio Projects View Context Menu

Adding Commands to the Package Explorer View Context Menu

Adding Commands to the Project Explorer View Context Menu

Configuring the Visibility of Commands Using the Property Tester

Configuring the Visibility of Commands Using the File Extension of Resources
Obtaining the Model From a Resource Using the Design Studio Model Java API

Obtaining the Model From an Entity Relation Using the Design Studio Model Java
API

5-2 Design Studio Developer's Guide

Extending Design Studio with Action Commands

s Obtaining the Model From an Element Relation Using the Design Studio Model
Java API

Adding Commands to the Studio Menu

The Design Studio Action Command Examples project includes an example that
demonstrates how to add a command to the Studio menu.

Example 5-1 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.StudioMenuCommandHandler

In Example 5-1, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-1 Adding Commands to the Studio Menu

<extension
point="org.eclipse.ui.commands">
<command
defaultHandler=
"design.studio.example.action.command.handler.StudioMenuCommandHandler"
id="design.studio.example.action.command.studioMenuCommand.command"
name="Studio menu command">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">

<menuContribution
locationURI="menu:studioMenu?after=perspective">
<command

commandId="design.studio.example.action.command.studioMenuCommand.command"
mnemonic="%contributions.menu.studioMenuCommand.mnemonic"
icon="icons/sample.gif"
id="design.studio.example.action.command.studioMenuCommand.command">
</command>
</menuContribution>
</extension>

Adding Commands to the Design Studio Toolbar
The Design Studio Action Command Examples project includes an example that
demonstrates how to add a command to the Design Studio toolbar.

Example 5-2 displays an example of the configuration of the extensions for the
command class:

design.studio.example.action.command.handler.StudioMenuCommandHandler.

In Example 5-2, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-2 Adding Commands to Design Studio Toolbar

<extension
point="org.eclipse.ui.commands">
<command defaultHandler=
"design.studio.example.action.command.handler.StudioMenuCommandHandler"

Extending Design Studio 5-3

Extending Design Studio with Action Commands

id="design.studio.example.action.command. studioMenuCommand.command"
name="Studio Menu Command">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI="toolbar:org.eclipse.ui.main.toolbar">
<toolbar
id="design.studio.example.action.command. toolbar">
<command
commandId=
"design.studio.example.action.command. studioMenuCommand.command"
id="design.studio.example.action.command.menu. studioMenuCommand.command"
mnemonic="%contributions.menu.studioMenuCommand.mnemonic"
icon="icons/sample.gif"
tooltip="Studio menu command">
</command>
</toolbar>
</menuContribution>
</extension>

Adding Commands to the Solution View Context Menu

The Design Studio Action Command Examples project includes an example that
demonstrates how to add a command to the Solution view context menu. In the
example, the command appears when a Resource, Location, or Product entity is
selected in the Solution view.

Example 5-3 displays an example of the configuration of the extensions for the
command class:

design.studio.example.action.command.handler.GetModelFromResourceCommandHa
ndler

and for the property tester class:
design.studio.example.action.command.propertytesters.ResourceTester

In Example 5-3, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-3 Adding Commands to the Solution View Context Menu

<extension
point="org.eclipse.ui.commands">
<command defaultHandler=
"design.studio.example.action.command.handler.
GetModelFromResourceCommandHandler"
id="design.studio.example.action.command.getModelFromResource.command"
name="Get Conceptual Model">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">

<menuContribution

locationURI="popup:oracle.communications.sce.ui.solution.view?after=additions">
<command

5-4 Design Studio Developer's Guide

Extending Design Studio with Action Commands

commandId=
"design.studio.example.action.command.getModel FromResource.command"
mnemonic="%contributions.menu.getModel FromResource.mnemonic"
tooltip="Get conceptual model from resource"
icon="icons/sample.gif"
id=
"design.studio.example.action.command.menu.getModel FromResource.command">
<visibleWhen
checkEnabled="false">
<iterate
operator="or">
<adapt
type="org.eclipse.core.resources.IResource">
<or>
<test
forcePluginActivation="true"
property=
"design.studio.example.action.command.
propertytesters.isProduct">
</test>
<test
forcePluginActivation="true"
property=
"design.studio.example.action.command.
propertytesters.isResource">
</test>
<test
forcePluginActivation="true"
property=
"design.studio.example.action.command.
propertytesters.isLocation">
</test>
</or>
</adapt>
</iterate>
</visibleWhen>
</command>
</menuContribution>
</extension>

<extension
point="org.eclipse.core.expressions.propertyTesters">
<propertyTester
class=
"design.studio.example.action.command.propertytesters.ResourceTester"
id="design.studio.example.action.command.propertytesters.resourceTester"
namespace="design.studio.example.action.command.propertytesters"
properties="isResource, isProduct,isLocation"
type="org.eclipse.core.resources.IResource">
</propertyTester>
</extension>

Adding Commands to the Studio Projects View Context Menu

The Design Studio Action Command Examples project includes an example that
demonstrates how to add a command to the Studio Projects view context menu. In the
example, the command appears when a Product entity is selected in the Studio
Projects view.

Extending Design Studio 5-5

Extending Design Studio with Action Commands

Example 54 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.GetProductModelFromResourceCo
mmandHandler

and for the property tester class:
design.studio.example.action.command.propertytesters.ResourceTester

In Example 54, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-4 Adding Commands to the Studio Projects View Context Menu

<extension
point="org.eclipse.ui.commands">
<command
defaultHandler=
"design.studio.example.action.command.handler.
GetProductModelFromResourceCommandHandler"
id="design.studio.example.action.command.
getProductModel FromResource. command"
name="Get Product Model">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI=
"popup:com.mslv.studio.view.StudioView?before=common-additions">
<command
commandId=
"design.studio.example.action.command.
getProductModel FromResource. command"
mnemonic="%contributions.menu.getProductModel FromResource.mnemonic"
tooltip="Get product model from resource"
icon="icons/sample.gif"
id=
"design.studio.example.action.command.
menu.getProductModel FromResource.command">

<visibleWhen
checkEnabled="false">
<iterate
operator="or">
<adapt
type="org.eclipse.core.resources.IResource">
<test
forcePluginActivation="true"
property=
"design.studio.example.action.command.
propertytesters.isProduct">
</test>
</adapt>
</iterate>
</visibleWhen>
</command>
</menuContribution>
</extension>

5-6 Design Studio Developer's Guide

Extending Design Studio with Action Commands

<extension
point="org.eclipse.core.expressions.propertyTesters">
<propertyTester
class=
"design.studio.example.action.command.propertytesters.ResourceTester"
id="design.studio.example.action.command.propertytesters.resourceTester"
namespace=
"design.studio.example.action.command.propertytesters"
properties="1isResource, isProduct,isLocation"
type="org.eclipse.core.resources.IResource">
</propertyTester>
</extension>

Adding Commands to the Package Explorer View Context Menu

The Design Studio Action Command Examples project includes an example that
demonstrates how to add a command to the Package Explorer view context menu.

Example 5-5 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.StudioMenuCommandHandler

In Example 5-5, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-5 Adding Commands to the Package Explorer View Context Menu

<extension
point="org.eclipse.ui.commands">
<command
defaultHandler=
"design.studio.example.action.command.handler.StudioMenuCommandHandler"
id="design.studio.example.action.command. studioMenuCommand.command"
name="Studio Menu Command">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI="popup:org.eclipse.jdt.ui.PackageExplorer">
<command
commandId=
"design.studio.example.action.command. studioMenuCommand.command"
mnemonic="%contributions.menu.studioMenuCommand.mnemonic"
tooltip="Studio menu command"
icon="icons/sample.gif"
id=
"design.studio.example.action.command.menu. studioMenuCommand. command">
</command>
</menuContribution>
</extension>

Adding Commands to the Project Explorer View Context Menu

The Design Studio Action Command Examples project includes an example that
demonstrates how to add a command to the Project Explorer view context menu.

Extending Design Studio 5-7

Extending Design Studio with Action Commands

Example 5-6 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.StudioMenuCommandHandler

In Example 5-6, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-6 Adding Commands to the Project Explorer View Context Menu

<extension
point="org.eclipse.ui.commands">
<command
defaultHandler=
"design.studio.example.action.command.handler.StudioMenuCommandHandler"
id="design.studio.example.action.command. studioMenuCommand.command"
name="Studio Menu Command">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI="popup:org.eclipse.ui.navigator.ProjectExplorer#PopupMenu">
<command
commandId=
"design.studio.example.action.command. studioMenuCommand.command"
mnemonic="%contributions.menu.studioMenuCommand.mnemonic"
tooltip="Studio menu command"
icon="icons/sample.gif"
id=
"design.studio.example.action.command.menu. studioMenuCommand.command">
</command>
</menuContribution>
</extension>

Configuring the Visibility of Commands Using the Property Tester

The Design Studio Action Command Examples project includes an example that
demonstrates how to configure the visibility of commands using the property tester. In
the example, the command appears when a Resource entity is selected in the Studio
Projects view.

Example 5-7 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.GetResourceModel FromResourceC
ommandHandler

and for the property tester class:
design.studio.example.action.command.propertytesters.ResourceTester

In Example 5-7, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-7 Configuring the Visibility of Commands Using the Property Tester

<extension
point="org.eclipse.ui.commands">

5-8 Design Studio Developer's Guide

Extending Design Studio with Action Commands

<command
defaultHandler=
"design.studio.example.action.command.handler.
GetResourceModelFromResourceCommandHandler"
id=
"design.studio.example.action.command.
getResourceModel FromResource. command"
name="Get Resource Model">
< /command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI=
"popup:com.mslv.studio.view.StudioView?before=common-additions">
<command
commandId=
"design.studio.example.action.command.
getResourceModel FromResource. command"
mnemonic="%contributions.menu.getResourceModel FromResource.mnemonic"
tooltip="Get resource model from resource"
icon="icons/sample.gif"
id=
"design.studio.example.action.command.menu.
getResourceModel FromResource. command">

<visibleWhen
checkEnabled="false">
<iterate
operator="or">
<adapt
type="org.eclipse.core.resources.IResource">
<test
forcePluginActivation="true"
property=
"design.studio.example.action.command.
propertytesters.isResource">
</test>
</adapt>
</iterate>
</visibleWhen>
</command>
</menuContribution>
</extension>
<extension
point="org.eclipse.core.expressions.propertyTesters">
<propertyTester
class=

"design.studio.example.action.command.

propertytesters.ResourceTester"
id="design.studio.example.action.command.propertytesters.resourceTester"
namespace="design.studio.example.action.command.propertytesters"
properties="1isResource, isProduct,isLocation"
type="org.eclipse.core.resources.IResource">

</propertyTester>
</extension>

Extending Design Studio 5-9

Extending Design Studio with Action Commands

Configuring the Visibility of Commands Using the File Extension of Resources

The Design Studio Action Command Examples project includes an example that
demonstrates how to configure the visibility of commands using the file extension of a
resource. In the example, the command appears when a Location entity is selected in
the Studio Projects view.

Example 5-8 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.GetLocationModel FromResourceC
ommandHandler

In Example 5-8, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-8 Configuring the Visibility of Commands Using the File Extension of
Resources

<extension
point="org.eclipse.ui.commands">
<command
defaultHandler=
"design.studio.example.action.command. handler.
GetLocationModel FromResourceCommandHandler"
id=
"design.studio.example.action.command.
getLocationModel FromResource.command”
name="Get Location Model">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI=
"popup:com.mslv.studio.view.StudioView?before=common-additions">
<command
commandId=
"design.studio.example.action.command.
getLocationModel FromResource.command"
mnemonic="%contributions.menu.getLocationModel FromResource.mnemonic"
tooltip="Get location model from resource"
icon="icons/sample.gif"
id=
"design.studio.example.action.command.menu.
getLocationModel FromResource. command">
<visibleWhen
checkEnabled="false">
<iterate
operator="or">
<adapt
type="org.eclipse.core.resources.IResource">
<test
property="org.eclipse.core.resources.name"
value="*.cmnLocation">
</test>
</adapt>
</iterate>
</visibleWhen>

5-10 Design Studio Developer's Guide

Extending Design Studio with Action Commands

</command>
</menuContribution>
</extension>

Obtaining the Model From a Resource Using the Design Studio Model Java API

The Design Studio Action Command Examples project includes an example that
demonstrates how to obtain a model configuration from a resource using the Design
Studio Model Java APIL

Example 5-9 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.GetLocationModel FromResourceC
ommandHandler

In Example 5-9, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-9 Obtaining the Model From a Resource Using the Design Studio Model Java
API

<extension
point="org.eclipse.ui.commands">
<command
defaultHandler=
"design.studio.example.action.command.handler.
GetLocationModelFromResourceCommandHandler"
id=
"design.studio.example.action.command.
getLocationModel FromResource.command"
name="Get Location Model">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI=
"popup:com.mslv.studio.view.StudioView?before=common-additions">
<command
commandId=
"design.studio.example.action.command.
getLocationModel FromResource.command"
mnemonic="%contributions.menu.getLocationModel FromResource.mnemonic"
tooltip="Get location model from resource"
icon="icons/sample.gif"
id=
"design.studio.example.action.command.menu.
getLocationModel FromResource.command">
<visibleWhen
checkEnabled="false">
<iterate
operator="or">
<adapt
type="org.eclipse.core.resources.IResource">
<test
property="org.eclipse.core.resources.name"
value="*.cmnLocation">
</test>

Extending Design Studio 5-11

Extending Design Studio with Action Commands

</adapt>
</iterate>
</visibleWhen>
</command>
</menuContribution>
</extension>

Obtaining the Model From an Entity Relation Using the Design Studio Model Java
API

The Design Studio Action Command Examples project includes an example that
demonstrates how to obtain a model configuration from an entity relation using the
Design Studio Model Java APL

Example 5-10 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.GetCreationTaskModelFromRelat
ionCommandHandler

In Example 5-10, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-10 Obtaining the Model From an Entity Relation Using the Design Studio
Model Java API

<extension
point="org.eclipse.ui.commands">
<command
defaultHandler=
"design.studio.example.action.command.handler.
GetCreationTaskModelFromRelationCommandHandler"
id=
"design.studio.example.action.command.
getCreationTaskModel FromOrder . command"
name="Get Creation Task Model From Order">

</command>
</extension>
<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI=
"popup:com.mslv.studio.view.StudioView?before=common-additions">
<command
commandId=
"design.studio.example.action.command.
getCreationTaskModel FromOrder . command"
mnemonic=

"$contributions.menu.
getCreationTaskModel FromOrderRelation.mnemonic"
tooltip="Get Creation Task Model From Order"
icon="icons/sample.gif"
id=
"design.studio.example.action.command.
getCreationTaskModel FromOrder . command" >
<visibleWhen
checkEnabled="false">
<iterate
operator="or">

5-12 Design Studio Developer's Guide

Extending Design Studio with Action Commands

<adapt
type="org.eclipse.core.resources.IResource">
<test
property="org.eclipse.core.resources.name"
value="*.order">
</test>
</adapt>
</iterate>
</visibleWhen>
</command>
</menuContribution>

</extension>

Obtaining the Model From an Element Relation Using the Design Studio Model Java
API

The Design Studio Action Command Examples project includes an example that
demonstrates how to obtain a model configuration from an element relation using the
Design Studio Model Java APL

Example 5-11 displays an example of the configuration of the extensions for the
following command class:

design.studio.example.action.command.handler.GetOrderItemActionPropertyFro
mRelationCommandHandler

In Example 5-11, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Action Command Examples
project for more information.

Example 5-11 Obtaining the Model From an Element Relation Using the Design Studio
Model Java API

<extension
point="org.eclipse.ui.commands">
<command
defaultHandler=
"design.studio.example.action.command.handler.
GetOrderItemActionPropertyFromRelationCommandHandler"
id=
"design.studio.example.action.command.
getOrderItemActionPropertyFromOrderItemSpec.command"
name="Get Order Item Action Property From Order Item Specification">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
locationURI=
"popup:com.mslv.studio.view.StudioView?before=common-additions">
<command
commandId=
"design.studio.example.action.command.
getOrderItemActionPropertyFromOrderItemSpec.command"
mnemonic=
"$contributions.menu.
getOrderItemPropertyModel FromRelation.mnemonic"
tooltip="Get Order Item Action Property From Order Item Specification"
icon="icons/sample.gif"
id=

Extending Design Studio 5-13

About Design Studio View Identifiers

"design.studio.example.action.command.
getOrderItemActionPropertyFromOrderItemSpec.command">

<visibleWhen
checkEnabled="false">
<iterate
operator="or">
<adapt
type="org.eclipse.core.resources.IResource">
<test
property="org.eclipse.core.resources.name"
value="*.orderItemSpec">
</test>
</adapt>
</iterate>
</visibleWhen>
</command>
</menuContribution>
</extension>

About Design Studio View Identifiers

Each Design Studio component is defined with an identifier that you can use when
you want to make additions to that component. For example, you can reference the
Solution view identifier in Table 5-1 when adding an action command to the Solution
view context menu.

Table 5-1 Design Studio View Identifiers

Component Identifier

Menu menu:studioMenu?after=perspective

Toolbar toolbar:org.eclipse.ui.main.toolbar

Solution View Context popup:oracle.communications.sce.ui.solution.view?after=additi
Menu ons

Studio Project View Context | popup:com.mslv.studio.view.StudioView?before=common-addi

Menu tions
Project Explorer Context popup:org.eclipse.ui.navigator.ProjectExplorer#PopupMenu
Menu

Package Explorer Context | popup:org.eclipse.jdt.ui.PackageExplorer
Menu

Adding Custom Logic to Design Studio Builds

You can add custom logic to Design Studio builds by creating an implementation of
the IModelProcessor interface, defined in:

oracle.communications.studio.model.processor

You can use model processors to generate custom artifacts to integrate with external
systems, product catalogs, reporting features, and so forth.

5-14 Design Studio Developer's Guide

Adding Custom Logic to Design Studio Builds

Note: This task is intended for advanced users who are familiar with
Eclipse plug-in development and Java coding. The Design Studio
Action Command Example project includes a simple implementation
named ModelProcessorExample.java in the
design.studio.example.model.processor package.

See "About the design.studio.example.action.command Example
Project” for more information.

To extend Design Studio by adding custom logic to the build:

1.

Create a plug-in project.

See "Creating Plug-in Projects” for more information. The plug-in project
plugin.xml file is added to the Package Explorer view.

Double-click the plug-in project plugin.xml file.
The file opens in the Plug-in Manifest editor.
Click the Extensions tab.

Click Add.

The New Extension dialog box appears.

Locate and select:
oracle.communications.studio.model.processor

If you don’t see the oracle.communications.studio.model.processor value,
deselect the Show only extension points from the required plug-ins option. If
prompted to add dependencies, select Yes.

Click Finish.

The extension appears in the Extension area.

Select the extension.

In the Extension Details area, click Show extension point description.

The Oracle Communications Design Studio Model Processor documentation page
appears. Use this documentation to finish creating an implementation of the
IModelProcessor interface.

Extending Design Studio 5-15

Adding Custom Logic to Design Studio Builds

5-16 Design Studio Developer's Guide

6

Working with Reports

This chapter provides information about reports. It provides an overview of Oracle
Communications Design Studio reporting, explains how to create your own report
designs in Design Studio, and provides information about packaging, testing, and
distributing reports. This chapter also provides information about extending the
Design Studio reporting functionality.

About Design Studio Reports

Design Studio enables you to create and generate reports that include information
about an implemented solution at a specific point in time. For example, a report can
summarize the structure of the solution by listing projects and dependencies, or a
report can summarize the composition of a service. Reports can capture the names,
types, descriptions, and relationships of projects, entities, and data elements.

You can use reports to facilitate activities in a solution life cycle. For example, you can
generate reports to facilitate an approval process or you can use reports as supporting
documentation. Report output formats use standard file formats (such as PDF and
HTML) familiar to and usable by team members who may not have a Design Studio
installation.

Design Studio reports are comprised of data, data transformations, business logic, and
data presentation.

s Design Studio reports include data that you model in Design Studio.

= Data transformation features enable you to sort, summarize, and filter Design
Studio data. For example, you can perform operations such as grouping sums,
calculating percentages of overall totals, and so forth.

= Business logic features enable you to convert raw data to information required by
a user.

= Data presentation features enable you to present the data in specific ways, such as
in tables, charts, or as text.

About the Design Studio Reporting Architecture

The Design Studio reporting architecture includes a Report Designer and a Reporting
Engine.

= You use the Report Designer to create new reports, customize existing reports, and
test reports (using static sample data from an XML file). The Report Designer
provides a complete environment for designing and testing reports, and includes a
report design perspective and a set of views and editors. The Report Designer is
installed with Design Studio but is also available as a stand-alone application. You

Working with Reports 6-1

About Design Studio Reports

access the tools included in the Report Designer by switching to the Report Design

perspective in Design Studio.

= You use the Report Engine when generating reports. You use a Design Studio
wizard that enables you to communicate to the Report Engine which design and
layout to use, the data to include in the report, and the format in which to generate

the report output.

Figure 6-1 illustrates the Design Studio reporting architecture:

Figure 6—1 Design Studio Reporting Architecture

Design Studio

ReportDesigner ReportEngine
s XML
Sample Report
_ Data Design
l (Output Formats: .
*HTML
Report -PDF
*Word
*Power Point
‘ *Excel
File Share |
Email |
HTTP Server |
FTP Server

About the Design Studio Reporting Life Cycle

A Design Studio reporting life cycle includes the following phases: design, generation,
and distribution. The tasks in the design phase (defining the content and styling the
presentation of the reports) are typically completed by a solution designer or by a
developer. The tasks in the report generation phase (producing the report and
selecting a report format) and in the distribution phase (viewing, saving, and sharing
reports) can be completed by any Design Studio user.

A solution designer or a developer performs the following reporting tasks:

1. Adds the Design Studio Report Design examples to the workspace.

These examples are included in the Design Studio installation and include content

useful for designing reports.

2. Creates a plug-in project to contain the reports.

6-2 Design Studio Developer's Guide

About Design Studio Reports

3. Customizes existing Design Studio reports or creates new reports to meet
reporting requirements.

Design Studio includes reference reports that provide a base set of capabilities.
You can use these reports as delivered or as a starting point for customizing your
own reports. For example, you can customize the delivered report designs for
content, layout, or branding. You can also create new reports using the Report
Designer. When creating new reports, you define the content of the report and you
design the presentation and layout of the report.

4. Tests reports in Design Studio.

During testing, developers can identify a file that contains static sample data that
the reporting engine can use to generate test reports.

5. Packages the plug-in project into a feature and installs the feature to an update
site.

Installing the feature to an update site ensures that other team members can install
the feature and gain access to the report.

A Design Studio user performs the following tasks:
1. Installs the features that include reports from an update site into Design Studio.
2. Contributes content to reports.

You can contribute content to Design Studio reports by writing documentation
about entities and data elements in Design Studio editors and views. You can
format the documentation using plain text or simple HTML markup.

3. Generates the reports using a Design Studio wizard.

Most reports can be generated in a number of different output formats, which
appear as options in the wizard. Report content may be better suited to one format
over another.

4. Shares reports among team members.

You can share generated reports with team members using email, servers, or other
methods of file sharing.

System administrators can integrate report generation into an automated build
system to automatically generate reports that all team members can reference
when developing solutions. See Design Studio System Administrator’s Guide for
more information.

About Report Designs

Each report that you can generate in Design Studio is backed by a report design XML
file. A report design file is a template that describes the layout and style of the report.
It also includes information about how to obtain the required reporting data and how
to filter the available reporting data.

The report design includes information that the Report Engine can use to connect to
the source of the report data. The report design also includes information that specifies
which subsets of data to include in the report. Queries obtain the data from the data
source and the Report Engine maps the data to a table.

When developing report designs, consider that report layouts and styles may not be
suitable for some output formats. Also, users generating reports may select an output
format that is not best-suited for a particular report design. In these cases, aspects of
the report design may be ignored or adapted to fit the output format presentation

Working with Reports 6-3

About Design Studio Reports

capabilities. Test the presentation properties of your output formats to ensure that you
understand the report design layout nuances.

During report development and testing, you can save report designs to a local
directory, and generate reports from a locally saved report design file. Report design
files use the file extension .rptdesign.

If you require a report design to display in a free-flowing output, such as HTML, and
to paginated output, such as PDF, considering creating two distinct report designs.
When designing for free-flow output, use percentage-based proportions in the design
(for example, for column width). Use specific sizes when designing for paginated
output formats.

About the Report Designer

You create new report designs using the Business Intelligence and Reporting Tools
(BIRT) Report Designer. BIRT is an open source Eclipse project that provides a
complete environment for designing and testing reports. You access the tools included
in the BIRT Report Designer by switching to the Report Design perspective in Design
Studio. See Design Studio Help for information about switching perspectives.

The Report Design perspective includes editors, views, and tools to build reports
quickly. Some of these are listed below:

s The Layout editor, which enables drag and drop creation of your report
presentation.

s The Data Explorer view, which you use to manage information about your report
data, such as how to connect to the source and how to filter for only the data that
is relevant to your report.

s The Palette view, which includes report elements such as Data, Image, and Table,
which you can drag to the Layout editor to design the structure of reports.

s The Resource Explorer view, which you use to view all libraries and shared
content, such as images and script files. The libraries store reporting objects and
enable you to reuse existing report objects, such as tables and styles.

For more information about the Report Design perspective, see the BIRT
Documentation page:

http://www.eclipse.org/birt/documentation/
About the Expression Builder

The BIRT Expression Builder is an editor that you can use to create complex
expressions. These expressions can include functions, data, conditions, and operations.

6-4 Design Studio Developer's Guide

About Design Studio Reports

Figure 6-2 Expression Builder

& Expression Builder E|

Expression Builder
Type an expression in the Expression field, Browse the lists of available objects and double-click to copy into your expression,

EABRID
1if { params["Production”]

2 "jdbc:mysql:fflocalhost fproduction”;

3lelse] .
4 “jdbcimysql:/flocalhostfqa)’; Cancel
sk

ot +| [[1] o[= <] o] & 1]]

Categary: Sub-Cateagory: Daouble Click to insert:

Repart parameters

Mative JavaScript Funchons
BIRT Functions

Operators

You can use the Expression Builder when:

s Creating the display value for a report item

» Creating a computed field in the Data Explorer view
= Specifying a data series for charts

= Specifying filter conditions

= Specifying mapping conditions

= Specifying highlight conditions

= Specifying group keys

= Specifying hyperlinks

= Specifying URIs for images

= Specifying dynamic data in text controls

About Report Generation

You can generate reports on-demand using a Design Studio wizard or you can
automate report generation using an automated script in a continuous integration
framework.

Report generation is a long-running task, and the time required to compose and render
a report can vary from report to report. Processing time is dependent on a number of

Working with Reports 6-5

About Data Sources

factors, including the amount of data supporting the report, the complexity of the
report, and design of data sets and presentation.

Automated reports can be distributed to web servers, file shares, email, FTP sites, and
by other methods by using Ant tasks to perform actions after report generation. These
tasks are not explicitly provided by Design Studio but are a supported by Ant. For
example, you can publish reports to a shared location or to website; you can email the
report to a distribution list, and so forth. See Apache Ant Project website for more
information.

See Design Studio System Administrator’s Guide for more information about using Ant
tasks in automated builds.

About Data Sources

A data source is a place from which a report obtains information. The information
required to connect to the data source is defined in a Data Source entity. For example,
you can create a Data Source entity if your reports use information defined in a
database, a text file, an XML file, or a web service.

You can create multiple data sources for a single report. Each type of data source
requires different connection information. For example, a report might require data
from a database and data from a file. The data source information required to retrieve
data from the database is different than the data source information required to
retrieve data from a file.

To access the Design Studio data that you require for generating reports, you create a
Data Source entity for Design Studio. You create an XML Data Source entity for Design
Studio because Design Studio provides the data in XML format.

When defining Design Studio as a data source, you specify:
= An XML data schema that describes the structure of the Design Studio data.

= A sample XML file that the reporting framework can use when you are testing
report designs. The sample XML file should include data that is representative of
the type of data that you intend to include in finished reports. You may need to
create and reference multiple sample XML files, depending on the kinds of reports
you are testing and generating.

= A reporting parameter that dynamically identifies the location of the Design
Studio XML file that contains the requested reporting data. During report
generation, Design Studio generates an XML file and saves it to a temporary
location on the file system. This XML file includes all of the requested reporting
data. The reporting framework uses this parameter to obtain the location of the
XML file and to access the reporting data.

Figure 6-3 shows an XML Data Source entity and a report parameter:

6-6 Design Studio Developer's Guide

About Data Sets

Figure 6—-3 XML Data Source and Report Parameter

e Pale,..‘. {3 Data.. % @Rﬁ. I = B8 |

Design Studio uses XML Data
‘ L”r%“;i:i:':';:m e 5 Sources. Design Studio data is

» (@ Data Sets provided in XML format.
(g9 Data Cubes

a g R Param . .
m<;p::ta_::u,$:ode,_ﬁ|e —3> Report parameters identify the

(# Variables location of the Design Studio
XML file containing the requested
reporting data.

Figure 6-4 shows the Edit Data Source dialog box, where you define a sample XML file
that the reporting framework can use when you are testing report designs, and the
XML data schema that describes the structure of the Design Studio data:

Figure 6-4 Data Source Sample XML File and Schema

& Navigator 2 g': Outline =0
R BEs|e -
+ k= design.studio.example.report. design. &
+ k= design.studio.example.report.design,
4 = design.studio.example.report. designs
» = library
» = META-INF
» = reference-reports
4 [= reports

G sampleA.rptdesign HML Data Source Connectior Define the URLS to the XML file and schema informatio

& sampleB.rptdesign Connection Profile
4 [= sarnple-data Property Binding Enter the URL of the XML source or browse to the file containing the d
B s ompiereporDstoam
4 [schemas
& activationxsd Enter the URL eftl'_m HML schema or browse to the file contaiming tk
schema. Leave this empty if no schema is available:
B common.xsd
B datasxsd } schemas/datassd
B design-studio-modelx Select encoding fior the XML source and schemna specified above:
B integrationasd Auto
B integrity.asd
B inventoryicsd
B modelxsd < L
B osmosd
¥ niniect

@ oK

See "Creating the Design Studio Data Source Entity" for more information.

About Data Sets

A data set defines the data that is available to a report. Data sources typically contain
more data fields than are needed for a report. When defining a data set, you select the
data that you want to retrieve from the data source and determine how to process that
data. For example, you can change column names, create computed columns, and
filter the data that appears in the report. You may require multiple data sets for a
single report.

Working with Reports 6-7

Adding the Report Design Example to the Workspace

Before you can create a data set for Design Studio reports, you must first create the
Data Source entity that defines how to obtain reporting information from Design
Studio.

See "Creating Data Set Entities" for more information.

Adding the Report Design Example to the Workspace

Design Studio includes a report design example that you can use as a reference or as a
starting point for creating your own custom report designs. This example is included
in the Design Studio installation and can be added to your workspace. See "Working
with the Design Studio Report Examples" for more information.

To add the report design example to the workspace:
1. From the Design Studio File menu select New, and then select Example.
The New Example wizard appears.

2. Expand the Design Studio Examples folder and select Design Studio Report
Design Example.

3. Click Next.

The Example Projects page appears, listing each of the projects that will be added
to the workspace.

4. Click an example project to view its description:

»s design.studio.example.report.update.site creates a project to demonstrate
how to export installable features into an update site.

= design.studio.example.report.design.feature creates a project to demonstrate
how report designs can be packaged into a feature for installation into Design
Studio.

= design.studio.example.report.designs creates a project that contains a sample
report design, an XML Schema, a report design library, and other supporting
content.

5. Click Finish.

The projects are added to the current workspace.

Customizing Existing Design Studio Reports

Design Studio includes reference reports that provide a base set of capabilities. You can
use these existing Design Studio reference reports as a starting point for customizing
your own reports. Design Studio also includes sample report designs that you can use
as a starting point for customization.

When customizing existing reports, you might begin by selecting a report design and
determining what changes you require to the presentation of the report data. For
example, you may need to customize an existing report design for layout or branding.

You might determine that you also need to change the data captured in the report. For
example, you may need to edit report column headings or add additional reporting
fields. You may need to add additional filters so that the report data is more specific to
your needs. Changes to the data, of course, impact the presentation of the data in the
report.

To customize an existing report:

6-8 Design Studio Developer's Guide

Developing Custom Report Designs

10.
11.

12.

13.

14.

Add the Design Studio Report Design Example to your workspace.
See "Adding the Report Design Example to the Workspace" for more information.

In Design Studio, from the Project Explorer view, right-click the
design.studio.example.report.designs folder and select Copy.

Right-click in the Project Explorer view white space and select Paste.
The Copy Project dialog box appears.

In the Project Name field, edit the project name.

The name must be unique in the workspace.

Click OK.

The project appears in the Package Explorer view.

Expand the design.studio.example.report.designs folder.

Select a report design file to customize.

You can customize:

= A Design Studio reference report design file, such as the
ProjectSummary.rptdesign file. The Design Studio reference report design
files are located in the reference-reports folder.

= A sample report design. The sampleA.rptdesign and sampleB.rptdesign files
are located in the reports folder. The sample report designs are more simplistic
than the reference report designs, but include packaging configuration that
you can customize to install your reports into Design Studio.

Double-click a report design file to open the file in the Report Design editor.
Edit the file, as needed.

See "Defining Data Presentation in Reports" and "Adding Additional Report
Design Elements" for more information.

Click Save.

Test the edited report designs.

See "Testing Report Designs" for more information.
Add your edited reports to the Generate Report wizard.

See "Adding Reports and Report Categories to the Generate Report Wizard" for
more information.

Package the edited report designs.
See "Packaging Plug-in Projects" for more information.
Distribute the edited report designs.

See "Distributing Plug-in Projects" for more information.

Developing Custom Report Designs

You develop custom report designs in Eclipse plug-in projects and plug-in projects are
associated with feature projects. An Eclipse plug-in project can include any number of
custom report designs. For example, you will likely include all of your custom report
designs in a single plug-in project.

Working with Reports 6-9

Developing Custom Report Designs

An Eclipse feature project can be associated with any number of plug-in projects.
Feature projects are associated with update site projects. Solution designers install the
features from update sites to gain access to the custom report designs that are included
in the features.

See "Creating, Packaging, and Distributing Plug-in Projects” for more information
about plug-in projects and features.

Note: Design Studio documentation complements the existing BIRT
project documentation and provides guidance for designing reports
specific to Design Studio.

Before creating your own custom Design Studio reports, Oracle
recommends that you review the following material available from
the BIRT project website:

» The tutorials, available on the Tutorial page:
http://www.eclipse.org/birt/documentation/tutorial/

s The demos, available on the Demo page:
http://www.eclipse.org/birt/demos/

s The documentation, available on the Documentation page:

http://www.eclipse.org/birt/documentation/

You develop custom report designs by performing the following tasks:
1. Add the Design Studio Report Design Example to your workspace.
See "Adding the Report Design Example to the Workspace" for more information.
2. Create a plug-in project.
See "Creating Plug-in Projects” for more information.
3. Create a report design file.
See "Creating Report Design Files" for more information.
4. Create the Design Studio report parameter.
See "Creating Design Studio Report Parameters" for more information.
5. Create a Design Studio Data Source entity.
See "Creating the Design Studio Data Source Entity" for more information.
6. Create a data set for the Design Studio Data Source entity.
See "Creating Data Set Entities" for more information.
7. Define the data to be added to the report.
See "Defining the Data to Add to Reports" for more information.
8. Define the data presentation to be used in the report.
See "Defining Data Presentation in Reports" for more information.
9. Add additional report design elements.
See "Adding Additional Report Design Elements" for more information.

10. Test the report designs.

6-10 Design Studio Developer's Guide

Developing Custom Report Designs

11.

12.

13.

See "Testing Report Designs" for more information.
Add your custom reports to the Generate Report wizard.

See "Adding Reports and Report Categories to the Generate Report Wizard" for
more information.

Package the report designs.
See "Packaging Plug-in Projects" for more information.
Distribute the report designs.

See "Distributing Plug-in Projects" for more information.

Note: Test custom reports before packaging them and during various
stages of report development. When developing custom report
designs, test frequently and use iterative implementations to reduce
issues.

Creating Report Design Files

A report design is an XML file that defines all of the information required to generate a
report.

To create a report design:

1.

From the Report Design perspective, select File, then select New, and then select
Other.

Expand the Business Intelligence and Reporting Tools folder, and then select
Report.

Click Next.
Select the folder in which to save the report design file.

You must save the report design file in the plug-in project that you created for
your reports. For example:

plug-inProject / reports

Note: Do not save report designs in Java source folders.

In the File Name field, enter the name of the new report design.
The file name extension must be .rptdesign.

Click Next.

Select a report template.

You can review selected template layouts in the Preview field.

(Optional) To get help designing reports, select Show Report Creation Cheat
Sheet.

The Cheat Sheet view provides design guidance after the wizard completes. This
option is available only for a subset of reports.

Click Finish.
Design Studio opens the report in the Layout editor.

Working with Reports 6-11

Developing Custom Report Designs

Creating Design Studio Report Parameters

Design Studio report designs require at least one report parameter to identify the
location of the XML file to be used as an XML data source. You can add additional
report parameters to support custom processors.

To create a Design Studio report parameter:

1.
2.

® N o

In the Report Design perspective, open a report design in the Layout editor.
Click the Data Explorer tab.

The Data Explorer view appears.

Right click Report Parameters and select New Parameter.

The New Parameter dialog box appears.

In the Name field, enter data_source_model_file.

When using Design Studio as the data source, you must name the parameter data_
source_model file.

In the Data Type field, select String.
Ensure that the Is Required option is selected.
Click OK.

If you intend to create custom report processors, define additional report
parameters.

When defining additional report parameters, you must deselect Is Required and
you must provide a default value for the custom report processor parameter.

Creating the Design Studio Data Source Entity

You create a Data Source entity to define how the reporting engine obtains reporting
data from Design Studio. See "About Data Sources" for more information.

Note: Add the Design Studio Report Design Example to your
workspace before you begin this procedure. See "Adding the Report
Design Example to the Workspace" for more information.

To create a Design Studio Data Source entity:

1.

2
3.
4

In the Design Studio perspective, click Package Explorer tab.

Expand the design.studio.example.report.designs folder.

Expand the sample-data folder.

Copy the reportData.xml file to your report plug-in project.

For example, you might create a sample data folder in the plug-in project:
plug-inProject /sampleData/

Expand the schemas folder.

Copy the schemas folder and all of schema .xsd files in the schemas folder to your
report plug-in project.

For example, copy the contents of the schemas folder to the following location:

plug-inProject /schemas /

6-12 Design Studio Developer's Guide

Developing Custom Report Designs

10.
11.
12.
13.
14.

15.

16.

17.
18.

19.
20.

21.

Switch to the Report Design perspective and open a report design in the Layout
editor.

Click the Data Explorer tab.

The Data Explorer view appears.

Right click Data Sources and select New Data Source.

The New Data Source wizard appears.

Select Create from a data source type in the following list.
From the list, select XML Data Source.

In the Data Source Name, enter a name for the data source.
Click Next.

Enter a URL or browse to select a sample XML file.

You specify a sample XML file that the reporting framework can use when you are
testing report designs. The sample XML file should include data that is
representative of the type of data that you intend to include in finished reports.
You can:

= Enter the path to the reportData.xml file that is included in the Design Studio
Report Design Example. See "Adding the Report Design Example to the
Workspace" for more information.

= Run the Design Studio Model in XML report to create a new sample XML
file. See "Working with the Design Studio Report Examples" for more
information.

Enter a URL to or browse to select an XML schema file.

This sample schema file, with the sample XML file, provide the reporting engine
with the Design Studio model format details that the engine required during
testing.

If you haven’t yet identified an XML schema, select the design-studio-model.xsd
file that you copied to your plug-in project.

Click Test Connection.

A dialog box appears that displays the results of the test.

Click OK and then click Finish.

In the Data Explorer view, right-click the new Data Source entity and select Edit.
The Edit Data Source dialog box appears.

Select Property Binding.

In the XML Data Source File field, enter:
params["data_source_model_file"].value

This value binds the Design Studio data source to the file that is defined by the
Design Studio report parameter. See "Creating Design Studio Report Parameters"
for more information.

Click OK.

Working with Reports 6-13

Developing Custom Report Designs

Creating Data Set Entities

Data sets specify the data to retrieve from the Design Studio Data Source entity. See
"About Data Sets" for more information.

Before you create a Data Set entity, you must first create the Design Studio Data Source
entity. See "Creating the Design Studio Data Source Entity" for more information.

To create a Data Set entity:

1.

10.

From the Report Design perspective, in the Data Explorer view, right-click Data
Sets and select New Data Set.

The New Data Set dialog box appears.

In the Data Source Selection area, expand XML Data Source and select the Design
Studio Data Source entity to associate with the data set.

In the Data Set Type field, ensure that XML Data Set is selected.
In the Data Set Name field, enter a name for the data set.

Click Next.

The Sample XML Settings page appears.

Select a sample XML source file that contains the type of content you expect from
the data set.

For example, select a file that includes the types of data that you can use to
validate query logic for the data set. You can use the reportData.xml sample XML
file defined in the Data Source entity (and included in the Design Studio report
design example) or browse for a different file.

Click Next.

Create data set row mapping by selecting elements in the XML structure and by
clicking the arrow button.

Each instance of the selected XML element in the XML document is mapped to a
data set row. Use the wizard instructions to define data set row mappings. For
more information about the XPath syntax applicable to Design Studio, see "About
XPath Expression Patterns for Row Mapping".

The installed Design Studio examples include data set row mapping examples. See
"Working with the Design Studio Report Examples" for more information.

Note: In the Select or edit the XPath Expression dialog box, select
the Custom XPath Expression option and define the path for the XML
element.

Create data set column mappings by selecting elements and attributes in the XML
structure and by clicking the arrow button.

Use the wizard instructions to define data set column mappings. For more
information about the XPath syntax applicable to Design Studio, see "About XPath
Expression Patterns for Column Mapping".

The installed Design Studio examples include data set column mapping examples.
See "Working with the Design Studio Report Examples" for more information.

(Optional) To test new row and column mappings against the sample XML file,
click Show Sample Data.

6-14 Design Studio Developer's Guide

Developing Custom Report Designs

You can test mappings to ensure that the XPath expressions include no typing or
syntax errors.

11. Click Finish.

The Edit Data Set dialog box appears. You can define additional information about
the data set, edit row mapping and column mapping, preview the results, and so
forth.

12. Click OK.

Defining the Data to Add to Reports

The BIRT Report Designer includes tools for designing, debugging, and previewing
report designs. This section includes a small subset of procedures that help you create
and design reports for use in Design Studio. For additional documentation, tutorials,
and examples, see the BIRT project website:

http://www.eclipse.org/birt/

Defining Computed Columns for Data Sets

You define computed columns to generate report data from expressions of the data in
other columns in the data set (rather than retrieving the data directly from a data
source).

To define computed columns for a data set:

1. From the Report Design perspective, in the Data Explorer view, right click a Data
Set entity and select Edit.

The Edit Data Set dialog box appears.

Select Computed Columns.

Click New.

In the Column Name field, enter a name for the computed field.

In the Data Type field, select the type of data to be returned by the computed field.

o g k& 0D

In the Expression field, enter an expression that calculates the value.

You can click the Fx button to build the expression in the Expression Builder
dialog box.

Note: Computed column expressions can refer only to column data
that you mapped in the data source. Use a naming convention to
distinguish columns intended to appear in reports from columns
intended for computing values. For example, you can pre-pend
column names with an underscore (for example, _columnX) to
identify columns to be used only for filtering and for supporting
computed columns.

7. Click OK.

See BIRT Report Developer Guide for more information.
Defining Filtering Conditions for Data Sets

You can limit the data included in reports by defining filtering conditions. A filter
condition is an expression with a value that resolves to true or false. Design Studio

Working with Reports 6-15

Developing Custom Report Designs

applies the filter to each row of the data set. If the expression resolves to true, the row
is included in the report. If you define multiple filters, the expressions of all filters
must resolve to true for a row to be included in the report. See "Working with Report
Data Filters" for more information.

1. From the Report Design perspective, in the Data Explorer view, right click a data
set and select Edit.

The Edit Data Set dialog box appears.
2. Select Filters.
3. Click New.

4. Enter a filter condition.

Note: For best performance, order the expressions from most likely
to exclude content to least likely to exclude content.

5. (Optional) To test the mappings and computed columns, click Preview Results.
Check filter expressions to ensure that the data is filtered correctly.

6. Click OK.

Merging Data Sets

You can combine data from two data sources into a single data set. For example, you
can combine data from an XML file and from a text file (you must first create the XML
data set and the text file data set).

When you merge, or join, two data sets, you create a joint data set. You can add
computed columns and filters to a joint data set and preview the results. You can also
merge joint data sets together to combine more than two data sets into a single joint
data set. Figure 6-5 shows two data sets, Customers and Orders, merged into a single
data set.

6-16 Design Studio Developer's Guide

Developing Custom Report Designs

Figure 6-5 Merging Data Sets

[I8 [=] B3
Joint Data Set
Create a new data set.
Define Joint Data Set
Customers ﬂ o T IOrdsrs ﬂ
@ Inner Join CUSTOMERNUMBER
CUSTOMERNAME ™ Left Outer Join ORDERNUMEER
CONTACTLASTMAME)) ORDERDATE
CONTACTFIRSTHAME € Right Outer Join | | |REQUIREDDATE
PHONE Ful Outer Jain SHIPPEDDATE

Data Set Name:] Customers_and_Orders

(?)
A

< Back

Mext > | | Finish I

Cancel |

If you want to join an aggregated column, add a computed column to the source data
set. See "Defining Computed Columns for Data Sets" for more information.

To merge data sets:
1.
2. Click the Data Explorer tab.

The Data Explorer view appears.

Right-click Data Sets and select New Joint Data Set.

The Join Data Set wizard appears.

The columns of the data sets appear.

For each join, select one of the following join types:

In the Report Design perspective, open a report design in the Layout editor.

In the Define Joint Data Set area, select the data sets to join.

Select one column from each data set to join the columns.

= Inner Join: Returns rows from both data sets when the column values match.

s Left Outer Join: Returns all rows from the left data set and all matched rows

from the right data set.

= Right Outer Join: Returns all rows from the right data set and matched rows

from the left data set.

s Full Outer Join: Returns all rows from both data sets even when the column

values do not match.

8. Click Finish.

The Edit Data Set dialog box appears.

(Optional) Review and edit the data set.

In the Data Set Name field, enter a name for the merged data set.

Working with Reports 6-17

Developing Custom Report Designs

For example, click Output Columns to review the full set of columns being joined
and to customize the column names.

10. (Optional) To review the rows returned by the joint data set, click Preview
Results.

11. Click OK.

Filtering Data Sets for Tables

You use data binding filters to filter a data set for a specific table. Filtering data sets for
tables is useful when a data set is used in multiple contexts, each with different
filtering criteria. The data binding filter is applied against each instance of the table,
rather than once during data set creation. In Figure 6-6, the data set provider row is
filtered for the value OSM Cartridge Provider:

Figure 6-6 Filtering Data Sets

f 0
& Edit Data Set - Projects P —
Data Source Filters
Sample XML Settings
Row Mapping Define filters:
SEEZ‘IHCTrupn:nsg Sy Operator Valuel Value 2
Computed Columns i row("provider'] Equal to 05M Cartridge Provider

Pararmeters
Filters

Property Binding
Settings

Preview Results

? / oK

ke

To filter data sets for tables:

1. In the Report Design perspective, open a report design in the Layout editor and
select a table in a report design file.

The Property Editor view appears.
2. In Property Editor view, click the Filters tab.
The Filter By page appears.
3. Click Add.
The New Filter Condition dialog box appears.
4. Enter a filter condition.

You can enter a condition directly into the first field or you can click the Fx button
to open the Expression Builder and create a more complex expression. See
"Working with XPath Expression Patterns" for more information.

5. Select an operator from the drop-down list.

6-18 Design Studio Developer's Guide

Developing Custom Report Designs

6. Specify the value on which to search.
Enter the value directly, select from the list of values, or use the Expression Builder
to create a more complex value expression. For some operators, a value is not
required.

7. Click OK.

8. Click Save.

Nesting Tables

You can nest one table inside of another table. For example, a nested table can
represent a filtered data set that is based on the current row of the parent table. The
filter is applied to the child table for each row of the parent table.

Figure 6-7 shows one table nested in another in the Layout editor:

Figure 6-7 Nested Tables

=1 | [provider]

[name]

Dependent Projects

[dependentProject..]

Note: Nested tables can impact performance. Use nested tables for
small data sets. If the data sets are large enough to adversely impact
performance, join the data sets instead of nesting the tables.

To nest tables:

1.
2.
3.

In the Report Design perspective, open a report design in the Layout editor.
Create a parent table and bind the table to a data set.

Create a child table in a row of the parent table and bind the table to a second data
set.

The child table is repeated for each row of the parent table. To ensure that the child
table displays content appropriate for the current row of the parent table, you
must apply a data filter to the child table.

To apply a data filter to the child table:
a. Select the child table.

The Property Editor view appears.
b. Click the Filters tab.
c. Click Add.

Working with Reports 6-19

Developing Custom Report Designs

The New Filter Condition dialog box appears.

d. Select the child table column that you want to compare to the key value in the
parent table.

e. Select Equal to as the operator.
f. Click the menu and select Build expression.
The Expression Builder appears.
From the Category list, select Available Column Bindings.
From the Sub-Category list, select the child table.
The set of columns available in the parent table appear.

i. Double-click the parent table column to which you want to match the selected
child table column.

j- Click OK.
Click OK.
The new filter is added to the child table.

Concatenating Rows into Comma-Separated Values

You can concatenate values in separate rows into a list of comma-separated values.
The comma-separated values appear in the table footer. For example, you might want
to display a list of comma-separated action codes in a report.

Note: BIRT provides many functions that perform aggregate
calculations, such as SUM, AVERAGE, and COUNT. See the BIRT
project page documentation for more information.

To concatenate rows into a list of comma-separated values:

1.
2

In the Report Design perspective, open a report design in the Layout editor.
Right-click in a table footer cell, select Insert, and then select Aggregation.
The Aggregation Builder dialog box appears.

In the Column Binding Name field, enter a name for the concatenation.

For example, describe the value that is returned by the column binding, such as
ActionCodes. Column binding names must be unique in a report.

Select a data type.
In the Function field, select Concatenate.

In the Expression field, enter an expression that composes the value for each row
of the table.

For example, row["toName"].
In the Separator field, enter the following:

nmn
7

Click OK.

6-20 Design Studio Developer's Guide

Developing Custom Report Designs

Defining Data Presentation in Reports

The BIRT Report Designer includes tools for designing, debugging, and previewing
report designs. This section includes a small subset of procedures that help you create
and design reports for use in Design Studio. For additional documentation, tutorials,
and example, see the BIRT project website:

http://www.eclipse.org/birt/

Note: You can also use Cascading Style Sheets to enable more
complex report formatting. You can apply styles globally (to affect the
entire report) or to individual report elements. Style sheets enable you
to style once and use those styles multiple times. You can use a style
library to improve consistency across a suite of report designs.

For more information, see the Using Styles and Cascading Styles
tutorials on the BIRT Project page.

Hiding Content Based on Output Format

Report elements can include conditions that control the visibility of the element in the
report. Conditions can be used to:

» Hide content in specific output formats
= Display contextual values only when appropriate

= Expand or reduce report content based on a report parameter (for example,
avoiding duplicate report designs when the report content varies only by level of
detail)

= Toggle a set of layouts based on report data (for example, switch between a table
format or an in-line list based on the row count)

To hide content based on a report output format:

1. From a report design file, right-click the report element to hide and select
Properties.

The Property Editor view opens.
Click the Visibility tab.
Select Hide Element.

Select the For specific outputs option.

a » w0 Db

Select the check box for each output format in which the content should not
appear.

6. (Optional) In the Expression field, modify the conditional expression for an output
format.

The default value is true, which always hides the content for that specific output
format.

7. Click Save.

Defining Value Mapping Rules

You can define rules that map values from a database column to values in a report
column. For example, you might define rules that map the database status codes S and
F to the display values Success and Fail respectively. When defining value mapping

Working with Reports 6-21

Developing Custom Report Designs

rules, you define a conditional expression and a display value that appears in a report
when the expression evaluates to true.

For example, in Figure 6-8, the conditional expression states that if the data set
provider row contains the value OSM Cartridge Provider, the value OSM appears in
the report:

Figure 6—8 Value Mapping Rules

& Property Editor - Table 2 =EE
Properties | Binding | Groups | Map| Highlights | Sorting | Filters

Map List:

|gdd.,.‘_ﬁemoue Move Up | | Move h Duplicate| Display Value:

Condition
row["provider”] Equal to OSM Cartridge Provider

OSM

To define value mapping rules:

1. Open a report design in the Layout editor and select a data field.
The Property Editor view appears.

2. In Property Editor, click the Map tab.

The Map List page appears.

Click the Add button.

Define the condition that must evaluate to true.

Define the display value that appears in the report.

Click OK.

o o & W

Defining Value Highlighting Rules

You can define rules that map values from a database column to specific formatting
options when those values appear in a report. When defining highlighting mapping
rules, you define a conditional expression and the formatting that is applied to the
display value when the expression evaluates to true.

To define value highlighting rules:

1. Open a report design in the Layout editor and select a data field.
The Property Editor view appears.

2. In Property Editor, click the Highlights tab.
The Highlight page appears.

3. Click the Add button.

4. Define the condition that must evaluate to true.

6-22 Design Studio Developer's Guide

Developing Custom Report Designs

5. Define the formatting that will be applied to the value when it appears in the
report.

6. Click OK.

Adding Additional Report Design Elements

The BIRT Report Designer includes a tools for designing, debugging, and previewing
report designs. This section includes a small subset of procedures that help you create
and design reports for use in Design Studio.

See the BIRT Report Developer Guide for more information about the procedures in this
section, and for the full BIRT Report Designer documentation set.

Adding the Current Date to a Report

BIRT includes functions for manipulating content values. For example, you can use the
BirtDateTime class to manipulate date and time values. You can use the now()
function to display the current date and time. And, you can use the Formatter class
(which includes a single format function similar to Java MessageFormat) to format a
date by providing a date and format string.

To add the current date to a report:

1. From a report design file, right-click and select Insert, and then select Dynamic
Text.

The Expression Builder dialog box appears.
2. In the Expression field, enter the following:
Formatter.format(BirtDateTime.now(), "date_format")
For example:
Formatter.format(BirtDateTime.now(), "MMMM dd, yy h:mm a")
3. Click OK.

Adding Page Numbers

You can add page numbers to a master page and to a report layout.

Note: You can suppress page numbering for specific output types,
such as for non-paginated HTML output. See "Hiding Content Based
on Output Format" for more information.

To add page numbers to a report design:

1. From a report design file, right-click and select Insert, and then select Text.
The Edit Text Item dialog box appears.

2. Change the formatting type from Auto to HTML.

3. Change the content type to Dynamic Text.
This enables you to embed an expression in the text.

4. Do one of the following:

= To add page numbering to a master page, paste the following value into the
open text area:

Working with Reports 6-23

Developing Custom Report Designs

<value-of>pageNumber</value-of> / <value-of>totalPage</value-of>

s To add page number to a layout, paste the following value into the open text
area:

Page <viewtime-value-of> pageNumber </viewtime-value-of> of
<value-of> totalPage </value-of>

5. Click OK.

Dynamically Selecting Images

You can create XPath expression conditions that determine which image to use in a
report. The BIRT Report Developer supports many URI schemes that enable you to
retrieve content. For example, you might use the http scheme to interact with web
resources or XML namespaces. BIRT also enables you to embed images into a report,
or to dynamically select images from a data set.

You can use the Eclipse URI platform scheme to retrieve content from an installed
Eclipse plug-in. See the Eclipse documentation for more information.

Note: If a report resource does not resolve, the report may include an
error message that states that the resource of the report item is not
reachable.

To dynamically select images:

1. From a report design file, right-click and select Insert, and then select Image.
The Edit Text Item dialog box appears.

2. In the Select Image from field, select the URI option.

3. In the Enter URI field, click the down-drop menu and select JavaScript Syntax.
The Expression Builder dialog box appears.

4. Enter a conditional expression that represents the image options.

The following is a simple example that shows a selection between two images
based on the typeld value:

if (row["typeId"] == "typel") {
"platform:/plugin/my.report.design.plugin.id/icons/typel.png" ;
} else {
"platform:/plugin/my.report.design.plugin.id/icons/type2.png" ;
}

5. Click OK.

Creating Internal Links Between Report Items

You can create links between two related report items in a report design. Most report
readers support standard linking functionality. Design Studio does not validate links
during report creation.

You create internal links in a report using bookmarks. A bookmark is an identifier
used as an anchor point for hyperlink navigation in a report. If a report contains
multiple bookmark identifiers, each bookmark identifier must be unique.

6-24 Design Studio Developer's Guide

Developing Custom Report Designs

Note: You can also define links using:

= URISs, to reference standard URI protocols. For example, you can
create links using HTTP or FTP URI schemes.

s Drill-through parameters, to enable interactive report features
most commonly used with HTML output and a web server that
generates reports on-demand.

If you define links with drill-through parameters, you link to a
different report using the following report parameter syntax in the
link expression:

params["data_source_model_file"].value

See the BIRT project page for information about creating links using
URI schemes or drill-through parameters.

To create an internal link using a bookmark:
1. Select a data, label, or image element in a report design file.
The Property Editor view appears.
2. In Property Editor, click the Properties tab and then click the Hyperlink option.
The Hyperlink page appears.
3. Click Edit.
The Hyperlink Options dialog box appears.
4. Select Internal Bookmark.
5. Do one of the following:
s From the Bookmark list, select a bookmark identifier.

= In the Linked Expression field, click the Fx button and define an expression
that resolves to a value that matches a bookmark identifier defined in the
report.

6. Click Save.

Creating Table of Contents Entries

You add table of contents (TOC) entries in various places in a report design to identify
the types of information to be included in a TOC. The TOC is not directly represented
in the report, and may not appear in some output formats. In some output format
viewers the TOC appears in a separate panel of the reader and not in the report
directly.

When designing reports, you pair TOC entries with bookmarks, and define a TOC
expression to retrieve the text to be included in the generated TOC. You can also define
TOC expressions for table groups and on specific rows in a table.

To create TOC entries:

1. Inareport design file, select a data, label, or image element that you want to
appear in the TOC.

The Property Editor view appears.

2. In the Property Editor view, click the Properties tab and then click the Table of
Contents option.

Working with Reports 6-25

Developing Custom Report Designs

The Table of Contents page appears.
3. In the Table of Contents field, enter a TOC entry for the report element.
You can define the entry directly in the field or by using the Expression Builder.

4. C(Click Save.

Defining Text as HTML

Data sets can include simple text or text annotated with a markup language. You can
use a markup language to embed simple formatting data definition. For example, you
can format text with paragraph breaks, bullets, or emphasis.

To format text in a report, you must set up the text column to enable BIRT to interpret
the string value in a data set as HTML. This set up enables you to embed HTML tags
for report formatting.

Note: Invalid markup can cause exceptions during report
generation.

To define text as HTML:
1. From a report design file, right-click and select Insert, and then select Text.
The Edit Text Item dialog box appears.
2. Select HTML as the formatting type.
3. Select Dynamic Text as the content type.
4. Enter the following text content:
<VALUE-OF format="HTML">row["myColumn"]</VALUE-OF>
where
myColumn is the name of the column that contains the formatted text.
5. Click OK.

Example 6-1 includes text annotated with a markup language:

Example 6—1 HTML Markup Example

<p>BIRT HTML Markup</p>
<p>Allows textual markup which is <i>interpreted</i> and <u>rendered</u>.</p>
<p>Supports:

Bullets</1li>
Numbering
Anchors</1i>
Other simple markup

</p>
<p>Use the HTML Dynamic Text option within a Text Item.</p>

Figure 6-9 illustrates how the text in Example 61 appears in a report:

6-26 Design Studio Developer's Guide

Working with XPath Expression Patterns

Figure 6-9 HTML Markup in a Report

BIRT HTML Markup

Allows textual markup which is interpreted
and rendered.

Supports:
+ Bullets
* Numbering

+ Other simple markup

Use the HTML Dynamic Text option within
a Text Item.

Working with XPath Expression Patterns

Design Studio reports use data sets that are structured as table rows and columns.
When defining data sets, you map a top-level XML element as a data set row, and
other XML elements or attributes as data set columns. You use XPath expressions to
define the paths to elements and attributes.

This section describe common XPath expression modeling patterns that you can use to
create expressional conditions.

About XPath Expression Patterns for Row Mapping

To improve processing performance, reduce the size of an initial data set by defining
specific row mapping XPath expressions. For example, filter the row mapping to
include only the information required for a report, and consider using multiple data
sets instead of using a single data set when applying a filter in a data binding.

You can apply an attribute filter to only one XML element. You cannot, for example,
apply an entity type filter and an element type filter in an XPath expression. You can
apply multiple data set filters to any data set to include additional filtering.

If you map to a specific subtype of an abstract XML element, the Data Set wizard
generates a warning message that states that the table mapping XPath does not exist.
The XPath expression may be valid, but BIRT is not able to reconcile the use of a
concrete subtype against an abstract (or otherwise extensible) XML element. If you
cannot verify an XPath expression, use a test query on sample data and ensure that the
query returns the expected data.

When using XPath predicates, you cannot use excludes operations. See the BIRT
Project page for information about using data set filters to apply excludes logic.

Table 6-1 provides a list of common XPath expressions for row mapping;:

Working with Reports 6-27

Working with XPath Expression Patterns

Table 6-1 Row Mapping XPath Expression Patterns

To Do This Use this Syntax
Map to a Design Studio root element I*

Include the entity element in the path [*lentity

name

Select all instances of an element [*lentityllelement

Use a predicate to select an element based
on its typeld attribute

[*lentity/ / element[@typeld="abc']

Select all instances of a first-level child
element

[*lentityl*/element

Select all instances of a second-level child
element

[*lentityl*/element/*[element

Use a predicate to select a first-level child
element based on its typeld attribute

[*lentity/*/element[@typeld="abc']

Select a container of elements at any level

[*lentityl/containerlelement

Use a predicate to select a container of
elements at any level based on its typeld
attribute

[*lentity[@typeld="abc'//containerlelement

Select an element under a parent container

[*lentitylcontainer/element

Use a predicate to select an element in a
parent container based on its typeld
attribute

[*lentity[@typeld="abc'l/containerlelement
or

[*lentitylcontainerlelement[@typeld="abc']

Select all instances of entity relations

[*lentityllrelation

Select all entity project relations

[*lentitylproject/relation

Select all element relations [*lentityllelement//relation

Select specific element relations [*lentityllelementlrelationListNamelrelation

About XPath Expression Patterns for Column Mapping

XPath expressions for column mapping identify the column value in a data set. The
column mapping expressions are relative to the row mapping selection.

When creating column mappings, the target child or attribute value is not required for
every subtype of the selected element. For example, you can create a query that
applies to a mixed set of elements to which you want to map the aggregated set of
columns available across all element types. Reducing the number of distinct queries
required for a report improves performance.

Many of the domain-specific fields in the Design Studio model are contained in
subtypes of the base entity and element model. Reference the XML schema (included
in the Design Studio Report Design Example) when creating data set column
mappings to fields of a subtype. See "About the Design Studio Report Design
Example" for more information about Design Studio XML schema.

Row selection XPath expressions select abstract entities and elements. Therefore, the
attributes that are available for column mapping should be concrete attributes and
children of those elements (BIRT can recognize the children and attributes defined
directly on the base model). The column mapper does not display the concrete
subtypes of the entity and elements as options for mapping. If you define a row
mapping to select an abstract entity or element, the column mapper recommends

6-28 Design Studio Developer's Guide

Working with XPath Expression Patterns

column maps that select the base attributes and that select the children in the column
mapping. When mapping to a value in a subtype, BIRT returns a warning that states
that the table mapping XPath does not exist. Ignore this warning if you have verified
that the mapped path does reflect a valid selection from a subtype of the row mapping
element.

To map concrete subtypes, you add column mappings directly by specifying the
relative path, or you can set the row mapping to select the specific entity or element
that your final row mapping generates. Setting the row mapping to select the specific
entity or element enables column mapping from the XML structure on the Column
Mapping page of the Edit Data Set dialog box.

Test data set mappings with sample XML to ensure that all mappings are correct. You
can create sample XML files by using the Design Studio Generate Report wizard to
generate the Design Studio Model in XML report.

Table 6-2 displays common column mapping XPath expression patterns:

Table 6-2 Column Mapping XPath Expression Patterns

Name XPath Description

id /@id Get the global ID of the selected
element.

type /@type Get the entity or element type of
the selected element.

parentld ./../@id Get the global ID of the selected

element's parent. This expression
resolves to a null value for entities
because entities have no parent.

fieldl /field1 Get the field1 value, where field1 is a
child of the selected element. This
expression resolves to a null value
if there is no child element.

attributel /attributel Get the attributel value, where
attributel is an attribute of the
selected element. This expression
resolves to a null value if there is no
child element.

localizedString localizedString[@lang='default | Get the default value of a

' localizedString. This expression
resolves to a null value if the
localizedString does not have a
default value.

Table 6-3 displays column mappings that are typical for data sets with row mappings
that map to relations. These data sets are often used by a nested table with a filter to
match global identifiers with the outer row's entity or element identifier.

Table 6-3 Column Mappings for Data Sets with Row Mappings to Relations

Name Path Description

name /@name Name of the relation.

type /@type Type of the relation.

fromld ./../@id Global identifier of the relation
source element.

fromName ../../@name Name of the source element.

Working with Reports 6-29

Working with Report Data Filters

Table 6-3 (Cont.) Column Mappings for Data Sets with Row Mappings to Relations

Name Path Description

fromTypeName ../../@type Name of the source element type.

told / @ref Reference representing the target
global identifier.

toName /target/@name Name of the target element.

toTypeName /target/@typeName Name of the target element type.

About XPath Expression Parameters

You can add parameters to data set row mapping and to data set column mapping
expressions. For example, you can add a report parameter to the predicate of a
row-selection expression to filter based on the parameter's value.

To add a parameter to an XPath expression, use the following syntax:
{?parameterName?}
where parameterName is the name of the parameter whose value you want to use.

For example, you can write an XPath expression to retrieve all library books with a
category defined as mystery:

library/book/[@category="{?mystery?}"]

Consider that you would now need to define an input parameter that stores the
category value that a user enters during a search. The following XPath expression
searches for books defined with a category value that is stored in the bookCategory
parameter:

library/book/[@category="{?bookCategory?}"]

You can link data set parameters to a report parameter that is defined as a constant, or
you can populate a parameter using an expression. Parameters created with
expressions can include conditions and functions (such as date manipulation).
However, parameters cannot use columns from the data set.

Working with Report Data Filters

The manner in which you filter report data can impact reporting performance. Some
filters are applied multiple times during report generation. For example, a data
binding filter is applied multiple times if the binding includes a reference to an outer
binding, such as when tables are nested.

Rather than creating nested, normalized data sets, consider creating data sets that are
non-normalized, where you join nested data sets. Consider this approach when the
nested filtered content is a small subset of the bound data set and the outer data set
contains multiple rows.

Data retrieved from a data source can be filtered at a number of points during report
generation. You can apply filters to:

= Data set row mappings
s Data sets
= Data bindings

s Groups

6-30 Design Studio Developer's Guide

Testing Report Designs

A chart series

Testing Report Designs

Testing report designs directly in Design Studio shortens the design-test cycles by
eliminating the need to package the custom report design.

You can test report designs using the following methods:

Testing Custom Report Designs Using the Report Designer
Testing Custom Report Designs Using the Generate Report Wizard

Testing Custom Report Designs Using the Report Designer

You use a sample XML document to test report designs using the Report Designer. You
can create a sample XML document by generating the XML Model report, which
produces the Design Studio XML format used by the Report Designer.

To test custom report designs using the Report Designer:

1.

From the Design Studio Window menu, select Open Perspective, then select
Other, and then select Report Design.

Click OK.

The Report Design perspective appears.

Click the Resource Explorer tab.

Double-click a .rptdesign file.

The report design opens in the Report Designer editor.

From the Run menu, select View Report and then select the output format.
The default Internet browser opens and displays the Parameters dialog box.
Enter the fully qualified path to a sample XML file.

The sample XML file should include data that is representative of the type of data
that you intend to include in finished reports. You can:

= Enter the path to the reportData.xml file that is included in the Design Studio
Report Design Example. See "Adding the Report Design Example to the
Workspace" for more information.

= Run the Design Studio Model in XML report to create a new sample XML
file. See "Working with the Design Studio Report Examples" for more
information.

Testing Custom Report Designs Using the Generate Report Wizard

To test custom report designs using the Generate Report wizard:

1.

In Design Studio, from the Studio menu, select Generate Report.

The Generate Report wizard appears.

Select the Select a report design from a file option.

Click Browse and locate and select the report design that you want to test.

Click Next and navigate through the wizard to ensure that the report design
works as intended.

Working with Reports 6-31

Working with the Design Studio Report Examples

For example, select to generate the report content by project or by entity, based on
the data that you want to appear in the test report.

Review the generated report, the Eclipse Console view, and the error log.

Use this information to debug reports that are not generated as expected.

Working with the Design Studio Report Examples

Design Studio includes the following example report projects and example reports that
support the reporting features.

The Design Studio Report Design Example includes an update site project, a
feature project, and a project that contains sample report designs. See "About the
Design Studio Report Design Example" for more information.

The Design Studio Report Processor Example is an advanced example that
demonstrates how to extend the processing logic of the Design Studio report
generation framework. See "About the Design Studio Report Processor Example"
for more information.

The Design Studio Model in XML report enables you to create a sample XML file
that you can use in the BIRT Report Designer when testing your report design. For
example, you can run this report and direct the reporting engine to use the static
data defined in the generated XML file to test your column mapping and row
mapping against the sample XML file.

When generating this report, use an existing project or generate a new project that
includes enough content to adequately test your report design. See "About the
Design Studio Report Design Example" for information about the sample XML
delivered with Design Studio.

The Entity and Element Type Reference report enables you to view the IDs
assigned to all Design Studio model entity and element types. You can reference
the IDs in this report when you need to write XPath expressions that filter for a
specific value, such as when filtering and when row mapping during report
design.

For example, when writing a query, you may need to select for Product entities
only. You can run the Entity and Element Type Reference report to obtain the ID
for the Product entity type. See "Working with XPath Expression Patterns" and
"Working with Report Data Filters" for more information.

For more information about adding examples to the workspace, see "Adding the
Report Design Example to the Workspace". For more information about generating
reports, see the Design Studio Help.

About the Design Studio Report Design Example

The Design Studio Report Design Example is included in the Design Studio
installation. The Design Studio Report Design Example includes projects that you can
use as a reference or as a starting point for creating your own custom report designs.

This example includes the following projects:

design.studio.example.report.design.update.site, which contains an example of a
standard Eclipse update site project.

design.studio.example.report.design.feature, which contains an example of a
standard Eclipse feature project.

6-32 Design Studio Developer's Guide

Adding Reports and Report Categories to the Generate Report Wizard

design.studio.example.report.designs, which contains an Eclipse plug-in project
with report designs and content useful for designing reports.

This example includes the following;:

Sample report designs

- A sample that demonstrates a simple report design. This sample report design
includes the Design Studio data source setup and the required data_source_
model_file report parameter. The layout includes a basic report header and a
sample heading.

- A sample that demonstrates a complete report design. This sample report
design includes a list of Design Studio entities and their relationships. The
sample demonstrates how to define a data set to retrieve data from a data
source, and demonstrates common design patterns such as nested tables,
grouping, hyperlinks, bookmarks, and styling options.

The .rptdesign files for all of the Design Studio reference reports

XML schemas that describe the Design Studio Exchange Format

See "Working with the Design Studio Exchange Format" for more information.
A sample XML file

You can use this file to test your report designs.

A Design Studio report library

This library stores reporting objects, and enables you to reuse existing report
objects, such as tables, data sources, and styles. For example, you can copy into a
report design the data source and the data source report parameter that is
contained in the library. You can use the Resource Explorer view to review the
library and objects that exist in your workspace.

Extension point declarations for sample report designs

Troubleshooting Report Designs

Use the following tips and guidelines to help troubleshoot common issues.

Some report design aspects may be ignored in certain output formats. Ensure that
a report design is optimized for the output format. See "About Report Designs" for
more information.

Alignment issues are typically caused by the inconsistent use of padding and
margins in the report structure. Nested grids contribute to the padding and
margins of a container and can cause misalignments. Use adjustment strategies
consistently to avoid additive padding and margins.

Adding Reports and Report Categories to the Generate Report Wizard

If you intend for Design Studio users to install your custom reports from an update
site, you must add your custom reports to the Design Studio Generate Report wizard.
Adding the new custom reports to the Generate Report wizard ensures that your
reports are available for selection on the first page of the wizard.

You can create categories in the Generate Report wizard and organize your reports
under these categories. Users can expand a category folder on the first page of the
wizard to access custom reports. Figure 6-10 shows a new report category called
Sample Reports:

Working with Reports 6-33

Adding Reports and Report Categories to the Generate Report Wizard

Figure 6-10 New Report Categories

-
& Generate Report

Choose a Report Design

@ Select a report design from the list

[E] Design Studio Reference Reports

[E] Design Studio XML Reports

E Report Development Kit Reports
New Category == 4 [& semple Reports

[E] Sample Report A - Empty Report
Report hE Sample Report B - Entity List Report

Select a report design from a file

Description

(M

S

Note: If the report design will always be selected from a file (for
example, by selecting the Select a report design from a file option in
the Generate Report wizard), you are not required to add your reports
to the wizard.

The plugin.xml project file that contains the sampleA.rptdesign and
sampleB.rptdesign files, located at the root directory of the
design.studio.example.report.designs project, includes an example of
the configuration required to add your custom reports to the Design
Studio Generate Report wizard.

To add your custom reports to the Design Studio Generate Report wizard:

1. From the Design Studio Package Explorer view, expand your plug-in project
folder.

2. Double-click the plugin.xml file.
The file opens in the Plug-in Manifest editor.
3. Click the Extensions tab.

6-34 Design Studio Developer's Guide

Adding Reports and Report Categories to the Generate Report Wizard

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

20.

Click Add.
The Extension Point Selection dialog box appears.

On the Extensions Point tab, select oracle.communications.studio.report.type
from the list.

If the Report Type extension does not appear in the list, deselect the Show only
extension points from the required plug-ins option.

Click Finish.

If prompted to add the oracle.communications.studio.report.core plug-in to the
list of plug-in dependencies, click Yes.

The Report Type extension point is added to the plug-in project.

In the All Extensions area, right-click the extension and select New, and then
select category.

A new category appears under the extension.

Select the category.

In the Extension Element Details area, enter a unique ID for the category.
In the Name field, enter the category name.

The name that you define here is the label that appears for the category in the
Generate Reports wizard.

(Optional) To associate the category with an icon in the Generate Report wizard,
click the icon field Browse button and select an icon.

(Optional) In the All Extensions area, expand the category folder and then select
description.

In the Extension Element Details area, enter a description for the category.

In the All Extensions area, right-click the extension and select New, and then
select report-type.

A new report type appears under the extension.

Select the report type.

In the Extension Element Details area, enter a unique ID for the category.
In the Name field, enter the category name.

The name that you define here is the label that appears for the report type in the
Generate Reports wizard.

(Optional) To associate the report type with an icon in the Generate Report wizard,
click the icon field Browse button and select an icon.

In the reportDesign field, enter the relative path of the report design file or click
Browse to select the file from a list.

(Optional) In the generatorTypeld field, enter the relative path to your custom
report generator.

Leave this field blank if you don’t have a custom report generator. Design Studio
users the default BIRT report generator if no other report generator is specified.

(Optional) In the categoryld field, associate the report type with an existing
category.

Working with Reports 6-35

Extending Design Studio Reporting

21. (Optional) In the All Extensions area, expand the report type folder and then
select description.

In the Extension Element Details area, enter a description for the category.

22. (Optional) To view additional information about the extension point, click the
Show extension point description link.

23. Click the Build tab.

The Build page contains information required to build, package, and export the
plug-in project.

24. In the Binary Build area, select the report design files that you want to include in
the plug-in packaging, or select the folders that contain the report designs.

For example, if you organized all of your report design files under a reports folder,
select this folder in the Binary Build area.

25. Click Save.

For more information about the Plug-in Manifest editor and extensions, see the Eclipse
Plug-in Development Environment Guide.

Extending Design Studio Reporting

You can extend the Design Studio reporting engine by creating report processors. You
can create processors that:

» Perform actions before the report is generated, such as:
— Create images to be used in the report, such as a diagram
- Generate additional data source content
- Send or log notifications
s Perform actions after the report is generated, such as:
- Email a report
- Post a report to a website

- Clean-up report files

Note:

= Use Ant tasks for post-generation tasks whenever possible. See
the Design Studio System Administrator’s Guide for more
information.

= Report processors run during command-line report generation
and do not support user input. Ensure that your report processors
include no references to Eclipse Ul plug-ins.

About the Design Studio Report Processor Example

The Design Studio Report Processor Example is an advanced example project that
demonstrates how to extend the processing logic of the Design Studio report
generation framework. You can extend the reporting functionality, for example, to
dynamically produce graphs, charts, or images. You can use the example project as a
reference or as a starting point for your own project.

6-36 Design Studio Developer's Guide

Extending Design Studio Reporting

The Design Studio Report Processor Example includes the basic components needed
to produce a custom report processor. The example demonstrates how to define and
register a custom report processor. The report processor is paired with a sample report
that demonstrates how information provided by the custom report processor appears
in a report.

The Design Studio Report Processor Example contains:
= Java code for implementing the sample report processor

= AbstractProcessor.java, which includes boilerplate code for implementing the
required IReportProcessor interface

= SampleProcessor.java, which is the class that provides the logic for the sample
report processor

= SampleProcessorLogger.java, which provides functions for logging to the Eclipse
error log

= SampleProcessorPlugin.java, which is an implementation of a BundleActivator
interface required for Eclipse plug-ins, and which includes useful utility methods

= Extension point declarations for the sample report processor

Note: The BIRT framework is also extensible. You can extend the
BIRT controls, BIRT functions library, and supported data source
technologies. See the BIRT project web page for information about
extending BIRT.

Extending Reporting Tasks by Adding Report Processors

You can extend reporting tasks by creating an implementation of the following
IReportProcessor interface:
oracle.communications.studio.report.core.generator.processor.IReportProcessor.

This processor extends the processing logic of the Design Studio report generation
framework. For example, you can generate graphs, incorporate document signing, or
add other features not directly supported by the report generation framework.

Note: This task is intended for advanced users who are familiar with
Eclipse plug-in development and Java coding. The Design Studio
Report Processor Example project includes a simple implementation.
See "About the Design Studio Report Processor Example" for more
information.

To extend reporting tasks by adding report processors:
1. Create a plug-in project.

For example, you can use a report design plug-in project. See "Creating Plug-in
Projects" for more information. The plug-in project plugin.xml file is added to the
Package Explorer view.

2. Double-click the plug-in project plugin.xml file.
The file opens in the Plug-in Manifest editor.

3. (Click the Extensions tab.

4. Click Add.

Working with Reports 6-37

Extending Design Studio Reporting

The New Extension dialog box appears.
5. Locate and select oracle.communications.studio.report.generator.

If you don’t see the oracle.communications.studio.report.generator value,
deselect the Show only extension points from the required plug-ins option. If
prompted to add dependencies, select Yes.

6. Click Finish.
The extension appears in the Extension area.
7. Select the extension.
8. In the Extension Details area, click Show extension point description.

The Oracle Communications Design Studio Report Generator documentation page
appears. Use this documentation to finish creating an implementation of the
IReportProcessor interface.

6-38 Design Studio Developer's Guide

7

Working with Design Studio Model Java API

This chapter describes the Oracle Communications Design Studio Model Java AP, its
utility class and methods, and the plug-in dependencies that are required in your
Eclipse installation when using the API to extend Design Studio.

About the Design Studio Model Java API

The Design Studio Model Java API wraps the published Exchange Format XML files
produced by Design Studio. When combined with other public Eclipse APIs, the
Design Studio Model Java API enables you to extend Design Studio with custom
functionality and features. For example, when adding a new action to a Design Studio
menu, you can use the Design Studio Model Java API to read information required
from the published Exchange Format.

The Design Studio Action Command Examples project includes examples of how to
use the Design Studio Model Java API and its utility classes and methods. See "About
the design.studio.example.action.command Example Project” for more information.
See "Working with the Design Studio Exchange Format" for more information about
the Exchange Format.

Table 7-1 lists the top-level packages that you can browse to review Design Studio
model information. These packages are located in the
design.studio.example.action.command /Plug-in Dependencies folder:

Table 7-1 Top-Level Design Studio Packages

Package Description

oracle.communications.stu | Includes Design Studio platform information.
dio.model

oracle.communications.stu | Includes the Design Studio for ASAP product model.
dio.model.activation

oracle.communications.stu | Includes conceptual model information.
dio.model.common

oracle.communications.stu | Includes information about the Data Dictionary.
dio.model.data

oracle.communications.stu | Includes information about the Activation task and about
dio.model.integration elements and entities that integrate Design Studio for OSM with
Design Studio for ASAP.

oracle.communications.stu | Includes the Design Studio for Integrity product model.
dio.model.integrity

oracle.communications.stu | Includes the Design Studio for Inventory product model.
dio.model.inventory

Working with Design Studio Model Java APl 7-1

About Design Studio Model Java API Utility Classes and Methods

Table 7-1 (Cont.) Top-Level Design Studio Packages

Package Description

oracle.communications.stu | Includes the Design Studio for OSM product model.
dio.model.osm

About Design Studio Model Java API Utility Classes and Methods

Design Studio provides a utility class and methods that enable you to work with the
information published by the Exchange Format.

The ModelLocator class is a helper class that you use to obtain the Design Studio
resource and relation model information from the Exchange Format. You require the
ModelLocator class and the following fully qualified class name to extend Design
Studio using the Design Studio Model Java API:

oracle.communications.studio.model.modellocator.ModelLocator

The following methods are required when extending Design Studio using the
ModelLocator class:

n loadModel

s getRelationTarget

About the loadModel Method
Consider the following when using the loadModel method:

s The loadModel method has the following signature:
public Model loadModel (final IResource resource)

= You use the loadModel method to load a model referenced by the passed
IResource.

s The loadModel method has the following input:

org.eclipse.core.resources.IResource

s The loadModel method has the following output:

oracle.communications.studio.model.Model

About the getRelationTarget Method
Consider the following when using the getRelationTarget method:

s The getRelationTarget method has the following signature:
public Element getRelationTarget (final Relation relation)

» You use the getRelationTarget method to obtain the model from an element or
entity relation.

s The getRelationTarget method has the following input:

oracle.communications.studio.model.Relation

s The getRelationTarget method has the following output:

oracle.communications.studio.model.Element

7-2 Design Studio Developer's Guide

About Design Studio Model Java API Package Dependencies

About the getReferencedBy Method

You can use the getReferencedBy method to find a set of entities that are associated
with another entity. For example, you can find all technical actions associated with a
specific resource facing service.

Consider the following when using the getReferencedBy method:
» The getReferencedBy method has the following signature:

public List<Entity> getReferencedBy(final Entity entity)

= You use the getReferencedBy method to obtain the all the first-level referenced by
and realized entities of given entity.

s The getReferencedBy method has the following input:

oracle.communications.studio.model.Entity

» The getReferencedBy method has the following output:

List<oracle.communications.studio.model.Entity>

You can use two additional APIs to filter the getReferenceBy method:

s The first API enables you to return a list of entities based on the entity file
extension:

List<Entity> getReferenceBy (Entity entity, String fileExtension)
For example, if you call:

getReferenceBy (myEntity, "cmnAction")

the API returns only the action entities that reference myEntity.

s The second API enables you to return a list of entities based on a list of file
extensions:

List<Entity> getReferenceBy (Entity entity, List<String> fileExtensions)

About Design Studio Model Java API Package Dependencies

Table 7-2 displays the plug-ins that are required in your Eclipse installation when
using the Design Studio Model Java API to extend Design Studio.

Note: See the Eclipse Plug-in Development Environment Guide for
information about defining plug-in project dependencies in the
Plug-in Manifest editor.

Dependencies that you configure for a plug-in project are saved in the MANIFEST.MF
file. You can configure these dependencies in the Plug-in Manifest editor using the
fields on the Dependencies tab or by editing the file directly on the MANIFEST.MF
tab.

Open the Design Studio Action Command Example project to review examples that
illustrate how dependencies are configured in a plug-in project. See "About the
design.studio.example.action.command Example Project” for more information.

Working with Design Studio Model Java APl 7-3

About Design Studio Model Java AP| Package Dependencies

Table 7-2 Java API Plug-in Dependencies

Plug-in

Description

org.eclipse.ui

Required for command and menu extension points.

oracle.communications.stu
dio.model

Contains the Design Studio Model Java APL

org.eclipse.core.expressions

Required if the PropertyTester class is used.

org.eclipse.jface

Required for handling a selection in a view.

org.eclipse.Core.resources

Required for handling resource files and folders.

org.eclipse.ui.workbench

Required for handling command execution.

org.eclipse.core.runtime

Required for handling the selection in a view.

org.eclipse.emf.common

Required for handling common EMF model constructs.

org.eclipse.emf.ecore

Required for handling the EMF core model.

7-4 Design Studio Developer's Guide

8

Importing Entities Into Design Studio

This chapter describes how to use Design Studio examples as a starting point for
importing externally created Inventory entities into Oracle Communications Design
Studio.

Importing Inventory Entities

You can use the published API information included in the Exchange Format to import
Inventory entities from a different application or import entities from a different
Inventory application.

You can import Service specifications, Service Configuration specifications, Logical
Device specifications, Custom Object specifications, Ruleset extension points, and
Rulesets from external Inventory systems into Design Studio. After import, Design
Studio creates an Inventory project and adds these specifications to that project.

For example, by leveraging the information in the Design Studio Exchange Format,
you can enable Design Studio users import Inventory entities by creating an Import
menu action that appears in the Studio Projects view.

Adding the Design Studio Import Inventory Examples to a Workspace

Design Studio includes the Design Studio Import Inventory Examples example,
which includes projects that demonstrate how to import external Inventory entities
into Design Studio. These example projects are included in the Design Studio
installation and can be added to your workspace.

To add the Design Studio Import Inventory Examples example to a workspace:
1. From the Design Studio File menu, select New, and then select Example.
The New Example wizard appears.

2. Expand the Design Studio Examples folder and select Design Studio Import
Inventory Examples.

3. Click Next.

The Example Projects page appears. The Design Studio Import Inventory
Examples example includes three example projects.

4. Click each of the following example projects to read a summary of the example
project:

» The design.studio.example.import.inventory.update.site project creates a
project that demonstrates how to export installable features into an update
site.

Importing Entities Into Design Studio 8-1

Importing Inventory Entities

s The design.studio.example. import.inventory.feature project creates a project
that demonstrates how to add the import inventory example plug-in project to
a feature project.

s The design.studio.example.import.inventory project creates a project that
contains sample code for importing external Inventory entities into Design
Studio.

5. Click Finish.

The example projects are added to the current workspace.

About the design.studio.example.import.inventory Example Project

The design.studio.example.import.inventory example project includes a plugin.xml
file that illustrates how to import Inventory entities and by leveraging the information
published by the Design Studio Exchange Format.

Note: The examples presented in this chapter are displayed in text
form, such as that displayed on the plugin.xml tab of the Plug-in
Manifest editor. You can configure extensions in the Plug-in Manifest
editor using the form-based representation that appears on the
Extensions tab as well. The plugin.xml tab and the Extensions tab
display two views of the same information.

The design.studio.example.import.inventory example project illustrates how to
complete the following tasks:

= Adding Import Commands to the Studio Projects View Context Menu
= Invoking the Import Inventory API Using an XML File

= Invoking the Import Inventory API Using a Resource Object

» Adding External Data to an Inventory Project

= Accessing Import Errors and Warnings

Adding Import Commands to the Studio Projects View Context Menu

The design.studio.example.import.inventory example project demonstrates how to
add an import command to the Studio Projects view context menu. Example 8-1
displays an example of the configuration of the extensions for each of the following
command classes:

design.studio.example.action.command.handler.ImportInventoryCommandHandler

design.studio.example.action.command.handler.ImportInventoryFileCommandHan
dler

Note: These command classes are provided to demonstrate two
different examples, where each example uses a different menu action.
You can use either menu action example as a starting point to import
your inventory data.

In Example 8-1, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Import Inventory Examples
project for more information.

8-2 Design Studio Developer's Guide

Importing Inventory Entities

Example 8-1 Adding Import Commands to the Studio Projects View Context Menu

<extension

point="org.eclipse.ui.commands">

<command
defaultHandler="design.studio.example.action.command.handler.

ImportInventoryCommandHandler"

id="design.studio.example.action.command. importInventoy.command"
name="Import Example Inventory">

</command>

<command
defaultHandler="design.studio.example.action.command.handler.
ImportInventoryFileCommandHandler"
id="design.studio.example.action.command. importInventoyFile.command"
name="Import Example Inventory File">
</command>
</extension>

<extension
point="org.eclipse.ui.menus">
<menuContribution
allPopups="true"
locationURI="popup:imports?after=additions">
<command
commandId="design.studio.example.action.command.
ImportInventoyFile.command"
icon="icons/sample.gif"
id="design.studio.example.action.command.
importInventoyFile.command"
label="Import Example Inventory File"
mnemonic="%contributions.menu.importInventoryDataFile.mnemonic"
tooltip="Import Example Inventory Data">
</command>
</menuContribution>

<menuContribution
allPopups="true"
locationURI="popup: imports?after=additions">
<command
commandId="design.studio.example.action.command.
importInventoy.command"
icon="icons/sample.gif"
id="design.studio.example.action.command.importInventoy.command"
label="Import Example Inventory"
mnemonic="%contributions.menu.importInventoryData.mnemonic"
tooltip="Import Example Inventory">
</command>
</menuContribution>
</extension>

Invoking the Import Inventory API Using an XML File

The design.studio.example.import.inventory example project demonstrates how to
import inventory data from an XML file using the Design Studio Import Inventory
Data Job Java API. Example 8-2 illustrates the example using the following command
class:

design.studio.example.action.command.handler.ImportInventoryFileCommandHan
dler

Importing Entities Into Design Studio 8-3

Importing Inventory Entities

In Example 8-2, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Import Inventory Examples
project for more information.

Example 8-2 Invoking the Import Inventory API Using an XML File

IWorkbenchWWindow window = HandlerUtil.getActiveWorkbenchWindowChecked (event) ;
ImportInventoryDataDialog diag =
new ImportInventoryDataDialog(window.getShell());
int result = diag.open();
if (result == 0) {
final File dataFile = diag.getInventoryDataFile();
if (dataFile != null) {
final ImportInventoryDataJob job =
new ImportInventoryDatadob ("Import Example Inventory File", dataFile);
job.setUser (true);
job.setRule (ResourcesPlugin.getWorkspace () .getRoot ());
job.schedule() ;
} else {
ExampleLogger.logError("Unable to import inventory data file.", null);

}

Invoking the Import Inventory API Using a Resource Object

The design.studio.example.import.inventory example project demonstrates how to
import inventory data from an XML resource object using the Design Studio Import
Inventory Data Job Java APL

Example 8-3 illustrates the example using the following command class:
design.studio.example.action.command.handler.ImportInventoryCommandHandler

The example demonstrates how to create an inventory resource object using the
Design Studio Import Inventory Data Utility (ImportInventoryDataUtil) and how to
populate the project details using Exchange Format APIs.

In Example 8-3, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Import Inventory Examples
project for more information.

Example 8-3 Invoking the Import Inventory API Using a Resource Object

Resource inventoryResource = ImportInventoryDataUtil.createInventoryResource();
Mappings mappings = INVENTORY_FACTORY.createMappings();
inventoryResource.getContents () .add (mappings) ;
InventoryMappingList mappingList =
INVENTORY_ FACTORY.createInventoryMappingList();
InventoryMapping inventoryMapping =
INVENTORY_FACTORY.createInventoryMapping() ;
StudioModelEntityType inventoryCartridgeType = StudioModelEntityType.getTypeById
(InventoryCartridgeModelFactory.ID);
Project project = MODEL_FACTORY.createProject();
final String projectName = "ExampleInventory";
project.setName (projectName) ;
project.setTargetVersion (getTargetVersion());
project.setVersion (getBuildVersion()) ;
project.setKind(ElementKind.ENTITY) ;
project.setIdentifier (projectName) ;
project.setType (inventoryCartridgeType.getExternalKey());
project.setTypeName (inventoryCartridgeType.getName()) ;

8-4 Design Studio Developer's Guide

Importing Inventory Entities

project.setId(inventoryCartridgeType.getExternalKey () + "=" + projectName) ;
inventoryMapping.setProject (project) ;
mappingList.getElement () .add (inventoryMapping) ;
mappings.setInventoryMappings (mappingList) ;
// Below line shows creation of DataElementList
DataElementList dataElements = DataFactory.eINSTANCE.createDataElementList();
final ImportInventoryDataJob job = new ImportInventoryDataJob

("Import Example Inventory Resource", inventoryResource);
job.setUser (true) ;
job.setRule (ResourcesPlugin.getWorkspace () .getRoot());
job.schedule() ;
// Adds a job change listener to add external metadata to Resource after
// finishing import job. See ExampledobChangeListener for more
// information.
job.addJobChangelListener (new ExampledobChangeListener (projectName)) ;

Adding External Data to an Inventory Project

After you import specifications, you add all external data files required by the
Inventory project to the resources directory. The
design.studio.example.import.inventory example project demonstrates how to add
external data to the Inventory project that is created by the Design Studio Import
Inventory Data Job Java API (ImportInventoryDataJob). The Design Studio Import
Inventory Data Job Java APl is asynchronous, so you must add a job change listener to
listen to the job state changes.

Example 8—4 illustrates how to add external data files using the following class:
design.studio.example.inventory.job.ExampleJobChangeListener

In Example 84, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Import Inventory Examples
project for more information.

Example 8—-4 Adding External Data to an Inventory Project

URL fileURL =
Platform.getBundle (Activator.PLUGIN_ID) .getEntry ("samples/sample.xml") ;
File dataFile;
try {
dataFile = new File(FileLocator.toFileURL (fileURL).toURI());
IProject project =
ResourcesPlugin.getWorkspace () .getRoot () .getProject (projectName) ;

if ((project != null) && (project.isOpen())) {
IFolder resourcesFolder = project.getFolder (IStudioCartridge.DIR_RESOURCES) ;
if (resourcesFolder.exists()) {

IFile newFile = resourcesFolder.getFile("sample copy.xml");
FileInputStream fileStream = new FileInputStream(dataFile);
if (!newFile.exists())
newFile.create(fileStream, false, null);
}
}
} catch (CoreException | URISyntaxException | IOException e) {
e.printStackTrace() ;
}

Accessing Import Errors and Warnings

The design.studio.example.import.inventory example project demonstrates how to
access errors and warnings generated when you import specifications. The Design

Importing Entities Into Design Studio 8-5

Importing Inventory Entities

Studio Import Inventory Data Job Java API (ImportInventoryDataJob) is
asynchronous, so you must add a job change listener to listen to the job state changes.

Example 8-5 illustrates how to access import errors and warnings using the following
class:

design.studio.example.inventory.job.ExampleJobChangeListener

In Example 8-5, italics represent code that requires customization to meet your
business needs. Add and review the Design Studio Import Inventory Examples
project for more information.

Example 8-5 Accessing Import Errors and Warnings

Job job = event.getJob();
if (job instanceof ImportInventoryDatadob) {
IStatus status = ((ImportInventoryDataJob) job).getStatus();
if (status.isMultiStatus()) {
// This can be used to find out any errors or warnings,
// such as, missing dependencies and invalid files, and how to
// take necessary action.
}
ExampleLogger.log(status) ;

Viewing the Design Studio Inventory Data Schema

You can view the details of the Design Studio Inventory data model by viewing the
Design Studio Inventory data schema.

Note: To view the Design Studio Inventory data schema, you must
first add the Design Studio Import Inventory example. See "Adding
the Design Studio Import Inventory Examples to a Workspace" for
more information.

To view the Design Studio Inventory data schema:
1. In Design Studio, switch to the Java perspective.

See the Design Studio Help for more information about switching perspectives.
2. Click the Package Explorer tab.

3. In the Package Explorer view, expand the
design.studio.example.import.inventory folder, and then expand the schemas
folder.

4. Double-click a schema file.

The schema opens in the Data Schema editor.

8-6 Design Studio Developer's Guide

9

Working with Source Control

This chapter provides information to enable you to collaborate in teams by using a
source control system to share projects and describes which files must be source
controlled in Oracle Communications Design Studio.

About Source Control

Oracle recommends that you use a source control system to manage the quality of
service fulfillment design solutions. With a source control system, you can share
projects across development teams, submit changes to various projects, and import
projects into Design Studio. Oracle recommends that you always use a source control
system in your workflow, even if only one team member is working on a development
project. Using source control, you can track changes to systematically correct mistakes,
roll back to previous versions, and support quality control. Design Studio can integrate
with source control software, such as Apache Subversion, GIT, and Concurrent
Versions System (CVS).

For team development projects, you install the source control software on a server. A
server installation enables multiple developers to remotely access the hosted
repository. For development projects with one developer, you can install the source
control software locally on the individual computer. A local installation enables a
single user to access the repository on the computer’s file system. Commands execute
directly without the need for a server.

Source control systems are unique. Some integrate with Eclipse-based applications and
others provide separate tooling. Some source control systems distribute integration
plug-ins through Eclipse Marketplace, while others distribute plug-ins independently.

Configuration capabilities and procedures vary among source control systems. Oracle
recommends that you consult your source control system documentation when setting
up the Eclipse integration. You can integrate Design Studio with your source control
feature after you configure the source control system feature for Eclipse.

About Source Control Strategies for Design Studio Files

Oracle recommends that developers work in a source control system when developing
cartridges in Design Studio. Oracle Enterprise for Eclipse provides support for
integrating with source control systems (plug-ins are available for most common
source control systems). The behavior of Design Studio when used in an environment
where the files are backed by a source control system depends on the source control
system and the source control team plug-in being used. For more information about
working in the team environment, see Eclipse Workbench User Guide. See the Eclipse
Marketplace page for more information about supported source control solutions:

Working with Source Control 9-1

About Source Control

http://marketplace.eclipse.org/

Table 9-1 describes the structure of the directories and the files in a Design Studio and
recommends a source control management strategy.

Table 9-1 Design Studio Source Control Management

Directory or File Description Source Control Management

ProjectDir/ Project's top level Source control all files directly
directory. under this directory.

ProjectDirlcartridgeBin/ Contains deployable Source control the directory but do
archive files not source control the contents.

ProjectDirl/dataDictionary/ | Contains Data Dictionary | Source control.
schema files and
companion files.

ProjectDirl/doc/ Contains documentation | Source control.
files.

ProjectDir/generated/ Contains generated Source control. However, do not
artifacts of the build source control the src folder or its
process. contents.

ProjectDir/generated/src/ Contains generated Source control the directory but not
artifacts of the build its contents.
process.

ProjectDirlintegrityLib/ Contains Design Studio Source control the directory, but do

for Network Integrity JAR | not source control the files in this
files that are included in directory.

the Network Integrity
server Enterprise Archive
(EAR). These JARS are in
the project's classpath.

ProjectDirlintegrityLib/pac | Contains JAR files that are | Source control the directory, but do
kaged created by Design Studio | not source control the files in this
for Network Integrity and | directory.

which are packaged into
the cartridge IAR file. The
JAR files are added to the
Network Integrity EAR
when the cartridge is
deployed. These JAR files
are in the project's

classpath.

ProjectDir/lib/ Contains JAR files. Source control. The mds.mar file is
output to this directory. Do not
source control the mds.mar file.

ProjectDir/mdsArtifacts/ Contains files that Source control the directory and the

contribute to the UI Hints | following files:

infrastructure. = MDSAvailablePagePanels.xml
s MDSAvailablePagePanels.xsd
= MDSMetaData.xml

Do not source control the the
remaining files in this directory.

9-2 Design Studio Developer's Guide

About Source Control

Table 9-1 (Cont.) Design Studio Source Control Management

Directory or File

Description

Source Control Management

ProjectDir/model/

Contains files that are
used to persist the
information about
Cartridges, Actions,
Processors, Model
Collections, and Address
Handlers.

Source control.

ProjectDirlout

Contains output classes.

Do not source control.

ProjectDirlsrc/

Contains the
user-supplied code for the
cartridge.

Source control.

Working with Source Control

9-3

About Source Control

9-4 Design Studio Developer's Guide

10

Deploying Cartridges to Environments

This chapter provides information about the Oracle Communications Design Studio
Cartridge Management Tool (CMT) and about other tools that you can use when
deploying cartridges to run-time environments.

Deploying Cartridges to Run-Time Environments with the Cartridge
Management Tool

The CMT enables you to deploy cartridges to run-time environments outside of the
Design Studio environment. The CMT is available from the Oracle software delivery
website.

Note: Oracle recommends that you deploy to production
environments using a controlled and scripted process. This process
should be verified in a staging environment prior to execution against
a production environment. Though Design Studio enables you to
deploy cartridges to design and test environments consistently across
all Oracle Communications features, Oracle recommends that you use
the CMT to deploy to production run-time environments.

To deploy cartridges to run-time environments using CMT:

1.

Navigate to Oracle software delivery website:
https://edelivery.oracle.com

Download and extract the Oracle Communications Cartridge Management Tool
archive file.

Open the cartridge_management_tools folder.
Extract cartridge_management_tools.jar.

Open the build.properties file and update the file with environment-specific
variables.

For example, update web service connection information for deploying and
undeploying cartridges, model variable values to be used at deploy time, and so
forth.

If you are deploying Oracle Communications Unified Inventory Management
(UIM) or Oracle Communications Network Integrity cartridges, you must add the
following properties to the file:

deploy.wladmin.host.name=WebLogic administration server host name

Deploying Cartridges to Environments 10-1

Working with Additional Cartridge Deployment Tools

deploy.wladmin.host.port=WebLogic administration server port number
deploy.wl.target.name=adminstration server name or cluster name where the
application is deployed

Add the files in the lib folder (in the cartridge_management_tools file) to the
classpath.

Adding libraries to the classpath can prevent exceptions from being thrown
during Ant script execution.

Set the JAVA_HOME to JDK 8.

From a command prompt, navigate to the directory where the cartridge_
management_tools.jar file is extracted and run the following Ant commands, as
applicable:

= ant: Displays a list of available targets.

= ant-lib ..\lib -f build.xml deploy-cartridge: Deploys a cartridge to a run-time
environment.

= ant-lib .\lib -f build.xml undeploy-cartridge: Undeploys a cartridge from a
run-time environment.

Note: Undeploy is not supported for UIM cartridges.

= ant-lib ..\lib -f build.xml list-cartridge: Lists the cartridges deployed to a
run-time environment.

Working with Additional Cartridge Deployment Tools

Oracle recommends using the CMT for automated, scripted, and command line
cartridge deployment for all the applications supported by Design Studio. Under
specific circumstances, applications might recommend other tools for cartridge
deployment, such as the following;:

Service Activation Deployment Tool (SADT), used to deploy SAR files to Oracle
Communications ASAP run-time environments. See ASAP Cartridge Development
Guide for more information.

Cartridge Deployer Tool, used to deploy JAR files to Oracle Communications
Unified Inventory Management (UIM) run-time environments. See UIM System
Administrator’s Guide for more information.

Cartridge Deployer Tool, used to deploy cartridges to Oracle Communications
Network Integrity run-time environments. See Network Integrity Installation Guide
for more information.

XML Import/Export Tool, which is used to manage data in the Oracle
Communications Order and Service Management (OSM) database. See OSM
System Administrator’s Guide for more information.

See the Oracle Communications application documentation for specific instructions
and applicability notes and to determine the level of support for application-specific
tools.

10-2 Design Studio Developer's Guide

11

Working with Externally Created Data Schemas

This chapter describes how you work with data schemas that you create outside of
Oracle Communications Design Studio. Design Studio uses XML data schemas for
domain modeling. XML data schemas store data definitions and standardize data
usage across domains and platforms.

About Design Studio Data Schemas

You create an XML data schema by either creating a Model project or by creating a
schema in an application project. Design Studio saves the data schema entity to the
root level of the project’s dataDictionary directory by default. The Data Schema entity
is represented by an XSD file and a companion file in the local file system.

You can also import any XML data schema file that was not created in Design Studio
into a Design Studio project. If you create an XML data schema externally and edit it in
Design Studio, you may lose data at the schema level and in the data model.

Modeling Data Using XML Data Schemas

Design Studio uses XML data schemas for data modeling. XML data schemas provide
precise descriptions of data models that are bound by strict sets of rules, and they
generate entities and associated features of a model. XML data schemas also support
domain-specific requirements, such as inheritance and abstraction.

Design Studio simplifies using XML data schemas with the Data Dictionary. The Data
Dictionary is a logical collection of data elements within the workspace and is
presented within a set of views. These views enable you to visualize and manage the
data elements configured in the workspace.

The Data Dictionary presents the data types available for use in the workspace.
Various entities in the workspace contribute to the contents of the Data Dictionary.
Common entities like Schema and Business Entity enable non-product-specific data
type modeling. Product entities can also contribute data type information to the Data
Dictionary.

The data schema is represented in Design Studio as two files: an XML schema file and
a companion file. Design Studio uses the companion file to save payloads that are
declared in a data schema. For example, a provisioning system may require that all
root level elements have cardinality. However, the XML schema does not support
cardinality for root level-type definitions. Design Studio saves this information in the
data schema companion file. The companion file is hidden and is not visible in the
Studio perspective.

Working with Externally Created Data Schemas 11-1

About Supported XML Schema Features

About Supported XML Schema Features

Design Studio data schemas support a subset of the features of the XML Schema
language. Some of the supported features are enhanced to optimize their use when

modeling data.

Table 11-1 lists the XML Schema features that are supported.

Table 11-1 Supported XML Schema Features

Feature (Type) Description

Type Declaration Supports the same definitions as the XML Schema
specification.

Target Name Space Supports the same definitions as the XML Schema

specification.

Complex Content Type Definitions

Supports child structures and complex types.

Import Directives

Supports the same definitions as the XML Schema
specification.

Cardinality /Occurrence

Supports the cardinality /occurrence of the elements
(child simple element from the XML Schema
perspective).

Also supports the cardinality on the type definitions
on the root level, as well as child complex elements.
Supports the various modeling needs of
provisioning systems.

Max Length

Supports maximum length facets of XML Schema.

All rules of maximum length facets apply.

Min Length

Supports minimum length facets of XML Schema.

Enumeration

Supports the enumeration feature of the XML
Schema specification, and enumerations for
non-string elements.

Fulfills the requirements of the various modeling
needs of provisioning and inventory systems.

Derived elements can extend the base
enumerations, or exclude (restrict) them.

Annotations

Supports annotations on the elements and type
definitions.

Deriving types by extension

Supports type definitions extended from other type
definitions.

While you can model recursive structures in Design
Studio, the system restricts the presentation of
recursive structures. In Design Studio, a data
schema is represented as a hierarchical tree. Design
Studio does not allow infinite expansion of
recursive tree nodes.

You can limit the number of levels to which nodes
are expanded. See Design Studio Help for
information about defining preferences.

11-2 Design Studio Developer's Guide

About Unsupported Schema Directives and Elements

Table 11-1 (Cont.) Supported XML Schema Features

Feature (Type)

Description

Primitive Data Types
| |
L

Supports the following primitive data types:

int

string

long

float

double

date

date and time
time

boolean
decimal

hexidecimal

About Unsupported Schema Directives and Elements

Design Studio data schemas support a subset of the features of the XML Schema

language.

Table 11-2 lists the XML Schema features that are not supported.

Table 11-2 Unsupported Schema Directives and Elements

Schema Directives and Elements

Description

Include Directives

Valid external schemas that are imported into
Design Studio and have an include directive
may cause unresolved type definitions and
can be considered invalid by Design Studio
validation framework.

No target namespace

Schemas that have no Target Name space
defined are not supported.

Redefine

If an external schema is using the Redefine
element, the validation may result in
unresolved elements.

Abstract Element and Types

If an external schema contains an Abstract
definition, Design Studio considers it a
regular element and does force a substitution
according to the XML Schema specification.

Attribute Declaration and Attributes Groups

If an external schema contains an Attribute
Declaration, Design Studio considers it to be
read-only element.

If an external schema contains an Attributes
Group, Design Studio may not recognize it as
a valid type.

Substitution groups

Design Studio ignores this attribute of an
element.

Element Declarations

Design Studio considers any external schema
containing element declarations as read-only
type definition.

Working with Externally Created Data Schemas 11-3

About Unsupported Schema Directives and Elements

Table 11-2 (Cont.) Unsupported Schema Directives and Elements

Schema Directives and Elements

Description

Unsupported Primitive Types

If an external schema has an element
declaration with a primitive type that is not
supported, Design Studio considers the type
definition as undefined and shown as none.

11-4 Design Studio Developer's Guide

12

Design Studio Platform Tools

This chapter provides an overview of Oracle Enterprise Packet for Eclipse and Java
Development Tools, that you use with Oracle Communications Design Studio.

Working with Oracle Enterprise Packet for Eclipse

Design Studio supports Oracle Enterprise Pack for Eclipse, a set of certified plug-ins
designed to help you develop and debug Java EE applications that can be deployed on
Oracle WebLogic Server from Eclipse.

Design Studio uses the Eclipse platform as a product framework and as an integrated
development environment (IDE) to support plug-in architecture and customizations.
Eclipse provides a GUI to manage and configure data across Oracle Communications
products.

Eclipse supports application development tool construction, independent tool
vendors, GUI and non-GUI application development, numerous content types
(including Java, HTML, C, and XML), tool integration, and use of Java language for
writing the tools.

For more information about installing Oracle Enterprise for Eclipse, see Design Studio
Installation Guide.

Note: To run Oracle Enterprise for Eclipse, system administrators
must install the correct Java Runtime Environment and Java
Developer Kit. See Design Studio Installation Guide for more
information.

Oracle Enterprise for Eclipse includes a number of tools that are useful for middleware
development and includes all of the required features to support Design Studio. These
tools compliment Design Studio features to provide a more complete design
environment for building solutions.

About Java Development Tools

Java Development Tools (JDT) provide a set of workbench plug-ins that add the
capabilities of a full-featured Java IDE to the Eclipse platform. JDT plug-ins provide
APIs that can be further extended by other tool builders. Additionally, the JDT
includes a built-in Java compiler that compiles Java code and creates error messages
when compilation fails.

Design Studio Platform Tools 12-1

Working with Oracle Enterprise Packet for Eclipse

About Database Development Tools

Oracle Enterprise for Eclipse provides tools to help you develop applications that use
Oracle Database. These tools include:

= Support for the integration of Oracle Database with Eclipse Data Tools Platform.
= Diagram viewers for visualizing database schemas and object-relational mapping.

= Database Explorer, which supports data editing, data load /extract, and Data
Definition Language generation.

= SQL tools that support SQL editing and execution and stored procedures.

About Application and WebLogic Server Tools
Oracle Enterprise for Eclipse editors and optimized development tools for application
server development simplify work with products like WebLogic Server by providing:
= Fast, iterative deployment for local and remote servers.

= Support for JAX-WS web services (editor and configuration support).

s Oracle Enterprise for Eclipse visual deployment descriptor editors for *-jms.xml,
weblogic.xml, weblogic-application.xml, weblogic-ejb.jar.xml, faces-config.xml,
and persistence.xml files, and a JSR 88 deployment plan editor.

About Web Application Tools

Oracle Enterprise for Eclipse web application tools simplify working with technologies
like JSF, JSP, CSS, ADF, and others.

Web Applications

The following web application tools simplify analyzing and visualizing dependencies
to reduce run-time debugging and to improve code quality:

= AppXRay and AppXaminer offer compiler-level awareness of Java, Oracle
Application Development Framework (Oracle ADF), HTML, CSS, JSP, JSTL, and
JSF at design time, with capabilities in code and annotation completion, code
navigation, dependency visualization, consistency checking with generated classes
and configuration files, pre-build error checking, and validation.

= Anenhanced Eclipse Web Tools Platform (WTP) Web Page Editor (WPE) includes
a Smart Property Sheet to simplify tag configuration and data binding. WPE also
includes localization support, JSE, JSP, JSTL, and CSS/HTML, and a Tag and Data
Palette.

Web Tools Platform

The WTP extends the Eclipse platform to simplify web and Java EE application
development. WPT provides the following tools to simplify deploying, running, and
testing applications:

n Core Web Tools Platform (EJB Tools, Java EE Tools, Server Tools)
= JavaServer Faces Tools

= Data Tools Platform Project
Oracle ADF Tools

Oracle Enterprise for Eclipse provides design-time support for application
development with Oracle ADF. You can create applications that leverage Oracle ADF

12-2 Design Studio Developer's Guide

Working with Oracle Enterprise Packet for Eclipse

Faces and Task Flows, validate and refactor Oracle ADF dependencies using
AppXRay, deploy and debug with Oracle WebLogic Server, and create Oracle ADF
Libraries for application reuse.

The following Oracle ADF tools simplify Java EE development by minimizing the
need to write code that implements the application’s infrastructure:

= Oracle ADF Server Extensions to configure WebLogic Server and Eclipse for ADF
development

= ADF Project Templates and Facets
= ADF-enabled JSP Templates
= ADF design time support
- WPE enhancements for ADF source development
- Smart Property Sheet to simplify tag configuration and data binding

— Tag Palette enabled for ADF Faces and Data Visualization Tools (DVT)
components

- Tag editors for drag and drop configuration of ADF tags
= AppXRay support for ADF tags

About JPA and Oracle Coherence Tools

The following Oracle Enterprise for Eclipse tools help you create applications that map
objects to relational databases.

Java Persistence API (JPA) Tools

JPA tools simplify working with the Java programming language framework to
manage relational data in applications using Java Platform, Standard Edition, and
Enterprise Edition. These tools enable you to:

= Use object relational mapping tools for Java Persistence API
= Generate entities from schema
- Start with any database connection
- Create entities based on table relationships
— Define new entity associations
s Generate entities from POJO
- Annotate existing Java class
- Map POJO fields and properties to database schema
s Use the Entities editor, which includes:
- A design view to display and edit existing entity relationships
- Hyperlinked navigation to entity source code
s Use the JPA Details view, enabling you to:
- Edit entity properties and relationships from the Entities editor

= Support EclipseLink/TopLink, Kodo, OpenJPA, and generic JPA providers

Design Studio Platform Tools 12-3

About Third-Party Tools

Oracle Coherence Tools

Oracle Enterprise for Eclipse supports Oracle Coherence. You can run, deploy, and
debug Coherence servers from Eclipse, as well as create and configure projects, and
leverage visual editors for cache configuration and override descriptors.

About Third-Party Tools

Design Studio and the Eclipse platform support third-party tools that are helpful for
readiness, testing, and other administrative activities. For example, you might use:

= soapU], as a test tool for calling web services.
s Hermes]MS, as a test tool for sending and receiving JMS messages.
= SQL Developer, as a utility for maintaining the database.

s XQDT for Eclipse or oXygen XML Developer, as an XQuery editor.

12-4 Design Studio Developer's Guide

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility
	Document Revision History

	1 Creating, Packaging, and Distributing Plug-in Projects
	About Plug-in Projects
	Creating Plug-in Projects
	Packaging Plug-in Projects
	Creating Feature Projects
	Creating Update Site Projects

	Distributing Plug-in Projects

	2 Working with Design Patterns
	About Design Patterns
	About the Design Pattern Framework
	About the Design Pattern Development Life Cycle
	About the Design Pattern Development Environment
	About Design Pattern Folder Structure
	About the pattern.xml File

	Developing Custom Design Patterns
	Creating Design Pattern Plug-in Projects
	Modeling Design Patterns
	Reviewing Design Pattern Configuration Data
	Defining a Description for a Design Pattern
	Leveraging Logic from Existing Design Patterns
	Defining Context for Design Patterns
	Defining Target Projects for Design Patterns
	Working with Tokens
	About Tokens
	About Token Types
	About Entity Reference Tokens
	About Element Reference Tokens
	About Regular Expressions
	About Token Functions
	About Token Conditions
	Defining Tokens for Design Patterns

	Defining Token Groups for Design Patterns
	Defining the Manifest for Design Patterns
	Working with Design Pattern Actions
	About Action Elements
	About Design Pattern Action Types
	About Actions Used in Conceptual Modeling
	About the Design Pattern Action Reference Table
	Defining Actions for Design Patterns

	Defining Custom Actions
	About Conditions
	Defining Inputs for Design Patterns
	Securing Design Pattern Information

	Invoking Custom Java Code from Design Patterns
	About the IDesignPatternCustomAction Java Interface
	About Registering Your Java Class
	About Calling Your Custom Java Code

	Testing Design Patterns
	Applying Design Patterns
	About the Design Pattern Summary Page

	Design Pattern Examples
	Example: Adding Project Dependencies
	Example: Defining Tokens for Resources
	Example: Defining Tokens as Default Values
	Example: Defining Action Subjects or Participants With Values External to Design Patterns
	Example: Supporting Multiple Selections for Entity Reference Tokens

	Working with Cheat Sheets

	3 Working with Guided Assistance
	Working with Guided Assistance
	About the Guided Assistance Dialog Box
	Working with Guided Assistance Design Patterns
	Creating Guided Assistance Using Design Patterns

	Working with the Guided Assistance Extension Point
	Guided Assistance Extension Point Example

	Distributing Guided Assistance

	About the Design Pattern and Guided Assistance SDK Folder

	4 Working with the Design Studio Exchange Format
	About the Design Studio Exchange Format
	About the Exchange Format Model Lifecycle
	About the Exchange Format Architecture
	About the Design Studio Model Schemas
	Viewing the Design Studio Schemas

	About the Design Studio Exchange Format Model
	Element Attributes and Children
	Entity Attributes and Children
	Element Lists
	Relation Attributes
	Named Relation Lists

	5 Extending Design Studio
	About Extending Design Studio
	Extending Design Studio with Action Commands
	Adding the Design Studio Action Command Example to a Workspace
	About the design.studio.example.action.command Example Project
	Adding Commands to the Studio Menu
	Adding Commands to the Design Studio Toolbar
	Adding Commands to the Solution View Context Menu
	Adding Commands to the Studio Projects View Context Menu
	Adding Commands to the Package Explorer View Context Menu
	Adding Commands to the Project Explorer View Context Menu
	Configuring the Visibility of Commands Using the Property Tester
	Configuring the Visibility of Commands Using the File Extension of Resources
	Obtaining the Model From a Resource Using the Design Studio Model Java API
	Obtaining the Model From an Entity Relation Using the Design Studio Model Java API
	Obtaining the Model From an Element Relation Using the Design Studio Model Java API

	About Design Studio View Identifiers
	Adding Custom Logic to Design Studio Builds

	6 Working with Reports
	About Design Studio Reports
	About the Design Studio Reporting Architecture
	About the Design Studio Reporting Life Cycle
	About Report Designs
	About the Report Designer
	About the Expression Builder

	About Report Generation

	About Data Sources
	About Data Sets
	Adding the Report Design Example to the Workspace
	Customizing Existing Design Studio Reports
	Developing Custom Report Designs
	Creating Report Design Files
	Creating Design Studio Report Parameters
	Creating the Design Studio Data Source Entity
	Creating Data Set Entities
	Defining the Data to Add to Reports
	Defining Computed Columns for Data Sets
	Defining Filtering Conditions for Data Sets
	Merging Data Sets
	Filtering Data Sets for Tables
	Nesting Tables
	Concatenating Rows into Comma-Separated Values

	Defining Data Presentation in Reports
	Hiding Content Based on Output Format
	Defining Value Mapping Rules
	Defining Value Highlighting Rules

	Adding Additional Report Design Elements
	Adding the Current Date to a Report
	Adding Page Numbers
	Dynamically Selecting Images
	Creating Internal Links Between Report Items
	Creating Table of Contents Entries
	Defining Text as HTML

	Working with XPath Expression Patterns
	About XPath Expression Patterns for Row Mapping
	About XPath Expression Patterns for Column Mapping
	About XPath Expression Parameters

	Working with Report Data Filters
	Testing Report Designs
	Testing Custom Report Designs Using the Report Designer
	Testing Custom Report Designs Using the Generate Report Wizard

	Working with the Design Studio Report Examples
	About the Design Studio Report Design Example

	Troubleshooting Report Designs
	Adding Reports and Report Categories to the Generate Report Wizard
	Extending Design Studio Reporting
	About the Design Studio Report Processor Example
	Extending Reporting Tasks by Adding Report Processors

	7 Working with Design Studio Model Java API
	About the Design Studio Model Java API
	About Design Studio Model Java API Utility Classes and Methods
	About Design Studio Model Java API Package Dependencies

	8 Importing Entities Into Design Studio
	Importing Inventory Entities
	Adding the Design Studio Import Inventory Examples to a Workspace
	About the design.studio.example.import.inventory Example Project
	Adding Import Commands to the Studio Projects View Context Menu
	Invoking the Import Inventory API Using an XML File
	Invoking the Import Inventory API Using a Resource Object
	Adding External Data to an Inventory Project
	Accessing Import Errors and Warnings

	Viewing the Design Studio Inventory Data Schema

	9 Working with Source Control
	About Source Control
	About Source Control Strategies for Design Studio Files

	10 Deploying Cartridges to Environments
	Deploying Cartridges to Run-Time Environments with the Cartridge Management Tool
	Working with Additional Cartridge Deployment Tools

	11 Working with Externally Created Data Schemas
	About Design Studio Data Schemas
	Modeling Data Using XML Data Schemas
	About Supported XML Schema Features
	About Unsupported Schema Directives and Elements

	12 Design Studio Platform Tools
	Working with Oracle Enterprise Packet for Eclipse
	About Java Development Tools
	About Database Development Tools
	About Application and WebLogic Server Tools
	About Web Application Tools
	About JPA and Oracle Coherence Tools

	About Third-Party Tools

