

[1] Oracle® Communications Design Studio
System Administrator’s Guide

Release 7.3.5

E79091-01

February 2017

Oracle Communications Design Studio System Administrator's Guide, Release 7.3.5

E79091-01

Copyright © 2013, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Related Documents ... v
Documentation Accessibility ... v
Document Revision History .. vi

1 Configuring Deployment Settings

Setting Up Users for Design Studio Deployment ... 1-1
Enabling SSL Connections .. 1-2

Changing the Keysize Value .. 1-3
Configuring Deployment Messages... 1-3

2 Backing Up and Restoring Design Studio Data

Backing Up Design Studio ... 2-1
Backing-up the Design Studio Application.. 2-1
Backing Up Design Studio Projects ... 2-2

Using Source Control to Back Up Design Studio Projects .. 2-2
Backing Up Design Studio Run-Time Archives .. 2-2

Restoring Design Studio Data ... 2-3
About Data Recovery Types... 2-3
About Data Recovery Strategies .. 2-4
Restoring the Design Studio Application ... 2-4
Restoring Design Studio Projects... 2-4

Restoring Projects Using File Media Recovery... 2-4
Restoring Projects Using Complete Recovery ... 2-5
Restoring Workspaces .. 2-5
Restoring Source Control Systems ... 2-5

Restoring Design Studio Run-Time Archives .. 2-6
Design Studio Backup Strategy: Example ... 2-6

3 Automating Builds

About Automated Builds .. 3-1
About the Design Studio Development Directory Structure... 3-1
About Automated Reporting ... 3-2
About Ant Tasks... 3-3

iv

About the studio.importProject Ant Task ... 3-3
About the studio.buildProject Ant Task.. 3-3
About the studio.generateReport Ant Task .. 3-4

Automating Design Studio Builds.. 3-5
Installing Ant .. 3-7
Example: build.xml File... 3-7
Example: build-studio.xml File .. 3-9
Example: build.bat File for Windows... 3-13
Example: build.sh File for UNIX... 3-13
Example: build-ant.xml File for Executing in Ant ... 3-14

Using Oracle Linux or Solaris for Automated Builds .. 3-14
Installing Oracle Enterprise Pack for Eclipse Linux .. 3-14
Installing Eclipse for Solaris ... 3-15

Installing Additional Required Features .. 3-16
Configuring Proxy Settings .. 3-16

v

Preface

This guide contains information about administering Oracle Communications Design
Studio. This guide includes information about configuring deployment settings for test
environments, backing up and restoring Design Studio data, and automating builds.

Audience
This guide is intended for system administrators and other individuals who are
responsible for ensuring that Design Studio is operating in the manner required for
your business.

Related Documents
For more information, see the following documents in the Design Studio
documentation set:

■ Design Studio Installation Guide: Describes the requirements and procedures for
installing Design Studio.

■ Design Studio Concepts: Explains how to use Design Studio to manage and
configure data for use across Oracle Communications service fulfillment products.
This guide provides a conceptual understanding of Design Studio.

■ Design Studio Developer’s Guide: Provides an overview of Design Studio platform
tools, and information about working with design patterns, externally created
schemas, and source control. Finally, it provides information about deploying to
production environments.

■ Design Studio Security Guide: Provides an overview of security considerations,
information about performing a secure installation, and information about
implementing security measures in Design Studio.

■ Design Studio Help: Provides step-by-step instructions for tasks you perform in
Design Studio.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Document Revision History
The following table lists the revision history for this guide:

Version Date Description

E79091-01 February 2017 Initial release.

1

Configuring Deployment Settings 1-1

1Configuring Deployment Settings

This chapter provides information about configuring deployment settings. You
configure settings in Oracle WebLogic to ensure that individual Oracle
Communications Design Studio users can deploy to run-time environments, and to
enable SSL (secure sockets layer) on the WebLogic server. Additionally, you can define
settings that determine how the deployment messages appear in the Console view.

Setting Up Users for Design Studio Deployment
Before individual Design Studio users can deploy cartridges to run-time
environments, you must create users (if necessary) and assign them to the WebLogic
Cartridge_Management_WebService parent group. The run-time environment and
the type of cartridges individual Design Studio users deploy determine to which
additional parent groups users must be assigned.

To set up users for Design Studio deployment:

1. Log in to the WebLogic Administration Console.

2. Click Security Realms.

The Summary of Security Realms page appears.

3. In the Realms table, click myrealm.

4. In Settings for myrealm, click the Users and Groups tab.

5. On the Users tab, click New.

The Create a New User page appears.

6. In the Name field, enter the user name.

7. In the Description field, enter information about the user.

8. In the Password field, enter a password for the user.

9. Confirm the password, then click OK.

The user appears in the Users table.

10. In the Users table Name column, click the user.

The Settings page appears.

11. Click the Groups tab.

Note: The procedures described in this chapter assume that you are
using the WebLogic security realm. See the Oracle WebLogic Server
documentation for installation and configuration instructions.

Enabling SSL Connections

1-2 Design Studio System Administrator's Guide

12. In the Parent Groups area, select Cartridge_Management_WebService from the
Available column and move it to the Chosen column.

13. Click Save.

Enabling SSL Connections
Before individual Design Studio users deploy cartridges from Design Studio using an
SSL connection, you must enable SSL in the WebLogic server to ensure that the
Cartridge Management web service accepts the SSL connection. Additionally, you
must define the environment connection parameters using HTTPS and include the
correct SSL listening port.

The SSL keys must be made available to Design Studio and the keystore must include
keys for any environment connection using SSL. See the Design Studio Help for
information about defining SSL properties on the Studio Environment editor SSL tab.

To enable SSL connections:

1. Log in to the WebLogic Administration Console.

2. In the Environment area, click Servers.

The Summary of Servers page Configuration tab appears.

3. In the Servers table, click the appropriate server.

The Settings tabs appear.

4. On the Configuration tab General subtab, select SSL Listen Port Enabled.

5. In the SSL Listen Port field, enter the SSL port number.

6. Click Save.

7. Start Design Studio.

8. From the Studio menu, select Show Environment Perspective.

9. In the Environment tab, double-click an environment.

The environment opens in the Studio Environment editor.

10. Click the Connection tab.

11. In the Address field, enter the following:

https://Host:Port/cartridge/wsapi

where:

Host is the host name of the system and Port is the SSL listening port number.

12. Click the SSL tab.

13. In the Keystore field, enter the location of the target server keystore.

For example, in a test environment, you can enter the location for the
DemoTrust.jks keystore (from the server installation). Or, you can enter a replica.

Note: When configuring SSL for WebLogic Server, define the
minimum protocol version as Transport Layer Security (TLS) version
1.0. See Oracle Fusion Middleware Securing Oracle WebLogic Server for
more information about configuring SSL.

Configuring Deployment Messages

Configuring Deployment Settings 1-3

14. Click Save.

Changing the Keysize Value
If you are using a WebLogic Server DemoTrust keystore, and if the Java version
installed on the client machine is version 1.7u40 or later, you must change the RSA key
size from 1024 Mbs to 256 Mbs in the java.security file.

For more information about configuring identity and trust for WebLogic Server, see
"Configuring Identify and Trust" on the Oracle Help Center:

http://docs.oracle.com/cd/E23943_01/web.1111/e13707/identity_trust.htm

To change the key size value:

1. On the client machine, open the java.security file, located in the home directory:

JRE_Home/lib/security/java.security

2. Change the following line:

jdk.certpath.disabledAlgorithms=MD2, RSA keySize < 1024

To:

jdk.certpath.disabledAlgorithms=MD2, RSA keySize < 256

3. Save the file.

Configuring Deployment Messages
You use one of the available log levels to configure deployment message output for the
Console view and for log files.

To configure deployment messages:

1. Navigate to Oracle software delivery website:

https://edelivery.oracle.com

Note: If you are using a WebLogic Server DemoTrust keystore, and if
the Java version installed on the client machine is version 1.7u40 or
later, you must change the RSA key size. See "Changing the Keysize
Value" for more information.

For more information about configuring identity and trust for
WebLogic Server, see "Configuring Identify and Trust" on the Oracle
Help Center:

http://docs.oracle.com/cd/E23943_
01/web.1111/e13707/identity_trust.htm

Do not use the DemoTrust.jks keystore in a production environment.

Note: To configure deployment message output for the Console view
and for log files, you must have access to the Design Studio software
package, which is available on the Oracle software delivery website:

http://edelivery.oracle.com

Configuring Deployment Messages

1-4 Design Studio System Administrator's Guide

2. Download and extract the Oracle Communications Cartridge Management Tool
archive file.

3. Navigate to and open the cartridge_management_tools/lib folder.

4. Unjar the cartridge_management_ws.ear file.

5. Unjar the CartridgeManagementWSPortImpl.war file.

6. Open the log4j.xml file.

7. Change the log level for output to the Console view:

a. Search for the following line:

<appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">

b. Change the parameter threshold to ERROR, WARN, INFO, or DEBUG.

8. Change the log level for output to the WebLogic server log file:

a. Search for the following line:

<appender name="WEBLOGIC" class="org.apache.log4j.ConsoleAppender">

b. Change the parameter threshold to ERROR, WARN, INFO, or DEBUG.

9. Change the log level at the package level:

a. Search for the following line:

<category name="oracle.communications.sce.cartridgemanagement"> or
<category
name="com.oracle.xmlns.communications.sce.cartridgemanagement.ws">

b. Change the priority value to ERROR, WARN, INFO, or DEBUG.

10. Repackage the .war and .ear files.

11. Manually deploy the cartridge_management_ws.ear file to the WebLogic server.

Note: When changing the log level to DEBUG, the priority value
must be changed to DEBUG at the <root> level.

Note: When changing the log level to DEBUG, the priority value
must be changed to DEBUG at the <root> level.

Note: When changing the log level to DEBUG, the priority value
must be changed to DEBUG at the <root> level.

2

Backing Up and Restoring Design Studio Data 2-1

2Backing Up and Restoring Design Studio Data

This chapter contains information about backing up and restoring the Oracle
Communications Design Studio application, Design Studio projects, and Design
Studio archives. Additionally, it describes a typical backup and restore strategy.

Backing Up Design Studio
Backing up Design Studio requires the following:

■ Back up the Design Studio application. See "Backing-up the Design Studio
Application" for more information.

■ Back up Design Studio Projects. See "Backing Up Design Studio Projects" for more
information.

■ Back up Design Studio run-time archives. See "Backing Up Design Studio
Run-Time Archives" for more information.

Backing-up the Design Studio Application
To ensure that the Design Studio application is not lost, archive each individual
component as well as the assembled application environment.

Recommended frequency: Once per Design Studio release

Backup type: Manual

Recommended tooling: ZIP or TAR file

The application resources include any file required to run the Design Studio user
interface or command-line builds. Back up the following application components:

■ Oracle Enterprise for Eclipse package

■ Design Studio feature TAR files

■ Complete Design Studio environment

■ Design Studio build scripts and configuration files

■ Source control system application

Back up the complete Design Studio environment in ZIP or TAR format, and use the
same archive to distribute to individual Design Studio users. See Design Studio
Installation Guide for more information about distributing preconfigured installations.

Backing Up Design Studio

2-2 Design Studio System Administrator's Guide

Backing Up Design Studio Projects
Back up Design Studio project data files with every revision. Oracle recommends that
you back up project data files using source control. See "Using Source Control to Back
Up Design Studio Projects" for more information.

Recommended frequency: Daily

Backup type: Automated

Recommended tooling: Source control system

Backup the project folder, except for the following resources:

■ .metadata workspace folder and subfolders

■ Java bin folder and subfolders

■ cartridgeBuild folder and subfolders

■ doc folder and subfolders

■ Unsealed cartridges in the cartridgeBin folder

You can generate the content of a Design Studio project cartridgeBin folder (in
unsealed cartridges) at any time. However, Oracle recommends that you define a
production deployment archive strategy for run-time artifacts that is separate from
project backups. See Design Studio Installation Guide for more information.

Include the cartridgeBin folder (for sealed cartridges) in backups and source control
because run-time artifacts are not regenerated during sealed cartridge builds.

Using Source Control to Back Up Design Studio Projects
Oracle recommends that you use a source control system for backing up Design Studio
projects. Design Studio includes support for the Eclipse platform Team functions,
which enable Design Studio to interact with source control systems when managing
resource changes in your projects.

Oracle recommends that you automate source control system backup. Automating this
function to run daily ensures that a recent copy of the system is available at all times.
Automated backups used in conjunction with regular user check-ins minimize
potential data loss. Source control systems include complete sets of revisions for all
files and folders, so maintaining multiple versions (Oracle recommends one week of
versions) of the source control system backup is sufficient for redundancy.

Eclipse includes support for the Concurrent Versions System (CVS) programming
environment, and additional plug-ins are available for other source control systems.
For information about using Eclipse for CVS source control, see the discussion about
team programming with CVS in the Eclipse Workbench User Guide. For information
about what to source control in Design Studio, see Design Studio Developer’s Guide.

Backing Up Design Studio Run-Time Archives
Design Studio creates run-time archives whenever individual Design Studio users
build projects. Back up run-time archives to ensure repeatable production
deployments of release versions.

Recommended frequency: Every milestone cartridge build

Note: Do not place the following resources under source control.

Restoring Design Studio Data

Backing Up and Restoring Design Studio Data 2-3

Backup type: Manual or automated

Recommended tooling: None required

Oracle recommends that you back up the Design Studio run-time archives that are
used in the production deployment process. To back up the run-time archives, retain a
copy of the cartridgeBin folder content of each project following a full command-line
build. You can automate this backup by incorporating it into Design Studio
command-line build scripts.

See "Automating Builds" for more information.

Restoring Design Studio Data
Restoring Design Studio requires the following:

■ Determine which type of recovery to use. See "About Data Recovery Types" for
more information.

■ Select a general strategy for data recovery. See "About Data Recovery Strategies"
for more information.

■ Restore the Design Studio application. See "Restoring the Design Studio
Application" for more information.

■ Restore Design Studio projects. See "Restoring Design Studio Projects" for more
information.

■ Restore Design Studio run-time archives. See "Restoring Design Studio Run-Time
Archives" for more information.

About Data Recovery Types
There are two primary forms of data recovery, file media recovery and complete
recovery.

■ Use file media recovery when your individual Design Studio users must recover
from a lost file, a damaged file, or from accidental or unintended file changes. You
can perform file media recovery using source control or user-managed backup and
recovery.

The first step in performing file media recovery is to manually restore the file by
copying it from a backup. Once you restore a file from a backup, Oracle
recommends that you refresh the file in Design Studio to ensure that the
application is using the current file and not a cached version. If using a source
control system, you can recover the file using the source control system
synchronization functions.

■ Use complete recovery to recover from accidental or unintended file changes. You
can perform complete recovery whether you use source control or user-managed
backup and recovery.

Note: Design Studio produces run-time archives during the build
process. These archives are saved to the cartridgeBin folder of the
corresponding project. Design Studio produces run-time archives only
for projects that represent a deployable cartridge. Projects that do not
represent deployable cartridges (for example, Model projects) do not
produce run-time archives.

Restoring Design Studio Data

2-4 Design Studio System Administrator's Guide

About Data Recovery Strategies
Your approach to data recovery depends on whether the failure is media failure or
user error, and the nature of the specific failure.

Strategies for Responding to Media Failure
Returning a system to operation following media failure depends on your backup
strategy. In all cases, maintaining copies on multiple physical devices is critical.
Recovery from backups stored on the same physical device may be possible if media
failure is localized to a file or folder of the file system. However, the best protection
strategy ensures data is always available on multiple physical devices in different
physical locations.

Because it is often difficult to determine the files affected, a complete recovery is
generally the best strategy to recover from media failure.

Strategies for Responding to User Error
User error failures require one of the following responses:

■ Re-import the deleted file if a suitable copy or a previous version of the file exists.

■ Re-enter the lost data manually if a record of data exists.

■ Discard local changes and return the project to a previous state using source
control.

Your backup strategy determines the recovery options that are available to you. For
example, if you have no source control system, you have limited choices for restoring
content to a particular point-in-time. Perform file media recovery if you can determine
the files affected by the user error. Otherwise, perform a complete recovery.

Restoring the Design Studio Application
You must restore the Design Studio application to recover from a corrupted
installation. To restore the Design Studio application, you instruct individual Design
Studio users to do one of the following:

■ Obtain and unzip a new prepackaged installation (that you provide).

■ Reinstall the application using backups of any previously downloaded archives.

See Design Studio Installation Guide for more information.

Restoring Design Studio Projects
You can recover from a loss in a Design Studio project using file media recovery or
complete recovery. The method you use depends on whether you can identify the
affected Design Studio data files.

Restoring Projects Using File Media Recovery
If the affected files are few and easily identified, use file media recovery. When
restoring project data using file media recovery, you can instruct individual users to:

■ View local history for Design Studio resources.

The Eclipse Local History feature recovery is a form of file media recovery that
employs the use of the application's file history feature. The application can be
configured to maintain copies of previous versions of a file. The local history of
these files can be examined and used to replace or correct a current version. Source
control implementations also include file versions committed to the repository to

Restoring Design Studio Data

Backing Up and Restoring Design Studio Data 2-5

provide a complete file change history. For more information about the CVS
History view, see the Eclipse Workbench User Guide.

■ Replace versions with local history or source control revisions.

You can replace the current version of a resource with a revision from local history
or source control using the CVS History view. See the Eclipse Workbench User Guide
for more information about replacing a resource with local history.

■ Restore deleted files.

See the Eclipse Workbench User Guide for more information about restoring deleted
resources from local history.

Restoring Projects Using Complete Recovery
Prior to performing a complete recovery, make a local backup of the corrupted project
files. You may require this backup to recover content that was not present in the
backup and is not easily reproducible.

Perform a complete recovery in a clean file structure (and not in an existing project) to
ensure that old files are not included with the recovered content. If erroneous content
can be isolated to specific projects, then recover those projects in their entirety.
Otherwise, recover all projects in a new workspace.

When restoring project data using complete recovery, you can:

■ Restore project data from a source control repository.

The steps to recover a project from a source control repository vary by source
control provider. For information about recovering projects when using CVS, see
the Eclipse Workbench User Guide.

■ Restore project data from a local backup.

You can instruct individual users to restore Design Studio projects from a local
backup. This approach may be required if you are not using a source control
system or if the project requiring recovery has not been committed to source
control but a local backup has been made.

The local backup can be in archive format (ZIP or TAR) or can be a copy of the
project folder in a different location. See Design Studio Help for information about
importing projects.

Restoring Workspaces
To restore a workspace, you can instruct individual users to:

■ Delete the .metadata folder to clear an existing workspace. A new workspace is
created the next time Design Studio is launched.

■ Import workspace preferences to a new workspace if they were previously
exported for backup. See Design Studio Help for information about retaining
workspace preferences.

Restoring Source Control Systems
If the source control repository is compromised through user error or media failure, it
may be necessary to revert the repository to a recent automated daily source control
repository backup. Use the source control system documentation to recover the
backup of the source control repository.

Check that recent commits are present in the recovered source control repository. The
repository will not include any committed content since the backup was made.

Design Studio Backup Strategy: Example

2-6 Design Studio System Administrator's Guide

Recover recent revisions from local history and reapply them to the repository to bring
the repository up-to-date.

Restoring Design Studio Run-Time Archives
You can restore run-time archives by:

■ Reverting to a backup of the archive

■ Reproducing the archive

Reverting to a Run-Time Archive Backup
The backup of the run-time archive is an exact copy. To restore the lost file, copy the
cartridge archive from the backup repository to replace a missing or corrupted archive.

Reproducing a Run-Time Archive
When a backup of the archive is not available, you must rebuild the archive using the
Design Studio projects. Recover the project versions for the milestone build from the
source control repository to provide a point-in-time view of the related projects. This
point-in-time view can be identified by a repository tag indicating a branch, version, or
date. The choice of tag to restore to is dependent on the repository branch strategy.
Oracle recommends that the tag and branch strategy include version tagging for any
milestone build.

After projects needed to produce the archive are restored from the source control
repository, you can initiate a build to reproduce the cartridge archive.

See "Automating Builds" for more information.

Design Studio Backup Strategy: Example
Table 2–1 describes a typical backup strategy that you can use as an example when
setting up your own backup strategy.

Table 2–1 Typical Design Studio Backup Strategy

Resource Frequency Details

Design Studio
Components

Archive every Design
Studio release

Copy each installation
component to the backup file
storage.

ZIP the final installation and copy
to the backup file storage.

Source Control System
Components

Archive every Source
Control System release

Copy each installation
component to the backup file
storage.

Design Studio Data Files Back up continuously Back up every revision with local
history. Keep files for 28 days.

Track every committed data file
change using source control.

Command Line Build
Scripts

Back up continuously Manage build script
modifications using source
control.

Source Control Repository Archive Daily Automate backup of the source
control repository to the backup
file storage.

Maintain 7 recent versions.

Design Studio Backup Strategy: Example

Backing Up and Restoring Design Studio Data 2-7

Project Data Files Archive every project
milestone

Clean all projects.

Export projects to an archive.

Manually copy archive to the
backup file storage.

Design Studio Run-time
Archives

Archive every project
milestone

Tag the build in the source control
system. Branch if desired.

Manually copy build archive to
the backup file storage.

File Storage Back up continuously Automatically replicate file
storage using RAID.

Replicate storage to a physically
separate location.

Table 2–1 (Cont.) Typical Design Studio Backup Strategy

Resource Frequency Details

Design Studio Backup Strategy: Example

2-8 Design Studio System Administrator's Guide

3

Automating Builds 3-1

3Automating Builds

This chapter contains information on how to configure automated builds
(command-line builds) to script build processes of cartridge projects and cartridge
packs. Automated builds require no user interface interaction to build cartridge
projects.

To automate Oracle Communications Design Studio builds, you create a process that
builds a cartridge project and use a build automation system to schedule that process
to run.

About Automated Builds
You can automate build processes of cartridge projects so that official builds can be
made available to organizations such as testing or operations. You run automated
builds in the Design Studio development environment by using Apache Ant tasks. For
information about Apache Ant and to obtain downloads, see the Apache website at:

http://ant.apache.org/

You can customize the Ant build-studio.xml and build.xml scripts to automate the
builds. The build-studio.xml script defines the Ant targets that build the cartridge.
The build.xml script launches Design Studio and initiates the targets in the
build-studio.xml script.

Oracle recommends that you add a validation to the automated build scripts to verify
that successful builds produce the product archive file.

You create a new workspace in DesignStudio_Home/template/workspace and define the
Design Studio preferences based on your build environment. You must define the
preferences using a workspace template. Also, disable the Build Automatically
option, found under the Design Studio Project menu.

If the workspace setup varies from one build machine to another, you cannot check the
template workspace into source control. Oracle recommends that you check the
workspace template into a source control system and keep all build machines
consistent for all environment paths. If this is not possible, you must install the
workspace template to a location on the build machine and update the build
infrastructure settings accordingly.

About the Design Studio Development Directory Structure
In the Design Studio development environment, you can run automated builds using
Apache Ant tasks. Example 3–1 shows the standard recommended directory structure
for Design Studio development, with descriptions of each directory and file. The

About Automated Builds

3-2 Design Studio System Administrator's Guide

directory structure should be placed under source control (except for the build folder
and exclusions to project subdirectories).

Example 3–1 Standard Directory Structure for Design Studio Development

BASEDIR
 +- build-ant.xml (Ant script for launching a build from Ant)
 +- build.bat (Batch file for building on Windows)
 +- build.sh (Shell script for building on UNIX platforms)
 +- scripts (Subdirectory for build scripts)
 +- build.xml (Main script to launch Design Studio build)
 +- build.xml-studio (Solution specific Design Studio build script)
 +- template (Subdirectory for build templates)
 +- build (Subdirectory for build output created by build)
 +- reports (Subdirectory for target location of generated reports
 +- report-design (Subdirectory for report designs not installed in
 Design Studio)
 +- projects (Subdirectory for each Design Studio project)
 +- [PROJECT 1] (Design Studio projects needed for the build)
 +- [PROJECT 2]
 .
 .
 +- [PROJECT n]

To start the Design Studio build.xml script (located in the scripts directory), use the
build-ant.xml, the build.bat, or the build.sh file, based on your build environment.

You must edit these files to set paths that are specific to the build environment. In
addition, you must edit the build-studio.xml Ant script to define the solution-specific
Design Studio tasks needed to build the cartridge or solution.

When working with this directory structure:

■ The template folder is a clean workspace with environment-specific build
properties. This workspace is used exclusively for the automated build.

■ The build folder is created during the automated build. You do not create this
folder or add it to source control.

■ Add your Design Studio projects to the projects folder.

About Automated Reporting
You can integrate report generation into an automated build system if you want to
automatically generate reports that capture the data modeled in Design Studio. These
reports can include detailed information about an implemented solution. For example,
the reports can capture the name, type, description, and relationships of projects,
entities, and data elements. You can facilitate information sharing and data reviews by
sharing these reports among team members who may not have Design Studio installed
locally, or who require information about the data model in document form.

Design Studio includes a set of reference report designs that provide a foundational set
of capabilities. You can use these report designs as is or as a starting point for
customizing your own reports. For example, you can customize the report designs for
content, layout, or branding.

Note: Do not check Development workspaces into source control.
Developers should manage their own workspaces.

About Automated Builds

Automating Builds 3-3

You can also develop your own report designs. To develop your own report designs
for use in Design Studio, you must first install the Eclipse BIRT feature. See Design
Studio Installation Guide for more information about installing the BIRT feature. See
Design Studio Developer’s Guide for more information about developing custom reports
and packaging custom reports into features.

You use report generation in your automated build processes by including the
studio.generateReport Ant task in the build-studio.xml file. See "About the
studio.generateReport Ant Task" and Example 3–3, "Sample build-studio.xml File" for
more information.

About Ant Tasks
Ant tasks provide instructions for the build tasks. A script is required to start Eclipse
to run the Ant build script.

The following Ant tasks are bundled with Design Studio:

■ studio.importProject, which imports cartridge projects. See "About the
studio.importProject Ant Task" for more information.

■ studio.buildProject, which builds cartridges. See "About the studio.buildProject
Ant Task" for more information.

■ studio.generateReport, which integrates report generation into an automated
build system. See "About the studio.generateReport Ant Task" for more
information.

About the studio.importProject Ant Task
You import an Eclipse project into a workspace using the studio.importProject Ant
task.

The studio.importProject Ant task has one parameter, ProjectLocation, which
specifies the directory where the project description file is located. This Ant task does
not make a copy of the project, it only references the project in the existing location.

About the studio.buildProject Ant Task
You build a project from the workspace using the studio.buildProject Ant task. Using
studio.buildProject is the same as performing a full, clean build on a project through
the user interface. The build is successful if the cartridge project contains no error
markers and the cartridge archive is successfully created in the cartridgeBin folder.

The studio.buildProject Ant task has one parameter, ProjectName, which is the name
of the project to be built (it may also include a customer name or prefix). The project,
and all dependent projects, must be imported into the workspace prior to calling the
build task.

Note: The Design Studio Ant tasks run only in Design Studio. You
cannot run Design Studio Ant tasks as stand-alone Ant processes.

Note: When using the studio.importProject Ant task to import a
project into a workspace, Oracle recommends copying the project into
a build staging area. The example scripts in this chapter illustrate this
recommendation.

About Automated Builds

3-4 Design Studio System Administrator's Guide

About the studio.generateReport Ant Task
You use the studio.generateReport Ant task to integrate report generation into an
automated build system and to automatically generate reports that capture the data
modeled in Design Studio.

The studio.generateReport Ant task takes the following parameters:

■ id: Specifies the identifier of the report type when generating reports using a
design that is installed in the Design Studio feature. For example, the ID for the
Entity Summary report is:

 oracle.communications.studio.report.reference.entityListReport

You must define a value for either the id parameter or for the file parameter, but
not both. An error is generated if you define values for both parameters or if you
fail to define parameters for either parameter. See the Design Studio Developer’s
Guide for a list of all delivered report design IDs.

■ file: Specifies the location of the report design when generating reports using a
design that is saved to a file system (that is, report designs not installed in Design
Studio). For example, a customized report path may appear as:

C:\DesignStudio\report\sample.rptdesign

Report locations should not be environment-specific. Design your locations so that
the path can be located using a consistent mechanism on different machines. For
example, you might use an Ant property to locate the report design folder. Use a
path relative to the BASEDIR, rather than an absolute path reference.

■ format: Specifies the format type of the report output.

The following format types are supported (a report design may only support a
subset of the format types listed below):

– doc (Word document)

– docx (Word document XML)

– html (Web document)

– odp (OpenOffice presentation)

– ods (OpenOffice spread sheet)

– odt (OpenOffice Text)

– pdf (Portable Document Format)

– ppt (Power Point)

– pptx (Power Point XML)

– xls (Excel spread sheet)

– xlsx (Excel spread sheet XML)

– xml (Extensible Markup Language)

Note: Applications associated with output formats do not need to be
installed to generate a report. For example, Adobe Reader does not
need to be installed on a build system to generate a report in PDF
format. However, a corresponding viewer or editor must be installed
on a system to view or edit a generated report.

Automating Design Studio Builds

Automating Builds 3-5

■ content: Specifies how the scope of the generated report is organized. You define
the overall scope of the report content using the value that you define in this
parameter with the value that you define in the dependency parameter.

You can define this parameter with:

– project, which defines the scope of the report based on project containment,
without concern for entity relations. The root projects are defined by the
fileset.

– entity, which defines the scope of the report based on a traversal of entity
relations, starting from the entities defined in the fileset. The content
represents the starting point and extends across project boundaries based on
the dependency setting.

■ dependency: Specifies whether the generated report includes content from
dependent projects or sealed projects. You can define this parameter as:

– all: When generating report content by project, use this value to include in the
report all content in the selected projects as well as all content in all dependent
projects. When generating report content by entity, use this value to include in
the report all related entities in the selected entity project, and related entities
in all dependent projects.

– unsealed: When generating report content by project, use this value to include
in the report all content in the selected projects as well as all content in all
unsealed dependent projects. When generating report content by entity, use
this value to include in the report all related entities in the selected entity
project, and related entities in all unsealed dependent projects. When you use
this value, no content from sealed dependent projects is included in the report.

– none: When generating report content by project, use this value to include in
the report all content in the selected projects as well as all content in all
unsealed dependent projects. When generating report content by entity, use
this value to include in the report all related entities in the selected entity
project, and related entities in all unsealed dependent projects. When you use
this value, no content from sealed dependent projects is included in the report.

■ output: Specifies where the report is to be saved. For example, you can define this
parameter as ${report-dir}\MyProjectSummary.pdf.

■ fileSet: Specifies the Ant fileset that represents the project or entity root for the
collection of report content. All Ant fileset attributes and options are available
when defining the value of this element. See the Apache Ant Project website for
more information about the attributes and options available for use in this
element:

https://ant.apache.org/

Automating Design Studio Builds
You automate Design Studio builds to generate cartridge archives without manual
intervention by a user.

Note: You can include Ant script functions that perform actions after
reports are generated. For example, you can publish reports to a
shared location or to website; you can email the report to a
distribution list, and so forth. See Apache Ant Project website for more
information.

Automating Design Studio Builds

3-6 Design Studio System Administrator's Guide

To automate Design Studio builds:

1. Install Design Studio on a build machine.

See "Using Oracle Linux or Solaris for Automated Builds", or see "Installing Oracle
Enterprise Pack for Eclipse" in the Design Studio Installation Guide for more
information.

2. Install Ant.

See "Installing Ant" for more information.

3. Start Design Studio.

4. Disable the Eclipse Usage Data Collector feature by doing one of the following:

■ If the Usage Data Upload dialog box appears during Eclipse startup, select
Turn UDC feature off.

■ From the Windows menu, select Preferences, and then select Usage Data
Collector. In the Usage Data Collector area, deselect Enable Capture.

5. From the Project menu, disable the Build Automatically option.

6. Create a workspace template.

A workspace template includes build preferences that are specific to an
environment.

a. Create a new workspace in DesignStudio_Home/template/workspace.

b. Configure all applicable Oracle WebLogic Server, Java, and SDK home
directories.

– If individual users will be working with OSM projects, those users must
configure the Oracle WebLogic Server, Java, and SDK home directories.
For information about defining these OSM preferences in Design Studio,
see OSM Developer's Guide.

– If individual users will be creating custom web services or extending the
data model for UIM projects, those users must complete the required
preliminary setup. See UIM Web Services Developer's Guide and UIM
Developer’s Guide for more information.

After you create a workspace template, Design Studio adds a .metadata
directory to DesignStudio_Home/template/workspace.

7. Determine the location and name of the cartridges to build with an automated
process.

For example, a cartridge path and name can resemble the following:

DesignStudio_Home/build/workspace

8. Create a directory called DesignStudio_Home/scripts/.

9. In the DesignStudio_Home/scripts/ directory, create an Ant script called
build-studio.xml, which will define the targets that build the cartridge.

Oracle recommends using a copy of the sample build-studio.xml file provided.
See "Example: build-studio.xml File" for more information.

Note: Oracle recommends managing the cartridge project with a
source control system and basing builds on views of projects.

Automating Design Studio Builds

Automating Builds 3-7

10. Create a script to start Ant tasks inside Design Studio.

a. In the DesignStudio_Home/scripts/ directory, create an Ant script called
build.xml, which will start Design Studio and start the build targets defined in
build-studio.xml.

Oracle recommends using a copy of the sample build-studio.xml file
provided. See "Example: build.xml File" for more information.

b. In the DesignStudio_Home folder, create a batch file (or shell script) to run the
build.xml Ant script.

See "Example: build.bat File for Windows" or "Example: build.sh File for
UNIX" as a starting point for writing the batch file. If you are incorporating the
build into an existing Ant-based build framework, see "Example:
build-ant.xml File for Executing in Ant".

11. Run the batch file from a command line, from within the directory where the batch
file resides.

12. Integrate the execution of the batch file into the automated build system.

Installing Ant
Apache Ant is an open source software tool often used for automating application
build processes. Ant uses XML to define targets, which are executable commands that
perform a specific task. By default, the XML file is named build.xml.

To install Ant:

1. Navigate to the Apache website historical archive page:

http://archive.apache.org/dist/ant/binaries

2. Scroll down and click the apache-ant-1.9.2-bin.zip link.

The File Download window appears.

3. Click Save.

The Save As window appears.

4. Navigate to a local working directory and click Save.

5. Navigate to the local working directory where the downloaded ZIP file is saved.

6. Extract the contents of the ZIP file to a designated directory.

The apache-ant-1.9.2-bin directory is created by the extraction, and the contents of
the ZIP file are placed within this directory.

Example: build.xml File
The build.xml script starts Design Studio and starts the targets defined in the
build-studio.xml script.

Example 3–2 Sample build.xml File

<!-- Use this script to stage the build and launch the Design Studio build
process. There should be no need to modify this script. The tasks that run in
this script do not execute in Design Studio and do not have access to the Design

Note: Oracle recommends that you use Ant version 1.9.2.

Automating Design Studio Builds

3-8 Design Studio System Administrator's Guide

Studio build tasks.

To include environment specific content, modify the ${BUILD_SCRIPT} content. This
script expects a workspace template in the ${BUILD_DIR}/template/workspace
directory. The workspace should be a newly created empty workspace with suitable
workspace properties to run a build. Workspace properties that require
configuration may include installation specific paths (for example, a path to an
SDK).-->

<project default="build" basedir="..">
 <property environment="env"/>
 <property name="build-dir" value ="${BUILD_DIR}"/>
 <property name="staging-dir" value ="${build-dir}/build"/>
 <property name="template-dir" value ="${build-dir}/template"/>
 <property name="template-ws" value ="${template-dir}/workspace"/>
 <property name="build-ws" value ="${staging-dir}/workspace"/>
 <!-- The automation build log is used by OSM automation build scripts output
-->
 <property name="automation-build-log" value ="${build-ws}/automation.log"/>
 <!--
 Stage-Workspace cleans the build area and initializes the workspace with
the workspace template.
 -->
 <target name="stage-workspace">
 <echo message="Cleaning Staging Directory: ${staging-dir}"/>
 <delete dir="${staging-dir}" quiet="true"/>
 <mkdir dir="${staging-dir}"/>
 <echo message="Cleaning Build Workspace: ${staging-dir}"/>
 <delete dir="${build-ws}" quiet="true"/>
 <mkdir dir="${build-ws}"/>
 <echo message="Staging Build Workspace from Template: ${template-ws}"/>
 <copy todir="${build-ws}/.metadata">
 <fileset dir="${template-ws}/.metadata"/>
 </copy>
 </target>
 <pathconvert pathsep=" " property="EquinoxJarPath">
 <sort>
 <fileset dir="${env.ECLIPSE_HOME}/plugins">
 <include name="**/org.eclipse.equinox.launcher_*.jar"/>
 </fileset>
 </sort>
 </pathconvert>
 <macrodef name="eclipseAntRunner">
 <attribute name="antFile"/>
 <attribute name="target"/>
 <sequential>
 <exec executable="${env.JAVA_HOME}\jre\bin\java">
 <arg value="-XX:NewRatio=5"/>
 <arg value="-XX:+UseAdaptiveSizePolicy"/>
 <arg value="-XX:+UseParallelGC"/>
 <arg value="-XX:MaxPermSize=256M"/>
 <arg value="-Xms256m"/>
 <arg value="-Xmx1024m"/>
 <arg value=
"-Dstudio.provisioning.automation.logger=org.apache.tools.ant.DefaultLogger"/>
 <arg value=
"-Dstudio.provisioning.automation.log.file=${automation-build-log}"/>
 <arg value="-jar"/>
 <arg value="${EquinoxJarPath}"/>
 <arg value="-data"/>

Automating Design Studio Builds

Automating Builds 3-9

 <arg value="${build-ws}"/>
 <arg value="-application"/>
 <arg value="org.eclipse.ant.ui.antRunner"/>
 <arg value="-file"/>
 <arg value="@{antFile}"/>
 <arg value="@{target}"/>
 <arg value="-consoleLog"/>
 </exec>
 </sequential>
 </macrodef>
 <!--
 Build executes the BUILD_SCRIPT Ant script in Design Studio.

 The build script provided should include tasks for invoking the import
 and build of Design Studio projects. Tasks required to run
 in the Design Studio run-time must be included in the provided build
script.
 -->
 <target name="build" depends="stage-workspace">
 <eclipseAntRunner antFile="${BUILD_SCRIPT}" target="all"/>
 </target>
</project>

Example: build-studio.xml File
The build-studio.xml script is started by the build.xml script, and it runs inside of
Design Studio.

The build-studio.xml script stages, imports, and builds cartridges, and generates
reports:

■ Stage: The script copies required projects from the project directory into a staging
area.

■ Import: The script loads each staged project into the workspace.

■ Build: The script initiates the build procedure to generate the cartridge archive file.

■ Report: The script initiates report generation to produce reports in a desired
format.

Before running this script, make the following changes:

■ Update the project-dir property to point to the Design Studio project directory.
Projects are copied from this location during staging of the build.

■ Update the build-dir property to point to the directory to contain the build. When
pointing to an existing directory, ensure that it is empty (the contents may be
deleted as part of the build process).

Note: See Design Studio Help for information about troubleshooting
and resolving memory and performance issues.

Important: Do not use the project-dir property for the build-dir
property. Files in the build directory are deleted and recreated from
the project-dir property during the build process.

Oracle recommends defining the project-dir and build-dir properties
using ${basedir}. This method ensures that you are using the directory
of the active build. Do not use relative paths.

Automating Design Studio Builds

3-10 Design Studio System Administrator's Guide

■ Add a call to the stage target for each project required for the build. Include an
entry for each dependent project.

■ Add a call to the import target for each of the staged projects. Import dependent
projects first.

■ Update the build target to specify the cartridge project name to be built as the
project.name property.

■ Add calls to the generateReportById target and to the generateReportByFile
target to define all required reporting parameter values. Example 3–3 includes
examples of parameter values. You must update these values to reflect the values
defined in your environment. See the Design Studio Developer’s Guide if you require
the report IDs for delivered Design Studio reports.

■ Edit the generateReportById target and the generateReportByFile target to meet
specific business needs. For example, you might edit these calls to log different
information or to change the fileset structure.

■ Add Ant tasks for additional post-generation reporting actions. For example, you
might add Ant tasks for moving files, deploying files to a web server, bundling
files into an archive file, and so forth.

Example 3–3 Sample build-studio.xml File

<project name="studioBuild" basedir="." default="all">
 <!-- Configure the project-dir and build-dir properties based on the build
environment -->
 <property name="project-dir" value ="${basedir}\projects"/>
 <property name="build-dir" value ="${basedir}\build"/>
 <property name="report-dir" value ="${basedir}\report"/>
 <property name="staging-dir" value ="${build-dir}/build"/>
 <property name="staging-projects" value ="${staging-dir}/prj"/>
 <property name="report-design-dir" value="${basedir}\report-design"/>
 <target name="stageProject">
 <delete dir="${staging-projects}/${project.name}" quiet="true"/>
 <copy todir="${staging-projects}/${project.name}">
 <fileset dir="${project.source}/${project.name}"/>
 </copy>
 </target>
 <target name="stage">
 <!-- Add a call to stage-project for each project required to produce
 the build. When using a source control system, the projects will
 be located in the view. -->
 <antcall target="stageProject">
 <param name="project.name" value="ModelProject1"/>
 <param name="project.source" value="${project-dir}"/>
 </antcall>
 <antcall target="stageProject">
 <param name="project.name" value="ModelProject2"/>
 <param name="project.source" value="${project-dir}"/>
 </antcall>
 <antcall target="stageProject">
 <param name="project.name" value="ModelProject3"/>
 <param name="project.source" value="${project-dir}"/>
 </antcall>
 </target>
 <target name="import">
 <!-- Add importProject calls for each project required to produce
 the build -->
 <antcall target="importProject">

Automating Design Studio Builds

Automating Builds 3-11

 <param name="project.name" value="ModelProject1"/>
 </antcall>
 <antcall target="importProject">
 <param name="project.name" value="ModelProject2"/>
 </antcall>
 <antcall target="importProject">
 <param name="project.name" value="ModelProject3"/>
 </antcall>
 </target>
 <target name="build">
 <!-- Add buildProject calls to specify the cartridge project names to
 be built as the project.name property. -->
 <antcall target="buildProject">
 <param name="project.name" value="ModelProject1"/>
 </antcall>
 <antcall target="buildProject">
 <param name="project.name" value="ModelProject2"/>
 </antcall>
 <antcall target="buildProject">
 <param name="project.name" value="ModelProject3"/>
 </antcall>
 </target>
 <target name="report">
 <!-- Add generateReport calls to specify the required parameter values.
 The following antcalls are examples. The parameter values listed in
 the generateReportById and generateReportByFile targets must be
 changed to reflect your environment. See the Design Studio
 Developer’s Guide if you require the report IDs for
 delivered Design Studio reports.-->
 <antcall target="generateReportById">
 <param name="report.id" value=
 "oracle.communications.studio.report.reference.compEntityStdDetailReport"/>
 <param name="report.format" value="pdf"/>
 <param name="report.dependency" value="all"/>
 <param name="report.output" value="${report-dir}\CompEntityReport.pdf"/>
 <param name="report.content" value="project"/>
 <param name="report.fileSetDir" value="${staging-projects}"/>
 <param name="report.fileSet" value="**/*.ddCartridge"/>
 </antcall>
 <antcall target="generateReportById">
 <param name="report.id" value=
 "oracle.communications.studio.report.reference.projectSummaryReport"/>
 <param name="report.format" value="html"/>
 <param name="report.dependency" value="all"/>
 <param name="report.output" value="${report-dir}\ProjectSummary1.html"/>
 <param name="report.content" value="project"/>
 <param name="report.fileSetDir" value="${staging-projects}"/>
 <param name="report.fileSet" value="**/*.ddCartridge"/>
 </antcall>
 <antcall target="generateReportById">
 <param name="report.id" value=
 "oracle.communications.studio.report.reference.projectSummaryReport"/>
 <param name="report.format" value="pdf"/>
 <param name="report.dependency" value="all"/>
 <param name="report.output" value="${report-dir}\ProjectSummary1.pdf"/>
 <param name="report.content" value="project"/>
 <param name="report.fileSetDir" value="${staging-projects}"/>
 <param name="report.fileSet" value="**/*.ddCartridge"/>
 </antcall>
 <antcall target="generateReportByFile">

Automating Design Studio Builds

3-12 Design Studio System Administrator's Guide

 <param name="report.file" value=
 "${report-design-dir}\MyProjectSumary.rptdesign"
 <param name="report.format" value="pdf"/>
 <param name="report.dependency" value="all"/>
 <param name="report.output" value="${report-dir}\MyProjectSummary.pdf"/>
 <param name="report.content" value="entity"/>
 <param name="report.fileSetDir" value="${staging-projects}"/>
 <param name="report.fileSet" value="**/*.ddCartridge"/>
 </antcall
</target>
<target name="importProject">
 <echo message="Importing project: ${staging-projects}/${project.name}"/>
 <studio.importProject projectLocation="${staging-projects}/${project.name}"/>
</target>
<target name="buildProject">
 <echo message="Building project: ${staging-projects}/${project.name}"/>
 <studio.buildProject projectName="${project.name}"/>
</target>
<target name="generateReportByFile">
 <echo message="Generating Report: ${report.output}"/>
 <echo message="Report file: ${report.file}"/>
 <echo message="Report format: ${report.format}"/>
 <echo message="Report dependency: ${report.dependency}"/>
 <echo message="Report output: ${report.output}"/>
 <echo message="Report content: ${report.content}"/>
 <echo message="Report file set directory: ${report.fileSetDir}"/>
 <echo message="Report file set: ${report.fileSet}"/>
 <echo message="Report fileset: "/>
 <fileset id="fileset" dir="${report.fileSetDir}" includes="${report.fileSet}"/>
 <pathconvert pathsep="${line.separator} " property="fileSet" refid="fileset"/>
 <echo> ${fileSet}</echo>

 <studio.generateReport
 file="${report.file}"
 format="${report.format}"
 dependency="${report.dependency}"
 output="${report.output}"
 content="${report.content}">
 <fileset dir="${report.fileSetDir}" includes="${report.fileSet}"/>
 </studio.generateReport>

</target>
<target name="generateReportById">
 <echo message="Generating Report: ${report.output}"/>
 <echo message="Report id: ${report.id}"/>
 <echo message="Report format: ${report.format}"/>
 <echo message="Report dependency: ${report.dependency}"/>
 <echo message="Report output: ${report.output}"/>
 <echo message="Report content: ${report.content}"/>
 <echo message="Report file set directory: ${report.fileSetDir}"/>
 <echo message="Report file set: ${report.fileSet}"/>
 <echo message="Report fileset: "/>
 <fileset id="fileset" dir="${report.fileSetDir}" includes="${report.fileSet}"/>
 <pathconvert pathsep="${line.separator} " property="fileSet" refid="fileset"/>
 <echo> ${fileSet}</echo>

 <studio.generateReport
 id="${report.id}"
 format="${report.format}"
 dependency="${report.dependency}"

Automating Design Studio Builds

Automating Builds 3-13

 output="${report.output}"
 content="${report.content}">
 <fileset dir="${report.fileSetDir}" includes="${report.fileSet}"/>
 </studio.generateReport>

</target>
 <target name="all" depends ="stage, import, build, report"/>
</project>

Example: build.bat File for Windows
Use Example 3–4 as a starting point for writing the Windows batch file.

Example 3–4 build.bat for Windows

echo off
setlocal
if "%ECLIPSE_HOME%" == "" set ECLIPSE_HOME=C:\myPath\oepe-12.1.1.0
if "%JAVA_HOME%" == "" set JAVA_HOME=C:\myPath\jdk1.8.0_40-64
if "%ANT_HOME%" == "" set ANT_HOME=C:\myPath\apache-ant_1.9.2
REM - The BUILD_SCRIPT contains the build specific Ant tasks which run during
REM - the Design Studio build. Update this file as needed.
set BUILD_SCRIPT=scripts\build-studio.xml
echo on
%ANT_HOME%/bin/ant -file scripts\build.xml -DBUILD_SCRIPT=%BUILD_SCRIPT%

Example: build.sh File for UNIX
Use Example 3–5 as a starting point for writing the UNIX batch file.

Run the batch file from a command line from within the directory where the batch file
is located. You should integrate the execution of the batch file into your automated
build system.

Example 3–5 build.sh for UNIX

#!/bin/ksh
export JAVA_HOME=/myPath/jdk1.8.0_40-64
export ECLIPSE_HOME=/myPath/oepe-12.1.2.1.1
ANT_HOME=/myPath/apache-ant-1.9.2
The BUILD_SCRIPT contains the build specific Ant tasks which run during the
Design Studio build. Update the content of this file as needed.
BUILD_SCRIPT=scripts/build-studio.xml
$ANT_HOME/bin/ant -file scripts/build.xml -DBUILD_SCRIPT=$BUILD_SCRIPT

Note: Modify the JAVA_HOME, ECLIPSE_HOME, and ANT_
HOME variables, based on the environment.

Note: Modify the JAVA_HOME, ECLIPSE_HOME, and ANT_
HOME variables, based on the environment.

Design Studio automated builds support Oracle Linux 64-bit and
Solaris 64-bit. The UNIX system must support graphical user
interfaces.

Using Oracle Linux or Solaris for Automated Builds

3-14 Design Studio System Administrator's Guide

Example: build-ant.xml File for Executing in Ant
Use the build-ant.xml sample file in Example 3–6 as a reference for invoking the
build.xml Ant script when launching the file from an existing Ant script. Use this
sample if you intend to incorporate your automated build into an existing Ant-based
build framework.

Example 3–6 build-ant.xml

<?xml version="1.0"?>
<project default="studio-build" basedir=".">
 <property environment="env"/>
 <target name="studio-build">
 <!-- Check if ECLIPSE_HOME and JAVA_HOME environment properties
 are set -->
 <fail unless="env.ECLIPSE_HOME">
 ECLIPSE_HOME environment property must be set.</fail>
 <fail unless="env.JAVA_HOME">
 JAVA_HOME environment property must be set.</fail>
 <ant antfile="scripts/build.xml">
 <property name="BUILD_SCRIPT" value ="scripts/build-studio.xml"/>
 </ant>
 </target>
</project>

Using Oracle Linux or Solaris for Automated Builds
Design Studio supports Oracle Linux 64-bit and Solaris 64-bit for automated build
capability only. If you are using Linux or Solaris for automating builds, you must
configure proxy settings. Additionally, you must install the following:

■ If you are using a Linux 64-bit system for automated builds, you must install the
Eclipse 32-bit or the Eclipse 64-bit platform for Linux, as well as Java 32-bit or
64-bit support, as appropriate.

■ If you are using a Solaris 64-bit system for automated builds, you must first install
the Eclipse 32-bit platform for Solaris, as well as Java 32-bit support.

When automating builds using Oracle Linux and Solaris, see the following topics:

■ Installing Oracle Enterprise Pack for Eclipse Linux

■ Installing Eclipse for Solaris

■ Configuring Proxy Settings

Installing Oracle Enterprise Pack for Eclipse Linux
To download and install Oracle Enterprise Pack for Eclipse Linux (64-bit):

1. Install and configure Oracle Enterprise Pack for Eclipse.

See Design Studio Installation Guide for more information.

Note: Oracle recommends using Windows for automated builds.

Note: After accepting the license agreement, click the Linux (64-bit)
link.

Using Oracle Linux or Solaris for Automated Builds

Automating Builds 3-15

2. If using a proxy server, configure the proxy settings.

See "Configuring Proxy Settings" for more information.

Installing Eclipse for Solaris
To download and install Eclipse for Solaris:

1. Navigate to the Eclipse download website:

http://download.eclipse.org/eclipse/downloads/

2. Click the link for the latest release.

The Eclipse Release Build page appears.

3. Click the Eclipse SDK link for the appropriate platform.

The Eclipse Downloads - mirror selection page appears.

4. Click a mirror site.

The File Download dialog box appears.

5. Click Save, and then specify the location to save the ZIP file.

6. Click Save again, which begins the download process.

7. When the download completes, unzip the file and create a shortcut on the desktop
to the eclipse.exe file.

For example, unzip the file into a new folder called DesignStudio.

8. Do one of the following:

■ Install the Java Runtime Environment.

Obtain the Java Runtime Environment from the Oracle website at:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

■ Locate an existing Java Runtime Environment installation.

Java Runtime Environment typically resides in the Program Files/Java folder.

9. Copy the JRE folder (for example, jre1.8.0_71) into the Eclipse folder at the same
location as the eclipse.exe file.

10. Rename the JRE folder to jre.

11. Configure the startup properties in the eclipse.ini file located in the Eclipse folder.

See Design Studio Installation Guide for more information.

12. Open Eclipse.

Note: Site layout, content, and procedures are subject to change
based on updates by Eclipse.org administrators.

Note: If Eclipse does not locate the JRE folder in the directory in
which Eclipse was installed, it attempts to find the JRE using the
JAVA_HOME windows environment variable. See Design Studio
Installation Guide for more information about required JDK versions.

Using Oracle Linux or Solaris for Automated Builds

3-16 Design Studio System Administrator's Guide

13. If using a proxy server, configure the proxy settings.

See "Configuring Proxy Settings" for more information.

14. Install additional required Eclipse features.

See "Installing Additional Required Features" for more information.

Installing Additional Required Features
To use Solaris to run automated builds for Design Studio, you must install additional
required Eclipse features.

To install additional required features:

1. Start Design Studio.

2. From the Design Studio Help menu, select Install New Software.

The Available Software dialog box appears.

3. In the Work with field, select the http://download.eclipse.org/releases/version
option, where version is the name of the Eclipse version that you have installed.

A list of folders and features appears.

4. Expand the Modeling folder and select the following features:

■ EMF - Eclipse Modeling Framework SDK

■ Graphical Editing Framework Zest Visualization Toolkit SDK

■ XSD - XML Schema Definition SDK

5. Expand the Web, XML, Java EE and OSGi Enterprise Development folder and
select the following features:

■ Eclipse XML Editors and Tools

■ Eclipse XSL Developer Tools

■ CXF Web services

6. Deselect Contact all update sites during install to find required software.

7. Click Next.

The Install Details dialog box appears.

8. Review the installation details.

9. Click Next.

The Review Licenses dialog box appears.

10. Accept the license agreement.

11. Click Finish.

12. When prompted, click Yes to restart Eclipse.

Configuring Proxy Settings
If you are using a proxy server and intend to run automated builds using Oracle Linux
or Solaris, you must configure the proxy server in Eclipse.

To configure the proxy server in Eclipse:

1. If you do not know the proxy address and port of the intranet proxy, do one of the
following:

Using Oracle Linux or Solaris for Automated Builds

Automating Builds 3-17

■ If the proxy is statically configured, obtain the proxy address and port from
the Internet browser LAN Connection settings. See your browser Help for
information about obtaining the values in the Proxy Server Address and Port
fields. Contact your network administrator if you can not access the Internet
browser settings.

■ If the proxy is not statically configured, acquire the settings from the
automatic configuration script. If the proxy is not statically configured, no
specific proxy address and port number entries are defined in the connection
settings. Open the DAT file in a text editor to obtain the proxy address and
port number. See your browser Help for information about locating the DAT
file.

2. Start Eclipse.

3. From the Window menu, select Preferences, then select General, and then select
Network Connections.

4. In the Active Provider field, select Manual.

5. In the Proxy Entries table, double-click the HTTP schema entry.

The Edit Proxy Entry dialog box appears.

6. In the Host field, enter a host name.

7. In the Proxy field, enter the proxy number.

8. (Optional) To require user authentication, select Requires Authentication, then
enter the user name and password required for access.

9. (Optional) In the Proxy Entries table, double-click the HTTPS schema entry.

In the Edit Proxy Entry dialog box, enter the proxy name, port number, and user
authentication information.

10. Click OK.

11. Click OK again, which closes the Preferences dialog box.

Using Oracle Linux or Solaris for Automated Builds

3-18 Design Studio System Administrator's Guide

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility
	Document Revision History

	1 Configuring Deployment Settings
	Setting Up Users for Design Studio Deployment
	Enabling SSL Connections
	Changing the Keysize Value

	Configuring Deployment Messages

	2 Backing Up and Restoring Design Studio Data
	Backing Up Design Studio
	Backing-up the Design Studio Application
	Backing Up Design Studio Projects
	Using Source Control to Back Up Design Studio Projects

	Backing Up Design Studio Run-Time Archives

	Restoring Design Studio Data
	About Data Recovery Types
	About Data Recovery Strategies
	Restoring the Design Studio Application
	Restoring Design Studio Projects
	Restoring Projects Using File Media Recovery
	Restoring Projects Using Complete Recovery
	Restoring Workspaces
	Restoring Source Control Systems

	Restoring Design Studio Run-Time Archives

	Design Studio Backup Strategy: Example

	3 Automating Builds
	About Automated Builds
	About the Design Studio Development Directory Structure
	About Automated Reporting
	About Ant Tasks
	About the studio.importProject Ant Task
	About the studio.buildProject Ant Task
	About the studio.generateReport Ant Task

	Automating Design Studio Builds
	Installing Ant
	Example: build.xml File
	Example: build-studio.xml File
	Example: build.bat File for Windows
	Example: build.sh File for UNIX
	Example: build-ant.xml File for Executing in Ant

	Using Oracle Linux or Solaris for Automated Builds
	Installing Oracle Enterprise Pack for Eclipse Linux
	Installing Eclipse for Solaris
	Installing Additional Required Features

	Configuring Proxy Settings

