Oracle® Communications Order and Service
Management

Developer's Guide
Release 7.3.5
E79208-01

April 2017

ORACLE

Oracle Communications Order and Service Management Developer's Guide, Release 7.3.5
E79208-01
Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

Preface ... xiii
AUAIEIICE ..o Xiii
Accessing Oracle Communications Documentation.............cooeeeeneiiiieenincecce e Xiv
Documentation ACCeSSIDILILYccciuiiiiiiiiiiicicccee e Xiv
Document Revision HiSTOIYoociiiiiiiiiiiiiiiii s Xiv

1 Introduction

Planning and DeSigning ..o 1-1
Customizing OSM..........ccoiiiiiiiiii e 1-1
External INterfaces.............cccoviiiiiiiiiiiiii e 1-1
OSM WED SEIVICES ...ttt 1-1
OSM AULOMALION ...ttt 1-1
OSM Security Callbackcooviiiiriririiiiiiiicrre e 1-2
The OSM XML APL ..o 1-2
USEE INEEIFACES ...ttt st 1-2
BERAVIOTS ...t 1-2
Custom Menu Items and ACtIONScccceueiriiiiiiiiiiiii s 1-2
Localizing OSMccccuiiiiiiiiiiiiiiicit s 1-2
Logging With ODL.........cocoiiiiii e 1-3
Tools for Customizing OSMccccooiiiiiiiiiiiiiiiiii s 1-3
DesigN SEUAIO......cucviiiiiiciciic s 1-3
APACNE ANt . 1-3
The XML Import/EXport Application ..o 1-3
About XPath and XQUETY ..o 1-3

2 Using OSM Order Management Web Services

ADOULt WeD SeIVICES..........coiiiiiiiiiii s 2-1
About Order Management Web Services............cccocoociiniiiiiiniiiiiicc s 2-1
Request Validationscouoiiriiiiiiic e 2-2
Sending OSM Web Service Requests to a WebLogic Server Cluster............cccccccocieiniiinnnnss 2-2
Accessing the WSDL FALes.........oouiiiiiiin e 2-2
Using the SOAP Standard Message Format............cooooueiiiiiiniiiiciccc e, 2-3
Message HEAdeTcccouviiiiiiiiiiiiiiiiiiiiiccer s 2-3
MeSSagE BOAY ...t e 2-3

White Space in Message TeXtcccoiiiiiiiiiiic s 2-4

Testing OSM Web Servicesccoiriiiiiiiciiicci 2-4

Order States and TransSitions ... 2-5
WED SerVICES SAMMPILE ..o 2-5
About Order Management Web Service Operationsc.ccoovvvivnninininnnne, 2-5
Parameters.........ccoiiiiiiiiic s 2-5
Fault Types and OSM Web Service Client Error Processingccococccecceccceccienennnnes 2-5
Request and Response EXamples..........cooviiiiiiiiiiniiiiiii s, 2-6
Web Service Operations Used for Order Managementccccovvvnnnninnnnnnnnnnne, 2-7
CreateOrderBySpecifiCation ... 2-8
CreateOIdercooviviiiiiiccce s 2-9
FINAOTAET ... 2-10
GEEOTAET ...t 2-11
UPAAteOrdercooveiiiiiiiiiiiicc s 2-13
SUSPENAOTAET ...t 2-16
ReSUMEOTAEToviiiiiiii e 2-17
CANCEIOTAEToviiii s 2-18
ADOTTOIAET ...t 2-19
FailOIET ... 2-20
RESOIVEFAIIULEovviiiiiiicic s 2-21
REtIYOTAET ..o 2-22
Web Service Operations Used for Problem Order Diagnosiscccccoeiiviiiiinniniininnnee. 2-23
GetOrderProcesSHISTOIYc.oiiuiuiieiiiiciei e 2-24
GetOrderCompensationsoccueueiiicieieiicie et 2-25
GetCompensatioNPIan.........ccccciiiiiiiiiee s 2-26
Navigating WSDL and XSD Filescccccoviiiniiiiiiiiiiiicic s 2-27
Order Management WSDL File..........ccoooiiiii e 2-28
Order Management XSD Filecccccociiiiiiiiiiiiiiccccecceeeeee et 2-29
Order Management Request and Response Examples ..., 2-34
CreateOrderBySpecification Examples............cooiiiiiiiiiiiice 2-35
GetOrder EXamPLES........c.cciuiiiiiiiiiiccceeceeeeiee ettt 2-38
UpdateOrder EXamples. ... 2-46
SuspendOrder EXamplesccccociiiiiiiiiiiniiiiiiiiiiic s 2-50
ResumeOrder EXamples........cccciuiiiiiiiiiicceeeceeeeece e 2-51
CancelOrder EXamples.........cooiiiiiiiiiiiiiiiiiiccs s 2-52
RetryOrder and ResolveFailure Examples...........ccccccoiiiiiiiiiiieeccceeeeeees 2-53
GetOrderProcessHistory EXamples.........cccciiiiiiiiiiiiiniiiccrcceeeeeeeeeeeeeseee e 2-55
GetOrderCompensations EXamples.........c.ccviiiiiiiiiiiiiiieeenns 2-65
GetCompensationPlan EXamples ... 2-66

3 Using the OSM XML API

About Using the XIML AP ..ottt 3-1
ATUAIEIICE. ...ttt ettt ettt et e st et e st s se e s e b e b essesbessessassessessaseasessessessessessessessessassaseasessensens 3-2
About Using the OrderID, View, and OrderHistID...........c.cccocevviiiiiiiiiiiiniiiine, 3-2

About Accessing the XIML AP ..ottt 3-3
LOGIN/LOZOUL ...ttt 3-3
Message FOImMAtS..........coovoviiiiiiicc s 3-3

Input XML Message FOrmat...........cccoeiiiiiiiiiiiiiicccc s 3-4

Output XML Message FOormat............oooeueiiiiiiiiicic e 3-4

D 2N L<WA BTs a L=l a0) 0 o 4 L= 1 RO RRTR 3-5
White Space in MeSsage TeXt.......ccciiiiiiiiiiiccccccieeeeecee e 3-5
AUthentiCatioN ..o 3-5
Reserved MNEeMONICS.cccciiiiiiiiiiiiii s 3-5
XML API FUNCHONAIILYooviviiiiiiii e 3-6
AddOTderTIread ... 3-6
ACKNOWIEAGMENTS ... 3-8
AcknowledgeNOtIfiCationc.cciiiiiiiiiiccccceece e 3-9
ASSIGNOTART ...t 3-10
CaANCEIOTAETviiiiiii s 3-11
COMPLELEOTAET ... s 3-13
COPYOTAET .. 3-14
CreateOrdercciviiiiiiiii s 3-15
FallOUETASK ... 3-17
FallOTder ..o s 3-18
GetNextOrderAtTask ... 3-19
GEEOTET ... 3-22
GetOTAETALTASK ...ooviiiiiiiic s 3-31
GetOrderDataHistoryccueiiiiiie 3-35
GetOrderProCeSSHISIOTYcoovviiiiiiiiciicicicc s 3-37
GetOrderStateHIStOTYovuiveiiicicie 3-39
GetTasKStatUSES........couiviiiiiiiiii s 3-40
GEEUSETINTIO ... s 3-41
LiStEXCEPHIONS ..evivtctce ettt 3-42
ListStateSNSIAtUSEScovovivieiiiictccce s 3-43
LASEVIEWS ..t 3-44
MOdIfYREMATK. ..ottt 3-46
INOHHICALIONS ... s 3-47
OrderTYPESNSOUICEScoovrviiieiriiiieicieieeeteeeee ettt 3-50
OrderViewTemplate ... 3-51
QUETY e 3-55
RECEIVEOIAET ...ttt 3-60
RESOIVEFAIIULEovvviiiiiiii s 3-60
RESUMEOTAET ...ttt ettt st s 3-61
REEIYTASK. ...ttt 3-62
SEtEXCEPLION.....vviiiiicictctte s 3-63
SUSPENAOTIAET ..ot s 3-63
TaSKDESCIIPHON.vviiiiciciiicctce ettt 3-65
UPAAteOrder.......coovoviiiiiiiiciciiicc s 3-66
TWOTKIISE ..ttt et st 3-70
Warning and Error Code Descriptions.............ccccooiiiiiiiiniiiiicces 3-74
Document Type Definitions (DTD)ccccccoviviiiiiiiiiiiiiiic s 3-76
AdAOTIdErTRIEAdveviiiiciiiicicceecc ettt st 3-76
ASSIGNOTAET ...t 3-76
COMPLEtEOIder......oviiiiiiiicicc s 3-77
COPYOIAET ...t 3-77

BITOT o 3-78
GEEOTAET ...t 3-78
GetNextOrderAtTask ... 3-79
GetOrderDataHistory ..o 3-80
GetOrderProcesSHISIOTYc.ouiviuiiiiiiiiiiiiciciiccceeee e 3-80
GetOrderStateHIStOTYcvcuiuiiicici 3-81
GELUSEIINIO ... 3-82
LiStEXCEPHONScuiiiiiiiicicc s 3-82
ListStateSNSLAtUSEScvoviviviiiiiiciciitc s 3-82
LISEVIEWS 1.t 3-83
MOAIEFREMATK.oiiiiiiiiiiciccctce ettt 3-83
OrderTyPeNSOUICE.......coovierieieiiiciete ettt 3-84
OrderViewTemplate ..o 3-84
QUETY e s 3-85
ReSUMEOTAET ..ottt s 3-86
SEtEXCOPHION ...ttt s 3-87
SUSPENAOIAET ..o 3-87
TaSKDESCIIPHION.....cviviiiiiiiititicicice s 3-87
UPAateOrdeT ... 3-88
WAAITHIIE .. 3-88
WOTKIISE ¢t s 3-89

4 Using OSM Security Callback

About Security Callbackccccciiiiiiiiiiiiii e 4-1
About the Security Callback Interface.............ccocovvviiiiiiiiiiiiii 4-1
EXCEPHIONS ..ot 4-3
Security Callback Sample.............cccooiiiiiiiii s 4-3
Configuring Security CallDacksccoovoiiuiiiiiciciecie e 4-5

5 Using Custom Menu Iltems and Actions

vi

About Custom Menu Items and Actionsccccooviiiiiiiii e 5-1
About the File Name and Location ..o 5-1
About the Model Definition ..o 5-1
ACtioN DEfINItIONviuiiiiciciicc ettt et 5-2
OrderContext and OTAETrS.........ccccccucuiiiiiiiiiiiriiiceeececeeee e 5-2
Calling the XML APL ... 5-3
Sample Action Implementations.............cccciiiiiiiiiiiiii e 5-3
Menu Item Definitioncccccuiiiiiiiiiiiicceee e 5-3
Sample Menu Item Definitionccccciiiiiiiiiiiiiiiicc 5-4
Setting Up the ENVITONMENtccccocoiiiiiiiiiiiic s 5-4
Setting Up the oms-config. Xml File ... 5-5
File System Path Environment Configuration Methodccooooiiiiiiiii 5-6
XML Catalog (Static Relative Location) Environment Configuration Method......................... 5-6
XML Catalog (rewriteURI) Environment Configuration Methodcccocovvvininnnnnnence. 5-6
Verifying the Changes ... 5-7

6 Using Automation

About Automations and the Automation Framework ... 6-1
About Sender and Automator Automation TYPes........ccococeuiiiiiiiciieiiiceecceeeeeeeeenes 6-3
About Automations in the Order and Task Contexts..........cococeuvivvnninnnininnie, 6-3
About Internal and External Events that Trigger Automations............ccccoeeiiiiiiiiiineinns 6-5
About Accessing the XML API in Automations..........cccccueueucuciiiciiiuiiiecicceeeeceneeeeeeneeeeenes 6-6
About Queues, Correlation, and Property Selectors. ..., 6-6

OSM Request and Response Message QUEUES............ccceuvvvvviiiiiiiiiniiiiinininiicnns 6-7
Correlating Requests from OSM to Responses from External Systems...........cccccocevvueneee. 6-7
Intercommunication Between Orders in the Same Domain............ccccooeeviiiniiiiininnns 6-8
About Message Property Selectors............oiiiiiiiiiic e 6-9
About Automation Plug-in Communication Options.........c.ceceeevevrrninninnnneniereeeceeeeeaene 6-9
No External Communication: Data Processing Onlycoooeiiiiiieiniiiiiiicc 6-10
Fire-and-Forget Communication: Message Sent to External Systemscccc....... 6-10
Synchronous Communication: Single Request and Response...........ccccccoevevvninnccncnes 6-11
Synchronous Communication: Multiple Requests and Responsesccccoevininiincne 6-12
Asynchronous Communication: Single or Multiple Requests and Responses............... 6-13
Storing Response Message as XML Type Parameters ..o, 6-16

About Custom Automation Plug-ins.............cccccoeviiiiiiiiii 6-16

Defining the Custom Automation PIug-incccoooiiiiii e, 6-17
About the XML Templatecccccciiiiiiiiiiiccecieeecieeeeeeeeeee e 6-17
About Creating Custom Automation Plug-ins...........cccovieiiiiiiiiniiccce 6-18
INPUtXML ATgument.........cccoooiiiiii 6-19
AutomationContext Argument and Casting the Context Argumentcccccceuveveence. 6-19
outboundMessage Argumentcoociiiiiiiiiiiic 6-19
Accessing JDBC from Within an Automation PIug-inccccooooiiii, 6-19
Compiling the Custom Automation PIUg-in.........cccccccovviiiiniiiiinceccceeeeeeeeees 6-20

About Predefined Automation Plug-ins..............cccocoviiiiiiiiiiii 6-21

XSLT SENAET ...t 6-21
Defining the AUtOmation..........cccccciuiiiiiiiiiiicce e 6-21
WIriting the XSLT ... 6-23
Steps to Follow When Using XSLT Sendercccocoeueioiiininiceeicceeccee e 6-24

XSLT AULOMALOL ...eviviiieteietctcteietce s 6-24
Defining the AUtOmMation.........cccoiiiiiiiiiiniiii e 6-24
WIHNEG the XSLT ..o 6-25
Steps to Follow When Using XSLT AUtOmMator........c.ccccecueueieiiriviieiinrrrcrrereeseseeeeenes 6-26

XQUETY SENAET ...ttt 6-26
Defining the AUtOmMation.........c.cccciuiiiiiiiiiiiii s 6-26
Writing the XQUETY ... 6-27
Steps to Follow When Using XQuery Sender ... 6-28

XQUETY AULOMATOTooviiiiiiiiic s 6-28
Defining the AUtOmation..........cccccciiiiiiiiiiiiicc e 6-28
Writing the XQUETYcuoviiiiiii s 6-29
Steps to Follow When Using XQuery Automator..........cccoceveiereieinicieeiniceiecceeenes 6-29

DatabasePIUGINc.c.ceuiuiiiiicicieiciceec et s 6-30
Defining the Custom Automation PIug-in...........ccooeuoiiiiiiii 6-30
Creating the JDBC Data SOUICEccccciuiiiiiiiiiiiiiiiiiiicceeee s 6-35

vii

viii

About Large Orders and Automation Plug-ins ... 6-36

Limiting Automation Concurrency in Large Orders...........c.cocoooeueieiiiiinieiiiineciccceecce, 6-36
Using GetOrder and UpdateOrder API Functions in Large Ordersccccccocceeccccennee. 6-38
About Compensation for Automations..............c.cococeiiiiiiiiniii 6-39
About Execution Modes for AUtomations............cccceeeivininininiiiniiiiiis 6-39
About Automations that Update Order Data and Compensation Analysis..........c.cccccuueee. 6-40
About Using GetOrder Responses to View Compensation Perspectives...........c.cccccevvevnnnne 6-40
About Creating Automations in Design Studioccccooviviiiiiiiii 6-41
About Building and Deploying Automation PIUg-insccccocoeeeiiiiiiceciiccececeene 6-41
About AUtomation Maps ... 6-42
About Editing the Automation Mapcccoiiiiii 6-43

About Mnemonic Values for Design Studio Entities in Automation Maps.................... 6-43

About Managing Automations..............ccccoeiiiiiiiiiiii 6-44
Building and Deploying Automation PIUg-ins..........c.cccooerieiiiirinieiiiceiccc e, 6-44
Automating the Build and Deploy ... 6-44
Troubleshooting AUtOMAtIONScouiiuriiiiici 6-44
Upgrading Automation PIUG-INSccccouoiiiiiiiii e, 6-45

Using Order Metrics Manager

About Order Metrics Manager ADML Files.........ccccccoovininiiiiins 7-1
VIEWING MetIicCs ..o 7-1

Localizing OSM

ADOUL LOCAlIZALION ...ttt ettt st s e e st et e ensesseensesseensesneensesneensenneens 8-1
Localizing OSM ..ot 8-1
Localizing the XML Import/Export Applicationccooueoiiiiiiiiiiiiie 8-5
Additional Considerations for Localizing OSM.............c.ccccocoiiviiiiniiniiiinniiicces 8-6
Support for Different Locales..........cccuiiiiiiiiiiiiiciiiiiic 8-6
Character Set ENCOAINGc.oviiuiiiici 8-6
Localization Of SETHINGScccccuiuiimiiiiiiiciccccceee et 8-6
About NLS Database Configuration ..o, 8-6
Oracle Database Character Stcoioiiiiiiieiecieieeeete ettt ettt ettt ere e ete s ete s eereerseneas 8-7
INLS ENVITONIMIENE ...veeivivieiiieiieieeieie sttt eteesteteeeteiesseessesseessesseessesssessesssessesssensesseensesseessessessesnees 8-7

) B I AN A\ 2 U =0 o <1 (<) R 8-8
ORA_NLS33 ENvironmment Variableooeeooeiiiiiieeieeeeeeeeeeeee et s et s s 8-8

About OSM Database Error MeSSages.............cccccviiuiiiiiiniiiiiiiiiiiiiiccseesssssse s 8-8
About Application Server Strings............cccocoociiiiiiiiiiiii 8-11
About OSM Process Definition Data...........c.ocoeouieiieiiiiiieiiicicc ettt e 8-12
om_application_fUNCHONcccciiiiiiiiiiccccceceeee e 8-13
OM_AttIIDULE_EYPE v 8-13
om_order_data_diCtionary ..o 8-14
OM_Order_TemMAarks VPccccoucuiiiiiiiiiiiiciiieieicieieeeeete ettt 8-14
OM_Order_tyPe_CateZOIYccoceuiuiiiiiiiiiieiiiiieieieieee s 8-14
OINL_PTOCESS ...cuvvinierenresetesetesees ettt ae et se et s b eat b e as s e st e b et b et e b e s e b et eae s e st ebe b eae e b e as e b ens e b e st et e asebe st ere s ens 8-15
OIMN_PIOCESS_SLALUS ...ttt s 8-15
OM_TESPONSIDILILY ..evvviiiiiii s 8-15

10)a (T 4 L L= e L= SOU T TOT T T T ORRORRTTO PR PRI 8-15

(03 (T =1 ¢ ST TP P PP P PR PPPP 8-16

OM_State_CateZOTY.....ooiiiiiii s 8-16
OMNL_StAtUS_CATEZOTY ...viviiiiiiiiiiici s 8-16
1) 0 (T 7= 1<) RS 8-17
om_view_order NOAe 1abelc..ooo i 8-17
About Generic Preferences............cccoovieieiiiiiiiiiiiicce s 8-17
OIMN_ZENETIC_IMINEINOMIC «.uvevvieierietesesiitetesese ettt ettt s et b e b s eae s s bt se e st ene s st aeaeas 8-17
Localizing the Task Web Client ... 8-19
Task Web Client Localization Resource Bundles ..o, 8-20
Localizing Date, Time and Currency FOrmats.........ccooooiiiiiiiiiiciiiiicc, 8-20
Localizing Text and Error MeSSagescccoceueiiiiucieieiicicieiecccie e 8-22
Localizing Page Titles ..ot sees 8-22
Localizing Image Referencescooooiiiiiiiiiiic 8-22
Inserting New ImMagescccoeuiiiiiiiiiiiii s 8-22
Editing the First Day of the Week..........ccccooiiiiiiiiicccceeeeeee s 8-22
Editing the Task Web Client Gantt Chart ..., 8-23
Editing the Boolean Data Element Values.............cccoooouiiiiiiiiiiiiicc e, 8-23
Editing the Number of Records Displayed in the Worklist..........ccccceeeuiuiinniinnniiine 8-23
Editing and Replacing Task Web Client Icons...........ccoouieiiiiiiicioiiic e, 8-23
Localizing the Order Management Web Clientc.cccoooiiiiiiiiiiiiiiccas 8-23
Changing the Order Management Web Client Logo Image and Textc.cccccccceueueuvnnnnnne. 8-26
Localizing the Order Lifecycle Management User Interfacecccocoooviiniiiiiiiiiinnn, 8-26
Working with the oms.ear File ... 8-28
Unpacking the 0ms.€ar File ... 8-28
Packing the oms.ear File..........cooiiiiiiiiii 8-29
Undeploying and Redeploying the oms.ear File...........cccoooiiiiiioiiiii, 8-30

9 Using XPath Functions

ADbout XPath FUNCHONSc.coviuiriiiriiiieiicicrcect ettt ettt ettt ettt sttt sbeen 9-1
INOAE Set FUNCHIONS ...ttt sttt sa e 9-1
TNUMDET LTAST() +ntentinieitete ettt ettt b bbb bbbttt eb e sbeebe b 9-2
NUMDET POSTHION()...cuvuirieieiiiiiii e 9-2
NUMDbETr COUNT(NOAE-SEE) ...vvviviriieiiiiiitisiesietetetet ettt ee et st et esb e b e b e sbeseesaeseeseeseesassessessessesseseeseasess 9-2
node-set id(ODJECE) ..o 9-2
string local-Nname(NOde-SEt?)ccciiiiiiiiiiiiii e 9-2
string namespace-Uri(NOAE-Set?)cccevriririiiiriririirc e 9-2
String NAMe(NOAE-SEt?)ccvviiiiiiiiiiiiiii s 9-2
node-set evaluate(String).........cooviiiriiiiiiiiii e 9-2
node-set match(node-set, SEHNE)......cccovriiririiiriii e 9-3
node-set INStANCE(STIINEG) ...ovoviiiiiiiiii e 9-3
String FUNCHONS. ... 9-3
STrNG SEENZ(ODJECE?) oo 9-3
string concat(string, string, String™)cccoooiiiiiiiiiic 9-3
string starts-with(String, String) ... 9-3
string contains(string, String)cccoeiiiiiiiii s 9-4
string substring-before(string, String)ccoceueiiiiiiiii e, 9-4
string substring-after(string, String) ... 9-4

string substring(string, number, NUMDETI?) ..o 9-4

number string-length(String?) ..o 9-4
string normalize-SPace(STIINE?)......coceueuiuiemiiiiiiiceeeeeeeeee e 9-4
string translate(string, string, StriNg).......cococooiiiiiiiii e, 9-4
string lower-case(String?).......ccoccueiiiii i 9-4
String UPPer-case(SIring?) ..o 9-5
string ends-with(string, String) ..o, 9-5
B001ean FUNCHONSco.oiuiiiieieee ettt a e et be e bbb e b et e st et et et et ebeebeebesaeas 9-5
Boolean boolean(ODbJECL)ccciuiuiicuiiiiieieieiciccceeeie ettt 9-5
Boolean NOt(DOOLEAN)c..coueuiiiiiiiiieiirit ettt ettt sttt st se bbb e 9-5
BOOLEAN TTTUE() . eveveeeiirieiirtciirtcetet ettt ettt ettt bbbttt b bbbttt ettt eb et b e a et benes 9-5
BOOLEAN fAISE()..e.viveriinienieieieiieeee ettt ettt ettt e et te e s e b e e s s e s b e st eseeseeseesaeseese s e b esseneeseeseesennens 9-5
Boolean boolean-from-string(String)cccooeueiuriiieiiieiieiie e 9-5
object if(boolean,object,0bJECt)........c.cuiiriiiiicic e 9-5
NUMDBET FUNCHOMS. ...ttt sttt sttt ettt b s be s 9-5
number NUMDET(ODJECE?)cuiiiiiiiiiiii e 9-6
NUMDET SUM(NOAE-SEL)cuvvinirieeiiieiirieierteietee ettt ettt sttt b et b e sttt seebesene 9-6
NUMDET flOOT(NUIMDET)ecuiitiitietiieietetetettete e et teste st st et et et e e et esesse et essessessessessessessessasenssasenses 9-6
number CeiliNg(NUMDET)ccooiiiiiiiiii e 9-6
NUMDET TOUNA(TIUIMDET) ...ttt ettt et sttt 9-6
NUMDET AVE(NOAE-SEL)eviiiiiiirr e 9-6
NUMDbETr MIN(NOAE-SEE) ...c..eiuiiiiitititetee ettt ettt b ettt b bttt bebes 9-6
NUMDET MAX(NOAE-SEL)euvviniriieiirieiirieiirieirt ettt ettt b et b et b e se et eebesene 9-6
number count-not-emMpPty(NOAE-SEt)ovvuvvriririririrriii e 9-7
XPath 1.0 REfEIEINCE.....c..ciiiiiiieiieiteeetee ettt st be bt bttt s bbb et et ebe e bt besbesbebes 9-7
Location Paths [XPath §2]ccccioiiiiiieeeee ettt ettt sttt st be b e 9-7
Location Paths [XPath §2.1] ...cc.cereiiiiieiieiieereee ettt sttt ettt 9-7
Axis Specifiers [XPath §2.2]c.cccccevuriiiiiirirereeereererrse e 9-7
INOde Tests [XPath §2.] ..ottt ettt s s se et e st et eae b ebe b 9-7
Abbreviated Syntax for Location Pathscccccociiiiiiiiiiiiiccceeecceeeeeeeeeennes 9-7
Predicate [XPath §2.4] ...ttt ettt sttt ettt be e 9-7
Variable Reference [XPath §3.7] ..ottt 9-8
XPALN c. ettt ettt bbbt st bt b st e st et e s et e st benes 9-8
XPath OPeratorscccciiiiiiiiiiiiiiiiicice s 9-8
INOde-Sets [XPath §3.3] ...ccveieiririeieieieieieteteeette ettt et e esse st ss e bessesensenseneasens 9-8
B00leans [XPath §3.4] ..ottt 9-8
NUMDETS [XPath §3.5] ..ottt sttt ettt et ebe b e 9-8
Node Types [XPath §5]......ccccoiiiiiiiiiiiii e 9-8
Object Types [§11.1, XPath §1] ...c.cciiiiiiiiiicicceieeecceee e 9-8
XPath Core FUNCHON Library........ooioiic e 9-8
Node Set FUNCions [XPath §4.1] ...eoeoieieieieieieietee ettt ese st st seaeneas 9-8
String Functions [XPath §4.2]c.cccccociiiiiiiiiccecce e 9-9
Boolean Functions [XPath §4.3] ..ottt 9-9
Number Functions [XPath §4.4]......cooi ottt ettt se e enea 9-9
OSM Behavior XPath FUNCHONS......c.coeiviiiriiieieieieeecieteiet ettt sttt ettt senes 9-9
INOAE St FUNCHONS ..ottt st sttt et ebe b e 9-9

String FUNCHONS ...oovvieiiiii s 9-9

A

B

27 Y0Y (=¥=N o T S0 1 Ve a0 o V=R 9-9
AR B0l 7=y G SO ha Ty aTe) o V=IO 9-9

Automation and Compensation Examples

Predefined Automation PIug-ins ..o A-1
Message EXample.........ccoooviiiiiiiiiiiii s A-1
Automation Plug-in XQuery EXamples..........cocouiiiiiiiirieiicic A-4

Internal XQUETY SENAETcoouiiiiiiiii e A-4
External XQuery AUtOmMatOrcccccciuiiiiiuiiiiiiiieiciceeieieeieeete et nenes A-10
External XQUeTY SENETc.coruiiiiiiiiieiicic s A-14
Internal XQuery AUtOmator ..ot A-14
Automation Plug-in XSLT EXamPIesccccciiiiiiiiiiiccceeieeeeeeeeeieiereenenene s A-14
Internal XSLT SENETccovviviiiiiiiiiiiiiiiiiiccc s A-14
External XSLT AUtOMALOTccoeviviiiiiiiiiiiiicicic s A-21
External XSLT Sender.........ccoviiiiiiiiiiiicis i A-24
Internal XSLT AUtOMAOTcuovvviiiiiiiiiiciiiiciccc s A-25
Automation Plug-in Examples for Events, Jeopardies, and Notificationsccccceueuneee. A-25
Event AUtOMAtOrS......cciveieieiieee s A-25
Jeopardy AUtOmMAtOTScueviiiicii e A-26
Order Notification Automation PIug-insccooeiiiiiii A-28

Custom Java Automation PIug-ins...........cccccoviiiiiiiii A-29
Internal Custom Java AULOMATOTcc.coeriririerieieiet ettt sttt s A-30
Internal CuStOM Java SENAETcc.oouiriiiirieieieee ettt sttt b b be e eas A-31
External Custom Java Automator that Changes the OSM Task Status..........ccccccevevuvvernnnne. A-32
External Custom Java Automator that Updates Order Data..........cccccoevvviviiiiinniciinnnne, A-34
Using OrderDataUpdate Elements to Pass Order Modification Datacccccoorueieieinnnnn. A-38
Examples of Sending Messages to External Systems...........cccccccccvvviiinninnnnnncnnnecnes A-39
Examples of Handling Responses from External Systems...........cccccoovvviiniiininiiniinnnnnn, A-41

Compensation XQuery EXPressionsccccooviiiiiiiiiiiniiiecccccc s A-43
Task Re-Evaluation and Rollback XQuery EXpressions.........ccccccccevueecicuenieeieneeeeeeeeeeenenns A-43
In Progress Compensation Include XQuery EXPressionsc.ccooecieiviicieiiiiniciciccnenes A-45
In Progress Compensation Complete XQuery EXpressionscccccevvvvinnnnnncnncnccnes A-46
In Progress Compensation Grace Period XQuery Expressions.........c.cccccccccvueuciivicncncnnnene. A-47

Order Jeopardy Automation XQuery PIug-ins..............cccooiiiiiiiiiiiiciiicceceeeeeennes A-48

AutomationMap.xml File

AutomationMap.xml Examples for Automated Tasks.......c..cccoceveirinneneinnncnencnenecnecnenenne B-1
XSLTSender Internal EVENt RECEIVETcc.ccviiieuieiiierieiieieete ettt ettt eve et eve s e B-1
Notes Common to All EXamMPLEScccceuiiiiiiiiiiiiiiiieicceeeceeeeeee s B-2

Notes on EXampleccooviiiiiiiiiii s B-2
XSLTSender External EVent RECEIVETccocviiiieiiiiiieiieieeeeteeeeteeteee ettt B-2
INOtes 0N EXAMPLEcooviiiiiiiiiiiccc s B-3
XSLTAutomator Internal EVent RECEIVETcevuieierierieiieieteeeete et esae s e B-3
Notes 0n EXampleccccoviiiiiiiiiiiiiiiiic s B-4
XSLTAutomator External EVent RECEIVETccecveeieeiiirieiriesieeieeeeeeeeeee e ene B-4
Notes on EXampleccooviiiiiiiiiiiiicc s B-5

xi

Custom Automation Internal EVent RECEIVETooouiiiieiiciiiieeieceeeeee et B-6

Notes 0n EXample ... B-6
Custom Automation External Event ReCeiver ... B-6
Notes on EXample ..o B-7
AutomationMap.xml Examples for Automated Notificationscccccovviinnnnnnnn B-7
Order Milestone-Based NOtIfiCationccovuviviviiiiiriiiriciicrrccre s B-7
Task State-Based NOtIfiCatioNScouiuiiiiiiiiiiiiiiii s B-8
Task Status-Based NOtIficationcccoceviviiiiiiiiiiiiiis B-9
Order Data Changed NOHICAtIONc.ceueuiiiiiiiiiiiiiiecrcrreee s B-9
Order Jeopardy NOtfiCation........cc.c.oviiieiiiiiei B-10
Task Jeopardy NOtficationcoccueiiiiiii B-10
Generated Entity-Specific XML Files..........ccccocoooiiiniiii B-11

C Automation: Start to Finish

Xii

ASSUIMPLIONS ...ttt ettt ettt b ettt s et st be et sae b s et e s beneneseenene C-1
Getting Started............cooiiiiiii e C-1
Defining an Automated Task ..o C-3
Writing the Custom Automation Plug-in ... C-3
Defining the Custom Automation Plug-in..............coooooi, C-3
Defining the Automation ... C-4
Defining the ProCess...........cccooiiiiiiiiiiiccecece et C-4
Building the Cartridge............coooooiiiiiii C-4
Packaging and Deploying the Cartridgeccccooiiiiiiiiiiiiices C-4
Triggering the Automation in OSM ... C-5

Audience

Preface

This document provides information about the following customizable areas of Oracle
Communications Order and Service Management (OSM):

= Web services

= Extensible Markup Language (XML) Application Programming Interface (API)
= Automation

= Security Callback

= Behaviors

= Custom menu items and action items

» Localization of OSM

This document also provides a process example of provisioning a Plain Old Telephone
Service (POTS) customer using unbundled local loop to illustrate various types of
customization.

This document is intended for programmers who have a working knowledge of:
= System interfaces

= XML

= Java development

= Java Messaging Service (JMS)

s Web services

This document assumes that you have read OSM Concepts, and have a conceptual
understanding of:

s Oracle Communications Design Studio configuration
s Orders

s Order states

s Tasks

s Task states

= Notifications

s Behaviors

xiii

s Web services

Accessing Oracle Communications Documentation

OSM documentation and additional Oracle documentation (such as database and
WebLogic Server documentation) is available from the Oracle Help Center website:

http://docs.oracle.com

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle

Accessibility Program website at

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing

impaired.

Document Revision History

The following table lists the revision history for this guide:

Version

Date

Description

E79208-01

April 2017

Initial release

Xiv

1

Introduction

This chapter provides an introduction to customizing Oracle Communications Order
and Service Management (OSM) interfaces.

Planning and Designing

Before customizing OSM, it is important to understand what needs to be done and to
design the solution properly.

This topic is further explored in OSM Modeling Guide.

Customizing OSM
There are two areas of OSM that you can customize:

= External interfaces, which interact with other systems and which you customize to
meet specific business requirements. This includes OSM Web Services, OSM
automation and OSM Security callback.

= User interfaces, which you customized per installation or per individual user. This
includes using behaviors to manipulate data, adding custom menu actions of the
Task web client, and localizing user interfaces.

External Interfaces

The two primary external interfaces for performing automated fulfillment are OSM
Web Services and OSM automation. Additional external interfaces include OSM
Security Callback and the OSM XML APL

OSM Web Services

OSM Web Services provide the primary interface for in-bound order operations such as
creating or canceling an order. Web services are typically initiated from customer
relationship management (CRM) systems and other order sources that need to create
and manage orders in OSM.

This topic is further explored in "Using OSM Order Management Web Services."

OSM Automation

OSM automation provides the primary interface for outbound operations to interact
with external systems to achieve automated order fulfillment. Outbound operations
are initiated by OSM through automated tasks and automated notifications.

Introduction 1-1

User Interfaces

Automated tasks and automated notifications are not limited to outbound operations:
Automated tasks can send outbound messages to external systems and also receive
in-bound messages back from the external systems. (Automated notifications only
send outbound messages to external systems; they cannot receive in-bound messages.)
Additionally, automated tasks and automated notifications can perform internal
business logic or update the OSM database.

This topic is further explored in OSM Modeling Guide.

OSM Security Callback

OSM Security Callback allows you to generate an audit trail log of users before they
gain access to order data that is considered sensitive. OSM provides a callback
interface that is designed to intercept order access from defined functions.

This topic is further explored in "Using OSM Security Callback."

The OSM XML API
The OSM XML API is deprecated for all uses except the following:

» Customizing the appearance or functioning of a task when customization using
behaviors or OSM Java server pages does not satisfy all of your requirements.

s Using from within an automation plug-in when necessary because the Web
Services API and the OSM automation functionality do not meet your
requirements.

For information about the OSM XML AP], see "Using the OSM XML APL"

User Interfaces

The following sections briefly describe the ways you can customize the OSM user
interfaces (Uls).

Behaviors

Behaviors provide the ability to customize data validation and data presentation in
both the Task web client and the Order Management web client. OSM defines several
behavior types, and you can define instances of behavior types on data elements
defined in the data dictionary, for an order, or for a task.

For information about behaviors, see OSM Concepts.

Custom Menu Items and Actions

The custom menu actions and items feature provides the ability to configure custom
menu items and actions that are called from the Context menu of the Task web client
Worklist and Query Result pages.

This topic is further explored in "Using Custom Menu Items and Actions."

Localizing OSM

Localizing OSM is the process of changing the user interfaces from the original
language in which it was written to another language. You can localize the Order
Management web Ul and the Task web UL This processes involves modifying OSM
XML files.

1-2 OSM Developer's Guide

About XPath and XQuery

This topic is further explored in "Localizing OSM."

Logging with ODL

Oracle recommends that you use Oracle Diagnostic Logging (ODL), which is used by
most Oracle Fusion Middleware applications, to generate and manage the system log
messages. See OSM System Administrator’s Guide for more information.

Tools for Customizing OSM

Several tools are available to you when customizing OSM, as described in the
following sections.

Design Studio

Oracle Communications Design Studio is an Eclipse-based integrated development
environment (IDE). Design Studio is a separate software that comes with your OSM
installation, along with Design Studio plug-ins specific to OSM that enable you to
configure and customize OSM. Detailed information on using Design Studio to
customize OSM is presented in OSM Modeling Guide.

Apache Ant

Apache Ant is an open source software application often used for automating
application build processes. See OSM Installation Guide for the required version of Ant.

Ant uses XML to define targets which are executable commands that perform a specific
task. By default, the XML file is named build.xml.

Installing Design Studio OSM-specific plug-ins provide the build.xml file, which can
be used to automate building automation plug-ins. Ant is also used by the XML
Import/Export application, as described in the following section.

See OSM Modeling Guide for information on installing Ant.

The XML Import/Export Application

OSM includes the option to install the XML Import/Export application, a set of
customizable Ant commands that help you manage data when dealing with multiple
OSM development and test environments.

You can also use the XML Import/Export application to manage data when dealing
with multiple OSM production environments. This topic is further explored in OSM
System Administrator’s Guide.

About XPath and XQuery

To model OSM orders, you must have a working knowledge of the XPath and XQuery
languages.

You typically use XPath statements to specify the location of data in OSM entities. You
use XQuery statements to find and filter data needed for OSM functionality. You can
use XQuery in situations where a more expressive language or transformation abilities
are needed.

An XPath tutorial is available at:

https://www.w3schools.com/xml/xpath_intro.asp

Introduction 1-3

About XPath and XQuery

An XQuery tutorial is available at:

https://www.w3schools.com/xml/xquery_intro.asp

Note: In OSM, XQuery statements are limited to a maximum of 4000
characters.

1-4 OSM Developer's Guide

2

Using OSM Order Management Web Services

This chapter describes Oracle Communications Order and Service Management (OSM)
order management Web Services, which provides the primary interface for in-bound
order operations such as creating or canceling an order.

About Web Services

Web services support interoperable machine-to-machine interaction over a network.
Web services are web APIs that can be accessed over a network, such as the Internet,
and run on a remote system hosting the requested services, as is the case with OSM.
Web service interfaces are described by the web service definition language (WSDL).

WSDL is an XML-based language that is used in combination with simple object
access protocol (SOAP) and XML Schema to provide web services over the Internet. A
client program connecting to a web service can read the WSDL to determine what
operations are available on the server. Any special data types used are embedded in
the WSDL file in the form of XML Schema. The client can then use SOAP to actually
call one of the operations defined in the WSDL.

About Order Management Web Services

The OSM Web Services provide the primary interface for in-bound order operations
such as creating, updating, or canceling an order. OSM Web Services are typically
initiated from Customer Relationship Management (CRM) systems and other order
sources that need to create and manage orders in OSM. OSM Web Services use the
SOAP standard.

The OSM Web Service operations are defined in WSDL files. The operations are listed
below, and grouped by WSDL file.

OrderManagement.wsdl

» CreateOrderBySpecification
» CreateOrder

= FindOrder

s GetOrder

s UpdateOrder

= SuspendOrder

s ResumeOrder

s CancelOrder

Using OSM Order Management Web Services 2-1

About Order Management Web Services

= AbortOrder

s FailOrder

= ResolveFailure

= RetryOrder
OrderManagementDiag.wsdl
s GetOrderProcessHistory

s GetOrderCompensations
s GetCompensationPlan

These services can be accessed using HI'TP, HTTPS, or JMS as the transport protocol.
JMS is a reliable, asynchronous messaging transport with guaranteed delivery while
HTTP is synchronous and less reliable.

Request Validations

All OSM Web Service requests are validated by the server based on the rules defined
in the schema files. If a validation error is encountered, the server returns a fault
message detailing the validation error so it can be resolved.

Sending OSM Web Service Requests to a WebLogic Server Cluster

If your web services client connects to OSM using Oracle WebLogic Server, and if your
WebLogic Server instance for OSM is a cluster, the WSDL generated by WebLogic
Server identifies the endpoint using the address of the first managed server and
ignores the addresses of all other managed servers.

To ensure that the addresses of all managed servers are used, include code in your
client to override the endpoint.

Example 2-1 demonstrates how to override the default endpoint and include all of the
endpoints.

Example 2—-1 Sample Code to Override the Endpoint Address for a Cluster

Stub stub = (Stub) port;

stub._setProperty (WlsProperties.READ_TIMEOUT, 1000000);

stub._setProperty (WLStub.JMS_TRANSPORT_JNDI_URL, t3://ip addressl:portl,ip_
address2:port2, ipaddressn:portn") ;

In the example, ip_address1 is the IP address of the first managed server and port1 is the
port of that server, ip_address2 is the IP address of the second managed server and
port2 is the port of that server, and so on for all of your managed servers. As in the
example, separate each IP address from its port by a colon and separate the address
information for the servers by commas.

Accessing the WSDL Files

OSM Web Services are part of the OSM installation. The OSM WSDL files and
supporting schema files (XSD files) are located in the OSM_
home/SDK/WebService/wsdl directory.

Alternatively, you can access the OSM WSDL by entering the following in your web
browser after you have installed, configured, and deployed the OSM server:

2-2 OSM Developer's Guide

About Order Management Web Services

http:/ /server:port/OrderManagement/wsapi for web service operations used for
order management.

and

http:/ /server:port /OrderManagement/diagnostic/wsapi for web service operations
used for diagnosing problem orders.

where server is the specific server on which the application is deployed and port is the
port on which the application listens. Users who access the WSDL this way must be
configured in the WebLogic console with usernames and passwords and must belong
to the group OMS_ws_api.

The syntax of each OSM Web Service operation is specified using the XML schema,
which is associated with the WSDL for the web service, and is the same for HTTP,
HTTPS, and JMS port types. The JNDI name for the JMS request queue is available in
the WSDL file.

Using the SOAP Standard Message Format

OSM Web Services use the SOAP standard message format, which includes a header
and a body.

Message Header

OSM Web Services require that security related information be provided in the
message header. The user name and password for the web service authorized user
must be included in each request using the elements <wsse:UserName> and
<wsse:PasswordText>, as shown in Example 2-2.

Example 2-2 Message Header

<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946" xmlns:wsu="http://docs.
oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd">
<wsse:Username>administrator</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/ocasis-
200401-wss-username-token-profile-1.0
#PasswordText">administrator</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>

Message Body

The message body contains the data payload. The data payload varies depending on
the specific request, as shown in Example 2-3.

Example 2-3 Message Body

<soapenv:Body>
<createOrderBySpecification>
<gpecification>

</specification>
</createOrderBySpecification>
</soapenv:Body>

Using OSM Order Management Web Services 2-3

About Order Management Web Services

Response messages include a data payload containing the result of the method call.

White Space in Message Text

OSM trims off the white space to the right of the beginning of a text block and to the
left of the end of a text block. For example, if you send an update with the following
field:

<osmc:street index="1414682666685"> 190 Attwell Drive </osmc:street>

the response message returns having removed the white space at the beginning and
the end of the text block:

<osmc:street index="1414682666685">190 Attwell Drive</osmc:street>

Testing OSM Web Services

Test OSM Web Services with software such as SoapUI or HermesJMS. Information on
such open source test software is available on the internet.

Note: With OSM 7.2, the context-root for OSM applications changed
to /OrderManagement. OSM redirects requests specifying the old
URISs to the current ones. However, soapUI 2.5.1 does not correctly
handle redirects. soapUI3.x or above correctly handles redirects.

Note: If you are using soapUI for testing in a clustered WebLogic
environment, enable preemptive authentication in soapUI by selecting
Preferences, then HTTP Settings, then Authenticate Preemptively.

Without this, soapUI sends requests without authentication. The
request is rejected and then resent with authentication. Because of
OSM'’s load balancing approach in a clustered WebLogic environment,
the second request is sent to a different managed server, distorting
load balancing. For example, if a cluster has only two managed
servers and you employ round-robin load balancing, all authenticated
requests will be sent to the same managed server.

Regardless of the software used to test OSM Web Services, you must ensure the clocks
are synchronized between the test client and the server hosting the web services. The
synchronization can be done manually, or by using Network Time Protocol (NTP). The
following errors are encountered if the clocks are not synchronized:

» Failing to submit order to server_name server from my local system.

= Security token failed to validate. weblogic.xml.crypto.wss.
SecurityTokenValidateResult@11{f081b[status false][msg UNT Error:Message
Created time past the current time even accounting for set clock skew.

2-4 OSM Developer's Guide

About Order Management Web Service Operations

Note: Starting with OSM 7.2, order IDs are allocated in blocks. For
OSM running on a standalone database, there is no visible impact.
However, if OSM is running on an Oracle RAC database, Order IDs
are assigned from different blocks, one for each Oracle RAC instance.
This means that when orders are submitted, the Order IDs may not be
sequential.

Order States and Transitions

Several of the OSM Web Service operations initiate a transition from one order state to
another. For example, CancelOrder initiates a transition from either an in progress or
suspended order state to the cancelling order state. Any transition that occurs within a
web service operation is described in the Expected Outcome section for that particular
operation as described in "About Order Management Web Service Operations.” To
learn more about order states and their transitions, see OSM Concepts.

Web Services Sample

Your OSM installation provides a web Service sample that demonstrates how OSM
Web Services are called. The sample is available in the OSM_home/SDK/Samples/Web
Services directory. The sample includes both HTTP and JMS clients, and demonstrates
the use of the web service operations:

» CreateOrderBySpecification
s GetOrder
s UpdateOrder

The GetOrder and UpdateOrder operations depend on the order ID that is provided in
the CreateOrderBySpecification response. Before you can run the sample, you must
configure it to reflect your environment. See the ReadMe.txt file for detailed
instructions on configuring, building, and running the sample.

About Order Management Web Service Operations

Parameters

The remaining sections of this chapter describes each OSM Web Service operation, and
includes the following information per operation:

s Preconditions: Describes any conditions that must exist prior to calling the
request.

s Expected Outcome: Describes the expected outcome that occurs as a result of the
request.

Unless parameters require additional explanation, the parameters that are defined by
each web service are not provided in this documentation. The information is available
in the XSD files provided with your OSM installation. For information on determining
the input and output parameters for any given web service, see "Navigating WSDL
and XSD Files."

Fault Types and OSM Web Service Client Error Processing

OSM Web Service operations sent over JMS or HTTPS to OSM may fail for various
reasons, such as a local error or exception on the OSM server, incorrect syntax, invalid

Using OSM Order Management Web Services 2-5

About Order Management Web Service Operations

permissions, and so on. The OSM Web Service client, such as a CRM communicating
to OSM in the COM role, must monitor returning response messages from OSM for
any fault types that indicate whether the operation succeeded or failed. If the OSM
Web Service operation request fails it is the responsibility of the OSM Web Service
client to track and resubmit the failed request after troubleshooting the problem.

The possible fault types that each web service may throw is not provided in this
documentation because the information is available in the WSDL files provided with
your OSM installation. For information on determining the fault types that any given
web service may throw, see "Navigating WSDL and XSD Files."

Request and Response Examples

Request and response examples for each web service are not provided in this
documentation. However, several request and response examples are provided, which
you can use to help you create or understand other web service requests and
responses. See "Order Management Request and Response Examples,” which also
provides information on how to generate XML examples for any given web service
operation.

2-6 OSM Developer's Guide

Web Service Operations Used for Order Management

Web Service Operations Used for Order Management

This section describes web service operations used for order management. This
includes creating, retrieving, updating and cancelling an order. Order management
operations are defined in the OrderManagementWS.wsdl file.

Each operation lists preconditions that must exist for a successful invocation of the
web service operation. However, the following preconditions are common to all
operations, so they are listed here rather than repeated for each operation:

s OSM Web Service calls are authenticated by the server based on the user ID and
password provided in the request header. Only requests that pass authentication
are processed by the server.

= APl users must belong to the WebLogic group, OMS_ws_api.

Using OSM Order Management Web Services 2-7

CreateOrderBySpecification

CreateOrderBySpecification

Preconditions

This operation creates a service order.

s The order specification referenced on the request is defined in the metadata and
has been deployed to the target OSM server.

= The content of the order detail that is provided on the request must conform to the
order specification referenced on the request.

s The user performing the transaction is a member of at least one workgroup that
has been granted permission on the creation task for the referenced order
specification.

Expected Outcome

The order is created and processing begins. If the newly created order is matched
against an existing order (based on the key defined on the order's specification), then
this new order is an amendment to an existing order, and information regarding the
amended order and status of the amendment is returned.

If the newly created order is not an amendment, the order is transitioned to the
open.running.in_progress state by specifying StartOrder=true.

Alternate Outcome with Start Order Set to False

Attachments

The order is created but processing does not begin. The order is in the open.not_
running.not_started state. The order can be further updated and started through the
UpdateOrder operation.

You can add attachments through the createOrderBySpecification operation.
Attachments are added by populating the Remark element, which provides a place to
define a text remark as well as an attachment. The attachment is added by populating
the Attachment element, which is a child element of Remark. Within the Attachment
element, you can define a sequence of file names and their corresponding file types.
For additional information, see the OrderManagementWS.xsd file, which defines
these elements.

Reference Nodes

Reference nodes are pointers to values contained in different data nodes, and they
enable you to create information once and reuse it in multiple locations in your data
model. You set up reference nodes at order creation time.

To set up reference nodes in an order, when creating the order, you must explicitly give
the referred-to field an index, and then refer to it with {#} in the reference. For an
example that demonstrates how to set up reference nodes at order creation time as part
of coding the automation plug-ins that call the CreateOrderBySpecification web
service operation, see "Request Example - Setting Up Reference Nodes."

2-8 OSM Developer's Guide

Web Service Operations Used for Order Management

CreateOrder
This operation creates a new order.

Preconditions

= The content of the order detail that is provided on the request must conform to a
defined recognition rule.

s The user performing the transaction is a member of at least one workgroup that
has been granted permission on the creation task for the order.

Expected Outcome

The order is created and processing begins. The order is transitioned to the
open.running.in_progress state by specifying StartOrder=true.

Using OSM Order Management Web Services 2-9

FindOrder

FindOrder

Preconditions

This operation finds a set of orders that match all the conditions defined in the select
clause. The SelectBy element specifies which orders will be returned.

Note: If you choose to specify the name of the cartridge in the
SelectBy element of the request and you do not specify the cartridge
version, only orders from the default version will be returned. If you
wish to retrieve orders from all of the versions of the specified
cartridge, include “*” as the cartridge version.

Results can contain a combination of flexible headers and task data. The calling user
must belong to a role with permissions to view the order. If the user does not have the
permission, no data is returned.

Flexible Headers are user-defined columns which are displayed while viewing order
details. Flexible headers are set by OSM administrators. Generally the path of a flexible
header is /<WebService>/<ElementGroup>/<FlexibleHeader>. Note that
/<WebService> is preceded by a single slash (/). A double slash (//) or no slash will
yield different results. See "XML API Functionality" for details on how to query and
retrieve orders that include available flexible headers using the XML APL

s The order being retrieved must exist. If the order does not exist, FindOrder returns
an empty set.

Expected Outcome

Order data that meets specified selection criteria is returned in the specified sequence
and is viewed through the specified filter.

2-10 OSM Developer's Guide

Web Service Operations Used for Order Management

GetOrder

Parameters

This operation retrieves an order. A summary of the order is returned, along with the
detailed order data based on a specified order view template. See also "GetOrder
Examples."

Orderid
The identification of the order to be retrieved.

View

The name of the view (query task) used to determine the order data that is returned.
You must associate the task data you want to return to a role in the Oracle
Communications Design Studio Order editor Permissions Query Task sub tab and set
a query task with the data to be returned as the Default query task.

The following parameters are optional:

RemarkFilter
Controls how remarks and attachments are returned.

RetrieveRemarks
Set to true if remarks and associated attachments should be returned.

AttachmentFilter

If RetrieveRemarks is set to true, zero or more filters (FileNameMatch, MinSize,
MaxSize, Format) may control how attachments are returned. Attachment filters are
processed in the order they are provided. If no filters are provided, then no
attachments are returned.

OrderDataFilter

Parent element for the Condition child element that specifies which order data to
return in the GetOrder response message specified in the View. This filtering
functionality improves OSM performance, especially when the order with the
multi-instance data is a large order.

= Condition: An XPath 1.0 expression against the order data defined by the
ResponseView. OSM returns only the instances of the order data selected by the
expression, not the other instances of the element. All other parent or sibling
elements are returned.

For example, in a situation where a customer has multiple <address> instances
(where <address> is a multi-instance element), the following expression ensures
that OSM returns only the <address> element that contains a child street element
with the specified street address. The response includes all child nodes of the
instance of the <address> element (city, postal code, and street). The other
instances of the <address> element and their child elements (city, street, and postal
code) are not returned.

<ord:OrderDataFilter>
<ord:Condition>/subscriber_info/address/[street='190 Drive']</ord:Condition>
</ord:OrderDataFilter>

For example, any sibling elements of <subscriber_info>, or sibling elements of

<address> (except for the other instances of the <address> element) would be
returned.

Using OSM Order Management Web Services 2-11

GetOrder

When you are using an order condition that includes an element that is using a
distributed order template, you should include the namespace of the data element
in the condition. For example:

<OrderDataFilter>
<Condition>
/ControlData/OrderItem[@type="{0OrderItemNamespace}OrderItemName' and
@QLineId='1"]
</Condition>
</OrderDataFilter>

Preconditions

= The specified order exists.

s The user performing the transaction is a member of one or more workgroups that
has been assigned the specified view for the order definition in question.

Expected Outcome

The order summary and detail are returned. If the order contains any remarks or
attachments, they are returned based on the filters set on the request.

2-12 OSM Developer's Guide

Web Service Operations Used for Order Management

UpdateOrder

This operation allows order data to be updated, and allows orders that have been
created but not started (in the open.not_running.not_started state) to be started.

The updateOrder operation defines different ways to update the order:

UpdatedOrder: Provides the ability to update the order by supplying a complete
order. The existing order is updated (elements added, changed, or deleted) to
match the supplied order.

UpdatedNodes: Provides the ability to update the order by supplying only the
nodes to be updated (elements added or changed). Deletes are not performed
using UpdatedNodes. The nodes are supplied in the format of the existing order.

DataChange: Provides the ability to update the order by supplying a series of add,
update, and delete elements that are used to manipulate the order.

Note: If you update an order either to add a node (which includes
providing a value to a node that did not previously have one) or to
delete a node (which includes setting the value of a node to null), the
OSM order transformation manager will not propagate the change in
either the forward or reverse direction. For more information about
data propagation, see the discussion of mapping rules in the Design
Studio Modeling OSM Orchestration Help.

You can specify and filter which data to return in response to the UpdateOrder
requests:

ResponseView: An optional parameter that defines the name of the view that
specifies what parameters are returned in UpdateOrder responses. If the
UpdateOrder request results in a fulfillment state update, the response auto-filters
nodes to only include the affected OrderItem and OrderComponent instances.

OrderDataFilter: Parent element for the Condition child element that specifies
which order data to return in the OrderUpdate response message specified in the
ResponseView.

s Condition: An XPath 1.0 expression against the order data defined by the
ResponseView. OSM returns only the instances of the order data selected by
the expression, not the other instances of the element. All other parent or
sibling elements are returned.

For example, in a situation where a customer has multiple <address>
instances (where <address> is a multi-instance element), the following
expression ensures that OSM returns only the <address> element that contains
a child street element with the specified street address. The response includes
all child nodes of the instance of the <address> element (city, postal code, and
street). The other instances of the <address> element and their child elements
(city, street, and postal code) are not returned.

<ord:OrderDataFilter>
<ord:Condition>/subscriber_info/address/[street='190

Drive']</ord:Condition>

</ord:OrderDataFilter>

Using OSM Order Management Web Services 2-13

UpdateOrder

Preconditions

For example, any sibling elements of <subscriber_info>, or sibling elements of
<address> (except for the other instances of the <address> element) would be
returned.

When you are using an order condition that includes an element that is using
a distributed order template, you should include the namespace of the data
element in the condition. For example:

<OrderDataFilter>
<Condition>
/ControlData/OrderItem|[@type="{OrderItemNamespace}OrderItemName' and
@LineId='1"]
</Condition>
</OrderDataFilter>

In addition, you can directly specify order fulfillment using the
ExternalFulfillmentStates element rather than do so with Add or Update statement
on an UpdateOrder. This optional approach improves order processing efficiency,
especially in large orders. The ExternalFulfillmentStates element has the following
child elements:

OrderltemOrderComponentFulfillmentState: The parent element to the children
elements that specify the new external fulfillment state of an order component and
order item.

ExternalFulfillmentState: The new external fulfillment state.

OrderComponentIndex: The order component index. Every order component
element must specify a unique index attribute. In most cases, the automation
running the XML API OrderUpdate already knows which order component
the update is for.

OrderItemIndex: The order item index. Every order item element must
specify a unique index attribute. In most cases, the automation running the
XML API OrderUpdate already knows which order component the update is
for.

For samples of updateOrder, see OSM_home/SDK/Samples/WebService. You must use
the OSM installer to install the SDK sample files.

The user performing the transaction is a member of at least one workgroup (role)
that has been granted permission on the creation task (view) for the order
specification associated with the order.

The order is in the open.not_running.not_started state.

Note: These preconditions apply if the order is in the not_started
state. You can update the order data when the order is running, if the
order life-cycle policy permissions allow it for the task you want to
update.

You must associate the task data you want to update to a role in the
Design Studio Order editor Permissions Query Task sub tab and set a
query task with the required data as the Default query task. You can
associate only one role per task in the Order editor. The user specified
in the UpdateOrder header must be a member of this role.

2-14 OSM Developer's Guide

Web Service Operations Used for Order Management

Expected Outcome

Attachments

The order's data is updated successfully but remains in the open.not_running.not_started
state. The order can be further updated or started by additional calls to the
UpdateOrder operation.

You can add attachments through the updateOrder operation. Attachments are added
by populating the Remark element, which provides a place to define a text remark as
well as an attachment. The attachment is added by populating the Attachment
element, which is a child element of Remark. Within the Attachment element, you can
define a sequence of file names and their corresponding file types. For additional
information, see the OrderManagementWS.xsd file, which defines these elements.

Using OSM Order Management Web Services 2-15

SuspendOrder

SuspendOrder

This operation suspends an order thereby preventing work items associated with the
order from being processed. A suspended order must be resumed before its associated
work items can once again be processed.

Preconditions

= The current state of the specified order is open.running.in_progress or open.not_
running.not_started.

s The target state of the order is not set.

s The order life-cycle policy associated with the order's specification has the
Suspend Order transaction enabled from the open.running.in_progress state or from
the not_started state.

s The user performing the transaction is a member of one or more of the
workgroups associated with the Suspend Order transaction referenced in the
precondition.

Expected Outcome

The order is successfully transitioned to the open.not_running.suspended state. Users are
restricted from processing work items associated with the suspended order.

Alternate Outcome with Grace Period

The order enters into a grace period that allows all work items that are currently
accepted to be processed. During the grace period, the current order state remains
open.running.in_progress and the target state is set to open.not_running.suspended. The
order will complete the transition to the open.not_running.suspended state when all
accepted work items for the order are completed or the grace period expires,
whichever comes first. New work items cannot be accepted during the grace period.

The grace period may be configured on the order state policy and/or specified on this
call.

2-16 OSM Developer's Guide

Web Service Operations Used for Order Management

ResumeOrder

This operation resumes an order that is currently suspended or cancelled so that work
items associated with the order are allowed to be processed.

Preconditions
s The current state of the specified order is either open.not_running.suspended or
open.not_running_cancelled.

s The target state of the order is not set.

s The order life-cycle policy associated with the order's specification has the Resume
Order transaction enabled from the open.not_running.suspended state or open.not_
running.cancelled state.

s The user performing the transaction is a member of one or more of the
workgroups associated with the Resume Order transaction referenced in
precondition.

Expected Outcome

The order is successfully transitioned to the open.running.in_progress or open.not_
running.not_started state. Authorized users may process work items associated with
the specified order.

Using OSM Order Management Web Services 2-17

CancelOrder

CancelOrder

This operation cancels an order. All outstanding work items associated with the order
are deleted, and all complete work items associated with the order are compensated
(undone).

Preconditions

= The current state of the specified order is open.running.in_progress or open.not_
running.suspended.

s The target state of the order is not set.

s The order life-cycle policy associated with the order's specification has the Cancel
Order transaction enabled from the current order state (open.running.in_progress
state or open.not_running.suspended).

s The user performing the transaction is a member of one or more of the
workgroups associated with the Cancel Order transaction referenced in
precondition.

Expected Outcome

The order is successfully transitioned to the open.running.compensating.cancelling state.
Incomplete work items associated with the order are deleted. Completed work items

associated with the specified order are compensated. Once compensation completes,

the order is transitioned to open.not_running.cancelled.

Alternate Outcome with Grace Period

The order enters into a grace period that allows all work items that are currently
accepted to be processed. During the grace period, the current order state remains at
its current value (open.running.in_progress or open.not_running.suspended) and the target
order state is set to open.running.compensating.cancelling. The order will complete the
transition to the open.running.compensating.cancelling state when all accepted work
items for the order are completed or the grace period expires, whichever comes first.
New work items cannot be accepted during the grace period. The grace period may be
configured on the order life-cycle policy and/or specified on this call.

2-18 OSM Developer's Guide

Web Service Operations Used for Order Management

AbortOrder
This operation aborts an order, and aborts all work items associated with the order.
You can grant permissions for this operation by editing the Abort Order transaction in
the order life-cycle policy associated with the order's specification in Design Studio.
Preconditions

s The user performing the operation must be a member of one or more of the
workgroups associated with the Abort Order transaction.

Expected Outcome

The order is successfully transitioned to the closed.aborted state. Users are restricted
from processing the aborted order.

Using OSM Order Management Web Services 2-19

FailOrder

FailOrder

Preconditions

This operation fails an order. A failure must be resolved before the order can proceed
any further. You can grant permissions for this operation by editing the Fail Order
transaction in the order life-cycle policy associated with the order's specification in
Design Studio.

s The user performing the operation must be a member of one or more of the
workgroups associated with the Fail Order transaction.

Expected Outcome

The order is successfully transitioned to the open.not_running.failed state. Users are
restricted from processing work items associated with the failed order.

Alternate Outcome With Grace Period

The order enters into a grace period that allows all work items that are currently
accepted to be processed. During the grace period, the current order state remains
open.running.in_progress and the target state is set to open.not_running.failed. The order
will complete the transition to the open.not_running.failed state when all accepted work
items for the order are completed or the grace period expires, whichever comes first.
New work items cannot be accepted during the grace period. The grace period may be
configured on the order state policy or specified on this call.

2-20 OSM Developer's Guide

Web Service Operations Used for Order Management

ResolveFailure

Preconditions

This operation resolves all failed tasks within an order or a collection of order
components for a given order. The operation causes all tasks to transition back to the
corresponding normal execution mode such as do, redo and undo from failed-do,
failed-redo, or failed undo. The operation also causes the task to return to the task state
it had been in before failing (normally the accepted or a custom task state).

If you use the failed order state, then this operations also causes an order that is
currently failed to transition back to the order state prior to entering the current failed
order state.

You can grant permissions for this operation by editing the Manage Order Fallout
transaction for the failed, amending, canceling, in progress, suspended, or waiting for
revision states in the order life-cycle policy associated with the order's specification in
Design Studio.

= The current state of the specified order must be one of the following:
- open.not_running.failed
- open.not_running.suspended
- open.not_running.waitinforrevision
- open.running.in_progress
- open.running.amending
- open.running.canceling

s The user performing the operation must be a member of one or more of the
workgroups associated with the Manage Order Fallout transaction.

Expected Outcome

All tasks on the order or on specific order components of the order that are in a failed
execution mode transition to the corresponding normal execution mode in the state
the task had been in before failing. For example, an order with a task in the
failed-undo mode in the accepted state would transition back to the normal undo
mode in the state the task had been in when it had failed.

If this operation is run when the order is in the failed sate, then the order is
successfully transitioned to its previous state.

Using OSM Order Management Web Services 2-21

RetryOrder

RetryOrder

Preconditions

This operation retries all failed tasks within an order or a collection of order
components for a given order. The operation causes all tasks to transition back to the
corresponding normal execution modes such as do, redo and undo from failed-do,
failed-redo, or failed-undo. The operation also causes tasks to return to the received
state.

You can grant permissions for this operation by editing the Manage Order Fallout
transaction for the failed, amending, canceling, in progress, suspended, or waiting for
revision states in the order life-cycle policy associated with the order's specification in
Design Studio.

= The current state of the specified order must be one of the following:
- open.not_running.failed
- open.not_running.suspended
- open.not_running.waitinforrevision
- open.running.in_progress
- open.running.amending
- open.running.canceling

s The user performing the operation must be a member of one or more of the
workgroups associated with the Manage Order Fallout transaction.

Expected Outcome

All tasks on the order or on specific order components of the order that are in a failed
execution mode transition to the corresponding normal execution mode in the
received state. For example, an order with a task in the Failed-Undo mode in the
accepted state would transition to the Undo mode in the received state and another
task in the Failed-Do mode in the assigned state would transition to the Do mode in
the received state.

2-22 OSM Developer's Guide

Web Service Operations Used for Problem Order Diagnosis

Web Service Operations Used for Problem Order Diagnosis

This section describes web service operations used for diagnosing problem orders.
This includes getting order process history, compensation history and compensation
details. Order diagnoses operations are defined in the
OrderManagementDiag.wsdl.wsdl file

Using OSM Order Management Web Services 2-23

GetOrderProcessHistory

GetOrderProcessHistory

This operation returns process history perspective of an order. The different kinds of
process history perspectives are:

s Original: An order that has never been compensated and has only one (the
original) process history perspective. For an order that has been compensated, the
original process history perspective includes all tasks created before the first
compensation for the order has started.

= Latest: Includes all tasks that have never been compensated.

= Identified by compensationID: A new process history perspective is created for
the compensation of each order that has been started. A task must satisfy the
following conditions to be included in the process history perspective that is
identified by compensation:

- Tobe created before any later compensation has started (if any).
- Not to be compensated in any prior compensation.

When a task is "redo" compensated, the "redo" compensator replaces the task in all
subsequent process history perspectives. When a task is "undone," it is not
included into any subsequent process history perspectives. Tasks that are
compensated in the compensation context that the process history is requested for
are included in the response and their compensation details are provided.

Use the GetOrderCompensations operation to retrieve information about order
compensations, including their IDs. See "GetOrderCompensations.”

Preconditions
s The specified order exists.

Expected Outcome

The process history perspective for the order is returned.

2-24 OSM Developer's Guide

Web Service Operations Used for Problem Order Diagnosis

GetOrderCompensations

This operation retrieves the history of all compensations for an order. For each
compensation, the data returned includes the type of compensation, submission date,
start date (optional), and completion date (optional).

Preconditions
s The specified order must exist.

» The specified order must be in the open.running.compensating.amending or
open.running.compensating.cancelling state.

Expected Outcome

The order compensation plan information is returned as a set of compensation tasks,
along with the compensation dependencies between them.

Using OSM Order Management Web Services 2-25

GetCompensationPlan

GetCompensationPlan

This operation retrieves compensation plan details for an order. For each
compensation plan, the data returned includes the type of compensation, active
compensation task information, pending compensation task information, and the state
transition history for compensation tasks.

Preconditions
s The specified order must exist.

» The specified order must be open.running.compensating.amending or
open.running.compensating.cancelling.

Expected Outcome

The order compensation plan information is returned.

2-26 OSM Developer's Guide

Navigating WSDL and XSD Files

Navigating WSDL and XSD Files

This section describes how to navigate the WSDL and XSD files to determine the input
parameters, responses, and fault types that a given OSM Web Service operation
defines. The information is presented through an example that is applicable to all
operations.

Using OSM Order Management Web Services 2-27

Order Management WSDL File

Order Management WSDL File

Example 2—4 is an excerpt from the OrderManagementWS.wsdl file that shows how a
typical OSM Web Service operation is defined.

Example 2-4 WSDL Operation Definition

<wsdl:operation name="CreateOrderBySpecification">
<wsdl:input message="prov:CreateOrderBySpecificationRequest">
</wsdl:input>
<wsdl:output message="prov:CreateOrderBySpecificationResponse">
</wsdl:output>
<wsdl:fault name="InvalidOrderSpecificationFault"
message="prov:CreateOrder_faultMsg">
</wsdl:fault>
<wsdl:fault name="TransactionNotAllowedFault"
message="prov:CreateOrder_faultMsgl">
</wsdl:fault>
<wsdl:fault name="InvalidOrderDataFault"
message="prov:CreateOrder_faultMsg3">
</wsdl:fault>
</wsdl:operation>

The WSDL file defines each operation in the same manner, which provides the
following information:

= Operation name: The name of the web service operation.

= Input message: The request structure that is defined in the corresponding XSD
file.

= Output message: The response structure that is defined in the corresponding XSD
file.

s Fault names: The exception structures that are defined in the corresponding XSD
file.

The WSDL file tells you what request goes with what response, and what exceptions
the request may throw. Each web service operation defines a request and a response,
which are the input and output parameters. The request and response structures are
defined in the corresponding XSD file. For example, the CreateOrderBySpecification
operation is defined in the OrderManagmentWS.wsdl file, and the corresponding
XSD file is OrderManagementWS.xsd.

2-28 OSM Developer's Guide

Navigating WSDL and XSD Files

Order Management XSD File

This section describes how to navigate the XSD files. The request and response
structures defined in the XSD are used by the OSM Web Service operations as input
and output parameters. This section provides graphics of the XSD in various states of
expansion. You can view the XSD using any XML application, such as XMLSpy.

XMLSpy offers several ways to view XML files. XSD files containing large structures
can be very difficult to read. The examples provided in this section show how to view
XSD files using the Schema/WSDL Design view, which allows you to view the top
level structures and then expand and collapse them as needed. Viewing the XML
structure in this manner automatically pulls in any referenced structures, removing the
need to scroll around to locate them.

Note: If you are using an application other than XMLSpy to view
XML files, your views of the XSD may differ from the examples used
in this section.

Determining Input Parameters (Request)

Figure 2-1 shows a portion of the OrderManagmentWS.xsd file in the Schema/WSDL
Design view, as it appears when first opened. This is the top level of the view, which
lists all simpleType, complexType, and elements that are defined in the file.

Figure 2-1 Schema/WSDL Design View

ﬁcumplexwpe GetOrderRequestType
ﬂcumplexwpe GetOrderResponzeType

offlelement Create0QrderBySpecification
of8|elemert CreateOrderBySpecificationResponse
off|element GetOrder

ofd |elemert GetOrderResponse

From the top level, clicking the grey box located to the left of any element or
complexType expands the structure. Continuing with the example, Figure 2-2 shows
the result of clicking the grey box located to the left of CreateOrderBySpecification.

Figure 2-2 Expanded Structure

From this level, you can see that CreateOrderBySpecification defines
CreateOrderBySpecificationRequestType, but you cannot see what
CreateOrderBySpecificationRequestType actually defines. Clicking the "+" located
within the CreateOrderBySpecificationRequestType structure box expands the
structure. Figure 2-3 and Figure 2—4 show the result of this action.

Using OSM Order Management Web Services 2-29

Order Management XSD File

Figure 2-3 Further Expanded Structure

-
El | osm:CreateOrderBySpecificationRequest Type

Specification

O0O000OThe order
definition.,

= i
-+ Reference !

O0000OThe arder
reference, The arder
reference is00000O0
typically usad to store an
upstream arder id ForO OO
OOtracking purposes,
however it can be used ForO
O00OOary required
purpose,

O00000OThe priotity of
the order. If the priority
walue OOOOOOiz outsida
the walid prority range
specified as000000Opart
of the arder definition, then
the priority 0OOOOO
walue will be autaratically
rounded ta the 0O0OOOO
nearest valid walue,

contrals whether ar nat the
systern 00O 00 Owil
autarnatically add mandatory
data that is00000Ornissing
fram a request, Missing
mandatory dataO0O00O0O00wil
be added using deFault walues
defined inOO0OOOOmetadata,

=StartOrder .

O00000OThis elerment
contrals whather ar not the
order000000will be

autarnatically started or not,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CreateOrderBySpecification E]—:—[—H-—:EI— BB BB s ol e
|
|
|
|
|
|
'

2-30 OSM Developer's Guide

Navigating WSDL and XSD Files

Figure 2-4 Further Expanded Structure (continued)

From this level, you can see that CreateOrderBySpecificationRequestType defines:

CreateQrderBySpecification [%}l{—u-—)zl—

Specification

Reference

Priority
AutoAddMandatoryData
StartOrder

Data

Remark

O0O000OThis elernent
contrals whether ar nat the
systern 0O 000 Owill
autornatically add mandatary
data that is00000Ormissing
frorn a request, Missing
mandatery dataO0 0000wl
be added using default walues
defined inOO00OOOOmetadata,

=Startorder -

1
OO0O000OThis elernent
contrals whether or nat the
order 00000 Owill be
autarnatically started ar not,

o
g !
"I
o

a O0OThe

structure and acceptable

content of this OO

Oelerment is defined by the

metadata aszociated O
OOwith the arder

specification, In particular,

theO ODOcreation
wiew associated with the
orderd oo

specification type and source
determines the O
Oexact walues required,

0. .=
O00000OThis elernent
allowes rernarks and
attachrments Lo 0OO0O0O0O
be added to the arder,

However, you cannot see what the Specification, Data, or Remark structures define. As
with the previous level, you can expand any of these structures by clicking the "+"
located to the right of the structure name. Clicking the "+" located within the Data and
Remark structure box expands the structures. Figure 2-5 shows the result of this
action.

Using OSM Order Management Web Services 2-31

Order Management XSD File

Figure 2-5 Further Expansion of Data and Remark Elements

| -+ AutoAddMandatoryData !

CreateQrderBySpecification [%}LE)EI— OO0O0000This elernent

cantrals whether ar not the
systern 00000 Owill
autornatically add mandatary
data that 00000 Ormissing
fram a raquest, Missing
rmandatory data 00000 0wl
be added using default walues
defined inO0O0OOOOmetadata,

OOO00O0OOThis element
controls whether or nat the
order0000O00will be
autarnatically startad ar not,

l—usm:OrderI]ataT}rpe _‘

| (= b E ey
Ve e | -------------- e /-’

O OOThe 0. |

structure and acceptable L -

content of thisO

Oelernent is defined by the

metadata associated O
OOwith the order

specification. In patticular,

theOl O DOcreation
order0 oo

specification type and source
determines theO
Oexact walues requirad,

,
,
,
,
,
,
,
i
' wiews associated with the
,
,
,
,
,
,
,
,

0. | ____________ 0
OO0O000OOThis elernant

allowws rermarks and L

attachrnents to0OOOO0OO

be added to the order,

Expanding the Specification, Data, and Remark structures shows additional defined
structures and fields. In this example, note that the structure defined under the Data
structure (OrderDataType any) is a structure that is defined in Design Studio. For
example, you may define five different order templates, so the structure under the
Data structure varies depending on the order type. The order-specific data in the
request is validated by the server through the creation task view.

"non

Note: To collapse any of the structures at any level, click "-" located
near the structure name. You can also collapse all structures and
return to the top level by clicking the collapse button, located in the
upper left corner as shown in Figure 2-3. The collapse button is only
visible in the upper left corner, so you must scroll all the way up and
all the way to the left to see it.

Determining Output Parameters (Response)

You can expand the response structure defined for an operation. Figure 2-6 shows the
top level of the OrderManagementWS.xsd file in Schema/WSDL Design view.

2-32 OSM Developer's Guide

Navigating WSDL and XSD Files

Continuing with our example, expand CreateOrderBySpecificationResponse to
determine the expected response.

Figure 2-6 Schema/WSDL Design View

ﬁcamplexwpe GetOrderRequest Type
ﬁcumplexwpe GetOrderResponseType

off |element CreateOrderBySpecification

off |zlement Create0rderBySpecificationResponse
off|element GetOrder

ofd |elemert GetOrderResponse

Figure 2-7 shows the expected response defined by
CreateOrderBySpecificationResponse, which can be expanded even further.

Figure 2-7 Expanded Structure

—
usm CreateOrderBySpecificationResponseType |

Ordersummary |

CreateOrderBySpecificationResp. EH{—“'—EJ_{ EED%EEDA ummary of |
P |

|

|

|

t-+ AmendmentSummary [

| O00000OIF the created order
is an amendrment, a summary O

| O0O0O0Oof the arder that is being
arnended is returmed.,

Determining Fault Types

You can expand the fault names defined for the operation. Continuing with the
CreateOrderBySpecification example, InvalidOrderSpecificationFault,
TransactionNotAllowedFault, and InvalidOrderDataFault are all defined as top level
structures in the OrderManagementWS.xsd file.

Using OSM Order Management Web Services 2-33

Order Management Request and Response Examples

Order Management Request and Response Examples

This section provides sample XML requests and sample XML responses. Sample XML
for any web service operation can be generated from the XSD using any XML
application such as XMLSpy.

To generate a sample XML file using XMLSpy:

1.
2

Open an XSD file in XMLSpy.
From the menu, select DTD/Schema, then select Generate Sample XML File.

The Select a Root Element dialogue box opens, which lists all root elements
defined in the XSD, such as CreateOrder, CreateOrderResponse, FindOrder,
FindOrderResponse, and so on.

Select a root element and click OK.

The Generate Sample XML File dialogue box appears, which provides a few
selection options such as generating non-mandatory elements and attributes, the
number of structures to generate for structures that are defined as a sequence, and
whether or not to populate the XML with data.

Choose the appropriate options and click OK.
The generated XML displays within a new file, Untitled.xml.

Generating XML in this manner does not generate the SOAP header and body.
However, the SOAP header and body can be manually inserted into the generated
XML.

2-34 OSM Developer's Guide

Order Management Request and Response Examples

CreateOrderBySpecification Examples

This section provides a request example and a response example for the
CreateOrderBySpecification operation.

Request Example

Example 2-5 CreateOrderBySpecificationRequest

<?xml version = '1.0' encoding = 'UTF-8'?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ws="http://xmlns.oracle.com/communications/ordermanagement">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-sec
ext-1.0.xsd">
<wsse:UsernameToken wsu:Id="UsernameToken-4799946"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-util
ity-1.0.xsd">
<wsse:Username>administrator</wsse:Username>
<wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-username-token-profi
le-1.0#PasswordText">administrator</wsse:Password>
</wsse:UsernameToken>
</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<ws:CreateOrderBySpecification>
<ws:Specification>
<ws:Cartridge>
<ws :Name>view_framework_demo</ws :Name>
<!--Optional:-->
<ws:Version>1.0</ws:Version>
</ws:Cartridge>
<ws: Type>vfi_demo</ws: Type>
<ws: Source>web</ws: Source>
</ws:Specification>
<!--Optional:-->
<ws:Reference>test message</ws:Reference>
<!--Optional:-->
<ws:Priority>5</ws:Priority>
<!--Optional:-->
<ws :AutoAddMandatoryData>true</ws:AutoAddMandatoryData>
<!--Optional:-->
<ws:StartOrder>true</ws:StartOrder>
<!--Optional:-->
<ws:Data>
<_root>
<account_information>
<amount_owing>553</amount_owing>
</account_information>
</_root>
</ws:Data>
<