

[1] Oracle® Communications
Network Service Orchestration
Implementation Guide

Release 7.3.5

E80746-01

February 2017

Oracle Communications Network Service Orchestration Implementation Guide, Release 7.3.5

E80746-01

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Related Documentation... vii
Documentation Accessibility ... viii

1 Overview

About Network Service Orchestration... 1-1
Network Service Orchestration Components ... 1-2
About Network Service Orchestration Entities.. 1-2
About the UIM User Interface ... 1-4

About UIM Help .. 1-5
About the Sample Network Services ... 1-5

2 Setting Up Network Service Orchestration

Planning Your Implementation... 2-1
Software Requirements... 2-1
Migrating Network Service Orchestration 7.3.4 Cartridges... 2-2
Installing and Integrating the Network Service Orchestration Components 2-2
Integrating Network Service Orchestration With Northbound Applications for Asynchronous
Communication .. 2-2
Integrating the VIM with Network Service Orchestration .. 2-3

Registering the VIM... 2-4
Discovering VIM Resources ... 2-4

Setting Network Service Orchestration Properties ... 2-5
Enabling Logging for Network Service Orchestration ... 2-6
Supported Southbound Integration ... 2-6

3 Designing and Onboarding Network Services, VNFs, and PNFs

About Design Components .. 3-1
About Descriptor Files... 3-1

About Network Service Descriptor Files... 3-2
About VNF Descriptor Files ... 3-11
About PNF Descriptor Files ... 3-19
Creating a Descriptor File ... 3-20

About Technical Actions Files... 3-20

iv

Creating a Technical Actions File .. 3-23
About VNF Configuration Files.. 3-23

Setting Network Service Descriptor Properties .. 3-24
Onboarding Network Services and VNFs Using TOSCA Descriptor Templates 3-26

Sample TOSCA VNF Descriptor Template ... 3-27
Sample TOSCA Network Service Descriptor Template .. 3-29
Installing Python ... 3-31
Importing the TOSCA VNFD Template into Design Studio .. 3-32

Tagging Network Service Orchestration Specifications ... 3-33
Designing Custom Network Services ... 3-33

Creating Cartridges for VNFs ... 3-34
Logical Device Specification... 3-34
Service Specification .. 3-36
Service Configuration Specification .. 3-37

Creating Cartridges for PNFs.. 3-38
Logical Device Specification... 3-38
Service Specification .. 3-39
Service Configuration Specification .. 3-40

Creating Cartridges for Network Services .. 3-41
Network Service Specification ... 3-41
Network Service Configuration Specification ... 3-43

4 Working with Network Services, VNFs, VDUs, and PNFs

Instantiating Network Services ... 4-1
Managing Failed Life-Cycle Actions ... 4-3

Accepting Partially Instantiated Network Services ... 4-3
Rolling Back Partially Instantiated Network Services... 4-4
Adding Failed VNFs to Partially Instantiated Network Services.. 4-4

Modifying Network Services... 4-4
Adding VNFs to Existing Network Services.. 4-5
Removing VNFs from Existing Network Services .. 4-5

Terminating Network Services.. 4-5
Viewing Progress of Life-cycle Actions ... 4-6
Scaling VNFs ... 4-6
Healing VNFs.. 4-7

Monitoring VNFs ... 4-7
About the Monitoring Tabs in the User Interface ... 4-8

Working with PNFs in Network Services ... 4-8
Retrieving Details About Network Services, VNFs, PNFs, and Descriptors 4-8
Registering VNFs with Third-Party Systems ... 4-9

5 Implementing the Sample Network Services

Configuring the Juniper vSRX Base Image... 5-1
Implementing the Network Protection Service.. 5-4
Implementing the Residential Gateway Network Service .. 5-5
Implementing the Proxy-Call Session Control Function Network Service.................................. 5-7
Integrating Network Service Orchestration with IP Service Activator .. 5-9

v

Setting Juniper_vSRX Sample Cartridge Properties .. 5-10

6 Extending Network Service Orchestration

Setting Up Design Studio for Extending Network Service Orchestration 6-1
Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration .
6-2

Writing a Custom Ruleset Extension Point .. 6-2
Using Java Interface Extensions... 6-3

Implementing a Custom SDN Controller.. 6-4
Implementing a Custom Monitoring Engine.. 6-6
Implementing a Custom VIM ... 6-7
Implementing a Custom VNF Life Cycle Manager ... 6-8
Implementing an Adapter for a Custom VNF Manager... 6-9
Implementing a Custom VNF Connection Manager.. 6-10
Implementing a Custom VNF Configuration Manager ... 6-12
Implementing a Custom Response Manager... 6-13
Implementing a Custom Notification Manager ... 6-13

Localizing Network Service Orchestration .. 6-14
Localizing the Responses in RESTful APIs.. 6-14

7 Network Service Orchestration RESTful API Reference

About the Network Service Orchestration RESTful APIs ... 7-1
Network Service Orchestration RESTful API Resources ... 7-2
RESTful API Responses.. 7-3
Sample Requests and Responses .. 7-5

Register VIM ... 7-5
Discover VIM Resources ... 7-6
Update VIM .. 7-7
Get VIM Details .. 7-8
Instantiate Network Service ... 7-9
Get Network Services ... 7-12
Get Network Service Details ... 7-13
Get Network Service VNFs.. 7-16
Get Network Service Networks .. 7-18
Get Network Service End Points... 7-19
Get Network Service Status ... 7-20
Terminate Network Service ... 7-21
Add VNF to Network Service ... 7-23
Terminate VNF in a Network Service .. 7-25
Heal VNF.. 7-27
Scale VNF ... 7-31
Get VNF Details... 7-34
Get VNF Status .. 7-36
Heal VDU ... 7-36
Register PNF .. 7-37
Update PNF.. 7-38

vi

Get PNFs... 7-39
Get PNF Details ... 7-40
Unregister PNF.. 7-40
Register EMS.. 7-41
Update EMS ... 7-42
Get EMSs .. 7-42
Get EMS Details... 7-43
Unregister EMS.. 7-44
Get Network Service Descriptors ... 7-44
Get Network Service Descriptor Details.. 7-45
Get Network Service Descriptor VNFDs... 7-47
Get Network Service Descriptor Flavors ... 7-48
Get VNF Descriptor Details ... 7-49
Get VNF Descriptor Flavors .. 7-51

vii

Preface

This guide explains how to implement and use Oracle Communications Network
Service Orchestration.

Audience
This document is intended for:

■ Network operations and management personnel who install, configure, and
maintain physical and virtual network infrastructure

■ Data modelers who define specifications for entities that represent Virtual
Network Functions (VNFs), network services, and other related and dependant
items in the inventory

■ Engineers who model resources in Design Studio

■ Systems integrators who implement and integrate Oracle Communications
Unified Inventory Management (UIM) and third-party software as part of
Network Service Orchestration

The guide assumes that you have a working knowledge of UIM and Network
Functions Virtualization (NFV) architecture and concepts.

Related Documentation
For step-by-step instructions to perform tasks, log in to each application to see the
following:

■ UIM Help: Provides step-by-step instructions for tasks you perform in UIM.

■ Design Studio Help: Provides step-by-step instructions for tasks you perform in
Design Studio.

For more information, see the following documentation:

■ UIM Installation Guide: Describes the requirements for installing UIM, installation
procedures, and post-installation tasks.

■ UIM System Administrator’s Guide: Describes administrative tasks such as working
with cartridge packs, maintaining security, managing the database, configuring
Oracle Map Viewer, and troubleshooting.

■ Design Studio Installation Guide: Describes the requirements for installing Design
Studio, installation procedures, and post-installation tasks.

■ UIM Security Guide: Provides guidelines and recommendations for setting up UIM
in a secure configuration.

viii

■ UIM Concepts: Provides an overview of important concepts and an introduction to
using both UIM and Design Studio.

■ UIM Developer’s Guide: Explains how to customize and extend many aspects of
UIM, including the data model, life-cycle management, topology, security, rulesets,
user interface, and localization.

■ Design Studio Developer’s Guide: Describes how to customize, extend, and work
with cartridges.

■ UIM Web Services Developer’s Guide: Describes the UIM Web Service operations and
how to use them, and describes how to create custom Web services.

■ UIM Information Model Reference: Describes the UIM information model entities
and data attributes, and explains patterns that are common across all entities. This
document is available on the Oracle Software Delivery Cloud as part of the Oracle
Communications Unified Inventory Management Developer Documentation
package.

■ Oracle Communications Information Model Reference: Describes the Oracle
Communications information model entities and data attributes, and explains
patterns that are common across all entities. The information described in this
reference is common across all Oracle Communications products. This document
is available on the Oracle Software Delivery Cloud as part of the Oracle
Communications Unified Inventory Management Developer Documentation
package.

■ UIM Cartridge Guide: Provides information about how you use cartridge packs
with UIM. Describes the content of the base cartridges.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

1

Overview 1-1

1Overview

This chapter provides an overview of Oracle Communications Network Service
Orchestration.

About Network Service Orchestration
Oracle Communications Network Service Orchestration is a functional module of
Oracle Communications Unified Inventory Management (UIM). You use Network
Service Orchestration to model network services, Virtual Network Functions (VNFs),
and Physical Network Functions (PNFs). You also use Network Service Orchestration
to manage the life cycles of network services and VNFs.

Network Service Orchestration enables you to create, implement, and manage the life
cycles of network services and deploy the network services as interconnected VNFs
and PNFs on virtual resources.

Network Service Orchestration enables you to model a VNF that is composed of
multiple internal components called Virtual Network Function Components (VNFCs),
that you can deploy on multiple Virtual Deployment Units (VDUs). You deploy the
VDUs as virtual machines (VMs) in the NFV Infrastructure (NFVI), thus enabling you
to design and deploy large, complex VNFs across multiple VMs. See "About VNF
Descriptor Files" for more information.

Network Service Orchestration provides the following functionality:

■ Onboarding of Network Services, VNFs, and PNFs. You can define network
services, VNFs, and PNFs based on any network function that you want to
virtualize. See "Designing and Onboarding Network Services, VNFs, and PNFs"
for more information.

■ Instantiation and Termination of Network Services. You can quickly instantiate
and terminate VNFs and network services in response to demand on your
network. You can manage the life cycles of your VNFs and network services and
control the resources that they use. See "Working with Network Services, VNFs,
VDUs, and PNFs" for more information.

■ Scaling of VNFs. You can scale VNFs when the existing resources assigned to a
VNF are unable to provide the expected quality of service, so it is necessary to add
additional resources to meet the needs of the VNF and to maintain the quality of
service. See "Scaling VNFs" for more information.

■ Healing VNFs. You can heal a VNF when the VNF fails to perform at the expected
performance level. See "Healing VNFs" for more information.

■ Resource Orchestration. Network Service Orchestration manages the resources
across your data centers to ensure that each network service is allocated the

Network Service Orchestration Components

1-2 Network Service Orchestration Implementation Guide

required resources to meet the needs of the VNFs. See "Working with Network
Services, VNFs, VDUs, and PNFs" for more information.

■ Asynchronous communication with northbound applications. Network Service
Orchestration supports asynchronous communication with northbound
applications. See "Integrating Network Service Orchestration With Northbound
Applications for Asynchronous Communication" for more information.

■ Viewing Progress of Life-cycle Actions. You can view notifications that indicate
the progress of the life-cycle actions that you perform on the network service and
its constituent VNFs. See "Viewing Progress of Life-cycle Actions" for more
information.

■ Customization and Extension. You can customize and extend Network Service
Orchestration to support integration with third-party VNF Managers, Virtualized
Infrastructure Managers (VIMs), software-defined networking (SDN) controllers,
and monitoring engines. Network Service Orchestration also provides extension
points that enable you to customize and extend its core functionality. See
"Extending Network Service Orchestration" for more information.

Network Service Orchestration Components
Network Service Orchestration builds on Oracle Communications Unified Inventory
Management (UIM), taking advantage of its inventory and workflow capabilities to
perform run-time orchestration of Network Functions Virtualization (NFV)
environments, including virtual, physical, and hybrid networks.

Oracle Communications Design Studio provides the design-time environment for
onboarding VNFs and composing network services. Network Service Orchestration is
extensible and allows integration with third-party VNF managers, VIMs, monitoring
engines, and SDN Controllers.

Network Service Orchestration includes a VNF Manager that enables you to manage
the life cycles of the VNFs. Network Service Orchestration also supports integration
with Oracle and third-party VNF Managers, VIMs, SDN controllers, and network
monitoring applications. By default, Network Service Orchestration provides
integration to certain applications and supports integration to additional applications
during the implementation.

Network Service Orchestration provides RESTful APIs, which communicate over
HTTP and HTTPS, to interact and exchange data between various components.

About Network Service Orchestration Entities
Network Service Orchestration uses the Oracle Communications Information Model
(OCIM) to represent inventory items and business practices. The Oracle
Communications Information Model is based on the Shared Information Data (SID)
model developed by the TeleManagement Forum. The information model contains
resource entities, service entities, common patterns, definitions, and common business
entities.

For details about the Oracle Communications Information Model (OCIM), see Oracle
Communications Information Model Reference and UIM Information Model Reference.

Table 1–1 describes the NFV entities and their corresponding OCIM entities.

About Network Service Orchestration Entities

Overview 1-3

Table 1–1 Mapping of NFV Entities and OCIM Entities

NFV Entity OCIM Entity Description

Availability Zone Custom Object with
characteristics.

Represents a grouping of resources based on
availability characteristics, for example, Availability
Zone (OpenStack). In OpenStack, availability zones
enable you to arrange OpenStack compute hosts into
logical groups and provides a form of physical
isolation and redundancy from other availability
zones, such as by using a separate power supply or
network equipment.

Connection Point Device Interface Represents a port on the VNF. Connection points
connect Virtual Links to VNFs. They represent the
virtual interfaces and physical interfaces of the VNFs
and their associated properties and other metadata

Deployment Flavor Custom Object Represents a specific deployment of a network service
or VNF supporting specific key performance indicators
(KPIs), such as capacity and performance.

Element Management
System (EMS)

Custom Object Represents the Element Management System, which
performs the typical management functionality for one
or several VNFs.

Endpoint Custom Object Describes a service access point for the network
service.

Flavor Custom Object Defines the compute, memory, and storage capacity of
computing instances. A flavor is an available hardware
configuration for a server. It defines the size of a virtual
server that can be launched.

Host Custom Object with
characteristics.

Represents a compute host, a physical host dedicated
to running compute nodes.

Infrastructure Domain Network Address Domain Represents the domain within the NFV Infrastructure
that includes all networking that interconnects
compute and storage infrastructure.

IP Network Infrastructure ■ Network Address
Domain

■ IP Network

■ IP Subnet

■ IP Address

Represents the network, subnet, and IP address of the
VNF in Network Service Orchestration.

The networks are either created or referenced in the
service configuration. During activation, the
corresponding network, subnet, and ports are created
in the VIM on which the VNF virtual machine is
deployed.

IP Address IP Address Represents an IPv4Address and an IPv6Address in the
OCIM domain model.

Network Service Service Represents a composition of network functions.

Network Service
Descriptor

■ Service Specification

■ Service Config Version
Specification

Describes a network service in terms of its deployment
and operational behavior. Used in the process of
network service on-boarding and managing the life
cycle of a network service instance.

Orchestration Request Business Interaction Represents an NFV life-cycle action in UIM. Every time
you perform a life-cycle action, Network Service
Orchestration creates a business interaction for the
action in UIM.

Physical Network
Function (PNF)

Logical Device Service Represents an implementation of a network function
that is a tightly-coupled hardware and software
system. A network function is a functional building
block within a network infrastructure that has
well-defined external interfaces and a well-defined
functional behavior.

About the UIM User Interface

1-4 Network Service Orchestration Implementation Guide

About the UIM User Interface
The UIM user interface provides a group of links and pages for performing network
service and VNF life cycle operations and for managing your data center resources.

The UIM user interface displays the Network Service Orchestration group in the
navigation section that includes the following expandable and collapsible subgroups
of links:

■ In the Orchestration subgroup:

– Orchestration Requests. Clicking this link displays the Search page for
orchestration requests. From the Search page, you can create new
orchestration requests. The Search page also returns service requests that are
created based on your NFV service request specifications.

PNF Descriptor ■ Logical Device
Specification

■ Service Specification

■ Service Config Version
Specification

Describes a PNF in terms of its deployment and
operational behavior. The PNF Descriptor is used for
onboarding PNFs.

SDN Controller Custom Object Centralizes some or all of the control and management
functionality of a network domain. An SDN controller
can also provide an abstract view of its domain to
other functional components through well-defined
interfaces.

Subnet IP Subnet Represents an administrative or functional boundary
on a range of network addresses. A subnet is defined
by a base range whose sequence is often appended to a
fixed prefix.

Virtual Data Center (VDC) Custom Object with
characteristics.

Represents the resources managed by a VIM under a
specific tenant (for example, OpenStack).

Virtual Link IP Network Describes the basic topology of connectivity between
VNFs and target parameters, such as bandwidth,
latency, and QoS. Virtual links connect to VNFs using
Connection Points (CPs).

Virtual Network Function
(VNF)

■ Logical Device

■ Logical Device Service

■ Service Config Version

Represents an implementation of a network function
that can be deployed on a Network Function
Virtualization Infrastructure (NFVI). A network
function is a functional building block within a
network infrastructure that has well-defined external
interfaces and a well-defined functional behavior.

Virtual Deployment Unit
(VDU)

Logical Device Represents a virtual machine that hosts a single or
multiple components of a VNF.

Virtualized Infrastructure
Manager (VIM)

Custom Object with
characteristics.

Represents a functional component that is responsible
for controlling and managing the NFVI compute,
storage and network resources, usually within an
operator's infrastructure domain.

VNF Descriptor ■ Logical Device
Specification

■ Service Specification

■ Service Config Version
Specification

Describes a VNF in terms of its deployment and
operational behavior. The VNF Descriptor is used in
the process of VNF onboarding and managing the life
cycle of a VNF instance.

Table 1–1 (Cont.) Mapping of NFV Entities and OCIM Entities

NFV Entity OCIM Entity Description

About the Sample Network Services

Overview 1-5

– Network Services. Clicking this link displays the Search page for network
services. From the Search page, you can create new network services. The
Search page also returns a list of network services that are created based on
your network service descriptors.

– VNFs. Clicking this link displays the Search page for VNFs. The search page
returns a list of VNFs that are created based on your VNF descriptors.

■ In the Catalog subgroup:

– Network Service Descriptors. Clicking this link displays the Search page for
Network Service descriptors. From the Search page, you can create and
instantiate new network services. The search page also returns a list of
network service descriptors.

– VNF Descriptors. Clicking this link displays the Search page for VNF
descriptors. The search page returns a list of VNF descriptors.

See the chapter on “UIM User Interface Overview” in UIM Concepts for more
information about the user interface. See the UIM Help for instructions about
performing tasks related to network services, VNFs, and PNFs.

About UIM Help
UIM includes a Help system that you use to get step-by-step instructions. You can find
the information you need by searching or by navigating through the table of contents.
See the section on “Using the UIM Help” in the chapter, “UIM User Interface
Overview” in UIM Concepts for more information about the UIM Help system.

About the Sample Network Services
Network Service Orchestration includes the following sample cartridges that you can
use as references for designing and implementing your own network services:

■ Juniper_vSRX. This sample cartridge contains the Juniper vSRX firewall VNF to
use with the network protection service.

■ Checkpoint_NG_FW. This sample cartridge contains the Checkpoint firewall VNF
to use with the network protection service.

■ Cisco_xRV. This sample cartridge contains the Cisco XRV router PNF to use with
the residential gateway network service.

■ OracleComms_SBC. This sample cartridge contains the Session Border Controller
(SBC) VNF to use with the Proxy-Call Session Control Function (P-CSCF) network
service.

■ NPaaS_NetworkService. This sample cartridge contains the functionality to
implement network protection as a service.

■ ResidentialGateway_NetworkService. This sample cartridge contains the
functionality to implement a residential gateway service.

■ OracleComms_P-CSCF_NetworkService. This sample cartridge provides the
functionality to implement a Proxy-Call Session Control Function (P-CSCF)
network service.

See "Implementing the Sample Network Services" for detailed information about the
sample network services.

About the Sample Network Services

1-6 Network Service Orchestration Implementation Guide

2

Setting Up Network Service Orchestration 2-1

2Setting Up Network Service Orchestration

This chapter describes the instructions for setting up Oracle Communications Network
Service Orchestration.

Planning Your Implementation
Before you implement Network Service Orchestration, you must identify the required
software, ensure that the required network infrastructure is available and ready, and
identify the third-party software that you want to use. Your choices are based on the
network services you want to deliver on your network.

Use the following list of tasks as a checklist to ensure that you have all the required
components for a successful implementation of Network Service Orchestration:

■ Install and integrate the Network Service Orchestration components. See
"Software Requirements" and "Installing and Integrating the Network Service
Orchestration Components".

■ Integrate your Virtual Infrastructure Manager (VIM). See "Integrating the VIM
with Network Service Orchestration".

■ Onboard Network Services and VNFs. See "Designing and Onboarding Network
Services, VNFs, and PNFs".

■ Write extensions for extending the core functionality and integrate third-party
software with Network Service Orchestration. See "Using Extension Points and
Java Interface Extensions to Extend Network Service Orchestration".

■ Integrate client applications with Network Service Orchestration for using the
RESTful APIs. For details about the RESTful APIs, see "Network Service
Orchestration RESTful API Reference".

Software Requirements
To implement Network Service Orchestration, you require the following software:

■ Oracle Communications Unified Inventory Management 7.3.5.

See UIM Installation Guide for installation instructions.

■ Oracle Communications Design Studio 7.3.5.

See Design Studio Installation Guide for installation instructions.

Migrating Network Service Orchestration 7.3.4 Cartridges

2-2 Network Service Orchestration Implementation Guide

Migrating Network Service Orchestration 7.3.4 Cartridges
If you are using Network Service Orchestration 7.3.4 VNF and network service
cartridges, you must migrate your 7.3.4 cartridges to 7.3.5 to take advantage of the
improved functionality introduced in Network Service Orchestration 7.3.5.

For detailed instructions, see Knowledge Article 2231188.1 - How To Migrate NSO 7.3.4
Cartridges To Network Service Orchestration 7.3.5 on the My Oracle Support website:

https://support.oracle.com

Installing and Integrating the Network Service Orchestration Components
To install and integrate the Network Service Orchestration components:

1. Install UIM on a WebLogic server. See UIM Installation Guide for installation
instructions.

2. Navigate to the UIM_Home/cartridges/base directory and deploy the following
UIM cartridges into UIM in the order they are listed:

■ ora_uim_baseextpts

■ ora_uim_basemeasurements

■ ora_uim_basetechnologies

■ ora_uim_basespecifications

■ ora_uim_baserulesets

■ OracleComms_NSO_BaseCartridge

See UIM Cartridge Guide for instructions about deploying cartridges into UIM.

3. (Optional) If you want to use the sample cartridges that are provided with
Network Service Orchestration, navigate to the UIM_Home/cartridges/sample
directory and deploy the sample cartridges into UIM.

See "About the Sample Network Services" for more information about the sample
cartridges provided with Network Service Orchestration.

See "Implementing the Sample Network Services" for information about
implementing the sample network services.

4. (Optional) Integrate Network Service Orchestration with northbound applications
for asynchronous communication. See "Integrating Network Service Orchestration
With Northbound Applications for Asynchronous Communication".

5. Integrate the VIM with Network Service Orchestration. See "Integrating the VIM
with Network Service Orchestration" for more information.

Integrating Network Service Orchestration With Northbound Applications
for Asynchronous Communication

Some VNF and network service life cycle operations perform long-running processes.
Network Service Orchestration supports integration with northbound applications in
asynchronous communication for such life cycle operations.

Note: Before deploying the sample cartridges, deploy the ora_uim_
common cartridge.

Integrating the VIM with Network Service Orchestration

Setting Up Network Service Orchestration 2-3

With this integration, Network Service Orchestration provides the final and actual
status of the following life-cycle actions so that northbound systems can perform and
complete service fulfillment:

■ Instantiate a network service

■ Terminate a network service

■ Add one or more VNFs to network service

■ Delete one or more VNFs from a network service

■ Scale a VNF

■ Reboot a VNF

■ Replace a VNF

■ Reboot a VDU

To integrate Network Service Orchestration with northbound systems for
asynchronous communication:

1. Configure your client applications to subscribe to the NSOResponseTopic topic in
the WebLogic server. During installation, UIM creates the JMS Module and
NSOResponseTopic.

You can implement a custom response topic and configure your applications to
subscribe to it. See "Implementing a Custom Response Manager" for more
information about implementing a custom response topic.

2. On the WebLogic server, in the JMS Module, create a Durable Subscriber under
NSOResponseTopic to capture the messages.

3. Open the UIM_Home/config/nso.properties file and uncomment the following
property:

#nso.ResponseManager.list.1=oracle.communications.inventory.nso.client.vnfm.NSO
ResponseTopicImpl

Integrating the VIM with Network Service Orchestration
Network Service Orchestration supports OpenStack and provides integration points
for integrating other third-party VIMs. See "Implementing a Custom VIM" for more
information about implementing a custom VIM.

Before you integrate the VIM with Network Service Orchestration, ensure that you set
up and configure the VIM to use with Network Service Orchestration. After your VIM
infrastructure is set up, register the VIM and discover the VIM resources into Network
Service Orchestration.

Integrating the VIM with Network Service Orchestration involves the following tasks:

■ Registering the VIM

■ Discovering VIM Resources

Note: If you use multiple VIMs, register all of them with Network
Service Orchestration and discover resources.

Integrating the VIM with Network Service Orchestration

2-4 Network Service Orchestration Implementation Guide

Registering the VIM
To register a VIM with Network Service Orchestration:

1. Ensure that UIM is started and running.

2. Ensure that the required Network Service Orchestration base cartridges are
deployed into UIM.

3. Ensure that the VIM is running and that you have the IP address, username,
password, and other details of the VIM instance.

4. In a RESTful API client, call the following RESTful API using the POST method:

POST http://nso_host:port/ocnso/1.1/vim

where:

■ nso_host is the IP address of the machine on which UIM is installed

■ port is the port number of the machine on which UIM is installed

5. Specify the VIM details in the request. For details about the request parameters,
see "Register VIM".

The RESTful API client returns a response.

6. In UIM, verify that a custom object with the details of the VIM is created.

Discovering VIM Resources
You discover VIM resources into UIM so that Network Service Orchestration contains
information about the current status and availability of all the required virtual
resources on the network. In UIM, VIMs are represented as custom objects.

When you discover VIM resources, the details of the following resources are
populated into UIM:

■ Availability zone (OpenStack)

■ Flavor

■ Host

■ Networks and Subnets

To discover VIM resources into UIM:

1. In a RESTful API client, call the following RESTful API using the POST method:

POST http://nso_host:port/ocnso/1.1/vim/vimId/discovery?infoLevel=vim_
information

where:

■ nso_host is the IP address or the domain name of the machine on which UIM is
installed

■ port is the port number of the machine on which UIM is installed

■ vimId is the Id of the VIM that you registered with Network Service
Orchestration and whose resources you want to discover

■ vim_information is the level of information about the VIM that you want to
retrieve and view in the response. The available values are:

– summary. Retrieves and displays a summary of the VIM resources.

Setting Network Service Orchestration Properties

Setting Up Network Service Orchestration 2-5

– details. Retrieves and displays complete details about all the VIM
resources.

For more details about the request parameters, see "Discover VIM Resources".

The RESTful API client returns a response.

2. In UIM, verify that the following entities are created:

■ Availability zone

■ Flavor

■ Host

■ VDC

■ Network address domains

■ IP subnets

Setting Network Service Orchestration Properties
Network Service Orchestration provides the UIM_Home/config/nso.properties file
that you use to specify properties for your implementation of Network Service
Orchestration.

To set the properties, open the nso.properties file in a text editor and update the
following parameters:

■ NSO_HOST: IPv4address

where IPv4address is the host on which UIM is installed. By default, Network
Service Orchestration considers the host on which the UIM server is running. If the
server is running on a private network that is unavailable to external network,
specify a reachable IP address for the server.

■ NSO_USERNAME: username

where username is the username of the UIM user.

■ NSO_PASSWORD: password

where password is the encrypted password of the UIM user.

To encrypt the password:

1. Create a text file and type the password.

2. Save and close the file.

3. In UIM, in the Administration group of the navigation section, click Execute
Rulesets.

4. In the Ruleset list, select the EncryptText ruleset, and enter the path and file
name of the text file that contains the password in plain text and click Process.

Note: Whenever you add, modify, or delete the compute, memory,
and network resources in your NFV Infrastructure (NFVI), run the
VIM discovery RESTful API to ensure that details about the currently
available resources on your NFVI are reflected correctly in Network
Service Orchestration.

Enabling Logging for Network Service Orchestration

2-6 Network Service Orchestration Implementation Guide

UIM displays the encrypted password. Copy the encrypted password and
specify it in the nso.properties file.

Enabling Logging for Network Service Orchestration
You enable logging for Network Service Orchestration to log debug messages.

For more information about logging, see the chapter about improving UIM
performance in UIM System Administrator’s Guide.

To enable logging for Network Service Orchestration:

1. Open the UIM_Home/config/loggingconfig.xml file in a text editor.

2. Add the following text:

<logger name="oracle.communications.inventory.nso" additivity="false">
 <level value="debug"/>
 <appender-ref ref="stdout"/>
 <appender-ref ref="rollingFile"/>
</logger>

3. Save and close the file.

Supported Southbound Integration
Network Service Orchestration supports some integrations by default, while others
require customization. Network Service Orchestration supports the following
southbound integrations:

■ For Virtual Infrastructure Management:

– Integration to OpenStack Mitaka and Liberty releases

– Integration to Oracle OpenStack for Oracle Linux Release 3 Beta

– A framework for integration to other Virtual Infrastructure Managers

■ For Network and SDN controllers:

– Integration to OpenStack Neutron (Mitaka and Liberty releases)

– Integration to OpenStack Neutron Networking-SFC (Service Function
Chaining)

■ For VNF management:

– Network Service Orchestration includes a built-in VNF Manager that supports
the life-cycle management of VNFs. The VNF manager calls the VIM to
perform life-cycle actions. The in-built VNF Manager supports direct
integration to the VNF or integration to an Element Management System
(EMS) that manages the VNF.

– A framework that supports integration to external VNF Managers.

3

Designing and Onboarding Network Services, VNFs, and PNFs 3-1

3Designing and Onboarding Network Services,
VNFs, and PNFs

This chapter provides information about designing and onboarding network services,
Virtual Network Functions (VNFs), and Physical Network Functions (PNFs).

About Design Components
Design components are files that you create in Oracle Communications Design Studio.
Network Service Orchestration uses different types of files that you create in Design
Studio to describe the behavior of your network services, VNFs, and PNFs.

■ Descriptor files. The descriptor files describe the attributes of the VNF, PNF, and
Network Service specifications.

See "About Descriptor Files" for more information about the descriptor files.

■ Technical actions files. The technical actions files describe the actions for the
VNFs, PNFs, and network services in the VIM. There is one technical actions file
for each network service, VNF, and PNF.

See "About Technical Actions Files" for more information about the technical
actions files.

■ Configuration and template files. The configuration files contain the
configuration and post-configuration details for the VNFs.

See "About VNF Configuration Files" for more information about the descriptor
files.

■ Entity Specifications. In Design Studio, you create entity specifications that you
use to create instances of VNFs and network services in Network Service
Orchestration. You package the entity specifications into cartridges. You create one
cartridge for each VNF, network service, and PNF. See "Designing Custom
Network Services" for more information.

See Design Studio Help for information about creating entity specifications in
Design Studio.

■ Custom extensions. See "Extending Network Service Orchestration" for
information about implementing custom extensions.

About Descriptor Files
Descriptor files contain metadata about network services, VNFs, and PNFs. Network
Service Orchestration defines descriptors as Design Studio specifications and uses
these specifications to manage the life cycles of network services and VNFs.

About Design Components

3-2 Network Service Orchestration Implementation Guide

Descriptors describe the behavior of virtual network functions that are defined in the
Network Service Orchestration cartridges. There is one descriptor file for each network
service, VNF, and PNF.

About Network Service Descriptor Files
Network Service descriptor files describe the deployment requirements, operational
behavior, and policies required by network services based on them. You use one
descriptor file for each network service.

When you instantiate, scale, or terminate a network service, Network Service
Orchestration deploys, scales, and undeploys the constituent VNFs based on the
parameters and policies specified in the descriptor file.

You use the network service descriptor file to do the following:

■ Describe the descriptor information. See "Describing Descriptor Information" for
more information.

■ Describe the VNF descriptor references. See "Describing VNF Descriptor
References" for more information.

■ Describe the PNF descriptor references. See "Describing PNF Descriptor
References" for more information.

■ Describe the networks by either creating them or by referencing existing networks
and specifying network types. For each network, specify the VNF connection
points that terminate on the network. See "Describing Networks" for more
information.

■ Describe the service flavors for the network service. See "Describing Service
Flavors" for more information.

■ Describe the endpoints that the network service can have. See "Describing
Endpoints" for more information.

■ Describe the rules to determine how the network traffic is routed in the network
service. See "Describing Rules" for more information.

■ Describe the policies and their mappings to the network forwarding paths (NFPs).
See "Describing Policies" for more information.

■ Describe the VNF forwarding graphs (VNFFGs) that include one or more network
forwarding paths (NFPs) that determine how network traffic is routed in a
network service. See "Describing VNF Forwarding Graphs" for more information.

Describing Descriptor Information
In the network service descriptor file, you describe descriptor information, such as
descriptor ID, descriptor name, vendor name, and descriptor version.

The following text shows the elements that enable you to provide information about
the network service descriptor XML file:

<nsd id="network_service_descriptor_id" name="network_service_descriptor_name">
<vendor>vendor_name</vendor>
<version>descriptor_version</version>

Table 3–1 describes the parameters you specify to provide information about the
network service descriptor XML file.

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-3

The following text shows the elements that provide descriptor information in the
NPaas.xml sample network service descriptor file:

<nsd id="NPaas" name="NPaas">
<vendor>Oracle</vendor>
<version>1.0</version>

Describing VNF Descriptor References
In the network service descriptor file, you reference the descriptors of all the VNFs
that you want to include in the network service.

You reference the VNF descriptors in the network service descriptor file as follows:

<vnfd-reference ref-id="vnf_descriptor_id"/>

where:

■ vnf_descriptor_id is the ID of the VNF descriptor that you want to include in the
network service.

The following is an example of the vnfd-reference element in the NPaas.xml sample
network service descriptor file:

<!-- Multiple VNFs are supported. -->
<vnfd-reference ref-id="Juniper_vSRX"/>
<vnfd-reference ref-id="Checkpoint_NG_FW"/>

Describing PNF Descriptor References
In the network service descriptor file, you reference the descriptors of all the PNFs that
you want to include in the network service.

You reference the PNF descriptors in the network service descriptor file as follows:

<pnfd-reference ref-id="pnf_descriptor_id"/>

where:

■ pnf_descriptor_id is the ID of the PNF descriptor that you want to include in the
network service.

The following is an example of the pnfd-reference element in the
ResidentialGateway.xml sample network service descriptor file:

<!-- Multiple PNFs are supported. -->
<pnfd-reference ref-id="Cisco_xRV"/>

Describing Networks
In the network service descriptor file, you define networks by creating them or by
referencing existing networks and specifying their types. You represent networks as

Table 3–1 Descriptor Information Parameters

Parameter Description

network_service_
descriptor_id

Specify a unique ID for the network service descriptor.

network_service_
descriptor_name

Specify a name for the network service descriptor.

vendor_name Specify the name of the vendor.

descriptor_version Specify the version of the network service descriptor.

About Design Components

3-4 Network Service Orchestration Implementation Guide

virtual links. You can create or reference any number of networks based on your
service requirements.

The following text shows the parameters that you specify for a virtual link in a
network service descriptor XML file:

<virtual-link id= "virtual_link_id" name="virtual_link_name" isReferenced="value_
reference" isDHCPEnabled="value_DHCP" >
 <connection-point-reference ref-id="connection_point_id"
 vnfd-ref-id="vnf_descriptor_id"/>
 <connection-point-reference ref-id="connection_point_id"
 vnfd-ref-id="vnf_descriptor_id"/>
 <extension type="extension_type" handler="extension_handler">
 <parameter name="parameter_name" value="parameter_value"/>
 </extension>
</virtual-link>

Table 3–2 describes the parameters you specify for a virtual link in the network service
descriptor XML file.

The following text shows a virtual link element in the NPaaS.xml sample network
service descriptor file:

<!-- Multiple virtual links are supported. -->

Table 3–2 Virtual Link Parameters

Parameter Description

virtual_link_id Specify a unique ID for the virtual link that you want to create or
reference.

virtual_link_name Specify a name for the virtual link that you want to create or
reference.

value_reference Specify whether you want to create the network or reference an
existing network in run-time. Specify true if you want to
reference an existing network. Otherwise, specify false. If you
reference an existing network, specify the networks using the
following key in your network service descriptor properties file:

vim_Id.network_service_descriptor.network_name

See "Setting Network Service Descriptor Properties" for more
information about setting parameters in the network service
descriptor properties file.

value_DHCP Specify whether the network you create or reference should
support DHCP or not. Specify true if the network should support
DHCP. Otherwise, specify false.

connection_point_id Reference the VNF connection point defined in the VNF
descriptor included in the network service.

vnf_descriptor_id Reference the VNF descriptor that contains the connection point
specified in the connection_point_id parameter.

extension_type Specify the type of the extension.

extension_handler (Optional) Specify the fully qualified class name of the handler
implementation class. For example,
handler="com.oracle.impl.extnHandlerImpl." If you do not
specify a handler, Network Service Orchestration uses the default
handler.

parameter_name The name of the parameter for the extension.

parameter_value The value of the parameter for the extension.

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-5

<!-- isReferenced="true" means that network is not managed by Network Service
Orchestration e.g. External networks in Provider Network -->
<virtual-link id="ManagementNetwork" name="ManagementNetwork" isReferenced="true"
isDHCPEnabled="false">
 <connection-point-reference ref-id="CP03" vnfd-ref-id="Juniper_vSRX"/>
 <connection-point-reference ref-id="CP03" vnfd-ref-id="Checkpoint_NG_FW"/>
</virtual-link>

<virtual-link id="Data_IN" name="Data_IN" isReferenced="false"
isDHCPEnabled="false">
 <connection-point-reference ref-id="CP01" vnfd-ref-id="Juniper_vSRX"/>
 <connection-point-reference ref-id="CP01" vnfd-ref-id="Checkpoint_NG_FW"/>

<!-- If no handler is provided, Network Service Orchestration will use its default
VirtualLinkAddressHandler. -->
 <!-- Otherwise provide the fully qualified class name of the handler
implementation class. e.g., handler="com.oracle.impl.VLHandlerImpl" -->
 <extension type="CreateVirtualLink">
 <parameter name="subnetAddress" value="192.0.2.1/27"/>
 </extension>
</virtual-link>

<virtual-link id="Data_OUT" name="Data_OUT" isReferenced="false"
isDHCPEnabled="false">
 <connection-point-reference ref-id="CP02" vnfd-ref-id="Juniper_vSRX"/>
 <connection-point-reference ref-id="CP02" vnfd-ref-id="Checkpoint_NG_FW"/>
 <extension type="CreateVirtualLink">
 <parameter name="subnetAddress" value="192.0.2.21/30"/>
 </extension>
 </virtual-link>

Describing Service Flavors
In the network service descriptor file, you can describe service flavors where in you
specify constituent VNFs, reference the VNF deployment flavors defined for the
constituent VNFs in their respective VNF descriptors, and specify the minimum and
maximum VNF instances that must be included in the network service.

The following text shows the pattern in which you describe the service flavors in a
network service descriptor file.

<service-flavor id="service_flavor_id" name="service_flavor_name">
 <constituent-vnfd>
 <vnfd-reference ref-id="vnf_descriptor_id"/>
 <deployment-flavor-reference ref-id="vnf_deployment_flavor_id"/>
 <min-instances>min_vnf_instances</min-instances>
 <max-instances>max_vnf_instances</max-instances>
 </constituent-vnfd>
</service-flavor>

Table 3–3 describes the parameters you specify for a service flavor in the network
service descriptor XML file.

Table 3–3 Service Flavor Parameters

Parameter Description

service_flavor_id Specify a unique ID for the network service flavor.

service_flavor_name Specify a name for the network service flavor.

About Design Components

3-6 Network Service Orchestration Implementation Guide

The following text shows a service flavor element in the NPaaS.xml sample network
service descriptor file:

<service-flavor id="Checkpoint" name="Checkpoint">
<!-- Multiple VNFs are supported.>
 <constituent-vnfd>
 <vnfd-reference ref-id="Checkpoint_NG_FW"/>
 <deployment-flavor-reference ref-id="premium"/>
 <min-instances>1</min-instances>
 <max-instances>1</max-instances>
 </constituent-vnfd>
</service-flavor>

<service-flavor id="Juniper" name="Juniper">
 <constituent-vnfd>
 <vnfd-reference ref-id="Juniper_vSRX"/>
 <deployment-flavor-reference ref-id="standard"/>
 <min-instances>1</min-instances>
 <max-instances>1</max-instances>
 </constituent-vnfd>
</service-flavor>

Describing Endpoints
In the network service descriptor file, you can specify the number of endpoints the
networks can have.

The following text shows the pattern in which you describe the network service
endpoints in a network service descriptor file.

<endpoint id="endpoint_id" name="endpoint_name" <type>endpoint_type</type>
 <vld-reference ref-id="virtual_link_descriptor_id"/>
 <connection-point-reference ref-id="connection_point_id" vnfd-ref-id="vnf_
descriptor_id"/>
</endpoint>

Table 3–4 describes the parameters you specify for network service endpoints in the
network service descriptor XML file.

vnf_descriptor_id Reference the VNF descriptor that you want to use for this
network service flavor.

vnf_deployment_flavor_
id

Reference the VNF deployment flavor defined within the VNF
descriptor.

min_vnf_instances Specify the minimum number of VNF instances that the network
service flavor must include.

max_vnf_instances Specify the maximum number of VNF instances that the network
service flavor can include.

Table 3–4 Endpoint Parameters

Parameter Description

endpoint_id Specify a unique ID of the endpoint within the network service.

endpoint_name Specify a name for the endpoint within the network service.

endpoint_type Specify the type of the endpoint. For example, specify
FLOATING or EDGE_DEVICE.

Table 3–3 (Cont.) Service Flavor Parameters

Parameter Description

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-7

The following text shows an endpoint element in the NPaaS.xml sample network
service descriptor file:

<endpoint id="SERVICE_EP1" name="SERVICE_EP1" type="FLOATING">
 <vld-reference ref-id="Data"/>
 <connection-point-reference ref-id="CP01" vnfd-ref-id="Juniper_vSRX"/>
</endpoint>
<endpoint id="SERVICE_EP2" name="SERVICE_EP2" type="FLOATING">
 <vld-reference ref-id="Data"/>
 <connection-point-reference ref-id="CP02" vnfd-ref-id="Juniper_vSRX"/>
</endpoint>

Describing Rules
In the network service descriptor file, you can define rules that enable you to specify
specific conditions as name-value pairs to control the type of the network traffic in a
network service.

The following text shows the pattern in which you describe the rules in a network
service descriptor file.

<rule id="rule_id" name="rule_name" type="rule_type">
 <parameter name="name" value="value"/>
 <parameter name="name" value="value"/>
</rule>

Table 3–5 describes the parameters you specify for rules in the network service
descriptor XML file.

The following text shows a rule element in the NPaaS.xml sample network service
descriptor file:

<!-- Multiple rules are supported. -->
<!-- Rules define the conditions or constraints. -->
<rule id="rule1" name="rule1" type="traffic-classification>
 <parameter name="type" value="video"/>

virtual_link_descriptor_
id

Reference the virtual link (defined within the virtual link
element) that connects the endpoint to the VNF connection point.

connection_point_id Specify the VNF connection point to which the endpoint
(specified in the endpoint_id parameter) should be connected.

vnf_descriptor_id Specify the VNF descriptor that contains the connection point
specified in connection_point_id parameter.

Table 3–5 Rule Parameters

Parameter Description

rule_id Specify a unique ID for the rule.

rule_name Specify a name for the rule.

type Specify the type of the rule. For example, traffic-classification.

name The name of the parameter for the rule. For example, protocol or
QoS.

value The value of the parameter for the rule. For example, HTTP or
TCP.

Table 3–4 (Cont.) Endpoint Parameters

Parameter Description

About Design Components

3-8 Network Service Orchestration Implementation Guide

 <parameter name="protocol" value="UDP"/>
 </rule>
<rule id="rule2" name="rule2" type="traffic-classification>
 <parameter name="QOS" value="5">
 <parameter name="protocol" value="TCP">
</rule>

Describing Policies
In the network service descriptor file, you can define traffic classification policies that
enable you to specify the type of network traffic to be carried on the forwarding paths.

The following text shows the pattern in which you describe the policies for a network
service in a network service descriptor file.

<policy id="policy_id" name="policy_name" type="policy_type" default="default">
 <rule-reference ref-id="rule_id" action="nfp_id" vnffg-ref-id="vnffg_id"/>
 <rule-reference ref-id="rule_id" action="nfp_id" vnffg-ref-id="vnffg_id"/>
</policy>

Table 3–6 describes the parameters you specify for policies in the network service
descriptor XML file.

The following text shows a policy element in the NPaaS.xml sample network service
descriptor file:

<!-- Multiple policies are supported. -->
<!-- Policies define the rules and the corresponding action to be taken. -->
<policy id="premium" name="premium" type="traffic-classification default="true">
<rule-reference ref-id="rule1" action="nfp-ref-id:nfp1" vnffg-ref-id="vnffg1"/>
<rule-reference ref-id="rule2" action="nfp-ref-id:nfp2" vnffg-ref-id="vnffg1"/>
</policy>
<policy id="standard" name="standard" type="traffic-classification>
<rule-reference ref-id="rule1" action="nfp1" vnffg-ref-id="vnffg1"/>
</policy>

Describing VNF Forwarding Graphs
In the network service descriptor file, you can describe VNF forwarding graphs
(VNFFGs) that include one or more network forwarding paths (NFPs) that define how
the network traffic should be routed through the VNF connection points in a network
service.

Table 3–6 Policy Parameters

Parameter Description

policy_id Specify a unique ID for the policy.

policy_name Specify a name for the policy. For example, Premium or Standard.

policy_type Specify the type of the policy. For example, traffic-classification.

default Specify true if you want to create this policy by default during
network service instantiation. Otherwise, specify false.

rule_id Reference the unique ID for the defined rule.

nfp_id Reference the unique ID for the network forwarding path to
which the network traffic should be routed.

vnffg_id Reference the unique ID for the virtual network function
forwarding graph that contains the network forwarding path you
specified in the nfp_id parameter.

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-9

The following text shows the pattern in which you describe a VNF forwarding graph
in a network service descriptor file:

<vnffg id="vnffg_id" name="vnffg_name" default="default">
 <vnfd-reference ref-id="vnf_descriptor_id"/>

 <vld-reference ref-id="virtual_link_descriptor_id"/>

 <endpoint-reference ref-id="endpoint_id"/>
 <endpoint-reference ref-id="endpoint_id"/>

 <network-forwarding-path id="nfp_id" name="nfp_name">
 <forwarding-policy>forwarding_policy_type</forwarding-policy>
 <source-endpoint-reference ref-id="source_endpoint_id"/>
 <connection-point-reference ref-id="connection_point_id" vnfd-ref-id="vnf_
descriptor_id" order="connection_point_order"/>
 <connection-point-reference ref-id="connection_point_id" vnfd-ref-id="vnf_
descriptor_id" order="connection_point_order"/>
 <destination-endpoint-reference ref-id="destination_endpoint_id"/>
 </network-forwarding-path>
</vnffg>

Table 3–7 describes the parameters you specify for a VNF forwarding graph (VNFFG)
in the network service descriptor XML file.

Table 3–7 VNF Forwarding Graph Parameters

Parameter Description

vnffg_id Specify a unique ID for the VNFFG.

vnffg_name Specify a name for the VNFFG.

default Specify true if you want to create this VNFFG by default during
network service instantiation. Otherwise, specify false.

vnf_descriptor_id Reference the VNF descriptor that you want to include in the
VNFFG.

virtual_link_descriptor_
id

Reference the virtual link (defined within the virtual link
element) that you want to include in the VNFFG.

endpoint_id Reference the endpoint for the network service.

nfp_id Specify a unique ID for the network forwarding path (NFP) that
you want to include in the VNFFG.

nfp_name Specify a name for the NFP that you want to include in the
VNFFG.

forwarding_policy_type Specify the type of the forwarding policy for the network traffic
in the network forwarding path. For example, SYMMETRIC or
ASYMMETRIC.

source_endpoint_id Reference the endpoint you specified in the endpoint_id
parameter that you want to designate as the source endpoint for
the network service.

About Design Components

3-10 Network Service Orchestration Implementation Guide

The following text shows a VNFFG element in the NPaaS.xml sample network service
descriptor file:

<vnffg id="data-vnffg1" name="data-vnffg1" default="true">
 <vnfd-reference ref-id="Juniper_vSRX"/>

 <vld-reference ref-id="Data"/>

 <endpoint-reference ref-id="Service_EP1"/>
 <endpoint-reference ref-id="Service_EP2"/>

<!-- Multiple network forwarding paths are supported. -->
 <network-forwarding-path id="nfp1" name="nfp1">
 <forwarding-policy>SYMMETRIC</forwarding-policy>
 <source-endpoint-reference ref-id="Service_EP1"/>
 <connection-point-reference ref-id="CP01" vnfd-ref-id="VNFD1" order="1"/>
 <connection-point-reference ref-id="CP02" vnfd-ref-id="VNFD1" order="2"/>
 <destination-endpoint-reference ref-id="Service_EP2"/>
 </network-forwarding-path>

connection_point_id Reference the VNF connection point that you want to include in
the NFP.

Typically, in a VNF, one connection point is connected to the
DATA_IN network and another connection point is connected to
the DATA_OUT network. In situations where a single connection
point is connected to both DATA_IN and DATA_OUT networks,
you must specify the VNF connection point twice, which
indicates that the same connection point is used for both
incoming and outgoing network traffic.

In the following example, the connection point CP11 is specified
twice, which indicates that CP11 is connected to both DATA_IN
and DATA_OUT networks:

<network-forwarding-path id="nfp1" name="nfp1">
 <forwarding-policy>SYMMETRIC</forwarding-policy>
 <source-endpoint-reference ref-id="CP01"/>
 <connection-point-reference ref-id="CP11"
vnfd-ref-id="VNFD1" order="1"/>
 <connection-point-reference ref-id="CP11"
vnfd-ref-id="VNFD1" order="2"/>
 <connection-point-reference ref-id="CP21"
vnfd-ref-id="VNFD2" order="3"/>
 <connection-point-reference ref-id="CP24"
vnfd-ref-id="VNFD2" order="4"/>
 <connection-point-reference ref-id="CP31"
vnfd-ref-id="VNFD3" order="5"/>
 <connection-point-reference ref-id="CP32"
vnfd-ref-id="VNFD3" order="6"/>
 <destination-endpoint-reference ref-id="CP41"/>
</network-forwarding-path>

vnf_descriptor_id Reference the VNF descriptor that contains the connection point
you specified in the connection_point_id parameter.

connection_point_order Specify the order of the connection point for the NFP.

destination_endpoint_id Reference the endpoint you specified in the endpoint_id
parameter that you want to designate as the destination endpoint
for the network service.

Table 3–7 (Cont.) VNF Forwarding Graph Parameters

Parameter Description

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-11

</vnffg>

About VNF Descriptor Files
VNF descriptor files describe the deployment requirements, operational behavior, and
policies required by VNFs that are based on them.

Network Service Orchestration includes the following sample VNF descriptor files:

■ Juniper_vSRX.xml. This is the descriptor file for the Juniper vSRX firewall VNF.

■ Checkpoint_NG_FW.xml. This is the descriptor file for the Checkpoint NG
firewall VNF.

■ OracleComms_SBC.xml. This is the descriptor file for the Session Border
Controller (SBC) VNF.

You use virtual network function descriptor file to do the following:

■ Describe the VNF descriptor information. See "Describing VNF Descriptor
Information" for more information.

■ Describe the connection points for the VNF. See "Describing VNF Connection
Points" for more information.

■ Describe the internal virtual links for the internal connection points of the Virtual
Network Function Components (VNFCs). See "Describing Internal Virtual Links"
for more information.

■ Describe the Virtual Deployment Unit (VDU) flavors. See "Describing Virtual
Deployment Unit Flavors" for more information.

■ Describe the VDU images. See "Describing VDU Images" for more information.

■ Describe the VDUs on which you want to install the VNFCs. See "Describing
Virtual Deployment Units" for more information.

■ Describe the VNF deployment flavors. See "Describing VNF Deployment Flavors"
for more information.

Describing VNF Descriptor Information
In the VNF descriptor file, you provide the VNF descriptor information, such as
descriptor ID, descriptor name, vendor name, VNF descriptor version, and VNF
version.

The following text shows the elements that enable you to provide information about
the VNF descriptor XML file:

<nsd id="network_service_descriptor_id" name="network_service_descriptor_name">
<vendor>vendor_name</vendor>
<version>descriptor_version</version>
<vnf-version>vnf_version</vnf-version>

Table 3–1 describes the parameters you specify to provide information about the VNF
descriptor XML file.

Table 3–8 VNF Descriptor Information Parameters

Parameter Description

vnf_descriptor_id Specify a unique ID for the VNF descriptor that you want to
include in the network service.

vnf_descriptor_name Specify a name for the VNF descriptor that you want to include
in the network service.

About Design Components

3-12 Network Service Orchestration Implementation Guide

The following text shows the elements that provide descriptor information in the
Juniper_vSRX.xml sample VNF descriptor file:

<vnfd id="Juniper_vSRX" name="Juniper_vSRX">
<vendor>Oracle</vendor>
<version>1.0</version>
<vnf-version>1.0</vnf-version>

Describing VNF Connection Points
In the VNF descriptor file, you can specify the internal, external, and management
connection points for the VNF.

The following text shows the pattern in which you describe the internal, external, and
management connection points in a VNF descriptor file.

<connection-point id="connection_point_id" name="connection_point_name"
type="connection_point_type"/>

Table 3–9 describes the parameters you specify for internal and external connection
points in the VNF descriptor XML file.

The following text shows a connection point element in the Juniper_vSRX.xml sample
VNF descriptor file:

<!-- Multiple connection points are supported. -->
<connection-point id="CP03" name="CP03" type="MANAGEMENT"/>
<connection-point id="CP01" name="CP01" type="EXTERNAL"/>
<connection-point id="CP02" name="CP02" type="EXTERNAL"/>

Describing Internal Virtual Links
In the VNF descriptor file, you can define the connectivity between the components
within a VNF as internal virtual links. For each internal virtual link, specify the
internal connection points that connect the internal virtual link to different
components within a VNF.

vendor_name Specify the name of the VNF vendor.

descriptor_version Specify the version of the VNF descriptor.

vnf_version Specify the software version number for the VNF image.

Table 3–9 Connection Point Parameters

Parameter Description

connection_point_id Specify a unique ID for the VNF connection point.

connection_point_name Specify a name for the VNF connection point.

connection_point_type Specify the type of the VNF connection point. For example,
MANAGEMENT, EXTERNAL, or INTERNAL.

Note: Network Service Orchestration does not use the VNF’s
internal virtual link information; instead, it passes this information to
the VNF manager for processing.

Table 3–8 (Cont.) VNF Descriptor Information Parameters

Parameter Description

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-13

The following text shows the pattern in which you describe the internal virtual links in
a VNF descriptor file.

<virtual-link id="virtual_link_id" name="virtual_link_name">
 <connection-point-reference ref-id="connection_point_id"/>
 <connection-point-reference ref-id="connection_point_id">
 <security enabled="security_value">
 <extension type="extension_type" handler="extension_handler">
 <parameter name="parameter_name" value="parameter_value" />
 <parameter name="parameter_name" value="parameter_value" />
</extension>
 </security>
</virtual-link>

Table 3–10 describes the parameters you specify for internal virtual links in the VNF
descriptor XML file.

The following text shows a virtual link element that you specify for an internal virtual
link of a VNF in a sample VNF descriptor file:

<!-- Multiple Internal Virtual Links are supported. -->
<!-- Specifying Internal Virtual Links is Optional -->
<virtual-link id="InternalVL" name="InternalVL">
 <connection-point-reference ref-id="CP04"/>
 <connection-point-reference ref-id="CP05"/>
 <security enabled="true">
 <extension type="SecurityGroups" handler="com.oracle.impl.ExtnImpl">
 <!-- Multiple security groups are supported. -->
 <parameter name="security_groups" value="open, default"/>
 </security>
</virtual-link>

Describing Virtual Deployment Unit Flavors
In the VNF descriptor file, you can define VDU deployment flavors that represent
specific deployment of a VDU supporting specific key performance indicators (KPIs),
such as compute, memory, and storage capacity.

The following text shows the pattern in which you describe the VDU flavor in a VNF
descriptor file.

<vdu-flavor id="vdu_flavor_id" name="vdu_flavor_name">

Table 3–10 Internal Virtual Link Parameters

Parameter Description

virtual_link_id Specify a unique ID for the internal virtual link.

virtual_link_name Specify a name for the virtual link.

connection_point_id Reference the internal connection point of the VNF.

security_value Specify whether internal virtual links should be created with
security enabled or disabled. Specify true to enable security for
the internal virtual links. Otherwise, specify false.

extension_type Specify the type of the extension.

extension_handler Specify the fully qualified class name of the handler
implementation class.

parameter_name The name of the parameter for the extension.

parameter_value The value of the parameter for the extension.

About Design Components

3-14 Network Service Orchestration Implementation Guide

 <cpu>cpu</cpu>
 <memory>memory</memory>
 <storage>disk_space</storage>
</vdu-flavor>

Table 3–11 describes the parameters you specify for a VDU flavor in the VNF
descriptor XML file.

The following text shows a vdu-flavor element in the Juniper_vSRX.xml sample VNF
descriptor file:

<vdu-flavor id="vsrx.small" name="vsrx.small">
 <cpu>2</cpu>
 <memory>2GB</memory>
 <storage>20GB</storage>
</vdu-flavor>
<vdu-flavor id="vsrx.medium" name="vsrx.medium">
 <cpu>2</cpu>
 <memory>4GB</memory>
 <storage>20GB</storage>
</vdu-flavor>
<vdu-flavor id="m1.medium" name="m1.medium">
 <cpu>2</cpu>
 <memory>4GB</memory>
 <storage>40GB</storage>
</vdu-flavor>

Describing VDU Images
In the VNF descriptor file, you can specify the VDU images that you want to
instantiate for a VNF.

The following text shows the pattern in which you describe the VDU images in a VNF
descriptor file.

<image id="image_id">
 <software-image name="image_name" version="image_version">
 <extension type="extension_type" handler="extension_handler">
 <parameter name="parameter_name" value="parameter_value"/>
 <parameter name="parameter_name" value="parameter_value"/>
 </extension>
 </software-image>
</image>

Table 3–13 describes the parameters you specify for a VDU image in the VNF
descriptor XML file.

Table 3–11 Virtual Deployment Unit Flavor Parameters

Parameter Description

vdu_flavor_id Specify a unique ID for the VDU flavor.

vdu_flavor_name Specify a name for the VDU flavor.

cpu Specify the number of virtual CPUs that you want to allocate for
the VDU.

memory Specify the memory you want to allocate for the VDU. Specify the
memory in GB.

disk_space Specify the disk space that you want to allocate for the VDU.
Specify the disk space in GB.

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-15

The following text shows an image element in the Juniper_vSRX.xml sample VNF
descriptor file:

<image id="vsrx-v1.0" >
 <software-image name="vsrx-12.1X47-D20.7-npaas-v0.3" version="1.0" >
 <extension type="ImageCredentials"
handler="oracle.communications.inventory.nso.extensions.impl.ImageCredentialsHandl
erImpl">
 <parameter name="username" value="root" />
 <parameter name="password" value="labms01" />
 </extension>
 </software-image>
 </image>

Describing Virtual Deployment Units
In the VNF descriptor file, you can describe Virtual Deployment Units, which
represent the virtual machines on which VNF components (VNFCs) can be deployed.

The following text shows the pattern in which you describe the rules in a VNF
descriptor file.

<vdu id="vdu_id" name="vdu_name">
 <image-reference ref-id="image_id"/>
 <vnfc id="vnfc_id" name="vnfc_name">
 <connection-point-reference ref-id="connection_point_id" order="connection_
point_order"/>
 <connection-point-reference ref-id="connection_point_id" order="connection_
point_order">
 <connection-point-reference ref-id="connection_point_id" order="connection_
point_order">
 </vnfc>
 <security enabled="security_value">
 <!-- Security group values can be provided dynamically during instantiation -->
 <extension type="extension_type" handler="extension_handler">
 <!-- Multiple security groups are supported. -->
 <parameter name="parameter_name" value="parameter_value">
 <parameter name="parameter_name" value="parameter_value">
 </extension>
 </security>
</vdu>

Table 3–13 describes the parameters you specify for a VDU in the VNF descriptor XML
file.

Table 3–12 VNF Image Parameters

Parameter Description

image_id Specify a unique ID for the VDU image.

image_name Specify a name for the VDU image.

image_version Specify the software version number for the VDU image.

extension_type Specify the type of the extension.

extension_handler (Optional) Specify the handler for the extension.

parameter_name The name of the parameter for the extension.

parameter_value The value of the parameter for the extension.

About Design Components

3-16 Network Service Orchestration Implementation Guide

The following text shows a vdu element in the Juniper_vSRX.xml sample VNF
descriptor file:

<!-- Multiple VDUs are supported. -->
<vdu id="Juniper_vSRX_VDU" name="Juniper_vSRX_VDU">
 <image-reference ref-id="vsrx-v1.0"/>
 <vnfc id="vsrxc" name="vsrxc">
 <connection-point-reference ref-id="CP03" order="1"/> <!-- Management port
will not have VL reference -->
 <connection-point-reference ref-id="CP01" order="2"/> <!-- External CP does
not have VL reference -->
 <connection-point-reference ref-id="CP01" order="3"/> <!-- External CP does
not have VL reference -->
 </vnfc>
 <security enabled="true">
 <!-- Security group values can be provided dynamically during instantiation -->
 <!-- If no handler is provided, Network Service Orchestration will use its
default SecurityGroupHandler. -->
 <!-- Otherwise provide the fully qualified class name of the handler
implementation class. e.g., handler="com.oracle.impl.SecurityGroupHandlerImpl" -->
 <extension type="SecurityGroups">
 <!-- Multiple security groups are supported. -->
 <parameter name="type" type="VDU">
 <parameter name="security_groups" type="open, default">
 </extension>
 <extension type="SecurityGroups">
 <!-- Multiple security groups are supported. -->
 <parameter name="type" type="CP">
 <parameter name="security_groups" type="all">
 <parameter name="connection_points" type="CP01, CP02">
 </extension>
 </extensions>
 </security>
</vdu>

Table 3–13 Virtual Deployment Unit Parameters

Parameter Description

vdu_id Specify a unique ID for the VDU.

vdu_name Specify a name for the VDU.

image_id Reference the VDU image that should be used to instantiate the
VDU.

vnfc_id Specify a unique ID for the VNF component in the VDU.

vnfc_name Specify a name for the VNF component in the VDU.

connection_point_id Reference a VNF connection point.

connection_point_order Specify the order of the connection point.

security_value Specify whether the VDU should be created with security
enabled or disabled. Specify true to enable security; otherwise,
specify false.

extension_type Specify the type of the extension.

extension_handler (Optional) Specify the fully qualified class name of the handler
implementation class.

parameter_name The name of the parameter for the extension.

parameter_value The value of the parameter for the extension.

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-17

Describing VNF Deployment Flavors
Deployment flavors give you the flexibility to choose which VDUs should be deployed
for the VNF and, in turn, which VNF components should be deployed on those VDUs.

In the VNF descriptor file, you can describe deployment flavors where in you specify
constituent VDUs of the VNF. For each VDU, specify the constituent VNF components,
including the minimum and maximum number of VNF component instances that the
VDU can have. You can also specify the VDU flavors, including the minimum and
maximum VDU instances that the deployment flavor can have.

In addition, you can also define the assurance parameters for various factors. For
example, you can define assurance parameters to heal a VNF or scale a VNF in the
network service, depending on the CPU utilization of the virtual machine on which
the VDUs of a VNF are deployed.

The following text shows the pattern in which you describe the deployment flavor in a
VNF descriptor file.

<deployment-flavor id="deployment_flavor_id" name="deployment_falvor_name"
default="default">
 <constituent-vdu>
 <vdu-reference ref-id="vdu_id"/>
 <constituent-vnfc>
 <vnfc-reference ref-id="vnfc_id"/>
 <min-instances>min_vnfc_instances</min-instances>
 <max-instances>max_vnfc_instances</max-instances>
 </constituent-vnfc>
 <vdu-flavor-reference ref-id="vdu_flavor_id"/>
 <min-instances>min_vdu_instances</min-instances>
 <max-instances>max_vdu_instances</max-instances>
 <scale-quantity>scale_quantity</scale_quantity>

 <assurance-parameter id="assurance_parameter_id" description="assurance_
parameter_description">
 <parameter name="parameter_name" value="parameter_value"/>
 <parameter name="parameter_name" value="parameter_value"/>
 <parameter name="parameter_name" value="parameter_value"/>
 </assurance-parameter>
 </constituent-vdu>
</deployment-flavor>

Table 3–14 describes the parameters you specify for deployment flavors in the VNF
descriptor XML file.

Table 3–14 Deployment Flavor Parameters

Parameter Description

deployment_flavor_id Specify a unique ID for the deployment flavor.

deployment_flavor_name Specify a name for the deployment flavor.

default Indicates if the VNF should use this deployment flavor by default
or not. Specify true if you want Network Service Orchestration to
use this deployment flavor for the VNF. Otherwise, specify false.

vdu_id Reference the VDU on which the constituent VNF components
can be deployed.

vnfc_id Reference the constituent VNF components that you want
deployed on the VDU.

min_vnfc_instances Specify the minimum number of VNF component instances that
the deployment flavor must include.

About Design Components

3-18 Network Service Orchestration Implementation Guide

The following text shows the deployment flavor element in the Juniper_vSRX.xml
sample VNF descriptor file:

<!-- Multiple deployment flavors are supported. -->
<deployment-flavor id="standard" name="standard" default="true">
<!-- Each deployment flavor can further choose which VDU, and which VNFC in the
VDU to deploy. -->
<!-- For example: depFlavor1 only selects VDUTypeA, VNFCTypeX to deploy, but not
VNFCTypeY. -->

 <constituent-vdu>
 <vdu-reference ref-id="Juniper_vSRX_VDU"/>
 <constituent-vnfc>
 <vnfc-reference ref-id="vsrxc"/>
 <min-instances>1</min-instances>
 <max-instances>1</max-instances>
 </constituent-vnfc>
 <vdu-flavor-reference ref-id="vsrxc"/>
 <min-instances>1</min-instances>
 <max-instances>1</max-instances>
 <scale-quantity>2</scale-quantity>

 <assurance-parameter id="ap1" description="Low CPU Utilization">
 <parameter name="meter_name" value="cpu_util"/>
 <parameter name="value" value="0.0"/>
 <parameter name="condition" value="eq"/>
 <parameter name="action" value="heal"/>
 </assurance-parameter>

 <assurance-parameter id="ap2" description="High CPU Utilization">
 <parameter name="meter_name" value="cpu_util"/>
 <parameter name="value" value="80.0"/>
 <parameter name="condition" value="gt"/>
 <parameter name="action" value="scale"/>
 </assurance-parameter>

max_vnfc_instances Specify the maximum number of VNF component instances that
the deployment flavor can include.

vdu_flavor_id Reference the VDU flavor ID.

min_vdu_instances Specify the minimum number of VDU instances that the
deployment flavor must include.

max_vdu_instances Specify the maximum number of VDU instances that the
deployment flavor can include.

scale_quantity Specify the number of VDU instances that should be added when
you scale-out a VNF. Similarly, this parameter determines the
number of VDU instances that should be removed when you
scale-in a VNF.

assurance_parameter_id Specify a unique ID for the assurance parameter.

assurance_parameter_
description

Provide a description to identify the purpose of the assurance
parameter. For example, specify Low CPU Utilization or High
CPU Utilization.

parameter_name Specify the parameter name for the assurance parameter.

parameter_value Specify the parameter value for the assurance parameter.

Table 3–14 (Cont.) Deployment Flavor Parameters

Parameter Description

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-19

 </constituent-vdu>
</deployment-flavor>

About PNF Descriptor Files
PNF descriptor files describe the deployment requirements, operational behavior, and
policies required by PNFs that are based on them.

In the PNF descriptor file, you specify:

■ Vendor details

■ The version of the PNF descriptor

■ The software version of the PNF

■ Connection points for the PNF

The following text shows the pattern in which you describe a PNF in the PNF
descriptor file:

<pnfd id="pnf_descriptor_id" name="pnf_descriptor_name">

 <vendor>vendor_name</vendor>
 <version>descriptor_version</version>
 <pnf-version>pnf_version</pnf-version>

 <!-- Multiple connection points are supported. -->
 <connection-point id="connection_point_id" name="connection_point_name"/>
 <connection-point id="connection_point_id" name="connection_point_name"/>
 <connection-point id="connection_point_id" name="connection_point_name"/>

</pnfd>

Table 3–15 describes the parameters you specify to provide information about the PNF
descriptor XML file.

Network Service Orchestration includes the following sample PNF descriptor file:

■ Cisco_xRV.xml. This descriptor file can be used for the Cisco xRV router PNF.

The following text shows the elements in the Cisco_xRV.xml sample PNF descriptor
file:

<pnfd id="Cisco_xRV" name="Cisco_xRV">

Table 3–15 PNF Descriptor Parameters

Parameter Description

pnf_descriptor_id Specify a unique ID for the PNF descriptor that you want to
include in the network service.

pnf_descriptor_name Specify a name for the PNF descriptor that you want to include
in the network service.

vendor_name Specify the name of the PNF vendor.

descriptor_version Specify the version of the PNF descriptor.

pnf_version Specify the software version number for the PNF image.

connection_point_id Specify a unique ID for the PNF connection point.

connection_point_name Specify a name for the PNF connection point.

About Design Components

3-20 Network Service Orchestration Implementation Guide

 <vendor>CISCO</vendor>
 <version>1.0</version>
 <pnf-version>1.0</pnf-version>

 <!-- Multiple connection points are supported. -->
 <connection-point id="CP01" name="CP01"/>
 <connection-point id="CP02" name="CP02"/>
 <connection-point id="CP03" name="CP03"/>

</pnfd>

Creating a Descriptor File
In Design Studio, you create a descriptor file for each Network Service specification
and VNF Service specification.

To create a descriptor file:

1. In Design Studio, import all the Network Service Orchestration cartridges. See
"Setting Up Design Studio for Extending Network Service Orchestration" for more
information about importing the cartridges into Design Studio.

2. Switch to the Navigator view.

3. In the root directory of the cartridge project, create the following folder structure:

model/content/product_home/config

4. Right-click on the config folder and create an XML file with the name
ServiceSpecificationName.xml for a network service,
LogicalDeviceSpecificationName.xml for a VNF, and
LogicalDeviceSpecificationName.xml for a PNF.

where:

■ ServiceSpecificationName is the name of the service specification

■ LogicalDeviceSpecificationName is the name of the logical device specification,
which represents a VNF or a PNF.

5. Copy the sample content from the sample cartridge project to the XML file and
modify it according to your service requirements.

About Technical Actions Files
Technical actions files describe the actions for the VNFs, PNFs, and network services in
a VIM. There is one technical actions file for each network service, VNF, and PNF.

In the technical actions file, for each technical action, you define the following
elements:

■ action: This element declares a technical action, its signature (which contains the
name and type of each parameter), and the type of its subject and target.

■ match: This element declares configuration differences that match an XPath
expression.

■ generator: This element defines all the bindings of the configuration to the
parameters, subject, and target of the action to be generated.

The following example shows the elements in the Juniper_vSRX_Service_
TechnicalActions.xml file:

<technicalActionCalculator
 xmlns="http://xmlns.oracle.com/communications/inventory/actioncalculator"

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-21

xmlns:invactcalc="http://xmlns.oracle.com/communications/inventory/actioncalculato
r"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.oracle.com/communications/inventory/actioncalcula
tor
 ../../../../../../calc_tech_actions_uim_workspace/ora_uim_calculate_technical_
order_metadata/schemas/TechnicalActionCalculator.xsd">

 <invactcalc:action>
 <name>DEPLOY_VNF</name>
 <actionCode>DEPLOY_VNF</actionCode>
 <subject>
 <class>LogicalDevice</class>
 </subject>
 <target>
 <class>LogicalDevice</class>
 </target>
 <parameter>
 <name>serviceID</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfID</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfName</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfdName</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>flavor</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vimId</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vdus</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>vnfcs</name>
 <type>string</type>
 </parameter>
 <parameter>
 <name>ports</name>
 <type>string</type>
 </parameter>
 </invactcalc:action>

 <invactcalc:match>
 <invactcalc:diff>
 <invactcalc:path>/root/after/vnf/Assignment[@State='PENDING_ASSIGN'

About Design Components

3-22 Network Service Orchestration Implementation Guide

and /root/service[state!='PENDING_DISCONNECT']]/..</invactcalc:path>
 </invactcalc:diff>
 <invactcalc:action>DEPLOY_VNF</invactcalc:action>
 <invactcalc:anchor>.</invactcalc:anchor>
 </invactcalc:match>

 <invactcalc:generator>
 <invactcalc:action>DEPLOY_VNF</invactcalc:action>
 <invactcalc:condition>/root/after/vnf/Assignment[@State='PENDING_
ASSIGN']</invactcalc:condition>
 <subject>.</subject>
 <target>.</target>
 <binding>
 <parameter>serviceID</parameter>
 <path>/root/service/id</path>
 </binding>
 <binding>
 <parameter>vnfID</parameter>
 <path>Assignment/id</path>
 </binding>
 <binding>
 <parameter>vnfName</parameter>
 <path>Assignment/name</path>
 </binding>
 <binding>
 <parameter>vnfdName</parameter>
 <path>Assignment/specification</path>
 </binding>
 <binding>
 <parameter>flavor</parameter>
 <path>Assignment/flavorName</path>
 </binding>
 <binding>
 <parameter>vimId</parameter>
 <path>Assignment/vimId</path>
 </binding>
 <binding>
 <parameter>vdus</parameter>
 <path>string-join(vdus/vdu/(
 concat(
 'id:', @id, '_VDUAttrDlm_',
 'name:', Assignment/name, '_VDUAttrDlm_',
 'imageName:', Assignment/imageName, '_VDUAttrDlm_',
 'imageId:', Assignment/imageId, '_VDUAttrDlm_',
 'imageVersion:', Assignment/imageVersion, '_VDUAttrDlm_',
 'availabilityZone:', Assignment/availabilityZoneName, '_
VDUAttrDlm_',
 'flavorName:', Assignment/flavorName, '_VDUAttrDlm_',
 'securityGroups:', Assignment/securityGroups, '_VDUAttrDlm_'
)), '_VDUDlm_')
 </path>
 </binding>
 <binding>
 <parameter>vnfcs</parameter>
 <path>string-join(vdus/vdu/vnfcs/vnfc/(
 concat(
 'vduItemId:', ../../@id, '_VNFCAttrDlm_',
 'id:', @id, '_VNFCAttrDlm_'
)), '_VNFCDlm_')
 </path>

About Design Components

Designing and Onboarding Network Services, VNFs, and PNFs 3-23

 </binding>

 <binding>
 <parameter>ports</parameter>

<path>string-join(vdus/vdu/vnfcs/vnfc/connectionPoints/connectionPoint/(
 concat(
 'vnfcItemId:', ../../@id, '_PortAttrDlm_',
 'id:', port/Reference/id, '_PortAttrDlm_',
 'cpName:',Reference/name, '_PortAttrDlm_',
 'extNetId:', network/Reference/extNetId, '_PortAttrDlm_',
 'extSubnetId:', network/Reference/externalID, '_PortAttrDlm_',
 'isDhcpEnabled:', network/isDhcpEnabled, '_PortAttrDlm_',
 'isPortSecurityEnabled:',isPortSecurityEnabled,'_PortAttrDlm_
',
 'securityGroups:',securityGroups, '_PortAttrDlm_',
 'order:',order, '_PortAttrDlm_'
)), '_PortDlm_')
 </path>
 </binding>
 </invactcalc:generator>
</technicalActionCalculator>

Creating a Technical Actions File
In Design Studio, you create a technical actions file for each Network Service
specification, a VNF Service specification, and a PNF specification.

To create a technical actions file:

1. In Design Studio, switch to the Navigator view.

2. In the root directory of the cartridge project, create the following folder structure:

model/content/product_home/config

3. Right-click on the config folder and create an XML file with the name
ServiceSpecificationName_TechnicalActions.xml, where ServiceSpecificationName is
the name of the service specification.

4. Copy the sample content from the sample cartridge project to the XML file and
modify it according to your service requirements.

About VNF Configuration Files
Depending on the functionality that they deliver, some VNFs in a network service may
require configuration after they are deployed. After a VNF is deployed, you can
configure the VNF based on its configuration requirements.

To configure a VNF, Network Service Orchestration requires the following
configuration files to be created:

■ VNFD_NameTemplate.conf

This is a VNF-specific configuration template in which you specify the placeholder
fields for instance-specific parameters.

■ VNFD_NameConfig.xml

Note: Post-deployment configuration of VNFs is not always
required.

Setting Network Service Descriptor Properties

3-24 Network Service Orchestration Implementation Guide

This is a configuration file in which you specify the VNF instance-specific
configuration parameter values as name-value pairs.

Network Service Orchestration generates the VNFD_Name.conf configuration file
based on the VNFD_NameTemplate.conf file and the VNFD_NameConfig.xml file.

Network Service Orchestration reads all the name-value pairs in the VNFD_
NameConfig.xml file and replaces the placeholder fields in the VNFD_
NameTemplate.conf file and generates the VNFD_Name.conf file.

The following text shows a sample configuration template for the Juniper vSRX VNF
in the Juniper_vSRX_Template.conf configuration file:

 <rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <security>
 <utm>
 <custom-objects>
 <url-pattern>
 <name>bad-sites</name>
 <value>{{site-name}}</value>
 </url-pattern>
 </custom-objects>
 </utm>
 </security>
 </configuration>
 </config>
 </edit-config>
 </rpc>

The following example shows a sample configuration for the Juniper vSRX VNF in the
Juniper_vSRX_Config.xml configuration file:

<vnfConfiguration>
 <config>
 <param>
 <name>site-name</name>
 <value>www.example.com</value>
 </param>
 <sbiToPushConfiguration>
 <interface>netconf</interface>
 <interface-script></interface-script>
 </sbiToPushConfiguration>
 <action>null</action>
 </config>
 </vnfConfiguration>

Setting Network Service Descriptor Properties
You define and specify properties for your network service in the UIM_
Home/config/network_service_descriptor.properties file, where network_service_descriptor
is the name of your network service descriptor. You create one properties file for each
network service that you want to create and implement.

Table 3–16 describes the parameters that you specify for a network service.

Setting Network Service Descriptor Properties

Designing and Onboarding Network Services, VNFs, and PNFs 3-25

Network Service Orchestration provides properties files for the following sample
network services:

■ UIM_Home/config/NPaas.properties. This properties file defines the properties
for the NPaaS sample network service.

Table 3–16 Network Service Descriptor Parameters

Parameter Description

network_service_
descriptor.default.dataCenter

Used to specify the default data center if you use multiple
VIMs. Otherwise, leave blank.

network_service_descriptor indicates the name of the network
service descriptor. For example, NPaaS.

VIM_Id.network_service_
descriptor.VLD_Name

Used to specify the name of the management network. In
the properties files of the samples, by default, the VIM ID is
OpenStack. The management network is the VLD Name
that is specified in the NPaaS.xml file.

If you use multiple VIMs, add another entry of the same
parameter and specify the VIM ID and the management
network.

Add multiple instances of this parameter for specifying
more VLDs.

VIM_Id.network_service_
descriptor.Data_IN

Used to specify the VIM ID and the name of the data-in
network. By default, the VIM ID is OpenStack.

If you use multiple VIMs, add another entry of the same
parameter and specify the VIM ID and the data-in network.

VIM_Id.network_service_
descriptor.Data_OUT

Used to specify the VIM ID and the name of the data-out
network. By default, the VIM ID is OpenStack.

If you use multiple VIMs, add another entry of the same
parameter and specify the VIM ID and the data-out
network.

(Optional)
sdnController.network_service_
descriptor

Used to specify an implementation class for the SDN
controller interface. The default implementation class is
com.oracle.communications.inventory.nso.nfvi.sdn.ODL
Manager.

(Optional) network_
service.ovs.pktInToOVSPort

Used to specify the Open vSwitch port number of the
packet-in network.

(Optional) network_
service.ovs.pktOutToOVSPort

Used to specify the Open vSwitch port number of the
packet-out network.

(Optional) network_
service.ovs.custNetToOVSPort

Used to specify the Open vSwitch port number of the
customer-side network.

(Optional) network_
service.ovs.internetToOVSPort

Used to specify the Open vSwitch port number of the
internet-side network.

(Optional) npaas.ovs.bridge_id Specify the bridge ID for the Open VSwitch and prefix it
with openflow. For example, openflow:OpenFlow_ID,
where OpenFlow_ID is the OpenFlow ID.

To retrieve the OpenFlow ID, in OpenDaylight call the
following OpenDaylight REST API:

http://odlIPaddress:port/restconf/operational/opendayligh
t-inventory:nodes/

where odlIPaddress is the IP address and port is the port
number of the OpenDaylight virtual machine.

Onboarding Network Services and VNFs Using TOSCA Descriptor Templates

3-26 Network Service Orchestration Implementation Guide

■ UIM_Home/config/ResidentialGateway.properties. This properties file defines
the properties for the Residential Gateway sample network service.

■ The following properties files define the properties for the Proxy-Call Session
Control Function (P-CSCF) network service.

– UIM_Home/config/aoconfig.properties

– UIM_Home/config/P-CSCF.properties

Onboarding Network Services and VNFs Using TOSCA Descriptor
Templates

Topology and Orchestration Specification for Cloud Applications (TOSCA) is an
OASIS standard language to describe the topology of cloud-based services. TOSCA
provides specifications for defining NFV descriptors. Network Service Orchestration
supports tosca_simple_profile_for_nfv_1_0_0 and OpenStack Tacker NFV Profiles for
NFV properties.

For more information about TOSCA, see the standards section on the OASIS web site:
https://www.oasis-open.org/standards#toscav1.0

Network Service Orchestration supports onboarding of network services and VNFs
using TOSCA descriptor templates that are in YAML format. Network Service
Orchestration requires OpenStack TOSCA parser 6.0 (or later) to parse the descriptors.

To onboard Network Services and VNFs you import the TOSCA descriptor templates
into Design Studio. When you import a TOSCA descriptor template, Network Service
Orchestration processes the YAML file that contains the structural and topology details
(connection points and connectivity requirements) and creates a network service
cartridge project or a VNF cartridge project with the required UIM entity specifications
(such as Logical Device, Service, and Service Configuration specifications), assigned or
referenced resource specifications, and characteristic specifications.

Before you import the TOSCA descriptor templates into Design Studio, do the
following:

1. Install Python 3.5.2. See "Installing Python" for instructions.

2. Create a new environment variable PYTHON_EXECUTABLE and add the full
path to the python executable file. For example, C:\Program
Files\Python35\python.exe.

3. Download the UIM_SDK.zip file and extract its contents.

4. The UIM_SDK\NSO tools\ToscaTranslator\ directory contains the following
files:

■ OracleCommsToscaTranslator.zip

■ OracleCommsToscaTranslatorEnvSetup.zip

5. In the TOSCA_TRANSLATOR_HOME environment variable, add the path to the
directory in which you extracted the OracleCommsToscaTranslator.zip file. For
example, UIM_SDK\NSO tools\ToscaTranslator. The
OracleCommsToscaTranslator.zip contains the lib directory and the
OracleCommsToscaTranslator.pyz file.

Onboarding Network Services and VNFs Using TOSCA Descriptor Templates

Designing and Onboarding Network Services, VNFs, and PNFs 3-27

6. If your Design Studio workspace is already open, close and reopen the workspace.

7. Import the required UIM base cartridges into Design Studio.

See "Setting Up Design Studio for Extending Network Service Orchestration" for
information about the required UIM base cartridges.

Sample TOSCA VNF Descriptor Template
The following text shows the TOSCA VNF descriptor template in YAML format for the
sample Juniper_vSRX.yaml file. This sample shows the supported properties.

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: juniper vSRX firewall

metadata:
 template_name: Juniper_vSRX_tosca
 template_type: VNF
 ID: Juniper_vSRX_tosca
 vendor: Juniper
 version: 1.0

topology_template:
 node_templates:
 Juniper_vSRX_VDU:
 type: tosca.nodes.nfv.VDU.Tacker
 capabilities:
 nfv_compute:
 properties:
 num_cpus: 2
 mem_size: 4GB
 disk_size: 20GB
 properties:
 image: vsrx-12.1X47-D20.7-npaas-v0.3

 CP03:
 type: tosca.nodes.nfv.CP.Tacker
 properties:
 management: true
 order: 0
 requirements:
 - virtualBinding:
 node: Juniper_vSRX_VDU
CP01:
 type: tosca.nodes.nfv.CP.Tacker
 properties:
 order: 2
 requirements:
 - virtualBinding:

Note: If your operating system does not consider an environment
variable defined with a blank space in the directory names, you can
extract the OracleCommsToscaTranslator.zip file and move its
contents to any location, and then provide the path of this location in
the TOSCA_TRANSLATOR_HOME environment variable. Ensure
that the lib directory and the OracleCommsToscaTranslator.pyz file
are located in the same directory.

Onboarding Network Services and VNFs Using TOSCA Descriptor Templates

3-28 Network Service Orchestration Implementation Guide

 node: Juniper_vSRX_VDU

policies:
 - ScalingPolicy:
 type: tosca.policies.tacker.Scaling
 properties:
 increment: 1
 min_instances: 1
 max_instances: 3
 default_instances: 1
 targets: [Juniper_vSRX_VDU]
 - vdu1_cpu_usage_monitoring_policy:
 type: tosca.policies.tacker.Alarming
 triggers:
 resize_compute:
 event_type:
 type: tosca.events.resource.utilization
 implementation: ceilometer
 metrics: cpu_util
 condition:
 threshold: 50
 constraint: utilization greater_than 50%
 period: 600
 evaluations: 1
 method: avg
 comparison_operator: gt
 action:
 resize_compute:
 action_name: respawn
 targets: [Juniper_vSRX_VDU]

Figure 3–1 depicts the TOSCA VNF Template to the VNF virtual machine mapping.

Figure 3–1 TOSCA VNF Template to VNF Virtual Machine Mapping

In the illustration, the Firewall_VNF VNF comprises one Virtual Deployment Unit
(VDU) that is connected to three virtual links. The VDU has three connection points:
CP1 (connection point 1) is connected to Mgmt-net (management network), CP2
(connection point 2) is connected to Pkt-in (packet-in network), and CP3 (connection

Onboarding Network Services and VNFs Using TOSCA Descriptor Templates

Designing and Onboarding Network Services, VNFs, and PNFs 3-29

point 3) is connected to Pkt-out (packet-out network). The networks are defined in the
network service descriptor.

Sample TOSCA Network Service Descriptor Template
The following text shows the TOSCA network service descriptor template in YAML
format for the sample NPaaS.yaml file. This sample shows the supported properties.

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: NPaaS Network Service

description: NPaaS Network Service
metadata:
 template_name: NPaaS_tosca
 template_type: NS
 ID: NPaaS_tosca
 vendor: Oracle
 version: 1.0
imports:
 - juniper_vSRX_definition.yaml
 - Juniper_vSRX.yaml

topology_template:
 node_templates:
 Juniper_vSRX_tosca:
 type: tosca.nodes.nfv.VNF.Juniper
 requirements:
 - virtualLink1: data
 - virtualLink2: mgmt

 data:
 type: tosca.nodes.nfv.VL
 properties:
 network_name: data
 vendor: Oracle

 mgmt:
 type: tosca.nodes.nfv.VL
 properties:
 network_name: mgmt
 vendor: Oracle

 policies:
 - ScalingPolicy:
 type: tosca.policies.tacker.Scaling
 properties:
 increment: 1
 min_instances: 1
 max_instances: 3
 default_instances: 1
 targets: [Juniper_vSRX_tosca]

To make the VNFs a part of the network service, do the following:

■ Define the substitution_mappings in each VNF YAML file, as follows:

topology_template:
 substitution_mappings:
 node_type:

Onboarding Network Services and VNFs Using TOSCA Descriptor Templates

3-30 Network Service Orchestration Implementation Guide

 requirements:
 virtualLink1:
 virtualLink2:
 node_templates:

The following example shows the substitution mappings that you must define
when you import the Juniper_vSRX.yaml file into the NPaas.yaml file:

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

description: juniper vSRX firewall

imports:
 - <Full directory Path of this file>\Juniper_vSRX_definition.yaml # Replace
<Full directory Path of this file> with full path of directory containing
Juniper_vSRX_definition.yaml file

topology_template:
 substitution_mappings:
 node_type: tosca.nodes.nfv.VNF.Juniper
 requirements:
 virtualLink1: [CP01, CP02, virtualLink]
 virtualLink2: [CP03, virtualLink]
 node_templates:
 Juniper_vSRX_VDU:
 type: tosca.nodes.nfv.VDU.Tacker
 capabilities:
 nfv_compute:
 properties:
 num_cpus: 2
 mem_size: 4GB
 disk_size: 20GB
 properties:
 image: vsrx-12.1X47-D20.7-npaas-v0.3

 CP03:
 type: tosca.nodes.nfv.CP.Tacker
 properties:
 management: true
 order: 0
 requirements:
 - virtualBinding:
 node: Juniper_vSRX_VDU

 CP02:
 type: tosca.nodes.nfv.CP.Tacker
 properties:
 order: 1
 requirements:
 - virtualBinding:
 node: Juniper_vSRX_VDU

 CP01:
 type: tosca.nodes.nfv.CP.Tacker
 properties:
 order: 2
 requirements:
 - virtualBinding:
 node: Juniper_vSRX_VDU

Onboarding Network Services and VNFs Using TOSCA Descriptor Templates

Designing and Onboarding Network Services, VNFs, and PNFs 3-31

■ For each node type representing a VNF node, you must define a corresponding
definition file.

The following is the sample definition file for the node type
tosca.nodes.nfv.VNF.Juniper.

tosca_definitions_version: tosca_simple_profile_for_nfv_1_0_0

node_types:
 tosca.nodes.nfv.VNF.Juniper:
 derived_from: tosca.nodes.nfv.VNF
 requirements:
 - virtualLink1:
 capability: tosca.capabilities.nfv.VirtualLinkable
 relationship: tosca.relationships.nfv.VirtualLinksTo
 node: tosca.nodes.nfv.VL
 - virtualLink2:
 capability: tosca.capabilities.nfv.VirtualLinkable
 relationship: tosca.relationships.nfv.VirtualLinksTo
 node: tosca.nodes.nfv.VL

The following are some points that you should keep in mind when importing the
TOSCA descriptor files:

■ Network Service Orchestration supports multiple VNF components (VNFCs)
within a single VDU; however, the TOSCA definitions support only VDUs. To
define a TOSCA YAML descriptor for a VNF that has multiple VNFCs, you must
define a separate VDU for each VNFC.

■ Under ScalingPolicy, the default_instances field maps to the <min_instances>
element in the network service descriptor and the VNF descriptor.

■ Network Service Orchestration looks for the following fields under the metadata
section in the TOSCA VNF descriptor and TOSCA Network Service descriptor
templates:

– template_type: Specify VNF in the TOSCA VNF descriptor template and
specify NS in the TOSCA Network Service descriptor template.

– ID: Specify an ID for the TOSCA VNF descriptor template and the TOSCA
Network Service descriptor template.

Installing Python
To install python:

1. Download and extract the UIM_SDK.zip file.

2. Navigate to the UIM_SDK\NSO tools\ToscaTranslator directory and extract the
OracleCommsToscaTranslatorEnvSetup.zip file.

The extracted OracleCommsToscaTranslatorEnvSetup directory contains different
directories for Windows and Linux operating systems.

3. Run the following command:

■ For Windows machine, launch command prompt and run the following
command as administrator:

Note: Before you run the commands, ensure that you have a
working internet connection.

Onboarding Network Services and VNFs Using TOSCA Descriptor Templates

3-32 Network Service Orchestration Implementation Guide

install.bat

If you use proxy and a target directory, run the following command:

install.bat -proxy="www-proxy.example.com:port" -targetdir="C:\python35"

where:

– www-proxy.example.com:port is the proxy

– C:\python35 is the target directory of Python

See Table 3–17 for details about the command line argument options.

■ For Linux machine, from terminal, run the following command as a pseudo
user or with root permission:

install.sh

The installation script installs python and the required libraries on the machine.

Table 3–17 describes the command line arguments.

Importing the TOSCA VNFD Template into Design Studio
To import the TOSCA VNF template into Design Studio:

1. In Design Studio, from the Studio menu, select Show Design Perspective.

2. Click the Studio Projects tab.

The Studio Projects view appears.

3. Right-click in the Studio Projects view, select Import, and then select Import
VNFD TOSCA Template.

The Import VNFD TOSCA Template dialog box appears.

4. Click Browse and select the TOSCA VNF descriptor file or the TOSCA network
service descriptor file in YAML format.

Design Studio creates the VNF cartridge project or the network service cartridge
project with the required specifications.

After the VNF cartridge project is generated, to use this cartridge with a network
service, make appropriate changes in your network service cartridge project. For more
information about working with network service cartridges, see "Designing Custom
Network Services".

After the network service cartridge project is generated, before you deploy the
network service, you must import or create any dependent VNF cartridge projects,
and then make appropriate changes in your network service cartridge project. For
more information about working with network service cartridges, see "Designing
Custom Network Services".

Table 3–17 Command Line Arguments

For Windows For Linux Usage

-proxy -p or --proxy To connect to the internet through proxy.

-targetdir Not Applicable Specify the Python installation directory (on
Windows only).

-internet -i or --internet Set Y if you have a working internet connection.

Designing Custom Network Services

Designing and Onboarding Network Services, VNFs, and PNFs 3-33

Tagging Network Service Orchestration Specifications
UIM uses tags to differentiate between inventory entities and entities used by Network
Service Orchestration. You apply these tags to Network Service Orchestration
specifications in Design Studio.

When you tag specifications with Network Service Orchestration tags, UIM filters the
entities based on the tags and displays only the relevant entities in Network Service
Orchestration pages.

The tags for Network Service Orchestration specifications are included in the
OracleComms_NSO_BaseTags cartridge. See the section on “NSO Base Tags
Cartridge” in the chapter, “Network Service Orchestration Base Cartridges” in UIM
Cartridge Guide for more information.

For instructions about tagging specifications, see Design Studio Help.

Table 3–18 lists and describes the tags for the Network Service Orchestration
specifications.

Designing Custom Network Services
You can use Design Studio to design and implement custom network services based
on your business requirements. Designing a network service requires designing the
service itself as well as the VNFs and PNFs it uses.

In Design Studio, you create a cartridge project for each network service, VNF, and
PNF that you design. These cartridge projects include specifications and other
artifacts. You compile the cartridge projects into cartridges for deployment into UIM.

To work properly with Network Service Orchestration, the specifications must include
certain characteristics, relationships, and rulesets. See the following sections for more
information:

■ Creating Cartridges for VNFs

Table 3–18 Network Service Orchestration Specifications and Tags

Tag Specification Type Description

EMS Custom Object Tags a Custom Object specification as an EMS
specification.

Endpoint Custom Object Tags a Custom Object specification as an Endpoint
specification.

Network
Service

Service Tags a Service specification as a Network Service
Orchestration Network Service specification.

Orchestration
Request

Business Interaction Tags a Business Interaction specification as an
Orchestration Request specification.

PNF ■ Service

■ Logical Device

Tags a Service specification as a PNF Service
specification.

Tags a Logical Device specification as a PNF
specification.

VNF ■ Service

■ Logical Device

Tags a Service specification as a VNF Service
specification.

Tags a Logical Device specification as a VNF device
specification.

VDU Logical Device Tags a Logical Device specification as a VDU device
specification.

Designing Custom Network Services

3-34 Network Service Orchestration Implementation Guide

■ Creating Cartridges for PNFs

■ Creating Cartridges for Network Services

Creating Cartridges for VNFs
For each VNF that you want to use with a network service, create a cartridge project in
Design Studio. In each VNF cartridge project, do the following:

■ Create the following UIM entity specifications:

– A Logical Device specification that represents the VNF. Ensure that the name
of the Logical Device Specification is same as the ID that you specified in the
<vnfd> element of the VNF descriptor XML file. See "Logical Device
Specification" for more information about the logical device specification for
the VNF.

– A Service specification that represents the VNF. See "Service Specification" for
more information.

– A Service Configuration specification for the VNF. See "Service Configuration
Specification" for more information.

– A Logical Device specification that represents the VDU. Ensure that the name
of the Logical Device Specification is same as the ID that you specified in the
<vdu> element of the VNF descriptor XML file. See "Logical Device
Specification" for more information about the logical device specification for
the VDU.

■ Create a technical actions file for the VNF Service specification. See "Creating a
Technical Actions File" for more information.

■ Create a VNF descriptor file for the VNF Service specification. See "Creating a
Descriptor File" for more information.

■ Create a configuration file for the VNF, if the VNF requires configuration. See
"About VNF Configuration Files" for more information.

■ Create a post-configuration template configuration file for the VNF. See "About
VNF Configuration Files" for more information.

■ Create a template file for the VNF. See "About VNF Configuration Files" for more
information.

■ Create custom code for extension. See "Extending Network Service Orchestration"
for more information.

Logical Device Specification
Create a Logical Device specification to represent the VNF. This specification must
include the characteristics listed in Table 3–19. These characteristics are provided in the
OracleComms_NSO_BaseCartridge cartridge. You can optionally define and include
additional characteristics.

Table 3–19 VNF Logical Device Specification Characteristics

Characteristic Type Description

externalID String The external ID of the VNF.

flavorName String The deployment flavor used to create the VNF.

version String The version of the VNF.

Designing Custom Network Services

Designing and Onboarding Network Services, VNFs, and PNFs 3-35

Create a Logical Device specification to represent the VDU. This specification must
include the characteristics listed in Table 3–20. These characteristics are provided in the
OracleComms_NSO_BaseCartridge cartridge. You can optionally define and include
additional characteristics.

See the Design Studio Help and the section on “Working with Characteristics” in the
chapter, “Design Studio Overview” in UIM Concepts for more information about
characteristics.

There are no rulesets required for the VNF and VDU Logical Device specifications. You
can create custom rulesets to extend the default capabilities, however.

A VNF Logical Device specification must include the specification relationships listed
in Table 3–21.

Associate the VNF tag to the VNF Logical Device specification to ensure that UIM
correctly handles entities based on this specification. The VNF tag is provided in the
OracleComms_NSO_BaseTags cartridge. See "Tagging Network Service Orchestration
Specifications" for more information.

Associate the VDU tag to the VDU Logical Device specification to ensure that UIM
correctly handles entities based on this specification. The VDU tag is provided in the
OracleComms_NSO_BaseTags cartridge. See "Tagging Network Service Orchestration
Specifications" for more information.

vimId String The ID of the VIM.

Table 3–20 VDU Logical Device Specification Characteristics

Characteristic Type Description

availabilityZoneName String The name of the availability zone where the VDU
gets instantiated.

externalID String The external ID of the VDU.

flavorName String The deployment flavor used to create the VDU.

host String The host ID where VDU is instantiated.

imageId String The ID of the VDU Image.

imageName String The name of the VDU image.

imageVersion String The software version of the VDU image.

securityGroups String The security groups for the VDU.

Table 3–21 Logical Device Specification Relationships

Specification Name Description

DeviceInterface CPD Multiplicity is from 0 to 100.

This specification is available in the
OracleComms_NSO_BaseCartridge cartridge.

ServiceSpecification user created Set this to the name of the VNF Service
specification that you design.

Table 3–19 (Cont.) VNF Logical Device Specification Characteristics

Characteristic Type Description

Designing Custom Network Services

3-36 Network Service Orchestration Implementation Guide

Service Specification
Create a Service specification to represent the VNF service. No characteristics or
rulesets are required, but you can optionally add them to extend the default
capabilities.

Figure 3–2 illustrates the VNF service model.

Figure 3–2 VNF Service Model

A VNF Service specification must include the specification relationships listed in
Table 3–22.

Table 3–22 VNF Service Specification Relationships

Specification Name Description

ServiceSpecification user created The associated capability service specification,
used to configure capabilities.

Designing Custom Network Services

Designing and Onboarding Network Services, VNFs, and PNFs 3-37

Apply the VNF tag to the VNF Service specification to ensure that UIM correctly
handles entities based on this specification. The VNF tag is provided in the
OracleComms_NSO_BaseTags cartridge. See "Tagging Network Service Orchestration
Specifications" for more information.

Service Configuration Specification
Create a Service Configuration specification to accompany the VNF Service
specification. The Service Configuration specification must include the configuration
items listed in Table 3–23.

Define the specification options for the configuration items as shown in Table 3–24.

ServiceConfigurationSpecific
ation

user created The associated service configuration
specification.

Table 3–23 VNF Service Configuration Items

Name Parent Item Multiplicity Characteristics

vnf null Required None

connectionPoints vnf Required None

connectionPoint connectionPoints 0 to unbounded ■ isPortSecurityEnabled

■ securityGroups

vdus vnf Required None

vdu vdus 0 to unbounded None

vnfcs vdu Required None

vnfc vnfcs 0 to unbounded None

connectionPoints vnfc Required None

connectionPoint connectionPoints 0 to unbounded ■ isPortSecurityEnabled

■ securityGroups

■ order

port connectionPoint Required None

network connectionPoint Required isDhcpEnabled

Table 3–24 VNF Service Configuration Specification Options

Item
Item Option
Type Specification Specification Type

vnf Assignment VNF Logical Device specification

connectionPoint Reference CPD Device Interface specification

vdu Assignment VDU Logical Device specification

vnfc None None None

port Reference IPv4Address IPv4Address specification

network Reference IPv4Subnet IPv4Subnet specification

Table 3–22 (Cont.) VNF Service Specification Relationships

Specification Name Description

Designing Custom Network Services

3-38 Network Service Orchestration Implementation Guide

Associate the following rulesets with the Service Configuration specification. These
rulesets are included in the OracleComms_NSO_BaseCartridge cartridge:

■ IssueVNFServiceConfig_NSOBaseRulesetExtPt

■ AutomateVNFServiceConfig_NSOBaseRulesetExtPt

■ Cancel_VNFServiceConfigRulesetExtPt

■ CompleteVNFServiceConfig_NSOBaseRulesetExtPt

Creating Cartridges for PNFs
For each PNF that you want to use with a network service, create a cartridge project in
Design Studio. In each PNF cartridge project, do the following:

■ Create the following UIM entity specifications:

– A Logical Device specification that represents the PNF. See "Logical Device
Specification".

– A Service specification that represents the PNF service. See "Service
Specification".

– A Service Configuration specification for the PNF service. See "Service
Configuration Specification".

■ Create a technical actions file for the PNF Service specification. See "Creating a
Technical Actions File" for more information.

■ Create a network service descriptor file for the Network Service specification. See
"Creating a Descriptor File" for more information.

■ Create custom code for extension. See "Extending Network Service Orchestration"
for more information.

Logical Device Specification
Create a Logical Device specification to represent the PNF. This specification must
include the characteristics listed in Table 3–25. These characteristics are provided in the
OracleComms_NSO_BaseCartridge cartridge. You can optionally define and include
additional characteristics. See the Design Studio Help and the section on “Working
with Characteristics” in the chapter, “Design Studio Overview” in UIM Concepts for
more information about characteristics.

Associate the following rulesets with the PNF Logical Device specification. These
rulesets are included in the OracleComms_NSO_BaseCartridge cartridge.

■ CreatePNF_Ruleset. This ruleset validates the create PNF request.

Table 3–25 PNF Logical Device Specification Characteristics

Characteristic Type Description

ipAddress String The IP address of the PNF.

password String The password of the PNF.

username String The username of the PNF.

sshkey String The ssh key for the PNF.

This characteristic is available in the PNF sample cartridge.

sslEnabled Boolean Indicates whether SSL is enabled for the PNF or not.

Designing Custom Network Services

Designing and Onboarding Network Services, VNFs, and PNFs 3-39

■ UpdatePNF_Ruleset. This ruleset validates the update PNF request.

■ CreateEMS_Ruleset. This ruleset validates the create EMS request.

■ UpdateEMS_Ruleset. This ruleset validates the update EMS request.

A PNF Logical Device specification must include the specification relationships listed
in Table 3–26.

Apply the following tags to the PNF Logical Device specification to ensure that UIM
correctly handles entities based on this specification. These tags are provided in the
OracleComms_NSO_BaseTags cartridge.

■ PNF

■ EMS

See "Tagging Network Service Orchestration Specifications" for more information.

Service Specification
Create a Service specification to represent the PNF service. No characteristics or
rulesets are required, but you can optionally add them to extend the default
capabilities.

Figure 3–3 shows how a PNF service is modeled.

Table 3–26 PNF Logical Device Specification Relationships

Specification Name Description

DeviceInterfaceSpecifica
tion

CPD Multiplicity is from 0 to 100.

This specification is available in the
OracleComms_NSO_BaseCartridge cartridge.

ServiceSpecification user created Set this to the name of the PNF Service
specification that you design.

Designing Custom Network Services

3-40 Network Service Orchestration Implementation Guide

Figure 3–3 PNF Service Model

A PNF Service specification must include the specification relationships listed in
Table 3–27.

Apply the PNF tag to the PNF Service specification to ensure that UIM correctly
handles entities based on this specification. The PNF tag is provided in the
OracleComms_NSO_BaseTags cartridge. See "Tagging Network Service Orchestration
Specifications" for more information.

Service Configuration Specification
Create a Service Configuration specification to accompany the PNF Service
specification. The Service Configuration specification must include the configuration
items listed in Table 3–28.

Define the specification options for the configuration items as shown in Table 3–29.

Table 3–27 PNF Service Specification Relationships

Specification Name Description

ServiceConfigurationSpe
cification

Cisco_xRV_Service_
Config

The associated service configuration
specification.

Table 3–28 PNF Service Configuration Items

Item Parent Item Multiplicity Characteristics

pnf null Required None

ConnectionPoint pnf 1 to 100 None

port ConnectionPoint Required None

Designing Custom Network Services

Designing and Onboarding Network Services, VNFs, and PNFs 3-41

Associate the following rulesets with the Service Configuration Version specification.
These rulesets are included in the OracleComms_NSO_BaseCartridge cartridge.

■ IssuePNFServiceConfig_NSOBaseRulesetExtPt

■ AutomatePNFServiceConfig_NSOBaseRulesetExtPt

■ Cancel_PNFServiceConfigRulesetExtPt

■ CompletePNFServiceConfig_NSOBaseRulesetExtPt

Creating Cartridges for Network Services
For each network service, create a cartridge project in Design Studio. In the cartridge
project for the network service, do the following:

■ Create the following UIM entity specifications:

– A Service specification to represent the network service. Ensure that the name
of the Service Specification is same as the ID that you specified in the <nsd>
element of the network service descriptor XML file. See "Network Service
Specification".

– A Service Configuration specification to accompany the network service
specification. See "Network Service Configuration Specification".

■ Create a technical actions file for the Network Service specification. See "Creating a
Technical Actions File" for more information.

■ Create a network service descriptor file for the Network Service specification. See
"Creating a Descriptor File" for more information.

■ Create a custom properties file for the Network Service specification. See "Setting
Network Service Descriptor Properties" for more information.

■ Create custom code for extension. See "Extending Network Service Orchestration"
for more information.

Network Service Specification
Create a Network Service specification to represent the network service.

Figure 3–4 illustrates the network service model.

Table 3–29 PNF Service Configuration Specification Options

Item Item Option Type Specification

pnf Assignment Logical Device

ConnectionPoint Reference DeviceInterface

port Reference IPv4Address

Designing Custom Network Services

3-42 Network Service Orchestration Implementation Guide

Figure 3–4 Network Service Model

The Network Service specification must include the characteristics listed in Table 3–30.
These characteristics are provided in the OracleComms_NSO_BaseCartridge
cartridge.

The Network Service specification does not require any rulesets, but you can create
custom rulesets to extend the default capabilities.

The Network Service specification must include the specification relationships listed in
Table 3–31.

Table 3–30 Network Service Specification Characteristics

Characteristic Type Description

dataCenterName String The name of the data center.

flavorName String The name of the service flavor.

serverGroup String The name of the server group.

vimId String The unique identifier of VIM.

Designing Custom Network Services

Designing and Onboarding Network Services, VNFs, and PNFs 3-43

Apply the NetworkService tag to the Network Service specification to ensure that
UIM correctly handles entities based on this specification. This tag is provided in the
OracleComms_NSO_BaseTags cartridge. See "Tagging Network Service Orchestration
Specifications" for more information.

Network Service Configuration Specification
Create a Service Configuration specification to accompany the Network Service
specification.

The Service Configuration specification must include the configuration items listed in
Table 3–32.

Define the specification options for the configuration items as shown in Table 3–33.

Table 3–31 Network Service Specification Relationships

Specification Name Description

ServiceConfigurationSpe
cification

user created This is the associated service configuration
specification.

Table 3–32 Network Service Configuration Items

Item Parent Item Multiplicity Characteristics

virtualLinks null Required None

virtualLink virtualLinks 0-unbounded isReferedByNSO

vnfs null Required None

vnf vnfs 0 to unbounded None

vnfService vnf Required action

pnfs null Optional None

pnf pnfs 0 to unbounded None

pnfService pnf Required None

endPoints null Required None

endPoint endPoints 1 to unbounded None

vnffgs null Required None

vnffg vnffgs 0 to unbounded name

nfp vnffg 0 to unbounded ■ name

■ externalID

sourceEndPoint nfp Optional. 0 to 1. None

targetEndPoint nfp Optional. 0 to 1. None

Table 3–33 Network Service Configuration Specification Options

Item Item Option Type Specification Specification Type

virtualLinks None None None

virtualLink Reference IPv4Subnet IPv4Subnet specification

vnfs None None None

vnf Reference VNF Logical Device Logical Device specification

Designing Custom Network Services

3-44 Network Service Orchestration Implementation Guide

Associate the following rulesets with the Service Configuration Version specification.
These rulesets are provided in the OracleComms_NSO_BaseCartridge cartridge.

■ AutomateNetworkServiceConfig_NSOBaseRulesetExtPt

■ IssueNetworkServiceConfig_NSOBaseRulesetExtPt

■ CompleteNetworkServiceConfig_NSOBaseRulesetExtPt

■ CancelNetworkServiceConfig_NSOBaseRulesetExtPt

vnfService Assignment VNF Service Service specification

pnfs None None None

pnf Reference PNF Logical Device Logical Device specification

pnfService Assignment PNF Service Service specification

endPoints None None None

endPoint Reference NetworkServiceEndP
oint

Custom Object specification

vnffgs None None None

vnffg None None None

nfp None None None

sourceEndPoint Reference NetworkServiceEndP
oint

Custom Object specification

targetEndPoint Reference NetworkServiceEndP
oint

Custom Object specification

Table 3–33 (Cont.) Network Service Configuration Specification Options

Item Item Option Type Specification Specification Type

4

Working with Network Services, VNFs, VDUs, and PNFs 4-1

4Working with Network Services, VNFs, VDUs,
and PNFs

This chapter provides information about working with network services, Virtual
Network Functions (VNFs), Virtual Deployment Units (VDUs), and Physical Network
Functions (PNFs) in Oracle Communications Network Service Orchestration.

To work with network services, VNFs, VDUs, and PNFs in Network Service
Orchestration, you can use either the UIM user interface or the REST APIs. See UIM
Help for instructions about performing tasks using the user interface.

When you use REST APIs, you use a REST API client and provide values for the
required parameters in the API request. The values and the parameters are defined in
the network service and VNF descriptor files that you created in Design Studio. See
"Network Service Orchestration RESTful API Reference" for details about the REST
APIs that you can use to perform various tasks.

You perform the following tasks related to network services, VNFs, and PNFs:

■ Instantiating Network Services

■ Terminating Network Services

■ Viewing Progress of Life-cycle Actions

■ Modifying Network Services

■ Scaling VNFs

■ Healing VNFs

■ Working with PNFs in Network Services

■ Retrieving Details About Network Services, VNFs, PNFs, and Descriptors

■ Registering VNFs with Third-Party Systems

Instantiating Network Services
You instantiate a network service to start a VNF on the network. A network service
can have multiple VNFs that are connected to each other. When you instantiate a
network service that has multiple VNFs, all the VNFs in the network service are

Note: Based on the configurations that the VNFs in the network
service require, some VNF life cycle operations may take some time to
complete. In UIM and in your VIM, the resources may not be created,
deleted, or updated immediately after you send the API request or
complete the operation using the user interface.

Instantiating Network Services

4-2 Network Service Orchestration Implementation Guide

started on the network. You can also include PNFs in your network services. See
"Working with PNFs in Network Services" for information about including PNFs in
network services.

Before you instantiate a network service, ensure that your VIM is registered and the
data center resources that your VIM manages are discovered. If you use multiple
VIMs, register all your VIMs and discover the resources that the VIMs manage. See
"Discovering VIM Resources" for information about discovering VIM resources.

If you use multiple VIMs to instantiate your network services, do the following:

■ In UIM, create an Inventory Group entity and associate the VDC custom object
that was generated during the discovery of VIM resources to the inventory group.
See UIM Help for instructions.

■ Create a ServiceLocation entity based on the Place specification and associate it to
the Inventory Group entity.

■ When you instantiate a network service, specify the service location of the VDC in
which you want to instantiate the network service.

After you instantiate a network service, verify the following in UIM:

■ The network service and its configurations are created and are in In Service status.
You can see this in the Network Service Summary page of the network service.

■ The VNF service and its configurations are created and associated to the network
service.

■ The VNFs and their constituent VDUs, which are represented as logical devices,
are created.

■ The PNFs, which are represented as logical devices, are created.

■ The specified networks are either created or referenced.

■ The details of the endpoints are updated in the service configuration.

In your VIM, verify the following:

■ The VDU instances of the VNFs are up and running.

■ The specified networks are either created or referenced.

■ The VDUs are linked to the networks.

Based on the configurations you defined in the network service and the VNF and PNF
descriptor files, Network Service Orchestration does the following tasks during the
instantiation of a network service:

■ Finds the best suitable data center for the network service from among the data
centers that you registered.

■ Performs resource orchestration to find the best suitable availability zone where
constituent VNFs can be deployed.

■ Creates new networks or references existing networks that are required for
connectivity among the VNFs.

■ Manages IP addresses of all the resources.

■ Configures the VNFs based on pre-defined parameters. See "About VNF
Configuration Files" for more information.

■ If the network service includes a PNF, configures the PNF and checks access to the
PNF using the management IP address.

Instantiating Network Services

Working with Network Services, VNFs, VDUs, and PNFs 4-3

■ If you integrated a monitoring engine, configures the monitoring engine to trigger
alarms for VNFs that reach a specified threshold to enable healing of VNFs.

■ If you integrated an SDN controller, configures routing paths for end-to-end
packet flow.

See "Modifying Network Services" for information about adding and removing VNFs,
endpoints, and PNFs in network services.

Managing Failed Life-Cycle Actions
If a life-cycle action fails to complete successfully, Network Service Orchestration
either stops the action or rolls back the changes so that the resource assignments revert
to the previous state. It may be necessary to complete manual actions to resolve the
errors and perform the life-cycle action again.

NSO automatically handles rollback for problems that arise during the following
activities:

■ Designing a network service

■ Creating networks, subnets, and ports

■ Deploying and configuring virtual machines

However, there are some scenarios where Network Service Orchestration does not
rollback changes when a life-cycle action fails to complete successfully.

For example, consider a scenario where you instantiate a network service that includes
four VNFs and only three of the VNFs get deployed during the network service
instantiation process. Even if a single VNF is not deployed, Network Service
Orchestration does not roll back the entire network service instantiation process, and
the network service remains in PENDING status. In this case, you must either accept
the partially instantiated network service or roll back the network service.

Accepting Partially Instantiated Network Services
To accept the partially instantiated network service:

1. In the Network Service Orchestration group of the navigation section, in the
Orchestration subgroup, click the Orchestration Requests link.

The search page for Orchestration Requests appears.

2. In the Search Results section, enter the ID of the orchestration request and click
Search.

3. In the Search Results section, click the ID of the orchestration request.

The Orchestration Request Details page appears.

4. Click Edit.

5. In the Description field, enter a description for the orchestration request. For
example, The VNF Request (ID:75001) failed to complete successfully. Network
Service is created partially. Need to call Add VNF REST API to add the failed VNF.

You add a description to maintain a history of the orchestration request.

Note: The example scenario included in this section is applicable to
both network service instantiation and network service termination
processes.

Modifying Network Services

4-4 Network Service Orchestration Implementation Guide

6. Click Save and Close.

7. From the Actions menu, select Complete Hierarchy.

The status of the orchestration request changes to Completed and the status of the
corresponding service changes to In Service.

Rolling Back Partially Instantiated Network Services
To roll back the partially instantiated network service:

1. Accept the partially instantiated network service. See "Accepting Partially
Instantiated Network Services" for more information.

2. Terminate the partially instantiated network service.

Adding Failed VNFs to Partially Instantiated Network Services
To add the failed VNFs to the partially instantiated network service:

1. Accept the partially instantiated network service. See "Accepting Partially
Instantiated Network Services" for more information.

2. In the Events section, view the logs to identify the cause of the orchestration
request failure, and then perform any required actions.

3. Add the failed VNFs by calling the REST API to add VNFs. See "Add VNF to
Network Service" for more information.

Modifying Network Services
You can modify a network service that you have saved but not instantiated. You
modify a network service to add or remove endpoints, VNFs, and PNFs in the
network service. You add a VNF to a network service to enable the network service to
deliver additional service capabilities. You remove a VNF from a network service
when it is no longer required. Similarly, you can add and remove endpoints and PNFs
in your network services.

Before the network service has been instantiated, you can perform the following tasks
using the user interface:

■ Add VNFs to network services

■ Remove VNFs from network services

■ Add PNFs to network services

■ Remove PNFs from network services

■ Add endpoints to network services

■ Remove endpoints from network services

See UIM Help for instructions about performing tasks using the user interface.

After the network service has been instantiated, you can perform the following tasks
using the REST APIs:

■ Add VNFs to network services

■ Remove VNFs from network services

See "Network Service Orchestration RESTful API Reference" for details about the
Network Service Orchestration REST APIs that you can use to modify network
services.

Terminating Network Services

Working with Network Services, VNFs, VDUs, and PNFs 4-5

Adding VNFs to Existing Network Services
You use REST APIs to add VNFs to a network service after the network service has
been instantiated.

After you add a VNF to a network service, do the following:

1. In UIM, verify the following:

■ The network service is updated with a new service configuration version
showing the VNF that you added.

■ The status of the new service configuration version shows completed.

■ A new VNF instance is created and new instances of its constituent VDUs are
also created.

2. In your VIM, verify that all the constituent VDU instances for the new VNF are
created.

Removing VNFs from Existing Network Services
You use REST APIs to remove VNFs from a network service after the network service
has been instantiated.

After you remove a VNF from a network service, do the following:

1. In UIM, verify the following:

■ The network service is updated with a new service configuration version
showing that the VNF is deleted.

■ The status of the service configuration version shows completed.

■ The VNF instance is deleted and instances of its constituent VDUs are also
deleted.

2. In your VIM, verify that the constituent VDU instances for the VNF are deleted
and the resources that were assigned to the VDUs are freed up.

Terminating Network Services
You terminate a network service to deactivate all the constituent VNFs in the network
service. When you terminate a network service, all the resources that were allocated to
the VNFs are released and become available for consumption by other network
services.

After you terminate a network service, do the following:

1. In UIM, verify the following:

■ The status of the network service and the VNF and PNF services is changed to
Disconnected.

■ The statuses of the logical devices corresponding to the VNFs and their
associated VDUs are changed to Unassigned

■ The statuses of the logical devices corresponding to the associated PNFs are
changed to Unassigned.

2. In your VIM, verify that all the VDU instances of all the VNFs are deleted and all
the allocated resources are released.

Viewing Progress of Life-cycle Actions

4-6 Network Service Orchestration Implementation Guide

Viewing Progress of Life-cycle Actions
When you perform a life-cycle action for a network service, the Network Service
summary page displays a progress bar indicating that the life-cycle action is in
progress. At the top of the Network Service Summary page, messages appear
informing you about the statuses and timestamps of the various intermediate
processes that are run to complete the life-cycle action. After the life-cycle action is
completed successfully, in the Network Service Summary page, the Status field
displays the final status of the network service.

When you perform a life-cycle action for a VNF, at the top of the VNF Summary page,
a message appears informing you that the VNF has been submitted for the relevant
life-cycle action. After the process is completed successfully, a message appears
informing you that the VNF has been processed for the life-cycle action you
performed.

Network Service Orchestration displays notifications to indicate the progress of the
following life-cycle actions:

■ Creating Network Services

■ Instantiating Network Services

■ Terminating Network Services

■ Adding VNFs to Network Services

■ Removing VNFs from Network Services

■ Adding Endpoints to Network Services

■ Removing Endpoints from Network Services

■ Adding PNFs to Network Services

■ Removing PNFs from Network Services

■ Canceling Network Services

■ Rebooting Virtual Network Functions

■ Replacing Virtual Network Functions

■ Scaling Virtual Network Functions

■ Rebooting Virtual Deployment Units

You can extend the progress notifications for the life-cycle actions by implementing a
custom notification manager. See "Implementing a Custom Notification Manager" for
more information about implementing a custom notification manager.

Scaling VNFs
You scale VNFs to either add new instances of the constituent VDUs of the VNF in a
network service or remove instances of the constituent VDUs of the VNF in a network
service.

Network Service Orchestration provides the following VNF scale options:

■ Scale Out: Enables you to add additional instances of each constituent VDU of the
VNF in the network service based on the scale quantity defined for the constituent
VDUs in the VNF descriptor. As part of VNF scale out, you can add VDU
instances only up to the maximum limit defined for the constituent VDUs in the
VNF descriptor. Even if one of the VDUs in a VNF has reached its maximum
instance limit, and the other VDUs in that VNF have not reached their maximum

Healing VNFs

Working with Network Services, VNFs, VDUs, and PNFs 4-7

instance limit, Network Service Orchestration does not allow you to further
scale-out the VNF.

■ Scale In: Enables you to remove existing instances of each constituent VDU of the
VNF in the network service based on the scale quantity defined for the constituent
VDUs in the VNF descriptor. As part of VNF scale in, you can remove VDU
instances only up to the minimum limit defined for the constituent VDUs in the
VNF descriptor. Even if one of the VDUs in a VNF has reached its minimum
instance limit, and the other VDUs in that VNF have not reached their minimum
instance limit, Network Service Orchestration does not allow you to further
scale-in the VNF.

See "Describing VNF Deployment Flavors" for more information.

Healing VNFs
You can heal a VNF by either rebooting or replacing the virtual machine on which the
VNF is deployed. Similarly, you can heal a VDU by rebooting the virtual machine on
which the VDU is deployed.

When you reboot a VNF, all the constituent VDUs of the VNF are rebooted. Similarly,
when you replace a VNF, all the constituent VDUs of the VNF are replaced.

When you heal a VNF by replacing it, the new VDUs of the VNF may come up in a
different host. Network Service Orchestration performs resource orchestration to
deduce the resources from the new host and the availability zone and adds up the
resources count to the host.

To heal a VNF:

1. Ensure that you have defined the assurance parameters for the VNFs in the VNF
descriptor file. See "Describing VNF Deployment Flavors" for information about
defining assurance parameters.

2. Do one of the following:

■ Use the user interface to reboot or replace the VNF. See UIM Help for
instructions.

■ Use the user interface to reboot a specific VDU of a VNF. See UIM Help for
instructions.

■ Call the RESTful API. See "Network Service Orchestration RESTful API
Reference" for more information.

3. In your VIM, verify that the VNF you rebooted or replaced is listed as active and
running.

4. In your VIM, verify that the VDU you rebooted or replaced is listed as active and
running.

Monitoring VNFs
You monitor VNFs in a network service to track their performance and take actions
based on their CPU utilization, number of requests handled, and other key
performance indicator (KPI) parameters.

To monitor VNFs, you configure and use monitoring engines. You also configure and
specify the relevant parameters in the VNF descriptor file. See "Describing VNF
Deployment Flavors" for information about defining assurance parameters for
monitoring and healing a VNF.

Working with PNFs in Network Services

4-8 Network Service Orchestration Implementation Guide

By default, Network Service Orchestration supports integration with OpenStack
Ceilometer, which monitors VNFs and reboots failed VNFs automatically based on
KPI thresholds that are defined in the network service descriptor file.

You can integrate other third-party monitoring engines by using the extensions
provided in Network Service Orchestration. See "Implementing a Custom Monitoring
Engine" for more information about implementing a third-party monitoring engine.

About the Monitoring Tabs in the User Interface
When you create specifications for your VNFs and network services in Design Studio,
you can add characteristics to the specifications to capture URLs of web pages of your
monitoring systems. You can define the characteristics to capture any number of URLs
of web pages. See Design Studio documentation about working with characteristics
and specifications.

In the UIM user interface, when you create network services, you specify the URLs of
web pages of your monitoring systems. After the network service is instantiated, each
URL that you specified for your monitoring system displays an embedded page in a
tab in the Network Service Summary page.

You can use the monitoring tabs to view service topologies of your network services,
and the following metrics about your VNFs:

■ CPU

■ Memory

■ Disk space

 See UIM Help for more information about the monitoring tabs.

Working with PNFs in Network Services
You can include Physical Network Functions (PNFs) in your network services.

To include PNFs in a network service, do the following:

1. If your PNF is managed by an EMS, register the Element Management System
(EMS) with Network Service Orchestration by using the REST API. See "Network
Service Orchestration RESTful API Reference" for information about registering
EMSs.

2. Register the PNF with Network Service Orchestration by using the REST API.

3. When you create a network service in the user interface, add the PNF to the
network service. See UIM Help for instructions about adding PNFs to network
services.

If you use REST APIs to instantiate a network service with PNFs, specify the details of
the PNFs in the API request. See "Network Service Orchestration RESTful API
Reference" for information about the API request.

Retrieving Details About Network Services, VNFs, PNFs, and Descriptors
You can retrieve and view details about your network services, VNFs, PNFs, network
service descriptors, and VNF descriptors by using the user interface and the REST
APIs. In the user interface, you can search for and view details by using standard UIM
techniques. See UIM Help for more information.

Registering VNFs with Third-Party Systems

Working with Network Services, VNFs, VDUs, and PNFs 4-9

Network Service Orchestration provides RESTful APIs that you can call to retrieve and
view different types of information about your network services, VNFs, and PNFs. For
details about the RESTful APIs, see "Network Service Orchestration RESTful API
Reference".

Registering VNFs with Third-Party Systems
You can register the instantiated VNFs with third-party systems, such as element
management systems (EMSs) and configuration management systems (CMSs). After
the VNFs are registered, the third-party systems can discover and manage the VNFs.

Network Service Orchestration provides a reference implementation to integrate with
IP Service Activator to discover and manage the instantiated VNFs using the Juniper_
vSRX sample cartridge. See "Integrating Network Service Orchestration with IP
Service Activator" for more information.

Registering VNFs with Third-Party Systems

4-10 Network Service Orchestration Implementation Guide

5

Implementing the Sample Network Services 5-1

5Implementing the Sample Network Services

[2] This chapter provides information about the sample network services that are
provided with Network Service Orchestration.

Network Service Orchestration includes the following sample cartridges that you can
use as references for designing and implementing your own network services:

■ Juniper_vSRX. This sample cartridge contains the Juniper vSRX firewall VNF to
use with the network protection service.

■ Checkpoint_NG_FW. This sample cartridge contains the Checkpoint firewall VNF
to use with the network protection service.

■ Cisco_xRV. This sample cartridge contains the Cisco XRV router PNF to use with
the residential gateway network service or the network protection service.

■ OracleComms_SBC. This sample cartridge contains the Session Border Controller
(SBC) VNF to use with the Proxy-Call Session Control Function (P-CSCF) network
service.

■ NPaaS_NetworkService. This sample cartridge provides the functionality to
implement a Network Protection as a Service (NPaaS) network service.

■ ResidentialGateway_NetworkService. This sample cartridge provides the
functionality to implement a Residential Gateway network service

■ OracleComms_P-CSCF_NetworkService. This sample cartridge provides the
functionality to implement a Proxy-Call Session Control Function (P-CSCF)
network service.

Configuring the Juniper vSRX Base Image
Before you implement the sample network services, you must configure the software
image of the Juniper vSRX firewall VNF. You use this VNF with the Network
Protection and the Residential Gateway network services.

To configure the Juniper vSRX base image:

1. Download the Juniper vSRX base image from Juniper’s web site.

2. Install OpenStack and source the tenant’s credentials file.

3. In OpenStack, upload the downloaded base image to the Glance repository by
running the following command:

 glance image-create --name vsrx-vmdisk-15.1X49-D40_base --is-public true
--container-format bare --disk-format qcow2 --file
media-vsrx-vmdisk-15.1X49-D40.6.qcow2

Configuring the Juniper vSRX Base Image

5-2 Network Service Orchestration Implementation Guide

where:

■ vsrx-vmdisk-15.1X49-D40_base is the name of the image uploaded into the
repository

■ media-vsrx-vmdisk-15.1X49-D40.6.qcow2 is the name of the base image
downloaded from the vendor’s web portal.

4. In OpenStack, create a flavor with the following specifications by running the
following command:

Specifications:

■ Name: vsrx.medium

■ VCPUs: 2

■ Root Disk: 20 GB

■ Ephemeral Disk: 0 GB

■ RAM: 4096 MB

Command:

nova flavor-create vsrx.medium auto 4096 20 2

5. Boot the image by running the following command:

nova boot --flavor vsrx.medium --image vsrx-vmdisk-15.1X49-D40_base --nic
net-ID=networkID vsrx_base_instance

where:

■ networkID is the ID of your management network in OpenStack.

■ vsrx-vmdisk-15.1X49-D40_base is the name of the base image that is uploaded
into the repository.

■ vsrx_base_instance is the name of the vsrx instance you are spawning in
OpenStack.

6. After the image boots up, navigate to the Instances console in OpenStack and run
the following commands:

root@%cli
root>config
root#
delete security
set system root-authentication plain-text-password
New password: Enter a password
Retype new password:Enter a password

OpenStack prompts for a password.

7. Enter any password and run the following commands:

set system login user admin class super-user authentication plain-text-password
New password:password
Retype new password:password

OpenStack prompts for a password.

8. Enter any password.

The username and the password that you specify here become the username and
password of the VNF image that you specify in the VNF descriptor. Network

Configuring the Juniper vSRX Base Image

Implementing the Sample Network Services 5-3

Service Orchestration uses these credentials to update the configuration.

9. Run the following commands:

set system services netconf ssh
set interfaces fxp0 description "Managament Interface" unit 0 family inet dhcp
set interfaces ge-0/0/0 description "Customer Interface" unit 0 family inet
dhcp
set interfaces ge-0/0/1 description "Internet interface" unit 0 family inet
dhcp
set security zones security-zone Customer host-inbound-traffic system-services
ping
set security zones security-zone Internet host-inbound-traffic system-services
ping
set security zones security-zone Customer interfaces ge-0/0/0.0
host-inbound-traffic system-services dhcp
set security zones security-zone Customer interfaces ge-0/0/0.0
host-inbound-traffic system-services ping
set security zones security-zone Internet interfaces ge-0/0/1.0
host-inbound-traffic system-services dhcp
set security zones security-zone Internet interfaces ge-0/0/1.0
host-inbound-traffic system-services ping
set routing-instances Traffic instance-type virtual-router
set routing-instances Traffic interface ge-0/0/0.0
set routing-instances Traffic interface ge-0/0/1.0
set groups security-rules security policies from-zone <*> to-zone <*> policy
<*> then log session-init session-close
set security policies apply-groups security-rules
set security policies from-zone Customer to-zone Internet policy
Customer-Internet-Access match source-address any destination-address any
application any
set security policies from-zone Customer to-zone Internet policy
Customer-Internet-Access then permit
set security policies from-zone Internet to-zone Customer policy Deny-All match
source-address any destination-address any application any
set security policies from-zone Internet to-zone Customer policy Deny-All then
deny
set security utm custom-objects url-pattern bad-sites value
http://www.example.com
set security utm custom-objects custom-url-category bad-category value
bad-sites
set security utm feature-profile web-filtering juniper-local profile wf-profile
custom-block-message "Website blocked by NPaaS. Powered by Oracle" default
log-and-permit fallback-settings default block too-many-requests block
set security utm utm-policy utm-protect web-filtering http-profile wf-profile
commit
exit
exit

10. Create a snapshot of the running instance of the Juniper vSRX image by running
the following command:

nova image-create --poll vsrx_base_instance vsrx-vmdisk-15.1X49-D40_updated

where:

■ vsrx_base_instance is the name of the vsrx instance

■ vsrx-vmdisk-15.1X49-D40_updated is the name of the vsrx image snapshot
uploaded to OpenStack Glance.

Use this snapshot as the software image for instantiation of the Juniper vSRX VNF.

Implementing the Network Protection Service

5-4 Network Service Orchestration Implementation Guide

Implementing the Network Protection Service
Network Service Orchestration provides sample cartridges that you can use as
references for designing and implementing a network protection service.

The NPaaS_NetworkService sample cartridge contains the functionality to implement
the sample Network Protection as a Service (NPaaS) network service.

The network protection service constitutes and uses the following VNFs:

■ Juniper vSRX firewall

The Juniper_vSRX sample cartridge contains the functionality to implement a
Juniper vSRX firewall as a VNF.

■ Checkpoint firewall

The Checkpoint_NG_FW sample cartridge contains the functionality to
implement a Checkpoint firewall as a VNF.

The network protection service requires and uses the following software components:

■ UIM 7.3.5 and the Network Service Orchestration 7.3.5 cartridges

■ OpenStack VIM, with Networking-SFC functionality

■ Software images of the firewall VNFs

To implement the network protection service:

1. Configure the Juniper vSRX base image. See "Configuring the Juniper vSRX Base
Image" for instructions.

2. In OpenStack, create a tenant or reference an existing tenant with administrator
privileges.

3. Reference an existing management network that can be shared by all the
components of Network Service Orchestration.

The management network requires, at a minimum:

■ One IP address for each machine on which UIM is installed

■ One IP address for each virtual machine on which you want to bring up the
VNFs

4. Connect the management network and the external network to a virtual router.
This enables you to use floating IP addresses for providing access to the data
center.

5. Reference an existing data network that connects all the VNF instances within the
network service, and do the following:

■ Create the ingress endpoint and egress endpoint ports in the data network

■ Bring up the ingress gateway VM using the ingress endpoint port

■ Bring up the egress gateway VM using the egress endpoint port

6. Open the UIM_Home/config/nso.properties file and update the following
parameters.

■ NSO_HOST: IPv4address. Specify the host on which UIM is installed. By
default, Network Service Orchestration considers the host on which the UIM
server is running. If the server is running on a private network that is
unavailable to external network, specify a reachable IP address for the server.

■ NSO_USERNAME: username

Implementing the Residential Gateway Network Service

Implementing the Sample Network Services 5-5

where username is the username of the server on which UIM is installed.

■ NSO_PASSWORD: encrypted_password

where encrypted_password is the encrypted password of the server on which
UIM is installed. See "Setting Network Service Orchestration Properties" for
information about encrypting the password.

7. Open the UIM_Home/config/NPaas.properties file and specify values for the
parameters listed in Table 5–1:

8. Deploy the Network Service Orchestration cartridges into UIM. See "Installing and
Integrating the Network Service Orchestration Components" for information
about deploying the cartridges in the specified order.

9. Register the VIM by calling the corresponding RESTful API. See "Registering the
VIM" for instructions.

10. Discover the VIM resources. See "Discovering VIM Resources" for instructions.

The Network Protection service is ready for instantiation.

Implementing the Residential Gateway Network Service
Network Service Orchestration provides sample cartridges that you can use as
references for designing and implementing a residential gateway network service.

The ResidentialGateway_NetworkService sample cartridge contains the functionality
to implement the Residential Gateway network service.

The Residential Gateway network service constitutes and uses the following VNFs and
PNFs:

■ Juniper vSRX firewall VNF

The Juniper_vSRX sample cartridge contains the functionality to implement a
Juniper vSRX firewall as a VNF.

■ Cisco xRV router PNF

The Cisco_xRV sample cartridge contains the functionality to implement a Cisco
xRV router as a PNF.

Table 5–1 Parameters in the NPaaS Network Service Descriptor Properties File

Parameter Description

VIM_
Id.NPaas.ManagementNetwork

Specify the VIM ID and the name of the management
network. By default, the VIM ID is OpenStack. The
management network is the VLD Name that is specified in
the NPaas.xml file.

If you use multiple VIMs, add another entry of the same
parameter and specify the VIM ID and the management
network.

VIM_Id.NPaas.Data_IN Specify the VIM ID and the name of the data network. By
default, the VIM ID is OpenStack.

If you use multiple VIMs, add another entry of the same
parameter and specify the VIM ID and the data-in network.

sdnController.NPaas Specify an implementation class for the SDN controller
interface. The default implementation class is
com.oracle.communications.inventory.nso.nfvi.sdn.Open
StackSDNControlerImpl.

Implementing the Residential Gateway Network Service

5-6 Network Service Orchestration Implementation Guide

The Residential Gateway network service requires and uses the following software
components:

■ UIM 7.3.5 and the Network Service Orchestration 7.3.5 cartridges

■ OpenStack VIM

■ Software image of the Juniper firewall VNF

■ Cisco xRV PNF. Ensure that the PNF is up and running on a management IP
address.

To implement the Residential Gateway network service:

1. Configure the Juniper vSRX base image. See "Configuring the Juniper vSRX Base
Image" for instructions.

2. In OpenStack, create a tenant or reference an existing tenant with administrator
privileges.

3. Reference an existing management network that can be shared by all the
components of Network Service Orchestration.

4. Specify the details of the external network in the Endpoints tab. By default, NSO
creates the floating IP address on the external network for providing access to the
PNF. However, if you specify the floating IP address in the IP Address field, NSO
uses this IP address for providing access to the PNF.

5. Open the UIM_Home/config/ResidentialGateway.properties file and specify
values for the parameters listed in Table 5–2.

6. Deploy the Network Service Orchestration cartridges into UIM. See "Installing and
Integrating the Network Service Orchestration Components" for information
about deploying the cartridges in the specified order.

7. Register the PNF by using the REST API. See "Network Service Orchestration
RESTful API Reference" for a sample request for registering PNFs.

Table 5–2 Parameters in the Residential Gateway Descriptor Properties File

Parameter Description

VIM_
Id.ResidentialGateway.Manage
mentNetwork

Specify the VIM ID and the name of the management
network. By default, the VIM ID is OpenStack. The
management network is the VLD Name that is specified in
the ResidentialGateway.xml file.

If you use multiple VIMs, add another entry of the same
parameter and specify the VIM ID and the management
network.

VIM_
Id.ResidentialGateway.Data_IN

Specify the VIM ID and the name of the data-in network.
By default, the VIM ID is OpenStack.

If you use multiple VIMs, add another entry of the same
parameter and specify the VIM ID and the data-in network.

VIM_
Id.ResidentialGateway.Data_
OUT

Specify the VIM ID and the name of the data-out network.
By default, the VIM ID is OpenStack.

If you use multiple VIMs, add another entry of the same
parameter and specify the VIM ID and the data-out
network.

sdnController.ResidentialGate
way

Specify an implementation class for the SDN controller
interface. The default implementation class is
com.oracle.communications.inventory.nso.nfvi.sdn.Open
StackSDNControlerImpl.

Implementing the Proxy-Call Session Control Function Network Service

Implementing the Sample Network Services 5-7

See "Working with PNFs in Network Services" for more information about
working with PNFs.

8. Register the VIM by using the REST API. See "Registering the VIM" for
instructions.

9. Discover the VIM resources. See "Discovering VIM Resources" for instructions.

10. To enable connectivity between the VNF and PNF, the VNF is assigned with a
floating IP address. Configure the static routes corresponding to the floating IP in
the PNF manually or by extending the cartridges.

The Residential Gateway network service is ready for instantiation.

Implementing the Proxy-Call Session Control Function Network Service
Network Service Orchestration provides sample cartridges that you can use as
references for designing and implementing a Proxy-Call Session Control Function
(P-CSCF) network service.

The OracleComms_P-CSCF_NetworkService sample cartridge contains the
functionality to implement the sample P-CSCF network service.

The P-CSCF network service constitutes and uses the following VNF:

■ Session Border Controller (SBC) device

The OracleComms_SBC sample cartridge contains the functionality to implement
an SBC device as a VNF.

The P-CSCF network service requires and uses UIM 7.3.5 and the Network Service
Orchestration 7.3.5 cartridges.

To implement the P-CSCF network service:

1. In Oracle Communications Application Orchestrator, add and configure a
hierarchical service configuration (HSC). When adding an HSC ensure that you
select ASBC-Standalone in the CNFD field of the Add hierarchy service
configuration pane. See Oracle Communications Application Orchestrator User Guide
for more information.

2. Reference an existing management network that can be shared by all the
components of Network Service Orchestration.

The machine on which Oracle Communications Application Orchestrator is
installed requires, at a minimum, one management network that has at least one IP
address for each virtual machine on which you want to bring up the SBC VNF.

3. In Oracle Communications Application Orchestrator, create the data-in and
data-out networks.

See Oracle Communications Application Orchestrator Installation Guide for
information about creating the management, data-in, and data-out networks.

4. Open the UIM_Home/config/P-CSCF.properties file and specify values for the
parameters listed in Table 5–3.

Table 5–3 Parameters in the P-CSCF Network Service Descriptor Properties File

Parameter Description

P-CSCF.ManagementNetwork Specify the name of the Network Service Orchestration
management network.

Implementing the Proxy-Call Session Control Function Network Service

5-8 Network Service Orchestration Implementation Guide

5. Open the UIM_Home/config/aoconfig.properties file and specify values for the
parameters listed in Table 5–4.

6. Open the UIM_Home/config/SBC.properties file and set the following
recommended values for the parameters:

SBC.vLink.SLRM_IP=198.51.100.1

P-CSCF.Data_IN Specify the name of the Network Service Orchestration
data-in network.

P-CSCF.Data_OUT Specify the name of the Network Service Orchestration
data-out network.

nso.aopoller.maxExecutions.Op
erational_Ready

Specify the maximum number of times Network Service
Orchestration should poll the Application Orchestrator
application to determine the status of the VNF
instantiation/deployment.

nso.aopoller.maxExecutions.No
t_Configured

Specify the maximum number Network Service
Orchestration should poll the Application Orchestrator
application to determine the status of VNF
termination/undeployment.

nso.aopoller.deploy.finalState Specify the final status of the VNF deployment.

Table 5–4 Parameters in the Application Orchestrator Configuration Properties File

Parameter Description

ocao.host Specify the name of the host on which Oracle
Communications Application Orchestrator is installed.

ocao.port Specify the port number of the machine on which
Application Orchestrator is installed.

ocao.scheme Specify the scheme name of the Application Orchestrator.

ocao.username Specify the user name of the Application Orchestrator
application.

ocao.password Specify the password of the Application Orchestrator
application.

ocao.restapi.url Specify the REST API URL along with its version.

ocao.ManagementNetwork Specify the name of the Application Orchestrator
management network.

ocao.Data_IN Specify the name of the Application Orchestrator data-in
network.

ocao.Data_OUT Specify the name of the Application Orchestrator data-out
network.

ocao.nfrc.appName Specify the name of the application that deployed the VNF.

ocao.nfrc.appGlobalId Specify the global ID of the application that deployed the
VNF.

Note: Consult with the administrator of Oracle Communications
Application Orchestrator before changing the parameter values.

Table 5–3 (Cont.) Parameters in the P-CSCF Network Service Descriptor Properties File

Parameter Description

Integrating Network Service Orchestration with IP Service Activator

Implementing the Sample Network Services 5-9

SBC.vLink.SipIp=198.51.100.2
SBC.vLink.TunnelRemoteIp=198.51.100.3
SBC.vLink.GatewayIp=198.51.100.21

Specify the following parameter values as name-value pairs:

SBC.vScalability.deviceInfo.param.1=userPassword,abc12345!
SBC.vScalability.deviceInfo.param.2=adminPassword,abc12345!
SBC.vScalability.deviceInfo.param.3=configPassword,acmepacket
SBC.vScalability.deviceInfo.param.4=deviceGroup,Home
SBC.vScalability.deviceInfo.param.5=snmpCommunity,public
SBC.vScalability.deviceInfo.param.6=useDeviceCluster,false
SBC.vScalability.deviceInfo.param.7=entitlement:capacity:capacity,1000
SBC.vScalability.deviceInfo.param.8=entitlement:feature:FEATURE_ACCOUNTING,true
SBC.vScalability.deviceInfo.param.9=entitlement:feature:FEATURE_IPV6,true
SBC.vScalability.deviceInfo.param.10=entitlement:feature:FEATURE_SAG,true
SBC.vScalability.deviceInfo.param.11=entitlement:feature:FEATURE_QOS,true
SBC.vScalability.deviceInfo.param.12=entitlement:feature:FEATURE_SESSION_
RECORDING,true
SBC.vScalability.deviceInfo.param.13=entitlement:feature:FEATURE_IWF,true
SBC.vScalability.deviceInfo.param.14=entitlement:feature:Routing,true
SBC.vScalability.deviceInfo.param.15=entitlement:feature:Policy Server,true
SBC.vScalability.dcParameter.param.1=bootparams.gateway,198.51.100.21
SBC.vScalability.dcParameter.param.2=bootparams.netmask0,192.0.2.254
SBC.vScalability.dcParameter.param.3=bootparams.vlan,0

7. Deploy the Network Service Orchestration cartridges into UIM. See "Installing and
Integrating the Network Service Orchestration Components" for information
about deploying the cartridges in the specified order.

8. Register the VIM by calling the corresponding RESTful API. See "Registering the
VIM" for instructions.

9. Discover the VIM resources. See "Discovering VIM Resources" for instructions.

The P-CSCF network service is ready for instantiation.

Integrating Network Service Orchestration with IP Service Activator
Oracle Communications Network Service Orchestration provides a reference
implementation for integrating with Oracle Communications IP Service Activator
using the Juniper_vSRX sample cartridge. In this reference implementation, after the
Network Service Orchestration VNFs are instantiated, Network Service Orchestration
registers the VNFs with IP Service Activator, thus enabling IP Service Activator to
discover and manage the VNFs.

To integrate Network Service Orchestration with IP Service Activator:

1. Create the following Java implementation class by extending the
GenericVNFManagerClient class:

com.oracle.communications.inventory.nso.nfvi.juniper.JuniperSBSystemManagerImpl

2. In the GenericVNFManagerClient.postInstantiateVNF() method, use the following
REST API to register the VNF with IPSA:

/Oracle/CGBU/IPSA/DomainController/resources/data/DiscoverDevices [POST]

JSON request:

{
 "network":"testSystem",

Integrating Network Service Orchestration with IP Service Activator

5-10 Network Service Orchestration Implementation Guide

 "devices":[
 {
 "AccessStyle":"TACACS",
 "UserName":"myuser",
 "LoginPassword":"mypass",
 "EnablePassword":"myenablepass",
 "InheritsSecurity":"false",
 "IpAddress":"IP_Address"
 }
]
}

where:

■ myuser is the user name of the virtual machine on which the VNF is deployed.

■ mypass is the password of the virtual machine on which the VNF is deployed.

■ (Optional) myenablepass is the enable password of the virtual machine on
which the VNF is deployed.

■ IP_Address is the IP address of the management network to which the VNF is
connected.

See Oracle Communications IP Service Activator User's Guide for more
information.

The postInstantiateVNF() method is called as part of the VNF instantiation
process.

3. In the GenericVNFManagerClient.postTerminateVNF() method, use the following
REST API to unregister the VNF with IPSA:

/Oracle/CGBU/IPSA/DomainController/resources/data/Device?ip=IP_Address
[DELETE]

where IP_Address is the IP address of the management network to which the VNF
is connected.

The postTerminateVNF() method is called as part of the VNF termination process.

4. Set the properties in the Juniper.vSRX.properties file. See "Setting Juniper_vSRX
Sample Cartridge Properties" for more information.

Setting Juniper_vSRX Sample Cartridge Properties
Network Service Orchestration provides the Juniper_vSRX sample cartridge, which
contains the Juniper_vSRX.properties file. You can configure the properties in the
Juniper.vSRX.properties file to extend the reference implementation to meet your
business requirements.

Table 5–5 lists the properties in the Juniper_vSRX.properties file.

Integrating Network Service Orchestration with IP Service Activator

Implementing the Sample Network Services 5-11

Table 5–5 Juniper_vSRX Sample Cartridge Properties

Property Description

sbClient.Juniper_vSRX Extends the GenericVNFManagerClient and provides the logic for enabling
IP Service Activator to discover and manage Network Service Orchestration
VNFs.

For example, sbClient.Juniper_
vSRX=oracle.communications.inventory.nso.nfvi.sample.JuniperSBSystemM
anagerImpl.

juniper.enableIPSAIntegration Enables or disables the integration with IP Service Activator. Specify true if
you want to enable integration with the IP Service Activator; otherwise,
specify false. By default, this property is set to false.

For example, juniper.enableNetwork Service
OrchestrationIPSAIntegration=false.

juniper.ipsa.delayInvocation Delays (in milliseconds) registering the Network Service Orchestration VNFs
with IP Service Activator until the VNFs are instantiated.

For example, juniper.ipsa.delayInvocation=1.

ipsa.host Contains the IP address of the IP Service Activator server.

For example, ipsa.host=localhost.

ipsa.port Contains the port of the IP Service Activator server.

For example, ipsa.port=7001.

ipsa.secureProtocol Indicates whether the REST APIs use HTTP or HTTPS protocol. Specify true
to indicate that the REST API is using HTTPS protocol; otherwise, specify
false. By default, this property is set to false.

For example, ipsa.secureProtocol=false.

Integrating Network Service Orchestration with IP Service Activator

5-12 Network Service Orchestration Implementation Guide

6

Extending Network Service Orchestration 6-1

6Extending Network Service Orchestration

This chapter describes how you can customize and extend Oracle Communications
Network Service Orchestration to meet the business needs of your organization.

You can extend the functionality of Network Service Orchestration by:

■ Designing cartridges in Oracle Communications Design Studio. See "Designing
Custom Network Services".

For more information about designing cartridges:

– See UIM Cartridge Guide for information about the leading practices for
extending cartridge packs.

– See the section on “About Cartridges and Cartridge Packs” in the chapter,
“Using Design Studio to Extend UIM” in UIM Developer's Guide for
information about how to extend cartridge packs.

– See the Design Studio Help for instructions on how to extend cartridge packs
through specifications, characteristics, and rulesets.

■ Using extension points and Java interface extensions. See "Using Extension Points
and Java Interface Extensions to Extend Network Service Orchestration".

Setting Up Design Studio for Extending Network Service Orchestration
To extend Network Service Orchestration, you build an Inventory cartridge in Design
Studio. The UIM Software Developer's Kit (UIM SDK) provides the resources required
to build an Inventory cartridge in Design Studio.

To set up Design Studio for extending Network Service Orchestration:

1. Follow the steps described in the section on “Building an Inventory Cartridge
Using the UIM SDK” in the chapter, “Using Design Studio to Extend UIM” in the
UIM Developer’s Guide.

2. Create a local directory (NSO_CartridgePack_Home).

3. Locate the OracleComms_NSO_CartridgePacks.zip file and extract the file into
the NSO_CartridgePack_Home local directory.

4. Copy the following WebLogic libraries from your WebLogic installation into the
OTHER_LIB local directory:

Important: To ensure that your extensions can be upgraded and
supported, you must follow the guidelines and policies described in
UIM Cartridge Guide.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

6-2 Network Service Orchestration Implementation Guide

■ WL_Home/oracle_common/modules/groovy-all-2.0.5.jar

■ WL_Home/oracle_common/modules/jersey-client-1.18.jar

■ WL_Home/oracle_common/modules/jettison-1.1.jar

■ WL_Home/wlserver/modules/features/weblogic.server.merged.jar

5. In Design Studio, open a new workspace.

6. Import the following UIM base cartridges into Design Studio from UIM_SDK_
Home/cartridges:

■ ora_uim_baseextpts

■ ora_uim_basemeasurements

■ ora_uim_basespecifications

■ ora_uim_basetechnologies

■ ora_uim_common

■ ora_uim_mds

■ ora_uim_model

■ OracleComms_NSO_BaseCartridge

7. Import the following Network Service Orchestration sample cartridges into
Design Studio from NSO_CartridgePack_Home/designStudio/cartridgeZips:

■ Juniper_vSRX

■ Checkpoint_NG_FW

■ Cisco_xRV

■ ResidentialGateway_NetworkService

■ NPaaS_NetworkService

8. In Design Studio, configure the following Java build path classpath variables for
the Network Service Orchestration cartridge projects:

■ UIM_LIB. Specify the path as UIM_SDK_Home/lib

■ OTHER_LIB. Specify the path as OTHER_LIB_Home

See "Designing Custom Network Services" for information about creating cartridges
for new network services.

Using Extension Points and Java Interface Extensions to Extend Network
Service Orchestration

You can extend the core functionality of Network Service Orchestration by:

■ Writing a custom ruleset extension point. See "Writing a Custom Ruleset Extension
Point".

■ Using Java interface extensions. See "Using Java Interface Extensions".

Writing a Custom Ruleset Extension Point
You can extend the core functionality of Network Service Orchestration by writing a
custom ruleset extension point and associating the extension point with the ruleset in

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

Extending Network Service Orchestration 6-3

Design Studio. See the chapter on “Extending UIM Through Rulesets” in UIM
Developer’s Guide for more information.

Table 6–1 describes the Network Service Orchestration core APIs that can be extended
by using extension points in Network Service Orchestration.

Using Java Interface Extensions
You can extend the core functionality of Network Service Orchestration by using Java
interface extensions. You write a new Java implementation class for a core interface
and implement the core interface for a specific network service or VNF descriptor. See
UIM API Overview for more information about the Network Service Orchestration Java
manager classes and package locations.

Network Service Orchestration supports the following functionality through custom
Java implementation classes:

■ Implementation of a custom SDN controller. See "Implementing a Custom SDN
Controller".

Table 6–1 Network Service Orchestration Core APIs and Extension Points

API Extension Point Description

NetworkServiceDesignMana
ger.processCreate

NetworkServiceDesignManager_
processCreate

Implements the design-and-assign logic
for a network service when the network
service is instantiated.

NetworkServiceDesignMana
ger.processDisconnect

NetworkServiceDesignManager_
processDisconnect

Cleans up the network service resources
when the network service is terminated.

NetworkServiceDesignMana
ger.processChange

NetworkServiceDesignManager_
processChange

Implements the design-and-assign logic or
cleans up the resources when a network
service is updated.

VNFServiceDesignManager.p
rocessCreate

VNFServiceDesignManager_
processCreate

Implements the design-and-assign logic
for the VNF service when a network
service is instantiated with a VNF.

VNFServiceDesignManager.p
rocessDisconnect

VNFServiceDesignManager_
processDisconnect

Cleans up the VNF service resources when
a network service is terminated.

VNFServiceDesignManager.p
rocessChange

VNFServiceDesignManager_
processChange

Implements the design-and-assign logic
for a VNF service when the network
service is updated.

VNFServiceManager.process
TechnicalActions

VNFServiceManager_
processTechnicalActions

Activates or removes the resources in a
VIM for each VNF service.

NetworkServiceManager.pro
cessTechnicalActions

NetworkServiceManager_
processTechnicalActions

Activates or removes the resources in a
VIM for each network service.

ConsumerHelper.getDataCen
terForConsumer

ConsumerHelper_
getDataCenterForConsumer

Looks up the data center based on the NS
endpoint.

VNFServiceHelper.createVN
F

VNFServiceHelper_createVNF Creates a VNF.

ConsumerHelper.getDataCen
terLookupIdentifier

ConsumerHelper_
getDataCenterLookupIdentifier

Returns the string representation of the
dynamic property in the JSON request for
NS instantiation.

NetworkServiceManager.desi
gnInstantiate

NetworkServiceManager_
designInstantiate_Global

Used to design the network service for
instantiation.

NetworkServiceManager.desi
gnUpdate

NetworkServiceManager_
designUpdate_Global

Used to design the network service for
update.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

6-4 Network Service Orchestration Implementation Guide

■ Implementation of a custom VNF monitoring engine. See "Implementing a
Custom Monitoring Engine".

■ Implementation of a custom VIM. See "Implementing a Custom VIM".

■ Implementation of a custom VNF life cycle manager. See "Implementing a Custom
VNF Life Cycle Manager".

■ Implementation of an adapter for a custom VNF manager. See "Implementing an
Adapter for a Custom VNF Manager".

■ Implementation of a custom VNF connection manager. See "Implementing a
Custom VNF Connection Manager".

■ Implementation of a custom VNF configuration manager. See "Implementing a
Custom VNF Configuration Manager".

■ Implementation of a custom response manager. See "Implementing a Custom
Response Manager".

■ Implementation of a custom notification manager. See "Implementing a Custom
Notification Manager".

Implementing a Custom SDN Controller
By default, Network Service Orchestration supports OpenStack Neutron
Networking-SFC (Service Function Chaining) for service chaining, but you can also
implement a custom SDN controller.

You can implement a custom SDN controller in one of the following ways:

■ Using a custom SDN driver in Openstack Networking-SFC. Network Service
Orchestration supports VNF forwarding graph (VNFFG) implementation using
Openstack Networking-SFC. OpenStack Neutron Networking-SFC can interface
with different SDN drivers in the southbound integration. To use a different SDN
Controller, you must configure the required driver in OpenStack Neutron. Refer to
the OpenStack documentation for more information.

■ Creating a Java implementation class for the SDN Controller interface. See
"Implementing a Custom SDN Controller by Creating a Java Implementation
Class" for more information.

Implementing a Custom SDN Controller by Creating a Java Implementation
Class
To implement a custom SDN controller by creating a Java implementation class:

1. In the custom Network Service descriptor cartridge project, create a Java
implementation class for the SDN controller.

2. Configure the custom SDN controller class to implement the
oracle.communications.inventory.nso.nfvi.SDNController interface, which is
available in UIM_SDK/lib/nso-managers.jar.

3. Override the following methods in the custom SDN controller Java
implementation class:

public String createClassifier(Map request) throws Exception

Note: Implementing some custom managers requires changes to the
nso.properties file. Make a backup copy of the file before modifying
it.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

Extending Network Service Orchestration 6-5

public String deleteClassifier(Map request) throws Exception
public String createNFP(Map request) throws Exception
public String deleteNFP(Map request) throws Exception
public String updateNFP(Map request) throws Exception
public String customCall(Map request) throws Exception

4. In your Network Service descriptor cartridge project, create or update the network
service properties file and add the following entry:

sdnController.NSD_Name=SDNController_ImplementationClassPath

where:

■ NSD_Name is the name of the network service descriptor

■ SDNController_ImplementationClassPath is the path of the implementation class
of your custom SDN controller

5. Build and redeploy the cartridge.

Figure 6–1 shows a model diagram that depicts the relationship between the Java
Manager interface for the SDN Controller and your new custom Java implementation
class.

Figure 6–1 Custom SDN Controller Model

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

6-6 Network Service Orchestration Implementation Guide

Implementing a Custom Monitoring Engine
By default, Network Service Orchestration supports integration with OpenStack
Ceilometer, but you can also implement and use a custom monitoring engine.

Figure 6–2 shows a model diagram that depicts the relationship between the Java
Manager interface for the Monitoring Manager and your new custom Java
implementation class.

Figure 6–2 Custom Monitoring Engine Model

To implement a custom monitoring engine:

1. In the custom VNF descriptor cartridge project, create a Java implementation class
for the VNF monitoring manager.

2. Configure the VNFMonitoringManager class to implement the
oracle.communications.inventory.nso.nfvi.VNFMonitoringManager interface,
which is available in UIM_SDK/lib/nso-managers.jar.

3. Override the following methods in the custom VNF monitoring engine Java
implementation class:

public String createAlarms(Map request) throws Exception
public String deleteAlarms(Map request) throws Exception
public String updateAlarms(Map request) throws Exception
public String getAlarms(Map request) throws Exception
public String customCall(Map request) throws Exception

4. In the VNF descriptor cartridge project, create or update the VNF properties file
and add the following entry:

vnfMonitor.VNFD_Name=MonitoringEngine_ImplementationClassPath

Note: If the sdnController.NSD_Name entry is commented out or if
the path of the implementation class is not specified, Network Service
Orchestration does not perform the network flow operations such as
creation of flows, deletion of flows, and update of flows for the
network service.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

Extending Network Service Orchestration 6-7

where:

■ VNFD_Name is the name of the VNF descriptor

■ MonitoringEngine_ImplementationClassPath is the path of the implementation
class of your monitoring engine

5. Build and redeploy the cartridge.

Implementing a Custom VIM
By default, Network Service Orchestration supports integration with OpenStack, but
you can also implement a custom VIM.

Figure 6–3 shows a model diagram that depicts the relationship between the Java
Manager interface for the VIM and your new custom Java implementation class.

Figure 6–3 Custom VIM Model

Note: If the vnfMonitor.VNFD_Name entry is commented out or if
the path of the implementation class is not specified, Network Service
Orchestration does not perform monitoring operations such as
creation, deletion, and update of alarms for the network service.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

6-8 Network Service Orchestration Implementation Guide

To implement a custom VIM:

1. In your custom cartridge project, create a Java implementation class for the
NFVIManager interface.

2. Configure the NFVIManager class to implement the
oracle.communications.inventory.nso.nfvi.NFVIManager interface, which is
available in UIM_SDK/lib/nso-managers.jar.

3. Override the methods in the custom NFVI manager Java implementation class.

4. Open the UIM_Home/config/nso.properties file, and add or update the following
entry:

nfviMgr.nfviType=VIM_ImplementationClassPath

where:

■ nfviType is the type of VIM. For example, OpenStack.

■ VIM_ImplementationClassPath is the path of the implementation class of your
VIM

5. Build and redeploy the cartridge.

Implementing a Custom VNF Life Cycle Manager
By default, Network Service Orchestration manages VNF life cycle operations (such as
instantiate, reboot, and terminate) by using OpenStack Compute services (referred to
as Nova), but you can also implement and use a custom VNF life cycle manager with
Network Service Orchestration.

Figure 6–4 shows a model diagram that depicts the relationship between the Java
Manager interface for the Life Cycle Manager and your new custom Java
implementation class.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

Extending Network Service Orchestration 6-9

Figure 6–4 Custom VNF Life Cycle Manager Model

To implement a custom VNF life cycle manager:

1. In your custom cartridge project, create a Java implementation class for the VNF
life cycle manager.

2. Configure the custom VNF life cycle manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFLifeCycleManager interface,
which is available in UIM_SDK/lib/nso-managers.jar.

3. Override the methods in the custom VNF life cycle manager Java implementation
class.

4. Open the UIM_Home/config/nso.properties file, and add or update the following
entry:

vnflcMgr.vimType=VNFLifecycleManager_ImplementationClassPath

where:

■ vimType is the type of VIM

■ VNFLifecycleManager_ImplementationClassPath is the path of the
implementation class of your custom VNF life cycle manager

5. Build and redeploy the cartridge.

Implementing an Adapter for a Custom VNF Manager
By default, Network Service Orchestration contains and uses the built-in adapter for
the built-in VNF manager to manage the VNFs in your network services, but you can
also implement an adapter to integrate with third-party VNF managers.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

6-10 Network Service Orchestration Implementation Guide

Figure 6–5 shows a model diagram that depicts the relationship between the Java
Manager interface for the VNF Manager and your new custom Java implementation
class.

Figure 6–5 Custom Adapter for VNF Manager Model

To implement an adapter for custom VNF manager:

1. In your custom cartridge project, create a Java implementation class for the custom
adapter.

2. Configure the custom adapter class to implement the
oracle.communications.inventory.nso.api.sb.SBSystemManager interface, which
is available in UIM_SDK/lib/nso-managers.jar.

3. Override the methods in the custom adapter Java implementation class:

4. Open the UIM_Home/config/nso.properties file, and add or update the following
entry:

sbClient.name=vnf_manager_adapter_ImplementationClassPath

where:

■ name is the name of the VNF descriptor

■ vnf_manager adapter_ImplementationClassPath is the path of the implementation
class of your custom

5. Build and redeploy the cartridge.

Implementing a Custom VNF Connection Manager
Network Service Orchestration includes a VNF connection manager that enables
Network Service Orchestration to establish a communication channel with VNFs for
deploying configurations during VNF life cycle operations. You can also implement a
custom VNF connection manager for Network Service Orchestration by writing an
extension.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

Extending Network Service Orchestration 6-11

Figure 6–6 shows a model diagram that depicts the relationship between the Java
Manager interface for the VNF Connection Manager and your new custom Java
implementation class.

Figure 6–6 Custom VNF Connection Manager Model

To implement a custom VNF connection manager:

1. In the custom VNF descriptor cartridge project, create a Java implementation class
for the custom VNF connection manager.

2. Configure the custom VNF connection manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFConnectionManager interface,
which is available in UIM_SDK/lib/nso-managers.jar.

3. Override the methods in the custom VNF connection manager Java
implementation class.

4. In the VNF descriptor cartridge project, create or update the VNF properties file
and add the following entry:

vnfConnectionMgr.VNFD_Name=VNFConnectionManager_ImplementationClassPath

where:

■ VNFD_Name is the name of the VNF descriptor

■ VNFConnectionManager_ImplementationClassPath is the path of the
implementation class of your custom VNF connection manager

5. Build and redeploy the cartridge.

Note: If the vnfConnectionMgr.VNFD_Name key is commented out
or if the path of the implementation class is not specified, Network
Service Orchestration does not run configurations on the virtual
machines on which the VNFs are deployed.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

6-12 Network Service Orchestration Implementation Guide

Implementing a Custom VNF Configuration Manager
Network Service Orchestration includes a VNF configuration manager that generates
configuration content for VNF configuration. You can also implement a custom VNF
configuration manager for Network Service Orchestration by writing an extension.

Figure 6–7 shows a model diagram that depicts the relationship between the Java
Manager interface for the VNF Configuration Manager and your new custom Java
implementation class.

Figure 6–7 Custom VNF Configuration Manager Model

To implement a custom VNF configuration manager:

1. In the custom VNF descriptor cartridge project, create a Java implementation class
for the custom VNF configuration manager.

2. Configure the custom VNF configuration manager class to implement the
oracle.communications.inventory.nso.nfvi.VNFConfigManager interface, which
is available in UIM_SDK/lib/nso-managers.jar.

3. Override the methods in the custom VNF configuration manager Java
implementation class.

4. In the VNF descriptor cartridge project, create or update the VNF properties file
and add the following entry:

vnfConfigMgr.VNFD_Name=VNFConfigurationManager_ImplementationClassPath

where:

■ VNFD_Name is the name of the VNF descriptor

■ VNFConfigurationManager_ImplementationClassPath is the path of the
implementation class of your custom VNF configuration manager

5. Build and redeploy the cartridge.

Note: If the vnfConfigMgr.VNFD_Name entry is commented out or
if the path of the implementation class is not specified, Network
Service Orchestration does not generate configurations for the VNF.

Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration

Extending Network Service Orchestration 6-13

Implementing a Custom Response Manager
By default, Network Service Orchestration includes a response manager that publishes
the status of the VNF and network service life-cycle actions to a topic in the WebLogic
server. You can also implement a custom response manager by writing an extension.

To implement a custom response manager:

1. In your custom cartridge project, create a Java implementation class for the custom
response manager.

2. Configure the custom response manager class to implement the
oracle.communications.inventory.nso.nfvi.NSOResponseManager interface,
which is available in UIM_SDK/lib/nso-managers.jar.

3. Override the following method in the custom response manager Java
implementation class:

public void processRequest(NSResponseInfo response) throws
ValidationException

4. Open the UIM_Home/config/nso.properties file, and add or update the following
entry:

nso.ResponseManager.list.1=ResponseManager_ImplementationClassPath

where ResponseManager_ImplementationClassPath is the path of the implementation
class of your custom response manager.

Network Service Orchestration supports multiple implementations of response
manager.

5. Build and redeploy the cartridge.

Implementing a Custom Notification Manager
By default, Network Service Orchestration includes a notification manager that
publishes the status of the various intermediate processes that are run during the
life-cycle actions for a VNF or a network service. You can also implement a custom
notification manager in any custom implementations of Network Service
Orchestration managers, such as VNF Life Cycle Manager, VNF Manager, and so on.

Implementing a custom notification manager involves sending and receiving
notifications for the processes that are run during the life-cycle actions.

Implementing a Custom Notification Manager for Sending Notifications
To implement a custom notification manager for sending notifications:

1. Build the Notification object by using the NotificationBuilder inner class:

Notification notice = new
Notification.NotificationBuilder().id(ID).messageKey("<Message Key>",
args).build();

2. Call the sendNotification() method in the
oracle.communications.inventory.nso.helper.NSOResponseHelper class:

NSOResponseHelper.sendNotification(notice);

The sendNotification() method accepts an object of type Notification and
broadcasts it to all the classes that implement the
oracle.communications.inventory.nso.api.ns.NSONotificationManager interface.

Localizing Network Service Orchestration

6-14 Network Service Orchestration Implementation Guide

Implementing a Custom Notification Manager for Receiving Notifications
To implement a custom response manager for receiving notifications:

1. In your custom cartridge project, create a Java implementation class for the custom
notification manager by implementing the
oracle.communications.inventory.nso.api.ns.NSONotificationManager interface,
which is available in UIM_SDK/lib/nso-managers.jar.

2. Override the following method in the custom notification manager Java
implementation class:

public void processNotification(Notification notification)

3. Open the UIM_Home/config/nso.properties file, and add or update the following
entry:

nso.NotificationAgent.list.1=NotificationManager_ImplementationClassPath

where NotificationManager_ImplementationClassPath is the path of the
implementation class of your custom notification manager.

Network Service Orchestration supports multiple implementations of notification
manager.

4. Build and redeploy the cartridge.

Localizing Network Service Orchestration
You can localize the UIM user interface, UIM Help, and the responses that the REST
APIs return into your local language.

To localize Network Service Orchestration:

1. Localize the UIM user interface and UIM Help. For instructions, see the chapter
about localizing UIM in UIM Developer’s Guide.

2. Localize the responses that the RESTful APIs return. See "Localizing the Responses
in RESTful APIs" for instructions.

Localizing the Responses in RESTful APIs
To localize the responses in the Network Service Orchestration RESTful APIs:

1. Make a copy of the UIM_
Home/config/resources/logging/nsoresourcebundle.properties file in the same
directory and rename it as nsoresourcebundle_localeID.properties, where localeID
is the locale ID of your local language. For example, rename it to
nsoresourcebundle_fr_FR.properties to localize the responses into French.

2. Open the nsoresourcebundle_localeID.properties file and localize the messages.

3. (Optional) If you want to implement the sample Network Protection service by
using the sample cartridges, make a copy of the UIM_
Home/config/resources/logging/npassresourcebundle.properties file in the
same directory and name it as npaasresourcebundle_localeID.properties and
localize the messages.

4. Restart the UIM server.

5. In your RESTful API client, update the Accept-Language header with the locale
ID. For example, for French, specify fr-FR.

7

Network Service Orchestration RESTful API Reference 7-1

7Network Service Orchestration RESTful API
Reference

This chapter provides reference information about the Oracle Communications
Network Service Orchestration RESTful API resources.

About the Network Service Orchestration RESTful APIs
The Network Service Orchestration RESTful API requests provide the northbound
interface to Network Service Orchestration. Operation support systems (OSS) and
VNF managers query the resource inventory for data.

The RESTful API requests enable you to perform various functions by using a RESTful
API client.

The root URL for the Network Service Orchestration RESTful API resources is:

■ HTTP connection: http://nso_host:port/ocnso/1.1

■ SSL connection: https://nso_host:ssl_port/ocnso/1.1

where:

– nso_host is the name of the host on which Oracle Communications Unified
Inventory Management (UIM) is installed

– port is the port number of the machine on which UIM is installed

– ssl_port is the SSL port number of the machine on which UIM is installed

To access the Network Service Orchestration RESTful API resources, in your RESTful
API client, choose Basic Authentication and specify the user name and password of the
machine on which UIM is installed.

The ora_nso_webservices.war file is included in the inventory.ear file and is deployed
once the UIM installation is complete.

Note: If you use HTTPS-enabled OpenStack Keystone RESTful APIs,
add the Certified Authority certificate to the TrustStore that your
application server uses. If OpenStack Keystone is configured with
self-signed certificate, then add the self-signed certificate to the
TrustStore of the application server. See the Oracle WebLogic Server
documentation for information about configuring the TrustStore.

Network Service Orchestration RESTful API Resources

7-2 Network Service Orchestration Implementation Guide

Network Service Orchestration RESTful API Resources
Table 7–1 lists the Network Service Orchestration RESTful API requests provided,
along with the method, resource and description for each. This table is ordered first by
entity and then by the method in the order of POST, PUT, GET and DELETE.

Table 7–1 Network Service Orchestration RESTful API Resources

Request Method Resource Description

Register VIM POST /ocnso/1.1/vim Registers the IP address, port, user name and
password of the Virtual Infrastructure Manager
(VIM) with Network Service Orchestration.

Discover VIM Resources POST /ocnso/1.1/vim/vimId/disc
overy?infoLevel=vim_
information

Discovers the resources of the registered VIM and
adds them to inventory.

Update VIM PUT /ocnso/1.1/vim/vimId Updates the attributes (for example IP address,
port, user name, password, and project name) of
an existing VIM in Network Service
Orchestration.

Get VIM Details GET /ocnso/1.1/vim/vimId Returns information about a VIM that is
registered with Network Service Orchestration.

Instantiate Network Service POST /ocnso/1.1/ns Instantiates a network service and its constituent
Virtual Network Functions (VNFs).

Get Network Services GET /ocnso/1.1/ns/nsdName=ns
dName

Returns a list of all active network services that
are created based on the given network service
descriptor.

Get Network Service Details GET /ocnso/1.1/ns/networkServic
eId

Returns details about a network service.

Get Network Service VNFs GET /ocnso/1.1/ns/networkServic
eId/vnfs

Returns details about VNFs in a network service.

Get Network Service Networks GET /ocnso/1.1/ns/networkServic
eId/networks

Returns details about networks in a network
service.

Get Network Service End
Points

GET /ocnso/1.1/ns/networkServic
eId/endpoints

Returns details about endpoints in a network
service.

Get Network Service Status GET /ocnso/1.1/ns/networkServic
eId/status

Returns status information of a network service.

Terminate Network Service DELETE /ocnso/1.1/ns/networkServic
eId

Terminates a network service and the constituent
VNFs.

Add VNF to Network Service POST /ocnso/1.1/ns/networkServic
eId/vnfs

Adds VNFs to a network service.

Terminate VNF in a Network
Service

DELETE /ocnso/1.1/ns/networkServic
eId/vnfs

Terminates a VNF in a network service.

Heal VNF POST /ocnso/1.1/vnf/vnfId/heal?
action=action

Heals a VNF by either rebooting or replacing all
the virtual machines on which the VDUs of the
VNF are deployed.

 Available values for the action parameter are:

■ replace

■ reboot

Scale VNF POST /ocnso/1.1/ns/networkServic
eId/scale/vnfId

Scales a VNF in a network service by either
adding new instances or removing existing
instances of the constituent VDUs of the VNF.

Get VNF Details GET /ocnso/1.1/vnf/vnfId Returns details about a VNF.

Get VNF Status GET /ocnso/1.1/vnf/vnfId/status Returns status information about a VNF.

Heal VDU POST /ocnso/1.1/vnf/vnfId/vdus
/vduId/heal

Heals a VDU by rebooting the virtual machine on
which the VDU is deployed.

Register PNF POST /ocnso/1.1/pnfs Registers or creates a Physical Network Function
(PNF) in inventory.

RESTful API Responses

Network Service Orchestration RESTful API Reference 7-3

RESTful API Responses
This section describes the fields and possible values for the responses returned from
Network Service Orchestration RESTful API calls.

Table 7–2 describes the fields that are contained in a response.

Update PNF PUT /ocnso/1.1/pnfs/pnfId Updates an existing registered PNF.

Get PNFs GET /ocnso/1.1/pnfs?descriptor
Name=pnfdName

Returns the list of PNFs given the input
descriptor name.

Get PNF Details GET /ocnso/1.1/pnfs/pnfId Returns the PNF details given the input PNF
identifier.

Unregister PNF DELETE /ocnso/1.1/pnfs/pnfId Unregisters an existing PNF.

Register EMS POST /ocnso/1.1/ems Registers or creates an Element Management
System (EMS) in inventory.

Update EMS PUT /ocnso/1.1/ems/emsId Updates an existing registered EMS.

Get EMSs GET /ocnso/1.1/ems?descriptorN
ame=emsdName

Returns the list of EMSs given the input
descriptor name.

Get EMS Details GET /ocnso/1.1/ems/emsId Returns the EMS details given the input EMS
identifier.

Unregister EMS DELETE /ocnso/1.1/ems/emsId Unregisters an existing EMS.

Get Network Service
Descriptors

GET /ocnso/1.1/nsd Returns a list of all network service descriptors
that are deployed in Network Service
Orchestration.

Get Network Service
Descriptor Details

GET /ocnso/1.1/nsd/nsdName Returns details about a network service
descriptor.

Get Network Service
Descriptor VNFDs

GET /ocnso/1.1/nsd/nsdName/v
nfds

Returns a list of VNF descriptors in a network
service descriptor.

Get Network Service
Descriptor Flavors

GET /ocnso/1.1/nsd/nsdName/fl
avors

Returns a list of all constituent service flavors that
are defined for a network service descriptor.

Get VNF Descriptor Details GET /ocnso/1.1/vnfd/vnfdName Returns details about a VNF descriptor.

Get VNF Descriptor Flavors GET /ocnso/1.1/vnfd/vnfdName/
flavors

Returns a list of deployment flavors that are
defined for a VNF descriptor.

Table 7–2 Fields in the Response

Response Field Description

status This field contains the status of the request processing. The following are the valid
values:

■ SUCCESS

■ ACCEPTED

■ FAILURE

code This field contains the HTTP status code value. Table 7–3 describes the possible values.

message This optional field contains a high-level error message and is present only for a failed
request.

data This optional field contains the response information from the request and it only
exists for successful requests. This field may not be relevant to all requests.

Table 7–1 (Cont.) Network Service Orchestration RESTful API Resources

Request Method Resource Description

RESTful API Responses

7-4 Network Service Orchestration Implementation Guide

Example 7–1 shows a success response for a network service instantiation request. The
data portion contains the operation-specific information and message about the
successful request.

Example 7–1 Sample Response Snippet on Success

{
 "status": "SUCCESS",
 "code": "202",
 "message": "[INV-430902] Network Service instantiation is in progress.",
 "data": {
 "id": "1125001",
 "descriptorName": "NPaas",
 "name": "NSO_NPassService_1",
 "status": "PENDING",
 "businessInteractionId": "1275003",
 "businessInteractionStatus": "IN_PROGRESS"
 .
 .
 .
 }
}

Example 7–2 shows a response to a failed request.

Example 7–2 Sample Response on Failure

{
 "status": "FAILURE",
 "code": "500",
 "message": "No Network service exists with provided Network Service id 100.",
 "errors": [],
 "exception": {
 "code": "INV-430355",
 "message": "No Network service exists with provided Network Service id 100."
 }
}

Table 7–3 describes the HTTP response status codes for the RESTful API resources.

exception This optional field contains information when an exception occurs for a failed request.

errors This optional field contains an array of information when an error occurs for a failed
request.

warnings This optional field contains an array of information when a warning occurs for a failed
request.

Table 7–2 (Cont.) Fields in the Response

Response Field Description

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-5

Sample Requests and Responses
The following sections provide sample JSON requests and responses for the Network
Service Orchestration RESTful API resources.

Register VIM
Registers details about the VIM with Network Service Orchestration such as the
following:

■ Host IP address

■ Port

■ User name

■ Password

This resource results in the creation of a VIM.

Method
POST

URL
http://nso_host:port/ocnso/1.1/vim

Sample Request
{
 "id": "Vim1",
 "name": "Vim1",
 "host": "192.0.2.251",
 "port": "12345",
 "userName": "nso",
 "pswd": "password",

Table 7–3 HTTP Response Status Codes for the RESTful API Resources

Response Code Description

200 OK The request is successful.

The information returned in the response depends on the method used in the request.
For example:

■ GET returns one or more entities corresponding to the requested resource.

■ POST returns an entity describing or containing the result of the action.

202 Accepted The request has been accepted for processing, but processing has not yet started.

The request might or might not eventually be acted upon; it might be disallowed when
the request is processed.

400 Bad Request The request could not be understood by the server due to incorrect syntax. Correct the
syntax before repeating the request.

401 Unauthorized The request could not be authorized by the server due to invalid authentication or the
absence of a valid user name and password. All requests require valid user
authentication. See "About the Network Service Orchestration RESTful APIs" for more
information.

404 Not Found The server has not found a matching request or URI.

500 Internal Server
Error

The server encountered an unexpected condition that prevented it from fulfilling the
request.

Sample Requests and Responses

7-6 Network Service Orchestration Implementation Guide

 "projectName": "test",
 "domainName": "default",
 "version": "3",
 "sslEnabled": "false",
 "type": "OpenStack",
 "cpuOvercommitRatio": "15",
 "memoryOvercommitRatio": "1.5",
 "diskOvercommitRatio": "1.0"
}

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "message": "[INV-430914] Vim1 is successfully registered with NSO."
}

Discover VIM Resources
Discovers the resources that are available on the VIM. For example, it creates the
following resources as custom objects:

■ Availability zones

■ Flavors

■ Hosts

■ Virtual Data Center (VDC)

Method
POST

URL
http://nso_host:port/ocnso/1.1/vim/vimId/discovery?infoLevel=vimInformation

where:

■ vimId is the identifier of the VIM whose resources you want to discover

■ vimInformation is the level of information about the VIM that you want to receive
in the response. The values for infoLevel are:

– summary: Include a summary of the VIM resources.

– details: Include complete details about all the VIM resources.

Sample Request
This API does not require any request parameters.

Sample Response
This is a sample response when the infoLevel parameter in the URL is set to
summary:

{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "summary": {
 "Number of Flavors": 26,

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-7

 "Number of Zones": 3
 "Number of Hosts": 4,
 "Number of Networks": 80,
 "Number of Subnets": 80,
 }
 }
}

The following is a sample response when the infoLevel parameter in the URL is set to
details:

{
 "data": {
 "availabilityZones": [
 {
 "zone": "CustomerTermination",
 "hosts": [
 "compute2"
]
 },
 {
 "zone": "nova",
 "hosts": [
 "compute4"
]
 }
],
 "networks": [
 {
 "network": "ext-net",
 "subnets": [
 "ext-subnet"
]
 },
 {
 "network": "QANetwork",
 "subnets": [
 "QASubnet"
]
 }
],
 "flavors": [
 "m1.tiny",
 "m1.small",
 "m1.large"
]
 }
}

Update VIM
Updates details about an existing VIM in Network Service Orchestration. For example,
you can update the following attributes:

■ Host IP address

■ Port

■ User name

■ Password

Sample Requests and Responses

7-8 Network Service Orchestration Implementation Guide

■ Project name

The update persists the new attribute values to the inventory database.

Method
PUT

URL
http://nso_host:port/ocnso/1.1/vim/vimId

where vimId is the identifier of the VIM that you want to update.

Sample Request
{
 "host": "192.0.2.252",
 "port": "12345",
 "userName": "nso",
 "pswd": "password",
 "projectName": "test",
 "domainName": "default",
 "version": "3",
 "sslEnabled": "false",
 "type": "OpenStack",
 "cpuOvercommitRatio": "15",
 "memoryOvercommitRatio": "1.5",
 "diskOvercommitRatio": "1.0"
}

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "message": "[INV-430921] VIM updated successfully."
}

Get VIM Details
Retrieves the details of a VIM that is registered in inventory.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vim/vimId

where vimId is the identifier of the VIM.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "Vim1",
 "name": "Vim1",
 "host": "192.0.2.249",
 "port": "12345",
 "userName": "admin",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-9

 "pswd": "****",
 "projectName": "admin",
 "domainName": "default",
 "type": "OpenStack",
 "version": "3",
 "sslEnabled": false,
 "cpuOvercommitRatio": "15",
 "memoryOvercommitRatio": "1.5",
 "diskOvercommitRatio": "1.0"
 }
}

Instantiate Network Service
Creates a network service, the related resources, and starts the resources in the
network service. This resource can optionally include VNFFGs, VNFs, and PNFs.

Method
POST

URL
http://nso_host:port/ocnso/1.1/ns

Sample Request
{
 "name":"NPaaS_A",
 "descriptorName":"NPaaS",
 "flavorName":"Juniper",
 "vnffgs": [
 "data-vnffg"
],
 "vnfs":[
 {
 "name":"VNF_A",
 "descriptorName":"Juniper_vSRX",
 "flavorName":"standard",
 "version":"1.0"
 }
],
 "pnfs": [
 {
 "id": "39",
 "descriptorName": "Cisco_xRV"
 }
],
 "endPoints": [
 {
 "name": "Service-EP1",
 "reference":"Service_EP1",
 "parameters": [
 {
 "name": "IPAddress",
 "value": "192.0.2.251"
 },
 {
 "name": "externalNet",
 "value": "ext1"
 },

Sample Requests and Responses

7-10 Network Service Orchestration Implementation Guide

 {
 "name": "serviceLocation",
 "value": "SanFransisco"
 }
]
 },
 {
 "name": "Service-EP2",
 "reference":"Service_EP2",
 "parameters": [
 {
 "name": "IPAddress",
 "value": "192.0.2.252"
 },
 {
 "name": "externalNet",
 "value": "ext1"
 },
 {
 "name": "serviceLocation",
 "value": "SanFransisco"
 }
]
 }
]
}

The following list indicates which request parameters are mandatory and which are
optional:

■ The name, descriptorName, and flavorName parameters for the network service
are mandatory.

■ The vnffgs request parameter is optional. Ensure that the ID of the VNFFG is same
as the ID that you specified in the <vnffg> element of the network service
descriptor XML file.

The VNFFG that you specify in the vnffgs request parameter overrides any default
VNFFG you specified in the network service descriptor file. If you want to
instantiate the network service with the default VNFFG, you must either leave the
vnffgs request parameter blank or specify the same ID that you specified for the
default VNFFG in the <vnffg> element of the network service descriptor file.

If you want the network service to have an additional VNFFG beside the default
VNFFG, you must specify both the VNFFGs separately within the vnffgs
parameter in the network service instantiation request.

■ The vnfs request parameter is optional. Specify the VNF name if you want to name
the VNF.

■ The pnfs request parameter is optional. Specify the information about PNFs if
your network service contains PNFs.

■ The endPoints request parameter is mandatory because a network service should
have at least one endpoint to determine the best suitable data center for the
network service. If your network service contains forwarding graphs, specify the
information about service endpoints.

Sample Response
{
 "status": "SUCCESS",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-11

 "code": "202",
 "message": "[INV-430902] Network Service instantiation is in progress.",
 "data": {
 "id": "39",
 "name": "NPaaS_A",
 "descriptorName": "NPaaS",
 "status": "PENDING",
 "businessInteractionId": "83",
 "businessInteractionStatus": "IN_PROGRESS",
 "serviceDeploymentFlavorName": "Juniper",
 "vimId": "ONAP21MitakaCloud2",
 "datacenterName": "ONAP21MitakaCloud2",
 "networks": [
 {
 "name": "39_Data_OUT(ONAP21MitakaCloud2)",
 "id": "39_Data_OUT(ONAP21MitakaCloud2)",
 "status": "PENDING_REFERENCE",
 "subnets": [
 {
 "startIP": "192.0.2.21",
 "prefix": "28"
 }
]
 },
 {
 "name": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "id": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "externalId": "c64943a8-6717-4880-a46e-5b0d2a625a8c",
 "status": "PENDING_REFERENCE",
 "subnets": [
 {
 "startIP": "192.0.2.22",
 "prefix": "24",
 "externalId": "6aa4a6cd-4c21-48e4-9f47-330a9e227046"
 }
]
 },
 {
 "name": "39_Data_IN(ONAP21MitakaCloud2)",
 "id": "39_Data_IN(ONAP21MitakaCloud2)",
 "status": "PENDING_REFERENCE",
 "subnets": [
 {
 "startIP": "192.0.2.23",
 "prefix": "27"
 }
]
 }
],
 "endpoints": [
 {
 "id": "39",
 "name": "Service-EP1",
 "descriptorName": "NetworkServiceEndPoint",
 "status": "Pending Reference"
 },
 {
 "id": "40",
 "name": "Service-EP2",
 "descriptorName": "NetworkServiceEndPoint",

Sample Requests and Responses

7-12 Network Service Orchestration Implementation Guide

 "status": "Pending Reference"
 }
],
 "vnfs": [
 {
 "id": "37",
 "name": "VNF_A",
 "status": "Pending Assign",
 "descriptorName": "Juniper_vSRX",
 "businessInteractionId": "84",
 "businessInteractionStatus": "IN_PROGRESS"
 }
],
 "pnfs": [
 {
 "id": "39",
 "name": "PNF_A",
 "descriptorName": "Cisco_xRV",
 "ipAddress": "192.0.2.231",
 "userName": "user",
 "pswd": "****",
 "sslEnabled": false,
 "sshKey": "xxxxxxxxxxxxxxxxx",
 "parameters": [
 {}
]
 }
],
 "forwardingGraphs": [
 {
 "name": "data-vnffg",
 "nfps": [
 {
 "name": "nfp1"
 }
]
 }
]
 }
}

Get Network Services
Retrieves the list of active network services that are related to the input network
service descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns?nsdName=nsdName&status=nsStatus

where:

■ nsdName is the name of the network service descriptor and

■ (Optional) nsStatus is the status of the network service. If you do not specify the
status parameter, all the network services that are in In Service status are
retrieved.

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-13

■ You can retrieve the network services that are in the following statuses:

– Cancel Pending Disconnect

– Cancelled

– In Service

– Pending

– Pending Cancel

– Pending Disconnect

– Suspended

Sample Response
The following is the sample response when the status parameter in the URL is not set.

{
 "status": "SUCCESS",
 "code": "200",
 "data": [
 {
 "id": "1050001",
 "name": "NSO_NPassService_1",
 "descriptorName": "NPaaS",
 "status": "IN_SERVICE"
 },
 {
 "id": "1050005",
 "name": "NSO_NPassService_2",
 "descriptorName": "NPaaS",
 "status": "IN_SERVICE"
 },
 {
 "id": "1125001",
 "name": "NSO_NPassService_3",
 "descriptorName": "NPaaS",
 "status": "IN_SERVICE"
 }
]
}

Get Network Service Details
Retrieves the details of a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId

where networkServiceId is the identifier of the network service whose details you want
to retrieve.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",

Sample Requests and Responses

7-14 Network Service Orchestration Implementation Guide

 "data": {
 "id": "1500001",
 "name": "NS_A",
 "descriptorName": "NPaaS",
 "status": "IN_SERVICE",
 "businessInteractionId": "1500001",
 "businessInteractionStatus": "COMPLETED",
 "serviceDeploymentFlavorName": "Juniper",
 "vimId": "ONAP21MitakaCloud2",
 "datacenterName": "ONAP21MitakaCloud2",
 "networks": [
 {
 "name": "1500001_Data_OUT(ONAP21MitakaCloud2)",
 "id": "1500001_Data_OUT(ONAP21MitakaCloud2)",
 "externalId": "ef68fda2-da9c-4b45-a9c2-f6add002278e",
 "status": "REFERENCED",
 "subnets": [
 {
 "startIP": "192.0.2.25",
 "prefix": "30",
 "externalId": "81acf49b-f656-4d5b-83f5-208cb05212df"
 }
]
 },
 {
 "name": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "id": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "externalId": "c64943a8-6717-4880-a46e-5b0d2a625a8c",
 "status": "REFERENCED",
 "subnets": [
 {
 "startIP": "192.0.2.25",
 "prefix": "24",
 "externalId": "6aa4a6cd-4c21-48e4-9f47-330a9e227046"
 }
]
 },
 {
 "name": "1500001_Data_IN(ONAP21MitakaCloud2)",
 "id": "1500001_Data_IN(ONAP21MitakaCloud2)",
 "externalId": "a200be4e-cf49-4a3d-91eb-abc4c6747134",
 "status": "REFERENCED",
 "subnets": [
 {
 "startIP": "192.0.2.23",
 "prefix": "27",
 "externalId": "e0308cf2-d95e-4da6-bb70-f1d917b15924"
 }
]
 }
],
 "endpoints": [
 {
 "id": "1500001",
 "name": "Service-EP1",
 "descriptorName": "NetworkServiceEndPoint",
 "status": "Referenced",
 "serviceLocation": "SanFransisco"
 },
 {

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-15

 "id": "1500002",
 "name": "Service-EP2",
 "descriptorName": "NetworkServiceEndPoint",
 "status": "Referenced",
 "serviceLocation": "SanFransisco"
 }
],
 "vnfs": [
 {
 "id": "1425001",
 "name": "A",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX",
 "version": "1.0",
 "businessInteractionId": "1500002",
 "businessInteractionStatus": "COMPLETED",
 "deploymentFlavor": "standard"
 }
],
 "forwardingGraphs": [
 {
 "name": "data-vnffg",
 "nfps": [
 {
 "id": "79baa1d6-397c-482b-80b6-4f7edeb23b88",
 "name": "nfp1"
 }
]
 }
],
 "policies": [
 {
 "id": "premium",
 "name": "premium",
 "type": "traffic-classification",
 "ruleReferences": [
 {
 "id": "rule1",
 "action": "nfp-ref-id:nfp1"
 }
]
 },
 {
 "id": "standard",
 "name": "standard",
 "type": "traffic-classification",
 "ruleReferences": [
 {
 "id": "rule1",
 "action": "nfp-ref-id:nfp1"
 }
]
 }
],
 "rules": [
 {
 "id": "rule1",
 "name": "rule1",
 "type": "traffic-classification",
 "params": [

Sample Requests and Responses

7-16 Network Service Orchestration Implementation Guide

 {
 "name": "protocol",
 "value": "UDP"
 }
]
 }
]
 }
}

Get Network Service VNFs
Retrieves the details about the VNFs in a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the identifier of the network service for the VNFs.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "1500031",
 "name": "NS_D2",
 "descriptorName": "NPaaS",
 "status": "DISCONNECTED",
 "vnfs": [
 {
 "id": "1425031",
 "name": "D2",
 "status": "Unassigned",
 "descriptorName": "Juniper_vSRX",
 "serviceId": "1500032",
 "serviceName": "D2Juniper_vSRX_Service",
 "serviceStatus": "DISCONNECTED",
 "serviceDescriptorName": "Juniper_vSRX_Service",
 "version": "1.0",
 "externalId": "1425031",
 "businessInteractionId": "1500050",
 "businessInteractionStatus": "COMPLETED",
 "deploymentFlavor": "standard",
 "connectionPoints": [
 {
 "id": "1425032-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.25",
 "network": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "externalId": "92cdbd28-9fed-49a3-a45c-5678e7a9e6df"
 }
 },
 {
 "id": "1425032-2",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-17

 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.27",
 "network": "1500031_Data_IN(ONAP21MitakaCloud2)",
 "externalId": "2b5d7b6b-9b42-4587-98a0-979d4d25ca1d"
 }
 },
 {
 "id": "1425032-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.23",
 "network": "1500031_Data_OUT(ONAP21MitakaCloud2)",
 "externalId": "6563445b-0eff-4b21-b721-e6d0010b7f2f"
 }
 }
],
 "vdus": [
 {
 "id": "1425032",
 "name": "NS_D2_1425031_1425032",
 "status": "Unassigned",
 "descriptorName": "Juniper_vSRX_VDU",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "availabilityZoneName": "nova",
 "externalID": "0b9140aa-a857-4d4c-8975-2a46c2aad89e",
 "host": "83e39178aac9fb1af89bcf825bcd5e808d3de2d370b12b0653a3e966",
 "flavor": {
 "name": "vsrx.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "20.0"
 },
 "vnfcs": [
 {
 "connectionPoints": [
 {
 "id": "1425032-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "externalId": "92cdbd28-9fed-49a3-a45c-5678e7a9e6df"
 }
 },
 {
 "id": "1425032-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.14",
 "network": "1500031_Data_IN(ONAP21MitakaCloud2)",
 "externalId": "2b5d7b6b-9b42-4587-98a0-979d4d25ca1d"
 }
 },
 {
 "id": "1425032-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.15",
 "network": "1500031_Data_OUT(ONAP21MitakaCloud2)",

Sample Requests and Responses

7-18 Network Service Orchestration Implementation Guide

 "externalId": "6563445b-0eff-4b21-b721-e6d0010b7f2f"
 }
 }
]
 }
],
 "parameters": [
 {
 "name": "imageVersion",
 "value": "1.0"
 },
 {
 "name": "imageId",
 "value": "vsrx-v1.0"
 }
]
 }
]
 }
]
 }
}

Get Network Service Networks
Retrieves the details about the networks within a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/networks

where networkServiceId is the identifier of the network service.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "1575001",
 "name": "NSO_NetworkService",
 "descriptorName": "NPaaS",
 "status": "IN_SERVICE",
 "serviceDeploymentFlavorName": "Juniper",
 "vimId": "ONAP21MitakaCloud2",
 "datacenterName": "ONAP21MitakaCloud2",
 "networks": [
 {
 "name": "1575001_Data_OUT(ONAP21MitakaCloud2)",
 "id": "1575001_Data_OUT(ONAP21MitakaCloud2)",
 "externalId": "87697297-2795-440d-bea8-a33c2ba2e20e",
 "status": "REFERENCED",
 "subnets": [
 {
 "startIP": "192.0.2.12",
 "prefix": "30",
 "externalId": "fba5b8f2-06b8-4d1b-8011-7d6d2b020101"

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-19

 }
]
 },
 {
 "name": "1575001_Data_IN(ONAP21MitakaCloud2)",
 "id": "1575001_Data_IN(ONAP21MitakaCloud2)",
 "externalId": "7b801c76-ab7e-4f1b-9328-80a898611120",
 "status": "REFERENCED",
 "subnets": [
 {
 "startIP": "192.0.2.13",
 "prefix": "27",
 "externalId": "3115de7a-b1e4-475d-ae94-393cfc4d3df6"
 }
]
 },
 {
 "name": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "id": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "externalId": "c64943a8-6717-4880-a46e-5b0d2a625a8c",
 "status": "REFERENCED",
 "subnets": [
 {
 "startIP": "192.0.2.12",
 "prefix": "24",
 "externalId": "6aa4a6cd-4c21-48e4-9f47-330a9e227046"
 }
]
 }
]
 }
}

Get Network Service End Points
Retrieves the details about the endpoints in a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/endpoints

where networkServiceId is the identifier of the network service.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "22",
 "name": "NPaaS_Service",
 "descriptorName": "NPaas",
 "status": "IN_SERVICE",
 "endpoints": [
 {
 "id": "14",
 "name": "NSO_SGPcnsmr2",

Sample Requests and Responses

7-20 Network Service Orchestration Implementation Guide

 "descriptorName": "NetworkServiceEndPoint",
 "ipAddress": "192.0.2.218",
 "status": "Referenced",
 "serviceLocation": "MTRLPQ03"
 }
]
 }
}

Get Network Service Status
Retrieves the status information for a network service.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/status

where networkServiceId is the identifier of the network service whose status
information you want to retrieve.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "22",
 "name": "Sample NS",
 "descriptorName": "NPaas",
 "status": "IN_SERVICE",
 "businessInteractionId": "47",
 "businessInteractionStatus": "COMPLETED",
 "networks": [
 {
 "name": "22_Data_OUT(ONAP21)",
 "status": "REFERENCED"
 },
 {
 "name": "22_Data_IN(ONAP21)",
 "status": "REFERENCED"
 },
 {
 "name": "nfvo-poc3-mgmt(ONAP21)",
 "status": "REFERENCED"
 }
],
 "endpoints": [
 {
 "id": "14",
 "name": "NSO_smr2",
 "descriptorName": "NetworkServiceEndPoint",
 "status": "Referenced"
 }
],
 "vnfs": [
 {
 "id": "6",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-21

 "name": "VNF-1_06",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX",
 }
]
 }
}

Terminate Network Service
Terminates a network service. This API undeploys the constituent VNFs in the
network service and releases all the resources that were allocated to the service.

Method
DELETE

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId

where networkServiceId is the identifier of the network service that you want to
terminate.

Sample Request
This API does not require a request body. Specify the network service identifier in the
URL.

Sample Response
{
 "status": "SUCCESS",
 "code": "202",
 "message": "[INV-430907] Network Service termination is in progress.",
 "data": {
 "id": "1500001",
 "name": "NSO_NS_A",
 "descriptorName": "NPaaS",
 "status": "PENDING_DISCONNECT",
 "businessInteractionId": "1500005",
 "businessInteractionStatus": "IN_PROGRESS",
 "serviceDeploymentFlavorName": "Juniper",
 "vimId": "ONAP21MitakaCloud2",
 "datacenterName": "ONAP21MitakaCloud2",
 "networks": [
 {
 "name": "1500001_Data_OUT(ONAP21MitakaCloud2)",
 "id": "1500001_Data_OUT(ONAP21MitakaCloud2)",
 "externalId": "ef68fda2-da9c-4b45-a9c2-f6add002278e",
 "status": "PENDING_UNREFERENCE",
 "subnets": [
 {
 "startIP": "192.0.2.12",
 "prefix": "30",
 "externalId": "81acf49b-f656-4d5b-83f5-208cb05212df"
 }
]
 },
 {
 "name": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "id": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",

Sample Requests and Responses

7-22 Network Service Orchestration Implementation Guide

 "externalId": "c64943a8-6717-4880-a46e-5b0d2a625a8c",
 "status": "PENDING_UNREFERENCE",
 "subnets": [
 {
 "startIP": "192.0.2.12",
 "prefix": "24",
 "externalId": "6aa4a6cd-4c21-48e4-9f47-330a9e227046"
 }
]
 },
 {
 "name": "1500001_Data_IN(ONAP21MitakaCloud2)",
 "id": "1500001_Data_IN(ONAP21MitakaCloud2)",
 "externalId": "a200be4e-cf49-4a3d-91eb-abc4c6747134",
 "status": "PENDING_UNREFERENCE",
 "subnets": [
 {
 "startIP": "192.0.2.13",
 "prefix": "27",
 "externalId": "e0308cf2-d95e-4da6-bb70-f1d917b15924"
 }
]
 }
],
 "endpoints": [
 {
 "id": "1500001",
 "name": "Service-EP1",
 "descriptorName": "NetworkServiceEndPoint",
 "status": "Pending Unreference"
 },
 {
 "id": "1500002",
 "name": "Service-EP2",
 "descriptorName": "NetworkServiceEndPoint",
 "status": "Pending Unreference"
 }
],
 "vnfs": [
 {
 "id": "1425001",
 "name": "NSO_A",
 "status": "Pending Unassign",
 "descriptorName": "Juniper_vSRX",
 "businessInteractionId": "1500006",
 "businessInteractionStatus": "IN_PROGRESS"
 }
],
 "forwardingGraphs": [
 {
 "name": "data-vnffg",
 "nfps": [
 {
 "id": "79baa1d6-397c-482b-80b6-4f7edeb23b88",
 "name": "nfp1"
 }
]
 }
]
 }

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-23

}

Add VNF to Network Service
Adds new VNFs to an existing network service.

Method
POST

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the identifier of the existing network service to add the VNF
to.

Sample Request
[
 {
 "name": "VNF_D1",
 "flavorName": "standard",
 "descriptorName": "Juniper_vSRX",
 "version": "1.0"
 }
]

Sample Response
{
 "status": "SUCCESS",
 "code": "202",
 "message": "[INV-430903] Adding VNF to Network Service is in progress.",
 "data": {
 "id": "47",
 "name": "NSO_NS_D",
 "descriptorName": "ResidentialGateway",
 "status": "IN_SERVICE",
 "vnfs": [
 {
 "id": "46",
 "name": "VNF_D1",
 "status": "Pending Assign",
 "descriptorName": "Juniper_vSRX",
 "serviceId": "50",
 "serviceName": "NSO_D1Juniper_vSRX_Service",
 "serviceStatus": "PENDING",
 "serviceDescriptorName": "Juniper_vSRX_Service",
 "version": "1.0",
 "businessInteractionId": "99",
 "businessInteractionStatus": "IN_PROGRESS",
 "deploymentFlavor": "standard",
 "connectionPoints": [
 {
 "id": "47-1",
 "name": "CP03"
 },
 {
 "id": "47-2",
 "name": "CP01",
 "ipAddress": {

Sample Requests and Responses

7-24 Network Service Orchestration Implementation Guide

 "address": "192.0.2.15",
 "network": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)"
 }
 },
 {
 "id": "47-3",
 "name": "CP02"
 }
],
 "vdus": [
 {
 "id": "47",
 "name": "NSO_NS_D_46_47",
 "status": "Pending Assign",
 "descriptorName": "Juniper_vSRX_VDU",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "availabilityZoneName": "nova",
 "securityGroups": "open, default",
 "flavor": {
 "name": "vsrx.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "20.0"
 },
 "vnfcs": [
 {
 "connectionPoints": [
 {
 "id": "47-1",
 "name": "CP03"
 },
 {
 "id": "47-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.15",
 "network": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)"
 }
 },
 {
 "id": "47-3",
 "name": "CP02"
 }
]
 }
],
 "parameters": [
 {
 "name": "imageVersion",
 "value": "1.0"
 },
 {
 "name": "imageId",
 "value": "vsrx-v1.0"
 },
 {
 "name": "securityGroups",
 "value": "open, default"
 }
]

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-25

 }
]
 }
]
 }
}

Terminate VNF in a Network Service
Terminates a VNF in an existing network service and undeploys the VNF in the VIM.

Method
DELETE

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/vnfs

where networkServiceId is the identifier of the existing network service for the VNF.

Sample Request
[
 {
 "id": "450002"
 }
]

The input id is the identifier of the VNF to terminate, represented as a logical device in
UIM.

Sample Response
{
 "status": "SUCCESS",
 "code": "202",
 "message": "[INV-430904] Deleting VNF from Network Service is in progress.",
 "data": {
 "id": "47",
 "name": "NPaaS_D",
 "descriptorName": "ResidentialGateway",
 "status": "IN_SERVICE",
 "vnfs": [
 {
 "id": "46",
 "name": "VNF_D1",
 "status": "Pending Unassign",
 "descriptorName": "Juniper_vSRX",
 "serviceId": "50",
 "serviceName": "VNF_D1Juniper_vSRX_Service",
 "serviceStatus": "PENDING_DISCONNECT",
 "serviceDescriptorName": "Juniper_vSRX_Service",
 "version": "1.0",
 "externalId": "46",
 "businessInteractionId": "101",
 "businessInteractionStatus": "IN_PROGRESS",
 "deploymentFlavor": "standard",
 "connectionPoints": [
 {
 "id": "47-1",
 "name": "CP03",

Sample Requests and Responses

7-26 Network Service Orchestration Implementation Guide

 "ipAddress": {
 "address": "192.0.2.12",
 "network": "47_Data2(ONAP21MitakaCloud2)",
 "externalId": "8d6bd0a0-df67-412e-90a3-e110d2fa28b7"
 }
 },
 {
 "id": "47-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.13",
 "network": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "externalId": "59c56433-de74-4f58-804d-889014780105"
 }
 },
 {
 "id": "47-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.14",
 "network": "47_Data1(ONAP21MitakaCloud2)",
 "externalId": "99b49d31-d9b0-4d15-8756-1921b029bbd2"
 }
 }
],
 "vdus": [
 {
 "id": "47",
 "name": "NS_D_46_47",
 "status": "Pending Unassign",
 "descriptorName": "Juniper_vSRX_VDU",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "availabilityZoneName": "nova",
 "externalID": "26a6c4ef-eb00-41c8-b8d0-0f9882672e87",
 "host": "a176de955a47e134e56ee84a4d312e035c077ee2a05ece687447c5a9",
 "securityGroups": "open, default",
 "flavor": {
 "name": "vsrx.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "20.0"
 },
 "vnfcs": [
 {
 "connectionPoints": [
 {
 "id": "47-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "47_Data2(ONAP21MitakaCloud2)",
 "externalId": "8d6bd0a0-df67-412e-90a3-e110d2fa28b7"
 }
 },
 {
 "id": "47-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.13",
 "network": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-27

 "externalId": "59c56433-de74-4f58-804d-889014780105"
 }
 },
 {
 "id": "47-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.14",
 "network": "47_Data1(ONAP21MitakaCloud2)",
 "externalId": "99b49d31-d9b0-4d15-8756-1921b029bbd2"
 }
 }
]
 }
],
 "parameters": [
 {
 "name": "imageVersion",
 "value": "1.0"
 },
 {
 "name": "imageId",
 "value": "vsrx-v1.0"
 },
 {
 "name": "securityGroups",
 "value": "open, default"
 }
]
 }
]
 }
]
 }
}

Heal VNF
Heals a VNF by either rebooting or replacing all the virtual machines on which the
virtual deployment units of the VNF are deployed.

Method
POST

URL
http://nso_host:port/ocnso/1.1/vnf/vnfId/heal?action=action

where:

■ vnfId is the required identifier of the VNF.

■ action is the optional action that you want to perform on the VNF. Specify one of
the following values:

– reboot: Reboots all the virtual machines on which the virtual deployment
units of the VNF are deployed. This is the default action if the action is not
specified.

Sample Requests and Responses

7-28 Network Service Orchestration Implementation Guide

– replace: Undeploys all the virtual machines on which the virtual deployment
units of the VNF are deployed and deploys new virtual machines with the
same attributes.

Sample Request
This API does not require a request body.

Sample Response
The following is a sample response when the action parameter in the URL is set to
reboot:

 {
 "status": "SUCCESS",
 "code": "200",
 "message": "VNF has been rebooted successfully.",
 "data": {
 "id": "75031",
 "name": "VNF_A",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX",
 "serviceId": "75025",
 "serviceName": "VNF_AJuniper_vSRX_Service",
 "serviceStatus": "IN_SERVICE",
 "serviceDescriptorName": "Juniper_vSRX_Service",
 "version": "1.0",
 "externalId": "75031",
 "businessInteractionId": "75039",
 "businessInteractionStatus": "COMPLETED",
 "deploymentFlavor": "standard",
 "connectionPoints": [
 {
 "id": "75032-1",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "Gi-LAN-Network(ONAP21MitakaCloud2)",
 "externalId": "630ed52f-36d8-4266-8543-d212e26025be"
 }
 },
 {
 "id": "75032-2",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "Gi-LAN-Network(ONAP21MitakaCloud2)",
 "externalId": "630ed52f-36d8-4266-8543-d212e26025be"
 }
 }
],
 "vdus": [
 {
 "id": "75032",
 "name": "NS_A_75031_75032",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX_VDU",
 "imageName": "cirros",
 "availabilityZoneName": "nova",
 "externalID": "15d444b9-73a0-4fac-84f5-6a072d0d5235",
 "host": "83e39178aac9fb1af89bcf825bcd5e808d3de2d370b12b0653a3e966",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-29

 "flavor": {
 "name": "m1.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "40.0"
 },
 "vnfcs": [
 {
 "connectionPoints": [
 {
 "id": "75032-1",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "Gi-LAN-Network(ONAP21MitakaCloud2)",
 "externalId": "630ed52f-36d8-4266-8543-d212e26025be"
 }
 },
 {
 "id": "75032-2",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "Gi-LAN-Network(ONAP21MitakaCloud2)",
 "externalId": "630ed52f-36d8-4266-8543-d212e26025be"
 }
 }
]
 }
],
 "parameters": []
 }
]
 }
}
The following is a sample response when the action parameter in the URL is set to
replace:

{
 "status": "SUCCESS",
 "code": "202",
 "message": "Replace VNF is in progress.",
 "data": {
 "id": "75031",
 "name": "VNF_A",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX",
 "serviceId": "75025",
 "serviceName": "VNF_AJuniper_vSRX_Service",
 "serviceStatus": "IN_SERVICE",
 "serviceDescriptorName": "Juniper_vSRX_Service",
 "version": "1.0",
 "externalId": "75031",
 "businessInteractionId": "75053",
 "businessInteractionStatus": "IN_PROGRESS",
 "deploymentFlavor": "standard",
 "connectionPoints": [
 {
 "id": "75032-1",
 "name": "CP01",
 "ipAddress": {

Sample Requests and Responses

7-30 Network Service Orchestration Implementation Guide

 "address": "192.0.2.12",
 "network": "Gi-LAN-Network(ONAP21MitakaCloud2)",
 "externalId": "630ed52f-36d8-4266-8543-d212e26025be"
 }
 },
 {
 "id": "75032-2",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "Gi-LAN-Network(ONAP21MitakaCloud2)",
 "externalId": "630ed52f-36d8-4266-8543-d212e26025be"
 }
 }
],
 "vdus": [
 {
 "id": "75032",
 "name": "NS_A_75031_75032",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX_VDU",
 "imageName": "cirros",
 "availabilityZoneName": "nova",
 "externalID": "15d444b9-73a0-4fac-84f5-6a072d0d5235",
 "host": "83e39178aac9fb1af89bcf825bcd5e808d3de2d370b12b0653a3e966",
 "flavor": {
 "name": "m1.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "40.0"
 },
 "vnfcs": [
 {
 "connectionPoints": [
 {
 "id": "75032-1",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "Gi-LAN-Network(ONAP21MitakaCloud2)",
 "externalId": "630ed52f-36d8-4266-8543-d212e26025be"
 }
 },
 {
 "id": "75032-2",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "Gi-LAN-Network(ONAP21MitakaCloud2)",
 "externalId": "630ed52f-36d8-4266-8543-d212e26025be"
 }
 }
]
 }
],
 "parameters": []
 }
]
 }
}

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-31

Scale VNF
Scales a VNF in a network service by either adding new instances or removing existing
instances of the constituent VDUs of the VNF.

Method
POST

URL
http://nso_host:port/ocnso/1.1/ns/networkServiceId/scale/vnfId?action=action

where:

■ networkServiceId is the required identifier of the network service for the VNF.

■ vnfId is the required identifier of the VNF to scale.

■ action is the scale action. Specify one of the following values:

– scale-in: Removes the existing instances of constituent VDUs of the specified
VNF.

– scale-out: Adds additional instances of constituent VDUs of the specified
VNF. This is the default action if the action is not specified.

Sample Request
This API does not require a request body.

Sample Response
{
 "status": "SUCCESS",
 "code": "202",
 "message": "[INV-431002] VNF scale operation is in progress.",
 "data": {
 "id": "150011",
 "name": "NS_D",
 "descriptorName": "NPaaS",
 "status": "IN_SERVICE",
 "vnfs": [
 {
 "id": "86",
 "name": "NS_D_Juniper_vSRX_86",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX",
 "serviceId": "150012",
 "serviceName": "Juniper_vSRX_Service",
 "serviceStatus": "IN_SERVICE",
 "serviceDescriptorName": "Juniper_vSRX_Service",
 "version": "1.0",
 "externalId": "86",
 "businessInteractionId": "150020",
 "businessInteractionStatus": "IN_PROGRESS",
 "deploymentFlavor": "standard",
 "connectionPoints": [
 {
 "id": "87-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "nfvo-poc3-mgmt(VIMCloudTest)",

Sample Requests and Responses

7-32 Network Service Orchestration Implementation Guide

 "externalId": "2327384b-1ad4-4541-918d-62605ce8d31e"
 }
 },
 {
 "id": "87-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.13",
 "network": "150011_Data_IN(VIMCloudTest)",
 "externalId": "bf4159c0-f830-43bb-a163-8345a0335f46"
 }
 },
 {
 "id": "87-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.14",
 "network": "150011_Data_OUT(VIMCloudTest)",
 "externalId": "c06d13b5-b068-48a0-a5fb-f3000ea2fbce"
 }
 },
 {
 "id": "88-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.15",
 "network": "nfvo-poc3-mgmt(VIMCloudTest)",
 "externalId": "e480b805-612e-44f6-96f2-b5f58bd002be"
 }
 },
 {
 "id": "88-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.16",
 "network": "150011_Data_IN(VIMCloudTest)"
 }
 },
 {
 "id": "88-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.17",
 "network": "150011_Data_OUT(VIMCloudTest)"
 }
 }
],
 "vdus": [
 {
 "id": "87",
 "name": "NS_D_86_87",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX_VDU",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "availabilityZoneName": "nova",
 "externalID": "c131a04c-16bb-40b2-8dc9-59efa731632c",
 "host": "417ebf996e80c98e2d3781a089a2089b295a1a011e74f0475e4cbdcb",
 "flavor": {
 "name": "vsrx.medium",
 "cpus": "2",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-33

 "memory": "4096.0",
 "disk": "20.0"
 },
 "vnfcs": [
 {
 "connectionPoints": [
 {
 "id": "87-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.20",
 "network": "nfvo-poc3-mgmt(VIMCloudTest)",
 "externalId": "2327384b-1ad4-4541-918d-62605ce8d31e"
 }
 },
 {
 "id": "87-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.21",
 "network": "150011_Data_IN(VIMCloudTest)",
 "externalId": "bf4159c0-f830-43bb-a163-8345a0335f46"
 }
 },
 {
 "id": "87-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.22",
 "network": "150011_Data_OUT(VIMCloudTest)",
 "externalId": "c06d13b5-b068-48a0-a5fb-f3000ea2fbce"
 }
 }
]
 }
],
 "parameters": []
 },
 {
 "id": "88",
 "name": "NS_D_86_88",
 "status": "Pending Assign",
 "descriptorName": "Juniper_vSRX_VDU",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "availabilityZoneName": "nova",
 "flavor": {
 "name": "vsrx.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "20.0"
 },
 "vnfcs": [
 {
 "connectionPoints": [
 {
 "id": "88-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.32",
 "network": "nfvo-poc3-mgmt(VIMCloudTest)",

Sample Requests and Responses

7-34 Network Service Orchestration Implementation Guide

 "externalId": "e480b805-612e-44f6-96f2-b5f58bd002be"
 }
 },
 {
 "id": "88-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.33",
 "network": "150011_Data_IN(VIMCloudTest)"
 }
 },
 {
 "id": "88-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.34",
 "network": "150011_Data_OUT(VIMCloudTest)"
 }
 }
]
 }
],
 "parameters": []
 }
]
 }
]
 }
}

Get VNF Details
Retrieves the details about a VNF given the input VNF identifier.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vnf/vnfId

where vnfId is the identifier of the VNF.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "1500001",
 "name": "NSO_E",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX",
 "serviceId": "1575002",
 "serviceName": "NSO_EJuniper_vSRX_Service",
 "serviceStatus": "IN_SERVICE",
 "serviceDescriptorName": "Juniper_vSRX_Service",
 "version": "1.0",
 "externalId": "1500001",
 "businessInteractionId": "1575002",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-35

 "businessInteractionStatus": "COMPLETED",
 "deploymentFlavor": "standard",
 "connectionPoints": [
 {
 "id": "1500002-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.12",
 "network": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "externalId": "4c8d514b-f933-4065-8baa-fab1556c6381"
 }
 },
 {
 "id": "1500002-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.13",
 "network": "1575001_Data_IN(ONAP21MitakaCloud2)",
 "externalId": "c4ee6127-c29f-489d-9993-732e822052c2"
 }
 },
 {
 "id": "1500002-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.14",
 "network": "1575001_Data_OUT(ONAP21MitakaCloud2)",
 "externalId": "ed241427-a429-46c1-8425-dd1a89e5ec77"
 }
 }
],
 "vdus": [
 {
 "id": "1500002",
 "name": "NSO_NS_E_1500001_1500002",
 "status": "Assigned",
 "descriptorName": "Juniper_vSRX_VDU",
 "imageName": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "availabilityZoneName": "nova",
 "externalID": "f3ab2c68-3746-4ab1-a17d-e24771b420f6",
 "host": "417ebf996e80c98e2d3781a089a2089b295a1a011e74f0475e4cbdcb",
 "flavor": {
 "name": "vsrx.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "20.0"
 },
 "vnfcs": [
 {
 "connectionPoints": [
 {
 "id": "1500002-1",
 "name": "CP03",
 "ipAddress": {
 "address": "192.0.2.21",
 "network": "nfvo-poc3-mgmt(ONAP21MitakaCloud2)",
 "externalId": "4c8d514b-f933-4065-8baa-fab1556c6381"
 }
 },
 {

Sample Requests and Responses

7-36 Network Service Orchestration Implementation Guide

 "id": "1500002-2",
 "name": "CP01",
 "ipAddress": {
 "address": "192.0.2.22",
 "network": "1575001_Data_IN(ONAP21MitakaCloud2)",
 "externalId": "c4ee6127-c29f-489d-9993-732e822052c2"
 }
 },
 {
 "id": "1500002-3",
 "name": "CP02",
 "ipAddress": {
 "address": "192.0.2.23",
 "network": "1575001_Data_OUT(ONAP21MitakaCloud2)",
 "externalId": "ed241427-a429-46c1-8425-dd1a89e5ec77"
 }
 }
]
 }
],
 "parameters": []
 }
]
 }
}

Get VNF Status
Retrieves the status information of a VNF and the VIM given the input VNF identifier.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vnf/vnfId/status

where vnfId is the identifier of the VNF.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "75085",
 "name": "ChkptVNF_CP_B253",
 "status": "Assigned",
 "descriptorName": "Checkpoint_NG_FW"
 }
}

Heal VDU
Heals a VDU by rebooting the virtual machine on which the VDU is deployed.

Method
POST

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-37

URL
http://nso_host:port/ocnso/1.1/vnf/vnfId/vdus/vduId/heal

where:

■ vnfId is the required identifier of the VNF.

■ vduId is the required identifier of the VDU.

Sample Request
This API does not require a request body.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": "VDU has been healed successfully"
}

Register PNF
Registers or creates a new PNF in inventory.

Method
POST

URL
http://nso_host:port/ocnso/1.1/pnfs

Before registering a PNF, you must register the EMS. In the PNF registration request,
specify the ID of the EMS in the id attribute under the management parameter.

Sample Request
{
 "name": "xtv59",
 "descriptorName": "Cisco_xRV",
 "description": "",
 "userName": "user",
 "pswd": "password",
 "sslEnabled": false,
 "sshKey": "7b:ab:75:32:9e:b6:6c:4b:29:dc",
 "ipAddress": "192.0.2.252",
 "management": {
 "id": "225001",
 "name": "ems5111",
 "mgmtInterface": "EMS",
 "descriptorName": "Cisco_xRV_EMS"
 },
 "parameters": []
}

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "525003",

Sample Requests and Responses

7-38 Network Service Orchestration Implementation Guide

 "name": "xtv598912",
 "descriptorName": "Cisco_xRV",
 "description": "",
 "ipAddress": "192.0.2.252",
 "userName": "user",
 "pswd": "****",
 "sslEnabled": false,
 "sshKey": "7b:ab:75:32:9e:b6:6c:4b:29:dc",
 "parameters": [
 {}
],
 "management": {
 "id": "225001",
 "name": "ems5111",
 "mgmtInterface": "EMS",
 "descriptorName": "Cisco_xRV_EMS"
 }
 }
}

Update PNF
Updates an existing registered PNF. The update persists the new attribute values to
the inventory database.

Method
PUT

URL
http://nso_host:port/ocnso/1.1/pnfs/pnfId

where pnfId is the identifier of the PNF that you want to update.

Sample Request
{
 "pswd": "password",
 "sshKey": "7b:ab:75:32:9e:b6:6c:4b:29:dc"
}

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "525003",
 "name": "xtv598912",
 "descriptorName": "Cisco_xRV",
 "description": "",
 "ipAddress": "192.0.2.252",
 "userName": "user",
 "pswd": "****",
 "sslEnabled": false,
 "sshKey": "7b:ab:75:32:9e:b6:6c:4b:29:dc",
 "parameters": [
 {}
]
 }
}

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-39

Get PNFs
Retrieves the list of active PNFs that are related to the input PNF descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/pnfs?descriptorName=pnfdName

where pnfdName is the name of the PNF descriptor.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": [
 {
 "id": "22001",
 "name": "xtv0018",
 "descriptorName": "Cisco_xRV",
 "ipAddress": "192.0.2.228",
 "userName": "user2",
 "pswd": "****",
 "sslEnabled": false,
 "sshKey": "",
 "parameters": [
 {}
],
 "management": {}
 },
 {
 "id": "300012",
 "name": "xtv592",
 "descriptorName": "Cisco_xRV",
 "ipAddress": "192.0.2.226",
 "userName": "user8",
 "pswd": "****",
 "sslEnabled": false,
 "sshKey": "",
 "parameters": [
 {}
],
 "management": {
 "id": "75007",
 "name": "ems363",
 "mgmtInterface": "EMS",
 "descriptorName": "Cisco_xRV_EMS"
 }
 },
 {
 "id": "300016",
 "name": "xtv595",
 "descriptorName": "Cisco_xRV",
 "ipAddress": "192.0.2.227",
 "userName": "user5",
 "pswd": "****",
 "sslEnabled": false,
 "sshKey": "",

Sample Requests and Responses

7-40 Network Service Orchestration Implementation Guide

 "parameters": [
 {}
],
 "management": {}
 }
]
}

Get PNF Details
Retrieves the details of a PNF given the PNF identifier.

Method
GET

URL
http://nso_host:port/ocnso/1.1/pnfs/pnfId

where pnfdId is the identifier of the PNF that you want to retrieve.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "525003",
 "name": "xtv59",
 "descriptorName": "Cisco_xRV",
 "description": "",
 "ipAddress": "192.0.2.224",
 "userName": "user",
 "pswd": "****",
 "sslEnabled": false,
 "sshKey": "",
 "parameters": [
 {}
],
 "management": {
 "id": "225001",
 "name": "ems5111",
 "mgmtInterface": "EMS",
 "descriptorName": "Cisco_xRV_EMS"
 }
 }
}

Unregister PNF
Unregisters an existing PNF. The request deletes the PNF matching the input identifier
value from the inventory database.

Method
DELETE

URL
http://nso_host:port/ocnso/1.1/pnfs/pnfId

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-41

where pnfId is the identifier of the PNF that you want to unregister.

Sample Request
This API does not require a request body.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "message": "[INV-430925] PNF 300007 is deleted successfully."
}

Register EMS
Register or create a new EMS in inventory.

Method
POST

URL
http://nso_host:port/ocnso/1.1/ems

Sample Request
{
 "name": "ems574",
 "descriptorName": "Cisco_xRV_EMS",
 "description": "Sample Description",
 "userName": "user",
 "pswd": "password",
 "ipAddress": "192.0.2.212",
 "port": "7001",
 "sslEnabled": false,
 "protocol": "REST"
}

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "375003",
 "name": "ems574",
 "descriptorName": "Cisco_xRV_EMS",
 "description": "Sample Description",
 "ipAddress": "192.0.2.212",
 "port": "7001",
 "userName": "user",
 "pswd": "****",
 "sslEnabled": false,
 "protocol": "REST",
 "parameters": [
 {}
]
 }
}

Sample Requests and Responses

7-42 Network Service Orchestration Implementation Guide

Update EMS
Updates the details of a registered EMS in inventory. The update persists the new
attribute values to the inventory database.

Method
PUT

URL
http://nso_host:port/ocnso/1.1/ems/emsId

where emsId is the identifier of the EMS that you want to update.

Sample Request
{
 "description": "New EMS description",
 "userName": "sys_user_1",
 "pswd": "password"
}

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "375003",
 "name": "ems574236312",
 "descriptorName": "Cisco_xRV_EMS",
 "description": "New EMS description",
 "ipAddress": "192.0.2.212",
 "port": "7001",
 "userName": "sys_user_1",
 "pswd": "****",
 "sslEnabled": false,
 "protocol": "REST",
 "parameters": [
 {}
]
 }
}

Get EMSs
Retrieves the list of active EMSs that are related to the input EMS descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ems?descriptorName=emsdName

where emsdName is the name of the EMS descriptor.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-43

 "data": [
 {
 "id": "225001",
 "name": "ems5111",
 "descriptorName": "Cisco_xRV_EMS",
 "description": "description",
 "ipAddress": "192.0.2.221",
 "port": "1234",
 "userName": "user",
 "pswd": "****",
 "sslEnabled": false,
 "protocol": "REST",
 "parameters": [
 {}
]
 },
 {
 "id": "375001",
 "name": "ems5742",
 "descriptorName": "Cisco_xRV_EMS",
 "description": "description",
 "ipAddress": "192.0.2.222",
 "port": "12345",
 "userName": "user",
 "pswd": "****",
 "sslEnabled": false,
 "protocol": "REST",
 "parameters": [
 {}
]
 }
]
}

Get EMS Details
Retrieves the details of an EMS given the EMS identifier.

Method
GET

URL
http://nso_host:port/ocnso/1.1/ems/emsId

where emsId is the identifier of the EMS that you want to retrieve.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "375003",
 "name": "ems5742",
 "descriptorName": "Cisco_xRV_EMS",
 "description": "description",
 "ipAddress": "192.0.2.220",
 "port": "1234",
 "userName": "user11",

Sample Requests and Responses

7-44 Network Service Orchestration Implementation Guide

 "pswd": "****",
 "sslEnabled": false,
 "protocol": "REST",
 "parameters": [
 {}
]
 }
}

Unregister EMS
Unregisters an existing EMS. The request deletes the EMS matching the input
identifier value from the inventory database.

Method
DELETE

URL
http://nso_host:port/ocnso/1.1/ems/emsId

where emsId is the identifier of the EMS that you want to unregister.

Sample Request
This API does not require a request body.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "message": "[INV-430936] EMS 75003 is deleted successfully."
}

Get Network Service Descriptors
Retrieves a list of deployed network service descriptors.

Method
GET

URL
http://nso_host:port/ocnso/1.1/nsd

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": [
 "NPaas",
 "P-CSCF",
 "ResidentialGateway"
]
}

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-45

Get Network Service Descriptor Details
Retrieves details about a specified network service descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/nsd/nsdName

where nsdName is the name of the network service descriptor.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "name": "NPaaS",
 "virtualLinks": [
 {
 "id": "ManagementNetwork",
 "name": "ManagementNetwork",
 "referencedCPs": [
 {
 "id": "CP03",
 "name": "CP03",
 "type": "MANAGEMENT",
 "vnfdId": "Juniper_vSRX"
 },
 {
 "id": "CP03",
 "name": "CP03",
 "type": "MANAGEMENT",
 "vnfdId": "Checkpoint_NG_FW"
 }
]
 },
 {
 "id": "Data_IN",
 "name": "Data_IN",
 "referencedCPs": [
 {
 "id": "CP01",
 "name": "CP01",
 "type": "EXTERNAL",
 "vnfdId": "Juniper_vSRX"
 },
 {
 "id": "CP01",
 "name": "CP01",
 "type": "EXTERNAL",
 "vnfdId": "Checkpoint_NG_FW"
 }
]
 },
 {
 "id": "Data_OUT",
 "name": "Data_OUT",
 "referencedCPs": [

Sample Requests and Responses

7-46 Network Service Orchestration Implementation Guide

 {
 "id": "CP02",
 "name": "CP02",
 "type": "EXTERNAL",
 "vnfdId": "Juniper_vSRX"
 },
 {
 "id": "CP02",
 "name": "CP02",
 "type": "EXTERNAL",
 "vnfdId": "Checkpoint_NG_FW"
 }
]
 }
],
 "deploymentFlavors": [
 {
 "name": "Checkpoint",
 "constituentVNFs": [
 {
 "vnfRefId": "Checkpoint_NG_FW",
 "deploymentFlavorReference": "standard",
 "minInstances": 1,
 "maxInstances": 1
 }
]
 },
 {
 "name": "Juniper",
 "constituentVNFs": [
 {
 "vnfRefId": "Juniper_vSRX",
 "deploymentFlavorReference": "standard",
 "minInstances": 1,
 "maxInstances": 1
 }
]
 }
],
 "referencedVNFs": [
 "Checkpoint_NG_FW",
 "Juniper_vSRX"
],
 "forwardingGrpahs": [
 {
 "id": "data-vnffg",
 "name": "data-vnffg",
 "isDefault": false,
 "referredVNFDs": [
 "Juniper_vSRX"
],
 "referredVLDs": [],
 "referredEndpoints": [
 "Service_EP1",
 "Service_EP2"
],
 "forwardingPaths": [
 {
 "id": "nfp1",
 "name": "nfp1",

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-47

 "forwardingPolicy": "SYMMETRIC",
 "sourceEndpoint": "Service_EP1",
 "destinationEndpoint": "Service_EP2",
 "connectionPoints": [
 "CP01",
 "CP02"
]
 }
]
 }
],
 "policies": [
 {
 "id": "premium",
 "name": "premium",
 "type": "traffic-classification",
 "rules": [
 {
 "id": "rule1",
 "name": "rule1",
 "type": "traffic-classification",
 "action": "nfp-ref-id:nfp1",
 "referredFG": "data-vnffg",
 "params": [
 {
 "name": "protocol",
 "value": "UDP"
 }
]
 }
]
 },
 {
 "id": "standard",
 "name": "standard",
 "type": "traffic-classification",
 "rules": [
 {
 "id": "rule1",
 "name": "rule1",
 "type": "traffic-classification",
 "action": "nfp-ref-id:nfp1",
 "referredFG": "data-vnffg",
 "params": [
 {
 "name": "protocol",
 "value": "UDP"
 }
]
 }
]
 }
]
 }
}

Get Network Service Descriptor VNFDs
Retrieves a list of VNF descriptors that a network service descriptor references.

Sample Requests and Responses

7-48 Network Service Orchestration Implementation Guide

Method
GET

URL
http://nso_host:port/ocnso/1.1/nsd/nsdName/vnfds

where nsdName is the name of the network service descriptor.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": [
 "Checkpoint_NG_FW",
 "Juniper_vSRX"
]
}

Get Network Service Descriptor Flavors
Retrieves a list of deployment flavors for a specified network service descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/nsd/nsdName/flavors

where nsdName is the name of the network service descriptor.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": [
 {
 "name": "Checkpoint",
 "constituentVNFs": [
 {
 "vnfRefId": "Checkpoint_NG_FW",
 "deploymentFlavorReference": "standard",
 "minInstances": 1,
 "maxInstances": 1
 }
]
 },
 {
 "name": "Juniper",
 "constituentVNFs": [
 {
 "vnfRefId": "Juniper_vSRX",
 "deploymentFlavorReference": "standard",
 "minInstances": 1,
 "maxInstances": 1
 }
]
 }

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-49

]
}

Get VNF Descriptor Details
Retrieves details about a specified VNF descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vnfd/vnfdName

where vnfdName is the name of the VNF descriptor.

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": {
 "id": "Juniper_vSRX",
 "name": "Juniper_vSRX",
 "vendor": "Oracle",
 "version": "1.0",
 "vdus": [
 {
 "id": "Juniper_vSRX_VDU",
 "name": "Juniper_vSRX_VDU",
 "imageReference": "vsrx-v1.0",
 "vnfComponents": [
 {
 "id": "vsrxc",
 "name": "vsrxc",
 "connectionPoints": [
 {
 "id": "CP03",
 "name": "CP03",
 "type": "MANAGEMENT",
 "vnfdId": "Juniper_vSRX"
 },
 {
 "id": "CP01",
 "name": "CP01",
 "type": "EXTERNAL",
 "vnfdId": "Juniper_vSRX"
 },
 {
 "id": "CP02",
 "name": "CP02",
 "type": "EXTERNAL",
 "vnfdId": "Juniper_vSRX"
 }
]
 }
]
 }
],
 "deploymentFlavors": [

Sample Requests and Responses

7-50 Network Service Orchestration Implementation Guide

 {
 "id": "standard",
 "name": "standard",
 "constituentVDUs": [
 {
 "minInstances": 1,
 "maxInstances": 1,
 "constituentVNFCs": [
 {
 "vnfcReference": "vsrxc",
 "minInstances": 1,
 "maxInstances": 1
 }
],
 "id": "Juniper_vSRX_VDU",
 "flavorID": "vsrx.medium"
 }
]
 }
],
 "connectionPoints": [
 {
 "id": "CP03",
 "name": "CP03",
 "type": "MANAGEMENT",
 "vnfdId": "Juniper_vSRX"
 },
 {
 "id": "CP01",
 "name": "CP01",
 "type": "EXTERNAL",
 "vnfdId": "Juniper_vSRX"
 },
 {
 "id": "CP02",
 "name": "CP02",
 "type": "EXTERNAL",
 "vnfdId": "Juniper_vSRX"
 }
],
 "vduImages": [
 {
 "id": "vsrx-v1.0",
 "softwareImages": [
 {
 "extensionsImpl": [
 {
 "type": "ImageCredentials",
 "handler":
"oracle.communications.inventory.nso.extensions.impl.ImageCredentialsHandlerImpl",
 "params": [
 {
 "name": "username",
 "value": "root"
 },
 {
 "name": "password",
 "value": "labms01"
 }
]

Sample Requests and Responses

Network Service Orchestration RESTful API Reference 7-51

 }
],
 "name": "vsrx-12.1X47-D20.7-npaas-v0.3",
 "version": "1.0",
 "extensions": [
 {
 "type": "ImageCredentials",
 "handler":
"oracle.communications.inventory.nso.extensions.impl.ImageCredentialsHandlerImpl",
 "params": [
 {
 "name": "username",
 "value": "root"
 },
 {
 "name": "password",
 "value": "labms01"
 }
]
 }
]
 }
]
 }
]
 "vduFlavors": [
 {
 "id": "vsrx.small",
 "cpus": "2",
 "memory": "2048.0",
 "disk": "20.0"
 },
 {
 "id": "vsrx.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "20.0"
 },
 {
 "id": "m1.medium",
 "cpus": "2",
 "memory": "4096.0",
 "disk": "40.0"
 }
]
 }
}

Get VNF Descriptor Flavors
Retrieves the list of VNF flavors of a specified VNF descriptor.

Method
GET

URL
http://nso_host:port/ocnso/1.1/vnfd/vnfdName/flavors

where vnfdName is the name of the VNF descriptor.

Sample Requests and Responses

7-52 Network Service Orchestration Implementation Guide

Sample Response
{
 "status": "SUCCESS",
 "code": "200",
 "data": [
 {
 "id": "standard",
 "name": "standard",
 "constituentVDUs": [
 {
 "minInstances": 1,
 "maxInstances": 1,
 "constituentVNFCs": [
 {
 "vnfcReference": "vsrxc",
 "minInstances": 1,
 "maxInstances": 1
 }
],
 "id": "Juniper_vSRX_VDU",
 "flavorID": "vsrx.medium"
 }
]
 }
]
}

	Contents
	Preface
	Audience
	Related Documentation
	Documentation Accessibility

	1 Overview
	About Network Service Orchestration
	Network Service Orchestration Components
	About Network Service Orchestration Entities
	About the UIM User Interface
	About UIM Help

	About the Sample Network Services

	2 Setting Up Network Service Orchestration
	Planning Your Implementation
	Software Requirements
	Migrating Network Service Orchestration 7.3.4 Cartridges
	Installing and Integrating the Network Service Orchestration Components
	Integrating Network Service Orchestration With Northbound Applications for Asynchronous Communication
	Integrating the VIM with Network Service Orchestration
	Registering the VIM
	Discovering VIM Resources

	Setting Network Service Orchestration Properties
	Enabling Logging for Network Service Orchestration
	Supported Southbound Integration

	3 Designing and Onboarding Network Services, VNFs, and PNFs
	About Design Components
	About Descriptor Files
	About Network Service Descriptor Files
	About VNF Descriptor Files
	About PNF Descriptor Files
	Creating a Descriptor File

	About Technical Actions Files
	Creating a Technical Actions File

	About VNF Configuration Files

	Setting Network Service Descriptor Properties
	Onboarding Network Services and VNFs Using TOSCA Descriptor Templates
	Sample TOSCA VNF Descriptor Template
	Sample TOSCA Network Service Descriptor Template
	Installing Python
	Importing the TOSCA VNFD Template into Design Studio

	Tagging Network Service Orchestration Specifications
	Designing Custom Network Services
	Creating Cartridges for VNFs
	Logical Device Specification
	Service Specification
	Service Configuration Specification

	Creating Cartridges for PNFs
	Logical Device Specification
	Service Specification
	Service Configuration Specification

	Creating Cartridges for Network Services
	Network Service Specification
	Network Service Configuration Specification

	4 Working with Network Services, VNFs, VDUs, and PNFs
	Instantiating Network Services
	Managing Failed Life-Cycle Actions
	Accepting Partially Instantiated Network Services
	Rolling Back Partially Instantiated Network Services
	Adding Failed VNFs to Partially Instantiated Network Services

	Modifying Network Services
	Adding VNFs to Existing Network Services
	Removing VNFs from Existing Network Services

	Terminating Network Services
	Viewing Progress of Life-cycle Actions
	Scaling VNFs
	Healing VNFs
	Monitoring VNFs
	About the Monitoring Tabs in the User Interface

	Working with PNFs in Network Services
	Retrieving Details About Network Services, VNFs, PNFs, and Descriptors
	Registering VNFs with Third-Party Systems

	5 Implementing the Sample Network Services
	Configuring the Juniper vSRX Base Image
	Implementing the Network Protection Service
	Implementing the Residential Gateway Network Service
	Implementing the Proxy-Call Session Control Function Network Service
	Integrating Network Service Orchestration with IP Service Activator
	Setting Juniper_vSRX Sample Cartridge Properties

	6 Extending Network Service Orchestration
	Setting Up Design Studio for Extending Network Service Orchestration
	Using Extension Points and Java Interface Extensions to Extend Network Service Orchestration
	Writing a Custom Ruleset Extension Point
	Using Java Interface Extensions
	Implementing a Custom SDN Controller
	Implementing a Custom Monitoring Engine
	Implementing a Custom VIM
	Implementing a Custom VNF Life Cycle Manager
	Implementing an Adapter for a Custom VNF Manager
	Implementing a Custom VNF Connection Manager
	Implementing a Custom VNF Configuration Manager
	Implementing a Custom Response Manager
	Implementing a Custom Notification Manager

	Localizing Network Service Orchestration
	Localizing the Responses in RESTful APIs

	7 Network Service Orchestration RESTful API Reference
	About the Network Service Orchestration RESTful APIs
	Network Service Orchestration RESTful API Resources
	RESTful API Responses
	Sample Requests and Responses
	Register VIM
	Discover VIM Resources
	Update VIM
	Get VIM Details
	Instantiate Network Service
	Get Network Services
	Get Network Service Details
	Get Network Service VNFs
	Get Network Service Networks
	Get Network Service End Points
	Get Network Service Status
	Terminate Network Service
	Add VNF to Network Service
	Terminate VNF in a Network Service
	Heal VNF
	Scale VNF
	Get VNF Details
	Get VNF Status
	Heal VDU
	Register PNF
	Update PNF
	Get PNFs
	Get PNF Details
	Unregister PNF
	Register EMS
	Update EMS
	Get EMSs
	Get EMS Details
	Unregister EMS
	Get Network Service Descriptors
	Get Network Service Descriptor Details
	Get Network Service Descriptor VNFDs
	Get Network Service Descriptor Flavors
	Get VNF Descriptor Details
	Get VNF Descriptor Flavors

