

Oracle® Communications Services Gatekeeper
API Management Guide

Release 7.0

E81152-01

July 2018

Oracle Communications Services Gatekeeper API Management Guide, Release 7.0

E81152-01

Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii

1 Understanding API Management with the PRM Portals

About the Services Gatekeeper API Management Platform ... 1-1
About the PRM Portals and Users ... 1-1
How the API Management Platform Works.. 1-3

About the Elements that Control the Quality of Service... 1-3
About Developing APIs .. 1-4

Configuring Network Service Interfaces to Expose Your Services... 1-4
Configuring APIs to Expose Your Services For Use by Partner Applications.......................... 1-4
Subscribing to APIs to Enhance Partner Applications ... 1-5
How Services are Deployed Using PRM Portal Applications .. 1-6

Understanding API Management Security ... 1-7
Using Cross-Origin Security with APIs .. 1-7

About PRM Portal Service Level Agreements.. 1-7
About Extending the PRM API Portals .. 1-8

2 Developing Applications with the PRM Portals

Required Software ... 2-1
Accessing the PRM Portals ... 2-1

Understanding the Partner Portal User .. 2-1
Understanding the API Management Proxy Settings... 2-1
Starting the Partner and API Management Portal .. 2-2
Starting the Network Service Supplier Portal.. 2-2

Setting Up a Network Service Supplier Account ... 2-2
Starting the Partner Portal .. 2-3

Setting Up a New Partner Account .. 2-3
About Developing Applications ... 2-4

About the Types of Interfaces Used in an API... 2-4
About Registered Network Services .. 2-4

About Developing Applications .. 2-4
About the Services Gatekeeper Communication Services ... 2-5

iv

Updating an Active Application.. 2-6
About Data Integrity During Updates to an Active Application.. 2-6
Ways in Which an Active Application is Updated ... 2-6

3 Managing Network Service Interfaces

About Network Resources and Service Interfaces .. 3-1
About the Network Service Interface Data ... 3-1
About Interface Statuses ... 3-2
Life Cycle Stages of a Network Service Interface .. 3-2

4 Managing APIs for Partner Applications

About APIs for Partner Applications ... 4-1
About the API Data ... 4-1
About Naming Your APIs .. 4-2
About Presenting API Resources to Your Customers .. 4-2

Using Variables and Wildcard Characters in the Request Path and Service Path 4-3
About the Status of an API ... 4-4

About Temporarily Suspending APIs ... 4-5
About API Versioning ... 4-6
Providing API Credentials to Partners ... 4-6

Creating APIs for Use in Partner Applications .. 4-7
Manipulating HTTP Query Parameters in API Messages ... 4-7
Securing Services Gatekeeper Methods and API Services .. 4-7

Securing the Services Gatekeeper API Methods ... 4-7
Securing the API Service ... 4-8

Configuring Actions Chains to Manage API Traffic... 4-8
Understanding the API Back-end Server Configuration.. 4-8
Updating APIs... 4-9

About an API Status and Modifications to its Data .. 4-9
Suspending Applications from Using an API ... 4-10
Removing APIs .. 4-10

5 Using Actions to Manage and Manipulate API Traffic

Configuring Actions Chains to Manage API Traffic... 5-1
About Action Chains ... 5-1
Actions in Application-Initiated Flows... 5-2
Actions in Server-Initiated Flows .. 5-2
Understanding Front and Middle Actions .. 5-3
About Action Statuses ... 5-3

Setting Actions System Administration Settings .. 5-3
Setting Actions System Performance Settings ... 5-3

Using the Administration Console to Set Action System Performance Settings............... 5-4
Using the WebLogic Startup Script to Set Action System Performance Settings 5-5

Setting Actions White and Black Lists .. 5-5
Understanding the Default Actions.. 5-6

appKeyValidation .. 5-7

v

Callout.. 5-7
CORS.. 5-7
Groovy .. 5-10

Prohibited Components in Groovy Actions... 5-10
Json2Xml... 5-10
RateLimit .. 5-11
SchemaValidation ... 5-11
Throttling.. 5-12
Xml2Json... 5-12
XSLT .. 5-13

DAF Callout Callback .. 5-13
Limitation ... 5-14
Example of Callback ... 5-14
Exception Handling .. 5-14

DAF Support of HTTP Methods .. 5-16
PATCH Method... 5-16
HEAD Method... 5-17
TRACE Method ... 5-17
CONNECT Method .. 5-17
OPTION Method... 5-18

HTTP Header Filter... 5-18
Common Actions Programming Tasks ... 5-19

Printing and Changing Message Content.. 5-19
Using Actions to Manipulate HTTP Query Parameters.. 5-20

Using a Groovy or Custom Action to Manipulate Query Parameters............................. 5-20
Groovy Query Manipulation Code Examples... 5-21

Using Actions to Translate Between REST and SOAP .. 5-22
REST to SOAP Translation ... 5-22
SOAP to REST Translation ... 5-24

Transfering Data from Request Chain to Response Chain ... 5-24
Converting JSON and XML... 5-24
Accessing the Customized Data Store ... 5-25

Examples ... 5-28
Configuring Chunking for Back-end Services .. 5-29

Global Configuration... 5-29
Per Request or Per API Configuration.. 5-29

Understanding the Troubleshooting Action Information in EDRs .. 5-30

6 Creating Custom HTTP Processors

Creating a Custom HTTP Processor ... 6-1
Deploying and Undeploying Custom HTTP Processors ... 6-1
HTTP Processor Runtime Architecture .. 6-2
Custom Processor EDRs.. 6-3

Example EDRs ... 6-3
Implementing a Custom HTTP Processor ... 6-5

Example: A Symmetric Key Encrypted JSON Token ... 6-5
Optional Custom HTTP Processor Configuration ... 6-9

vi

Custom HTTP Processor MBean .. 6-10

7 Managing Partner Applications

About Applications.. 7-1
Life Cycle of an Application ... 7-1
Application States and Notification Entries ... 7-2
Data Integrity During Updates to Applications .. 7-2

Collecting Information About Application Traffic with EDRs .. 7-3

8 Managing Partners and Partner Groups

Overview of Accounts and Roles .. 8-1
About the Registration Review ... 8-2
Managing Accounts ... 8-2

Setting Up Accounts in Partner and API Management Portal .. 8-3
Creating Partner Accounts in Partner and API Management Portal 8-3

Managing Accounts ... 8-3
Managing Partner Groups .. 8-3

Group Assignments for Partners and SLAs ... 8-4
Deleting Partner Groups ... 8-4

9 Administering the PRM Portals

Resetting Passwords .. 9-1
Requesting for a Network Service Supplier or Partner Password to be Reset.......................... 9-1
Resetting Passwords in Partner and API Management Portal.. 9-2
Resetting Passwords in Network Service Supplier or Partner Portal .. 9-2

About Customizing PRM Portals.. 9-2

vii

Preface

This document describes how to use the API management platform and the partner
relationship management portals offered by Oracle Communications Services
Gatekeeper (Services Gatekeeper) to develop applications for use by application
developers. It includes a high-level overview of the application development process,
including the login and security procedures, and a description of the interfaces and
operations.

Audience
This book is intended for software developers who will integrate functionality
provided by telecom networks into their applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
The following documents provide information related to creating applications that
interact with Services Gatekeeper:

■ Oracle Communications Services Gatekeeper Concepts

■ Oracle Communications Services Gatekeeper Partner Relationship Manager Developer's
Guide

■ Oracle Communications Services Gatekeeper Communication Service Guide

viii

1

Understanding API Management with the PRM Portals 1-1

1Understanding API Management with the PRM
Portals

This chapter provides an overview of Oracle Communications Services Gatekeeper
application programming interface (API) management platform and its partner
relationship management (PRM) portal applications.

About the Services Gatekeeper API Management Platform
You use the Services Gatekeeper API Management platform to create applications that
subscribe to APIs for the services you expose. Through these applications, you can
provide network quality of service (QoS) control, messaging, call control, big data
analytics to internal developers, partners, and third-party developers.

The Services Gatekeeper API management platform processes all requests for the APIs
associated with the services it supports. This processing included default actions you
can take on messages, and options to create your own processing. For example, you
can:

■ Normalize all incoming requests to a unified format for processing the requests.

■ Customize the message process flow as necessary.

■ Regulate the use of your network resources and communication web services.

■ Provide an API proxy for the services to expose by specifying the network address
for the service.

■ Provide a documentation URL describing the service, for use by internal or
third-party developers.

Services Gatekeeper supports the API management platform in both single-tier and
multi-tier environments. By default, the API Management platform is deployed as a
single layer, with the possibility to cluster nodes together. It can also be deployed in
application-tier or service-tier clusters. See Services Gatekeeper Concepts for more
information.

About the PRM Portals and Users
The Services Gatekeeper API platform supports the following web-based PRM portals
that offer three different roles for managing APIs:

■ Partner and API Management Portal

You use the Partner and API Management Portal to:

– Create and manage APIs for use in applications.

About the Services Gatekeeper API Management Platform

1-2 Services Gatekeeper API Management Guide

The APIs are configured from network service interfaces (created in Network
Service Supplier Portal), communication service APIs, and Web service APIs
provided by Service Gatekeeper.

– Review and approve applications that use the exposed APIs. These
applications are created in Partner Portal.

– Manage partner groups and service level agreements.

– Configure rules as a chain or chains of actions and locate the actions in the
application-initiated or service-initiated flow of the request, as appropriate.

Your network operators and enterprise customers work with Partner and API
Management Portal. They create and manage APIs, approve partner applications,
manage partner groups, and also manage partner and network service supplier
accounts.

This document and the Online Help documentation refer to users of Partner and
API Management Portal as partner managers.

■ Network Service Supplier Portal

Network service suppliers (NSSs) use Network Service Supplier Portal to
provision network resources as network service interfaces. You then use Partner
and API Management Portal to manage their network service interfaces, and use
them to create APIs for partner applications.

NSSs can be in your group, in another group in your company, or from a separate
entity (company) entirely. They use Network Service Supplier Portal for this, and
gain access by completing an online registration request. The NSSs receive an
email notification from the partner manager, approving or deleting the
authorization request.

This document and the Online Help documentation refer to users of Network
Service Supplier Portal as network service suppliers or NSSs.

■ Partner Portal

You use the Partner Portal to create applications. These applications represent
services that you provide to your customers. You configure them from the network
resources and communication web services running on the Services Gatekeeper.

Each partner application subscribes to one or more APIs exposed by Partner and
API Management Portal. When active, a partner application can successfully
handle associated HTTP requests and responses to maintain quality of service.
Each contains logic targeted to improve customer satisfaction, such as setting the
permissions for a request to exceed the quota limit.

Application developers require authorization to use Partner Portal. Each
application developer completes an online registration request displayed by
Partner Portal. The application developer receives an email notification from the
partner manager announcing that the request was approved or denied.

This document and the Online Help documentation refer to users of Partner Portal
as partners.

Figure 1–1 shows the users of the three portals and the data they create, access, and
use in the Services Gatekeeper platform.

About the Services Gatekeeper API Management Platform

Understanding API Management with the PRM Portals 1-3

Figure 1–1 Services Gatekeeper PRM Portal Users and Data

How the API Management Platform Works
Services Gatekeeper uses the API Management platform to intercept and process the
requests and responses in real-time, using actions that you specify. You configure these
actions or chains of actions in the Partner and API Management Portal. You order the
actions as necessary in the application-initiated or service-initiated flow of the traffic.
When Services Gatekeeper receives a request message, it processes the incoming
request and performs the actions that you have specified on it. For example, you can
use actions to:

■ Maintain security (such as verifying the service level agreement).

■ Transform the message format as necessary (such as from JSON to XML format).

■ Any other custom tasks you configure for the message flow.

You can manage endpoint routing by customizing actions, such as Groovy injection
methods, or by using Java-based service provider interface. These actions can provide
specific logic for interacting with third-party APIs, filtering or modifying field values,
and so on. See "Configuring Actions Chains to Manage API Traffic" for more
information.

About the Elements that Control the Quality of Service
The quality of service a Partner Portal application provides to the end user depends
on:

■ Application specifics in Partner Portal.

■ Network service specific in the Network Service Supplier Portal.

About Developing APIs

1-4 Services Gatekeeper API Management Guide

■ The API specifics in the Partner and API management Portals.

These factors determine quality of service:

■ Service interfaces exposed by the network

■ Maximum usage and throughput for the service exposed

■ The API methods subscribed to in an application

■ Service level agreements in effect for the API methods selected in an application

■ Request limits and quotas for the partner group (to which an application belongs)

■ Interceptors and action elements that act upon the request or response in real time

When an application developed using the PRM portals is in an active state, the API
management platform receives the associated HTTP requests and proxies each request
based on predefined rules set up in the portals.

About Developing APIs
The process required to provide your network services as APIs to be called in real time
consists of the following tasks:

■ Configuring Network Service Interfaces to Expose Your Services

■ Configuring APIs to Expose Your Services For Use by Partner Applications

■ Subscribing to APIs to Enhance Partner Applications

Configuring Network Service Interfaces to Expose Your Services
Network service suppliers create network service interfaces from the network
resources that they want to expose. As a network service supplier, you control how
partner managers (and therefore, partners) use your network services by specifying
the throughput capacity for the network resource in each network service interface
you create. This helps safeguard the associated networks from external attacks, and the
resources from being overloaded.

Network service suppliers create these interfaces in Network Service Supplier Portal
and Services Gatekeeper make these interfaces available in Partner and API
Management Portal. Partner managers work offline with you to ensure that the
network services interfaces are optimally configured for use in the network.

For example, your network group wants to market a Web service that permits
applications or games to store and retrieve high scores for their games. Your network
service supplier creates an interface for such a service in Network Service Supplier
Portal under the name of High Score Game RESTful web service and makes it
available to the network operator (partner manager). For each interface, the network
service supplier provides the access URL for the interface and also information about
the accessible methods of the interface.

Configuring APIs to Expose Your Services For Use by Partner Applications
As a partner manager, you use Partner and API Management Portal to create and
expose APIs using the available network service interfaces and Services Gatekeeper
communication services. In addition, you manage the different versions of the APIs
and the life cycles of your client applications.

You exercise full control over the resource throttling and security processes by
configuring elements (such as maximum usage, throughput) in the APIs you expose.

About Developing APIs

Understanding API Management with the PRM Portals 1-5

You can configure Services Gatekeeper to perform actions on both the API request and
response traffic using the request and response actions chains.

Continuing with our example, you (as a partner manager) use the High Score RESTful
Game web service network service interface to create and publish an API called High
Score Game Notification API. You specify:

■ The maximum usage and throughput for the API service exposed.

■ Interceptors and action elements to act upon the request or response.

■ Information about the accessible methods.

Subscribing to APIs to Enhance Partner Applications
Partners (or application developers) use Partner Portal to create applications that
subscribe to one or more APIs. Before registering the application, partners collect all
the information necessary, including:

■ Name and description of the application.

■ The time period when the application is active.

■ The service to provide.

■ The rate at which the application provides the service.

As a partner, you register an application by entering the appropriate information
about the application. You can select the APIs that provide the services your
application when you create the application, or later. Your partner manager publishes
the list of APIs that are available to the applications.

For each API, you specify a desired number of requests that the application sends to
the network and the minimum number of requests it receives from the network within
an allotted time. By doing so for each API you include in the application, you can
tailor the quality of services you provide to your customers.

When you have configured an application, you submit the application registration
request to your partner manager for approval. When your partner manager approves
the application, Partner Portal displays the application registration approval
notification. Then, you access the application in Partner Portal and set a traffic user
password. The application is then available for you to make API changes, and is ready
for use.

In our example, an online gaming application company owns a game called Textrocks.
In order to enhance the user experience, the online gaming application company wants
to upgrade that game with the ability to query for high scores. Your partner is
associated with that online gaming application company. Your partner sees the High
Score Game Notification API displayed in Partner Portal. The partner clicks the API,
opens the API description document, and upgrades the Textrocks software by using
the required methods of the High Score Game Notification API. After the partner
manger approves the application, the partner sets up the traffic password and the API
is then ready for use.

About Developing APIs

1-6 Services Gatekeeper API Management Guide

How Services are Deployed Using PRM Portal Applications

Figure 1–2 Steps in the PRM API Development Process

Figure 1–2 shows how the three PRM API portals deploy services in your network:

1. The network service supplier uses Network Service Supplier Portal to publish a
network service interface.

2. Services Gatekeeper displays the network service interface in Partner and API
Management Portal.

3. The partner manager uses the interface to create an API in Partner and API
Management Portal.

4. The partner manager changes the status of the API to be published in Partner and
API Management Portal.

5. Services Gatekeeper displays the API in Partner Portal.

6. The partner views the API in Partner Portal. The partner creates an application
that subscribes to this API and specifies the desired request limit and quota. The
partner submits the application to be registered for use.

The partner can also create an application without an API and subscribe to them
later.

7. Services Gatekeeper displays the application registration request in Partner and
API Management Portal.

8. The partner manager reviews the application registration request and approves it.

About PRM Portal Service Level Agreements

Understanding API Management with the PRM Portals 1-7

The partner manager may also deny a request based on service level agreements
and resource-related factors, such as the resource requests and quotas in effect.

9. Services Gatekeeper displays the approval (or denial) of the application
registration request in Partner Portal.

10. If the application registration request is approved, the partner sets the traffic user
password in the application. This password enables tracking traffic usage in the
network.

If the application registration request is rejected, the partner can change it and
resubmit the application.

Understanding API Management Security
You need to consider these aspects of Services Gatekeeper API Management Security:

■ Securing the Services Gatekeeper administration, portal, and managed servers. For
information, see the Services Gatekeeper Security Guide in general and the
“Deploying Services Gatekeeper in a Demilitarized Zone” chapter in particular.

■ Securing the traffic between web-based users and applications and Services
Gatekeeper. For details, see “Securing Network Traffic for APIs” in Services
Gatekeeper Security Guide.

■ Securing Services Gatekeeper APIs from unauthorized access. See "Securing the
Services Gatekeeper API Methods" for details.

■ Securing your API services (backend services) from unauthorized access. See
"Securing the API Service" for details.

■ Securing web traffic by creating white list of IP addresses allowed to communicate
with your REST-based APIs. See “Protecting REST APIs with a White List of IP
Addresses” in Services Gatekeeper Security Guide for details.

Using Cross-Origin Security with APIs
You can take advantage of browser validation features by using Cross-Origin Resource
Security (CORS) to validate cross-origin resource requests. You do this per-API by
configuring and adding the Services Gatekeeper CORS action in the API request action
chain. You generally configure the allowed CORS origins, headers, and methods, and
the action chain fails processing if the request message does not match the
configuration. However, you also have to option to pass non-conforming request
headers, which can then be configured to fail at the browser level.

See "Understanding the Default Actions" for a description of the options available. See
Partner and API Management Portal Online Help for details about how to configure the
CORS action.

About PRM Portal Service Level Agreements
Partner managers create partner groups and assign all partner accounts to a partner
group.

When a partner manager creates a partner group, for example a partner group called
Platinum, the partner manager sets up a service level agreement (SLA) for that partner
group. A partner group SLA defines:

■ A partner group's request limit for a service. That is, the number of requests per
second allowed.

About Extending the PRM API Portals

1-8 Services Gatekeeper API Management Guide

■ The quota limit. That is, the number of requests the partner group can process.

■ The number of days for processing the requests allowed for that group.

The quota limit is an integer with a maximum value of 2147483648 requests.

When creating an API, the partner manager can restrict the availability of that service
to specific partner groups, or expose the API to all partner groups. Private APIs are
only visible and available to the members of the groups you specify.

If the partner manager makes an API public, the API is visible and available in Partner
Portal for all partner accounts.

Services Gatekeeper provides a default partner group called sysdefault_sp_group.
When a partner manager creates or approves a partner account, Services Gatekeeper
assigns that partner account to sysdefault_sp_group. This default service provider
group has a blank SLA and therefore no request limits or quota allotments. Until a
newly created partner account is assigned to a different partner group, the partner
who owns that account has no APIs available and cannot successfully register an
application.

Partner managers can create any number of uniquely named partner groups and
change the group assignment for a partner account. At any given time, a partner
account is assigned to one partner group and the partner is notified whenever there is
a change to the group assignment. Partner managers also manage the partner accounts
and partner groups they create and, when necessary, delete them.

If a partner manager assigns a partner account to a different partner group, the partner
manager must reconcile any discrepancies between the allowances stipulated by the
SLA of the new partner group and the usage requirements of the applications
associated with the partner account. See "Group Assignments for Partners and SLAs".

About Extending the PRM API Portals
Partner managers can extend and customize portals by adding new pages to the
portals, and creating a new navigation entry points to enter these new pages. For more
information, see "About Customizing PRM Portals".

2

Developing Applications with the PRM Portals 2-1

2Developing Applications with the PRM Portals

This chapter provides an introduction to the setup of Oracle Communications Services
Gatekeeper partner relationship management (PRM) portal applications and the
application development process.

Required Software
Services Gatekeeper supports Network Service Supplier Portal, Partner and API
Management Portal, and Partner Portal on Chrome 38.0.2125.111 m, Mozilla Firefox
24.8.1, and Internet Explorers 11 browsers. The portals included when you install
Services Gatekeeper. See Services Gatekeeper Getting Started Guide or Services Gatekeeper
Multi-tier Installation Guide for information about installing the portal applications.

Accessing the PRM Portals
As partners, network resource suppliers, and partner managers, you access the portals
and do not interact directly with Services Gatekeeper.

You need a valid account and password to use each portal.

See "Administering the PRM Portals" for information about administering the portals.

Understanding the Partner Portal User
A WebLogic administrative user is required to start and use the Partner and API
Management portal. You create this user partner manager user account when you
install a default (single-tier) Services Gatekeeper implementation or multi-tier
implementations using the Services Gatekeeper Administration Console. See Services
Gatekeeper System Administrator's Guide for details on managing users. The new user
must have a userlevel of 1000-Admin user, and a type of 1-PRM OP user.

Understanding the API Management Proxy Settings
These options determine the proxy settings that your APIs use. They are enforced in
this order (the last one wins):

1. The Java operating system proxy settings (http.proxyHost, http.proxyPort,
https.proxyHost, and https.proxyPort).

See the Java documentation for instructions on how to configure these settings.

2. The proxy server that you enter in the Network Proxy field in each API.

See Services Gatekeeper Partner and API Management Portal Online Help for
information on using this field.

Accessing the PRM Portals

2-2 Services Gatekeeper API Management Guide

3. Creating a proxy object in a Groovy action in each API.

See "Using Actions to Manage and Manipulate API Traffic" for details on the
actions you can create for each API.

Starting the Partner and API Management Portal
Your Services Gatekeeper administrator provides you with the URL of the location
where Partner and API Management Portal is installed in your environment. In
addition, the administrator provides you with a valid account name and password
that gives you access to Partner and API Management Portal.

The default URL to Partner and API Management Portal is:

http://IP_address:port/portal/partner-manager/index/login.html

Where IP_address is the IP address of the host system running Services Gatekeeper, and
port is a port number to use. The default port is 8001.

To access the Partner and API Management Portal:

1. Open a supported web browser and go to the URL provided to you for Partner
and API Management Portal.

2. In the User Name field, enter the user name for your partner manager account.

3. In the Password field, enter the password for your partner manager account.

4. Click Sign In.

Starting the Network Service Supplier Portal
Your Services Gatekeeper administrator provides you with the URL of the location
where Network Service Supplier Portal is installed in your environment.

The default URL to Network Service Supplier Portal is:

http://IP_address:port/portal/service-supplier/index/ssLogin.html

Where IP_address is the host system running Services Gatekeeper and port is a
communication port to use. The default port is 8001.

When you obtain this URL, you can go to the website and do one of the following:

■ If you received an email notification with a valid user name and password for
Network Service Supplier Portal, the account was created for you. Sign in to the
portal by entering the user name and password.

■ If you do not have a valid user name and password for Network Service Supplier
Portal, go to the URL and set up a network service supplier account. See "Setting
Up a Network Service Supplier Account".

Setting Up a Network Service Supplier Account
To set up a network service supplier account:

1. Open a supported web browser and go to the URL provided to you for Network
Service Supplier Portal.

Tip: To request a user name and password for a partner manager
account, to reset the password for your account or to reinstate your
account, contact your Services Gatekeeper Administrator.

Accessing the PRM Portals

Developing Applications with the PRM Portals 2-3

2. Click Create New Account.

3. Enter the required information for all fields in the registration form that display
asterisks next to them.

The remaining information can be provided later.

4. Read and accept the terms and conditions.

5. Click Register to submit the registration request.

Network Service Supplier Portal displays a message stating that the request is now
pending approval and that an email notification is sent to the email address you
entered in the registration form.

6. Click OK.

When you receive the email notification that your registration request has been
approved, you can go to the same URL, enter the user name and password and sign in
to use the Network Service Supplier Portal console.

If your registration request has been denied, consult with your partner manager and
submit a new registration request to obtain a valid network service supplier account.

Starting the Partner Portal
Your Services Gatekeeper administrator provides you with the URL of the location
where Partner Portal is installed in your environment.

The default URL to Partner Portal is:

http://IP_address:port/portal/partner/index/partnerLogin.html

Where IP_address is the host system running Services Gatekeeper, and port is a
communication port to use. The default port is 8001.

When you obtain this URL, you can go to the website and do one of the following:

■ If you received an email notification with a valid user name and password for
Partner Portal, the account was created for you. Sign in to the portal by entering
the user name and password.

■ If you do not have a valid user name and password for Partner Portal, go to the
URL and set up a partner account. See "Setting Up a New Partner Account".

Setting Up a New Partner Account
To submit a registration request:

1. Open a supported web browser and go to the URL provided to you for Partner
Portal.

2. Click Create New Account.

3. Enter the required information for all fields in the registration form that display
asterisks next to them.

The remaining information can be provided later.

4. Read and accept the terms and conditions.

Note: Your account name and password become valid only after
your partner manager approves your registration request.

About Developing Applications

2-4 Services Gatekeeper API Management Guide

5. Click Register to submit the registration request.

Partner Portal displays a message stating that the request is now pending approval
and that an email notification is sent to the email address you entered in the
registration form.

6. Click OK.

When you receive the email notification that your registration request has been
approved, you can go to the same URL, enter the user name and password and sign in
to use the Partner Portal console.

If your registration request has been denied, consult with your partner manager and
submit a new registration request to obtain a valid partner account.

About Developing Applications
The application development process consists of selecting APIs where the
configuration for each API is based on a specific type of an interface and specifying
how they are used in the application.

About the Types of Interfaces Used in an API
You can create APIs based on the following interface types:

■ Existing URL

■ Existing WADL/WSDL file

■ Registered Network Service

■ Existing Communication Service

About Registered Network Services
When you create an API based on a registered network service, that service interface is
created in Network Service Supplier Portal.

A network service provider and the associated network operator, service provider,
product manager, back-office personnel, or customer sales representative decide on the
parameters for the network resources that are going to be provided for use as network
service interfaces.

The network service supplier creates network service interfaces and saves them.

These network service interfaces are then displayed in Partner and API Management
Portal for use by partner managers. See "Managing Network Service Interfaces" for
more information.

About Developing Applications
 The process of developing an application consists of the following steps.

1. A partner manager creates APIs in Partner and API Management Portal using the
network service interfaces provided by the network service suppliers and
communication services, exposed by Services Gatekeeper and configuring them as

Note: Your account name and password become valid only after
your partner manager approves your registration request

About Developing Applications

Developing Applications with the PRM Portals 2-5

required. The partner manager publishes the APIs and they are then displayed in
Partner Portal.

See "Managing APIs for Partner Applications" for more information.

2. A partner associated with the partner manager creates an application in Partner
Portal. You can subscribe to APIs to the application when you create it, or later.
This application can issue HTTP requests to Services Gatekeeper. The partner
selects the APIs to use and requests a desired number of requests the application
sends to the network and the minimum number of requests it receives from the
network within an allotted time.

See "Managing Partner Applications" for more information.

3. The partner submits the application for approval. The status of the application is
set to pending.

4. The partner manager reviews the application and, if it meets the requirements,
accepts it. When the partner manager approves the application, its status is set to
active.

At this point the partner manager can change the desired number of requests the
application sends to the network and the minimum number of requests it receives
from the network within an allotted time.

5. The partner receives a notification that the application is approved and the
application icon displays the state as ACTIVE.

The partner can access the application to change the traffic user password and
update the access token. The service level agreement (SLA) for the application is
the SLA associated with the partner group to which the partner manager assigns
the partner.

When an application is in the ACTIVE state, it can be marketed to customers.

About the Services Gatekeeper Communication Services
For multi-tier installations, Services Gatekeeper provides access to all of its
communication services. When all the communications services are installed, the
Partner Manager and Partner Portals display the available plugin instances. You can
also install and use any of the communication services for single-tier installations. You
must specify them in a custom install.

By default, when you install Services Gatekeeper, the following plugin instances are
available:

■ Plugin_px21_third_party_call_sip#wlng_nt_third_party_call_px21#6.0.0.0

■ Plugin_px21_third_party_call_inap#wlng_nt_third_party_call_px21#6.0.0.0

■ Plugin_px21_call_notification_sip#wlng_nt_call_notification_px21#6.0.0.0

■ Plugin_px21_presence_sip#wlng_nt_presence_px21#6.0.0.0

The portals display the following types of services and interfaces as selections:

■ CallNotification: For call notification, you can select from the following interfaces:

– Interface: com.bea.wlcp.wlng.px21.plugin.CallDirectionManagerPlugin

– Interface: com.bea.wlcp.wlng.px21.plugin.CallNotificationManagerPlugin

– Interface: com.bea.wlcp.wlng.px21.callback.CallDirectionCallback

– Interface: com.bea.wlcp.wlng.px21.callback.CallNotificationCallback

Updating an Active Application

2-6 Services Gatekeeper API Management Guide

■ Presence: For presence notification, you can select from the following interfaces:

– Interface: com.bea.wlcp.wlng.px21.plugin.PresenceConsumerPlugin

– Interface: com.bea.wlcp.wlng.px21.plugin.PresenceSupplierPlugin

– Interface: com.bea.wlcp.wlng.px21.callback.PresenceNotificationCallback

■ ThirdPartyCall: For third-party calls, you use

– Interface: com.bea.wlcp.wlng.px21.plugin.ThirdPartyCallPlugin

If an operator creates another plugin instance in Services Gatekeeper, it is added to the
existing set. The portals display the service type for the new plugin and interfaces.

Updating an Active Application
An active application is updated when the partner manager makes changes to the
application or approves changes made by the partner who created and/or manages
the application.

About Data Integrity During Updates to an Active Application
Services Gatekeeper maintains the integrity of application data in the following way:

1. A partner updates to an application through the Applications page in Partner
Portal. Services Gatekeeper receives this update request.

2. Services Gatekeeper begins a WebLogic transaction to update the application. It
locks all data associated with the application, such as its SLA, and short codes.

3. Until Services Gatekeeper ends the WebLogic transaction and releases the lock on
the application data, no other user can update the application data.

Ways in Which an Active Application is Updated
An active application is updated in the following ways:

■ A partner adds an API to, or deletes an API from an application. Partner Portal
sends a notification to Partner and API Management Portal.

The partner manager reviews the updated application. Before approving the
application update, the partner manager may alter the number of requests the
application sends to the network and the minimum number of requests it receives
from the network within an allotted time.

■ A partner is moved to a different partner group. The active applications come
under the SLA associated with the destination partner group.

3

Managing Network Service Interfaces 3-1

3Managing Network Service Interfaces

This chapter describes how you can configure and manage network resources as
network service interfaces. You do this by using the Oracle Communications Services
Gatekeeper Network Service Supplier Portal, one of the partner relationship
management (PRM) portal applications.

About Network Resources and Service Interfaces
In Network Service Supplier Portal, you configure network service interfaces using the
network resources you want to provide to network operators. You expose these
interfaces for the use of partner managers in Partner and API Management Portal.

Partner managers use these interfaces when they create APIs in Partner and API
Management Portal. Partners use the APIs to create applications in Partner Portal.
When the APIs are active and in use in partner applications, the interfaces provide the
services of the network resources exposed by the network operator.

About the Network Service Interface Data
Before you begin configuring a network service interface in Network Service Supplier
Portal, collect the following data about the network resource:

■ Basic information, consisting of:

– Name: a name to identify the service interface

– Version: a version number to identify the service interface

If you are updating an existing network service interface, specify the newer
version number.

– Description: a description to identify the service interface

■ If you are updating an interface, provide the date and time when the older version
should be deprecated.

■ Access information, consisting of URLs for the following:

– The network service interface

– The WADL/WSDL file associated with this interface

– Documentation for this interface

■ Throughput capacity provided by this interface, in terms of maximum transactions
per second (TPS)

■ Security information to access the network interfaces, consisting of:

About Interface Statuses

3-2 Services Gatekeeper API Management Guide

– Your choice of authentication and authorization, if any.

Services Gatekeeper enables you to set up the network service interface with
no security, text-based security, and OAuth.

Save an offline copy of this information for the interface.

About Interface Statuses
A network service interface can have on of the following statuses:

■ ACTIVE

When you create and save a network service interface in Network Service Supplier
Portal, Services Gatekeeper sets the state of the interface to ACTIVE.

Partner managers can subscribe to network service interfaces that are in an
ACTIVE state.

■ DEPRECATED

A deprecated network service interface represents an older version of a current
interface. When you update an existing interface, the updated version becomes the
active version and the previous version becomes deprecated. You can also
deprecate an existing interface in Network Service Supplier Portal, by selecting the
icon adjoining the trash can icon within the interface icon. Services Gatekeeper
asks you to specify the date and time when the interface should be deprecated.

The service associated with a deprecated interface is available to APIs that
subscribed to the interface and only for a designated period. After that period, the
network service supplier can remove the deprecated interface.

Life Cycle Stages of a Network Service Interface
Each network service interface goes through the following stages:

1. As a network service supplier, you create an interface and submit it in Network
Service Supplier Portal.

2. Services Gatekeeper displays a notification on the MESSAGES page of the
associated Partner and API Management Portal.

Partner managers with access to the Partner and API Management Portal can use
this interface to create an API.

3. When the interface is active, you can do one of the following:

■ Update the interface, thereby deprecating the earlier version and creating an
active interface version to be used in APIs created from this point onward.

■ Remove the interface.

To remove an interface from active use, you delete the interface in Network
Service Supplier Portal. If:

– Any API is using the interface currently, Services Gatekeeper does not
permit the removal of the interface.

Tip: Maintain backward compatibility when you update an active
interface.

The data for a deprecated interface cannot be modified and
deprecated interfaces are not available to new APIs.

Life Cycle Stages of a Network Service Interface

Managing Network Service Interfaces 3-3

A warning is seen in Network Service Supplier Portal.

– No API is using the interface currently, Services Gatekeeper removes the
interface from the associated Partner and API Management Portal.

A notification is seen in Partner and API Management Portal.

Life Cycle Stages of a Network Service Interface

3-4 Services Gatekeeper API Management Guide

4

Managing APIs for Partner Applications 4-1

4Managing APIs for Partner Applications

This chapter explains how to create, configure, and manage application programming
interfaces (APIs) by using Oracle Communications Services Gatekeeper partner
relationship management (PRM) portal applications.

About APIs for Partner Applications
An API for a partner application contains all the information required to use the
interface. Service providers or partner managers create and manage APIs in Partner
and API Management Portal, and application developers or partners use them in
Partner Portal.

Services Gatekeeper enables you to publish an API based on any HTTP URI. To create
an API, you select a network interface from the types of network interfaces or
communication services the network supports, and configure the API. You can expose
the API publicly to all partner groups or restrict it to selected partner groups. To assist
partners in subscribing to the API, you also provide the URL to the location hosting
the necessary documentation on the API.

In Partner Portal, partners subscribe to these APIs in the applications they create.
When partner applications are being used, the APIs associated with the applications
support traditional communication services, and for internet- or enterprise-based APIs
from back-end third-party services.

About the API Data
Before you begin configuring an API in Partner and API Management Portal, collect
the following data about the API:

■ Basic information to identify the API, consisting of a unique name, and version
number, and a short description. You can also provide a different name that is
used in the access URI that your customers use to access the API (a context root).

■ Type of interface, such as a URL for the existing Web service, an existing
WADL/WSDL file, a registered network service, or an existing communication
service. For the selected interface, the details about the interface, and the network
security provided for it.

■ URL to the documentation on this API.

■ Type of exposure for the API, specifying whether the API interface uses the SOAP
or REST protocol, its URL, encryption requirement, the exposed service resources
and methods.

About APIs for Partner Applications

4-2 Services Gatekeeper API Management Guide

Configuring an API as public makes it accessible to all partners. Alternately, you
can configure the API to be private and designate partner groups that are
permitted to use the API.

■ Type of security you want to use to protect access to Services Gatekeeper API
methods, and type of security you want to use to protect the API service.

■ Action chains to process incoming and outgoing traffic from and to the API.

For details about the API data to collect, see Services Gatekeeper Partner and API
Management Portal Online Help.

About Naming Your APIs
The APIs you create can have two identifiers: a display name in the API Name field,
and a different context root that identifies the API in its Access URL. The two identifiers
allow you to create an API name to display in the PRM Portals that is different from
the name seen by your customers. The identifiers are identical by default; if you fill in
just one of these fields, that value is used for both identifiers. Once the API is created
however, you cannot change these identifiers.

For example, assume that you want to name an WeatherAPI API within the PRM
Portals, but want to present WeatherSouthWestAPI as the name in the access URI that
users see. When creating the API in the Partner and API Management Portal, you
could specify WeatherAPI in the Name field, and WeatherSouthWestAPI in the
Context Root field. Within the PRM Portals, the API is named WeatherAPI, but users
of the API access it using this URI:

http://IP_Address:port/WeatherSouthWestAPI

The object defining the API stores the name in the apiName field and the context root
in the apiDisplayName field.

About Presenting API Resources to Your Customers
The URI that you present to your customers (partners or their customers) has two
components, a context root and a path. See "About Naming Your APIs" for details on the
context root. This section deals with the second part of the service identifier, the path,
which is often mapped to a different service path.

This resource mapping mechanism is designed to provide you with the flexibility to
use a different internal URL structure than the one you present to customers. You can
also potentially change the internal URL structure without your customers having to
alter their request messages. This is particularly useful if your Services Gatekeeper
implementation uses REST to communicate.

You present services or resources to customers by defining each of them in the API
Resource table. If the URLs that users send to an API are different from the URLs of a
specific resource or service, you can use the Resources table to map one to the other.
Figure 4–1 shows the Resource table that each API uses with a sample resource in it.

Note: An apiName can contain spaces.

Note: If you create an API from an existing WSDL or WADL file, the
API Resource Table is automatically populated with the resources
from the file.

About APIs for Partner Applications

Managing APIs for Partner Applications 4-3

Figure 4–1 The Services Gatekeeper API Resource Table

You fill in these fields for each resource:

■ Name - an informal name to identify the resource.

■ Path - The path given on the incoming request message (excluding the context
root). This field takes variables; see "Using Variables and Wildcard Characters in
the Request Path and Service Path" for details.

■ Method (or Verb) - The request action. GET, POST, PUT, DELETE for REST
request messages, or a SOAP Method to use.

■ Service Path - The service path (resource) that combination of Path and
Method/Verb maps to.

■ Service Verb - The action to take on the resource. GET, POST, PUT, DELETE for
REST request messages, or a SOAP Method to use.

■ Expose - Allows you specify whether to expose or hide a resource from partners.

Using Variables and Wildcard Characters in the Request Path and Service Path
You have the option to use variables or wildcards in the resource path to map different
URLs sent in with a request message to a different service path for a resource. At its
simplest, you can map a request path to a different service path. Table 4–1 shows a
simple mapping.

Note that if the request URI is not an exact match, it is not mapped. For example if the
path value in Table 4–1 was /value1/extra, it would not be mapped to /value2 because
it does not exactly match /value1.

Table 4–2 shows more examples of mapping request message paths to service paths.

Table 4–1 A Simple Path Mapping Example

Path Value Service Path Value Result

/value1 /value2 /value1 is mapped to
/value2

Table 4–2 Example Path Value Mapping With Wildcards and Variables

Path Value Service Path Value Result

/value1* /value2 /value1 is mapped to /value2
/value1/value3 is mapped to /value2

/value1* /value2* /value1 is mapped to /value2
/value1/value3 is mapped to /value2/value3

/value1/{var1}/value3 /value2/{var1}/value4 /value1/123/value3 is mapped to /value2/123/value4

/value1/{var1}/{var2} /value2/{var2}/{var1} /value1/abc/123 is mapped to /value2/abc/123

/value1/{var1}/{var2} /value2 /value1/abc/123 is mapped to /value2

About APIs for Partner Applications

4-4 Services Gatekeeper API Management Guide

Resource path wildcard and variable rules:

■ The "*" wildcard character can only be used at the end of a path. That is, you
cannot use this syntax: /*/value1

■ You cannot change the HTTP method for the matched IP addresses with variables
or wildcard characters.

■ The varn string is only an example; you can replace it with any string you want.
Just remember to put variable strings inside curly brackets "{}", ensure that the
strings are identical, and ensure that the values they match are identical.

■ The variables can include more than one path layer separated by slash "/"
characters. For example {var1} could map to /value12/abc/123.

About the Status of an API
Each of the APIs in the portals has an assigned status. The current state of an API
indicates whether the API is available for use, is modifiable, or no longer in service.

A partner manager manages the status of an API from the time that the API is created
to the time when the partner manager removes it from the portals. As the partner
manager, you update the status of the API in the Life Cycle tab of the API page in
Partner and API Management Portal.

■ CREATED

When a partner manager creates an API in Partner and API Management Portal,
Services Gatekeeper stores the data on the API and assigns the status of the API as
CREATED.

APIs with CREATED status are in an unpublished state and are not visible in
Partner Portal. They can be viewed in Partner and API Management Portal only
and modified in that application.

You can change the state of an API from CREATED to PUBLISHED. If a partner
manager decides to discard a created API instead of publishing it, the API is
removed.

■ PUBLISHED

A partner manager changes the status of a newly created API to PUBLISHED in
Partner and API Management Portal. Then, Services Gatekeeper makes the API
available to all partner groups or to designated partner groups, based on the API
configuration.

Partners can subscribe to the APIs when they create their applications.

All modifications to a published API are performed in Partner and API
Management Portal only. You can change the state of an API from PUBLISHED to:

– DEPRECATED, when a newer version of the API is published

– SUSPENDED, if necessary

About APIs for Partner Applications

Managing APIs for Partner Applications 4-5

■ DEPRECATED

A deprecated API represents an older version of an API.

Deprecated APIs are not available to new applications. A deprecated API is
available to applications that subscribed to it until the end of the effective period
set for the API. After that, applications can not access the API. It is the partner’s
responsibility to access all current applications that used the prior API and modify
them so that they call the updated API.

All calls to the prior version of the API are supported until the date when the API
is suspended or removed from portal views. From then on, all calls to the prior
API version fail and the request receive the 404 error response.

You can change the state of an API from DEPRECATED to one of the following in
Partner and API Management Portal:

– SUSPENDED

– PUBLISHED, when the API is required by partners and there is no other API
with the same name in the system.

■ SUSPENDED

When a deprecated API reaches the final date set by the partner manager, Services
Gatekeeper notifies all partners. Also, an API can be temporarily withdrawn from
circulation by a partner manager in Partner and API Management Portal.

In either scenario, the API is considered to be in a suspended state and the URL for
the API is no longer valid. Calls made to a suspended API return a 404 error
response.

About Temporarily Suspending APIs
At times, you may want to temporarily block the use of an API that you published and
made available one, some, or all partner groups. This scenario occurs if there is an
issue with an API and the resolution process for that issue requires you to disable the
API temporarily. In such a situation, you can suspend the API temporarily and notify
the partner groups whose applications are affected by this suspension.

Important: If you deprecate an API for which you are not providing
a newer version, applications that currently use the API are affected.
Check the Applications tab for the API to verify that the tab does not
list any application.

If the Applications tab lists one or more applications, then, do the
following before you change the status the API.

For each application:

1. Contact the partner who owns the application offline.

2. Ensure that your partner takes the required actions to safeguard the
applications.

Note: When a partner manager suspends a deprecated API that is
still in use by applications, Services Gatekeeper displays a warning in
Partner Manager. If the partner manager continues with the
suspension of the API, the associated applications may be affected.

About APIs for Partner Applications

4-6 Services Gatekeeper API Management Guide

About API Versioning
You have the option to create an alphanumeric string to use as a versioning number
for the APIs that you create. Services Gatekeeper does not do anything with the string,
but it can be useful for you to keep track of your APIs. You add the string to the
Version field of the Create API screen as you create the API. Or leave this string blank
to omit a version number. The string uses any of the [0-9a-zA-Z\\.-_].* characters.

The syntax for the API access URL:

IP_address:port/context_root(/version_number)

Where:

■ IP_address :port - The IP address and port number to use to connect to the system
hosting Services Gatekeeper.

■ context_root - the context root of the API. By default, this value is the name for the
API that you entered in the Name field, but you can change it as needed.

■ version_number - the optional version string that you entered for the API.

This example show an access URL with a context root of apis/myapi and no version
number:

http://203.0.113.18:8001/apis/myapi

You have these options for specifying a particular API/version when calling an API:

■ If there is no version, just send the access URL for the API. For example:

GET apis/myapi HTTP/1.1
Host: 203.0.113.18:5879
http://203.0.113.18:8001/apis/myapi

or with the final "/":

GET apis/myapi HTTP/1.1
Host: 203.0.113.18:5879
http://203.0.113.18:8001/apis/myapi/

■ Specify the version number after the context root. This example access URL
matches myapi version 2:

GET apis/myapi HTTP/1.1
Host: 203.0.113.18:5879
http://203.0.113.18/apis/myapi/2

■ Specify the version number in the HTTP request Accept header. For example:

GET apis/myapi HTTP/1.1
Host: 203.0.113.18:5879
Accept: 203.0.113.18/apis/myapi+json;version=2

Providing API Credentials to Partners
After a partner manager approves an API application registration, the Partner and API
Management portal returns an application instance ID and authentication credentials
to the requesting partner. The partner then uses the instance ID and credentials to sent
traffic through Services Gatekeeper to the application. The credentials include both a
Traffic User Password for basic authentication, and an Access Token for OAuth
authentication.

Securing Services Gatekeeper Methods and API Services

Managing APIs for Partner Applications 4-7

The MBean attribute DafExpireTime has been added to the OAuthCommonMBean to
control how long the Access Token is valid. The default value is 3600 seconds.

Creating APIs for Use in Partner Applications
To create an API, enter the details for the API on Partner and API Management Portal.
The supported types of interfaces are:

■ A WADL or WSDL file for the API containing some methods or resources defined
for the API.

■ The connection to a network interface that does not have a WADL or WSDL file.

■ The connection to a network service from a set of network services maintained by
Network Service Supplier Portal.

■ The connection to an existing Services Gatekeeper communication service.

Use the Create API page of Partner and API Management Portal to enter the details
about the API interface.

Manipulating HTTP Query Parameters in API Messages
You can change HTTP query parameters using these API components in this order:

■ A request message

■ The message request URL

■ An API Resource Service Path

■ Using a Custom Action

– Using the withoutQueryParameter method to remove the query string

– Using withQueryString to change the query string or withQueryParameter
method to overwrite the query parameter value. These are methods to the
CalloutBuilder class in the Actions Java API. See the “All Classes” section of
the Java API Actions Reference documentation.

In other words, a query string in a request message can be changed by any of these
components, but it is the last component to change it that sets the final string value.

See "Using Actions to Manipulate HTTP Query Parameters" for information on using
actions to change your query parameters.

Securing Services Gatekeeper Methods and API Services
This section explains the types of security you need to consider when creating an API:

■ Securing the Services Gatekeeper API Methods

■ Securing the API Service

Securing the Services Gatekeeper API Methods
You use the Exposed API Security settings when creating an API to select a method
for authenticating applications attempting to use methods in the Services Gatekeeper
API. Used with all types of APIs. You have these options:

Configuring Actions Chains to Manage API Traffic

4-8 Services Gatekeeper API Management Guide

■ TEXT - Requires the application to provide a user name and password. Can be
used with OAuth. Requires that you set the EnableSouthCookie performance
setting to true. See "Setting Actions System Performance Settings" for instructions.

■ OAuth - Allows the application to access third-party resources. Can be used with
TEXT-based security.

■ AppKey - Requires the application to authenticate itself using an application key.
Especially useful for applications that cannot otherwise identify themselves. By
default Services Gatekeeper searches the x-api-key query parameter for the key
first, then the header. You can change this behavior using the AppKeyValidation
action in an action chain. See "Understanding Front and Middle Actions" for
details on the AppKeyValidation action.

Securing the API Service
If you create an API using the Existing URL or Existing WADL/WSDL File selections
you use one of the Service Security option to securing the API service (sometimes
called a backend service). You have these Service Security options:

■ None - Allows unauthorized access to the API service.

■ Text - Text-based security relies on a username and password to protect the API
service. You are asked to provide the user name and password for the account that
monitors and manages the traffic. Can be used with OAuth security.

■ OAuth - OAuth-based security allows you to provide access to third-party
resources requiesYou are asked to provide:

■ Authorization URI, the URI to which the user will be sent for authentication
and authorization.

■ Token URI, the URI to which the user will be sent to obtain a request token.
This request token acts as a temporary token and authorizes the user to use
the interface.

■ Client Redirect URI, the URI to which the user will be sent after a successful
authentication.

If you are creating an API using the Registered Network Service selection, Services
Gatekeeper takes this security setting and parameters from the interface you created
using the Network Service Supplier Portal. If you are creating an API using the
Existing Communication Service selection, Services Gatekeeper takes this setting
from the underlying communication service plugin.

Configuring Actions Chains to Manage API Traffic
When end users use your partner applications, the applications generate requests and
responses that call upon one or more of the subscribed APIs created in Partner and
API Management Portal and supported by Services Gatekeeper.

You can set up actions to manage and manipulate the information in the requests and
responses. See "Using Actions to Manage and Manipulate API Traffic" for information.

Understanding the API Back-end Server Configuration
You specify an access URL for each API that you manage using Partner and API
Management portal. For multi-tier Services Gatekeeper implementations, the Partner
and API Management portal provides back-end server configuration settings that you
use to provide alternatives to the access URL in cases where:

Updating APIs

Managing APIs for Partner Applications 4-9

■ The traffic is mobile-originated (network to application). In this case the traffic
must be directed to the network tier server.

■ The back-end cluster has a public URL that is preferable to the access URL.

■ The back-end server only supports SSL communication. You can provide an
alternative that does not require it.

You specify Partner and API Management portal back-end server configuration
settings by selecting the Settings in the Header bar, then Selecting Configuration, and
then filling out the back-end Server section of System Configuration section.

If your configuration is not one above, the system fills the back-end server with the
following default data. For:

■ Multi-Tier installations: Access tier address and port

■ Single-Tier installations: Node address and port

Updating APIs
At times, when an API has been in use, service providers and/or application
developers may change some configured settings for the API. You can update an API
by adding more resources to it or publish a newer version of the API. To modify an
API, you select the API from the list of APIs in Partner and API Management Portal
and make the necessary changes.

For details on updating an API in Partner and API Management Portal, see Services
Gatekeeper Partner and API Management Portal Online Help.

About an API Status and Modifications to its Data
Partner managers can modify the configuration of an API in Partner and API
Management Portal. However, the following restrictions apply and are based on the
current status of the API:

■ CREATED: Partner managers create APIs. They can modify all the fields in an API
when it is in the created, unpublished state.

Partners do not have access to APIs that are set to CREATED.

■ PUBLISHED or DEPRECATED: Partner managers have access to published and
deprecated APIs. Partners have access to APIs that are set to PUBLISHED. When
an API is deprecated, some applications may be supported by a deprecated API,
for a defined period, but the partner does not have access to the API.

If the API is in a PUBLISHED or DEPRECATED state, partner managers can do
the following:

– Modify its description.

– Modify the action chain, including add or remove actions, or change an action
(for example, change the service level agreement to raise or lower a rate), or
other action details.

– Update the documentation link for the API.

– Add more resources and expose more methods.

– Change the encryption level by adding the HTTP or HTTPS setting.

Suspending Applications from Using an API

4-10 Services Gatekeeper API Management Guide

– Modify a private API to make it public and available to all groups. For a
private API, add more partner groups to increase its availability to intended
customers.

– Edit the API action chain. For example, a partner manager can set the service
level agreement to a very low rate.

■ SUSPENDED: Suspended APIs are not modifiable, by default.

However, if there is some technical or business-related issue, the partner manager
may temporarily block the API. See "About Temporarily Suspending APIs". Any
change to a suspended API is made to resolve an issue. All changes fall within the
above restrictions.

Suspending Applications from Using an API
You can suspend an application from using an API by using the Suspend button on the
API Applications tab in the Partner and API Management Portal. This button toggles
between Suspend and Un-Suspend states for the application. In the suspended state
the application can not access the API. See the Services Gatekeeper Partner and API
Management Portal Online Help for details.

Removing APIs
APIs that are in a CREATED state and not associated with any application can be
removed from the portals. APIs that are in a SUSPENDED state and not in dispute can
also be removed from the portals.

As a partner manager you access the API List page in Partner and API Management
Portal, select the specific API icon, and click its trash icon (displayed within the API
icon) to remove an API.

Important: To enable you to maintain backward compatibility of
active APIs, Services Gatekeeper permits the addition of resources,
access settings, partner groups, and accessibility.

It does not permit any reduction to these elements in active APIs.

5

Using Actions to Manage and Manipulate API Traffic 5-1

5Using Actions to Manage and Manipulate API
Traffic

This chapter explains how you use actions and action chains to manage Oracle
Communications Services Gatekeeper API requests and responses, and change the
information in those requests.

Configuring Actions Chains to Manage API Traffic
When your customers use your partner applications, the applications generate
requests and responses that call upon one or more of the APIs created in Partner and
API Management Portal.

You select and configure actions to filter and act on the request and response messages
that contain calls to the APIs. You combine actions into request and response action
chains (combinations of actions) that are processed in the order you arrange them. The
sections in this chapter:

■ Introduces the actions and explains how to configure them.

■ Explains what the individual default actions do.

■ Provides information for some common action processing tasks.

■ Provides some troubleshooting information for action chains.

For information about creating you own custom actions, see “Creating Custom
Actions for Your APIs” in Services Gatekeeper Portal Developer's Guide.

About Action Chains
You implement actions on API request or response traffic using the Actions tab for
each API. You drag and drop individual actions into the Request or Response action
chain to make them take effect. When you drop an action, a pane appears with the
action parameters for you to configure. Every action has at least one optional Instance
ID parameter that you can use to create an informal alphanumeric version number to
identify the action. Some of these parameters are optional and some required. If you
get a fail message when you try to save your changes, the problem can be a missing
parameter. See "Understanding the Default Actions" for details about the parameters
for individual actions.

Configuring Actions Chains to Manage API Traffic

5-2 Services Gatekeeper API Management Guide

You can use the actions provided by Services Gatekeeper, or create your own actions to
act on the request (or response) traffic for an API. You can set up actions chains to take
a wide range of real-time effect on the request or response messages, such as identity
management, mapping to support data formats and protocol changes, authorization,
logging, monitoring, and statistics. Some action parameters are optional and others
required. If you get a fail message when you try to save your changes, the problem can
be a missing parameter.

The sequence of actions in the action chain depends on the direction of the message
flow. It is either application-initiated and traveling to the network, or server-initiated
and traveling to the application. Some actions (such as identity management) are valid
only in the request flow and some only in the response flow. Other actions (such as
supporting protocol changes, validations) are common in that they are applicable in
either direction. Services Gatekeeper does not allow you add an invalid action to an
action chain.

When you position an action incorrectly in a chain, Partner and API Management
Portal prompts you to ensure that the sequence of actions is valid for that direction.

Actions in Application-Initiated Flows
When an application sends a request that contains a call to an API subscribed to by the
application, Services Gatekeeper processes it using all actions configured for it in
order. Services Gatekeeper can receive and handle incoming HTTP requests such as
SOAP, REST, or XML-RPC. Services Gatekeeper checks the incoming request and
performs preconfigured tasks such as enforcing policy (associated with the service
level agreement), translates the message as necessary (such as from JSON to XML
format), and so on. In addition, it processes the action with any custom tasks you
added to suit your requirements. Finally, Services Gatekeeper forwards the outbound
request message to the server.

Actions in Server-Initiated Flows
Server-initiated flows occur when, for example, an application sets up a notification
for an event. The server listens for the event and sends a notification to the application.
The notification comes in to Services Gatekeeper as a request from the server and
contains a call to an API subscribed to by the application. Services Gatekeeper receives
the request from the server and processes it according to the response action chain.
The final step in the action chain would be to forward the outbound request message
to the application in the format required by that application.

When the application responds to this notification, the API proxy processes that
response according to the tasks preconfigured for that sequence of the action chain.
Finally, the response for the server-initiated request is sent back to the server.

Note: Actions only affect traffic for APIs that you create using the
Partner and API Management Portal. Use interceptors to affect request
and response messages for Services Gatekeeper communication
services.

Note: Actions only affect traffic for APIs that you create using the
Partner and API Management Portal. Use interceptors to affect request
and response messages for Services Gatekeeper communication
services.

Setting Actions System Administration Settings

Using Actions to Manage and Manipulate API Traffic 5-3

Understanding Front and Middle Actions
Actions for both chains are divided into front actions and middle actions. Use front
actions as major filters on the incoming requests. For example, you can use Throttling
to regulate the usage of the API and regulate traffic based on specific partner groups.
(API management already provides throttling based on the application and based on
the network service.)

Use middle actions to act on the content of the request or response in real time. For
example, use Callout to perform an HTTP GET operation against the Request URL
and store the response as required.

About Action Statuses
You only change the action statuses if you create your own actions using the
instructions in “Creating Custom Actions for Your APIs” in Services Gatekeeper Portal
Developer’s Guide.

An action can have one these statuses:

■ ACTIVE

The Oracle-supplied actions, and any new actions you create in Partner and API
Management Portal have a state of the ACTIVE.

Any API can use an action the ACTIVE state.

■ DEPRECATED

A deprecated action represents an older version of a current interface. When you
update an existing action, the updated version becomes the active version and the
previous version becomes deprecated. You can also deprecate an existing action in
Partner and API Management Portal, by selecting the icon adjoining the trash can
icon within the interface icon. Services Gatekeeper asks you to specify the date and
time when the interface should be deprecated.

The service associated with a deprecated action is available to APIs that
subscribed to the interface and only for a designated period. After that period, the
network service supplier can remove the deprecated interface.

Setting Actions System Administration Settings
This section explains the administration settings specific to Actions. See Services
Gatekeeper System Administrator's Guide for information about general Services
Gatekeeper administration settings.

Setting Actions System Performance Settings
You use the Actions system performance settings to ensure that your actions do not
inadvertently include code that adversely affects Services Gatekeeper performance.
The Actions system performance settings are listed here with the default value in
parenthesis:

Tip: Maintain backward compatibility when you update an active
action.

The data for a deprecated action cannot be modified, and deprecated
actions are not available to new APIs.

Setting Actions System Administration Settings

5-4 Services Gatekeeper API Management Guide

■ KeepNorthSession Boolean (false) - If true, this setting keeps the session open
after the request is complete

■ EnableSouthCookie Boolean (false) - If true, allows applications to communicate
with backend servers using cookies. You must set this to true if your Actions use
basic (text-based) authentication.

■ UseSession Boolean (false) - If true, allows an application to use a session when
communicating with backend servers.

■ MaxTotalConnections Integer (4000) - Sets the maximum total allowed network
connections. You can also set this option from the system WebLogic server start up
script; see "Using the WebLogic Startup Script to Set Action System Performance
Settings" for details.

■ SocketTimeoutMs Integer (30000) - The time, in milliseconds, that socket waits for
activity before closing down. You can also set this option from the system
WebLogic server start up script; see "Using the WebLogic Startup Script to Set
Action System Performance Settings" for details.

■ ConnectTimeoutMs Integer (30000) - The time, in milliseconds, that a connection
waits for activity before closing down. You can also set this option from the system
WebLogic server start up script; see "Using the WebLogic Startup Script to Set
Action System Performance Settings" for details.

■ ReuseAddress Boolean (true) - If true, directs Services Gatekeeper to ignore the
TCP time_wait state. This improves performance by allowing Services Gatekeeper
to close the socket immediately after the connection is closed, instead of
continuing to wait for late packets.

You have these options to change these settings:

■ Edit the DafConfigurationsMBean directly. For details on
DafConfigurationsMBean see the “All Classes” section of the Actions Java API
Reference documentation.

■ Use the Services Gatekeeper Administration Console. See "Using the
Administration Console to Set Action System Performance Settings" for details on
using the Administration Console.

■ See "Using the WebLogic Startup Script to Set Action System Performance
Settings" for details on setting these Actions system performance parameters as
startup script options.

Using the Administration Console to Set Action System Performance Settings
To configure the Actions performance settings using the Administration Console:

1. Start the Administration Console.

See “Starting and Using the Administration Console” in Services Gatekeeper System
Administrator's Guide for details.

2. Click Lock & Edit.

3. Navigate to OCSG, then admin_server_name (Server1 by default), then Container
Services, then DafGeneralInformation.

The Configuration and Provisioning on server_name page appears with the
performance settings.

4. Change the settings as necessary.

5. Click Release Configuration.

Setting Actions System Administration Settings

Using Actions to Manage and Manipulate API Traffic 5-5

6. Restart the administration sever to make your changes take effect.

Using the WebLogic Startup Script to Set Action System Performance Settings
You can change these Actions system performance settings as command line options:

■ oracle.sdp.daf.max_total_connections

■ oracle.sdp.daf.socket_timeout_ms

■ oracle.sdp.daf.connect_timeout_ms

This example sets the maximum total number of connections to 3000:

% startWebLogic.sh -Doracle.sdp.daf.max_total_connections=3000

Setting Actions White and Black Lists
You use these “white” and “black” lists to control the individual methods and
packages that software developers are allowed to use in actions. These are the default
lists:

■ Black list of methods: exit and setProperty.

■ Black list of packages:

– java.lang.Thread;java.lang.Runnable

– java.lang.ClassLoader

– java.lang.Class

– java.io

– java.net

– groovy.lang.GroovyShell

– groovy.util.Eva

– groovy.io

– groovy.net

■ White list of methods: java.net.InetAddress.getLocalHost()

■ White list of packages: null

To view or change the white and black lists using the Administration Console:

1. Start the Administration Console.

See “Starting and Using the Administration Console” in Services Gatekeeper System
Administrator's Guide for details.

2. Click Lock & Edit.

3. Navigate to OCSG, then admin_server_name (Server1 by default), then Container
Services, then DafGeneralInformation, then Operations.

The Configuration and Provisioning on server_name page appears with the
performance settings.

4. Select an operation from the Select An Operation menu. The choices are:

■ loadBlackListMethod - Add Java/Groovy methods to the black list.

■ loadBlackListPackage - Add Java/Groovy packages to add to the black list.

■ loadWhiteListMethod - Add Java/Groovy methods to the white list.

Understanding the Default Actions

5-6 Services Gatekeeper API Management Guide

■ loadWhiteListPackage - Add Java/Groovy packages to the white list.

■ retrieveBlackListMethod - Show the list of the Java/Groovy methods on the
black list.

■ retrieveBlackListPackage - Show the list of Java/Groovy packages on the
black list.

■ retrieveListAll - Show the contents of all white and black lists.

■ retrievePerformanceSets - Show the Actions performance settings (set using
Attributes).

■ retrieveWhiteListMethod - Show the list of all items on the white lists.

■ retrieveWhiteListPackage - Show the list of all packages on the white lists.

Understanding the Default Actions
This section lists the default actions provided by Services Gatekeeper. You configure
these actions in the Actions tab for each API in the Partner and API Management
Portal, or by using MBeans. See the “All Classes” of the Actions Java API Reference for
the appropriate MBeans.

All actions have at least one parameter, Instance Id, which you can use to create an
identifier, or version number for the action. The instance id is captured in EDR data for
each action. This is useful, for example, if you create multiple custom actions and need
to identify which EDR fields came from a specific action. Instance id values 0-7 are
reserved for Oracle internal use. See “Understanding EDR Fields for API
Management” in Services Gatekeeper Administrator’s Guide for details on the actions
EDR fields.

You invoke these actions on requests passing between the application and the network
service (backend service):

■ appKeyValidation

■ Callout

■ CORS

■ Groovy

■ Json2Xml

■ RateLimit

■ SchemaValidation

■ Throttling

■ Xml2Json

■ XSLT

Note: Do not confuse the actions instance id with the instanceid
field that Services Gatekeeper maps to clients to use SLA enforcement
with OAuth.

Understanding the Default Actions

Using Actions to Manage and Manipulate API Traffic 5-7

appKeyValidation
Authenticate an application and give it access to an API. Typically used when the
application cannot identify itself by other means. Confirms that an application has
permission to access a specific API using an application key. You identify the
application key, and you can also test whether that key exists in a header, or in a query
parameter inside the header.

This action probes the x-app-key parameter for the API key in the request/response
(unless you specify a different parameter). Configure appKeyValidation with these
parameters:

■ Headerkey - (String) Specifies the header to check for the application key.

■ QueryParameter - (String) Specifies the application key to check for.

■ UseHeader - (Boolean) True directs the action to confirm that the application key
exists on the header. False does not use this test. Can be used with
UseQueryParameter.

■ UseQueryParameter - (Boolean) True directs the action to confirm that the
application key exists in the query parameter. False does not use this test. Can be
used with UseHeader.

Callout
A REST Call-out. Performs an HTTP GET operation against the RequestUrl and puts
the response into the value of the storeResponse field for use by another action. You
can use Callout to change attributes of the incoming request. This feature is also
available to use in a Groovy script or custom action.

Set up a proxy or business service callout by:

1. For the Request URL parameter, enter the remote URL for the callout in the Value
column.

2. For the Store Response parameter, enter the name of variable on the context in
which the response is stored in the Value column.

The content of the message is constructed using the values of variables in the message
context. The message content for outbound messages is handled differently depending
upon the type of the target service.

This example uses the createCallout method to obtain a value for myattribute at the
myurl URI:

context.createCallout().withRequestUrl("http://myurl.com")
.withRequestMethod("GET").build().send("myattribute");

You can then use the value for myattribute in a consecutive action:

HttpResponse response = context.getAttribute("myattribute");
and response has getStatus(), getHeaders and getBodyAsType(...)

CORS
Web pages are free to imbed some resources, such as images, from outside their own
domain. Exceptions to this are fonts and AJAX (XMLHttpRequest) requests, which are
usually restricted to the same domain that the parent web page itself is in. The
“cross-domain” AJAX requests in particular are forbidden because they represent
glaring security risks.

Understanding the Default Actions

5-8 Services Gatekeeper API Management Guide

This is a security-based action, so put it as early in your middle action chain as you
can. After you add this action to an action chain, configure it to process the CORS
messages that your implementation uses.

Also, having this early in the action chain allows you to take advantage of the Allow
Non Verified Requests option which cancels action chain processing if the action fails.
This can prevent unnecessary processing if this action fails.

See the CORS specification at the W2C Cross-Origin Resource Sharing website:

https://www.w3.org/TR/2014/REC-cors-20140116/

The configuration parameters give you the options to:

■ Allow preflight requests, simple requests, or both.

■ Decide whether to require credentials when calling the API.

■ Allow or disallow all origin URIs, resource headers, or methods to call the API.

■ Create “white lists” of origins URIs, resource headers, or methods that are allowed
to call the API.

■ Decide whether to support credentials in the request.

■ Decide whether to continue action chain processing if the CORS action does not
pass validation.

■ The maximum time a user agent is allowed to cache results.

Table 5–1 lists the CORS configuration options.

Note: The CORS action allows you to configure cross-origin resource
sharing (CORS) to safely access third-party resources for your APIs.
The default settings are empty, so CORS messages are not processed.

At a minimum, you need allow Support Preflight Requests or Allow
Simple Requests and the appropriate origin, header, and method
parameters so that this action passes CORS traffic.

Table 5–1 CORS Configuration Options

Option XML Representation
Data
Type Description

Support
Preflight
Passthrough

<supportPreflightPassthrough> Boolean Allows (true) or disallows (false) the API to send
reflight requests to the backend service.

Support
Preflight
Requests

<supportPreflightRequests> Boolean Allows (true) or disallows (false) preflight
requests for resources. No default setting.

Support Simple
Requests

<supportSimpleRequests> Boolean Allows (true) or disallows (false) the API to
process CORS simple requests.

Supports
Credentials

<supportsCredentials> Boolean Allows (true) or disallows (false) the use of
credentials when calling this API.

Allowed
Origins

<allowedOrigins> List of
Strings

A “white list” of URIs that can act as origins for
CORS requests for this API. Can be used with
Return Wild Card Allowed Origins.

Allow Any
Origins

<allowAnyOrigins> Boolean Allows (true) or disallows (false) any URI that can
act as origins for requests to this API

https://www.w3.org/TR/2014/REC-cors-20140116/

Understanding the Default Actions

Using Actions to Manage and Manipulate API Traffic 5-9

This example CORS configuration allows all CORS features and responds to the origin
with any requests it receives:

<corsActionConfig>
 <allowAnyHeader>true</allowAnyHeader>
 <allowAnyMethod>true</allowAnyMethod>
 <allowAnyOrigin>true</allowAnyOrigin>
 <supportPreflightRequests>true</supportPreflightRequests>
 <supportSimpleRequests>true</supportSimpleRequests>
</corsActionConfig>

This example allows any header or method, supports both simple and preflight
requests, but limits CORS requests to only the yourdomain.com and mydomain.com
domains:

<corsActionConfig>
 <allowAnyHeader>true</allowAnyHeader>
 <allowAnyMethod>true</allowAnyMethod>
 <allowedOrigins>yourdomain.com</allowedOrigins>
 <allowedOrigins>mydomain.com</allowedOrigins>
 <supportPreflightRequests>true</supportPreflightRequests>
 <supportSimpleRequests>true</supportSimpleRequests>
</corsActionConfig>

This example allows any header or method, but only from a derivative of
mydomain*.com, and that supports only simple requests.

Return
Wildcard
Allowed
Origins

<returnWildCardAllowedOrigi
ns>

Boolean Allows (true) or disallows (false) the ability to use
the "*" (star) wildcard character in a lists of
origins, allowing requests from ANY origin. Use
Carefully. This setting becomes invalid if
Supported Credentials is true. See Allowed
Origins.

This example allows all domains that end in
us.mydomain.com to submit requests:

*.us.mydomain.com

Allowed
Methods

<allowedMethods> List of
Strings

The list of methods allowed to call this API.

Allow Any
Method

<allowAnyMethod> Boolean Allows (true) or disallows (false) any method to
call this API.

Exposed
Headers

<exposedHeaders> List of
Strings

The list of headers (other than simple response
headers) that can be exposed to a resource.

Allowed
Header

<allowedHeaders> List of
Strings

The list of headers allowed in a preflight request

Allow Any
Header

<allowAnyHeader> Boolean Allows (true) or disallows (false) any header to be
allowed in a preflight request.

Maximum Age <maxAge> Long The time limit, in seconds, that a user agent is
allowed to cache the result of the request.

Allow
Non-Verified
Requests

<allowNonVerifiedRequests> Boolean Allows (true) or disallows (false) action chain
processing to continue if the request does not pass
validation for the header, origin, or method
validation.

Table 5–1 (Cont.) CORS Configuration Options

Option XML Representation
Data
Type Description

Understanding the Default Actions

5-10 Services Gatekeeper API Management Guide

<corsActionConfig>
 <allowAnyHeader>true</allowAnyHeader>
 <allowAnyMethod>true</allowAnyMethod>
 <returnWildCardAllowedOrigins>
 <allowedOrigins>mydomain*.com</allowedOrigins>
 <supportPreflightRequests>false</supportPreflightRequests>
 <supportSimpleRequests>true</supportSimpleRequests>
</corsActionConfig>

Groovy
Use a Groovy language script to change any aspect of a request or response message.
You can add Groovy code to change the message content, destination, status, and so
on. The script can be as simple or complex as your implementation requires. This
option requires knowledge of the Groovy programming language.

You use the Actions Java API to obtain content from the API request and response
traffic to act on in the Groovy action. Start by looking through the HttpContext class
for information about extracting elements from messages.That class uses the
HttpMessage, HttpRequest, and HttpResponse classes and some of its own methods
to retrieve elements from messages that you can then manipulate. These classes are
available from the “All Classes” section of the Actions Java API Reference.

See "Common Actions Programming Tasks" and “Creating Custom Actions for Your
APIs” in Services Gatekeeper Portal Developer’s Guide for some Groovy code examples.

Prohibited Components in Groovy Actions
Your Groovy actions are validated to prevent security vulnerabilities. These Java and
Groovy interfaces and methods, and any class that inherits them are prohibited in
Groovy actions.

■ java.lang.Thread

■ java.lang.Runnable

■ java.lang.ClassLoader

■ java.lang.Class

■ java.io

■ java.net

■ groovy.lang.GroovyShell

■ groovy.util.Eval

■ groovy.io

■ groovy.net

■ exit

■ setProperty

Json2Xml
This action takes text formatted for the JSON protocol from the body of the incoming
request or response body, and translates it into XML format in the body of the
outgoing request or response. Table 5–2 lists the parameters for this action:

Understanding the Default Actions

Using Actions to Manage and Manipulate API Traffic 5-11

For example, this JSON formatted text:

{
 "SendSms": {
 "message":"my message 2",
 "senderName“ : "senderName",
 "addresses“ : "tel:123456",
 "@myattribute“ : "foo“
 }
}

Is translated in this XML format:

<SendSms myattribute="foo">
 <addresses>tel:123456</addresses>
 <senderName>senderName</senderName>
 <message>my message 2</message>
</SendSms>

See the "Xml2Json" action to translate XML input to JSON.

RateLimit
Restricts access to a URL for HTTP-to-HTTP communication. You set the allowable
number of accesses for a configurable time period for a specific URL.

You set rate and timePeriodInMs (time period in milliseconds) parameters. rate sets
the number of request messages that can be sent to the URL in the time period set by
timePeriodInMs. For example, a rate of 100 and a timePeriodInMs of 60000, allows
100 request messages per minute.

You can further refine access to the URL by using multiple RateLimit actions. For
example you can set an overall rate limit of 1000 messages per day, and also ensure
that the URL is protected during peak hour by adding another RateLimit of 1 per
minute.

SchemaValidation
Services Gatekeeper validates an incoming request or outgoing response that accesses
a web service API, based on the schema provided by you for the API.

Provide values for the first XSD in the fields under the unit numbered 0. The first in
the list is the main XSD/WADL/WSDL. The other entries are referenced from the first
entry in the list.

1. For the Content parameter, enter the actual XML Schema XSD content. Paste in a
Schema in the Value column.

Table 5–2 Json2Xml Action Parameters

Parameter Name Description

Instance Id (Optional) A value that you add that is included in the event
EDR. It identifies the action for debugging.

Default Name Space (Optional) An identifier (usually a URI). This value is added to
the first XML tag as the default namespace.

Root Tag (Optional) Encloses the translated XML in a tag named for the
value of this parameter. Used to avoid multiple roots in the
translated XML.

Understanding the Default Actions

5-12 Services Gatekeeper API Management Guide

2. For the Name parameter, enter the reference to the entry in Content. Use this
name from another action or Groovy action to retrieve the schema you entered for
Content.

To add more units, click the - sign next to Un.... and repeat.

Throttling
Change a partner group name, rate (requests/second), quota period (days), and quota
(requests per quota period) specified in the message. The data you are changing comes
from the appropriate SLA.

Provide values for the first partner group under the fields for the unit numbered 0:

1. For the Group Name parameter, enter the name of the partner group.

2. For the Quota parameter, enter the number of requests per quota period allowed.

3. For the Quota Period parameter, enter the number of days in the quota period
allowed.

4. For the Rate parameter, enter the number limit for the number of requests per
second allowed.

To add more throttle units, right-click the - sign next to Un.... and repeat.

Xml2Json
This action takes text formatted for the XML protocol from the body of the incoming
request or response body, and translates it into JSON format in the body of the
outgoing request or response. Table 5–3 lists the parameters for this action.

For example, this XML formatted text:

<SendSms myattribute="foo">
 <addresses>tel:123456</addresses>
 <senderName>senderName</senderName>
 <message>my message 2</message>
</SendSms>

Is translated into this JSON formatted text:

{
 "SendSms": {
 "message":"my message 2",
 "senderName“ : "senderName",
 "addresses“ : "tel:123456",
 "@myattribute“ : "foo“
 }
}

Note: If you add the SchemaValidation action to a flow but you do
not provide a schema definition for the web service API, Services
Gatekeeper returns an error.

Table 5–3 Xml2Json Action Parameters

Parameter Description

Instance ID A value that you add that is included in the event EDR. It
identifies the action for debugging.

DAF Callout Callback

Using Actions to Manage and Manipulate API Traffic 5-13

See the "Json2Xml" action to translate JSON input into XML format.

XSLT
Use an Extensible Stylesheet Language script to change the XML-formatted body of
the message.

DAF Callout Callback
For asynchronous send() calls, two actions are generated for each ServiceCallOut,
allowing the response to be accessed other than in the subsequent action. In addition
to the current oracle.sdp.daf.Callout.Callback class, an additional DAF (Dynamo
Application Framework) callback interface called
oracle.sdp.daf.action.api.CalloutCallbackHandler is shown in the following
example:

package oracle.sdp.daf.action.api;

/**
 * Used for in-action callouts' callback processing.
 */
public interface CalloutCallbackHandler {
 /**
 * Called on callout completion.
 * @param context Context.
 * @throws ActionProcessingError Exception during callback
 * @since 7.0.0.0
 */
 void process(HttpContext context) throws ActionProcessingError;
}

To use it, the oracle.sdp.daf.action.api.CalloutBuilder interface has been
extended to have two more methods for callback handler setting and retrieval. The
following example illustrates the extensions.

package oracle.sdp.daf.action.api;
...
/**
 * Callout builder. Used to build a callout HTTP request.
 */
public interface CalloutBuilder extends MessageBuilder {
 /**
 * Adds callback handler.
 * @param callbackHandler The callback for this builder
 * @return The builder
 * @since 7.0.0.0
 */
 default CalloutBuilder withCallback(CalloutBuilderCallbackHandler
callbackHandler) {
 // return unmodified builder for those classes which don't implement this
 return this;
 }

 /**
 * Gets the callback handler associated with this builder.
 * @return The callback handler
 * @since 7.0.0.0
 */

DAF Callout Callback

5-14 Services Gatekeeper API Management Guide

 default CalloutBuilderCallbackHandler getCallbackHandler() {
 // return null for those classes which don't implement this
 return null;
 }
...

Limitation
The implementation of the DAF Callout Callback assumes that DAF Action could
contain only one asynchronous callout or send call. The presence of multiple
asynchronous callouts or send() calls within the same DAF action could lead to
unknown results.

Example of Callback
The following example demonstrates how to implement the callback class and also
how to retrieve the response from a context attribute that was previously set in an
asynchronous call.

package example;

public class MyCallback implements CalloutCallbackHandler {
 @Override
 public void process(HttpContext context) {
 System.out.println("---MyCallback process call");
 System.out.println("---MyCallback context.getAttribute(): " +
context.getAttribute("TOKENADMIN_GET_RESPONSE"));
 }
}

The following example shows how it would be added in Groovy code using extra
.withCallback(callback) syntax:

final String groovyCode1 =
 "try {\n"
 + "example.MyCallback callback = new example.MyCallback();\n"
 + " String queryString = context.clientRequest.getQueryString();\n"
 + " String apics_appkey = (String)context.clientRequest.queryParameters.apics_appkey\n" + "\n"
 + "System.out.println(\"Calling TokenAdmin with apics_appkey = \" + apics_appkey);\n"
 + " // Get existing data from TokenAdmin\n"
 + " context.setAttribute(\"CALLOUT_STATUS\", \"TOKENADMIN_GET\");\n"
 + "
((oracle.sdp.daf.action.api.ExternalCalloutBuilder)(context.createCallout().withRequestUrl('"
 + "http://localhost:" + getPort() + ROOT_CONTEXT_PATH + "/callout/callouturl')"
 + ".withQueryParameter(\"apics_appkey\", apics_
appkey).withRequestMethod(\"GET\").withHeader(\"Content-Type\","
 + "\"text/plain\").withCallback(callback))).build().send(\"TOKENADMIN_GET_RESPONSE\");\n"
 + "\n"
 + "}\n" + "catch (Exception e) {\n"
 + " e.printStackTrace();\n"
 + " throw e;\n" + "}";

Exception Handling
The following are exception handling considerations:

■ The DAF Action interface provides the following entry point method

void process(HttpContext context) throws ActionProcessingError;

DAF Callout Callback

Using Actions to Manage and Manipulate API Traffic 5-15

The method throws ActionProcessingError to indicate that the processing flow
should be cancelled.

■ CalloutCallback code, which is available to HTTP AsyncClient and implements
FutureCallback<HttpResponse>), on request failure, at least for the case
java.net.ConnectException:Connection refused, invokes public void
failed(Exception e) method and through it a
sendErrorResponseToApp(errorCode) call.

The Javadoc output for sendErrorResponseToApp(errorCode)further illustrates:

package oracle.sdp.daf;
...
public final class CalloutCallback implements FutureCallback<HttpResponse> {
...
 /**
 * Send an error to the app - something went wrong. If this is within an
 * action, keep going, otherwise set the error flag on the utilcontext so
 * that no actions will be processed.
 *
 * @param statusCode
 * HTTP status code to return in the response
 */
 private void sendErrorResponseToApp(int statusCode) {
 ...
 internalHttpContext.getClientResponse().withStatus(statusCode);
 if (callback != null) {
 // this is the southbound call
 internalHttpContext.setInternalError(true);
 }
 internalSystemContext.getActionChainManager().continueActionChain(
 internalHttpContext.getSouthboundResponse(), internalHttpContext);
 ...
In the case of a southbound call, the call above to
internalHttpContext.setInternalError(true) is analyzed inside
oracle.sdp.daf.ActionChainManager and it's doResponseChain(...) method,
which are shown here:

package oracle.sdp.daf;
...
public final class ActionChainManager {
...
 private void doResponseChain(HttpResponse response,
 InternalHttpContext internalHttpContext) {
...
 if (!internalHttpContext.isInternalError()) {
...

■ When doing an asynchronous send() and a long invocation on the south side
leads to a timeout, an HTTP asynchronous client will potentially throw
java.net.SocketTimeoutException. An example of a
java.net.SocketTimeoutException stack trace for an HTTP asynchronous client
is shown here:

java.net.SocketTimeoutException
 at
org.apache.http.nio.protocol.HttpAsyncRequestExecutor.timeout(HttpAsyncRequestE
xecutor.java:376)
 at
org.apache.http.impl.nio.client.InternalIODispatch.onTimeout(InternalIODispatch
.java:92)
 at

DAF Support of HTTP Methods

5-16 Services Gatekeeper API Management Guide

org.apache.http.impl.nio.client.InternalIODispatch.onTimeout(InternalIODispatch
.java:39)
 at
org.apache.http.impl.nio.reactor.AbstractIODispatch.timeout(AbstractIODispatch.
java:175)
 at
org.apache.http.impl.nio.reactor.BaseIOReactor.sessionTimedOut(BaseIOReactor.ja
va:263)
 at
org.apache.http.impl.nio.reactor.AbstractIOReactor.timeoutCheck(AbstractIOReact
or.java:492)
 at
org.apache.http.impl.nio.reactor.BaseIOReactor.validate(BaseIOReactor.java:213)
 at
org.apache.http.impl.nio.reactor.AbstractIOReactor.execute(AbstractIOReactor.ja
va:280)
 at
org.apache.http.impl.nio.reactor.BaseIOReactor.execute(BaseIOReactor.java:104)
 at
org.apache.http.impl.nio.reactor.AbstractMultiworkerIOReactor$Worker.run(Abstra
ctMultiworkerIOReactor.java:588)
 at java.lang.Thread.run(Thread.java:745)

Some oracle.sdp.daf.CustomHttpRequestRetryHandler logic will attempt to
retry:

[INFO] pRequestRetryHandler The maximum number of retry times is 1, current
execution count is 1
[INFO] pRequestRetryHandler isRquestSent is false

If it fails again, logic will route through the public void failed(Exception e)
method mentioned above.

■ As previously mentioned, the Callout callback handler interface has the same
ability as DAF Action to throw ActionProcessingError and, in that case, action
chain processing will be cancelled.

DAF Support of HTTP Methods
The following HTTP methods provide support of DAF (Dynamo Application
Framework) features:

■ PATCH

■ HEA

■ TRACE

■ CONNECT

■ OPTION

PATCH Method
You can use the PATCH method to update partial resources. For example, you might
want to update only one field of a resource. Using PUT to update the complete
representation of a resource could be cumbersome.

Supporting the PATCH method allows a PATCH request to pass through DAF. The
Portal is updated with the new PATCH method in the resource table.

DAF Support of HTTP Methods

Using Actions to Manage and Manipulate API Traffic 5-17

DAF treats the PATCH method the same as other HTTP methods like POST and PUT,
meaning that the PATCH method is transparent to DAF. DAF treats a PATCH request
as follows:

1. Transfers the request from the client to the backend service.

2. Transfers the response from the backend service to the client.

HEAD Method
The HTTP HEAD method corresponds to a GET request but without the response
body. The HEAD method use cases are:

■ Provides a faster way to check the headers

■ Provides a LastModified / ContentLength check to decide whether to
re-download a given resource

■ Provides ability to log JavaScript-based content appearances

DAF treats the HEAD method the same as other HTTP methods like POST and PUT,
meaning that the HEAD method is transparent to DAF. DAF treats a HEAD request as
follows:

1. Transfers the request from the client to the backend service.

2. Transfers the response from the backend service to the client.

TRACE Method
The TRACE method, which is used for debugging, echoes input back to the user.

You must do the following to set up TRACE in your environment:

1. Enable TRACE support in WebLogic to avoid error 501. You can enable TRACE
support in the following ways:

a. To enable TRACE manually, in the WebLogic console, select your domain ->
Configuration -> WebApplication, click the Http Trace Support Enabled box
and select Save.

b. To enable TRACE in Java, set the HttpTraceSupportEnabled flag in the
WebAppContainerMBean.

DAF treats the TRACE method the same as other HTTP methods like POST and
PUT, meaning that the TRACE method is transparent to DAF. DAF treats a TRACE
request as follows:

1. Transfers the request from the client to the backend service.

2. Transfers the response from the backend service to the client.

CONNECT Method
Use the CONNECT method to create an HTTP tunnel.

In this mechanism, the client sends an HTTP CONNECT request to the OCSG server to
forward the TCP connection to the desired destination. The server proceeds to make
the connection on behalf of the client. Once the server establishes the connection, an
HTTP 200 response is sent to the client. The OCSG server continues to proxy the TCP
stream by other HTTP methods to and from the client. Note that only the initial
connection request is HTTP. After that, the server simply proxies the established TCP
connection.

HTTP Header Filter

5-18 Services Gatekeeper API Management Guide

DAF treats the CONNECT method the same as other HTTP methods like POST and
PUT, meaning that the CONNECT method is transparent to DAF. DAF treats a
CONNECT request as follows:

1. Transfers the request from the client to the backend service.

2. Transfers the response from the backend service to the client.

OPTION Method
Use the OPTION method to list available interfaces.

You can make three types of OPTION requests:

1. Preflight request for CORS action. The CORS action responds directly. No change
needed.

2. Request to list available interfaces for an API. You must add a ListResourcesAction
object to the request to handle this.

3. Other types of requests are passed through DAF to the backend service.

Configure CORS parameters as shown in Table 5–4:

HTTP Header Filter
Some headers in an incoming (northbound) client request cannot be transferred to the
back-end service, and the corresponding response headers cannot be sent back to the
client. The following list of headers are filtered from a client request when transferring
the request to the back-end service, and from the back-end response when the reply is
returned to the client.

■ proxy-authorization

■ authorization

■ content-length

■ transfer-encoding

■ cookie

■ connection

■ set-cookie

Table 5–4 CORS Parameters

CORS Parameter Value

Allow Any Origin False

Allowed Methods OPTION

Allowed Origins www.google.com

Support Preflight Request true

Note: This filter list does not apply to a Groovy or dynamic action
with the following APIs when sending to a back end or client:

oracle.sdp.daf.action.api.MessageBuilder#withHeader(String, String)
addHeader(String, String)
withHeaders(Map)

Common Actions Programming Tasks

Using Actions to Manage and Manipulate API Traffic 5-19

■ host

■ ocsgoauthbearer

■ ocsgoauthmac

■ anonymous

■ ocsgproxy-authorization

■ ocsgsoapheader

■ ocsgappkeyheader

Common Actions Programming Tasks
This section provides more detailed information about tasks that you will probably
perform on the request and response messages that action chains.

Also see “Creating Custom Actions for Your APIs” in Services Gatekeeper Portal
Developer’s Guide for some Groovy code examples.

Printing and Changing Message Content
To print the contents of a message in the request action chain, you use the
getClientRequest operation to the httpContext class, with the getBodyAsType
operation to messageBuilder class. For example:

println httpContext.getClientRequest().getBodyAsType(String.class)

Assume that a RESTful request message contains:

{
 "test" : {
 "bob" : "123"
 }
}

You could use this Groovy script to return the value 123:

def body =
context.clientRequest.getBodyAsType(org.codehaus.jackson.JsonNode.class);
println body.get("test").get("bob").getTextValue()

To print the contents of a message in the response action chain, you use the
getSouthBoundResponse operation to the httpContext class, with the
getBodyAsType operation to the messageBuilder operation. For example:

println httpContext.getSouthboundResponse().getBodyAsType(String.class)

In a Groovy script you could use:

HttpResponse httpResponse = (HttpResponse) context.getAttribute("myattribute");

And then:

def responseBody =
httpResponse.getBodyAsType(org.codehaus.jackson.JsonNode.class);

To change a request action chain message value, you use:

Common Actions Programming Tasks

5-20 Services Gatekeeper API Management Guide

■ The withBodyAsObject(Object) operation. Once changed, you then read only the
changed value using the getBodyAsObject(Object) operation. Both are in the
messageBuilder class.

■ The withBodyAsStream(input stream) operation. Once changed, you then read
only the changed value with the getBodyAsStream operation. Both are in the
messageBuilder class.

See the "All Classes" section of the Actions Java API Reference for details on all of these
operations and classes.

Using Actions to Manipulate HTTP Query Parameters
During processing by Services Gatekeeper, you can set encoded HTTP query
parameters for a request message using any of these components. The components are
processed in this order so the last in order makes the final changes:

1. The URL in the original request message.

2. The API Service URL that you specify when you create or update the API.

3. The API resource Path that you set in the Resources table when you create or
update the API

4. An action. You can use either the default Groovy action, or a custom action that
you create for this purpose. There are several purpose-built methods in the
Actions Java API Reference for this purpose. See "Using a Groovy or Custom
Action to Manipulate Query Parameters" for details on these methods. Also see
“Creating Custom Actions for Your APIs” in Services Gatekeeper Portal Developer's
Guide for information on how to create a custom action.

Using a Groovy or Custom Action to Manipulate Query Parameters
The Groovy action within an API is the logical place to make changes to request query
parameters, because it is the last processing performed for the message. You can use
these operations from the CalloutBuilder class for the Actions Java API to manipulate
query parameters:

■ Return all query parameters by using getQueryParameters.

■ Return a query string of parameters by using getQueryString.

■ Return a single parameter for a key by using getQueryParameter.

■ Add or overwrite a query parameters using withQueryParameter.

■ Add or overwrite a query parameter string by using the withQueryString.

■ Send a response message without a specific query parameters by using
withoutQueryParameter.

■ Ignore all query parameters in the original request message using the
ignoreAllRequestQueryParameter flag.

For details on these methods, see the CalloutBuilder class in the "All Classes" section
of Actions Java API Reference.

Note: Services Gatekeeper requires encoded query parameters. If
you add or change any query parameters, ensure that they are
encoded, using no blank spaces or "&" characters. REST-based URLs
are encoded by default, but if you add or change any values be sure
they are encoded.

Common Actions Programming Tasks

Using Actions to Manage and Manipulate API Traffic 5-21

Groovy Query Manipulation Code Examples
These examples use these values for query parameters listed in Table 5–5.

Example 5–1 changes the pathQueryStr3 parameter value set by the API Service Path
in Table 5–5 to actionV3_1. The full list of query parameters after processing are listed
in Table 5–6.

Example 5–1 Using withQueryString to Change a Parameter

context.getSouthboundCallout().withQueryString("pathQueryStr=actionV3_1");

Example 5–2 shows how to change a string of HTTP query parameters using
withoutQueryParameter. Table 5–7 shows the new values after the
withoutQueryParameter operation. The reqQueryStr4 key/value pair has been
removed. Notice that because withoutQueryParameter (pathQueryStr3) is processed
before withQueryParameters, pathQueryStr3 maintains its value.

Example 5–2 withoutQueryParameter Operation

context.getSouthboundCallout().withoutQueryParameter("pathQueryStr3");
context.getSouthboundCallout().withQueryString("pathQueryStr3=actionV3_1");
context.getSouthboundCallout().withQueryParameter("reqQueryStr4=actionV4_2");
context.getSouthboundCallout().withoutQueryParameter("reqQueryStr4");

Table 5–5 Example HTTP Query Parameters (Key=Value Pairs)

Request Message API Service URL
API Resource Service
Path

reqQueryStr1=reqV1 NA NA

NA suQueryStr2=suV2 NA

NA NA pathQueryStr3=spV3

reqQueryStr4=reqV4 reqQueryStr4=suV4 reqQueryStr4=spV4

NA suQueryStr5=suV5 suQueryStr5=spV5

reqQueryStr6=reqV6 NA reqQueryStr6=spV6

Table 5–6 HTTP Query Parameters After the QueryString Operation

Key Value

reqQueryStr1 reqV1

suQueryStr2 suV2

pathQueryStr3 actionV3_1

reqQueryStr4 spV4

suQueryStr5 spV5

reqQueryStr6 spV6

Table 5–7 HTTP Query Parameters After the withoutQueryParameter Operation

Key Value

reqQueryStr1 reqV1

suQueryStr2 suV2

Common Actions Programming Tasks

5-22 Services Gatekeeper API Management Guide

Example 5–3 shows how ignoreAllRequestQueryParameters affects the list of query
parameters. As Table 5–8 shows, it removed all of the query parameters set by the
original request message (all reqQueryStrn key/values from Table 5–5).

Example 5–3 ignoreAllRequestQueryParameters Operation

context.getSouthboundCallout().ignoreAllRequestQueryParametersb(true);

Using Actions to Translate Between REST and SOAP
This section explains how to map between SOAP and REST communication using the
tools in an actions chain.

REST to SOAP Translation
You use these general steps to translate a REST message to a SOAP message through
an actions chain:

1. Use the Json2Xml action to translate data into the JSON format.

2. Use the SchemaValidation action to verify the data. You must create your own
schema file for this action.

3. Use the XSLT action to complete the transition to a SOAP format. You create this
script.

These actions translate the data to the appropriate formats, but they cannot
compensate for the fundamental difference between SOAP and REST communication.
REST is resources-based, and depends on methods (GET, POST, PUT, DELETE) to act
on resources. SOAP is a much more flexible standard, and not limited to methods. You
must convert the REST tasks to tasks that your SOAP components can use by creating
an XSLT script for the XSLT action.

During the translation you must think about how to translate the three main
components of a REST message into a format that a SOAP-based program can use:

■ The request URI

■ The HTTP method (GET, POST, PUT, DELETE)

■ The message body

pathQueryStr3 actionV3_1

suQueryStr5 spV5

reqQueryStr6 reqV1

Table 5–8 HTTP Query Parameters after ignoreAllRequestQueryParameters Operation

Key Value

suQueryStr2 suV2

pathQueryStr3 spV3

reqQueryStr4 spV4

suQueryStr5 spV5

reqQueryStr6 spV6

Table 5–7 (Cont.) HTTP Query Parameters After the withoutQueryParameter Operation

Key Value

Common Actions Programming Tasks

Using Actions to Manage and Manipulate API Traffic 5-23

Example 5–4 shows code snippets for a simple REST to SOAP translation example. It
shows the actions used to translate the x-1 and y-2 key-value pairs from REST format
to XML format that SOAP can use.

Example 5–4 A Simple REST to SOAP Translation Using Actions

Original REST Input:
{
 "envelope": {
 "x":1,
 "y":2
 }
}

After Json2Xml action:
<envelope>
 <y>2</y>
 <x>1</x>
</envelope>

After XSLT action (final XML output):
<?xml version="1.0" encoding="UTF-8"?><soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:cal="http://www.parasoft.com/wsdl/calculator/">
<soapenv:Header/>
<soapenv:Body>
<cal:add>
<cal:x>1</cal:x>
<cal:y>2</cal:y>
</cal:add>
</soapenv:Body>
</soapenv:Envelope>

This the XSLT action script used in Example 5–4 to translate the JSON data to XML:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="/">

 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:cal="http://www.parasoft.com/wsdl/calculator/">
 <soapenv:Header/>
 <soapenv:Body>
 <cal:add>
 <cal:x><xsl:value-of select="envelope/x"/></cal:x>
 <cal:y><xsl:value-of select="envelope/y"/></cal:y>
 </cal:add>
 </soapenv:Body>
 </soapenv:Envelope>
 </xsl:template>

</xsl:stylesheet>

Common Actions Programming Tasks

5-24 Services Gatekeeper API Management Guide

SOAP to REST Translation
This task is a reverse of the "REST to SOAP Translation" procedure, but it can be
significantly harder because of the nature of REST and SOAP communication. REST
communication is based on a small number of methods (such as GET, POST, PUT, and
DELETE). SOAP is a much more flexible standard. In order to make SOAP
communication work for REST, you must translate all SOAP actions into one of the
REST methods in the XSLT action. This translation depends entirely upon your
implementation.

You use these general steps to translate a SOAP message to the REST format in an
actions chain:

1. Use the XSLT action to translate data into XML format.

2. Use the SchemaValidation action to verify the data. You must create your own
schema file for this action.

3. Use the Xml2Json action to complete the transition to a format that a REST
program can use.

During the translation you need to think about how to translate the three main
components of a REST message into a format that a SOAP-based program can use:

■ The request URI

■ The HTTP method (GET, POST, PUT, DELETE)

■ The message body

Transfering Data from Request Chain to Response Chain
The following example shows you how you can transfer data from a request to a
response, using a Request and a Response Groovy action (serializable is required on
multi-tier):

Request:
Object obj = new Object();
context.setAttribute("key", obj)

Response:
Object obj = (Object) context.sgetAttribute("key")

Converting JSON and XML
The Xml2Json action converts incoming XML body content to JSON body content. The
following example illustrates:

XML Body Content In:
<SendSms myattribute="foo">
 <addresses>tel:123456</addresses>
 <senderName>senderName</senderName>
 <message>my message 2</message>
</SendSms>

JSON Body Content Out:
{
"SendSms": {
 "message":"my message 2",
 "senderName" : "senderName",
 "addresses" : "tel:123456",
 "@myattribute" : "foo"

Common Actions Programming Tasks

Using Actions to Manage and Manipulate API Traffic 5-25

 }
}

The Json2XML action transforms JSON to XML. The following example illustrates:

JSON Body Content In:
{
"SendSms": {
 "message":"my message 2",
 "senderName" : "senderName",
 "addresses" : "tel:123456",
 "@myattribute" : "foo"
 }
}

XML Body Content Out:
<SendSms myattribute="foo">
 <addresses>tel:123456</addresses>
 <senderName>senderName</senderName>
 <message>my message 2</message>
</SendSms>

Table 5–9 describes the three Json2XML optional configuration attributes:

Accessing the Customized Data Store
OCSG provides the ability to read and delete data from the customized data store, the
database table PRM2_CUSTOMIZEDDATA shown in Figure 5–1:

Figure 5–1 PRM2_CUSTOMIZEDDATA Table

Currently, only a key that is a simple string and a value that is a string are supported.

The class oracle.ocsg.daf.store.CustomizedDataHelper enables you to easily
perform create, retrieve, update, and delete (CRUD) operations on the data store. This
class is contained in wlng.jar, which is under the directory {OCSG_
INSTALL}/ocsg/server/lib/wlng.

This class includes the following Java APIs:

Table 5–9 Json2XML Optional Configuration Attributes

Attribute Description Data Type

Instance ID ID of this action instance String

Default Name Space A URI that is added to the
first XML tag as the default
namespace. The URI format
is not enforced.

String

Root Tag A value that is used to create
an enclosing tag to hold the
converted XML. Used to
avoid multiple roots in the
transformed XML

String

Common Actions Programming Tasks

5-26 Services Gatekeeper API Management Guide

■ public CustomizedDataHelper getInstance()

Gets the singleton CustomizedDataHelper instance.

Returns the singleton instance.

■ public CustomizedData storeCustomizedData(CustomizedData data) throws
StorageException

Stores the CustomizedData instance.

Parameters:

– data The CustomizedData record to store.

Returns:

The previous value associated with theKey element. or null if there was no
mapping for theKey.

Throws:

StorageException when storing the data fails

■ public CustomizedData retrieveCustomizedData(final String key) throws
StorageException

Retrieves the CustomizedData specified by key.

Parameters:

– key A string to match theKey element of the CustomizedData record to be
retrieved.

Returns:

The matched CustomizedData record, if found; otherwise, null.

Throws:

StorageException when retrieval fails

■ public CustomizedData deleteCustomizedData(final String key) throws
StorageException

Deletes the CustomizedData record specified by key.

Parameters:

– key A string to match theKey element of the CustomizedData record to be
deleted.

Returns:

The deleted CustomizedData instance, if found; otherwise null.

Throws:

StorageException - When failing to delete the record.

■ public CustomizedData updateCustomizedData(String key, CustomizedData
data) throws StorageException

Updates the CustomizedData record specified by key.

Parameters:

– key A string to match theKey element of the CustomizedData record to be
updated.

– data The data to update.

Common Actions Programming Tasks

Using Actions to Manage and Manipulate API Traffic 5-27

Returns:

The old CustomizedData record.

Throws:

StorageException - When failing to update the record.

■ public List<CustomizedData> retrieveCustomizedDataItems(String
keySearchString, SearchStringOperation operation) throws
StorageException

Gets a list of stored CustomizedData items whose theKey element matches the
search string.

Parameters:

keySearchString The search string to match theKey of CustomizedData records.

SearchStringOperation One of the following enumerators that specify how the
value of keySearchString should be evaluated:

– SearchStringOperation.STARTSWITH: The key starts with the search string.
Null or empty ("") matches all records.

– SearchStringOperation.ENDSWITH: the key ends with the search string. Null
or empty ("") matches all records.

– SearchStringOperation.CONTAINS: the key contains the search string. Null or
empty ("") matches all records.

– SearchStringOperation.LIKES: the key likes the search string.

Returns:

A list of CustomizedData instances that match the search criteria. If no records
match the search string, the list will be empty.

Throws:

StorageException - When an error occurs executing the query.

■ public int deleteCustomizedDataItems(String keySearchString,
SearchStringOperation operation) throws StorageException

Deletes the list of stored CustomizedData items whose theKey element matches the
search string.

Parameters:

keySearchString The search string to match theKey element of CustomizedData
records.

SearchStringOperation One of the following enumerators that specify how the
value of keySearchString should be evaluated:

– SearchStringOperation.STARTSWITH: The key starts with the search string.
Null or empty ("") matches all records.

– SearchStringOperation.ENDSWITH: the key ends with the search string. Null
or empty ("") matches all records.

– SearchStringOperation.CONTAINS: the key contains the search string. Null or
empty ("") matches all records.

– SearchStringOperation.LIKES: the key likes the search string.

Returns:

Common Actions Programming Tasks

5-28 Services Gatekeeper API Management Guide

The list of CustomizedData instances that match the search criteria. If no records
match the search string, the list will be empty.

Throws:

StorageException - When error occurs executing the query.

Examples
Assume that Table 5–10 contains the data that we have in our PRM2_
CUSTOMIZEDDATA table:

The following examples illustrate how this data is affected by various operations.

The first example gets the rows in which the key starts with the specified prefix:

List<CustomizedData> dataList =
CustomizedDataHelper.getInstance().retrieveCustomizedDatas("searchString",
SearchStringOperation.STARTSWITH);

Result: Returns the third and fourth rows.

The second example deletes the rows in which the key ends with the specified post-fix.

int deletedRowNum =
CustomizedDataHelper.getInstance().deleteCustomizedDatas("String4",
SearchStringOperation.ENDWITH);

Result: deletedRowNum = 1 and the fourth row is removed.

The third example retrieves the rows in which the key contains the specified string:

List<CustomizedData> dataList =
CustomizedDataHelper.getInstance().retrieveCustomizedDatas("String",
SearchStringOperation.CONTAINS);

Result: Retrieves all four rows.

The fourth example deletes the rows in which the key likes the specified string.

int deletedRowNum1 =
CustomizedDataHelper.getInstance().deleteCustomizedDatas("searchString",
SearchStringOperation.LIKES);

Result: deletedRowNum1= 0 and no rows are deleted.

The fifth example gets rows when the search string is null or empty.

List<CustomizedData> allDataList1 =
CustomizedDataHelper.getInstance().retrieveCustomizedDatas(null,
SearchStringOperation.STARTSWITH);

Result: Retrieves all four rows

Table 5–10 Sample Data in PRM2_CUSTOMIZEDDATA Table

theKey Data Stored_TS

search1String1 value1 1,492,756,468,312

search2String2 value2 1,492,756,468,313

searchString3 value3 1,492,756,468,314

searchString4 value4 1,492,756,468,315

Common Actions Programming Tasks

Using Actions to Manage and Manipulate API Traffic 5-29

The sixth example deletes rows when the search string is null or empty.

int deletedRowNum1 = CustomizedDataHelper.getInstance().deleteCustomizedDatas("",
SearchStringOperation.ENDSWITH);

Result: deletedRowNum1 equals 4, and all four rows are deleted

Configuring Chunking for Back-end Services
You can control the chunked setting for southbound callout in Transfer-Encoding,
regardless of the incoming request. You can configure the setting globally and also at
the request or API level.

Global Configuration
You can set the SouthBoundChunkedSetting item in the DafGeneralInformation
MBean to globally configure the chunked handling method once for all. It accepts the
following three values, which are case insensitive:

■ PassThrough, which is the default. In this case, the southbound callout will be
chunked, or not, in accordance with the incoming request.

■ ForceChunk, which forces Services Gatekeeper to choose chunked when sending
southbound callout.

■ ForceNoChunk, which forces Services Gatekeeper to not chunk when sending
southbound callout.

Per Request or Per API Configuration
You can also configure chunking on a per request or per API basis to obtain more
granularity. You can set chunked either with a special header, ocsg-chunked-setting,
in the incoming request or use a Groovy action to add a special header, also called
ocsg-chunked-setting, for a specified API. In both cases, post-processing uses this
header to override the global setting.

The order of precedence is the Groovy action, followed by the traffic request, and then
the global MBean setting.

The ocsg-chunked-setting header takes the same three values as the
SouthBoundChunkedSetting item in the DafGeneralInformation MBean: PassThrough,
ForceChunk, and ForceNoChunk.

In Figure 5–2, the Groovy script uses the addHeader() method to add the header. You
can also use the withHeader() method.

Note: The maximum southbound chunked callout size is 4097 bytes.

Understanding the Troubleshooting Action Information in EDRs

5-30 Services Gatekeeper API Management Guide

Figure 5–2 Groovy Script Adding Chunking Header

For the Groovy action, instead of using a String to set the special header, you can use
the following predefined constant or enums in class
oracle.sdp.daf.configurations.SouthBoundChunkedSetting:

■ public static final String CHUNKED_HEADER = "ocsg-chunked-setting"

■ enum

– PassThrough

– ForceChunk

– ForceNoChunk

The following example illustrates a Groovy setting:

context.getSouthboundCallout().withHeader(oracle.sdp.daf.configurations.SouthBound
ChunkedSetting.CHUNKED_HEADER,
oracle.sdp.daf.configurations.SouthBoundChunkedSetting.ForceChunk.toString())

Understanding the Troubleshooting Action Information in EDRs
Event Data Records (EDRs) contain information to specific to the action chain that you
specify. See the ReqAction (Request Action) and RspAction (Response Action) EDR
fields in “Understanding EDR Fields for API Management” in Services Gatekeeper
Administrator’s Guide for details.

6

Creating Custom HTTP Processors 6-1

6Creating Custom HTTP Processors

[1] This chapter explains how you can create custom HTTP processors for Oracle
Communications Services Gatekeeper (OCSG).

Creating a Custom HTTP Processor
To write custom processors that perform authentication, assertion or other security
related tasks that need to execute in the WebLogic security provider, the OCSG
security provider has been refactored to make it lightweight for developing new
authentication or assertion mechanisms.

The framework also allows the API to subscribe the available HTTP processors with
the values for the configuration parameters. Each API can subscribe to more than one
processor, and the same processor also can subscribe to multiple different
configuration values.

There are two types of processors: out-of-the box and custom. There are also two scopes:
global and API.

Currently, the out-of-the-box processors are:

■ ShieldHttpProcessor (global): used to block IP addresses that have been blocked
by the threat protection framework.

■ AnonymousHttpProcessor: used for anonymous APIs

■ AppKeyHttpProcessor: used for validating APPKeys

■ BasicAuthHttpProcessor: handles basic authorization header

■ CORSProcessor: handles CORS requests, always present unless API is
anonymous

■ OauthProcessor: handles Bearer and MAC OAuth tokens (only OCSG generated
tokens)

■ SoapHttpProcessor: handles usernameToken in WSSE Header

Deploying and Undeploying Custom HTTP Processors
Out-of-the-box HTTP processors do not need to register or unregister, while custom
HTTP processors must.

Custom HTTP processor must extend the ApplicationLifecycleListener in its EAR.
And the ear must be deployed to AT (cluster) in OCSG ENV.

The sequence invocations are repeated on each AT node as Figure 6–1 illustrates:

Creating a Custom HTTP Processor

6-2 Services Gatekeeper API Management Guide

Figure 6–1 HTTP Processor Deployment/Undeployment Sequence

HTTP Processor Runtime Architecture
As Figure 6–2 shows, all of the HTTP processor instances are contained in the OCSG
Application HTTP Provider:

Figure 6–2 HTTP Processor Runtime Architecture

In runtime, the processors are invoked from HttpTrafficLoginModule. The custom
and out-of-the-box chains are invoked in that order. Both chains produce a set of
principals that are merged. The custom chain is created based on a URL that maps to
an API that might or might not have custom HTTP processors attached to it. The
out-of-the-boxchain is created based on the API auth setting (NONE, TEXT, OAUTH,
APPKEY).

Creating a Custom HTTP Processor

Creating Custom HTTP Processors 6-3

When a request comes to the OCSG Application HTTP provider it is processed by four
chains in the following order:

1. Out-of-the-box Global processors

2. Custom global processors

3. Custom per-API processors

4. Out-of-the-box per API processors

Each chain can be broken if a processor return true in isDone. If that happens, the next
chain is executed.

If a processor throws a runtime exception, the next processor in the chain is executed.

If a processor throws HttpProcessorViolationException, all execution is aborted and
the overall login or assertion fails.

Custom Processor EDRs
Each processor’s execution is monitored by a tracker, and when all processors have
executed, the tracker logs the execution to EDR map.

Each processor’s execution has one of the following results:

■ Success (no exception)

■ Exception (if a runtime exception is thrown)

■ Deny (if HttpProcessorViolationException is thrown)

If a login or assertion fails for any reason, the DAF error servlet fires an EDR.

A login or assertion failure occurs when a security constraint is not met; that is, when
the principal TrafficUser is not returned from any of the processors.

Example EDRs
Example 6–1 shows a sample EDR for the success outcome.

Example 6–1 Success

[04-21 03:52:20:DEBUG EdrInternalPublisher.java] *** EDR:
ServiceName = null
ContainerTransactionId = null
Method = null
Position = before
ServiceProviderId = partner
TransactionId = 57a211e0-032b-4730-a722-8935da86c9d0_IDX_1
State = ENTER_AT
Class = oracle.ocsg.daf.trafficlogger.SingleTierTrafficLogger
ApplicationId = weather

Note: This means that an unsuccessful login for other services will
not generate this EDR. The reason is that even if the HTTP provider
fails, OAM or SMPP could still be successful - so the provider itself
cannot decide whether the EDR should be logged.

Tip: In an EDR, you can track the number of principals each
processor adds to the subject, and if all add 0 principals, you can be
sure that a failed login occurred.

Creating a Custom HTTP Processor

6-4 Services Gatekeeper API Management Guide

Processors = "seq=0, name=ShieldHttpProcessor, status=Success, new_principals=0",
"seq=1, name=JsonTokenProcessor, status=Exception,
code=NullPointerException:null", "seq=2, name=AppKeyHttpProcessor, status=Success,
new_principals=2", "seq=3, name=CORSProcessor, status=Success, new_principals=0"
TsBeAT = 1492782740932
HttpMethod = POST
Timestamp = 1492782740932
Direction = south
Source = method
URL = /ECHOServer/1/echo
ServiceProviderGroup = gold
AppInstanceId = appkey_Password1
ServerName = Server1
ReqMsgSize = 17

Example 6–2 shows a sample EDR for the exception outcome.

Example 6–2 Exception

[04-21 03:09:19:DEBUG EdrInternalPublisher.java] *** EDR:
ServiceName = null
ContainerTransactionId = null
Method = null
Source = null
Position = after
AccessUrl = http://10.88.42.23:8001/ECHOServer/1
https://10.88.42.23:8002/ECHOServer/1
TransactionId = 5d8a0a62-a9bb-4306-84dd-e2e3770564eb
Class =
com.bea.wlcp.wlng.security.providers.authentication.account.http.HttpTrafficLoginM
odule
Processors = "seq=0, name=ShieldHttpProcessor, status=Success, new_principals=0",
"seq=1, name=JsonTokenProcessor, status=Exception,
code=NullPointerException:null", "seq=2, name=AppKeyHttpProcessor, status=Success,
new_principals=0", "seq=3, name=CORSProcessor, status=Success, new_principals=0"
Timestamp = 1492780149789
ServerName = Server1
ApiId = ECHOServer

Example 6–3 shows a sample EDR for the deny outcome.

Example 6–3 Deny

[04-21 03:06:30:DEBUG EdrInternalPublisher.java] *** EDR:
ServiceName = null
ContainerTransactionId = null
DenyCode = 39
Position = after
AccessUrl = http://10.88.42.23:8001/ECHOServer/1
https://10.88.42.23:8002/ECHOServer/1
Method = POST
TransactionId = 86a3e481-4313-42e7-b1dc-f3b3e67a63a0
Class = ErrorServlet
Processors = "seq=0, name=ShieldHttpProcessor, status=Success, new_principals=0",
"seq=1, name=JsonTokenProcessor, status=Deny, code=39"
Timestamp = 1492779990517
URL = /ECHOServer/1/echo/
Source = Exception
ServerName = Server1
ApiId = ECHOServer

Implementing a Custom HTTP Processor

Creating Custom HTTP Processors 6-5

Implementing a Custom HTTP Processor
The framework provides an abstract class AbstractHttpProcessor, which you should
use to implement customized HTTP processors.

The HttpProcessor interface has some default methods, such as update(T),
destroy(), getConfiguration(). The general type T in the HttpProcessor is the
configuration class of the processor implementation.

To Implement a Custom HTTP Processor:
1. You must use HttpProcessorAnnotation on the class level to specify the name for

end-users, the configuration class name and the description of the processor.

2. The implementation must extend
weblogic.application.ApplicationLifecycleListener

Invoke CustomHttpProcessorsRepository.INSTANCE.registerProcessor(Class)
to register itself in the preStart(ApplicationLifecyclevEent) method

Invoke
CustomHttpProcessorsRepository.INSTANCE.deRegisterProcessor(String) to
register itself in the postStop(ApplicationLifecycleEvent) method

3. The configuration for the processor is optional.

4. The processor class implementation must invoke the constructor without
parameters because in the framework, processor instances are initiated as
Class.forInstance().

5. The processor class must extend AbstractHTTPProcessor and implement

Set<Principal> process(HttpServletRequest httpReq) throws
HttpProcessorViolationException

6. Oracle strongly recommends that you implement the package as a WebLogic
application (EAR file).

Example: A Symmetric Key Encrypted JSON Token
Figure 6–3 provides an overview use case to illustrate the concepts of custom HTTP
processors. This is the overall flow:

1. Develop the custom processor EAR.

2. Deploy the custom processor EAR.

3. Come up with a header name (example: x-json-token) and encryption key
(example: 1y7M3...) and share it with a partner offline.

4. Subscribe the processor to an API.

5. The partner application invokes the API.

Note: There is an HttpProcessor interface available but you should
never implement this interface directly; always extend
AbstractHttpProcessor.

Implementing a Custom HTTP Processor

6-6 Services Gatekeeper API Management Guide

Figure 6–3 Example HTTP Processor Architecture

OCSG includes a custom processor that is a deployable EAR file that has a life cycle
class defined in weblogic-application.xml, shown in Example 6–4.

Example 6–4 weblogic-application.xml

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-application
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-application"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-application
http://xmlns.oracle.com/weblogic/weblogic-application/1.4/weblogic-application.xsd
">
 <listener>
 <listener-class>
 oracle.ocsg.security.ProcessorLifecycleListener
 </listener-class>
 </listener>
</weblogic-application>

The listener class is responsible for registering, and deregistering all custom
HttpProcessors that you want to want to add to OCSG.

Implementing a Custom HTTP Processor

Creating Custom HTTP Processors 6-7

Example 6–5 ProcessorLifecycleListener

/**
* Listener class for HTTP processor to register.
*/
public class ProcessorLifecycleListener extends ApplicationLifecycleListener {
 List<Class<? extends HttpProcessor>> processorClasses;

 public ProcessorLifecycleListener() {
 processorClasses = new ArrayList<>();
 processorClasses.add(JsonTokenProcessor.class);
 }

 /**
 * Register the Processor(s)
 */
 public void preStart(ApplicationLifecycleEvent evt) {
 registerProcessors(processorClasses);
 }

 /**
 * Unregister the Processor(s)
 */
 public void postStop(ApplicationLifecycleEvent evt) {
 deRegisterProcessors(processorClasses);
 }

 void registerProcessors(List<Class<? extends HttpProcessor>> processorClasses) {
 List<Class<? extends HttpProcessor>> registeredProcessors = new
 ArrayList<Class<? extends HttpProcessor>>();
 for (Class<? extends HttpProcessor> processorClass : processorClasses) {
 try {
 CustomHttpProcessorsRepository.INSTANCE.registerProcessor(processorClass);
 registeredProcessors.add(processorClass);

 } catch (Exception e) {
 // If we have exception, let's rollback all processors we already
 // registered before throwing exception.
 deRegisterProcessors(registeredProcessors);
 throw new RuntimeException(e);
 }
 }
 }

 void deRegisterProcessors(List<Class<? extends HttpProcessor>> processorClasses)
 {
 for (Class<? extends HttpProcessor> registeredProcessor : processorClasses) {
 try {
 CustomHttpProcessorsRepository.INSTANCE.deRegisterProcessor
 (registeredProcessor.getName());
 } catch (Exception ex) {
 ex.printStackTrace();
 //keep going
 }
 }
 }
}

Implementing a Custom HTTP Processor

6-8 Services Gatekeeper API Management Guide

To enable a HttpProcessor for a given API you must PUT the processors plus
configuration to that API using the Portal REST interface:

Example 6–6 Processor Configuration REST PUT Payload

{
 "SubscribeProcessorsRequest":{
 "processors":[
 {
 "name":"JsonTokenProcessor",
 "configuration":"{\"key\":\"1y7M3cO(86m0R5FwC>(N61lRwiTQYu\",\"header\":
 \"x-json-token\"}"
 }
]
 }
}

The configuration above maps to the configuration class JsonTokenProcessorConfig,
shown in Example 6–7:

Example 6–7 JsonTokenProcessorConfig

public class JsonTokenProcessorConfig implements HttpProcessorConfig {
 private String key;
 private String header;

 public String getKey() {
 return key;
 }

 public void setKey(String key) {
 this.key = key;
 }

 public String getHeader() {
 return header;
 }

 public void setHeader(String header) {
 this.header = header;
 }
}

The next request to the ECHOServer API invokes JsonTokenprocessor which looks like
Example 6–8:

Example 6–8 JsonTokenProcessor

@HttpProcessorAnnotation(name = "JsonTokenProcessor", configBean =
 JsonTokenProcessorConfig.class)
 public class JsonTokenProcessor extends
 AbstractHttpProcessor<JsonTokenProcessorConfig> {
 private JsonTokenProcessorConfig configuration;

 @Override

Note: At this stage they are not associated with any API and will not
be in the execution path until this association is made.

Implementing a Custom HTTP Processor

Creating Custom HTTP Processors 6-9

 public Set<Principal> process(HttpServletRequest httpServletRequest) throws
 HttpProcessorExecutionException {
 String clearTextToken = getTokenFromRequest(httpServletRequest);
 JsonReader reader = Json.createReader(new StringReader(clearTextToken));
 JsonObject token = reader.readObject();
 Set<Principal> principals =
 assertApplication(token.getString("application"));
 if (!principals.isEmpty()) {
 //We have found an application, let's add scope to application principle
 for (Principal principal: principals) {
 if (principal instanceof ApplicationInstance) {
 principals.remove(principal);
 principal = new JsonTokenApplication((ApplicationInstance)principal,
 token.getString("scope"));
 principals.add(principal);
 break;
 }
 }
 }
 return principals;
 }
 private String getTokenFromRequest (HttpServletRequest httpServletRequest) {
 return AES.getInstance(getConfiguration().getKey()).
 decrypt(httpServletRequest.getHeader(getConfiguration().getHeader()));
 }
 @Override
 public JsonTokenProcessorConfig getConfiguration() {
 return configuration;
 }

 @Override
 public void init(JsonTokenProcessorConfig configuration) throws
 HttpProcessorConfigException {
 this.configuration = configuration;
 }
}

Optional Custom HTTP Processor Configuration
The framework provides an optional interface for the configuration of the processors.
The HttpProcessorConfig interface is used to mark that its subclass is the
configuration type of the processors. Example 6–9 illustrates:

Example 6–9 HttpProcessorConfig

/* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. */
package oracle.ocsg.security.provider;

import java.io.Serializable;

/**
 * Interface of a HTTP processor configuration, its implementation must be a
 * mean type.
 */
public interface HttpProcessorConfig extends Serializable {
}

A custom HTTP processor configuration class must meet the following criteria:

1. The implementation must implement HttpProcessorConfig.

Custom HTTP Processor MBean

6-10 Services Gatekeeper API Management Guide

2. The configuration for the processor is optional.

3. The configuration class must invoke the constructor without parameters.

4. Plain Old Java Object (POJO) style is strongly recommended.

5. It can be exchanged with JSON strings.

Example 6–10 shows a sample custom processor configuration.

Example 6–10 Example Custom Processor Configuration

package oracle.ocsg.security;

import oracle.ocsg.security.provider.HttpProcessorConfig;

/**
 * Sample HTTP processor configuration.
 */
public class SampleHttpProcessorConfig implements HttpProcessorConfig {
 /**
 * generated serial version UID.
 */
 private static final long serialVersionUID = 8390799967874999370L;
 private long intervals;
 private int maxTryTimes;
 /**
 * Constructor without parameters MUST be there.
 */
 public SampleHttpProcessorConfig() {
 }
 public SampleHttpProcessorConfig(final long intervals, final int maxTryTimes) {
 this.intervals = intervals;
 this.maxTryTimes = maxTryTimes;
 }
 public long getIntervals() {
 return intervals;
 }
 public void setIntervals(long intervals) {
 this.intervals = intervals;
 }
 public int getMaxTryTimes() {
 return maxTryTimes;
 }
 public void setMaxTryTimes(int maxTryTimes) {
 this.maxTryTimes = maxTryTimes;
 }
}

Custom HTTP Processor MBean
The custom HTTP processor MBean is
oracle.ocsg.security.provider.processor.management.ProcessorConfigurationM
Bean. Example 6–11 shows the MBean operations that are exposed:

Example 6–11 Exposed MBean Operations

/**
 * List all the HTTP processor subscriptions for all the APIs.
 * <p>Scope: Cluster</p>
 *

Custom HTTP Processor MBean

Creating Custom HTTP Processors 6-11

 * @return The HTTP processor subscriptions on all the APIs.
 * @throws ManagementException When it fails to get the subscriptions.
 */
Map<String, String> listProcessorSubscriptions() throws ManagementException;

/**
 * Gets the JSON string of the HTTP processor subscription for the specified API
context path.
 * <p>Scope: Cluster</p>
 *
 * @param contextPath The API context path.
 * @return The JSON content of the API JSON subscription.
 * @throws ManagementException When it fails to get the subscription.
 */
String getProcessorSubscription(String contextPath) throws ManagementException;

Custom HTTP Processor MBean

6-12 Services Gatekeeper API Management Guide

7

Managing Partner Applications 7-1

7Managing Partner Applications

This chapter described how you can configure and manage partner applications by
using Oracle Communications Services Gatekeeper API management platform and its
partner relationship management (PRM) portal applications.

About Applications
Partners create their applications by using Partner Portal. Partners can subscribe APIs
to their applications when they create them or later. Partner managers supply the APIs
for partner applications.

The following topics explain how to manage partner applications:

■ Life Cycle of an Application

■ Application States and Notification Entries

■ Data Integrity During Updates to Applications

Life Cycle of an Application
An application goes through the following stages:

1. A partner creates an application and submits it in Partner Portal. The application
state is set to CREATE PENDING APPROVAL.

2. As the partner manager, you review the application in Partner and API
Management Portal and do one of the following:

■ Approve the application.

The application state is set to ACTIVE. The partner sees the approval on the
Messages page of his Partner Portal.

■ Reject the application.

The application is returned to the partner. The partner sees the rejection on the
Messages page of his Partner Portal.

3. When the application is active, the application is updated in one or both of the
following ways:

■ The partner edits the application and submits it in Partner Portal. The
application state is set to UPDATE PENDING APPROVAL.

■ As a partner manager you update the API.

About Applications

7-2 Services Gatekeeper API Management Guide

4. As a partner manager, you approve or reject the updates made by the partner to
the application. If the automatic approval of applications is enabled, Services
Gatekeeper approves or rejects the updated application.

5. When a partner decides to delete an application, the partner submits a request in
Partner Portal.

As the partner manager, you review the application in Partner and API
Management Portal and do one of the following:

■ Approve the deletion. The application is deleted from Partner Portal.

■ Reject the deletion. The application continues to display in an active state in
Partner Portal.

Application States and Notification Entries
Services Gatekeeper uses notifications to alert the users of the PRM portals of events
associated with application-related requests and responses.

When a partner registers or updates an application in Partner Portal, the partner
manager receives a corresponding notification in Partner and API Management Portal.
The partner waits to receive the results of the review before attempting further
updates on the application. When the partner manager reviews a notification and
approves or rejects the request, the partner receives a notification in Partner Portal.
The partner is now able to take further action on the application. When a partner
deletes an application, the application is removed from Partner Portal, unless the
partner manager rejected the deletion.

All notifications for a partner manager are displayed on the WORKFLOW page of the
Partner and API Management Portal. All notifications for a partner are displayed on
the MESSAGES page of the Partner Portal.

When a network service supplier applies for a network service supplier account, the
partner manager receives the registration request in Partner and API Management
Portal. When the network service supplier signs in to Network Service Supplier Portal
and registers, updates or deletes a network service interface, partner manager receives
a corresponding notification in Partner and API Management Portal. However, the
partner manager reviews the notification and is not required to approve or delete the
notification.

Data Integrity During Updates to Applications
Services Gatekeeper maintains data integrity by disallowing partner actions if the
partner manager is currently changing the application.

At times, a partner may log in to Partner Portal and access the application submitted
for approval at the same time as when the partner manager is reviewing the
application request in Partner and API Management Portal.

In order to maintain data integrity of applications, Services Gatekeeper takes the
following precautions. For:

■ Newly-created applications

When a partner creates an application and submits it, Services Gatekeeper
displays the approval request for the application from Partner Portal with a
CREATE PENDING APPROVAL notification in Partner and API Management
Portal.

Collecting Information About Application Traffic with EDRs

Managing Partner Applications 7-3

– The partner cannot update that newly-created application the period when it
is under review by the partner manager. Services Gatekeeper locks the
application data.

– The partner cannot submit another request for approval by the partner
manager.

– The partner can delete the newly-created application during the period when
the partner manager is reviewing it.

When the partner manager completes his review of that newly-created
application, Services Gatekeeper deletes the partner manager’s approval or
rejection of that application.

The deleted application is no longer available in Partner Portal or Partner and
API Management Portal.

■ Updating active applications

If the partner manager is reviewing an active application at the current time:

– The partner cannot update the application during the period when it is under
review by the partner manager. Services Gatekeeper locks the application
data.

– The partner cannot submit another request for approval by the partner
manager.

– The partner can delete the application during the period when the partner
manager is reviewing it.

When the partner manager completes his review of that updates, Services
Gatekeeper deletes the partner manager’s approval or rejection of the updates
to that application.

The deleted application is no longer available in Partner Portal or Partner and
API Management Portal.

■ Deleting active applications

When a partner accesses an active application and deletes it, Services Gatekeeper
removes the application from Partner Portal. It displays the deletion request for
the application from Partner Portal with a DELETE PENDING APPROVAL
notification in Partner and API Management Portal.

Partners cannot delete an active application when the application is in Partner and
API Management Portal with an DELETE PENDING APPROVAL notification.

Collecting Information About Application Traffic with EDRs
See “Managing EDRs, CDRs, and Alarms” in Services Gatekeeper System Administrator's
Guide for more information collecting information about applications, and action chain
processing in particular using EDRs.

Collecting Information About Application Traffic with EDRs

7-4 Services Gatekeeper API Management Guide

8

Managing Partners and Partner Groups 8-1

8Managing Partners and Partner Groups

This chapter describes how you can create and manage partner accounts, network
service supplier accounts, and partner groups in Oracle Communications Services
Gatekeeper application programming interface (API) management platform.

Overview of Accounts and Roles
Services Gatekeeper supports and manages accounts for partners, network service
suppliers, partner applications, partner groups, and partner managers. Services
Gatekeeper oversees all of these accounts and their activities and stores all the data in
its database.

This is how the roles operate:

■ Partner Manager

You create partner manager accounts in Services Gatekeeper. Each partner
manager account owner manages a set of partners and partner groups. Partner
managers create, approve, manage and delete partner accounts in Partner and API
Management Portal.

■ Partner

A partner account is created when a self-registration request is approved by a
partner manager or by Services Gatekeeper (if automatic registration approval is
enabled). Alternately, that account could be created by a partner manager using
Partner and API Management Portal.

Partners are assigned to partner groups by the associated partner manager.

Partners create applications and manage them under the supervision of the
partner manager.

■ Network Service Supplier

A network service supplier account is created when a self-registration request is
approved by a partner manager. Alternately, that account could be created by a
partner manager using Partner and API Management Portal. Partner managers
approve, manage and delete network service supplier accounts in Partner and API
Management Portal.

Network service suppliers are not assigned to any group.

Network service suppliers create interfaces and manage them in Network Service
Supplier Portal.

The service accounts operate in the following way:

■ Partner Applications

About the Registration Review

8-2 Services Gatekeeper API Management Guide

Partner applications are created by partner, assigned to partner groups by the
associated partner managers who manage all changes to the applications.

Services Gatekeeper assigns a Traffic User account and password for each partner
application. The partner who created the application can change the password
used by that Traffic User account.

Every application belongs to the specific partner group to which the partner
account belongs.

■ Partner Groups

Partner groups are created and managed by partner managers in Partner and API
Management Portal. Services Gatekeeper assigns a specific service level agreement
to each partner group.

Services Gatekeeper maintains a default partner group called sysdefault_sp_grp.
The default partner group contains a blank service level agreement.

Services Gatekeeper assigns a newly-created partner account to sysdefault_sp_
grp. The partner manager must assign a partner to a different partner group before
the partner can create an application.

About the Registration Review
Service Gatekeeper requires valid account user name and passwords before it allows
access to Network Service Supplier and Partner Portals. You can apply for an account
on the login page of the Network Service Supplier and Partner Portals.

When you complete the registration form Services Gatekeeper stores that registration
request temporarily until the request is approved. It displays each registration request
it receives as a Partner registration request or Network Supplier registration request
task in Partner and API Management Portal. The registration request must be
approved in Partner and API Management Portal before the owner of the account can
access the respective portal.

After partner managers review of a registration request, Services Gatekeeper sends an
email notification to the email address provided in the registration request.

■ If the registration request is approved, the email notification sent to the partner or
network service supplier states that the registration request has been approved.
The email recipient can access the respective portal.

■ If the registration request is denied, the email notification states that the
registration request is denied.

The email recipient must resubmit the partner or network service supplier
registration request with the correct entries. At this point, the partner or network
service supplier may contact you to ascertain the reasons.

You can automate the registration process by customizing the system configuration for
the Partner and API Management Portal.

Managing Accounts
Whether the individual has a partner or network service supplier account, the account
data consists of the following information on the owner of the account:

■ General information, such as the user name, password, first and last name of the
account owner, the email address associated with the owner, and a telephone
number.

Managing Partner Groups

Managing Partners and Partner Groups 8-3

■ Company data, such as the company name, its URL, street address, city, state or
province name, and the country name.

■ Primary and secondary contact information, such as the first and last name, the
email address, a telephone number, and the time when the contact person is
available.

Setting Up Accounts in Partner and API Management Portal
When individuals enter requests to become partners or network service suppliers,
Service Gatekeeper displays the requests as notifications in your workflow table.
Review each request. If:

■ You approved the request, Services Gatekeeper sends an email notification to the
email address on the registration request. It includes the account information with
your list of partners and network service supplier accounts it displays on your
Partner and API Management Portal.

■ You denied the request, Services Gatekeeper takes no action. The person who
submitted the registration request contacts you offline to resolve any issue with
the registration entries.

Creating Partner Accounts in Partner and API Management Portal
You can actively create partners accounts by collecting the required information from
your partner and creating the account in Partner and API Management Portal. Services
Gatekeeper sends an email notification to the email address on the registration request.
It includes the account information with your list of partners and network service
supplier accounts it displays on your Partner and API Management Portal.

Managing Accounts
Accounts have the following status in Services Gatekeeper:

■ registered, indicating that the account needs approval by the partner manager.
The individual whose account is in the registered state cannot log in to the
associated portal application.

■ active, indicating that the account has been approved by the partner manager. A
partner or network service supplier with an active account can log in to the
associated portal and perform his tasks.

You can access a partner or network service supplier account and view the account
details, reset the password (if the account is active), or delete the account.

You can access a partner account and assign the partner to a different partner group (if
the account is active).

Managing Partner Groups
Services Gatekeeper provides a default partner group called sysdefault_sp_grp. By
default, when a partner account is activated (that is, the status is active in Services
Gatekeeper, the account is assigned to sysdefault_sp_grp, the default partner group.

You can create as many partner groups as you require in Partner and API Management
Portal. Partner group names are not case-sensitive and they must be unique. When
you create a partner group, enter a unique name, the maximum number of requests
per second allotted to the partner group, and the number of requests allowed within
the specified number of days for the partner group.

Managing Partner Groups

8-4 Services Gatekeeper API Management Guide

When the account status is active, you can reassign a partner account to a different
partner group.

You can update a partner group by adding or removing partners from the group.
Additionally, the partner group is modified if you alter the API data associated with
the partner group.

Group Assignments for Partners and SLAs
When you assign a partner to a different partner group, the service level agreement
associated with the current partner group becomes invalid. APIs that are not
compatible or covered by the SLA associated with the destination partner group are
suspended. Partner and API Management Portal displays a dialog box informing you
of all the applications that are affected when the partner account moves to the
destination group when the change in partner group assignment could affect the
following elements in the service level agreement:

■ Rate

■ Quota

■ Guarantee

■ Expiration Date

For example, a service provider (partner) currently has an application A that
subscribes to an API called "SendSMS" and requires 100 throughput per second (TPS)
for that API. However, the new partner group's SLA supports 80 TPS for the API.

The dialog box displays three options from which the partner manage can make the
following adjustment:

■ Expand the SLA to accommodate the requirements of the affected application. In
our example case, the SLA for the new group is expanded to support the required
100 throughput per second.

Such an adjustment might result in adding an SLA requirement currently missing
in the new partner group's SLA.

■ Modify the parameters in the current application to fit the new partner group's
SLA. In our example case, modify the application to support 80 TPS only.

Such an adjustment might result in deleting the SLA requirement currently
missing from the new partner group's SLA.

■ Cancel the support for the SendSMS API (Cancel the assignment? Partner belongs
to the old group?)

Deleting Partner Groups
You can delete a partner group if it has no members and there are no applications
associated with the partner group.

9

Administering the PRM Portals 9-1

9Administering the PRM Portals

This chapter describes how to manage the Oracle Communications Services
Gatekeeper Partner Management Portal, Partner Portal, and Network Service Supplier
Portal.

Resetting Passwords
Partner managers can reset passwords for an accounts.

To reset a password:

1. The account owner (partner or network services supplier) requests for the
password to be reset. See "Requesting for a Network Service Supplier or Partner
Password to be Reset".

2. The partner manager receives a notification requesting the password to be reset for
the account. The partner manager resets the password.

3. The partner or receives an email containing the link to the URL where he can reset
his password.

Requesting for a Network Service Supplier or Partner Password to be Reset
Network Service suppliers and partners can request that their account passwords be
reset. If you are a network service supplier or partner, do the following:

1. Access the login page for the respective (Network Service Supplier or Partner)
portal.

2. Click the Forgot Password link on the main login page for the portal.

3. Provide the required information.

4. Submit the request.

Note: The URL:

■ Expires after a specified interval, such as 6 hours or one day.

■ Remains active until it is accessed. When the person resetting the
password accesses the URL, it is disabled and no longer
accessible.

■ After the user resets the password successfully, no further emails
are sent to the user.

About Customizing PRM Portals

9-2 Services Gatekeeper API Management Guide

Your request for your password to be reset is displayed in Partner and API
Management Portal.

Resetting Passwords in Partner and API Management Portal
To reset account passwords for a network service supplier or partner account, you do
the following in Partner and API Management Portal:

1. Sign in to Partner and API Management Portal.

2. Access the Partner & Network Supplier List page, by clicking Partners.

3. In the table, locate the user name entry for the partner or network service supplier.

4. Right-click the row and select Reset Password.

5. In the Reset Password Confirmation dialog box, check the name.

6. Click OK.

An email notification is sent to the email address of the account holder. The email
contains the link to the Web page where the password can be reset by the network
service supplier or partner.

Resetting Passwords in Network Service Supplier or Partner Portal
Network service suppliers and partners who have requested a password reset, receive
an email notification when the partner manager approves their request. This email
notification contains the link to the page where you can reset the password for your
account.

1. Open the email notification and click the URL link in the notification.

The password reset page for your portal is displayed.

2. In the Security Answer field, input the answer you provided for the Security
Question you selected at the time you registered for a partner or network service
supplier account.

3. In the New Password' and Confirm Password fields, input your new password.

The password is reset.

About Customizing PRM Portals
You can customize the pages of the three portals in many ways. For example, you can
do one or more of the following:

Note: The URL is valid for one day.

About Customizing PRM Portals

Administering the PRM Portals 9-3

■ Add new pages to a portal and provide a new navigation entry point on the left or
top menu to enter these new pages.

■ Add other options to current pages in a portal. For example, you can create a new
blacklist action and have it appear in the Actions tab of the APIs pages in Partner
and API Management Portal. Or add a new source for API exposure to expose any
data as soap or rest API.

■ Add new functionality to existing pages, such as adding revenue sharing settings
for applications, add logic to provide a rolling average of the API usage invocation
in the Dashboard of Partner and API Management Portal and so on.

■ Remove existing functionality such as the need for registration confirmation in
Partner Portal, or the Groovy action, or remove all sources for API creation except
the one coming from the Network Service Supplier Portal source in Partner and
API Management Portal.

■ Modify existing functionality by changing the workflow for a certain task in a
portal, such as creating a network service interface in Network Service Supplier
Portal.

■ Add new pages to the existing portal and provide a new navigation entry point on
the left or top menu to enter these new pages.

For information on how to add pages to a module and how to add a module, see
“Extending Portals” in Services Gatekeeper Portal Developer's Guide.

Caution: The online help that Services Gatekeeper supplies with
your PRM Portals provides support for the default configuration only.

Oracle recommends the following:

■ If you add a page to a module, ensure that you have provided
online help support appropriate for that custom page.

■ If you add a page to a module, ensure that you have provided
online help support appropriate for the custom module (and its
pages).

About Customizing PRM Portals

9-4 Services Gatekeeper API Management Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents

	1 Understanding API Management with the PRM Portals
	About the Services Gatekeeper API Management Platform
	About the PRM Portals and Users
	How the API Management Platform Works
	About the Elements that Control the Quality of Service

	About Developing APIs
	Configuring Network Service Interfaces to Expose Your Services
	Configuring APIs to Expose Your Services For Use by Partner Applications
	Subscribing to APIs to Enhance Partner Applications
	How Services are Deployed Using PRM Portal Applications

	Understanding API Management Security
	Using Cross-Origin Security with APIs

	About PRM Portal Service Level Agreements
	About Extending the PRM API Portals

	2 Developing Applications with the PRM Portals
	Required Software
	Accessing the PRM Portals
	Understanding the Partner Portal User
	Understanding the API Management Proxy Settings
	Starting the Partner and API Management Portal
	Starting the Network Service Supplier Portal
	Setting Up a Network Service Supplier Account

	Starting the Partner Portal
	Setting Up a New Partner Account

	About Developing Applications
	About the Types of Interfaces Used in an API
	About Registered Network Services

	About Developing Applications
	About the Services Gatekeeper Communication Services

	Updating an Active Application
	About Data Integrity During Updates to an Active Application
	Ways in Which an Active Application is Updated

	3 Managing Network Service Interfaces
	About Network Resources and Service Interfaces
	About the Network Service Interface Data
	About Interface Statuses
	Life Cycle Stages of a Network Service Interface

	4 Managing APIs for Partner Applications
	About APIs for Partner Applications
	About the API Data
	About Naming Your APIs
	About Presenting API Resources to Your Customers
	Using Variables and Wildcard Characters in the Request Path and Service Path

	About the Status of an API
	About Temporarily Suspending APIs

	About API Versioning
	Providing API Credentials to Partners

	Creating APIs for Use in Partner Applications
	Manipulating HTTP Query Parameters in API Messages
	Securing Services Gatekeeper Methods and API Services
	Securing the Services Gatekeeper API Methods
	Securing the API Service

	Configuring Actions Chains to Manage API Traffic
	Understanding the API Back-end Server Configuration
	Updating APIs
	About an API Status and Modifications to its Data

	Suspending Applications from Using an API
	Removing APIs

	5 Using Actions to Manage and Manipulate API Traffic
	Configuring Actions Chains to Manage API Traffic
	About Action Chains
	Actions in Application-Initiated Flows
	Actions in Server-Initiated Flows
	Understanding Front and Middle Actions
	About Action Statuses

	Setting Actions System Administration Settings
	Setting Actions System Performance Settings
	Using the Administration Console to Set Action System Performance Settings
	Using the WebLogic Startup Script to Set Action System Performance Settings

	Setting Actions White and Black Lists

	Understanding the Default Actions
	appKeyValidation
	Callout
	CORS
	Groovy
	Prohibited Components in Groovy Actions

	Json2Xml
	RateLimit
	SchemaValidation
	Throttling
	Xml2Json
	XSLT

	DAF Callout Callback
	Limitation
	Example of Callback
	Exception Handling

	DAF Support of HTTP Methods
	PATCH Method
	HEAD Method
	TRACE Method
	CONNECT Method
	OPTION Method

	HTTP Header Filter
	Common Actions Programming Tasks
	Printing and Changing Message Content
	Using Actions to Manipulate HTTP Query Parameters
	Using a Groovy or Custom Action to Manipulate Query Parameters
	Groovy Query Manipulation Code Examples

	Using Actions to Translate Between REST and SOAP
	REST to SOAP Translation
	SOAP to REST Translation

	Transfering Data from Request Chain to Response Chain
	Converting JSON and XML
	Accessing the Customized Data Store
	Examples

	Configuring Chunking for Back-end Services
	Global Configuration
	Per Request or Per API Configuration

	Understanding the Troubleshooting Action Information in EDRs

	6 Creating Custom HTTP Processors
	Creating a Custom HTTP Processor
	Deploying and Undeploying Custom HTTP Processors
	HTTP Processor Runtime Architecture
	Custom Processor EDRs
	Example EDRs

	Implementing a Custom HTTP Processor
	Example: A Symmetric Key Encrypted JSON Token
	Optional Custom HTTP Processor Configuration

	Custom HTTP Processor MBean

	7 Managing Partner Applications
	About Applications
	Life Cycle of an Application
	Application States and Notification Entries
	Data Integrity During Updates to Applications

	Collecting Information About Application Traffic with EDRs

	8 Managing Partners and Partner Groups
	Overview of Accounts and Roles
	About the Registration Review
	Managing Accounts
	Setting Up Accounts in Partner and API Management Portal
	Creating Partner Accounts in Partner and API Management Portal

	Managing Accounts

	Managing Partner Groups
	Group Assignments for Partners and SLAs
	Deleting Partner Groups

	9 Administering the PRM Portals
	Resetting Passwords
	Requesting for a Network Service Supplier or Partner Password to be Reset
	Resetting Passwords in Partner and API Management Portal
	Resetting Passwords in Network Service Supplier or Partner Portal

	About Customizing PRM Portals

