

[1] Oracle® Communications Services Gatekeeper
Accounts and SLAs Guide

Release 7.0

E95427-01

July 2018

Oracle Communications Services Gatekeeper Accounts and SLAs Guide, Release 7.0

E95427-01

Copyright © 2007, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii

1 About Service Level Agreements and Accounts

About SLAs.. 1-1
System SLAs.. 1-2
Custom SLAs .. 1-2

About Accounts .. 1-2
Accounts .. 1-3
Account Groups ... 1-3
Application Instances .. 1-3

Associations Among SLA Types, Account Types, and Group Types .. 1-4
Typical SLA and Account Workflow ... 1-5
Using Partner and API Management Portal to Manage SLAs and Accounts 1-6

2 Managing Application Instances

Summary of Tasks Related to Application Instances ... 2-1
About Application Instance States ... 2-2
Web Services Security ... 2-2

3 Managing SLAs

Introduction to SLA types .. 3-1
Summary of Tasks Related to SLAs ... 3-3

Managing Service Provider and Application Group System SLAs.. 3-3
Service Provider Group System SLAs ... 3-4
Application Group SLAs ... 3-4

Managing Node SLAs ... 3-4
Global Node SLAs .. 3-4
Service Provider Group Node SLAs .. 3-5

Subscriber SLAs.. 3-5
Custom SLAs .. 3-5

Custom XSDs... 3-5
Custom Application Group SLAs... 3-5

iv

Custom Service Provider Group SLAs .. 3-6
Custom Global SLAs .. 3-6

Mapping of Deny Codes to HTTP Responses .. 3-6
List Deny Code Definitions .. 3-7
List Mappings ... 3-8
Add a Mapping ... 3-10
Get a Mapping ... 3-10
Remove a Mapping... 3-11
Data Definitions... 3-11
Error Handling .. 3-12
MBean Interface... 3-13
SLA Enforcement .. 3-14
EDR Details .. 3-14
Tranformation of Error Content.. 3-15

4 Managing External SLAs

Understanding External SLAs ... 4-1
Understanding SLA Overlaps .. 4-2
Managing with MBean .. 4-3
Listing from the Database ... 4-4
Understanding the XSD .. 4-4
Subscribing to External SLAs ... 4-5

External SLA only ... 4-6
API Only... 4-7
External SLA and API .. 4-8

Life Cycle ... 4-9
Identifying the Plan .. 4-10
Using External SLA Management REST Interfaces.. 4-10

Creating a Plan ... 4-11
Getting a Plan ... 4-13
Getting All Plans .. 4-16
Updating a Plan.. 4-16
Deleting a Plan ... 4-18
Updating a Plan State .. 4-18

5 Managing Groups

Managing Service Provider Groups ... 5-1
Managing Application Groups.. 5-1

6 Managing Service Provider and Application Accounts

Managing Application Accounts... 6-1
Managing Service Provider Accounts .. 6-2
About Account States .. 6-2
Account Properties ... 6-3
Account Reference.. 6-3

v

7 Managing Sessions

About Sessions.. 7-1

8 Defining Service Provider Group and Application Group SLAs

Structure of a Service Level Agreement... 8-1
<Sla>... 8-3
<serviceTypeContract> ... 8-3
<serviceTypeName>.. 8-3
<serviceContract> .. 8-4
<composedServiceContract>.. 8-5
<startDate>.. 8-5
<endDate>... 8-5
<scs>... 8-6
<overrides> ... 8-6
<override>... 8-6
<proxyhost>.. 8-8
<proxyport>.. 8-8
<rate> ... 8-8
<reqLimit> .. 8-9
<timePeriod> .. 8-9
<quota>.. 8-9
<qtaLimit>... 8-9
<days> .. 8-10
<limitExceedOK>.. 8-10
<startDow> .. 8-10
<endDow>.. 8-10
<startTime>.. 8-10
<endTime> ... 8-10

Structure of a Contract.. 8-10
<contract>... 8-11
<guarantee> ... 8-12
<methodGuarantee>... 8-12
<methodNameGuarantee>.. 8-12
<timePeriodGuarantee>... 8-12
<reqLimitGuarantee>... 8-13
<methodRestrictions> .. 8-13
<methodRestriction> .. 8-14
<methodName> .. 8-14
<methodAccess> ... 8-14
<blacklistedMethod>.. 8-14
<params>.. 8-15
<methodParameters> ... 8-15
<parameterName>.. 8-15
<parameterValues> simple.. 8-16
<parameterValues> complex .. 8-16
<parameterValue> .. 8-16

vi

<acceptValues>.. 8-17
<requestContext>.. 8-17
<contextAttribute>.. 8-17
<attributeName>... 8-18
<attributeValue> ... 8-18
<resultRestrictions>.. 8-18

Result Restrictions Example ... 8-18
<resultRestriction>.. 8-19
<parameterRemovalName> .. 8-20
<parameterMatch> ... 8-21
<filterMethod> ... 8-21

Structure of a Composed Service Contract ... 8-21
Composed Service Contracts... 8-21

Scope .. 8-22
Multiple Composed Services.. 8-22
Conflicting Enforcements ... 8-22
Budget Implications... 8-22
Example Composed Service SLA .. 8-22

<composedServiceName> ... 8-23
<service>... 8-23
<method> ... 8-24

9 Defining Global Node and Service Provider Group Node SLAs

Structure of a Node Service Level Agreement.. 9-1
<Sla>... 9-1

Service Provider Group Node SLA .. 9-2
<nodeContract>.. 9-2
<nodeID>... 9-3
<nodeRestrictions> .. 9-3
<nodeRestriction>.. 9-3

Global Node SLA ... 9-3
<globalContract>.. 9-4
<globalRestrictions> .. 9-4
<globalRestriction>.. 9-4
<guaranteePercentage>... 9-5

A Sample SLA XML File

vii

Preface

This document describes service provider and application provisioning for Oracle
Communications Services Gatekeeper.

It covers:

■ An overview of the administration model

■ Managing service provider groups

■ Managing service provider accounts

■ Managing application groups

■ Managing application accounts

■ Managing application instances

Audience
The book is intended primarily for telecom operators who perform service provider
and application provisioning tasks.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Communications
Services Gatekeeper set:

■ Oracle Communications Services Gatekeeper Alarms Handling Guide

■ Oracle Communications Services Gatekeeper Application Developer's Guide

■ Oracle Communications Services Gatekeeper Communication Service Reference Guide

viii

■ Oracle Communications Services Gatekeeper Concepts

1

About Service Level Agreements and Accounts 1-1

1About Service Level Agreements and
Accounts

This chapter describes the Service Level Agreements (SLAs) and accounts that Oracle
Communications Services Gatekeeper uses to define and enforce access to Services
Gatekeeper and to the underlying telecommunication network.

About SLAs
An SLA is an XML document that defines and enforces access to Services Gatekeeper
or, in the case of node SLAs, to the underlying network nodes. The core element in an
SLA is a contract element whose child elements specify the details of the access.
Examples of these details are the dates in which access is permitted, the number of
requests to be processed within a certain time period, and the denial of the use of
certain methods or parameter values to an application.

SLAs are associated with application service providers through a tiered system of
accounts that are organized into account groups.

If you are using the Services Gatekeeper API management features through the
Partner Manager and API Management Portal, Partner Portal, and Network Service
Supplier Portals, most of the required SLA creation and management is transparent to
you. See "Using Partner and API Management Portal to Manage SLAs and Accounts"
for more information. If you are using the Service Gatekeeper features, then you need
to follow the instructions in this book to create and manage SLAs.

You can load an SLA into a Services Gatekeeper implementation from the
Administration Console console using the operations provided in the
ApplicationSLAs section of the AccountService container service. See "Managing
SLAs" for information about the AccountService operations to load and manage SLAs.
These SLA load operations offer options for loading SLAs to all geo-redundant
locations if your implementation uses this feature.

As an alternative, you can manage SLAs through external management systems
integrated with Services Gatekeeper using the Services Gatekeeper Partner
Relationship Management interfaces. For information about the Partner Relationship
Management interfaces, see “Partner Relationship Management Interfaces” in Services
Gatekeeper Portal Developer's Guide. You can also manage SLAs programmatically using
MBeans. For information about the ServicelevelAgreement MBean, see "All Classes"
section of Services Gatekeeper OAM Java API Reference.

About Accounts

1-2 Services Gatekeeper Accounts and SLAs Guide

System SLAs
System SLAs have static XML Schema Documents (XSDs). The enforcement logic is
already in place for these types of SLAs, except for the subscriber SLA, which requires
custom subscriber policy logic. The following types of SLAs are system SLAs:

■ Global node SLA

■ Service provider group SLA

■ Application group SLA

■ Service provider node SLA

■ Subscriber SLA

Service provider group SLAs and application group SLAs define service provider and
application access to Services Gatekeeper. See "Defining Service Provider Group and
Application Group SLAs" for information about these types of SLAs and "Sample SLA
XML File" for a complete example.

Node SLAs define access to the underlying network, either by service provider group
or for Services Gatekeeper as a whole regardless of the service provider whose
requests are being processed. See "Defining Global Node and Service Provider Group
Node SLAs" for information about node SLAs.

Subscriber SLAs define subscriber policy and manage subscriber access. The
implementor defines the subscriber policy logic using the Platform Development
Studio. For more information, see “Using Policies to Manage Subscribers” in Services
Gatekeeper Extension Developer's Guide.

Custom SLAs
Custom SLAs are enforced by customized logic for which the XSDs are developed
using the Platform Development Studio. For information on custom SLAs and an
example of one, see “Custom Service Level Agreements” in Services Gatekeeper
Extension Developer's Guide.

The following SLAs are custom SLAs:

■ Custom global SLAs

■ Custom service provider group SLAs

■ Custom application group SLAs

The custom logic that operates on data is provided in the SLAs and on data that comes
with the request. The data in the SLA is formatted according to the SLA XSD, and the
enforcement logic uses the Document Object Model (DOM) representation of the XSD
to get the data in the SLA. The request can provide information such as application ID,
application instance, service provider ID, application group ID, and service provider
group ID.

Custom SLAs can be associated with application groups and service provider groups
or be global. A custom global SLA is valid for all requests, regardless of which
application group or service provider group the application that triggered the request.

About Accounts
Each service provider and application that uses the Services Gatekeeper
application-facing interfaces must establish an account.

About Accounts

About Service Level Agreements and Accounts 1-3

Service provider accounts, application accounts, and application instances have states
that can be changed using the Administration console. This enables the administrator
to take them out of service temporarily.

Accounts
There are two types of accounts:

■ Service Provider Account: Every service provider that has access to the operator’s
Services Gatekeeper facilities has a service provider account.

■ Application Account: Every application that has access to the operator’s Services
Gatekeeper facilities has an application account. Each application account is
associated with a service provider account.

See "Managing Service Provider and Application Accounts" for information about
creating and managing accounts.

Account Groups
For the purposes of SLA enforcement, accounts are organized into account groups.
There are two types of account groups:

■ Service provider group

■ Application group

When you load an Application Group SLA or Service Provider Group SLA, you
provide the identifier of the group with which the SLA is associated along with the
SLA.

Following is an example of how a Services Gatekeeper administrator might use system
SLAs to create three different service provider groups:

■ Bronze

■ Silver

■ Gold

Each of these service provider groups would be associated with different SLAs with
different privileges regarding maximum throughput and Quality of Service (QoS
parameters. When a new service provider is provisioned, the service provider is
associated with the appropriate group based on, for example, the amount of network
traffic the service provider is projected to generate. If the outcome is not what was
predicted, the service provider account can be reassigned to another service provider
group that has a different QoS parameter defined in its service provider SLA.

See "Managing Groups" for information about creating and managing groups.

Application Instances
In the context of SLAs in Services Gatekeeper, an application instance is an application
service provider. Each application instance has a user name and password or
certificate. Each application instance is associated with a service provider account /
application account combination. An application instance must be in the ACTIVATED
state to send traffic through Services Gatekeeper.

See "Managing Application Instances" for more information about creating and
managing application instances.

Associations Among SLA Types, Account Types, and Group Types

1-4 Services Gatekeeper Accounts and SLAs Guide

Associations Among SLA Types, Account Types, and Group Types
Figure 1–1 illustrates the associations among the different account types, group types,
and SLA types.

Figure 1–1 Service provider and application model with SLAs

Note the following relationships:

■ An application instance, which uniquely identifies an account, belongs to an
application account and a service provider account.

■ An application account belongs to a service provider account and an application group.

■ A service provider account belongs to a service provider group. A service provider
account can have zero or more application accounts associated with it.

■ An application group is associated with an application group SLA and zero or more
custom application group SLAs.

■ A service provider group is associated with a service level agreement on the service
provider-level and may also be associated with a service provider node SLA and zero
or more custom service provider group SLAs.

■ Zero or more custom global SLAs can be defined,. These are not associated with
any special group or account, but are valid for all accounts and groups

■ A global node SLA is not associated with any special group or account, but is valid
for all accounts and groups.

In light of the relationships between applications, groups, and SLAs, you configure
them in the following order:

Typical SLA and Account Workflow

About Service Level Agreements and Accounts 1-5

1. SLAs

2. Service provider groups

3. Service provider accounts

4. Application groups

5. Application accounts

The process steps are listed in the section, "Typical SLA and Account Workflow".

Note that the IDs of service provider groups, application groups, application instances,
and service provider accounts must be unique. The combination of service provider
account and application account for an application instance must be unique.

The separation of accounts and groups provides a flexible way of defining service level
agreements. Groups allow the Services Gatekeeper administrator to offer tiers of
service at both the service provider and application level.

Application group SLAs and service provider group SLAs can be managed and
enforced either locally in one site or across geo-redundant sites.

Typical SLA and Account Workflow
In a typical SLA and account workflow, you complete the following steps in that order:

1. Create service provider and application groups that will correspond to the levels
of service to be defined in the SLAs. See "Managing Groups" for more information.

2. Define the set of service classes, expressed as SLAs, at both the service provider
group level and the application group level. See "Defining Service Provider Group
and Application Group SLAs" for more information.

3. Define the set of node service classes, expressed as SLAs, at both the service
provider node level and global node level. See "Defining Global Node and Service
Provider Group Node SLAs" for more information.

4. Associate the service provider group SLAs and application group SLAs with the
groups. See "Managing SLAs".

5. Load the global node SLA and service provider group node SLAs. See "Managing
SLAs" for more information.

6. Create a service provider account and associate it with the appropriate service
provider group. See "Managing Service Provider and Application Accounts" for
more information.

7. Create an application account and associate it with the appropriate application
group. See "Managing Service Provider and Application Accounts" for more
information.

8. Create an application instance, see "Managing Application Instances" for more
information.

9. Depending on which communication service is being used, provision
communication service-specific data using the operation and management for
relevant communication service.

10. Distribute the credentials to be used by the application to the service provider.

Using Partner and API Management Portal to Manage SLAs and Accounts

1-6 Services Gatekeeper Accounts and SLAs Guide

Using Partner and API Management Portal to Manage SLAs and Accounts
Partner and API Management Portal, along with a companion GUI, Partner Portal act
as “front-office” offerings provide a friendlier workflow, insulating you from the
intricacies of Services Gatekeeper administration. Use the menu selections and/or
input fields on well-defined pages of the two GUIs to set up your SLAs and manage
your service provider accounts.

Network operators and service provider managers use Partner and API Management
Portal to manage:

■ Global node SLAs

■ Service provider group SLAs

■ Service provider group node SLAs

■ Service Provider accounts

■ Application accounts

The Actions tab available to each API on the Partner and API Management Portal also
provides these SLA capabilities:

■ The ability to add access limitations for specific API endpoint

■ The ability to authenticate API traffic using a an API key inside message headers

Network operators authorize service providers to act as partners with access to
Partner Portal and create applications using these SLAs. For more information on how
to use these GUIs, see Services Gatekeeper Partner and API Management Portal Online
Help and Services Gatekeeper Partner Portal Online Help.

2

Managing Application Instances 2-1

2Managing Application Instances

This chapter describes how application instances are managed and provisioned in
Oracle Communications Services Gatekeeper:

■ Summary of Tasks Related to Application Instances

■ About Application Instance States

■ Web Services Security

You also need to configure application password encryption. For details, see
“Encrypting Application Passwords” in Services Gatekeeper System Administrator’s
Guide.

See ApplicationInstanceMBean in the “All Classes” section of the Services Gatekeeper
OAM Java API Reference or information for details on this MBean.

Before registering application instances, service provider and application accounts
must have been created. See "Managing Service Provider and Application Accounts"
for more information.

Summary of Tasks Related to Application Instances
Table 2–1 lists the tasks related to application instances and the operations you use to
perform those tasks. The operations belong to ApplicationInstanceMBean. For
detailed information on this MBean, see the "All Classes" section of Services Gatekeeper
OAM Java API Reference..

Table 2–1 Tasks Related to ApplicationInstanceMBean

Task ApplicationInstanceMBean Operation

Get information about the number of
application instances

countApplicationInstances

Add, remove and get information about an
application instance

addApplicationInstance

removeApplicationInstance

getApplicationInstance

List registered application instances listApplicationInstances

Define additional properties for an application
instance

setApplicationInstancePassword

setApplicationInstanceProperties

setApplicationInstanceReference

setApplicationInstanceState

About Application Instance States

2-2 Services Gatekeeper Accounts and SLAs Guide

About Application Instance States
Application instances have states. Two states are possible:

■ ACTIVATED

■ DEACTIVATED

In ACTIVATED state, the application using this application instance ID is in normal
operation.

In DEACTIVATED state, the application using this application instance ID is not
allowed to send traffic through Services Gatekeeper. The account is still valid and the
state can be transitional by the Services Gatekeeper Administrator using the
setApplicationInstanceState operation of the ApplicationInstanceMBean.

Web Services Security
When Web Services Security is being used as authentication for the application
instance, its credentials must be set up, as described in Table 2–2.

In addition, if X.509 or SAML are being used, the certificates and private keys must be
provisioned in the WebLogic Server keystore. For example, ImportPrivateKey utility
can be used to load the key and digital certificate files into the keystore. See
"ImportPrivateKey" in Oracle Fusion Middleware Command Reference for Oracle WebLogic
Server for a description of ImportPrivateKey.

Table 2–2 Credential Mapping

ApplicationInstance UserNameToken X.509 SAML

ApplicationInstanceName userName CN CN

Password password Not
applicable

Not applicable

3

Managing SLAs 3-1

3Managing SLAs

This chapter describes how the different types of Service Level Agreements (SLAs) are
managed and provisioned in Oracle Communications Services Gatekeeper (OCSG).

It contains the following sections:

■ Introduction to SLA types

■ Summary of Tasks Related to SLAs

Introduction to SLA types
There are two different kinds of SLAs:

■ System level SLAs

■ Custom SLAs

System level SLAs have static XSDs that are already defined in Services Gatekeeper,
while custom SLAs provides the possibility to use a custom XSD. Any given service
provider group or application group can have only one system SLA associated with it,
while they can have many custom SLAs. Create custom SLAs when additional SLA
enforcement logic is required that is not provided by default in Services Gatekeeper.
You must create the enforcement logic for a Custom SLA. See Services Gatekeeper
Extension Developer's Guide for information on how to develop Custom SLAs.

When SLAs are loaded into memory, they are stored in the SLA repository. SLAs can
be loaded into the repository in two ways:

■ The contents of the SLA is provided as a parameter in the operation that loads the
SLA.

■ The SLA is stored in a file and the URL to that file is provided as a parameter in
the operation that loads the SLA.

SLAs are retrieved from the SLA repository using the retrieve operations.

The SLA loaded into the SLA repository is the one being enforced. Changes to the file
after the SLA is loaded into the repository are not automatically reflected in the active
version.

Table 3–1 outlines the different SLA types, the IDs and their scope.

Introduction to SLA types

3-2 Services Gatekeeper Accounts and SLAs Guide

Table 3–1 SLA Types

SLA Type ID(s) Description

Application
Group

application

system:geo_
application

System SLA.

Defines how application can use Services Gatekeeper. See "Application
Group SLAs" for a summary of related management operations.

For information on creating these SLAs, see "Defining Service Provider
Group and Application Group SLAs".

The SLA type ID:

■ application indicates that the SLA is loaded to and enforced in the
network tier cluster it is loaded.

■ system:geo_application indicates that the SLA is loaded to and
enforced across all network tier clusters in a geo-redundant
configuration.

Service
Provider
Group

service_provider

system:geo_service_
provider

System SLA.

Defines how service providers can use Services Gatekeeper. See "Service
Provider Group Node SLAs" for a summary of related management
operations.

For information on creating these SLAs, see "Defining Service Provider
Group and Application Group SLAs".

The SLA type ID:

■ service_provider indicates that the SLA is loaded to and enforced in
the network tier cluster it is loaded.

■ system:geo_service_provider indicates that the SLA is loaded to and
enforced across all network tier clusters in a geo-redundant
configuration.

Global Node global_node System SLA.

Defines how Services Gatekeeper is allowed to use the underlying
telecom network nodes. See "Global Node SLAs" for a summary of
related management operations.

For information on creating these SLAs, see "Defining Service Provider
Group and Application Group SLAs".

This SLA type is loaded and enforced locally in the network tier cluster it
is loaded.

Summary of Tasks Related to SLAs

Managing SLAs 3-3

Summary of Tasks Related to SLAs
The tasks related to the management of SLAs comprise the following:

■ Managing Service Provider and Application Group System SLAs

■ Managing Node SLAs

Managing Service Provider and Application Group System SLAs
The management of Service Provider and Application Group system SLAs comprises
managing the following:

■ Service Provider Group System SLAs

■ Application Group SLAs

You use the methods of the ServiceLevelAgreementMBean MBean to manage Service
Provider and Application Group system SLAs. For information on the methods and

Service
Provider
Node

service_provider_
node

System SLA.

Defines how Service Providers are allowed to use the underlying telecom
network nodes. See "Service Provider Group Node SLAs".

For information on creating these SLAs, see "Defining Service Provider
Group and Application Group SLAs".

This SLA type is loaded and enforced locally in the network tier cluster it
is loaded.

Subscriber subscr System SLA.

Defines classes of application services that can be associated with
subscribers in the context of Services Gatekeeper.

Using the Platform Development Studio, an operator or integrator may
create a subscriber-centric policy mechanism. The specifics of this
mechanism are covered in “Using SLA Policies to Manager Subscribers”
in Services Gatekeeper Extension Developer's Guide.

This SLA type is loaded and enforced locally in the network tier cluster
on which it is loaded.

Custom Defined at load time Custom SLA.

A custom SLA is defined by an XSD, that must be created and loaded. A
custom SLA type ID is associated with the XSD, and this type is the one
being referenced when loading the custom SLAs.

In addition to the SLA, the enforcement logic that operates on the data in
the SLA must be created. See “Creating Custom Runtime SLAs” in
Services Gatekeeper Services Gatekeeper Extension Developer's Guide. Just
like system SLAs, the custom SLAs are associated with service provider
groups and application groups. In addition there is a custom global SLA,
that does not take into consideration the originator of the request, but
affects all requests.

Custom SLAs are loaded and enforced locally in the network tier cluster
it is loaded.

Note: The prefix system is reserved, and should not be used by
custom SLAs. For backward compatibility, there is a set of SLA types
without this prefix.

Table 3–1 (Cont.) SLA Types

SLA Type ID(s) Description

Summary of Tasks Related to SLAs

3-4 Services Gatekeeper Accounts and SLAs Guide

fields of the ServiceLevelAgreementMBean, see the “All Classes” section of Services
Gatekeeper OAM Java API Reference.

Service Provider Group System SLAs
Table 3–2 describes the tasks related to managing Service Provider Group system SLAs
and the ServiceLevelAgreementMBean MBean methods to use.

Application Group SLAs
Table 3–3 describes the tasks related to managing Application Group system SLAs and
the ServiceLevelAgreementMBean MBean methods to use.

Managing Node SLAs
The management of Node SLAs comprises managing the following:

■ Global Node SLAs

■ Service Provider Group Node SLAs

You use the methods of the ServiceLevelAgreementMBean MBean to manage Node
SLAs. For information on the methods and fields of the
ServiceLevelAgreementMBean, see the “All Classes” section of Services Gatekeeper
OAM Java API Reference.

Global Node SLAs
Table 3–4 describes the tasks related to managing Global Node system SLAs and the
operations you use to perform those tasks.

Table 3–2 Tasks Related to Managing Service Provider Group System SLAs

Task ServiceLevelAgreementMBean Method to Use

Associate Service
Provider Group with
SLA

loadServiceProviderGroupSlaByType

loadServiceProviderGroupSlaFromUrlByType

View Service Provider
Group SLA

retrieveServiceProviderGroupSlaByType

Table 3–3 Tasks Related to Managing Application Group SLAs

Task ServiceLevelAgreementMBean Method to Use

Associate Application
Group with SLA

loadApplicationGroupSlaByType

loadApplicationGroupSlaFromUrlByType

View Application Group
SLA

retrieveApplicationGroupSlaByType

Table 3–4 Tasks Related to Managing Global Node SystemSLAs

Task ServiceLevelAgreementMBean Method to Use

Associate Global Node
with SLA

loadGlobalSlaByType

loadGlobalSlaFromUrlByType

View Global Node SLA retrieveGlobalSlaByType

Summary of Tasks Related to SLAs

Managing SLAs 3-5

Service Provider Group Node SLAs
Table 3–5 describes the tasks related to Service Provider Group Node SLAs and the
operations you use to perform those tasks.

Subscriber SLAs
Subscriber SLAs are a feature that can be developed using the Platform Development
Studio. Table 3–6 describes the tasks related to managing Subscriber SLAs and the
operations you use to perform those tasks.

Custom SLAs
Custom SLAs are a feature that can be developed using the Platform Development
Studio. This section describes the management of Custom SLAs.

You use the methods of the ServiceLevelAgreementMBean MBean to manage custom
SLAs. For information on the ServiceLevelAgreementMBean methods and fields, see
the “All Classes” section of Services Gatekeeper OAM Java API Reference.

Custom XSDs
Table 3–7 describes the tasks related to managing Custom XSDs and the operations
you use to perform those tasks.

Custom Application Group SLAs
Table 3–8 describes the tasks related to managing Custom Application Group SLAs
and the operations you use to perform those tasks.

Table 3–5 Tasks Related to Managing Service Provider Node SLAs

Task ServiceLevelAgreementMBean Operation to Use

Associate Service
Provider Node with SLA

loadServiceProviderGroupSlaByType

loadServiceProviderGroupSlaFromUrlByType

View Service Provider
Node SLA

retrieveServiceProviderGroupSlaByType

Table 3–6 Tasks Related to Managing Subscriber SLAs

Task Operation to Use

Associate Subscriber
with SLA

loadGlobalSlaByType

loadGlobalSlaFromUrlByType

View Subscriber SLA retrieveGlobalSlaByType

Table 3–7 Tasks Related to Managing Custom XSDs

Task Operation to Use

Set up Custom XSD setupCustomSlaXSDDefinition

setupCustomSlaXSDDefinitionFromUrl

View Custom XSD retrieveCustomSlaXSDDefinition

Count Custom XSD countCustomSlaXSDDefinition

List Custom XSD listCustomSlaXSDDefinition

Mapping of Deny Codes to HTTP Responses

3-6 Services Gatekeeper Accounts and SLAs Guide

Custom Service Provider Group SLAs
Table 3–9 describes the tasks related to managing Custom Service Provider Group
SLAs and the operations you use to perform those tasks.

Custom Global SLAs
Table 3–10 describes the tasks related to managing Custom Global SLAs and the
operations you use to perform those tasks.

Mapping of Deny Codes to HTTP Responses
Services Gatekeeper provides a mapping mechanism to allow you to assign a specific
HTTP response for a given deny code during SLA validation. Table 3–11 describes the
mapping.

Table 3–8 Tasks Related to Managing Custom Application Group SLAs

Task Operation to Use

Associate Custom
Application Group with
SLA

loadApplicationGroupSlaByType

loadApplicationGroupSlaFromUrlByType

View Custom
Application Group SLA

retrieveApplicationGroupSlaByType

Count Custom
Application Group SLA

countApplicationGroupsByType

List Custom Application
Group SLA

listApplicationGroupsByType

Table 3–9 Tasks Related to Managing Custom Service Provider Group SLAs

Task Operation to Use

Associate Custom
Service Provider Group
with SLA

loadServiceProviderGroupSlaByType

loadServiceProviderGroupSlaFromUrlByType

View Custom Service
Provider Group SLA

retrieveServiceProviderGroupSlaByType

Count Custom Service
Provider Group SLA

countServiceProviderGroupsByType

List Custom Service
Provider Group SLA

listServiceProviderGroupSlaTypes

listServiceProviderGroupsByType

Table 3–10 Tasks Related to Managing Custom Global SLAs

Task Operation to Use

Associate Custom
Global with SLA

loadGlobalSlaByType

loadGlobalSlaFromUrlByType

View Custom Global
SLA

retrieveGlobalSlaByType

Count Custom Global
SLA

countGlobalSlaTypes

List Custom Global SLA listGlobalSlaTypes

Mapping of Deny Codes to HTTP Responses

Managing SLAs 3-7

SLA validation uses the mapper to resolve which HTTP response to send. Validation
no longer uses static HTTP responses. If no mapping exists for a deny code, an HTTP
response is generated from the built-in list of deny code definitions.

Services Gatekeeper provides a REST API to manage these mappings along with a
corresponding MBean interface to provide troubleshooting capabilities for the
administrator. The OCSG database provides cluster-wide data storage and a cache
layer. The REST API consumes and produces both JSON and XML content types:

■ application/xml

■ application/json

You can manage mappings using both DafConfigurationsMBean and the Partner
Manager REST API.

Table 3–12 illustrates sample REST interface requests.

The following sections describe in detail the operations you can perform using the
REST API.

List Deny Code Definitions
When no mapping exists for a deny code, a default HTTP response from this list is
returned. To list the built-in deny code definitions, issue an HTTP GET to the URL in
the following example:

GET prm_pm_rest/services/prm_pm/services/partner_manager/denycode/definitions

The response returns a list of the deny code definitions in descending order.

Table 3–11 Deny Code to HTTP Response Mapping

From To

errorCode in DenyCodes ■ HTTP status code

■ HTTP content type header

■ HTTP body

Table 3–12 Example REST Requests

Operation Curl Example

Get a mapping curl -u api-admin:weblogic1 http://127.0.0.1:8001/prm_
pm_rest/services/prm_pm/services/partner_
manager/denycode/mappings/34

Remove a mapping curl -u api-admin:weblogic1 -X DELETE
http://127.0.0.1:8001/prm_pm_rest/services/prm_
pm/services/partner_manager/denycode/mappings/34

Add a mapping curl -u api-admin:weblogic1 http://127.0.0.1:8001/prm_
pm_rest/services/prm_pm/services/partner_
manager/denycode/mappings -H 'Content-Type:
application/json' --data-binary
'{"mappingItem":{"denyCode":34,"httpStatus":403,"httpCo
ntentType":"application/json","httpBody":"{\"message\":
\"Forbidden123\"}"}}' --compressed

List mappings ccurl -u api-admin:weblogic1
'http://127.0.0.1:8001/prm_pm_rest/services/prm_
pm/services/partner_manager/denycode/mappings/34'

Mapping of Deny Codes to HTTP Responses

3-8 Services Gatekeeper Accounts and SLAs Guide

JSON Example
{"denyCodeDefinitionItems":
 {"items": [
 {
 "name": "NO_APP_INSTANCE",
 "denyCode": 1,
 "httpStatus": 400,
 "httpContentType": "text/plain",
 "httpBody": "Application instance does not exist"
 },
 {
 "name": "APP_INST_DEACTIVATED",
 "denyCode": 2,
 "httpStatus": 400,
 "httpContentType": "text/plain",
 "httpBody": "Application instance is not active"
 },
 ...
]
 }
}

XML Example
<denyCodeDefinitionItems>
 <denyCodeDefinitionItem>
 <denyCode>1</denyCode>
 <httpBody>Application instance does not exist</httpBody>
 <httpContentType>text/plain</httpContentType>
 <httpStatus>400</httpStatus>
 <name>NO_APP_INSTANCE</name>
 </denyCodeDefinitionItem>
 <denyCodeDefinitionItem>
 <denyCode>2</denyCode>
 <httpBody>Application instance is not active</httpBody>
 <httpContentType>text/plain</httpContentType>
 <httpStatus>400</httpStatus>
 <name>APP_INST_DEACTIVATED</name>
 </denyCodeDefinitionItem>
 ...

List Mappings
To list the mappings of deny codes to HTTP responses, issue an HTP GET to the URL
shown in the following example:

GET prm_pm_rest/services/prm_pm/services/partner_manager/denycode/mappings

Parameters
Table 3–13 describes the request’s optional parameters:

Table 3–13 Parameters for GET List Mappings

Name Type Description

skip Positive
Integer

Specifies how many mappings to skip. For example, set skip
to 0 to obtain the full list. For the list 0, 1, 2, 3, 4, 5, 6, setting
skip to 2 would return items 2, 3, 4, 5, 6. Default is 0.

Mapping of Deny Codes to HTTP Responses

Managing SLAs 3-9

Returns a standard response of 200 with the list of MappingItem items ordered by
deny code in ascending order

JSON Example
{"mappingItems":
 {"items": [
 {
 "denyCode": 34,
 "httpStatus": 403,
 "httpContentType": "application/json",
 "httpBody": "{\"message\":\"Forbidden123\"}"
 },
 {
 "denyCode": 35,
 "httpStatus": 403,
 "httpContentType": "application/json",
 "httpBody": "{\"message\":\"Forbidden123\"}"
 },
 {
 "denyCode": 37,
 "httpStatus": 403,
 "httpContentType": "application/json",
 "httpBody": "{\"message\":\"Forbidden123\"}"
 }]
 }
}

An empty list would look like this:

{
 "mappingItems":{
 "items":[
]
 }
}

XML Example
<mappingItems>
 <mappingItem>
 <denyCode>34</denyCode>
 <httpBody>{"message":"Forbidden123"}</httpBody>
 <httpContentType>application/json</httpContentType>
 <httpStatus>403</httpStatus>
 </mappingItem>
 <mappingItem>
 <denyCode>35</denyCode>
 <httpBody>{"message":"Forbidden123"}</httpBody>
 <httpContentType>application/json</httpContentType>
 <httpStatus>403</httpStatus>
 </mappingItem>
 <mappingItem>
 <denyCode>37</denyCode>

limit Positive
Integer

For a full list with no items omitted, specify 0. For the list 0,
1, 2, 3, 4, 5, 6 specifying limit of 5 would return 0, 1, 2, 3, 4.
Default is 0.

Table 3–13 (Cont.) Parameters for GET List Mappings

Name Type Description

Mapping of Deny Codes to HTTP Responses

3-10 Services Gatekeeper Accounts and SLAs Guide

 <httpBody>{"message":"Forbidden123"}</httpBody>
 <httpContentType>application/json</httpContentType>
 <httpStatus>403</httpStatus>
 </mappingItem>
</mappingItems>

An empty list would look like this:

<mappingItems/>

Add a Mapping
To add a mapping or overwrite an existing mapping, issue a POST command to the
following URL with a mapping item:

POST prm_pm_rest/services/prm_pm/services/partner_manager/denycode/mappings

JSON Payload Example
{"mappingItem":
 {
 "denyCode": 36,
 "httpStatus": 403,
 "httpContentType": "application/json",
 "httpBody": "{\"message\":\"Forbidden123\"}"
 }
}

XML Payload Example
<mappingItem>
 <denyCode>36</denyCode>
 <httpBody>{"message":"Forbidden123"}</httpBody>
 <httpContentType>application/json</httpContentType>
 <httpStatus>403</httpStatus>
</mappingItem>

Returns a status code 201 with the location header pointing to the end of the created
mapping as shown in the following example:

http://127.0.0.1:8001/prm_pm_rest/services/prm_pm/services/partner_
manager/denycode/mappings/prm_pm/services/partner_manager/denycode/mappings/34

Get a Mapping
To get an existing mapping item, issue a GET to the URL in the following example,
replacing {denyCode} with the deny code for which you want the mapping:

http://127.0.0.1:8001/prm_pm_rest/services/prm_pm/services/partner_
manager/denycode/mappings/{denyCode}
Returns a standard HTTP response with a status code 200 and the payload. Produces
the added MappingItem item, including any automatically populated properties like
httpContentType.

JSON Example
{"mappingItem":
 {
 "denyCode": 36,
 "httpStatus": 403,
 "httpContentType": "application/json",
 "httpBody": "{\"message\":\"Forbidden123\"}"

Mapping of Deny Codes to HTTP Responses

Managing SLAs 3-11

 }
}

XML Example
<mappingItem>
 <denyCode>36</denyCode>
 <httpBody>{"message":"Forbidden123"}</httpBody>
 <httpContentType>application/json</httpContentType>
 <httpStatus>403</httpStatus>
</mappingItem>

Remove a Mapping
To remove a mapping, issue an HTTP Delete request with the following URL,
replacing {denyCode} with the deny code for the mapping that you want to remove.

Returns a standard HTTP response with status code 200 and the payload. Produces the
removed MappingItem item or Content-Length of 0 to indicate that there was no item
to remove.

JSON Example
{"mappingItem":
 {
 "denyCode": 36,
 "httpStatus": 403,
 "httpContentType": "application/json",
 "httpBody": "{\"message\":\"Forbidden123\"}"
 }
}

XML Example
<mappingItem>
 <denyCode>36</denyCode>
 <httpBody>{"message":"Forbidden123"}</httpBody>
 <httpContentType>application/json</httpContentType>
 <httpStatus>403</httpStatus>
</mappingItem>

Data Definitions
The REST API uses the following data definitions.

Table 3–14 describes the definition of a deny code mapping to an HTTP response. All
properties are mandatory:

Table 3–14 DenyCodeDefinitionItem Data Definition

Property Name Description Type

denyCode A non-negative integer code that specifies
the reason for denial in SLA enforcement.

Int

httpBody Text that is used in HTTP response body. String

httpContentType Statically set to plain text and used in the
Content-Type header in an HTTP
response.

String

httpStatus Status code used in HTTP response. Int

Mapping of Deny Codes to HTTP Responses

3-12 Services Gatekeeper Accounts and SLAs Guide

Table 3–15 describes the definition of a MappingItem item.

Error Handling
You can receive the following error codes when using the REST APIs:

■ 400 - Omitting a mandatory parameter

– JSON example:

{
 "SOAPException":{
 "message":"Mandatory parameter missing: httpStatus"
 }
}

– XML example:

<?xml version="1.0" encoding="UTF-8"?>
<ns2:SOAPException xmlns:ns2="http://ocsg.oracle/portal/ws/common">
 <message>Mandatory parameter missing: httpStatus</message>
</ns2:SOAPException>

■ 400 - Using illegal parameter value

– JSON example:

{
 "SOAPException":{
 "message":"Mandatory parameter cannot be negative: denyCode"
 }
}

– XML example:

name A more friendly identifier for this deny
reason. Has a one to one relationship with
denyCode.

String

Table 3–15 MappingItem Item

Property Name Description Type Mandatory

denyCode A non-negative integer code that identifies this
deny reason in SLA enforcement.

Int true

httpStatus HTTP response status code. Int true

httpBody The text that is sent in the HTTP response body.

 If not present the following applies:

■ No content will be returned in the HTTP
response for this deny code.

■ No content type header will be returned in
the HTTP response for this deny code.

String false

httpContentType Used in Content-Type header in an HTTP
response.

If not present, it will be set to default value of text
/ plain

String false

Table 3–14 (Cont.) DenyCodeDefinitionItem Data Definition

Property Name Description Type

Mapping of Deny Codes to HTTP Responses

Managing SLAs 3-13

<?xml version="1.0" encoding="UTF-8"?>
<ns2:SOAPException xmlns:ns2="http://ocsg.oracle/portal/ws/common">
 <message>Mandatory parameter cannot be negative: denyCode</message>
</ns2:SOAPException>

■ 400 - When API user doesn't have a partner manager access role

– JSON Example:

{
 "SOAPException":{
 "message":"The login user type is invalid!"
 }
}

– XML Example:

<?xml version="1.0" encoding="UTF-8"?>
<ns2:SOAPException xmlns:ns2="http://ocsg.oracle/portal/ws/common">
 <message>The login user type is invalid!</message>
</ns2:SOAPException>

■ 404 - Attempting to reach a non-existing endpoint

■ 405 - Attempting to use an unsupported HTTP operation

■ 500 - An internal error happens. Use incidentID to correlate with the error l
(default.log)

– JSON example:

{"incidentID":"E-8b4cc44c49534f72a14f5b026103a145"}

– XML example

<?xml version="1.0" encoding="UTF-8"?>
<internalServerException>
 <incidentID>E-700cf6bd27a940fc8476d9cfbeabe2ab</incidentID>
</internalServerException>

MBean Interface
An interface uses primitive types to assert that it can be managed through the
WebLogic console. In results, JSON formatted Strings encapsulate a complex structure
in the primitive String type.

The following interface is in DafGeneralInformation:

public interface DenyCodeMappingsOperations {
 /**
 * Use this operation to find out the available deny codes which you can
 * re-configure mappings for. If no mapping is configured for a specific deny
 * code, the response in this listing applies.
 *
 * @return Array of deny code definitions. Each definition is in JSON format.
 * @throws ManagementException If deny deny codes could not be fetched from
 * storage.
 */

Note: Gatekeeper attributes are read-only values, while operations are
executable functions.

Mapping of Deny Codes to HTTP Responses

3-14 Services Gatekeeper Accounts and SLAs Guide

 String[] getDenyCodeDefinitions() throws ManagementException;

 /**
 * Use this operation to view the existing deny code to HTTP mappings.
 *
 * @param offset Offset to use when listing mappings.
 * @param limit Limit the number of results to retrieve.
 * @return Array of mappings, ordered by deny code (ascending). Each Mapping is in
 * JSON format.
 * @throws ManagementException If mappings could not be retrieved from Storage.
 */
 String[] getMappings(int offset, int limit) throws ManagementException;

 /**
 * Use this operation to view the existing deny code to HTTP mappings.
 *
 * @param denyCode Deny code to show mapping for.
 * @return Mapping in JSON format.
 * @throws ManagementException If mapping could not be retrieved from Storage.
 */
 String getMapping(int denyCode) throws ManagementException;

 /**
 * Use this operation to specify what HTTP response to generate for a given deny
 * code.
 * @param denyCode Numeric value of deny deny code.
 * @param httpCode HTTP status code to use for this deny code.
 * @param contentType The content type that matches content in httpBody parameter.
 * @param httpBody HTTP Body to use for this deny code.
 * @return Saved mapping in JSON format, eg {"denyCode": 40,"httpCode":
 * 400,"httpBody": "DEFAULT"}
 * @throws ManagementException If mapping could not be saved to Storage.
 */
 String setMapping(int denyCode, int httpCode, String contentType, String
 httpBody) throws ManagementException;

 /**
 * Use this operation to remove an existing mapping.
 *
 * @param denyCode Deny code to remove mapping for.
 * @return Removed mapping in JSON format or null if no mapping was found.
 * @throws ManagementException If mapping could not be removed from Storage.
 */
 String removeMapping(int denyCode) throws ManagementException;

}

SLA Enforcement
In SLA enforcement, you can do the following when an SLA Exception is thrown:

throwSLAException(DenyCodes.API_STATE_INVALID);

EDR Details
When a request is denied, the deny code is added to the EDR. See the highlighted
DenyCode in this example:

[03-30 03:42:07:DEBUG EdrInternalPublisher.java] *** EDR:
ContainerTransactionId = null

Mapping of Deny Codes to HTTP Responses

Managing SLAs 3-15

Method = null
HttpStatusCode = 401
TsAfAT = 1490881317793
TsAfNT = 1490881317792
ReqAction = ["seq=1, name=OAuth2Validator, status=Success", "seq=2,
name=SLAEnforcement, status=Reject, err='No Service Contract found for type: %s'"]
Position = after
ServiceProviderId = partner
DenyCode = 34
TransactionId = 04a6dce8-5f86-4092-99d0-5bd0af36881a_IDX_4
ServiceName = /ECHOServer/1
State = ENTER_AT
Class = oracle.ocsg.daf.trafficlogger.SingleTierTrafficLogger
ApplicationId = exposed-calendar
TsBeAT = 1490881317725
HttpMethod = POST
status = Reject
TsBeNT = 1490881317734
Timestamp = 1490881317793
Direction = south
Source = exception
URL = /ECHOServer/1/echo
ServiceProviderGroup = gold
AppInstanceId = appkey_Password2
RspMsgSize = 1468
ErrCat = ActionErr
ServerName = Server1
ApiId = ECHOServer
ReqMsgSize = 16

Tranformation of Error Content
HTTP 4xx responses that originate from Actions or security providers go through
content transformation before being sent to the caller. Table 3–16 describes the
supported conversions:

If no transformation is needed or one cannot be performed, the original response is
sent.

Table 3–16 Supported Conversions for HTTP 4xx Responses

From To

JSON XML

XML JSON

Plain JSON

Plain XML

Mapping of Deny Codes to HTTP Responses

3-16 Services Gatekeeper Accounts and SLAs Guide

4

Managing External SLAs 4-1

4Managing External SLAs

[2] This chapter describes how external Service Level Agreements (SLAs) are managed
and provisioned in Oracle Communications Services Gatekeeper (OCSG).

Understanding External SLAs
An external service level agreement (SLA) is equivalent to a plan in API Cloud Service. In
Oracle Communications Services Gatekeeper, it is a new data entity that is referred to
from group SLAs. It is stored in a database and managed from REST APIs or MBean
interfaces. An application subscribes to an external SLA through createApplication
and updateApplication operations.

The validity period for an external SLA, which consists of start and end dates, is
attached to the SLA itself and also to its relationship to the group SLA. For example, in
the first case an investor might want to offer a free service for any application but
make the plan valid only through the month of February. For a scenario in which the
validity period is attached to the external SLA’s relationship to the group SLA, you
could have the application subscribe to a plan on an application level. In this case,
application A and application B might both subscribe to a plan, but application A pays
quarterly (three-month period) while application B pays annually (twelve-month
period).

An external SLA is constructed in three levels from root to leaves. A composed service
contract can be composed of all APIs in the plan, but it can have another composition
as well. Figure 4–1 illustrates the three levels of an external SLA.

Figure 4–1 The Three Levels of an External SLA

Understanding External SLAs

4-2 Services Gatekeeper Accounts and SLAs Guide

You can set an exemption or constraint on the leaf level in the tree, which consists of
the PUT, GET, and POST verbs. An exemption cannot be set on the composed service
contract level. Note that some verbs lack contract on the service contract level. For
example, SLA -> API2 -> GET does not have a contract, so the leaf for this verb is
actually External SLA -> API2. At API2, you can set the service type contract to
exemption, but then you also must set exemption on the service contract level.

Quota usage occurs as follows: 1) for each successful transaction, the quota is
consumed in all levels that are used; 2) for each transaction that has an exception in
OCSG before a send request to the back-end server, no quota is consumed at any level.

Exemptions and constraints are enforced as follows. When validating the current API
action, OCSG first looks at the service contract. If it’s not found, OCSG goes to the
parent level, which is service type contract. If that is also not found, it looks at the
composed service contract to see if the API is part of the composed contract. If not,
then there is no contract for this action and the request is denied.

If OCSG finds a service contract, it checks whether it’s an exemption. If so, it validates
the service contract but not the service type or global level.

If OCSG finds a service contract and it is a constraint, all parent contracts will also be
constraints and each will be evaluated in order: 1) service contract, 2) service type
contract, and 3) composed service contract.

If the request fails on any level, all budgets that have been used are returned.

The exemption is valid only with one external SLA. If there is overlap with other
external SLAs or provider-group SLAs, they are treated separately. The return of used
budgets applies across all levels.

Understanding SLA Overlaps
OCSG allows overlaps between external SLAs for counters but you should use caution
because overlap can quickly become quite complex. Figure 4–2 illustrates one type of
overlap.

Figure 4–2 Overlap Between External SLAs

Here two external SLAs overlap in API3 PUT. OCSG evaluates each external SLA
sequentially, so restrictions from both plans are enforced. In this example, an
application can subscribe to only one external SLA. Of all the external SLAs an
application subscribes to, none can contain the same API, including the method.

Understanding External SLAs

Managing External SLAs 4-3

In addition, when updating an existing external SLA, OCSG checks for API
subscription overlap. If an application subscribes to the same API through different
external SLAs, the update will fail.

Managing with MBean
Two new SLA types have been created to support re-use of SLAs by several
applications: external and sytem:geo_external, which are managed from MBean
com.bea.wlcp.wing.account.management.ServiceLevelAgreementMbean.

/**
 * Lists the external IDs for the specified SLA type.
 *
 * The following system level SLA types are valid for externals:
 * external - External SLA stored and enforced only on the local site.
 * system:geo_external - External SLA replicated and enforced on all
 * domains in a geo-redundant configuration.
 * <p>Scope: Domain</p>
 *
 * @param slaType a system level application group SLA type ("external" or
 * "system:geo_external") or an SLA type defined by setupCustomSlaXSDDefinition
 * @param offset Offset within the complete resultset. Must be >= 0.
 * @param size Number of entries to return. 0 means no limit.
 * @throws InputManagementException if slaType is null or not applicable.
 * @return The application groups matching the criteria.
 */
public String[] listExternalIdsByType(String slaType, int offset, int size)
throws InputManagementException;

/**
 * Loads a system level or custom SLA for the specified external id.
 *
 * The following system level SLA types are valid for the external:
 * external - External SLA stored and enforced only on the local site.
 * system:geo_external - External SLA replicated and enforced on all
 * domains in a geo-redundant configuration.
 * <p>Scope: Domain</p>
 *
 * @param slaType A system level external SLA type ("external" or
 * "system:geo_external") or an SLA type defined by setupCustomSlaXSDDefinition
 * @param id The external SLA identifier.
 * @param fileContent The new service level agreement to use.
 * A Null or empty string removes the SLA.
 * @throws ManagementException Validation of service
 * level agreement failed.
 * @throws KeyNotFoundException If the group does not exist.
 * @throws InputManagementException if the slaType is null or not applicable.
 */

public void loadExternalSlaByType(String slaType, String id,
 String fileContent)
throws ManagementException, KeyNotFoundException, InputManagementException;

/**
 * Retrieves a system or custom Service Level Agreement for the specified external
 * id.
 *
 * The following system level SLA types are valid for external:
 * external - External SLA stored and enforced only on the local site.
 * system:geo_external - External SLA replicated and enforced on all

Understanding External SLAs

4-4 Services Gatekeeper Accounts and SLAs Guide

 * domains in a geo-redundant configuration.
 * <p>Scope: Domain</p>
 *
 * @param slaType A system level external SLA type ("external" or
 * "system:geo_external") or an SLA type defined by setupCustomSlaXSDDefinition
 * @param id The external SLA identifier.
 * @throws InputManagementException if slaType is null or not applicable.
 * @return The custom Service Level Agreement.
 */
public String retrieveExternalSlaByType(String slaType, String id)
throws InputManagementException;

Listing from the Database
The wing_external_slas database table stores external SLAs. Table 4–1 describes
wing_external_slas:

The table global_wing_external_slas has the same definition.

The following example shows how to list SLAs from the MySQL console:

select sla_content from wlng_external_slas;

Understanding the XSD
There is a new XML system descriptor (XSD) for external SLAs, with three parts for
the different levels:

■ service contract

Defines the constraints and exemptions on the API resource table row level

■ service type contract

Defines the constraints and exemptions on the API level

■ composed service contract

Defines the constraints on the PLAN level (no exemptions on the PLAN level)

The XSD pathname is:

{SRC}\bea\modules\account\src\main\resources\sla_schema\external_sla_file.xsd

Table 4–1 The wing_external_slas Database Table

Field Type Null Key Default

id varchar (255) No Primary Null

sla_content blob Yes Null

description varchar (255) Yes Null

state integer (10) Yes Null

stored_ts bigint(20) No Null

Note: No rate or quota element means that the rate or quota is
unlimited on that level (or method).

Understanding External SLAs

Managing External SLAs 4-5

The XSD is based on the original application group SLA, which is used to support
external SLA subscription in the application, with these three differences: no group ID
attribute, startDate and endDate are optional, and the isExemption attribute is added.

Figure 4–3 illustrates these differences:

Figure 4–3 XSD Differences for External SLA

The XSDs for application and service-provider SLAs have been extended with the
externalSla element so that you can embed external SLAs in application or
service-provider group SLAs.

Table 4–2 describes support for external SLA elements:

Subscribing to External SLAs
Currently an application subscribes to APIs by invoking the CREATE or UPDATE
application REST calls. An application also has the option to subscribe to external

Table 4–2 Support for External SLA Elements

Element Description

override and overrides In a serviceContract, can be used to set an alternative contract
during a specific time. For example, day of week, time of day,
and so on.

limitExceeded (quota) If true, traffic can continue after the quota constraint reaches
its limit. The counter always calculates. Default: false.

methodAccess and
blacklistedMethod (contract)

A general purpose tunneling feature. You can pass something
to an action that isn't part of the interface of the API but is
instead attached to the SLA. Could for instance be a price plan
identifier or similar.

params and
MethodParameters (contract)

Describes parameters and method parameters.

requestContext (contract) A general purpose tunneling feature. You can pass something
to an action that isn't part of the API interface but instead
attached to the SLA, for instance a price plan identifier or
similar.

resultRestrictions (contract) Filter responses before returned to caller.

Understanding External SLAs

4-6 Services Gatekeeper Accounts and SLAs Guide

SLAs. It can subscribe to both APIs and external SLAs or it can subscribe to only one of
them. The following examples illustrate each of these cases.

External SLA only
The following example illustrates a REST createApplication statement for an
external SLA only:

{
 "createApplication":{
 "application":{
 "applicationID":"leavePlanApp",
 "applicationName":"leavePlanApp",
 "description":"Plan a RESTful vacation or leave",
 "partnerName":"partner",
 "applicationAPIs":[

],
 "externalSlas":[
 {
 "id":"myCalendar"
 },
 {
 "id":"myParental"
 },
 {
 "id":"myVacation"
 }
],
 "trafficPassword":"d2VibG9naWMx",
 "icon":"expressive/sunny.png"
 }
 }
}

The updateApplication statement would look like this:

{
 "updateApplication":{
 "application":{
 "applicationID":"leavePlanApp",
 "applicationName":"leavePlanApp",
 "description":"Plan a RESTful vacation or leave",
 "partnerName":"partner",
 "applicationAPIs":[

],
 "externalSlas":[
 {
 "id":"myCalendar"
 },
 {
 "id":"myParental"
 },
 {
 "id":"myVacation"
 }
],
 "trafficPassword":"d2VibG9naWMx",
 "icon":"expressive/sunny.png"
 }

Understanding External SLAs

Managing External SLAs 4-7

 }
}

The XML for the application group SLA looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<Sla xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="app_sla_file.xsd"
 applicationGroupID="partner-leavePlanApp">
 <externalSla>
 <id>myCalendar</id>
 <id>myParental</id>
 <id>myVacation</id>
 </externalSla>
</Sla>

API Only
The following example illustrates a REST updateApplication statement for an API
only:

{
 "updateApplication":{
 "application":{
 "applicationID":"leavePlanApp",
 "applicationName":"leavePlanApp",
 "description":"Plan a RESTful vacation or leave",
 "effectiveFrom":"2016-04-15",
 "effectiveTo":"3017-01-12",
 "trafficUser":"partner_leavePlanApp",
 "appKey":"Password1",
 "partnerName":"partner",
 "quota":{
 "days":"1",
 "qtaLimit":"10000000"
 },
 "rate":{
 "reqLimit":"1500",
 "timePeriod":"1"
 },
 "applicationAPIs":[
 {
 "apiName":"ECHOServer"
 }
],
 "externalSlas":[
],
 "trafficPassword":"d2VibG9naWMx",
 "icon":"expressive/leavePlanApp.png"
 }
 }
}

The XML for the application group SLA looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<Sla xsi:noNamespaceSchemaLocation="app_sla_file.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 applicationGroupID="partner-leavePlanApp">
 <serviceContract>
 <startDate>2016-04-15+02:00</startDate>

Understanding External SLAs

4-8 Services Gatekeeper Accounts and SLAs Guide

 <endDate>3017-01-12+01:00</endDate>
 <scs>ECHOServer</scs>
 <method>POST_/echo</method>
 </serviceContract>
 <composedServiceContract>
 <composedServiceName>leavePlanApp</composedServiceName>
 <service>
 <serviceTypeName>ECHOServer</serviceTypeName>
 </service>
 <startDate>2016-04-15+02:00</startDate>
 <endDate>3017-01-12+01:00</endDate>
 <rate>
 <reqLimit>1500</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>10000000</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </composedServiceContract>
</Sla>

External SLA and API
The following example illustrates a REST updateApplication statement for an
external SLA and an API:

{
"updateApplication":{
 "application":{
 "applicationID":"leavePlanApp",
 "applicationName":"leavePlanApp",
 "description":"Plan a RESTful vacation or leave",
 "effectiveFrom":"2016-04-15",
 "effectiveTo":"3017-01-12",
 "trafficUser":"partner_leavePlanApp",
 "appKey":"Password1",
 "partnerName":"partner",
 "quota":{
 "days":"1",
 "qtaLimit":"10000000"
 },
 "rate":{
 "reqLimit":"1500",
 "timePeriod":"1"
 },
 "applicationAPIs":[
 {
 "apiName":"ECHOServer"
 }
],
 "externalSlas":[
],
 "trafficPassword":"d2VibG9naWMx",
 "icon":"expressive/leavePlanApp.png"
 }
 }
}

The XML for the application group SLA looks like this:

Understanding External SLAs

Managing External SLAs 4-9

<?xml version="1.0" encoding="UTF-8"?>
<Sla xsi:noNamespaceSchemaLocation="app_sla_file.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 applicationGroupID="partner-leavePlanApp">
 <serviceContract>
 <startDate>2016-04-15+02:00</startDate>
 <endDate>3017-01-12+01:00</endDate>
 <scs>ECHOServer</scs>
 <method>POST_/echo</method>
 </serviceContract>
 <composedServiceContract>
 <composedServiceName>leavePlanApp</composedServiceName>
 <service>
 <serviceTypeName>ECHOServer</serviceTypeName>
 </service>
 <startDate>2016-04-15+02:00</startDate>
 <endDate>3017-01-12+01:00</endDate>
 <rate>
 <reqLimit>1500</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>10000000</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </composedServiceContract>
 <externalSla>
 <id>myCalendar</id>
 <id>myParental</id>
 <id>myVacation</id>
 </externalSla>
</Sla>

Life Cycle
An external SLA can be active or inactive and it can be in use or not in use. You can
create an external SLA with the status set to active or inactive and you can change the
status at any time. An application can subscribe to, and be subscribed to, an external
SLA in either of these states. Table 4–3 describes the life cycle rules for an external
SLA.

The following rules apply:

■ Applications can subscribe to an inactive external SLA during traffic processing
run time but it cannot be enforced.

■ An application is in use when one or more applications have subscribed to it.

■ An external SLA that is in use can be updated but cannot be deleted.

■ An external SLA that is not in use can be deleted whether its status is active or
inactive.

Table 4–3 Life Cycle Rules

Update Delete Subscription Enforce in Traffic

Active Y Y Y Y

Inactive Y Y Y -

Understanding External SLAs

4-10 Services Gatekeeper Accounts and SLAs Guide

Identifying the Plan
The plan ID in the EDR identifies which plan was selected to enforce for a given
runtime API request.

When the PLAN is active and takes effect on the traffic per the current request, the
plan ID and status occur in the EDR message as follows:

ExtSlaIds = id = plan_id0, status=ACTIVE

Using External SLA Management REST Interfaces
The existing API for creating and updating applications has been extended with the
externalSLAs data element as described in chapter Subscribing/using external SLAs.

The base URL is:

pm_rest/services/prm_pm/services

Table 4–4 provides additional information regarding payload attributes:

Table 4–4 Notes on Plan Attributes

Attribute Comments

quotas Optional. No quotas means unlimited and each unit is
optional.

SECONDS, MINUTES and HOURS are supported.

All units (SECONDS, MINUTES, HOURS, DAYS,
WEEKS, MONTHS, YEARS) can be applied in the API
method and each is optional.

SECONDS, MINUTES, and HOURS are released by
duration.

DAYS, WEEKS, MONTHS, YEARS are released by
calendar at midnight for each day or Saturday (for
week) or first day of month or year.

rate Optional. The unit for timePeriod is milliseconds. If rate
occurs, reqLimit and timePeriod are mandatory.

slaItem/id Optonal. For creation, if id is not provided, one is
generated in UUID format. For updating, use the value
in the path.

slaItem/state Optional. For creation, default is inactive and value is
not changed for updating.

slaItem/description Optional. Default is null.

slaItem/apis Mandatory.

slaItem/apis/exemption Optional. Default is false.

slaItem/apis/rate Optional. If rate occurs, however, reqLimit and
timePeriod are mandatory.

slaItem/apis/quotas Optional. No quotas means unlimited, and each unit is
optional

slaItem/apis/methods Optional. No methods means all API methods are
allowed.

slaItem/apis/methods/exemptions Optional. Default is false.

slaItem/apis/methods/startDate Optional. If no startDate, API’s startDate is used.

slaItem/apis/methods/endDate Optional. If no endDate, API’s endDate is used.

Understanding External SLAs

Managing External SLAs 4-11

Creating a Plan
Create a plan by issuing a POST command to the URL:

partner_manager/sla/external

The following example illustrates:

POST /partner_manager/sla/external
{
 "slaItem": {
 "id": "plan_id0",
 "name": "plan_name0",
 "state": "inactive",
 "description": "desc1",
 "startDate": "2007-01-25",
 "endDate": "2097-09-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas": [{
 "unit": "SECONDS",
 "qtaLimit": 2,
 "limitExceedOK": false
 },
 {
 "unit": "MINUTES",
 "qtaLimit": 10,
 "limitExceedOK": false
 },
 {
 "unit": "HOURS",
 "qtaLimit": 20,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,
 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },

slaItem/apis/methods/rate Optional. If rate occurs, however, reqLimit and
timePeriod are mandatory.

slaItem/apis/methods/quotas Optional. No means unlimited and each unit is
optional.

slaItem/apis/methods/scopes Optional.

Table 4–4 (Cont.) Notes on Plan Attributes

Attribute Comments

Understanding External SLAs

4-12 Services Gatekeeper Accounts and SLAs Guide

 {
 "qtaLimit": 5000,
 "unit": YEARS,
 "limitExceedOK": false
 }],
 "apis": [{
 "apiId": "id-test-api0",
 "exemption": false,
 "startDate": "2007-02-26",
 "endDate": "2097-08-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas":[{
 "days": 1,
 "qtaLimit": 4,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,
 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5000,
 "unit": YEARS,
 "limitExceedOK": false
 }],
 "methods": [{
 "path": "GET_/getPath/*",
 "exemption": true,
 "startDate": "2007-03-25",
 "endDate": "2097-07-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas": [{
 "days": 1,
 "taLimit": 10,
 "limitExceedOK": true
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,

Understanding External SLAs

Managing External SLAs 4-13

 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5000,
 "unit": YEARS,
 "limitExceedOK": false
 }]
 },
 {
 "path": "PATCH_/patchPath/*",
 "exemption": false,
 "startDate": "2007-04-25",
 "endDate": "2097-06-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas":[{
 "days": 1,
 "qtaLimit": 12,
 "limitExceedOK": false
 }],
 "scopes": [
 {"name":"name1", "value": "value1"},
 {"name":"name2", "value": "value2"}
]
 }]
 }]
 }
}

A successful response returns status code 201 Created to the location:

/partner_manager/sla/external/plan_id0

Getting a Plan
To get a plan, issue a GET command to the URL /partner_manager/sla/external/id
where id is the plan ID.

GET partner_manager/sla/external/plan_id0

A successful response returns a status code 200 OK with the requested plan:

{
 "slaItem": {
 "id": "plan_id0",
 "name": "plan_name0",
 "state": "inactive",
 "description": "desc1",
 "startDate": "2007-01-25",
 "endDate": "2097-09-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2

Understanding External SLAs

4-14 Services Gatekeeper Accounts and SLAs Guide

 },
 "quotas": [{
 "days": 1,
 "qtaLimit": 5,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,
 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },

 {
 "qtaLimit": 5000,
 "unit": YEARS,
 "limitExceedOK": false
 }],
 "apis": [
 {
 "exemption": false,
 "apiId": "id-test-api0",
 "startDate": "2007-02-26",
 "endDate": "2097-08-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas": [{
 "days": 1,
 "qtaLimit": 4,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,
 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5000,
 "unit": YEARS,

Understanding External SLAs

Managing External SLAs 4-15

 "limitExceedOK": false
 }],
 "methods": [
 {
 "exemption": true,
 "path": "GET_/getPath/*",
 "startDate": "2007-03-25",
 "endDate": "2097-07-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas": [{
 "days": 1,
 "qtaLimit": 10,
 "limitExceedOK": true
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,
 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5000,
 "unit": YEARS,
 "limitExceedOK": false
 }],
 },
 {
 "exemption": false,
 "path": "PATCH_/patchPath/*",
 "startDate": "2007-04-25",
 "endDate": "2097-06-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas": [{
 "days": 1,
 "qtaLimit": 12,
 "limitExceedOK": false
 }],
 "scopes": [
 {"name":"name1", "value": "value1"},
 {"name":"name2", "value": "value2"}
]
 }]
 }]
 }
}

Understanding External SLAs

4-16 Services Gatekeeper Accounts and SLAs Guide

Getting All Plans
To get all plans, issue a GET command to the URL /partner_manager/sla/external,
as the following example shows:

GET /partner_manager/sla/external

A successful response returns a status code 200 OK with all plans:

{
 "slaitems": {
 "items": [
 {
 "id": "plan_id0",
 "description": "desc1"
 }
],
 "hasMore": false
 }
}

Updating a Plan
To update a plan, issue a PUT command to the following URL, where id is the plan ID:

/partner_manager/sla/external/id

The following example illustrates. A successful response returns the status code 204
No Content.

PUT /partner_manager/sla/external/plan_id0
{
 "slaItem": {
 "id": "plan_id0",
 "name": "plan_name0",
 "state": "inactive",
 "description": "desc1",
 "startDate": "2007-01-25",
 "endDate": "2097-09-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas": [{
 "days": 1,
 "qtaLimit": 5,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,
 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },

Understanding External SLAs

Managing External SLAs 4-17

 {
 "qtaLimit": 5000,
 "unit": YEARS,
 "limitExceedOK": false
 }],
 "apis": [{
 "apiId": "id-test-api0",
 "exemption": false,
 "startDate": "2007-02-26",
 "endDate": "2097-08-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas":[{
 "days": 1,
 "qtaLimit": 4,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,
 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5000,
 "unit": YEARS,
 "limitExceedOK": false
 }],
 "methods": [{
 "path": "GET_/getPath/*",
 "exemption": true,
 "startDate": "2007-03-25",
 "endDate": "2097-07-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas":[{
 "days": 1,
 "qtaLimit": 10,
 "limitExceedOK": true
 },
 {
 "qtaLimit": 5,
 "unit": DAYS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 50,

Understanding External SLAs

4-18 Services Gatekeeper Accounts and SLAs Guide

 "unit": WEEKS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 500,
 "unit": MONTHS,
 "limitExceedOK": false
 },
 {
 "qtaLimit": 5000,
 "unit": YEARS,
 "limitExceedOK": false
 }]
 },
 {
 "path": "PATCH_/patchPath/*",
 "exemption": false,
 "startDate": "2007-04-25",
 "endDate": "2097-06-25",
 "rate": {
 "reqLimit": 5000000,
 "timePeriod": 2
 },
 "quotas":[{
 "days": 1,
 "qtaLimit": 12,
 "limitExceedOK": false
 }]
 }]
 }]
 }
}

Deleting a Plan
To delete a plan, issue a DELETE command to the URL /partner_
manager/sla/external/id where id is the plan ID. The following example illustrates
how to delete a plan:

DELETE /partner_manager/sla/external/plan_id0

A successful outcome returns a status 200 OK along with the deleted plan. See
"Getting a Plan" for an example of the returned plan.

Updating a Plan State
Update a plan state by issuing a PUT statement to the URL /partner_
manager/sla/external/id/state, where id is the plan ID. The following example
illustrates how to update a plan state:

PUT /partner_manager/sla/external/plan_id0/state
{
 "slaItem": {
 "state": "active"
 }
}

5

Managing Groups 5-1

5Managing Groups

This chapter describes how service provider and application groups are managed and
provisioned in Oracle Communications Services Gatekeeper.

The management of groups comprises the following:

■ Managing Service Provider Groups

■ Managing Application Groups

Managing Service Provider Groups
Table 5–1 describes the tasks related to service provider groups and the methods you
use to perform those tasks. The methods belong to ApplicationGroupMBean MBean.
For information on the MBean, see the “All Classes” section of Services Gatekeeper OAM
Java API Reference.

Managing Application Groups
Table 5–2 describes the tasks related to application groups and the operations you use
to perform those tasks. The methods belong to ApplicationGroupMBean MBean. For
information on the MBean, see the “All Classes” section of Services Gatekeeper OAM
Java API Reference.

Table 5–1 Tasks Related to Service Provider Groups

Task
ApplicationGroupMBean Operation
to Use

Get information about the number of service
provider groups

countServiceProviderGroups

Add, remove and get information about a service
provider group

addServiceProviderGroup

removeServiceProviderGroup

getServiceProviderGroup

List registered service provider groups listServiceProviderGroups

Define additional properties for an service provider
group

setServiceProviderGroupProperties

Managing Application Groups

5-2 Services Gatekeeper Accounts and SLAs Guide

Table 5–2 Tasks Related to Application Groups

Task
ApplicationGroupMBean Operation
to Use

Get information about the number of application
groups

countApplicationGroups

Add, remove and get information about an
application group

addApplicationGroup

removeApplicationGroup

getApplicationGroup

List registered application groups listApplicationGroups

Define additional properties for an application
group

setApplicationGroupProperties

6

Managing Service Provider and Application Accounts 6-1

6Managing Service Provider and Application
Accounts

This chapter describes how service provider and application accounts are managed
and provisioned in Oracle Communication Services Gatekeeper.

The management of accounts comprises the following:

■ Managing Application Accounts

■ Managing Service Provider Accounts

Account information is described in the following sections:

■ About Account States

■ Account Properties

■ Account Reference

Managing Application Accounts
Table 6–1 lists the tasks related to application accounts and the methods you use to
perform those tasks. The methods belong to ApplicationAccountMBean. For detailed
information on this MBean, see the "All Classes" section of Services Gatekeeper OAM
Java API Reference.

Table 6–1 Tasks Related to Application Accounts

Task
ApplicationAccount MBean Methods
to Use

Get information about the number of application
accounts

countApplicationAccounts

Add, remove and get information about an
application account

addApplicationAccount

removeApplicationAccount

getApplicationAccount

List registered application accounts listApplicationAccounts

Define additional properties for an application
account

setApplicationAccountGroup

setApplicationAccountProperties

setApplicationAccountReference

setApplicationAccountState

Managing Service Provider Accounts

6-2 Services Gatekeeper Accounts and SLAs Guide

Managing Service Provider Accounts
Table 6–2 lists the tasks related to service provider accounts and the methods you use
to perform those tasks. These methods belong to ApplicationAccountMBean. For
detailed information on this MBean, see the "All Classes" section of Services Gatekeeper
OAM Java API Reference.

About Account States
To provide an easy way to take an application out-of-service temporarily, service
provider and application accounts have associated states. States are also used by the
Partner Relationship Management module to enforce workflow management.

Accounts can be in either one of the states described in Table 6–3:

State transition is provided using these methods belonging to the
ApplicationAccountMBean MBean:

■ setApplicationAccountState

■ setServiceProviderAccountState

You can filter on account state in these methods of the ApplicationAccountMBean
MBean:

■ countApplicationAccounts

■ countServiceProviderAccounts

■ listApplicationAccounts

■ listServiceProviderAccounts

Table 6–2 Tasks Related to Service Provider Accounts

Task
ApplicationAccountMBean Operation
to Use

Get information about the number of service
provider accounts

countServiceProviderAccounts

Add, remove and get information about a service
provider account

addServiceProviderAccount

removeServiceProviderAccount

getServiceProviderAccount

List registered service provider accounts listServiceProviderAccounts

Define additional properties for a service provider
account

setServiceProviderAccountGroup

setServiceProviderAccountProperties

setServiceProviderAccountReference

setServiceProviderAccountState

Table 6–3 Account State Indicators

Account State Restriction on Application Belonging to Account

ACTIVATED An application belonging to such an account is allowed to send
requests to the application-facing interfaces exposed by Services
Gatekeeper.

DEACTIVATED An application belonging to such an account is not allowed to
send requests to the application-facing interfaces exposed by
Services Gatekeeper.

Account Reference

Managing Service Provider and Application Accounts 6-3

When you create an account using addApplicationAccount or
addServiceProviderAccount methods, the state is always ACTIVATED.

Account Properties
An account can have a set of associated properties. These are generic key-value
pairs.You cannot set these using the Administration Console, but you can use MBeans
or the PRM Web Services.

The properties are displayed in these methods belonging to
ApplicationInstanceMBean:

■ getApplicationInstance

■ getApplicationAccount

■ getApplicationGroup

■ getServiceProviderAccount

■ getServiceProviderGroup

For information on the ApplicationInstanceMBean methods and fields, see the “All
Classes” section of Services Gatekeeper OAM Java API Reference.

Account Reference
An account can have an associated reference. The reference is a form of alias or
internal ID for the account. It correlates the account with an operator-internal ID.

The references are defined as parameters in these ApplicationInstanceMBean
operations:

■ addApplicationInstance

■ setApplicationInstanceReference

■ setApplicationInstanceProperties

■ addApplicationAccount

■ setApplicationAccountReference

■ addServiceProviderAccount

■ setApplicationAccountReference

These references are retrieved as part of the result of:

■ getApplicationInstance

■ getApplicationAccount

■ getServiceProviderAccount

Set field values and use methods from the Administration Console by selecting
Container then Services followed by ApplicationInstanceMBean. Or, use a Java
application. For information on the methods and fields, see the “All Classes” section of
Services Gatekeeper OAM Java API Reference.

Account Reference

6-4 Services Gatekeeper Accounts and SLAs Guide

7

Managing Sessions 7-1

7Managing Sessions

This chapter describes how to configure the behavior of and manage ongoing sessions
in Oracle Communications Services Gatekeeper.

About Sessions
You can configure whether to use sessions between applications and Services
Gatekeeper. Sessions can be used for establishing site affinity when using
geo-redundant sites.

The setting of sessionRequired field specifies whether sessions are used. You can
make sessions required, optional, or have sessions disabled.

When using sessions, the application must get a session from the Session Web Service
before using the other application-facing interfaces. The application must also provide
the session ID in all requests to the application-facing interfaces, except for requests to
the Session Web Service.

A session has a unique ID. A session, once established, can have two states:

■ ACTIVE

■ INVALID

After a session has been established, it is always in the ACTIVE state.

Table 7–1 describes the possible states for a session, the state into which it can
transition from the current state, and the condition under which such a transition
occurs.

Table 7–1 Session States and Conditions for Successful Transition

Current
Session State

Valid Transition
State Scenario in Which Transition Occurs

ACTIVE INVALID The age of the ACTIVE state of a session is older than
a configurable time-interval. See the validityTime field
of the ApplicationSessionMBean MBean in the “All
Classes” section of Services Gatekeeper OAM Java API
Reference.

ACTIVE Not applicable

This is not a state
but rather that
the session is not
current or does
not exist.

A management user performs one of the following
ApplicationSessionMBean operations:

■ destroySession

■ destroyApplicationInstanceSession

■ destroyApplicationSessions

■ destroyServiceProviderSessions

About Sessions

7-2 Services Gatekeeper Accounts and SLAs Guide

For a description of the attributes and operations of the ApplicationSessionMBean
MBean, see the “All Classes” section of Services Gatekeeper OAM Java API Reference

INVALID Not applicable

This is not a state
but rather that
the session is not
current or does
not exist.

The age of the INVALID state of a session is older than
a configurable time-interval. See the expiryTime field
in ApplicationSessionMBean in the “All Classes”
section of Services Gatekeeper OAM Java API Reference.

An ApplicationSessionMBean user performs one of
the following management operations:

■ destroyApplicationInstanceSession

■ destroyApplicationSessions

■ destroySession

■ destroyServiceProviderSessions

Table 7–1 (Cont.) Session States and Conditions for Successful Transition

Current
Session State

Valid Transition
State Scenario in Which Transition Occurs

8

Defining Service Provider Group and Application Group SLAs 8-1

8Defining Service Provider Group and
Application Group SLAs

This chapter describes how you can define service provider group and application
group SLAs in Oracle Communications Services Gatekeeper.

An application’s usage policies of Services Gatekeeper are specified in Service Level
Agreement (SLA) XML files. There is an SLA associated with the service provider
group and one associated with the application group. For more information on this
administration model, see "About Service Level Agreements and Accounts".

For a sample of a complete SLA, see "Sample SLA XML File".

This chapter describes the following topics:

■ Structure of a Service Level Agreement

■ Structure of a Contract

■ Structure of a Composed Service Contract

Structure of a Service Level Agreement
The xsds for the SLAs are in /sla_schema/ in Middleware_Home/ocsg_
6.0/modules/com.bea.wlcp.wlng.account_release_level.jar:

■ app_sla_file.xsd is the application group SLA xsd.

■ sp_sla_file.xsd is and the service provider group SLA xsd.

An SLA contain can contain three different types of contracts:

■ <serviceContract>

■ <serviceTypeContract>

■ <composedServiceContract>

 The SLA must contain at least one <serviceContract>. The <serviceTypeContract>
and <composedServiceContract> elements are optional.

The <serviceTypeContract> element includes usage restrictions per service type. The
<serviceContract> element defines restrictions on a more granular level: per interface
and method. The <composedServiceContract> element defines usage restrictions that
apply to multiple communication services.

It is possible to override parts of a <serviceContract> based on time-of-day and
day-of-week. This is not possible in a <serviceTypeContract> or
<composedServiceContract>.

Structure of a Service Level Agreement

8-2 Services Gatekeeper Accounts and SLAs Guide

Example 8–1 shows the service provider level SLA XML file’s main structure.

Example 8–1 Service Level Agreement Structure

<Sla [serviceProviderGroupID | applicationGroupID] ="<Group>"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="[sp_sla_file.xsd | app_sla_file.xsd]">
 <serviceTypeContract>
 <serviceTypeName></serviceTypeName>
 <startDate></startDate>
 <endDate></endDate>
 <rate></rate>
 <quota></quota>
 </serviceTypeContract>
 <serviceContract>
 <startDate></startDate>
 <endDate></endDate>
 <scs></scs>
 <contract>

 </contract>
 <overrides>
 <override>
 <startDate></startDate>
 <endDate></endDate>
 <startDow></startDow>
 <endDow></endDow>
 <startTime></startTime>
 <endTime></endTime>
 <contract>
 ...
 </contract>
 </override>
 </overrides>
 </serviceContract>
 <composedServiceContract>
 <composedServiceName></composedServiceName>
 <service>
 <serviceTypeName></serviceTypeName>
 <method>
 <scs></scs>
 <methodName></methodName>
 </method>
 </service>
 <service>
 <serviceTypeName></serviceTypeName>
 </service>
 <startDate></startDate>
 <endDate></endDate>
 <rate>
 <reqLimit></reqLimit>
 <timePeriod></timePeriod>
 </rate>
 <quota>
 <qtaLimit></qtaLimit>
 <days></days>

Note: If the SLA XML file has white space before the <?xml...> tag,
the SLA will not load.

Structure of a Service Level Agreement

Defining Service Provider Group and Application Group SLAs 8-3

 <limitExceedOK></limitExceedOK>
 </quota>
 </composedServiceContract>
</Sla>

<Sla>
This element contains service contracts specifying the conditions under which a
service provider or an application is allowed to access and use service capabilities.

The serviceProviderGroupID attribute specifies the service provider group to which
the service provider belongs and for which group the SLA is valid. For SLAs on
application level, the applicationGroupID attribute is used instead to specify the
application group to which the application belongs and for which the SLA is valid.

The xmlns:xsi attribute contains processing information and should not be changed.

The xsi:noNamespaceSchemaLocation attribute points to the xsd for the service
provider group SLA or the application group SLA, depending on which type of SLA it
is:

■ app_sla_file.xsd is the application group SLA xsd

■ sp_sla_file.xsd is and the service provider group SLA xsd

The SLA for a a service provider group of application group can contain one or more
of the following child elements:

■ <serviceTypeContract>

■ <serviceContract>

■ <composedServiceContract>

<serviceTypeContract>
Parent: <Sla>

This element contains contractual data specifying the conditions under which a service
provider or an application is allowed to access and use specific service types in
Services Gatekeeper. One <serviceTypeContract> element is needed for each service
type that a service provider or an application can access.

The data to be defined in the <serviceTypeContract> element for each interface is
described below.

The <serviceTypeContract> element contains the following child elements:

■ <serviceTypeName>

■ <startDate>

■ <endDate>

■ <rate>

■ <quota>

<serviceTypeName>
Parent: <serviceTypeContract>, <service>

This element specifies the service type to which a <serviceTypeContract> or
<service> applies. It specifies an identifier that defines the service type. Use the
Plug-in Manager’s listServiceType operation to get a list of the service type names.

Structure of a Service Level Agreement

8-4 Services Gatekeeper Accounts and SLAs Guide

See “Managing and Configuring the Plug-in Manager” in Services Gatekeeper System
Administrator's Guide for information on how to get a list of service types using the
listServiceType operation.

For example, the service type for the interfaces for Parlay X 2.1 Short Messaging and
RESTful Short Messaging interfaces is Sms.

There can be only one <serviceTypeContract> for a specified <serviceTypeName>
element defined in the SLA for a group in the combined set of SLAs (the local SLA and
the geo-redundant SLA). For example, if a geo-redundant service provider group SLA
defines a <serviceContract> for the CallNotification service type, this service type
cannot be defined in the local service provider group SLA.

Example 8–2 <serviceTypeContract> Element

...
<serviceTypeContract>
 <serviceTypeName>CallNotification</serviceTypeName>
 <startDate>2008-11-01</startDate>
 <endDate>2008-11-30</endDate>
 <rate>
 <reqLimit>25</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>250</qtaLimit>
 <days>1</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
</serviceTypeContract>
<serviceTypeContract>
 <serviceTypeName>Sms</serviceTypeName>
 <startDate>2008-11-01</startDate>
 <endDate>2008-11-30</endDate>
 <rate>
 <reqLimit>35</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>350</qtaLimit>
 <days>1</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
</serviceTypeContract>
...

<serviceContract>
Parent: <Sla>

This element contains contractual data specifying under which conditions a service
provider or an application is allowed to access and use specific interfaces and methods
in Services Gatekeeper. One <serviceContract> element is needed for each
application-facing interface that a service provider or an application can access.

The <serviceContract> element contains the following child elements:

■ <startDate>

■ <endDate>

■ <scs>

Structure of a Service Level Agreement

Defining Service Provider Group and Application Group SLAs 8-5

■ <contract>

■ <overrides>

The <contract> element directly following the <scs> element contains the default
restrictions.

To override these default restrictions, use a <contract> inside an <override> element.

See "Structure of a Contract" for details about the child elements contained within a
<contract> element.

<composedServiceContract>
Parent: <Sla>

This element is defined all the services that comprise a composed service. The
<composedServiceContract> element must contain at least one <service> element.

The <composedServiceContract> element contains the following child elements:

■ <composedServiceName>

■ <service>

■ <startDate>

■ <endDate>

■ <rate>

■ <quota>

See "Structure of a Composed Service Contract" for information about composed
services and the <service> element.

<startDate>
Parent: <serviceTypeContract>, <serviceContract>, <composedServiceContract>,
<override>, <nodeContract>, <globalContract>,

For a <serviceTypeContract>, <serviceContract> or <composedServiceContact>,
this element specifies the date the application can start using the service capability.

For an <override>, it specifies the first date that the contract data in the <override>
element is valid.

For a <nodeContact>, it specifies the date that the service provider can begin to access
the network.

For a <globalContact>, it specifies the date that Services Gatekeeper can begin to
access the network on behalf of any service provider.

Use format YYYY-MM-DD.

A later start date on the service provider level service contract overrides this date.

<endDate>
Parent: <serviceTypeContract>, <serviceContract>, <composedServiceContract>,
<override>, <nodeContract>, <globalContract>

For a <serviceTypeContract>, <serviceContract> or <composedServiceContact>,
this element specifies the last date the application can use the service capability.

Structure of a Service Level Agreement

8-6 Services Gatekeeper Accounts and SLAs Guide

For an <override>, it specifies the last date that the contract data in the <override>
element is valid.

For a <nodeContact>, it specifies the last date that the service provider can access the
network node.

For a <globalContact>, it specifies the last date that Services Gatekeeper can access
the network on behalf of any service provider.

Use format YYYY-MM-DD.

An earlier end date on the service provider level service contract overrides this date.

<scs>
Parent: <serviceContract>, <method>

This element specifies the application-facing interface to which the service contract or
composed service contract applies. The content is a Java representation of the Web
Service Definition Language (WSDL) that defines the interface.

Use the Plug-in Manager’s getServiceInfo operation to get a list of the
application-facing interfaces. You must pass the appropriate service type as a
parameter to the getServiceInfo operation. You can obtain a list of service types with
the Plug-in Manager’s listServiceTypes operation. See section “Managing and
Configuring the Plug-in Manager” in Services Gatekeeper System Administrator's Guide
for information on using the getServiceInfo and listServiceTypes operations.

Typically, the Java representation is expressed according to the pattern below:

package_name.standard indicator.plugin.interface_name_from_WSDL

For example, the Java representation of the interfaces for Parlay X 2.1 Short Messaging
interfaces are:

■ com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin

■ com.bea.wlcp.wlng.px21.plugin.ReceiveSmsPlugin

■ com.bea.wlcp.wlng.px21.plugin.SmsNotificationManagerPlugin

There can be only one <serviceContract> for a specified <scs> defined for a group in
its combined set of SLAs (the local SLA and the geo-redundant SLA). For example, if
the geo-redundant service provider group SLA defines a <serviceContract> for the
com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin interface, this interface cannot be
defined in the local service provider group SLA.

<overrides>
Parent: <serviceContract>

This element is a container of one or more <override> elements.

SLAs enforced across geo-redundant sites cannot contain an <overrides> element.

<override>
Parent: <overrides>

The contract data specified within this element overrides the default contractual data
specified in the <contract> element that directly follows the <scs> element.

Structure of a Service Level Agreement

Defining Service Provider Group and Application Group SLAs 8-7

When an override occurs, only the restrictions specified in the <override> element are
used. All restrictions specified in the default contract are disregarded if not they are
not explicitly restated in the <override> element.

Each <override> element can contain the following child elements:

■ <startDate>: Specifies the start date that the contract data in the <override>
element is valid. If omitted, the start date for the service contract is used.

■ <endDate>: Specifies the end date that the contract data in the <override> element
is valid. If omitted, the end date for the service contract is used.

■ <startDow>: Specifies the starting weekday for which the contract data in the
<override> element is valid.

■ <endDow>: Specifies the end weekday for which the contract data in the
<override> element is valid. Use 1 for Sunday, 2 for Monday and so on. Optional
if <startDow> is not specified.

■ <startTime>: Specifies the start time for which the contract data in the <override>
element is valid.

■ <endTime>: Specifies the end time for which the contract data given within the
<override> element is valid.

■ <contract>: Specifies the contract data that overrides the default contract data
specified directly after the <scs> element. See "Structure of a Contract" for details
about the elements contained within a <contract> element.

For an override to be active all of the following conditions must be true:

■ Today’s date must be the same as or later than the start date.

■ Today’s date must be earlier than end date (must not be the same date).

■ Current time must be between the start time and end time. If the end time is
earlier than the start time, the time period spans midnight.

■ Current day of week must be between start day of week and end day of week or
equal to start day of week or day of week. If end day of week is less than start day
of week, the time period spans the weekend.

Since several <override> elements can be defined with different settings for the time
periods for which the restrictions applies, make sure the time periods do not overlap.
if time periods overlap, there is no guarantee which contract applies.

Example 8–3 <overrides> Element with Two <override> Children

<overrides>
 <override>
 <startDate>2008-11-01</startDate>
 <endDate>2008-11-30</endDate>
 <startDow>2</startDow>
 <endDow>2</endDow>
 <startTime>09:00:00</startTime>
 <endTime>10:00:00</endTime>
 <contract>
 ...
 </contract>
 </override>
 <override>
 <startDate>2008-12-01</startDate>
 <endDate>2008-12-30</endDate>
 <startDow>2</startDow>

Structure of a Service Level Agreement

8-8 Services Gatekeeper Accounts and SLAs Guide

 <endDow>2</endDow>
 <contract>
 ...
 </contract>
 </override>
</overrides>

<proxyhost>
Parent: <contextAttribute>

This attribute specifies the IP address of a proxy host to use for notifications or
callbacks to an application. You can use this attribute alone, and the default port 8080
is specified for notifications, or you can specify a different port using the <proxyport>
attribute. See "Adding Proxy Servers for Notifications and Callbacks" in Services Gatekeeper
Application Developer's Guide for more information.

This SLA fragment specifies a proxy host with the IP address of 10.161.159.185, using
the port number 7999 for the OneAPI SMS plug-in.

<scs>oracle.ocsg.parlayrest.callback.ClientSmsNotificationCallback</scs>
 <contract>
 <requestContext>
 <contextAttribute>
 <attributeName>proxyhost</attributeName>
 <attributeValue>10.161.159.185</attributeValue>
 </contextAttribute>
 <contextAttribute>
 <attributeName>proxyport</attributeName>
 <attributeValue>7999</attributeValue>
 </contextAttribute>
 </requestContext>
 </contract>

<proxyport>
Parent: <contextAttribute>

This attribute specifies the port number of a proxy host to use for notifications or
callbacks from an application. Must be paired with a <proxyhost> element.

<rate>
Parent: <serviceTypeContract>, <methodRestriction>, <composedServiceContract>

This element defines the maximum number of requests to be guaranteed over a short
time period, measured in milliseconds.

The <rate> element contains the following child elements:

■ <reqLimit>

■ <timePeriod>

Overall performance can be adversely affected if the <reqLimit> is frequently
exceeded, because requests rejected for exceeding the limit cannot be processed until
the next <timePeriod> begins.

To minimize the chances of this type of delay occurring, define a rate with small time
frames, in terms of minutes rather than hours. For example, 1000 requests per minute,

Structure of a Service Level Agreement

Defining Service Provider Group and Application Group SLAs 8-9

as defined in Example 8–4:

Example 8–4 Rate in Small Time Frames: Minute

<rate> <reqLimit>1000</reqLimit> <timePeriod>60000</timePeriod> </rate>

is similar in terms of throughput to 60,000 requests per hour as defined in
Example 8–5.

Example 8–5 Rate in Large Time Frames: Hour

<rate> <reqLimit>60000</reqLimit> <timePeriod>3600000</timePeriod> </rate>

But for Example 8–4, the maximum number of possible rejected requests is much
smaller for the one-minute <timePeriod> than for the one-hour <timePeriod> in
Example 8–5. If you define a rate with a one-hour <timePeriod> and the <reqLimit> is
reached in the first 10 minutes, all subsequent requests will be rejected for the rest of
the hour.

The enforcement of rates set in SLAs is based on budgets that are set in the Budget
service. For information about budgets, see "Managing and Configuring Budgets" in
Services Gatekeeper System Administrator's Guide.

<reqLimit>
Parent: <rate>, <nodeRestriction>, <globalRestrictions>

This element specifies the maximum number of requests over the time period specified
in the corresponding <timePeriod> element.

<timePeriod>
Parent: <rate>, <nodeRestrictions>, <globalRestrictions>

This element specifies the time period in which the corresponding <reqLimit> applies,
in milliseconds.

<quota>
Parent: <serviceTypeContract>, <methodRestriction>, <composedServiceContract>

This element defines the maximum number of requests over a long period, measured
in days.

The counters associated with the quota are reset at the beginning of each time period.

The <quota> element contains the following child elements:

■ <qtaLimit>

■ <days>

■ <limitExceedOK>

<qtaLimit>
Parent: <quota>

This element defines the maximum number of requests over the time period defined in
the <days> element. Only one <qtaLimit> element can be specified per <quota>
element.

Structure of a Contract

8-10 Services Gatekeeper Accounts and SLAs Guide

<days>
Parent: <quota>

This element defines the time period to which the quota limit applies, specified in
days. Only integers are valid.

The starting day, (day 0), is the same day as the <startdate> element for the service
contract. See <startDate>. Only one <days> element can be specified per <quota>
element.

<limitExceedOK>
Parent: <quota>

This element specifies the action to take if the quota limit is exceeded. If true, the
request will be allowed even if the quota is exceeded. If false, the request will be
rejected. An alarm is always emitted if the limit is exceeded

<startDow>
Parent: <override>

Specifies the starting weekday for which the contract data given within the
<override> element is valid. Use 1 for Sunday, 2 for Monday and so on. Optional.

<endDow>
Parent: <override>

Specifies the end weekday for which the contract data in the <override> element is
valid. Use 1 for Sunday, 2 for Monday and so on. Optional if <startDow> is not
specified

<startTime>
Parent: <override>

Specifies the start time for which the contract data given within the <override>
element is valid. Use format hh:mm:ss, where hh can be 00–24. This entry is optional.

<endTime>
Parent: <override>

Specifies the end weekday for which the contract data in the <override> element is
valid. Use 1 for Sunday, 2 for Monday and so on. This entry is optional if <startDow>
is not specified.

Structure of a Contract
Example 8–6 illustrates the structure of the <contract> element in an SLA.

Example 8–6 Contract Structure

<contract>
 <guarantee>
 <methodGuarantee>
 <methodNameGuarantee></methodNameGuarantee>
 <reqLimitGuarantee></reqLimitGuarantee>

Structure of a Contract

Defining Service Provider Group and Application Group SLAs 8-11

 <timePeriodGuarantee></timePeriodGuarantee>
 </methodGuarantee>
 </guarantee>
 <methodRestrictions>
 <methodRestriction>
 <methodName></methodName>
 <rate>
 <reqLimit></reqLimit>
 <timePeriod></timePeriod>
 </rate>
 <quota>
 <qtaLimit></qtaLimit>
 <days></days>
 <limitExceedOK></limitExceedOK>
 </quota>
 </methodRestriction>
 </methodRestrictions>
 <methodAccess>
 <blacklistedMethod>
 <methodName></methodName>
 </blacklistedMethod>
 </methodAccess>
 <requestContext>
 <contextAttribute>
 <attributeName></attributeName>
 <attributeValeu></attributeValue>
 </contextAttribute>
 </requestContext>
 <resultRestrictions>
 <resultRestriction>
 <methodName></methodName>
 <parameterRemovalName></parameterRemovalName>
 <parameterMatch>
 <parameterName></parameterName>
 <parameterValues></parameterValues>
 </parameterMatch>
 <filterMethod></filterMethod>
 </resultRestriction>
 </resultRestrictions>
</contract>

<contract>
Parent: <serviceContract>, <override>

This element includes all contract-specific data. There is one <contract> element for
every <serviceContract> element and one for every <override> element.

The <contract> element can contain the following child elements:

■ <guarantee>

■ <methodRestrictions>

■ <methodAccess>

■ <params>

■ <requestContext>

■ <resultRestrictions>

Structure of a Contract

8-12 Services Gatekeeper Accounts and SLAs Guide

<guarantee>
Parent: <contract>

This optional element specifies the number of method requests that the service
provider or application is guaranteed during a specified time period. The time period
is expressed in milliseconds.

Method requests from service providers and applications for which the method is
tagged as guaranteed have precedence over requests from service providers and
applications not having the method tagged as guaranteed.

Requests are given high priority if the request rate is below either the request rate
specified in the service-provider-level SLA or the application-level SLA, whichever has
the higher request rate. For example, if the service-provider-level SLA guarantees 30
requests per second and the application-level SLA guarantees 40 requests per second,
the application level-SLA applies.

The <guarantee> element contains one or more <methodGuarantee> elements.

Each method specified by a <methodGuarantee> must have a corresponding
<methodRestriction> element. The time period defined for a method must be
identical in both the <guarantee> and <methodRestriction> elements.

<methodGuarantee>
Parent: <guarantee>

This element specifies a method for which high priority service is guaranteed. See
<guarantee> for details.

The <methodGuarantee> element contains the following child elements:

■ <methodNameGuarantee>

■ <timePeriodGuarantee>

■ <reqLimitGuarantee>

The <methodGuarantee> element is ignored for mobile-originated traffic.

<methodNameGuarantee>
Parent: <methodGuarantee>

This element specifies the name of the method to have guaranteed precedence.

Use the Plug-in Manager’s getServiceInfo operation to get a list of valid method
names for a service type. You must pass the appropriate service type as a parameter to
the getServiceInfo operation.You can obtain a list of service types with the Plug-in
Manager’s listServiceTypes operation. See section “Managing and Configuring the
Plug-in Manager” in Services Gatekeeper System Administrator's Guide for information on
using the getServiceInfo and listServiceTypes operations.

<timePeriodGuarantee>
Parent: <methodGuarantee>

This element specifies the length of time for which the guarantee is applied, in
milliseconds.

Structure of a Contract

Defining Service Provider Group and Application Group SLAs 8-13

<reqLimitGuarantee>
Parent: <methodGuarantee>

This element specifies the number of requests to be guaranteed over the time period
specified in the corresponding <timeperiodGuarantee>.

<methodRestrictions>
Parent: <guarantee>

This optional element restricts the number of method requests that an application is
allowed over a specified time period. A restriction over a short time period is called a
rate. A rate typically spans a few seconds. A restriction over a longer time period is
called a quota. A quota typically spans several days.

The <methodRestrictions> element contains one or more <methodRestriction>
elements. One <methodRestriction> element is needed for each method for which
usage should be restricted. Only one <methodRestrictions> element is allowed per
contract.

The <methodRestrictions> element is ignored for mobile-originated traffic.

Example 8–7 shows a sample <methodRestrictions> element with restrictions for
quotas and rates. It specifies the usage restrictions for the SendSms and
SendSmsLogo methods. The usage restriction for the rate is 5 requests per second (5
requests divided by 1000 milliseconds). The usage restriction for the quota is 600
requests over a 3 day period.

Example 8–7 Method Restrictions Element

<methodRestrictions>
 <methodRestriction>
 <methodName>sendSms</methodName>
 <rate>
 <reqLimit>5</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>600</qtaLimit>
 <days>3</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
 </methodRestriction>
 <methodRestriction>
 <methodName>sendSmsLogo</methodName>
 <rate>
 <reqLimit>5</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>600</qtaLimit>
 <days>3</days>
 <limitExceedOK>true</limitExceedOK>
 </quota>
 </methodRestriction>
</methodRestrictions>

The most restrictive limit is always enforced, so if a restriction in a
service-provider-level SLA is more restrictive than a restriction defined in an
application-level SLA, the service-provider-level SLA is enforced.

Structure of a Contract

8-14 Services Gatekeeper Accounts and SLAs Guide

If the application does not have any usage restrictions within the allowed methods,
omit the <methodRestrictions> element.

<methodRestriction>
Parent: <methodRestrictions>

This element specifies restrictions on the usage of a method in the application-facing
interface.

The <methodRestriction> element contains the following child elements:

■ <methodName>

■ <rate>

■ <quota>

<methodName>
Parent: <methodRestriction>, <blacklistedMethod>, <methodParameters>,
<resultRestriction>, <method>

This element specifies the name of the method to restrict.

Use the Plug-in Manager’s getServiceInfo operation to get a list of valid method
names for a service type. You must pass the appropriate service type as a parameter to
the getServiceInfo operation.You can obtain a list of service types with the Plug-in
Manager’s listServiceTypes operation. See section “Managing and Configuring the
Plug-in Manager” in Services Gatekeeper System Administrator's Guide for information on
using the getServiceInfo and listServiceTypes operations.

<methodAccess>
Parent: <contract>

This optional element blocks the application from accessing one or more methods in
the service capability.

If the application is allowed to access all methods, omit the <methodAccess> element.

The <methodAccess> element contains the <blacklistedMethod> child element.

<blacklistedMethod>
Parent: <methodAccess>

This element contains one <methodName> child element.

It prohibits use of the method specified in its <methodName> child element.

Use a separate <blacklistedMethod> element for each method to block. Example 8–8
blocks Native SMPP applications from sending SubmitMulti messages:

Example 8–8 A blacklistedMethod Element

<serviceContract>
 <startDate>2015-07-22</startDate>
 <endDate>9999-12-31</endDate>
 <scs>oracle.ocsg.protocol.smpp.plugin.SMPPPluginNorth</scs>
 <contract>
 <methodAccess>
 <blacklistedMethod>

Structure of a Contract

Defining Service Provider Group and Application Group SLAs 8-15

 <methodName>submitMulti</methodName>
 </blacklistedMethod>
 </methodAccess>
 </contract>
</serviceContract>

<params>
Parent: <contract>

This optional element is used both to allow and to prohibit certain parameters values
provided by applications.

The <params> element contains zero (0) or more <methodParameters> elements.

Example 8–9 shows a <params> element that allows allowed parameter values A, B,
and C for the sendMessage method. No other values for this parameter are allowed.

Example 8–9 <params> Element

<params>
 <methodParameters>
 <methodName>sendMessage</methodName>
 <parameterName>arg0.subject</parameterName>
 <parameterValues>A B C</parameterValues>
 <acceptValues>true</acceptValues>
 </methodParameters>
</params>

<methodParameters>
Parent: <params>

This optional element specifies method parameter values to allow or prohibit.

It contains the following child elements:

■ <methodName>

■ <parameterName>

■ <parameterValues> simple

■ <acceptValues>

<parameterName>
Parent: <methodParameters>, <parameterMatch>

This element specifies the name of the parameter whose values are to be allowed or
prohibited. The content of this element is the Java representation of the parameter
defined in the WSDL. The parameter representation is arg0.name_of_parameter_as_
defined_in_WSDL.

You can use the Plug-in Manager’s getServiceInfo operation to get a list of valid
parameter names for the method. You must pass the appropriate service type as a
parameter to the getServiceInfo operation.You can obtain a list of service types with
the Plug-in Manager’s listServiceTypes operation. See section “Managing and
Configuring the Plug-in Manager” in Services Gatekeeper System Administrator's Guide
for information on using the getServiceInfo and listServiceTypes operations.

Structure of a Contract

8-16 Services Gatekeeper Accounts and SLAs Guide

Example 8–10 shows an example of the parameters that getServiceInfo returns for the
sendMessage method for the MultimediaMessaging service type.

Example 8–10 Sample Output from getServiceInfo (type: MultimediaMessaging) for
SendMessage

Interface: com.bea.wlcp.wlng.px21.plugin.SendMessagePlugin
 Method: sendMessage
 Arguments:
 java.net.URI arg0.addresses[]
 java.math.BigDecimal arg0.charging.amount
 java.lang.String arg0.charging.code
 java.lang.String arg0.charging.currency
 java.lang.String arg0.charging.description
 java.lang.String arg0.priority.value
 java.lang.String arg0.receiptRequest.correlator
 java.net.URI arg0.receiptRequest.endpoint
 java.lang.String arg0.receiptRequest.interfaceName
 java.lang.String arg0.senderAddress
 java.lang.String arg0.subject
 Return arguments:
 java.lang.String arg0.result

If the parameter is an array (for example, arg0.addresses[]), do not use the brackets in
the SLA. For the example, the parameter name in the SLA should be:

<parameterName>arg0.addresses</parameterName>.

<parameterValues> simple
Parent: <methodParameters>

This element contains a list of parameter values to allow or prohibit, when contained
in a <methodParameters> element. Multiple values can be defined, separated by white
space.

If the SLA is regulating the Binary SMS Communication Service, UDH values must be
specified in decimal, not hexadecimal, format. In the following example, any UDH
with the values of 04, 05, 44, or 7F will be blocked:

<methodParameters>
 <methodName>sendBinarySms</methodName>
 <parameterName>arg0.binaryMessag[0].udh</parameterName>
 <parameterValues>4 5 68 127</parameterValues>
 <acceptValues>false</acceptValues>
</methodParameters>

<parameterValues> complex
Parent: <parameterMatch>

This element contains one or more <parameterValue> elements.

<parameterValue>
Parent:<parameterValues> complex

Each <parameterValue> element contains the value of the <parameterName> to match if
this element is the grandchild of a <parameterMatch> element. The value can be
expressed as a regular expression.

Structure of a Contract

Defining Service Provider Group and Application Group SLAs 8-17

<acceptValues>
Parent: <methodParameters>

This element specifies whether the parameter values controlled by the containing
<params> element are allowed or prohibited.

If <acceptValues> is true, the parameter values specified in the <parameterValues>
element are allowed and all other values are prohibited. If false, the specified
parameter values are prohibited and all other values are allowed

<requestContext>
Parent: <contract>

This optional element sends additional parameters, which may not be defined in the
interface, to a plug-in. The concept is similar to parameter tunneling, except that the
attribute-value pairs are defined in the SLA instead of being passed by the application.
For more information see “Parameter Tunneling” in Services Gatekeeper Extension
Developer's Guide.

The <requestContext> element contains one or more <contextAttribute> elements.

Example 8–11 shows a <requestContext> element that assigns values to two context
attributes.

Example 8–11 <requestContext> Example

<requestContext>
 <contextAttribute>
 <attributeName>com.bea.wlcp.wlng.plugin.sms.testName1</attributeName>
 <attributeValue>testValue1</attributeValue>
 </contextAttribute>
 <contextAttribute>
 <attributeName>com.bea.wlcp.wlng.plugin.sms.testName2</attributeName>
 <attributeValue>testValue2</attributeValue>
 </contextAttribute>
</requestContext>

<contextAttribute>
Parent: <requestContext>

A <contextAttribute> element defines the attribute-value pairs to be sent to the
plug-in.

This element contains the following one of each of the following child elements:

■ <attributeName>

■ <attributeValue>

A plug-in can retrieve the value specified in <attributeValue> using the name
specified in <attributeName>. The plug-in must implement the functionality for
fetching the value by name. For more information, see “Using Request Context
Parameters in SLAs” in Services Gatekeeper Extension Developer's Guide.

See the “Tunneled Parameters” sections in Services Gatekeeper Communication Service
Reference Guide for descriptions of the context attributes that are applicable to your
communication service. Note that not all communication services support tunneled
parameters and context attributes.

Structure of a Contract

8-18 Services Gatekeeper Accounts and SLAs Guide

<attributeName>
Parent: <contextAttribute>

This element contains the name that the plug-in uses to fetch the attribute.

<attributeValue>
Parent: <contextAttribute>

This element contains the value associated with the corresponding <attributeName>
in the <contextAttribute> element.

<resultRestrictions>
Parent: <contract>

This optional element filters results returned from application-initiated requests.

This element contains one or more <resultRestriction> elements.

Result Restrictions Example
Example 8–12 illustrates a results filter for the getData() method.

The getData() method returns an array of data, where data is a complex type
consisting of the name-value pair:

■ dataName

■ dataValue

Example 8–12 <resultRestrictions> Element for Blacklisting Array Parameter Values

<resultRestrictions>
 <resultRestriction>
 <methodName>getData</methodName>
 <parameterRemovalName>result.data[].dataName</parameterRemovalName>
 <parameterMatch>
 <parameterName>result.data[].dataName</parameterName>
 <parameterValues>
 <parameterValue>ssn<parameterValue>
 <parameterValue>homephone<parameterValue>
 <parameterValues>
 </parameterMatch>
 <filterMethod>BLACK_LIST</filterMethod>
 </resultRestriction>
<resultRestrictions>

Assuming the result before the filter is applied is:

■ result.data[0].dataName = “cellphone”

■ result.data[0].dataValue =”415-555-1234”

■ result.data[1].dataName = “ssn”

■ result.data[1].dataValue =” 123 45 6789”

■ result.data[2].dataName = “homephone”

■ result.data[2].dataValue =”415-333-4444”

After applying the result filter, the result is:

Structure of a Contract

Defining Service Provider Group and Application Group SLAs 8-19

■ result.data[0].dataName = “cellphone”

■ result.data[0].dataValue =”415-555-1234”

because <filterMethod> is BLACK_LIST and <parameterValues> filters out ssn and
homephone. Those data items are removed from the result returned to the application.

If <filterMethod> had been WHITE_LIST, the result after applying the filter would
be:

■ result.data[0].dataName = “ssn”

■ result.data[0].dataValue =”123 45 6789”

■ result.data[0].dataName = “homephone”

■ result.data[0].dataValue =”415-333-4444”

Only these parameters would match the filter that filters in the values in
<parameterValues>.

If <parameterRemovalName> had been result.data instead of result.data[] the filtered
result would be null in both cases, since both filters match. The absence of the [] means
that all results starting from the result.data hierarchy should be removed, given that
the filter matches the result.

<resultRestriction>
Parent: <resultRestrictions>

This element defines a result restriction.

The result restriction makes it possible to remove parameters returned from
application-initiated requests.

The return parameter to which the restriction applies is expressed as a String
representation of a Java class. Arrays are expressed using the [] notation directly
following the parameter name. The notation format is:

■ arg0.result.name_of_parameter_as_defined_in_WSDL when the parameter is a single
entity.

■ arg0.result[].name_of_parameter_as_defined_in_WSDL when the parameter is an
array.

If the return parameter is a complex type, the hierarchy is expressed using dot
notation. For example, if an array for the dateTime parameter is returned, the return
value expressed in XML is:

<xsd:complexType name="SmsMessage">
<xsd:sequence>
<xsd:element name="message" type="xsd:string"/>
<xsd:element name="senderAddress" type="xsd:anyURI"/>
<xsd:element name="smsServiceActivationNumber" type="xsd:anyURI"/>
<xsd:element name="dateTime" type="xsd:dateTime" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

</xsd:complexType>

The String representation is:

arg0.result[].dateTime.firstDayOfWeek
arg0.result[].dateTime.lenient
arg0.result[].dateTime.minimalDaysInFirstWeek
arg0.result[].dateTime.time.date
arg0.result[].dateTime.time.hours

Structure of a Contract

8-20 Services Gatekeeper Accounts and SLAs Guide

arg0.result[].dateTime.time.minutes
arg0.result[].dateTime.time.month
arg0.result[].dateTime.time.seconds
arg0.result[].dateTime.time.time
arg0.result[].dateTime.time.year
arg0.result[].dateTime.timeInMillis
arg0.result[].dateTime.timeZone.ID
arg0.result[].dateTime.timeZone.rawOffset
arg0.result[].message
arg0.result[].senderAddress
arg0.result[].smsServiceActivationNumber

The <resultRestriction> element contains the following child elements:

■ <methodName>: method for which to restrict the return parameter.

■ <parameterRemovalName>

■ <parameterMatch>: optional filter value to match

■ <filterMethod>: defines how the filter is applied

<parameterRemovalName>
Parent: <resultRestriction>

The <parameterRemovalName> element defines which part of a complex return
parameter is affected by the restriction.

It is possible to specify a leaf or a node in the hierarchy of the parameter. When a node
is specified, the node and all its siblings are removed.

If the <parameterRemovalName> element is:

<parameterRemovalName>arg0.result[].dateTime.timeZone.ID</parameterRemovalName>

only the timeZone.ID part of the result parameter is removed, because the element
specifies a leaf.

If the <parameterRemovalName> element is:

<parameterRemovalName>arg0.result[].dateTime.time</parameterRemovalName>

all of the dateTime siblings are removed from the result parameters, because the
element specifies a node. In this case, the following values would be removed:

■ arg0.result[].dateTime.time.date

■ arg0.result[].dateTime.time.hours

■ arg0.result[].dateTime.time.minutes

■ arg0.result[].dateTime.time.month

■ arg0.result[].dateTime.time.seconds

■ arg0.result[].dateTime.time.time

■ arg0.result[].dateTime.time.year

If the specified parameter is a Boolean, the parameter is not removed but set to false.

For information on how to get a list of valid parameter names for a method with a
specific service type, follow the instructions for <methodName>.

Structure of a Composed Service Contract

Defining Service Provider Group and Application Group SLAs 8-21

<parameterMatch>
Parent:<resultRestriction>

This element is optional.

If <parameterMatch> is used, result filtering occurs only if the parameter defined in the
<parameterName> child element has a value defined in one of its <parameterValue>
child elements.

The <parameterMatch> element contains the following child elements:

■ <parameterName>: exactly one

■ <parameterValues> complex: exactly one

<filterMethod>
Parent: <resultRestriction>

This element defines how the filter defined in <parameterMatch> is applied.

The value is an enumeration. Valid values are:

■ BLACK_LIST

■ WHITE_LIST

If <filterMethod> is defined as BLACK_LIST, all parameters matching
<parameterRemovalName> are removed if the request matches the filter.

If <filterMethod> is defined as WHITE_LIST, only the parameters matching
<parameterRemovalName> are kept if the request matches the filter.

Structure of a Composed Service Contract
A composed service contract is enforced for a composed service.

A composed service is created by combining multiple communication services, all of
which must be available and registered in Services Gatekeeper. You can then define
and apply enforcements on the composed service, instead of defining identical
enforcements separately for each service. A request of any one of the communication
services that participate in the composed service is treated as a request of the
composed service for the purposes of SLA enforcement.

A single SLA can contain composed service contracts as well as simple service
contracts. A composed service contract is located at the same level in the SLA
hierarchy as a service contract.

You can configure and test a composed service contract using the Platform Test
Environment. See the discussion of composed service-level agreements in the Services
Gatekeeper Platform Test Environment User's Guide for more information.

Composed Service Contracts
You can define a composed service contract in an application group SLA or in a service
provider group SLA.

The composed service contract is created when an SLA containing a
<composedServiceContract> element is loaded using the
loadApplicationGroupSlaByType or loadServiceProviderGroupSlaByType operations
to ServiceLevelAgreementMBean. See the “All Classes” section of Services Gatekeeper
OAM Java API Reference for details.

Structure of a Composed Service Contract

8-22 Services Gatekeeper Accounts and SLAs Guide

Scope
A composed service contract includes all the service types of its constituent
communication services and all the request rate and quota restrictions that may be
applied to those services under an individual service type contract.

A composed service contract can optionally be defined at the method level of
granularity so that enforcement is implemented on only specified methods. If
individual methods are not specified for a specific service in the composed service
contract, enforcement is applied for all methods of the specified service.

Multiple Composed Services
A single SLA can contain multiple composed service contracts.

A single communication service can participate as a component in multiple composed
service contracts. For example, one composed service named “Messaging” could be
composed of the Short Messaging and Multimedia Messaging communication
services, while another composed service named “LocationNotification”, defined in
the same SLA, could be composed of the Short Messaging and Terminal Location
communication services. In this case, the shared Short Messaging service would be
subject to the enforcements of both composed service contracts.

Conflicting Enforcements
It is possible to specify different enforcements that affect a single service within a
single SLA. If the enforcements in the multiple contracts are different, the more
restrictive enforcement is applied to requests of the shared service. But because
separate counters are maintained for each service within a composed service, requests
of the non-shared service are not counted towards the limit of the shared service.

For example, imagine an SLA that contains the following contracts, all of which
include the Sms service:

1. a service contract for the Sms service that allows 40 requests per second

2. a Messaging composed service contract, composed of the Sms service and the
Multimedia Messaging service, that allows 50 requests per second

3. a LocationNotification composed service contract, composed of the Sms service
and the Terminal Location service, that allows 60 requests per second

The maximum number of requests to the Sms service will be 40 requests per second.
But a request of one of the non-shared services, for example of the Multimedia
messaging or Terminal Location service, does not count against this 40-request limit on
the Sms service.

Budget Implications
All communication services in a composed service share the same budget restrictions
in the composed service contract. Any request of the composed service triggers a
decrease in the budget. If a request exceeds the budget restriction, subsequent requests
of the composed service are denied. The result is that if one of the services in the
composed SLA causes the budget of the composed SLA to be exceeded, requests from
the other constituent services are denied.

Example Composed Service SLA
Example 8–13 shows an SLA that contains a simple service contract for the Short
Messaging service and a composed service contract for a composed service named
“Messaging.”

Structure of a Composed Service Contract

Defining Service Provider Group and Application Group SLAs 8-23

The Messaging composed service includes the sendSMS and sendSmsLogo
operations in the ParlayX2.1 Short Messaging communication service and all of the
operations that Services Gatekeeper supports in the ParlayX2.1 Multimedia Messaging
communication service.

Example 8–13 Service Level Agreement with Composed Service Contract

<Sla xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
serviceProviderGroupID="default_sp_group" >
 <serviceContract>
 <startDate>2010-04-17</startDate>
 <endDate>2011-04-17</endDate>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 </serviceContract>
 <composedServiceContract>
 <composedServiceName>Messaging</composedServiceName>
 <service>
 <serviceTypeName>Sms</serviceTypeName>
 <method>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 <methodName>sendSMS</methodName>
 </method>
 <method>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 <methodName>sendSmsLogo</methodName>
 </method>
 </service>
 <service>
 <serviceTypeName>MultiMediaMessage</serviceTypeName>
 </service>
 <startDate>2010-04-17</startDate>
 <endDate>2011-04-17</endDate>
 <rate>
 <reqLimit>50</reqLimit>
 <timePeriod>50</timePeriod>
 </rate>
 <quota>
 <qtaLimit>100</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </composedServiceContract>
</Sla>

<composedServiceName>
Parent: <composedServiceContract>

This element describes the unique, user-defined name for the composed service.

<service>
Parent: <composedServiceContract>

This element defines a constituent communication service in the composed service.
The service must be available and registered in Services Gatekeeper.

There must be at least one <service> element in a <composedServiceContract>
element. Normally there are multiple <service> elements.

The <service> element contains the following child elements:

Structure of a Composed Service Contract

8-24 Services Gatekeeper Accounts and SLAs Guide

■ <serviceTypeName>

■ <method>

The service is identified by the <serviceTypeName> child element of the <service>
element. The <serviceTypeName> element is required.

The <method> child element of the <service> element is optional.

<method>
Parent: <service>

This optional element, if used, specifies a method of the service to which the composed
service contract’s enforcements are applied. There can be multiple <method> child
elements of a single <service> element.

If at least one <method> element is specified, only the specified method or methods
participate in the composed service.

If there are no <method> elements contained in a <service> element, enforcement is
applied to all of the service’s methods.

The <method> element contains the following child elements:

■ <scs>

■ <methodName>

9

Defining Global Node and Service Provider Group Node SLAs 9-1

9Defining Global Node and Service Provider
Group Node SLAs

This chapter describes node SLAs, which define access to underlying network
elements in Oracle Communications Services Gatekeeper.

Node SLAs are different from the SLAs that define applications’ use of Oracle
Communications Services Gatekeeper described in "Defining Service Provider Group
and Application Group SLAs".

There are two kinds of node SLAs:

■ Service provider group node SLAs define a specific service provider’s access to the
network.

■ Global node SLAs define Services Gatekeepers’s access to the network regardless
of service provider.

Structure of a Node Service Level Agreement
The node SLAs are written in XML. Global node SLAs and service provider group
node SLAs are slightly different.

The schema for the global node SLA is in Middleware_Home/ocsg_
6.0/modules/com.bea.wlcp.wlng.account_6.0.0.0.jar: sla_schema/global_node_sla_
file.xsd.

The schema for the service provider group node SLA is in Middleware_Home/ocsg_
6.0/modules/com.bea.wlcp.wlng.account_6.0.0.0.jar: sla_schema/sp_node_sla_
file.xsd.

<Sla>
When used to define a node SLA, the <Sla> element contains one of the following:

■ zero or more <nodeContract> elements for a service provider group node SLA

■ zero or more <globalContract> elements for a global node SLA

The <nodeContract> and <globalContract> elements are mutually exclusive in one
SLA instance. You cannot combine <nodeContract> and <globalContract> elements
in the same <Sla>.

If the SLA is a service provider group node SLA, the serviceProviderGroupID
attribute specifies the service provider group for which the SLA is valid.

If the SLA is a global node SLA, omit the serviceProviderGroupID attribute.

Service Provider Group Node SLA

9-2 Services Gatekeeper Accounts and SLAs Guide

Service Provider Group Node SLA
The service provider group node SLA consists of an <Sla> element containing zero (0)
or more <nodeContract> elements.

The serviceProviderGroupID attribute in the <Sla> element specifies the service
provider group for which the SLA file is valid.

Example 9–1 shows the structure of a service provider group node SLA.

Example 9–1 Service Provider Group Node SLA Structure

<Sla serviceProviderGroupID="spGroup1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="sp_node_sla_file.xsd">
<nodeContract>
 <!--Contract data for network node 1-->
 </nodeContract>
<nodeContract>
 <!--Contract data for network node 2-->
 </nodeContract>
<nodeContract>
 <!--Contract data for network node n-->
 </nodeContract>
</Sla>

<nodeContract>
Parent: <Sla>

The <nodeContract> element defines under which conditions Services Gatekeeper can
access one or more network nodes on behalf of the service provider group specified in
the <Sla> element.

The <nodeContract> element contains the following child elements:

■ <startDate>: one (1)

Specifies the date the service provider can start accessing the network node.

■ <endDate> one (1)

Specifies the last date that the service provider can accessing the network node.

■ <nodeID>: one (1)

■ <nodeRestrictions>: zero (0) or one (1)

Example 9–2 shows a <nodeContract> that limits access to node A to 10 requests per
second (10 requests divided by 1000 milliseconds).

Example 9–2 <nodeContract> Element

<nodeContract>
 <startDate>2005-01-01</startDate>
 <endDate>2010-06-01</endDate>
 <nodeID>A</nodeID>
 <nodeRestrictions>
 <nodeRestriction>
 <reqLimit>10</reqLimit>
 <timePeriod>1000</timePeriod>
 </nodeRestriction>
 </nodeRestrictions>

Global Node SLA

Defining Global Node and Service Provider Group Node SLAs 9-3

</nodeContract>

<nodeID>
Parent: <nodeContract>

The <nodeID> element specifies the network node ID of the node for which a
<nodeContract> controls access. The node ID is registered in the Plug-in Manager. A
node ID can be assigned to one or more network nodes and the contract can therefore
be valid for one or more nodes.

Use the Plug-in Manager’s getPluginNodeId operation to get the node ID. See
“Managing and Configuring the Plug-in Manager” in Services Gatekeeper System
Administrator's Guide for information the getPluginNodeId operation.

<nodeRestrictions>
Parent: <nodeContract>

The <nodeRestrictions> element contains zero or one <nodeRestriction> elements.

<nodeRestriction>
Parent: <nodeRestrictions>

The <nodeRestriction> element defines the restrictions imposed by the
<nodeContract> in a service provider group node SLA.

This element contains the following child elements:

■ <reqLimit>: zero (0) or one (1)

■ <timePeriod>: zero (0) or one (1)

Global Node SLA
The global node SLA consists of an <Sla> element containing zero (0) or more
<globalContract> elements.

For a global node SLA, there should be no serviceProviderGroupID attribute in the
<Sla> element.

Example 9–3 shows the structure of a global node SLA.

Example 9–3 Global Node SLA Structure

<Sla xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="global_node_sla_file.xsd">
<globalContract>
 <!--Contract data for network node 1-->
 </globalContract>
<globalContract>
 <!--Contract data for network node 2-->
 </globalContract>
<globalContract>
 <!--Contract data for network node n-->
 </globalContract>
</Sla>

Global Node SLA

9-4 Services Gatekeeper Accounts and SLAs Guide

<globalContract>
Parent: <Sla>

The <globalContract> element defines the conditions under which Services
Gatekeeper can access one or more network nodes, regardless of which service
provider sent the request.

The <globalContract> element contains the following child elements

■ <startDate>: one (1)

Specifies the date that Services Gatekeeper can start accessing the network node.

■ <endDate>: one (1)

Specifies the last date that Services Gatekeeper can access the network node.

■ <nodeID>: one (1)

■ <<globalRestrictions>: zero (0) or one(1)

Example 9–4 shows a <globalContract> that limits Services Gatekeeper’s access to
node A to 10 requests per second (10 requests divided by 1000 milliseconds). Normal
priority requests are passed to the node until the maximum request rate is reached.

Example 9–4 <globalContract> Element

<globalContract>
 <startDate>2005-01-01</startDate>
 <endDate>2010-06-01</endDate>
 <nodeID>A</nodeID>
 <globalRestrictions>
 <globalRestriction>
 <reqLimit>1000</reqLimit>
 <timePeriod>10000</timePeriod>
 <guaranteePercentage>50</guaranteePercentage>
 </globalRestriction>
 </globalRestrictions>
</globalContract>

<globalRestrictions>
Parent: <globalContract>

The <globalRestrictions> element contains zero or one <globalRestriction>
elements.

<globalRestriction>
Parent: <globalRestrictions>

The <globalRestriction> element defines the restrictions imposed by the
<globalContract> in a global node SLA.

This element contains the following child elements:

■ <reqLimit>: zero (0) or one (1)

■ <timePeriod>: zero (0) or one (1)

■ <guaranteePercentage>: zero (0) or one (1)

Global Node SLA

Defining Global Node and Service Provider Group Node SLAs 9-5

<guaranteePercentage>
Parent: <globalRestriction>

The <guaranteePercentage> element is used in a <globalRestriction> element in a
global node contract.

It specifies the relative priority between requests marked as guaranteed (high priority)
and normal priority requests. The integer value represents a percentage.

If set to 0, guaranteed requests and normal priority requests are treated equally, no
matter whether they are guaranteed or normal priority. The value of 0 makes the
priority of the requests irrelevant.

If set to 100, only guaranteed requests are passed on to the network node. No normal
priority requests are allowed.

If set to 50, normal priority requests are passed on to the network node up to the point
where the maximum request rate is reached. After that point, requests with normal
priority are rejected.

Other values can be used to fine-tune how likely it is that requests of different priority
are allowed. A higher value makes is more likely that normal priority requests will be
rejected as traffic rate increases. A lower value makes it less likely that normal priority
requests will be rejected.

The default value is 50.

Global Node SLA

9-6 Services Gatekeeper Accounts and SLAs Guide

A

Sample SLA XML File A-1

ASample SLA XML File

The following is a complete sample Service Level Agreement (SLA) XML file for the
Parlay X 2.1 Short Messaging Communication service. It contains a
<serviceContract>, a <serviceTypeContract>, and a <composedServiceContract>.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Sla applicationGroupID="default_app_group"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="app_sla_file.xsd">
 <serviceContract>
 <startDate>2005-07-22</startDate>
 <endDate>9999-12-31</endDate>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 <contract>
 <guarantee>
 <methodGuarantee>
 <methodNameGuarantee>sendSmsLogo</methodNameGuarantee>
 <reqLimitGuarantee>10000</reqLimitGuarantee>
 <timePeriodGuarantee>80000</timePeriodGuarantee>
 </methodGuarantee>
 </guarantee>
 <methodRestrictions>
 <methodRestriction>
 <methodName>sendSms</methodName>
 <rate>
 <reqLimit>9000</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>900000</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </methodRestriction>
 </methodRestrictions>
 <params>
 <methodParameters>
 <methodName>sendSms</methodName>
 <parameterName>arg0.message</parameterName>
 <parameterValues>foo</parameterValues>
 <acceptValues>false</acceptValues>
 </methodParameters>
 </params>
 <methodAccess>
 <blacklistedMethod>
 <methodName>sendSmsLogo</methodName>
 </blacklistedMethod>

A-2 Services Gatekeeper Accounts and SLAs Guide

 </methodAccess>
 <requestContext>
 <contextAttribute>
 <attributeName>key1</attributeName>
 <attributeValue>value1</attributeValue>
 </contextAttribute>
 </requestContext>
 <resultRestrictions>
 <resultRestriction>
 <methodName>getSmsDeliveryStatus</methodName>
 <parameterRemovalName>arg0.requestIdentifier</parameterRemovalName>
 <parameterMatch>
 <parameterName>arg0.requestIdentifier</parameterName>
 <parameterValues>
 <parameterValue>demo</parameterValue>
 </parameterValues>
 </parameterMatch>
 <filterMethod>BLACK_LIST</filterMethod>
 </resultRestriction>
 </resultRestrictions>
 </contract>
 <overrides>
 <override>
 <startDate>2010-11-30</startDate>
 <endDate>2012-11-30</endDate>
 <startDow>2</startDow>
 <endDow>6</endDow>
 <contract>
 <guarantee>
 <methodGuarantee>
 <methodNameGuarantee>sendSms</methodNameGuarantee>
 <reqLimitGuarantee>1000</reqLimitGuarantee>
 <timePeriodGuarantee>40000</timePeriodGuarantee>
 </methodGuarantee>
 </guarantee>
 <methodRestrictions>
 <methodRestriction>
 <methodName>sendSms</methodName>
 <rate>
 <reqLimit>500</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>10000</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </methodRestriction>
 </methodRestrictions>
 <params>
 <methodParameters>
 <methodName>sendSms</methodName>
 <parameterName>arg0.message</parameterName>
 <parameterValues>foo2</parameterValues>
 <acceptValues>false</acceptValues>
 </methodParameters>
 </params>
 <methodAccess>
 <blacklistedMethod>
 <methodName>sendSmsLogo</methodName>

Sample SLA XML File A-3

 </blacklistedMethod>
 <blacklistedMethod>
 <methodName>sendSmsRingtone</methodName>
 </blacklistedMethod>
 </methodAccess>
 <requestContext>
 <contextAttribute>
 <attributeName>key2</attributeName>
 <attributeValue>value2</attributeValue>
 </contextAttribute>
 </requestContext>
 <resultRestrictions>
 <resultRestriction>
 <methodName>getSmsDeliveryStatus</methodName>

<parameterRemovalName>arg0.requestIdentifier</parameterRemovalName>
 <parameterMatch>
 <parameterName/>
 <parameterValues>
 <parameterValue>22</parameterValue>
 <parameterValue>33</parameterValue>
 </parameterValues>
 </parameterMatch>
 <filterMethod>WHITE_LIST</filterMethod>
 </resultRestriction>
 </resultRestrictions>
 </contract>
 </override>
 </overrides>
 </serviceContract>
 <serviceTypeContract>
 <serviceTypeName>Sms</serviceTypeName>
 <startDate>2010-11-30</startDate>
 <endDate>2010-11-30</endDate>
 <rate>
 <reqLimit>1000</reqLimit>
 <timePeriod>1000</timePeriod>
 </rate>
 <quota>
 <qtaLimit>90000</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </serviceTypeContract>
 <composedServiceContract>
 <composedServiceName>Messaging</composedServiceName>
 <service>
 <serviceTypeName>Sms</serviceTypeName>
 <method>
 <scs>com.bea.wlcp.wlng.px21.plugin.SendSmsPlugin</scs>
 <methodName>sendSMS</methodName>
 </method>
 </service>
 <service>
 <serviceTypeName>MultiMediaMessage</serviceTypeName>
 </service>
 <startDate>2010-04-17</startDate>
 <endDate>2011-04-17</endDate>
 <rate>
 <reqLimit>50</reqLimit>

A-4 Services Gatekeeper Accounts and SLAs Guide

 <timePeriod>50</timePeriod>
 </rate>
 <quota>
 <qtaLimit>100</qtaLimit>
 <days>1</days>
 <limitExceedOK>false</limitExceedOK>
 </quota>
 </composedServiceContract>
</Sla>

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents

	1 About Service Level Agreements and Accounts
	About SLAs
	System SLAs
	Custom SLAs

	About Accounts
	Accounts
	Account Groups
	Application Instances

	Associations Among SLA Types, Account Types, and Group Types
	Typical SLA and Account Workflow
	Using Partner and API Management Portal to Manage SLAs and Accounts

	2 Managing Application Instances
	Summary of Tasks Related to Application Instances
	About Application Instance States
	Web Services Security

	3 Managing SLAs
	Introduction to SLA types
	Summary of Tasks Related to SLAs
	Managing Service Provider and Application Group System SLAs
	Service Provider Group System SLAs
	Application Group SLAs

	Managing Node SLAs
	Global Node SLAs
	Service Provider Group Node SLAs

	Subscriber SLAs
	Custom SLAs
	Custom XSDs
	Custom Application Group SLAs
	Custom Service Provider Group SLAs
	Custom Global SLAs

	Mapping of Deny Codes to HTTP Responses
	List Deny Code Definitions
	List Mappings
	Add a Mapping
	Get a Mapping
	Remove a Mapping
	Data Definitions
	Error Handling
	MBean Interface
	SLA Enforcement
	EDR Details
	Tranformation of Error Content

	4 Managing External SLAs
	Understanding External SLAs
	Understanding SLA Overlaps
	Managing with MBean
	Listing from the Database
	Understanding the XSD
	Subscribing to External SLAs
	External SLA only
	API Only
	External SLA and API

	Life Cycle
	Identifying the Plan
	Using External SLA Management REST Interfaces
	Creating a Plan
	Getting a Plan
	Getting All Plans
	Updating a Plan
	Deleting a Plan
	Updating a Plan State

	5 Managing Groups
	Managing Service Provider Groups
	Managing Application Groups

	6 Managing Service Provider and Application Accounts
	Managing Application Accounts
	Managing Service Provider Accounts
	About Account States
	Account Properties
	Account Reference

	7 Managing Sessions
	About Sessions

	8 Defining Service Provider Group and Application Group SLAs
	Structure of a Service Level Agreement
	<Sla>
	<serviceTypeContract>
	<serviceTypeName>
	<serviceContract>
	<composedServiceContract>
	<startDate>
	<endDate>
	<scs>
	<overrides>
	<override>
	<proxyhost>
	<proxyport>
	<rate>
	<reqLimit>
	<timePeriod>
	<quota>
	<qtaLimit>
	<days>
	<limitExceedOK>
	<startDow>
	<endDow>
	<startTime>
	<endTime>

	Structure of a Contract
	<contract>
	<guarantee>
	<methodGuarantee>
	<methodNameGuarantee>
	<timePeriodGuarantee>
	<reqLimitGuarantee>
	<methodRestrictions>
	<methodRestriction>
	<methodName>
	<methodAccess>
	<blacklistedMethod>
	<params>
	<methodParameters>
	<parameterName>
	<parameterValues> simple
	<parameterValues> complex
	<parameterValue>
	<acceptValues>
	<requestContext>
	<contextAttribute>
	<attributeName>
	<attributeValue>
	<resultRestrictions>
	Result Restrictions Example

	<resultRestriction>
	<parameterRemovalName>
	<parameterMatch>
	<filterMethod>

	Structure of a Composed Service Contract
	Composed Service Contracts
	Scope
	Multiple Composed Services
	Conflicting Enforcements
	Budget Implications
	Example Composed Service SLA

	<composedServiceName>
	<service>
	<method>

	9 Defining Global Node and Service Provider Group Node SLAs
	Structure of a Node Service Level Agreement
	<Sla>

	Service Provider Group Node SLA
	<nodeContract>
	<nodeID>
	<nodeRestrictions>
	<nodeRestriction>

	Global Node SLA
	<globalContract>
	<globalRestrictions>
	<globalRestriction>
	<guaranteePercentage>

	A Sample SLA XML File

