

[1] Oracle® Communications
Unified Inventory Management
API Overview

Release 7.4

E88057-01

December 2017

Oracle Communications Unified Inventory Management API Overview, Release 7.4

E88057-01

Copyright © 2013, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Related Documentation.. v
Documentation Accessibility ... vi

1 Overview

2 Working with Transactions, Exceptions, and Logging

Working with Transactions .. 2-1
Working with Exceptions ... 2-2
Working with Logging .. 2-3

Configuring the Logging Level.. 2-3
Working with the Log Interface ... 2-3
About UIM Log Messages .. 2-4
Defining Custom Log Messages .. 2-5
Working with the FeedbackProvider Interface.. 2-5

3 Implementing a Generic Service Fulfillment Scenario

About the Generic Service Fulfillment Scenario ... 3-1
Querying for the Specification .. 3-4
Creating the Service and Service Configuration.. 3-4

Creating the Service ... 3-5
Retrieving the Service Configuration Specification .. 3-6
Creating the Service Configuration ... 3-7
About Alternate Flows .. 3-8

Changing the Service.. 3-8
Disconnecting the Service .. 3-9

Creating and Associating the Party... 3-9
Creating the Party .. 3-9
Creating the Party Role .. 3-10
Associating the Party and Party Role with the Service ... 3-11
About Alternate Flows ... 3-12

Disassociating the Party and Party Role from the Service... 3-12
Deleting the Party .. 3-13
Deleting the Party Role ... 3-13

iv

Creating and Associating the Geographic Address with the Service ... 3-14
Creating the Geographic Place.. 3-14
Creating the Place Role... 3-15
Associating the Geographic Place and Place Role with the Service .. 3-16
About Alternate Flows ... 3-16

Disassociating the Geographic Place and Place Role from the Service............................ 3-17
Deleting the Geographic Place... 3-17
Deleting the Place Role.. 3-18

Configuring the Resources for the Service Configuration.. 3-18
Finding the Service.. 3-19
Finding the Current Service Configuration Version.. 3-20
Finding the Service Configuration Item .. 3-20
Finding the Custom Object to Assign .. 3-20
Creating the Custom Object to Assign... 3-21
Assigning the Resource to a Configuration Item ... 3-22
About Alternate Flows ... 3-23

Unassigning Resources from a Configuration Item.. 3-24
Reserving a Custom Object .. 3-25
Unreserving a Custom Object .. 3-27
Creating a Blocked Condition for a Custom Object.. 3-28
Deleting a Blocked Condition for a Custom Object .. 3-30

Setting Characteristic Values for the Service Configuration Item .. 3-31
About Alternate Flows ... 3-33

Unsetting Characteristic Values for the Service Configuration Item 3-33
Transitioning the Lifecycle Status ... 3-33

4 Implementing a Channelized Connectivity Enablement Scenario

About the Channelized Connectivity Enablement Scenario ... 4-1
Creating a Property Location and Associating Network Entity Codes.. 4-2
Creating a Logical Device and Associating LD Interfaces with Network Entity Codes 4-4
Creating Channelized Connectivity ... 4-6

Create Channelized Connectivity .. 4-6
Configure Capacity on the Channelized Connectivity... 4-8
Configure Auto Termination on the Channelized Connectivity .. 4-9

Enabling Channelized Connectivity .. 4-9
Manually Enabling Channelized Connectivity... 4-10
Performing Gap Analysis... 4-11
Adding Segments To Connectivity Path Based on the Gap Analysis Results 4-12

A UIM Entity Managers

B NFV Orchestration Java Managers

C Common Utility Code Examples

v

Preface

This guide explains how to extend Oracle Communications Unified Inventory
Management (UIM) through standard Java practices using Oracle Communications
Design Studio, which is an Eclipse-based integrated development environment. This
guide includes references to both applications, and often directs the reader to see the
Design Studio Help and the UIM Help for instructions on how to perform specific
tasks.

This guide includes information about the UIM entity managers. This guide also
includes the list of Java managers which provide UIM's NFV Orchestration
functionality. Similar to extending UIM and using the UIM APIs, the information in
this guide applies to extending the NFV Orchestration functionality as well.

This guide should be read after reading UIM Concepts, because this guide assumes that
the reader has a working knowledge of UIM architecture and concepts. This guide
should be read from start to finish because the information presented in a chapter
often builds upon information presented in a preceding chapter.

This guide includes examples of typical development code used in given situations.
The guidelines and examples may not be applicable in every situation.

Audience
This guide is intended for developers who implement code to extend UIM. The
developers should have a good working knowledge of XML and Java development
and, in particular, JPA, standard Java practices, and J2EE principles. In working with
the NFV Orchestration functionality, this guide assumes you have a working
knowledge of NFV concepts.

Related Documentation
For more information, see the following documents in the Oracle Communications
Unified Inventory Management documentation set:

■ UIM Installation Guide: Describes the requirements for installing UIM, installation
procedures, and postinstallation tasks.

■ UIM System Administrator’s Guide: Describes administrative tasks such as working
with cartridges and cartridge packs, maintaining security, managing the database,
configuring Oracle Map Viewer, and troubleshooting.

■ UIM Security Guide: Provides guidelines and recommendations for setting up UIM
in a secure configuration.

■ UIM Concepts: Provides an overview of important concepts and an introduction to
using both UIM and Design Studio.

vi

■ UIM Developer’s Guide: Explains how to customize and extend many aspects of
UIM, including the data model, life-cycle management, topology, security, rulesets,
user interface, and localization.

■ UIM Web Services Developer’s Guide: Describes the UIM Service Fulfillment Web
Service operations and how to use them, and describes how to create custom web
services.

■ UIM Information Model Reference: Describes the UIM information model entities
and data attributes, and explains patterns that are common across all entities. This
is available on the Oracle Software Delivery Cloud under “Oracle
Communications Unified Inventory Management Developer Documentation.”

■ Oracle Communications Information Model Reference: Describes the Oracle
Communications information model entities and data attributes, and explains
patterns that are common across all entities. The information described in this
reference is common across all Oracle Communications products. This is available
on the Oracle Software Delivery Cloud under “Oracle Communications Unified
Inventory Management Developer Documentation.”

■ UIM Cartridge Guide: Provides information about how you use cartridges and
cartridge packs with UIM. Describes the content of the base cartridges.

■ UIM NFV Orchestration Implementation Guide: Provides information about the NFV
Orchestration functional module and includes how to you install, use, and extend
this functionality. This guide also provides reference information for the NFV
Orchestration RESTful APIs.

For step-by-step instructions for performing tasks, log in to each application to see the
following:

■ Design Studio Help: Provides step-by-step instructions for tasks you perform in
Design Studio.

■ UIM Help: Provides step-by-step instructions for tasks you perform in UIM.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

1

Overview 1-1

1Overview

This document provides information that you can use when working with the Oracle
Communications Unified Inventory Management (UIM) application program
interfaces (APIs). This document also provides information that you can use when
working with NFV Orchestration Java manager APIs which are also UIM APIs. The
UIM APIs can be extended through custom code. The APIs, or extended APIs, can be
called from various places, such as from custom rulesets, custom web services, or
customized portions of the user interface (UI).

This document provides information on common things you need to do when
working with any of the UIM APIs, such as working with transactions, handling
errors, and logging messages. This information is described in Chapter 2, "Working
with Transactions, Exceptions, and Logging".

The bulk of this document is an overview of numerous UIM APIs, which were
specifically selected to describe API usage patterns and best practices for
implementing common business scenarios. Code samples are provided to show correct
usage of the APIs and expectations of implementing the APIs. This information is
described in Chapter 3, "Implementing a Generic Service Fulfillment Scenario" and
Chapter 4, "Implementing a Channelized Connectivity Enablement Scenario".

Lastly, this document provides a listing of the following:

■ UIM entity manager classes

■ NFV Orchestration Java managers

■ Code examples for common utility methods

This information is described in Appendix A, "UIM Entity Managers", Appendix B,
"NFV Orchestration Java Managers" and Appendix C, "Common Utility Code
Examples".

This document does not cover detailed Javadoc information, nor does it cover model
and domain information provided in other UIM documentation. This document
assumes that you are familiar with UIM functionality, and are planning to extend UIM
functionality by implementing a custom solution based on information provided in
UIM Developer's Guide or UIM NFV Orchestration Implementation Guide.

1-2 UIM API Overview

2

Working with Transactions, Exceptions, and Logging 2-1

2Working with Transactions, Exceptions, and
Logging

This chapter describes working with transactions, exceptions, and logging. You can
use this information when working with all UIM APIs because all APIs must be called
from within a transaction, and the calling code must handle exceptions and log any
errors.

See the UIM Javadoc for detailed information about API methods, such as the
exception thrown by each method.

Working with Transactions
This section describes handling transactions when calling APIs. A standard transaction
flow typically includes:

■ Starting a transaction

■ Calling an API

■ Determining if an error occurred

■ Performing a commit or rollback of the transaction based on whether an error
occurred

Example 2–1 shows a custom method that calls a manager API within a transaction:

Example 2–1 Call to an API from within a Transaction

public void sampleCallAPI()
{
 UserEnvironment ue = null;
 UserTransaction ut null;
 try {
 // Step 1: Begin a User Environment and Transaction
 ue = startUserEnvironment(); /* see appendix */
 ut = PersistenceHelper.makePersistenceManager().getTransaction();
 ut.begin();

 // Step 2: Call the API
 PlaceManager mgr = PersistenceHelper.makePlaceManager();
 List<PlaceSpecification> list = mgr.getAllPlaceSpecs();
 // Do something with the list...
 }
 catch (Throwable t) {
 // Step 3: Handle Exception
 try {

Working with Exceptions

2-2 UIM API Overview

 if (t instanceof ValidationException)
 // Do something with the Exception, such as print it.
 System.out.println("Method call returned validation exception.");
 }
 catch (Exception ignore) {}
 }
 finally {
 // Step 4: Commit or Rollback Transaction
 commitOrRollback(ut); /* see appendix */

 // Step 5: End User Environment
 if (ue != null)
 endUserEnvironment(ue); /* see appendix */
 }
}

When managing transactions and calling APIs from within a transaction, consider the
following:

■ A commit is usually needed between separate groups of API calls that are making
updates to the database. The group of APIs is called for an atomic and complete
set of operations.

■ A rollback is needed when any error occurs.

■ Ensure the API call is made within the correct context of live or business
interaction.

■ Ensure the User Environment is started before the transaction, and is ended within
the finally block.

Working with Exceptions
This section describes the exceptions that the UIM APIs can throw. The EntityManager
API methods typically throw a ValidationException when a validation error is
encountered. However, other exceptions can also be thrown. Table 2–1 describes all of
the UIM Exceptions that can be thrown, including the ValidationException.

Table 2–1 Exception Descriptions

Exception Extends Description

ValidationException InventoryException This exception is widely used and represents all
variations of business validation exceptional
conditions.

TransientObjectException ValidationException This exception is thrown by manager methods if an
object is passed into a method in a transient state.

ReadOnlyEntityException RuntimeException This exception is thrown when a read-only entity is
updated or deleted. A read-only entity can be an
entity that is in a queued/planned object state.

InventoryException Exception This exception is the Base Inventory Exception and
other exceptions extend it.

InvalidBusinessInteraction

Exception

RuntimeException This exception is thrown when the caller attempts to
perform an operation against an entity under a
BusinessInteraction with an invalid status such as
completed or cancelled.

Working with Logging

Working with Transactions, Exceptions, and Logging 2-3

Working with Logging
This section describes logging messages (informational, warning, and debug
messages). This section also describes detecting what messages were logged during an
API call, which is helpful when trying to determine the success or failure of an API
call.

See UIM System Administrator's Guide for information on configuring UIM logging,
including changing the logging level.

Configuring the Logging Level
The logging level, which is the amount of logging output to the log files from UIM API
calls, is determined by the values configured in the UIM_
Home/config/loggingconfig.xml file.

Example 2–2 shows an entry from the loggingconfig.xml file. This entry results in any
debug messages (through log.debug) existing in the code to be output to the log file
when the class exists in the specified package:

Example 2–2 Entry from loggingconfig.xml

<Logger name="oracle.communications.inventory.extensibility" additivity="false">
 <level="debug" />
 <AppenderRef ref="stdout"/>
 <AppenderRef ref="rollingFile"/>
</Logger>

Working with the Log Interface
The Log interface is located in the package:

oracle.communications.inventory.api.framework.logging

The Log interface provides the ability for an API, or custom code calling an API, to log
errors, throw exceptions, and log informational, warning, or debug messages.

Table 2–2 lists the items that can be requested of the Log interface. See the UIM
Javadoc for information regarding the specific parameters of each method.

DeletedObjectException ValidationException This exception is thrown by manager methods if an
object is passed into a method in a deleted state.

BusinessInteraction

DisassociationException

ValidationException This exception is thrown when the manager method
is attempting to alter a Business Interaction or
Business Interaction Item and the Business
Interaction validation determines it is not allowed.

BusinessInteraction

CompleteException

ValidationException This exception is thrown when the manager method
is attempting to complete a Business Interaction and
the validation determines it is not allowed.

Table 2–1 (Cont.) Exception Descriptions

Exception Extends Description

Working with Logging

2-4 UIM API Overview

When calling an API method, additional errors may be thrown. For example, a custom
ruleset that calls an API method may throw additional log messages that the
developer wants to include in the log file. Example 2–3 shows custom code that adds
additional log messages to the log file by calling the Log interface to log an
informational message and a debug message:

Example 2–3 Using the Log Interface

import oracle.communications.inventory.api.framework.logging.Log;
import oracle.communications.inventory.api.framework.logging.LogFactory;
protected Log log;

public void testLog()
{
 this.log = LogFactory.getLog(this.getClass());
 this.log.validationError("service.findServiceError", service.getId());

 if (this.log.isInfoEnabled())
 this.log.info ("", "This is an informational message");

 if (this.log.isDebugEnabled())
 this.log.debug ("", "This is a debug message.");
}

About UIM Log Messages
Messages logged by UIM APIs are defined in several *.properties files, per domain.
For example, the service.properties file defines the messages for the service domain,
and the equipment.properties file defines the messages for the equipment domain. All
message-specific *.properties files are located in the UIM_
Home/config/resources/logging directory.

Several of methods on the Log interface define an input parameter of a String key for
an error message. These unique keys, along with a corresponding error message
String, are defined in the message-specific *.properties files. Example 2–4 shows a
single message entry from the servce.properties file:

Table 2–2 Log Interface Description

Description Method to Use Throws Exception
Checked with Method on
FeedbackProvider

Fatal Exception fatal() LogFatalException getFatals()

Validation Exception validationException() ValidationException or the
exception type provided on
method input

getErrors()

hasMessages()

Validation Error validationError() Currently does not throw a
ValidationException

getErrors()

hasMessages()

Warning Message warn() Not applicable getWarnings()

hasMessages()

Informational Message info() Not applicable getNotes()

hasMessages()

Debug Message debug() Not applicable getDebugs()

Working with Logging

Working with Transactions, Exceptions, and Logging 2-5

Example 2–4 Message Entry from service.properties

service.findServiceError.id=110311
service.findServiceError=Error finding service with id {0}.

The numbers within the braces are parameter values passed in as arguments to the
method call.

Defining Custom Log Messages
You can define custom log messages in the UIM_Home/config/resources/logging
/*.properties files by adding a unique key and corresponding message. The key must
be unique across all *.properties files in this directory, and across any *.properties files
contained in any installed cartridges.

Working with the FeedbackProvider Interface
The FeedbackProvider interface is located in the package:

oracle.communications.inventory.api.framework.logging

After calling an API, the code must determine what messages have been logged. The
FeedbackProvider interface provides the ability for an API, or custom code calling an
API, to interrogate what has occurred. Example 2–5 shows code that checks to see if an
error has been logged, and then prints the error:

Example 2–5 Using the FeedbackProvider Interface

public void sampleCallAPIWithFeedbackProvider()
{
 UserEnvironment ue = null;
 UserTransaction ut = null;

 try {
 // Step 1: Begin a User Environment and Transaction
 // Step 2: Call the API
 if (!hasErrors()) /* see appendix */
 ut.commit();
 else {
 ut.rollback();
 List<FeedbackMessage> errors =
 ue.getFeedbackProvider().getErrors();
 for (java.util.Iterator iter = errors.iterator(); iter.hasNext();)
 {
 FeedbackMessage error = (FeedbackMessage)iter.next();
 System.out.println("Error occurred: " + error.getMessage());
 }
 }
 }
 catch (Throwable t)
 {
 // Step 3: Handle Exception
 }
 finally
 {
 // Step 4: Commit or Rollback Transaction
 // Step 5: End User Environment
 }
}

Working with Logging

2-6 UIM API Overview

3

Implementing a Generic Service Fulfillment Scenario 3-1

3 Implementing a Generic Service Fulfillment
Scenario

This chapter describes implementing a generic service fulfillment scenario using
various Oracle Communications Unified Inventory Management (UIM) application
program interfaces (APIs). You can use this information to gain a better understanding
of how the UIM APIs can be used to implement any service scenario.

About the Generic Service Fulfillment Scenario
The generic service fulfillment scenario is a Service entity with a single Custom Object
resource assignment. The example Service entity is simplified, but the API descriptions
are applicable and extensible to other types of services with various types of resource
assignments.

Figure 3–1 shows the process flow for a generic service fulfillment scenario:

About the Generic Service Fulfillment Scenario

3-2 UIM API Overview

Figure 3–1 Process Flow of Generic Service Fulfillment Scenario

About the Generic Service Fulfillment Scenario

Implementing a Generic Service Fulfillment Scenario 3-3

The process flow begins with querying for the service specification, which is used in
subsequent steps in the process flow, such as creating the Service and searching for
resources.

The process flow continues with creating the service, based upon the retrieved service
specification.

Next is creating the service configuration, which involves querying for the service
configuration specification, creating the service configuration based upon the retrieved
service configuration specification, and any creating default service configuration
items.

The process flow continues with the optional steps of creating additional entities, such
as Party and Geographic Address (a concrete Geographic Place entity representing a
Service Address). These entities are created and associated to the Service with specific
inventory roles.

Next in the process flow is configuring the resources for the service (resource
management), which involves querying for resources based on specific criteria using
core API searches or using custom searches. For example, you can call an API directly
to search for a Custom Object by ID, or you can call a custom API to search for a
Custom Object by its association to an Inventory Group or association to another
Custom Object. You can also create resources for immediate assignment to the service.
The main goal of resource management is to retrieve and validate the correct resources
for assignment to the service. However, you can also manage the resources with
alternate flows, such as creating reservations and conditions. Assignments,
reservations, and conditions are the main consumption concepts for a given resource.

In addition to resource assignments, the service and service configuration also have
characteristic values. These values are used to setup and configure the service instance.

After the service has been configured through resource and characteristic value
assignments, the process flow continues with transitioning the lifecycle status of
various entities. APIs are presented to show the transition of the statuses, and how the
statuses are managed within the core API functionality.

The process flow shown in Figure 3–1 shows the initial creation of the service, and also
shows other scenarios, such as changing the service configuration and disconnecting
the service. These additional scenarios are also described.

Now that you have a high-level understanding of the generic service fulfillment
process flow, each part of the process flow is further described in the following
sections. Each section includes information about the specific UIM APIs used to
perform each step and possible alternate flows of each step. Example code is also
included for each step.

■ Querying for the Specification

■ Creating the Service and Service Configuration

■ Creating and Associating the Party

■ Creating and Associating the Geographic Address with the Service

■ Configuring the Resources for the Service Configuration

■ Setting Characteristic Values for the Service Configuration Item

■ Transitioning the Lifecycle Status

Querying for the Specification

3-4 UIM API Overview

Querying for the Specification
This section describes the UIM API method used to query for the service specification.
The retrieved service specification will later be used to create the service.

Table 3–1 and example code provide information about using the API method.

Example 3–1 Querying for the Specification

Specification spec = null;
SpecManager specMgr = PersistenceHelper.makeSpecManager();

SpecSearchCriteria criteria = specMgr.makeSpecSearchCriteria();
CriteriaItem critSpecName = criteria.makeCriteriaItem();
critSpecName.setValue(specName);
critSpecName.setOperator(CriteriaOperator.EQUALS_IGNORE_CASE);
criteria.setName(critSpecName);
criteria.setSpecClass(ServiceSpecification.class);

List<Specification> specs = specMgr.findSpecifications(criteria);
if (Utils.isEmpty(specs))
{
 /* log error */
}
spec = specs.get(0);

Creating the Service and Service Configuration
This section describes the UIM API methods used to create the service and service
configuration, and to create default configuration items on the service configuration.
The API methods are listed in the order in which they must be called.

Table 3–1 Querying for the Specification

Topic Information

Name SpecManager.findSpecifications

Description This method retrieves specifications based on input criteria.

Pre-Condition The service specification already exists.

Internal Logic The database is queried for specifications meeting the input criteria.
Specifications matching the criteria are returned.

Post-Condition The desired service specification has been retrieved.

Extensions Not applicable

Tips If a list of specifications is returned, the list will need to be iterated to
select the desired specification to be used to create the service.

Set the SpecSearchCriteria.setValidSpecsOnly (true) to instruct the
find method to only return active specifications.

Set the SpecSearchCriteria.setSpecClass (ServiceSpecification.class) to
instruct the find method to only return service specifications.

Additional criteria, such as name, may also be set to further constrain
the list of service specifications returned by the find method.

This method is applicable for retrieving other types of specifications
by supplying the correct Specification class as the query parameter.
For example, it can be used to retrieve a CustomObject specification to
be used later for resource query or creation.

Creating the Service and Service Configuration

Implementing a Generic Service Fulfillment Scenario 3-5

Figure 3–2 shows the generic service configuration specification used in the generic
service fulfillment scenario:

Figure 3–2 Generic Service Configuration Specification Example

Creating the Service
This section describes the UIM API method used to create the service, based upon the
retrieved service specification.

Table 3–2 and example code provide information about using the API method.

Table 3–2 Creating the Service

Topic Information

Name ServiceManager.createService

Description This method creates a service instance built from the input service
specification. The service will be populated with the hard facts and
characteristics supplied by the caller.

Pre-Condition A service specification has been selected.

Internal Logic The service is created using the input service specification.

Creating the Service and Service Configuration

3-6 UIM API Overview

Example 3–2 Creating the Service

ServiceManager smgr = PersistenceHelper.makeServiceManager();

Finder f = PersistenceHelper.makeFinder();
Collection<ServiceSpecification> serviceSpecCollection =
 f.findByName(ServiceSpecification.class,"service_spec");
ServiceSpecification serviceSpec = (ServiceSpecification)
 serviceSpecCollection.iterator().next();

Service serviceModel = smgr.makeService(Service.class);
serviceModel.setName("Service_test22");
serviceModel.setDescription("Service_test22_desc");
serviceModel.setId("Service_test22");
serviceModel.setSpecification(serviceSpec);

Collection<Service> services = new ArrayList<Service>();
services.add(serviceModel);

List<Service> createdServices = smgr.createService(services);
service = createdServices.get(0);

Retrieving the Service Configuration Specification
This section describes the UIM API method used to retrieve the service configuration
specification. The retrieved service configuration specification will later be used to
create the service configuration.

Table 3–3 and example code provide information about using the API method.

Post-Condition The service has been created and is in Pending status.

Extensions Not applicable

Tips The Service.startDate and Service.name are required attributes. The
Service.characteristics can be populated with the desired
characteristics. If the service specification is defined with any required
characteristics that do not have default values specified, then those
characteristic must be set on the service in order for it to be created
successfully.

Table 3–3 Retrieving the Service Configuration Specification

Topic Information

Name ConfigurationManager.getConfigSpecTypeConfig

Description This method retrieves the configuration specifications related to the
input service specification.

Pre-Condition The service specification is associated to one or more configuration
specifications.

Internal Logic The configuration specifications related to the service specification are
retrieved and returned.

Post-Condition A configuration specification has been selected.

Extensions Not applicable

Table 3–2 (Cont.) Creating the Service

Topic Information

Creating the Service and Service Configuration

Implementing a Generic Service Fulfillment Scenario 3-7

Example 3–3 Retrieving the Service Configuration Specification

ConfigurationManager configurationManager =
 PersistenceHelper.makeConfigurationManager();

List< InventoryConfigurationSpec > configSpecs =
 configurationManager.getConfigSpecTypeConfig(serviceSpec, true);

return configSpecs;

Creating the Service Configuration
This section describes the UIM API method used to create the service configuration,
based upon the retrieved service configuration specification.

Table 3–4 and example code provide information about using the API method:

Example 3–4 Creating the Service Configuration

Finder f = PersistenceHelper.makeFinder();
Collection<Service> serviceCollection =
 f.findById(Service.class, servId);
Service serv = serviceCollection.iterator().next();
f.reset();
Collection<InventoryConfigurationSpec> invSpecCollection =
 f.findByName(InventoryConfigurationSpec.class,"Serv_Config");
InventoryConfigurationSpec invSpec =
 invSpecCollection.iterator().next();
BaseConfigurationManager bcd =
 PersistenceHelper.makeConfigurationManager
 (ServiceConfigurationVersion.class);
InventoryConfigurationVersion scv =
 bcd.makeConfigurationVersion(serv);
scv.setDescription(configId);

Tips If a list of specifications is returned, the list will need to be iterated to
select the desired specification to be used to create the service
configuration.

Table 3–4 Creating the Service Configuration

Topic Information

Name BaseConfigurationManager.createConfigurationVersion(Configurable
configurable, InventoryConfigurationVersion configuration,
InventoryConfigurationSpec configSpec)

Description This method creates a service configuration version and associates it
to the service.

Pre-Condition The service exists with no service configuration versions.

Internal Logic Not applicable

Post-Condition The first configuration version is created and associated to the service.
This method will default the configuration items based on the input
configSpec.

Extensions Not applicable

Tips The service, configuration and configSpec parameters are required.

Table 3–3 (Cont.) Retrieving the Service Configuration Specification

Topic Information

Creating the Service and Service Configuration

3-8 UIM API Overview

scv.setId(configId);
scv.setName(configId);
scv.setEffDate(new Date());
InventoryConfigurationVersion createdConfig =
 bcd.createConfigurationVersion(serv, scv,invSpec);

About Alternate Flows
The generic service fulfillment scenario creates a service and initial service
configuration. Alternate flows to this scenario may be to change the service, or to
disconnect the service.

The alternate flows described in this section are:

■ Changing the Service

■ Disconnecting the Service

Changing the Service
This section describes the UIM API method used to change an existing service by
adding a new service configuration version. The main goal is to create an IN_
PROGRESS service configuration version so additional resource or characteristic
changes can be executed. For example, after creating an initial service configuration
version to assign a custom object to a service, a second service configuration version
can be created to unassign the custom object previously allocated.

Table 3–5 and example code provide information about using the API method.

Example 3–5 Changing the Service

Finder f = PersistenceHelper.makeFinder();
Collection<Service> serviceCollection = f.findById(Service.class, servId);
Service serv = serviceCollection.iterator().next();
f.reset();
Collection<InventoryConfigurationSpec> invSpecCollection =
 f.findByName(InventoryConfigurationSpec.class,"Serv_Config");
InventoryConfigurationSpec invSpec =
 invSpecCollection.iterator().next();
BaseConfigurationManager bcd =
 PersistenceHelper.makeConfigurationManager(ServiceConfigurationVersion.class);
InventoryConfigurationVersion scv =
 bcd.makeConfigurationVersion(serv);
scv.setDescription(configId);

Table 3–5 Changing the Service

Topic Information

Name BaseConfigurationManager.createConfigurationVersion(Configurable
configurable, InventoryConfigurationVersion configuration)

Description This method creates new configuration version from the most recently
completed previous configuration version.

Pre-Condition A service with a completed service configuration version must exist.

Internal Logic Not applicable

Post-Condition A service configuration version is created with a status of IN_
PROGRESS.

Extensions Not applicable

Tips The service and configuration parameters are required.

Creating and Associating the Party

Implementing a Generic Service Fulfillment Scenario 3-9

scv.setId(configId); scv.setName(configId);
scv.setEffDate(new Date());
InventoryConfigurationVersion createdConfig =
 bcd.createConfigurationVersion(serv, scv);

Disconnecting the Service
This section describes the UIM API method used to disconnect a service when the
service is no longer needed.

Table 3–6 and example code provide information about using the API method.

Example 3–6 Disconnecting the Service

ServiceManager sm = PersistenceHelper.makeServiceManager();
sm.disconnectService(service);

Creating and Associating the Party
This section describes the UIM API methods used to create a party, create a party role,
and associate the party and party role with the service. The API methods are listed in
the order in which they must be called.

Creating the Party
This section describes the UIM API method used to create the party.

Table 3–7 and example code provide information about using the API method.

Table 3–6 Disconnecting the Service

Topic Information

Name ServiceManager.disconnectService

Description This method will transition the state of a service and invoke necessary
business logic for the service and configuration version depending on
the type of transition initiated.

Pre-Condition The service exists and there are no configuration versions in a state
other than Completed or Cancelled.

Internal Logic Not applicable

Post-Condition The service has a Pending Disconnect status.

A new configuration version is created and any resources that are
currently assigned, are unassigned. The configuration version has an
In Progress status.

Extensions Not applicable

Tips The businessAction to be passed as input to the transition method is
ServiceAction.DISCONNECT.

Note: The associations of the party and party role with the service
are optional, and can be associated before or after the creation of the
initial service configuration. Typically, these types of associations do
not change for the service, but alternate flows are presented to show
how the associations can be changed if necessary.

Creating and Associating the Party

3-10 UIM API Overview

Example 3–7 Creating the Party

Finder finder = PersistenceHelper.makeFinder();

PartyManager mgr = PersistenceHelper.makePartyManager();
Party party = mgr.makeParty();
Collection<Party> parties = new ArrayList<Party>();

party.setId(partyId);
party.setName("Party_Name");
party.setDescription("Party_Description");

Collection<PartySpecification> partyspec =
 f.findByName(PartySpecification.class,"Test_Party_Spec");

PartySpecification partySpec =partyspec.iterator().next();
party.setSpecification(partySpec);

parties.add(party);

List<Party> results = mgr.createParties(parties);
Party resulty = results.iterator().next();;

Creating the Party Role
This section describes the UIM API method used to create the party role.

Table 3–8 and example code provide information about using the API method.

Table 3–7 Creating the Party

Topic Information

Name PartyManager.createParties

Description This method takes a collection of Party entities and persist them into
the database. The Party Role and association to the Service is setup by
a different API.

Pre-Condition Party Specification is valid and retrieved from the database. Party has
a valid and unique ID.

Internal Logic Take the collection of transient Party entities and persists them into
the database, and return the collection of persisted Party entities.
Validate that the Parties are not duplicated by ID and they all have
valid PartySpecification.

Post-Condition Persistent Party entities are returned.

Extensions This API is defined as an extension point to allow custom validation
before or after the Parties are created. For instance, the IDs can be
generated based on some custom algorithm.

Tips Party is a CharacteristicExtensible entity. The characteristic values
should be added when the Party instance is created. Use RoleManager
APIs to manage the roles played by a given Party, and use
AttachmentManager to associate the Party with specific Role to a
given Service.

Table 3–8 Creating the Party Role

Topic Information

Name RoleManager.createInventoryRole

Creating and Associating the Party

Implementing a Generic Service Fulfillment Scenario 3-11

Example 3–8 Creating the Party Role

Finder finder = PersistenceHelper.makeFinder();
RoleManager roleMgr = PersistenceHelper.makeRoleManager();
PartyRole role = roleMgr.makePartyRole();
/* Utility Method Call - see 3.2.1 Query Spec */
Collection<InvRoleSpecification> invrolespeclist =
 finder.findByName(InvRoleSpecification.class,("Test_Party_Role_Spec");
InvRoleSpecification rolespec =
 (InvRoleSpecification)invrolespeclist.iterator().next();
role.setSpecification(roleSpec);
List<InventoryRole> roles = new ArrayList<InventoryRole>();
roles.add(role);
roleMgr.createInventoryRole(roles);

Associating the Party and Party Role with the Service
This section describes the UIM API method used to associate the party and party role
with the service. The API method must be called once per association. So, in this
scenario, the API is called to associate the party with the service, and then called again
to associate the party role with the service.

Table 3–9 and example code provide information about using the API method. The
example shows associating the party with the service; it does not show associating the
party role with the service, which is accomplished by calling the same API method.

Description This method takes a collection of InventoryRole entities and persist
them into the database. The roles passed in are the concrete subclass,
for instance PartyRole.

Pre-Condition InvRoleSpecification is valid and retrieved from the database. The
Party which has the roles is already created.

Internal Logic Take the collection of transient InventoryRole entities and persists
them into the database, and return the collection of persisted
InventoryRole entities. Validate that the roles are not duplicated and
they all have valid InvRoleSpecification.

Post-Condition Persistent concrete subclass (i.e. PartyRole) entities are returned.

Extensions Not applicable

Tips Use RoleManager.makePartyRole() API to get a transient instance of
the correct concrete subclass of role to create. InvRoleSpecification is
required.

Table 3–9 Associating the Party and Party Role with the Service

Topic Information

Name AttachmentManager.createRel

Description This method creates an involvement (an association) between two
entities.

Pre-Condition Service, Party and PartyRole are already created.

Internal Logic Creates an involvement entity to represent the relationship from Party
to Service with a specific PartyRole. The Party is the parent of this
involvement. Validates that the relationship is not duplicated.

Post-Condition PartyServiceRel is created referencing the entities.

Table 3–8 (Cont.) Creating the Party Role

Topic Information

Creating and Associating the Party

3-12 UIM API Overview

Example 3–9 Associating the Party to the Service

String roleOid = role.getOid();
AttachmentManager involvementMgr =
 PersistenceHelper.makeAttachmentManager();
Involvement involvement =
 involvementMgr.makeRel(PartyServiceRel.class);
involvement.setToEntity(service);
involvement.setFromEntity(party);
involvement.setFromEntityRoleKey(roleOid);
involvementMgr.createRel(involvement);
PartyServiceRel partyServiceRel = (PartyServiceRel)involvement;

About Alternate Flows
The generic service fulfillment scenario creates a party and party role, and associates
them with the service. Alternate flows to this scenario may be to disassociate the party
and party role from the service, and then delete the party and party role.

The alternate flows described in this section are:

■ Disassociating the Party and Party Role from the Service

■ Deleting the Party

■ Deleting the Party Role

Disassociating the Party and Party Role from the Service
This section describes the UIM API methods used to retrieve a party or service, and
then use the retrieved data to disassociate the party from the service. The API methods
are listed in the order in which they must be called.

The API methods must be each called once per disassociation. So, in this scenario, an
API is called to retrieve the party or service, and another API is called to disassociate
the party from the service. This process is repeated to disassociate the party role from
the service: An API is called to retrieve the party role or service, and another API is
called to disassociate the party role from the service.

Table 3–10 and Table 3–11 provide information about using the API methods.

Extensions Not applicable

Tips Set the FROM entity to Party and TO entity to Service. Set the FROM
entity role to the PartyRole.

Table 3–10 Getting the Party and the Service

Topic Information

Name Service.getParty() or Party.getService()

Description These methods are used to retrieve the bidirectional relationship
PartyServiceRel between Party and Service. Once retrieved, the
correct instance can be deleted.

Pre-Condition PartyServiceRel is already created.

Internal Logic Simple relationship attribute on the entities to get list of relationships
to iterate through.

Post-Condition PartyServiceRel is found and passed to next method for deletion.

Table 3–9 (Cont.) Associating the Party and Party Role with the Service

Topic Information

Creating and Associating the Party

Implementing a Generic Service Fulfillment Scenario 3-13

Deleting the Party
This section describes the UIM API method used to delete a party.

Table 3–12 provides information about using the API method.

Deleting the Party Role
This section describes the UIM API method used to delete a party role.

Table 3–13 provides information about using the API method.

Extensions Not applicable

Tips Not applicable

Table 3–11 Disassociating the Party from the Service

Topic Information

Name AttachmentManager.deleteRel

Description This method deletes an involvement (an association) between two
entities. In this example, an existing relationship between the Party
and Service with a specific role is deleted.

Pre-Condition PartyServiceRel is already created.

Internal Logic Delete the PartyServiceRel entity.

Post-Condition PartyServiceRel is deleted.

Extensions Not applicable

Tips Delete existing PartyServiceRel and create new ones to change Party
to Service relationships.

Table 3–12 Deleting the Party

Topic Information

Name PartyManager.deleteParty

Description This method deletes an existing Party, and all its existing PartyRoles.

Pre-Condition Party is already created.

Internal Logic Delete the Party entity. The Party will not be deleted if it is associated
with other entities, such as involvement with a Service.

Post-Condition Party is deleted.

Extensions The API is an extension point for adding custom validation logic, such
as logging and removing any relationships before deleting.

Tips Use this method to delete an incorrect or obsolete Party before
creating a new Party.

Table 3–13 Deleting the Party Role

Topic Information

Name RoleManager.deleteInventoryRoles

Description This method deletes an existing InventoryRole on a given entity. In
this example, a PartyRole subclass instance is deleted.

Table 3–10 (Cont.) Getting the Party and the Service

Topic Information

Creating and Associating the Geographic Address with the Service

3-14 UIM API Overview

Creating and Associating the Geographic Address with the Service
This section describes the UIM API methods used to create a place, create a place role,
and associate the place and place role with the service. (A place is a GeographicPlace
entity, which id is a concrete entity representing a geographic address / service
address.) The API methods are listed in the order in which they must be called.

Creating the Geographic Place
This section describes the UIM API method used to create the geographic place.

Table 3–14 and example code provide information about using the API method.

Pre-Condition PartyRole is already created.

Internal Logic Delete the PartyRole entity.

Post-Condition PartyRole is deleted.

Extensions Not applicable

Tips Use this method to delete an incorrect or obsolete role before creating
a new role.

Note: The associations of the place and place role with the service
are optional, and can be associated before or after the creation of the
initial service configuration. Typically, these types of associations do
not change for the service, but alternate flows are presented to show
how the associations can be changed if necessary.

Table 3–14 Creating the Geographic Place

Topic Information

Name PlaceManager.createGeographicPlace

Description This method takes a collection of Geographic Address entities which
represents the Service Address and persist them into the database.
The Place Role and association to the Service is setup by a different
API. For this example, create a Geographic Address, a concrete
subclass of Geographic Place, as an instance of the Service Address.

Pre-Condition Place Specification is valid and retrieved from the database.
Geographic Address has a valid and unique ID.

Internal Logic Take the collection of transient Geographic Address entities and
persists them into the database, and return the collection of persisted
Geographic Address entities. Validate that the Geographic Address
are not duplicated by ID and they all have valid PlaceSpecification.

Post-Condition Persistent Geographic Address entities are returned.

Extensions This API is defined as an extension point to allow custom validation
before or after the Geographic Addresses are created. For instance, the
IDs can be generated based on some custom algorithm.

Tips Geographic Address is a CharacteristicExtensible entity. Its
characteristic values should be added as the instance is created. Use
RoleManager APIs to manage the roles played by a given Geographic
Address, and use AttachmentManager to associate the Geographic
Address with specific Role to a given Service. (Same as Party.)

Table 3–13 (Cont.) Deleting the Party Role

Topic Information

Creating and Associating the Geographic Address with the Service

Implementing a Generic Service Fulfillment Scenario 3-15

Example 3–10 Creating the Geographic Place

Finder finder = PersistenceHelper.makeFinder();
PlaceManager placeMgr = PersistenceHelper.makePlaceManager();
GeographicAddress place =
 placeMgr.makeGeographicPlace(GeographicAddress.class);
place.setId("Place_ID");
place.setName("Place_Name");

Collection<PlaceSpecification> placeSpecification = finder.findByName
 (PlaceSpecification.class,(String)paramMap.get("Test_Place_Spec"));

PlaceSpecification pcspec = PlaceSpecification.iterator().next();
place.setSpecification((PlaceSpecification) placeSpec);

List places = new ArrayList<GeographicAddress>();
places.add(place);
places = placeMgr.createGeographicPlace(places);
place = (GeographicAddress) places.iterator().next();

Creating the Place Role
This section describes the UIM API method used to create the place role.

Table 3–15 and example code provide information about using the API method.

Example 3–11 Creating the Place Role

Finder finder = PersistenceHelper.makeFinder();
RoleManager roleMgr = PersistenceHelper.makeRoleManager();
PlaceRole role = roleMgr.makePlaceRole();

Collection<InvRoleSpecification> invrolespeclist =
 f.findByName(InvRoleSpecification.class, "Test_Place_Role_Spec");

InvRoleSpecification rolespec =
 (InvRoleSpecification)invrolespeclist.iterator().next();
role.setSpecification(roleSpec);
List<InventoryRole> roles = new ArrayList<InventoryRole>();

Table 3–15 Creating the Place Role

Topic Information

Name RoleManager.createInventoryRole

Description This method takes a collection of InventoryRole entities and persist
them into the database. The roles passed in are the concrete subclass,
for instance PlaceRole.

Pre-Condition InvRoleSpecification is valid and retrieved from the database. The
Geographic Address which has the roles is already created.

Internal Logic Take the collection of transient InventoryRole entities and persists
them into the database, and return the collection of persisted
InventoryRole entities. Validate that the roles are not duplicated and
they all have valid InvRoleSpecification.

Post-Condition Persistent concrete subclass (i.e. PlaceRole) entities are returned.

Extensions Not applicable

Tips Use RoleManager.makePlaceRole() API to get a transient instance of
the correct concrete subclass of role to create. InvRoleSpecification is
required.

Creating and Associating the Geographic Address with the Service

3-16 UIM API Overview

roles.add(role);
roleMgr.createInventoryRole(roles);

Associating the Geographic Place and Place Role with the Service
This section describes the UIM API method used to associate the geographic place and
place role with the service. The API method must be called once per association. So, in
this scenario, the API is called to associate the geographic place with the service, and
then called again to associate the place role with the service.

Table 3–16 and example code provide information about using the API method. The
example shows associating the geographic place with the service; it does not show
associating the place role with the service, which is accomplished by calling the same
API method.

Example 3–12 Associating the Geographic Place with the Service

String roleOid = role.getOid();

AttachmentManager involvementMgr = PersistenceHelper.makeAttachmentManager();
Involvement involvement = involvementMgr.makeRel(PlaceServiceRel.class);
involvement.setToEntity(service);
involvement.setFromEntity(place);
involvement.setFromEntityRoleKey(roleOid);
involvementMgr.createRel(involvement);

PlaceServiceRel placeServiceRel = (PlaceServiceRel) involvement;

About Alternate Flows
The generic service fulfillment scenario creates a geographic place and place role, and
associates them with the service. Alternate flows to this scenario may be to
disassociate geographic place and place role from the service, and then delete the
geographic place and place role.

The alternate flows described in this section are:

■ Disassociating the Geographic Place and Place Role from the Service

■ Deleting the Geographic Place

Table 3–16 Associating the Geographic Place and Place Role with the Service

Topic Information

Name AttachmentManager.createRel

Description This method creates an involvement (an association) between two
entities. In this example, a relationship is created between Geographic
Address and Service with a specific role created earlier.

Pre-Condition Service, Geographic Address and PlaceRole are already created.

Internal Logic Creates an involvement entity to represent the relationship from
Geographic Address to Service with a specific PartyRole. The
Geographic Address is the parent of this involvement. Validates that
the relationship is not duplicated.

Post-Condition PlaceServiceRel is created referencing the entities.

Extensions Not applicable

Tips Set the FROM entity to Geographic Address and TO entity to Service.
Set the FROM entity role to the PlaceRole.

Creating and Associating the Geographic Address with the Service

Implementing a Generic Service Fulfillment Scenario 3-17

■ Deleting the Place Role

Disassociating the Geographic Place and Place Role from the Service
This section describes the UIM API methods used to retrieve a place or service, and
then use the retrieved data to disassociate the place from the service. The API methods
are listed in the order in which they must be called.

The API methods must be each called once per disassociation. So, in this scenario, an
API is called to retrieve the place or service, and another API is called to disassociate
the place from the service. This process is repeated to disassociate the place role from
the service: An API is called to retrieve the place role or service, and another API is
called to disassociate the place role from the service.

Table 3–17 and Table 3–18 provide information about using the API methods.

Deleting the Geographic Place
This section describes the UIM API method used to delete a geographic place.

Table 3–19 provides information about the API method.

Table 3–17 Getting the Place and Service

Topic Information

Name Service.getPlace() or GeographicPlace.getPlaceservicerels ()

Description These methods are used to retrieve the bidirectional relationship
PlaceServiceRel between Geographic Address and Service. Once
retrieved, the correct instance can be deleted.

Pre-Condition PlaceServiceRel is already created.

Internal Logic Simple relationship attribute on the entities to get list of relationships
to iterate through.

Post-Condition PlaceServiceRel is found and passed to next method for deletion.

Extensions Not applicable

Tips Not applicable

Table 3–18 Disassociating the Place and Place Role from the Service

Topic Information

Name AttachmentManager.deleteRel

Description This method deletes an involvement (an association) between two
entities. In this example, an existing relationship between the
Geographic Address and Service with a specific role is deleted.

Pre-Condition PlaceServiceRel is already created.

Internal Logic Delete the PlaceServiceRel entity.

Post-Condition PlaceServiceRel is deleted.

Extensions Not applicable

Tips Delete existing PlaceServiceRel and create new ones to change
Geographic Address to Service relationships.

Configuring the Resources for the Service Configuration

3-18 UIM API Overview

Deleting the Place Role
This section describes the UIM API method used to delete a place role.

Table 3–20 provides information about the API method.

Configuring the Resources for the Service Configuration
This section describes the APIs need to assign a custom object to a service
configuration item. The APIs are listed in the order in which they must be called.

Figure 3–3 shows how the service and configuration are created by calling the APIs
described in Creating the Service and Service Configuration.

Table 3–19 Deleting the Geographic Place

Topic Information

Name PlaceManager.deleteGeographicPlace

Description This method deletes an existing Geographic Address, and all its
existing PlaceRoles. In this example, the Service Address as in
instance of a Geographic Address is deleted.

Pre-Condition Geographic Address is already created.

Internal Logic Delete the Geographic Address entity, and all its existing PlaceRoles.
The Geographic Address will not be deleted if it is associated with
other entities, such as involvement with a Service.

Post-Condition Geographic Address is deleted.

Extensions The API is an extension point for adding custom validation logic, such
as logging and removing any relationships before deleting them.

Tips Use this method to delete an incorrect or obsolete Geographic
Address before creating a new Geographic Address.

Table 3–20 Deleting the Place Role

Topic Information

Name RoleManager.deleteInventoryRoles

Description This method deletes an existing InventoryRole on a given entity. In
this example, a PlaceRole subclass instance is deleted.

Pre-Condition PlaceRole is already created.

Internal Logic Delete the PlaceRole entity.

Post-Condition PlaceRole is deleted.

Extensions Not applicable

Tips Use this method to delete an incorrect or obsolete role before creating
a new role.

Note: If assignment is being done as part of creating the service and
service configuration (see "Creating the Service and Service
Configuration"), then start at section "Finding the Service
Configuration Item" because the service and service configuration are
already known.

Configuring the Resources for the Service Configuration

Implementing a Generic Service Fulfillment Scenario 3-19

Figure 3–3 Generic Service Example

Finding the Service
This section describes the UIM API method used to find the service. The retrieved
service will be used to find the service configuration.

Table 3–21 and example code provide information about using the API method.

Example 3–13 Finding the Service

ServiceManager mgr = PersistenceHelper.makeServiceManager();
ServiceSearchCriteria criteria = mgr.makeServiceSearchCriteria();
citem = criteria.makeCriteriaItem();
citem.setValue("Service_Test_22");
citem.setOperator(CriteriaOperator.EQUALS);
criteria.setName(citem);

Table 3–21 Finding the Service

Topic Information

Name ServiceManager.findServices

Description This method retrieves services based on input criteria.

Pre-Condition The desired service already exists.

Internal Logic The database is queried for services meeting the input criteria.
Services matching the criteria are returned.

Post-Condition The desired service has been retrieved.

Extensions Not applicable

Tips If a list of services is returned, the list will need to be iterated to select
the desired service.

Configuring the Resources for the Service Configuration

3-20 UIM API Overview

List<Service> list = mgr.findServices(criteria);

Finding the Current Service Configuration Version
To find the current service configuration version:

1. Find the service. See "Finding the Service".

2. Select the service configuration versions using service.getConfigurations().

3. Process the retrieved service configuration versions, looking for one with a
configState of IN_PROGRESS, DESIGNED or ISSUED.

There will only be one service configuration version in one of these states at a
given point in time for a service. If a service configuration version is not found in
one of these states, you cannot proceed with resource assignment.

In the generic service fulfillment scenario, Version 1 would be selected.

Finding the Service Configuration Item
To find the service configuration item:

1. Find the current service configuration version. See "Finding the Current Service
Configuration Version".

2. Select the service configuration items using service.getConfigItems().

3. Process the retrieved service configuration items, looking for one with the
configType of ITEM.

In the generic service fulfillment scenario, CO Item would be selected.

Finding the Custom Object to Assign
This section describes the UIM API method used to find the custom object to assign to
the retrieved service configuration item. When assigning a custom object to a service
configuration item, you can either find an existing custom object, or you can create a
new custom object to assign, as described in the following section, "Creating the
Custom Object to Assign".

Table 3–22 and example code provide information about using the API method.

Note: In this simplified example, we know there is only one item
level configuration item, and we know it is associated to an option for
a custom object specification, which is why the following sections find
or create a custom object to assign.

Table 3–22 Finding the Custom Object

Topic Information

Name CustomObjectManager.findCustomObjects

Description This method retrieves custom objects based on input criteria.

Pre-Condition The custom object to be allocated already exists.

Internal Logic The database is queried for custom objects meeting the input criteria.
Custom objects matching the criteria are returned.

Post-Condition The desired custom object has been retrieved.

Extensions Not applicable

Configuring the Resources for the Service Configuration

Implementing a Generic Service Fulfillment Scenario 3-21

Example 3–14 Finding the Custom Object

CustomObjectManager mgr =
 PersistenceHelper.makeCustomObjectManager();
CustomObjectSearchCriteria criteria =
 mgr.makeCustomObjectSearchCriteria();
criteria.setAdminState(InventoryState.INSTALLED);
Finder finder = PersistenceHelper.makeFinder();
finder = PersistenceHelper.makeFinder();

Collection<CustomObjectSpecification> customObjectSpecs =
 finder.findByName(CustomObjectSpecification.class,"Test_Custom_Object_Spec");

criteria.setCustomObjectSpecification(customObjectSpecs.iterator().next());
mgr.findCustomObjects(criteria);

/* another example */
Finder f = PersistenceHelper.makeFinder();
Collection<CustomObject> custObjs = f.findById(CustomObject.class, "CO-1");

Creating the Custom Object to Assign
This section describes the UIM API method used to create a custom object to assign to
the retrieved service configuration item. When assigning a custom object to a service
configuration item, you can either create a new custom object, or you can find an
existing custom object to assign, as described in "Finding the Custom Object to
Assign".

Table 3–23 and example code provide information about using the API method.

Tips Set the
CustomObjectSearchCriteria.setAssignmentState(AssignmentState.U
NASSI GNED) to instruct the find method to only return available
custom objects.

In this example, we could choose to set the
CustomObjectSearchCriteria.setCustomObjectSpecification
(CustomObjectSpecification) to the CO Spec instance.

If a list of custom objects is returned, the list will need to be iterated to
select the desired custom object to be allocated to the service
configuration item.

Table 3–23 Creating the Custom Object

Topic Information

Name CustomObjectManager.createCustomObjects

Description This method creates a custom object. The custom object will be
populated with the hard facts and characteristics supplied by the
caller.

Pre-Condition Not applicable

Internal Logic The custom object is created.

Post-Condition The custom object has been created and is in Installed status.

Extensions Not applicable

Tips A custom object can be created with or without a specification.

Table 3–22 (Cont.) Finding the Custom Object

Topic Information

Configuring the Resources for the Service Configuration

3-22 UIM API Overview

Example 3–15 Creating the Custom Object

CustomObjectManager custMgr =
 PersistenceHelper.makeCustomObjectManager();
Finder f = PersistenceHelper.makeFinder();

Collection<CustomObjectSpecification> specList =
 new ArrayList<CustomObjectSpecification> (
 f.findByName(CustomObjectSpecification.class, "SPEC_CUST_001"));

if (specList != null && !specList.isEmpty())
{
 CustomObjectSpecification custObjSpec =
 specList.iterator().next();

 Collection<CustomObject> custObjects = new ArrayList<CustomObject>();
 CustomObject custObj = custMgr.makeCustomObject();
 custObj.setId("CUST_OBJ_ID");
 custObj.setName("CUST_OBJ_NAME");
 custObj.setDescription("CUST_OBJ_DESC");
 custObj.setSpecification(custObjSpec); /* optional */
 custObjects.add(custObj);

 custMgr.createCustomObjects(custObjects);
}

Assigning the Resource to a Configuration Item
This section describes the UIM API method used to assign the resource to a
configuration item. In the generic service fulfillment scenario, the resource is the
custom object that was either found or created when "Finding the Custom Object to
Assign" or "Creating the Custom Object to Assign".

Table 3–24 and example code provide information about using the API method.

Table 3–24 Assigning the Resource to a Configuration Item

Topic Information

Name BaseConfigurationManager.assignResource(E
item,oracle.communications.inventory.api.entity.common.Consumabl
eResource resource,java.lang.String reservedFor,java.lang.String
reservedForType)

In this example, the full signature of the method is included because
there are multiple overloaded assignResource methods.

Description This method assigns the input resource to the input service
configuration item. In this example, a custom object is used as the
consumable resource for assignment.

Pre-Condition The configuration item to allocate the custom object to has been
selected.

Internal Logic Not applicable

Post-Condition The custom object has been allocated to the service configuration item.

Extensions Not applicable

Tips The input item is the entity configuration item to assign the resource
to (ConsumableResource). In this example, ConsumableResource is
set to the CustomObject for CO-1. The reservedFor and
reservedForType parameters should be populated if the resource to be
assigned is reserved, so the reservation can be redeemed.

Configuring the Resources for the Service Configuration

Implementing a Generic Service Fulfillment Scenario 3-23

Example 3–16 Assigning the Resource to a Configuration Item

Finder finder = PersistenceHelper.makeFinder();
Collection<CustomObject> custObjs =
 finder.findByName(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();
ServiceManager mgr = PersistenceHelper.makeServiceManager();

ServiceSearchCriteria criteria = mgr.makeServiceSearchCriteria();
CriteriaItem citem = criteria.makeCriteriaItem();
citem.setValue("Service_Test_22");
citem.setOperator(CriteriaOperator.EQUALS);
criteria.setName(citem);

List<Service> list = mgr.findServices(criteria);
Service service = list.get(0);
List<ServiceConfigurationVersion> srvConfigurations =
 service.getConfigurations();
ServiceConfigurationItemAllocationData itemData =
 new ServiceConfigurationItemAllocationData();
int i = srvConfigurations.get(0).getVersionNumber();

//Write logic to get the latest ServiceConfigurationVersion of the Service.
//Process the retrieved service configuration versions,
//looking for one with a configState of IN_PROGRESS, DESIGNED or ISSUED.
ServiceConfigurationVersion latestConfiguration;

//Assign the latest ServiceConfigurationVersion
//to the variable latestConfiguration
List<ServiceConfigurationItem> configItems =
 latestConfiguration.getConfigItems();
for(ServiceConfigurationItem item : configItems)
{
 if((item.getName()!= null && item.getName().equalsIgnoreCase("CO Item")))
 {
 itemData.setResource(custObj);
 itemData.setServiceConfigurationItem(item);
 String reservedFor= null; // "Service-123"
 String reservedForType= null; // "Longterm"
 BaseConfigurationManager bcd =
 PersistenceHelper.makeConfigurationManager
 (ServiceConfigurationVersion.class);
 bcd.assignResource(item, custObj,reservedFor, reservedForType);
 break;
 }
}

About Alternate Flows
The generic service fulfillment scenario assigns a custom object resource to a service
configuration item. An alternate flow to this scenario may be to unassign the resource
from a configuration item.

Additional alternate flows may be to manage consumable resources by creating
reservations and conditions. Reservations are created to prevent a given resource to be
consumed by another service. The reservation can only be redeemed successfully
during resource assignment when the correct token is provided. Also, a reservation
can expire if not redeemed within the expiry time period. Conditions are created to
add informational or blocking codes to a given resource. A blocking condition
prevents a resource from being assigned.

Configuring the Resources for the Service Configuration

3-24 UIM API Overview

The alternate flows described in this section are:

■ Unassigning Resources from a Configuration Item

■ Reserving a Custom Object

■ Unreserving a Custom Object

■ Creating a Blocked Condition for a Custom Object

■ Deleting a Blocked Condition for a Custom Object

Unassigning Resources from a Configuration Item
This section describes the UIM API method used to unassign the resource from a
configuration item.

Table 3–25 and example code provide information about using the API method.

Example 3–17 Unassigning Resources from a Configuration Item

BaseConfigurationManager bcd =
 PersistenceHelper.makeConfigurationManager(CustomObject.class);
Finder f = PersistenceHelper.makeFinder();

Collection<CustomObject> custObjs = f.findById(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();
Collection<ServiceConfigurationVersion> scvList =
 f.findByName(ServiceConfigurationVersion.class, "Se_123_2");

ServiceConfigurationVersion scv =
 (ServiceConfigurationVersion)scvList.iterator().next();
BusinessInteractionManager biMgr =
 PersistenceHelper.makeBusinessInteractionManager();
biMgr.switchContext(scv, null);

/* Find Service Configuration Item (SCI) by: */
/* 1) Using Finder query by name, OR */
/* 2) Get Service Configuration and iterate to correct SCI */
//Collection<ServiceConfigurationItem> serviceConfigItems =
// f.findByName(ServiceConfigurationItem.class, "CO Item");
//ServiceConfigurationItem sci = serviceConfigItems.iterator().next();

ServiceConfigurationItem unSci = null;

Table 3–25 Unassigning Resources from a Configuration Item

Topic Information

Name BaseConfigurationManager.unallocateInventoryConfigurationItems(ja
va.util.Collection<E> configurationItems)

Description This method unassigns/deallocates resources that were previously
assigned on a configuration item of a service configuration version.

Pre-Condition A service configuration version exists with a custom object assigned
to a configuration item of the version.

Internal Logic Not applicable

Post-Condition The custom object/s has been unassigned.

Extensions Not applicable

Tips In this example the ConsumableResource to be unassiged is custom
object 'CO-1'.

Configuring the Resources for the Service Configuration

Implementing a Generic Service Fulfillment Scenario 3-25

Collection<ServiceConfigurationItem> sciList = scv.getConfigItems();
for (ServiceConfigurationItem sci : sciList)
{
 if (sci.getName().equals("CO Item") &&
 sci.getConfigAction() == ConfigurationItemAction.ASSIGN &&
 sci.getAssignment() != null &&
 sci.getAssignment() instanceof Assignment)
 {
 Assignment assignment = (Assignment) sci.getAssignment();
 if (assignment.getResource().equals(custObj))
 {
 unSci = sci;
 break;
 }
 }
}
if (unSci != null)
{
 Collection<ServiceConfigurationItem> unSciList =
 new ArrayList<ServiceConfigurationItem>();
 unSciList.add(unSci);
 bcd.unallocateInventoryConfigurationItems(unSciList);
}

Reserving a Custom Object
This section describes the UIM API methods used to make a reservation and to reserve
a custom object using the reservation. To find a custom object to reserve, you must find
or create a custom object. See "Finding the Custom Object to Assign" or "Creating the
Custom Object to Assign".

Table 3–26, Table 3–27, Table 3–28 and example code provide information about using
the API methods.

Table 3–26 Making a Reservation

Topic Information

Name ReservationManager.makeReservation(ConsumableResource conRes)

In this example, the full signature of the method is included because
there are multiple overloaded makeReservation methods.

Description This method will make an instance of the appropriate Reservation
class based on the type of ConsumableResource. For example, if a
CustomObject is input, then a CustomObjectReservation will be
returned.

Pre-Condition Not applicable

Internal Logic This method will determine the appropriate Reservation class to be
constructed based on the input ConsumableResource.

Post-Condition The caller has an instance of the appropriate Reservation class. In this
scenario, it will be a CustomObjectReservation.

Extensions Not applicable

Tips The CustomObject instance for CO-1 should be passed as input to the
method.

Configuring the Resources for the Service Configuration

3-26 UIM API Overview

You can also add a resource to an existing reservation number by calling the
ReservationManager.addResourceToReservation method using this API method:

Table 3–27 Reserving a Resource

Topic Information

Name ReservationManager.reserveResource(Collection <? extends
ConsumableResource> resources, Reservation reservation)

Description This method will reserve the input resources.

Pre-Condition The resource exists. In this scenario the resource is Custom Object
CO-1.

Internal Logic The input parameters are validated, and if no errors are detected each
input resource is reserved. The system will generate a new reservation
number. All the input resources will be reserved for this reservation
number.

Post-Condition The resource (Custom Object CO-1) is reserved.

Extensions The RESERVATION_EXPIRATION ruleset can be customized to
change the default behavior of setting the expiry date for a resource
reservation. By default, a long term reservation will expire after 30
days and a short term reservation will expire after 10 minutes.

Tips At least one ConsumableResource must be input. For this scenario, it
will be the CustomObject instance for CO-1.

The Reservation passed to the method must have the following
attributes set:

■ Reservation.reservedFor

(Free form text identifying the reserver.)

■ Resevation.reservedForType

(A ReservedForType such as CUSTOMER.)

■ Reservation.reservationType

(This would be set to ReservationType.LONGTERM for this
scenario.)

Optionally, the Reservation.reason can be set. This is free form text.

The startDate, endDate, and expiry can also be set, but for this
example we will allow them to be defaulted by the system.

Table 3–28 Adding a Resource to a Reservation

Topic Information

Name ReservationManager.addResourceToReservation(Collection <?
extends ConsumableResource> resources, Reservation reservation)

Description This method will reserve the input resources.

Pre-Condition The resource exists. In this scenario the resource is Custom Object
CO-1.

Internal Logic The input parameters are validated, and if no errors are detected each
input resource is reserved. The resources will be reserved with an
existing reservation number. The reservedFor and reservedForType
values will always be the same for all resource reservations for the
same reservation number. Other reservation information, such as
reason and expiry, can differ among resource reserved with the same
reservation number.

Post-Condition The resource (Custom Object CO-1) is reserved.

Configuring the Resources for the Service Configuration

Implementing a Generic Service Fulfillment Scenario 3-27

Example 3–18 Reserving a Custom Object

ReservationManager resMgr = PersistenceHelper.makeReservationManager();
ConsumableResource cr = (ConsumableResource) custObj;
List<ConsumableResource> crList = new ArrayList<ConsumableResource>();
crList.add(cr);

Reservation reservation = resMgr.makeReservation(cr);
reservation.setReason("Future reqiurement");
reservation.setReservedFor("Order-333");
reservation.setReservedForType(ReservedForType.ORDER);
reservation.setReservationType(ReservationType.LONGTERM);

resMgr.reserveResource(crList, reservation);

ReservationManager resMgr = PersistenceHelper.makeReservationManager();
ConsumableResource cr = (ConsumableResource) custObj;
List<ConsumableResource> crList = new ArrayList<ConsumableResource>();
crList.add(cr);

Reservation reservation = resMgr.makeReservation(cr);
reservation.setReservationNumber("111111111");
reservation.setReservedFor("Order-333");
reservation.setReservedForType(ReservedForType.ORDER);
reservation.setReservationType(ReservationType.LONGTERM);

resMgr.addResourceToReservation(crList, reservation);

Unreserving a Custom Object
This section describes the UIM API methods used to unreserve a custom object. To
find the custom object to unreserve, you must find the custom object. See "Finding the
Custom Object to Assign".

Table 3–29 and example code provide information about using the API method.

Extensions The RESERVATION_EXPIRATION ruleset can be customized to
change the default behavior of setting the expiry date for a resource
reservation. By default, a long term reservation will expire after 30
days and a short term reservation will expire after 10 minutes.

Tips At least one ConsumableResource must be input. For this scenario, it
will be the CustomObject instance for CO-1.

The Reservation passed to the method must have the following
attributes set:

■ Reservation.reservationNumber

An existing resource reservation must already exist with this
same reservation number.

■ Reservation.reservationType

In the generic service fulfillment scenario, this would be set to
ReservationType.LONGTERM.

If Reservation.reservedForType or Reservation.ReservedFor are
populated, they must match the equivalent values for existing
resource reservations for the reservationNumber.

The startDate, endDate, and expiry can also be set, but for this
scenario, these dates are defaulted by the system.

Table 3–28 (Cont.) Adding a Resource to a Reservation

Topic Information

Configuring the Resources for the Service Configuration

3-28 UIM API Overview

Example 3–19 Unreserving a Custom Object

ReservationManager resMgr = InventoryHelper.makeReservationManager();
ConsumableResource cr = (ConsumableResource) custObj;
List<ConsumableResource> crList = new ArrayList<ConsumableResource>();
crList.add(cr);

resMgr.unreserveResource(crList, "Order-333", ReservedForType.ORDER);

Creating a Blocked Condition for a Custom Object
This section describes the UIM API methods used to create a blocked condition for a
custom object. To find a custom object to create the condition for, you must find or
create a custom object. See "Finding the Custom Object to Assign" or "Creating the
Custom Object to Assign".

Table 3–30, Table 3–31 and example code provide information about using the API
methods.

Table 3–29 Unreserving a Custom Object

Topic Information

Name ReservationManager.unreserveResource(Collection<? extends
ConsumableResource> resources, String redeemer, ReservedForType
redeemerType)

In this example, the full signature of the method is included because
there are multiple overloaded unreserveResource methods.

Description This method will delete the reservation for the input resources.

Pre-Condition The resource exists and is reserved.

Internal Logic The input parameters are validated, and if no errors are detected each
input resource is unreserved. The input redeemer and redeemerType
must match the persisted reservation information for each of the input
resources.

Post-Condition The resource (custom object CO-1) is no longer reserved.

Extensions Not applicable

Tips At least one ConsumableResource must be input. For this scenario, it
will be the CustomObject instance for CO-1.

The redeemer and redeemerType are required.

Table 3–30 Making a Condition

Topic Information

Name ConditionManager.makeCondition(ConsumableResource conRes)

In this example, the full signature of the method is included because
there are multiple overloaded makeCondition methods.

Description This method will make an instance of the appropriate Condition class
based on the type of ConsumableResource. For example, if a
CustomObject is input, then a CustomObjectCondition will be
returned.

Pre-Condition Not applicable

Internal Logic This method will determine the appropriate Condition class to be
constructed based on the input ConsumableResource.

Post-Condition The caller has an instance of the appropriate Condition class. In this
scenario, it will be a CustomObjectCondition.

Configuring the Resources for the Service Configuration

Implementing a Generic Service Fulfillment Scenario 3-29

Example 3–20 Creating a Blocked Condition for a Custom Object

ConditionManager conMgr = PersistenceHelper.makeConditionManager();
Collection<Condition> inputCons = new ArrayList<Condition>();

Finder f = PersistenceHelper.makeFinder();
Collection<CustomObject> custObjs = f.findById(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();

Condition con = conMgr.makeCondition(custObj);
con.setDescription("Test Failure");
con.setReason("Under Repair");
con.setType(ConditionType.BLOCKED);

Date now = new Date();
Date later = getEndDate(now); /* call to an utility method */
con.setValidFor(new TimePeriod(now, later));
con.setResource(custObj);
con.setMaster(true);

Extensions Not applicable

Tips The CustomObject instance for CO-1 should be passed as input to the
method.

Table 3–31 Creating Conditions

Topic Information

Name ConditionManager.createConditions

Description This method will create a condition on each of the input resources.

Pre-Condition The resource exists. In this scenario the resource is Custom Object
CO-1.

Internal Logic The input Condition instances are validated, and if no errors are
detected a condition is created for each resource specified in the input
Condition collection.

Post-Condition The resource (custom object CO-1) has a blocked condition.

Extensions Not applicable

Tips The Condition passed to the method must have the following
attributes set:

■ Condition.resource

This should be set to the CustomObject instance for CO-1.

■ Condition.reason

This is free form text describing the reason for the condition. For
example, Under Repair.

■ Condition.type

This should be set to ConditionType.BLOCKED.

Optionally, the Condition.validFor can be set with a startDate and
endDate value. If startDate is not specified, it is defaulted to the
current date. If endDate is not specified, it is defaulted to the java max
date value of 18- Jan-2038.

Optionally, the Condition.description can be set. This is free form text.

Table 3–30 (Cont.) Making a Condition

Topic Information

Configuring the Resources for the Service Configuration

3-30 UIM API Overview

inputCons.add(con);

Collection <? extends Condition> cons = conMgr.createConditions(inputCons);

Deleting a Blocked Condition for a Custom Object
This section describes the UIM API methods used to delete a blocked condition from a
custom object. To find the custom object to delete the blocked condition from, you
must find the custom object. See "Finding the Custom Object to Assign". To delete the
condition from the custom object, you must first find the condition to be deleted using
the API method described here.

Table 3–32, Table 3–33, Table 3–34 and example code provide information about using
the API methods.

Table 3–32 Making a Condition Search Criteria

Topic Information

Name ConditionManager.makeConditionSearchCriteria

Description This method will make an instance of ConditionSearchCriteria.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition The caller has an instance of ConditionSearchCriteria.

Extensions Not applicable

Tips Not applicable

Table 3–33 Finding Conditions

Topic Information

Name ConditionManager.findConditions

Description This method retrieves conditions based on input criteria.

Pre-Condition The custom object to find conditions for has been selected. The
desired condition exists.

Internal Logic The database is queried for conditions meeting the input criteria.
Conditions matching the criteria are returned.

Post-Condition The desired condition has been retrieved.

Extensions Not applicable

Tips In this scenario, the following CriteriaItems could be populated on the
ConditionSearchCritiera:

■ resource

The CustomObject instance for CO-1.

■ type

ConditionType.BLOCKED

If a list of conditions is returned, the list will need to be iterated to
select the desired condition to be deleted.

Table 3–34 Deleting Conditions

Topic Information

Name ConditionManager.deleteConditions

Setting Characteristic Values for the Service Configuration Item

Implementing a Generic Service Fulfillment Scenario 3-31

Example 3–21 Deleting a Blocked Condition from a Custom Object

Finder f = PersistenceHelper.makeFinder();
Collection<CustomObject> custObjs = f.findById(CustomObject.class, "CO-1");
CustomObject custObj = custObjs.iterator().next();

ConditionManager conMgr = PersistenceHelper.makeConditionManager();
ConditionSearchCriteria criteria = conMgr.makeConditionSearchCriteria();

CriteriaItem res = criteria.makeCriteriaItem();
res.setValue(custObj);
res.setOperator(CriteriaOperator.EQUALS);
criteria.setResource(res);

CriteriaItem type = criteria.makeCriteriaItem();
type.setValue(ConditionType.BLOCKED);
type.setOperator(CriteriaOperator.EQUALS_IGNORE_CASE);
criteria.setType(type);

Collection <CustomObjectCondition> cons = conMgr.findConditions(criteria);
CustomObjectCondition con = cons.iterator().next();

conMgr.deleteConditions(cons);

Setting Characteristic Values for the Service Configuration Item
The following APIs are used to set characteristic values on a service configuration
item. The set of allowable characteristic values for a given service configuration item
are defined by the service configuration specification used to create the service
configuration.

The following shows a configuration item hierarchy that has two characteristic values
associated with the Customer Equipment (CE) Router ITEM:

ITEM - Site

■ ITEM - Customer Equipment Router

– Specification - Logical Device

– Characteristic - Customer

– Instructions - Characteristics

– Additional Information

Description This method will delete conditions on resources.

Pre-Condition The condition to be deleted has been selected.

Internal Logic The input Condition instances are validated, and if no errors are
detected the conditions are deleted.

Post-Condition The resource (Custom Object CO-1) no longer has the blocked
condition.

Extensions Not applicable

Tips Not applicable

Table 3–34 (Cont.) Deleting Conditions

Topic Information

Setting Characteristic Values for the Service Configuration Item

3-32 UIM API Overview

The Configuration ITEMs are used to create the Service Configuration Item instances.
Characteristics will be related to the Service Configuration Item. Since Service
Configuration Item is a Characteristic Extensible entity, we can use the
CharacteristicManager.init API to initialize the set of characteristic values on the entity.
In the example above, the two Characteristics under the Customer Equipment Router
ITEM would create two instances on the ServiceConfigurationItemCharacteristic, and
if there is default values defined, it is also copied.

Table 3–35 and example code provide information about using the API method.

Example 3–22 Setting Characteristic Values for the Service Configuration Item

CharacteristicManager characteristicManager =
 PersistenceHelper.makeCharacteristicManager();

// Initialize the characteristics to the item
characteristicManager.init((CharacteristicExtensible)childConfigItem,
 inventoryConfigurationSpec);

// Get the characteristics from service config item
HashSet<CharValue> characteristics = serviceConfigItem.getCharacteristics();

// Loop through the HashSet of characteristics and set the value as defined
for (CharValue charValue : characteristics)
{
 charValue.setValue("myValue");
 charValue.setLabel("myLabel");
}

Table 3–35 Setting Characteristic Values for the Service Configuration Item

Topic Information

Name CharacteristicManager.init(CharacteristicExtensible<CharValue>
characteristicExtensible, Specification spec)

Description This method initializes the CharacteristicExtensible entity. In this case,
the ServiceConfigurationItem). It sets the default value for each
characteristic which has one.

Pre-Condition A service configuration item exists and the
InventoryConfigurationSpec is known.

Internal Logic The InventoryConfigurationSpec is used to get the
CharacteristicSpecUsage, from the CharacteristicSpecUsage to get the
CharacteristicSpecification, so that the default spec value can be
retrieved and set to the CharValue. And the Charvalue will be set to
the Service configuration item.

Post-Condition ServiceConfigurationItem has the default characteristics set.

Extensions Not applicable

Tips Not applicable

Note: When creating a Service Configuration Item, call
CharacteristicManager.init (CharacteristicExtensible<CharValue>
characteristicExtensible, Specification spec) method to initiate the
default characteristics value.

Transitioning the Lifecycle Status

Implementing a Generic Service Fulfillment Scenario 3-33

About Alternate Flows
The generic service fulfillment scenario sets characteristic values for the service
configuration item. An alternate flow to this scenario may be to unset characteristic
values from the service configuration item.

The alternate flow described in this section is "Unsetting Characteristic Values for the
Service Configuration Item".

Unsetting Characteristic Values for the Service Configuration Item
The following API is to unset characteristic values on a service configuration.

The following example code provides information about using the API method.

Example 3–23 Unsetting Characteristic Values for the Service Configuration

HashSet<ServiceConfigurationItemCharacteristic> characteristics =
 serviceConfigItem.getCharacteristics();

Iterator<ServiceConfigurationItemCharacteristic> itr =
 characteristics.iterator();

while (itr.hasNext())
{
 ServiceConfigurationItemCharacteristic characteristic = itr.next();
 if characteristic.getName().equals("myName")
 itr.remove();
}

Transitioning the Lifecycle Status
The transition APIs are used for transitioning the lifecycle status of a given entity
which implements the LifeCycleManaged interface. The state transition rules are
defined in the *-transitions.xml files.

Table 3–36 and example code provide information about using the API method.

Note: From ServiceConfigurationItem, get the characteristics and
then delete the ServiceConfigurationItemCharacteristics to remove the
characteristic values. If only one particular characteristic needs to be
deleted for the ServiceConfigurationItem, then a name match should
be compared before deleting the
ServiceConfigurationItemCharacteristic.

Table 3–36 Transitioning the Lifecycle Status

Topic Information

Name TransitionManager.transition

Description Transitions a LifeCycleManaged entity by finding the matching
transition definition which has the business action defined and the
object activity defined the same as the input parameters, and which
from business state matches the entity's business state.

Pre-Condition TransitionManager.isValidTransition has successfully validated that
the specified business action can trigger the transition of either the
business state or the object state.

Transitioning the Lifecycle Status

3-34 UIM API Overview

Example 3–24 Transitioning the Lifecycle Status

TransitionManager transitionManager =
 PersistenceHelper.makeTransitionManager(service);

boolean success = false;
success = transitionManager.transition(service, ServiceAction.COMPLETE);

Internal Logic Finds a matching transition definition. For a version object it matches
on business action and object activity only. Other objects are matched
from most specific to least specific in the following order:

1. Match businessAction, objectActivity, entity type, and the
specification.

2. Match businessAction, objectActivity, entity type.

3. Match businessAction, objectActivity.

Switches to a Business Interaction context if applicable and updates
the business or object state of the object and its dependents based on
the transition definition.

Post-Condition The object state or business state is updated.

Extensions BusinessInteractionSpec_TransitionManager_
validateBusinessStateTransitions

BusinessInteractionSpec_TransitionManager_
validateObjectStateTransitions

Tips See UIM Developer’s Guide for more information.

Table 3–36 (Cont.) Transitioning the Lifecycle Status

Topic Information

4

Implementing a Channelized Connectivity Enablement Scenario 4-1

4Implementing a Channelized Connectivity
Enablement Scenario

This chapter describes implementing a channelized connectivity enablement scenario
using various Oracle Communications Unified Inventory Management (UIM)
application program interfaces (APIs). You can use this information to gain a better
understanding of how the UIM APIs can be used to implement any channelized
connectivity enablement scenario.

About the Channelized Connectivity Enablement Scenario
Figure 4–1 shows the process flow for a channelized connectivity enablement scenario:

Figure 4–1 Process Flow for a Generic Channelized Connectivity Scenario

Creating a Property Location and Associating Network Entity Codes

4-2 UIM API Overview

This process flow begins with creating a property location and associating network
entity codes with the property location. The network entity codes are used in
subsequent steps in the process flow, such as associating them with logical devices.

The process flow continues with creating logical devices with device interfaces that
can terminate on the bearer channelized connectivity, and associating logical devices
with the network entity codes previously created. This involves creating logical device
search criteria to find the required logical device specification.

Next is creating channelized connectivity, which represents bearer channelized
connectivity between two network entity codes that define attributes of technology,
rate code, and channelized connectivity function.

The process flow continues by configuring the capacity for the channelized
connectivity to channelize it, and by optionally terminating them on the device
interfaces of logical devices previously created. This is called auto termination of
device interfaces because it also terminates the sub-device interfaces down the
hierarchy to the channels when the channelized connectivity is terminated
automatically. This represents the bearer channelized connectivity that will be used in
enablement in subsequent steps of the process flow.

The process flow continues with creating channelized connectivity to represent the
rider between two network entity codes that define attributes of technology, rate code,
and channelized connectivity function. For a channelized connectivity entity to be
enabled by a channel, its rate code must match or be compatible with the rate code of
the channel.

Next is enabling channelized connectivity, which can be manually done by searching
for and adding the bearer channelized connectivity's channel. This involves creating
channelized connectivity search criteria to search for the bearer channelized
connectivity and selecting the appropriate channel. Enablement can also be done by
adding bearer channelized connectivity through gap analysis to the rider that involves
creating path analysis criteria to search for the bearer channelized connectivity
between a source/intermediate/target property locations or logical devices.

Now that you have a high-level understanding of the channelized connectivity
enablement scenario process flow, each part of the process flow is further described in
the following sections. Each section includes information about the specific UIM APIs
used to perform each step. Example code is also included for each step.

■ Creating a Property Location and Associating Network Entity Codes

■ Creating a Logical Device and Associating LD Interfaces with Network Entity
Codes

■ Creating Channelized Connectivity

■ Enabling Channelized Connectivity

Creating a Property Location and Associating Network Entity Codes
This section describes the UIM API methods used to create a property location and to
associate network entity codes with the property location.

Table 4–1, Table 4–2, and example code provide information about using the API
methods to create a property location and to associate network entity codes to the
property location.

Creating a Property Location and Associating Network Entity Codes

Implementing a Channelized Connectivity Enablement Scenario 4-3

Example 4–1 Creating a Property Location and Associating Network Entity Codes with
the Property Location

Finder finder = PersistenceHelper.makeFinder();
PropertyLocation propertyLocation = locationManager.makePropertyLocation();
PropertyAddress propertyAddress = locationManager.makePropertyAddress();
LocationManager locationManager = PersistenceHelper.makeLocationManager();

//Set all necessary attributes needed for Property Address and Property Location
propertyAddress.setStreetAddress((String)paramMap.get("streetAddress"));
propertyAddress.setCity((String)paramMap.get("city"));
propertyAddress.setState((String)paramMap.get("state"));
propertyAddress.setCountry((String)paramMap.get("country"));

Table 4–1 Creating a Property Location

Topic Information

Name LocationManager.createPropertyLocation
(Collection<PropertyLocation> locations)

Description Creates the Property Location instances with the given inputs. User
has to specify one mandatory Primary address as input with which a
property Location has to be created.

Every property location also has a property address associated with it.

Pre-Condition The locations parameter needs to be prepared with necessary
attributes

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips ■ The same method is also used to create Network Location when
the Network Location code is populated in the input. As part of
creation of Network location, the same method also enables users
to create Network entity codes corresponding to the Network
Location.

■ The Location Identifier which is a concatenated Address format is
used to uniquely identify the Property Location.

■ If horizontal/vertical coordinates are given as inputs, the
latitude/longitude coordinates are automatically populated for
the created Property Location and vice versa.

Table 4–2 Associating Network Entity Codes with a Property Location

Topic Information

Name LocationManager.associateNetworkEntityCodeToNetworkLocation
(List<NetworkEntityCode> entitycodes, PropertyLocation location)

Description This method is called during the association or creation of the
network entity code in the context of property location.

Pre-Condition The location parameter already exists.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips ■ Check if the network entity code is unique.

■ Check for the length of the network entity code.

Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

4-4 UIM API Overview

propertyAddress.setIsValidated(Boolean.valueOf
 ((String)paramMap.get("isValidated")));
propertyAddress.setIsNonValidatedAddressAccepted(true);
propertyAddress.setIsPrimaryAddress(true);
Set<PropertyAddress> addressSet = new HashSet<PropertyAddress>(1);
addressSet.add(propertyAddress);
propertyLocation.setPropertyAddresses(addressSet);
propertyLocation.setNetworkLocationCode("PLANO");
propertyLocation.setLatitude("34");
propertyLocation.setLongitude("54");

Collection<PropertyLocation> list = new ArrayList<PropertyLocation>(1);
list.add(propertyLocation);
List<PropertyLocation> propLocobjects =
 locationManager.createPropertyLocation(list);
networkLocation = propLocobjects.get(0);
List<NetworkEntityCode> networkEntityCodes = new ArrayList<NetworkEntityCode>();
NetworkEntityCode nec = locationManager.makeNetworkEntityCode();
nec.setName(necStr);
networkEntityCodes.add(nec);
if (!Utils.isEmpty(networkEntityCodes))
{
 locationManager.associateNetworkEntityCodeToNetworkLocation
 (networkEntityCodes,networkLocation);
}

Creating a Logical Device and Associating LD Interfaces with Network
Entity Codes

This section describes the UIM API methods used to create a logical device with
default logical device interfaces, and to associate the logical device interfaces with the
previously created network entity codes.

Table 4–3 and example code provide information about using the API method to create
a logical device with default logical device interfaces.

Table 4–3 Creating a Logical Device

Topic Information

Name LogicalDeviceManager.createLogicalDevice
(Collection<LogicalDevice> logicalDevices)

Description Creates logical device entities and their provided device interfaces
and sub-device interfaces based on the specification.

Pre-Condition Logical device specification with device interfaces is defined and
exists already.

Internal Logic Device interfaces can also provide other device interfaces. The
number of device interfaces to be created will be determined by the
minimum value defined in the specification relationships.

The input logical device entities should be sparsely populated with
the specification, hard attributes and characteristics.

The provided device interfaces will be derived based on the
specification. Characteristics will be defaulted based on the
specification. The id of the device interfaces will be generated.

If required characteristics exist for a provided device interface that are
not defaulted, then the logical device will still be created.

Post-Condition Not applicable

Creating a Logical Device and Associating LD Interfaces with Network Entity Codes

Implementing a Channelized Connectivity Enablement Scenario 4-5

Example 4–2 Creating a Logical Device with Default Logical Device Interfaces

Finder finder = PersistenceHelper.makeFinder();
LogicalDeviceManager ldMgr = PersistenceHelper.makeLogicalDeviceManager();

Collection<Specification> specs =
 finder.findByName(Specification.class,"ldSpecName");

LogicalDeviceSpecification ldSpec =
 (LogicalDeviceSpecification)specs.iterator().next();

LogicalDevice ld = ldMgr.makeLogicalDevice();
ld.setName("ldName");
ld.setId("ldId");
ld.setSpecification(ldSpec);
List<LogicalDevice> ldList = new ArrayList<LogicalDevice>();
ldList.add(ld);
ldMgr.createLogicalDevice(ldList);

The following table and example code provide information about using the API
method to associate a logical device with a network entity code.

Example 4–3 Associating a Logical Device with a Network Entity Code

Finder finder = PersistenceHelper.makeFinder();
LogicalDeviceManager ldMgr = PersistenceHelper.makeLogicalDeviceManager();
LocationManager locationManager = PersistenceHelper.makeLocationManager();

// find an existing logical device
LogicalDevice ld = finder.findById(LogicalDevice.class, "ldId").iterator().next();

// find an existing property location that has network entity code
PropertyLocation pls =
(PropertyLocation)locationManager.findNetworkEntityLocation("PLANO");

Extensions Not applicable

Tips Not applicable

Table 4–4 Associating a Logical Device with a Network Entity Code

Topic Information

Name LogicalDeviceManager.updateLogicalDevice
(Collection<LogicalDevice> logicalDevices)

Description This method is intended to update the hard attributes and
characteristics of a logical device.

Pre-Condition Logical device exists already.

The location of a logical device can only be changed if it does not have
any active consumers or interconnections on the logical device or any
of its device interfaces.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Table 4–3 (Cont.) Creating a Logical Device

Topic Information

Creating Channelized Connectivity

4-6 UIM API Overview

ld.setPropertyLocation(pls);

NetworkEntityCodeSearchCriteria criteria =
 locationManager.makeNetworkEntityCodeSearchCriteria();
criteria.setPropertyLocation(pls);

//find network entity code matching "001"
List<NetworkEntityCode> networkEntityCodes =
 locationManager.findNetworkEntityCodes(criteria);
NetworkEntityCode networkEntCd = null;

if (!Utils.isEmpty(networkEntityCodes))
{
 String networkEntityCod= "001";
 for (NetworkEntityCode nec : networkEntityCodes)
 {
 if ((pls.getNetworkLocationCode() + "." + networkEntityCode).equals
 nec.getNetworkLocationEntityCode()))
 {
 networkEntCd = nec;
 }
 }
}
ld.setNetworkEntityCode(networkEntCd);
networkEntCd.setLogicalDevice(ld);
List<LogicalDevice> ldList = new ArrayList<LogicalDevice>();
ldList.add(ld);
ldMgr.updateLogicalDevice(ldList);

Creating Channelized Connectivity
This section describes the UIM API methods used to:

■ Create Channelized Connectivity

■ Configure Capacity on the Channelized Connectivity

■ Configure Auto Termination on the Channelized Connectivity

Create Channelized Connectivity
Table 4–5 and example code provide information about using the API method to create
channelized connectivity. (You use the same API method to create the bearer
channelized connectivity and the rider channelized connectivity.)

Table 4–5 Creating Channelized Connectivity

Topic Information

Name ConnectivityManager.createConnectivity(N connectivity, String
aNetworkLocationEntityCode, String zNetworkLocationEntityCode,
int quantity, boolean contiguousSerialAllocation)

Description This method will create channelized connectivity. Valid A Location
and Z Location must be set on the channelized connectivity instance.

Pre-Condition Two property locations to represent A and Z side of the channelized
connectivity already exists.

ora_uim_basetechnologies is already installed.

Internal Logic Not applicable

Creating Channelized Connectivity

Implementing a Channelized Connectivity Enablement Scenario 4-7

Example 4–4 Creating Channelized Connectivity

String rateCode = "STM1;
String function = "SM01";
String aLocation = "DALLAS";
String zLocation = "PLANO";
String aEntityCode = "DALLAS.001";
String zEntityCode = "PLANO.001";

int qtyInt = 1;
boolean isContiguos = "true";

TDMConnectivityManager manager =
 (TDMConnectivityManager)PersistenceHelper.makeConnectivityManager
 (TDMConnectivity.class);

Finder finder = PersistenceHelper.makeFinder();

NetworkConnectivity c = manager.makeTDMFacility();
NetworkConnectivity nc = (NetworkConnectivity)c;

String technology =
 finder.findByName(Technology.class, "SDH").iterator().next();
nc.setTechnology(technology);
finder.reset();

String rateCode =
 finder.findByName(RateCode.class, "STM1").iterator().next();
nc.setRateCode(rateCode);
finder.reset();

String function =
 finder.findByName(ConnectivityFunction.class,"SM01").iterator().next();

nc.setConnectivityFunction(function);
String aLocationCode = aLocation;
if(!Utils.isEmpty(aEntityCode)){
 aLocationCode = aLocation+"."+aEntityCode;}

String zLocationCode = zLocation;
if(!Utils.isEmpty(zEntityCode)){
 zLocationCode = zLocation+"."+zEntityCode;}

int tempQty = qtyInt;
while(tempQty >0)
{
 if(tempQty > 99){
 qtyInt = 99;}
 else{
 qtyInt = tempQty;}

 Collection<TDMConnectivity> createdConnectivities =

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Table 4–5 (Cont.) Creating Channelized Connectivity

Topic Information

Creating Channelized Connectivity

4-8 UIM API Overview

 manager.createConnectivity(c, aLocationCode, zLocationCode,
 qtyInt, isContiguos);
}

Configure Capacity on the Channelized Connectivity
Table 4–6 and example code provide information about using the API method to
configure capacity on the channelized connectivity.

Example 4–5 Configuring Capacity on the Channelized Connectivity

Finder finder = PersistenceHelper.makeFinder();

String connectivityIdentifier = "ALLNTXC01 / FRSCTXC01 / STM1 / SM01 / 1";
String sourceRateCode = "OM80";
String destinitionRateCode = "OM32";

RateCode sourceRC =
 finder.findByName(RateCode.class, sourceRateCode).iterator().next();

RateCode destinitionRC =
 finder.findByName(RateCode.class, destinitionRateCode).iterator().next();

TDMConnectivityManager mgr =
 (TDMConnectivityManager)PersistenceHelper.makeConnectivityManager
 (TDMFacility.class);

TDMConnectivitySearchCriteria criteria = mgr.makeTDMSearchCriteria();
CriteriaItem item = criteria.makeCriteriaItem();
item.setName("connectivityIdentifier");
item.setValue("connectivityIdentifier);
item.setOperator(CriteriaOperator.EQUALS);
criteria.setConnectivityIdentifier(item);
TDMFacility tdm = mgr.findTDMConnectivities(criteria).iterator().next();

SignalTerminationPointManager stpMgr =
 PersistenceHelper.makeSignalTerminationPointManager();

List<RateCode> orderedRateCodes = new ArrayList<RateCode>();
if (sourceRC != null){

Table 4–6 Configuring Capacity on the Channelized Connectivity

Topic Information

Name SignalTerminationPointManager.applyCapacityConfiguration
(MultiplexedFacility connectivity, List<RateCode> orderedRateCodes,
String signalAddress)

Description This method configures a connectivity to the required rate code level
and also creates channels at those levels.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Also call
TDMConnectivityManager.createAndAutoTerminateChannels(M
multiplexedFacility, boolean doValidation) to ensure terminations are
also adjusted accordingly.

Enabling Channelized Connectivity

Implementing a Channelized Connectivity Enablement Scenario 4-9

 orderedRateCodes.add(sourceRC);}
if (destinitionRC != null){
 orderedRateCodes.add(destinitionRC);}

stpMgr.applyCapacityConfiguration(tdm, orderedRateCodes, "");
mgr.createAndAutoTerminateChannels(tdm, true);

Configure Auto Termination on the Channelized Connectivity
Table 4–7 and example code provide information about using the API method to
configure auto-termination on the channelized connectivity.

Example 4–6 Auto-Terminating the Channelized Connectivity

Finder finder = PersistenceHelper.makeFinder();
String tdmName = "DS3_TDM_Tail";
String diId = "DS3-1-1";
ConnectivityEndpoint endPoint = ConnectivityEndpoint.A_ENDPOINT;

DeviceInterface di =
 finder.findById(DeviceInterface.class, diId).iterator().next();
finder.reset();

TDMFacility tdm =
 finder.findByName(TDMFacility.class, tdmName).iterator().next();

TDMConnectivityManager manager = (TDMConnectivityManager)
 PersistenceHelper.makeConnectivityManager(TDMConnectivity.class);

tdm = (TDMFacility) manager.assignDeviceInterface(tdm, di, endPoint);

Enabling Channelized Connectivity
This section describes the UIM API methods used to enable channelized connectivity
by:

■ Manually Enabling Channelized Connectivity

■ Performing Gap Analysis

■ Adding Segments To Connectivity Path Based on the Gap Analysis Results

Table 4–7 Auto-terminating the Channelized Connectivity

Topic Information

Name ConnectivityManager.assignDeviceInterface(E connectivity,
DeviceInterface di, ConnectivityEndpoint endpoint)

Description This method terminates the channelized connectivity with the device
interface at the given end point. Also auto-terminates the channels on
the sub-device interfaces.

Pre-Condition Ensure the capacity is configured at the required level on the
channelized connectivity and the sub-device interfaces are created
beforehand until that level.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Enabling Channelized Connectivity

4-10 UIM API Overview

Manually Enabling Channelized Connectivity
Table 4–8 and example code provide information about using the API method to
manually enable channelized connectivity by manually searching for the channelized
connectivity and adding segments to the connectivity path.

Example 4–7 Manually Enabling Channelized Connectivity by Searching for the
Connectivity and Adding Segments to the Connectivity Path

String trailName = "EDINBURGH.002 / LONDON.001 / VC12 / VC12 / 1";

//We want to add connectivities to first path
int pathIndex = "0";

//Assuming there are other connectivities already added to this path
int gapIndex = "0";

PersistenceHelper.makeBusinessInteractionManager().switchContext
 ((String)null, null);

Finder finder = PersistenceHelper.makeFinder();

Connectivity connectivityTrail =
 finder.findByName(Connectivity.class, trailName).iterator().next();

List<String> bearers = new ArrayList<String>();
bearers.add("EDINBURGH.001 / EDINBURGH.002 / STM4 / SM04 / 139 / 1-1-1-2");
bearers.add("EDINBURGH.001 / MACHESTER.001 / STM4 / SM04 / 139 / 1-1-1-2");
bearers.add("LONDON.001 / MACHESTER.001 / STM4 / SM04 / 139 / 1-1-1-2");

List<Pipe> bearerList = new ArrayList<Pipe>(bearers.size());
for (String bearerName : bearers)
{

Table 4–8 Manually Enabling Channelized Connectivity

Topic Information

Name ConnectivityManager.addSegmentsToConnectivityPath(E
connectivityTrail, PipeConfigurationItem connectivityPath,
PipeConfigurationItem gapItem, List<Pipe> bearerList) throws
ValidationException

Description The connectivityTrail parameter is the channelized connectivity that
will be enabled.

The connectivityPath parameter is the PipeConfigurationItem of the
path.

The gapItem parameter is the PipeConfigurationItem of the gap that
will be resolved.

The bearerList parameter contains other connectivities to be added
for enablement.

See Oracle Communications Information Model Reference for information
on PipeConfigurationItem.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Enabling Channelized Connectivity

Implementing a Channelized Connectivity Enablement Scenario 4-11

 finder.reset();
 Pipe connectivity = finder.findByName
 (TDMFacility.class, bearerName).iterator().next();
 bearerList.add(connectivity);
}

PipeConfigurationVersion designVersion =
 ConnectivityUtils.getInProgressDesignVersion((Pipe)connectivityTrail);

List<PipeConfigurationItem> allPaths =
 PipeHelper.getAllTransportItems(designVersion);

PipeConfigurationItem connectivityPath = allPaths.get(pathIndex);

PipeConfigurationItem gapItem =
 connectivityPath.getChildConfigItems().get(gapIndex);

ConnectivityManager manager = PersistenceHelper.makeConnectivityManager();
manager.addSegmentsToConnectivityPath
 (connectivityTrail, connectivityPath, gapItem, bearerList);

Performing Gap Analysis
Table 4–9 and example code provide information about using the API method to
perform gap analysis.

Example 4–8 Performing Gap Analysis

String sourceLocationCode = "EDINBURGH.002";
String intermediateLocationCode = "MACHESTER.001";
String targetLocationCode = "LONDON.001";
String rateCodeName = "VC12";

LocationManager locationManager =
 PersistenceHelper.makeLocationManager();

TopologyObject sourceNode =
 (TopologyObject)locationManager.findNetworkEntityLocation(sourceLocationCode);

TopologyObject targetNode =
 (TopologyObject)locationManager.findNetworkEntityLocation(targetLocationCode);

Table 4–9 Performing Gap Analysis

Topic Information

Name List<PathResultSet> findPaths(PipeSpecification enabledPipe,
PathAnalysisCriteria criteria) throws ValidationException

Description The enabledPipe parameter is the channelized connectivity to be
enabled.

The criteria parameter is used in performing gap analysis.

Pre-Condition Ensure the channelize connectivities that you are expecting the results
are already created, terminated, and their capacity is configured.

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Enabling Channelized Connectivity

4-12 UIM API Overview

TopologyObject intermediateNode = null;
if(!Utils.isEmpty(intermediateLocationCode)){
 intermediateNode =
 (TopologyObject)locationManager.findNetworkEntityLocation
 (intermediateLocationCode);
}
if(sourceNode == null || targetNode == null ||
(!Utils.isEmpty(intermediateLocationCode) && intermediateNode == null)){
 throw new IllegalArgumentException("Invalid source/intermediate/target");
}
RateCode rateCode = null;
CapacityManager capacityManager = PersistenceHelper.makeCapacityManager();
RateCodeSearchCriteria rateCodeSC = capacityManager.makeRateCodeSearchCriteria();

CriteriaItem rateCodeNameItem = rateCodeSC.makeCriteriaItem();
rateCodeNameItem.setName(rateCodeName);
rateCodeNameItem.setOperator(CriteriaOperator.EQUALS);
rateCodeNameItem.setValue(rateCodeName);
rateCodeSC.setName(rateCodeNameItem);

List<RateCode> rateCodes = capacityManager.findRateCode(rateCodeSC);
if (!Utils.isEmpty(rateCodes)) {
 rateCode = rateCodes.get(0);
}
if(rateCode == null){
 throw new IllegalArgumentException("Invalid rateCode");
}
PathAnalysisCriteria criteria = new PathAnalysisCriteria();
criteria.setSourceNode(sourceNode);
criteria.setIntermediateNode(intermediateNode);
criteria.setTargetNode(targetNode);
criteria.setRateCode(rateCode);
criteria.setGapAnalysis(true);

PathAnalysisManager pathAnalysisManager =
 PersistenceHelper.makePathAnalysisManager();

List<PathResultSet> paths = pathAnalysisManager.findPaths(criteria);

Adding Segments To Connectivity Path Based on the Gap Analysis Results
Table 4–10 and example code provide information about using the API method to add
segments to the connectivity path based on the gap analysis results.

Table 4–10 Adding Segments to Connectivity Path Based on Gap Analysis Results

Topic Information

Name ConnectivityManager.addSegmentsToConnectivityPath (E
connectivityTrail, PipeConfigurationItem connectivityPath,
PipeConfigurationItem gapItem, PathResultSet path) throws
ValidationException;

Enabling Channelized Connectivity

Implementing a Channelized Connectivity Enablement Scenario 4-13

Example 4–9 Adding Segments to Connectivity Path Based on Gap Analysis Results

String trailName = "EDINBURGH.002 / LONDON.001 / VC12 / VC12 / 1";

//We want to add connectivities to first path
int pathIndex = "0";

//Assuming there are other connectivities already added to this path
int gapIndex = "0";

PersistenceHelper.makeBusinessInteractionManager().switchContext
 ((String)null, null);

Finder finder = PersistenceHelper.makeFinder();

Connectivity connectivityTrail =
 finder.findByName(Connectivity.class, trailName).iterator().next();

PipeConfigurationVersion designVersion =
 ConnectivityUtils.getInProgressDesignVersion((Pipe)connectivityTrail);

List<PipeConfigurationItem> allPaths =
 PipeHelper.getAllTransportItems(designVersion);

PipeConfigurationItem connectivityPath = allPaths.get(pathIndex);

PipeConfigurationItem gapItem =
 connectivityPath.getChildConfigItems().get(gapIndex);

ConnectivityManager manager = PersistenceHelper.makeConnectivityManager();

/*Here paths are the path returned by gap analysis.
Assuming the first one is the list is selected*/
manager.addSegmentsToConnectivityPath
 (connectivityTrail, connectivityPath, gapItem, paths.get(0));

Description The connectivityTrail parameter is the channelized connectivity that
will be enabled.

The connectivityPath parameter is the PipeConfigurationItem
representing the path to which the segments have to be added.

The gapItem parameter is the PipeConfigurationItem of the gap that
will be resolved.

The path parameter is the results returned from gap analysis. (You can
pass the results retrieved in the previous example. For example,
paths.get(0)).

See Oracle Communications Information Model Reference for information
on PipeConfigurationItem.

Pre-Condition Not applicable

Internal Logic Not applicable

Post-Condition Not applicable

Extensions Not applicable

Tips Not applicable

Table 4–10 (Cont.) Adding Segments to Connectivity Path Based on Gap Analysis

Topic Information

Enabling Channelized Connectivity

4-14 UIM API Overview

A

UIM Entity Managers A-1

AUIM Entity Managers

This appendix provides a listing of Oracle Communications Unified Inventory
Management (UIM) entity manager class names, the package in which they reside, the
entities they manage, and a brief description.

These Java manager classes are found in the uim_managers.jar which is located in the
UIM Software Development Kit (SDK). See UIM Developer’s Guide for more
information on the UIM SDK.

Note: The package references in Table A–1 assume the package
prefix of oracle.communications.inventory.api.

Table A–1 List of UIM Entity Managers

Manager Name Package Managed Entities Description

ActivityManager project.activity Activity

ActivityItem

Project

Defines the methods for managing
Activity entities within a Project
along with their ActivityItem
entities.

AddressRangeManager place GeographicAddress Defines a GeographicAddress
being used as a range.

AssignmentManager consumer Assignment Extends ConsumerManager,
managing Assignment logic.
Assignment such as
PipeAssignment,
EquipmentAssignment.

AttachmentManager common Involvement Administers Attachments and
Involvements, for example
preconfiguring TelephoneNumber
with LogicalDeviceAccount.

BaseInvManager common <Base Class> Provides application-specific
behavior to methods in the
JdoBean. The JdoBean doesn't
know about entities that are
specific to the inventory
application.

BOMManager bom Activity

Inventory

Defines the methods to support
retrieving Bill of Materials
information as well as populating
additional information on an
activity or resource.

A-2 UIM API Overview

BusinessInteractionManag
er

businessinteractio
n

BusinessInteraction Defines methods for managing
Business Interactions.

CapacityManager capacity Capacity Defines the methods for managing
capacity such as
PipeCapacityProvided,
PipeCapacityRequired,
PipeCapacityConsumption.

CharacteristicManager characteristic Characteristics Defines the methods for managing
Characteristics such as
CharacteristicSpecUsage,
CharacteristicSpecValue,
CharacteristicSpecValueUsage.

ConditionManager consumer Condition Extends InventoryManager,
managing Condition logic.
Condition such as PipeCondition,
EquipmentCondition.

ConfigurationManager configuration Configuration Administers a configuration and its
subtypes such as
ServiceConfiguration,
PlaceConfiguration.

ConnectivityManager connectivity Connectivity

Pipe

DeviceInterface

InterConnection

CrossConnect

Defines the methods for managing
the creation, updates, deletions,
and retrieving of connectivity data.
This manager references a large
number of different entities so the
primary entities are listed here as
the managed entities.

ConsumerManager consumer Assignment

Condition

Reservation

Validates resource availability.

CustomNetworkAddress
Manager

custom CustomNetworkAddress Defines the methods for managing
CustomNetworkAddress objects.

CustomObjectManager custom CustomObject Defines the methods for managing
CustomObject objects.

EquipmentManager equipment Equipment

EquipmentHolder

PhysicalPort

PhysicalConnector

PhysicalDevice

Defines the methods for managing
equipment and provided
equipment holders, physical ports
and physical connectors of the
equipment. This interface also
defines the methods for
maintaining and finding physical
devices and provided physical
ports and physical connectors of
the physical devices.

FlowIdentifierManager networkaddress FlowIdentifier

InventoryGroup

Defines the methods for managing
flow identifiers and relating them
to inventory groups.

InventoryBaseManager inventory InventoryConfigurationIte
m

Gets and validates inventory
configuration item for
configuration.

InventoryGroupManager group InventoryGroup

InvGroupRef

Defines the methods for managing
inventory groups and related
entities.

Table A–1 (Cont.) List of UIM Entity Managers

Manager Name Package Managed Entities Description

UIM Entity Managers A-3

IPAddressManager ip IPAddress

NetworkAddressDomain

Defines the methods for managing
IP Addresses.

IPNetworkManager ip IPSubnet

IPAddress

NetworkAddressDomain

Defines the methods for creating,
deleting, finding, and updating IP
network objects.

LocationManager location PropertyLocation

PropertyAddress

NetworkEntityCode

Defines the methods for managing
behaviors of property locations.

LogicalDeviceManager logicaldevice LogicalDevice

DeviceInterface

FlowInterface

Defines the methods for managing
LogicalDevice, Device Interface,
and Flow Interface objects.

LogicalDeviceAccountMa
nager

logicaldevice.acco
unt

LogicalDeviceAccount Defines the methods for managing
LogicalDeviceAccount objects.

LogicalPhysicalResourceB
ase

resource Contains shared methods and
variables for managing logical and
physical resources.

MediaManager media Media Defines the methods for managing
Media objects. Most of the methods
for creating, updating, and deleting
Media objects are deprecated
because the functionality was
replaced in Design Studio.

MediaResourceManager mediaresource MediaStream

MediaResourceLogicalDe
viceRel

Defines the methods for managing
MediaStream objects and its
relationships to LogicalDevice
objects. MediaStream is also a
MediaResource which is an
abstract entity for various types of
media.

MultiplexedConnectivity
Manager

connectivity MultiplexedConnectivity

MultiplexedChannel

MultiplexedFacility

Defines the methods for managing
MultiplexedConnectivity objects as
well as creating and retrieving
channels for a facility. This
interface also creates and removes
terminations for a facility.

NetworkAddressBlockMa
nager

networkaddress NetworkAddressBlock Defines methods for managing
NetworkAddressBlock objects.

NetworkAddressDomain
Manager

networkaddress NetworkAddressDomain

NetworkAddressType

Defines methods for managing
NetworkAddressDomain objects.

NetworkManager network Network

NetworkNode

NetworkEdge

Defines methods for managing
Network, NetworkNode, and
NetworkEdge objects.

NetworkReconfiguration
ActivityManager

project.activity Network

NetworkNode

NetworkEdge

Defines methods for managing
Network, NetworkNode, and
NetworkEdge objects, and their
relationships to Activities.

Table A–1 (Cont.) List of UIM Entity Managers

Manager Name Package Managed Entities Description

A-4 UIM API Overview

NetworkReconfiguration
Manager

network Network

NetworkNode

NetworkEdge

Defines methods for managing
Network, NetworkNode, and
NetworkEdge objects for Network
Configuration scenarios.

PacketConnectivityManag
er

connectivity NetworkConnectivity Defines the methods for creating
Packet Network Connectivity
objects.

PartyManager party Party Defines the methods for managing
Party objects.

PathAnalysisManager topology TopologyEdge

ToplogyNode

Defines the methods for finding
paths of interconnected
TopologyEdge and TopologyNode
objects.

PipeConfigurationManag
er

connectivity PipeConfigurationVersion

PipeConfigurationItem

Pipe

PipeTerminationPoint

Defines the methods for managing
Pipe Configurations and their
related entities.

PipeManager connectivity Pipe

PipeTerminationPoint

Defines the methods for managing
Pipe and PipeTerminationPoint
objects.

PlaceConfigurationManag
er

place PlaceConfiguration Defines the methods for managing
PlaceConfiguration objects.

PlaceManager place GeographicPlace

GeographicAddress

GeographicLocation

GeographicSite

Defines the methods for
maintaining GeographicPlace
objects and their concrete
subclasses.

ProductManager product Product Defines the methods for managing
Product objects.

ProjectManager project Project Defines the methods for managing
Project objects.

ReservationManager consumer Reservation Extends ConsumerManager,
managing Reservation logic.
Reservation such as
PipeReservation,
EquipmentReservation.

RoleManager role Role Defines methods for managing
Role objects.

SecurityManager admin User

Role

Partition

SecurityPolicy

Defines the methods for managing
User, Role, Partition, and
SecurityPolicy objects.

ServiceConfigurationMan
ager

service ServiceConfigurationVersi
on

ServiceConfigurationItem

This manager is used to configure a
service using configuration
versions and items.

Table A–1 (Cont.) List of UIM Entity Managers

Manager Name Package Managed Entities Description

UIM Entity Managers A-5

ServiceConnectivityMana
ger

connectivity ServiceConnectivity

ServiceNetwork

ServiceConfigurationVersi
on

This manager is used to create
service connectivity objects with
and without a
ServiceConfigurationVersion.

ServiceManager service Service Defines the methods for managing
Service objects.

SignalTerminationPointM
anager

signalterminationp
oint

SignalTerminationPoint

TrailTerminationPoint

ConnectionTerminationPo
int

Defines methods for managing
Signal Structure and
SignalTerminationPoint.

SpecManager specification Specification Administers a specification and its
subtypes such as PipeSpecification,
EquipmentSpecification.

TagManager tag Tag Defines the methods for managing
Tag objects.

TDMConnectivityManage
r

connectivity TDMChannel

TDMFacility

Defines the methods for managing
TDMChannel and TDMFacility
objects.

TelephoneNumberManag
er

number TelephoneNumber Defines the methods for managing
TelephoneNumber objects.

TopologyManager topology TopologyEdge

TopologyNode

Defines the methods for managing
TopologyEdge and ToplogyNode
objects.

TransitionManager common Transitions an entity's business and
object states by finding the
matching transition definitions
with business action, object activity,
entity type, and specification. If the
definition's from state matches the
entity's state, then the entity's state
is set to the definition's to state.

VirtualNetworkManager network Network

NetworkNode

NetworkEdge

FlowInterface

FlowIdentifier

Defines the methods for managing
Virtual Networks, Service
Networks, and Packet Virtual
Network objects.

WorkflowManager businessinteractio
n

EngineeringWorkOrder

Checklist

Activity

Defines the methods for managing
Engineering Work Orders and
Activities. This manager also
updates Activity properties like
duration and their checklists and,
also transitioning an Activity’s
status.

Table A–1 (Cont.) List of UIM Entity Managers

Manager Name Package Managed Entities Description

A-6 UIM API Overview

B

NFV Orchestration Java Managers B-1

BNFV Orchestration Java Managers

This appendix provides a listing of Oracle Communications Unified Inventory
Management (UIM) NFV Orchestration Java manager names, the package in which
they reside, and a brief description.

These Java manager classes are found in the nso_managers.jar which is located in the
UIM Software Development Kit (SDK). See UIM Developer’s Guide for more
information on the UIM SDK.

Table B–1 contains the list of Java managers in alphabetical order by manager name.

Note: The package references in Table B–1 assume the package prefix
of oracle.communications.inventory.nso.

Table B–1 List of NFV Orchestration Java Managers

Manager Name Package Description

DescriptorManager api.descriptor Defines numerous find methods for retrieving the
descriptors and specifications for Network Services, VNFs,
PNFs and orchestration requests.

EMSManager api.ems Defines the methods for finding, creating, updating and
deleting EMSs, which perform the typical management
functionality for one or several VNFs.

NetworkServiceDesignManager api.c2a Defines the methods for creating, disconnecting and
changing the configuration version for a Network Service.

NetworkServiceManager api.ns Defines various methods to instantiate, activate, terminate
and update Network Service entities. This manager also
includes several find methods for Network Services and
methods for Design and Assign of various Network Service
entities.

NFVIManager nfvi Defines the methods for managing the NFV infrastructure.
This manager includes methods to create, get and delete
objects such as flavors, ports, networks and virtual routers
for the VIM. By default, NFV Orchestration supports
integration with OpenStack, but you can implement this
interface to provide integration to a custom VIM, for instance
supporting VMware vCloud.

NSONotificationManager api.ns Defines the methods to process a notification. This manager
provides the mechanism to extend and provide your own
custom required notifications.

B-2 UIM API Overview

NSOResponseManager api.ns Defines the methods to aid in sending a response to a topic in
the WebLogic server. By default, NFV Orchestration includes
a response manager that publishes the status of the VNF and
Network Service life-cycle operations to a topic. You can also
implement this interface to provide a custom response
manager.

PNFManager api.pnf Defines the methods to find, create, update, delete, and
manage PNFs.

PNFServiceDesignManager api.c2a Defines the methods to process the actions performed during
a PNF addition to a Network Service or termination from a
Network Service.

ResourceOrchestrationManager api.ro Defines the methods used to choose a data center based on
the requirement to provision a Network Service. An instance
can be obtained from the NSOHelper class.

SBSytemManager api.sb Defines the south-bound system manager providing
methods to manage the VNF, such as reboot, replace,
upgrade, scale and instantiate. You can implement this
interface to integrate NFV Orchestration with a third-party
VNF manager or Oracle’s VNF Manager.

SDNController nfvi Defines the methods to create, update, and delete network
forwarding paths (NFPs) for VNF forwarding graphs
(VNFFGs). By default, NFV Orchestration supports
integration with OpenStack Neutron Networking-SFC
(Service Function Chaining) using Open vSwitch (OVS)
driver, but you can also implement a custom SDN controller.

VNFCapabilityServiceManager api.vnf.capabi
lity

Defines the methods to configure a VNF service. This also
contains a designAndAssign() method, as well as the
issueConfigurationVersion() method.

VNFConfigManager nfvi Defines the methods to return the configuration files of a
VNF and generates configuration content for VNF
configuration. You can implement this interface to extend the
VNF manager functionality and its configuration files.

VNFConnectionManager nfvi Defined the methods to connect and configure a VNF. You
can implement this interface to extend the VNF manager
functionality for these methods.

VNFLifeCycleManager nfvi Defines methods to manage the life cycle of a VNF, such as
instantiate, reboot and terminate. You can implement this
interface to extend the VNF manager functionality for these
methods. By default, NFV Orchestration manages the VNF
life-cycle operations by using OpenStack Compute services
(referred to as Nova), but you can also implement and use a
custom VNF life-cycle manager.

VNFMonitoringManager nfvi Defines the methods to manage the monitoring of a VNF,
such as create, get and update alarms. By default, NFV
Orchestration supports integration with OpenStack
Ceilometer, but you can also implement and use a custom
monitoring engine.

VNFServiceDesignManager api.c2a Defines the methods for creating, disconnecting and
changing the configuration version for a VNF.

VNFServiceManager api.vnf Defines various methods to instantiate, activate, terminate
and update VNFs. This manager also includes several find
methods for VNFs.

Table B–1 (Cont.) List of NFV Orchestration Java Managers

Manager Name Package Description

NFV Orchestration Java Managers B-3

See UIM NFV Orchestration Implementation Guide for more information on extending
the Java managers.

B-4 UIM API Overview

C

Common Utility Code Examples C-1

CCommon Utility Code Examples

This appendix provides example code of common utilities that are often used when
working with the Oracle Communications Unified Inventory Management (UIM)
application program interfaces (APIs).

Example C–1 Common Utility Code

public boolean hasErrors()
{
 boolean hasErrors = false;
 UserEnvironment userEnvironment = UserEnvironmentFactory.getUserEnvironment();
 if (userEnvironment != null)
 {
 FeedbackProvider feedbackProvider = userEnvironment.getFeedbackProvider();
 hasErrors = feedbackProvider.hasMessages(FeedbackLevel.ERROR);
 }
 return hasErrors;
}

public FeedbackProvider getFeedbackProvider()
{
 FeedbackProvider feedbackProvider = null;
 UserEnvironment userEnvironment = getUserEnvironment();
 if (userEnvironment != null)
 {
 feedbackProvider = userEnvironment.getFeedbackProvider();
 }
 return feedbackProvider;
}

protected static void commitOrRollback(UserTransaction ut)throws Exception
{
 FeedbackProvider feedbackProvider =
 getUserEnvironment().getFeedbackProvider();
 if (feedbackProvider.hasMessages(FeedbackLevel.ERROR))
 {
 if (ut != null && ut.getStatus() == Status.STATUS_ACTIVE)
 ut.rollback();
 }
 else
 {
 if (ut != null && ut.getStatus() == Status.STATUS_ACTIVE)
 ut.commit();
 }

C-2 UIM API Overview

}

protected static UserEnvironment startUserEnvironment()throws Exception
{
 UserEnvironment userEnvironment = null;
 try {
 UserEnvironment = getUserEnvironment();
 if (userEnvironment != null)
 {
 //Reset the User Context in User Environment.
 userEnvironment.reset();
 //Begin the UserEnvironment before it is first used.
 userEnvironment.begin();
 //Reset the Feedback Provider in User Environment.
 userEnvironment.getFeedbackProvider().reset();
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 throw e;
 }
 return userEnvironment;
}

protected static void endUserEnvironment(UserEnvironment userEnvironment)
{
 if (userEnvironment == null)
 return;

 userEnvironment.getFeedbackProvider().reset();
 userEnvironment.end();
}

protected static UserEnvironment getUserEnvironment() throws Exception
{
 UserEnvironment userEnvironment = null;
 try {
 //Utils is oracle.communications.platform.util.Utils
 InitialContext initialContext = Utils.getInitialContext();
 String jndiContextName = "inv";
 String userEnvironmentName = "UserEnvironment";

 userEnvironment = (UserEnvironment)initialContext.lookup
 (jndiContextName + "/" + userEnvironmentName);

 initialContext.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 throw e;
 }
 return userEnvironment;
}

	Contents
	Preface
	Audience
	Related Documentation
	Documentation Accessibility

	1 Overview
	2 Working with Transactions, Exceptions, and Logging
	Working with Transactions
	Working with Exceptions
	Working with Logging
	Configuring the Logging Level
	Working with the Log Interface
	About UIM Log Messages
	Defining Custom Log Messages
	Working with the FeedbackProvider Interface

	3 Implementing a Generic Service Fulfillment Scenario
	About the Generic Service Fulfillment Scenario
	Querying for the Specification
	Creating the Service and Service Configuration
	Creating the Service
	Retrieving the Service Configuration Specification
	Creating the Service Configuration
	About Alternate Flows
	Changing the Service
	Disconnecting the Service

	Creating and Associating the Party
	Creating the Party
	Creating the Party Role
	Associating the Party and Party Role with the Service
	About Alternate Flows
	Disassociating the Party and Party Role from the Service
	Deleting the Party
	Deleting the Party Role

	Creating and Associating the Geographic Address with the Service
	Creating the Geographic Place
	Creating the Place Role
	Associating the Geographic Place and Place Role with the Service
	About Alternate Flows
	Disassociating the Geographic Place and Place Role from the Service
	Deleting the Geographic Place
	Deleting the Place Role

	Configuring the Resources for the Service Configuration
	Finding the Service
	Finding the Current Service Configuration Version
	Finding the Service Configuration Item
	Finding the Custom Object to Assign
	Creating the Custom Object to Assign
	Assigning the Resource to a Configuration Item
	About Alternate Flows
	Unassigning Resources from a Configuration Item
	Reserving a Custom Object
	Unreserving a Custom Object
	Creating a Blocked Condition for a Custom Object
	Deleting a Blocked Condition for a Custom Object

	Setting Characteristic Values for the Service Configuration Item
	About Alternate Flows
	Unsetting Characteristic Values for the Service Configuration Item

	Transitioning the Lifecycle Status

	4 Implementing a Channelized Connectivity Enablement Scenario
	About the Channelized Connectivity Enablement Scenario
	Creating a Property Location and Associating Network Entity Codes
	Creating a Logical Device and Associating LD Interfaces with Network Entity Codes
	Creating Channelized Connectivity
	Create Channelized Connectivity
	Configure Capacity on the Channelized Connectivity
	Configure Auto Termination on the Channelized Connectivity

	Enabling Channelized Connectivity
	Manually Enabling Channelized Connectivity
	Performing Gap Analysis
	Adding Segments To Connectivity Path Based on the Gap Analysis Results

	A UIM Entity Managers
	B NFV Orchestration Java Managers
	C Common Utility Code Examples

