
 

[1] Oracle® Communications IP Service Activator
Configuration Development Kit Guide 

Release 7.4 

E88214-01

December 2017



Oracle Communications IP Service Activator Configuration Development Kit Guide, Release 7.4

E88214-01

Copyright © 2011, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on 
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your 
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, 
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse 
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is 
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If 
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it 
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, 
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users 
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and 
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the programs, including any operating system, integrated software, any programs installed on 
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to 
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management 
applications. It is not developed or intended for use in any inherently dangerous applications, including 
applications that may create a risk of personal injury. If you use this software or hardware in dangerous 
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other 
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of 
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks 
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, 
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced 
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, 
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and 
expressly disclaim all warranties of any kind with respect to third-party content, products, and services 
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its 
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of 
third-party content, products, or services, except as set forth in an applicable agreement between you and 
Oracle.



iii

Contents

Preface ................................................................................................................................................................   vii

Audience......................................................................................................................................................    vii
Accessing Oracle Communications Documentation.............................................................................    vii
Documentation Accessibility ....................................................................................................................    vii

1 Configuration Development Kit Overview

About the Configuration Development Kit ........................................................................................   1-1
Restrictions ................................................................................................................................................   1-2
Pre-Defined Scripts..................................................................................................................................   1-2

2 Driver Scripts 

About Driver Scripts................................................................................................................................   2-1
About Script Types and Targets.............................................................................................................   2-1

Applying Roles ...................................................................................................................................   2-2
Policy Targets......................................................................................................................................   2-2

About Context-Specific Parameters ......................................................................................................   2-2
Local Context ......................................................................................................................................   2-2
Inherited Context ...............................................................................................................................   2-3

About Scheduling of Scripts ..................................................................................................................   2-3
About Running Scripts ...........................................................................................................................   2-4

Scripts to Install Configuration ........................................................................................................   2-4
Scripts to Remove Configuration.....................................................................................................   2-5

About Sharing Data Between Scripts ...................................................................................................   2-6

3 Using Existing Scripts

Importing Scripts......................................................................................................................................   3-1
Viewing and Organizing Scripts ...........................................................................................................   3-2

Creating Driver Script Folders .........................................................................................................   3-3
Viewing a Summary of Scripts.........................................................................................................   3-3
Viewing the Entire Text of Scripts ...................................................................................................   3-5
Viewing Script Properties .................................................................................................................   3-5

Associating Roles with Scripts ..............................................................................................................   3-6
Setting Variables.......................................................................................................................................   3-7

Setting Variables in the Preamble Section ......................................................................................   3-7
Setting Variables in the Local Context for an Object ....................................................................   3-8



iv

Associating Scripts with Objects ..........................................................................................................   3-9
Linking Scripts to Objects .................................................................................................................   3-9
Re-running a Script ............................................................................................................................   3-9

Removing Scripts ..................................................................................................................................    3-10
Propagating Configuration..................................................................................................................    3-10

Applying Configuration.................................................................................................................    3-11
Removing Configuration ...............................................................................................................    3-11

Deleting Scripts .....................................................................................................................................    3-11

4 Developing Scripts

About Developing Scripts ......................................................................................................................   4-1
Creating a Script .......................................................................................................................................   4-1

Using the Template File ....................................................................................................................   4-1
Creating a Script Using a Text Editor..............................................................................................   4-2
Creating a Script from the IP Service Activator Client .................................................................   4-2

Structure of a Script .................................................................................................................................   4-3
The Preamble Section ........................................................................................................................   4-4
The Behavior Section .........................................................................................................................   4-5
The Common Section.........................................................................................................................   4-6
The Install Section ..............................................................................................................................   4-7
The Remove Section...........................................................................................................................   4-8

Exporting Scripts ......................................................................................................................................   4-9
Programming Tips....................................................................................................................................   4-9

Script Conventions.............................................................................................................................   4-9
Command Format ...........................................................................................................................    4-10
Handling Exceptions ......................................................................................................................    4-10
Displaying Errors in IP Service Activator ...................................................................................    4-10
Applying Commands .....................................................................................................................    4-10
Preventing Command Application ..............................................................................................    4-11
Processing Command Output.......................................................................................................    4-11
Returning a Result...........................................................................................................................    4-11
Re-applying Configuration............................................................................................................    4-12
Managing Script Context ...............................................................................................................    4-12

5 Sharing Data Between Scripts

About Sharing Data Between Scripts ...................................................................................................   5-1
Using Classes ............................................................................................................................................   5-1
Using a Python Dictionary .....................................................................................................................   5-3
Storing and Retrieving Data ..................................................................................................................   5-4
An Example of Using the Shared Data Area .......................................................................................   5-5

Types of Script ....................................................................................................................................   5-5
About the Example ............................................................................................................................   5-6
Data Script: setIPAddress.py.........................................................................................................    5-10

Listing of setIPAddress.py .....................................................................................................    5-10
Explanation of setIPAddress.py ............................................................................................    5-11

Data Script: setDescription.py.......................................................................................................    5-11
Listing of setDescription.py ...................................................................................................    5-11



v

Behavior Script: processInterfaces.py ..........................................................................................    5-12
Listing of processInterfaces.py...............................................................................................    5-12
Explanation of processInterfaces.py .....................................................................................    5-14

Controller Script: BehaviorAndCommandController.py..........................................................    5-16
Listing of BehaviorAndCommandController.py ................................................................    5-16
Explanation of BehaviorAndCommandController.py .......................................................    5-16

Error Reporting in Behavior Scripts ..................................................................................................    5-17

6 Monitoring and Troubleshooting Scripts

Checking the Status of Scripts...............................................................................................................   6-1
Understanding Warnings and Error Messages ...................................................................................   6-2
Checking Logs...........................................................................................................................................   6-3

7 Definition of Standard Methods

Summary of Methods ..............................................................................................................................   7-1
General Context ........................................................................................................................................   7-2

The _result Object...............................................................................................................................   7-2
The setCode Method...................................................................................................................   7-3
The setDetails Method................................................................................................................   7-3
The sendScriptObjectFailure Method ......................................................................................   7-4

Device Context ..........................................................................................................................................   7-4
The _device Object .............................................................................................................................   7-4

The openSession Method...........................................................................................................   7-5
The deliverCommand Method..................................................................................................   7-5
The closeSession Method ...........................................................................................................   7-6
The getIpAddress Method.........................................................................................................   7-6
The getIos Method ......................................................................................................................   7-6
The getOs Method.......................................................................................................................   7-7
The getDeviceType Method ......................................................................................................   7-7
The getFeatureSet Method.........................................................................................................   7-7
The getNumberOfInterfaces Method.......................................................................................   7-8
The getThisCommitSharedData Method ................................................................................   7-8
The getLifetimeSharedData Method........................................................................................   7-8
The getInterface Method............................................................................................................   7-9
The log Method ...........................................................................................................................   7-9
The auditLog Method..............................................................................................................    7-10

Interface Context ...................................................................................................................................    7-10
The _interface Object ......................................................................................................................    7-10

The getInterfaceName Method ..............................................................................................    7-10
The getIpAddress Method......................................................................................................    7-11
The getVipType Method.........................................................................................................    7-11
The getAdapterType Method.................................................................................................    7-12
The getNumberOfFramePvcs Method..................................................................................    7-12
The getNumberOfAtmPvcs Method.....................................................................................    7-12
The getFramePvc Method.......................................................................................................    7-13
The getAtmPvc Method..........................................................................................................    7-13



vi

ATM PVC Context .................................................................................................................................    7-14
The _atm_pvc Object ......................................................................................................................    7-14

The getVpi Method..................................................................................................................    7-14
The getVci Method...................................................................................................................    7-14

Frame PVC Context ...............................................................................................................................    7-14
The _frame_pvc Object ...................................................................................................................    7-15

The getDlci Method .................................................................................................................    7-15

A Pre-defined Scripts

Save to NVRAM ......................................................................................................................................    A-1
Add VLAN to CatOS ..............................................................................................................................    A-1
Force a FastStart Mode Exit for Cisco Devices...................................................................................    A-2

B Sample Scripts for Using the Shared Data Area

Sample Python Module..........................................................................................................................    B-1
Sample Behavior Script..........................................................................................................................    B-3
Sample Data Script..................................................................................................................................    B-4
Sample Controller Script .......................................................................................................................    B-4



vii

Preface

This guide describes how to develop scripts to implement device-specific network 
configuration.

The CDK enables system developers to develop Python scripts that define specific 
network configuration. These scripts can then be applied directly to network devices 
by using Oracle Communications IP Service Activator. 

Audience
This guide is intended for system developers who want to develop scripts to 
implement device-specific network configuration, and for network operations 
managers who use the scripts.

Before reading this guide, you should have familiarity with IP Service Activator and 
its QoS, access control, and VPN provisioning features.

You should also have knowledge of the Python programming language, as this guide 
does not provide details of the language.

Accessing Oracle Communications Documentation
IP Service Activator for Oracle Communications documentation, and additional 
Oracle documentation, is available from Oracle Help Center:

http://docs.oracle.com

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support 
through My Oracle Support. For information, visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.



viii



1

Configuration Development Kit Overview 1-1

1Configuration Development Kit Overview

This chapter provides an overview of the Configuration Development Kit (CDK) and 
the concept of driver scripts. 

About the Configuration Development Kit
The CDK is an optional Oracle Communications IP Service Activator module that 
extends the capabilities of the core system. It provides a means of defining device 
configurations through command scripts that are applied directly to network devices. 
The CDK supports Python version 2.2, which is automatically installed with IP Service 
Activator.

The CDK provides a method of implementing configuration tasks that could otherwise 
not be achieved from within the core system. For example, scripts can be written to 
create interfaces or sub-interfaces, set up IP addresses or run device-specific routing 
commands.

Key features of the CDK are as follows: 

■ Scripts are written in Python v2.2, a freely-available and fully-featured 
object-oriented language that is easy to learn.

■ No programming experience is required to set up and apply existing scripts. Users 
can view existing scripts directly from the IP Service Activator user interface 
(client), set up any variables required and associate the scripts with appropriate 
devices, interfaces or VPNs in the network. 

■ Experienced Python developers can produce their own scripts. New scripts can be 
entered directly into the user interface; alternatively scripts can be written using a 
text editor and imported. 

■ The CDK is supported by all the fully-featured device drivers and by the CatOS 
script driver. 

■ Each script has a defined type, which specifies whether it configures devices, 
interfaces, sub-interfaces, ATM PVCs or Frame Relay PVCs. However, a script can 
be applied to objects throughout the network topology (networks, VPNs, devices, 
interfaces, sub-interfaces, and PVCs) and is applied by a process of inheritance.

■ User-defined variables can be associated with the particular objects to which 
scripts can be applied, so for example you can define a generic script that, when 
run, applies different values to different interfaces.

■ Users can select when a script is run. For example, a script can be run either before 
or after any other configuration tasks, and can be run once only or repeated at 
every subsequent propagate. 



Restrictions

1-2 IP Service Activator Configuration Development Kit Guide

■ Data can be shared between the scripts that are run for a particular device, which 
has a range of applications including control of script application order and 
optimization of script usage. 

Restrictions
Users of the CDK should be aware of the following: 

■ Commands applied via a script are not processed by the policy server which 
means that they are not checked or validated in any way. Applying untested 
scripts, or inadvertently applying scripts to the wrong devices can have a serious 
effect on network functionality, for example by removing routing capability. 

■ The ability to create or apply driver scripts is dependent on a user’s access level. 
For security reasons, Oracle advises that access should be restricted to a small set 
of trusted users.

Pre-Defined Scripts
As of IP Service Activator 7.2, two pre-defined scripts are supplied:

■ NVRAM.py: This Cisco driver script copies the running IOS configuration to 
startup configuration.

■ CatosAddVlan.py: This CatOS driver script adds VLAN to a CatOS switch.

For full details, see "Pre-defined Scripts".



2

Driver Scripts 2-1

2Driver Scripts

This chapter provides a general explanation of driver scripts and how they can be 
used. 

About Driver Scripts
A driver script is a short program, written in the Python programming language, 
which is used to directly configure a device via the Oracle Communications IP Service 
Activator device drivers. Python allows the use of loops and if/then statements when 
generating device commands.

Scripts can be created directly from within the IP Service Activator user interface 
(client) and are stored in the system database. These scripts can then be associated 
with specific targets, such as a device or an interface. For each object that the script is 
applied to, the device driver executes the script and generates and applies the 
configuration. The timing of the configuration is dependent on control information, 
which is defined as part of the script. 

A driver script is divided into five sections: 

■ Preamble section: contains variables required in the rest of the script. 

■ Behavior section: includes parameter definitions and scheduling information 
which define where and when a script is applied. 

■ Common section (optional): defines functions that can be used more than once in 
the script, such as finding an IP address or returning the device status. 

■ Install section: contains code that is run when a script is associated with an object 
in order to configure commands on a device. 

■ Remove section (optional): contains code that is run when a script is disassociated 
from an object in order to remove configuration from a device. 

About Script Types and Targets
There are five different types of script, each with a particular target: 

■ Device: applies commands at device level 

■ Interface: applies commands at interface level

■ Sub-interface: applies commands at sub-interface level 

■ ATM PVC: applies commands to ATM PVCs 

■ Frame Relay PVC: applies commands to Frame Relay PVCs 



About Context-Specific Parameters

2-2 IP Service Activator Configuration Development Kit Guide

Applying Roles
In common with rules and PHB groups, driTaver scripts must be allocated roles in 
order to define the points in the network at which they will be applied. 

All scripts must have one or more device roles. Interface, sub-interface and PVC 
scripts must also have one or more interface roles assigned.

A script is only implemented on objects that have the same role. For example, a Device 
script with the role of Core device is only applied on those devices that are assigned 
the role of Core. For a Sub-interface script, the device, interface and sub-interface roles 
must all match for the script to be applied. For information about using roles in policy 
elements, see IP Service Activator QoS User’s Guide.

Policy Targets
Scripts can be associated with objects at different levels of the hierarchy and are then 
applied to all relevant objects by a process of inheritance. For example, if a 
sub-interface script is associated with a network object, it is applied to all 
sub-interfaces on devices within that network that have the correct role setting. 

When the device driver runs the script, a separate concrete script is created for each 
instance. 

You can associate scripts with the following objects:

■ Customers

■ VPNs

■ Sites

■ Networks

■ Devices

■ Interfaces

■ Sub-interfaces

■ PVC endpoints

Figure 2–1 shows a diagram of device script inheritance.

About Context-Specific Parameters
Each script runs in a specific context. This ensures that the writer of a script can 
assume the existence of a number of certain defined objects, and set up particular 
parameters. For example, at the device level, all device-specific information, such as IP 
address, device type and number of interfaces, is automatically available. At the 
interface level, all interface-specific information is available in addition to device 
details.

Local Context
Each object that can have a driver script applied to it can have additional commands 
defined that set variables to specific values. This enables a generic script to have a 

Note: In situations where more than one script applies to an object, 
no priority ordering is carried out. You should ensure that multiple 
scripts do not result in conflicts.



About Scheduling of Scripts

Driver Scripts 2-3

different effect depending on which router, interface or PVC is being configured. For 
example, the local context for a Frame Relay interface could set values for the CIR, Bc 
and Be parameters, which could then be used later for Frame Relay Traffic Shaping, 
using a Sub-interface script applied to the network level.

Inherited Context
In addition to an object’s local context, each object inherits specific context from its 
parent objects. For example, a PVC endpoint can potentially inherit context defined for 
its parent sub-interface device and network. Figure 2–1 shows the way in which driver 
scripts are inherited.

Figure 2–1 Driver Script Inheritance

About Scheduling of Scripts
As for any other IP Service Activator configuration, driver scripts are implemented 
when a transaction is committed, resulting in configuration being propagated to 
network devices. 

Note: A maximum of 512 characters can be included in an object’s 
local context definition.



About Running Scripts

2-4 IP Service Activator Configuration Development Kit Guide

Users can define whether a driver script is run before or after any other configuration 
changes applied at the same time. 

A script can be scheduled to run once, in which case it will be run when the 
transaction is committed, or repeatedly, in which case it will be run on the next commit 
and every subsequent commit until it is removed from the object. 

When a script is scheduled to run once, users can specify to create concretes only once, 
on first execution of the script. When this attribute is set to true, it prevents re-running 
the script and recreating concretes after a driver restart, or after remanaging the device 
(unmanage then manage), or after role reassignment.

It is also possible to specify that a script is run when the system detects that a device 
has restarted. In this case, after the transaction containing the script application has 
been committed it will run whenever the device restarts, without the need for a further 
commit. 

The Install section of a driver script is run when a script is associated with one or more 
objects.

The Remove section of a driver script is run when a script is set to disabled or 
unlinked from an object.

About Running Scripts
A driver script can be applied to an object either by being directly linked or as a result 
of inheritance. The various sections of the script and its context (local and inherited) 
are combined to produce a Python script (that is, a concrete driver script object) that is 
run in the device driver against the selected device or a component of the device.

Scripts to Install Configuration
When a script is to install configuration, it is constructed and run in the following 
order:

1. Preamble section

2. Inherited context

3. Local context

4. Common section

5. Install section

Figure 2–2 shows how a concrete driver script to apply configuration is constructed.

Note: If a script is set to run once only, and not when a device is 
restarted, the Remove section can never be run as the device driver 
does not preserve the script. If a script is set to run once only and run 
on a restart, then it is possible for the Remove section to be run.

Note: Scripts are not processed by the IP Service Activator policy 
server. This means that they are not checked or validated in any way.



About Running Scripts

Driver Scripts 2-5

Figure 2–2 Construction of a Concrete Driver Script to Apply Configuration

Parameters defined in the local context always override those inherited from parent 
objects.

The information in the Behavior section does not form part of the executed concrete 
script, but is used to define where and when the script is run. 

The script returns a result code, which will be OK unless appropriate tests are put in 
place as part of the script.

Scripts to Remove Configuration
When a script is designed to remove configuration, it is constructed and run in the 
following order:

1. Preamble section

2. Inherited context

3. Local context

4. Common section

5. Remove section

Figure 2–3 shows how a concrete driver script to remove configuration is constructed.

Figure 2–3 Construction of a Concrete Driver Script to Remove Configuration



About Sharing Data Between Scripts

2-6 IP Service Activator Configuration Development Kit Guide

Parameters defined in the local context always override those inherited from parent 
objects.

The information in the Behavior section does not form part of the executed concrete 
script, but is used to define where and when the script is run.

The script returns a result code, which will be OK unless appropriate tests are put in 
place as part of the script.

About Sharing Data Between Scripts
For each device that it manages, the driver allocates an area of memory that may be 
accessed by any Python scripts that are applied to that device. This is referred to as the 
shared data area or shared area. Information may be stored in this area as a Python 
dictionary or as a class-based structure. If a class-based structure is required, a Python 
module must be written that defines the data structure and passed to the device driver 
using a command-line option. 

The shared data area supports the interchange of data between scripts and has a wide 
range of applications, for example, facilitating script ordering or optimizing re-use of 
basic functions used across scripts.   

For more information, see "Sharing Data Between Scripts".



3

Using Existing Scripts 3-1

3Using Existing Scripts

This chapter explains how to manage existing driver scripts from within the Oracle 
Communications IP Service Activator user interface (client). It includes the following:

For details of requirements for running specific pre-defined scripts, see "Pre-defined 
Scripts".

Importing Scripts
Any pre-defined scripts included with the system are installed in the Service 
Activator\DriverScripts directory. Before applying them you need to import the 
scripts you intend to use. 

To import a script:

1. From the Custom tab, click the Driver Scripts folder.

The Custom tab is available within the Global Setup window or any domain 
management window.

A context menu appears.

2. Right-click and choose Add Driver Script. The Driver Script dialog box appears, 
as in Figure 3–1.



Viewing and Organizing Scripts

3-2 IP Service Activator Configuration Development Kit Guide

Figure 3–1 The Driver Script Dialog Box

3. Click Import. A file selection dialog box appears, listing all available scripts in the 
DriverScripts directory (.py files). Any Oracle-supplied scripts will appear in this 
list.

4. Choose the appropriate script, then click Open. The script is loaded.

The name of the imported script is set to the value of the script_name variable in the 
Behavior section, if present. Other variables in the Behavior section set details of 
device and interface roles (on the Role properties page) and scheduling requirements 
(on the Schedule properties page).

Scripts are not domain-specific. Once imported or created within a domain, a script is 
available within all domains.

Viewing and Organizing Scripts
Driver scripts are accessed from the Custom tab, which is available from both the 
Global Setup window and all domain management windows. 

Note: The order in which scripts are applied to a policy object is 
dependent on the order in which they are imported into IP Service 
Activator. Changing the list order of scripts in the client does not have 
any effect on their order of application. If script application order is 
critical, you can specify it using the shared data area. For more 
information, see "Sharing Data Between Scripts".



Viewing and Organizing Scripts

Using Existing Scripts 3-3

All scripts that have been imported or created within the client appear in the Driver 
Scripts folder. They can be organized into a structure of folders for administrative 
purposed.

Creating Driver Script Folders
Within the Driver Scripts folder, you can create a folder hierarchy to organize the 
driver scripts. You can create multiple levels of folders, and you can drag scripts 
between folders. You can also set permissions on folders in order to control which 
users are able to access them.

Figure 3–2 shows an example hierarchy for the Driver Scripts folder.

Figure 3–2 Driver Scripts Folder Hierarchy

To create a driver script folder:

1. On the Custom tab, right-click on the Driver Scripts folder.

A context menu appears.

2. Select Add Folder.

The Driver Script dialog box appears.

3. Provide a name for the folder, and add remarks if necessary. Select the Ownership 
property page to set permissions on this folder.

Viewing a Summary of Scripts
To view a summary of the existing scripts:

1. Click on the Driver Scripts folder.

The existing scripts will be listed in the Details pane, as in Figure 3–3.

Note: Folders are not “groups” of driver scripts: it is not possible to 
apply a folder of scripts to a target



Viewing and Organizing Scripts

3-4 IP Service Activator Configuration Development Kit Guide

Figure 3–3 List of Existing Scripts in the Details Pane

The Details pane provides the following information about each script:

■ Name: name of the script

■ State: indicates the current status of the script; values are:

– Inactive: the script has been created, but not yet propagated to the devices 

– Active: the script has been propagated to proxy agents, but is not yet 
configured on a device. A once-only script returns to Active status once it has 
been run; you can run it again by reapplying it to the device 

– Installed: the script has been propagated to proxy agents and has been 
successfully installed on the designated device 

– Failed: the proxy agent experienced a failure trying to install the rule and it 
has therefore been discarded 

– Rejected: the script has been rejected by the device driver (for example, 
because of a syntax error) 

■ Level: indicates the level within the object hierarchy at which the script is applied 
(not relevant on this screen)

■ Driver Type: the driver that will run the script

■ Applies To: the target that the script applies to; values are Device, Interface, 
Sub-interface, ATM PVC or Frame Relay PVC.

■ Device Role: the device role(s) that this script will be applied to.

■ Interface Role: for Interface, sub-interface, ATM PVC and FR PVC scripts, the 
interface role(s) that this script will be applied to.

■ Installed: indicates when this script will be applied relative to other configuration 
changes; value is either Before config. changes or Following successful config. 
changes.

■ Frequency: indicates how often the configuration will be applied. Value is either 
Once only (that is, on the next commit) or Repeat (on each commit until the script 
is removed).

■ Install on restart: indicates if the script is to be run when a device restart is 
detected; value is either True or False.

■ Owner: if ownership of the script has been specified, value is the owner’s 
username.



Viewing and Organizing Scripts

Using Existing Scripts 3-5

■ Owner Group: the group to which the owner belongs

Viewing the Entire Text of Scripts
To view the entire text of a specific script:

1. On the Hierarchy pane, select the desired script.

The following script text appears in the Details pane:

# Title: Netflow Activation Script
Version = ’1.0’

# Copyright (c) 1999, 2008, Oracle. All rights reserved.
# Oracle Corporation and/or its affiliates. Other names may be trademarks of
# their respective owners.

#This script enables the export of flow information from the target device and 
enables flow-catching on the target interface

#begin preamble section

Oracle recommends that you do not edit the script text directly in the details pane, 
although it is possible.

Viewing Script Properties
To view more details about a script:

1. Right-click on the script object.

A context menu appears.

2. Select Properties.

The Driver Script dialog box appears, as in Figure 3–1, "The Driver Script Dialog 
Box".

The Driver Script dialog box displays pages with the following information about the 
script:

■ Driver Script: Displays identification information, including the first lines of the 
script.

■ Role: Identifies the device role and interface role of the script. This information is 
defined in the Behavior section of the script; if necessary it can be edited on this 
page.

■ Schedule: Identifies the scheduling requirements of the script. This information is 
defined in the Behavior section of the script; if necessary it can be edited on this 
page.

■ Preamble: Displays the Preamble section of the script. Variables defined in this 
section normally have default values, which can be amended if required. Note that 
these values can be overridden by the context defined for particular objects.

■ Common: Displays the Common section of the script. For existing scripts you are 
advised not to change anything on this page.

Note: The Behavior section of imported scripts is not visible in the 
Details pane.



Associating Roles with Scripts

3-6 IP Service Activator Configuration Development Kit Guide

■ Install: Displays the Install section of the script. For existing scripts you are 
advised not to change anything on this page

■ Remove: Displays the Remove section of the script. For existing scripts you are 
advised not to change anything on this page.

■ Ownership: Displays the permissions granted on the driver script. Only the 
owner of this object or a Super User can amend this page.

Associating Roles with Scripts
Before implementing a script, you need to apply the appropriate device roles, and, if 
necessary, interface roles, to define the points in the network to which the script 
applies.

To apply device or interface roles:

1. Display the Driver Script dialog box for the desired script. See "Viewing Script 
Properties".

2. Select the Role page.

Figure 3–4 shows the Role page.

Figure 3–4 The Role Page

The Script Type drop-down menu indicates the target of the script. This is defined 
as part of the script and should not be changed. 

3. Select one system-defined device role (Core, Access, Gateway or Shadow) and one 
user-defined device role. 



Setting Variables

Using Existing Scripts 3-7

4. If the script type is Interface, Sub-interface, ATM PVC or Frame Relay PVC, you 
select one system-defined interface role (Local, Access, Core or Disabled) and one 
user-defined interface role.

The system-defined Any Role can be used to apply the script to any device or 
interface, whatever the role.

For more information about roles and how to assign roles to network elements, see IP 
Service Activator Concepts and IP Service Activator User’s Guide.

Setting Variables
The variables required when scripts are run can be defined in two places:

■ In the Preamble section of the script, displayed on the Preamble page of the Driver 
Script dialog box. Variables set here apply to all instances of this script. 

■ In the local context for the object(s), defined on the Script Context property page 
for the object. Variables set here apply to any script run on that object. 

Setting Variables in the Preamble Section
Variables normally have suitable default values supplied, but you can overwrite these 
if necessary with alternative values.

To set variables for a specific script:

1. Do one of the following: 

■ Display the Driver Script dialog box for the selected script and select the 
Preamble page, as shown in Figure 3–5.



Setting Variables

3-8 IP Service Activator Configuration Development Kit Guide

Figure 3–5 The Preamble Page

■ Display the script in the Details pane

2. Edit the variables as required.

Setting Variables in the Local Context for an Object
You can set variables that are specific to a particular object to which scripts can be 
applied. For additional guidance on managing script context, refer to "Managing Script 
Context". 

To set variables for a specific object:

1. Select the object (such as device or interface) and display the Properties dialog box. 
Choose the Script Context page.

2. Enter the variables in the Local Context field, as shown in Figure 3–6.

Note: Values set for parameters in the local context for an object 
override any values set for the same parameters in the Preamble 
section of a script.



Associating Scripts with Objects

Using Existing Scripts 3-9

Figure 3–6 Script Context Page of Properties Dialog Box

Associating Scripts with Objects
Before a script is implemented, you must associate it with the appropriate network 
objects. Inheritance rules apply, so for example you can associate an interface script 
with a VPN and it will be applied to all relevant interfaces within that VPN.

Linking Scripts to Objects
You link existing scripts to objects by dragging and dropping or by Copy and Paste 
commands. 

To link a script using drag and drop:

1. With the appropriate destination object (such as a device or interface) displayed in 
the Details pane, drag the script object and drop it onto the destination object. 

To link a script using Copy and Paste Link commands:

1. Select the script that you want to link, and choose Copy from the Edit menu (or 
click the Copy toolbar button). 

2. Select the object to which you want to link the script, such as a VPN or a device, 
and choose Paste Link.

To see which scripts have been applied to an object you need to check the 
configuration details. See "Checking the Status of Scripts". 

The script is not implemented on any network devices until the appropriate 
transaction is committed. 

Re-running a Script
A script set to run once can be run again if required. 

To re-run a script on a particular object:

1. Select the relevant object and right-click on the script. 

2. Select Reapply Driver Script from the context menu. 

Note: A maximum of 512 characters can be included in an object’s 
local context definition.



Removing Scripts

3-10 IP Service Activator Configuration Development Kit Guide

You must set the display so that both the relevant object and the driver script are 
visible – for example, by displaying the object in the Hierarchy pane and viewing 
its configuration in the Details pane.

To re-run all instances of a script:

1. On the Custom tab, right-click on the script from the Driver Scripts folder.

2. Select Reapply Driver Script from the context menu.

The script will be re-run on the relevant object(s) when the appropriate transaction is 
committed.

Removing Scripts
To remove a script from a policy target:

1. Double-click on the relevant object to view the configuration applied to that object.

2. On the Configuration pane, select the Driver Scripts tab.

3. Right-click on the relevant driver script and select Unlink from the script’s context 
menu.

If the script applies to any child objects by a process of inheritance, it will be removed 
from all objects in the hierarchy. Unlinking a script does not delete the script; it 
remains visible in the user interface and can be associated with objects later.

To remove all instances of a script from the network:

1. Right-click on the appropriate driver script and select Properties.

2. On the Driver Script page, select the Disabled checkbox.

3. Click OK.

The removal of the script takes place when configuration changes are next propagated 
to the network.

The actual action that occurs depends on the contents of the Remove section of the 
script. If no Remove section is defined, the script is run as requested but no action will 
result, that is, no configuration will be removed. 

The Remove section is also run when a device is deleted. When a device is set to 
Unmanaged, the Remove section will be run if the Unmanaged action (set in the 
Options dialog box) is set to Remove. 

Propagating Configuration
Once a script is linked to an object or unlinked from an object, it is implemented when 
the appropriate transaction is committed. When the transaction is committed any 
requested configuration is propagated from the policy server to the proxy agents and 
from there to the network devices.

Note: If a script is set to run once only, and not when a device is 
restarted, the Remove section can never be run as the device driver 
does not preserve the script. If a script is set to run once only and run 
on a restart, then it is possible for the Remove section to be run. 



Deleting Scripts

Using Existing Scripts 3-11

Applying Configuration
Where a script has been linked to an object, the commit procedure results in the Install 
section of the script being run on the specified object and any other object that has 
inherited the script.

The actual timing of the configuration changes will depend on the scheduling details 
specified on the Scheduling page of the Driver Scripts Properties dialog box:

■ If Before standard configuration changes is selected, the script is applied before 
any other configuration performed at this time. If After standard configuration 
changes is selected, the script is applied immediately after any other configuration 
is applied.

■ If Once is selected, the script is applied on the first configuration only. If 
Repeatedly is selected, the script is applied on all subsequent configuration 
changes until it is removed.

■ If Apply on Restart is selected, the script is always applied when the system 
detects a device restart (in addition to before configuration is applied).

Removing Configuration
The committed transaction results in the Remove section of the script being run in the 
following situations:

■ When a script has been unlinked from an object

■ When a device has been deleted

■ When a script has been disabled

■ When a device has been set to Unmanaged and the Unmanaged Action (set in the 
Options dialog box) is set to Remove (to specify that configuration is removed 
when a device is unmanaged).

The Remove section of the script is run on the relevant object and any other object that 
has inherited the script.

The scheduling settings have no effect when the Remove section is run.

Deleting Scripts
You can delete scripts that are not linked to any other object.

If you delete a predefined script that is supplied by Oracle, it is removed from the user 
interface. If necessary you can import it again later. 

Note: Iif a script is set to run once only, and not when a device is 
restarted, the Remove section can never be run as the device driver 
does not preserve the script. If a script is set to run once only and run 
on a restart, then it is possible for the Remove section to be run.

Note: The Remove section is optional. If no Remove section is 
defined in a script, the script is run as requested but no action will 
result. Oracle recommends that a Remove section is always included 
to ensure that configuration can be easily taken off.



Deleting Scripts

3-12 IP Service Activator Configuration Development Kit Guide

If you uninstall IP Service Activator, all pre-defined scripts are deleted from the 
DriverScripts directory. User-defined scripts are not deleted. If you want to keep a 
copy of a pre-defined script, you should export it, saving it under a different name (see 
"Exporting Scripts").



4

Developing Scripts 4-1

4Developing Scripts

This chapter explains how experienced Python developers can use the Oracle 
Communications IP Service Activator Configuration Development Kit to develop their 
own scripts.

About Developing Scripts
Driver scripts are a powerful way of configuring your network. Please consider the 
following before creating scripts:

■ The driver script feature is intended for experienced system developers only. You 
should only produce scripts if you are familiar with writing Python code.

■ You must be familiar with the relevant device functions and commands that you 
intend to apply to the network.

■ You should always test scripts thoroughly before applying them to devices.

For full documentation on Python, see the Python website at:

http://www.python.org

Creating a Script
You can either create a script by using a text editor and importing the script into Oracle 
Communications IP Service Activator, or by entering the text directly within the IP 
Service Activator client.

Using the Template File
To ensure that driver scripts are displayed correctly on the client and present a 
consistent approach, we recommend that a standard template is used when writing 
scripts. A suitable text file, script_template.py, is installed in the DriverScripts 
directory. 

This template is as follows:

#Title: title
Version = "n.n"
#IP Service Activator version #.#.#
#Date: dd-mmm-yyyy
#Copyright statement
#<Short description of purpose and use of script, up to 3 lines>
 
#begin preamble section
#N/A


http://www.python.org


Creating a Script

4-2 IP Service Activator Configuration Development Kit Guide

 
#begin behavior section
script_name = ""
script_driver_type = "cisco"
script_type = Device
script_device_role = All
script_interface_role = All
script_apply_when = After
script_repeat = False
script_apply_on_restart = False
 
#begin common section
#N/A
 
#begin install section
 
#begin remove section
#N/A

Creating a Script Using a Text Editor
Using a text editor is the preferred method of producing driver scripts as it enables 
scripts to be written, compiled and checked outside IP Service Activator. 

Note the following:

■ Oracle recommends that you base the scripts you create on the template file 
outlined in "Using the Template File".

■ To ensure consistency, follow the guidelines given in "Structure of a Script".

■ Import the completed script into IP Service Activator, as described in "Importing 
Scripts".

■ If necessary, you can edit the scripts from the client.

Creating a Script from the IP Service Activator Client
The client provides only a basic text editor and does not provide any of the features 
available in more advanced code editing software. We recommend that you create 
driver scripts (apart from very simple scripts), using other third-party software and 
import them using the driver script import feature as described in "Importing Scripts".

If you create a script from within the client, you can either create a standalone script 
(that is, not initially linked to any object) or a script that is directly associated with an 
object.

To create a standalone script:

1. From the Custom tab, select the Driver Scripts folder, or a folder within it.

2. Right-click and choose Add Driver Scripts from the context menu. 

3. On the Driver Script page, enter a name for the script in the Name box, and select 
the driver type from the drop-down list. 

4. On the Role page, choose the target objects that the script will configure. For all 
scripts, you must select the device role to which the script is to apply. You can 
choose one system-defined device role (Core, Access, Gateway or Shadow) and 
one user-defined device role. Choosing Any Role applies the script to any device 
assigned a role.



Structure of a Script

Developing Scripts 4-3

For Interface, Sub-interface, ATM PVC and Frame PVC scripts, select the interface 
role to which the script is to apply. You can choose one system-defined interface 
role (Local, Access, Core or Disabled) and one user-defined interface role. 
Choosing Any Role applies the script to any interface assigned a role.

If roles are not defined, the script will not be implemented.

5. On the Schedule page, specify when the script is to be run: before or after standard 
configuration changes, once or repeatedly, and whether or not it is to be run when 
a device is restarted. When you specify to run the driver script once only, you can 
further specify to create concretes once only, on first execution.

6. Enter the lines of the script directly on the Preamble, Common, Install and Remove 
pages, following the guidelines described in "Structure of a Script".

It is also possible to create a script for a particular object, for example, to create a script 
specific to a single device. 

To create a script for a specific object:

1. Select the appropriate network object and choose Add Driver Script from the 
context menu.

2. Enter the details of the script on the Driver Script dialog box property pages, as 
described in "To create a standalone script:".

The script is automatically linked to the selected network object, and will be installed 
when the appropriate transaction is run.

The script also appears in the Driver Scripts folder on the Custom tab, allowing it to 
be easily re-used.

Structure of a Script
A driver script consists of the following sections:

■ The Preamble Section identifies the script and defines any variables used.

■ The Behavior Section defines standard values that define the objects that the script 
applies to and the scheduling parameters..

■ The Common Section contains common functions that can be called from both the 
Install and Remove sections. This section is optional.

■ The Install Section consists of Python code that is only run when a script is 
installed on a device. Install code is mandatory.

■ The Remove Section consists of Python code that is only run when a script is 
removed from a device. Remove code is optional.

In the source file, the different sections are delimited by comments within the Python 
script. In raw text format, the script therefore has the following format:

#begin preamble section
Preamble header
Python code for preamble section
#begin behavior section
Behavior parameter definitions
#begin common section
Python code for common section
#begin install section
Python code for install section
#begin remove section 
Python code for remove section



Structure of a Script

4-4 IP Service Activator Configuration Development Kit Guide

Even if a section does not include any code, it is important to include these comment 
lines to ensure that when the script file is imported the script works properly and is 
displayed correctly on the Driver Script dialog box in the client. The comment line at 
the start of each section must be followed by a new line (CRLF), and there must not be 
a space or any other character after the word “section”.

If you export a driver script from the client to a file, the sections will be combined in 
the correct order and the relevant delimiters inserted.

The rest of this section defines the information that you should include in each of the 
five sections of a script.

The Preamble Section
The preamble section is used to identify the script and define any variables used. It is 
Python code, and by convention should have the following format:

#Title: <Script Name>
Version = "<Version>"
#IP Service Activator version: #.#.#
#Date: <Date>
#Copyright (c) <Company> <Year>
#<Short description of purpose and use of script, up to 3 lines>
#
#
#begin preamble section
default definitions of any variables used in the script from the object context

The first eight lines of the Preamble section appear on the Driver Script page of the 
Script dialog box in the read-only Preview field. By convention these lines should 
therefore contain only the header comments. These lines must always be as follows:

■ Line 1 provides a short title for the script.

■ Line 2 sets the Version variable, which identifies the version of the script. The 
version umber must be amended whenever the script is updated.

■ Line 3 specifies the IP Service Activator release for which this script was written. 
Scripts may need to be amended for different releases.

■ Line 4 lists the date that the script was last amended in dd-mmm-yyyy format.

■ Line 5 provides the copyright statement, if applicable.

■ Lines 6 to 8 explain the script. It is useful to limit the width of text so that it 
displays correctly in the client.

■ Line 9 must always include the comment #begin preamble section. Unlike the 
other section comments, this line is not used as a section delimiter, but indicates 
the start of the variable definition section.

If there is no preamble, then the comment #N/A should appear on the next line.

If the script uses variables that are expected to be set in the context of objects to which 
the script is applied, then by convention the preamble section should set each to a 
default value, one per line. 

On the IP Service Activator client, the Preamble section can be viewed (and edited if 
necessary) on the Preamble page of the Driver Script dialog box as in Figure 4–1.



Structure of a Script

Developing Scripts 4-5

Figure 4–1 The Preamble Page

The Behavior Section
The Behavior section of a script is a set of variable definitions that control when and 
how the script is run. When a script is imported, this section is parsed and the various 
fields on the Role and Schedule pages of the Driver Script dialog box are set. When a 
script is exported to a file, the current field settings are written out in the definitions. If 
a Behavior section is not specified in a script, default values are applied.

Table 4–1 displays the variables that can be set in the Behavior section. The variables 
are case-sensitive.

The Behavior section cannot be viewed directly on a property page, but the settings 
can be viewed (and edited if necessary) on the Driver Script, Role, and Schedule 
property pages of the Driver Script dialog box. 

Table 4–1 Variables Set in the Behavior Section

Variable Property Page Purpose Default

script_name Driver Script String; the name of the script. Should be 
the same as the title defined on line 1 of 
the script.

" "

script_driver_type Driver Script String identifying device driver. This 
must match the name of the appropriate 
driver component.

"cisco"

script_type Role Must be one of Device, Interface, 
Subinterface, Atmpvc, or Frpvc

Device

script_device_role Role Must be one of Access, Gateway, Core, 
Shadow, or All.

All



Structure of a Script

4-6 IP Service Activator Configuration Development Kit Guide

For example, Figure 4–2 shows the setting of script_name and script_driver_type in the 
Driver Script page.

Figure 4–2 Setting Variables on the Driver Script Page

The Common Section
The Common section is Python code available whenever the script is run. It is used to 
define functions that can be called from both the Install and Remove sections.

script_interface_role Role Must be one of Access, Core, Local, 
Disabled, or All.

All

script_apply_when Schedule Either Before (script is run before other 
configuration) or After (script is run after 
other configuration).

Before

script_repeat Schedule Either True (script is run on every 
subsequent command) or False (script is 
run once only, on next commit).

False

script_create_
concretes_once

Schedule Either True (concretes are created only on 
the first successful run) or False 
(concretes are created on every run).

False

script_apply_on_
restart

Schedule Either True (script is run whenever a 
device restart is detected) or False (script 
is not run on a device restart).

False

Table 4–1 (Cont.) Variables Set in the Behavior Section

Variable Property Page Purpose Default



Structure of a Script

Developing Scripts 4-7

By convention, the Common section should start with the comment:

#begin common section

The Common section is optional; if you do not need to define any common functions, 
the comment #N/A should appear on the next line.

On the IP Service Activator client, the Common section can be viewed (and edited if 
necessary) on the Common page of the Driver Script dialog box, as shown in 
Figure 4–3.

Figure 4–3 The Common Page

The Install Section
The Install section is Python code that is run when the driver script is associated with 
an object. This will be at the first propagate after the script is associated with the object 
and optionally on each subsequent propagate or device restart (for details, see "About 
Scheduling of Scripts").

By convention, the Install section should start with the comment 

#begin install section

On the IP Service Activator client, the Install section can be viewed (and edited if 
necessary) on the Install page of the Driver Script dialog box, as shown in Figure 4–4.

Note: An Install section is mandatory.



Structure of a Script

4-8 IP Service Activator Configuration Development Kit Guide

Figure 4–4 The Install Page

The Remove Section
The Remove section is Python code that is run when the association between the 
driver script and an object is removed, either by unlinking the script from an object or 
by deleting the script. Its purpose is to remove any configuration that was installed by 
the Install section.

The Remove section is not mandatory, but for a script that installs configuration on 
devices, Oracle strongly recommends that you define code that removes the 
configuration that has been placed by the Install code.

By convention, the Remove section should start with the comment:

#begin remove section

If you do not need to define a Remove section, the comment #N/A should appear on 
the next line.

On the IP Service Activator client, the Remove section can be viewed (and edited if 
necessary) on the Remove page of the Driver Script dialog box, as shown in 
Figure 4–5.

Note: If a script is set to run once only, and is not set to run when a 
device is restarted, the Remove section can never be run as the device 
driver does not preserve the script. If the script is set to run on a 
restart, then the Remove section can be run.



Programming Tips

Developing Scripts 4-9

Figure 4–5 The Remove Page

For examples of actual scripts, see "Pre-defined Scripts".

Exporting Scripts
You can export any scripts created or amended within the client. This allows you to 
save an existing script under a different name.

To export a script:

1. On the Custom tab, within the DriverScripts folder, select the script that you have 
created or amended within the client.

2. Choose Properties from the context menu. 

3. Click Export. A standard file selection window appears.

4. Specify the filename for the Python script. By default, files are saved in the 
DriverScripts folder; you can choose another location if you wish.

5. Click Save.

The exported script file can be viewed and edited using a text editor. The exported file 
will include a Behavior section, created from the attributes set on the Driver Script, 
Role and Schedule property pages.

Programming Tips
This section gives tips to help when developing scripts.

Script Conventions
When writing scripts, do not define variables starting with an underscore character as 
this is restricted to variables defined by IP Service Activator, such as _result and _
device.

For general discussions about Python programming style, see the Python 
documentation index at:

Note: When a script is exported, no user-defined roles are saved 
within the exported script.



Programming Tips

4-10 IP Service Activator Configuration Development Kit Guide

http://www.python.org/doc/essays/

Command Format
When applying commands to a router, use the full form of all commands rather than 
abbreviated commands. As well as helping to ensure compatibility with different 
operating system versions, using full commands makes the script more 
understandable.

Handling Exceptions
The device driver explicitly catches all errors and returns a status of Failed, together 
with the error and line number. For more fine-grained error handling, use multiple 
Try/Except blocks for specific exceptions. 

In the following example, a call is made to an exception handler defined in the 
Common section.

#begin common section
def handleException(details):
  _result.setCode(_result.FAILED)
  _result.setDetails(details)
 
#begin install section
try:
  _device.openSession()
except RuntimeError, err:
  handleException(err)
  return

Displaying Errors in IP Service Activator
Because IP Service Activator can display only one line of text in an error message, 
when diagnosing script errors it can be useful to copy the text of the error into a text 
editor, which can display multiple lines including end-of-line characters.

To copy the error text into a text editor:

1. Open the Device Configuration Log.

2. Locate the relevant CDK error.

3. Right-click on the error and select Copy.

4. Open the text editor.

5. Select Paste.

The error is then displayed correctly formatted.

Applying Commands
If the script is to apply commands to a router by calling deliverCommand(''), then it 
must first call _device.openSession() and finish by calling _device.closeSession().

For example:

_device.openSession()
_device.deliverCommand('copy running-config startup-config')
_device.closeSession()



Programming Tips

Developing Scripts 4-11

It is good practice to validate all the values that can be set by users, since if a value is 
set incorrectly no command is delivered. Oracle recommends including validation 
checks in the Common section of a script to ensure that no configuration is installed 
until all the values have been checked. Checking each command in turn in the Install 
section can result in the router being left in a partially-configured state if one 
command fails. 

Preventing Command Application
The -NoCommandDelivery flag on the Cisco driver typically prevents the driver from 
sending a configuration to a device, sending it to the audit log files (pre-pended by 
no-command-delivery) instead. 

Commands sent by scripts are not executed when the driver is in 
NoCommandDelivery mode.

An optional second parameter to deliverCommand lets script writers identify 
commands as read or write. This is useful when developing scripts with the driver in 
NoCommandDelivery mode to prevent accidental changes. 

Read commands should not modify the device and so are valid to send when not 
delivering commands. This is similar to the behavior of the device driver itself which 
will send show commands regardless of state. (While this is the intent, it is on the 
honor system. IP Service Activator does not try to validate whether or not the 
command will actually modify the device.)

The command access can be specified with _device.deliverCommand(command. _
device.read) or _device.deliverCommand(command, _device.write)

A read command is always executed. A write command is logged in the audit log with 
a prefix of CDK-no-command-delivery if the driver is not delivering commands and is 
executed normally otherwise.

Script writers can check if write commands will be delivered:

_device.deliveringCommands() returns true or false to reflect the driver state.

They can also check the result of deliverCommand which is always 
NoCommandDelivery enabled if the driver is not delivering commands.

Processing Command Output
If you want to get and process the output of an operating system command, then you 
need to store the result of deliverCommand('').

For example:

Result = _device.deliverCommand('show running-config')

You can then use normal Python techniques to extract the information you need.

Returning a Result
By default the return code will be TRUE. You need to write the script to catch exceptions 
and deal with any other errors by returning FAILED. You can also provide a detail 
string which is logged by the server.

For example:

_result.setCode(_result.OK)
_result.setDetails('An error has occurred')



Programming Tips

4-12 IP Service Activator Configuration Development Kit Guide

Re-applying Configuration
When writing a script, bear in mind that the configuration you wish to place on the 
device might already be there. If possible you therefore need to write a script that is 
intelligent enough to check for and deal with configuration that is already applied.

Managing Script Context
Any variable created in Python outside the scope of a Python class or method is 
considered a global variable. This fact can cause a variable that is only applicable to 
the current script to be misapplied to subsequent scripts. This section describes a 
method to ensure that local variables are applied to the local context only. 

The recommended method is to wrap any CDK script in a function definition before 
execution. In this way, all classes, functions and variables defined will be local to the 
wrapper function. 

For example, you can wrap script context code in a class definition, as follows:

class ScriptContext:
  x=5
  y=6
  z=7

and then in the CDK script you would reference those variables as follows:

ScriptContext.x
ScriptContext.y
ScriptContext.z

A Python script is typically formatted as follows:

import DriverScript
import OrchestreamExceptions
import traceback
_scriptInfo = "user's cdk script (including script context)"
 
try:
     exec(_scriptInfo.getScript())\n"
except:\n"
     traceback.print_exc(file = _scriptInfo)\n"

To manage script context, the Python script should be formatted as follows:

import DriverScript
import OrchestreamExceptions
import traceback
 
def runPython():
    _scriptInfo = "user's cdk script (including script context)"
    try:
         exec(_scriptInfo.getScript())\n"
    except:\n"
         traceback.print_exc(file = _scriptInfo)\n"
 
runPython()



5

Sharing Data Between Scripts 5-1

5Sharing Data Between Scripts

This chapter, aimed at experienced Python programmers, explains how to exchange 
data between scripts using the shared data area.

About Sharing Data Between Scripts
It is possible to share data between Configuration Development Kit (CDK) scripts. 
This feature has a range of applications, including the ability to store and re-use data 
or functions that are commonly used by scripts and to exercise greater control over the 
order of script execution. 

The device driver allocates an area of memory for each device that it manages. This is 
referred to as the shared data area or shared area. Shared data may be stored for the 
lifetime of the device, that is, until the device is unmanaged or the device driver 
restarted, or for a single transaction. Information that is currently held in the shared 
data area may be accessed by any CDK scripts that are applied to that device. 

By default, data is stored in the shared area as a simple Python dictionary but it is also 
possible to structure the shared information using classes. If you wish to use a 
class-based structure, you must create a Python module that defines the structure and 
pass it to the device driver using a command-line option. 

The class-based solution provides a more manageable approach to using the shared 
data area. It allows some initial setup to be performed by the Python module so that 
the shared data area contains useful data when the first CDK script is run against a 
device. This contrasts with the dictionary-based structure, where the dictionary is 
empty when the first CDK script runs and any data, classes or functions must be 
added by the CDK scripts themselves. 

This chapter describes how to store information in the shared data area using classes 
or a dictionary, provides an example approach to script organization to make use of 
the shared area and outlines some potential applications. 

Using Classes
Storing data in the shared data area using a class-based data structure provides a 
maintainable use of the area. 

The structure of the classes that will be stored in the shared data area must be defined 
as a Python module. A module is a file containing code which defines a group of 
Python functions or other objects. 

The module is run when the device driver is started with the following command-line 
parameter:

-SharedDataModule module



Using Classes

5-2 IP Service Activator Configuration Development Kit Guide

where module is the name of the Python module that defines the structure of 
information held in the shared data area. 

For example:

\Program\cisco_device_driver.exe|"-SharedDataModule CreateSharedArea …

The Python module must be installed on every machine that is hosting a device driver 
used to configure scripts.

If you are running the device driver on Solaris, the location of the Python module 
must be set in the PYTHONPATH environment variable. 

If you are running the device driver on Windows, the driver looks for the module in 
c:\Program Files\Oracle Communications\IP Service Activator\Program by 
default. The PYTHONPATH variable may be set to an alternative location.

The module defines the basic structure of the object class stored in the shared data area 
and the methods available to instances of the class. 

The module is a user-defined script and is likely to vary across installations according 
to the needs of the operation. At minimum, it should provide methods for inserting 
new objects in and removing objects from the shared area. A sample module is 
provided in "Sample Scripts for Using the Shared Data Area".

Figure 5–1 illustrates the class-based shared data area.

Note: When specifying the name of the Python module, you do not 
need to include the script’s.py extension.

Note: The name of the function that the device driver calls to create 
the class-based structure is hard-coded within the driver. User-defined 
modules must contain a CreateSharedObject function. For example:

def CreateSharedObject():
return SharedInfo()

If there is no CreateSharedObject function, the driver reverts to a 
dictionary.



Using a Python Dictionary

Sharing Data Between Scripts 5-3

Figure 5–1 The Class-based Shared Data Area

Using a Python Dictionary
If the -SharedDataModule command-line parameter is not passed to the relevant 
device driver, the driver creates an empty dictionary in the shared data area on 
startup.

A Python dictionary is an associative array, implemented using hash tables, which 
provides access to values by integers, strings or other Python objects referred to as 
keys. A key indicates where in the dictionary a given value may be found. Because the 
key into a dictionary may be something other than a number, dictionary objects do not 
have any implicit ordering relative to each other. However, an explicit ordering may be 
defined using another data structure, such as a list. The objects stored in a dictionary 
may be of any type. 

Once created, new positions may be created in a dictionary as values are written to 
them, without the need to create the position beforehand. Values stored in a dictionary 
may be accessed and used by scripts running on the same host machine.



Storing and Retrieving Data

5-4 IP Service Activator Configuration Development Kit Guide

Figure 5–2 illustrates the dictionary-based shared data area.

Figure 5–2 The Dictionary-based Shared Data Area

Storing and Retrieving Data
The device driver creates two stores of shared data for a device: one that persists for 
the lifetime of the device, and one that persists for the lifetime of a transaction. 

The following method retrieves the data that has been stored in the shared data area 
during the current transaction only:

_device.getThisCommitSharedData()

The following method retrieves data that is stored in the shared data area for the 
lifetime of the device:

_device.getLifetimeSharedData()

Once a script has a reference to the shared data it can read and write data to the area. 

The technique for storing information in the shared area depends on whether data is 
stored as a class or dictionary. 

If shared data is stored as a class object, it is possible to call the methods defined for 
the class. These methods are defined in the Python module named in the 
-SharedDataModule parameter on the device driver’s command line. 



An Example of Using the Shared Data Area

Sharing Data Between Scripts 5-5

For example, assuming the existence of an insertBehavior() method for the shared data 
class:

_device.getThisCommitSharedData().insertBehavior(BehaviorX())

inserts an object of type BehaviorX in the shared data area.

If data is stored in a dictionary, it is possible to access data via its key. For example:

Address=_device.getThisCommitSharedData()["IPAddress"]

An Example of Using the Shared Data Area
The CDK offers a very flexible solution to sharing data between scripts, enabling 
storage of data per device for the lifetime of the device, or for the lifetime of a 
transaction, with no restriction on the type of data to be stored or the structure used to 
organize it. Any use of the shared data area can therefore be geared towards the 
particular needs of the operation. 

The example in this section illustrates the type of processing that may be performed 
using the shared data area and uses a dictionary-based approach to storing data. This 
means that all classes and methods are defined within the scripts themselves. If a 
class-based approach were used, these would be defined in a Python module passed to 
the device driver on the command line. This would simplify the data, behavior and 
controller scripts applied to devices. A sample Python module definition is provided 
in "Sample Scripts for Using the Shared Data Area".

Types of Script
In order to support re-use of script functionality and reduce redundancy, the example 
described in this section divides scripts into three basic types, according to the type of 
function they perform:

■ Data scripts define configuration data that is specific to a particular policy target, 
such as an interface. 

■ Behavior scripts define generic functions that can be run against multiple policy 
objects, for example, defining policy or class maps, or performing a generic 
operation such as parsing or ordering data. When run, a behavior script creates a 
behavior object in the shared data area.

■ The controller script manages the execution of the behavior and data script objects 
(created by behavior and data scripts), for example, by prioritizing the order in 
which behavior and data objects are processed.

The division of scripts into behavior, data and controller types optimizes re-use of the 
functionality defined by a script. For example, a behavior script can be applied to any 
number of devices to define generic aspects of policy map configuration and inherited 
to the relevant interfaces. A number of separate data scripts define the 
interface-specific information and are applied to each relevant interface. This is 
illustrated in Figure 5–3.

Note: The division of scripts into behavior, data and controller 
scripts is designed to take full advantage of the features offered by the 
shared data area. The scheme presented in this example is a sample 
categorization and acts as an illustration only. You may choose to 
categorize scripts according to any other logical scheme.



An Example of Using the Shared Data Area

5-6 IP Service Activator Configuration Development Kit Guide

Figure 5–3 Division of Scripts into Types

About the Example
The example shows how to apply configuration changes to a device, making a simple 
change to the interface IP address and description. Although the changes it makes are 
simple, it illustrates some basic principles and tasks that you may wish to use in your 
own scripts. These include:

■ Parsing the device’s running configuration and storing it in the shared data area.

The example demonstrates how to retrieve device configuration only once and 
store it in the shared data area. The stored configuration is referenced by other 
scripts that are set to run against the device. This minimizes communication with 
the device and cuts down network traffic.

■ Comparing potential new device configuration to that which is already installed

This ensures that there is no unnecessary transmission of data to the device if, for 
example, the relevant command has already been configured.

■ Queuing the commands to be sent to the device.

As scripts are run against the device, the configuration they create is stored in the 
shared data area. When all the configuration to be sent has been accumulated, it is 
sent in a single communication session with the device. 

■ Prioritizing the order in which script functionality is executed.

Each behavior script assigns a priority to the behavior object it creates. The 
controller script sorts behavior objects and executes them in their priority order.

The following scripts feature in the example:



An Example of Using the Shared Data Area

Sharing Data Between Scripts 5-7

■ Data scripts that define interface-specific configuration:

– setIpAddress.py defines the IP address of an interface

– setDescription.py defines the description of an interface

■ A behavior script, processInterfaces.py, which creates a behavior object in the 
shared data area, indicating the priority in which the behavior must be run.

■ The example illustrates a single behavior script, but there may be a number of 
behavior scripts set to run against a device. The processing performed by a 
behavior script may be dependent on some processing that has already been 
performed by another behavior script. For example, the class map name created by 
a behavior script may act as input to a subsequent behavior script that generates 
the policy map.

■ A controller script, BehaviorAndCommandController.py, which sorts the stored 
behavior objects and calls an Execute method that is defined for every behavior. 

Most of the processing that is carried out on existing and new configuration is 
performed by methods defined within the behavior script. However, these are not 
actually run until the controller script calls the behavior’s Execute method. 

The Oracle Communications IP Service Activator client provides a basic method for 
specifying the order in which scripts are applied to an object, enabling you to specify 
whether a script is run before or after the standard configuration changes made by the 
device driver. Figure 5–4 shows the Schedule page in the Driver Script dialog box 
where you can specify when the script is run.

Figure 5–4 The Schedule Page

By specifying that data and behavior scripts run before standard configuration 
changes and the controller script runs after the changes, it is guaranteed that any data 
that the controller script needs to process will exist in the shared data area. 

All of the scripts operate on the shared data area that is dedicated to data held for the 
current transaction only:



An Example of Using the Shared Data Area

5-8 IP Service Activator Configuration Development Kit Guide

■ The data scripts write information to the shared area, checking for the existence of 
stored potential configuration for the device, and adding their output to the 
storage area. Figure 5–5 illustrates the data script in operation.

Figure 5–5 Data Scripts Writing Configuration Data to the Shared Data Area

■ The behavior script writes a behavior object to the area and stores information 
about the order in which it should be executed in relation to other behaviors (there 
may be multiple behavior scripts run against a device in a single transaction). 
Figure 5–6 illustrates the behavior script in operation.

Figure 5–6 Behavior Script Writing a Behavior Object to the Shared Data Area

■ The controller script processes any behavior objects written to the shared data area 
in their priority order, calling an Execute method defined for each behavior object. 



An Example of Using the Shared Data Area

Sharing Data Between Scripts 5-9

This performs the body of the processing, retrieving and parsing configuration 
from the device (if it has not already been retrieved), comparing the existing 
configuration with the stored configuration created by the data scripts, and 
sending any configuration that needs to be sent to the device in a single 
communication session. Figure 5–7 illustrates the controller script in operation.

Figure 5–7 Controller Script Processing Behavior Objects

The following sections provide a listing of each script. The scripts update the 
getThisCommitSharedData area or read data from the area, storing data in a number 
of dictionaries. These are:

■ Interfaces: created or updated by the data scripts with the IP address and 
description with which to configure an interface on a device, and by the behavior 
script to retrieve new commands for the device

■ Config: used by the behavior script to store existing device configuration

■ Commands: used by the behavior script to store the commands to be transmitted 
to the device, and by the controller script to retrieve commands for transmission to 
the device



An Example of Using the Shared Data Area

5-10 IP Service Activator Configuration Development Kit Guide

■ Behavior: used by the behavior script to store information about the priority in 
which it must be run in relation to other behavior scripts, and by the controller 
script to call each behavior’s Execute method in the correct order.

The behavior script also creates additional dictionaries outside the 
getThisCommitSharedData area. These are used to process existing interface 
configuration so that it can be compared with potential new commands to be 
configured for an interface. These dictionaries are:

■ allinterfaces: holds a complete list of the interfaces on the device 

■ interfaceconfig: holds the relevant commands (that is, commands that configure 
the interface’s IP address and description) that are already configured on a device 
for a specific interface 

The behavior script also creates a list of the commands that need to be sent to the 
device in a temporary area before adding this information to the commands dictionary 
in the getThisCommitSharedData area. 

Data Script: setIPAddress.py
The setIPAddress.py script defines an interface-specific IP address and mask and 
would be applied at interface level through the IP Service Activator client.

The sections that follow provide the setIPAddress.py script listing and an explanation 
of how the script works.

Listing of setIPAddress.py
1   #Title: InterfaceIpAddressChanges.
    Version = '1.0'
    #IP Service Activator version: 7.0.0
    #Date: 1-Aug-2008   

9   #begin preamble section
    # Copy this line and paste it into the context field, editing the 
    # IP address and mask as required
    ip="0.0.0.0"
    mask="255.255.255.252"

15  #begin behavior section
    script_name = "INTERFACE_IPADDRESS"
    script_driver_type = "cisco"
    script_type = Interface
    script_device_role = Any
    script_interface_role = Any
    script_apply_when = Before
    script_repeat = False
    script_apply_on_restart = True

25  #begin common section
    # First make sure that there is a section representing interfaces
    if not _device.getThisCommitSharedData().has_key("interfaces"):
      _device.getThisCommitSharedData()["interfaces"]={}

30  interfaces = _device.getThisCommitSharedData()["interfaces"]
    if not interfaces.has_key(_interface.getInterfaceName() ):
      interfaces[_interface.getInterfaceName()]={}



An Example of Using the Shared Data Area

Sharing Data Between Scripts 5-11

34  #begin install section
    # Store the ip address command
36  ipCmd="ip address "+ ip + " " +mask
    interfaces[_interface.getInterfaceName()]["ip address"]=ipCmd

39  #begin remove section
    # Mark the ip address key as empty
    interfaces[_interface.getInterfaceName()]["ip address"]=""

Explanation of setIPAddress.py
The script’s processing starts by checking whether there is an interfaces key in the 
getThisCommitSharedData dictionary (line 27). If no key exists, the script creates one 
and makes the newly-created key a reference to a new dictionary. On lines 30-32, the 
script retrieves the content of the interfaces dictionary, and checks whether a key exists 
with the relevant interface name. If no key exists, the script creates one and makes the 
newly-created key a reference to a new dictionary. The interface IP address and mask 
is then stored at the correct point in the interfaces dictionary (lines 34-37).

Data Script: setDescription.py
The setDescription.py script performs processing identical to that performed by 
setIpAddress.py except that an interface description replaces the IP address. 

The section that follows provides the setDescription.py script listing.

Listing of setDescription.py
1   #Title: InterfaceDescriptionChanges
    Version = '1.0'
    #IP Service Activator version: 7.0.0
    #Date: 31-Mar-2008

9   #begin preamble section
    description= "PE interface for customer XXX"

12  #begin behavior section
    script_name = "INTERFACE_DESCRIPTION"
    script_driver_type = "cisco"
    script_type = Interface
    script_device_role = Any
    script_interface_role = Any
    script_apply_when = Before
    script_repeat = False
    script_apply_on_restart = True

22  #begin common section
    # first make sure that there is a section representing interfaces
    if not _device.getThisCommitSharedData().has_key("interfaces"):
      _device.getThisCommitSharedData()["interfaces"]={}

    interfaces=_device.getThisCommitSharedData()["interfaces"]
    if not interfaces.has_key(_interface.getInterfaceName() ):
      interfaces[_interface.getInterfaceName()]={}

31  #begin install section



An Example of Using the Shared Data Area

5-12 IP Service Activator Configuration Development Kit Guide

    # Set the description of the interface data
    descCmd="description "+ description
    interfaces[_interface.getInterfaceName()]["description"]=descCmd

36  #begin remove section
    # Mark the description key as empty
    interfaces[_interface.getInterfaceName()]["description"]=""

Behavior Script: processInterfaces.py
The sections that follow provide the processInterfaces.py script listing and an 
explanation of how the script works.

Listing of processInterfaces.py
1   #Title: InterfaceDescriptionChanges
    Version = '1.0'
    #IP Service Activator version: 7.0.0
    #Date: 31-Mar-2008   

9   #begin preamble section
    #N/A

12  #begin behavior section
    script_name = "PROCESS_INTERFACES"
    script_driver_type = "cisco"
    script_type = Interface
    script_device_role = Any
    script_interface_role = Any
    script_apply_when = Before
    script_repeat = False
    script_apply_on_restart = True

22  #begin common section
    #Load the string module
24  import string
    class InterfaceProcessor:
26    def __init__( self ):
27      self.types=("description", "ip address" )
28      def getDeviceConfig(self, command ):
          if not _device.getThisCommitSharedData().has_key("config"):
            _device.getThisCommitSharedData()["config"]={}

34        # Log onto the device, send the command and stash the returned 
          # config split into lines.
          if not _device.getThisCommitSharedData()["config"].has_key(command):
            _device.openSession()
            config = _device.deliverCommand(command )
            _device.closeSession()
            _
device.getThisCommitSharedData()["config"][command]=string.split(config,"\n")

40        # Return the content of the [config][command] key
          return _device.getThisCommitSharedData()["config"][command]

43        # Get configuration from the device 
        def getInterfaceConfig( self ):



An Example of Using the Shared Data Area

Sharing Data Between Scripts 5-13

          config=self.getDeviceConfig("show running config")

47        allinterfaces={}
          interfaceconfig=None
49        for ind in range( 0 , len(config) ):
            str=string.lstrip( config[ind] )

            if ( str.startswith ("interface") ):
53            interfaceconfig={}
              allinterfaces[str]=interfaceconfig
            else:
            if( interfaceconfig ):
57            if( str == "!"):
                interfaceconfig=None
              else:
60              for type in self.types:
61                if ( str.startswith( type )  ):
62                  interfaceconfig[type]=str
          # else not in an interface and do need to look at the line.
          return allinterfaces

66      def Execute(self):

68        # Check for the commands dictionary 
          if not _device.getThisCommitSharedData().has_key("commands"):
            _device.getThisCommitSharedData()["commands"]={}
71        # Check that priority 3 commands exist
          if not _device.getThisCommitSharedData()
["commands"].has_key(3):
            _device.getThisCommitSharedData()["commands"][3]=[]

76        # Check whether there is any required interface configuration
          if not _device.getThisCommitSharedData().has_key("interfaces"):
            return

80        # Retrieve the current configuration from the device
          allOldData=self.getInterfaceConfig()

83        # Loop through the interfaces with required data
          for (name, reqData) in _
device.getThisCommitSharedData()["interfaces"].items():
            commands=[]

87          # Get the existing interface config or create an empty object
            if( allOldData.has_key(name) ):
              oldData=allOldData[name]
            else:
              oldData={}
92            # Process each type of config the script can handle in turn 
              if reqData.has_key(type):
94              if(  reqData[type] ):
                if( not oldData.has_key(type) or oldData[type] != reqData[type] ):
                  commands.append( reqData[type] )
                else:
                  if( oldData.has_key(type) ):
                    commands.append( "no " + oldData[type ] )

102        # If there are any interface commands, surround them by enter
          # and exit commands and add them to the list of commands to execute
          if( len( commands )):



An Example of Using the Shared Data Area

5-14 IP Service Activator Configuration Development Kit Guide

            _device.getThisCommitSharedData()["commands"][3].append
("interface " + name)
            _device.getThisCommitSharedData()["commands"][3]=\
            _device.getThisCommitSharedData()["commands"][3] + commands 
 
111         _device.getThisCommitSharedData()["commands"][3].
append("exit")

113 #begin install section
    if not _device.getThisCommitSharedData().has_key("behavior"):
      _device.getThisCommitSharedData()["behavior"]={}

    if not _device.getThisCommitSharedData()["behavior"].has_key(100):
      _device.getThisCommitSharedData()["behavior"][100]=[]

    _
device.getThisCommitSharedData()["behavior"][100].append(InterfaceProcessor())

#begin remove section

Explanation of processInterfaces.py
The Common section (line 22) defines an InterfaceProcessor class that can perform the 
following tasks:

■ Parse and store the configuration that is already on the device

■ Check whether there is new configuration to be delivered to the device

■ Compare new configuration with any existing configuration of the same type

■ Store the commands to be delivered

The class can be divided into two parts. The first part defines methods for parsing, 
comparing and storing the configuration, the second part defines an Execute method 
that calls these methods. When the script is run, a behavior object is created in the 
shared data area, by a call to the InterfaceProcessor class. The Execute method is 
called and the script’s processing is performed only when the controller script calls the 
method. 

The imported string module (line 24) provides functionality required by the parsing 
process.

The __init__ constructor method (line 26) is run automatically when the class name is 
called to create an instance. The method can be used to perform all the set up required 
for the class. 

Line 27 creates a list of strings, where each string defines the start of a line of 
configuration that the script is designed to handle. This list of strings is assigned to the 
class variable types. This variable is used later in the script (line 93), and provides a 
more maintainable method of managing the data to be handled by the script. If the 
script needs to be updated to handle additional configuration in future, a new string 
can simply be added to the variable.   

The getDeviceConfig method (line 28) is currently called with the show running 
config command. The method supports any other configuration command, however, 
and provides the type of functionality that you may wish to define in a Python module 
when using a class-based approach to the shared data area. The method checks 
whether the getThisCommitSharedData dictionary already has a copy of the running 
configuration (stored in the config dictionary). If not, it logs into the device, retrieves 
the config, splits it into lines and stores it in the config dictionary.



An Example of Using the Shared Data Area

Sharing Data Between Scripts 5-15

The getInterfaceConfig method calls getDeviceConfig with the show running config 
command. It then creates an allinterfaces dictionary (line 47) and an interfaceconfig 
variable and sets the variable to None. It then cycles through each line of configuration 
held in the config dictionary and checks for interface configuration (lines 49-50). 
Where interface configuration is found, the method creates an interfaceconfig 
dictionary (line 53) and adds a key labelled according to the name of the interface to 
the allinterfaces dictionary that points to the interfaceconfig dictionary. For each of 
the strings assigned to the class variable types (i.e. ip address and description), the 
method checks whether the line of config currently being processed starts with the 
string (line 61). If so, it creates a key in the interfaceconfig dictionary, taking the 
current value of type as the key name, and writes the current line of configuration to 
the key (line 62). When the end of interface configuration is reached (indicated by a ! 
character) (line 57), the method clears the interfaceconfig variable to mark that the 
parser is outside of interface configuration. Finally, the method returns the content of 
the interfaces dictionary (line 64).

The Execute method is called by the controller script when it runs. It checks whether 
the commands dictionary exists within the getThisCommitSharedData dictionary 
and, if not, creates one (lines 69-70). It then checks that key 3 exists in the commands 
dictionary; this is the priority assigned to the commands generated by this particular 
behavior. There may be keys for commands generated by other behaviors in the 
commands dictionary. If the key does not exist, the method creates it (lines 72-74).

Before performing any further processing, the method checks whether there is any 
interface configuration waiting to be sent to the device (lines 77-79). The method 
checks whether an interfaces dictionary exists in the getThisCommitSharedData 
dictionary. This is the dictionary created or updated by any data scripts that have run 
against the device. If the dictionary does not exist, there is nothing to do and the 
method returns. 

The method then retrieves the current configuration from the device by calling the 
getInterfaceConfig method (line 81). The return of getInterfaceConfig is the interfaces 
dictionary, so the allOldData variable is a pointer to a dictionary.

The method then loops through the interfaces for which configuration has been stored 
in the interfaces dictionary (lines 83-86), retrieving its name, value pairs (each pair 
consists of an interface name and the configuration to be put onto the device). The 
method processes each pair in turn, creating an area for the current interface’s 
commands.

If the retrieved configuration (held in the interfaces dictionary) has a key whose name 
matches that currently being processed, the method assigns the content of the key (i.e. 
the interface name that points to the current interface configuration) to the variable 
oldData. If not, the method creates an empty dictionary (lines 87-91).

Then each type of configuration the script can handle is processed in turn and the 
method checks whether there is a command stored for the interface (line 93). If the 
command to be delivered is not an empty string, and if the command is not already 
configured on the device (line 94), or is configured and is not the same as the 
command currently stored for the interface (line 96), the method adds the command to 
the commands list for the interface (97). If the command to be sent is an empty string 
(that is, the configured command is no longer required), and the command is already 
configured on the device, the method adds the ‘no’ form of the command to the 
commands list for the interface (line 100).

If there are any commands in the commands list, surround them by enter and exit 
commands and add them to the getThisCommitSharedData dictionary’s commands 
dictionary at the priority 3 key (lines 102-111). The commands dictionary stores the 
commands to execute and their order of execution.



An Example of Using the Shared Data Area

5-16 IP Service Activator Configuration Development Kit Guide

The Install section (line 113) is the only section of the script that will be executed when 
the script is run against the device. It writes a behavior object to the 
getThisCommitSharedData dictionary by calling the InterfaceProcessor method (line 
119). Behavior objects are stored according to their priority within a behavior 
dictionary.

Controller Script: BehaviorAndCommandController.py
The sections that follow provide the BehaviorAndCommandController.py script 
listing and an explanation of how the script works.

Listing of BehaviorAndCommandController.py
1  #Title: CommandSender
   Version = '1.0'
   #IP Service Activator version: 7.0.0
   #Date: 1-Mar-2008 

9  #begin preamble section
   #N/A
12 #begin behavior section
   script_name = "Command Sender"
   script_driver_type = "cisco"
   script_type = Device
   script_device_role = Any
   script_interface_role = Any
   script_apply_when = After
   script_repeat = true
   script_apply_on_restart = True

22 #begin common section

   #begin install section
25 if ( _device.getThisCommitSharedData().has_key("behavior") ):
     behaviors = _device.getThisCommitSharedData()["behavior"]
     ordering  = behaviors.keys()
     ordering.sort()
     for order in ordering:
       for behavior in behaviors[ order ] :
31       behavior.Execute()

33 if _device.getThisCommitSharedData().has_key("commands") :
     _device.openSession()
     _device.deliverCommand("configure terminal")

37   commands = _device.getThisCommitSharedData()["commands"]
     ordering = commands.keys()
     ordering.sort()
     for order in ordering:
       for command in commands[ order ] :
         _device.deliverCommand(command)

44   _device.closeSession()

Explanation of BehaviorAndCommandController.py
The script first checks for the behavior dictionary in the getThisCommitSharedData 
dictionary (line 25). If the dictionary exists, the script retrieves its keys (each behavior 



Error Reporting in Behavior Scripts

Sharing Data Between Scripts 5-17

script has written a key to the behavior dictionary to indicate the priority in which it 
should be executed), sorts the keys/priorities and calls each behavior object’s Execute 
method in turn (lines 26-31). 

After processing the behavior object, the script checks whether this has resulted in 
commands being written to the getThisCommitSharedData dictionary’s commands 
dictionary. The script sorts the stored commands by key, loops through all of the stored 
commands and sends them to the device (lines 37-42).

Error Reporting in Behavior Scripts
If you follow the guidelines outlined for using the shared data area, a Behavior script’s 
functionality is not executed until it is called by the Controller script. This means that 
the _result variable that indicates the success or failure of the script that is currently 
running cannot be used to report on the Behavior script. This is because the script that 
is currently running when the Behavior script’s functionality is executed is the 
Controller script. 

To report on errors that occur when the behavior object is executed, the Behavior 
script’s ID and failure information must be stored within the behavior object created 
by the script. These details can then be retrieved by the Controller script when it runs.

The Behavior script’s class constructor method should define variables to hold the 
values of the _id and _failure_code variables, as follows:

class InterfaceProcessor
  def __init__ (self):
    self.id=_id
    self.failure=_failure_code

The script’s Execute method checks for a failure condition and, if a failure occurred, 
returns the variable values and a message about the failure, as follows:

  if (failure):
    return (self.id,self.failure,'behavior script InterfaceProcessor failed')

The controller script uses the _result variable’s sendScriptObjectFailure method to 
retrieve the behavior script’s failure details, as follows:

result=behavior.Execute()
  if (result):
  (id,failure,message)=result
  _result.sendScriptObjectFailure(id,failure,message)

These details are sent to the policy server and the message displayed in the current 
faults pane in the user interface.



Error Reporting in Behavior Scripts

5-18 IP Service Activator Configuration Development Kit Guide



6

Monitoring and Troubleshooting Scripts 6-1

6Monitoring and Troubleshooting Scripts

This chapter explains the features available for checking scripts. 

Checking the Status of Scripts
Once you have applied driver scripts you can check the points in the system at which 
they will run.

Device scripts can be applied to different levels of objects in the system: customers, 
VPNs, sites, networks, devices, interfaces, sub-interfaces or VC endpoints. You can 
check each object to see which scripts currently apply to it.

To check the status of a script:

1. In the Oracle Communications IP Service Activator client, double-click the 
relevant object (for example, a site, device or interface) from the hierarchy tree or 
the topology map.

The configuration applied to this object appears in the Details pane.

2. Click the Driver Scripts tab to view relevant scripts.

Just as with rules, each abstract (parent) script is followed by a list of the concrete 
scripts that have been created at appropriate interfaces. Parent scripts appear on a 
white background if they have been set up on the selected object and on a gray 
background if they have been inherited from a higher-level object.

Figure 6–1 shows the Driver Scripts tab on the Details pane.

Figure 6–1 The Driver Scripts Tab

Rules are listed under the following headings:

■ Name: the name of the script.

■ State: the current status of the script. For concrete scripts the status is one of the 
following:



Understanding Warnings and Error Messages

6-2 IP Service Activator Configuration Development Kit Guide

– Inactive: the script has been created, but not yet propagated to the devices. 

– Active: the script has been propagated to proxy agents, but is not yet 
configured on a device. 

– Installed: the script has been propagated to proxy agents and has been 
successfully installed on the designated device. 

– Failed: the proxy agent experienced a failure trying to install the script and it 
has therefore been discarded. Note that for a repeating script a further attempt 
will be made to install the script on the next propagate. 

– Rejected: the script has been rejected by the device driver (for example 
because of a syntax error).

■ Level: the level at which the script is implemented.

■ Driver Type: the device driver that will run the script.

■ Script Type: the type of script. Values are: Device, Interface, Sub-interface, ATM 
PVC, or Frame Relay PVC.

■ Device Role: the role of devices that this script will be applied to. Values are: 
Access, Gateway, Core, Shadow, or Any Role.

■ Interface Role: for Interface, Sub-interface, ATM PVC and FR PVC scripts, the 
interface role that this script will be applied to. Values are Core, Local, Access, or 
Any Role.

■ Installed: indicates when this script will be applied relative to other configuration 
changes applied as part of the propagate. Value is either Before config changes or 
Following successful config changes.

■ Frequency: indicates how often the configuration will be applied. Value is either 
Once only (that is, on the next propagate) or Repeat (on each propagate until the 
script is removed).

■ Install on restart: indicates if the script is to be run when a device restart is 
detected. Value is either True or False.

■ Owner: if ownership of the script has been specified the value is the owner’s 
username. 

■ Owner Group: the group to which the owner belongs.

Understanding Warnings and Error Messages
Table 6–1 lists the warnings and errors that may be raised if scripts are incorrectly 
applied.

Note: Scripts are not checked or validated by the IP Service Activator 
client.



Checking Logs

Monitoring and Troubleshooting Scripts 6-3

Checking Logs
All device configuration changes applied by the Cisco device driver are recorded in a 
specific log file. You can check these log files to see if configuration applied by driver 
scripts is being successfully applied to a device.

On Solaris systems, the log files are in 
/opt/OracleCommunications/IPServiceActivator/AuditTrails

On Windows systems, the log files are created in Program Files\ Oracle 
Communications\IP Service Activator\AuditTrails

Commands delivered to the devices are also logged in the Device Configuration Log.

To check the Device Configuration Log

1. On the System tab, open the System Logs folder.

2. Choose Device Configuration Log. 

The Device Configuration Log appears in the details pane.

Table 6–1 Script Warning and Error Messages

Number Severity String Explanation

2100 Warning Driver Script name will not 
have any effect when applied 
here.

Raised if a script is applied at too low a level for its 
type, for example, a device script is linked to an 
interface.

2101 Warning Driver Script name will not 
have any effect when applied 
here because of the type of 
the script.

Raised if a script is applied at an object where it can’t 
take effect because of the roles specified, for 
example, an Access interface script is linked to a 
Local interface.

2205 Error Driver Script has no effect 
due to mismatch with Device 
Driver type.

Raised if a script cannot be applied to the specified 
object because it is not applicable to the driver 
managing the site.

3309 Error Driver script failed with 
error details: details

Raised if a driver script fails when run by the device 
driver. Any user information incorporated within 
the driver script is displayed in the details string.



Checking Logs

6-4 IP Service Activator Configuration Development Kit Guide



7

Definition of Standard Methods 7-1

7Definition of Standard Methods

This chapter describes the standard methods that scripts can use. Many of these 
methods are dependent on the context in which they are called.

Summary of Methods
Table 7–1 list the methods that scripts use.

Table 7–1 Standard Methods for Scripts

Method Context Purpose

setCode General Sets the return status of a script run.

setDetails General Sets a result string to be passed back to the user, typically 
explaining an error.

sendScriptObjectiveFailure General Creates a notification message indicating script failure to 
be passed back to the policy server.

openSession Device Connects to the device, authenticates and gets to the 
enable prompt. This method must be called before any 
call to deliverCommand.

deliverCommand Device Sends a command to the device followed by a new line. 
openSession must have been called before this method.

closeSession Device Closes the connection to the device. This method should 
be called after all commands have been delivered.

getIpAddress Device Gets the primary IP address of the device, that is, the IP 
address that the driver uses to contact the device.

getIos Device Gets the Cisco IOS version.

This method is relevant to the Cisco IOS device driver 
only.

getOs Device Gets the operating system version.

getDeviceType Device Gets the device type.

This method is relevant to the Cisco IOS device driver 
only.

getFeatureSet Device Gets the feature set.

This method is relevant to the Cisco IOS device driver 
only.

getNumberOfInterfaces Device Gets the number of interfaces on the device. This is the 
number of managed interfaces, not the total number of 
interfaces.



General Context

7-2 IP Service Activator Configuration Development Kit Guide

General Context
The General context is available to all scripts. This context provides the _result object.

The _result Object
The _result object passes a result out of a script. The type of this object is 
ScriptResultPtr.

Table 7–2 lists the variables of the _result object.

getInterfaces Device Gets the interface object at index position in the total set of 
interfaces. The total number of interfaces is given by the 
call. Valid index values are from 0 to 
getNumberofInterfaces() - 1

log Device Logs a message string to the driver log.

getThisCommitSharedData Device Gets the information stored in the shared data area for the 
current transaction only. Information is stored as a 
dictionary or class, depending on whether the 
-SharedDataModule driver command-line option is used.

getLifetimeSharedData Device Gets the information that is stored in the shared data area 
for the lifetime of the device (since the device was last 
managed or the device driver restarted). Information is 
stored as a dictionary or class, depending on whether the 
-SharedDataModule driver commadn-line option is used.

getInterfaceName Interface Gets the name fo the interface.

getIpAddress Interface Gets the IP address of the interface.

getVipType Interface Gets type of the VIP the interface is on, if known.

This method is relevant to the Cisco IOS device driver 
only.

getAdapterType Interface Gets the type of physical card the interface is on.

This method is relevant to the Cisco IOS device driver 
only.

getNumberOfFramePvcs Interface Gets the number of Frame Relay PVCs on the interface. 
This is the number of managed PVCs, not the total 
number of PVCs.

getNumberOfAtmPvcs Interface Gets the number of ATM PVCs on the interface. This is 
the number of managed PVCs, not the total number of 
PVCs.

getFramePvc Interface Gets a Frame Relay PVC object.

getAtmPvc Interface Gets an ATM PVC object.

getVpi ATM PVC Gets the PVC VPI.

getVci ATM PVC Gets the PVC VCI.

getDlci FR PVC Gets the PVC DCLI.

Table 7–2 The _result Object Variables

Variable Purpose

_id Indicates the unique ID of the concrete script.

Table 7–1 (Cont.) Standard Methods for Scripts

Method Context Purpose



General Context

Definition of Standard Methods 7-3

The following methods can be called on the _result object: 

■ The setCode Method

■ The setDetails Method

■ The sendScriptObjectFailure Method

The setCode Method
The setCode method sets the status of a script run.

Table 7–3 shows the arguments for the setCode method.

Syntax

The syntax for the setCode method is:

setCode ({OK | FAILED})

Exceptions

N/A

Return

N/A

The setDetails Method
The setDetails method sets a result string to be passed back to the user.

Table 7–4 shows the arguments for the setDetails method.

Syntax

The syntax for the setDetails method is:

_failure_code Indicates the code a particular script should use if the script 
does not run successfully. The value of the variable differes 
depending on the script’s scheduling properties and whether it 
is set to run on remove.

Note: You cannot assign values to these variables. If these values 
need to be changed, you must call the sendScriptObjectFailure 
method on the _result object.

Table 7–3 setCode Method Arguments

Argument Description Default

code OK or FAILED OK

Table 7–4 setDetails Method Arguments

Argument Description Default

details A string that can be used to pass a reason for failure 
or the result of a successful script.

" "

Table 7–2 (Cont.) The _result Object Variables

Variable Purpose



Device Context

7-4 IP Service Activator Configuration Development Kit Guide

setDetails (details)

Exceptions

N/A

Return

N/A

The sendScriptObjectFailure Method
The sendScriptObjectFailure method creates a notification message indicating script 
failure to be passed back to the policy server.

Table 7–5 shows the arguments for the sendScriptObjectFailure method.

Syntax

The syntax for the sendScriptObjectFailure method is:

sendScriptObjectFailure (id,failure_code,’message’

Exceptions

N/A

Return

N/A

Device Context
The Device context is available to Device, Interface, Sub-interface, ATM PVC and 
Frame PVC scripts. This context provides the _device object.

The _device Object
The _device object provides access to the device functions. The type of this object is 
PythonCiscoProxyDevicePtr.

The following methods can be called on the _device object:

■ The openSession Method

■ The deliverCommand Method

■ The closeSession Method

■ The getIpAddress Method

Table 7–5 sendScriptObjectFailure Method Arguments

Argument Description

id A variable that indicates the script’s ID number held by the IP 
Service Activator _id variable.

failure_code A variable that indicates the script’s failure code held by the IP 
Service Activator _failure_code variable.

message A string that indicates the cause of the failure. The message is 
passed back to the policy server and displayed in the Current 
Faults pane of the IP Service Activator client.



Device Context

Definition of Standard Methods 7-5

■ The getIos Method

■ The getOs Method

■ The getDeviceType Method

■ The getFeatureSet Method

■ The getNumberOfInterfaces Method

■ The getThisCommitSharedData Method

■ The getLifetimeSharedData Method

■ The getInterface Method

■ The log Method

■ The auditLog Method

The openSession Method
The openSession method connects to the device, authenticates and gets to the Enable 
prompt. This method must be called before any call to deliverCommand.

The openSession method has no arguments.

Syntax

The syntax for the openSession method is:

openSession( )

Exceptions

RuntimeError will be raised if a session cannot be established.

Return

N/A

The deliverCommand Method
The deliverCommand method sends a command to the device followed by a CRLF. 
The openSession method must have been run before this method.

Table 7–6 shows the arguments for the deliverCommand method.

Syntax

The syntax for the deliverCommand method is:

[result=]deliverCommand(‘command’)

Exceptions

RuntimeError will be raised if the command cannot be delivered.

Return

Table 7–6 deliverCommand Method Arguments

Argument Description

command String command to send to the device.



Device Context

7-6 IP Service Activator Configuration Development Kit Guide

The deliverCommand method returns a string that is the result of executing the 
command, for example, the output of a “show version”.

The closeSession Method
The closeSession method closes the connection to the device. This method should be 
called after all commands have been delivered. If it is not called, the connection will be 
automatically closed.

The closeSession method has no arguments.

Syntax

The syntax for the closeSession method is:

closeSession( )

Exceptions

RuntimeError will be raised if a session cannot be closed or was never opened.

Return

N/A

The getIpAddress Method
The getIpAddress method gets the primary IP address of teh device, that is, the IP 
address the driver uses to contact the device.

The getIpAddress method has no arguments.

Syntax

The syntax for the getIpAddress method is:

getIpAddress( )

Exceptions

N/A

Return

The getIpAddress method returns an integer that represents the IP Address in host 
byte order.

The getIos Method
The getIos method gets the IOS version of the device. This method is relevant to the 
Cisco IOS driver only.

The getIos method has no arguments.

Syntax

The syntax for the getIos method is:

getIos( )

Exceptions

N/A



Device Context

Definition of Standard Methods 7-7

Return

The getIos method returns a string that represents the IOS version, for example, 
11.1(12XP1) or 12.1(1)E.

The getOs Method
The getOs method gets the operating system of the device. This method is relevant to 
all devices.

The getOs method has no arguments.

Syntax

The syntax for the getOs method is:

getOs( )

Exceptions

N/A

Return

The getIos method returns a string that represents the OS version.

The getDeviceType Method
The getDeviceType method gets the device type. This method is relevant to the Cisco 
IOS driver only.

The information is obtained by querying the driver by a show version command.

The getDeviceType method has no arguments.

Syntax

The syntax for the getDeviceType method is:

getDeviceType( )

Exceptions

N/A

Return

The getDeviceType method returns a string that represents the device type, for 
example, RSP or C7200.

The getFeatureSet Method
The getIos method gets the character(s) representing the IOS feature set available on 
the device. This method is relevant to the Cisco IOS driver only.

The getFeatureSet method has no arguments.

Syntax

The syntax for the getFeatureSet method is:

getFeatureSet( )

Exceptions



Device Context

7-8 IP Service Activator Configuration Development Kit Guide

N/A

Return

The getFeatureSet method returns a string of alphanumeric characters that represents 
the IOS feature set, for example, p for Service Provider feature set, i for IP subset. 
Check Cisco documentation for the complete list.

The getNumberOfInterfaces Method
The getNumberOfInterfaces method gets the number of interfaces on the device. This 
is the number of managed interfaces, not the total number of interfaces.

The getNumberOfInterfaces method has no arguments.

Syntax

The syntax for the getNumberOfInterfaces method is:

getNumberOfInterfaces( )

Exceptions

N/A

Return

The getIos method returns an integer that represents the number of interfaces on the 
device.

The getThisCommitSharedData Method
The getThisCommitSharedData method gets the information stored in the shared 
data area for the current transaction only.

The getThisCommitSharedData method has no arguments.

Syntax

The syntax for the getThisCommitSharedData method is:

[result=]getThisCommitSharedData( )

Exceptions

Not applicable.

Return

The getThisCommitSharedData method returns a string that represents the 
information stored in the data area for the current transaction.

The getLifetimeSharedData Method
The getLifetimeSharedData method gets the information stored in the shared data 
area for the lifetime of the device; that is, since the device was last managed or the 
device driver was restarted.

The getLifetimeSharedData method has no arguments.

Syntax

The syntax for the getLifetimeSharedData method is:



Device Context

Definition of Standard Methods 7-9

[result=]getLifetimeSharedData( )

Exceptions

N/A

Return

The getLifetimeSharedData method returns a string that represents the information 
stored in the shared data of the area since the device was last managed or teh device 
driver was restarted.

The getInterface Method
The getInterface method gets the interface object at index position in the total set of 
interfaces. The total number of interfaces is given by the getNumberOfInterfaces 
method. Valid index values are from 0 to the number given by 
getNumberOfInterfaces minus 1.

Table 7–7 lists the arguments for the getInterface method.

Syntax

The syntax for the getInterface method is:

getInterface(index)

Exceptions

RuntimeError will be raised if index is not valid.

Return

The getInterface method returns the PythonCiscoProxyInterfacePtr object if index is 
valid, None if index is not valid.

The log Method
The log method logs a specified string to the driver log.

Table 7–8 lists the arguments for the log method.

Syntax

The syntax for the log method is:

log(string)

Exceptions

N/A

Table 7–7 getInterface Method Arguments

Argument Decription

index Interface to fetch.

Table 7–8 log Method Arguments

Argument Decription

string Message to write to log.



Interface Context

7-10 IP Service Activator Configuration Development Kit Guide

Return

N/A

The auditLog Method
The auditLog method logs a message to the device driver’s audit trail log.

Table 7–9 lists the arguments for the log method.

Syntax

The syntax for the auditLog method is:

auditLog(‘message’)

Exceptions

N/A

Return

N/A

Interface Context
The Interface context is available to Interface, Sub-interface, ATM PVC and Frame PVC 
scripts. This context provides the _interface object.

The _interface Object
The _interface object provides access to interface function. The type of this object is 
PythonCiscoProxyInterfacePtr.

The following methods can be called on the _interface object:

■ The getInterfaceName Method

■ The getIpAddress Method

■ The getVipType Method

■ The getAdapterType Method

■ The getNumberOfFramePvcs Method

■ The getNumberOfAtmPvcs Method

■ The getFramePvc Method

■ The getAtmPvc Method

The getInterfaceName Method
The getInterfaceName method gets the name of the interface.

The getInterfaceName method has no arguments.

Syntax

Table 7–9 auditLog Method Arguments

Argument Decription

message Message to write to log.



Interface Context

Definition of Standard Methods 7-11

The syntax for the getInterfaceName method is:

getInterfaceName( )

Exceptions

RuntimeError will be raised if index is not valid.

Return

The getInterfaceName method returns a string that represents the interface name, for 
example, Serial1/0 or Ethernet1.

The getIpAddress Method
The getIpAddress method gets the IP address of the interface.

The getIpAddress method has no arguments.

Syntax

The syntax for the getIpAddress method is:

getIpAddress( )

Exceptions

N/A

Return

The getIpAddress method returns an integer that represents the IP address in host 
byte order.

The getVipType Method
The getVipType method gets the VIP adapter (if any). This method is relevant to the 
Cisco IOS driver only.

The getVipType method has no arguments.

Syntax

The syntax for the getVipType method is:

getVipType( )

Exceptions

N/A

Return

The getVipType method returns a string that represents the VIP. Conversion is as 
follows:

■ VIP = ‘VIP’

■ VIP2-10 = ‘VIP2_10’

■ VIP2-15 = ‘VIP2_15’

■ VIP2-20 = ‘VIP2_20’

■ VIP2-40 = ‘VIP2_40’



Interface Context

7-12 IP Service Activator Configuration Development Kit Guide

■ VIP2-50 = ‘VIP2_50’

■ VIP4-80 = ‘VIP4_80’

If the interface is not on a VIP or the type is unknown, an emtpy string is returned.

The getAdapterType Method
The getAdapterType method gets the type of physical card that the interface is on. 
This method is relevant to the Cisco IOS driver only.

The getAdapterType method has no arguments.

Syntax

The syntax for the getAdapterType method is:

getAdapterType( )

Exceptions

N/A

Return

The getIpAddress method returns a string that represents the card type.

The getNumberOfFramePvcs Method
The getNumberOfFramePvs method gets the number of Frame Relay PVCs on the 
interface. This is the number of managed PVCs, not the total number of PVCs.

The getNumberOfFramePvcs method has no arguments.

Syntax

The syntax for the getNumberOfFramePvcs method is:

getNumberOfFramePvcs( )

Exceptions

N/A

Return

The getNumberOfFramePvcs method returns an integer that represents the number of 
Frame Relay PVCs.

The getNumberOfAtmPvcs Method
The getNumberOfAtmPvcs method gets the number of ATM PVCs on the interface. 
This is the number of managed PVCs, not the total number of PVCs.

The getNumberOfAtmPvcs method has no arguments.

Syntax

The syntax for the getNumberOfAtmPvcs method is:

getNumberOfAtmPvcs( )

Exceptions

N/A



Interface Context

Definition of Standard Methods 7-13

Return

The getNumberOfAtmPvcs method returns an integer that represents the number of 
ATM PVCs.

The getFramePvc Method
The getFramePvc method gets the Frame Relay PVC object at index position in the 
total set of Frame PVCs. The total number of Frame PVCs is given by the 
getNumberOfFramePvcs method. Valid index values are from 0 to the return of 
getNumberOfFramePvcs minus 1.

Table 7–10 shows the arguments for the getFramePvc method.

Syntax

The syntax for the getFramePvc method is:

getFramePvc(index)

Exceptions

RuntimeError will be raised if index is not valid.

Return

The getFramePvc method returns the PythonCiscoProxyFramePtr object if index is 
valid, None if index is not valid.

The getAtmPvc Method
The getAtmPvc method gets the ATM PVC object at index position in the total set of 
ATM PVCs. The total number of ATM PVCs is given by the getNumberOfAtmPvcs 
method. Valid index values are from 0 to the return of getNumberOfAtmPvcs minus 
1.

Table 7–11 shows the arguments for the getAtmPvc method.

Syntax

The syntax for the getAtmPvc method is:

getAtmPvc(index)

Exceptions

RuntimeError will be raised if index is not valid.

Return

The getAtmPvc method returns the PythonCiscoProxyFramePtr object if index is valid, 
None if index is not valid.

Table 7–10 getFramePvc Method Arguments

Argument Description

index Frame Relay PVC to fetch.

Table 7–11 getAtmPvc Method Arguments

Argument Description

index ATM PVC to fetch.



ATM PVC Context

7-14 IP Service Activator Configuration Development Kit Guide

ATM PVC Context
The ATM PVC context is available to all ATM PVC scripts. This context provides the _
atm_pvc object.

The _atm_pvc Object
The _atm_pvc object provides access to ATM PVC scripts. The type of this object is 
PythonCiscoProxyAtmPvcPtr.

The following methods can be called on the _atm_pvc object:

■ The getVpi Method

■ The getVci Method

The getVpi Method
The getVpi method gets the PVC VPI.

The getVpi method has no arguments.

Syntax

The syntax for the getVpi method is:

getVpi( )

Exceptions

N/A

Return

The getVPI method returns an integer that represents the VPI of the PVC.

The getVci Method
The getVci method gets the PVC VCI.

The getVci method has no arguments.

Syntax

The syntax for the getVci method is:

getVci( )

Exceptions

N/A

Return

The getVci method returns an integer that represents the VCI of the PVC.

Frame PVC Context
The Frame PVC context is available to all Frame Relay PVC scripts. This context 
provides the _frame_pvc object.



Frame PVC Context

Definition of Standard Methods 7-15

The _frame_pvc Object
The _frame_pvc object provides access to Frame Relay PVC functions. The type of this 
object is PythonCiscoProxyFramePvcPtr.

The following methods can be called on the _frame_pvc object:

■ The getDlci Method

The getDlci Method
The getDlci method gets the PVC Data Link Connection Identifier (DLCI).

The getDlci method has no arguments.

Syntax

The syntax for the getDlci method is:

getDlci( )

Exceptions

N/A

Return

The getDlci method returns an integer that represents the DLCI of the PVC.



Frame PVC Context

7-16 IP Service Activator Configuration Development Kit Guide



A

Pre-defined Scripts A-1

APre-defined Scripts

This appendix describes the pre-defined scripts that are supplied with Oracle 
Communications IP Service Activator. 

Save to NVRAM
The NVRAM.py script copies the Cisco running configuration to startup configuration 
(NVRAM). This is particularly useful if a number of changes have taken place during 
the current run period of the system and ensures these changes are saved for any 
future restarts.

Device Driver
Cisco IOS device driver

Objects Applied To
Script Type = Device

Device Role = Any Role

Scheduling Requirements
Installed = After configuration changes

Frequency = Once only

Install on restart = False

Variables Required
N/A

Commands Applied During Install
copy running-config startup-config

Commands Applied During Remove
N/A

Add VLAN to CatOS
The CatosAddVlna.py script adds a VLAN to a CatOS switch.

Device Driver
CatOS script driver



Force a FastStart Mode Exit for Cisco Devices

A-2 IP Service Activator Configuration Development Kit Guide

Objects Applied To
Script Type = Device

Device Role = Any Role

Scheduling Requirements
Installed = After configuration changes

Frequency = Repeatedly

Install on restart = False

Variables Required
newVlanNum

newVlanName

Commands Applied During Install
copy running-config startup-config

Commands Applied During Remove
N/A

Force a FastStart Mode Exit for Cisco Devices
The NullCiscoScript.py script forces Cisco devices to exit from the FastStart mode.

Device Driver
Cisco IOS device driver

Objects Applied To
Script Type = Device

Device Role = Any Role

Scheduling Requirements
Installed = After configuration changes

Frequency = Once only

Install on restart = False

Variables Required
N/A

Commands Applied During Install
N/A

Commands Applied During Remove
N/A



B

Sample Scripts for Using the Shared Data Area B-1

BSample Scripts for Using the Shared Data Area

This appendix provides sample scripts. These scripts follow the logic outlined in "An 
Example of Using the Shared Data Area".

Sample Python Module
The following script is supplied as a sample only and is not intended for deployment. 
Oracle Support does not provide support for this script.

When applied to the device driver using the command-line parameter 
-SharedDataModule, the following script defines the structure of the shared data area.

# This shared info module does not handle removing behavior objects 
# from lifetime shared memory. One way to deal with this issue is for
# each behavior object to define an idea of identity and the shared
# Module to insert behaviors in a structure that can be accessed by
# identity so that specific objects can be removed.
 
# Python "reflection" would be needed to help solve the problem in this
# implementation.
class SharedInfo:
  # In these functions get and set are methods to get data 
  # from/insert data into the shared area functions with Add relate 
  # to data to be treated as an add action(normally added by the 
  # "on install" part of a data script functions, with Remove 
  # relate to data to be treated as a remove action (normally added 
  # by the "on remove" part of a data script

  def __init__(self):
    self.behaviors={}         # Dictionary for behavior objects.
    self.data={"add":{},"remove":{}}  # Dictionary for data.- broken into add and 
remove sections.
    self.addInterface={}              # Dictionary for add data to interfaces.
    self.removeInterface={}  # Dictionary for remove data to interfaces.
    self.general={}

  # Some simple functions to ensure that objects exist before being
  # accessed.
  def fetchDict(self, container, key):
    if( not container.has_key(key) ): container[key]={}
    return container[key]
  def fetch(self, container, key):
    if( not container.has_key(key) ): container[key]=[]
    return container[key]
  def insert(self, container, key, value ):
    if( not container.has_key(key) ): container[key]=[]



Sample Python Module

B-2 IP Service Activator Configuration Development Kit Guide

    container[key].append(value)

  # Insert the behavior object into the behaviors dictionary, keying 
  # on the priority of the behavior object.
  def insertBehavior(self, behavior):
         self.insert( self.behaviors, behavior.priority(), behavior )
  # Return all of the registered behavior objects
  def fetchBehavior(self):
    return self.behaviors
 
  #Insert data keyed by data type and interface name.
  def setInterfaceAddData(self, iface,  name, data):
         self.insert(  self.fetchDict( self.addInterface, name), iface, data)
  def setInterfaceRemoveData(self, iface, name, data):
         self.insert(  self.fetchDict( self.removeInterface, name), iface, data)

  # Get data of type "name"  for all interfaces
  def getInterfaceAddData(self,  name):
         return  self.fetchDict( self.addInterface, name)
  def getInterfaceRemoveData(self, iface, name):
         return  self.fetchDict( self.removeInterface, name)
  # Get data of type "name" for this interface only.
  def getThisInterfaceAddData(self, iface, name):
         return self.fetch( self.fetchDict( self.addInterface, name), iface)
  def getThisInterfaceRemoveData(self, iface, name):
         return self.fetch( self.fetchDict( self.removeInterface, name), iface)

# Data for a given key is stored as a list ( in case multiple
# scripts register against the same key). "TrustMe" functions can 
# be used when the calling script is sure that there will
# be an entry for the key, and that there is only one entry, 
# or the first entry is the only one it cares about.
def getInterfaceAddDataTrustMe(self, iface, name):
         return self.fetch( self.fetchDict( self.addInterface, name), iface)[0]
  def getInterfaceRemoveDataTrustme(self, iface, name):
         return self.fetch( self.fetchDict( self.removeInterface, name), iface)[0]

  # Generic get and set data methods for add and remove
  def setAddData(self, name, data):
         self.insert(  self.data["add"], name, data)
  def setRemoveData(self, name, data):
         self.insert(  self.data["remove"], name, data)
  def getAddData(self, name):
         return self.fetch( self.data["add"], name)
  def getRemoveData(self, name):
         return self.fetch( self.data["remove"], name)
  def getAddDataTrustMe(self, name):
         return self.fetch( self.data["add"], name)[0]
  def getRemoveDataTrustme(self, name):
         return self.fetch( self.data["remove"], name)[0]

# This function will be called by the driver whenever a new shared data
# object is needed. It returns an object of the class type created
# above.
def  CreateSharedObject():
  return SharedInfo()



Sample Behavior Script

Sample Scripts for Using the Shared Data Area B-3

Sample Behavior Script
The following script is supplied as a sample only and is not intended for deployment. 
Oracle Support does not provide support for this script.

#Title: Sample behavior script
Version = '1.0'
#IP Service Activator version: 7.0.0
#Date: 19-Mar-2008   IOS level: 12.1 - 12.2.8
#(c) T.Romain 2008
#This script is a sample generic behavior script 
#
#begin preamble section
#N/A
 
######################################################################
#begin behavior section
#script_name = "do X"
#script_driver_type = "cisco"
#script_type = Device
#script_device_role = Access
#script_interface_role = Any
#script_apply_when = Before
#script_repeat = False
#script_apply_on_restart = True
 
#begin common section
 
#begin install section
class DoXer:
  def __init__( self ):
    self.reportingData={"id":_id, "failureCode":_failure_code}

  # The priority to execute this with: the lowest number will be
  # executed first.
  def priority( self ):
    return 2

  def Execute(self, parse):

    print "executing X script : priority "+ str( self.priority() )
# Retrieve data generated by pre-created data object
    interfaceData=_device.getThisCommitSharedData().getInterfaceAddData("XDATA")

    if( len(interfaceData) != 0 ):  # we have some interfaces
# Perform some function 

      for iface in interfaceData.keys():
        print "Requested to put X on " + iface
    else:
      print "No interfaces to do X to"

# Finally insert an instance of the class into the shared area
_device.getLifetimeSharedData().insertBehavior( DoXer() )

#begin remove section



Sample Data Script

B-4 IP Service Activator Configuration Development Kit Guide

Sample Data Script
The following script is supplied as a sample only and is not intended for deployment. 
Oracle Support does not provide support for this script.

#Title: Sample data script
Version = '1.0'
#IP Service Activator version: 7.0.0
#Date: 19-Apr-2008   IOS level: 12.1 - 12.2.8
#(c) T.Romain 2008
#This script is a sample generic data script
#

#begin preamble section
#N/A

#begin behavior section
#script_name = "iface wants X"
#script_driver_type = "cisco"
#script_type = Interface
#script_device_role = Access
#script_interface_role = Any
#script_apply_when = Before
#script_repeat = False
#script_apply_on_restart = True
#begin common section

data={
         "_reporting_id":_id,
         "_failure_code":_failure_code,
 
 
 
#begin install section
_device.getThisCommitSharedData().setInterfaceAddData(_
interface.getInterfaceName(),
         "XDATA", data)

#begin remove section

Sample Controller Script
The following script is supplied as a sample only and is not intended for deployment. 
Oracle Support does not provide support for this script.

#Title: Sample controller script
Version = '1.0'
#IP Service Activator version: 7.0.0
#Date: 19-Apr-2008   IOS level: 12.1 - 12.2.8
#(c) T.Romain 2008
#This is a sample controller script
#

#begin preamble section
#N/A

######################################################################

#begin behavior section



Sample Controller Script

Sample Scripts for Using the Shared Data Area B-5

#script_name = "controller"
#script_driver_type = "cisco"
#script_type = Device
#script_device_role = Access
#script_interface_role = Any
#script_apply_when = After
#script_repeat = True
#script_apply_on_restart = True

#begin common section
#begin install section
import string
import sre

tempbehaviors =_device.getThisCommitSharedData().fetchBehavior() 
permbehaviors =_device.getLifetimeSharedData().fetchBehavior()
_device.openSession()
config= _device.deliverCommand("show running-config")
splitConfig=string.split(config,"\n")

_device.closeSession()

tmp=tempbehaviors.keys() + permbehaviors.keys()
tmp.sort()
lastI=-1
for i in  tmp :
  if( lastI!= i ):
    lastI=i
    if( permbehaviors.has_key(i) ):
      for j in permbehaviors[i]:  print j
        result=j.Execute( splitConfig )
        if(  result):
          print "FAILED!" #_
result.sendScriptObjectFailure(result[0],result[1],result[2])
    if( tempbehaviors.has_key(i) ):
      for j in tempbehaviors[i]:
        print j
        result=j.Execute( splitConfig )
        if(  result):
          print "FAILED"

#begin remove section



Sample Controller Script

B-6 IP Service Activator Configuration Development Kit Guide


	Contents
	Preface
	Audience
	Accessing Oracle Communications Documentation
	Documentation Accessibility

	1 Configuration Development Kit Overview
	About the Configuration Development Kit
	Restrictions
	Pre-Defined Scripts

	2 Driver Scripts
	About Driver Scripts
	About Script Types and Targets
	Applying Roles
	Policy Targets

	About Context-Specific Parameters
	Local Context
	Inherited Context

	About Scheduling of Scripts
	About Running Scripts
	Scripts to Install Configuration
	Scripts to Remove Configuration

	About Sharing Data Between Scripts

	3 Using Existing Scripts
	Importing Scripts
	Viewing and Organizing Scripts
	Creating Driver Script Folders
	Viewing a Summary of Scripts
	Viewing the Entire Text of Scripts
	Viewing Script Properties

	Associating Roles with Scripts
	Setting Variables
	Setting Variables in the Preamble Section
	Setting Variables in the Local Context for an Object

	Associating Scripts with Objects
	Linking Scripts to Objects
	Re-running a Script

	Removing Scripts
	Propagating Configuration
	Applying Configuration
	Removing Configuration

	Deleting Scripts

	4 Developing Scripts
	About Developing Scripts
	Creating a Script
	Using the Template File
	Creating a Script Using a Text Editor
	Creating a Script from the IP Service Activator Client

	Structure of a Script
	The Preamble Section
	The Behavior Section
	The Common Section
	The Install Section
	The Remove Section

	Exporting Scripts
	Programming Tips
	Script Conventions
	Command Format
	Handling Exceptions
	Displaying Errors in IP Service Activator
	Applying Commands
	Preventing Command Application
	Processing Command Output
	Returning a Result
	Re-applying Configuration
	Managing Script Context


	5 Sharing Data Between Scripts
	About Sharing Data Between Scripts
	Using Classes
	Using a Python Dictionary
	Storing and Retrieving Data
	An Example of Using the Shared Data Area
	Types of Script
	About the Example
	Data Script: setIPAddress.py
	Listing of setIPAddress.py
	Explanation of setIPAddress.py

	Data Script: setDescription.py
	Listing of setDescription.py

	Behavior Script: processInterfaces.py
	Listing of processInterfaces.py
	Explanation of processInterfaces.py

	Controller Script: BehaviorAndCommandController.py
	Listing of BehaviorAndCommandController.py
	Explanation of BehaviorAndCommandController.py


	Error Reporting in Behavior Scripts

	6 Monitoring and Troubleshooting Scripts
	Checking the Status of Scripts
	Understanding Warnings and Error Messages
	Checking Logs

	7 Definition of Standard Methods
	Summary of Methods
	General Context
	The _result Object
	The setCode Method
	The setDetails Method
	The sendScriptObjectFailure Method


	Device Context
	The _device Object
	The openSession Method
	The deliverCommand Method
	The closeSession Method
	The getIpAddress Method
	The getIos Method
	The getOs Method
	The getDeviceType Method
	The getFeatureSet Method
	The getNumberOfInterfaces Method
	The getThisCommitSharedData Method
	The getLifetimeSharedData Method
	The getInterface Method
	The log Method
	The auditLog Method


	Interface Context
	The _interface Object
	The getInterfaceName Method
	The getIpAddress Method
	The getVipType Method
	The getAdapterType Method
	The getNumberOfFramePvcs Method
	The getNumberOfAtmPvcs Method
	The getFramePvc Method
	The getAtmPvc Method


	ATM PVC Context
	The _atm_pvc Object
	The getVpi Method
	The getVci Method


	Frame PVC Context
	The _frame_pvc Object
	The getDlci Method



	A Pre-defined Scripts
	Save to NVRAM
	Add VLAN to CatOS
	Force a FastStart Mode Exit for Cisco Devices

	B Sample Scripts for Using the Shared Data Area
	Sample Python Module
	Sample Behavior Script
	Sample Data Script
	Sample Controller Script


