

Oracle® Communications
Convergent Charging Controller
Provisioning Interface User's and Technical Guide

Release 12.0.0

December 2017

ii Provisioning Interface User's and Technical Guide

Copyright

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

 iii

Contents

About This Document .. v
Document Conventions .. vi

Chapter 1

System Overview .. 1

Overview .. 1
Introduction to the Provisioning Interface .. 1
PI Commands .. 4

Chapter 2

Configuration ... 5

Overview .. 5
Configuration Overview ... 5
eserv.config Configuration ... 6
About Configuring PI Commands in eserv.config ...31
CCSCD9 ..37
Defining the Screen Language ..39
Defining the Help Screen Language ...40

Chapter 3

PI Administration Screen .. 43

Overview ..43
PI Administration Screen ...43
PI Commands ..44
PI Hosts ...46
PI MAC Pairs ...49
PI Users ...51
PI Ports ..55

Chapter 4

PI Tester Screen .. 59

Overview ..59
PI Tester Screen ..59
General ..60
Management Tests ..62
Connection tests ..63

Chapter 5

Background Processes .. 65

Overview ..65
PImanager ...65
PIprocess ...67
PIbeClient ..68
PIbatch ..68
PIbatch XML ..70
PIuser ..72

iv Provisioning Interface User's and Technical Guide

Chapter 6

PI Management Commands ... 73

Overview .. 73
Debug Command .. 73
Traceon Command .. 75
Traceoff Command .. 76
State Command... 76
Kill Command .. 76
Sendrate Command .. 77
Logstats on/off Command ... 78

Chapter 7

About Installation and Removal .. 81

Overview .. 81
Installation and Removal Overview ... 81
Checking the Installation ... 82

Glossary of Terms .. 85

Index .. 89

 v

About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the
provisioning interface (PI) application. It does not include detailed design of the service.

Audience

This guide was written primarily for system administrators and persons installing, configuring and
administering the PI application. However, sections of the document may be useful to anyone requiring
an introduction to the application.

Prerequisites

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to install, remove, configure or
otherwise alter the described system without the appropriate background skills, could cause damage to
the system; including temporary or permanent incorrect operation, loss of service, and may render your
system beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

The following documents are related to this document:

 ACS Provisioning Interface Commands
 CCS Provisioning Interface Commands
 MM Provisioning Interface Commands
 NP Provisioning Interface Commands
 VPN Provisioning Interface Commands
 Charging Control Services Technical Guide
 Service Management System Technical Guide
 Voucher and Wallet Server Technical Guide

vi Provisioning Interface User's and Technical Guide

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Convergent
Charging Controller documentation.

Formatting Convention Type of Information

Special Bold Items you must select, such as names of tabs.
Names of database tables and fields.

Italics Name of a document, chapter, topic or other publication.
Emphasis within text.

Button The name of a button to click or a key to press.
Example: To close the window, either click Close, or press Esc.

Key+Key Key combinations for which the user must press and hold down one
key and then press another.
Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.
Monospace Bold Text that you must enter.
variable Used to indicate variables or text that should be replaced with an

actual value.
menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions
hypertext link Used to indicate a hypertext link.
Specialized terms and acronyms are defined in the glossary at the end of this guide.

 Chapter 1, System Overview 1

Chapter 1

System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Convergent Charging Controller
network or service implications of the product.

In this Chapter

This chapter contains the following topics.

Introduction to the Provisioning Interface .. 1
PI Commands .. 4

Introduction to the Provisioning Interface

Introduction

The Provisioning Interface (PI) provides a mechanism for manipulating data in the SMF database using
an API. It enables bulk or scripted operations on the SMF data to be completed, where a human
operator using the Java administration screens would be inefficient or error-prone.

The PI provides a reliable, extensible, network aware interface based on interoperability standards (for
example XML).

Chapter 1

2 Provisioning Interface User's and Technical Guide

Component diagram

This diagram shows the PI components and processes.

Component descriptions

This table describes the main components involved in the Provisioning Interface application.

Component Description Further Information

SMF database The main SMF database holds the configuration details
which are updated by the PI and some PI configuration
details. The SMF holds configuration data for:

 The system
 Client accounts
 Services

SMS Technical Guide

PI Administration
screens

Enables an administrator to interact with the SMF
database.
The PI screens enable you to add new PI commands,
users and hosts to the system and send test messages
to specificPI processes.

PI Administration
Screen (on page 43)

PI Tester screens Test the system by sending individual commands to PI
processes.

PI Tester Screen (on
page 59)

PImanager Starts and stops PI processes. PImanager will start as
many PIprocesses as specified in the PI_PORTS table
on the SMF database.

PImanager (on page
65)

PIprocess Runs on an SMS listening at a specific port for PI
commands.

PIprocess (on page 67)

PIbatch Sends multiple PI commands to the PIprocesses.
PIbatch can take instructions from a batch file, enabling

PIbatch (on page 68)

 Chapter 1

 Chapter 1, System Overview 3

Component Description Further Information

complex treatments of the data in the SMF database to
take place.

PIbatch_XML Sends multiple PI commands to the PIprocesses.
PIbatch_XML takes instructions from XML and SOAP
files.

PIbatch XML (on page
70)

eserv.config The configuration file for PI.

Note: Not all installations require this file to be
configured.

eserv.config Configuration
(on page 6)

Process

This table describes the process involved in running a PI command.

Note: The security/authentication parts of this process will only happen if the security plug-in is active in
your deployment.

Step Action

1 The first message sent to the server to start a new connection is a login message.

Note: All communication between the client and the SMS uses the ASCII, HTTP/1.1, or
HTTPS/1.1 protocol over TCP/IP. This enables all messages to be passed on a single
connection for the duration of the session.

2 On successful login, the server will optionally send a security token.
If security is used, then this token should be included in future request messages to
confirm authentication.

3 A client system sends PI command to the relevant network port on the SMS.
4 The server process will check the authentication state, if configured to do so, and pass

the requested command to the appropriate handler.
5 The server will respond on the same network connection with a message containing the

response. The response will consist of any returned data, and, if configured, the new
security token for use in future messages to the PI.

6 An end session command will be sent from either the server or the client to the other
party.

7 The session is closed.

Triggering BPL tasks

This process describes how a PI command triggers a BPL task.

For more information about BPL tasks, see CCS User's Guide and CCS Technical Guide.

Stage Description

1 A client system sends the CCSBPL command to the relevant network port on the SMS.
2 The PIprocess (on page 67) for that port calls the libPI_CCSBPL library and sends the

request to the smsTrigDeamon to trigger the BPL task process.
For more information about the BPL task process, see SMS Technical Guide.

3 When the BPL has been processed, the smsTrigDaemon returns the result of the
command to PIprocess.

4 PIprocess translates the response into a PI command response for the CCSBPL

Chapter 1

4 Provisioning Interface User's and Technical Guide

Stage Description

command and returns it to the client system.

PI Commands

Introduction

The provisioning interface uses TCP/IP-based UNIX sockets to receive provisioning commands and
parameters. These are translated into SQL commands that update prepaid application tables of the
SMF and E2BE Oracle databases.

Note: The output from the PI command is limited to 2,000 characters. When the output exceeds this limit,
the output is truncated to the "<command>:ACK" message.

PI command installation

The PI commands which are available depend on which packages were run when the PI was installed.
For details about the commands available for your installation, see the PI commands guide for your
applications.

Example: For the commands for CCS, see CCS PI Commands Operations Guide.

Command package details

This table shows the functionality installed by each package.

Functionality Required Package

Framework to execute a PI command. Required piSms

Core CCS commands and VWS client. Required piCcsSms
Command definitions for a subscriber domain. Optional piSubscriberSms
Command definitions for a wallet domain. Optional piWalletSms
Command definitions for a voucher domain. Optional piVoucherSms
Command definitions for the Social Networking Service Template. Optional piSrmSms

For more information about installing these packages, see Installation and Removal Overview (on page
81).

 Chapter 2, Configuration 5

Chapter 2

Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Convergent Charging Controller
application.

In this chapter

This chapter contains the following topics.

Configuration Overview ... 5
eserv.config Configuration ... 6
About Configuring PI Commands in eserv.config ... 31
Defining the Screen Language .. 39
Defining the Help Screen Language ... 40

Configuration Overview

Introduction

Most of the configuration required to set up the PI is completed automatically when the packages are
installed, or when the configuration scripts are run. However, some tasks must be completed by hand
after the packages have been installed.

Configuration components

This table describes the configuration required to configure the PI.

Component Description Further information

eserv.config This file provides a centralized location for
configuring Convergent Charging Controller
software, including PI. This file should be updated
with any relevant details from the
eserv.config.pi_example file added during installation.

eserv.config Configuration
(on page 6)

PI administration
screens

PI uses Java screens to administer user accounts,
connections and commands.
These screens will be populated with data entered
during the installation, but may require additional
configuration.

PI Administration Screen
(on page 43)

Chapter 2

6 Provisioning Interface User's and Technical Guide

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many Oracle Communications Convergent
Charging Controller applications read their configuration. Each Convergent Charging Controller machine
(SMS, SLC, and VWS) has its own version of this configuration file, containing configuration relevant to
that machine. The eserv.config file contains different sections; each application reads the sections of the
file that contains data relevant to it.

The eserv.config file is located in the /IN/service_packages/ directory.

The eserv.config file format uses hierarchical groupings, and most applications make use of this to divide
the options into logical groupings.

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other
sections. Configuration details are opened and closed using either { } or [].

 Groups of parameters are enclosed with curly brackets – { }
 An array of parameters is enclosed in square brackets – []
 Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats can be used, as in this example:

{ name="route6", id = 3, prefixes = ["00000148", "0000473"] }

{ name="route7", id = 4, prefixes = ["000001049"] }

or
{ name="route6"

id = 3

prefixes = [

"00000148"

"0000473"

]

}

{ name="route7"

id = 4

prefixes = [

"000001049"

]

}

or
{ name="route6"

id = 3

prefixes = ["00000148", "0000473"]

}

{ name="route7", id = 4

prefixes = ["000001049"]

}

eserv.config Files Delivered

Most applications come with an example eserv.config configuration in a file called eserv.config.example in
the root of the application directory, for example, /IN/service_packages/eserv.config.example.

 Chapter 2

 Chapter 2, Configuration 7

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text editors, such as
Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows
line termination characters (for example, ^M), which are not visible to the user, at the end of each row.
This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working
copy to which you can return.

Loading eserv.config Changes

If you change the configuration file, you must restart the appropriate parts of the service to enable the
new options to take effect.

eserv.config.pi_example

The PI comes with an example of the PI's eserv.config configuration in a file called eserv.config.pi_example
in the root of the application directory. This example configuration should be copied into the main
eserv.config file to provide a base for the application's configuration.

Optional sections in eserv.config

Some sections of the eserv.config file are only required if your deployment has a specific component. For
example, the PIbeClient section is required only if a VWS Voucher and Wallet Server is used.

eserv.config subsections

The pi section of the eserv.config file has the following structure.
pi = {

general = {}

authentication = {}

throttling = {}

PIbeClient = {}

ssl = {}

soap = {}

}

Parameters for each subsection are described below.

General

Here is an example of the general sub section of the PI eserv.config configuration.
general = {

debug = 'N'

oraUser = "/"

synstamp = 'Y'

timeout = 30

logLevel = 0

securityPlugin = ""

correlationRequestTagName = "CORRELATE"

correlationResponseTagName = "CORRELATE"

}

Chapter 2

8 Provisioning Interface User's and Technical Guide

The parameters are described in detail below.

coreWhenProcessUnresponsive

Syntax: coreWhenProcessUnresponsive = true|false
Description: Specifies how the PImanager process responds when PIprocess is unresponsive.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true – PImanager sends a SIGABRT signal when PIprocess is unresponsive.

 false – PImanager sends a SIGTERM signal when PIprocess is unresponsive.
Default: False
Notes:
Example: coreWhenProcessUnresponsive = true

correlationRequestTagName

Syntax: correlationRequestTagName = "name"
Description: The expected correlation tag in the XML message.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: "CORRELATE"
Notes:
Example: correlationRequestTagName = "CORRELATE"

correlationResponseTagName

Syntax: correlationResponseTagName = "name"
Description: The expected correlation tag in the XML response.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: 'correlationRequestTagName' value
Notes: If not set it will be the value on 'correlationRequestTagName'.
Example: correlationResponseTagName = "CORRELATE"

debug

Syntax: debug = Y|N
Description: Turn debug on or off.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: N
Notes: Only turn on in extreme circumstances as it turns on debug for all parts of PI.

Command line equivalent: "-D" (Y), missing (N).
Example: debug = 'N'

 Chapter 2

 Chapter 2, Configuration 9

loglevel

Switches the PIprocess trace on or off.
Default: 0
Allowed: 1 switches the PIprocess trace on.

0 switches the PIprocess trace off

oraUser

Defines the Oracle user name and password.
Default: "/"
Note: This parameter is not usually required as the default "/" is correct.

Command line equivalent: "-u /"

securityPlugin

The name of any security plug-in used.
Default: ""
Allowed: string

synstamp

Turns the synstamp on or off.
Default: Y
Allowed: Y turns synstamp on

N turns synstamp off

Note: Command line equivalent of "-S Y".

timeout

The maximum allowed time, in seconds, for a PI command. If, for example, you set timeout = 30,
timeout will occur after 30 seconds.
Default: -1
Allowed: -1 No timeout.

positive integer Seconds before timeout.

Note: The command line equivalent would be "-t 30".

authentication

The authentication subsection of the PI eserv.config configuration supports these parameters.
authentication = {

timeout = 0

noAuthTokenForAnyPIError = false

}

The parameter is described in detail below.

timeout

Syntax: timeout = seconds
Description: Authentication token timeout.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:

Chapter 2

10 Provisioning Interface User's and Technical Guide

Default: 0 (no timeout)
Notes:
Example: timeout = 0

noAuthTokenForAnyPIError

Syntax: noAuthTokenForAnyPIError = True | False
Description: Specifies whether the PI returns an authentication token when an error condition

occurs.
Type: Boolean
Optionality: Optional

Allowed: true The PI does not return an authentication token when an error condition
occurs.

false The PI returns an authentication token when an error condition

Default: false
Notes:
Example: noAuthTokeknForAnyPIError = False

Throttling

The throttling subsection of the PI eserv.config configuration supports these parameters.
throttling = {

sendRate = 0<int>

}

The parameter is described in detail below.

sendRate

The maximum number of PI commands per second.
Default: 0
Allowed: 0 no limit

positive integer commands per second.

PIbeClient

The PIbeClient section of the eserv.config file configures the PIbeClient (on page 68) process. Here is
the structure of the section.

PIbeClient = {

namedEventCanSendDebitBalanceNegative = 'n|y'

oracleLogin = "usr/pwd"

beLocationPlugin = "lib"

clientName = "name"

heartbeatPeriod = microsecs

messageTimeoutSeconds = seconds

maxOutstandingMessages = int

reportPeriodSeconds = seconds

connectionRetryTime = seconds

plugins = [

{

config="confStr",

library="lib",

 Chapter 2

 Chapter 2, Configuration 11

function="str"

}

[...]

]

confStr = {

plug-in_configuration

}

notEndActions = [

{type="str", action="[ACK |NACK]"}

[...]

]

}

The parameters are described in detail below.

clientName

Syntax: clientName = "name"
Description: The unique client name of the process.
Type: String
Optionality: Required
Allowed: Must be unique
Default: The hostname of the local machine.
Notes: The server generates clientId from a hash of name.

If more than one client attempts to connect with the same name, then some
connections will be lost.
This parameter is used by libBeClientIF.

Example: clientName = "PIbeClient"

connectionRetryTime

Syntax: connectionRetryTime = seconds
Description: The maximum number of seconds the client process will wait for a connection to

succeed before attempting a new connection.
Type: Integer
Optionality: Required
Allowed:
Default: 5
Notes: This parameter is used by libBeClientIF.
Example: connectionRetryTime = 2

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs
Description: The number of microseconds during which a Voucher and Wallet Server

heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer
Optionality: Required
Allowed: 0 Disable heartbeat detection.

positive integer Heartbeat period.

Default: 3000000

Chapter 2

12 Provisioning Interface User's and Technical Guide

Notes: 1 000 000 microseconds = 1 second.
If no heartbeat message is detected during the specified time, client process
switches to the other Voucher and Wallet Server in the pair.
This parameter is used by libBeClientIF.

Example: heartbeatPeriod = 10000000

maxOutstandingMessages

Syntax: maxOutstandingMessages = num
Description: The maximum number of messages allowed to be waiting for a response from the

Voucher and Wallet Server.
Type: Integer
Optionality: Required
Allowed:
Default: If this parameter is not set, the maximum is unlimited.
Notes: If more than this number of messages are waiting for a response from the

Voucher and Wallet Server, the client process assumes the Voucher and Wallet
Server is overloaded. In this event, the client process refuses to start new calls
but continues to service existing calls.
The messages are queued until the Voucher and Wallet Server has reduced its
outstanding load.
This parameter is used by libBeClientIF.

Example: maxOutstandingMessages = 100

messageTimeoutSeconds

Syntax: messageTimeoutSeconds = seconds
Description: The time that the client process will wait for the server to respond to a request.
Type: Integer
Units: Seconds
Optionality: Required
Allowed: 1-604800 Number of seconds to wait.

0 Do not time out.

Default: 2
Notes: After the specified number of seconds, the client process will generate an

exception and discard the message associated with the request.
This parameter is used by libBeClientIF.

Example: messageTimeoutSeconds = 2

namedEventCanSendDebitBalanceNegative

Determines whether a named billable event charge can be sent a negative debit balance.
Default: n
Allowed: y negatives will be allowed

Y negatives will be allowed
n only positives will be allowed

 Chapter 2

 Chapter 2, Configuration 13

notEndActions

Syntax: notEndActions = [
 {type="str", action="[ACK|NACK]"}
 [...]
]

Description: The notEndActions parameter array is used to define the messages
associated with dialogs that should not have their dialog closes, because the
dialog is closed by default. This facilitates failover.

Type: Parameter array.
Optionality: Required
Allowed:
Default:
Notes: If the incoming dialog for a call closes and the last response received was of the

notEndActions type, the client process sends an ABRT message. The ABRT
message allows the VWS to remove the reservation. An example of this situation
would be where slee_acs has stopped working.
This parameter is used by libBeClientIF.
For more information about slee_acs, see ACS Technical Guide.

Example: notEndActions = [
 {type="IR ", action="ACK "}
 {type="SR ", action="ACK "}
 {type="SR ", action="NACK"}
 {type="INER", action="ACK "}
 {type="SNER", action="ACK "}
 {type="SNER", action="NACK"}
]

action

Syntax:
Description: Action to take with a message.
Type:
Optionality:
Allowed: "NACK"

 "ACK"
Default:
Notes:
Example:

type

The type of message.

oracleLogin

Identifies the PIbeClient when it logs on to the database.
Default: "/"

Chapter 2

14 Provisioning Interface User's and Technical Guide

plugins

Syntax: plugins = [
{

config=""

library="lib"

function="str"

}

...

]

Description: Defines any client process plug-ins to run. Also defines the string which maps to
their configuration section.

Type: Parameter array
Optionality: Optional (as plug-ins will not be loaded if they are not configured here, this

parameter must include any plug-ins which are needed to supply application
functions; for more information about which plug-ins to load, see the BeClient
section for the application which provides the BeClient plug-ins).

Allowed:
Default: Empty (that is, do not load any plug-ins).
Notes: The libclientBcast plug-in must be placed last in the plug-ins configuration list.

For more information about the libclientBcast plug-in, see libclientBcast.
This parameter is used by libBeClientIF.

Example: plugins = [
{

config="broadcastOptions"

library="libclientBcast.so"

function="makeBroadcastPlugin"

}

]

config

Syntax: config="name"
Description: The name of the configuration section for this plug-in. This corresponds to a

configuration section within the plugins section in the eserv.config file.
Type: String
Optionality: Required (must be present to load the plug-in)
Allowed:
Default: No default
Notes:
Example: config="voucherRechargeOptions"

function

Syntax: function="str"
Description: The function the plug-in should perform.
Type: String

Optionality: Required (must be present to load the plug-in)
Allowed:
Default: No default
Notes:
Example: function="makeVoucherRechargePlugin"

 Chapter 2

 Chapter 2, Configuration 15

library

Syntax: library="lib"
Description: The filename of the plug-in library.
Type: String
Optionality: Required (must be present to load the plug-in)
Allowed:
Default: No default
Notes:
Example: library="libccsClientPlugins.so"

Voucher and wallet plugins

There are four plug-ins which provide functionality for the PIbeClient:
1 Voucher recharge (VRW)
2 Voucher type recharge (VTR)
3 Merge wallets (MGW)
4 Broadcast (on page 20)

Note: The broadcast plug-in configuration must be placed last in the plugins configuration section.

Each plug-in can have a configuration section. The name of this subsection will match the string
provided for the config parameter in the plugins subsection.

Example: The Voucher Recharge plug-in has config set to voucherRechargeOptions. So the
configuration section for this plug-in is:

voucherRechargeOptions = {

...

}

reportPeriodSeconds

Syntax: reportPeriodSeconds = seconds
Description: The number of seconds separating reports of failed messages.
Type: Integer
Units: Seconds
Optionality: Required
Allowed:
Default: 10
Notes: BeClient issues a failed message report:

 For timed-out messages
 For unrequested responses
 For new calls rejected because of congestion
 For messages with invalid Voucher and Wallet Server identifiers
 If new and subsequent requests fail because both Voucher and Wallet

Servers have stopped working
VWS heartbeat detection must be enabled for the parameter to work. Set
reportPeriodSeconds to more than heartbeatPeriod.

This parameter is used by libBeClientIF.

Example: reportPeriodSeconds = 10

Chapter 2

16 Provisioning Interface User's and Technical Guide

Voucher Recharge plug-in

The Voucher Recharge BeClient plug-in executes voucher recharges.
The plugins section must include the following configuration to load this plug-in.

{

config="voucherRechargeOptions",

library="libccsClientPlugins.so",

function="makeVoucherRechargePlugin"

}

Note: The VRW plug-in requires the broadcast plug-in.

The voucher recharge plug-in supports the following configuration.
voucherRechargeOptions = {

srasActivatesPreuseAccount=true|false

voucherServerCacheLifetime = seconds

voucherServerCacheCleanupInterval = seconds

sendBadPin = true|false

voucherRechargeTriggers = [

"str"

]

}

The parameters are described in detail below.

sendBadPin

Syntax: sendBadPin = true|false
Description: Whether or not to increment the Bad PIN count for a failed voucher redeem.
Type: Boolean
Optionality: Optional
Allowed: true – Increment Bad PIN count for each failed attempt to recharge a

voucher.
 false – Do not increment Bad PIN count for failed attempts to recharge a

voucher.
Default: false
Notes: This parameter:

 applies only to an invalid voucher number or voucher PIN. It does not
apply to failed wallet recharges

 is part of the voucherRechargeOptions parameter group

Example: sendBadPin = false

srasActivatesPreuseAccount

Syntax: srasActivatesPreuseAccount = true|false
Description: Sets whether or not alternate subscribers can activate subscriber accounts which

are in a pre-use state.
Type: Boolean
Optionality: Optional
Allowed: true – A scratch card alternate subscriber can activate a pre-use account.

 false – A scratch card alternate subscriber cannot activate a pre-use
account.

Default: true
Notes: This parameter is:

 Not used by ccsBeOrb
 Part of the voucherRechargeOptions parameter group

 Chapter 2

 Chapter 2, Configuration 17

Example: srasActivatesPreuseAccount = false

voucherRechargeTriggers

Syntax: voucherRechargeTriggers = [
 "VRW "
]

Description: This message triggers the voucher recharge plug-in.
Type: Array
Optionality: Required
Allowed: VRW
Default:
Notes: This parameter array is part of the voucherRechargeOptions parameter

group.
Example:

voucherServerCacheCleanupInterval

Syntax: voucherServerCacheCleanupInterval = seconds
Description: Time in seconds between purges of the voucher server id cache.
Type: Integer
Optionality: Optional
Allowed: Any positive decimal integer.
Default: 60 (seconds)
Notes:
Example: voucherServerCacheCleanupInterval = 60

voucherServerCacheLifetime

Syntax: voucherServerCacheLifetime = seconds
Description: Time in seconds to hold items in the voucher server ID cache.
Type: Integer
Optionality: Optional
Allowed: Any positive decimal integer.
Default: 600 (seconds)
Notes:
Example: voucherServerCacheLifetime = 600

Voucher Type Recharge plug-in

The Voucher Type Recharge PIbeClient plug-in executes voucher type recharges.
The plugins section must include the following configuration to load this plug-in.

{

config="voucherTypeRechargeOptions",

library="libccsClientPlugins.so",

function="makeVoucherTypeRechargePlugin"

}

Note: The VTR plug-in requires the broadcast plug-in.

The voucher recharge plug-in supports the following configuration.
voucherTypeRechargeOptions = {

Chapter 2

18 Provisioning Interface User's and Technical Guide

srasActivatesPreuseAccount=true|false

voucherTypeRechargeTriggers = [

"VTR "

]

}

The parameters are described in detail below.

srasActivatesPreuseAccount

Syntax: srasActivatesPreuseAccount = true|false
Description: Sets whether or not alternate subscribers can activate subscriber accounts which

are in a pre-use state.
Type: Boolean
Optionality: Optional
Allowed: true – A scratch card alternate subscriber can activate a pre-use account.

 false – A scratch card alternate subscriber cannot activate a pre-use
account.

Default: true
Notes: This parameter is:

 Not used by ccsBeOrb
 Part of the voucherRechargeOptions parameter group

Example: srasActivatesPreuseAccount = false

voucherTypeRechargeTriggers

Syntax: voucherTypeRechargeTriggers = [
 str [...]"
]

Description: Starts the voucher type recharge plug-in.
Type: Array
Optionality: Required
Allowed: VRW
Default:
Notes: This parameter array is part of the voucherTypeRechargeOptions parameter

group.
Example: voucherTypeRechargeTriggers = ["VTR "]

Merge Wallets plug-in

The Merge Wallets PIbeClient plug-in executes wallet merges.
The plugins section must include the following configuration to load this plug-in.

{

config = "mergeWalletsOptions",

library = "libccsClientPlugins.so",

function = "makeMergeWalletsPlugin"

}

Note: The VTR plug-in requires the broadcast plug-in.

The merge wallets plug-in supports the following configuration.
mergeWalletsOptions = {

oracleLogin = "usr/pwd"

mergeBucketExpiryPolicy = "str"

mergeWalletExpiryPolicy = "str"

allowedSourceWalletStates = "str[,...]"

 Chapter 2

 Chapter 2, Configuration 19

mergeWalletsTriggers = [

"str [...]"

]

}

The parameters are described in detail below.

allowedSourceWalletStates

Syntax: allowedSourceWalletStates = "str[...]"
Description: The states the source wallet must be in to allow it to be merged with another

wallet.
Type: String
Optionality: Required
Allowed: P Pre-use

A Active
D Dormant
S Suspended
F Frozen
T Terminated

Default: None
Notes: At least one state must be included, or all merged will be disallowed.
Example: allowedSourceWalletStates = "PA"

mergeBucketExpiryPolicy

Syntax: mergeBucketExpiryPolicy = "str"
Description: Determines how the bucket expiry policy is treated.
Type: String
Optionality: Optional (default used if not set).
Allowed: merge policy is merged

move policy is moved

Default: merge
Notes:
Example: mergeBucketExpiryPolicy = "move"

mergeWalletExpiryPolicy

Syntax: mergeWalletExpiryPolicy = "str"
Description: Determines the way expiry dates for merged wallets are managed.
Type: String
Optionality: Optional
Allowed: best The expiry date of the wallet with the most time

left is used.
ignore The expiry date of the source wallet is ignored.

Default: best
Notes:
Example: mergeWalletExpiryPolicy = "best"

Chapter 2

20 Provisioning Interface User's and Technical Guide

mergeWalletsTriggers

Syntax: mergeWalletsTriggers = [
 "str [...]"
]

Description: Wallets of this type starts the merge wallets plug-in.
Type: Array of strings.
Optionality: Required
Allowed: MGW
Default: None
Notes: The syntax must be typed exactly as shown in the example.
Example: mergeWalletsTriggers = ["MGW "]

oracleLogin

Syntax: oracleLogin = "usr/pwd"
Description: The login details the BeClient should use to log in to the SMF database, when

performing merge wallet functions.
Type: String
Optionality: Optional
Allowed:
Default: /
Notes:
Example: oracleLogin = "smf/smf"

Broadcast plug-in

The Broadcast PIbeClient plug-in overrides the beLocationPlugin that would normally load connection
details from the database.
The plugins section must include the following configuration to load this plug-in.

{

config="",

library="libccsClientPlugins.so",

function="makeBroadcastPlugin"

}

Notes:

 This plug-in must be the last in the plugins subsection.

 This plug-in has no configuration.

 The broadcast plug-in is required by the VRW and VTR plug-ins.

notEndActions

The state conversions subsection supports the following parameter.
notEndActions = [

{type="str", action="str"}

...

]

The parameter is described in detail below.

 Chapter 2

 Chapter 2, Configuration 21

notEndActions

Syntax: notEndActions = [
 {type="str", action="[ACK|NACK]"}
 [...]
]

Description: The notEndActions parameter array is used to define the messages
associated with dialogs that should not have their dialog closes, because the
dialog is closed by default. This facilitates failover.

Type: Parameter array.
Optionality: Required
Allowed:
Default:
Notes: If the incoming dialog for a call closes and the last response received was of the

notEndActions type, the client process sends an ABRT message. The ABRT
message allows the VWS to remove the reservation. An example of this situation
would be where slee_acs has stopped working.
This parameter is used by libBeClientIF.
For more information about slee_acs, see ACS Technical Guide.

Example: notEndActions = [
 {type="IR ", action="ACK "}
 {type="SR ", action="ACK "}
 {type="SR ", action="NACK"}
 {type="INER", action="ACK "}
 {type="SNER", action="ACK "}
 {type="SNER", action="NACK"}
]

voucherStateConversions

The state conversions subsection supports the following parameter.
voucherStateConversions = {

str = "ESCHER"[,

...]

}

The parameter is described in detail below.

voucherStateConversions

Syntax: voucherStateConversions = {
str = "ESCHER"[,

...]

}

Description: Converts from ESCHER encoding to a single character and back.
Type: Array
Optionality:
Allowed:
Default:
Notes:
Example: voucherStateConversions = {

 A = "ACTV",
 F = "FRZN",

Chapter 2

22 Provisioning Interface User's and Technical Guide

 R = "RDMD"
}

stateConversions

The state conversions subsection supports the following parameter.
stateConversions = {

str = "ESCHER"[,

...]

}

The parameter is described in detail below.

stateConversions

Syntax: stateConversions = {
str = "ESCHER"[,

...]

}

Description: Converts from ESCHER encoding to a single character and back.
Type: Array
Optionality:
Allowed:
Default:
Notes:
Example: stateConversions = {

 A = "ACTV",
 P = "PREU",
 D = "DORM",
 F = "FROZ",
 S = "SUSP",
 T = "TERM"
}

billingEngines

The billingEngines subsection supports the following configuration.
billingEngines = [

{

id = int,

primary = { ip="ip", port=port },

secondary = {{ ip="ip", port=port }

}

]

This section overrides connection details that beLocationPlugin obtains from the database. It identifies
the Voucher and Wallet Servers and assigns their Internet connection details.

Note: This section is optional, and is often commented out.

The parameters are described in detail below.

id

Syntax: id = int
Description: This unique identifier for this Voucher and Wallet Server configuration.
Type: Integer
Optionality: Required, if this section is used

 Chapter 2

 Chapter 2, Configuration 23

Allowed:
Default:
Notes: This parameter is part of the billingEngines parameter array.
Example: id = 1

primary

Syntax: primary = { ip="ip", port=port }
Description: The primary parameter group defines the Internet Protocol (IP) address and

associated port number of the primary Voucher and Wallet Server.
Type: Parameter array
Optionality: Required if this section is used
Allowed:
Default:
Notes: This parameter is part of the billingEngines parameter array.
Examples: primary = { ip="192.0.2.0", port=1500 }

primary = { ip = "2001:db8:0000:1050:0005:0600:300c:326b",

port=1500 }
primary = {ip = "2001:db8:0:0:0:500:300a:326f", port=1500 }
primary = { ip = "2001:db8::c3", port=1500 }

secondary

Syntax: secondary = { ip="ip", port=port }
Description: The secondary parameter group defines the Internet Protocol (IP) address and

associated port number of the secondary Voucher and Wallet Server.
Type: Array
Optionality: Required, if this section is used
Allowed:
Default:
Notes: This parameter is part of the billingEngines parameter array.
Examples: secondary = { ip="192.0.2.1", port=1500 }

secondary = { ip = "2001:db8:0000:1050:0005:0600:300c:326b",

port=1500]
secondary = {ip = "2001:db8:0:0:0:500:300a:326f", port=1500

}
secondary = { ip = "2001:db8::c3", port=1500 }

ip

Syntax: ip = "ip"
Description: The Internet Protocol (IP) address of the Voucher and Wallet Server.
Type: String
Optionality: Required
Allowed: IP version 4 (IPv4) addresses, IP version 6 (IPv6) addresses
Default: None

Chapter 2

24 Provisioning Interface User's and Technical Guide

Notes: This parameter is part of either the primary, or the secondary parameter group of
the billingEngines parameter array.
You can use the industry standard for omitting zeros when specifying IPv6
addresses.

Examples: ip = "192.0.2.0"
ip = "2001:db8:0000:1050:0005:0600:300c:326b"
ip = "2001:db8:0:0:0:500:300a:326f"
ip = "2001:db8::c3"

port

Syntax: port = port
Description: The port number associated with the address of the Voucher and Wallet Server.

Type: Integer
Optionality: Required
Allowed:
Default: None
Notes: This parameter is part of either the primary or secondary parameter group of the

billingEngines parameter array.
Example: port = 1500

ssl

Here is an example of the ssl subsection of the PI eserv.config configuration.

ssl = {

allowINSECURESSLv3 = false

certificateFile = "/IN/service_packages/PI/my_sslCertificate.pem"

keyFile = "/IN/service_packages/PI/my_sslKey.pem"

}

The parameters in this subsection are described in detail below.

allowINSECURESSLv3

Syntax: allowINSECURESSLv3 = true|false
Description: Whether to allow use of SSLv3 in the SSL handshake for SSL enabled systems. For

example, set this parameter to true for customers with an ASP that must use the SSLv3
protocol version. Use of SSLv3 and SSLv2 is disabled by default.

Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true – Use of SSLv3 protocol version enabled.

 false – Use of SSLv3 protocol version disabled.
Default: false
Notes: The allowINSECURESSLv3 parameter can be set for the DAP, PI and OSD

components. You should set allowINSECURESSLv3 to true if the ASP is able to use
only SSLv3 protocol version. Otherwise set allowINSECURESSLv3 to false.

Example: allowINSECURESSLv3 = true

 Chapter 2

 Chapter 2, Configuration 25

certificateFile

Syntax: certificateFile = "filename"
Description: The file name of the PEM Base64 encoded DER certificate to be used when

accepting HTTPS connections.
Type: String
Optionality: Optional – only required if the interface used is SOAP/HTTPS.
Allowed:
Default: None
Notes:
Example: certificateFile =

"/IN/service_packages/PI/sslCertificate.pem"

keyFile

Syntax: keyFile = "filename"
Description: The file name of the private key used to create the certificate.
Type: String
Optionality: Optional – only required if the interface used is SOAP/HTTPS.
Allowed:
Default: None
Notes:
Example: keyFile = "/IN/service_packages/PI/privKey.pem"

soap

Note: The template WSDL files for the CCS, ACS, and NP PI commands are installed in the
/IN/service_packages/PI/etc directory on the SMS server. You use the WSDL files when developing or
configuring clients to allow them to generate the SOAP PI commands that are defined by the WSDL
files. Update the template WSDL files with the PI server information (IP address and ports) before you
distribute or publish them. After updating the template WSDL files, you may publish the WSDL files on
the SMS server using a HTTP Server in an accessible directory; for example, /IN/html.

Here is an example structure of the soap subsection of the PI eserv.config configuration.
soap = {

implicitLoginsSupported = false

validateAuthStrings = true

expansionRules = [

{

command = "CCSCD1"

action = "QRY"

parameter = "BALANCES"

itemName = "BALANCE_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = ["BALANCE_TYPE_NAME", "*BUCKETS"]

}

{

next_rule_parameters

}

Chapter 2

26 Provisioning Interface User's and Technical Guide

{

next_rule_parameters

}

{

next_rule_parameters

}

]

}

These parameters are described in detail below.

validateAuthStrings

Syntax: validateAuthStrings = true|false

Description: Turning this variable false will bypass checking of AUTH strings.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed:
Default: true
Notes: That is useful in situations where a pool of connections is used for access to PI

web services and the clients wish to be able to use any open connection for
whichever command they wish execute next, regardless of which one they used
for the preceding request.

Example: validateAuthStrings = true

implicitLoginsSupported

Syntax: implicitLoginsSupported = true|false
Description: Turning the following variable true will allow any incoming SOAP request to

contain username and password. If such a request is received on an
unauthenticated connection, the fields will be used to do an implicit Login (just like
a real Login only no LoginResponse is sent).
If the login fails a fault is returned; if it succeeds the command is executed.

Type: Boolean
Optionality: Optional (default used if not set).
Allowed:
Default: false
Notes: That is useful in situations where a pool of connections is used for access to PI

web services and the clients wish to be free from knowing whether or not a
particular connection requires authentication before use.

Example: implicitLoginsSupported = false

expansionRules

By default when returning PI responses in SOAP format, PI assembles them simplistically by using the
parameter name as the tag name, and the value as the tag value. For example the name/value pair
MSISDN="1234" is rendered

<pi:MSISDN>1234</pi:MSISDN>

However, some commands return complex, repeating, nested elements in a single response parameter,
and the customer may wish to configure so-called expansion rules that cause these to be exploded out
into a more XML-like and accessible style.

For any parameter of any command, an expansion rule can be configured, to explain how PI should
unpack its value (normally by tokenizing on some separator such as "|"). The expansion rule concept
allows for the situation where a list of struct-like items are assembled, with list items being separated by
one sort of delimiter (e.g. "|") and the fields within each list item being separated by another (e.g. ":").

 Chapter 2

 Chapter 2, Configuration 27

A rule is also allowed to treat an element as something which itself requires expansion, as shown in the
CCSCD1=QRY BALANCES rule below.

Note: All these examples are real world in the sense that they can help provide a more usable rendering
of the parameter values returned by PI in each case, but it is a matter of customer preference as to
whether or not they are activated at a site.

If you choose to use or update the expansionRules configuration and if you are using SOAP
integration, update your published or distributed WSDL files to match the modified output format of the
response. For more information see soap (on page 25).

PI command parameters, present or future, may require similar rules (or different ones).

Here is an example of the expansion rules sub-section.
expansionRules = [

{

command = "CCSCD1"

action = "QRY"

parameter = "BALANCES"

itemName = "BALANCE_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = ["BALANCE_TYPE_NAME", "*BUCKETS"]

}

{

command = "CCSCD1"

action = "QRY"

parameter = "*BUCKETS"

itemName = "BUCKET_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = [

"BUCKET_VALUE",

"BUCKET_EXPIRY"

]

}

{

command = "CCSCD7"

action = "QRY"

parameter = "EDRS"

itemName = "EDR_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = [

"RECORD_DATE",

"WALLET_TYPE",

"CHARGING_DOMAIN_ID",

"CALL_ID",

"SCP_ID",

"SEQUENCE_NUMBER",

"EXTRA_INFORMATION"

]

}

{

command = "CCSVR1"

action = "QRY"

parameter = "BALANCES"

itemName = "BALANCE_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = [

Chapter 2

28 Provisioning Interface User's and Technical Guide

"BALANCE_TYPE",

"AMOUNT",

"POST_USE_EXPIRY",

"START_DATE",

"END_DATE",

"NEW_BUCKET",

"POLICY",

"MISSING_BALANCE_POLICY",

"REPLACE_BALANCE"

]

}

]

eserv.config file example eserv.config.pi_example

PI comes with a file named eserv.config.pi_example. It is located in the root of the application directory.
This file contains a commented example of the pi section of an eserv.config configuration file. As a
starting point, when configuring features of the provisioning interface, copy eserv.config.pi_example into
the main eserv.config file.

The content of the eserv.config.pi_example file is copied below. Most of the comments have been
removed.
pi = {

localTZ = "TimeZone"

general = {

debug = 'N'

oraUser = "/"

synstamp = 'Y'

timeout = 30

logLevel = 0

securityPlugin = ""

correlationRequestTagName = "CORRELATE"

correlationResponseTagName = "CORRELATE"

}

throttling = {

sendRate = 0

}

PIbeClient = {

clientName = "PIbeClient"

oracleLogin = "/"

heartbeatPeriod = 10000000

maxOutstandingMessages = 100

connectionRetryTime = 2

plugins = [# plugable functionality for the billing engine interface.

{ # Voucher recharge (VRW) plugin (need the broadcast plugin)

config="voucherRechargeOptions",

library="libccsClientPlugins.sl",

function="makeVoucherRechargePlugin"

}

{ # Broadcast plugin needed by VRW

config="", # no config

library="libclientBcast.sl",

function="makeBroadcastPlugin"

} # Broadcast one message to one BE of each pair

 Chapter 2

 Chapter 2, Configuration 29

Activated by sending a message to BE ID 0.

]

Config for voucher recharge plugin

voucherRechargeOptions = {

Should Scratch Card Alternate Subscriber activate a preuse a/c?

Not used by the PIbeClient

srasActivatesPreuseAccount=false

voucherRechargeTriggers = [

"VRW " # this type of message triggers this plugin

]

}

notEndActions = [

{type="IR ", action="ACK "}

{type="SR ", action="ACK "}

{type="SR ", action="NACK"}

{type="INER", action="ACK "}

{type="SNER", action="ACK "}

{type="SNER", action="NACK"}

]

stateConversions = {

A = "ACTV",

P = "PREU",

D = "DORM",

F = "FROZ",

S = "SUSP",

T = "TERM"

}

voucherStateConversions = {

A = "ACTV",

F = "FRZN",

R = "RDMD"

}

billingEngines = [

{ id = 1, # pair ID

primary = { ip="PRIMARY_BE_IP", port=1500 },

secondary = { ip="SECONDARY_BE_IP", port=1500 }

}

#]

}

ssl = {

allowINSECURESSLv3 = false

certificateFile = "/IN/service_packages/PI/my_sslCertificate.pem"

keyFile = "/IN/service_packages/PI/my_sslKey.pem"

}

soap = {

implicitLoginsSupported = false

validateAuthStrings = true

expansionRules = [

{

command = "CCSCD1"

action = "QRY"

Chapter 2

30 Provisioning Interface User's and Technical Guide

parameter = "BALANCES"

itemName = "BALANCE_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = ["BALANCE_TYPE_NAME", "*BUCKETS"]

}

{

command = "CCSCD1"

action = "QRY"

parameter = "*BUCKETS"

itemName = "BUCKET_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = [

"BUCKET_VALUE",

"BUCKET_EXPIRY"

]

}

{

command = "CCSCD7"

action = "QRY"

parameter = "EDRS"

itemName = "EDR_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = [

"RECORD_DATE",

"WALLET_TYPE",

"CHARGING_DOMAIN_ID",

"CALL_ID",

"SCP_ID",

"SEQUENCE_NUMBER",

"EXTRA_INFORMATION"

]

}

{

command = "CCSVR1"

action = "QRY"

parameter = "BALANCES"

itemName = "BALANCE_ITEM"

itemSeparator = "|"

elementSeparator = ":"

elementNames = [

"BALANCE_TYPE",

"AMOUNT",

"POST_USE_EXPIRY",

"START_DATE",

"END_DATE",

"NEW_BUCKET",

"POLICY",

"MISSING_BALANCE_POLICY",

"REPLACE_BALANCE"

]

}

]

}

}

 Chapter 2

 Chapter 2, Configuration 31

About Configuring PI Commands in eserv.config

Introduction

Some of the application commands support configuration in the eserv.config file.

Note: If the commands package which includes the related command have not be installed, these
parameters are not supported.

Local time zone

The Local time zone subsection supports the following parameter.
localTZ = "TimeZone"

The parameter is described in detail below.

localTZ

Syntax: localTZ = "TimeZone"
Description: Sets the time zone the PI uses for sending and receiving dates.
Type: String
Optionality: Optional (default used if not set).
Allowed: The time zone name must be a valid UNIX time zone name such as CET or GMT.
Default: The time zone of the SMS machine (typically GMT).
Notes: PI automatically accounts for summer time alterations within this time zone.
Example:

Setting the Control Plan Export File Directory for ACSCPL PI Commands

You use the ACSCPL=EXP PI command to export control plans to .cpl files. The PI exports control plans
to the following directory by default:

/IN/service_packages/PI/callplans

You can set a different control plan export directory by configuring the exportCallPlanDirectory
parameter in the pi, ACSCPL section of the eserv.config configuration file:
pi = {

ACSCPL = {

exportCallPlanDirectory = "str"

}

}

The exportCallPlanDirectory parameter has the following characteristics:

exportCallPlanDirectory

Syntax: exportCallPlanDirectory = "str"
Description: The directory to which the PI exports control plan files.
Type: String
Optionality: Optional (default used if not set)
Default: /IN/service_packages/PI/callplans
Example: exportCallPlanDirectory =

"/IN/service_packages/PI/myControlPlans"

Chapter 2

32 Provisioning Interface User's and Technical Guide

Getting Information About Voucher Changes by Using PI Commands

When changing a voucher state or marking a voucher as frozen, you can use PI commands to record
and return the reason for the change, and the user to whom it applied.

To record the data, the CSVR1=CHG command (change voucher status) and CCSVR1=FRZ command
(mark voucher frozen) have an optional DESCRIPTION parameter that you can use to record the
reason for the action.

To retrieve the data, the CCSVR1=QRY command (query a recharge voucher) can return the following
information:

 The reason for a voucher state change. This information is in the DESCRIPTION field. This field is
limited to 50 characters and is truncated if the input is too long.

 The user for the voucher state change. This information is in the STATE_CHANGE_USER field.
You can disable having the CCSVR1=QRY command return the DESCRIPTION and
STATE_CHANGE_USER fields by editing the pi.CCSVR1.QRY.suppressField in the eserv.config
file. To configure this entry, enter the fields you want to suppress, separated by the pipe (|) character.
The default is to display all fields. This entry is read only on the first call to CCSVR1=QRY.

The following example suppresses both fields; DESCRIPTION and STATE_CHANGE_USER:
pi = {

CCSVR1 = {

QRY = {

suppressFields = "DESCRIPTION|STATE_CHANGE_USER"

}

}

}

CCSCD1

The CCSCD1 subsection of the PI eserv.config configuration supports these parameters.
CCSCD1 = {

ADD = {

initialState = "state"

noWalletCreateBeIds = [BE1, BE2]

useSystemLanguage = 'Y|N'

}

CHG = {

createEmptyBalance = true|false

}

QRY = {

currencyType = "str"

}

}

The parameters in the ADD, CHG, and QRY subsections are described in detail below.

initialState

Syntax: initialState = "state"
Description: The initial wallet state for wallets created using the

CCSCD1=ADD_INITIAL_STATE command.
Type: String
Optionality: Optional

 Chapter 2

 Chapter 2, Configuration 33

Allowed: P Pre-use
A Active
D Dormant
S Suspended
F Frozen
T Terminated

Default: P
Notes: For more information about the CCSCD1 command, see CCS PI Commands

Operations Guide.
Example: initialState = "P"

noWalletCreateBeIds

Syntax: noWalletCreateBeIds = [be_ids]
Description: Comma separated list of billing engine IDs that may not be used for wallet

creation.
Type: Array
Optionality: Optional (default used if missing).
Allowed: List of valid billing engine IDs.
Default: Not set
Notes:
Example: noWalletCreateBeIds = [1, 2]

createEmptyBalance

Syntax: createEmptyBalance = true|false
Description: When createEmptyBalance is set to true, allows a balance with no existing buckets

to be created with a zero (0.0) value.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true – Allow balances to be created with a zero value.

 false – Do not allow balances to be created with a zero value.
Default: false
Notes: Setting createEmptyBalance to true enables you to use the CCSCD1=CHG PI

command to provision the expiry date for the balance so that any subsequent recharges
into the balance have the correct expiry date extension (based on the "Best" balance
expiry policy).

Example: createEmptyBalance = true

currencyType

Syntax: currencyType = "str"
Description: Sets the type of currency.
Type: String
Optionality: Optional
Allowed: user Use the user's wallet currency type.

system Use the system currency type.

Default: user

Chapter 2

34 Provisioning Interface User's and Technical Guide

Notes: For more information about the CCSCD1 command, see CCS PI Commands
Operations Guide.

Example: currencyType = "user"

useSystemLanguage

Syntax: useSystemLanguage = 'Y|N'
Description: Sets whether to use the system language for new subscribers, or the subscriber's

language.
Type: Boolean
Optionality: Optional (default used if not set)

Allowed: Y – Use the system language
N – Use the subscriber's language

Default: Y
Notes:
Example: useSystemLanguage = 'N'

CCSCD3

The CCSCD3 subsection of the PI eserv.config configuration supports these parameters.
CCSCD3 = {

CTR = {

creditTransferCP = "creditTransferControlPlan"

}

RCH = {

fixedVoucherNumberLength = 10

defaultScenarioName = "str"

activatePreuseAccount = "true"

}

}

The parameters in this subsection are described in detail below.

creditTransferCP

The name of the credit transfer control plan.
Default: "CREDIT_TRANSFER"
Type: String

fixedVoucherNumberLength

Syntax: fixedVoucherNumberLength = num
Description: The voucher number length. Must be set correctly when performing scenario

recharges and the scenario name is specified.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Valid voucher number length
Default: 10
Notes:
Example: fixedVoucherNumberLength = 10

 Chapter 2

 Chapter 2, Configuration 35

defaultScenarioName

Syntax: defaultScenarioName = "scenario"

Description: Specifies the default scenario to use.

Type: String
Optionality: Optional (default used if not set).
Allowed: A valid scenario name.
Default: Default
Notes:
Example: defaultScenarioName = "Default"

activatePreuseAccount

Syntax: activatePreuseAccount = "true|false"
Description: Sets whether or not to activate pre-use wallets for recharge attempts.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true – Activate pre-use wallets for recharge attempts.

 false – Do not activate pre-use wallets.
Default: true
Notes: Quoted value is required.
Example: activatePreuseAccount = "false"

CCSBPL

The CCSBPL subsection of the PI eserv.config configuration supports these parameters.
CCSBPL = {

notifyEagain = true

maxFifoReadRetry = 10

triggerTimeoutSeconds = 10

}

The parameters in this subsection are described in detail below.

notifyEagain

Syntax: notifyEagain = true|false
Description: Whether or not to display notice alarms for missed reads from the Fifo queue.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true – Display notice alarms for missed reads.

 false – Do not display notice alarms for missed reads.
Default: false
Notes:
Example: notifyEagain = true

maxFifoReadRetry

Syntax: maxFifoReadRetry = maximum
Description: Sets the maximum number of times to retry reading from the Fifo queue.
Type: Integer

Chapter 2

36 Provisioning Interface User's and Technical Guide

Optionality: Optional (default used if not set).
Allowed:
Default: 10
Notes:
Example: maxFifoReadRetry = 20

triggerTimeoutSeconds

Syntax: triggerTimeoutSeconds = seconds

Description: Sets the timeout, in seconds, for waiting for a response from smsTrigDaemon.
Type: Integer
Optionality: Optional (default used if not set)
Allowed:
Default: 10
Notes:
Example: triggerTimeoutSeconds = 5

CCSVR1

The CCSVR1 subsection of the PI eserv.config configuration supports these parameters.
CCSVR1 = {

acsCustomerId = 0|1

QRY= {

suppressScenario = 'Y|N'

suppressFields = "str1|str2"

DECRYPT_PRIVATE_SECRET = 'Y|N'

}

}

acsCustomerId

Syntax: acsCustomerId = 0|1
Description: Allows the system to authenticate and query vouchers by the HRN.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: 0 – Does not allow the system to authenticate and query vouchers by the HRN.

1 – Allows the system to authenticate and query vouchers by the HRN.
Default: 1
Notes: Sending PROVIDER in the PI command line overrides this value.
Example: acsCustomerId = 1

suppressScenario

Syntax: suppressScenario = 'Y|N'

Description: Determines whether or not to suppress the SCENARIO return parameter if the
voucher has an associated scenario.

Type: Boolean
Optionality: Optional (default used if not set).

 Chapter 2

 Chapter 2, Configuration 37

Allowed: Y Do not return the SCENARIO return parameter
even if the voucher has an associated scenario.

N Return the SCENARIO return parameter if the
voucher has an associated scenario.

Default: N

Notes: If an invalid parameter value is specified, then 'N' is assumed and an error alarm
is output to the PImanager log file.

Example: suppressScenario = 'N'

suppressFields

Syntax: suppressFields = "str1|str2.."
Description: Lists the fields to suppress from the results displayed for the CCSVR1=QRY PI

command, where str1 and str2 are fields output by the CCSVR1 query command.
Type: Parameter list
Optionality: Optional (default used if not set)
Allowed:
Default: Display all fields
Notes:
Example: suppressFields = "DESCRIPTION|STATE_CHANGE_USER"

decrypt_private_secret

Syntax: DECRYPT_PRIVATE_SECRET = value
Description: The voucher private secret will be decrypted to obtain the original HRN.
Type: Integer, Decimal, Array, Parameter list, String, Boolean
Optionality: Optional (default used if not set)
Allowed: Y or N
Default: N
Notes:
Example: DECRYPT_PRIVATE_SECRET = Y

CCSCD9

The CCSCD9 subsection of the PI eserv.config configuration supports these parameters.
CCSCD9 = {

QRY= {

suppressEmptyField = true|false

}

}

The parameter in the QRY subsection is described in detail below.

suppressEmptyFields

Syntax: suppressEmptyFields = true|false
Description: Specifies how to handle empty profile tag name fields.
Type: Boolean
Optionality: Optional (default used if not set)

Chapter 2

38 Provisioning Interface User's and Technical Guide

Allowed: true – If the tag name field is not in the profile, no tag name is printed.
 false – It prints empty profile tag name fields with a null value.

Default: false
Notes:
Example: suppressEmptyFields = true

CCSSC1

defaultBEDomainID

Syntax: defaultBEDomainID = id
Description: BE pair ID to query when no SUBSCRIBER supplied to query for their BE pair

supplied for CCSSC1=QRY command.

Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: -1
Notes: Must match a value in the CCS_DOMAIN.DOMAIN_ID database table.

-1 = find the first domain that supports charging.
Example: defaultBEDomainID = 2

Specifying the Maximum PQYZ Records to Query in the NP Database

You use the NPYZ1=QRY PI command to query the NP database for PQYZ entries. By default, the
maximum number of records returned is 1500. You can specify a different maximum by configuring the
pqyzMaxRecords parameter in the pi, NP section of the eserv.config configuration file:
pi = {

NP = {

pqyzMaxRecords = int

}

}

The pqyzMaxRecords parameter has the following characteristics:

pqyzMaxRecords

Syntax: pqyzMaxRecords = int
Description: The maximum number of records returned when you query the NP database for

multiple PQYZ entries that match one or more destination addresses.
Type: Integer
Optionality: Optional (default used if not set)
Default: 1500
Notes: The PI outputs an error if the query finds more records than the configured

maximum.
Example: pqyzMaxRecords = 500

 Chapter 2

 Chapter 2, Configuration 39

Defining the Screen Language

Introduction

The default language file sets the language that the Java administration screens start in. The user can
change to another language after logging in.

The default language can be changed by the system administrator.

By default, the language is set to English. If English is your preferred language, you can skip this step
and proceed to the next configuration task, Defining the Help Screen Language (on page 40).

Default.lang

When PI is installed, a file called Default.lang is created in the application's language directory in the
screens module. This contains a soft-link to the language file which defines the language which will be
used by the screens.

If a Default.lang file is not present, the English.lang file will be used.

The PI Default.lang file is /IN/html/PI/language/Default.lang.

Example Screen Language

If Dutch is the language you want to set as the default, create a soft-link from the Default.lang file to the
Dutch.lang file.

Procedure

Follow these steps to set the default language for your PI Java administration screens.

Step Action

1 Change to the following directory:
/IN/html/PI/language

Example command: cd /IN/html/PI/language
2 Check that the Default.lang file exists in this directory.
3 If the required file does not exist, create an empty file called Default.lang.
4 Ensure that the language file for your language exists in this directory. The file should be

in the format:
language.lang

Where:
language = your language.
Example:
Spanish.lang

5 If the required language file does not exist, perform one of the following actions:
 Create a new one with your language preferences
 Contact Oracle support

To create a language file, you will need a list of the phrases and words used in the
screens. These should appear in a list with the translated phrase in the following format:
original phrase=translated phrase

Any existing language file should have the full set of phrases. If you do not have an
existing file to work from, contact Oracle support with details.

6 Create a soft link between the Default.lang file, and the language file you want to use as
the default language for the PI Java administration screens.

Chapter 2

40 Provisioning Interface User's and Technical Guide

Step Action

Example command: ln -s Dutch.lang Default.lang

Defining the Help Screen Language

Introduction

The default Helpset file sets the language that the help system for the Java Administration screens start
in. The user can change to another language after logging in.

The default language can be changed by the system administrator. By default, the language is set to
English.

Default_PI.hs

When PI is installed, a file called Default_PI.hs is created in the application's language directory in the
screens module. This contains a soft-link to the language file which defines the language which will be
used by the screens.

If a Default_PI.hs file is not present, the English_PI.hs file will be used.

If a Default_PI.hs file is present, the default language will be used.

The default file is /IN/html/PI/helptext/Default_PI.hs.

Example helpset language

If Dutch is the language you want to set as the default, create a soft-link from the Default_PI.hs file to the
Dutch_PI.hs file.

Procedure

Follow these steps to set the default language for your PI Java Administration screens.

Step Action

1 Change to the following directory:
/IN/html/PI/helptext

Example command: cd /IN/html/PI/helptext
2 check that the Default_PI.hs file exists in this directory.
3 If the required file does not exist, create an empty file called Default_PI.hs.
4 Ensure that the language file for your language exists in this directory. The file should be

in the format:
language_PI.hs

Where:
language = your language.
Example:
Dutch_PI.hs

5 If the required language file does not exist, perform one of the following:
 Create a new one with your language preferences
 Contact Oracle support

To create a language file, you will need a list of the phrases and words used in the
screens. These should appear in a list with the translated phrase in the following format:
original phrase=translated phrase

 Chapter 2

 Chapter 2, Configuration 41

Any existing language file should have the full set of phrases. If you do not have an
existing file to work from, contact Oracle support with details.

6 Create a soft link between the Default_PI.hs file, and the language file you want to use as
the default language for the SMS Java administration screens.
Example command: ln -s Dutch_PI.hs Default_PI.hs

 Chapter 3, PI Administration Screen 43

Chapter 3

PI Administration Screen

Overview

Introduction

This chapter explains how to use the PI Administration screen.

In this chapter

This chapter contains the following topics.

PI Administration Screen ... 43
PI Commands .. 44
PI Hosts ... 46
PI MAC Pairs ... 49
PI Users ... 51
PI Ports .. 55

PI Administration Screen

Introduction

The Administration screen manages users and templates in the Provisioning Interface. It contains these
tabs:

 Users
 Hosts
 Ports
 Commands
 MAC Pairs

Accessing the PI Administration screen

Follow the steps below to access the Administration screen.

Step Action

1 Select the Services menu from the Service Management System main menu.

Chapter 3

44 Provisioning Interface User's and Technical Guide

Step Action

2 Select Provisioning.
3 Select Administration.

Result: You see the PI Administration screen, showing the Commands tab.

PI Commands

Introduction

The Commands tab of the PI Administration screen enables you to set the security level for PI
commands.

Note: Commands cannot be added to or removed from the list of available commands.

 Chapter 3

 Chapter 3, PI Administration Screen 45

Commands tab

Here is an example Commands tab.

Commands fields

This table describes the function of each field.

Field Description

Name The PI command name.
Security Level The security level required to execute the command.
Subscriber Domain Indicates the command applies to an account that belongs to the

subscriber domain, that is, the account exists on the SMS, the account
wallet may be on a VWS or on a third party billing engine.

Wallet Domain Indicates the command applies to an account that belongs to the wallet
domain, that is, both the account and wallet exists on the SMS and VWS.

Voucher Domain Indicates the command applies to a voucher that belongs to the voucher
domain, that is, a voucher that exists on the VWS.

Chapter 3

46 Provisioning Interface User's and Technical Guide

Example screen

The following example shows the edit dialog box for the CCSCD1=ADD PI command.

Editing PI commands

Follow these steps to edit a PI command.

Step Action

1 From the list of PI commands on the Commands tab, select the command you want to edit.
2 Click Edit.

Result: The edit dialog box for the selected command appears. See Commands fields (on
page 45) for a description of each field.

3 Change the Security Level as required.

Note: Range is 1 to 99 (highest) inclusive.

4 Click Save.
Result: The details are saved to the database.

5 Soft restart the PI. For details, see Soft PI Restart (on page 66).
Result: The updated configuration details will be loaded by the
PImanager.

PI Hosts

Introduction

The Hosts tab of the PI Administration screen enables you to configure the hosts from which PI
commands can be run. Before a new client can connect, it must be added to the database.

 Chapter 3

 Chapter 3, PI Administration Screen 47

Hosts tab

Here is an example Hosts tab.

Hosts fields

This table describes the function of each field.

Field Description

IP Address The unique IP address of the host which will be allowed to run commands in the
PI.

Note: You cannot modify the IP address after it is first saved.

Description A description of the host defined in the IP Address field, such as the hostname.
The PI does not use the description value when connecting to the host.

Chapter 3

48 Provisioning Interface User's and Technical Guide

PI Hosts screen

Here is an example PI Hosts screen.

Adding hosts

Follow these steps to add new hosts to the PI.

Step Action

1 On the Hosts tab, click New.
Result: The PI Hosts screen (on page 48) displays. See Hosts fields (on page 47) for a
description of each field.

2 In the IP Address field, type the IP address of the host.
3 In the Description field, type a description for the host, such as the hostname.
4 Click Save.

Result: The new host details are saved in the database.
5 Soft restart the PI. For details, see Soft PI Restart (on page 66).

Result: The updated configuration details will be loaded by the PImanager.

Editing hosts

Follow these steps to edit host information in the PI.

Step Action

1 On the Hosts tab, select from the list the host to edit.
2 Click Edit.

Result: The PI Hosts screen appears showing the data for the selected host record. See
Hosts fields (on page 47) for a description of each field.

3 Change the host Description as required.
4 Click Save.

Result: The details are saved to the database.
5 Soft restart the PI. For details, see Soft PI Restart (on page 66).

Result: The updated configuration details will be loaded by the PImanager.

Deleting hosts

Follow these steps to delete a host from the PI.

Step Action

1 In the Hosts tab, select from the list the host to delete.

 Chapter 3

 Chapter 3, PI Administration Screen 49

Step Action

2 Click Delete.
Result: The Delete Confirmation screen displays.

3 Click OK.
Result: The host is removed from the database.

4 Soft restart the PI. For details, see Soft PI Restart (on page 66).
Result: The updated configuration details will be loaded by the PImanager.

PI MAC Pairs

Introduction

The MAC Pairs tab of the Administration screen enables you to configure the MAC pairs from which
commands can be run in PI. MAC pairs are the security keys to encode and decode encrypted data.

MAC Pairs tab

Here is an example MAC Pairs tab.

Chapter 3

50 Provisioning Interface User's and Technical Guide

MAC Pairs fields

This table describes the function of each field.

Field Description

MAC Pair The unique MAC pair number for this MAC pair.

Note: This field cannot be changed after it is first saved.

MAC #1 The MAC address of the first MAC address in this MAC pair. This must be an 8
digit number.

MAC #2 The MAC address of the second MAC address in this MAC pair. This must be an
8 digit number.

PI MACS screen

Here is an example PI MACS edit screen.

Adding MAC Pairs

Follow these steps to add new MAC pairs to the PI.

Step Action

1 On the MAC Pairs tab, click New.
Result: The PI MACS screen (on page 50) displays. See MAC Pairs fields (on page 50)
for a description of each field.

2 Enter in the MAC Pair field the unique MAC pair number.
3 Enter in the MAC #1 field the MAC address of the first entry for the MAC pair.
4 Enter in the MAC #2 field the MAC address of the second entry for the MAC pair.
5 Click Save.

Result: The new MAC pair details are saved in the database.
6 Soft restart the PI. For details, see Soft PI Restart (on page 66).

Result: The updated configuration details will be loaded by the PImanager.

Editing MAC Pairs

Follow these steps to edit MAC pair information in the PI.

Step Action

1 On the MAC Pairs tab, select from the list the MAC pair to edit.

 Chapter 3

 Chapter 3, PI Administration Screen 51

Step Action

2 Click Edit.
Result: The PI MACS screen (on page 50) fields will be populated with the data for the
selected MAC pair record. See MAC Pairs fields (on page 50) for a description of each
field.

3 Change the MAC pair details as required.
4 Click Save.

Result: The details are saved to the database.
5 Soft restart the PI. For details, see Soft PI Restart (on page 66).

Result: The updated configuration details will be loaded by the PImanager.

Deleting MAC Pairs

Follow these steps to delete a MAC pair from the PI.

Step Action

1 On the MAC Pairs tab, select from the list the MAC pair to delete.
2 Click Delete.

Result: The Delete Confirmation screen displays.
3 Click OK.

Result: The MAC pairs are removed from the database.
4 Soft restart the PI. For details, see Soft PI Restart (on page 66).

Result: The updated configuration details will be loaded by the PImanager.

PI Users

Introduction

The Users tab of the PI Administration screen enables you to add new PI users and to edit and delete
existing PI users.

When you add a new PI user you select the service providers to associate with the user. The PI user
can run PI commands only for those service providers. This allows you to restrict the data that the PI
user can query or modify through the PI. The PI returns a NACK if a PI user attempts to run a PI
command for a service provider that they are not associated with.

In addition, you specify the connection details and security level of the PI user. The first command sent
to the PI by the PI user will be a connect command, specifying the username and password. PI users
can access only those commands that have a security level less than or equal to their security level.
Users can use only the MAC pair specified in their profile and are restricted to using the port specified
on the screen.

Chapter 3

52 Provisioning Interface User's and Technical Guide

Users tab

The following example screen shows the Users tab in the PI Administration screen.

 Chapter 3

 Chapter 3, PI Administration Screen 53

PI Users screen

The following example screen shows the PI Users screen.

Users fields

The following table describes the function of each field in the PI Users screen.

Field Description

User The unique username for this user.

Note: This field cannot be changed after it is first saved.

Enter Password Sets the password for this PI user.
Confirm
Password

Confirms the user's password.

Security Level The security level for this user. Specify a value between 1 and 99 (inclusive) The
user will be able to run PI commands with security levels equal to or lower than
this number.

Chapter 3

54 Provisioning Interface User's and Technical Guide

Field Description

Allow CCSVR1
Private Secret
Decryption

Permission for the user to decrypt voucher private secret to obtain HRN.

Port Number The port number this user can connect from.
MAC Pair The MAC pair this user can connect from. MAC pairs are the security keys to

encode and decode encrypted data.
Currency The reporting currency for this user.
Available Service
Providers

The list of service providers that you can associate with this user.

Associated
Service Providers

The list of service providers associated with this user. For PI commands that
allow a service provider to be specified, the data that this user can update or
query through the PI is restricted to data that is managed by a service provider in
this list.

Adding PI users

Follow these steps to add a new PI user.

Step Action

1 On the Users tab, click New.
Result: The PI Users screen appears. See Users fields (on page 53) for a description of
each field.

2 In the User field, type a unique username for the PI user you want to add.

3 In the Enter Password field, type the user's password.
4 In the Confirm Password field, retype the user's password to confirm.
5 In the Security Level field, type the command security level for this user. Specify a value

between 1 and 99 (inclusive). The user will be able to run PI commands with security
levels equal to or lower than this number.

6 From the Port Number list, select the port the user can connect from. To allow the user to
connect from any port, select Any.

7 From the MAC Pair list, select the MAC pair the user will connect from.
8 From the Currency list, select the reporting currency for the user.
9 Add the service providers the PI user will be able to run PI commands for to the list of

associated service providers:
 To add a service provider to the list, select the service provider in the Available

Service Providers box and click Add.
 To remove a service provider from the list, select the service provider in the

Associated Service Providers box and click Remove.
10 Click Save.

Result: The new user details are saved in the database.

Editing PI users

Follow these steps to edit the details of a PI user.

Step Action

1 From the list of PI users on the Users tab, select the user whose details you want to edit.

2 Click Edit.

 Chapter 3

 Chapter 3, PI Administration Screen 55

Step Action

Result: The PI Users screen is populated with the data from the selected user record. See
Users fields (on page 53) for a description of each field.

3 Change the user details as required.
4 Click Save.

Result: The details are saved to the database.

Deleting PI users

Follow these steps to delete a PI user.

Step Action

1 From the list of PI users on the Users tab, select the user you want to delete.
2 Click Delete.

Result: The Delete Confirmation dialog box appears.

3 Click OK.
Result: The PI user is removed from the database.

4 Soft restart the PI. For details, see Soft PI Restart (on page 66).
Result: The updated configuration details will be loaded by the PImanager.

PI Ports

Introduction

The Ports tab of the PI Administration screen enables the configuration of the ports the PIprocesses
listens on.

Chapter 3

56 Provisioning Interface User's and Technical Guide

Ports tab

Here is an example Ports tab.

Ports fields

This table describes the function of each field.

Field Description

Port The unique port number which will have a PIprocess listening on it.

Note: This field cannot be changed after it is first saved.

Secure If Y, the port will be secure.
If N, the port will be insecure.

Max.
Connections

The maximum number of concurrent connections to the port.

Type The type of PI commands which can be run on this port.

 Chapter 3

 Chapter 3, PI Administration Screen 57

PI Ports screen

Here is an example PI Ports screen.

Adding ports

Follow these steps to add new ports to the PI.

Step Action

1 On the Ports tab, click New.
Result: The PI Ports screen appears. See Ports fields (on page 56) for a description of
each field.

2 Enter in the Port field the port number.
3 Select the Secure check box if this port should be secure.

Deselect the Secure check box if this port is not required to be secure.
4 In the Max. Connections field, type the maximum number of concurrent connections this

port will support.
5 From the Type list, select the type of commands that can be run on this port.
6 Click Save.

Result: The new port details are saved in the database.
7 Hard restart the PI. See Hard PI Restart (on page 66).

Result: The new configuration details are loaded by the PImanager.

Editing ports

Follow these steps to edit port information in the PI.

Step Action

1 On the Ports tab, select the port you want to edit.
2 Click Edit.

Result: The PI Ports screen is populated with the data from the selected port record. See
Ports fields (on page 56) for a description of each field.

3 Change the port details as required.
4 Click Save.

Result: The details are saved to the database.
5 Hard restart the PI. See Hard PI Restart (on page 66).

Chapter 3

58 Provisioning Interface User's and Technical Guide

Step Action

Result: The new configuration details are loaded by the PImanager.

Deleting ports

Follow these steps to delete a port from the PI.

Step Action

1 On the Ports tab, select the port to delete.
2 Click Delete.

Result: The Delete Confirmation dialog box appears.
3 Click OK.

Result: The port is removed from the database.
4 Hard restart the PI. See Hard PI Restart (on page 66).

Result: The new configuration details are loaded by the PImanager.

 Chapter 4, PI Tester Screen 59

Chapter 4

PI Tester Screen

Overview

Introduction

This chapter explains how to use the PI Tester for standard ports screen.

In this chapter

This chapter contains the following topics.

PI Tester Screen .. 59
General .. 60
Management Tests .. 62
Connection tests .. 63

PI Tester Screen

Introduction

Use the PI Tester for standard ports screen to check that the PI commands are returning the correct
results. It contains the following tabs:

 General
 Management
 Connection

Accessing the PI Tester screen

Follow these steps to access the PI Tester for standard ports screen.

Step Action

1 Select the Services menu from the Service Management System main menu.

Chapter 4

60 Provisioning Interface User's and Technical Guide

Step Action

2 Select Provisioning.
3 Select Tester.

Result: You see the PI Tester for standard ports screen.

General

Introduction

Use the General tab of the PI Tester for standard ports screen to modify general test attributes such as
the test user and MAC address, and to view the results of management commands.

Note: The fields on the General tab are populated automatically. You only need to change them if you do
not want to use the default value for a field.

 Chapter 4

 Chapter 4, PI Tester Screen 61

General tab

Here is an example General tab.

General fields

This table describes the function of each field.

Note: These fields are automatically populated with the default values.

Field Description

Username The user carrying out the tests. The user, defined in the Users tab of the
Administration screen, must have the appropriate permissions. Typically, the
admin user is used.

Password The password for the user.
MAC key The MAC key to use. This ensures the connection is secure.
PI Server The PI server to connect to.
Port The port to connect to. The list of available ports only includes port numbers

defined for the PI server the screens came from.
Management
responses

Displays the results of management commands entered on the Management tab of
the PI Tester screen.

Editing the General tab

Follow these steps to change the general test attributes.

Step Action

1 Select the General tab on the PI Tester for standard ports screen.
2 Change the values for the general attributes as required.

Chapter 4

62 Provisioning Interface User's and Technical Guide

Management Tests

Introduction

Use the Management tab in the PI Tester for standard ports screen to send management commands to
the PI server, using the values from the General tab. The following commands are available:

 Kill – To kill the PI connection for a selected user
 State – To see the current state of the PI commands, hosts and users
 Trace – To set up a trace on the port specified in the General tab

Note: The test responses are reported on the General tab.

Management tab

Here is an example Management tab.

Management fields

This table describes the function of each field.

Field Description

User selection box Lets you select a user from the drop down list. You can then kill the user's
connection by clicking Kill.

Trace Lets you switch tracing on, for the port specified on the General tab. The trace
log, PI<port>.log is saved to the following directory:

 if the PImanager was started with the inittab or the startup script, it is
saved in /IN/service_packages/SMS.

 if the PImanager was started manually, it is saved in
/IN/service_packages/MOB_PP/bin.

 Chapter 4

 Chapter 4, PI Tester Screen 63

Using management tests

The following steps explain how to use the management tests.

Step Action

1 To kill a user's connection, select the user from the list, and click Kill.
2 To find out the state of commands, hosts and users, click State.
3 To put a trace on the port currently selected in the General tab, select the Trace box.

Connection tests

Introduction

Use the Connection tab on the PI Tester for standard ports screen to enter commands directly, and check
the results. The results appear in the results window on the Connection tab.

For PL/SQL commands, the parameters must be entered in the correct order. For C commands, the
required parameters must be entered before the optional parameters. See your specific commands
specification for details on the syntax to use for commands and the expected results.

Note: The commands you specify may alter the database, so you should use this facility with caution,
especially when testing on a live database.

Connection tab

Here is an example Connection tab.

Chapter 4

64 Provisioning Interface User's and Technical Guide

Using connection tests

Follow these steps to run tests from the Connection tab on the PI Tester for standard ports screen.

Step Action

1 Click Connect to set up a connection to the PI server specified on the General tab in the
PI Tester for standard ports screen.
Result: The results of the connection attempt, including the systamp that will be used
later, appear in the lower window.

2 In the upper text box, type in the commands you want to test, and click Send. You must
use the following format:
COMMAND=ACTION:REQUIRED_PARAMETER=VALUE,REQUIRED_PARAMETER=VALUE,OPTIONAL

_PARAMETER=VALUE,OPTIONAL_PARAMETER=VALUE,SYNSTAMP=NUMBER

Result: The commands are sent to the PI process and the results appear in the lower
window.

3 Click Disconnect to disconnect from the PI server.

 Chapter 5, Background Processes 65

Chapter 5

Background Processes

Overview

Introduction

This chapter explains the PI processes which are used. The PImanager is started using the inittab, and
the PIbatch process is started manually.

In this chapter

This chapter contains the following topics.

PImanager ... 65
PIprocess ... 67
PIbeClient .. 68
PIbatch... 68
PIbatch XML .. 70
PIuser .. 72

PImanager

Purpose

PImanager starts and stops PI processes as required.

Startup

PImanager can be started by either of two methods:

inittab script

The PImanager should normally be started from the inittab script.

/IN/service_packages/PI/bin/PImanagerStartup.sh

If PImanager is started this way, the output will be shown on the screen, rather than put in the log file.

Started directly

The process can be started directly, using the following code:
$ su - smf_oper

$ cd /IN/service_packages/PI/bin

$./PImanager [-u <user/password>] [-S <Y|N>] [-t <n>] [-M <m>] [-h] &

If PImanager is started this way, the output will be shown on the screen, rather than put in the log file.

Chapter 5

66 Provisioning Interface User's and Technical Guide

Optional parameters

This table describes the optional parameters.

Parameter Default Description

-u
username/pass

word

/ The Oracle username and password.

-S Y|N Y Turn on synstamp processing.

-t n no timeout Set the timeout to n seconds.
-M m use

database
setting

Override database settings for the PIprocess (on page 67) mode of
operation

 0=Standard
 1=XML with command mode
 2=XML session mode
 3=SOAP

-h Display usage and exit.

Shutdown

To stop the PImanager when it is running from the inittab file, use the utility script (as root user):
/IN/service_packages/PI/bin/PIstop.sh.

This will also stop all PIprocesses.

To restart after stopping with PIstop.sh, use the utility script (as root user):
/IN/service_packages/PI/bin/PIstart.sh.

To stop the PImanager when not running from the inittab file, send the PImanager a kill -TERM signal.
This will stop the PImanager and any associated PIprocesses.

Reinitializing the PImanager

The PI can be re-initialized using either a “hard” or “soft” reset. The preferred way should be to use the
soft reset.

Soft PI Restart

A soft reset is performed by using the utility script:
/IN/service_packages/PI/bin/PIreread.sh

This causes the PImanager to instruct the PIprocesses to re-read the database. However, the
PIprocesses will not re-read the database until all connections have been dropped.

Note: This will not cause the PImanager to start any new PIprocesses added using the PI Ports (on page
55) screen. A hard reset must be done in this case.

Hard PI Restart

To do a hard reset, for example, if new PIprocesses have been added using the PI Ports screen, use
the script:
/IN/service_packages/PI/bin/PIrestart.sh

This terminates the PImanager and all PIprocesses, and the inittab will then restart them.

Note: All connections to the PIprocesses will be lost.

 Chapter 5

 Chapter 5, Background Processes 67

Failure

If the PImanager fails, no commands will be processed. All PIprocesses will also fail.

Output

The PImanager writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/PI/tmp/PImanager.log.

PIprocess

Purpose

The PIprocess waits for TCP/IP connections, and processes commands sent to it. These commands
can be management commands, such as "Connect", "Status" and "Disconnect", or PIcommands, such
as "Query Subscriber".

The PIprocess checks that the user and remote host are valid, and then processes the command, either
loading the command from a shared library, or executing a PL/SQL function in the database.

Startup

PIprocesses are started by the PImanager process.

If PIprocesses are added using the PI Port screens, the PImanager must be hard restarted to start the
new PIprocess processes.

Shutdown

PIprocesses are shut down or restarted using the command scripts for the PImanager which started
them, or by sending it a kill -TERM signal.

Reinitialising a PIprocess

To force a PIprocess to re-read the database, send it a kill -HUP signal. The PIprocess will re-read the
database when all connections to it have closed. It is preferable to re-initialize the PImanager (see
above) rather than individual PIprocesses.

Configuration

PIprocess is configured using PImanager's configuration.

Failure

If PIprocess fails, PIcommands sent to the port that PIprocess is running on will fail.

Output

The PIprocess writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/PI/tmp/PImanager.log.

Chapter 5

68 Provisioning Interface User's and Technical Guide

PIbeClient

Purpose

The PIbeClient interacts with billing engines. It is only available for installations which include CCS. If
VWS is installed, PIbeClient will connect to the beServer on the Voucher and Wallet Server.

CCS process

PIbeClient is installed by the piCcsSms package. It will only be available on your system if you have
installed CCS.

Startup

PIbeClients are started by the PImanager process as needed.

Shutdown

PIbeClient are shutdown or restarted using the command scripts for the PImanager which started them,
or by sending it a kill -TERM signal.

Configuration

The PIbeClient is configured in the PI section of eserv.config. For more information see PIbeClient (on
page 10).

Output

The PIbeClient writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/PI/tmp/PImanager.log.

PIbatch

Purpose

The PI batch program is a utility to allow multiple PI commands to be sent to PIprocesses, with the
commands being specified in a file.

Startup

PIbatch is started with the command line:
PIbatch -D script server

Configuration

The PIbatch accepts the following command line arguments.

Usage:
PIbatch script server

PIbatch input files

The PIbatch input scripts contain one command per line. You must order the commands as follows:

 Chapter 5

 Chapter 5, Background Processes 69

1 !c port user password [synstamp] [mac] – To instruct the PIbatch to connect to the PI on
the given port number, using the specified username and password, with the optional synstamp, and
with the MAC provided.

2 List the PI commands and PIbatch commands. The MAC and SYNSTAMP for commands are
supplied automatically.
Note: If you place a ";" on the command line, you will have to include the MAC and SYNSTAMP in
the command.

3 !d – To instruct the PIbatch to disconnect from the PI.
Note: When you place the $ character at the beginning of a line, it is executed as a shell command.

Example input file

This is an example PIbatch input file.
!c 2999 admin admin 151111111

debug on

state

CCSCD4=CHG:MSISDN=1473111222,ADD=1234

!d

Note: The MAC address in the "!c" connection string is constructed from the data in the MAC Pairs tab
on the PI Administration screens. It is the MAC Pair number prefixed to either the first or second MAC
address, as required. In this example, the MAC Pair number is 1 and the MAC Address is 51111111.

Failure

If PIbatch fails, the commands in the batch file will not be executed. Individual commands in the batch
file can also fail.

Output

The results of the PI batch program are placed in a file. The file has the same name as PIbatch input file
and a .result file extension.

The following text appears in the output file for each command sent to the PI:

"Running command command_name the_command_result End of output from command_name"

The output file can also contain some of the following information:

 the -> symbol followed by text sent to the PI,
 the -< symbol followed by text received from the PI,
 comments from the input script,
 and when the PIbatch disconnects from the PI, the word "Disconnected" is written to the output file.

Results file example

This is an example PIbatch results file.
->admin,admin;

<-ACK,SYNSTAMP=2005021010342483;

->CCSCD1=DEL:MSISDN=1107, SYNSTAMP=2005021010342484,MAC=135424;

<-CCSCD1=DEL:DELETEUser:NACK:1-MSISDN 1107 is not

valid,SYNSTAMP=2005021010342484,MAC=114357;

Disconnected

Chapter 5

70 Provisioning Interface User's and Technical Guide

PIbatch XML

Purpose

For PIbatch, the XML formatted PI commands are read from an input file, sent to the PIprocess, and
results are optionally returned to a results file.

Startup

PIbatch_xml is started with the command line:
PIbatch_XML [-u username] [-p password] [-h hostname] [-n port_number] [-l loop] [-t

throttle] [-f trace_file] [file...]

Configuration

The PIbatch_xml accepts the following command line arguments.

Usage:
PIbatch_XML [-u usr] [-p pwd] [-h host] [-n port] [-l loop] [-t throttle] [-f

trace_file] [-M mode] [-c chunk] [-i implicit] [-S ssl] [file...]

The available parameters are:

Parameter Default Description

-u usr admin The username that should be used for logging into the PIprocess.
-p pwd admin The password that should be used when logging into the PIprocess.

-h host localhost The host name of the PI server.

-n port 2999 The port number of the PIprocess.

-l loop 1 How many times to loop through the commands.
-t throttle no limit Maximum number of requests per second.
-f
trace_file

no file File to append the PI responses to.

-M mode 1 Mode of operation
 1=XML
 2=SOAP

-c chunk Y Stipulate chunking (Y|N) in the incoming documents (document is in
sections preceded by length parameters, and terminated by a single
zero on the last line).

-i implicit Y Request implicit login (if Y, do not send initial Login request since the
document is assumed to contain user credentials).

-S ssl Y Request SSL (secure) operation (value Y creates secure connection)

file standard
input

The input file. More than one input file can be specified.

PIbatch xml input file

The input file format is a list of XML formatted PI commands. Each input file can have more than one
command. There may be more than one input file.
<?xml version="1.0"?>

<methodCall>

<methodName>PI.OP</methodName>

 Chapter 5

 Chapter 5, Background Processes 71

<params>

<param><value><string>@TOKEN@</string></value></param>

<param><value><string>command_name</string></value></param>

<param><value><string>action_name</string></value></param>

<param><value><struct>

<member>

<name>param_name</name>

<value><string>param_value</string></value>

</member>

</struct></value></param>

</params>

</methodCall>

@TOKEN@: Will be replaced with the authentication token by the PIbatch_XML program.

PIbatch_XML supports sending/receiving SOAP requests/responses. Here is an example SOAP
request.

PIbatch_XML SOAP input file example:

<env:Envelope

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://uk.oracle.com/pi">

<env:Body>

<ns1:command_name>

<ns1:AUTH>@TOKEN@</ns1:AUTH>

<ns1:param_name1>param_value</ns1:param_name1>

<ns1:param_name2>param_value</ns1:param_name2>

<ns1:param_name3>param_value</ns1:param_name3>

etc...

</ns1:command_name>

</env:Body>

</env:Envelope>

Where command_name and param_name would be substituted with the actual PI command and
parameters to be executed.

SOAP Example:
<env:Envelope

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:enc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:ns1="http://uk.oracle.com/pi">

<ns1:CCSCD1_ADD>

<ns1:AUTH>@TOKEN@</ns1:AUTH>

<ns1:MSISDN>6122000193</ns1:MSISDN>

<ns1:PROVIDER>Boss</ns1:PROVIDER>

<ns1:PRODUCT>nzcl</ns1:PRODUCT>

<ns1:CHARGING_DOMAIN>5</ns1:CHARGING_DOMAIN>

</ns1:CCSCD1_ADD>

</env:Body>

</env:Envelope>

Output

The output file is simply written with the responses from the PI. See the relevant PI command definition
for details.

Chapter 5

72 Provisioning Interface User's and Technical Guide

PIuser

Purpose

Use the PIuser utility to create new PI users and passwords to enable users to log into the PI remotely.

For security reasons, before a PI user can run PI commands for a service provider you must associate
the service provider with the PI user. This will ensure that the PI user is able to modify and query the
data only for those service providers that they are associated with.

To associate a service provider with a PI user, edit the PI user details on the PI Users tab in the PI
Administration screen. For more information, see PI Users (on page 51).

Startup

Start PIuser from the command line by using the following sytax:
PIuser -s security_level [-d db_login] [-u username] [-p password] [-n port] [-m

mac_pair] [-c currency_code]

Configuration

The following table describes the PIuser command line parameters.

Parameter Description

-s security_level The PI security level for the new PI user. The new PI user will be able to run
PI commands with security levels equal to or lower than this number.
Specify a number between 1 and 99 inclusive.

-d db_login (Optional) The username and password for the Oracle database login ID.
Defaults to / if not set.

-u username (Optional) The username for the new PI user. PIuser prompts for the
username if not set. You must specify a unique name.

-p password (Optional) The password for the new PI user. PIuser prompts for the
password if not set.

-n port (Optional) The port number that the PI user will use for remote login.
Defaults to all ports if not set.

-m mac_pair (Optional) The MAC pair the new PI user can connect from. Defaults to 1
(one) if not set.

-c currency_code (Optional) The reporting currency for the new PI user. Defaults to the
system currency if not set.

 Chapter 6, PI Management Commands 73

Chapter 6

PI Management Commands

Overview

Introduction

This chapter explains the Oracle Communications Convergent Charging Controller Provisioning
Interface (PI) management commands.

In this chapter

This chapter contains the following topics.

Debug Command .. 73
Traceon Command .. 75
Traceoff Command .. 76
State Command ... 76
Kill Command .. 76
Sendrate Command .. 77
Logstats on/off Command ... 78

Debug Command

Purpose

The PI can run in debug mode. You should use this mode only to trace faults.

Debug mode can be turned on or off for each component or command while the PI is running. To do
this, in the PItester screen, send a debug command to the PIprocess.

The general list of components that can be specified is:

 PIbatch (turn debug on in PIbatch)
 PImanager (turn debug on in PImanager)
 PIprocess (turn debug on in non-command parts of PIprocess)
 PIcCommands (turn debug on in common parts of PI commands)

If piCcsSms is installed:

 PIbeClient (turn debug on in non-beClientIF parts of PIbeClient)
For the 3 different types of PI command syntax only the standard and XML currently support the ability
to dynamically turn debug on and off for specified PI commands. PI XML SOAP does not currently
support this functionality and requires a restart of the PI to turn debug on or off.

Note: Refer to your specific Command Specification for details of all the available commands.

Format

The format of the debug command is:
debug {on/off} component1 [component2] [component3] ... [component];

Component is the command, or command with the equals sign converted to an underscore.

Chapter 6

74 Provisioning Interface User's and Technical Guide

Example:

 CCSCD1_ADD
 CCSCD1_DEL

The format of the dynamic debug for XML commands is:

Example PI XML debug commands:
<?xml version="1.0"?>

<methodCall>

 <methodName>PI.Debug</methodName>

 <params>

 <param>

 <value>

 <string>@TOKEN@</string>

 </value>

 </param>

 <param>

 <value>

 <struct>

 <member>

 <name>component1</name>

 <value>

 <string>off</string>

 </value>

 </member>

[

 <member>

 <name>component2</name>

 <value>

 <string>on</string>

 </value>

 </member>

...

]

 </struct>

 </value>

 </param>

 </params>

</methodCall>

Example

The following command examples turns debug on for CCSCD1=ADD:
debug on CCSCD1_ADD;

To turn on debug for CCSCD1=ADD and CCSCD1=DEL commands, use:
debug on CCSCD1_ADD CCSCD1_DEL;

To turn on debug for all CCSCD1 commands, use
debug on CCSCD1

Note: This also turns on PIcCommands but only for the command used, that is, CCSCD1_ADD.

The following PI XML command example turns debug on for CCSCD1=ADD and off for CCSCD1=DEL:
<?xml version="1.0"?>

 <methodCall>

 <methodName>PI.Debug</methodName>

 <params>

 <param>

 <value><string>@TOKEN@</string></value>

 </param>

 Chapter 6

 Chapter 6, PI Management Commands 75

 <param>

 <value>

 <struct>

 <member>

 <name>CCSCD1=ADD</name><value><string>off</string></value>

 </member>

 <member>

 <name>CCSCD1=DEL</name><value><string>off</string></value>

 </member>

 </struct>

 </value>

 </param>

 </params>

</methodCall>

Note: This turns DEBUG+PIcCommands on or off, but only for the command(s) specified
(CCSCD1=ADD and CCSCD1=DEL).

Output

Debug prints output to the /IN/service_packages/PI/tmp/PImanager.log file.

The /IN/service_packages/PI/tmp/PImanager.log file will only log successfully completed debug {on/off}
commands for the PIprocess.

Example:
Oct 5 23:22:17 PIprocess:2998(21833) About to turn debug on for CCSCD1=ADD

Oct 5 23:22:17 PIprocess:2998(21833) About to turn debug off for CCSCD1=DEL

When dynamic PI command debug is on, the output is printed to the
/IN/service_packages/PI/tmp/PImanager.log file.

Traceon Command

Purpose

The traceon command enables tracing of all PI commands. The tracing results are output to a file.

Tip: This command is now deprecated. We recommend you use the debug command instead.

Format

The format of the traceon command is:
traceon;

Example

The following command enables tracing of PI commands:
traceon;

Output

PI command tracing is output to the following file:

Chapter 6

76 Provisioning Interface User's and Technical Guide

PIport_number.trace

Traceoff Command

Purpose

This command disables tracing.

Tip: This command is deprecated. We recommend you use the debug command instead.

Format

The format of the traceoff command is:
traceoff;

Example

The following command disables tracing of PI commands:
traceoff;

State Command

Purpose

Use the state command to print the current state of the PIprocess.

Format

The format of the state command is:
state;

Example

The following command prints the current state of the PI process:
state;

Output

The current state of the PI process is output to the following file:
PIport_number.state

Kill Command

Purpose

Use the kill command to kill a connection from a given username.

Format

The format of the kill command is:
kill username;

 Chapter 6

 Chapter 6, PI Management Commands 77

Example

The following command kills the connection from user bob:
kill bob;

Sendrate Command

Purpose

Use the sendrate command to specify the maximum number of PI commands that an individual
PIprocess will send per second for processing by the billing engine. This allows each PIprocess to
place only the desired load on the billing engine.

Example: Setting the sendrate for the port being used by PIbatch to the minimum rate of one, keeps its
load to a minimum. This helps preserve the billing engine capacity for "live" usage.

Tip: The default sendrate can be set for all PIprocesses in eserv.config. For details, see eserv.config
Configuration (on page 6).

Format

The format of the sendrate command is:
sendrate n;

The available parameter is:

Parameter Default Description

n The number of PI commands to send to the billing engine per second.
This must be a whole number.

Tip: To turn throttling off, set the sendrate to 0 (zero).

Checking the sendrate

You can use the state command to check the sendrate for the PI processes. This reports the values for
all connected PI processes. For details see State Command (on page 76).

PIbatch sendrate

You can use the sendrate command to control the sendrate when using PIbatch. You:

1. Add the sendrate command to the batch input file after the connect line
2. Add a second sendrate command before the disconnect line to reset the sendrate to its

original value

Warning: This will affect all connections to this PIprocess.

Batch optimization

To optimize the batch, the sendrate can be calculated as follows. The resulting number must be
rounded up to the nearest whole number:

sendrate = number of commands / maximum time for batch (seconds)

Example: For 40000 commands in 4 hours (14400 seconds) the sendrate = 40000 / 14400 = 2.8. The
rounded up value for the sendrate is 3.

Chapter 6

78 Provisioning Interface User's and Technical Guide

Using sendrate for performance

You can use the sendrate command to control the load put on the billing engine by the different PI
processes.

This can be achieved by setting the default sendrate in eserv.config, and then overriding the default for
each individual PIprocess requiring a different value.

To override the default values, connect to each PIprocess port in turn and set the sendrate to the
desired value.

Example

In this example there are three PIprocesses running on ports 2999, 3000, 3001. PIbatch is running on
port 3001 and it needs to run at a lower rate than the other processes so that it does not overload the
billing engines. A higher rate is required for the process running on port 2999. This can be achieved in
the following way:

Set the throttling parameter in eserv.config as:
pi = {

throttling = {

sendRate = 2

}

}

Then in a PIbatch script define the sendrate for ports 3001 and 2999:
start of PIbatch script

set PIbatch port to lower rate

!c 3001 PIuser PIpassword mac_number

sendrate 1

state

!d

set shop port 2999 to higher rate

!c 2999 PIuser PIpassword mac_number

sendrate 3

state

!d

end of PIbatch script

Logstats on/off Command

Purpose

Use the logstats on or off command to switch the output of the timing statistics on, or off, every 30
seconds.

The following five statistics are collected for each command, over a 30 second time period:

 Number of successful uses of the command
 Number of unsuccessful uses of the command
 Minimum response time (in milliseconds)
 Average response time (in milliseconds)
 Maximum response time (in milliseconds)

Note: These statistics are for a single period; they are not cumulative.

Output

The output from the statistics has the following format:

 Chapter 6

 Chapter 6, PI Management Commands 79

command name followed by the five statistics separated by a slash (/) character.

COMMAND=ACTION 12/13/1/2/3

Example Output:
Jul 31 15:30:59 PIprocess:2999(1001) Statistics for last 30 seconds (<command>

<successful>/<failed>/<min>/<max>/<avg>):

Jul 31 15:30:59 PIprocess:2999(1001) ACSCLI=ADD 0/0/0/0/0 ACSCLI=DEL 0/0/0/0/0 ACSCLI=QRY

0/0/0/0/0

 Chapter 7, About Installation and Removal 81

Chapter 7

About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Convergent Charging Controller application described in this guide. It also lists the files installed by the
application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and Removal Overview ... 81
Checking the Installation ... 82

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

 Convergent Charging Controller system requirements
 Pre-installation tasks
 Installing and removing Convergent Charging Controller packages

PI packages

An installation of Provisioning Interface includes the following packages, on the SMS:

 piSms
 piCluster (if installing on a clustered SMS)
 piAcsSms
 piCcsSms
 piSubscriberSms
 piVoucherSms
 piSrmSms
 piWalletSms
 piVpnSms
 piXmsSms
 npPISms

Packages and dependencies

The Prepaid Charging v3.0 on-line provisioning interface engine can be delivered in up to six packages:

 piSms – A framework to execute a PI command. This package is always required.

Chapter 7

82 Provisioning Interface User's and Technical Guide

 piCcsSms – Commands and UBE client. This package is always required.
 piSubscriberSms – Command definitions for a subscriber domain. This package is optional.
 piWalletSms – Command definitions for a wallet domain. This package is optional.
 piVoucherSms – Command definitions for a voucher domain. This package is optional.
 piSrmSms – Command definitions for the subscriber relationship manager. This package is

optional.
Packages must be installed as shown in the hierarchy:

1 piSms
2 piCcsSms
3 The rest in any order
Packages have the hierarchy shown in the following diagram:

Updating the eserv.config file manually

Note that at the end of the installation script of some PI packages, there is note advising the installer to
manually update the eserv.config file using the contents of the example config file. After installation,
follow these instructions to configure the eserv.config file. For example:
Example configuration files have been installed to

 /IN/service_packages/PI/etc/eserv.config.pi_example.CCS and

 /IN/service_packages/PI/etc/eserv.config.pi_example.CCS.full
Please use these as a guide to setting up your runtime

configuration file at

/IN/service_packages/eserv.config

for example. If there is no existing pi section in eserv.config, copy the entire contents of the

eserv.config.pi_example.CCS file to the end of the runtime configuration file. If there is a pi
section, copy the relevant items into the pi section.

See eserv.config Configuration (on page 6) for details.

Checking the Installation

Introduction

This topic provides a list of things which should be checked to ensure the installation was successful.

Process list

When the application is running correctly, the following processes are run by smf_oper:

 PImanager
 PIprocess (if PI has been set up on more than one port, there should be as many PIprocesses as

configured ports)

Note: PIbatch may also be running.

 Chapter 7

 Chapter 7, About Installation and Removal 83

Checking the commands

When you install a PI commands package, this inserts the new commands into new rows in the
PI_COMMANDS database table. After completing the installation, check this table to ensure the new
commands have been added.

Database tables

The following database tables are added to the SMF database:

 PI_COMMANDS
 PI_HOSTS
 PI_PORTS
 PI_MACS
 PI_USERS

 Glossary 85

Glossary of Terms

ACS

Advanced Control Services configuration platform.

API

Application Programming Interface

ASP

 Application Service Provider, or
 Application Server Process. An IP based instance of an AS. An ASP implements a SCTP

connection between 2 platforms.

CC

Country Code. Prefix identifying the country for a numeric international address.

CCS

1) Charging Control Services component.

2) Common Channel Signalling. A signalling system used in telephone networks that separates
signalling information from user data.

Connection

Transport level link between two peers, providing for multiple sessions.

Convergent

Also “convergent billing”. Describes the scenario where post-paid and pre-paid calls are handed by the
same service platform and the same billing system. Under strict converged billing, post-paid
subscribers are essentially treated as “limited credit pre-paid”.

cron

Unix utility for scheduling tasks.

DAP

Data Access Pack. An extension module for ACS which allows control plans to make asynchronous
requests to external systems over various protocols including XML and LDAP.

DTMF

Dual Tone Multi-Frequency - system used by touch tone telephones where one high and one low
frequency, or tone, is assigned to each touch tone button on the phone.

GUI

Graphical User Interface

86 Provisioning Interface User's and Technical Guide

HRN

Hidden Reference Number or Human Readable Number

HTML

HyperText Markup Language, a small application of SGML used on the World Wide Web.

It defines a very simple class of report-style documents, with section headings, paragraphs, lists, tables,
and illustrations, with a few informational and presentational items, and some hypertext and multimedia.

HTTP

Hypertext Transport Protocol is the standard protocol for the carriage of data around the Internet.

IN

Intelligent Network

IP

1) Internet Protocol

2) Intelligent Peripheral - This is a node in an Intelligent Network containing a Specialized Resource
Function (SRF).

IP address

Internet Protocol Address - network address of a card on a computer.

ISDN

Integrated Services Digital Network - set of protocols for connecting ISDN stations.

Messaging Manager

The Messaging Manager service and the Short Message Service components of Oracle
Communications Convergent Charging Controller product. Component acronym is MM (formerly MMX).

MM

Messaging Manager. Formerly MMX, see also XMS (on page 88) and Messaging Manager (on page
86).

MSISDN

Mobile Station ISDN number. Uniquely defines the mobile station as an ISDN terminal. It consists of
three parts; the country code (CC), the national destination code (NDC) and the subscriber number
(SN).

NP

Number Portability

PI

Provisioning Interface - used for bulk database updates/configuration instead of GUI based
configuration.

 Glossary 87

PIN

Personal Identification Number

PL/SQL

Oracle's Procedural Language for stored procedures and packages.

Service Provider

See Telco.

SGML

Standard Generalized Markup Language. The international standard for defining descriptions of the
structure of different types of electronic document.

SLC

Service Logic Controller (formerly UAS).

SMS

Depending on context, can be:

 Service Management System hardware platform
 Short Message Service
 Service Management System platform
 Convergent Charging Controller Service Management System application

SN

Service Number

SOAP

Simple Object Access Protocol. An XML-based messaging protocol.

SQL

Structured Query Language is a database query language.

SRF

Specialized Resource Function – This is a node on an IN which can connect to both the SSP and the
SLC and delivers additional special resources into the call, mostly related to voice data, for example
play voice announcements or collect DTMF tones from the user. Can be present on an SSP or an
Intelligent Peripheral (IP).

SSL

Secure Sockets Layer protocol

SSP

Service Switching Point

88 Provisioning Interface User's and Technical Guide

TCP

Transmission Control Protocol. This is a reliable octet streaming protocol used by the majority of
applications on the Internet. It provides a connection-oriented, full-duplex, point to point service
between hosts.

Telco

Telecommunications Provider. This is the company that provides the telephone service to customers.

Telecommunications Provider

See Telco.

VPN

The Virtual Private Network product is an enhanced services capability enabling private network
facilities across a public telephony network.

VWS

Oracle Voucher and Wallet Server (formerly UBE).

WSDL

Web Services Description Language.

XML

eXtensible Markup Language. It is designed to improve the functionality of the Web by providing more
flexible and adaptable information identification.

It is called extensible because it is not a fixed format like HTML. XML is a `metalanguage' — a
language for describing other languages—which lets you design your own customized markup
languages for limitless different types of documents. XML can do this because it's written in SGML.

XMS

Three letter code used to designate some components and path locations used by the Oracle
Communications Convergent Charging Controller Messaging Manager (on page 86) service and the
Short Message Service. The published code is MM (on page 86) (formerly MMX).

 Index 89

Index

A

About Configuring PI Commands in
eserv.config • 31

About Installation and Removal • 81
About This Document • v
Accessing the PI Administration screen • 43
Accessing the PI Tester screen • 59
ACS • 85
acsCustomerId • 36
action • 13
activatePreuseAccount • 35
Adding hosts • 48
Adding MAC Pairs • 50
Adding PI users • 54
Adding ports • 57
allowedSourceWalletStates • 19
allowINSECURESSLv3 • 24
API • 85
ASP • 85
Audience • v
authentication • 9

B

Background Processes • 65
billingEngines • 22
Broadcast plug-in • 15, 20

C

CC • 85
CCS • 85
CCS process • 68
CCSBPL • 35
CCSCD1 • 32
CCSCD3 • 34
CCSCD9 • 37
CCSSC1 • 38
CCSVR1 • 36
certificateFile • 25
Checking the commands • 83
Checking the Installation • 82
Checking the sendrate • 77
clientName • 11
Command package details • 4
Commands fields • 45, 46
Commands tab • 45
Component descriptions • 2
Component diagram • 2
config • 14
Configuration • 5, 67, 68, 70, 72
Configuration components • 5
Configuration File Format • 6
Configuration Overview • 5
Connection • 85
Connection tab • 63

Connection tests • 63
connectionRetryTime • 11
Convergent • 85
Copyright • ii
coreWhenProcessUnresponsive • 8
correlationRequestTagName • 8
correlationResponseTagName • 8
createEmptyBalance • 33
creditTransferCP • 34
cron • 85
currencyType • 33

D

DAP • 85
Database tables • 83
debug • 8
Debug Command • 73
decrypt_private_secret • 37
Default.lang • 39
Default_PI.hs • 40
defaultBEDomainID • 38
defaultScenarioName • 35
Defining the Help Screen Language • 39, 40
Defining the Screen Language • 39
Deleting hosts • 48
Deleting MAC Pairs • 51
Deleting PI users • 55
Deleting ports • 58
Document Conventions • vi
DTMF • 85

E

Editing hosts • 48
Editing MAC Pairs • 50
Editing PI commands • 46
Editing PI users • 54
Editing ports • 57
Editing the File • 7
Editing the General tab • 61
eserv.config Configuration • 3, 5, 6, 77, 82
eserv.config file example

eserv.config.pi_example • 28
eserv.config Files Delivered • 6
eserv.config subsections • 7
eserv.config.pi_example • 7
Example • 74, 75, 76, 77
Example helpset language • 40
Example input file • 69
Example screen • 46
Example Screen Language • 39
expansionRules • 26
exportCallPlanDirectory • 31

F

Failure • 67, 69
fixedVoucherNumberLength • 34
Format • 73, 75, 76, 77

90 Provisioning Interface User's and Technical Guide

function • 14

G

General • 7, 60
General fields • 61
General tab • 61
Getting Information About Voucher Changes by

Using PI Commands • 32
GUI • 85

H

Hard PI Restart • 57, 58, 66
heartbeatPeriod • 11
Hosts fields • 47, 48
Hosts tab • 47
HRN • 86
HTML • 86
HTTP • 86

I

id • 22
implicitLoginsSupported • 26
IN • 86
initialState • 32
inittab script • 65
Installation and Removal Overview • 4, 81
Introduction • 1, 4, 5, 6, 31, 39, 40, 43, 44, 46,

49, 51, 55, 59, 60, 62, 63, 81, 82
Introduction to the Provisioning Interface • 1
ip • 23
IP • 86
IP address • 86
ISDN • 86

K

keyFile • 25
Kill Command • 76

L

library • 15
Loading eserv.config Changes • 7
Local time zone • 31
localTZ • 31
loglevel • 9
Logstats on/off Command • 78

M

MAC Pairs fields • 50, 51
MAC Pairs tab • 49
Management fields • 62
Management tab • 62
Management Tests • 62
maxFifoReadRetry • 35
maxOutstandingMessages • 12
Merge Wallets plug-in • 18
mergeBucketExpiryPolicy • 19

mergeWalletExpiryPolicy • 19
mergeWalletsTriggers • 20
messageTimeoutSeconds • 12
Messaging Manager • 86, 88
MM • 86, 88
MSISDN • 86

N

namedEventCanSendDebitBalanceNegative •
12

noAuthTokenForAnyPIError • 10
notEndActions • 13, 20, 21
notifyEagain • 35
noWalletCreateBeIds • 33
NP • 86

O

Optional parameters • 66
Optional sections in eserv.config • 7
oracleLogin • 13, 20
oraUser • 9
Output • 67, 68, 69, 71, 75, 76, 78
Overview • 1, 5, 43, 59, 65, 73, 81

P

Packages and dependencies • 81
PI • 86
PI Administration Screen • 2, 5, 43
PI command installation • 4
PI Commands • 4, 44
PI Hosts • 46
PI Hosts screen • 48
PI MAC Pairs • 49
PI MACS screen • 50, 51
PI Management Commands • 73
PI packages • 81
PI Ports • 55, 66
PI Ports screen • 57
PI Tester Screen • 2, 59
PI Users • 51, 72
PI Users screen • 53
PIbatch • 2, 68
PIbatch input files • 68
PIbatch sendrate • 77
PIbatch XML • 3, 70
PIbatch xml input file • 70
PIbeClient • 10, 68
PImanager • 2, 65
PIN • 87
PIprocess • 2, 3, 66, 67
PIuser • 72
PL/SQL • 87
plugins • 14
port • 24
Ports fields • 56, 57
Ports tab • 56
pqyzMaxRecords • 38

 Index 91

Prerequisites • v
primary • 23
Procedure • 39, 40
Process • 3
Process list • 82
Purpose • 65, 67, 68, 70, 72, 73, 75, 76, 77, 78

R

Reinitialising a PIprocess • 67
Reinitializing the PImanager • 66
Related Documents • v
reportPeriodSeconds • 15
Results file example • 69

S

Scope • v
secondary • 23
securityPlugin • 9
sendBadPin • 16
sendRate • 10
Sendrate Command • 77
Service Provider • 87
Setting the Control Plan Export File Directory

for ACSCPL PI Commands • 31
SGML • 87
Shutdown • 66, 67, 68
SLC • 87
SMS • 87
SN • 87
soap • 25, 27
SOAP • 87
Soft PI Restart • 46, 48, 49, 50, 51, 55, 66
Specifying the Maximum PQYZ Records to

Query in the NP Database • 38
SQL • 87
srasActivatesPreuseAccount • 16, 18
SRF • 87
ssl • 24
SSL • 87
SSP • 87
Started directly • 65
Startup • 65, 67, 68, 70, 72
State Command • 76, 77
stateConversions • 22
suppressEmptyFields • 37
suppressFields • 37
suppressScenario • 36
synstamp • 9
System Overview • 1

T

TCP • 88
Telco • 88
Telecommunications Provider • 88
Throttling • 10
timeout • 9
Traceoff Command • 76

Traceon Command • 75
Triggering BPL tasks • 3
triggerTimeoutSeconds • 36
type • 13
Typographical Conventions • vi

U

Updating the eserv.config file manually • 82
Users fields • 53, 54
Users tab • 52
useSystemLanguage • 34
Using connection tests • 64
Using management tests • 63
Using sendrate for performance • 78

V

validateAuthStrings • 26
Voucher and wallet plugins • 15
Voucher Recharge plug-in • 16
Voucher Type Recharge plug-in • 17
voucherRechargeTriggers • 17
voucherServerCacheCleanupInterval • 17
voucherServerCacheLifetime • 17
voucherStateConversions • 21
voucherTypeRechargeTriggers • 18
VPN • 88
VWS • 88

W

WSDL • 88

X

XML • 88
XMS • 86, 88

	Contents
	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions

	System Overview
	Overview
	Introduction
	In this Chapter

	Introduction to the Provisioning Interface
	Introduction
	Component diagram
	Component descriptions
	Process
	Triggering BPL tasks

	PI Commands
	Introduction
	PI command installation
	Command package details

	Configuration
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introduction
	Configuration components

	eserv.config Configuration
	Introduction
	Configuration File Format
	eserv.config Files Delivered
	Editing the File
	Loading eserv.config Changes
	eserv.config.pi_example
	Optional sections in eserv.config
	eserv.config subsections
	General
	coreWhenProcessUnresponsive
	correlationRequestTagName
	correlationResponseTagName
	debug
	loglevel
	oraUser
	securityPlugin
	synstamp
	timeout
	authentication
	timeout
	noAuthTokenForAnyPIError
	Throttling
	sendRate
	PIbeClient
	clientName
	connectionRetryTime
	heartbeatPeriod
	maxOutstandingMessages
	messageTimeoutSeconds
	namedEventCanSendDebitBalanceNegative
	notEndActions
	action
	type
	oracleLogin
	plugins
	config
	function
	library
	Voucher and wallet plugins

	reportPeriodSeconds
	Voucher Recharge plug-in
	sendBadPin
	srasActivatesPreuseAccount
	voucherRechargeTriggers
	voucherServerCacheCleanupInterval
	voucherServerCacheLifetime
	Voucher Type Recharge plug-in
	srasActivatesPreuseAccount
	voucherTypeRechargeTriggers
	Merge Wallets plug-in
	allowedSourceWalletStates
	mergeBucketExpiryPolicy
	mergeWalletExpiryPolicy
	mergeWalletsTriggers
	oracleLogin
	Broadcast plug-in
	notEndActions
	notEndActions
	voucherStateConversions
	voucherStateConversions
	stateConversions
	stateConversions
	billingEngines
	id
	primary
	secondary
	ip
	port
	ssl
	allowINSECURESSLv3
	certificateFile
	keyFile
	soap
	validateAuthStrings
	implicitLoginsSupported
	expansionRules
	eserv.config file example eserv.config.pi_example

	About Configuring PI Commands in eserv.config
	Introduction
	Local time zone
	localTZ
	Setting the Control Plan Export File Directory for ACSCPL PI Commands
	exportCallPlanDirectory
	Getting Information About Voucher Changes by Using PI Commands
	CCSCD1
	initialState
	noWalletCreateBeIds
	createEmptyBalance
	currencyType
	useSystemLanguage
	CCSCD3
	creditTransferCP
	fixedVoucherNumberLength
	defaultScenarioName
	activatePreuseAccount
	CCSBPL
	notifyEagain
	maxFifoReadRetry
	triggerTimeoutSeconds
	CCSVR1
	acsCustomerId
	suppressScenario
	suppressFields
	decrypt_private_secret

	CCSCD9
	suppressEmptyFields
	CCSSC1
	defaultBEDomainID
	Specifying the Maximum PQYZ Records to Query in the NP Database
	pqyzMaxRecords

	Defining the Screen Language
	Introduction
	Default.lang
	Example Screen Language
	Procedure

	Defining the Help Screen Language
	Introduction
	Default_PI.hs
	Example helpset language
	Procedure

	PI Administration Screen
	Overview
	Introduction
	In this chapter

	PI Administration Screen
	Introduction
	Accessing the PI Administration screen

	PI Commands
	Introduction
	Commands tab
	Commands fields
	Example screen
	Editing PI commands

	PI Hosts
	Introduction
	Hosts tab
	Hosts fields
	PI Hosts screen
	Adding hosts
	Editing hosts
	Deleting hosts

	PI MAC Pairs
	Introduction
	MAC Pairs tab
	MAC Pairs fields
	PI MACS screen
	Adding MAC Pairs
	Editing MAC Pairs
	Deleting MAC Pairs

	PI Users
	Introduction
	Users tab
	PI Users screen
	Users fields
	Adding PI users
	Editing PI users
	Deleting PI users

	PI Ports
	Introduction
	Ports tab
	Ports fields
	PI Ports screen
	Adding ports
	Editing ports
	Deleting ports

	PI Tester Screen
	Overview
	Introduction
	In this chapter

	PI Tester Screen
	Introduction
	Accessing the PI Tester screen

	General
	Introduction
	General tab
	General fields
	Editing the General tab

	Management Tests
	Introduction
	Management tab
	Management fields
	Using management tests

	Connection tests
	Introduction
	Connection tab
	Using connection tests

	Background Processes
	Overview
	Introduction
	In this chapter

	PImanager
	Purpose
	Startup
	inittab script
	Started directly
	Optional parameters

	Shutdown
	Reinitializing the PImanager
	Soft PI Restart
	Hard PI Restart

	Failure
	Output

	PIprocess
	Purpose
	Startup
	Shutdown
	Reinitialising a PIprocess
	Configuration
	Failure
	Output

	PIbeClient
	Purpose
	CCS process
	Startup
	Shutdown
	Configuration
	Output

	PIbatch
	Purpose
	Startup
	Configuration
	PIbatch input files
	Example input file
	Failure
	Output
	Results file example

	PIbatch XML
	Purpose
	Startup
	Configuration
	PIbatch xml input file
	Output

	PIuser
	Purpose
	Startup
	Configuration

	PI Management Commands
	Overview
	Introduction
	In this chapter

	Debug Command
	Purpose
	Format
	Example
	Output

	Traceon Command
	Purpose
	Format
	Example
	Output

	Traceoff Command
	Purpose
	Format
	Example

	State Command
	Purpose
	Format
	Example
	Output

	Kill Command
	Purpose
	Format
	Example

	Sendrate Command
	Purpose
	Format
	Checking the sendrate
	PIbatch sendrate
	Batch optimization

	Using sendrate for performance
	Example

	Logstats on/off Command
	Purpose
	Output

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction
	PI packages
	Packages and dependencies
	Updating the eserv.config file manually

	Checking the Installation
	Introduction
	Process list
	Checking the commands
	Database tables

	Glossary of Terms
	ACS
	API
	ASP
	CC
	CCS
	Connection
	Convergent
	cron
	DAP
	DTMF
	GUI
	HRN
	HTML
	HTTP
	IN
	IP
	IP address
	ISDN
	Messaging Manager
	MM
	MSISDN
	NP
	PI
	PIN
	PL/SQL
	Service Provider
	SGML
	SLC
	SMS
	SN
	SOAP
	SQL
	SRF
	SSL
	SSP
	TCP
	Telco
	Telecommunications Provider
	VPN
	VWS
	WSDL
	XML
	XMS

	Index

