Copyright

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Contents

About This Document .. vii
Document Conventions .. viii

Chapter 1
System Overview ... 1
- Overview..1
- What is Advanced Control Services? ..1
- What are the Main Components of ACS? ..3
- What are the Functions of ACS? ..7
- ACS CDR/EDR..7

Chapter 2
Security Overview ... 9
- Overview..9
- About Secure SSL Connection to the Database ...9
- Security in ACS ..10
- Defining the Security Levels..11
- Setting up ACS Security through SMS ..13
- Setting up ACS Security without using SMS ...17

Chapter 3
Configuring the Environment .. 21
- Overview..21
- Configuring the Environment...21
- Defining the Screen Language..22
- Defining the Help Screen Language..24
- Setting up the Screens..25

Chapter 4
Configuring the eserv.config ... 45
- Overview..45
- eserv.config Configuration...45
- ACS Configuration in the eserv.config File..46
- MRC Configuration..69

Chapter 5
Configuring the acs.conf ... 73
- Overview..73
- acs.conf ...73
- acsChassis Plug-ins ..75
- acsStatisticsDBInserter (SMS) ...78
- acsCompilerDaemon (SMS) ..81
- acsProfileCompiler ..84
- acsStatsMaster (SLC) ...85
- acsChassis Single Instance Parameters (SLC) ...87
- acsStatsLocal (SLC)..112
<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Background Processes .. 167</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview .. 167</td>
<td></td>
</tr>
<tr>
<td>Automated ACS Processes (SMS Machine) 167</td>
<td></td>
</tr>
<tr>
<td>acsCompilerDaemon ... 168</td>
<td></td>
</tr>
<tr>
<td>acsSnCpActAlarms ... 169</td>
<td></td>
</tr>
<tr>
<td>acsDbCleanup.sh .. 171</td>
<td></td>
</tr>
<tr>
<td>acsProfileCompiler .. 171</td>
<td></td>
</tr>
<tr>
<td>acsStatisticsDBInserter 172</td>
<td></td>
</tr>
<tr>
<td>Automated ACS Processes (SLC Machine) 173</td>
<td></td>
</tr>
<tr>
<td>acsStatsMaster ... 173</td>
<td></td>
</tr>
<tr>
<td>libacsChassisActions ... 174</td>
<td></td>
</tr>
<tr>
<td>libacsMacroNodes ... 174</td>
<td></td>
</tr>
<tr>
<td>libacsService ... 175</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Tools and Utilities ... 177</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview .. 177</td>
<td></td>
</tr>
<tr>
<td>acsAddCallPlan ... 177</td>
<td></td>
</tr>
<tr>
<td>acsAddCustomer .. 179</td>
<td></td>
</tr>
<tr>
<td>acsAddGeography ... 180</td>
<td></td>
</tr>
<tr>
<td>acsAddServiceNumber .. 181</td>
<td></td>
</tr>
<tr>
<td>acsDecompile ... 182</td>
<td></td>
</tr>
<tr>
<td>acsDumpControlPlan .. 183</td>
<td></td>
</tr>
<tr>
<td>acsMonitorCompiler .. 184</td>
<td></td>
</tr>
<tr>
<td>acsProfile ... 184</td>
<td></td>
</tr>
<tr>
<td>acsScheduleCallPlan .. 187</td>
<td></td>
</tr>
<tr>
<td>acsSetupAnnouncement 187</td>
<td></td>
</tr>
<tr>
<td>Usage: ... 188</td>
<td></td>
</tr>
<tr>
<td>numberDataImport .. 188</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Pre-installation ... 193</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview .. 193</td>
<td></td>
</tr>
</tbody>
</table>
About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the Advanced Control Services (ACS) application.

Audience

This guide was written primarily for system administrators and persons installing and administering the ACS application. The documentation assumes that the person using this guide has a good technical knowledge of the system.

Prerequisites

Although there are no prerequisites for using this guide, familiarity with the target platform would be an advantage.

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely using the information contained in this guide. Attempting to install, remove, configure or otherwise alter the described system without the appropriate background skills, could cause damage to the system; including temporary or permanent incorrect operation, loss of service, and may render your system beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related documents

The following documents are related to this document:

- Advanced Control Services User's Guide
- Open Services Development User's and Technical Guide
- Service Logic Execution Environment Technical Guide
- Service Management System Technical Guide
- Service Management System User's Guide
- XML TCAP Interface Technical Guide
Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network Charging and Control (NCC) documentation.

<table>
<thead>
<tr>
<th>Formatting Convention</th>
<th>Type of Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special Bold</td>
<td>Items you must select, such as names of tabs. Names of database tables and fields.</td>
</tr>
<tr>
<td>Italics</td>
<td>Name of a document, chapter, topic or other publication. Emphasis within text.</td>
</tr>
<tr>
<td>Button</td>
<td>The name of a button to click or a key to press. Example: To close the window, either click Close, or press Esc.</td>
</tr>
<tr>
<td>Key+Key</td>
<td>Key combinations for which the user must press and hold down one key and then press another. Example: <code>Ctrl+P</code> or <code>Alt+F4</code>.</td>
</tr>
<tr>
<td>Monospace</td>
<td>Examples of code or standard output.</td>
</tr>
<tr>
<td>Monospace Bold</td>
<td>Text that you must enter.</td>
</tr>
<tr>
<td><code>variable</code></td>
<td>Used to indicate variables or text that should be replaced with an actual value.</td>
</tr>
<tr>
<td><code>menu option > menu option</code></td>
<td>Used to indicate the cascading menu option to be selected. Example: <code>Operator Functions > Report Functions</code></td>
</tr>
<tr>
<td>hypertext link</td>
<td>Used to indicate a hypertext link.</td>
</tr>
</tbody>
</table>

Specialized terms and acronyms are defined in the glossary at the end of this guide.
Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control (NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

What is Advanced Control Services? ... 1
What are the Main Components of ACS? .. 3
What are the Functions of ACS? .. 7
ACS CDR/EDR ... 7

What is Advanced Control Services?

Description

Advanced Control Services (ACS) is an application that allows service providers to define enhanced call interaction to be triggered in the case of one or more of the following:

- Calls to specific dialed numbers (service numbers)
- Calls from specific calling numbers (CLI numbers)
- All calls triggered to a specified INAP service key

Call Processing and Features

The call processing consists of an arbitrary call-processing diagram, which makes decisions and performs actions chosen from a rich set of feature nodes.

These nodes include basic features such as time routing (day, week, year), proportional routing, calling and called prefixes, special numbers, failover routing, and VIP customers. They include telephony actions such as announcement playing, IVR prompting, number redirection, account code, and PIN entry.

Other Features

In addition, many ancillary functions are provided, such as detailed logging and analysis information, event counting and branching, customer self-administration, multi-lingual support for announcements and user interfaces, and many more features as described in ACS User's Guide.
Call Routing Services

These features make ACS an ideal application to provide a wide range of common and popular call routing services, for example:

- FreePhone
- Premium Rate
- TeleVote
- Follow Me/Personal Numbering
- Call Screening (Incoming)

Plus common residential/small business services, for example:

- Account Code Validation
- Toll Barring (With PIN Override)
- Hot Line
- Call Screening (Outgoing)
- Basic Friends & Family
What are the Main Components of ACS?

Diagram of main components

The schematic diagram below depicts the main components of ACS on the IN platform.

Standard Profile Block List

Here are the profile blocks available with a new installation of ACS.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Valid Profile</td>
<td>Allows you to search for relevant tags in all profiles that have been loaded.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>App Specific Profile 1</td>
<td>Contains information specific to an application, for example, Messaging Manager.</td>
</tr>
<tr>
<td>App Specific Profile 2</td>
<td></td>
</tr>
<tr>
<td>App Specific Profile 3</td>
<td></td>
</tr>
<tr>
<td>App Specific Profile 4</td>
<td></td>
</tr>
<tr>
<td>App Specific Profile 5</td>
<td></td>
</tr>
<tr>
<td>App Specific Profile 6</td>
<td></td>
</tr>
<tr>
<td>App Specific Profile 7</td>
<td></td>
</tr>
<tr>
<td>App Specific Profile 8</td>
<td></td>
</tr>
<tr>
<td>CLI Subscriber Profile</td>
<td>Contains most of the information you can specify in the CLI tab of the Numbers screen, for example:</td>
</tr>
<tr>
<td></td>
<td>- Account code</td>
</tr>
<tr>
<td></td>
<td>- Language</td>
</tr>
<tr>
<td></td>
<td>- Follow me number</td>
</tr>
<tr>
<td></td>
<td>Note: Only relevant to the 0800 service.</td>
</tr>
<tr>
<td>Call Context</td>
<td>Allows access to information received from the network, including the list of buffers as described in ACS Buffers.</td>
</tr>
<tr>
<td>Control Plan Profile</td>
<td>This profile contains current switch node exits only.</td>
</tr>
<tr>
<td>Customer Profile</td>
<td>Contains customer information, for example:</td>
</tr>
<tr>
<td></td>
<td>- Incoming barred/allowed list type</td>
</tr>
<tr>
<td></td>
<td>- Incoming barred/allowed list</td>
</tr>
<tr>
<td></td>
<td>- PIN rights</td>
</tr>
<tr>
<td></td>
<td>- Default language</td>
</tr>
<tr>
<td></td>
<td>- Incoming barred/allowed ignore</td>
</tr>
<tr>
<td></td>
<td>- Termination number ranges</td>
</tr>
<tr>
<td></td>
<td>- Termination number range policy</td>
</tr>
<tr>
<td>Global Profile</td>
<td>Contains global information, for example:</td>
</tr>
<tr>
<td></td>
<td>- PIN rights</td>
</tr>
<tr>
<td></td>
<td>- Multi-lingual announcements</td>
</tr>
<tr>
<td></td>
<td>- Default language</td>
</tr>
<tr>
<td></td>
<td>- Control plan version hiding</td>
</tr>
<tr>
<td>Incoming Session Data</td>
<td>Data which comes in over the network. Examples include:</td>
</tr>
<tr>
<td></td>
<td>- InitialDP received for voice</td>
</tr>
<tr>
<td></td>
<td>- MO Forward SM for SMS using Messaging Manager</td>
</tr>
<tr>
<td></td>
<td>- Diameter CCR (INITIAL_REQUEST)</td>
</tr>
<tr>
<td>Outgoing Session Data</td>
<td>Data which goes out over the network.</td>
</tr>
<tr>
<td>Service Number Profile</td>
<td>Contains most of the information you can specify in the Service Number tab of the Numbers screen, for example:</td>
</tr>
<tr>
<td></td>
<td>- Account code</td>
</tr>
<tr>
<td></td>
<td>- Language</td>
</tr>
<tr>
<td></td>
<td>- Follow me number</td>
</tr>
<tr>
<td></td>
<td>Note: Only relevant to the 0800 service.</td>
</tr>
<tr>
<td>Temporary Storage</td>
<td>Stores the data in memory and does not write it to the database. It exists for the duration of the control plan execution only.</td>
</tr>
</tbody>
</table>
Name | Description
--- | ---
VPN Network Profile | Contains most of the information you can specify in the VPN edit network, for example:
- Account Code maximum length
- Outgoing barred/allowed list type
- Incoming barred/allowed list type
- VPN network SD no check
- VPN present private address
Note: Only relevant if you have the VPN service installed.

VPN Station Profile | Contains most of the information you can specify in the VPN edit station, for example:
- Outgoing barred/allowed list type
- Incoming barred/allowed list type
- VPN bar all incoming
- VPN bar off network incoming
Note: Only relevant if you have the VPN service installed.

ACS Primary Tags

Here is a list of ACS primary tags.

Note: These tags are preloaded on installation of ACS and are displayed on the ACS Configuration screen, **Profile Tag Details** tab.

<table>
<thead>
<tr>
<th>Description</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO NOT USE</td>
<td>0x0000</td>
<td>0</td>
</tr>
<tr>
<td>PIN Prefix</td>
<td>0x0001</td>
<td>1</td>
</tr>
<tr>
<td>PIN Length</td>
<td>0x0002</td>
<td>2</td>
</tr>
<tr>
<td>Account Code Prefix</td>
<td>0x0003</td>
<td>3</td>
</tr>
<tr>
<td>Account Code Max Length</td>
<td>0x0004</td>
<td>4</td>
</tr>
<tr>
<td>A/S Prefix</td>
<td>0x0005</td>
<td>5</td>
</tr>
<tr>
<td>A/S Length</td>
<td>0x0006</td>
<td>6</td>
</tr>
<tr>
<td>Off Net Prefix</td>
<td>0x0007</td>
<td>7</td>
</tr>
<tr>
<td>S/D Prefix</td>
<td>0x0008</td>
<td>8</td>
</tr>
<tr>
<td>Outgoing Barred/Allowed List Type</td>
<td>0x0009</td>
<td>9</td>
</tr>
<tr>
<td>Outgoing Barred/Allowed List</td>
<td>0x000a</td>
<td>10</td>
</tr>
<tr>
<td>Incoming Barred/Allowed List Type</td>
<td>0x000b</td>
<td>11</td>
</tr>
<tr>
<td>Incoming Barred/Allowed List</td>
<td>0x000c</td>
<td>12</td>
</tr>
<tr>
<td>Account Code Values</td>
<td>0x000d</td>
<td>13</td>
</tr>
<tr>
<td>Account Code Policy</td>
<td>0x000e</td>
<td>14</td>
</tr>
<tr>
<td>-RESERVED-</td>
<td>0x000f</td>
<td>15</td>
</tr>
<tr>
<td>Divert RSF</td>
<td>0x0010</td>
<td>16</td>
</tr>
<tr>
<td>Divert Busy</td>
<td>0x0011</td>
<td>17</td>
</tr>
<tr>
<td>Description</td>
<td>Hex</td>
<td>Decimal</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Divert No Answer</td>
<td>0x0012</td>
<td>18</td>
</tr>
<tr>
<td>Divert Follow Me</td>
<td>0x0013</td>
<td>19</td>
</tr>
<tr>
<td>Divert TOW Schedule</td>
<td>0x0014</td>
<td>20</td>
</tr>
<tr>
<td>PIN Digits</td>
<td>0x0015</td>
<td>21</td>
</tr>
<tr>
<td>PIN Rights</td>
<td>0x0016</td>
<td>22</td>
</tr>
<tr>
<td>Off Net Bar</td>
<td>0x0017</td>
<td>23</td>
</tr>
<tr>
<td>Follow on Break Out Sequence</td>
<td>0x0018</td>
<td>24</td>
</tr>
<tr>
<td>Station is Manager</td>
<td>0x0019</td>
<td>25</td>
</tr>
<tr>
<td>Speed List</td>
<td>0x001a</td>
<td>26</td>
</tr>
<tr>
<td>Divert Barred/Allowed List Type</td>
<td>0x001b</td>
<td>27</td>
</tr>
<tr>
<td>Divert Barred/Allowed List</td>
<td>0x001c</td>
<td>28</td>
</tr>
<tr>
<td>Divert Locations</td>
<td>0x001d</td>
<td>29</td>
</tr>
<tr>
<td>Break Limit</td>
<td>0x001e</td>
<td>30</td>
</tr>
<tr>
<td>LCR Old National</td>
<td>0x001f</td>
<td>31</td>
</tr>
<tr>
<td>LCR New National</td>
<td>0x0020</td>
<td>32</td>
</tr>
<tr>
<td>LCR Old International</td>
<td>0x0021</td>
<td>33</td>
</tr>
<tr>
<td>LCR New International</td>
<td>0x0022</td>
<td>34</td>
</tr>
<tr>
<td>Multi Lingual Announcements</td>
<td>0x0023</td>
<td>35</td>
</tr>
<tr>
<td>Number Lists</td>
<td>0x0024</td>
<td>36</td>
</tr>
<tr>
<td>Language</td>
<td>0x0025</td>
<td>37</td>
</tr>
<tr>
<td>Switch Configuration</td>
<td>0x0026</td>
<td>38</td>
</tr>
<tr>
<td>Virtual Message List</td>
<td>0x0027</td>
<td>39</td>
</tr>
<tr>
<td>Number Of Messages</td>
<td>0x0028</td>
<td>40</td>
</tr>
<tr>
<td>GUI Language</td>
<td>0x0029</td>
<td>41</td>
</tr>
<tr>
<td>Carrier Code</td>
<td>0x002a</td>
<td>42</td>
</tr>
<tr>
<td>Barred Categories</td>
<td>0x002b</td>
<td>43</td>
</tr>
<tr>
<td>Outgoing Barred/Allowed Ignore</td>
<td>0x002c</td>
<td>44</td>
</tr>
<tr>
<td>Incoming Barred/Allowed Ignore</td>
<td>0x002d</td>
<td>45</td>
</tr>
<tr>
<td>Divert Barred/Allowed Ignore</td>
<td>0x002e</td>
<td>46</td>
</tr>
<tr>
<td>Account Code Minimum Length</td>
<td>0x002f</td>
<td>47</td>
</tr>
<tr>
<td>Timezone Geographical Map</td>
<td>0x0030</td>
<td>48</td>
</tr>
<tr>
<td>PIN Encryption Method</td>
<td>0x0031</td>
<td>49</td>
</tr>
<tr>
<td>Silent Disconnect</td>
<td>0x0032</td>
<td>50</td>
</tr>
<tr>
<td>Postpaid Flag</td>
<td>0x0033</td>
<td>51</td>
</tr>
<tr>
<td>Hunt On Busy</td>
<td>0x0034</td>
<td>52</td>
</tr>
<tr>
<td>Hunt On No Answer</td>
<td>0x0035</td>
<td>53</td>
</tr>
<tr>
<td>Hunt Always</td>
<td>0x0036</td>
<td>54</td>
</tr>
<tr>
<td>Hunt RESERVED</td>
<td>0x0037</td>
<td>55</td>
</tr>
<tr>
<td>Help Line Address</td>
<td>0x0038</td>
<td>56</td>
</tr>
<tr>
<td>Legacy</td>
<td>0x0039</td>
<td>57</td>
</tr>
<tr>
<td>Disable</td>
<td>0x003a</td>
<td>58</td>
</tr>
<tr>
<td>VARS</td>
<td>0x003b</td>
<td>59</td>
</tr>
<tr>
<td>Description</td>
<td>Hex</td>
<td>Decimal</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>VARS Mapping</td>
<td>0x003c</td>
<td>60</td>
</tr>
<tr>
<td>Toll Free Beep ID</td>
<td>0x003d</td>
<td>61</td>
</tr>
<tr>
<td>Toll Free Beep Type</td>
<td>0x003e</td>
<td>62</td>
</tr>
<tr>
<td>Termination Number Ranges</td>
<td>0x003f</td>
<td>63</td>
</tr>
<tr>
<td>Termination Number Range Policy</td>
<td>0x0040</td>
<td>64</td>
</tr>
<tr>
<td>Control Plan Version Hiding</td>
<td>0x0041</td>
<td>65</td>
</tr>
<tr>
<td>Toll Free Beeps Required</td>
<td>0x0042</td>
<td>66</td>
</tr>
<tr>
<td>Bar Pay Phone Callers</td>
<td>0x0043</td>
<td>67</td>
</tr>
<tr>
<td>Bar Cell Phone Callers</td>
<td>0x0044</td>
<td>68</td>
</tr>
</tbody>
</table>

Note: Each service may have its own specific tags in a separate tag range.

What are the Functions of ACS?

Introduction

Calls using the ACS service will follow a control plan, and given varying circumstances will be directed to a terminating point. A control plan is effectively a flow chart defining the decisions and actions made to determine the routing of a call.

A control plan may consist of multiple different decision or action nodes called feature nodes. Each feature node has one input and a number of outputs determined by the type of feature node. The exceptions to this are the Start and End feature nodes that have only one output or one input respectively.

Each output from a feature node can lead to another feature node. The output used when exiting a feature node during call processing is determined by the functionality of that feature node. For example, a day of week feature node has multiple outputs, which are used depending on the current day of the week, and an internal customer defined mapping of the day of week to an output.

ACS CDR/EDR

Introduction

All ACS EDR information is located in the Event Detail Record Reference Guide.
Chapter 2

Security Overview

Overview

Purpose

This chapter describes the security features of the Advanced Control Services application.

In this chapter

This chapter contains the following topics.

About Secure SSL Connection to the Database ... 9
Security in ACS .. 10
Defining the Security Levels .. 11
Setting up ACS Security through SMS .. 13
Setting up ACS Security without using SMS ... 17

About Secure SSL Connection to the Database

Enabling Secure SSL Connection to the Database

NCC supports secure network logins through Secure Socket Layer (SSL) connections from the NCC UI to the database. SSL is the default method for connecting to the database when you install NCC. You can also enable SSL after installing NCC.

For information about enabling SSL connections to the database, see SMS Technical Guide.

Enabling SSL for ACS

You can access the ACS through the Services menu in the SMS UI, or you can access it directly from:

- Your Web browser by using the appropriate URL
- A Java WebStart URL
- The desktop or Start menu by using the CCP shortcut

If you access the ACS through the SMS UI and SSL is already enabled, no further action is required to enable SSL for the ACS. For information about enabling SSL on the SMS, see SMS Technical Guide.

If you access the ACS directly, enable SSL connections to the database by:

- Creating the Oracle wallet that identifies the database server on the SMS node. Its location must be specified in the listener.ora and sqlnet.ora files.
- Modifying the listener.ora file to also listen on port 2484. Use the TCPS protocol for secure SSL connections to the database.

Note: The standard Oracle listener TCP port is 1521. However, SSL connections use the standard port for the TCPS protocol, port 2484, instead. If there is a firewall between screen clients and the SMS, you must open port 2484 in the firewall.

For more information about enabling SSL by configuring the Oracle wallet and updating the listener.ora and sqlnet.ora files, see SMS Technical Guide.
The following additional configuration must be set in the `acs.jnlp` file:

- The `jnlp.sms.secureConnectionDatabaseHost` Java application property (on non-clustered systems) or the `jnlp.sms.secureConnectionClusterDatabaseHost` Java application property (on clustered systems) must specify the database connection in the CONNECT_DATA part. In addition the PROTOCOL part must be set to TCPS and the PORT part must be set to 2484.
- Set the `jnlp.sms.EncryptedSSLConnection` Java application property to true. The NCC UI connects to the database by using encrypted SSL connections by default.

Note: If you use non-SSL connections to the database, you must set `jnlp.sms.EncryptedSSLConnection` to false.

See *Java Application Properties* (on page 25) for more information.

Security in ACS

Introduction

This chapter describes the ACS security system and gives instructions for its use. ACS will always be installed as a service that is available through Service Management System, but may also be accessed directly.

ACS maintains its own security system, distinct from that of SMS.

Accessing ACS through SMS

When ACS is accessed through the Service Management System, the SMS security settings take precedence over the ACS security settings. ACS is accessed through SMS as shown below:

![Service Management System](image)

Accessing ACS directly

ACS security settings are only valid when ACS is accessed directly (that is, not through the SMS).
Accessing ACS directly displays the ACS Logon screen.

Defining the Security Levels

Introduction

The ACS security system, that applies when ACS is accessed directly, operates by assigning tiered permission levels to ACS customers, to manage the degree of access that each customer has to the features of ACS.

These permissions range from a Level 7 super user to a Level 1 user with read-only access to the system. When ACS is installed, a super user is automatically created, with full access to the system. Only one super user is allowed and cannot be deleted. Other users are created as required, with permission levels appropriate to the desired degree of access.

Note: These ACS permissions apply only when the user has accessed ACS without accessing the Service Management System screens. Any user who logs on through the SMS takes the SMS permission level associated with the SMS login used.
ACS User Privilege Levels

The diagram below shows the various user privilege levels. See Permission Levels for a description of each level.

Permission Levels

There are seven levels of security within the ACS application.

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Read only access to information for their customer.</td>
</tr>
<tr>
<td></td>
<td>● May change own password</td>
</tr>
<tr>
<td>2</td>
<td>Access of permission 1 and in addition:</td>
</tr>
<tr>
<td></td>
<td>● Change any switch feature nodes in the control plans of their customers to point to other output branches</td>
</tr>
<tr>
<td>3</td>
<td>User has access of permission 2 and in addition:</td>
</tr>
<tr>
<td></td>
<td>● Change all the feature node data in the control plans for their customers</td>
</tr>
<tr>
<td></td>
<td>● Add and remove statistics counters</td>
</tr>
<tr>
<td></td>
<td>● Edit the effective date and time and control plan used by a service number or CLI</td>
</tr>
<tr>
<td>4</td>
<td>User has access of permission 3 and in addition:</td>
</tr>
<tr>
<td></td>
<td>● Edit the structures of the control plans of their customers</td>
</tr>
<tr>
<td></td>
<td>● Add, edit and delete customer contacts</td>
</tr>
<tr>
<td></td>
<td>● Add, edit and delete authorization codes</td>
</tr>
<tr>
<td></td>
<td>● Add a second instance of a currently allocated service number or CLI</td>
</tr>
<tr>
<td></td>
<td>● Add, edit and delete private holiday and geography sets</td>
</tr>
<tr>
<td>5</td>
<td>User has access of permission 4 and in addition:</td>
</tr>
<tr>
<td></td>
<td>● Add users, delete users, change passwords and change privileges.</td>
</tr>
<tr>
<td>6</td>
<td>ACS V2 system administrator has access to add, delete and modify all aspects of ACS V2, including all public data and announcements:</td>
</tr>
<tr>
<td></td>
<td>● Add and delete customers</td>
</tr>
<tr>
<td></td>
<td>● Add and delete termination numbers</td>
</tr>
<tr>
<td></td>
<td>● Set resource allocations for users</td>
</tr>
<tr>
<td></td>
<td>● Manage other customers</td>
</tr>
</tbody>
</table>
Setting up ACS Security through SMS

Introduction

A Telco must set up SMS users for all users accessing the Service Management System. These SMS users must have a SMS security template assigned to them. All users who access the SMS use the security settings that are set up in the template assigned to them. When accessed through the SMS screens, the SMS security system takes precedence and the following steps are required.

Example:

A Telco may set up an ACS system administrator template, for users who perform a system administrator role, perhaps as a Telco help desk operator. The following example shows setting up this ACS system administrator user to access ACS through the SMS, and then having this user create an ACS customer.

Procedure

Follow these steps to set the security for a user.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Set up an SMS user, using the User tab of the SMS User Management screen.</td>
</tr>
</tbody>
</table>
Chapter 2

### Step	Action

	See SMS User's Guide for further details about the SMS screens.
	Enter and confirm a password for the new SMS user.
	When this user logs onto the SMS, the user name and password are entered into the Login dialog.
	Important: Follow this step only if you are required to create a new template for a user, which should rarely arise.
	a. Create a template for the permissions that are to be allocated to the new user. Do this on the Template Creation tab of the SMS User Management screen.
	b. Select the required permission for each ACS feature from the tree diagram in the Available Permissions list. Using the mouse, drag the selected permission to the Allocated Permissions list.
	c. The entries in the Allocated Permissions list indicate the level of access granted to any user allocated this template.
	d. Name the template and save the settings.
Step 4

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign a template to the user using the Template tab of the SMS User Management screen. Allocate the new template to the new user. The user is then granted the specific access to ACS that has been set in the Template Creation tab. To allocate a template, select the required template in the Available Templates list and click Add. The template will appear in the Allocated Templates list.</td>
</tr>
</tbody>
</table>

Note: You are able to assign any number of users to a template.

See *SMS User’s Guide* for further details about SMS screens.
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Close and restart the SMS UI.</td>
</tr>
<tr>
<td>6</td>
<td>Log in using the new user name and password.</td>
</tr>
<tr>
<td>7</td>
<td>Open the ACS Customer screen, accessed through the ACS main screen and set up an ACS customer for the SMS user. Where the allocated template gives the SMS user full access to ACS, an ACS customer may be created with ACS user permissions up to level 5. Only the ACS Boss user may create and delete ACS level 6 users. On the New Customer screen, select the Create User for Customer option, to automatically create a user for that customer.</td>
</tr>
</tbody>
</table>
This same user may also need to have set up for them an ACS system administrator user. The Telco will set up a level 6 user, who has full access to the ACS system but cannot add or delete other level 6 users. This will be for direct access to ACS and may be achieved as shown in the example below.

Setting up ACS Security without using SMS

Introduction

When ACS is not accessed through the Service Management System UI, the SMS security system does not apply.
Procedure

Follow these steps to set the security for a level 6 user.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enter the ACS screens as the Boss user (permission level 7). Set up a new ACS customer, using the Customer tab of the ACS Customer screen. See ACS User's Guide for further details about the ACS screens.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Select the new customer from the list at the top of the ACS Customer screen. Using the User tab, create a user for the new customer, with Permission Level 6.</td>
</tr>
<tr>
<td>Step</td>
<td>Action</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>3</td>
<td>The customer may then log in directly, and with full access, to ACS (without having access to the SMS screens) using this user and password, in this example created using the Users tab of the ACS Customer screen.</td>
</tr>
</tbody>
</table>
Chapter 3

Configuring the Environment

Overview

Purpose

This chapter describes the steps required to configure ACS.

Configuration file

Many ACS tools and processes depend on a shared configuration file. This file `acs.conf` is located in the `$ACS_ROOT/etc` directory. The configuration file consists of several sections named for the executable they control. Each section contains a name value pair representing a single configuration option.

If the operator changes the `acs.conf` file, the corresponding service needs to be restarted, so that the configuration file is reread and the changes take effect.

Final configuration

It is important to complete the final configuration of ACS after this chapter. See ACS User's Guide - Setting up ACS for the First Time.

In this chapter

This chapter contains the following topics.

Configuring the Environment ... 21
Defining the Screen Language .. 22
Defining the Help Screen Language .. 24
Setting up the Screens .. 25

Configuring the Environment

Setting the ACS Root Directory

The ACS installation depends on a single environment variable to determine the location of the configuration and other support files.

If the software is not installed in the default location, the UNIX system accounts used to execute the service logic and ancillary tools must have this environment variable defined.

The ACS_ROOT variable will only need to be modified if you intend to manually configure two ACS installations side-by-side on the same machine.

Important: This should only be done in consultation with a qualified Oracle engineer.

If you are not required to manually configure two ACS installations, side-by-side, on the same machine the ACS_ROOT variable does not need to be set.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS_ROOT</td>
<td>/IN/service_packages/ACS</td>
<td>ACS installation base directory</td>
</tr>
</tbody>
</table>
ACS_ROOT

Description: The ACS installation base directory
Type: String
Optionality: Optional (default used if not set).
Default: /IN/service_packages/ACS

Oracle Variables

The ACS account (acs_oper) requires the standard ORACLE environment variables to be present.

Oracle usr/pwd String

While it is possible to specify the usr/pwd string a process uses to connect to Oracle, it is recommended to use the defaults.

Most ACS processes are run by the UNIX user acs_oper. The OPS$ACS_OPER Oracle operator account corresponds to acs_oper. This allows acs_oper to log on to oracle as OPS$ACS_OPER without specifying a user name or password (that is, the process uses the default of "/"). A separate Oracle password is not needed for OPS$ACS_OPER because it is, in Oracle terms, identified externally.

Configuration Files

ACS is configured by the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Locations</th>
<th>Description</th>
<th>Further Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>acs.conf</td>
<td>all SMSs and VWSs in the $(ACS_ROOT)/etc directory</td>
<td>This file consists of several sections named for the ACS executable they control. There are different configuration options in the acs.conf on the SMS to the configuration options in the acs.conf on the SLC.</td>
<td>Configuring the acs.conf (on page 73)</td>
</tr>
<tr>
<td>SLEE.cfg</td>
<td>all SLCs</td>
<td>This file sets up SLEE interfaces and applications.</td>
<td>SLEE Technical Guide</td>
</tr>
<tr>
<td>eserv.config</td>
<td>all SMSs and VWSs</td>
<td>ACS has some additional configuration in the ACS section of eserv.config.</td>
<td>eserv.config Configuration (on page 45)</td>
</tr>
</tbody>
</table>

Defining the Screen Language

Introduction

The default language file sets the language that the Java administration screens start in. The user can change to another language after logging in.

The default language can be changed by the system administrator.

By default, the language is set to English. If English is your preferred language, you can skip this step and proceed to the next configuration task, Defining the Help Screen Language (on page 24).
Default.lang

When ACS is installed, a file called Default.lang is created in the application’s language directory in the screens module. This contains a soft-link to the language file that defines the language that will be used by the ACS UI.

If a Default.lang file is:

- Not present, the English.lang file will be used
- Present, a user must explicitly set their language to their required language in the Tools screen or the default language will be used

The ACS Default.lang file is located in the /IN/html/Acs_Service/language/ directory.

Example Screen Language

If Dutch is the language you want to set as the default, create a soft-link from the Default.lang file to the Dutch.lang file.

Procedure

Follow these steps to set the default language for your ACS user interface (UI).

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | Go to the /IN/html/Acs_Service/language directory.
 Example command:
 `cd /IN/html/Acs_Service/language` |
| 2 | Ensure the Default.lang file exists in this directory. |
| 3 | If the required file does not exist, create an empty file called Default.lang. |
| 4 | Ensure that the language file for your language exists in this directory. The file should be in the format:
 `language.lang`
 Where:
 `language` is your language.
 Example:
 `Spanish.lang` |
| 5 | If the required language file does not exist, perform one of the following actions:
 - Create a new one with your language preferences
 - Contact Oracle support.
 To create a language file, you will need a list of the phrases and words used in the screens. These should appear in a list with the translated phrase in the following format:
 `original phrase=translated phrase`
 Any existing phrase file should have the full set of phrases. If you do not have an existing file to work from, contact Oracle support. |
| 6 | Create a soft link between the Default.lang file, and the language file you want to use as the default language for the SMS UI.
 Example command:
 `ln -s Dutch.lang Default.lang` |
Defining the Help Screen Language

Introduction

The default Helpset file sets the language that the help system for the Java Administration screens start in. The user can change to another language after logging in.

The default language can be changed by the system administrator. By default, the language is set to English.

Default_Acs_Service.hs

When ACS is installed, a file called Default_Acs_Service.hs is created in the application's language directory in the screens module. This contains a soft-link to the language file which defines the language that will be used by the ACS UI.

If a Default_Acs_Service.hs file is:

- Not present, the English_Acs_Service.hs file will be used.
- Present, a user must explicitly set their language to their required language in the Tools screen or the default language will be used.

The Default_Acs_Service.hs file is located in the /IN/html/Acs_Service/helptext/ directory.

Example Helpset Language

If Dutch is the language you want to set as the default, create a soft-link from the Default_Acs_Service.hs file to the Dutch_Acs_Service.hs file.

Procedure

Follow these steps to set the default language for your ACS user interface (UI).

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1 | Go to the /IN/html/Acs_Service/helptext directory.
Example command:
cd /IN/html/Acs_Service/helptext |
| 2 | Check to see if the Default_Acs_Service.hs file exists in this directory. |
| 3 | If the required file does not exist, create an empty file called Default_Acs_Service.hs. |
| 4 | Check if the language file for your language exists in this directory. The file should be in the format:
language_Acs_Service.hs
Where:
language is your language.
Example:
Dutch_Acs_Service.hs |
| 5 | If the required language file does not exist, perform one of the following actions:
- Create a new one with your language preferences
- Contact Oracle support
To create a language file, you will need a list of the phrases and words used in the screens. These should appear in a list with the translated phrase in the following format:
original_phrase=translated_phrase
Any existing language file should have the full set of phrases. If you do not have an existing file to work from, contact Oracle support.
Create a soft link between the Default_Acs_Service.hs file, and the language file you want to |
use as the default language for the ACS UI.

Example command:

```bash
ln -s Dutch_Acs_Service.hs Default_Acs_Service.hs
```

Setting up the Screens

Accessing ACS

There are several ways to access the ACS user interface (UI). For example:

- Use Java WebStart by entering the following URL in a Web browser:

  ```
  http://SMS_hostname/acs.jnlp
  ```

- Open the Service Management System application, and then select **ACS Service** from the Services menu.

- Enter the following at the Windows command line:

  ```bash
  c:\> javaws http://SMS_hostname/acs.jnlp
  ```

 Where `SMS_hostname` is the hostname of an SMS in the IN.

For more information about the ACS UI, see *ACS User’s Guide*.

About Customizing the ACS UI

You can customize the ACS UI by setting Java application properties in the following files located in the `/IN/html/` directory:

- `acs.jnlp`
- `sms.jnlp`

You use the following syntax to set a Java application property in the `acs.jnlp` or the `sms.jnlp` file:

```xml
<property name="property" value="value" />
```

Where:

- `property` is the name of the Java application property
- `value` is the value to which that property is set

Important: Some Java application properties may be set in both the `acs.jnlp` file and in the `sms.jnlp` file. You must specify the same value in both files.

Java Application Properties

The following application properties are available to customize the UI:

jnlp.acs.ACSDefaultCustomerIsPrepaid

Syntax:

```xml
<property name="jnlp.acs.ACSDefaultCustomerIsPrepaid" value="value" />
```

Description: Specifies whether the ACS New Customer screen has the Prepaid Charging Customer check box selected by default.

Type: String

Optionality: Optional
Allowed:
 - True
 - t(rue)
 - Yes
 - y(es)
 - 1

All other values are considered to be false.

Default: True

Notes: If set to:
 - True – The Prepaid Charging Customer check box is selected by default.
 - False – The Prepaid Charging Customer check box is cleared by default.

Example:
<property name="jnlp.acs.ACSDefaultCustomerIsPrepaid" value="True" />

jnlp.acs.ACSStartScreenVersion

Syntax:
<property name="jnlp.acs.ACSStartScreenVersion" value="num" />

Description: This property is provided for backwards compatibility only. It allows you to display the version of the ACS main screen for releases prior to NCC release 5.0.3. The current version of the ACS main screen is displayed by default.

Type: String
Optionality: Optional
Allowed:
 - 1 – The version of the ACS main screen for releases prior to NCC release 5.0.3 is displayed that includes the Events button. The ACS events feature is now deprecated. Use this setting only if you want to access existing events configuration in ACS.
 - Not set – The current version of the ACS main screen is displayed.

Default: Not set

Notes: This property is provided for backwards compatibility.

Example:
<property name="jnlp.acs.ACSStartScreenVersion" value="1" />

jnlp.acs.allowCallPlanSchedulingInPast

Syntax:
<property name="jnlp.acs.allowCallPlanSchedulingInPast" value="value" />

Description: Specifies whether control plans can be scheduled to start in the past.

Type: String
Optionality: Optional
Allowed:
 - True
 - t(rue)
 - Yes
 - y(es)
 - 1

All other values are considered to be false.

Default: False

Notes: If set to:
 - True – Control plans can be scheduled to start in the past.
 - False – Control plans cannot be scheduled to start in the past.

Example:
<property name="jnlp.acs.allowCallPlanSchedulingInPast" value="t" />
jnlp.acs.allowRefInCustCombo
Syntax: <property name="jnlp.acs.allowRefInCustCombo" value="value" />
Description: Specifies whether users can perform searches in the ACS UI by using the customer reference number rather than the customer name.
Type: String
Optionality: Optional
Allowed: • True
• t(true)
• Yes
• y(es)
• 1
All other values are considered to be false.
Default: False
Notes: If set to:
• True – Allows searches using the customer reference number only.
• False – Requires searches to include a customer name along with a customer reference number.
Example: <property name="jnlp.acs.allowRefInCustCombo" value="t" />

jnlp.acs.autoCloseCompileDialog
Syntax: <property name="jnlp.acs.autoCloseCompileDialog" value="value" />
Description: Specifies whether the CPE compiler report closes automatically after a control plan compiles successfully.
Type: String
Optionality: Optional
Allowed: • True
• t(true)
• Yes
• y(es)
• 1
All other values are considered to be false.
Default: False
Notes: If set to:
• True – The CPE compiler report closes automatically after a control plan compiles successfully.
• False – The CPE compiler report remains open after a control plan compiles successfully.
Example: <property name="jnlp.acs.autoCloseCompileDialog" value="t" />

jnlp.acs.autoCloseCPE
Syntax: <property name="jnlp.acs.autoCloseCPE" value="value" />
Description: Specifies whether the Control Plan Editor closes automatically after a control plan compiles successfully.
Type: String
Optionality: Optional
Allowed:
- True
- t(rue)
- Yes
- y(es)
- 1

All other values are considered to be false.

Default: False
Notes: If set to:
- True – The CPE closes automatically after a control plan compiles successfully.
- False – The CPE remains open after a control plan compiles successfully.

Example:

<jproperty name="jnlp.acs.autoCloseCPE" value="t" />

jnlp.sms.clusterDatabaseHost

Syntax:

<jproperty name="jnlp.sms.clusterDatabaseHost" value = "(DESCRIPTION= (LOAD_BALANCE=YES) (FAILOVER=ON) (ENABLE=BROKEN) (ADDRESS_LIST=(ADDRESS=(PROTOCOL=type) (HOST=name) (PORT=port)) (ADDRESS=(PROTOCOL=type) (HOST=name) (PORT=port))) (CONNECT_DATA=(SERVICE_NAME=SMF) (FAILOVER_MODE=(TYPE=SESSION) (METHOD=BASIC) (RETRIES=5) (DELAY=3)))" />

Description: Specifies the connection string (including a host and an alternative host address, in case the first IP address is unavailable) for non-SSL cluster-aware connection to the database.

To use non-SSL connections to the database, set the jnlp.sms.EncryptedSSLConnection property to false.

Type: String
Optionality: Optional
Allowed:
Default: By default, port is set to 1521.
Notes: If present, this property is used instead of the jnlp.sms.databaseID property.

Example:

<jproperty name="jnlp.sms.clusterDatabaseHost" value = "(DESCRIPTION= (LOAD_BALANCE=YES) (FAILOVER=ON) (ENABLE=BROKEN) (ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP) (HOST=smsphysnode1) (PORT=1521))) (ADDRESS=(PROTOCOL=TCP) (HOST=smsphysnode2) (PORT=1521))) (CONNECT_DATA=(SERVICE_NAME=SMF) (FAILOVER_MODE=(TYPE=SESSION) (METHOD=BASIC) (RETRIES=5) (DELAY=3)))" />

jnlp.acs.connectionsDialog

Syntax:

<jproperty name="jnlp.acs.connectionsDialog" value="value" />

Description: Specifies whether the Control Plan Editor displays the Manage Node Exits dialog box when you hold down the Shift key while dragging the mouse to connect a feature node exit to a feature node entry.

Type: String
Optionality: Optional (default used if not set)
Allowed:
 - shown – CPE displays the Manage Node Exits dialog box.
 - hidden – CPE does not display the Manage Node Exits dialog box.

Default: shown

Notes:

Example: <property name="jnlp.acs.connectionsDialog" value="hidden" />

jnlp.acs.cpeLineDrawingMechanism

Syntax:
 <property name="jnlp.acs.cpeLineDrawingMechanism" value="connection_type" />

Description: Specifies the type of connector lines that the Control Plan Editor displays. You use connector lines to connect feature nodes in control plans. Connector lines can be angled or straight lines:
 - Angled connector lines bend around feature nodes where possible instead of crossing over them. Angled connector lines are colored when highlighted.
 - HV connector lines use a combination of horizontal and vertical lines to connect feature nodes and may cross over other feature nodes. HV connector lines can be black or colored when highlighted.

Type: String

Optionality: Optional

Allowed:
 - ColouredNodeConnectionDrawer – The CPE displays connectors as angled lines that are colored when highlighted.
 - HVNodeConnectionDrawer – The CPE displays connectors as horizontal and vertical lines that are black.
 - ColouredHVNodeConnectionDrawer – The CPE displays horizontal and vertical lines that are colored when highlighted.

Default: ColouredNodeConnectionDrawer

Notes:

Example: <property name="jnlp.acs.cpeLineDrawingMechanism" value="HVNodeConnectionDrawer" />

jnlp.sms.database

Syntax:
 <property name="jnlp.sms.database" value="SMF" />

Description: Specifies the Oracle SID for the SMF database.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: SMF

Notes:

Example: <property name="jnlp.sms.database" value="SMF" />
jnlp.sms.databaseHost

Syntax:
<property name="jnlp.sms.databaseHost" value = "ip:port:sid" />

Description: Sets the IP address and port to use for non-SSL connections to the SMF database, and the database SID.

- To use non-SSL connections to the database, set port to 1524 and the jnlp.sms.EncryptedSSLConnection property to false.
- To use SSL connections to the database, set the jnlp.sms.EncryptedSSLConnection property to true and set either the jnlp.sms.secureConnectionDatabaseHost property or the jnlp.sms.secureConnectionClusterDatabaseHost property appropriately. When the jnlp.sms.EncryptedSSLConnection property is set to true or is undefined, jnlp.sms.databaseHost is ignored.

Type: String
Optionality: Optional
Allowed:
Default: Not set. Secure SSL connection is enabled at installation by default.
Notes: Internet Protocol version 6 (IPv6) addresses must be enclosed in square brackets []; for example: [2001:db8::n:n:n:n:n] where n is a group of 4 hexadecimal digits. The industry standard for omitting zeros is also allowed when specifying IP addresses.

Examples:
<property name="jnlp.sms.databaseHost" value = "192.0.2.1:2484:SMF" />
<property name="jnlp.sms.databaseHost" value = "[2001:db8:0:0:0:500:300a:326f]:2484:SMF" />
<property name="jnlp.sms.databaseHost" value = "[2001:db8::c3]:2484:SMF" />

jnlp.sms.databaseID

Syntax:
<property name="jnlp.sms.databaseID" value="port:sid" />

Description: Specifies the SQL*Net port for connecting to the database, and the database SID.

Type: String
Optionality: Required
Allowed:
Default: 1521:SMF
Notes:
- To use non-SSL connections to the database, set port to 1521 and the jnlp.sms.EncryptedSSLConnection property to false.
- To use SSL connections to the database, set the jnlp.sms.EncryptedSSLConnection property to true and set either the jnlp.sms.secureConnectionDatabaseHost property or the jnlp.sms.secureConnectionClusterDatabaseHost property appropriately. When the jnlp.sms.EncryptedSSLConnection property is set to true or is undefined, jnlp.sms.databaseID is ignored.

Example:
<property name="jnlp.sms.databaseID" value="1521:SMF" />
jnlp.sms.dbPassword
Syntax: <property name="jnlp.sms.dbPassword" value="password" />
Description: Specifies the database password. This password is for a special database user that the ACS Logon screen uses before the user logs in. This property is set during installation and is then not changed.
Type: String
Optionality: Optional (default used if not set)
Allowed: Default: acs_public
Notes: Do not change this value.
Example: <property name="jnlp.sms.dbPassword" value="acs_public" />

jnlp.sms.dBUser
Syntax: <property name="jnlp.sms.dBUser" value="user" />
Description: Specifies the database user name. This is a special database user that the ACS Logon screen uses before the user logs in. This property is set during installation and is then not changed.
Type: String
Optionality: Optional (default used if not set)
Allowed: Default: acs_public
Notes: Do not change this value.
Example: <property name="jnlp.sms.dBUser" value="acs_public" />

jnlp.acs.defaultTelcoManaged
Syntax: <property name="jnlp.acs.defaultTelcoManaged" value="value" />
Description: Specifies whether new ACS customer accounts are marked as being managed by a Telecommunications Operator (telco) by default. Telco-managed customers are customers that never log into ACS but are managed explicitly (and without resource limits) by the telco.
This property controls whether the Managed Customer check box is selected in the ACS New Customer Details dialog box by default.
Type: String
Optionality: Optional
Allowed: True
t(rue)
Yes
y(es)
1
All other values are considered to be false.
Default: True
Notes: If set to:
 • True – The Managed Customer check box is selected by default.
 • False – The Managed Customer check box is clear by default.
Example: <property name="jnlp.acs.defaultTelcoManaged" value="f" />
jnlp.sms.EncryptedSSLConnection

Syntax:
<property name="jnlp.sms.EncryptedSSLConnection" value = "value" />

Description: Specifies whether connections to the client UI use encrypted SSL.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true – Use encrypted SSL connections to access the client UI.
false – Use non-SSL connections to access the client UI.

Default: true

Notes:
- To use SSL connections to the database, set the jnlp.sms.EncryptedSSLConnection property to true and set either the jnlp.sms.secureConnectionDatabaseHost property or the jnlp.sms.secureConnectionClusterDatabaseHost property appropriately.
- To use non-SSL connections to the database, set the jnlp.sms.EncryptedSSLConnection property to false.

Example:
<property name="jnlp.sms.EncryptedSSLConnection" value = "true" />

jnlp.sms.host

Syntax:
<property name="jnlp.sms.host" value="IPaddress" />

Description: Specifies the Internet Protocol (IP) address for the SMS host machine that is set at installation.

Type: String

Optionality: Required

Allowed: • IP version 4 (IPv4) addresses
• IP version 6 (IPv6) addresses

Default: No default

Notes: You can use the industry standard for omitting zeros when specifying IP addresses.

Examples:
<property name="jnlp.sms.host" value="192.0.2.0" />
<property name="jnlp.sms.host" value="2001:db8:0000:1050:0005:0600:300c:326b" />
<property name="jnlp.sms.host" value="2001:db8:0:0:500:300a:326f" />
<property name="jnlp.sms.host" value="2001:db8::c3" />

jnlp.acs.issuePCClockWarning

Syntax:
<property name="jnlp.acs.issuePCClockWarning" value = "value" />

Description: Specifies whether a warning is raised when the user's PC clock time is more than two minutes faster or slower than the SMS platform's clock time.

Type: String

Optionality: Optional

Allowed: • True
• true
• Yes
• yes

32 ACS Technical Guide
• 1
All other values are considered to be false.

Default: True
Notes: If set to:
• True – A warning is raised.
• False – A warning is not raised.

Example: `<property name="jnlp.acs.issuePCClockWarning" value="t" />

jnlp.sms.logo
Syntax: `<property name="jnlp.sms.logo" value="file" />
Description: Specifies the logo displayed on the splash screen immediately before the ACS Logon screen appears.
At installation, the property is set to an Oracle logo GIF file.
Type: String
Optionality: Optional
Allowed: A valid network path and filename.
Default: None
Notes:
Example: `<property name="jnlp.sms.logo" value="SMS/images/oracle.gif" />

jnlp.acs.MAX_CONTROL_PLANS_DISPLAYED
Syntax: `<property name="jnlp.acs.MAX_CONTROL_PLANS_DISPLAYED" value="num" />
Description: Specifies the maximum number of control plans that can be displayed in the search results section of an ACS UI dialog box.
Type: String
Optionality: Optional
Allowed: 1 through 999
Default: 200
Notes:
Example: `<property name="jnlp.acs.MAX_CONTROL_PLANS_DISPLAYED" value="200" />

jnlp.acs.maximiseAcsScreens
Syntax: `<property name="jnlp.acs.maximiseAcsScreens" value="value" />
Description: Specifies whether the windows in the ACS UI are opened at maximum size or optimum size.
Type: String
Optionality: Optional
Allowed:
• True
• t(ue)
• Yes
• y(es)
All other values are considered to be false.

Default: False

Notes: If set to:
- True – The windows in the ACS UI are opened at maximum size.
- False – The windows in the ACS UI are opened at optimum size.

Example: `<property name="jnlp.acs.maximiseAcsScreens" value="t" />

jnlp.acs.paletteStyle

Syntax: `<property name="jnlp.acs.paletteStyle" value="value" />

Description: Specifies the style used to display the feature palette in the Control Plan Editor window. There are two possible feature palette styles:
- The floating panel style feature palette displays feature group names in a list, and the feature nodes within a selected group in a floating panel. The floating panel style enables you to quickly locate a feature node in the palette by using the Search Palette feature to filter the available feature nodes.
- The static panel style feature palette displays an expandable list of feature node groups from which you select individual feature nodes in a static panel. The Search Palette feature is not available with this style.

Type: String

Optionality: Optional

Allowed:
- old – Sets the feature palette to the static panel style.
- Not set – Sets the feature palette to the floating panel style.

Default: Floating panel style

Notes: To enable the jnlp.acs.paletteStyle property, clear the Java cache and the client browser cache before restarting the Control Plan Editor.

Example: `<property name="jnlp.acs.paletteStyle" value="old" />

jnlp.sms.port

Syntax: `<property name="jnlp.sms.port" value="num" />

Description: Specifies the SQL*Net port for connecting to the SMS host machine.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: 1521

Default: 1521

Notes: Set at installation

Example: `<property name="jnlp.sms.port" value="1521" />

jnlp.acs.ProfileN

Syntax: `<property name="jnlp.acs.Profilenumber" value="new_name"/>

Description: Specifies to suppress or change the name of any of the 20 profile blocks.

Type: String

Optionality: Optional

Allowed: $1 \leq \textit{number} \leq 20$

\textit{new_name} is one of the following:
– (dash): The profile block is not displayed in screens.

String comprising any printable characters.

Default: The following table lists default profile block names in the order in which they appear in feature node drop-down lists.

<table>
<thead>
<tr>
<th>Profile</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile1</td>
<td>VPN Network Profile</td>
</tr>
<tr>
<td>Profile2</td>
<td>VPN Station Profile</td>
</tr>
<tr>
<td>Profile3</td>
<td>Customer Profile</td>
</tr>
<tr>
<td>Profile4</td>
<td>Control Plan Profile</td>
</tr>
<tr>
<td>Profile5</td>
<td>Global Profile</td>
</tr>
<tr>
<td>Profile6</td>
<td>CLI Subscriber Profile</td>
</tr>
<tr>
<td>Profile7</td>
<td>Service Number Profile</td>
</tr>
<tr>
<td>Profile8</td>
<td>App Specific 1</td>
</tr>
<tr>
<td>Profile9</td>
<td>App Specific 2</td>
</tr>
<tr>
<td>Profile10</td>
<td>App Specific 3</td>
</tr>
<tr>
<td>Profile11</td>
<td>App Specific 4</td>
</tr>
<tr>
<td>Profile12</td>
<td>App Specific 5</td>
</tr>
<tr>
<td>Profile13</td>
<td>App Specific 6</td>
</tr>
<tr>
<td>Profile14</td>
<td>App Specific 7</td>
</tr>
<tr>
<td>Profile15</td>
<td>App Specific 8</td>
</tr>
<tr>
<td>Profile16</td>
<td>Any Valid Profile</td>
</tr>
<tr>
<td>Profile17</td>
<td>Temporary Storage</td>
</tr>
<tr>
<td>Profile18</td>
<td>Call Context</td>
</tr>
<tr>
<td>Profile19</td>
<td>Outgoing Extensions</td>
</tr>
<tr>
<td>Profile20</td>
<td>Incoming Extensions</td>
</tr>
</tbody>
</table>

Notes:

- If VPN is not installed, Profile1 and Profile2 are suppressed by default.
- If Charging Control Services is installed, profile block names associated with Profile8 through Profile15 are changed automatically. For more information, see CCS Technical Guide.
- If RCA is not installed, Profile19 and Profile20 are suppressed by default. You can make them available by installing RCA or by appending them to the sms.jnlp file.
- Feature nodes with writable fields cannot write into Profile16.

Examples:

```xml
<property name="Profile1" value="-" />
<property name="Profile6" value="Originating CLI" />
```

jnlp.acs.requireCustomerReference

Syntax: `<property name="jnlp.acs.requireCustomerReference" value="value" />

Description: Specifies whether a customer reference number is mandatory for each ACS customer that is created.
jnlp.acs.requireCustomerReference

<table>
<thead>
<tr>
<th>Type:</th>
<th>String</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optionality:</td>
<td>Optional</td>
</tr>
</tbody>
</table>
| Allowed: | - True
| | - true
| | - Yes
| | - yes
| | - 1 |

All other values are considered to be false.

Default: True

Notes: If set to:
- True – Customer reference numbers are mandatory for newly created ACS customers.
- False – Customer reference numbers are optional for newly created ACS customers.

Example:

```
<property name="jnlp.acs.requireCustomerReference" value="f"/>
```

jnlp.acs.scfs

| Syntax: | `<property name="jnlp.acs.scfs" value="scfn" />` |
| Description: | Lists the network entities that are available for handover. The names listed in this section are used by the following feature nodes: TCAP Handover (as the SCP Name list) and RIMS MAP Query and IS41 Query (as the Return Address for mapping the SCCP Calling Party Address) |

Type: String

Optionality: Optional. However, the TCAP Handover feature node must have at least one scf to work.

Allowed: Any scf name configured in the `acs.conf` file. See `acsChassis SSF Configuration (SLC)` (on page 137).

Default: None

Notes: For every `jnlp.acs.scfs` property in the JNLP file, you must create a matching `scf` entry in the `acs.conf` file on each SLC defining the address associated with this entry.

Example:

```
<property name="jnlp.acs.scfs" value="SCF_Name1,SCF_Name2" />
```

jnlp.acs.SDRfastTimeoutDefault

| Syntax: | `<property name="jnlp.acs.SDRfastTimeoutDefault" value="secs" />` |
| Description: | Specifies the default fast timeout period, in seconds, for the Selection Dependent Routing feature node. If the specified timeout period expires before a customer enters a digit on their telephone keypad, the feature node exits. You can use this feature, for example, to connect calls directly to the operator after timing out. |

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 10

Notes:

Example:

```
<property name="jnlp.acs.SDRfastTimeoutDefault" value="5" />
```
jnlp.sms.secureConnectionDatabaseHost

Syntax: <property name="jnlp.sms.secureConnectionDatabaseHost" value = "" (DESCRIPTION= (ADDRESS_LIST=(ADDRESS=(PROTOCOL=type) (HOST=IPaddress) (PORT=port))) (CONNECT_DATA=(SERVICE_NAME=servicename)))" />

Description: Specifies the connection string (including host address and port) for encrypted SSL connections to the SMF database on a non-clustered system.
To use SSL connections to the database, set port to 2484 and set the jnlp.sms.EncryptedSSLConnection property to true.

Type: String
Optionality: Optional (default used if not set)
Allowed:
Default:
Notes: If present, this property is used instead of the jnlp.sms.databaseID property.
Example: <property name="jnlp.sms.secureConnectionDatabaseHost" value = "" (DESCRIPTION= (ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCPS)(HOST=192.0.1.1) (PORT=2484))) (CONNECT_DATA=(SERVICE_NAME=SMF)))" />

jnlp.sms.secureConnectionClusterDatabaseHost

Syntax: <property name="jnlp.sms.secureConnectionClusterDatabaseHost" value = "" (DESCRIPTION= (ADDRESS_LIST=(ADDRESS=(PROTOCOL=type) (HOST=IPaddress) (PORT=port)) (ADDRESS=(PROTOCOL=type) (HOST=IPaddress) (PORT=port)) (CONNECT_DATA=(SERVICE_NAME=servicename)))" />

Description: Specifies the connection string (including host address and port) for encrypted SSL connections to the SMF database on a clustered system.
To enable secure SSL connections to the database, set port to 2484 and set the jnlp.sms.EncryptedSSLConnection property to true.

Type: String
Optionality: Optional (default used if not set)
Allowed:
Default:
Notes: If present, this property is used instead of the jnlp.sms.secureConnectionDatabaseHost property.
Example: <property name="jnlp.sms.secureConnectionClusterDatabaseHost" value = "" (DESCRIPTION= (ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCPS)(HOST=192.0.1.1) (PORT=2484)) (ADDRESS=(PROTOCOL=TCP)(HOST=192.0.2.1)(PORT=2484))) (CONNECT_DATA=(SERVICE_NAME=SMF)))" />

jnlp.acs.showAnnouncementSource

Syntax: <property name="jnlp.acs.showAnnouncementSource" value = "value" />

Description: Specifies whether announcement sources (i.e., the resource name and resource ID) are displayed next to announcement names in ACS UI windows.
Type: String
Optionality: Optional
Allowed:
 • TRUE
 • true
 • YES
 • yes
 • Y
 • y

All other values are considered to be false.

Default: True
Notes: If set to:
 • True – Announcement sources are displayed.
 • False – Announcement sources are not displayed.

Example: <property name="jnlp.acs.showAnnouncementSource" value="f" />

jnlp.acs.showCallPlanCopy
Syntax: <property name="jnlp.acs.showCallPlanCopy" value="value" />
Description: Specifies whether the Copy button is enabled on the ACS Numbers screen.
Type: String
Optionality: Optional
Allowed:
 • True
 • t(rue)
 • Yes
 • y(es)
 • 1

All other values are considered to be false.

Default: True
Notes: If set to:
 • True – The Copy button is enabled.
 • False – The Copy button is disabled.

Example: <property name="jnlp.acs.showCallPlanCopy" value="f" />

jnlp.acs.showNetwork
Syntax: <property name="jnlp.acs.showNetwork" value="value" />
Description: Specifies whether the Network field is displayed in the ACS New Customer dialog box.
Type: String
Optionality: Optional
Allowed:
 • True
 • t(rue)
 • Yes
 • y(es)
 • 1

All other values are considered to be false.

Default: True
Notes:
If set to:

- **True** – The **Network** field is displayed.
- **False** – The **Network** field is not displayed.

Example:

```
<property name="jnlp.acs.showNetwork" value="f" />
```

jnlp.acs.ssfs

Syntax:

```
<property name="jnlp.acs.ssfs" value="ssf1,ssf2,...,ssfn" />
```

Description:

Lists the switches that are available in the IN network.

The switches listed in this section are used by the Call Initiation feature node (as the switch name list).

Type: String

Optionality: Optional. However, the Call Initiation feature node must have at least one scf to work.

Allowed: Any ssf name configured in the **acs.conf** file. See **acsChassis SSF Configuration (SLC)** (on page 137).

Default: None

Notes:

Example:

```
<property name="jnlp.acs.ssfs" value="SSF_Name1,SSF_Name2" />
```

jnlp.sms.sslCipherSuites

Syntax:

```
<property name = "jnlp.sms.sslCipherSuites" value="(TLS_RSA_WITH_AES_128_CBC_SHA)" />
```

Description:

Specifies the cipher suites to use for SSL encryption. You must set this property if you are using encrypted SSL for connecting to the SMS database.

Type: String

Optionality: Optional (default used if not set)

Allowed:

- (TLS_RSA_WITH_AES_128_CBC_SHA)

Default: (TLS_RSA_WITH_AES_128_CBC_SHA)

Notes:

You must also set the **SSL_CIPHER_SUITES** property to (TLS_RSA_WITH_AES_128_CBC_SHA) in the **listener.ora** and **sqlnet.ora** files.

Example:

```
<property name = "jnlp.sms.sslCipherSuites" value="(TLS_RSA_WITH_AES_128_CBC_SHA)" />
```

jnlp.acs.suppressedSDRDigits

Syntax:

```
<property name="jnlp.acs.suppressedSDRDigits" value="digits" />
```

Description:

The Selection Dependent Routing feature node allows you to route calls based on the number, letter, or special character entered on the caller's telephone keypad.

You use the **jnlp.acs.suppressedSDRDigits** property to prevent users from assigning specified digits to a calling route and to exclude those digits from the Configure Selection Dependent Routing dialog box of the ACS Control Plan Editor.

Type: String

Optionality: Optional

Allowed:

- Numbers ranging from 0 (zero) through 9
- Letters ranging from A through F
- Special characters * and #
Default: None
Notes:
Example: <property name="jnlp.acs.suppressedSDRDigits" value="l2ab" />

jnlp.acs.SuppressTagID
Syntax: <property name="jnlp.acs.SuppressTagID" value="value" />
Description: Specifies to not include the profile tag value when displaying a profile field name in the ACS Control Plan Editor.
For example, when jnlp.acs.SuppressTagID is set to:
 * true – The profile tag 196613 displays the name "PIN Prefix"
 * false – The profile tag 196613 displays the name "PIN Prefix (196613)"
Type: Boolean
Optionality: Optional
Allowed:
 * True
 * t(ue)
 * Y(es)
 * y(es)
 * 1
All other values are considered to be false
Default: True
Notes:
Example: <property name="jnlp.acs.SuppressTagID" value="True" />

jnlp.trace
Syntax: <property name="jnlp.trace" value="value" />
Description: Specifies whether to enable tracing for the Control Plan Editor. The output is displayed in the Java Console.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: on | off, true | false, yes | no, 1 | 0, enabled | disabled
Default: Off
Notes:
Example: <property name="jnlp.trace" value="on" />

jnlp.sms.TZ
Syntax: <property name="jnlp.sms.TZ" value="timezone" />
Description: Specifies the time zone used for all time and date values displayed in NCC UI windows.
Type: String
Optionality: Optional (default used if not set)
Allowed: Any Java supported time zone.
Default: GMT
Notes: For a full list of Java supported time zones, see Time Zones (on page 205).
Example: <property name="jnlp.sms.TZ" value="GMT" />
jnlp.acs.updateCPReferences

Syntax: <property name="jnlp.acs.updateCPReferences" value="value" />

Description: When you update a control plan, the Control Plan Editor creates a new version of the control plan. If any customers are scheduled to use the older version of the control plan, the customers' service numbers or CLIs remain attached to the older version by default. This property specifies whether you can attach customers' service numbers or CLIs to the new control plan version.

Type: String
Optionality: Optional
Allowed:
 - True
 - t(ue)
 - Yes
 - y(es)
 - 1

All other values are considered to be false.

Default: None

Notes:
 - True – After an updated control plan compiles successfully, the Control Plan Editor prompts you to select the service numbers or CLIs to attach to the new control plan version.
 - False – The existing service numbers or CLIs remain attached to the older version of the content plan.

Example: <property name="jnlp.acs.updateCPReferences" value="t" />

jnlp.ccs.UseAnnouncements

Syntax: <property name="jnlp.ccs.UseAnnouncements" value="value" />

Description: Specifies whether to play announcements.

Type: String
Optionality: Optional
Allowed:
 - True
 - t(ue)
 - Yes
 - y(es)
 - 1

All other values are considered to be false.

Default: False

Notes:

Example: <property name="jnlp.ccs.UseAnnouncements" value="Yes" />
jnlp.acs.useTNForNodeName

Syntax:
<property name="jnlp.acs.useTNForNodeName" value="value" />

Description:
Specifies whether the feature node name displayed in the Control Plan Editor window is the Termination Number (TN). This applies to the following feature nodes only:
- Attempt Termination (AT)
- Unconditional Termination (UT)

The TN is displayed for any UT or AT feature node in the CPE window, without requiring you to save each feature node to update the stored control plan data.

Type:
Boolean

Optionality:
Optional (default used if not set)

Allowed:
- True
- t(ue)
- Yes
- y(es)
- 1

All other values are considered to be false.

Default:
False

Notes:
If set to:
- True – The feature node name is displayed as the TN in the CPE window.
- False – The feature node name is displayed as the stored feature node name in the CPE window.

You can update the TN for these feature nodes in a control plan by using the ACS Numbers screen. See the discussion about Editing Termination Numbers in ACS User's Guide for more information.

Example:
<property name="jnlp.acs.useTNForNodeName" value="true" />

jnlp.acs.warnAboutUnfilledExits

Syntax:
<property name="jnlp.acs.warnAboutUnfilledExits" value="True" />

Description:
Specifies whether a control plan passes validation if any of its feature nodes are missing exits.

This property has a dependency on the endUnlinkedExits parameter. For more information, see endUnlinkedExits (on page 84).

Type:
String

Optionality:
Optional

Allowed:
- True
- t(ue)
- Yes
- y(es)
- 1

All other values are considered to be false.

Default:
False

Notes:
If set to:
- True – Control plans that are missing feature node exits will pass validation. To work, you must also set the endUnlinkedExits parameter to 1.
- False – Control plans that are missing node exits will fail during validation.

Example:
<property name="jnlp.acs.warnAboutUnfilledExits" value="True" />
Example JNLP Application Properties

Here is an example `acs.jnlp` file showing the application property settings at installation.

```xml
<jnlp spec="1.0+"
    codebase="http://HOST_IP_ADDR/"
    href="acs.jnlp">
    ...
    <resources>
        <j2se version="1.8.0+" href="http://java.sun.com/products/autodl/j2se" />
        <property name="jnlp.packEnabled" value="true" />
        <jar href="acs.sig.jar" main="true" />
        <jar href="common.sig.jar" />
        <jar href="ojdbc7.sig.jar" />
        <jar href="oraclepkki.sig.jar" />
        <jar href="ohj.sig.jar" />
        <jar href="help-share.sig.jar" />
        <jar href="oracle_ice.sig.jar" />
        <jar href="jwt.sig.jar" />
        <jar href="share.sig.jar" />
        <jar href="osd.sig.jar" />
        <jar href="rims.sig.jar" />
        <jar href="xms.sig.jar" />
        <jar href="ses.sig.jar" />
        <property name="java.util.Arrays.useLegacyMergeSort" value="true" />
        <property name="jnlp.sms.TZ" value="GMT" />
        <property name="jnlp.sms.host" value="HOST_IP_ADDR" />
        <property name="jnlp.sms.port" value="1521" />
        <property name="jnlp.sms.database" value="SMF" />
        <property name="jnlp.sms.encryptedSSLConnectionDatabaseHost" value="/(DESCRIPTION=(ADDRESS_LIST= (ADDRESS=(PROTOCOL=TCPS)(HOST=HOST_IP_ADDR)(PORT=2484)))
            (CONNECT_DATA= (SERVICE_NAME=SMF)))" />
        <property name="jnlp.sms.EncryptedSSLConnection" value="true" />
        <property name="jnlp.sms.sslCipherSuites" value="(TLS_RSA_WITH_AES_128_CBC_SHA)" />
        <property name="jnlp.acs.SuppressTagID" value="TRUE" />
        <property name="jnlp.acs.Profile8" value="Account Reference Profile" />
        <property name="jnlp.acs.Profile9" value="Product Type Profile" />
        <property name="jnlp.acs.Profile10" value="Control Plan Profile (App 3)" />
        <property name="jnlp.acs.Profile12" value="CCS Global Profile" />
        <property name="jnlp.acs.Profile13" value="CCS Temporary Profile (App 6)" />
        <property name="jnlp.acs.Profile14" value="CCS Temporary Profile (App 7)" />
        <property name="jnlp.acs.Profile15" value="CCS Temporary Profile (App 8)" />
        <property name="jnlp.acs.ACSDefaultCustomerIsPrepaid" value="false" />
    </resources>

    <application-desc main-class="com.g8labs.acs.coreScreens.Application" />
</jnlp>
```
Overview

Introduction

This chapter explains how to configure the ACS section of the eserv.config.

In this chapter

This chapter contains the following topics.

eserv.config Configuration ... 45
ACS Configuration in the eserv.config File .. 46
MRC Configuration ... 69

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many Oracle Communications Network Charging and Control (NCC) applications read their configuration. Each NCC machine (SMS, SLC, and VWS) has its own version of this configuration file, containing configuration relevant to that machine. The eserv.config file contains different sections; each application reads the sections of the file that contains data relevant to it.

The eserv.config file is located in the /IN/service_packages/ directory.

The eserv.config file format uses hierarchical groupings, and most applications make use of this to divide the options into logical groupings.

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other sections. Configuration details are opened and closed using either {} or [].

- Groups of parameters are enclosed with curly brackets – {}
- An array of parameters is enclosed in square brackets – []
- Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least one line break. Any of the following formats can be used, as in this example:

```plaintext
{ name="route6", id = 3, prefixes = [ "00000148", "0000473"] }  
{ name="route7", id = 4, prefixes = [ "000001049" ] }
```

or

```plaintext
{ name="route6"  
  id = 3  
  prefixes = [    
    "00000148"    
    "0000473"    
  ]}
```
Editing the File

Open the configuration file on your system using a standard text editor. Do not use text editors, such as Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows line termination characters (for example, ^M), which are not visible to the user, at the end of each row. This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working copy to which you can return.

eserv.config Files Delivered

Most applications come with an example eserv.config configuration in a file called eserv.config.example in the root of the application directory, for example, /IN/service_packages/eserv.config.example.

ACS Configuration in the eserv.config File

ACS Section in eserv.config

The ACS section is part of the eserv.config file. See Example ACS configuration in eserv.config for a detailed example of the parameters.

Reread the configuration by sending a SIGHUP to slee_acs.

Here is the high-level structure of the section.

ACS = {
 countryCodes = [codes]
 macroNodes = {
 macronodes_parameters
 }
 tracing = {
 tracing_parameters
 }
 acsChassisActions = {
 acsChassisActions_parameters
 }
 SessionTimeInformation = {
 SessionTimeInformation_parameters
 }
 ServiceEntries = [
}
countryCodes
Syntax: countryCodes = [codes]
Description: The list of country codes supported for location number normalization.
Type: Array
Optionality: Optional (default used if not set)
Allowed: International country codes
Default: Notes: This is used when roaming to determine the location of the caller and add country code to called number if appropriate.
Example:
countryCodes = [
 "61" # Australia
 "64" # New Zealand
 "65" # Singapore
 "44" # United Kingdom
 "1" # USA/Canada
]

macroNodes Configuration
The macroNodes configuration in the ACS section of the eserv.config supports configuration of ACS feature nodes.
Here is an example of the macroNodes section.

macroNodes = {
 ATPD = {
 ReleaseInApplyCharging = true
 }
}

ReleaseInApplyCharging
Syntax: ReleaseInApplyCharging = true|false
Description: Used in ATPD (Attempt Terminate to Pending TN with Duration) feature nodes to send a TCAP Disconnect(2) operation instead of a TCAP Release operation.
Tracing Configuration

The ACS configuration supports the following tracing parameters.

```json
tracing = {
    enabled = true
    origAddress = [
        "0064212",
        "0064213",
        "0064214"
    ]
    destAddress = [
        "0064213",
        "0064214"
    ]
    traceDebugLevel = "all"
}
```

enabled

Syntax: enabled = true|false
Description: Enables the tracing functionality.
Type: Boolean
Optionality: Optional, default used if not set.
Allowed: true, false
Default: false
Notes: Turning on tracing may dramatically increase system load. Only turn on in a production system if you have specified very limited tracing.
Example: enabled = true

origAddress

Syntax: origAddress = ["address1","address2",...,"addressN"]
Description: A list of Originating Addresses to trace.
Type: Array of number strings
Optionality: Optional
Allowed: The full originating address number.
Default: None
Notes: This may be an empty array list [], however to trace anything there must be at least one address in either the `origAddress` or `destAddress` parameters.
Example: origAddress = ["0064212","0064213","0064214"]

destAddress

Syntax: destAddress = ["address1","address2",...,"addressN"]
Description: A list of Destination Addresses to trace.
Type: Array of number strings
Optionality: Optional
Allowed: The full destination address number.
Default: None
Notes: This may be an empty array list [], however to trace anything there must be at least one address in either the origAddress or destAddress parameters.
Example: destAddress = ['0064213','0064214']

traceDebugLevel
Syntax: traceDebugLevel = "flag1[,flag2,...]"
Description: Identifies the debug level for the addresses being traced.
Type: String
Optionality: Required (if enabled=true)
Allowed: Any valid flag.
A useful method of finding which flags are relevant to the tracing you want to do is to:
1. Run your call on a model environment with DEBUG=all
 Result: Debug will report all relevant sections.
2. Check through the debug and identify which sections to report or suppress.
3. Change the debug settings.
4. Rerun the call.
Default: "all,-COMMON_escher_detail,-COMMON_escher_dump,-slee_api,-cmnTimeout,-cmnCacheDetail,-Config,-beVWARS_detail,-beSyncDetail"
Notes: traceDebugLevel = flag turns only flag on.
traceDebugLevel=all,-flag,-flag2 turns all debug on, and then turns flag and flag2 off.
Any section can be removed from the trace by preceding with a minus sign.
The output columns are also configurable, and can be turned off.
By default the columns are:
* date file line pid section message
Columns in output are:
 * display:name the program name registered with cmnErrorSetProgram(), off by default
 * display:date the date in YYYY/MM/DD HH:MM:SS format
 * display:file the source filename
 * display:line the source line number
 * display:pid the process ID
 * display:section the debug section
The parameter string value must be enclosed in quotes.
Examples:
traceDebugLevel="all"
Traces everything for the original and or destination addresses.
traceDebugLevel="cmnConfig,slee_api"
Traces cmnConfig and slee_api sections for the original and or destination addresses.
traceDebugLevel="all,-cmnEscher"
Traces everything except cmnEscher section for the original and or destination addresses.
traceDebugLevel="all,-cmnEscher,-display:file"
Traces everything except cmnEscher section for the original and or destination addresses, and removes the file column from the output.
acsChassisActions Configuration

Here is an example of the `acsChassisActions` configuration of the ACS section of the `eserv.config`:

```plaintext
acsChassisActions = {
    mscAddressForEdr = [
        {
            mscAddress = "123456789"
            encoding = "BCD"
        },
        {
            mscAddress = "987654321"
            encoding = "ASCII"
        }
    ]
}
```

encoding

Syntax:

```
encoding = "code"
```

Description:
The encoding of the MSC address

Type:
String

Optionality:
Optional

Allowed: Values:
- "BCD" (Binary Coded Decimal)
- "ASCII"

Default: BCD

Notes:
Member of `mscAddressForEdr` (on page 50) array

Example:
```
encoding = "BCD"
```

mscAddress

Syntax:

```
mscAddress = "addr"
```

Description:
The MSC address (in the CallReferenceNumber)

Type:
String

Optionality:
Optional

Allowed:

Default:

Notes:
Member of `mscAddressForEdr` (on page 50) array

Example:
```
mscAddress = "123456789"
```

mscAddressForEdr

Syntax:

```
mscAddressForEdr = [addr_parameters]
```

Description:
Array of MSC addresses and their encoding. This is used by the Add EDR Field chassis action.

Type:
Array

Optionality:
Optional (default used if not set).

Allowed:

Default:
All mscAddresses are encoded as BCD.

Notes:

50 ACS Technical Guide
Example:

```plaintext
mscAddressForEdr = [
    {  
        mscAddress = "123456789"
        encoding = "BCD"
    }
]
```

SessionTimeInformation Configuration

The `SessionTimeInformation` configuration in the ACS section of the `eserv.config` supports the facility for the processing of session time information for inbound interfaces such as EDR post processing control agents.

Here is an example of the section.

```plaintext
SessionTimeInformation = {
    STIServiceKey = 122
    IDPEExtTypeEDRId = 901
    extractEdrId = true
    IDPEExtTypeCallStartTime = 902
    extractCallStartTime = true
    callStartTimeFormat = "YYYYMMDDHH24MISS"
    IDPEExtTypeCallAnswerTime = 903
    extractCallAnswerTime = true
    callAnswerTimeFormat = "YYYYMMDDHH24MISS"
    IDPEExtTypeCallEndTime = 904
    extractCallEndTime = true
    callEndTimeFormat = "YYYYMMDDHH24MISS"
    IDPEExtTypeEDRTimeZone = 905
    extractEdrTimeZone = true
}
```

callAnswerTimeFormat

Syntax:
`callAnswerTimeFormat = "format"`

Description:
Specifies the format of the call answer time string.

Type:
String

Optionality:
Optional (default used if not set).

Allowed:
None

Default:
"YYYYMMDDHH24MISS"

Notes:

Example:
`callAnswerTimeFormat = "YYYYMMDDHH24MISS"`

callEndTimeFormat

Syntax:
`callEndTimeFormat = "format"`

Description:
The format of call end time time string.

Type:
String

Optionality:
Optional (default used if not set).

Allowed:
None

Default:
"YYYYMMDDHH24MISS"

Notes:

Example:
`callEndTimeFormat = "YYYYMMDDHH24MISS"`
callStartTimeFormat

Syntax: callStartTimeFormat = "format"
Description: The format of call start time time string.
Type: String
Optionality: Optional (default used if not set).
Allowed: Default: "YYYYMMDDHH24MISS"
Notes: Example: callStartTimeFormat = "YYYYMMDDHH24MISS"

extractCallAnswerTime

Syntax: extractCallAnswerTime = true|false
Description: Enable or disable extraction of call answer time from IDP extension.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: Default: true
Notes: Example: extractCallAnswerTime = true

extractCallEndTime

Syntax: extractCallEndTime = true|false
Description: Enable or disable extraction of EDR ID from IDP extension
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: Default: true
Notes: Example: extractCallEndTime = true

extractCallStartTime

Syntax: extractCallStartTime = true|false
Description: Enable or disable extraction of call start time from IDP extension
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: Default: true
Notes: Example: extractCallStartTime = true

extractEdrId

Syntax: extractEdrId = true|false
Description: Enable or disable extraction of EDR ID from IDP extension.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: true
Notes:
Example: extractEdrId = true

extractEdrTimeZone
Syntax: extractEdrTimeZone = true|false
Description: Enable or disable extraction of timezone from IDP extension
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: true
Notes:
Example: extractEdrTimeZone = true

IDPExtTypeCallAnswerTime
Syntax: IDPExtTypeCallAnswerTime = id
Description: The ID of IDP Extension in which the call answer time is passed to ACS.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: 903
Notes:
Example: IDPExtTypeCallAnswerTime = 903

IDPExtTypeCallEndTime
Syntax: IDPExtTypeCallEndTime = value
Description: The ID of IDP Extension in which the Call end time is passed to ACS.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: 904
Notes:
Example: IDPExtTypeCallEndTime = 904

IDPExtTypeCallStartTime
Syntax: IDPExtTypeCallStartTime = id
Description: The ID of IDP Extension in which the call start time is passed to ACS.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: 901
Notes:
Example: IDPExtTypeCallStartTime = 902
IDPExtTypeEDRId

Syntax:
IDPExtTypeEDRId = id

Description:
The ID of IDP Extension in which the EDR ID is passed to ACS.

Type:
Integer

Optionality:
Optional (default used if not set).

Allowed:

Default:
901

Notes:

Example:
IDPExtTypeEDRId = 901

IDPExtTypeEDRTimeZone

Syntax:
IDPExtTypeEDRTimeZone = id

Description:
The ID of IDP Extension in which the timezone is passed to ACS

Type:
Integer

Optionality:
Optional (default used if not set).

Allowed:

Default:
901

Notes:

Example:
IDPExtTypeEDRTimeZone = 905

STIServiceKey

Syntax:
STIServiceKey = skey

Description:
The service key on which session time based (offline) calls are to be expected.

Type:
Integer

Optionality:
Optional (default used if not set).

Allowed:

Default:
0 - set to 0 to disable session data processing

Notes:
This must match the service key in slee.cfg that you wish to run this service for on slee_acs.

Example:
STIServiceKey = 122

ServiceEntries Configuration

You can optionally define ServiceEntries configuration in the ACS section of the eserv.config file to configure ACS services that will be handled by the specified service libraries. Each entry in the ServiceEntries array defines the service loaders that a particular service handle should use, and also defines how number selection should work for the service handle. This method of defining service entries has the same purpose as configuring ServiceEntry lines in the acs.conf configuration file, but it has the following advantages:

- The configuration is easy to read
- The configuration is very flexible because you can specify a list of service libraries for each service library function

Important: Each service entry must be configured either in eserv.config or in acs.conf but not in both. For more information about configuring service entries in acs.conf, see acsChassis ServiceEntry Configuration (on page 123).

Here is an example of the ServiceEntries configuration:

 ServiceEntries = [

{
ServiceName = "MyTestService"

Methods = {
acsChassisInitSL = ["lib1.so", "lib2.so", "lib3.so"]
acsChassisLoadService = ["lib1.so", "lib3.so"]
acsChassisPrePOR = ["lib2.so", "lib1.so"]
acsChassisCallTerminated = ["lib1.so"]
acsChassisPreCTR = ["lib1.so"]
acsChassisPreETC = ["lib1.so"]
}

AddressSources = {
NetworkCP = [
 { source = "callingPartyNumber", screening = "network" }
 { source = "callingPartyNumber", screening = "user" }
 { source = "additionalCallingPartyNumber", screening = "network" }
 { source = "additionalCallingPartyNumber", screening = "user" }
 { source = "extensionNumber", extension=4 }
 { source = "cellIDorLAI" }
 { source = "Empty" }
]
LogicalCP = [
 { source = "callingPartyNumber", screening = "user" }
 { source = "callingPartyNumber", screening = "network" }
]
}

AddressSources

Syntax: AddressSources = [AddressSources_parameters]

Description: Lists the sources used to populate various ACS buffers that may then be used by the service loader, chassis actions, or control plan. For a list of allowed values, see Allowed.

Type: Array

Optionality: Optional (default used if not set)

Allowed: Use:
 - NetworkCP – To specify the sources for the network calling party number
 - LogicalCP – To specify the sources for the logical calling party number
 - ConnectDRA – To specify the sources for the default destination routing address to put in a Connect operation, and also the default pending termination number
 - ConnectCLI – To specify the sources for the calling party ID in a Connect operation
 - RedirectingParty – To specify the sources for the redirecting party ID in a Connect operation
 - OriginalCP – To specify the sources for the original called party ID in a Connect operation

Default:

Notes:
Example:

AddressSources = {
 NetworkCP = [
 { source = "callingPartyNumber", screening = "network"}
 { source = "callingPartyNumber", screening = "user" }
]
 LogicalCP = [
 { source = "callingPartyNumber", screening = "network"}
 { source = "callingPartyNumber", screening = "user" }
]
}

Methods

Syntax: Methods = {Methods_parameters}

Description: Array of ACS chassis functions that may be invoked by the service, and the service libraries to associate with each function.

Type: Array

Optionality: Required

Allowed: You must specify the following required ACS chassis functions:

- **acsChassisInitSL()** – Invoked by ACS chassis when it loads the shared library at startup time. You use this function to initialize global variables, and read configuration tables and files.

 Note: You must include the full list of libraries that will be loaded by the service in the definition for the `acsChassisInitSL()` function.

- **acsChassisLoadService()** – Invoked by ACS chassis at the beginning of a new session, call, or event, that the network starts.

You can specify one or more of the following optional ACS chassis functions:

- **acsChassisPrePOR()** – Called by ACS when a feature node within the control plan requests a specific network action or when `acsChassisLoadService()` returns a response that causes a specific network action.

- **acsChassisCallTerminated()** – Performs post-call cleanup when a call has been terminated

- **acsChassisPreCTR()** – Controls the `FurnishChargingInformation (FCI)` and `SendChargingInformation (SCI)` that is sent with outbound `Connect To Resource (ETC)` or `ReleaseCall` operations

- **acsChassisPreETC()** – Controls the `FurnishChargingInformation (FCI)` and `SendChargingInformation (SCI)` that is sent with outbound `EstablishTemporaryConnect (ETC)` operations

For more information about the allowed functions, see *SDK Developer's Guide*.

Notes: The service libraries specified for a function run in list order. For example, to run the `acsChassisLoadService()` function first from `ccsSvcLibrary.so`, and then from `libmyServiceExample1.so`, specify the following configuration:

```
acsChassisLoadService = [ "ccsSvcLibrary.so",
                        "libmyServiceExample1.so" ]
```
Example:

```plaintext
Methods = [
    {  
        acsChassisInitSL = [ "ccsSvcLibrary.so", "libmyServiceExample1.so" ]  
        acsChassisLoadService = [ "ccsSvcLibrary.so","libmyServiceExample1.so" ]  
        acsChassisPrePOR = ["libmyServiceExample1.so"]  
        acsChassisCallTerminated = [ "libServiceExample1.so" ]  
    }
]
```

ServiceName

Syntax: `ServiceName = "str"`

Description: The name of the service that will be handled by the service libraries specified in the Methods section.

Type: String

Optionality: Required

Allowed:

Default:

Example: `ServiceName = "MyTestService"`

screening

Syntax: `screening = "user|network"`

Description: Sets the screening indicator for the source number to either user provided, or network provided.

Type: Boolean

Optionality: Required

Allowed: user or network

Default:

Notes:

Example: `screening = "user"`

source

Syntax: `source = "str"`

Description: Sets the ACS buffer to use for this variable in the AddressSources list. For more information address sources, see `acsChassis ServiceEntry Configuration` (on page 123).

Type: String

Optionality: Required
Allowed:

Use any of the following values:

- callingParty
- firstRedirectingParty – This is the original called party ID from the IDP
- lastRedirectingParty – This is the redirecting party ID from the IDP
- additionalCallingParty
- imsi
- cellIDorLAI
- locationNumber
- mscAddress
- locationInfoLocationNumber
- calledParty
- vlrNumber
- Empty
- extensionNumber – You configure the extension number by using the following configuration format. source = "extensionNumber", extension = int, where int is a value between 0 and 9.

Notes:

When ACS populates a buffer, ACS searches the list of number sources until it finds one that matches in the IDP. If ACS does not find a match then the buffer is left blank.

Example:

source = "callingPartyNumber"

acsTriggerIF Configuration

Oracle Communications Billing and Revenue Management (BRM) is able to trigger notifications off the back of the AAA opcodes which drive the real-time charging interaction. The NCC architecture takes advantage of the BRM In-Session Notifications by triggering control plans at the point they are received. See BRM Charging Driver Technical Guide for details on in-session notification mapping from BRM to NCC.

See the Triggers topic in ACS User's Guide for control plan trigger definitions.

The ACS SLEE interface (acsTriggerIF) generates an IDP to trigger a control plan on receipt of a SLEE event containing control plan trigger details and IDP data.

Here is an example of the acsTriggerIF section.

```plaintext
acsTriggerIF = {
    # sleeInterfaceName = "acsTriggerIF"
    # sleeServiceKey = 1
    # overrideSleeServiceKey = 0
    # inapServiceKey = 1
    # statisticsEnabled = true
    # noActivitySleepTime = 10000
    # triggerTimeOutSecs = 10
    deleteTagsAfterTrigger = [
        1312070, # ISN Balance
        1312052, # ISN Credit Threshold Balance
        1312075, # ISN Failure Reason
        1312074, # ISN Lifecycle State
        1312050, # ISN Preferred Channel
        1312051, # ISN Preferred Time
        1312073, # ISN Rating Status
        1312068, # ISN Streaming Threshold
        1312066 # ISN Subscription Expiry
    ]
    numberRules = [
```
Chapter 4, Configuring the eserv.config

{ prefix="", min=0, max = 100, remove=0, prepend="", resultNoa=4 }

deleteTagsAfterTrigger

Syntax: deleteTagsAfterTrigger = [tags]
Description: List of profile tags which should be deleted after they are sent in a trigger event.
Type: Array
Optionality: Optional (default used if not set)
Allowed: Valid profile tags, matching those defined in the
cbdActionHandler.InSessionNotificationMapping section of
eserv.config. See BRM Charging Driver Technical Guide.
Default: []
Notes: Not specified means no tags will be deleted.
Example:
 deleteTagsAfterTrigger = [
 1312070, # ISN Balance
 1312052, # ISN Credit Threshold Balance
 1312075, # ISN Failure Reason
 1312074, # ISN Lifecycle State
 1312050, # ISN Preferred Channel
 1312051, # ISN Preferred Time
 1312073, # ISN Rating Status
 1312068, # ISN Streaming Threshold
 1312066 # ISN Subscription Expiry
]

inapServiceKey

Syntax: inapServiceKey = int
Description: The INAP service key that acsTriggerIF should use for generated IDP messages
if not specified by the trigger event data.
Type: Integer
Optionality: Optional (default used if not set)
Allowed:
Default: 1
Notes:
Example: inapServiceKey = 1

noActivitySleepTime

Syntax: noActivitySleepTime = usecs
Description: Period (microseconds) to sleep if no activity detected by last poll.
Type: Integer
Optionality: Optional (default used if not set)
Allowed:
Default: 10000
Notes: Zero (0) means no sleep.
Example: noActivitySleepTime = 10000
numberRules

Syntax: numberRules = [rules]
Description: Rules for denormalizing numbers to send to slee_acs in an IDP.
Type: Array
Optionality: Optional (default used if not set)
Allowed: no rules applied
Default: no rules applied
Notes: The rule below assumes that all numbers in trigger events start with a country code and should be sent in international format (NOA= 4).
Example: numberRules = [
 { prefix="", min=0, max = 100, remove=0, prepend="", resultNoa=4 }
]

overrideSleeServiceKey

Syntax: overrideSleeServiceKey = int
Description: The SLEE service key that acsTriggerIF should “always” send generated IDP messages to. This overrides the sleeServiceKey config option and the trigger event data.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: 0
Default: 0
Notes: Zero (0) means no override.
Example: overrideSleeServiceKey = 0

sleeInterfaceName

Syntax: sleeInterfaceName = "IFnName"
Description: The SLEE interface name of the acsTriggerIF process.
Type: String
Optionality: Optional (default used if not set)
Allowed: "acsTriggerIF"
Default: "acsTriggerIF"
Notes:
Example: sleeInterfaceName = "acsTriggerIF"

sleeServiceKey

Syntax: sleeServiceKey = int
Description: The SLEE service key that acsTriggerIF should send generated IDP messages to if not specified by the trigger event data.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: 1
Default: 1
Notes:
Example: sleeServiceKey = 1
statisticsEnabled
Syntax: \texttt{statisticsEnabled = true|false}
Description: Set whether \acsTriggerIF\ should log statistics or not.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true, false
Default: true
Notes:
Example: \texttt{statisticsEnabled = true}

triggerTimeOutSecs
Syntax: \texttt{triggerTimeOutSecs = seconds}
Description: The maximum period (in seconds) that \acsTriggerIF\ should wait for a response to an IDP trigger event before giving up and closing the dialog.
Type: Integer
Optionality: Optional (default used if not set)
Allowed:
Default: 10
Notes:
Example: \texttt{triggerTimeOutSecs = 10}

Statistics Updated by \acsTriggerIF
The following statistic definitions have been defined for application "Acs_Service". These statistics are turned on by default. Control this behavior by setting the \acsTriggerIF\ \texttt{statisticsEnabled} (on page 61) parameter. For each required extra statistic, turn the statistic on using the SMS Statistics Management screen (see \textit{SMS User's Guide}).

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIGGER_FAIL</td>
<td>The number of failed control plan triggers.</td>
</tr>
<tr>
<td>TRIGGER_SUCCESS</td>
<td>The number of successful control plan triggers.</td>
</tr>
<tr>
<td>TRIGGER_TIMEOUT</td>
<td>The number of timed out control plan triggers.</td>
</tr>
</tbody>
</table>

Additional CheckMOLI Prefix Configuration
The MoLI (Mobile origin Location Information) standard is used by Australian Telecommunications companies to identify the location of mobile callers.

The \checkMOLIPrefix\ parameter, which you configure in the \acs.conf\ file, enables you to specify only a single prefix on a dialed number that identifies the prefix as containing a MoLI code. If the dialed number has the prefix specified, then ACS removes the prefix and applies MoLI decoding rules in order to place the three digit MoLI code from the number into the calling network address field.

You can configure up to 19 additional MoLI prefixes in the ACS, AdditionalCheckMOLIPrefix section in the \eserv.config\ configuration file on the SLC. You configure the additional MoLI prefixes by using the following syntax:

\begin{verbatim}
ACS = {
 AdditionalCheckMOLIPrefix = {
 checkMOLIPrefixes = ["int",
]
}
\end{verbatim}
The checkMOLIPrefixes array has the following characteristics:

checkMOLIPrefixes

Syntax:
```
checkMOLIPrefixes = [
    "int",
    "int",
    ...
]
```

Description: The `checkMOLIPrefixes` array is a comma separated list of the additional MoLI prefixes to check, where `int` is a MoLI prefix.

Type: Array

Optionality: Optional

Allowed: Up to 19 additional MoLI prefixes

Notes: You must also configure the single MoLI prefix in the `CheckMOLIPrefix` (on page 93) parameter in `acs.conf` for the MoLI functionality to be available.

Example:
```
checkMOLIPrefixes = [
    "121",
    "122",
    "123",
    "124",
    "125",
    "126"
]
```

FCI Configuration

For correct operation with a Siemens INAP (SINAP 5) switch, NCC sends a Furnish Charging Information (FCI) operation before every Connect, Continue, ReleaseCall, EstablishTemporaryConnection, and ConnectToResouce operation. NCC extracts the FCI content to send from the appropriate profile block and tags.

An FCI operation can contain between one and five billing items. If the extracted FCI content contains more than five billing items, slee_acs can send a second FCI operation that contains up to five additional billing items. A maximum of 10 billing items can be sent. Examples of billing items sent in FCI operations are "calling number", "called number", and "prepaid/postpaid flag".

In addition to billing items, the FCI contents can include the following information:

- Service number (from the original called party buffer or another buffer)
- Auto-incrementing counter ("A" for first FCI, "B" for second, and so on)
- Mobile location indicator from the calling party network address buffer or another buffer
- Country code from the service number profile
- Service code from the service number profile
- Profile tags populated by the FCI fields in the Edit Service Numbers dialog box
- Profile tags: FCI On (70), FCI Service Code (71), FCI Country Code (72)

The FCI operation for a Siemens INAP requires the following shared library, which is installed with NCC:

```
/IN/service_packages/AAPT/lib/libfciService.so
```

Here is an example of the FCI configuration section:

```
FCI = {
    serviceKeys = [}
9810, "91900001", "0xff1911100" etc.

serviceKeys
Syntax: 

serviceKeys = [key1, ...]
Description: Specifies which INAP service keys receive FCI data
Type: Integer, String
Optionality: Required
Allowed: Integer, String, and String with Hex ("0x...") formats are supported.
Default: []
Example: serviceKeys = [9810, "91900001", "0xff1911100"]

fciFlagProfileTag
Syntax: 

fciFlagProfileTag = tag
Description: If the profile tag used for the FCI flag is not standard, specifies the profile tag to use for the FCI flag
Type: Integer
Optionality: Optional
Allowed: " None"
Default: None
Example: fciFlagProfileTag = 70

serviceIndicatorProfileTag
Syntax: 

serviceIndicatorProfileTag = tag
Description: If the profile tag used for the service indicator flag is not standard, specifies the profile tag to use for the service indicator flag.
Type: Integer
Optionality: Optional
Allowed: " None"
Default: None
Example: serviceIndicatorProfileTag = 71

countryCodeProfileTag
Syntax: 

countryCodeProfileTag = tag
Description: If the profile tag used for the country code is not standard, specifies the profile tag to use for the country code.
Type: Integer
Optionality: Optional
Allowed: " None"
Default: None
Example: countryCodeProfileTag = 72

NP Configuration

The following number portability (NP) shared library replaces the destination routing address in the Connect operation if the number has been ported to another operator:
For example, it might replace "02 1111 2222" with "1456 43 02 1111 2222".

The shared library queries the NP tables directly.

Here is an example of the NP configuration section:

```plaintext
NP = {
 enableService = true
 mode = "whitelist"
 serviceKeys = [
 10, # Toll Free EWSD Private Plane
 30 # Toll Free Genband National Plane
]
 ignoredTermNumberPrefixes = [
 "14"
]
 additionalPrefix = "AA"
 additionalPrefixServiceKeys = [
 30 # Toll Free Genband National Plane
]
}
```

enableService

**Syntax:** `enableService = true | false`

**Description:** Specifies whether to execute the NP service logic (libnpService.so).

**Type:** Boolean

**Optionality:** Optional (default used if not set)

**Allowed:** true, false

**Default:** true

**Example:** `enableService = true`

mode

**Syntax:** `mode = "whitelist" | "blacklist"`

**Description:** Specifies how to treat the configured service keys.

- "whitelist" means INAP connect operations associated with the service keys (serviceKeys) will trigger an NP lookup or translation.
- "blacklist" means INAP connect operations associated with the service keys (serviceKeys) will *not* trigger an NP lookup or translation.

**Type:** String

**Optionality:** Optional (default used if not set)

**Allowed:** "whitelist" or "blacklist"

**Default:** "whitelist"

**Example:** `mode = "whitelist"`

serviceKeys

**Syntax:** `serviceKeys = [key1, ...]`

**Description:** Specifies the service keys that trigger (whitelist) or do not trigger (blacklist) an NP lookup.

**Type:** Array
Optionality: Optional (default used if not set)

Example:

```
serviceKeys = [10, # Toll Free EWS Private Plane
 30 # Toll Free Genband National Plane
]
```

ignoredTermNumberPrefixes

Syntax: ignoredTermNumberPrefixes = ["prefix", ...]

Description: For a call that terminates to a DRA and matches a prefix in this list, specifies that it does not trigger an NP lookup regardless of its service key.

Type: Array

Optionality: Optional (default used if not set)

Allowed: [ ]

Default: [ ]

Example:

```
ignoredTermNumberPrefixes = ["14"]
```

additionalPrefix

Syntax: additionalPrefix = "pre"

Description: An additional prefix that is added to the DRA for calls that trigger an NP lookup and match one of the service keys specified by additionalPrefixServiceKeys

Type: String

Optionality: Optional (default used if not set)

Allowed: [ ]

Default: ""

Example:

```
additionalPrefix = "AA"
```

additionalPrefixServiceKeys

Syntax: additionalPrefixServiceKeys = [key1, ...]

Description: A list of service keys against which calls that trigger an NP lookup are matched. If the service key matches a service key in the list, adds the additionalPrefix prefix to the DRA after NP translation. Adds the prefix regardless of whether the NP lookup finds a PQYZ entry.

Type: Array

Optionality: Optional (default used if not set)

Allowed: [ ]

Default: [ ]

Example:

```
aditionalPrefixServiceKeys = [30 # Toll Free Genband National Plane
]
```

ACS_Prefix Service Entry for FCI and NP Configurations

The FCI and NP configurations require the following service entry for the ACS_Prefix service name. See ServiceEntries Configuration (on page 54) for descriptions of the parameters.

There is only one ServiceEntries section so these service entry parameters for ACS_Prefix should be added to any existing sections for other service names.
Note: The service name and the method order are important. You potentially might want to define the same entries for the service "ACS".

ServiceEntries = [
  ...
  AddressSources = {}
  MinSleeEventSize = 1024
  ServiceName = "ACS_Prefix"
  Methods = {
    acsChassisLoadService = [ "libnpService.so", "libacsService.so", "libfciService.so" ]
    acsChassisPreETC = ["libacsService.so", "libfciService.so" ]
    acsChassisPreCTR = ["libacsService.so", "libfciService.so" ]
    acsChassisPrePOR = ["libnpService.so", "libacsService.so", "libfciService.so" ]
    acsChassisStoreProfile = ["libacsService.so" ]
    acsChassisReLoadProfiles = ["libacsService.so" ]
    acsChassisLoadProfiles = ["libacsService.so" ]
    acsChassisProcessCall = ["libacsService.so" ]
    acsChassisCallTerminated = ["libacsService.so" ]
    acsChassisInitSL = ["libnpService.so", "libacsService.so", "libfciService.so" ]
    acsChassisGetCDRContent = ["libacsService.so" ]
  }
]

Example ACS Configuration in eserv.config

This is an example of the ACS section of the eserv.config file.

ACS = {
  countryCodes = [
    "97",
    "64",
    "65",
    "44",
    "1"
  ]
  macroNodes = {
    ATPD = {
      ReleaseInApplyCharging = true
    }
  }
  tracing = {
    enabled = true
    origAddress = [
      "0064212",
      "0064213",
      "0064214"
    ]
    destAddress = [
      "0064213",
      "0064214"
    ]
    traceDebugLevel = "all"
  }
  acsChassisActions = {
    mscAddressForEdr = [
      ...
{
    mscAddress = "123456789"
    encoding = "BCD"
},
{
    mscAddress = "987654321"
    encoding = "ASCII"
}
]
}
}

SessionTimeInformation = {
    STIServiceKey = 122
    IDPExtTypeEDRId = 901
    extractEdrId = true
    IDPExtTypeCallStartTime = 902
    extractCallStartTime = true
    callStartTimeFormat = "YYYYMMDDHH24MISS"
    IDPExtTypeCallAnswerTime = 903
    extractCallAnswerTime = true
    callAnswerTimeFormat = "YYYYMMDDHH24MISS"
    IDPExtTypeCallEndTime = 904
    extractCallEndTime = true
    callEndTimeFormat = "YYYYMMDDHH24MISS"
    IDPExtTypeEDRTimeZone = 905
    extractEdrTimeZone = true
}
}
ServiceEntries = [
{
    ServiceName = "MyTestService"
    Methods = {
        acsChassisInitSL = [ "lib1.so", "lib2.so", "lib3.so" ]
        acsChassisLoadService = [ "lib1.so", "lib3.so" ]
        acsChassisPrePOR = [ "lib2.so", "lib1.so" ]
        acsChassisCallTerminated = [ "lib1.so" ]
        acsChassisPreCTR = [ "lib1.so"
        acsChassisPreETC = [ "lib1.so"
    }
}
AddressSources = {
    NetworkCP = {
        { source = "callingPartyNumber", screening = "network" }
        { source = "callingPartyNumber", screening = "user" }
        { source = "additionalCallingPartyNumber", screening = "network" }
        { source = "additionalCallingPartyNumber", screening = "user" }
        { source = "extensionNumber", extension=4 }
        { source = "cellIDorLAI" }
        { source = "Empty" }
    }
    LogicalCP = {
        { source = "callingPartyNumber", screening = "user" }
        { source = "callingPartyNumber", screening = "network" }
    }
}
MinSleeEventSize = 1024
ServiceName = "ACS_Prefix"
Methods = {
acsChassisLoadService = [ "libnpService.so", "libacsService.so", "libfciService.so" ]
acsChassisPreETC = [ "libacsService.so", "libfciService.so" ]
acsChassisPreCTR = [ "libacsService.so", "libfciService.so" ]
acsChassisPrePOR = [ "libnpService.so", "libacsService.so", "libfciService.so" ]
acsChassisStoreProfile = [ "libacsService.so" ]
acsChassisReLoadProfiles = [ "libacsService.so" ]
acsChassisLoadProfiles = [ "libacsService.so" ]
acsChassisProcessCall = [ "libacsService.so" ]
acsChassisCallTerminated = [ "libacsService.so" ]
acsChassisInitSL = [ "libnpService.so", "libacsService.so", "libfciService.so" ]
acsChassisGetCDRContent = [ "libacsService.so" ]
acsTriggerIF = {
    # sleeInterfaceName = "acsTriggerIF"
    # sleeServiceKey = 1
    # overrideSleeServiceKey = 0
    # inapServiceKey = 1
    # statisticsEnabled = true
    # noActivitySleepTime = 10000
    # triggerTimeOutSecs = 10
    deleteTagsAfterTrigger = [1312070, # ISN Balance
                              1312052, # ISN Credit Threshold Balance
                              1312075, # ISN Failure Reason
                              1312074, # ISN Lifecycle State
                              1312050, # ISN Preferred Channel
                              1312051, # ISN Preferred Time
                              1312073, # ISN Rating Status
                              1312068, # ISN Streaming Threshold
                              1312066 # ISN Subscription Expiry
                              ]
    numberRules = [{ prefix="", min=0, max = 100, remove=0, prepend="", resultNoa=4 }]
}
AdditionalCheckMOLIPrefix = {
    checkMOLIPrefixes = ["121", "122", "123", "124", "125", "126"]
}
FCI = {
    serviceKeys = [9810, "91900001", "0xff1911100" etc.]
}
NP = {
    enableService = true
    mode = "whitelist"
serviceKeys = [
    10,   # Toll Free EWS Private Plane
    30    # Toll Free Genband National Plane
]

ignoredTermNumberPrefixes = [
    "14"
]

additionalPrefix = "AA"

additionalPrefixServiceKeys = [
    30    # Toll Free Genband National Plane
]

MRC Configuration

locationInfoRetrieval Configuration

In order to make slee_acs send AnyTimeInterrogation, so that it can do mid-call tariff changes if the subscriber moves, you need to configure the locationInfoRetrieval parameters in the MRC section of eserv.config.

MRC = {
    locationInfoRetrieval = {
        LocationInfoPollEnabled = true
        LocationInfoTcapInterfaceName = "m3ua_if"
        LocationInfoGSMScfAddress = "12345678"
        LocationInfoGSMScfMapNoa = 1
        LocationInfoOriginatingSubsystemNumber = 147
        LocationInfoDestinationSubsystemNumber = 6 # HLR
        LocationInfoRequestTimeout = 5
    }
}

The locationInfoRetrieval parameter is optional. However, if the parameter is present, to configure the parameter to send AnyTimeInterrogation, the following parameters must be set to a valid value other than their default:

- LocationInfoGSMScfAddress
- LocationInfoPollEnabled
- LocationInfoTcapInterfaceName

The following parameters specify parts of the GSM SCF address parameter of AnyTimeInterrogation. They are also used for the SCCP originating address of the message containing the AnyTimeInterrogation:

- LocationInfoGSMScfAddress
- LocationInfoGSMScfMapNoa
- LocationInfoOriginatingSubsystemNumber
- LocationInfoDestinationSubsystemNumber
- LocationInfoRequestTimeout

LocationInfoDestinationSubsystemNumber

Syntax: LocationInfoDestinationSubsystemNumber = num

Description: The SCCP subsystem number to put in the destination address.
Type: Integer
Optionality: Required if `locationInfoRetrieval` is present
Allowed: Default: 0
Notes: Example: `LocationInfoDestinationSubsystemNumber = 6`

**LocationInfoGSMScfAddress**

Syntax: `LocationInfoGSMScfAddress = "address"`
Description: The digits of the GSM SCF address and Global Title.
Type: String
Optionality: Required if `locationInfoRetrieval` is present
Allowed: Default:"
Notes: The default setting will turn off the function.
Example: `LocationInfoGSMScfAddress = "12345678"

**LocationInfoGSMScfMapNoa**

Syntax: `LocationInfoGSMScfMapNoa = NoA`
Description: The nature of address of the GSM SCF address.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Default: 1 (International)
Notes: The SCCP Global Title NOA is hard-coded to 4 = international.
Example: `LocationInfoGSMScfMapNoa = 1`

**locationInfoOriginatingSubsystemNumber**

Syntax: `locationInfoOriginatingSubsystemNumber = num`
Description: The SCCP subsystem number to put in the originating address.
Type: Integer
Optionality: Required if `locationInfoRetrieval` is present
Allowed: Default: 0
Notes: Example: `locationInfoOriginatingSubsystemNumber = 147`

**locationInfoPollEnabled**

Syntax: `locationInfoPollEnabled = true|false`
Description: Send AnyTimeInterrogation
Type: Boolean
Optionality: Required if `locationInfoRetrieval` is present
Allowed: true, false
Default: false
Notes: The default setting will turn off the function
Example: locationInfoPollEnabled = true

LocationInfoRequestTimeout
Syntax: LocationInfoRequestTimeout = seconds
Description: The minimum number of seconds to wait before giving up waiting for a response to AnyTimeInterrogation.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Default: 5
Notes: Example: LocationInfoRequestTimeout = 5

locationInfoTcapInterfaceName
Syntax: locationInfoTcapInterfaceName = "name"
Description: The name of the TCAP interface to use to send MAP2 AnyTimeInterrogation.
Type: String
Optionality: Required if locationInfoRetrieval is present
Allowed: Default: ""
Notes: The default setting will turn off the function.
Example: LocationInfoTcapInterfaceName = "m3ua_if"

Example MRC Configuration in eserv.config
This is an example of the MRC section of the eserv.config file.

```
MRC = {
 locationInfoRetrieval = {
 LocationInfoPollEnabled = true
 LocationInfoTcapInterfaceName = "m3ua_if"
 LocationInfoGSMScfAddress = "12345678"
 LocationInfoGSMScfMapNoa = 1
 LocationInfoOriginatingSubsystemNumber = 147
 LocationInfoDestinationSubsystemNumber = 6 # HLR
 LocationInfoRequestTimeout = 5
 }
}
```
Chapter 5

Configuring the acs.conf

Overview

Introduction

This chapter explains how to configure acs.conf.

In this chapter

This chapter contains the following topics.

acs.conf ................................................................. 73
acsChassis Plug-ins .................................................. 75
acsStatisticsDBInserter (SMS) ...................................... 78
acsCompilerDaemon (SMS) ........................................... 81
acsProfileCompiler ..................................................... 84
acsStatsMaster (SLC) .................................................. 85
acsChassis Single Instance Parameters (SLC) ................. 87
acsStatsLocal (SLC) ..................................................... 112
acsChassis Emergency Numbers (SLC) ......................... 113
acsChassis INAP Extension Parameters ......................... 113
acsChassis Normalization Parameters (SLC) .................. 116
acsChassis SLEE Event Size Parameter (SLC) ................ 122
acsChassis ServiceEntry Configuration (SLC) ................ 123
acsChassis SRF Configuration (SLC) ............................. 130
acsChassis SCF Configuration (SLC) ............................. 134
acsChassis SSF Configuration (SLC) ............................. 137
acsChassis EDR Configuration (SLC) ............................. 142
acsChassis Service Library Configuration (SLC) ............. 151
acsChassis Service Normalisation Parameters (SLC) ....... 152
acsChassis AWOL Configuration .................................. 152
Get Hunting Number Node Configuration ....................... 155
Number Matching Node Configuration ........................... 156
Play Variable Part Announcement Node Configuration ....... 156
Profile Date Compare Node Configuration ....................... 157
acs.conf Example ...................................................... 157

acs.conf

Introduction

The Advanced Control Services (ACS) tools and processes depend on the ACS configuration file, acs.conf (located in /IN/service_packages/ACS/etc/). There is an acs.conf file on the SMS and each SLC. The configuration options on the SMS are different to the configuration options on the SLC.

When ACS is fully installed there may be other configuration options that are added to acs.conf which are not explained in this section. Any configuration options not described in this section are required by the application and should not be changed by the user.
The configuration file consists of several sections named for the executable they control. Each section contains a parameter representing a single configuration option. Leading '#' characters represent comments and are ignored by the system. Each section must be terminated by a ':' character. All configuration options (except those for section headers such as 'acsChassis') must be indented or they will be ignored.

*Note:* The `acsChassis` section is much larger than the other executables. Consequently the section has been subdivided within this document.

### Example Configuration Sections

Here are examples of configuration sections.

#### Example 1

Here is an example of a configuration section for the `acsStatsMaster` executable.

```plaintext
acsStatsMaster
 port 1490
 shmKey 17170588
 semKey 17170589
 masterStatsServer tcprodscp:
```

#### Example 2

Here is an example of a configuration section for the `ACS_outgoing` service.

```plaintext
ACS_outgoing
 NormalUseHex 1
 NormalisationRule (2,-,0,32)
 NormalisationRule (2,0,1,32)
 NormalisationRule (2,00,2,32)
 DenormalisationRule (2,2,1,-)
 DenormalisationRule (3,3,1,-)
 DenormalisationRule (4,4,1,-):
```

### Implementing Parameter Changes

If `acs.conf` is changed by the operator the service needs to be restarted, so that the configuration file is reread and the changes take effect. For more information about restarting the service see Managing Processes.

### Parameter Types

There are three types of parameters listed within the following topics:

1. Parameters that are a standard part of `acs.conf` and must be configured with the correct setting
2. Parameters that are a standard part of `acs.conf` with default settings and do not require configuring except in the case of custom settings for a specific site
3. Parameters that must be *added* to `acs.conf` with the correct setting

*Note:* Some parameters appear only once within the following topics (for example, `port`). Other parameters may appear multiple times (for example, `ServiceEntry`).

### Before You Begin

Most values in `acs.conf` are set to sensible defaults. Be sure to read the relevant information in the following sections before modifying these values.

It is recommended that you make a backup copy of `acs.conf` before altering the service settings.
Editing the acs.conf File

Edit the acs.conf file with any UNIX text editor.

Example command: `vi acs.conf`

acsChassis Plug-ins

acsChassis

The `acsChassis` section defines how to handle traffic coming in to `slee_acs`. It defines the traffic processed by a specified service and service loader plug-in library combination. It also defines how `slee_acs` processes the traffic to each service.

The available parameters are:

**ChassisPlugin**

**Syntax:**

**Description:**

Chassis plug-ins provide the ACS Control Plan Editor with an expanded interface to its environment.

The ChassisPlugin lines are required to define which chassis action libraries will be available to `slee_acs`. The CCS chassis action library (ccsActions) must be included here.

**Type:**

Required (must be set to include the required CCS library)

**Optionality:**

Required (must be set to include the required CCS library)

**Allowed:**

**Default:**

**Notes:**

The interface between the CPE and the Voucher and Wallet Server is implemented using chassis plug-ins. Other uses include external database operations or network access.

One shared library may implement more than one chassis action.

No further configuration is needed to allow the Chassis to load the plug-ins at startup. However, individual plug-ins may have configuration requirements of their own.

For more information about the `slee_acs`, see *ACS Technical Guide*.

**Example:**

```plaintext
acsChassis
 ChassisPlugin ccsActions.so
```

MacroNodePluginFile

**Syntax:**

**Description:**

The MacroNodePluginFile lines are required to define which feature node libraries will be available in the control plans used by `slee_acs`. The CCS feature node library (ccsMacroNodes) must be included here.

**Type:**

Required (must be set to include the required CCS library)

**Optionality:**

Required (must be set to include the required CCS library)

**Allowed:**

**Default:**

**Notes:**

Some plug-in-based feature nodes distributed with CCS are:

- Attempt Termination with Billing node
- Language Select node
Chapter 5

- Voucher Recharge node

Example: MacroNodePluginFile ccsMacroNodes.so

ServiceEntry

Syntax: ServiceEntry (service,service_library)

Description: The ServiceEntry lines are needed to define which services defined in the SLEE.cfg are handled by the CCS service loader library (ccsSvcLibrary).

Optionality: Required (must be set to include the required CCS library)

Allowed: For more information about the structure of this configuration option, see `acsChassis ServiceEntry Configuration (SLC)` (on page 123). For more information about the values which can be used in the `service` element of this configuration, see the technical guide for the relevant service.

Notes: Any service defined in SLEE.cfg must have a corresponding **ServiceEntry** line configured in `acs.conf`.

Example: ServiceEntry (CCS,ccsSvcLibrary.so)

ServiceEntry (EAX_MO,libeaxSvcLibrary.so)

setCcetOnDisconnectCall

Syntax: setCcetOnDisconnectCall = int

Description: Controls how ACS calculates the CCET time when there are problems communicating with the billing engine.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:
- 0 – ACS calculates the CCET by including only reserved times from successful BE responses.
- 1 – ACS attempts to recalculate the CCET. CCET then reflects the total connected time rather than just the reserved time. That is, CCET is the reserved time plus the time waiting for BE responses.

Default: 0

Notes:

Example: setCcetOnDisconnectCall = 1

srf

Syntax: srf (srfName, UseETC=Y|N, Address=IP|nothing, NOA=0|1|2|3|4 typeOfSrf=NAP|other)

Description: The name and number of the Specialized Resource Function (or Intelligent Peripheral) is required for each IP on the network.

Notes: Parsing should continue until no new IPs can be found in the configuration file. This will eliminate the need for a count to be specified in the configuration file for the number of resources available.

Example: srf (nap1,UseETC=N,Address=,NOA=3)

tfnListSize

Syntax: tfnListSize size

Description: The maximum length, in characters, of the track feature nodes (TFN) EDR field.

Type: Integer

Optionality: Optional

Allowed:
Default: 2048
Notes: If the maximum character length of tfnListSize is exceeded, feature nodes will be trimmed from the front of the list.
Example: tfnListSize 2048

acsChassis Plug-in Libraries

Both parts of slee_acs (the acsChassis and the acsEngine) can be extended to do new tasks by installing plug-in libraries (independent pieces of program code that are loaded into the system at runtime).

Plug-ins are distributed as shared libraries with the file extension of .so.
slee_acs must be informed of the location of these shared libraries, so that their functionality can be made available to the running system.

Plug-in shared libraries may be stored anywhere in the file system. However, the recommended location for plug-ins is /IN/service_packages/package_name/lib.

Note: If plug-ins are not specified in acs.conf as an absolute path to the shared library, shared libraries are searched for in the path read from the environment variable LD_LIBRARY_PATH. The location recommended above is listed in the search path by default after installation.

Initialization

The ACS ChassisEngine program will always load Engine plug-ins after fully loading and initializing all Chassis plug-ins, regardless of the order of configuration lines in acs.conf.

This is done to ensure that plug-in-based chassis actions are always available to plug-in-based engine nodes as they load and initialize themselves.

Note: All configured Chassis and Engine plug-ins are loaded and initialized in order of appearance in acs.conf within their own class of plug-in.

Plug-in list

The following plug-ins are required by the acsChassis:

MacroNodePluginFile

Syntax: MacroNodePluginFile = lib

Description: These lines configure which feature node libraries are available to slee_acs. This may be as simple as just the ACS feature node library (libacsMacroNodes (on page 174)) which provides the base ACS feature nodes, but may also include other libraries provided by other components.

Type: String

Optionality: Optional (no libraries loaded if not set).

Allowed: None

Default: None

Notes: Individual plug-ins may have additional configuration requirements of their own, not detailed here.

One shared library may implement more than one feature node.

Engine plug-ins must be configured with entries in the following database tables:

1. ACS_FN_TYPE
2. ACS_FN_STRUCT_DEF
3. ACS_FN_DATA_DEF
The database is configured appropriately on installation, and should not need updating.

Example:

MacroNodePluginFile = libacsMacroNodes

ChassisPlugin

Syntax: ChassisPlugin = lib

Description: Pluggable Action - base ACS actions.

These lines configure which chassis action libraries are available to slee_acs. This may be as simple as just the ACS chassis action library (libacsChassisActions (on page 174)), but may also include other libraries provided by other components.

Type: String

Optionality: Optional (no libraries loaded if not set).

Allowed: None

Default: None

Notes: Individual plug-ins may have additional configuration requirements of their own, not detailed here.

Example: ChassisPlugin = libacsChassisActions

srf

Syntax: For a full syntax, see acsChassis SRF Configuration (SLC) (on page 130).

Description: Specialized Resource Function mappings for the SLEE.

Type: String

Optionality: Optional (default used if not set).

Allowed: None

Default: (NAP1, UseETC=N, Address=, NOA=3)

Notes: None

Example: None

acsStatisticsDBInserter (SMS)

Introduction

The acsStatisticsDBInserter must know the name and port number of the acsStatsMaster. Because this process also inserts data into the database it is also possible to change the default username and password in the acs.conf file.

Therefore the acsStatisticsDBInserter section within acs.conf on the SMS must be populated to specify the name of the machine and the port number used by the acsStatsMaster.

About database connections

acsStatisticsDBInserter connects to the database on a local or a remote SMS node by using the user credentials specified in the oracleusername, the oraclepassword, and the oracledatabase parameters in the acsStatisticsDBInserter section of acs.conf.

For connections to a:
Local database specify the user and password in the `oracleusername` and `oraclepassword` parameters. For passwordless connections to a local database by using the default value of "/", do not specify the `oracleusername`, the `oraclepassword`, or the `oracledatabase` parameters.

Remote database specify the user and password in the `oracleusername` and `oraclepassword` parameters, and specify the SID of the remote database in the `oracledatabase` parameter. When you specify the `oracleusername`, the `oraclepassword`, and the `oracledatabase` parameters, the `oracledatabase` value is used for the USING clause of CONNECT.

Local or a remote database by using the Oracle wallet secure external password store specify only the TNS connection string in the `oracledatabase` parameter, where the connection string is the alias defined for the username and password credentials in the external password store. This alias can be either a TNS name or a service name from `tnsnames.ora`.

**Parameters**

The parameters below must be configured with the correct value.

**oracleusername**

Syntax: `oracleusername user`

Description: The user name acsStatisticsDBInserter will use to connect to Oracle.

Type: String

Optionality: Optional (default used if not set)

Default: null

Notes: If no `oracleusername` and `oraclepassword` are specified, the string used to connect to Oracle is "/". This is the recommended way to connect to Oracle. For more information, see *Oracle usr/pwd String* (on page 22).

**oraclepassword**

Syntax: `oraclepassword password`

Description: The password acsStatisticsDBInserter should use to connect to Oracle.

Type: String

Optionality: Optional (default used if not set)

Default: null

Notes: If the default is used, the actual string used to connect to Oracle will use the password for the account which is running acsStatisticsDBInserter. This should be the acs_oper account's password.

Example:

**oracledatabase**

Syntax: `oracledatabase @db_name|@connection_string`

Description: The name of the remote database or the TNS connection string for connecting to the database using SQLnet. To connect to a remote database through the Oracle wallet external password store, specify the alias defined for the username and password credentials in the external password store. This alias can be either a TNS name or a service name from `tnsnames.ora`.

Type: String

Optionality: Optional

Default: null

Notes: If you specify the `oracleusername`, the `oraclepassword`, and the
oracledatabase parameters, the oracledatabase value is used for the USING clause of CONNECT.

To connect to the remote database by using the TNS connection string, specify only the TNS connection string in the oracledatabase parameter.

Example:
```
oracledatabase @SMF
```

### MasterServerPort

**Syntax:**
```
MasterServerPort port
```

**Description:**
The port on which the master statistics server is listening for requests.

**Type:**
Integer

**Optionality:**
Optional (default used if not set)

**Allowed:**
Any integer representing a valid port address

**Default:**
null

#### Notes:

#### Example:

### Retries

**Syntax:**
```
Retries int
```

**Description:**
The number of attempts to make to communicate with the statistics master server before failing.

**Type:**
Integer

**Optionality:**
Optional (default used if not set)

**Allowed:**
Any non zero, positive integer.

**Default:**
3

#### Notes:

#### Example:

### Period

**Syntax:**
```
Period seconds
```

**Description:**
The number of seconds between queries of the statistics master server.

**Type:**
Integer

**Optionality:**
Optional (default used if not set)

**Allowed:**
Any non zero, positive integer.

**Default:**
30

#### Notes:

#### Example:

### MasterServerLocation

**Syntax:**
```
MasterServerLocation name
```

**Description:**
The system name of the master statistics server.

**Type:**
String

**Optionality:**
Optional (default used if not set)

**Allowed:**

**Default:**
SCP1

#### Notes:

#### Example:
acsCompilerDaemon (SMS)

Introduction
The acsCompilerDaemon process is responsible for converting a control plan into the binary format used by the ACS service logic to process calls.

About database connections
acsCompilerDaemon connects to the database on a local or a remote SMS node by using the user credentials specified in the oracleusername, the oraclepassword, and the oracledatabase parameters in the acsCompilerDaemon section of acs.conf.

For connections to a:
- Local database specify the user and password in the oracleusername and oraclepassword parameters. For passwordless connections to a local database by using the default value of ",", do not specify the oracleusername, the oraclepassword, or the oracledatabase parameters.
- Remote database specify the user and password in the oracleusername and oraclepassword parameters, and specify the SID of the remote database in the oracledatabase parameter. When you specify the oracleusername, the oraclepassword, and the oracledatabase parameters, the oracledatabase value is used for the USING clause of CONNECT.
- Local or a remote database by using the Oracle wallet secure external password store specify only the TNS connection string in the oracledatabase parameter, where the connection string is the alias defined for the username and password credentials in the external password store. This alias can be either a TNS name or a service name from tnsnames.ora.

Parameters
The parameters in this list assume the default values if they are not configured. Only one entry per parameter is allowed.

oracleusername

Syntax: oracleusername user
Description: The user name acsCompilerDaemon should use to connect to Oracle.
Type: String
Optionality: Optional (default used if not set)
Default: null
Notes: If the default is used, the actual string used to connect to Oracle will use the account which is running acsCompilerDaemon. This should be acs_oper account.

oraclepassword

Syntax: oraclepassword password
Description: The password acsCompilerDaemon should use to connect to Oracle.
Type: String
Optionality: Optional (default used if not set)
Default: null
Notes: If the default is used, the actual string used to connect to Oracle will use the password for the account which is running acsCompilerDaemon. This should be the acs_oper account's password.
oracledatabase
Syntax: oracledatabase @db_name|@connection_string
Description: The name of the remote database or the TNS connection string for connecting to the database using SQLnet. To connect to a remote database through the Oracle wallet external password store, specify the alias defined for the username and password credentials in the external password store. This alias can be either a TNS name or a service name from tnsnames.ora.
Type: String
Optionality: Optional
Default:
Notes: If you specify the oracleusername, the oraclepassword, and the oracledatabase parameters, the oracledatabase value is used for the USING clause of CONNECT.
To connect to the remote database by using the TNS connection string, specify only the TNS connection string in the oracledatabase parameter.
Example: oracledatabase @SMF

alertTimeout
Syntax: alertTimeout seconds
Description: The number of seconds to remain blocked waiting for the alert to occur before checking for signals.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any non zero, positive integer.
Default: 5
Notes: Since signals are blocked for this period of time, it is recommended that this number is not increased beyond 5 because it may cause the process to not terminate correctly on system shutdown.
Example: alertTimeout 3

maxBranches
Syntax: maxBranches int
Description: The maximum number of branches any feature node in a control plan may have.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: Any non zero integer.
Default: 99
Notes: If this is set to lower than 99, users must ensure they do not set any of the feature nodes in their control plans to more than maxBranches. If they do, their control plan will not compile.
Example: maxBranches 99

maxNodes
Syntax: maxNodes int
Description: The maximum number of nodes any control plan may have.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any non zero, positive integer.
Default: 100
Notes: To determine the number of nodes in a control plan, the control plan must be opened in the CPE. The properties for the control plan will give the number of nodes used.
Example: maxNodes 200

maxCompiledKb
Syntax: maxCompiledKb int
Description: Sets the maximum size of the binary produced when a control plan is compiled.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any integers in range 1 - 1024
Default: 1024
Notes: Setting above the default value may not be supported by replication, please check with support before increasing this limit.
Example: maxCompiledKb 1024

compressAtKb
Syntax: compressAtKb Kb
Description: The maximum size in Kilobytes of a control plan, before acsCompilerDaemon will compress it when it compiles it.
acsCompilerDaemon compresses control plans before checking whether they exceed maxCompiledKb.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any non zero, positive integer.
Default: 64
Notes: To be effective, this parameter should be set lower than maxCompiledKb (on page 83), any changes require the acsCompilerDaemon to be restarted for any changes to take effect.
Example:

compressLevel
Syntax: compressLevel int
Description: The level of compression used in control plan compression if compressAtKb (on page 83) is exceeded.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: 0 No compression.
1-9 Compression level, where 1 is low and 9 is high.
Default: 0
Notes: Any changes require the acsCompilerDaemon to be restarted for any changes to take effect.
Example:
endUnlinkedExits

**Syntax:**
```
endUnlinkedExits 0|1
```

**Description:**
Allow unconnected exits from a feature node in a control plan. The control plan must contain at least one End feature node.

**Type:** Boolean

**Optionality:** Optional (default used if not set)

**Allowed:**
- 0 – Do not allow unconnected feature node exits.
- 1 – Connect all unconnected exits to the first End feature node in the control plan when the control plan is saved.

**Default:**
0

**Example:**
```
eendUnlinkedExits 1
```

AuditChallenge

**Description:**
Because acsCompilerDaemon runs on the SMS, AuditChallenge should be set to 1 for acsCompilerDaemon. This parameter should be disabled for processes that run on the VWS, or SLC.

**Default:**
0

**Allowed:**
0 (disabled), 1 (enabled)

**Example:**
```
AuditChallenge 1
```

acsProfileCompiler

**Introduction**

acsProfileCompiler processes configuration changes to timezone and termination number ranges by performing changes in the global profile, and in customer profiles, for customers who have non-default termination ranges defined.

**About database connections**

acsProfileCompiler connects to the database on a local or a remote SMS node by using the user credentials specified in the `oracleusername`, `oraclepassword`, and `oracledatabase` parameters in the `acsProfileCompiler` section of `acs.conf`.

For connections to a:

- **Local database** specify the user and password in the `oracleusername` and `oraclepassword` parameters. For passwordless connections to a local database by using the default value of "/", do not specify the `oracleusername`, the `oraclepassword`, or the `oracledatabase` parameters.

- **Remote database** specify the user and password in the `oracleusername` and `oraclepassword` parameters, and specify the SID of the remote database in the `oracledatabase` parameter. When you specify the `oracleusername`, the `oraclepassword`, and the `oracledatabase` parameters, the `oracledatabase` value is used for the USING clause of CONNECT.

- **Local or a remote database by using the Oracle wallet secure external password store** specify only the TNS connection string in the `oracledatabase` parameter, where the connection string is the alias defined for the username and password credentials in the external password store. This alias can be either a TNS name or a service name from `tnsnames.ora`.
Parameters

The parameters in this list assume the default values if they are not configured. Only one entry per parameter is allowed.

oracleusername

Syntax: oracleusername user

Description: The user name acsProfileCompiler uses to connect to Oracle.

Type: String

Optionality: Optional (default used if not set)

Default: null

Notes: If the default is used, the actual string used to connect to Oracle will use the account which is running acsProfileCompiler, such as the acs_oper account.

oraclepassword

Syntax: oraclepassword password

Description: The password acsProfileCompiler uses to connect to Oracle.

Type: String

Optionality: Optional (default used if not set)

Default: null

Notes: If the default is used, the actual string used to connect to Oracle uses the password for the account which is running acsProfileCompiler, such as the password for the acs_oper user.

oracledatabase

Syntax: oracledatabase @db_name|@connection_string

Description: The name of the remote database or the TNS connection string for connecting to the database using SQLnet. To connect to a remote database through the Oracle wallet external password store, specify the alias defined for the username and password credentials in the external password store. This alias can be either a TNS name or a service name from tnsnames.ora.

Type: String

Optionality: Optional

Default:

Notes: If you specify the oracleusername, the oraclepassword, and the oracledatabase parameters, the oracledatabase value is used for the USING clause of CONNECT.

To connect to the remote database by using the TNS connection string, specify only the TNS connection string in the oracledatabase parameter.

Example: oracledatabase @SMF

acsStatsMaster (SLC)

Introduction

This process is the single point of statistics access for other systems in the network. It processes requests for other SLCs as well as the SMS.
Chapter 5

Parameters

The following parameters must be configured with the correct value.

**oracleusername**

Syntax: `oracleusername user`  
Description: The user name acsStatsMaster should use to connect to Oracle.  
Type: String  
Optionality: Optional (default used if not set)  
Default: null  
Notes: If the default is used, the actual string used to connect to Oracle will use the account which is running acsStatsMaster. This should be acs_oper account.

**oraclepassword**

Syntax: `oraclepassword password`  
Description: The password acsStatsMaster should use to connect to Oracle.  
Type: String  
Optionality: Optional (default used if not set)  
Default: null  
Notes: If the default is used, the actual string used to connect to Oracle will use the password for the account which is running acsStatsMaster. This should be the acs_oper account's password.

**masterStatsServer**

Description: Host name of the machine running the master stats server.  
Default: No default  
Allowed: Any string representing a valid host name.

**port**

Description: Port on which the stats master listens for connection attempts.  
Default: 1490  
Allowed: Any integer that represents a valid port address.

**shmKey**

Description: Shared Memory key for the acsStatsMaster.  
Default: 17170588  
Allowed: acsChassis shmKey value.  
Notes: This must be the same as the entry for the acsChassis `shmKey`. It is recommended that the user does not change this value unless there is a collision. It is up to the installer to ensure that there are no collisions.

**semKey**

Description: Semaphore Key for acsStatsMaster.  
Default: 17170589  
Allowed: acsChassis semKey value.  
Notes: This must be the same as the entry for the acsChassis `semKey`. It is recommended that the user does not change this value unless there is a collision. It is up to the installer to ensure that there are no collisions.
acsChassis Single Instance Parameters (SLC)

Parameters

The following parameters must be configured with the correct value.

masterStatsServer

Description: Host name of the machine running the master stats server.
Default: No default
Allowed: Any string representing a host name, but must be the same as the masterStatsServer of the acsStatsLocal section. For example scp1.telconame.com

port

Description: Port on which the stats master listens for connection attempts.
Default: 1490
Allowed: Any valid integer representing a port address.

shmKey

Description: Shared Memory key for the acsStatsMaster.
Default: 17170588
Allowed: Must be the same as acsStatsMaster shmKey.

semKey

Description: Semaphore Key for acsStatsMaster.
Default: 17170589
Allowed: Must be the same as the acsStatsMaster semKey.

addChargingInfoToCTR

Description: Perform FCI/SCI for CTR
Default: 0 (false)
Allowed: 0 or 1 (true)

addChargingInfoToETC

Description: Perform FCI/SCI for ETC
Default: 0
Allowed: 0 (false) or 1 (true)

addChargingInfoToPA

Syntax: addChargingInfoToPA 0|1
Description: Perform FCI/SCI for PA and PACUI.
Type: Boolean
Optionality: Optional (default used if not set).
Chapter 5

Allowed:
- 0 (false), do not perform FCI/SCI
- 1 (true), do perform FCI/SCI

Default: 0

Notes:

Example: addChargingInfoToPA 1

**DigitsInAnnouncementList**

**Syntax:**
DigitsInAnnouncementList 0|1

**Description:**
If set to true, records the details of any interaction between the caller and the control plan in the AIDL EDR tag.

**Type:**
Boolean

**Optionality:**
Optional (Default is used if omitted)

**Allowed:**
0 (off), 1 (on)

**Default:**
0

**Notes:**
Refer to AIDL for a description of changes to the AIDL information.

**Example:**
DigitsInAnnouncementList 1

**AddMOLIPrefix**

**Description:**
Specifies a numeric prefix to the three character MOLI code that is placed into the calling network address field (see CheckMOLIPrefix (on page 93)).

**Optionality:**
Optional, and does not need to be provided whenever a CheckMOLIPrefix parameter is included in the acs.conf file.

**Default:** 222

**Allowed:**
1 to 20 numeric characters can be specified.

**Notes:**
See Section 6.2 of the ACIF document G532 for more details on the MOLI standard.

alwaysIncludePartyToCharge

**Syntax:**
alwaysIncludePartyToCharge  value

**Description:**
Whether to set the partyToCharge parameter in ACS to the leg1 party or not.

**Type:**
Integer

**Optionality:**
Optional (default used if not set).

**Allowed:**
Any integer value. However any value other than 1 is treated as 0.

**Default:**
0

**Notes:**
0 – The partyToCharge parameter is not set.
1 – The partyToCharge parameter is set.

**Example:**
alwaysIncludePartyToCharge 1

**alternativeCallPlanNamePostfix**

**Syntax:**
alternativeCallPlanNamePostfix  name

**Description:**
This string is appended to the end of a control plan name to create an alternative control plan.

You can activate or deactivate alternative control plans from the ACS screens:
Services -> ACS Service -> Customer -> Control Plan Change tab

**Type:**
String
Optionality: Optional (default used if not set).

Allowed: _alt

Default: _alt

Notes: To override an existing control plan, the alternative control plan name must follow this syntax:
<ServiceNumber><alternativeCallPlanNamePostfix>

For example, if service number 0800123456 uses control plan "ABC", the alternative control plan for this service number must be named 0800123456_alt.

Example: alternativeCallPlanNamePostfix _emergency

armDisconnectAt

Syntax: armDisconnectAt 0|1

Description: Forces the AT feature node to arm for oDisconnect in the associated BCSM Event when set to true.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: 0 (false), do not arm for oDisconnect
        1 (true), arm for oDisconnect

Default: 0

Notes:

Example: armDisconnectAt 1

armDisconnectAtp

Syntax: armDisconnectAtp 0|1

Description: Forces the ATP feature node to arm for oDisconnect in the BCSM Event when set to true.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: 0 (false), do not arm for oDisconnect
        1 (true), arm for oDisconnect

Default: 0 - false

Notes:

Example: armDisconnectAtp 1

armDisconnectLeg1

Description: On disconnect requests, do we include Leg1 disconnects.

Default: 1

Allowed: 0 (false), 1 (true)

armDisconnectLeg2

Description: On disconnect requests, do we include Leg2 disconnects.

Default: 1

Allowed: 0 (false), 1 (true)
armLegsSeparately
Description: Produces two BCSM Event Reports; one for Leg1 and one for Leg2.
Default: 1
Allowed: 0 (disabled), 1 (enabled)

ArmTerminateTriggers
Default: 0
Allowed: 0 = Only use originating ('o') type EDPs
1 = Enable arming of originating ('o') and terminating ('t') type EDPs

AssumePreArrangedEnd
Description: Enables the logic in slee_acs that handles prearranged TCAP ends. This ensures
the clean shut down of the call dialog and all related events.
Default: 0
Allowed: 0 (disabled), 1 (enabled)
Notes: This may be useful in cases where dialogs and events are leaking, yet the system
appears to be operating normally.

atDisconnectMM_Leg1Interrupt
Description: Should arm disconnect on Leg1 as
Default: 0
Allowed: 0 (notify), 1 (interrupt)

atDisconnectMM_Leg2Interrupt
Description: Should arm disconnect on Leg2 as
Default: 1
Allowed: 0 (notify), 1 (interrupt)

AuditChallenge
Description: This should not be required to be set in an operational environment. Set this
parameter to 0 (zero) unless running on an SMS.
Default: 0
Allowed: 0 (disabled), 1 (enabled)
Example: AuditChallenge 0

CallInitiationExtensionForIdp
Syntax: CallInitiationExtensionForIdp = int
Description: Determines whether the call initiation node should place the SLEE call ID in the
configured extension.
Type: Integer
Optionality: Optional
Allowed: 
Default: 
Notes: The CallInitiationExtensionForIdp and extensionNumber (on page
116) configuration parameters in acs.conf can be used to correlate EDRs
generated from two calls that involve the Call Initiation node.
Example: \texttt{CallInitiationExtensionForIdp = 123}

\textbf{CallInitiationTimeoutToleranceSeconds}

\textbf{Description:} This parameter is for use with the Call Initiation node (CIN).

\textbf{Default:} 10

\textbf{Allowed:} Maximum 0xFFFF (18 hours)

\textbf{Notes:} This value is added to the No Answer timeout value in the CIN to set an overall tolerance timer in the outgoing TCAP interface. When the sum of these two values is reached the TCAP interface will send a TCAP\_CANCEL back to ACS to defend against the event of lost responses from the SSF.

\textbf{CallInitiationUseContextInd}

\textbf{Syntax:} \texttt{CallInitiationUseContextInd value}

\textbf{Description:} Defines whether the indicator values are obtained from the call context buffer (so can be set through the Set Indicator node or denormalization rules) or are fixed.

\textbf{Type:} Integer

\textbf{Optionality:} Optional (default used if not set).

\textbf{Allowed:} 0, 1, 2, 3

\textbf{Default:} 0

\textbf{Notes:} 

0 - All indicator values, including NoA, set to the original values (NoA = 4, ScrnInd = 3, PresInd = 0, NumIncomplete = 0).

1 - All indicator values, except NoA, set to original values. The NoA value would come from the context and could be altered using denormalization rules.

2 - NoA set to original value. Other indicator values come from context and could be altered through Set Indicator nodes in the control plan.

3 - All indicator values would come from the context. The NoA value could be altered through denormalization rules and the other indicator values could be altered through Set Indicator nodes in the call plan.

In all cases the NumberPlan will be set to 1.

\textbf{Example:} \texttt{CallInitiationUseContextInd 2}

\textbf{CalledPartyBcdToNoaMap}

\textbf{Syntax:} \texttt{CalledPartyBcdToNoaMap = "0,1,2,3,4,5,6,7"}

\textbf{Description:} Used to convert MAP nature of address (NOA) indicators, such as CAMEL BCD, to the ISUP standard used by ACS for internal NOA values.

\textbf{Type:} Array

\textbf{Optionality:} Optional (default used if not set).

\textbf{Allowed:} This array uses the position in the array (starting at 0) to determine the MAP NOA to match, and the value to determine the ISUP NOA to translate to.
Default: 2,4,3,5,1,0,0,0
That is, change MAP to ISUP as follows:

<table>
<thead>
<tr>
<th>MAP NOA</th>
<th>ISUP NOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (unknown)</td>
<td>2 (unknown)</td>
</tr>
<tr>
<td>1 (international)</td>
<td>4 (international)</td>
</tr>
<tr>
<td>2 (national)</td>
<td>3 (national)</td>
</tr>
<tr>
<td>3 (network-specific)</td>
<td>5 (network-specific)</td>
</tr>
<tr>
<td>4 (subscriber)</td>
<td>1 (subscriber)</td>
</tr>
<tr>
<td>5, 6, 7</td>
<td>0 (unknown)</td>
</tr>
</tbody>
</table>

Notes:
Example: CalledPartyBcdToNoaMap = "2,4,2,5,1,0,0,0"

callProcessingAllowedAfterAPartyDisconnect
Syntax: callProcessingAllowedAfterAPartyDisconnect 0|1
Description: Whether or not to allow call processing after the A party has hung up.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0, 1
Default: 0 (not allowed)
Notes: Setting this parameter to 1 leaves call processing set to true on receipt of
TC_CONTINUE(ERBCSM(oDisconnect,Leg1,Interrupted))
Example: callProcessingAllowedAfterAPartyDisconnect 1

CancelChar
Description: The character used by the user to cancel the previously entered digits.
Default: B (Hex value)
Allowed: Entry char and cancel char may be specified as hex digits or * or #. However, #
must be entered as \\# to stop it being interpreted as a comment.

CarrierCodeDisposal
Syntax: CarrierCodeDisposal 0|1
Description: How the carrier code call context variable is handled in outgoing connect
operations.
Type: Boolean
Optionality: Optional, default used if not set.
Allowed: 0 The carrier code is prefixed to the termination number.
          1 The termination number is not modified. This effectively nullifies the
          function of any Set Carrier Code feature node.
Default: 0
Notes: Example: CarrierCodeDisposal 0
ChainCountLimit

Description: This limits the number of times the control plan is allowed to chain to other ACS services during a single call.

Default: 8

Allowed: Any non-zero positive integer.

Notes: The digit entered indicates the number of ServiceHandovers possible in a single call. This is most important in VPN, where it stops station-forwarding loops.

CheckMOLIPrefix

Description: This specifies the prefix on a dialed number that identifies it as containing MOLI (Mobile Location Indicator) information.

Default: 029

Allowed: Only a single prefix is supported, with a length of 1 to 20 characters.

Notes: If a called number has the prefix specified, the ACS chassis will remove the prefix and apply MOLI decoding rules. This places the three digit MOLI code from the number into the calling network address field.

CollectInfoReturnsAll

Description: When sending an RRB+CI, (Request Report BCSMEvent and Collect Information) though the service asks for 1 digit at a time, the SSP will always send 'previously sent DN+the extra digit'.

Default: 0

Allowed: 0 (false), 1 (true)

Notes: The ETSI INAP specification is unclear as to whether the return result should be all the digits collected thus far, or just the most recent digit. This configuration option enables you to specify what behavior to expect.

CopySpareBits

Description: slee_acs copies the following data from the indicated source:
- Presentation restricted and screening indicators from called party number
- INN and screening indicator from original called party number

Default: 0

Allowed: 0 (copies the data from the relevant parameter in the Initial DP on the grounds that they are defined as spare in the ETSI standards)
1 (copies from elsewhere)

DfcOnIpAbort

Description: Should we Dfc to the SSP when the IP dialog is doored.

Default: 0

Allowed: 0 (no), 1 (yes)

DialledHashEncoding

Description: Enter the network encoding for # in BCD.

Default: C (Hex value)
Allowed:

DialledStarEncoding
Description: Enter the network encoding for * in BCD.
Default: B (Hex value)
Allowed:

dialogTickInterval
Syntax: dialogTickInterval interval
Description: The time during which dialog timers are checked.
Type: Integer
Units: Seconds
Optionality: Optional
Allowed: interval \geq 0
Default: The dialogTickInterval parameter is omitted.
Notes:  
  - If the dialogTickInterval parameter is omitted, the SLEE sets to 10 the time during which dialog timers are checked.
  - If interval = 0, the SLEE sets to 10 the time during which dialog timers are checked.
  - If interval > 0, interval is the time during which dialog timers are checked.
Example: dialogTickInterval 15

disarmEDPs
Description: How to handle EDPs which may still be armed on the SSP.
Default: 1
Allowed: 0 - Never disarm oAbandon (assume switch always disarms)
         1 - Always explicitly dis-arm and re-arm for a subsequent connect.
         2 - If oAbandon is still armed, and a subsequent connect wants it armed, then do nothing. If the subsequent connect does not want it armed, then explicitly clear it.

DisconnectMidCallJumpBack
Description: Should a Disconnect node instead generate a MidCallJump if there is a MidCallMark pending?
Default: 1
Allowed: 0 (no), 1 (yes)
edpArmAbandoned
Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.
Default: 0
Allowed: 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
         1 This exit branch will be followed.
edpArmAnswer
Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.
Default: 0
Allowed: 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
1 This exit branch will be followed.

edpArmBusy
Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.
Default: 0
Allowed: 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
1 This exit branch will be followed.

edpArmNoAnswer
Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.
Default: 0
Allowed: 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
1 This exit branch will be followed.

edpArmRouteSelectFailure
Description: When an Attempt Terminate is performed in ETSI, there are a number of cases for which the switch may test, as not all switches support all cases.
Default: 0
Allowed: 0 This exit branch will never be followed from the Attempt Terminate or Follow Me nodes.
1 This exit branch will be followed.

edpSetNoAnswerTimer
Description: Options for handling no answer.
Default: 1
Allowed:
- 0 – Never (never set the applicationTimer)
- 1 – Always (always set the applicationTimer to the requested value)
- 2 – Non-Zero (override only nonzero requested values to the NoAnswerTimeout value)
- 3 – Override (always override the requested value to the NoAnswerTimeout value)
- 4 – Override Zero (override the requested value to the NoAnswerTimeout value if the requested value is zero)
**edpUseNoAnswerTimer**

**Description:**
This flag indicates whether to explicitly tell the switch how long to wait for NoAnswer. Some switches do not like being told, in which case we will omit the parameter and let it use a network default.

**Default:**
1

**Allowed:**
0 (disabled), 1 (enabled)

**emptyDraIsError**

**Syntax:**
emptyDraIsError = 1|0

**Description:**
Determines whether to retain the original behavior of reporting an error if the normalized DRA is empty or suppress this error.

**Type:**
Boolean

**Optionality:**
Optional (default used if not set).

**Allowed:**
1 
true

0 
false. This error will not be reported and the processing of the call will proceed as normal.

**Default:**
1

**Notes:**

**Example:**
emptyDraIsError = 1

**EntryChar**

**Description:**
The character used to indicate the end of input.

**Default:**
C (Hex value)

**Allowed:**
Entry char and cancel char may be specified as hex digits or * or #. However, # must be entered as \# to stop it being interpreted as a comment.

**ETC_CorrelationIdInIPAddr**

**Description:**
If on, appends the SRF correlation ID to the IP’s address.
If off, uses the proper field in an ETC message for containing the SRF correlation ID.

**Default:**

**Allowed:**
0 (off), 1 (on)

**ETC_MinCorrelationDigits**

**Description:**
The SRF correlation ID digits (used above) out to a fixed number of digits.

**Default:**

**Allowed:**

**ETC_SCF_ID**

**Description:**
Contains the SCF ID.
If the ETC_CorrelationIdInIPAddr is 1, then the IP prefix set is appended with the correlation ID and then appended with the value of ETC_SCF_ID, if it is set in the acs.conf file.
If ETC_SCF_ID is not set in the acs.conf file, the SCF ID is not appended. If ETC_CorrelationIdInIPAddr is 0, then the SCF ID and correlation ID are sent as separate parameters in the ETC message.

**Default:**

**Allowed:**
The SCF ID
extraStats
Description: Should we record extra statistics. See Extra statistics (on page 112) for the list.
Default: 0
Allowed: 0 (no), 1 (yes)

fakeAcrCallReleaseAtMaxDuration
Syntax: fakeAcrCallReleaseAtMaxDuration 0|1
Description: If this flag is set, then ACS assumes that a CAMEL phase 2 call is released with the call duration greater or equal to the maximum call duration period, and the call is treated like a CAMEL phase 3 call with the callReleasedAtTcpExpiry present.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 1 (true), 0 (false)
Default: 0
Notes: Example: fakeAcrCallReleaseAtMaxDuration 0

FakeAcrCallReleaseAtTcpExpiry
Description: Using CAP2, when you receive and process an Apply Charging Report it is unclear if you should expect a subsequent EventReportBCSM (caller/called hang-up case) or not (switch force disconnect case).
Default: 0
Allowed: 0 (not set), 1 (set)
Notes: CAP3 includes the callReleaseAtTcpExpiry flag to CAP3's ACR to clarify this processing.
To enable processing to be clear while using CAP2, ACS attempts to detect the case by sniffing the primitive that contained the ACR to see if it also contains an ERBCSM.
If it does not contain an ERBCSM, it can be assumed that none is coming. To provide the ACR functions with the necessary data, we will set the callReleaseAtTcpExpiry flag on the ACR.
Example: FakeAcrCallReleaseAtTcpExpiry 0

fakeMissingAcrAtDisconnection
Syntax: fakeMissingAcrAtDisconnection 0|1
Description: When the B party hangs up and oDisconnect leg 2 is armed as interrupted, NCC expects an Apply Charging Report followed by an Event Report BCSM to be returned by the SSP.
Some SSPs only return an Event Report BCSM. In this case setting fakeMissingAcrAtDisconnection to 1 will replicate the anticipated behavior.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: 0 (false), 1 (true)
Default: 0
Notes: In some cases, the Event Report BCSM is sent before the Apply Charging Report. This is non CAP standard behavior. In this case the parameter should be set to 0.

Example: fakeMissingAcrAtDisconnection 0

fciInSeparateMessageAllOperations
Syntax: fciInSeparateMessageAllOperations 0|1
Description: Whether or not to send the FurnishChargeInformation in a separate TCAP message, before the TCAP message is sent.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0, 1
Default: 0 (do not send)
Notes: This applies to all operations, not just a Connect.
Example: fciInSeparateMessageAllOperations 1

fciInSeparateMessage
Syntax: fciInSeparateMessage 0|1
Description: Whether or not to send the FurnishChargeInformation in a separate TCAP message, before the TCAP message is sent.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0, 1
Default: 0 (do not send)
Notes: This only applies to a Connect operation.
Example: fciInSeparateMessage 1

fciMaximumLength
Description: Maximum length of FCI binary data record generated by concatenating FCI tariff codes.
Default: 200
Allowed: Integer, in the range 1-200.

fciSeparator
Description: Optional separator between concatenated FCI tariff codes.
Default: 
Allowed: 

FirstDigitTimeout
Description: This indicates the time to wait in seconds for the first digit to be entered.
Default: 4
Allowed: Any non zero, positive integer.

GlobalProfileMaxAge
Description: The maximum age, in seconds, that the global profile and global control plan is allowed to reach before it is reloaded from the database.
Default: 300
ignoreNumberPlanForConnectToContinue

Syntax: 
ignoreNumberPlanForConnectToContinue 1|0

Description: Determines whether to ignore the number plan indicator when comparing the DRA and the triggered called number while checking if a connect or continue message should be sent.

Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 1 (ignore), 0 (do not ignore)
Default: 0
Notes:
Example: ignoreNumberPlanForConnectToContinue 0

InterDigitTimeout

Description: This indicates the time, in seconds, to wait for the next digit to be entered.
Default: 4
Allowed: Integer

InternalErrorAction

Description: This indicates the required action if there is an unexpected internal error.
Default: disconnect
Allowed: disconnect, continue

IPProtocolInfo

Description: Use INAP to talk to intelligent peripherals.
Default: 1
Allowed: No other values are currently supported.

maxAnnouncementTextBytes

Syntax: maxAnnouncementTextBytes value

Description: Maximum number of bytes allowed in the text field of a Play Announcement or PromptAndCollectUserInformation operation.

Type: Integer
Optionality: Optional
Allowed: Positive integer
Default: 80
Notes:
Example: maxAnnouncementTextBytes 80

MaxPromptDigits

Description: Indicates the maximum number of digits to be entered.
Default: 255
Allowed:
MinZeroTimeRemainingPeriod

**Description:** Sets the amount of time (in seconds) for handling duplicate ACR on race condition during hang-up of secondary reservation time.

**Default:** 5

**Allowed:**

NoAnswerTimeout

**Description:** Time (in seconds) before a call returns No Answer.

**Default:** 10

**Allowed:** Integer

NoCallPlanAction

**Description:** This parameter indicates the required action if there is no control plan.

**Default:** continue

**Allowed:**

NoCallPlanCause

**Description:** Release cause to return to SSP if no control plan exists and if NoCallPlanAction is "disconnect".

**Default:** 1

**Allowed:** 0 (No cause reported), 1 (Unallocated Number)

**Notes:** Refer to Q.850.

NoCallPlanError

**Description:** This indicates the severity level of the error generated.

**Default:** NOTICE

**Allowed:**
- NOTICE
- WARNING
- ERROR
- CRITICAL

**Notes:** Errors are logged in two places:
- SMS alarm system
- /var/adm/messages

NoDatabaseConnectAction

**Description:** There is no connection to the database.

**Default:**

**Allowed:**

NoServiceAction

**Description:** This indicates the required action if there is no ServiceEntry in acs.conf for this service name.

**Default:** disconnect

**Allowed:** disconnect, continue
NoServiceError

Description: This indicates the severity level of the error generated.
Default: WARNING
Allowed: • NOTICE
        • WARNING
        • ERROR
        • CRITICAL
Notes: Errors are logged in two places:
        • SMS alarm system
        • /var/adm/messages

OverrideDefaultIPDigitTimeout

Description: This indicates whether to override the default IP settings with those listed below when waiting for digits to be entered.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (Disabled), 1 (Enabled)
Default: 0
Notes: Example:

overwriteFci

Syntax: overwriteFci 0|1
Description: Flag to control when a new FCI is appended to an existing FCI or overwrites an existing FCI.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (append to existing), 1 (overwrite existing)
Default: 0
Notes: Example: overwriteFci 1

PersistantAuthorisationInfo

Description: Should the last used PIN Number and A/C Numbers be copied across during a ServiceHandover.
Default: 1
Allowed: 0 (no), 1 (yes)

postAnswerBeepTimer

Description: The number of milliseconds to delay the notification announcement to be sent from the switch.
Default: 1000
Allowed: Integer
recordSmpStatistics
Description: Whether to record SMS statistics. See Statistics Captured (on page 110) for the list of SMS stats.
Default: 1
Allowed: 0 (no), 1 (yes)

rrbcsmePrefix
Description: Optional prefix digits to send on Connect messages arming ERBCSMS.
Default: ""
Allowed:

sciMaximumLength
Description: Truncation (by FCS) for SCI data payload.
Default: 200
Allowed: Integer in the range 1-200.

roundDownACRCallDuration
Syntax: roundDownACRCallDuration 0|1
Description: Option to round down ACR call duration when converting from deciseconds to seconds
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (off), 1 (on)
Default: 0 (round up)
Notes:
Example: roundDownACRCallDuration 0

sendFciWithReleaseCall
Syntax: sendFciWithReleaseCall = 0|1
Description: Specifies whether ACS sends an FCI operation in a TCAP message, when the call:
- Has been through a Set Tariff Code macro node
- Is passing through a Point of Return and returning a releaseCall operation
Type: Boolean
Allowed:
- 0 – ACS sends FCI operations in TCAP messages.
- 1 – ACS does not send FCI operations in TCAP messages.
Default: 0 (ACS does not send FCI operations in TCAP messages)
Notes: You must set this parameter to 1, even if the FCI flag is set from the service loader.
Example: sendFciWithReleaseCall = 1

sendIdenticalCliInConnect
Syntax: sendIdenticalCliInConnect 0|1
Description: Whether to send callingPartyNumber in Connect, even if it is the same as in IDP.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 1 True. acsChassis will set the CallingPartyNumber in the Connect, even if it is identical to the one in the IDP
0 False.
Default: 0
Notes: 
Example: sendIdenticalCliInConnect 1

setCallerNetworkTZFromIncomingGmtOffset
Syntax: setCallerNetworkTZFromIncomingGmtOffset = Integer
Description: Specifies the subscriber's caller network time zone.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: 0 and 1
Default: 0
Notes: Every subscriber has an associated ACS geography set.
If set to 0, the subscriber caller network time zone is determined from the ACS time zone geography set.
If set to 1, the subscriber caller network time zone is determined from the GMT by an incoming Initial Detection Point (IDP) message.
Example:
setCallerNetworkTZFromIncomingGmtOffset = 0

setCallerLogicalTZFromIncomingGmtOffset
Syntax: setCallerLogicalTZFromIncomingGmtOffset = Integer
Description: Specifies the subscriber's caller logical time zone.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: 0 and 1
Default: 0
Notes: Every subscriber has an associated ACS geography set.
If set to 0, the subscriber logical time zone is determined from the ACS time zone geography set.
If set to 1, caller's logical time zone is set from the GMT by an incoming IDP message.
Example:
setCallerLogicalTZFromIncomingGmtOffset = Integer

smsStatsPeriodCheck
Description: This specifies how often ACS should check the SMS stats shared memory is valid.
Default: -1
Allowed: -1 no checking
any non zero, positive integer.
sourceSelectionOnHandover
Syntax:  sourceSelectionOnHandover  int
Description:  Set to 1 (one) to enable reload source selection on service handover, for example; this enables profile tag values to be reloaded from source when a control plan hands over to a another service.
Type:  Boolean
Optionality:  Optional (default used if not set).
Allowed:  
1 – Enables source selection reload.
Not set.
Default:  Source selection reload disabled.
Notes:  On service handover, reloading source selection will overwrite profile tag values that are set in the control plan.
For example, a control plan that is triggered by CCS captures the subscriber ID. The control plan hands back to CCS on completion. On handover, source selection is reloaded and the subscriber ID, captured in the control plan, is overwritten with the originating number.
Example:  sourceSelectionOnHandover  1

statsReportingLevel
Description:  Sets the level of detail for statistics reporting.
Default:  0
Allowed:  
0  Empty
1  service name
2  INAP service key
3  service name, INAP service key
4  control plan name
5  service name, control plan name
6  INAP service key, control plan name
7  service name, INAP service key, control plan name

syslogLevel
Description:  This option defines, in a bit field, the behavior of certain syslog commands in ACS. It defines whether or not the message is printed out.
Currently this configuration parameter covers two areas of system log messages.
•  The warning printed on the receive of a TC_U_ERROR
•  The error printed on the receive of a TC_REJECT
Format:  The format may be any of the following:
1) A plain decimal number, of the form:
   syslogLevel  4294967295
2) A hex number, of the form (case insensitive):
   syslogLevel  0xffffffff
3) A octal number, of the form:
   syslogLevel  012345670
Each bit in the field is either 0 or 1. If 0, syslog messages for that error will not be printed. If 1, the error will be printed.
Only the least two bits (the last two bits on sun and hpux hardware) in the number currently define any behavior:
•  LSB 1. Defines whether or not the warning messages for TC_U_ERROR are printed.
• LSB 2. Defines whether or not the warning messages for TC_REJECT are printed.

Default: 0xffffffff
Allowed: 0xffffffff = all possible syslog messages are printed.
Notes: '0' is required as the first character.

To turn off syslog warnings for the receive of TC_U_ERROR messages, set the configuration option as one of the following formats:

```sh
syslogLevel 0xfffffffe
syslogLevel 0x2
```

(as only bits 1 and 2 control any output currently, the rest of the number is unneeded).

To turn off errors in the syslog on the receive of TC_REJECT messages, use the configuration option: `syslogLevel 0x1`
To turn off both: `syslogLevel 0x0`

**syslogLevel**

**Description:** This option defines, in a bit field, the behavior of certain syslog commands in ACS. It defines whether or not the message is printed out.

Currently this configuration parameter covers two areas of system log messages.

• The warning printed on the receive of a TC_U_ERROR
• The error printed on the receive of a TC_REJECT

**Format:** The format may be any of the following:

1) A plain decimal number, of the form:
```sh
syslogLevel 4294967295
```

2) A hex number, of the form (case insensitive):
```sh
syslogLevel 0xfffffffe
```

3) A octal number, of the form:
```sh
syslogLevel 12345670
```

Each bit in the field is either 0 or 1. If 0, syslog messages for that error will not be printed. If 1, the error will be printed.

Only the least two bits (the last two bits on sun hardware) in the number currently define any behavior:

• LSB 1. Defines whether or not the warning messages for TC_U_ERROR are printed.
• LSB 2. Defines whether or not the warning messages for TC_REJECT are printed.

Default: 0xffffffff
Allowed: 0xffffffff = all possible syslog messages are printed.
Notes: '0' is required as the first character.

To turn off syslog warnings for the receive of TC_U_ERROR messages, set the configuration option as one of the following formats:

```sh
syslogLevel 0xfffffffe
syslogLevel 0x2
```

(as only bits 1 and 2 control any output currently, the rest of the number is unneeded).

To turn off errors in the syslog on the receive of TC_REJECT messages, use the configuration option: `syslogLevel 0x1`
To turn off both: `syslogLevel 0x0`
TcAbortOnPreArrangedEnd
Description: If the AssumePreArrangedEnd parameter is not enabled, this parameter will send an abort to kill the dialog.
Default: 1
Allowed: 0 (Disabled), 1 (Enabled)

TrimFStop
Description: This is used to trim the trailing ‘F’ on the Called Party and/or Calling Party number.
Default: 0
Allowed: 0 (Do not trim), 1 (Trim)

tzDefault
Syntax: tzDefault timezone
Description: Where no match is found in a geography set, this parameter sets the default time zone to use.
Type: String
Optionality: Optional (default used if not set).
Allowed: Any Java supported time zone. For a full list a Java supported time zones, see Time Zones (on page 205).
Default: ""
Notes:
Example: tzDefault Europe/Amsterdam

UseContinueOperation
Syntax: UseContinueOperation 0|1
Description: Determines whether to send an INAP Continue operation, rather than a Connect operation.
Type: String
Optionality: Optional
Allowed: 0 Send Connect
1 Attempt to send INAP Continue
Default: 0
Notes: A Continue is sent instead of a Connect if and only if:
1 the InitialDP operation has been triggered from the TermAttemptAuthorized detection point and the pending termination number is identical to the service number (that is, the pending termination number has not been changed by the service loader or control plan logic.)
OR:
2 UseContinueOperation is 1 and all of the following statements are true:
   ▪ The cut and paste parameter has not been requested. (for example, by the Cut and Paste node.)
   ▪ No digits are to be cut from the calling number. (Specified, for example, by the cut calling number node)
   ▪ The number to be terminated to is exactly the same as the Called Party Number received in the InitialDP.
   ▪ Calling Party Number has been specified for the Connect or the Calling
Party Number to go in the connect is exactly the same as the Calling Party Number received in the InitialDP.

- No Original Called Party ID has been specified for the Connect or the Original Called Party ID to go in the connect is exactly the same as the Original Called Party ID received in the InitialDP.
- No Redirecting Party ID has been specified for the Connect or the Redirecting Party ID to go in the connect is exactly the same as the Redirecting Party ID received in the InitialDP.
- No extensions are to be sent in the Connect.
- The oMidCall event detection point has not been armed.
- The InitialDP operation has been triggered from the AnalyzedInformation detection point or from the TermAttemptAuthorized detection point
- No redirection information is to be sent in the Connect
- suppressionOfAnnouncement is to be sent in the Connect
- oCSIApplicable is to be sent in the Connect

Example:  UseContinueOperation 0

UseLanguageExtensions
Description: This indicates whether or not the language features of the SRF are used to set the language in which the SRF plays the announcement.
Default: 0
Allowed: 0 (Disabled), 1 (Enabled)

UseReplication
Description: This determines whether ACS should use the replication system to update the database, or should write directly to the database.
Default: 1
Allowed: 0 If the SMF has been installed on the same machine as the SCP and if they share the same database installation
1 If the SCP is a separate machine from the SMF

PIN Logging Parameters
The following parameters are optional and may be added when required.

PINLogEnable
Description: If enabled, slee_acs will log the PIN to a separate PIN file -/IN/service_packages/SMS/cdr/current/PIN_yyyymmddhhmss_pid.txt
Where:
- yyyymmddhhmss is the date and time the file was opened
- pid is the process id for the slee_acs process which is writing to the file
This file is periodically moved to /IN/service_packages/SMS/cdr/closed/.
If disabled, no PIN logging is done and other PINLog entries in the acs.conf file are ignored.
Type: Boolean
Default: 1
Allowed: 0 (Disabled), 1 (Enabled)
PINLogFail
Description: If enabled, slee_acs will log all unsuccessful PIN attempts to the PIN file.
Default: 1
Allowed: 0 (Disabled), 1 (Enabled)

PINLogMaxAge
Description: The time (in seconds) before slee_acs will close the file and move it to /IN/service_packages/SMS/cdr/closed/.
Default: 3600
Allowed: Any non zero, positive integer.

PINLogMaxSize
Description: The size (in KB) before slee_acs will close the file and move it to /IN/service_packages/SMS/cdr/closed/.
Default: 8
Allowed: Any non zero positive integer.

PINLogSuccess
Description: If enabled, slee_acs will log all successful PIN attempts to the PIN file.
Default: 0
Allowed: 0 (Disabled), 1 (Enabled)

Call Dump Parameters
The following parameters are optional and may be added when required.

CallDumpEnabled
Description: Is call dumping enabled?
Default: 0
Allowed: 0 (no), 1 (yes)

CallDumpSeconds
Description: Minimum number of seconds between generating call dumps.
Default: 60 (means no limit)
Allowed:

CallDumpDir
Description: Output directory for call dump files.
Default: “/tmp”
Allowed: Any valid directory.

CallDumpSeverity
Description: Error level threshold to reach in generated syslog message to trigger call dump.
Default: ERROR
Allowed: Notice, Warning, Error
Critical

Notes: Not currently used for this purpose. If set to ERROR or below, then call dumps will be generated by the “handleInternalError” function in the SLEE chassis.

CallDumpMessage

Description: Sub-string to match in generated syslog message to trigger call dump. Not currently implemented. Reserved for future use.

Default: ""

Allowed:

Call Information Report Parameters

The following parameters are optional and may be added when required.

SendCIR

Description: This is the primary flag for controlling the sending of the Call Information Report.

Default: 0

Allowed: 0 (No logging will be done), 1 (Chassis data that is produced during execution of a control plan will be logged and placed in the EDR).

Notes: The format for the logging is customer-specific and is set up at installation.

AskCirAttemptElapsedTime

Description: This indicates report inclusion of how long is spent attempting to connect (that is, ringing).

Default: 1

Allowed: 0 (Not included), 1 (Included)

AskCirStopTime

Description: This indicates report inclusion of a call finish time.

Default: 1

Allowed: 0 (Not included), 1 (Included)

AskCirConnectElapsedTime

Description: This indicates report inclusion of the elapsed time of a call.

Default: 1

Allowed: 0 (Not included), 1 (Included)

AskCirCallAddress

Description: This indicates report inclusion of the called number.

Default: 1

Allowed: 0 (Not included), 1 (Included)

AskCirReleaseCause

Description: This indicates report inclusion of the cause of the release.

Default: 1
Chapter 5

Allowed: 0 (Not included), 1 (Included)

NokiaCIR
Description: If enabled, ACS will use Nokia CIR sending rules.
Default: 0
Allowed: 0 (disabled), 1 (enabled)

usePendingTnForCaInCdr
Syntax: usePendingTnForCaInCdr 0|1
Description: Sets whether or not to use the pending TN value in the CA field in the ACS CDR.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: 0 – Do not use the pending TN value to set the CA field in the ACS CDR.
1 – When AskCirCallAddress is set to false, use the pending TN value to set the CA field in the ACS CDR.
Default: 0
Example: usePendingTnForCaInCdr 0

Statistics Captured
A range of statistics are gathered automatically by the ACS service. These statistics are gathered by the ACS service logic and stored in the SMS database through the SMS statistics mechanism.
To gather any of these statistics, the `acs.conf` configuration parameter `recordSmpStatistics` (on page 102) must be set to 1.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALLS_INITIATED</td>
<td>This statistic counts the number of calls that successfully encountered by the ACS service loader. It is incremented by one for each call that is loaded by the ACS service loader, and incremented before any service logic (such as loading a control plan) is done. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_UNMATCHED_CLI</td>
<td>This statistic counts the number of calls whose CLI cannot be matched to a control plan. If the service initiated is 'ACS_Outgoing', and a control plan cannot be found in the DB that links successfully to the CLI of the IDP of the call, this statistic is incremented by one. A successful link between CLI and control plan requires the CLI to be linked to a control plan, the control plan to be scheduled to be available at the time of the call, and the control plan to be successfully compiled. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_MATCHED_CLI</td>
<td>This statistic counts the number of calls whose CLI successfully matches a control plan and where the control plan is loaded successfully. This statistic is incremented by one for each call which is passed onto the control plan engine for call processing. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_UNMATCHED_SN</td>
<td>This statistic counts the number of calls whose service number (SN) cannot be matched to a control plan. If the service initiated is 'ACS' or 'ACS_Management', and a control plan cannot be found in the DB that links successfully to the SN of the IDP of the call, this statistic is incremented. by one.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>A successful link between SN and control plan requires the SN to be linked to a control plan, the control plan to be scheduled to be available at the time of the call, and the control plan to be successfully compiled. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_MATCHED_SN</td>
<td>This statistic counts the number of calls whose SN successfully matches a control plan and where the control plan is loaded successfully. This statistic is incremented by one for each call which is passed onto the control plan engine for call processing. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_UNMATCHED_NAMED_CALLPLAN</td>
<td>This statistic counts the number of times a call is made to a service (as defined as a service in the ACS configuration file) which is not one of 'ACS', 'ACS_Outgoing' or 'ACS_Management' but which does not have a control plan associated with the service. The service name should match the name of the control plan exactly, otherwise the control plan will not be found. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_MATCHED_NAMED_CALLPLAN</td>
<td>This statistic counts the number of times a call is made to a service (as defined as a service in the ACS configuration file) which is not one of 'ACS', 'ACS_Outgoing' or 'ACS_Management' and for which a control plan is successfully found in the ACS database. The service name should match the name of the control plan exactly, otherwise the control plan will not be found. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_INVOKING_CALLPLAN</td>
<td>This statistic is incremented by one each time a control plan is successfully loaded for call processing by the ACS service loader. The sum of CALLS_MATCHED_SN, CALLS_MATCHED_CALL and CALLS_MATCHED_NAMED_CALLPLAN should equal the value of this statistic. This statistic is only incremented when the ACS service library is involved in the call.</td>
</tr>
<tr>
<td>CALLS_DISCONNECTED</td>
<td>This statistic is incremented each time a call is ended by sending a CS1ReleaseCall message to the SSP to disconnect the call.</td>
</tr>
<tr>
<td>CALLS_UT</td>
<td>This statistic is incremented each time a call is ended by sending a CS1Connect message to the SSP without an event report requested. It is incremented for each unconditional terminate done by the ACS service logic. Note that for a call, the CALLS_AT and CALLS_UT statistic can both be incremented as an unconditional terminate can occur after an attempt terminate.</td>
</tr>
<tr>
<td>CALLS_AT</td>
<td>This statistic is incremented each time a call is ended by sending a CS1Connect message to the SSP with an event report requested. It is incremented for each terminate attempt done by the ACS service logic. Note that for a call, the CALLS_AT and CALLS_UT statistic can both be incremented as an unconditional terminate can occur after an attempt terminate. In the same manner, one call can increment this statistic multiple times.</td>
</tr>
<tr>
<td>ANNOUNCEMENTS_PLAYED</td>
<td>This statistic increments each time a CS1 PlayAnnouncement or PromptAndCollect message is sent to the SSP. This statistic is only incremented once per message, not once per actual announcement played. This statistic is also incremented when mid-call announcements are played.</td>
</tr>
</tbody>
</table>
Extra Statistics

The following extra statistic definitions have been defined for application "Acs_Service". These statistics are turned off by default. Turn them on by setting the acsChassis parameter extraStats (on page 97) to 1. For each required extra statistic, turn the statistic on using the SMS Statistics Management screen (see SMS User's Guide).

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALLS_AT_ABORT</td>
<td>Number of Attempt Termination Actions performed by ACS that were aborted.</td>
</tr>
<tr>
<td>CALLS_AT_ANSWER</td>
<td>Number of Attempt Termination Actions performed by ACS that were answered.</td>
</tr>
<tr>
<td>CALLS_AT_BUSY</td>
<td>Number of Attempt Termination Actions with a busy response.</td>
</tr>
<tr>
<td>CALLS_AT_NO_ANSWER</td>
<td>Number of Attempt Termination Actions performed by ACS that were not answered.</td>
</tr>
<tr>
<td>CALLS_AT_RSF</td>
<td>Number of Attempt Termination Actions with a route selection failure response.</td>
</tr>
<tr>
<td>CALLS_CHG_ABORT</td>
<td>Number of Termination and Charging actions performed by ACS that were aborted.</td>
</tr>
<tr>
<td>CALLS_CHG_ANSWER</td>
<td>Number of Termination and Charging actions performed by ACS that were answered.</td>
</tr>
<tr>
<td>CALLS_CHG_BUSY</td>
<td>Number of Termination and Charging actions with a busy response.</td>
</tr>
<tr>
<td>CALLS_CHG_COUNT</td>
<td>Number of Termination and Charging actions performed by ACS Chassis.</td>
</tr>
<tr>
<td>CALLS_CHG_HOLD_TIME</td>
<td>Total charged time of Termination and Charging actions performed by ACS Chassis.</td>
</tr>
<tr>
<td>CALLS_CHG_NO_ANSWER</td>
<td>Number of ACS Termination and Charging actions that were not answered.</td>
</tr>
<tr>
<td>CALLS_CHG_RSF</td>
<td>Number of Termination and Charging actions with route select failure response.</td>
</tr>
<tr>
<td>CALLS_ETC_COUNT</td>
<td>Number of temporary connections established (for example, for announcements.</td>
</tr>
<tr>
<td>CALLS_ETC_HOLD_TIME</td>
<td>Total duration of established temporary connections.</td>
</tr>
<tr>
<td>PROMPT_AND_COLLECT</td>
<td>Total number of Play Announcement and Collect User Input operations performed.</td>
</tr>
</tbody>
</table>

acsStatsLocal (SLC)

Introduction

The acsStatsLocal takes a request from the chassis and passes it on to the acsStatsMaster, so that the chassis is able to continue processing calls. Once a reply has been received, the acsStatsLocal informs the chassis that it has a result.

Parameters

The following parameters must be configured with the correct value.

masterStatsServer

<table>
<thead>
<tr>
<th>Description:</th>
<th>Host name of the machine running the master stats server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default:</td>
<td>No default</td>
</tr>
<tr>
<td>Allowed:</td>
<td>Any string representing a host name, but must be the same as the masterStatsServer (on page 86) of the acsStatsMaster section. For example, scp1.telconame.com</td>
</tr>
</tbody>
</table>
port

Description: Port on which the stats master listens for connection attempts.
Default: 1490
Allowed: Must be the same as the `port` (on page 86) of the `acsStatsMaster` section.

acsChassis Emergency Numbers (SLC)

Parameters

This parameter will assume the default value if it is not configured. This parameter may have multiple entries.

EmergencyNumber

**Syntax:** EmergencyNumber string

**Description:** Enter the emergency numbers for the network. The emergency number parameters are loaded by the ACS Chassis for use by the service libraries.

**Default:**

**Allowed:** There is no checking on the values. However, non-numeric strings as values should have no effect on the processing of the service.

**Notes:** Emergency numbers represent destination numbers that the service libraries should not intercept on originating calls. If a service library (ACS/VPN/ABS) receives a line-based call-origination trigger with a destination in the list of emergency numbers, the service library will inform the Chassis that it is to send a Continue back to the SSP.

There can be multiple entries.

**Example:**

```
EmergencyNumber 911
EmergencyNumber 111
EmergencyNumber 0, ...
```

acsChassis INAP Extension Parameters

Introduction

Extension numbers are defined in INAP. A network operator or switch manufacturer may specify arbitrary pieces of extra information to appear in the InitialDP, each identified by an integer type.

Parameters

Use in the following format:

**Usage:**

```
extensionNumber Number ID [sequence] Type Subfield,Subfield,... [Context Tag]
```

**Notes:**

The INAP number is a telephone number format, as defined in the ISUP ITU-T recommendations.
The INAP address string is a telephone number format, as defined in the MAP ITU-T recommendations.
Number

**Description:** The number of the `extensionNumber`. This limit is hard coded into the source. It is simply to separate each `extensionNumber` so they can be chosen in the CPE.

**Default:** No default

**Allowed:** 0 to 9 inclusive

ID

**Description:** The identification number of the `extensionNumber`. This is used to identify extensions between clients and servers.

**Default:** No default

**Allowed:** The range is imposed by the TC_PROTOS implementation and each must be unique within the configuration file.

Sequence

**Description:** If the keyword 'sequence' is added before the type, `slee_acs` expects the `extensionNumber` it wants wrapped in a sequence tag (as defined in the ITU ASN.1 standard, X.209). In such cases, the context tag to expect must be given.

**Default:** No default

**Allowed:** 'sequence', or nothing

Type

**Description:** The type of `extensionNumber`. This indicates what sort of information is expected.

**Default:** No default

**Allowed:**
- `inapnumber`
- `inapaddressstring`
- `inaptbcdstring`
- `asn1integer`
- `asn1enumerated`
- `asn1boolean`
- `asn1octetstring`
- `octets`
- `inapgenericnumber`
- `mapsmssubmit`

**Notes:** See **Subfield** - **Type** table for meanings.

Subfield

**Description:** The sub field is particular to the type of `extensionNumber`. This sub field data indicates what data is expected when the `extensionNumber` is used. At least one sub field must be specified and if several sub fields are specified then separate each subfield with a comma.

**Default:** No default

**Allowed:** See table.

**Notes:** For those that have no sub fields defined in the standard a placeholder is used. The word 'value' needs to be used as a sub field.
This table lists full details of all the options:

<table>
<thead>
<tr>
<th>Type</th>
<th>Sub field</th>
<th># of Digits</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>inapNumber</td>
<td>digits</td>
<td>n</td>
<td>The actual digits</td>
</tr>
<tr>
<td></td>
<td>nqi</td>
<td>1</td>
<td>Number qualifier indicator</td>
</tr>
<tr>
<td></td>
<td>nature</td>
<td>2</td>
<td>Nature of address</td>
</tr>
<tr>
<td></td>
<td>innOrNi</td>
<td>1</td>
<td>emergency network number or number incomplete indicator</td>
</tr>
<tr>
<td></td>
<td>plan</td>
<td>1</td>
<td>Numbering plan</td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>1</td>
<td>presentation restricted indicator</td>
</tr>
<tr>
<td></td>
<td>screening</td>
<td>1</td>
<td>screening indicator</td>
</tr>
<tr>
<td>inapAddress</td>
<td>digits</td>
<td>n</td>
<td>The actual digits</td>
</tr>
<tr>
<td></td>
<td>extension</td>
<td>1</td>
<td>Extension</td>
</tr>
<tr>
<td></td>
<td>nature</td>
<td>1</td>
<td>Nature of address</td>
</tr>
<tr>
<td></td>
<td>plan</td>
<td>1</td>
<td>Numbering plan</td>
</tr>
<tr>
<td>inapTbcdstring</td>
<td>value</td>
<td>2 * sizeof(int) (usually 8)</td>
<td>Hex representation of the integer for example, &quot;0000002E&quot; for 2E hex</td>
</tr>
<tr>
<td>asn1Integer</td>
<td>value</td>
<td>2 * sizeof(int) (usually 8)</td>
<td>Hex representation of the integer for example, &quot;0000002E&quot; for 2E hex</td>
</tr>
<tr>
<td>asn1Enumerated</td>
<td>value</td>
<td>2 * sizeof(int) (usually 8)</td>
<td>Hex representation of the integer for example, &quot;0000002E&quot; for 2E hex</td>
</tr>
<tr>
<td>asn1Boolean</td>
<td>value</td>
<td>1</td>
<td>1 for true, 0 for false</td>
</tr>
<tr>
<td>asn1Octet</td>
<td>value</td>
<td>n</td>
<td>Hex representation of the octet string</td>
</tr>
<tr>
<td>octets</td>
<td>value</td>
<td>n</td>
<td>Octet string raw data</td>
</tr>
<tr>
<td>mapsmssubmit</td>
<td>plan</td>
<td>1</td>
<td>Numbering plan</td>
</tr>
<tr>
<td></td>
<td>digits</td>
<td>n</td>
<td>The actual digits</td>
</tr>
<tr>
<td>inapGenericNumber</td>
<td>digits</td>
<td>n</td>
<td>The actual digits</td>
</tr>
<tr>
<td></td>
<td>nqi</td>
<td>1</td>
<td>Number qualifier indicator</td>
</tr>
<tr>
<td></td>
<td>nature</td>
<td>2</td>
<td>Nature of address</td>
</tr>
<tr>
<td></td>
<td>innOrNi</td>
<td>1</td>
<td>emergency network number or number incomplete indicator</td>
</tr>
<tr>
<td></td>
<td>plan</td>
<td>1</td>
<td>Numbering plan</td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>1</td>
<td>presentation restricted indicator</td>
</tr>
<tr>
<td></td>
<td>screening</td>
<td>1</td>
<td>screening indicator</td>
</tr>
</tbody>
</table>

**Context Tag**

**Description:** This context tag can be specified to override the universal default tag.

**Optionality:** Optional
Default: No default

Allowed: The context tag is defined as a hex number. For example, 55 is the hex number 0x55, rather than the decimal number 55.

Notes: Usually, the extensionNumber is identified by a universal tag, which depends on the type of extension it is. Sometimes though a site will wish to define a unique special tag, and create a context specific tag for an extension. If this is the case, sla_acs must know about this and it can be specified by adding the context specific tag to the end of the extension line.

Extension Numbers Example

Nokia uses the following extension digits:

- IMSI type 26
- MSRN type 28
- tp_da field type 47

Example 1

```
extensionNumber 0 26 inapaddressstring digits
```

This entry in the `acs.conf` instructs the system to copy the digits out of extension type 26 into extension slot 0. (The number matching node can then route on these digits, by selecting extension slot 0 in the pull down list.)

Example 2

```
extensionNumber 1 28 inapaddressstring extension,nature,plan,digits
```

The following MSRN digits are copied into extension slot 1:

1 digit representing extension, 1 digit representing nature, 1 digit representing numbering plan + the actual digits.

Example 3

```
extensionNumber 0 47 mapsmssubmit type,plan,digits
```

The extension type "mapsmssubmit" allows a parameter of this type, and specifically the "tp_da" field, to be picked from extension digits in the IDP for source selection purposes.

acsChassis Normalization Parameters (SLC)

NOA and Normal Rules

The NOA (nature of address) is a classification to determine in what realm (Local, National, or International) a given phone number resides, for the purposes of routing and billing.

Note: Details vary between different implementations of phone systems, but the following table is representative.

<table>
<thead>
<tr>
<th>Dialed Digits</th>
<th>NOA (aka NOC, NON)</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>477 9425</td>
<td>1 ==&gt; Subscriber</td>
<td>Number within Local Telephone Exchange</td>
</tr>
<tr>
<td>4 477 9425</td>
<td>3 ==&gt; National</td>
<td>Number within Country Telephone Exchange</td>
</tr>
<tr>
<td>64 4 477 9425</td>
<td>4 ==&gt; International</td>
<td>Number within World Telephone Exchange</td>
</tr>
<tr>
<td>477 9425</td>
<td>2 ==&gt; UNKNOWN</td>
<td>Numbering Scheme rule ==&gt; Subscriber</td>
</tr>
<tr>
<td>0 4 477 9425</td>
<td>2 ==&gt; UNKNOWN</td>
<td>Numbering Scheme rule ==&gt; National</td>
</tr>
<tr>
<td>00 64 4 477 9425</td>
<td>2 ==&gt; UNKNOWN</td>
<td>Numbering Scheme rule ==&gt; International</td>
</tr>
</tbody>
</table>
In essence, the subscriber’s telephone system *may* try to ascertain the NOA by examining the dialed
digits. If they are understood by “built-in” mechanisms, the NOA can unambiguously be a Subscriber,
National, International, or finer classification determined by the protocol variant.

Otherwise, the NOA is unknown and the dialed digits must be made unambiguous by a set of rules
specified by a numbering scheme.

Leading zeros are often ignored, but the leading characters could be any arbitrary sequence that the
numbering scheme could specify.

Ultimately, the usage of NOA is determined by the phone network itself, which may classify and possibly
modify a phone number while it is being transmitted between the service logic and the switch.

**Number Normalization and Denormalization**

People deal with, and a database usually stores, telephone numbers in their normalized form. However,
the network gives and receives numbers in a denormalized form where the NOA is known explicitly.

**Example:**

<table>
<thead>
<tr>
<th>Normalized number:</th>
<th>00441918666223</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-Normalized number:</td>
<td>Nature of Address:</td>
</tr>
<tr>
<td></td>
<td>Digits:</td>
</tr>
</tbody>
</table>

**Possible Natures of Addresses:**

- Subscriber (local) (is 1 with ITU/ETSI CS-1)
- Unknown (is 2 with ITU/ETSI CS-1)
- National (is 3 with ITU/ETSI CS-1)
- International (is 4 with ITU/ETSI CS-1)

**Global and Service Specific Normalization**

You can define how the ACS framework normalizes and denormalizes numbers at a global level and at
the service level. Global rules are defined within the acsChassis section, while specific service rules
are defined in separate service sections in the acs.conf file (that is, defined by the ServiceEntry
parameters).

Global normalization rules supersede rules for specific services.

**Normalization Parameters**

Normalization and denormalization rules are defined in the acs.conf file by using the following
parameters:

- **NormalUnknownNOA**
  
  **Syntax:** `NormalUnknownNOA num`
  
  **Description:** Specifies the NOA to use for phone numbers when the NOA is unknown.
  
  **Type:** Integer
  
  **Optionality:** Optional (default used if not set)
  
  **Allowed:**
  
  - 1 – Subscriber
  - 2 – Unknown
  - 3 – National
  - 4 – International
Default: No default

Notes: The rules to normalize and denormalize numbers is set up separately. There is no single configuration option to do both.

Example: NormalUnknownNOA 2

NormalUseHex

Syntax: NormalUseHex num

Description: Specifies whether the converted number is a hexadecimal value or a decimal value.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

- 0 – Decimal value
- 1 – Hexadecimal value

Default: 0

Notes:

Example: NormalUseHex 1

NormalisationRule

Syntax: NormalisationRule

(inNOA, inPrefix, noOfDigitsToRemove, outPrefix[, minLength, maxLength, prefixSource])

Description: Defines a rule for converting incoming (denormalized) numbers to normalized numbers.

Normalization rules are applied to incoming numbers that match the following array parameters:

- inNOA – Specifies the required realm for incoming numbers to trigger normalization. Allowed values are 1 (Subscriber), 2 (Unknown), 3 (National), and 4 (International). This array parameter is mandatory.
- inPrefix – Specifies the required prefix for incoming phone numbers. Allowed values include integers 0 through 9, letters A through F, and special characters hashtag (#), asterisk (*), and dash (-). A value of dash (-) specifies to match any prefix. This array parameter is mandatory.
- minLength – Specifies the minimum length for incoming phone numbers. This array parameter is optional. The default is 1. If you add this array parameter, you must also add the maxLength array parameter.
- maxLength – Specifies the maximum length for incoming phone numbers. This array parameter is optional. The default is 32. If you add this array parameter, you must also add the minLength and maxLength array parameters.
- prefixSource – Specifies a single character that represents the buffer from which to grab the prefix that is added to the normalized number. It uses standard source selection rules (but only allows a single character, rather than string of characters). The value is one of the following digits: aAcCfFlLnMmNdDgGoOvV0-9. See acsChassis ServiceEntry Configuration (SCP) (on page 123) for a definition of each character. If you add this array parameter, you must also add the minLength and maxLength array parameters.

The rules to apply to the incoming phone number are specified in the following array parameters:

- noOfDigitsToRemove – Specifies the number of digits to remove from the beginning of the phone number. This array parameter is mandatory.
- outPrefix – Specifies the digits to add to the beginning of the phone number.
number. This operation is performed after the digits are removed for
noOfDigitsToRemove. Allowed values include integers 0 through 9,
letters A through F, and special characters hashtag (#), asterisk (*), and
dash (-). This array parameter is mandatory.

Allowed: Valid list of parameters
Type: Array of parameters
Optionality: Optional
Default: No default
Notes: Normalization rules are applied based on the best match for the number and
NoA, and the value of inPrefix. The rule with the longest matching inPrefix value
is applied. If more than one rule matches the same inPrefix value, the last rule in
the list of matching rules is applied.

Example: NormalisationRule (4,0,0,000)

DenormalisationRule

Syntax: DenormalisationRule
(inPrefix, outNOA, noOfDigitsToRemove, outPrefix[,MinLength,MaxLength,prefixSource])
DenormalisationRule
(noa, inNOA, inPrefix, outNOA, noOfDigitsToRemove, outPrefix[,MinLength,MaxLength,prefixSource])

Description: Defines a rule for converting normalized (internal) numbers to (outgoing)
denormalized numbers.

Denormalization rules are applied to outgoing numbers that match the following
array parameters:

- noa – Enter the literal string "noa" in lower-case characters.
- inNOA – Specifies the required realm for numbers to trigger
denormalization. Allowed values are 1 (Subscriber), 2 (Unknown), 3
(National), and 4 (International). This array parameter is mandatory.
- inPrefix – Specifies the required prefix for numbers to trigger
denormalization. Allowed values include integers 0 through 9, letters A
through F, and special characters hashtag (#), asterisk (*), and dash (-). A dash (-)
means that all number prefixes can trigger denormalization. This array parameter is mandatory.
- minLength – Specifies the minimum phone number length that triggers
denormalization. This array parameter is optional. The default is 1. If you
add this array parameter, you must also add the maxLength array
parameter.
- maxLength – Specifies the maximum phone number length that triggers
denormalization. This array parameter is optional. The default is 32. If you
add this array parameter, you must also add the minLength array
parameter.

The rules to apply to the incoming phone number are specified in the following
array parameters:

- outNOA – Sets the realm for outgoing denormalized numbers. Allowed
values are 1 (Subscriber), 2 (Unknown), 3 (National), and 4
(International). This array parameter is mandatory.
- noOfDigitsToRemove – Specifies the number of digits to remove from the
beginning of the phone number. This array parameter is mandatory.
- outPrefix – Specifies the digits to add to the beginning of the phone
number. This operation is performed after the digits are removed for noOfDigitsToRemove. Allowed values include integers 0 through 9, letters A through F, and special characters hashtag (#), asterisk (*), and dash (-). This array parameter is mandatory.

- prefixSource – Specifies a single character that represents the buffer from which to grab the prefix that is added to the denormalized number. It uses standard source selection rules (but only allows a single character, rather than string of characters). The value is one of the following digits: aAcClIlLnMmNdDgGoOvV0-9. See acsChassis ServiceEntry Configuration (SCP) (on page 123) for a definition of each character. If you add this array parameter, you must also add the minLength and maxLength array parameters.

Default: No denormalization
Type: Array of parameters
Optionality: Optional
Allowed: Valid list of parameters following either the first or second format.
Notes: There are NO spaces within either rule format.
Example: DenormalisationRule (800,3,0,-,7,9)
DenormalisationRule (noa,3,E,4,0,999)

**normaliseTerminationNumber**

**Syntax:** normaliseTerminationNumber num

**Description:** Set the engine's terminationNumber, which is printed as TN in the EDR.

**Type:** Integer

**Allowed:**
- 0 – The digits sent over the network in the connect.
- 1 – The normalized number sent to the service loader.

**Optionality:** Optional (default used if not set)

**Default:** 0

**Notes:** This parameter is specified at the global level only.

**Example:** normaliseTerminationNumber 1

**normaliseServiceNumber**

**Syntax:** normaliseServiceNumber num

**Description:** Specifies the EDR service number, which is printed as SN in the EDR.

**Type:** Integer

**Allowed:**
- 0 – The digits received over the network in the IDP.
- 1 – The normalized number received from the service loader.

**Optionality:** Optional (default used if not set)

**Default:** 0

**Notes:** This parameter is specified at the global level only.

**Example:** normaliseServiceNumber 1

**Play Variable Part Announcement Feature Node Denormalization Rules**

If you configure the Play Variable Part Announcement feature node to denormalize numbers, it denormalizes numbers according to the rules specified in the following area of the acs.conf file. The node uses the sections in the priority shown below.

1. The NumberRulesSection parameter in the acsPlayVariablePartAnnouncement section
The NumberRulesInteraction section

For example:

```plaintext
acsPlayVariablePartAnnouncement
NumberRulesSection NumberRulesPNAN
 NumberRulesPNAN
 DenormalisationRule (62,2,2,-)
 DenormalisationRule (-,2,0,00)
```

If no denormalization rule matches, the number is played in its normalized form.

**Example 1**

The following shows an example normalization rule.

```plaintext
NormalisationRule (4,-,2,10,7,14)
```

This normalization rule specifies to apply the rule to incoming numbers with:

- An NOA of 4 (International)
- Any prefix
- A minimum of 7 digits
- A maximum of 14 digits

When a number matches the criteria, the ACS framework removes the first two digits from the number and then prefixes the number with 10. For example, the incoming number [International, "006449391234"] is normalized to "106449391234".

**Example 2**

The following shows an example normalization rule.

```plaintext
NormalisationRule (3,-,2,-,10,14,m)
```

This normalization rule specifies to apply the rule to incoming numbers with:

- An NOA of 3 (National)
- A minimum of 10 digits
- A maximum of 14 digits
- An MSC address with a prefix in the countryCodes list (see countryCodes (on page 47))

When a number matches the criteria, the ACS framework removes the first two digits from the number and then prefixes the number with the country code prefix from the MSC address. For example, the incoming number [National, "006475551212"] is normalized to "656475551212".

**Note:** For this example to work, you must have also configure the countryCodes parameter in the SLC’s eserv.config file.

**Example 3**

The following shows an example denormalization rule.

```plaintext
DenormalisationRule (0,3,1,-,7,14)
```

This denormalization rule specifies to apply the rule to outgoing numbers with:

- A prefix of 0
- A minimum of 7 digits
A maximum of 14 digits
When a number matches the criteria, the ACS framework removes the first digit from the number and sets the NOA to 3 (National). For example, the number "049391234" is denormalized to [National, "49391234"].

Example 4
The following shows an example denormalization rule.

```
DenormalisationRule (noa,3,-,4,0,999)
```

This denormalization rule specifies to apply the rule to outgoing numbers with:
- An NOA of 3 (National)
- Any prefix
When a number matches the criteria, the ACS framework removes the first four digits from the number, sets the NOA to 4 (International), and adds 999 to the beginning of the number. For example, the number [National, "1837504857"] is denormalized to [International, "999504857"].

acsChassis SLEE Event Size Parameter (SLC)

Introduction
The `minimumSizeOfConnectSleeEvent` parameter defines the minimum size for SLEE events containing connect operations from ACS.

You define the `minimumSizeOfConnectSleeEvent` parameter globally in the `acsChassis` section of `acs.conf`. You can also override the global value on a per service basis by defining an override value for the parameter in the service configuration.

For more information, see Configuring `minimumSizeOfConnectSleeEvent` Per Service (on page 129).

Important: For this configuration to work, you must also define `MAXEVENTS` in `SLEE.cfg` of at least the sizes specified for `minimumSizeOfConnectSleeEvent`.

```
minimumSizeOfConnectSleeEvent event_size
```

**Syntax:** `minimumSizeOfConnectSleeEvent event_size`

**Description:** Sets the minimum size in bytes for SLEE events containing connect operations. You can override the global definition for the minimum size for a service by including a definition for this parameter in the service configuration.

**Type:** Integer

**Optionality:** Optional (default used if not set).

**Allowed:** A valid integer

**Default:** 1024

**Notes:** You must also configure `MAXEVENTS` in the `SLEE.cfg` file for each `minimumSizeOfConnectSleeEvent` definition, using the same value or a higher value.

**Example:** `minimumSizeOfConnectSleeEvent 16384`
acsChassis ServiceEntry Configuration (SLC)

Introduction

A service entry is a line in `acs.conf` telling slee_acs how to handle new calls arriving from the SLEE. A service entry specifies:

- Which service loader should handle calls from which SLEE service handle
- How the InitialDP parameters are translated into the call context and outgoing Connect variables

Service loaders:

- Load control plans, profiles, etc
- Copy InitialDP parameters to ACS call context variables
- Construct outgoing Connects

Note: The SLEE service handle is derived from the `SLEE.cfg` file. They are based on the:

- INAP service key in the InitialDP
- Originating SCCP sub-system number of the message containing the InitialDP

For more information about `SLEE.cfg` service handles, see *SLEE Technical Guide*.

Syntax

In `acs.conf`, ServiceEntry lines may take one of the following forms.

First form

```
ServiceEntry(ServiceName, libname)
```

Second form

```
ServiceEntry(ServiceName, CallType, libname)
```

Third form

```
ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, libname)
```

Fourth form

```
ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, ConnectCLISource, libname)
```

Fifth form

```
ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, PendingTNSource, ConnectCLISource, libname)
```

Sixth form

```
ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, PendingTNSource, ConnectCLISource, RedirectingPartyID, libname)
```

Seventh form

```
ServiceEntry(ServiceName, NetworkCPSource, LogicalCPSource, PendingTNSource, ConnectCLISource, RedirectingPartyID, OriginalCalledPartyID, libname)
```

Parameters

Here are the definitions for each parameter.

**ServiceName**

**Syntax:** See Allowed.

**Description:** This is the name of the service this entry defines. This parameter is used to identify the control plan to use.

**Type:** String
Optionality: Required
Allowed: ACS

**slee_acs** uses the service number (usually derived from the called party number) in the ACS_SN_CALL_PLAN_ACTIVATION table.

Allowed: ACS_Outgoing

**slee_acs** uses the logical calling party number in the ACS_CLI_CALL_PLAN_ACTIVATION table.

**Note:** Must match the service handle name in the SLEE configuration file (slee.cfg) for this application.

Default: None

**Notes:**

**Example:** MO_ACS_Outgoing

---

**CallType**

**Syntax:** Type

**Description:** The type of the call. This parameter is used to identify the control plan to use.

**Type:** String

**Optionality:**

- If using the second ServiceEntry form, this parameter is required.
- This parameter cannot be set in any other form.

**Allowed:**

- ACS
  - If the service handle is "ACS", **slee_acs** uses the service number (usually derived from the called party number) in the ACS_SN_CALL_PLAN_ACTIVATION table.

- ACS_Outgoing
  - If the service handle contains "ACS_Outgoing", **slee_acs** uses the logical calling party number in the ACS_CLI_CALL_PLAN_ACTIVATION table.

**FixedControlPlanName**

A string which corresponds to a control plan name.

Default: None

**Notes:**

Usage 2 form is deprecated. If used, the callType parameter is ignored, and an alarm is produced:

acsParseServiceLine. acs.conf contains old ServiceEntry fmt - field2 ignored.

**Example:** MO_ACS_Outgoing

---

**NetworkCPSource**

**Description:** Sets the CC Calling Network Address call context variable.

**Type:** String

**Optionality:**

- If using the third, fourth, fifth, sixth and seventh ServiceEntry forms, this parameter is required.
- This parameter cannot be set in any other form.

**Allowed:** See *Extraction Sources in IDP* (on page 126).

**Default:** CANLCANL

**Notes:**

- CC Calling Network Address can be selected in CPE feature node configuration screens.
- It describes the location of the calling party relative to the network. This parameter defines where the subscriber is. This is used in the Geographical Routing feature node. It can also be used in other services (for example, for CLIxDN tables in CCS, to calculate how much the call will cost).

**NetworkCPSource** and **LogicalCPSource** can be the same. They will be
different when the calling party has call-forwarded or is roaming internationally.

Example:  

```
LCANlcan
```

### LogicalCPSource

**Description:**  
Sets the CC Calling Logical Number call context variable.

**Type:**  
String

**Optionality:**  
If using the third, fourth, fifth, sixth and seventh **ServiceEntry** forms, this parameter is required.

This parameter cannot be set in any other form.

**Allowed:**  
See *Extraction Sources in IDP* (on page 126).

**Default:**  
ILcCaAnN

**Notes:**  
CC Calling Logical Number can be selected in CPE feature node configuration screens.

It describes the identity of the calling party. This parameter defines who the subscriber is and, for billing purposes, who will pay.

This is used in the Call Filtering feature node.

NetworkCPSource and LogicalCPSource can be the same. They will be different when the calling party has call-forwarded or is roaming internationally.

Example:  

```
cC1LaAnN
```
RedirectingPartyID

**Description:** Populates the redirectingPartyID parameter in Connect operations which are sent to the SSP.

**Type:** String

**Optionality:** If using the sixth and seventh ServiceEntry forms, this parameter is required. This parameter cannot be set in any other form.

**Allowed:** See *Extraction Sources in IDP* (on page 126).

**Default:** ILE

**Example:** cC

OriginalCalledPartyID

**Description:** Populates the originalCalledPartyID parameter in Connect operations which are sent to the SSP.

**Type:** String

**Optionality:** If using the seventh ServiceEntry form, this parameter is required. This parameter cannot be set in any other form.

**Allowed:** See *Extraction Sources in IDP* (on page 126).

**Default:** fFE

**Example:** fFdD

libname

**Syntax:** name

**Description:** The name of the slee_acs service loader plug-in library to use for this service.

**Type:** String

**Optionality:** Required

**Allowed:**

**Default:** None

**Notes:** slee_acs will look for the library in all locations specified in the LD_LIBRARY environmental variable. This is usually set up in the .profile of acs_oper. The service loader library required to run a service application will be installed by the application's packages.

**Example:** libacsService.so

---

**Extraction Sources in IDP**

Extraction source settings define where slee_acs extracts data to populate the call context and outgoing Connects from. Each letter corresponds to a parameter in the InitialDP. slee_acs takes the first valid value, checking each InitialDP parameter in the order the letters appear. This can be used to:

- Set up roaming calls so the called and calling parties are swapped so they can be billed correctly
- Ensure a call context or outgoing Connect variable is present by using more than one source value (for example, using redirectingPartyID and callingPartyNumber to populate the CC Calling Party Number call context variable)
- Ensure a call context or outgoing Connect is empty

**Note:** The settings can only be used for these ServiceEntry parameters:

- NetworkCPSource
- LogicalCPSource

---

126   ACS Technical Guide
### Extraction Value Construction

When sles_acs constructs the call context or outgoing Connect parameter values from the source InitialDP parameter values, some values are changed. The rules are described in the following table.

<table>
<thead>
<tr>
<th>Source</th>
<th>InitialDP (IDP) source fields</th>
<th>Digits</th>
<th>Screen</th>
<th>NOA</th>
<th>NII</th>
<th>PRI</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>a or A *</td>
<td>additionalCallingPartyNumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c or C *</td>
<td>callingPartyNumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d or D *</td>
<td>calledPartyNumber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Empty</td>
<td>&quot;***&quot;</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f or F *</td>
<td>originalCalledPartyID</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g or G</td>
<td>cellIDorLAI (from the Location Information parameter)</td>
<td></td>
<td></td>
<td>See G digits</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>i or I</td>
<td>IMSI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l or L</td>
<td>redirectingPartyID</td>
<td></td>
<td></td>
<td>See NOA ISUP type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m or M</td>
<td>mscAddress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n or N *</td>
<td>locationNumber</td>
<td></td>
<td></td>
<td>See NOA ISUP type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o or O</td>
<td>Location Number (from the Location Information parameter)</td>
<td></td>
<td></td>
<td>See NOA ISUP type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v or V</td>
<td>Visitor Location Register (VLR) number (from the Location Information parameter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-9</td>
<td>extensionNumber (for more information on extension numbers, see acsChassis INAP Extension Parameters (on page 113)).</td>
<td>2nd to last digit</td>
<td>0</td>
<td>1st digit</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

### Notes:

An empty cell indicates the source value is copied with no changes.

The sources marked "***" indicate the following:

- lower case - screening indicator provided by user.
- upper case - screening indicator provided by network.

### G Digits

The digits sourced from gG are reconstructed into the following format:

\[ MccMncLac[CellID] \]
Rules are applied as follows:

<table>
<thead>
<tr>
<th>Digits</th>
<th>Value</th>
</tr>
</thead>
</table>
| 1 to 3 | MCC (Mobile country code)  
         | If country code < 3 digits long, pad to the left of country code with Fs to 3 digits. |
| 4 to 6 | MNC (Mobile network code)  
         | If network code < 3 digits long, pad to the left of country code with Fs to 3 digits. |
| 7 to 10| LAC - Hex digits of Location Area Code.  
         | If LAC is < 4 digits long, pad to the left of LAC with 0s to 4 digits. |
| 11 to 14| CellID - Hex digits of cell ID (if present).  
         | If CellID is not present, total length will only be 10 digits. |

Examples:
If MCC = 21, MNC=183, LAC=42, and CellID is unset, reconstructed value for gG will be F21183002A.
If MCC = 221, MNC=83, LAC=42, and CellID=10, reconstructed value for gG will be 221F83002A000A.

**NOA-MAP Type**

The NOA for all the extracted numbers use the ISUP value definitions (see NOA_ISUP type table), however the MAP protocol NOA value is copied with no changes.

**Warning:** When comparing the MAP and ISUP tables, the incoming MAP NOA type has a different meaning than the NOA ISUP type for the number extracted.

For example, incoming MAP NOA = 1 (international number), outgoing ISUP NOA = 1 (subscriber number (national use)).

Therefore the extracted NOA may cause unpredictable effects if the extracted number is further processed.

This NOA is in the MAP protocol format and will be one of the following values:

<table>
<thead>
<tr>
<th>NOA</th>
<th>MAP Protocol Type Number Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>unknown</td>
</tr>
<tr>
<td>1</td>
<td>international number</td>
</tr>
<tr>
<td>2</td>
<td>national significant number</td>
</tr>
<tr>
<td>3</td>
<td>network specific number</td>
</tr>
<tr>
<td>4</td>
<td>subscriber number</td>
</tr>
<tr>
<td>5</td>
<td>reserved</td>
</tr>
<tr>
<td>6</td>
<td>abbreviated number</td>
</tr>
<tr>
<td>7</td>
<td>reserved for extension</td>
</tr>
</tbody>
</table>

**Note:** These NOA values are used by the v, V, m or M source letters only.

**NOA-ISUP Type**

This NOA is in the ISUP protocol format and will be one of the following values:

<table>
<thead>
<tr>
<th>NOA</th>
<th>ISUP Protocol Type Number Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>spare</td>
</tr>
<tr>
<td>1</td>
<td>subscriber number (national use)</td>
</tr>
</tbody>
</table>
### Overriding AWOL Configuration Per Service

It is possible to override the values of three AWOL parameters defined in the `acsChassis` AWOL configuration section by specifying different values in the service configuration for each service. These parameters are:

- `awolTimeout` (on page 154)
- `awolReportOnly`
- `awolReportPeriod` (on page 155)

#### Example

Here is an example of the `acs.conf` with AWOL parameters defined globally and the values of three parameters changed at per service level:

```plaintext
acsChassis
 ...
 ServiceEntry (CCS_CS, ccsSvcLibrary.so)
 ServiceEntry (CCS_SM_MO, nN, cC, dD, dD, ccsSvcLibrary.so)
 ...
 # global AWOL params
 checkAWOL 1
 checkAWOLMarginAC 90

 # global serviceEntry settings that can be overridden on a per serviceEntry basis
 awolTimeout 300
 awolReportOnly 1
 awolReportPeriod 600:

CCS_CS
 awolTimeout 400
 awolReportOnly 1
 awolReportPeriod 900:

CCS_SM_MO
 awolTimeout 900
 awolReportOnly 1
 awolReportPeriod 1800:

```

### Configuring minimumSizeOfConnectSleeEvent Per Service

Configure `minimumSizeOfConnectSleeEvent` on a per service basis to override the global configuration defined for it in the `acsChassis` section of `acs.conf`.

For more information on `minimumSizeOfConnectSleeEvent` parameter, see `acsChassis SLEE Event Size Parameter (SLC)` (on page 122).
Example

This example configuration defines a global value for the `minimumSizeOfConnectSleeEvent` parameter in the `acsChassis` section of `acs.conf`, and a service specific entry to override the global value for the CCS_BPL service.

In the example, all SLEE events that contain connect operations will be at least 16384 bytes in size. However, if the service is CCS_BPL, then these events will be at least 163840 bytes in size because the service specific entry will override the `acsChassis` entry.

```plaintext
acsChassis

... ServiceEntry (CCS_BPL,ccsSvcLibrary.so)
...

global minimumSizeOfConnectSleeEvent setting that can be overridden on a per serviceEntry basis
minimumSizeOfConnectSleeEvent 16384

CCS_BPL

Defines parameters that are specific to the CCS_BPL service
...

minimumSizeOfConnectSleeEvent 163840
```

acsChassis SRF Configuration (SLC)

Introduction

The `srf` parameter defines an SRF (Specialized Resource Function) name which may be referenced in the ACS announcement configuration screens.

srf Parameter Configuration

You configure the `srf` parameter by using the following syntax:

```plaintext
srf (srfName,UseETC=Y|N,Address=address_of_IP,NOA=0-4[,TypeOfSRF=string][,TypeOfIVR=string][,tcapPreEnd=Y|N])
```

For example:

```plaintext
srf (SRF,UseETC=N,Address=123,NOA=4,TypeOfSRF=NAP,TypeOfIVR=CAMEL,tcapPreEnd=Y)
```

**srfName**

- **Syntax:** `srfName`
- **Description:** Unique name for this SRF entry
- **Type:** String
- **Optionality:** Required
- **Allowed:**
- **Default:** No default
- **Notes:** Resource Name on the New and Edit Announcement Entry screens must match this entry.

For more information about setting up announcements using the ACS screens, see ACS User's Guide.

**Example:** NAP1
### UseETC

**Description:** Whether or not to establish a temporary connection directly to an external intelligent peripheral.

**Type:** Boolean

**Optionality:** Required

**Allowed:**
- **Y**
  - An external IP is contacted directly from the SLC. This establishes a temporary connection to that IP.
- **N**

**Default:** N

**Notes:** UseETC=Y

**Example:**

<table>
<thead>
<tr>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax: Address=host</td>
</tr>
</tbody>
</table>

**Description:** This is the hostname or address of an external intelligent peripheral.

**Type:** Hostname or IP address

**Optionality:** Required

**Allowed:**
- You do not need to set a value if the IP is internal to the switch.

**Default:** No default

**Notes:** Required if UseETC is set to Y.

**Example:** Address=C400102

### NOA

**Syntax:** NOA=value

**Description:** The Nature of Address indicator.

**Type:** Integer

**Optionality:**

<table>
<thead>
<tr>
<th>Allowed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 spare</td>
</tr>
<tr>
<td>1 subscriber number</td>
</tr>
<tr>
<td>2 unknown</td>
</tr>
<tr>
<td>3 national significant number</td>
</tr>
<tr>
<td>4 international significant number</td>
</tr>
</tbody>
</table>

**Default:** 0

**Notes:**

**Example:** NOA=3

### TypeOfSrf

**Syntax:** TypeOfSrf=string

**Description:** What type of intelligent peripheral this SRF entry refers to.

**Type:** String

**Optionality:**
Chapter 5

Allowed:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAP</td>
<td>Only required on older Nortel internal SRF implementations.</td>
</tr>
<tr>
<td>NOKIA</td>
<td></td>
</tr>
<tr>
<td>Nortel</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>No SRF-type-specific extensions will be activated.</td>
</tr>
<tr>
<td>ZTE</td>
<td></td>
</tr>
</tbody>
</table>

Default:

If `UseLanguageExtensions = Y` and the SRF is a Unisys speaking NAP, `TypeOfSrf` will default to NAP.

Otherwise `TypeOfSrf` will default to Other.

Notes:

Must equal NAP to have the language ID sent in the playAnnouncement or PACUI message.

Example:

`TypeOfSrf=NAP`

**TypeOfIVR**

**Syntax:**

`TypeOfIVR=string`

**Description:**

Set `TypeOfIVR` to CAMEL to enable the Play Variable Announcement feature node to play dates in variable part announcements that comply with the 3GPP CAMEL specification: 3GPP TS 29.078.

When you set `TypeOfIVR` to CAMEL, dates sent over the network with a size of four octets, and that are formatted as YYYYMMDD, will be played in announcements. The default behavior (INAP support) is used when you specify any other value for the `TypeOfIVR` parameter, or when you leave it unset. The default behavior sends dates over the network with a size of three octets, formatted as YYMMDDD.

**Type:**

String

**Optionality:**

Optional (default used if not set)

**Allowed:**

- CAMEL
- Any other value

**Default:**

(INAP support) Send dates over the network with a size of three octets, formatted as YYMMDDD.

**Example:**

`TypeOfIVR=CAMEL`

**tcapPreEnd**

**Syntax:**

`tcapPreEnd=Y|N`

**Description:**

Use prearranged End to TCAP dialogs.

**Type:**

Boolean

**Optionality:**

Optional

**Allowed:**

Y, N

**Default:**

Y

**Notes:**

**Example:**

`UseETC=Y`

How the SRF Configuration Works

There are three ways in which this configuration works, depending on the parameters set:

1. The SLC communicates with the SSP through CTR (Connect to Resource) and using an internal IP. No IP address is required for this option. UseETC is not required (select N). The IP name is required. NOA is required (but ignored).
2 The SLC communicates with the SSP through the CTR and IP address. The SSP then uses the IP address to communicate with an external IP. The IP address is required for this option. UseETC is not required (select N). The IP name is required. NOA is required.

3 The SLC communicates with the SSP through the ETC operation (EstablishTemporaryConnection) and IP address. The SSP then uses the IP address to communicate with an external IP. The IP address is required for this option. The IP also communicates directly with the SLC, using an ARI (AssistRequestInstructions). UseETC is required (select Y). The IP name is required. NOA is required.
acsChassis SCF Configuration (SLC)

Introduction

The `scf` parameter defines an SCF (Service Control Function) name and SCCP Address that can be used by the TCAP Handover feature node as a destination for the handed over TCAP primitive.

For more information about the TCAP Handover feature node, see *CPE User's Guide*.

Parameter

Usage:

```
scf (scfName,NOA=0-4,Address=SCF_addr,TT=translation_type,NPI=number_plan_ind,PC=point_code,SSN=subsystem_number,RI=routing_ind,NI=national_ind,appContext=context)
```

To specify a location, point code or global title addressing may be used.

Valid combinations are:

- PC+SSN
- Address+NOA
- Address+TT
- Address+TT+NPI
- Address+NOA+TT+NPI

You can also cause an originating address to be set in the outgoing ICA request by `slee_acs` instead of your TCAP IF using:

```
scf (LocationAddress,NOA=0-4,Address=SCF_addr)
```

Note: Consult standard Q713 for full parameter definitions.

**scfName**

Syntax: `scfName`

Description: The SCF name to deliver the TCAP primitive to.

Type: String

Optionality: Required if TCAP Handover is used.

Allowed: Must match the name from the TCAP Handover feature node configuration in the control plan.

Default: none

Notes: If you set LocationAddress in this position in the scf, `slee_acs` will set an originating address in the outgoing ICA request (otherwise it is set by TCAP IF).

Example: For an example of how to use this configuration in context, see *Example SCF Configuration* (on page 137) SCF configuration.

**Address**

Syntax: `SCF_addr`

Description: The address of IP if an external IP is used.

Type: Address of IP or nothing if internal IP

Default: none

Notes: For an example of how to use this configuration in context, see *Example SCF*
Chapter 5, Configuring the acs.conf  135

Configuration (on page 137) SCF configuration.

NOA

Syntax: noa
Description: The nature of address indicator.
Type: Optionality: Optional (default used if not set)
Allowed:  
0  spare
1  subscriber number
2  unknown
3  national significant number
4  international significant number
Default: 0
Notes: Example: For an example of how to use this configuration in context, see Example SCF Configuration (on page 137).

TT

Syntax: translation_type
Description: The translation type.
Type: Optionality: Allowed: Default: none
Notes: Example: For an example of how to use this configuration in context, see Example SCF Configuration (on page 137) SCF configuration.

NPI

Syntax: number_plan_ind
Description: The number plan indicator.
Type: Optionality: Allowed: Default: none
Notes: Example: For an example of how to use this configuration in context, see Example SCF Configuration (on page 137) SCF configuration.

PC

Syntax: point_code
Description: The point code.
Type: Optionality: Allowed:
Default: none

Notes:

Example: For an example of how to use this configuration in context, see Example SCF Configuration (on page 137) SCF configuration.

SSN

Syntax: subsystem_number

Description: The subsystem number.

Type:

Optionality:

Allowed:

Default: none

Notes:

Example: For an example of how to use this configuration in context, see Example SCF Configuration (on page 137) SCF configuration.

RI

Syntax: routing_ind

Description: The routing indicator.

Type:

Optionality:

Allowed:

Default: none

Notes:

Example: For an example of how to use this configuration in context, see Example SCF Configuration (on page 137) SCF configuration.

NI

Syntax: national_ind

Description: The national indicator.

Type:

Optionality:

Allowed:

Default: none

Notes:

Example: For an example of how to use this configuration in context, see Example SCF Configuration (on page 137) SCF configuration.

appContext

Syntax: appContext=\textit{context}

Description: The application context for this SCF.

Type: String

Optionality: Optional
Chapter 5, Configuring the acs.conf

### Allowed:

- Any valid context:
  - Nokia_IDP
  - CAPv2_IDP
  - CAPv3_IDP
  - CAPv3_SMS
  - \( n.m.p \) - Where \( n, m \) and \( p \) are integer numbers that form an object identifier, defining the protocol to use.

### Default:

None

### Notes:

Required if the TCAP Handover node is expected to pass on the application context.

### Example:

```
appContext=CAPv2_IDP
```

---

### Example SCF Configuration

The following are examples of valid SCF definitions:

```plaintext
scf (SCF_Name1, PC=0xADB, SSN=11)
scf (SCF_Name2, NOA=4, Address=01224)
scf (LocationAddress, NOA=4, Address=01234)
scf (LocalAddress, PC=0xADB, SSN=11, address=2224444, NOA=4, RI=0)
```

### About Defining scfs in acs.jnlp and sms.jnlp

The values used for SCP names in the scf section of the acs.conf configuration file must match the scfs application property definition in both the acs.jnlp and the sms.jnlp files.

**Example:** If acs.conf contains the following two lines:

```plaintext
scf (SCP_Name1, PC=0xADB, SSN=11)
scf (SCP_Name2, NOA=4, Address=01224)
```

The application property section of the acs.jnlp and sms.jnlp files must contain a corresponding entry for the scfs application property:

```xml
<property name="scfs" value="SCP_Name1,SCP_Name2" />
```

For more information about configuring application properties in acs.jnlp and sms.jnlp, see Setting up the Screens (on page 25).

---

### acsChassis SSF Configuration (SLC)

#### Introduction

In acs.conf, the ssf line defines a service switching function (SSF) that can be used by the Call Initiation feature node as a destination for the initiate call attempt.

#### Parameters

An ssf parameter line in acs.conf must contain at least:

1. The `ssf_name` parameter
2. The `interface=handle` parameter
3. An address specified by one of the following:
   - GT
   - PC and SSN
acsChassis uses the address specification to construct address and address indicator numbers that comply with the ITU-T SS7 standard.

GT can be specified in four different ways, each defined in terms of ITU-T SS7's global titles.

1. $\text{GT}_1$: $\text{Address} = \text{GlobalTitleAddress}, \text{NOA} = \text{noa}$
2. $\text{GT}_2$: $\text{Address} = \text{GlobalTitleAddress}, \text{TT} = \text{TranslationType}$
3. $\text{GT}_3$: $\text{Address} = \text{GlobalTitleAddress}, \text{TT} = \text{TranslationType}, \text{NPI} = \text{NumberingPlanIndicator}$
4. $\text{GT}_4$: $\text{Address} = \text{GlobalTitleAddress}, \text{TT} = \text{TranslationType}, \text{NPI} = \text{NumberingPlanIndicator}, \text{NOA} = \text{noa}$

The address indicator number is made up of the $\text{PC} = \text{pc}$, $\text{SSN} = \text{ssn}$, $\text{RI} = \text{RI}$ parameters.

Usage: The full syntax of an ssf line in \texttt{acs.conf} is:

$$\text{ssf} \left( \text{ssf} \_\text{name}[, \text{Address} = \text{GlobalTitleAddress}[, \text{NOA} = \text{noa}][, \text{TT} = \text{TranslationType}[[, \text{NPI} = \text{NumberingPlanIndicator}, \text{NOA} = \text{noa}]]][, \text{PC} = \text{pc}, \text{SSN} = \text{ssn}[, \text{RI} = \text{RI}], \text{interface} = \text{handle}[, \text{appContext} = \text{objectIdentifier}]) \right)$$

Definitions for individual parameters follow.

For more information about the address and address indicator parameters, refer to ITU-T Recommendation Q.713 \textit{Signalling Connection Control Part formats and codes}.

### ssf\_name

**Syntax:** $\text{ssf} \_\text{name}$

**Description:** The name of the switch that appears in the configuration screen of the Call Initiation feature node.

**Type:** String

**Optionality:** Required

**Allowed:**

**Default:**

**Notes:** For more information about the Call Initiation feature node, see \textit{Feature Nodes Reference Guide}

**Example:** Switch\_Name1

### Address

**Syntax:** $\text{Address} = \text{GlobalTitleAddress}$

**Description:** The global title address

**Type:** Integer

**Optionality:** Optional (required if PC and SSN are not used)

**Allowed:**

**Default:**

**Notes:**

**Example:** Address=40053

### NOA

**Syntax:** $\text{NOA} = \text{NatureOfAddress}$

**Description:** The nature of address indicator.

**Type:** Integer

**Optionality:** NOA
Allowed:

<table>
<thead>
<tr>
<th>Nature Of Address for number of address signals</th>
<th>Type of number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Even</td>
<td>Odd</td>
</tr>
<tr>
<td>0</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>129</td>
</tr>
<tr>
<td>2</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>131</td>
</tr>
<tr>
<td>4</td>
<td>132</td>
</tr>
</tbody>
</table>

Example: NOA=1

TT

Syntax: \( TT = TranslationType \)

Description: Directs messages to the appropriate translator. The value depends on the GT chosen under Parameters (on page 137).

Type: Integer

Optionality: Optional

Allowed: GT1. not used.

GT2. 0 to 255

GT3. The ITU have not defined a translation type for this global title.

GT4. 1 to 254. For GT4, values for TranslationType are defined in the table.

<table>
<thead>
<tr>
<th>Translation Type for GT4</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 63</td>
<td>International</td>
</tr>
<tr>
<td>64 through 127</td>
<td>Spare</td>
</tr>
<tr>
<td>128 through 254</td>
<td>National</td>
</tr>
</tbody>
</table>

Notes:

GT2:

- Set TranslationType to 0 if the TT parameter is not to be used.
- Translation types for internetwork services are assigned in ascending order, starting with 1.
- Translation types for network-specific services are assigned in descending order, starting with 254.

TranslationType type may also imply the scheme used to encode address information and a numbering plan.

NPI

Syntax: \( NPI = NPI \)

Description: Defines the numbering plan.

Type: Integer

Optionality: Optional

Allowed: 1 to 14.
This table describes the meanings of the different NPIs.

<table>
<thead>
<tr>
<th>NPI</th>
<th>Numbering Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISDN and telephony</td>
</tr>
<tr>
<td>2</td>
<td>Generic</td>
</tr>
<tr>
<td>3</td>
<td>Data</td>
</tr>
<tr>
<td>4</td>
<td>Telex</td>
</tr>
<tr>
<td>5</td>
<td>Maritime mobile</td>
</tr>
<tr>
<td>6</td>
<td>Land mobile</td>
</tr>
<tr>
<td>7</td>
<td>ISDN and mobile</td>
</tr>
<tr>
<td>8 through 13</td>
<td>Spare</td>
</tr>
<tr>
<td>14</td>
<td>Private network</td>
</tr>
</tbody>
</table>

**PC**

Syntax: \( PC = pc \)

Description: Defines the signaling point code.

Type: Integer; hexadecimal, decimal or octal

Optionality: Optional (required if SSN is set)

Allowed:
- 0 to 16383  For decimal
- 0 to 0x3FFF  For hexadecimal
- 0 to 037777  For octal

Notes:
- A decimal number must not begin with a 0.
- A hexadecimal number must begin with 0x. For example, if the signaling point code is 2780, the parameter would be \( PC=0xADC \).
- An octal number must begin with 0. For example, if the signaling point code is 2780, the parameter would be \( PC=05334 \).

**SSN**

Syntax: \( SSN = SSN \)

Description: Identifies an SCCP user function.

Type: Integer

Optionality: Optional (required if PC is set)

Allowed: 0 – 255

Default:

Notes: This table describes the values.

<table>
<thead>
<tr>
<th>SSN</th>
<th>SCCP user function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SSN not known or not used</td>
</tr>
<tr>
<td>1</td>
<td>SCCP management</td>
</tr>
<tr>
<td>2</td>
<td>Reserved for ITU-T allocation</td>
</tr>
<tr>
<td>3</td>
<td>ISDN user part</td>
</tr>
<tr>
<td>4</td>
<td>Operation, Maintenance and Administration part</td>
</tr>
<tr>
<td>5</td>
<td>Mobile application part</td>
</tr>
</tbody>
</table>

Example: \( SSN = 12 \)
RI

Syntax: \[RI = RI\]

Description: The routing indicator. It identifies the address element to use for routing.

Type: Integer

Optionality: Optional

Allowed:

- 0 Route on SSN
- 1 Route on GT

Default: 

Notes: 

Example: \(RI = 1\)

interface

Syntax: \[interface = handle\]

Description: The handle for the SLEE interface that sends ICA messages to the SSF.

Type: String

Optionality: Required

Allowed: 

Default: 

Notes: Must match the handle in the SLEE.cfg file. For more information, see SLEE Technical Guide.

Example: \(interface = sua_if\)

appContext

Syntax: \[appContext=string\]

Description: The transaction capability (TC) object.

Type: String

Optionality: Optional

Allowed:

- Nokia_IDP
- CAPv2_IDP
- CAPv3_IDP
- CAPv3_SMS
- CAPv4_IDP

\[n.m.p\] Where n, m and p are integer numbers that form an object identifier, defining the protocol to use.

Default: 

Notes: When the ICA node uses an ssf with appContext set, appContext enables you to specify the application context to pass back up to ACS in the generated IDP. Set appContext to CAPv4_IDP to enable the ssf to use the correct message sequence in CAP4 InitiateCallAttempt operations. When you set appContext to CAPv4_IDP in the ssf line, you must also configure and scf line for an scf named LocalAddress that includes a global title. The scf will be used in the smScfAddress mandatory parameter of the CAP4 InitiateCallAttempt operation.

Examples: 

- \(appContext=Nokia_IDP\)
- \(appContext=15.36.5\)
useLeg3ForICA

Syntax: useLeg3ForICA

Description: Sets the leg ID to 3 for all subsequent operations for that leg. Specify the useLeg3ForICA parameter in the ssf line if the leg ID for InitiateCallAttempt message sequences for the SSF must be 3 or higher.

Type: String
Optionality: Optional
Allowed: 
Default: 
Notes: 
Example: useLeg3ForICA

Example SSF Configuration

The following are examples of valid ssf definitions:

ssf (SSF_Name1,PC=0xADC,SSN=11,interface=hssScIf)
ssf (SSF_Name2,NOA=1,Address=01234,interface=hssScIf)
ssf (Company,NOA=1,Address=01234,interface=VSSP,
    appContext=CAPv2_IDP)
ssf(ssf2,NOA=4,address=1234,interface=sua_if_sms,appContext=CAPv4_IDP,useLeg3ForIca)

About Defining ssfs in acs.jnlp and sms.jnlp

The value used for ssf_name (the switch name) in the ssf section of the acs.conf configuration file must match the ssfs application property entry in the acs.jnlp and sms.jnlp files.

Example: If the acs.conf file contains the following two lines:

ssf (SwitchName1,PC=0xADC,SSN=11,interface=hssScIf)
ssf (SwitchName2,NOA=1,Address=01234,interface=hssScIf)

The application property section of the acs.jnlp and sms.jnlp files must contain a corresponding entry for the ssfs application property:

<PROPERTY NAME="ssfs" VALUE="SwitchName1,SwitchName2" />

For more information about defining application properties in the acs.jnlp and sms.jnlp files, see Setting up the Screens (on page 25).

acsChassis EDR Configuration (SLC)

Logging EDRs

The parameters listed below in this topic affect the way EDRs are logged.

Note: For EDRs to be logged at all, the acsChassis section of the acs.conf file must contain the line CdrFile 1.

TCP Network Loading

EDR files are collated on each SLC and uploaded at regular intervals to the SMS.
Files are transferred using the proprietary program cmnPushFiles. Refer to the main component diagram (on page 3).

EDR files contain a base content that has a size of approximately 350 bytes per call attempt or call disconnect. The total data size to be transferred can be computed from the call rate combined with assumptions about the complexity of the control plan.

A control plan that attempts to terminate and then terminates to a second number will generate two EDRs.

The total data will be typically distributed over a number of files.

A new EDR file is created when the old file reaches a specified age or size as defined by the CdrFileMaxAge (on page 146) and CdrFileMaxSize (on page 147) parameters.

Note: slee_acs compares the current EDR file against the CdrFileMaxAge (on page 146) and CdrFileMaxSize (on page 147) parameters at the end of the call. Thus, when a single call is run, the EDR file is closed only when more calls are run or slee_acs is gracefully restarted.

The CdrExtraFields and SendCIR parameters cause additional content to be written to each EDR line. This raises the average data flow above the base 350 bytes per EDR line. The size of the additional content depends on the nature of the control plan. Experimentation with individual control plans is required to determine the size of extended EDRs.

Parameters

The following parameters are optional and may be added when required. Only one entry per parameter is allowed.

callReferenceIDAsHex

Syntax: callReferenceIDAsHex 0|1
Description: Indicates the Call Reference ID (an Octet string) in an IDP is a BCD number ASCII string or not.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (false), 1 (true)
Default: 0
Notes: If the Call Reference ID (an Octet string) in an IDP is a BCD number other than an ASCII string, for instance 0x28 0x81 0x1F 0xE3 0x29, then we need to set this option to true in order to be able to read the hex values "28811FE329" in EDR other than see unreadable characters.
Example: callReferenceIDAsHex 1

CdrCacheMaxSize

Syntax: CdrCacheMaxSize int
Description: The maximum size in kilobytes of the internal CDR cache. When the limit is reached, the CDR cache is written to file and then cleared.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: A value in the range 4 to 64
Default: 32
Notes:
Example: CdrCacheMaxSize 32
CdrClosedDirectory

**Syntax:**

```
CdrClosedDirectory "path"
```

**Description:**
The path to move the EDR file to when it is flushed due to one of `CdrFileMaxAge` (on page 146) or `CdrFileMaxSize` (on page 147) being exceeded.

**Type:**
String

**Optionality:**
Optional (default used if not set).

**Allowed:**

```
/IN/service_packages/SMS/cdr/closed
```

**Default:**

```
/IN/service_packages/SMS/cdr/closed
```

**Warning:**
This parameter only changes the output of the EDR file. If this parameter is changed all other relevant parts of the platform must also be updated.

**Example:**

```
CdrClosedDirectory "/var/EDRs/closed"
```

CdrCompressCall

**Syntax:**

```
CdrCompressCall 0|1
```

**Description:**
Whether or not to log multiple connect attempts as one EDR.

**Type:**
Boolean

**Optionality:**
Optional (default used if not set).

**Allowed:**

```
0 a separate EDR will be created for each connection attempt, abort, or disconnect individually.
1 calls with multiple connect attempts are logged as one EDR. A single EDR will be generated at the end of every call, at the point where it is torn down, regardless of how the call finishes.
```

**Default:**

```
0
```

**Notes:**
If `CdrCompressCall` is 0, the `CdrOnAbort` (on page 149) and `CdrOnDisconnect` (on page 150) parameters determine if abort and/or disconnect events generate EDRs.

**Example:**

```
CdrCompressCall 0
```

CdrCurrentDirectory

**Syntax:**

```
CdrCurrentDirectory "path"
```

**Description:**
The path to write the EDR file to.

**Type:**
String

**Optionality:**
Optional (default used if not set).

**Allowed:**

```
/IN/service_packages/SMS/cdr/current
```

**Default:**

```
/IN/service_packages/SMS/cdr/current
```

**Warning:**
This parameter only changes the output of the EDR file. If this parameter is changed all other relevant parts of the platform must also be updated.

**Example:**

```
CdrCurrentDirectory "/var/EDRs/current"
```

CdrFile

**Syntax:**

```
CdrFile 0|1
```

**Description:**
Whether or not to log EDRs to a file.

**Type:**
Boolean

**Optionality:**
Optional (default used if not set).

**Allowed:**

```
0 (no), 1 (yes)
```

**Default:**

```
0
```
Notes:

Example: CdrFile 0

CdrExtraFields

Syntax: CdrExtraFields 0|1|2

Description: EngineNodes that are traversed during execution of a control plan will be logged and placed in the EDR (TFN tag)

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 0 No logging will be done
1 Track traversed feature nodes and played announcements, and record in EDR. The format is:
  <node fast key>-<node number>.
2 In addition to 1, track feature node sub-states, showing all the states the node is going through.
  The format is:
  <node fast key>-<node number>.<state><state>...<state>

Default: 1

Notes: You can customize the maximum length in characters of the TFN data by using the acsChassis.tfnListSize parameter.
There are no separators between the <state> fields which are all single characters as defined in Node States (on page 145) below.

Example: CdrExtraFields 1

Node States

<table>
<thead>
<tr>
<th>State Number</th>
<th>Node State</th>
<th>State Number</th>
<th>Node State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>26</td>
<td>J</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>27</td>
<td>K</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>28</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>29</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>30</td>
<td>N</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>31</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>32</td>
<td>P</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>33</td>
<td>Q</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>34</td>
<td>R</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>35</td>
<td>S</td>
</tr>
<tr>
<td>10</td>
<td>:</td>
<td>36</td>
<td>T</td>
</tr>
<tr>
<td>11</td>
<td>;</td>
<td>37</td>
<td>U</td>
</tr>
<tr>
<td>12</td>
<td>&lt;</td>
<td>38</td>
<td>V</td>
</tr>
<tr>
<td>13</td>
<td>=</td>
<td>39</td>
<td>W</td>
</tr>
<tr>
<td>14</td>
<td>&gt;</td>
<td>40</td>
<td>X</td>
</tr>
<tr>
<td>State Number</td>
<td>Node State</td>
<td>State Number</td>
<td>Node State</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>15</td>
<td>?</td>
<td>41</td>
<td>Y</td>
</tr>
<tr>
<td>16</td>
<td>@</td>
<td>42</td>
<td>Z</td>
</tr>
<tr>
<td>17</td>
<td>A</td>
<td>43</td>
<td>[</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>44</td>
<td>\</td>
</tr>
<tr>
<td>19</td>
<td>C</td>
<td>45</td>
<td>)</td>
</tr>
<tr>
<td>20</td>
<td>D</td>
<td>46</td>
<td>^</td>
</tr>
<tr>
<td>21</td>
<td>E</td>
<td>47</td>
<td>_</td>
</tr>
<tr>
<td>22</td>
<td>F</td>
<td>48</td>
<td>'</td>
</tr>
<tr>
<td>23</td>
<td>G</td>
<td>49</td>
<td>a</td>
</tr>
<tr>
<td>24</td>
<td>H</td>
<td>50</td>
<td>b</td>
</tr>
<tr>
<td>25</td>
<td>I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**CdrFileAppendCloseTime**

*Syntax:* CdrFileAppendCloseTime 0|1

*Description:* Whether or not to append the time that the file was closed to the EDR file name.

*Type:* Boolean

*Optionality:* Optional (default used if not set).

*Allowed:* 0 (no), 1 (yes)

*Default:* 0

*Example:* CdrFileAppendCloseTime 0

**CdrFileAppendPid**

*Syntax:* CdrFileAppendPid 0|1

*Description:* Whether or not to append the PID of the logging process to the EDR file name.

*Type:* Boolean

*Optionality:* Optional (default used if not set).

*Allowed:* 0 (no), 1 (yes)

*Default:* 1

*Example:* CdrFileAppendPid 1

**CdrFileMaxAge**

*Syntax:* CdrFileMaxAge seconds

*Description:* Set the maximum age of the EDR file. After this period expires the file is purged.

*Type:* Integer

*Optionality:* Optional (default used if not set).

*Allowed:* Any integer

*Default:* 600

*Notes:* Value is in seconds

*Example:* CdrFileMaxAge 600
CdrFileMaxSize
Syntax: CdrFileMaxSize KB
Description: Set the maximum size of the EDR file. When this file size is exceeded, the file is purged.
Type: Integer
Optionality: Optional (default used if not set).
Default: 8
Example: CdrFileMaxSize 8

CdrFileUseGMT
Syntax: CdrFileUseGMT 0|1
Description: Whether or not to add a start timestamp in GMT to the EDR filename.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 – Do not add a GMT timestamp to the EDR filename.
        1 – Add a GMT timestamp to the EDR filename.
Default: 0
Notes: If set to 1, the EDR filename uses this format:
      application_gmtZ_start_time.cdr
      If set to 0, the EDR filename uses this format:
      application_start_time.cdr
      Where:
      • application is the name of the application that triggered the EDR.
      • gmtZ_start_time is the EDR start time in GMT.
      • start_time is the EDR start time in local time.
      The format used for start time is: yyyymmddhh24missff1, where ff1 is the decisecond portion of the timestamp.
Example: CdrFileUseGMT 1

CdrFileUseLocalTime
Syntax: CdrFileUseLocalTime 0|1
Description: What timezone to use for the start and end timestamps in the EDR filename.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 – Use GMT.
        1 – Use local time.
Default: 0
Notes: This parameter does not affect the timestamp added if CdrFileUseGMT is set to 1 (adds GMT timestamp to EDR filename).
Example: CdrFileUseLocalTime 1
CdrRemoveFields

Syntax: CdrRemoveFields 0|hex_value

Description: Mask that specifies the fields to remove from an EDR. To set the mask, sum the values used to identify each field that you want to remove, and convert to hexadecimal.

Type: Hexadecimal Integer

Optionality: Optional (default used if not set).

Allowed: Hexadecimal number that is the sum of the values for the fields you want to remove. For a list of valid values, see EDR field values table below.

Default: 0 - Do not remove any fields.

Notes: For more information about the EDR fields, see Event Detail Record Reference Guide.

Example: CdrRemoveFields 2001000000

Turns off release cause and slee call ID (2^24 + 2^37 = hex 2001000000).

The following table lists the EDR field values you can use and their corresponding field codes and field names. The EDR field values have the following format. $2^x$, which means 2 to the power of $x$.

<table>
<thead>
<tr>
<th>EDR Field Value</th>
<th>EDR Field Code</th>
<th>Field Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^0$</td>
<td>OA</td>
<td>Originating Address (IP/PC)</td>
</tr>
<tr>
<td>$2^1$</td>
<td>OTI</td>
<td>Originating Transaction ID</td>
</tr>
<tr>
<td>$2^2$</td>
<td>CUST</td>
<td>Customer ID</td>
</tr>
<tr>
<td>$2^3$</td>
<td>SN</td>
<td>Service (Original Called) Number</td>
</tr>
<tr>
<td>$2^4$</td>
<td>TN</td>
<td>Termination Number</td>
</tr>
<tr>
<td>$2^5$</td>
<td>CGN</td>
<td>Calling Network Number</td>
</tr>
<tr>
<td>$2^6$</td>
<td>CLI</td>
<td>Calling Line Identifier</td>
</tr>
<tr>
<td>$2^7$</td>
<td>SK</td>
<td>Service Key</td>
</tr>
<tr>
<td>$2^8$</td>
<td>TCS</td>
<td>Time Call Start</td>
</tr>
<tr>
<td>$2^9$</td>
<td>TCE</td>
<td>Time Call End (ETSI only)</td>
</tr>
<tr>
<td>$2^{10}$</td>
<td>LPN</td>
<td>Last PIN Number Entered</td>
</tr>
<tr>
<td>$2^{11}$</td>
<td>LAC</td>
<td>Last Account Code Entered</td>
</tr>
<tr>
<td>$2^{12}$</td>
<td>CS</td>
<td>Connect Status</td>
</tr>
<tr>
<td>$2^{13}$</td>
<td>CPC</td>
<td>Calling Party Category</td>
</tr>
<tr>
<td>$2^{14}$</td>
<td>CC</td>
<td>Carrier Code</td>
</tr>
<tr>
<td>$2^{15}$</td>
<td>CPNI</td>
<td>Calling Private Network ID</td>
</tr>
<tr>
<td>$2^{16}$</td>
<td>PCNA</td>
<td>Called Private Network Address</td>
</tr>
<tr>
<td>$2^{17}$</td>
<td>PTNA</td>
<td>Called Private Network Address</td>
</tr>
<tr>
<td>$2^{18}$</td>
<td>CGNA</td>
<td>Calling Global Network Address (for example, GVNS number)</td>
</tr>
<tr>
<td>$2^{19}$</td>
<td>TFN</td>
<td>Track Feature Nodes</td>
</tr>
<tr>
<td>$2^{20}$</td>
<td>CPN</td>
<td>Call Plan Name</td>
</tr>
<tr>
<td>$2^{21}$</td>
<td>CAET</td>
<td>Call Attempt Elapsed Time (CallInfoRequest)</td>
</tr>
<tr>
<td>$2^{22}$</td>
<td>CCET</td>
<td>Call Connect Elapsed Time (CallInfoRequest)</td>
</tr>
<tr>
<td>$2^{23}$</td>
<td>CA</td>
<td>Called Address (CallInfoRequest)</td>
</tr>
<tr>
<td>$2^{24}$</td>
<td>RELC</td>
<td>Release Cause (CallInfoRequest)</td>
</tr>
<tr>
<td>$2^{25}$</td>
<td>OCPI</td>
<td>Original Called Party ID</td>
</tr>
<tr>
<td>$2^{26}$</td>
<td>CPNN</td>
<td>Called Party Nature of Number (Address)</td>
</tr>
</tbody>
</table>
### EDR Field Value | EDR Field Code | Field Name
--- | --- | ---
2^27 | NOAT | Number of Attempt Terminations
2^28 | LGID | Language ID
2^29 | CBAT | Connect by Attempt Termination
2^30 | FATS | First Announcement Timestamp
2^31 | HTS | Hunting Timestamp
2^32 | CCTS | Call Connect Timestamp
2^33 | AIDL | Announcement ID List
2^34 | TPNI | Terminating Private Network ID
2^35 | CGNN | CallingPartyID Nature of Number
2^36 | CPPI | CallingPartyID Presentation Restriction Indicator
2^37 | CID | Slee Call ID
2^38 | TGNA | Terminating Global Network Address (for example, GVNS number)
2^39 | SL_CONTENT | All service library supplied fields (may be zero, one, or more fields)
2^40 | EXT(0-9) | Any extension digits fields

**CdrLogPIN**

**Syntax:** CdrLogPIN 0|1

**Description:** Whether or not to log the PIN.

**Type:** Boolean

**Optionality:** Optional (default used if not set).

**Allowed:**
- 1: the LPN field which records the PIN is written to the EDR log files as part of EDR creation.
- 0: this action is suppressed. The EDRs will be created normally but the LPN field will be missing.

**Default:** 1

**Notes:** For more information about PIN logging configuration, see [PIN logging parameters](#) (on page 107).

**Example:** CdrLogPIN 1

**CdrOnAbort**

**Syntax:** CdrOnAbort 0|1

**Description:** Whether or not to create EDRs when one of the following occurs:
- A TCAP abort is received
- A TCAP reject is received and a TCAP abort is sent in response

**Type:** Boolean

**Optionality:** Optional (default used if not set).

**Allowed:**
- 0: Abort logging is disabled
- 1: Aborted calls are logged

**Default:** 1

**Example:** CdrOnAbort 1
CdrOnDisconnect
Syntax: CdrOnDisconnect 0|1
Description: Whether or not to create EDRs when a call is deliberately disconnected (for example, by a disconnect call node).
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (no), 1 (yes)
Default: 1
Example: CdrOnDisconnect 1

cdrOnForcedDisc
Syntax: cdrOnForcedDisc 0|1
Description: When set to true, forces ACS to write an EDR in the event of a forced disconnect.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed:
  0 (false), do not write EDR
  1 (true), write EDR
Default: 0
Notes:
Example: cdrOnForceDisc 1

CdrOnHandover
Syntax: CdrOnHandover 0|1
Description: When set to true, forces ACS to write an EDR on service handover, providing the CdrCompressCall (on page 144) parameter is set to zero (0).
Type: Boolean
Optionality: Optional (default used if not set).
Allowed:
  0 (false), do not write EDR on service handover
  1 (true), write EDR on service handover
Default: 0
Notes:
Example: CdrOnHandover 0

CdrResetOnWriteRELC
Syntax: CdrResetOnWriteRELC 0|1
Description: When set to true, forces ACS to reset the call release cause to zero after it has been written to an EDR, providing the CdrCompressCall (on page 144) parameter is set to zero (0).
Type: Boolean
Optionality: Optional (default used if not set).
Allowed:
  0 (false), do not reset release cause to zero
  1 (true), reset release cause to zero
Default: 0
Notes:
Example: CdrResetOnWriteRELC 1
CdrUsecDigits
Syntax: 
CdrUsecDigits \( n \)
Description: The number of digits to use as a fractional second extension to the start time and closing time, to ensure a unique CDR filename. The fractional part has a resolution of \(1/10^n\) seconds, where \( n \) is the number of digits (in the range 1 to 6) that are added to the filename.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: 1, 2, 3, 4, 5, or 6
Default: 1
Notes: For example, if the timestamp is 23/01/2014 22:34:48.567 and CdrUsecDigits is set to 3, then acsChassis creates a file named: ACS_20140123223448567.cdr. If CdrUsecDigits is set to 1, then acsChassis omits the last two digits from the timestamp to create a file named: ACS_201401232234485.cdr.
Example: CdrUsecDigits 1

elapsedTimesFromApplyChargingReport
Syntax: elapsedTimesFromApplyChargingReport 0|1
Description: Whether or not to calculate CAET and CCET using the ApplyChargingReport.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (no), 1 (yes)
Default: 0
Notes: This is an option to use when a call has been released, in which there is no CallInformationReport.
Example: elapsedTimesFromApplyChargingReport 1

zeroElapsedTimesInCdr
Syntax: zeroElapsedTimesInCdr 0|1
Description: Whether or not to include TCS, CCET and CAET in the EDR, even in the case where call duration is zero.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: 0 (no), 1 (yes)
Default: 0
Notes: 
Example: zeroElapsedTimesInCdr 1

acsChassis Service Library Configuration (SLC)

Parameter
The entries in the acsServiceLibrary topic determine configuration parameters for the acsServiceLibrary.
ProfileOrder

**Syntax:**  
ProfileOrder (key, pro1, pro2, pro3)

**Description:**  
Defines the order of the profiles for loading and searching for traffic with a specific service key.

**Type:**  
Array

**Optionality:**  
Optional (default used if not set).

**Allowed:**  
Each pro1-3 is one of:
- CUSTOMER
- CALL_PLAN
- SERVICE_NUMBER

**Default:**  
ProfileOrder (110,CUSTOMER,CALL_PLAN,SERVICE_NUMBER)

**Notes:**  
All three profiles must specified for each parameter.

**Examples:**  
ProfileOrder (10,CUSTOMER,CALL_PLAN,SERVICE_NUMBER)  
ProfileOrder (11,CALL_PLAN,SERVICE_NUMBER,CUSTOMER)  
ProfileOrder (12,CUSTOMER,SERVICE_NUMBER,CALL_PLAN)

acsChassis Service Normalisation Parameters (SLC)

**Introduction**

Each service for which a ServiceEntry exists in the acs.conf can have a specific config section where you define configuration parameters specific for that service. The name for the service section must be the same name specified in the corresponding acsChassis ServiceEntry Configuration (SLC) (on page 123), that is, ACS_Outgoing, CCS, VPN_Originating...

**Service Specific Normalization Parameters**

The service specific normalization parameters are used to define conversion rules specific to each available service. These parameters are equivalent to those with the same name described in the acsChassis Normalization Parameters section. For a description of each, refer to Normalization Parameters (on page 117).

When a service section is found in the acs.conf, the global normalization rules are ignored for that particular service and the specific rules (if any) are used instead. In this sense, a service will only use the global configuration when no specific section is defined for it in the acs.conf. Also, in no case global and specific normalization rules will be used simultaneously within the same service.

acsChassis AWOL Configuration

**AWOL Processing**

The ACS service supports many different call scenarios, including scenarios where the SLC is involved in the call right up to when the A or B party disconnects at the end of a conversation.

The number of entities involved in the call and managing the connection between the SSP and SLC software can lead to many complex interactions. Occasionally these interactions may not follow the INAP CS1 call model due to situations beyond the direct control of the ACS service.

In particular, ACS can be used for billable call control by using the ApplyCharging and ApplyChargingReport INAP messages. When ACS sends an ApplyCharging request to a SSP, it will expect a response within a certain time frame due to the request defining a limit on the time the call can proceed for.
Certain circumstances can occur in production networks that can cause the ApplyChargingReport to be never returned. This would in general cause the call to be left ‘hanging’ in the ACS service, using system and service resources that would never, usually, be freed.

To alleviate this situation, AWOL checking has been developed in the ACS service. The basic premise is that the ACS service should abort any call for which an expected ApplyChargingReport is late.

Calls that are considered as AWOL, are aborted. This will clean up all call resources within the ACS service and the SLEE.

The ACS Service will continue to process the control plan for the call according to the service limitations.

Defining acsChassis AWOL configuration

The acsChassis AWOL configuration section defines six AWOL parameters, two of which are global and should only be defined in the acsChassis section of acs.conf:

- checkAWOL
- checkAWOLMarginAC

The other parameters are defined globally in the acsChassis section; but they can also be defined in the service configuration, per service, which will override the global values. These parameters are:

- awolTimeout
- awolReportOnly
- awolReportPeriod
- awolOverrideACRTimeout

For more information, see overriding AWOL configuration per service (on page 129).

Parameters

The following configuration parameters are provided to control AWOL checking:

checkAWOL

Syntax: checkAWOL 0|1
Description: Whether or not the ACS service should check for calls with later ApplyChargingReport messages.
Type: Boolean
Optionality: Optional (uses default if not set)
Allowed: 0 – No AWOL checking is done and if the ACR is never received, the call will never be torn down.

1 – AWOL checking is done as defined by the other AWOL parameters.
Default: 0
Example: checkAWOL 1

checkAWOLMarginAC

Syntax: checkAWOLMarginAC int
Description: Tolerance, in seconds, added to the apply charging timeout.
Type: Integer
Optionality: Optional
Allowed: Positive integer
Default: 30
Notes: Apply Charging operations use this parameter and not the awolTimeout
chapter 5

parameter.
If an ApplyCharging report was sent for a call with a talk time of 60 seconds, using the checkAWOLMarginAC parameter, it would be 90 seconds after this message was sent before the call was considered AWOL and aborted by the ACS service.

Example: checkAWOLMarginAC 30

awolTimeout
Syntax: awolTimeout duration
Description: The time a call must be in progress before it becomes eligible for termination.
Type: Integer
Units: Seconds
Optionality: Optional
Allowed: duration 0
Default: If the awolTimeout parameter is omitted, duration = 0 is assumed.
Notes:
- May be specified for service instance section which will override the value specified globally.
- If duration is set to zero, no timer is configured and calls are never placed in a 'close' queue.
- If duration > 0, at the end of duration, a SLEE event is triggered notifying that the call should be placed in a 'close' queue.
- The awolTimeout parameter can be specified in the in theacs.conf file as a specific service entry. See acsChassis ServiceEntry Configuration (SCP) (on page 123).
- This parameter is not used by any Apply Charging operations.

Example: awolTimeout 1800

awolReportOnly
Syntax: awolReportOnly 0|1
Description: Specifies the type of AWOL message printed to the system log.
Type: Boolean
Optionality: Optional
Allowed: 0 – For every timed out message, report:
  - The time overdue
  - The message type last sent
  - The transaction and call ID (including the service handle, where applicable)
1 – For every timed out message, print only a summary report.
Default: 1
Notes:
- When specified in the service instance section, it overrides the global value.
- The following shows sample messages that are printed to the system log when awolReportOnly is set to 0:
WARNING. Ending Call 268413469. TID L.0x0 R.0x0  Sent operation(s) TCAP_INVOKE. CS1_CallInformationRequest, TCAP_INVOKE. CS1_Continue. Received timeout 0s ago. Service Handle CCS_ROAM. Origin Address - GT. 60181000010 SSN. 146
WARNING. Ending Call 271216901. TID L.0x0 R.0x0  Sent operation(s) TCAP_INVOKE:
CS1_ApplyCharging, TCAP_INVOKE. CS1_ApplyCharging, TCAP_INVOKE: Received timeout 0s ago.

Service Handle CCS. Origin Address = GT. 60197030004 SSN. 146  

Example:  
awolReportOnly 0

awolReportPeriod  
Syntax:  
awolReportPeriod seconds  
Description:  How often, in seconds, to provide AWOL reporting.
Type:  
Integer  
Optionality:  
Optional  
Allowed:  
- 0 – Specifies to not generate AWOL reports.  
- Any Positive integer – Specifies the number of seconds between AWOL reports.
Default:  
0  
Notes:  
When specified in the service instance section, it overrides the global value.
Example:  
awolReportPeriod 900

awolOverrideACRTimeout  
Syntax:  
awolOverrideACRTimeout value  
Description:  Specifies the period of time, in seconds, between Apply Charging Reports (ACRs). If the ACR is not received during this time, the call is cleaned up. It is anticipated that this value will be used in data session scenarios where the return time of the ACR cannot be predicted based on the Apply Charging request.
Type:  
Integer  
Optionality:  
Optional. Configurable on a per-service basis only.
Allowed:  
- 0 – Specifies to not override the timeout from ACR.  
- Any positive integer – Specifies the number of seconds between ACRs.
Default:  
0  
Notes:  
If set, the value in checkAWOLMarginAC is ignored.
Example:  
awolOverrideACRTimeout 1800

Get Hunting Number Node Configuration

Parameters

The following configuration parameter is provided to control the Get Hunting Number node.

setCallData  
Description:  
If non zero, use the VPN Set Call Data chassis action to set the RedirectingPartyID and OriginalCalledPartyID.
Type:  
Boolean  
Allowed:  
0, 1
Default:  
0  
Notes:  
Set to 1 if you have VPN installed.
Number Matching Node Configuration

Parameters

The following configuration parameters are provided to control the Number Matching node.

RegMapFlushPeriod

Syntax: RegMapFlushPeriod seconds
Description: The number of seconds between attempts to flush the compiled regular expression map. Entries are flushed if they are older than the time specified by the RegMapMaxAge parameter.
A value of 0 or less disables the flushing mechanism.
Type: Integer
Optionality: Optional
Default: 600
Notes: To disable the flushing mechanism for the regular expression map, set the value to 0 (zero).
Example: RegMapFlushPeriod 600

RegMapMaxAge

Syntax: RegMapMaxAge seconds
Description: The maximum number of seconds a compiled regex may remain in the map unused.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any section name defined in the acsPlayVariablePartAnnouncement section of acs.conf
Default: 43200 (12 hours)
Notes: 
Example: RegMapMaxAge 43200

Play Variable Part Announcement Node Configuration

Parameters

The following configuration parameters are provided to control the Play Variable Part Announcement node:

NumberRulesSection

Syntax: NumberRulesSection section name:
Description: Defines where to find custom denormalization rules when the Denormalize check box is selected in the Play Variable Part Announcement node.
Type: String
Optionality: Optional
Allowed: Any section name defined in the acsPlayVariablePartAnnouncement section of acs.conf
Default: None
Notes: The colon at the end is essential.
Example: NumberRulesSection examplePVP:

DenormalisationRule

Syntax: DenormalisationRule (parameters):
Description: Defines the denormalization rule to check for.
Type: Parameter list
Optionality: Required
Allowed: 
Default: None
Notes: There may be as many DenormalisationRule lines configured as needed. The colon at the end is essential.
Example: DenormalisationRule (0064,2,4,0,12):

Profile Date Compare Node Configuration

Parameters

The following configuration parameters are provided to control the Profile Date Compare node:

useTzDefault

Syntax: useTzDefault 0|1
Description: Specifies the time zone that is applied to the stored profile date. The Profile Date Compare node compares the stored profile date in the specified time zone to the current system time.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: 
  • 0 – Leaves the time zone of the stored profile date as GMT.
  • 1 – Converts the time zone of the stored profile date to the time zone set in the tzDefault parameter. (See tzDefault (on page 106) for more information.) If tzDefault is not set, the Profile Date Compare node applies the default system time zone to the stored profile date.
Default: 0
Notes: 
Example: useTzDefault 1

acs.conf Example

Example acs.conf

Here is an example acs.conf file. Note that not all available parameters appear in the example.

```
The following programs or groups of programs get their configuration
from this configuration file.
#
acsStatisticsDBInserter
acsStatsMaster
acsStatsLocal
```
This file is parsed according to the following rules:
- Indenting beyond the first white space is ignored by the parser, it is done only for clarity for human readers.
- Lines without at least a single leading white space or comment character are section names.
- The file is parsed until a line containing only the indicated section name is matched.
- Following lines are considered part of the section, until either the end of file, or a line terminated with a ':' is reached.
- Parameter lines are in the form '<key> <value>'
- All key strings are case-sensitive. The specific keys recognised by an application are specific to that application.
- To add service specific Chassis configuration. specify the service name, such as 'ACS_Outgoing' and then set the configuration parameters as required. See example at the end of this file.

acsStatisticsDBInserter
oracleusername <sms_user>
oraclepassword <sms_passwd>
oraclendatabase @SMF
Retries 3
Period 30
MasterServerLocation STATSMASTERNODE
MasterServerPort 1490:

acsStatsMaster
port 1490
shmKey 17170588
semKey 17170589
masterStatsServer STATSMASTERNODE:

acsStatsLocal
port 1490
masterStatsServer STATSMASTERNODE:

acsCompilerDaemon
oracleusername SMF
oraclepassword SMF
oraclendatabase @SMF
alertTimeout 3
maxBranches 99
maxNodes 2000
maxCompiledKb 256
compressAtKb 128
compressLevel 1
AuditChallenge 1:

acsProfileCompiler
oracleusername SMF
oraclepassword SMF
oraclendatabase @SMF
acsChassis
    # oracleusername SMF
    # oraclepassword SMF
    #
    ServiceEntry (ACS,libacsService.so)
    ServiceEntry (ACS_Outgoing,libacsService.so)
    setCctOnDisconnectCall 1

    # Macro Node library - base ACS macro nodes.
    #
    MacroNodePluginFile libacsMacroNodes.so

    #
    # Pluggable Action - base ACS actions.
    #
    ChassisPlugin libacsChassisActions.so

    #tfnListSize 2048

    #
    # Special Resource Function mappings for the SLEE
    #
    srf (NAP1,UseETC=N,Address=,NOA=3)
    srf (nap1,UseETC=N,Address=,NOA=3)

    # Example of the ssf/scf definitions:
    # ssf (SSF_Name1,PC=0xADC,SSN=11,interface=hssScIf)
    # ssf (SSF_Name2,NOA=1,Address=01234,interface=hssScIf)
    # scf (SCF_Name1,PC=0xADB,SSN=11)

    # Example entry for the ICA originating address
    # Setting this will cause an originating address to be set
    # in the out going ICA request by slee_acs instead of your tcap IF
    # scf (LocalAddress,NOA=4,Address=01224)

    #
    # Extension Numbers
    #
    # *** Unique to each site ***
    #
    # Examples:
    # extensionNumber 0 26 inapaddressstring digits
    # extensionNumber 1 28 inapaddressstring extension,nature,plan,digits
    # extensionNumber 2 1  InapNumber        digits

    #
    # Here are the rest of the Chassis parameters.
    #
    port 1490
    shmKey 17170588
    semKey 17170589
    NoServiceAction disconnect
    NoServiceError WARNING
    NoCallPlanAction continue
    NoCallPlanError InternalErrorAction continue
    ChainCountLimit 8
    DialledStarEncoding B
    DialledHashEncoding C
    EntryChar C
    EmergencyNumber 111
# If the Call Reference ID (an Octet string) in an IDP is a BCD number other than
# an Ascii string, for instance 0x28 0x81 0x1F 0x29, then we need to set this option to true
# in order to be able to read the hex values "28811FE329" in EDR other than see unreadable characters.
# Defaults to false
callReferenceIDAsHex 1

# For use with the CIN
CallInitiationTimeoutToleranceSeconds 10

# CallInitiationUseContextInd
# CDR file configuration, disabled by default.
# Valid values for CallInitiationUseContextInd are:
# 0. All indicator values, including NoA, set to the original values:
#      (NoA = 4, ScrnInd = 3, PresInd = 0, NumIncomplete = 0)
#      (Default = 0)
# 1. All indicator values, except NoA, set to original values. The NoA value would come from the context and could be altered via denormalisation rules.
# 2. NoA set to original value. Other indicator values come from context and could be altered via Set Indicator nodes in the call plan.
# 3. All indicator values would come from the context. The NoA value could be altered via denormalisation rules and the other indicator values could be altered via Set Indicator nodes in the call plan. In all cases the NumberPlan will be set to 1, as in the original version.
# CallInitiationUseContextInd 0

# CDR file configuration, disabled by default.
# CdrFile 0
# CdrFileMaxAge 600
# CdrFileMaxSize 8
# CdrExtraFields 1
# CdrOnDisconnect 1
# CdrOnAbort 1
# CdrCompressCall 0
# CdrLogPIN 1
# CdrCacheMaxSize 32
# CdrUseSecDigits 1

# Append PID of logging process to filename (enabled by default)
CdrFileAppendPid 1

# Append time that file was closed to filename (disabled by default)
CdrFileAppendCloseTime 0

CdrFileUseLocalTime 0
CdrFileUseGMT
PINLogEnable 1
PINLogMaxAge 3600
PINLogMaxSize 1024
PINLogSuccess 0
PINLogFail 1

OverrideDefaultIPDigitTimeout 0
FirstDigitTimeout 4
InterDigitTimeout 4
MaxPromptDigits 21

# Maximum number of bytes allowed in the text field of a
# PlayAnnouncement or PromptAndCollectUserInformation operation.
maxAnnouncementTextBytes 80

#
# Call Dump configuration, disabled by default.
#
CallDumpEnabled 0
CallDumpSeconds 120
CallDumpDir /tmp
CallDumpSeverity ERROR
CallDumpMessage

edpArmAnswer 1
edpArmNoAnswer 1
edpArmBusy 1
edpArmRouteSelectFailure 1
edpArmAbandoned 1
edpUseNoAnswerTimer 1
NokiaCIR 0
CarrierCodeDisposal 0
UseReplication 0
AuditChallenge 0
ArmTerminateTriggers 0
UseContinueOperation 0
masterStatsServer STATSMASTERNODE

SendCIR 0
AskCirAttemptElapsedTime 1
AskCirStopTime 1
AskCirConnectElapsedTime 1
AskCirCallAddress 1
usePendingTnForCaInCdr 0
AskCirReleaseCause 1
recordSmpStatistics 1
disarmEDPs 0
tzDefault Europe/Prague

# set the engine's terminationNumber, which
# is printed as TN in the CDR, to:
# 0 - the digits sent over the network in the connect
# 1 - the normalised number sent to the service loader
normaliseTerminationNumber 0

# Normalise the SN (Service Number) in the CDR and set CPNN
# (Called Party Nature of Number) to match:
# 0. SN = the digits received over the network in the IDP
#    CPNN = the Nature of Address received over the network in the IDP
# 1. SN = the normalised number received from the service loader
#    CPNN = 0, a normalised number does not have a Nature of Address
normaliseServiceNumber 0

# Normalisation rules
# These translate numbers from the network, which have NOA and digits, into a standard form for use within ACS.
# They can either be in the `acsChassis` section or in a service entry specific section, which has
# the same name as the service name in the ServiceEntry line.
# NormalisationRule

```ini
(inNOA),<inPrefix>,<stripDigits>,<outPrefix>[,<minLength>[,<maxLength>]]
```

- `inNOA`. This rule will only match numbers with this NOA
- `inPrefix`. This rule will only match numbers with this prefix
- `stripDigits`. Strip this many digits from the front of the number
- `outPrefix`. Then, add this many digits to the front of the number
- `minLength,maxLength`. The rule will only match numbers of this length

# NormalisationRule (3, -, 0, -, 10, 13, m)
# This says normalise nationally significant (NOA 3) numbers where the MSC address
# (m) has a prefix in the countryCodes list (longest match), the matched number is
# between 10 and 13 characters long and the result is the matched number prefixed
# with the country code prefix from the MSC address.

# Denormalisation rules
# These translate numbers stored inside ACS as just digits to digits and NOA to be sent out to the network.
# They can either be in the `acsChassis` section or in a service entry specific section, which has
# the same name as the service name in the ServiceEntry line.
# DenormalisationRule

```ini
(inPrefix),<outNOA>,<noOfDigitsToRemove>,<outPrefix>[,<minLength>[,<maxLength>]]
```

- `inPrefix`. This rule will only match numbers with this prefix
- `outNOA`. Use this NOA in the number sent out
- `noOfDigitsToRemove`. Strip this many digits from the front of the number
- `outPrefix`. Then, add this many digits to the front of the number
- `minLength,maxLength`. The rule will only match numbers of this length

# There is a second form of DenormalizationRule which takes an NOA
# DenormalisationRule

```ini
(noa,<NOA>,<inPrefix>,<outNOA>,<noOfDigitsToRemove>,DigitsToAdd)
```

- `Where the first noa is the literal, lowercase text "noa".

# Example:
# DenormalisationRule (noa,3,E,4,0,999)
# This rule will convert the NoA to 4 and add "999" to any ICA outgoing number
# with an NoA of 3.

# The interval in seconds to be used for checking dialog timers.
# Note that this effectively deprecates the RIMS Chassis Action approach to doing this.
# Setting to 0 will disable this explicit setting (in which case 10 will be used).
# Defaults to 0 if not specified for backwards compatibility.
# dialogTickInterval 10

# alwaysIncludePartyToCharge
# If set, we set partyToCharge parameter in ACs
to the leg1 party.
Defaults to 0 - partyToCharge is not set.
alwaysIncludePartyToCharge 1

alternativeCallPlanNamePostfix
This string is appended to the end of the Control Plan name
and this new control plan is the replacement control plan when
alternative control plan replacement is activated from the
ACS Screens. Services -> ACS Service -> Customer
              -> Control Plan Change Tab
Defaults to _alt
Example:
    alternativeCallPlanNamePostfix _emergency
alternativeCallPlanNamePostfix _alt

minimumSizeOfConnectSleeEvent configures the minimum size of a SLEE event used
to return the Connect message. This defaults to 1024.
A service specific configuration may be added if required to reduce the amount of
memory required for 'normal' services.
minimumSizeOfConnectSleeEvent 1024

Checking for AWOL calls, disabled by default.
Note that Apply Charging operations do not use awolTimeout (see below).

checkAWOL 0 - disable
    1 - enable
awolTimeout - the timeout period (in seconds) for events that are not the
    last events. May be specified for service instance section.
awolReportOnly 0 - always raise warning alarm when cleaning up each AWOL call
    1 - only raise warning alarm which summarizes changes
    May be specified for service instance section.
awolReportPeriod - how often (in seconds) to provide summary report.
    May be specified for service instance section.
checkAWOLMarginAC - configurable tolerance added to Apply Charging timeout.
    Replaces old checkAWOLMargin setting (now deprecated).
awolOverrideACRTimeout - Configurable on a per-service basis only.
    Specifies the period of time (seconds) within which we
    expect to have received an Apply Charging Report. If
    the ACR is not received during this time then the call
    is cleaned up. It is anticipated that this value will
    be used in data session scenarios where the return
    time of the ACR cannot be predicted based on the
    Apply Charging request.
    Note. if set, then the value in checkAWOLMarginAC is
    ignored.
    Note. value of zero means do not override timeout from
    ACR.
# checkAWOL 0
awolTimeout 1800
awolReportOnly 0
awolReportTimeout 900
awolOverrideACRTimeout 0
checkAWOLMarginAC 30:

# end of acsChassis configuration

# Appply the timezone specified by parameter tzDefault
to the stored profile date. If tzDefault is not set, the
default system timezone will be used.
ProfileDateCompare
useTzDefault 1

# configuration for Get Hunting Number node
acsGetHuntingNumber

# setCallData {0|1}
# if non zero use the VPN Set Call Data chassis action
# to set the RedirectingPartyID and OriginalCalledPartyID
# set to 1 if you have VPN installed.
# defaults to 0
setCallData 0:

# configuration for Play Variable Part Announcement node

# This is necessary if the Denormalise check box is used in the
# Play Variable Part node. By default, the Play Variable Part Announcement
# node looks in a section called NumberRulesInteraction.
# An alternative section name can be given in the
# acsPlayVariablePartAnnouncement section

# Uncomment this to use the examplePVP section for denormalisation rules
# for the Play Variable Part Announcement node.
#
#acsPlayVariablePartAnnouncement
# NumberRulesSection examplePVP:
#
#examplePVP
# # Denormalisation Rules (Prefix, NOAToAdd, NumberOfDigitsToRemove, DigitsToAdd, MinLength)
# DenormalisationRule (0064,2,4,0,12):

# Uncomment this to use the default section name for denormalisation rules
# for the Play Variable Part Announcement node.
#
#NumberRulesInteraction
# # Denormalisation Rules (Prefix, NOAToAdd, NumberOfDigitsToRemove, DigitsToAdd, MinLength)
# DenormalisationRule (0064,2,4,0,12):

# service specific configuration for ACS_Outgoing (overrides standard acsChassis configuration)
ACS_Outgoing
minimumSizeOfConnectSleeEvent 2048:

# end of file
Chapter 6

Background Processes

Overview

Introduction

This chapter explains how to manage the Advanced Control Services (ACS) processes.

Purpose

The chapter lists the ACS processes which execute on an installed ACS platform. These processes are a combination of inittab processes, and cron processes.

Important: It is a prerequisite for managing these core service functions that the operator is familiar with the basics of Unix process scheduling and management. Specifically, the following Unix commands:

- init (and inittab)
- cron (and crontab)
- ps
- kill

In this chapter

This chapter contains the following topics.

Automated ACS Processes (SMS Machine) ...................................................................................... 167
acsCompilerDaemon ......................................................................................................................... 168
acsSnCpActAlarms ............................................................................................................................. 169
acsDbCleanup.sh ............................................................................................................................... 171
acsProfileCompiler ............................................................................................................................ 171
acsStatisticsDBInserter ...................................................................................................................... 172

Automated ACS Processes (SLC Machine) ......................................................................................... 173
acsStatsMaster .................................................................................................................................. 173
libacsChassisActions ......................................................................................................................... 174
libacsMacroNodes ............................................................................................................................... 174
libacsService ..................................................................................................................................... 175

Automated ACS Processes (SMS Machine)

Introduction

The acsSmp package installs three tasks into the /etc/inittab. These tasks should be running at all times. The tasks are:

- acsCompilerDaemon
- acsStatisticsDBInserter
- acsProfileCompiler

These three binaries are run from /IN/service_packages/ACS/bin, through start shell scripts also in that directory.
The acsSmp packages also install the acsDbCleanup.sh task into the crontab for user acs_oper.

**acsCompilerDaemon**

**Purpose**

The acsCompilerDaemon runs continuously, polling the database to look for newly written control plans and control plan structures (for example, indicated by database field ACS_CALLPLAN.BUILD = B).

The control plan compiler generates the fast-lookup binary compiled control plan data which is actually used at execution time.

The compiler can use plug-ins for additional, specialized functions.

**Plug-ins**

The compiler uses the plug-ins after the standard compilation has completed, and in the order the plug-ins are listed in acs.conf.

This table describes the function of each acsCompilerDaemon plug-in.

<table>
<thead>
<tr>
<th>Plug-in</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>libwsdlGenerator.so</td>
<td>This plug-in produces the WSDL code for the operation used by the control plan. If this is the first operation, the complete WSDL operation set file is produced and this operation inserted. For all other operations for the same operation set, the code is inserted after the previous operation code. For further information on operations and operation sets, see OSD User's and Technical Guide.</td>
</tr>
</tbody>
</table>

**Startup**

This task is started by entry acs0 in the inittab, through the /IN/service_packages/ACS/bin/acsCompilerDaemonStartup.sh shell script.

**Location**

This binary is located on the SMS node.

**Parameters**

The acsCompilerDaemon does not support any command line parameters; it is completely configured through the acs.conf file. For more information, see Configuring the acs.conf (on page 73).

**Failure**

If the acsCompilerDaemon has failed, then control plans will not be compiled. This can be detected by executing the following SQL statement on the SMF database instance:

```
SELECT ID from ACS_CALL_PLAN where BUILD='B';
```

Under normal operation, control plans will only remain in the B state for a few seconds at most.
Output

The acsCompilerDaemon writes error messages to the system messages file, and also writes additional output to /IN/service_packages/ACS/tmp/acsCompilerDaemon.log.

acsSnCpActAlarms

Purpose

acsSnCpActAlarms queries the ACS_SN_CALL_PLAN_ACTIVATION database table and generates alarms when it finds any scheduled control plans that have been temporarily disabled by Emergency Control Plan Activation.

Location

This binary is located on the SMS node.

Startup

This task is run in the crontab for acs_oper.

/IN/service_packages/ACS/bin/acsSnCpActAlarms

Note: You may optionally write a shell script (to manually start) if you wish to change defaults.

Parameters

The acsSnCpActAlarms does not support any command line parameters. It is configured through the eserv.config file.

acsSnCpActAlarms Parameters in eserv.config

Here is an example of the acsSnCpActAlarms section in the eserv.config file.

    acsSnCpActAlarms = {
        oracleUserIdPassword = "/",
        alarmCheckInterval = 60,
        repeatAlarm = false,
        serviceNumberTerm = "Service Number",
        alarmReason = "by Alternative Control Plan Activation"
    }

oracleUserIdPassword

Syntax: oracleUserIdPassword = "user/pw"
Description: The Oracle user ID and password that acsSnCpActAlarms uses to log into the database.
Type: String
Optionality: Optional (default used if not set).
Allowed: 
Default: "/"
Notes:
Example: oracleUserIdPassword = "/"
alarmCheckInterval

Syntax: \texttt{alarmCheckInterval = mins}

Description: Alarms will be generated if the difference between the current time and the control plan's effective date (being in the past) is less than the value specified by this parameter.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 60

Default: 60

Notes: Set this value to a similar/compatible value when running acsSnCpActAlarms from crontab. For example, if crontab is set up to run this process every hour, set this value to 60 minutes.

\textbf{Warning:} Running this process too frequently from crontab may adversely affect system performance. The recommended crontab configuration is to run this process every hour or at a greater interval.

Example: \texttt{alarmCheckInterval = 60}

repeatAlarm

Syntax: \texttt{repeatAlarm = true|false}

Description: If set to true, relevant alarm(s) will be repeated every alarmCheckInterval minutes until alternative control plan replacement is deactivated.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: false

Default: false

Notes: Example: \texttt{repeatAlarm = false}

serviceNumberTerm

Syntax: \texttt{serviceNumberTerm = "snterm"}

Description: The preferred term used to describe a Service Number.

Type: String

Optionality: Optional (default used if not set).

Allowed: "Service Number"

Default: "Service Number"

Notes: Example: \texttt{serviceNumberTerm = "Freephone Number"}

alarmReason

Syntax: \texttt{alarmReason = "reason"}

Description: The reason the alarm is generated. This text is used in the alarm description.

Type: String

Optionality: Optional (default used if not set).

Default: "by Alternative Control Plan Activation"
Notes:

Example alarm:
If serviceNumberTerm = "Freephone Number" and alarmReason = "by Emergency Control Plan Activation", then the alarm description would be: "WARNING. Scheduled Control Plan(Name) for Customer(Name), Freephone Number(123) has been temporary disabled by Emergency Control Plan Activation"

Example: alarmReason = "by Alternative Control Plan Activation"

acsDbCleanup.sh

Purpose
This task executes SQL statements to delete old data from the ACS Event Counter table ACS_STATISTICS_COUNT, and also to delete old compiler output from the ACS_COMPILE_ERRORS table.

Startup
This task is run in the crontab for acs_oper, by default at 02:00 local system time. It is a shell script, specifically /IN/service_packages/ACS/bin/acsDbCleanup.sh.

Location
This binary is located on the SMS node.

Parameters
The purge-age in days is defined inside the shell script itself, and can be adjusted, subject to limitations of table space in the database.

Failure
If this process is not running, old entries in the specified tables will not be purged.

Output
The acsDbCleanup.sh script writes output to /IN/service_packages/ACS/tmp/acsDbCleanup.sh.log.

acsProfileCompiler

Purpose
The acsProfileCompiler polls for changes in the timezone and/or termination number ranges configured in the database. It then performs changes in the global profile, and in customer profiles for customers who have non-default termination ranges defined.

Startup
This task is started by entry acs2 in the inittab, through the /IN/service_packages/ACS/bin/acsProfileCompilerStartup.sh shell script.
Chapter 6

Location
This binary is located on the SMS node.

Parameters
The acsProfileCompiler does not support any command line parameters, it is completely configured through the `acs.conf` file. For more information, see Configuring the `acs.conf` (on page 73).

Failure
If the process fails, then changes to the ACS timezone geography set will not be reflected on the SLC call-processing. Similarly, changes to the self-management control plan.

Note: The termination number constraints for ACS GUI changes will continue to operate as expected.

Output
The acsProfileCompiler writes error messages to the system messages file, and also writes additional output to `/IN/service_packages/ACS/tmp/acsProfileCompiler.log`.

acsStatisticsDBInserter

Purpose
The acsStatisticsDBInserter communicates with the acsStatsMaster process (see below), and polls for changes to ACS event counters.

Note: This process is not the same as the smsStatsDaemon, although the names are similar.

Startup
This task is started by entry `acs1` in the inittab, through the `/IN/service_packages/ACS/bin/acsStatisticsDBInserterStartup.sh` shell script.

Location
This binary is located on the SMS node.

Parameters
The acsStatisticsDBInserter supports the following command-line options:

Usage:

```
acsStatisticsDBInserter -h hostname -p port -s sleep
```

These options can be used for testing to override the values specified in the `acsStatisticsDBInserter` section of the `acs.conf`, however they should not be required on an operational platform.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h hostname</td>
<td>host name</td>
</tr>
<tr>
<td>-p port</td>
<td>port</td>
</tr>
<tr>
<td>-s sleep</td>
<td>sleep</td>
</tr>
</tbody>
</table>
Failure

This process will periodically write updated event counts to the ACS database, into the table ACS_STATISTICS_COUNT. If there are no event counts being modified by active control plans, the this process may appear to be inactive.

Failure of this process will result in no updates to the ACS_STATISTICS_COUNT table, even when EventCounting nodes are encountered in active control plans.

Output

The acsStatisticsDBInserter writes error messages to the system messages file, and also writes additional output to /IN/service_packages/ACS/tmp/acsStatisticsDBInserter.log.

Automated ACS Processes (SLC Machine)

Introduction

The acsScp package installs one task into the /etc/inittab for one of the SLC machines in an SLC grouping. This task should be running on that one machine at all times. The task is:

- `acsStatsMaster`

This binary is run from /IN/service_packages/ACS/bin, through start-up shell script contained within that same directory.

acsStatsMaster

Purpose

The acsStatsMaster runs only on one SLC machine, typically SCP1. All other SLC nodes communicate with the master through TCP/IP to correlate their ACS event counter values.

Startup

This task is started by entry acs3 in the initab, through the /IN/service_packages/ACS/bin/acsStatsMasterStartup.sh shell script.

Location

This binary is located on SLCs.

Parameters

The acsStatsMaster does not support any command line parameters, it is completely configured through the `acs.conf` file. For more information, see Configuring the acs.conf (on page 73).

Failure

If the acsStatsMaster is not running, then individual nodes will not be able to correlate their event counter values. This will mean that control plans may perform incorrect branching. Additionally, the acsStatisticsDBInserter process will not be able to track changes to ACS event counter values, and there will be no updates to the corresponding table in the database.
Output

The acsStatsMaster writes error messages to the system messages file, and also writes additional output to /IN/service_packages/ACS/tmp/acsStatsMaster.log.

libacsChassisActions

Purpose

libacsChassisActions provides the functions which enable the ACS feature nodes to interact with other elements in the system, including:

- SLEE interfaces (such as TCAP IF)
- Other elements on the network (such as the VPU)

Startup

If libacsChassisActions is included in the acs.conf, libacsChassisActions will be available to slee_acs when the SLEE is started.

For more information about how this included in acs.conf, see ChassisPlugin (on page 78).

Configuration

libacsChassisActions is configured by parameters in the acsChassis section of acs.conf. For more information, see Configuring the acs.conf (on page 73).

libacsMacroNodes

Purpose

This slee_acs plug-in library provides the base ACS feature nodes. For more information about the feature nodes provided by this library, see CPE User’s Guide.

Startup

If libacsMacroNodes is included in the acs.conf, libacsMacroNodes will be available to slee_acs when the SLEE is started.

For more information about how this included in acs.conf, see MacroNodePluginFile (on page 77).

Configuration

libacsMacroNodes accepts the parameters from acs.conf. For more information about the available configuration, see:

- Get Hunting Number Node Configuration (on page 155)
- Play Variable Part Announcement Node Configuration (on page 156)
**libacsService**

**Purpose**

libacsService is the ACS service library plug-in for slee_acs which handles initial set up of control plans. Based on the incoming call details, it loads up the relevant control plan and feature nodes.

**Note:** If other applications are installed, they may provide their own service libraries which will be used instead of libacsService.

**Startup**

If libacsService is configured in `acs.conf`, it is made available to slee_acs when slee_acs is initialized. It is included in the `acsChassis` section of `acs.conf` in a ServiceEntry parameter.

```ini
acsChassis
 ServiceEntry {ACS,libacsService.so}
```

For more information about this configuration, see *acsChassis ServiceEntry Configuration (SLC)* (on page 123).

**Configuration**

libacsService supports parameters from `acs.conf`. For more information, see *Configuring the acs.conf* (on page 73).
Overview

Introduction

This chapter explains the tools and utilities available in Advanced Control Services (ACS).

In this chapter

This chapter contains the following topics.

acsAddCallPlan .......................................................... 177
acsAddCustomer .......................................................... 179
acsAddGeography .......................................................... 180
acsAddServiceNumber ...................................................... 181
acsDecompile ................................................................. 182
acsDumpControlPlan ......................................................... 183
acsMonitorCompiler ......................................................... 184
acsProfile ................................................................. 177
acsScheduleCallPlan ......................................................... 187
acsSetupAnnouncement ...................................................... 187
numberDataImport .......................................................... 188

acsAddCallPlan

Purpose

Use the acsAddCallPlan tool to import a control plan, defined in a .cpl text file, into the SMF database either on the same platform or on a different platform. For example, you can export a control plan from one platform by using acsDumpControlPlan (on page 183) and then import the control plan into a different platform by using acsAddCallPlan.

The java shell script for acsAddCallPlan is located on SMS nodes. It launches a Java command line class that reuses the CPE code to achieve its requirements.

About connecting to the database

acsAddCallPlan and acsDumpCallPlan connect to the database on a local or a remote SMS node based on the values specified for the -u, -j, and -b command line options. You can connect to the database by specifying the following:

- -u username/password (for local connections)
- -u username/password -j remote_hostname [-b port:db_SID] (for remote connections)
- -u @wallet_user (for local or remote connections through the Oracle wallet secure external password store)

where:

- username and password are user credentials for a screens user or for the SMF database user.
- `remote_hostname` is the host name of the machine running the remote database.
- `port` and `db_SID` are the port number and database SID of the remote database. If not specified, defaults to 1521:SMF
- `wallet_user` is the alias defined for the username and password credentials in the Oracle wallet secure external password store. For remote connections, this alias can be either a TNS name or a service name from `tnsnames.ora`.

## Configuration

`acsAddCallPlan` accepts the following parameters.

**Usage:**

```
```

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-u usrpwd</code></td>
<td></td>
<td>Specify one of:</td>
</tr>
<tr>
<td><code>-u</code></td>
<td></td>
<td>- The username and password credentials for connecting to the database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Username must be a screens user credentials or SMF database user.</td>
</tr>
<tr>
<td><code>-u</code></td>
<td></td>
<td>- The <code>wallet_user</code> alias for the database credentials from the</td>
</tr>
<tr>
<td><code>-u</code></td>
<td></td>
<td>- oracle wallet external password store. For remote connections</td>
</tr>
<tr>
<td><code>-u</code></td>
<td></td>
<td>- to the database, the alias can be either a TNS name or a</td>
</tr>
<tr>
<td><code>-u</code></td>
<td></td>
<td>- service name from <code>tnsnames.ora</code>.</td>
</tr>
<tr>
<td><code>-j host</code></td>
<td>localhost</td>
<td>The host name of the machine running the SMF database.</td>
</tr>
<tr>
<td><code>-b port:db_id</code></td>
<td>1521:SMF</td>
<td>The port number and database ID of the SMF database.</td>
</tr>
<tr>
<td><code>-v</code></td>
<td></td>
<td>Verbose (optional)</td>
</tr>
<tr>
<td><code>-D directory</code></td>
<td>ignored</td>
<td>Specify the directory containing the <code>.cpl</code> files to import (optional).</td>
</tr>
<tr>
<td><code>-O directory</code></td>
<td>ignored</td>
<td>Specify the directory to move successfully imported files to (optional,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- only relevant with <code>-D</code>). Any files that fail to import will not be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- moved.</td>
</tr>
<tr>
<td><code>-C acs_customer</code></td>
<td>ignored</td>
<td>Specify the ACS customer that will own the imported control plans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (required if <code>-D</code> is used).</td>
</tr>
</tbody>
</table>

When the `-D` option is absent, records are added by stdin lines in the following format:

```
-c name -f file [-s name] | [-t name] | [-d name] | [-m ID] | [-p]
```

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-c name</code></td>
<td>Customer name.</td>
</tr>
<tr>
<td><code>-f file</code></td>
<td>Exported control plan file name.</td>
</tr>
<tr>
<td><code>-s name</code></td>
<td>New template name (optional).</td>
</tr>
<tr>
<td></td>
<td>Tip: This is used when there is no existing template.</td>
</tr>
<tr>
<td><code>-t name</code></td>
<td>Existing template name (optional).</td>
</tr>
<tr>
<td><code>-d name</code></td>
<td>New control plan name (optional).</td>
</tr>
<tr>
<td><code>-m ID</code></td>
<td>MF Identifier for the control plan (optional).</td>
</tr>
<tr>
<td><code>-p</code></td>
<td>Make inserted control plan public (optional).</td>
</tr>
</tbody>
</table>

When the `-D` option is present, records are added in the following format for each `.cpl` file:
-c cust_name -f cpl_file -s cpl_name -d cpl_name

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c cust_name</td>
<td>Customer name is taken from the -C option argument.</td>
</tr>
<tr>
<td>-f cpl_file</td>
<td>Is the filename of each .cpl file in the directory from the -D argument.</td>
</tr>
<tr>
<td>-s cpl_name</td>
<td>Is the cpl file basename with the .cpl extension removed.</td>
</tr>
<tr>
<td>-d cpl_name</td>
<td>Is the cpl file basename with the .cpl extension removed.</td>
</tr>
</tbody>
</table>

The control plan text file format is the same as that used for an exported control plan.

Imported control plans will be set private and mf_identifier will be set NULL.

**acsAddCustomer**

**Purpose**

Inserts a customer record into the SMF database.

**Location**

This binary is located on the SMS node.

**Configuration**

acsAddCustomer accepts the following parameters.

**Usage:**

```
acsAddCustomer -u usr/pwd [-v]
```

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usr/pwd</td>
<td>username/password. Username must be acs_admin.</td>
<td></td>
</tr>
<tr>
<td>[-v]</td>
<td>off</td>
<td>Verbose</td>
</tr>
</tbody>
</table>

Records are added by stdin lines in the following format:

```
```

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c name</td>
<td>Customer name (mandatory).</td>
<td></td>
</tr>
<tr>
<td>-f set</td>
<td>Feature node set name (optional).</td>
<td></td>
</tr>
<tr>
<td>-y set</td>
<td>Holiday set name (optional).</td>
<td></td>
</tr>
<tr>
<td>-g set</td>
<td>Geography set name (optional).</td>
<td></td>
</tr>
<tr>
<td>-n set</td>
<td>Announcement set name (optional).</td>
<td></td>
</tr>
<tr>
<td>-m</td>
<td>Customer is Telco managed (optional).</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Default</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>-r ref</td>
<td></td>
<td>Customer reference (optional).</td>
</tr>
<tr>
<td>-d desc</td>
<td></td>
<td>Customer description (optional).</td>
</tr>
<tr>
<td>-l usr</td>
<td></td>
<td>User name to be added for this customer (optional).</td>
</tr>
<tr>
<td>-o val=options</td>
<td></td>
<td>Resource limits for customer (optional). Options are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eventlogs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• statscounters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• nodesinplan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• callplans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• callplanstructures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• announcementsets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• announcemententries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• holidaysets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• holidayentries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• geographysets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• geographyentries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• users</td>
</tr>
<tr>
<td>-l policy</td>
<td>global</td>
<td>Termination number range rules (optional). Options are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• private (own range)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• global (default checking)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• any (no checking)</td>
</tr>
</tbody>
</table>

**acsAddGeography**

**Purpose**

Inserts Geography Set(s) into the SMF database from a text file.

**Location**

This binary is located on the SMS node.

**Configuration**

acsAddGeography accepts the following parameters.

**Usage:**

acsAddGeography -u usur/pwd [-c customer | -p] [-r int] [-g] filenames

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usur/pwd</td>
<td></td>
<td>Oracle username/ password.</td>
</tr>
<tr>
<td>-c name</td>
<td></td>
<td>Customer to own created geography sets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The -c and -p parameters are mutually exclusive.</td>
</tr>
</tbody>
</table>
Parameter | Default | Description
---|---|---
-p | Public set. | 
-r int | Number of records before a commit (optional). | 
-g | Global number prefix (optional). | 
filenames | Input filename. | 

**Input file structure**

Geography set input files use the following format, where the indentation indicates what the data is, and hence is very important:

```
Geography set name
 area = 1
 another area
 sub area = 21
 another sub area = 22
blank lines or comments (# = comment line) are allowed.

Another geography set
 newlands = 343
```

**acsAddServiceNumber**

**Purpose**

Inserts a service number record into the SMF database.

**Location**

This binary is located on the SMS node.

**Configuration**

acsAddServiceNumber accepts the following parameters.

**Usage:**

`acsAddServiceNumber -u user/pwd [-v]`

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u user/pwd</td>
<td></td>
<td>Oracle username/ password.</td>
</tr>
<tr>
<td>[-v]</td>
<td>off</td>
<td>Verbose</td>
</tr>
</tbody>
</table>

Records are added by stdin lines in the following format:

```
-c customer -s sn [-r desc] [-b] [-p pin] [-f number] [-a options] [-t 1|2] [-i 0|1] [-d list]
```

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c name</td>
<td>Customer Name.</td>
</tr>
<tr>
<td>-s sn</td>
<td>Service Number.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>-r desc</td>
<td>Description (optional).</td>
</tr>
<tr>
<td>-b</td>
<td>Use Toll Free beeps (optional).</td>
</tr>
<tr>
<td>-p pin</td>
<td>PIN (optional).</td>
</tr>
<tr>
<td>-f number</td>
<td>Follow me number (optional).</td>
</tr>
<tr>
<td>-a options</td>
<td>Policy, Min/Max, Account Codes (optional).</td>
</tr>
<tr>
<td>-t 1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>• 1=barred, numbers are barred only if they occur in the list.</td>
</tr>
<tr>
<td></td>
<td>• 2=allowed, numbers are allowed only if the occur in the list.</td>
</tr>
<tr>
<td>-i 0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>• 0=ignore list contents</td>
</tr>
<tr>
<td></td>
<td>• 1=use the list contents</td>
</tr>
<tr>
<td>-d list</td>
<td>List of barred/ allowed numbers (optional).</td>
</tr>
</tbody>
</table>

### acsDecompile

**Purpose**

Takes a compiled control plan and decodes it into the control plan text file format.

**Location**

This binary is located on both SLCs and SMSs.

**Configuration**

acsDecompile accepts the following parameters.

**Usage:**

acsDecompile [-u usr/pwd] [-d dataID|-s structureID] [-r|-n]

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usr/pwd</td>
<td>Oracle username/password.</td>
</tr>
<tr>
<td>-d dataID</td>
<td>Control plan Data ID to decompile.</td>
</tr>
<tr>
<td>-s structureID</td>
<td>Control plan structure ID to decompile.</td>
</tr>
<tr>
<td>-r</td>
<td>Dump raw content only.</td>
</tr>
<tr>
<td>-n</td>
<td>Attempt to decompile node data.</td>
</tr>
</tbody>
</table>
acsDumpControlPlan

Purpose

Use the acsDumpControlPlan tool to export one or more control plans from the SMF database to text files (one file per control plan). You can import the control plan text files to either the same platform or a different platform, by using acsAddCallPlan (on page 177).

The java shell script for acsDumpControlPlan is located on SMS nodes. It launches a Java command line class that reuses the CPE code to achieve its requirements.

About connecting to the database

acsAddCallPlan and acsDumpCallPlan connect to the database on a local or a remote SMS node based on the values specified for the -u, -j, and -b command line options.

You can connect to the database by specifying the following:

- \(-u \) username/password \((\text{for local connections})\)
- \(-u \) username/password \(-j \) remote_hostname \([-b \) port:db_SID\] \((\text{for remote connections})\)
- \(-u \) @wallet_user \((\text{for local or remote connections through the Oracle wallet secure external password store})\)

where:

- \(\text{username}\) and \(\text{password}\) are user credentials for a screens user or for the SMF database user.
- \(\text{remote_hostname}\) is the host name of the machine running the remote database.
- \(\text{port}\) and \(\text{db_SID}\) are the port number and database SID of the remote database. If not specified, defaults to 1521:SMF
- \(\text{wallet_user}\) is the alias defined for the username and password credentials in the Oracle wallet secure external password store. For remote connections, this alias can be either a TNS name or a service name from tnsnames.ora.

Configuration

Usage:

\(\text{acsDumpControlPlan -d out_dir [\{-u \{\text{user/password[@wallet_user]\}[-j host]\{-b \text{port:db_id}\} [-c customer] [-p control_plan] [-i id] [-S \{-v\}]\}}\ ]}\)

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d out_dir</td>
<td></td>
<td>Directory where exported control plan will be written.</td>
</tr>
<tr>
<td>-u user/password</td>
<td></td>
<td>Specify one of:</td>
</tr>
<tr>
<td>-u @wallet_user</td>
<td></td>
<td>- The username and password credentials for connecting to the database. Username must be a screens user credentials or SMF database user.</td>
</tr>
<tr>
<td>-j host</td>
<td>localhost</td>
<td>The host name of the machine running the SMF database.</td>
</tr>
</tbody>
</table>
The control plan text file format is the same as that used for an exported control plan using the CPE.

acsMonitorCompiler

Purpose

Checks the number of control plans waiting to be compiled.

acsMonitorCompiler is designed to be run after a large number of control plans have been entered.

Note: No further control plans should be entered once acsMonitorCompiler has been started.

Location

This binary is located on the SMS node.

Configuration

acsMonitorCompiler accepts the following parameters.

Usage:

acsMonitorCompiler -u usr/pwd -s secs [-w] [-e]

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u</td>
<td>smf</td>
<td>Oracle username/password.</td>
</tr>
<tr>
<td>-s</td>
<td>secs</td>
<td>Seconds between database checks.</td>
</tr>
<tr>
<td>-w</td>
<td></td>
<td>Display warnings and above (optional).</td>
</tr>
<tr>
<td>-e</td>
<td></td>
<td>Display errors and above (optional).</td>
</tr>
</tbody>
</table>

acsProfile

Purpose

Decodes, displays or changes the value of profile tags.
Location
This binary is located on the SMS node.

Configuration
Usage:

```
acsProfile -[-u [/@SMF] | [/@SCP]]
-[-U]
-[-Nn|Ss|Cc|Pp|Gg|Ii|Yy|Zz|Ee|Ff] <IntKey>
-[-Nn|Ss|Cc|Pp|Gg|Ii|Yy|Zz|Ee|Ff] <StrKey>
-[-j] -
-[-j] <filename>
-[-D]
-[-W] <tag> -[A|H|L|B] <data>
-[-R] <tag>
-[-K] <tag1>[.<subtag1>],<tag2>[.<subtag2>]
-[-V] <tag1>[.<subtag1>],<tag2>[.<subtag2>]
-[-T] <tag> -[t] [h|P|d|m|a|p|m|n|l|v|V|A|B|D|i|H|I|U|W|N|S|O|M]
-[-X] <tag>
-[-Q]
```

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| [-u [/@SMF] | [/@SCP]] | Specify the SID of the remote database to connect:  
  - /@SMF for SMS  
  - /@SCP for SLC |
| -U | Specify to enable SMF_SECURITY validation. |
| -targetProfile keyID|str | Specify the profile block that contains the target profile tags followed by the key as a string or an integer. You can specify one of the following values for targetProfile:  
  - N|n = VPN_NETWORK.PROFILE where keyID is an integer or the name of the VPN network profile  
  - S|s = VPN.STATION.PROFILE where keyID is an integer or the name of the VPN station profile  
  - C|c = ACS_CUSTOMER.PROFILE where keyID is an integer or the name of the ACS customer profile  
  - P = ACS_CALL_PLAN_PROFILE.PROFILE where keyID is an integer of the ACS call plan profile  
  - G = ACS_GLOBAL_PROFILE.PROFILE where keyID is an integer of the ACS global profile  
  - I|i = ACS_CUSTOMER_CLI.PROFILE where keyID is an integer or command-line interface (CLI) of the ACS customer CLI profile  
  - Y|y = ACS_CUSTOMER_SN.PROFILE where keyID is an integer or service number (SN) of the ACS customer SN profile  
  - Z|z = CCS_ACCT_REFERENCE.PROFILE where keyID is an integer or command-line interface (CLI) of the CCS account reference profile  
  - E = CCS_GLOBAL_CONFIG.PROFILE where keyID is an integer of the CCS global configuration profile  
  - F = CCS_ACCOUNT_TYPE.PROFILE where keyID is an integer of the CCS account type profile |
### Parameter Description

**Note:** Specify lowercase to force acsProfile to accept a string `keyID` value.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| -j -f | Specify to use the stdin/stdout pipeline or a specified file for the target profile. To use:  
  - Stdin/stdout, specify: -j  
  - A specified file, specify: -j filename, where `filename` is the name of the file. |
| -D | Defaults to dump profile | | | |
| -W tag -[A|H|L|B] data | Specify to update, insert, or write a tag with the specified data |
| -R tag | Specify to remove a tag |
| -K tag1[.subtag1],tag2[.subtag2] | Specify to copy the data in `tag1` to `tag2` |
| -V tag1[.subtag1],tag2[.subtag2] | Specify to move the data in `tag1` to `tag2` |
| -T tag [-t tagType] | Decodes one tag, specified in `tag`, as the chosen type, where type is one of the following:  
  h = ASCII Hex  
  p = embedded profile, all of whose tags are hex  
  d = tree of digit strings  
  a = Announcement Map  
  m = Miscellaneous  
  n = Number Lists  
  l = Long triples; such as TimeOfWeek  
  v = Variable Announcement Rule Set (VARS) table  
  V = VARS Mapping table  
  A = Array  
  B = Boolean  
  D = Date  
  i = Discount  
  H = HuntingConfig  
  I = Integer  
  U = UnsignedInteger  
  W = UnsignedInteger64  
  N = NumericString  
  S = String  
  O = OrderedPrefixTree  
  M = NumberMatchingPatterns  
  Example: `-T Date_1 -t D`  
  Where `Date_1` is the profile tag and `D` is the decoded tag type |
| -X tag | Cross checks the chosen tag in this profile. For example, for multi-lingual announcements in the global profiles, cross-check announcement language mappings and delete stray ones.  
  **Note:** Write and remove actions also produce a post-change profile dump. |
| -Q | Indexes the new array type introduced by DAP and OSD. Setting this flag will allow indexing from zero. |
acsScheduleCallPlan

**Purpose**

Inserts a control plan schedule record into the SMF database.

**Location**

This binary is located on the SMS node.

**Configuration**

acsScheduleCallPlan accepts the following parameters.

**Usage:**

```
acsScheduleCallPlan -u usr/pwd [-v]
```

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usr/pwd</td>
<td></td>
<td>Oracle username/ password.</td>
</tr>
<tr>
<td>[-v]</td>
<td>off</td>
<td>Verbose</td>
</tr>
</tbody>
</table>

Records are added by stdin lines in the following format:

```
-c name -s sn -p name -d YYYYMMDD24MMSS [-a]
```

Where the record content is:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c name</td>
<td>Customer name</td>
</tr>
<tr>
<td>-s sn</td>
<td>Service number</td>
</tr>
<tr>
<td>-p name</td>
<td>Control plan name</td>
</tr>
<tr>
<td>-d list</td>
<td>Schedule time</td>
</tr>
<tr>
<td>-a</td>
<td>Activate against CLI not SN (optional).</td>
</tr>
</tbody>
</table>

acsSetupAnnouncement

**Purpose**

Inserts an announcement record into the SMF database.

**Location**

This binary is located on the SMS node.

**Configuration**

acsSetupAnnouncement accepts the following parameters.
Usage:

```
acsSetupAnnouncement [-u usr/pwd] [-l lang] -s set -e entry -r srf -i id [-c name]
[-v] [-n] [-g time] [-d desc]
```

The available parameters are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u usr/pwd</td>
<td>Oracle username/password (optional)</td>
</tr>
<tr>
<td>-l lang</td>
<td>Language name (optional)</td>
</tr>
<tr>
<td>-s set</td>
<td>Set name</td>
</tr>
<tr>
<td>-e entry</td>
<td>Entry name</td>
</tr>
<tr>
<td>-r srf</td>
<td>srf name</td>
</tr>
<tr>
<td>-i id</td>
<td>Numeric announcement ID</td>
</tr>
<tr>
<td>-c name</td>
<td>Customer name (optional). If not set, the announcement set will be public.</td>
</tr>
<tr>
<td>-v</td>
<td>Verbose (optional)</td>
</tr>
<tr>
<td>-n</td>
<td>No SMS security challenge (optional)</td>
</tr>
<tr>
<td>-g time</td>
<td>Generate script to run this tool to create same mappings (optional)</td>
</tr>
<tr>
<td>-d desc</td>
<td>Announcement description (optional)</td>
</tr>
</tbody>
</table>

**numberDataImport**

**Purpose**

The numberDataImport tool enables you to create and update table lookup datasets from a comma separated value (CSV) file.

You can create any number of table lookup datasets. Each table lookup dataset contains a group of related codes and prefix mappings. For example, you can create a table lookup dataset for a specific geographic area or suburb.

A table lookup dataset can be public or private. A private table lookup dataset belongs to a specific customer. It is only available to that customer and the parent customers linked to that customer in the customer hierarchy. A public table lookup dataset is available to all customers.

The numberDataImport tool is located at `/IN/service_packages/ACS/bin`.

Before running numberDataImport, you must do the following:

- Configure the numberDataImport tool in the `eserv.config` file. See [Configuring the numberDataImport Tool](#) (on page 189).
- Create the CSV input file for the numberDataImport tool. See [Creating the Dataset Input File](#) (on page 189).

When you run numberDataImport, you can use the `-u` (username and password) command-line option to specify the user credentials for connecting to the database on the SMS. You can use the `-u` option to specify only the user, or the user and the password.

- If you specify only the user, then numberDataImport prompts you for the user’s password at runtime.
- If you omit the `-u` option, then numberDataImport connects to the database by using the default login value `/`.

---

188  ACS Technical Guide
If, for security reasons, you want to prevent users from specifying the password in the `-u` command-line option when they run numberDataImport, disable the password field. To disable the password field, add the following lines to the `etc/profile` file on the SMS node:

```bash
NUMBER_IMPORT_NO_COMMAND_LINE_PASSWORD=str
export NUMBER_IMPORT_NO_COMMAND_LINE_PASSWORD
```

where `str` is any string value.

To run numberDataImport, see Creating and Updating Table Lookup Datasets (on page 190).

After creating table lookup datasets, you can use them in the Table Lookup feature node configurations. For information about configuring the Table Lookup feature node, see Feature Nodes Reference Guide.

You can search table lookup datasets for a prefix number or a mapping code using the ACS UI. For more information, see the discussion on configuring ACS in ACS User’s Guide.

Configuring the numberDataImport Tool

You configure numberDataImport in the NumberMappingImport section of the `eserv.config` configuration file on the SMS. The following example shows the `NumberMappingImport` section:

```json
NumberMappingImport = {
 closedDirectory = "closed_dir"
 errorDirectory = "error_dir"
 dbCommitBatchSize = size
 progressDotInterval = int
}
```

Where:

- `closed_dir` is the directory to which numberDataImport copies successful import files. Defaults to `/IN/service_packages/ACS/mappingData/closed` if not specified.
- `error_dir` is the directory to which numberDataImport writes import error files. Defaults to `/IN/service_packages/ACS/mappingData/error` if not specified.
- `size` sets the number of insert or update operations to perform before committing the data to the database. There is a 10 second pause at each interval to help throttle replication. Defaults to 5000 if not specified.
- `int` defines the number of insert or update operations to perform before displaying a progress dot (a dot that is displayed on the console for every `x` number of updates). Defaults to 100 if not specified.

Creating the Dataset Input File

You import entries into a table lookup dataset from a comma-separated value (CSV) file that you create. You specify this file as input to the numberDataImport tool when you run the tool from a command line.

Follow these steps to create the dataset CSV file.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open a new file in a text editor.</td>
</tr>
</tbody>
</table>
### Creating and Updating Table Lookup Datasets

Follow these steps to run the numberDataImport tool.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open a command shell and log in to the SMS as the <strong>acs_oper</strong> user.</td>
</tr>
<tr>
<td>2</td>
<td>Navigate to the <code>/IN/service_packages/ACS/bin</code> directory.</td>
</tr>
</tbody>
</table>

Example CSV file entries:

```
<table>
<thead>
<tr>
<th>Action</th>
<th>Prefix Code</th>
<th>Lookup Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3333</td>
<td>32014733</td>
</tr>
<tr>
<td>a</td>
<td>4444</td>
<td>32014744</td>
</tr>
<tr>
<td>d</td>
<td>5555</td>
<td>320147355</td>
</tr>
<tr>
<td>d</td>
<td>6666</td>
<td>320147366</td>
</tr>
</tbody>
</table>
```

Where:

- **a** or **A** specifies to add the dataset entry. If the dataset entry already exists, it is updated.
- **d** or **D** specifies to delete the dataset entry. If the dataset entry does not exist, this file entry is ignored.
- `lookup_code` is the code that maps to the prefix in `lookup_prefix`.
- `lookup_prefix` is a prefix number or CLI.
Step | Action
---|---
3 | Run the `numberDataImport` tool by using the following syntax:
   
   ```
 ./numberDataImport [-u user|user/password] [-F|D] [-s dataset] -i filename [-a acs_customer]
   ```
   
   Where:
   
   - `user` and `user|user/password` — (Optional) is the user, or the user and password for an ACS user with the required user privilege level. The user must be a Screens user who has the AcsNumberMappingImport permission. For information on setting user privileges, see SMS User’s Guide.
   
   - `F` and `D` — (Optional) indicates whether to create or update the dataset. Specify:
     
     - `F` to create the dataset. If the dataset already exists then you see a warning message asking if you want to continue. If you want to overwrite the existing dataset entries, then answer Y, otherwise answer N.
     
     - `D` to update the specified dataset.
   
   - `dataset` — (Optional) is the name of the dataset that you want to create or update. If you do not specify `dataset`, then the dataset name defaults to "Default".
   
   - `filename` — (Required) is the name of the CSV file that contains the dataset entries. The CSV file must have the `.csv` suffix.
   
   - `acs_customer` — (Optional) defines the name of the ACS customer that the dataset belongs to. If you do not specify `acs_customer`, then the dataset will be public and therefore available to all customers.
   
   **Note:** Values for the `-a`, `-s`, and `-i` parameters can be quoted or unquoted. However, you must enclose a value in quotes if it contains spaces.

   For example, you could create Dataset1 for customer ABC from the entries in `Dataset1.csv` by running the following command:
   
   ```
 ./numberDataImport -u user/password -F -s Dataset1 -i Dataset1.csv -a ABC
   ```

   After successfully importing a dataset from a CSV file, the CSV file is moved to
   
   `/IN/service_packages/ACS/mappingData/closed` by default.

   If the `numberDataImport` tool fails to import any entries, then these failed entries are written to the error file `/IN/service_packages/ACS/mappingData/error/` by default.

   Where `filename` is the name of the CSV input file.

   For information about the location of the `numberDataImport` output files, see Configuring the `numberDataImport` Tool (on page 189).
Overview

Introduction
This chapter explains the pre-installation configuration requirements of the application.

In this chapter
This chapter contains the following topics.

ACS Client Specifications
Specifications
This topic provides the specifications of Advanced Control Services (ACS).

Network
The minimum requirements of network bandwidth for acceptable normal response times are as follows:

<table>
<thead>
<tr>
<th>Number of Users</th>
<th>Minimum Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>512 KB</td>
</tr>
<tr>
<td>6-15</td>
<td>1 MB</td>
</tr>
<tr>
<td>16 +</td>
<td>LAN connection (at least 25% available resource of 10 MB)</td>
</tr>
</tbody>
</table>

Memory
This table shows the minimum client resources required.

<table>
<thead>
<tr>
<th>RAM</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 MB</td>
<td>800 MHz</td>
</tr>
</tbody>
</table>

This table shows the recommended client resources required.

<table>
<thead>
<tr>
<th>RAM</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 MB</td>
<td>1.2 GHz</td>
</tr>
</tbody>
</table>
Response Times

This table shows typical response time.

<table>
<thead>
<tr>
<th>GUI Action</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Startup to Login dialog</td>
<td>30 seconds maximum</td>
</tr>
<tr>
<td>Login to SMS main screen</td>
<td>20 seconds maximum</td>
</tr>
<tr>
<td>SMS main screen to ACS</td>
<td>5 seconds maximum</td>
</tr>
<tr>
<td>ACS main screen to CPE</td>
<td>15 seconds maximum</td>
</tr>
</tbody>
</table>

Screen

Here is the required screen specification.

<table>
<thead>
<tr>
<th>Pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 x 600 pixel resolution</td>
</tr>
</tbody>
</table>

Preparing the System

Introduction

It is recommended that you check the kernel parameters on the system to ensure the system is optimally configured.

The following parameters are described in their respective technical guides. However, they are collated here for reference.

Note: Actual kernel parameters may be greater than those listed here.

Checking Kernel Parameters

Follow these steps to check the Kernel parameters for Solaris.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log in as root.</td>
</tr>
<tr>
<td>2</td>
<td>Enter <code>cat /etc/system</code></td>
</tr>
<tr>
<td>3</td>
<td>Check the parameters are set to at least the minimum values.</td>
</tr>
<tr>
<td>4</td>
<td>Change the parameters as required using the following command from <code>/etc/system</code>.</td>
</tr>
</tbody>
</table>

Parameters

Here is a list of the Kernel parameters.

\texttt{msgtql}

- Description: Maximum number of messages (system wide).
- Allowed: Positive integer
- Default: 600
msgmnb
Description: Maximum number of bytes per message queue.
Allowed: Positive integer
Default: 64000

semnmi
Description: Number of semaphore identifiers.
Allowed: Positive integer
Default: 100

semmsl
Description: Maximum number of semaphores per unique ID.
Allowed: Positive integer
Default: 250

semmsns
Description: Maximum number of semaphores.
Allowed: Positive integer
Default: 1024

shmmmax
Description: Maximum shared Mem segment (bytes).
Allowed: Positive integer
Default: 4294967295 (Hex 40000000)

shmmmin
Description: Minimum shared Mem segment (bytes).
Allowed: Positive integer
Default: 1

shmmnmi
Description: Number of shared memory identifiers.
Allowed: Positive integer
Default: 100

shmmseg
Description: Number of shared memory segments allowed per process.
Allowed: Positive integer
Default: 10
semopm

Description: Maximum number of semaphore operations that can be executed per semop system call.
Allowed: Positive integer
Default: 100

semvmx

Description: Maximum semaphore value.
Allowed: Positive integer
Default: 65535
Chapter 9

About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications Network Charging and Control (NCC) application described in this guide. It also lists the files installed by the application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and Removal Overview ........................................................................................................... 197
Installing acsSms Packages on a Clustered SMS ........................................................................................ 197
Checking the Installation .......................................................................................................................... 199
System Manifest ......................................................................................................................................... 201

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

- NCC system requirements
- Pre-installation tasks
- Installing and removing NCC packages

ACS Packages

An installation of ACS includes the following packages, on the:

- SMS:
  - acsSms
  - acsCluster (for clustered SMS)
- SLC:
  - acsScp
- VWS:
  - acsBe

Installing acsSms Packages on a Clustered SMS

Raw Devices

ACS can allocate tablespace storage based on raw (without a file system) partitions. This enhances the performance of ACS on the SMS.
If you are using the raw devices option, you must create the raw partitions before installing the database using tools such as the system’s format command.

The raw devices file (which you will be prompted to complete during the installation) must contain the full paths of the device files for the appropriate partitions.

The partitions must be at least as big as the required datafile sizes listed in the sizing file used by the installation.

**Raw Devices Configuration**

Follow these steps to configure raw devices.

**Note:** This is required only if the installation uses raw devices in place of datafiles.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
</table>
| 1    | If your database sizing was set to large, create disk partitions of the following sizes:  
1  2501 MB 
2  1501 MB 
3  1501 MB 
For more information about the format command, see man format.  
If your database sizing was set to medium, create disk partitions of the following sizes:  
1  7002 MB 
2  5002 MB 
3  4002 MB 
4  201 MB 
5  101 MB 
6  2 MB 
For more information about the format command, see man format. |
| 2    | Edit the `acs_devices.sh` file specified above. |
| 3    | Change the line:  
ACS_DATA_DATAFILE=  
to  
ACS_DATA_DATAFILE=/dev/did/rdsk/partition  
Where:  
partition is the name of the partition (for example. d8s0) |
| 4    | Change the line:  
ACS_INDEX_DATAFILE1=  
to  
ACS_INDEX_DATAFILE1=/dev/rdsk/partition  
Where:  
partition is the name of the partition (for example. d8s1) |
| 5    | Change the line:  
ACS_INDEX_DATAFILE2=  
to  
ACS_INDEX_DATAFILE2=/dev/rdsk/partition  
Where:  
partition is the name of the partition (for example. d8s2) |
| 6    | Check the device files for the new partitions are readable and writable by the oracle user prior to commencing/continuing the installation.  
**Example command:** `chmod ugo+rw /dev/rdsk/d8s*` |
Example acs_devices.sh file

This is an example acs_devices.sh file.

```bash
#!/bin/sh
#
The following file is the structure required for knowledge of
raw device utilisation.
Raw device specification for datafile paths.
ACS_DATA_DATAFILE=/dev/did/rdsk/d14s0
ACS_INDEX_DATAFILE1=/dev/did/rdsk/d14s1
ACS_INDEX_DATAFILE2=/dev/did/rdsk/d14s2

export ACS_DATA_DATAFILE ACS_INDEX_DATAFILE1 ACS_INDEX_DATAFILE2
```

Checking the Installation

Introduction

Refer to these checklists to ensure that ACS has installed correctly.

The end of the package installation process specifies a script designed to check the installation just performed. They must be run from the command line.

Checklist for SMS

Follow the steps in this checklist to ensure ACS has been installed on an SMS machine correctly.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log in to SMS machine as root.</td>
</tr>
<tr>
<td>2</td>
<td>Check the following directory structure exists with subdirectories:</td>
</tr>
<tr>
<td></td>
<td>- /IN/service_packages/ACS</td>
</tr>
<tr>
<td></td>
<td>- /IN/html/Acs_Service</td>
</tr>
<tr>
<td>3</td>
<td>Check that directories contain subdirectories and that all are owned by:</td>
</tr>
<tr>
<td></td>
<td>acs_oper user (group oracle)</td>
</tr>
<tr>
<td>4</td>
<td>Log into the system as acs_oper.</td>
</tr>
<tr>
<td></td>
<td>Note: This step is to check that the acs_oper user is valid.</td>
</tr>
<tr>
<td>5</td>
<td>Enter <code>sqlplus /</code> No password is required.</td>
</tr>
<tr>
<td></td>
<td>Note: This step is to check that the acs_oper user has valid access to the database.</td>
</tr>
<tr>
<td>6</td>
<td>Check the entries of the <code>/etc/inittab</code> file.</td>
</tr>
<tr>
<td></td>
<td>Inittab Entries Reserved for ACS on SMS:</td>
</tr>
<tr>
<td></td>
<td>a. acs0</td>
</tr>
<tr>
<td></td>
<td>/IN/service_packages/ACS/bin/acsCompilerDaemonStartup.sh (runs acsCompilerDaemon)</td>
</tr>
<tr>
<td></td>
<td>b. acs1</td>
</tr>
</tbody>
</table>
### Checklist for SLC

Follow the steps in this checklist to ensure ACS has been installed on an SLC machine correctly.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log in to SLC machine as root.</td>
</tr>
<tr>
<td>2</td>
<td>Check the following directory structure exists with subdirectories:</td>
</tr>
<tr>
<td></td>
<td>- /IN/service_packages/ACS</td>
</tr>
<tr>
<td>3</td>
<td>Check the directory contains subdirectories and that all are owned by:</td>
</tr>
<tr>
<td></td>
<td>- acs_oper user (group oracle)</td>
</tr>
<tr>
<td>4</td>
<td>Log into the system as acs_oper.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This step is to check that the acs_oper user is valid.</td>
</tr>
<tr>
<td>5</td>
<td>Enter <code>sqlplus /</code></td>
</tr>
<tr>
<td></td>
<td>No password is required.</td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong> This step is to check that the acs_oper user has valid access to the database.</td>
</tr>
<tr>
<td>6</td>
<td>Check the entries of the <code>/etc/inittab</code> file.</td>
</tr>
<tr>
<td></td>
<td>Inittab Entries Reserved for ACS on SLC:</td>
</tr>
<tr>
<td></td>
<td>1   acs3   /IN/service_packages/ACS/bin/acsStatsMasterStartup.sh</td>
</tr>
<tr>
<td></td>
<td>(runs acsStatsMaster)</td>
</tr>
<tr>
<td>7</td>
<td>Check that the processes listed in the process lists are running on the relevant machine.</td>
</tr>
<tr>
<td></td>
<td>For a list of the processes which should be running, see <em>Process list for SMS</em> (on page 200).</td>
</tr>
</tbody>
</table>

### Process list for SMS

If the application is running correctly, the following processes should be running on each SMS:

- Started from the inittab:
  - acsCompilerDaemon
  - acsStatisticsDBInserter
  - acsProfileCompiler

### Process list for SLC

If the application is running correctly, the following processes should be running on each SLC:

- Started from the inittab:
  - acsStatsMaster
- Started during SLEE startup:
System Manifest

Introduction

Advanced Control Services (ACS) consists of several software executables and directories.

SMS Packages

The ACS application on the SMS contains the following directory structure in the directory /IN/service_packages/ACS.

<table>
<thead>
<tr>
<th>Directory</th>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/bin</td>
<td>bin</td>
<td>This directory contains run-time service executables and shell scripts.</td>
</tr>
<tr>
<td></td>
<td>acsCompilerDaemonStartup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsStatisticsDBInserterStartup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsProfileCompilerStartup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsLogCleanerStartup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsDbCleanup.sh</td>
<td>Start up script.</td>
</tr>
<tr>
<td></td>
<td>acsAddCallPlan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsAddCustomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsAddGeography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsAddServiceNumber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsDecompile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsMonitorCompiler</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsProfile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsScheduleCallPlan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>acsSetupAnnouncement</td>
<td></td>
</tr>
<tr>
<td>/db</td>
<td>db</td>
<td>This directory contains install-time database scripts.</td>
</tr>
<tr>
<td>/etc</td>
<td>etc</td>
<td>This directory contains run-time configuration files.</td>
</tr>
<tr>
<td>/etc/inittab</td>
<td>inittab</td>
<td>This directory contains background processes.</td>
</tr>
<tr>
<td></td>
<td>acsCompilerDaemon</td>
<td>Background process.</td>
</tr>
<tr>
<td></td>
<td>acsStatisticsDBInserter</td>
<td>Background process.</td>
</tr>
<tr>
<td></td>
<td>acsProfileCompiler</td>
<td>Background process.</td>
</tr>
<tr>
<td>/lib</td>
<td>lib</td>
<td>This directory contains run-time shared libraries and install-time shell scripts.</td>
</tr>
<tr>
<td>/tmp</td>
<td>tmp</td>
<td>This directory contains run-time and install-time log files.</td>
</tr>
<tr>
<td></td>
<td>acsCompilerDaemon.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td></td>
<td>acsStatisticsDBInserter.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td></td>
<td>acsProfileCompiler.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td></td>
<td>acsLogCleaner.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td></td>
<td>acsDbCleanup.sh.log</td>
<td>Error log file.</td>
</tr>
<tr>
<td>/tmp/archive</td>
<td>archive</td>
<td>This directory contains archived log files.</td>
</tr>
</tbody>
</table>
## SLC Packages

The ACS application on the SLC will have the following directory structure in the directory `/IN/service_packages/ACS`.

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/bin</td>
<td>This directory contains run-time service executables and shell scripts.</td>
</tr>
<tr>
<td></td>
<td>acsStatsMasterStartup.sh</td>
</tr>
<tr>
<td></td>
<td>acsDecompile</td>
</tr>
<tr>
<td></td>
<td>acsLogCleanerStartup.sh</td>
</tr>
<tr>
<td></td>
<td>acsProfile</td>
</tr>
<tr>
<td></td>
<td>acsStatsLocalSLEE</td>
</tr>
<tr>
<td></td>
<td>acsSLSStartup.sh</td>
</tr>
<tr>
<td></td>
<td>cmnPushFilesStartup.sh</td>
</tr>
<tr>
<td></td>
<td>pinLogFileCleanup.sh</td>
</tr>
<tr>
<td></td>
<td>acsTriggerIF</td>
</tr>
<tr>
<td></td>
<td>acsTriggerIF.sh</td>
</tr>
<tr>
<td>/db</td>
<td>This directory contains install-time database scripts.</td>
</tr>
<tr>
<td>/etc</td>
<td>This directory contains run-time configuration files.</td>
</tr>
<tr>
<td>/etc/inittab</td>
<td>This directory contains background processes.</td>
</tr>
<tr>
<td></td>
<td>acsStatsMaster</td>
</tr>
<tr>
<td>/install</td>
<td>This directory contains install-time scripts for optional SLEE rc.d auto-start.</td>
</tr>
<tr>
<td>/lib</td>
<td>This directory contains run-time shared libraries and install-time shell scripts.</td>
</tr>
<tr>
<td>/tmp</td>
<td>This directory contains run-time and install-time log files.</td>
</tr>
<tr>
<td></td>
<td>acsStatsMaster.log</td>
</tr>
<tr>
<td>/tmp/archive</td>
<td>This directory contains archived log files.</td>
</tr>
</tbody>
</table>
Overview

Purpose
This chapter provides the operating procedures for the Advanced Control Services (ACS) application. These procedures are normally performed once, after the installation and configuration of the system.

In this chapter

This chapter contains the following topics.
Using Announcements................................................................................................................. 203
ACS Global Control Plans.............................................................................................................. 204

Using Announcements

Introduction
When ACS is installed, the announcements required by the ACS Management control plan are inserted into the database. These announcements have been assigned a Virtual Announcement ID, but do not have an actual Resource Name and ID assigned to them.

To use the ACS Management control plan the system administrator must arrange to have the required announcements recorded on the IP that is to be used, and then enter into the system the language that the announcement was recorded in and the resource name and ID of the location of each announcement.

Each Announcement may be recorded in several languages, it is important that the Virtual Announcement ID is the same for each recording of the announcement, and the system entries differ only by the language, resource name and resource ID.

Note
These announcement mappings are not installed automatically because in most cases, the required values are customer specific.

If you wish to configure these values you can enter them manually with the ACS announcement screens or you may run the provided /IN/service_packages/ACS/db/install/install_acs/acs_language_mappings.sh configuration script as acs_oper.

Originating Announcements
Here is a list of announcements used by the ACS Management control plan.

- activate date prompt
- activate date reprompt
- Control Plan activation failed
- collect Control Plan ID prompt
ACS Global Control Plans

About Global Control Plans

Global control plans are an optional feature that enable the telco to apply global call-screening to calls for all customers before the customer's control plans are applied. Global control plans are automatically assigned to the default customer, and therefore they are always owned by the telco.

Global control plans are associated with a specific service entry, so that they apply only to control plans of a selected type. Service entries are defined in the `acs.conf` configuration file for the Oracle Communications Network Charging and Control (NCC) application. You specify whether a control plan is global when you save the control plan by giving it a name that corresponds to the service to which it applies.

For more information on using global control plans, see *CPE User's Guide*. 
Introduction

The screens in the Oracle Communications Network Charging and Control (NCC) user interface (UI) show time values in the local time zone. You specify the time zone in the TZ application property in the sms.jnlp file, located in the /IN/html directory. For remote SMS users in other time zones, it is possible to have separate sms.jnlp files to specify their time zones.

For users who access ACS directly it is possible to add the TZ application property to the acs.jnlp file located in the /IN/html directory, and thus display time values in the ACS UI in the desired time zone.

Description

A list of time zones supported by Java is shown in the following table.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Timezone ID</th>
<th>Offset in ms</th>
<th>Daylight Time?</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMT-11:00</td>
<td>Pacific/Niue</td>
<td>-396000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-11:00</td>
<td>Pacific/Apia</td>
<td>-396000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-11:00</td>
<td>MIT</td>
<td>-396000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-11:00</td>
<td>Pacific/Pago_Pago</td>
<td>-396000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-10:00</td>
<td>Pacific/Tahiti</td>
<td>-360000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-10:00</td>
<td>Pacific/Fakaofo</td>
<td>-360000000</td>
<td>false</td>
</tr>
<tr>
<td>HST</td>
<td>Pacific/Honolulu</td>
<td>-360000000</td>
<td>false</td>
</tr>
<tr>
<td>HST</td>
<td>HST</td>
<td>-360000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-10:00</td>
<td>America/Adak</td>
<td>-360000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-10:00</td>
<td>Pacific/Rarotonga</td>
<td>-360000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-09:30</td>
<td>Pacific/Marquesas</td>
<td>-342000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-09:00</td>
<td>Pacific/Gambier</td>
<td>-324000000</td>
<td>false</td>
</tr>
<tr>
<td>AKST</td>
<td>America/Anchorage</td>
<td>-324000000</td>
<td>true</td>
</tr>
<tr>
<td>AKST</td>
<td>AST</td>
<td>-324000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-08:00</td>
<td>Pacific/Pitcairn</td>
<td>-288000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-08:00</td>
<td>America/Vancouver</td>
<td>-288000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-08:00</td>
<td>America/Tijuana</td>
<td>-288000000</td>
<td>true</td>
</tr>
<tr>
<td>PST</td>
<td>America/Los_Angeles</td>
<td>-288000000</td>
<td>true</td>
</tr>
<tr>
<td>PST</td>
<td>PST</td>
<td>-288000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-07:00</td>
<td>America/Dawson_Creek</td>
<td>-252000000</td>
<td>false</td>
</tr>
<tr>
<td>MST</td>
<td>America/Phoenix</td>
<td>-252000000</td>
<td>false</td>
</tr>
<tr>
<td>MST</td>
<td>PNT</td>
<td>-252000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-07:00</td>
<td>America/Edmonton</td>
<td>-252000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-07:00</td>
<td>America/Mazatlan</td>
<td>-252000000</td>
<td>true</td>
</tr>
<tr>
<td>MST</td>
<td>America/Denver</td>
<td>-252000000</td>
<td>true</td>
</tr>
<tr>
<td>MST</td>
<td>MST</td>
<td>-252000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Belize</td>
<td>-216000000</td>
<td>false</td>
</tr>
<tr>
<td>Offset :</td>
<td>Timezone ID :</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Regina</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>Pacific/Galapagos</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Guatemala</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Tegucigalpa</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/El_Salvador</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Costa_Rica</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Winnipeg</td>
<td>-21600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>Pacific/Easter</td>
<td>-21600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Mexico_City</td>
<td>-21600000</td>
<td>true</td>
</tr>
<tr>
<td>CST</td>
<td>America/Chicago</td>
<td>-21600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Porto_Acre</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Bogota</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Guayaquil</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Jamaica</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Cayman</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-06:00</td>
<td>America/Managua</td>
<td>-21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Panama</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Lima</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>EST</td>
<td>America/Indianapolis</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>EST</td>
<td>IET</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Nassau</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Montreal</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Havana</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Port-au-Prince</td>
<td>-18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-05:00</td>
<td>America/Grand_Turk</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>EST</td>
<td>America/New_York</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>EST</td>
<td>EST</td>
<td>-18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Antigua</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Anguilla</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Curacao</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Aruba</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Barbados</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/La_Paz</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Manaus</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Dominica</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Santo_Domingo</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Grenada</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Guadeloupe</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Guyana</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/St_Kitts</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/St_Lucia</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Martinique</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Montserrat</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Puerto_Rico</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>PRT</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Port_of_Spain</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/St_Vincent</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Tortola</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/St_Thomas</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Caracas</td>
<td>-14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>Antarctica/Palmer</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>Atlantic/Bermuda</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Cuaba</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>AST</td>
<td>America/Halifax</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>Atlantic/Stanley</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Thule</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Asuncion</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-04:00</td>
<td>America/Santiago</td>
<td>-14400000</td>
<td>true</td>
</tr>
<tr>
<td>NST</td>
<td>America/St_Johns</td>
<td>-12600000</td>
<td>true</td>
</tr>
<tr>
<td>NST</td>
<td>CNT</td>
<td>-12600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Fortaleza</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Cayenne</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Paramaribo</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Montevideo</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Buenos_Aires</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>AGT</td>
<td>-10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Godthab</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Miquelon</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>America/Sao_Paulo</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-03:00</td>
<td>BET</td>
<td>-10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-02:00</td>
<td>America/Noronha</td>
<td>-7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-02:00</td>
<td>Atlantic/South_Georgia</td>
<td>-7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-01:00</td>
<td>Atlantic/Jan_Mayen</td>
<td>-3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-01:00</td>
<td>Atlantic/Cape_Verde</td>
<td>-3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT-01:00</td>
<td>America/Scoresbysund</td>
<td>-3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT-01:00</td>
<td>Atlantic/Azores</td>
<td>-3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Ouagadougou</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Abidjan</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Accra</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Banjul</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Conakry</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Bissau</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Atlantic/Reykjavik</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Monrovia</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT</td>
<td>Africa/Casablanca</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>Offset :</td>
<td>Timezone ID :</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Timbuktu</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Nouakchott</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Atlantic/St_Helena</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Freetown</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Dakar</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Sao_Tome</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Africa/Lome</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>GMT</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>UTC</td>
<td>0</td>
<td>false</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Atlantic/Faeroe</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Atlantic/Canary</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Europe/Dublin</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Europe/Lisbon</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>Europe/London</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+00:00</td>
<td>WET</td>
<td>0</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Luanda</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Porto-Nov</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Bangui</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Kinshasa</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Douala</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Libreville</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Malabo</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Niamey</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Lagos</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Ndjamena</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Tunis</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Algiers</td>
<td>3600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Andorra</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Tirane</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Vienna</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Brussels</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Zurich</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Prague</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Berlin</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Copenhagen</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Madrid</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Gibraltar</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Budapest</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Rome</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Vaduz</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Luxembourg</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Tripoli</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Monaco</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Malta</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Africa/Windhoek</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Amsterdam</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Oslo</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Warsaw</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Stockholm</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+01:00</td>
<td>Europe/Belgrade</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>CET</td>
<td>Europe/Paris</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>CET</td>
<td>ECT</td>
<td>3600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Bujumbura</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Gaborone</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Lubumbashi</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Maseru</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Blantyre</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Maputo</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Kigali</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Khartoum</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Mbabane</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Lusaka</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Harare</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>CAT</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Johannesburg</td>
<td>7200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Sofia</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Minsk</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Asia/Nicosia</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Tallinn</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Africa/Cairo</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>ART</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Helsinki</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Athens</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>IST</td>
<td>Asia/Jerusalem</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Asia/Ammann</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Asia/Beirut</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Vilnius</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Riga</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Chisinau</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>EET</td>
<td>Europe/Bucharest</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Kaliningrad</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Asia/Damascus</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Kiev</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Istanbul</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>EET</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Bahrain</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>Offset :</td>
<td>Timezone ID :</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Djibouti</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Asmera</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Addis_Ababa</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>EAT</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Nairobi</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Indian/Comoro</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Kuwait</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Indian/Antananarivo</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Qatar</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Mogadishu</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Dar_es_Salaam</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Africa/Kampala</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Aden</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Indian/Mayotte</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Riyadh</td>
<td>10800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Asia/Baghdad</td>
<td>10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+02:00</td>
<td>Europe/Simferopol</td>
<td>7200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+03:00</td>
<td>Europe/Moscow</td>
<td>10800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+03:30</td>
<td>Asia/Tehran</td>
<td>12600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+03:30</td>
<td>MET</td>
<td>12600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Dubai</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Indian/Mauritius</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Muscat</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Indian/Reunion</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Indian/Mahe</td>
<td>14400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Yerevan</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>NET</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Baku</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Aqtau</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Europe/Samara</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+04:30</td>
<td>Asia/Kabul</td>
<td>16200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Indian/Kerguelen</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+04:00</td>
<td>Asia/Tbilisi</td>
<td>14400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Indian/Chagos</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Indian/Maldives</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Dushanbe</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Ashkhabad</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Tashkent</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Karachi</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>PLT</td>
<td>18000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Bishkek</td>
<td>18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Aqtobe</td>
<td>18000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+05:00</td>
<td>Asia/Yekaterinburg</td>
<td>18000000</td>
<td>true</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+05:30</td>
<td>Asia/Calcutta</td>
<td>19800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:30</td>
<td>IST</td>
<td>19800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+05:45</td>
<td>Asia/Katmandu</td>
<td>20700000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+06:00</td>
<td>Antarctica/Mawson</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+06:00</td>
<td>Asia/Thimbu</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+06:00</td>
<td>Asia/Colombo</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+06:00</td>
<td>Asia/Colombo</td>
<td>21600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+06:00</td>
<td>Asia/Almaty</td>
<td>21600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+06:00</td>
<td>Asia/Novosibirsk</td>
<td>21600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+06:30</td>
<td>Indian/Cocos</td>
<td>23400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+06:30</td>
<td>Asia/Rangoon</td>
<td>23400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+07:00</td>
<td>Indian/Christmas</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+07:00</td>
<td>Asia/Jakarta</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+07:00</td>
<td>Asia/Phnom_Penh</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+07:00</td>
<td>Asia/Vientiane</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+07:00</td>
<td>Asia/Saigon</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+07:00</td>
<td>VST</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+07:00</td>
<td>Asia/Bangkok</td>
<td>25200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+07:00</td>
<td>Asia/Krasnoyarsk</td>
<td>25200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Antarctica/Casey</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Australia/Perth</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Brunei</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Hong_Kong</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Ujung_Pandang</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Macao</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Kuala_Lumpur</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Manila</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Singapore</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Taipei</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>CST</td>
<td>Asia/Shanghai</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>CST</td>
<td>CTT</td>
<td>28800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Ulan_Bator</td>
<td>28800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+08:00</td>
<td>Asia/Irkutsk</td>
<td>28800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+09:00</td>
<td>Asia/Jayapura</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+09:00</td>
<td>Asia/Pyongyang</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+09:00</td>
<td>Asia/Seoul</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+09:00</td>
<td>Pacific/Palau</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>JST</td>
<td>Asia/Tokyo</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>JST</td>
<td>JST</td>
<td>32400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+09:00</td>
<td>Asia/Yakutsk</td>
<td>32400000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+09:30</td>
<td>Australia/Darwin</td>
<td>34200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+09:30</td>
<td>ACT</td>
<td>34200000</td>
<td>false</td>
</tr>
<tr>
<td>Offset</td>
<td>Timezone ID</td>
<td>Offset in ms</td>
<td>Daylight Time?</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GMT+09:30</td>
<td>Australia/Adelaide</td>
<td>34200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+09:30</td>
<td>Australia/Broken_Hill</td>
<td>34200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Australia/Hobart</td>
<td>36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Antarctica/DumontDUrville?</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Pacific/Truk</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Pacific/Guam</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Pacific/Saipan</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Pacific/Port_Moresby</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Australia/Brisbane</td>
<td>36000000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Asia/Vladivostok</td>
<td>36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>Australia/Sydney</td>
<td>36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:00</td>
<td>AET</td>
<td>36000000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+10:30</td>
<td>Australia/Lord_Howe</td>
<td>37800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Ponape</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Efate</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Guadalcanal</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>SST</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Noumea</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Asia/Magadan</td>
<td>39600000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+11:30</td>
<td>Pacific/Norfolk</td>
<td>41400000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+11:00</td>
<td>Pacific/Kosrae</td>
<td>39600000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Tarawa</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Majuro</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Nauru</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Funafuti</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Wake</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Wallis</td>
<td>43200000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Fiji</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Antarctica/McMurdo?</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Asia/Kamchatka</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Pacific/Auckland</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>NST</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:45</td>
<td>Pacific/Chatham</td>
<td>45900000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+13:00</td>
<td>Pacific/Enderbury</td>
<td>46800000</td>
<td>false</td>
</tr>
<tr>
<td>GMT+13:00</td>
<td>Pacific/Tongatapu</td>
<td>46800000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+12:00</td>
<td>Asia/Anadyr</td>
<td>43200000</td>
<td>true</td>
</tr>
<tr>
<td>GMT+14:00</td>
<td>Pacific/Kiritimati</td>
<td>50400000</td>
<td>false</td>
</tr>
</tbody>
</table>
# ASCII Codes

## Description

This table shows the ASCII code values.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Octal</th>
<th>Hex</th>
<th>Binary</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>00000000</td>
<td>NUL</td>
<td>(Null char.)</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
<td>01</td>
<td>00000001</td>
<td>SOH</td>
<td>(Start of Header)</td>
</tr>
<tr>
<td>002</td>
<td>002</td>
<td>02</td>
<td>00000010</td>
<td>STX</td>
<td>(Start of Text)</td>
</tr>
<tr>
<td>003</td>
<td>003</td>
<td>03</td>
<td>00000011</td>
<td>ETX</td>
<td>(End of Text)</td>
</tr>
<tr>
<td>004</td>
<td>004</td>
<td>04</td>
<td>00000100</td>
<td>EOT</td>
<td>(End of Transmission)</td>
</tr>
<tr>
<td>005</td>
<td>005</td>
<td>05</td>
<td>00000101</td>
<td>ENQ</td>
<td>(Enquiry)</td>
</tr>
<tr>
<td>006</td>
<td>006</td>
<td>06</td>
<td>00000110</td>
<td>ACK</td>
<td>(Acknowledgment)</td>
</tr>
<tr>
<td>007</td>
<td>007</td>
<td>07</td>
<td>00000111</td>
<td>BEL</td>
<td>(Bell)</td>
</tr>
<tr>
<td>008</td>
<td>010</td>
<td>08</td>
<td>00001000</td>
<td>BS</td>
<td>(Backspace)</td>
</tr>
<tr>
<td>009</td>
<td>011</td>
<td>09</td>
<td>00001001</td>
<td>HT</td>
<td>(Horizontal Tab)</td>
</tr>
<tr>
<td>010</td>
<td>012</td>
<td>0A</td>
<td>00001010</td>
<td>LF</td>
<td>(Line Feed)</td>
</tr>
<tr>
<td>011</td>
<td>013</td>
<td>0B</td>
<td>00001101</td>
<td>VT</td>
<td>(Vertical Tab)</td>
</tr>
<tr>
<td>012</td>
<td>014</td>
<td>0C</td>
<td>00010000</td>
<td>FF</td>
<td>(Form Feed)</td>
</tr>
<tr>
<td>013</td>
<td>015</td>
<td>0D</td>
<td>00010001</td>
<td>CR</td>
<td>(Carriage Return)</td>
</tr>
<tr>
<td>014</td>
<td>016</td>
<td>0E</td>
<td>00010010</td>
<td>SO</td>
<td>(Shift Out)</td>
</tr>
<tr>
<td>015</td>
<td>017</td>
<td>0F</td>
<td>00010111</td>
<td>SI</td>
<td>(Shift In)</td>
</tr>
<tr>
<td>016</td>
<td>020</td>
<td>10</td>
<td>00010100</td>
<td>DLE</td>
<td>(Data Link Escape)</td>
</tr>
<tr>
<td>017</td>
<td>021</td>
<td>11</td>
<td>00010101</td>
<td>DC1</td>
<td>(XON) (Device Control 1)</td>
</tr>
<tr>
<td>018</td>
<td>022</td>
<td>12</td>
<td>00010110</td>
<td>DC2</td>
<td>(Device Control 2)</td>
</tr>
<tr>
<td>019</td>
<td>023</td>
<td>13</td>
<td>00011001</td>
<td>DC3</td>
<td>(XOFF) (Device Control 3)</td>
</tr>
<tr>
<td>020</td>
<td>024</td>
<td>14</td>
<td>00011010</td>
<td>DC4</td>
<td>(Device Control 4)</td>
</tr>
<tr>
<td>021</td>
<td>025</td>
<td>15</td>
<td>00011011</td>
<td>NAK</td>
<td>(Negative Acknowledgment)</td>
</tr>
<tr>
<td>022</td>
<td>026</td>
<td>16</td>
<td>00011110</td>
<td>SYN</td>
<td>(Synchronous Idle)</td>
</tr>
<tr>
<td>023</td>
<td>027</td>
<td>17</td>
<td>00011111</td>
<td>ETB</td>
<td>(End of Trans. Block)</td>
</tr>
<tr>
<td>024</td>
<td>030</td>
<td>18</td>
<td>00011100</td>
<td>CAN</td>
<td>(Cancel)</td>
</tr>
<tr>
<td>025</td>
<td>031</td>
<td>19</td>
<td>00011001</td>
<td>EM</td>
<td>(End of Medium)</td>
</tr>
<tr>
<td>026</td>
<td>032</td>
<td>1A</td>
<td>00011010</td>
<td>SUB</td>
<td>(Substitute)</td>
</tr>
<tr>
<td>027</td>
<td>033</td>
<td>1B</td>
<td>00011101</td>
<td>ESC</td>
<td>(Escape)</td>
</tr>
<tr>
<td>028</td>
<td>034</td>
<td>1C</td>
<td>00011100</td>
<td>FS</td>
<td>(File Separator)</td>
</tr>
<tr>
<td>029</td>
<td>035</td>
<td>1D</td>
<td>00011101</td>
<td>GS</td>
<td>(Group Separator)</td>
</tr>
<tr>
<td>030</td>
<td>036</td>
<td>1E</td>
<td>00011110</td>
<td>RS</td>
<td>(Request to Send) (Record Separator)</td>
</tr>
<tr>
<td>031</td>
<td>037</td>
<td>1F</td>
<td>00011111</td>
<td>US</td>
<td>(Unit Separator)</td>
</tr>
<tr>
<td>032</td>
<td>040</td>
<td>20</td>
<td>00100000</td>
<td>SP</td>
<td>(Space)</td>
</tr>
<tr>
<td>Decimal</td>
<td>Octal</td>
<td>Hex</td>
<td>Binary</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>00000000</td>
<td>NUL</td>
<td>(Null char.)</td>
</tr>
<tr>
<td>033</td>
<td>041</td>
<td>21</td>
<td>00100001</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>034</td>
<td>042</td>
<td>22</td>
<td>00100010</td>
<td>&quot;</td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>043</td>
<td>23</td>
<td>00100011</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>036</td>
<td>044</td>
<td>24</td>
<td>00100100</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>037</td>
<td>045</td>
<td>25</td>
<td>00100101</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>038</td>
<td>046</td>
<td>26</td>
<td>00100110</td>
<td>&amp;</td>
<td></td>
</tr>
<tr>
<td>039</td>
<td>047</td>
<td>27</td>
<td>00100111</td>
<td>'</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>050</td>
<td>28</td>
<td>00101000</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>041</td>
<td>051</td>
<td>29</td>
<td>00101001</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>042</td>
<td>052</td>
<td>2A</td>
<td>00101010</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>043</td>
<td>053</td>
<td>2B</td>
<td>00101011</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>044</td>
<td>054</td>
<td>2C</td>
<td>00101100</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>045</td>
<td>055</td>
<td>2D</td>
<td>00101101</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>046</td>
<td>056</td>
<td>2E</td>
<td>00101110</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>047</td>
<td>057</td>
<td>2F</td>
<td>00101111</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>048</td>
<td>060</td>
<td>30</td>
<td>00110000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>049</td>
<td>061</td>
<td>31</td>
<td>00110001</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>062</td>
<td>32</td>
<td>00110010</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>051</td>
<td>063</td>
<td>33</td>
<td>00110011</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>064</td>
<td>34</td>
<td>00110100</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>053</td>
<td>065</td>
<td>35</td>
<td>00110101</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>054</td>
<td>066</td>
<td>36</td>
<td>00110110</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>055</td>
<td>067</td>
<td>37</td>
<td>00110111</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>056</td>
<td>070</td>
<td>38</td>
<td>00111000</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>057</td>
<td>071</td>
<td>39</td>
<td>00111001</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>058</td>
<td>072</td>
<td>3A</td>
<td>00111010</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>059</td>
<td>073</td>
<td>3B</td>
<td>00111011</td>
<td>;</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>074</td>
<td>3C</td>
<td>00111100</td>
<td>&lt;</td>
<td></td>
</tr>
<tr>
<td>061</td>
<td>075</td>
<td>3D</td>
<td>00111101</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>062</td>
<td>076</td>
<td>3E</td>
<td>00111110</td>
<td>&gt;</td>
<td></td>
</tr>
<tr>
<td>063</td>
<td>077</td>
<td>3F</td>
<td>00111111</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>064</td>
<td>100</td>
<td>40</td>
<td>01000000</td>
<td>@</td>
<td></td>
</tr>
<tr>
<td>065</td>
<td>101</td>
<td>41</td>
<td>01000001</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>066</td>
<td>102</td>
<td>42</td>
<td>01000010</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>067</td>
<td>103</td>
<td>43</td>
<td>01000011</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>068</td>
<td>104</td>
<td>44</td>
<td>01000100</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>069</td>
<td>105</td>
<td>45</td>
<td>01000101</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>070</td>
<td>106</td>
<td>46</td>
<td>01000110</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>071</td>
<td>107</td>
<td>47</td>
<td>01000111</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>072</td>
<td>110</td>
<td>48</td>
<td>01001000</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>073</td>
<td>111</td>
<td>49</td>
<td>01001001</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Octal</td>
<td>Hex</td>
<td>Binary</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>--------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>00000000</td>
<td>NUL</td>
<td></td>
</tr>
<tr>
<td>074</td>
<td>112</td>
<td>4A</td>
<td>01001010</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>075</td>
<td>113</td>
<td>4B</td>
<td>01001011</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>076</td>
<td>114</td>
<td>4C</td>
<td>01001100</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>077</td>
<td>115</td>
<td>4D</td>
<td>01001101</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>078</td>
<td>116</td>
<td>4E</td>
<td>01001110</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>079</td>
<td>117</td>
<td>4F</td>
<td>01001111</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>080</td>
<td>120</td>
<td>50</td>
<td>01010000</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>081</td>
<td>121</td>
<td>51</td>
<td>01010001</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>082</td>
<td>122</td>
<td>52</td>
<td>01010010</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>083</td>
<td>123</td>
<td>53</td>
<td>01010011</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>084</td>
<td>124</td>
<td>54</td>
<td>01010100</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>085</td>
<td>125</td>
<td>55</td>
<td>01010101</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>086</td>
<td>126</td>
<td>56</td>
<td>01010110</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>087</td>
<td>127</td>
<td>57</td>
<td>01010111</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>088</td>
<td>130</td>
<td>58</td>
<td>01011000</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>089</td>
<td>131</td>
<td>59</td>
<td>01011001</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>090</td>
<td>132</td>
<td>5A</td>
<td>01011010</td>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>091</td>
<td>133</td>
<td>5B</td>
<td>01011011</td>
<td>[</td>
<td></td>
</tr>
<tr>
<td>092</td>
<td>134</td>
<td>5C</td>
<td>01011100</td>
<td>\</td>
<td></td>
</tr>
<tr>
<td>093</td>
<td>135</td>
<td>5D</td>
<td>01011101</td>
<td>]</td>
<td></td>
</tr>
<tr>
<td>094</td>
<td>136</td>
<td>5E</td>
<td>01011110</td>
<td>^</td>
<td></td>
</tr>
<tr>
<td>095</td>
<td>137</td>
<td>5F</td>
<td>01011111</td>
<td>_</td>
<td></td>
</tr>
<tr>
<td>096</td>
<td>140</td>
<td>60</td>
<td>01100000</td>
<td>`</td>
<td></td>
</tr>
<tr>
<td>097</td>
<td>141</td>
<td>61</td>
<td>01100001</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>098</td>
<td>142</td>
<td>62</td>
<td>01100010</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>099</td>
<td>143</td>
<td>63</td>
<td>01100011</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>144</td>
<td>64</td>
<td>01100100</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>145</td>
<td>65</td>
<td>01100101</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>146</td>
<td>66</td>
<td>01100110</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>147</td>
<td>67</td>
<td>01100111</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>150</td>
<td>68</td>
<td>01101000</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>151</td>
<td>69</td>
<td>01101001</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>152</td>
<td>6A</td>
<td>01101010</td>
<td>j</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>153</td>
<td>6B</td>
<td>01101011</td>
<td>k</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>154</td>
<td>6C</td>
<td>01101100</td>
<td>l</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>155</td>
<td>6D</td>
<td>01101101</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>156</td>
<td>6E</td>
<td>01101110</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>157</td>
<td>6F</td>
<td>01101111</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>160</td>
<td>70</td>
<td>01110000</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>161</td>
<td>71</td>
<td>01110001</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>162</td>
<td>72</td>
<td>01110010</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>Decimal</td>
<td>Octal</td>
<td>Hex</td>
<td>Binary</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>-------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>000</td>
<td>000</td>
<td>00</td>
<td>00000000</td>
<td>NUL</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>165</td>
<td>75</td>
<td>01110101</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>166</td>
<td>76</td>
<td>01110110</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>167</td>
<td>77</td>
<td>01110111</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>168</td>
<td>78</td>
<td>01111000</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>169</td>
<td>79</td>
<td>01111001</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>170</td>
<td>7A</td>
<td>01111010</td>
<td>z</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>171</td>
<td>7B</td>
<td>01111011</td>
<td>{</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>172</td>
<td>7C</td>
<td>01111100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>173</td>
<td>7D</td>
<td>01111101</td>
<td>}</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>174</td>
<td>7E</td>
<td>01111110</td>
<td>~</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>175</td>
<td>7F</td>
<td>01111111</td>
<td>DEL</td>
<td></td>
</tr>
</tbody>
</table>
Glossary of Terms

AAA

ACS
Advanced Control Services configuration platform.

ANI
Automatic Number Identification - Term used in the USA by long-distance carriers for CLI.

ASN.1
Abstract Syntax Notation One - a formal notation used for describing data transmitted by telecommunications protocols. ASN.1 is a joint ISO/IEC and ITU-T standard.

BCSM
Basic Call State Model - describes the basic processing steps that must be performed by a switch in order to establish and tear down a call.

C7
See SS7.

CAMEL
Customized Applications for Mobile network Enhanced Logic
This is a 3GPP (Third Generation Partnership Project) initiative to extend traditional IN services found in fixed networks into mobile networks. The architecture is similar to that of traditional IN, in that the control functions and switching functions are remote. Unlike the fixed IN environment, in mobile networks the subscriber may roam into another PLMN (Public Land Mobile Network), consequently the controlling function must interact with a switching function in a foreign network. CAMEL specifies the agreed information flows that may be passed between these networks.

CAP
CAMEL Application Part

CC
Country Code. Prefix identifying the country for a numeric international address.

CCR
Credit-Control-Request, used in Diameter by the credit-control client to request credit authorization from the credit-control server.

CCS
1) Charging Control Services component.
2) Common Channel Signalling. A signalling system used in telephone networks that separates
signalling information from user data.

CDR
Call Data Record

Note: The industry standard for CDR is EDR (Event Detail Record).

CID
Call Instance Data

CLI
Calling Line Identification - the telephone number of the caller. Also referred to as ANI.

Connection
Transport level link between two peers, providing for multiple sessions.

CPE
Control Plan Editor (previously Call Plan Editor) - software used to define the logic and data associated
with a call - for example, "if the subscriber calls 0800 nnnnnn from a phone at location xxx then put the
call through to bb bbb bbbb".

CPU
Central Processing Unit

cron
Unix utility for scheduling tasks.

crontab
File used by cron.

CS1
ETSI INAP Capability Set 1. An ITU standard.

CSV
A Comma-Separated Values file contains the values in a table as a series of ASCII text lines organized
so that each column value is separated by a comma from the next column's value and each row starts a
new line, for example:

Doe, John, 944-7077
Johnson, Mary, 370-3920
Smith, Abigail, 299-3958
(etc.)

A CSV file is a way to collect the data from any table so that it can be conveyed as input to another
Table-oriented application such as a relational database application. Microsoft Excel can read CSV files.
A CSV file is sometimes referred to as a flat file.
DAP
Data Access Pack. An extension module for ACS which allows control plans to make asynchronous requests to external systems over various protocols including XML and LDAP.

DB
Database

Diameter
A feature rich AAA protocol. Utilises SCTP and TCP transports.

DLE
Destination Local Exchange

DP
Detection Point

DRA
Destination Routing Address. The parameter in the INAP Connect operation, sent from ACS to the SSP. This is the number the SSP is instructed to connect to.

DTMF
Dual Tone Multi-Frequency - system used by touch tone telephones where one high and one low frequency, or tone, is assigned to each touch tone button on the phone.

ETSI
European Telecommunications Standards Institute

FCI
Furnish Charging Information. An INAP operation sent from ACS to the SSP to control the contents of EDRs produced by the SSP.

FDA
First Delivery Attempt - the delivery of a short message directly to the SME rather than relaying it through the MC.

GPRS
General Packet Radio Service - employed to connect mobile cellular users to PDN (Public Data Network- for example the Internet).

GSM
Global System for Mobile communication.
It is a second generation cellular telecommunication system. Unlike first generation systems, GSM is digital and thus introduced greater enhancements such as security, capacity, quality and the ability to support integrated services.
**GT**

Global Title.

The GT may be defined in any of the following formats:
- Type 1: String in the form "1,<noa>,<BCD address digits>"
- Type 2: String in the form "2,<trans type><BCD address digits>"
- Type 3: String in the form "3,<trans type>,<num plan>,<BCD address digits>"
- Type 4: String in the form "4,<trans type>,<num plan>,<noa>,<BCD address digits>"

The contents of the Global Title are defined in the Q713 specification, please refer to section 3.4.2.3 for further details on defining Global Title.

**GUI**

Graphical User Interface

**GVNS**

Global Virtual Numbering Scheme - When multiple VPNs are in use by a customer, the capability to route calls between these VPNs requires a numbering scheme that uses destination addresses based on a customer id and extension number. These GVNS addresses can then be interpreted to provide inter VPN operation.

**HLR**

The Home Location Register is a database within the HPLMN (Home Public Land Mobile Network). It provides routing information for MT calls and SMS. It is also responsible for the maintenance of user subscription information. This is distributed to the relevant VLR, or SGSN (Serving GPRS Support Node) through the attach process and mobility management procedures such as Location Area and Routing Area updates.

**HPLMN**

Home PLMN

**HTML**

HyperText Markup Language, a small application of SGML used on the World Wide Web.

It defines a very simple class of report-style documents, with section headings, paragraphs, lists, tables, and illustrations, with a few informational and presentational items, and some hypertext and multimedia.

**Hunting**

A terminating call feature where a subscriber may request a list of alternate destination addresses. If their mobile station is not attached, or does not answer a call, then the service logic should attempt to reach the supplied alternate destinations in sequence.

**ICA**

InitiateCallAttempt. A CAMEL/INAP operation sent by the SLC to an SSP request that a voice call is started.

**IDP**

INAP message: Initial DP (Initial Detection Point)
**IMSI**

International Mobile Subscriber Identifier. A unique identifier allocated to each mobile subscriber in a GSM and UMTS network. It consists of a MCC (Mobile Country Code), a MNC (Mobile Network Code) and a MSIN (Mobile Station Identification Number).

The IMSI is returned by the HLR query (SRI-SM) when doing FDA. This tells the MSC exactly who the subscriber is that the message is to be sent to.

**IN**

Intelligent Network

**INAP**

Intelligent Network Application Part - a protocol offering real time communication between IN elements.

**Initial DP**

Initial Detection Point - INAP Operation. This is the operation that is sent when the switch reaches a trigger detection point.

**IP**

1) Internet Protocol
2) Intelligent Peripheral - This is a node in an Intelligent Network containing a Specialized Resource Function (SRF).

**IP address**

Internet Protocol Address - network address of a card on a computer.

**ISDN**

Integrated Services Digital Network - set of protocols for connecting ISDN stations.

**ISUP**

ISDN User Part - part of the SS7 protocol layer and used in the setting up, management, and release of trunks that carry voice and data between calling and called parties.

**ITU**

International Telecommunication Union

**IVR**

Interactive Voice Response - systems that provide information in the form of recorded messages over telephone lines in response to user input in the form of spoken words or, more commonly, DTMF signalling.

**LAC**

Location Area Code. This is an integer value specified as the third level of detail in the location area information. One LAC contains multiple Cell IDs or SAI s.
MAP

Mobile Application Part - a protocol which enables real time communication between nodes in a mobile cellular network. A typical usage of the protocol would be for the transfer of location information from the VLR to the HLR.

MC

Message Centre. Also known as SMSC.

MCC

Mobile Country Code. In the location information context, this is padded to three digits with leading zeros. Refer to ITU E.212 ("Land Mobile Numbering Plan") documentation for a list of codes.

Messaging Manager

The Messaging Manager service and the Short Message Service components of Oracle Communications Network Charging and Control product. Component acronym is MM (formerly MMX).

MM

Messaging Manager. Formerly MMX, see also XMS (on page 226) and Messaging Manager (on page 222).

MNC

Mobile Network Code. The part of an international address following the mobile country code (MCC), or at the start of a national format address. This specifies the mobile network code, that is, the operator owning the address. In the location information context, this is padded to two digits with a leading zero. Refer to ITU E.212 ("Land Mobile Numbering Plan") documentation for a list of codes.

MO

Mobile Originated

MS

Mobile Station

MSC

Mobile Switching Centre. Also known as a switch.

MSIN

Mobile Station Identification Number.

MSRN

Mobile Station Roaming Number

MT

Mobile Terminated
MTP
Message Transfer Part (part of the SS7 protocol stack).

NOA
Nature Of Address - a classification to determine in what realm (Local, National or International) a given phone number resides, for the purposes of routing and billing.

NP
Number Portability

NPI
Number Plan Indicator

Octet
Byte - 8 bits.

PACUI
Play Announcement and Collect User Information

PC
Point Code. The Point Code is the address of a switching point.

PIN
Personal Identification Number

PLMN
Public Land Mobile Network

RIMS
Routing Information for Mobile Services. Used to cache HLR lookup information.
Note: Now known as "Messaging Manager Navigator".

SCCP
Signalling Connection Control Part (part of the SS7 protocol stack).

SCCP Address
Is made up of PC + SSN + GT; or PC +SSN; or GT; or GT + PC.

SCF
Service Control Function - this is the application of service logic to control functional entities in providing Intelligent Network services.
SCI
Send Charging Information. An INAP operation sent from ACS to the SSP to control real time charging by the SSP.

SCP
Service Control Point. Also known as SLC.

SCTP
Stream Control Transmission Protocol. A transport-layer protocol analogous to the TCP or User Datagram Protocol (UDP). SCTP provides some similar services as TCP (reliable, in-sequence transport of messages with congestion control) but adds high availability.

Session
Diameter exchange relating to a particular user or subscriber access to a provided service (for example, a telephone call).

SGML

SGSN
Serving GPRS Support Node

SK
Service Key

SLC
Service Logic Controller (formerly UAS).

SLEE
Service Logic Execution Environment

SME
Short Message Entity - This is an entity which may send or receive short messages. It may be located in a fixed network, a mobile, or an SMSC.

SMS
Depending on context, can be:
- Service Management System hardware platform
- Short Message Service
- Service Management System platform
- NCC Service Management System application
**SN**
Service Number

**SQL**
Structured Query Language is a database query language.

**SRF**
Specialized Resource Function – This is a node on an IN which can connect to both the SSP and the SLC and delivers additional special resources into the call, mostly related to voice data, for example play voice announcements or collect DTMF tones from the user. Can be present on an SSP or an Intelligent Peripheral (IP).

**SRI**
Send Routing Information - This process is used on a GSM network to interrogate the HLR for subscriber routing information.

**SS7**
A Common Channel Signalling system is used in many modern telecoms networks that provides a suite of protocols which enables circuit and non-circuit related information to be routed about and between networks. The main protocols include MTP, SCCP and ISUP.

**SSF**
Sub Service Field.

**SSL**
Secure Sockets Layer protocol

**SSN**
Subsystem Number. An integer identifying applications on the SCCP layer.
For values, refer to 3GPP TS 23.003.

**SSP**
Service Switching Point

**Switching Point**
Anything that can send and receive C7 messages.

**TCAP**
Transaction Capabilities Application Part – layer in protocol stack, message protocol.

**TCP**
Transmission Control Protocol. This is a reliable octet streaming protocol used by the majority of applications on the Internet. It provides a connection-oriented, full-duplex, point to point service between hosts.
Telco
Telecommunications Provider. This is the company that provides the telephone service to customers.

Telecommunications Provider
See Telco.

Termination Number
The final number that a call terminates to. Can be set in control plan nodes such as Attempt Termination and Unconditional Termination for re-routing numbers such as Toll Free or Follow Me numbers.

TLS
Transport Layer Security. Cryptographic protocol used to provide secure communications. Evolved from SSL.

URL
Uniform Resource Locator. A standard way of specifying the location of an object, typically a web page, on the Internet.

VLR
Visitor Location Register - contains all subscriber data required for call handling and mobility management for mobile subscribers currently located in the area controlled by the VLR.

VPN
The Virtual Private Network product is an enhanced services capability enabling private network facilities across a public telephony network.

VWS
Oracle Voucher and Wallet Server (formerly UBE).

WSDL
Web Services Description Language.

XML
eXtensible Markup Language. It is designed to improve the functionality of the Web by providing more flexible and adaptable information identification.

It is called extensible because it is not a fixed format like HTML. XML is a `metalanguage' — a language for describing other languages—which lets you design your own customized markup languages for limitless different types of documents. XML can do this because it's written in SGML.

XMS
Three letter code used to designate some components and path locations used by the Oracle Communications Network Charging and Control Messaging Manager (on page 222) service and the Short Message Service. The published code is MM (on page 222) (formerly MMX).
Default.lang • 23
Default_Acs_Service.hs • 24
Defining acsChassis AWOL configuration • 153
Defining the Help Screen Language • 22, 24
Defining the Screen Language • 22
Defining the Security Levels • 11
deleteTagsAfterTrigger • 58
DenormalisationRule • 119, 157
Description • 1, 203, 211
destAddress • 48
dfcOnIpAbort • 93
Diagram of main components • 3, 143
dialledHashEncoding • 93
dialledStarEncoding • 94
dialogTickInterval • 94
Diameter • 217
digitsInAnnouncementList • 88
disarmEDPs • 94
DisconnectMidCallJumpBack • 94
DLE • 217
Document Conventions • viii
DP • 217
DRA • 217
DTMF • 217

E
Editing the acs.conf File • 75
Editing the File • 46
edpArmAbandoned • 94
edpArmAnswer • 95
edpArmBusy • 95
edpArmNoAnswer • 95
edpArmRouteSelectFailure • 95
edpSetNoAnswerTimer • 95
edpUseNoAnswerTimer • 96
elapsedTimesFromApplyChargingReport • 151
EmergencyNumber • 113
emptyDraIsError • 96
enabled • 48
enableService • 64
Enabling Secure SSL Connection to the Database • 9
Enabling SSL for ACS • 9
encoding • 50
endUnlinkedExits • 42, 84
EntryChar • 96
eserv.config Configuration • 22, 45
eserv.config Files Delivered • 46
ETC_CorrelationIdInIPAddr • 96
ETC_MinCorrelationDigits • 96
ETC_SCF_ID • 96
ETSI • 217
Example • 129, 130
Example 1 • 74, 121
Example 2 • 74, 121
Example 3 • 121
Example 4 • 122
Example ACS Configuration in eserv.config • 66
Example acs.conf • 157
Example acs_devices.sh file • 197
Example Configuration Sections • 74
Example Helpset Language • 24
Example JNLP Application Properties • 42
Example MRC Configuration in eserv.config • 71
Example SCF Configuration • 134, 135, 136, 137
Example Screen Language • 23
Example SSF Configuration • 142
Extension Numbers Example • 90, 116
Extra Statistics • 97, 112
extractCallAnswerTime • 52
extractCallEndTime • 52
extractCallStartTime • 52
extractEdrId • 95
extractEdrTimeZone • 53
Extraction Sources in IDP • 124, 125, 126
Extraction Value Construction • 127
extraStats • 97, 112

F
Failure • 166, 169, 170, 171
fakeAcrCallReleaseAtMaxDuration • 97
fakeAcrCallReleaseAtTcpExpiry • 97
fakeMissingAcrAtDisconnection • 97
FCI • 217
FCI Configuration • 62
fciFlagProfileTag • 63
fciInSeparateMessage • 98
fciInSeparateMessageAllOperations • 98
fciMaximumLength • 98
fciSeparator • 98
FDA • 217
FirstDigitTimeout • 98

G
G Digits • 127
Get Hunting Number Node Configuration • 155, 172
Global and Service Specific Normalization • 117
GlobalProfileMaxAge • 98
GPRS • 217
GSM • 217
GT • 218
GUI • 218
GVNS • 218

H
HLR • 218
How the SRF Configuration Works • 132
HPLMN • 218
HTML • 218
Hunting • 218
MC • 220
MCC • 220
Memory • 191
Messaging Manager • 220, 224
Methods • 56
minimumSizeOfConnectSleeEvent • 122
MinZeroTimeRemainingPeriod • 100
MM • 220, 224
MNC • 220
MO • 220
mode • 64
MRC Configuration • 69
MS • 220
MSC • 220
mscAddress • 50
mscAddressForEdr • 50
msgmnb • 193
msgtql • 192
MSIN • 220
MSRN • 220
MT • 220
MTP • 221
Network • 191
NetworkCPSource • 124
NI • 136
NOA • 131, 135, 138, 221
NOA and Normal Rules • 116
noActivitySleepTime • 59
NOA-ISUP Type • 128
NOA-MAP Type • 128
NoAnswerTimeout • 100
NoCallPlanAction • 100
NoCallPlanCause • 100
NoCallPlanError • 100
NoDatabaseConnectAction • 100
Node States • 145
NokiaCIR • 110
NormalisationRule • 118
normaliseServiceNumber • 120
normaliseTerminationNumber • 120
Normalization Parameters • 117, 152
NormalUnknownNOA • 117
NormalUseHex • 118
NoServiceAction • 100
NoServiceError • 101
Note • 201
NP • 221
NP Configuration • 63
NPI • 135, 139, 221
Number • 114
Number Matching Node Configuration • 156
Number Normalization and Denormalization • 117
numberDataImport • 186
numberRules • 59
NumberRulesSection • 156
Octet • 221
Oracle usr/pwd String • 22, 79
Oracle Variables • 22
oracledatabase • 79, 82, 85
oraclepassword • 79, 81, 85, 86
oracleUserldPassword • 167
oracleusername • 79, 81, 85, 86
origAddress • 48
OriginalCalledPartyID • 126
Originating Announcements • 201
Other Features • 1
Output • 167, 169, 170, 171, 172
OverrideDefaultIPDigitTimeout • 101
overrideSleeServiceKey • 60
OVERRidding AWOL Configuration Per Service • 129, 153
Overview • 1, 9, 21, 45, 73, 165, 175, 191, 195, 201
overrideFci • 101
PACUI • 221
Parameter • 134, 151
Parameter Types • 74
Parameters • 79, 81, 85, 86, 87, 112, 113, 123, 137, 139, 143, 153, 155, 156, 157, 166, 167, 169, 170, 171, 192
PC • 135, 140, 221
PendingTNSource • 125
Period • 80
Permission Levels • 12
PersistantAuthorisationInfo • 101
PIN • 221
PIN Logging Parameters • 107, 149
PINLogEnable • 107
PINLogFail • 108
PINLogMaxAge • 108
PINLogMaxSize • 108
PINLogSuccess • 108
Play Variable Part Announcement Feature
   Node Denormalization Rules • 120
Play Variable Part Announcement Node Configuration • 156, 172
PLMN • 221
Plug-in list • 77
Plug-ins • 166
port • 86, 87, 113
postAnswerBeepTimer • 101
Post-Installation Procedures • 201
Pre-installation • 191
Preparing the System • 192
Prerequisites • vii
Procedure • 13, 18, 23, 24
Process list for SLC • 198
TcAbortOnPreArrangedEnd • 106
TCAP • 223
tcapPreEnd • 132
TCP • 223
TCP Network Loading • 142
Telco • 224
Telecommunications Provider • 224
Termination Number • 224
tfnListSize • 76
Time Zones • 40, 106, 203
TLS • 224
Tools and Utilities • 175
traceDebugLevel • 49
Tracing Configuration • 48
triggerTimeOutSecs • 61
TrimFStop • 106
TT • 135, 139
Type • 114
TypeOfIVR • 132
TypeOfSrf • 131
Typographical Conventions • viii
tzDefault • 106, 157

U

URL • 224
UseContinueOperation • 106
UseETC • 131
UseLanguageExtensions • 107
useLeg3ForICA • 142
usePendingTnForCaInCdr • 110
UseReplication • 107
useTzDefault • 157
Using Announcements • 201

V

VLR • 224
VPN • 224
VWS • 224

W

What are the Functions of ACS? • 7
What are the Main Components of ACS? • 3
What is Advanced Control Services? • 1
WSDL • 224

X

XML • 224
XMS • 220, 224

Z

zeroElapsedTimesInCdr • 151