Oracle® Communications
Convergent Charging Controller
Data Access Pack User's and Technical Guide

Release 12.0.2

December 2018

ORACLE



Copyright

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software” pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any
programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

ii Data Access Pack User's and Technical Guide



Contents

P o o 10 | I a1 EST B Lo Yo [ = o | v
DOCUMENT CONVENTIONS ..vuvviniiiiiiiieeiiee e e e e et s e e e e e e e ea b s e e e aesee s bbb seeesesssabaas s eeesesssstaansesessessrnes Vi

Chapter 1

SYSTEM OVEIVIEW ...eeiiiiiiie ettt e e e e e e e e e e e eaa e e e eaan e 1
(@Y1 A/ = T 1
What iS DAta ACCESS PACK? ... .ottt e e e e e e e e e s e s e b e e e rat e e enaaaeaes 1
Introduction t0 LDAP iNterface fOr DAP ........ooeueiieee et e et e e e e e e e e e e eaaas 5
(DY e =T a T o] P L= I oo U = o = PSSR 6
(0] 1 TSI 1= 1o T o - 9
XML and SOAP OVEr HTTP/IHTTPS ...ttt e e e et e e e s eeaaaa e 10
[ LY TR 14
DY | I 1 (=] = o 15
LTA ] B 16
] =11 ] (o1 17
LDAP IF REPOIS ... 19
Accessing the DAP @ppliCAtiON .........ooiiiiiiii e 20

Chapter 2

R ST O 1U Lo < 21
(@ 1YL Y/ L= 21
RIS o1 U (ol SIS TRS Yol (1] o [P 21
F N T 22
@101 = Vi o] o PP PP PPPPPPPOUPRRN 26
OPEIALION SELS....eiiiiieiii ittt et e e et e e e e s bb et e e s bb e e e e aabb e e e e abbeeeesbbeeeeabneeaean 34

Chapter 3

IMPOTT WSDL L. eans 37
(@Y1 Y/ L= 37
IMPOIT W SDL SCIEEN.. ..ttt ettt e e e e et e et e e et e e e ta b s e e e e e e eesbaanneeeas 37
T a oTo] LAY AT T I 1= 38
Operation Request Configuration ... 40
Operation Response Configuration .........cooooii i 42

Chapter 4

CONTIQUIALION ... eaaans 45
(@ LYY V=X TR 45
COoNFIGUIALION OVEIVIEW .....ceiiiiiiiiiiiiiie ettt ettt e e e e e s e bbbttt e e e e e e e aabbb e e e e e e e e e aanbnbneeeaaeeeaanns 45
€Serv.config CONfIQUIALION...........uu it e e e e e e b e e e e e e e e ne 46
DAP eserv.config CONfIQUIAtIoN .........o.uuieiiiiiei e 47
SLEE.CTQ CONfIQUIALION ...coiiiiiiiiiiii ettt e et e e e e e e e e b aaeeeeaeeeeena 69
Configuration for Optimal PerfOrmMancCe.............cooiiiiiiiiiii e 69
[ YN o | @ T |1 - o o RSP 70
€Serv.config CoNfiIQUIALION..........uuuiiiiee i e e e e s e e e e e e e e e snntnrneeeeeeeeaanns 71
(€1 (0] o T= LI @Fo ] 1o 18] =1 1o o PSR 72
ST o { o PP UTPPPTTPRPN 78
DAP ReS0oUIrce CONfIQUIALION .....c.iuuiiieiiiiieei ittt ettt et e e e e 78




Chapter 5

USIiNg LDAP WIith DAP ... e 79
Defining @ DAP ASP fOr LDAP .. ... ettt s s e e e e s e s e e e e e e s e s nnreanee s 79
Defining a DAP Operation fOr LDAP ........coo oottt e e e e e s e e e e e s e e nnnrane e 80
(DN S @fo] g1 i fo] I = - T o [ TSR PTPRT 86

Chapter 6

Background ProCESSES ....ccuuiiiiiiieeeie e 87
(@ 1YL= V=T 87
Lo (=18 - T o ISR 87
o =T o | SRR 88
AAPMACTONOUES ... s 89
[0 T2 1ol I8/ 01T @0 1Y =T =1 o 89
6 7= 01 90
IDAAPCNASSISACLIONS ....uuuiiiiiiiiiiiiiiiiii s 91
o] By Y F= g o To 1= SR T PP PPPPPPPRP 92
(o] 01T 0 11 [P P P PP PP PTPPPPPPPPPPN 92
0] L1 (e J PP P PP PTPPRPPPPPPPN 93

Chapter 7

TOOIS @Nd ULHHTIES ..ccvvn e 95
OVBIVIBW....e ettt ettt ettt et e e o4 oo e a b ettt e e e e a4 e e R bbb e et e e e e e e e a b e bbb et e e e e e s nnbnbe e e e e e e e e snnbnneeeas 95
dapReadyCertifiCates. SN ... .. ———————————— 95
AAPSCNEMATOO0I ... s 96

Chapter 8

About Installation and Removal ...........ccooooiiiiiiiii e 97
(@ Y=Y V=T 97
Installation and REMOVAl OVEIVIEW ...........ooiiiiiiiiiiiie ettt 97
Checking the INSTAIlAtiON ...........uuiiiiiii s 97

GloSSaAry Of TEIMS ..o e 99

1o 1= G 105

iv Data Access Pack User's and Technical Guide



About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the
Oracle Communications Convergent Charging Controller Data Access Pack application.

Audience

This guide was written primarily for system administrators and persons installing and administering the
DAP application. The documentation assumes that the person using this guide has a good technical
knowledge of the system.

Prerequisites

Although there are no prerequisites for using this guide, familiarity with the target platform would be an
advantage.

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this guide. Attempting to install, remove, configure or otherwise alter
the described system without the appropriate background skills, could cause damage to the system;
including temporary or permanent incorrect operation, loss of service, and may render your system
beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related documents

The following documents are related to this document:

e Advanced Control Services User's Guide

e Control Plan Editor User's Guide

e Service Management System Technical Guide

e Service Management System User's Guide

e Service Logic Execution Environment Technical Guide

o Data Access Pack Protocol Implementation Conformance Statement
e RFC 2616: Hypertext Transfer Protocol — HTTP/1.1




Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Convergent
Charging Controller documentation.

Formatting Convention Type of Information
Special Bold Items you must select, such as names of tabs.
Names of database tables and fields.
Italics Name of a document, chapter, topic or other publication.

Emphasis within text.

Button The name of a button to click or a key to press.
Example: To close the window, either click Close, or press Esc.

Key+Key Key combinations for which the user must press and hold down one
key and then press another.

Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.

Monospace Bold Text that you must enter.

variable Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions

Used to indicate a hypertext link.

Specialized terms and acronyms are defined in the glossary at the end of this guide.

vi Data Access Pack User's and Technical Guide



Chapter 1
System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Convergent Charging Controller
network or service implications of the product.

In this Chapter

This chapter contains the following topics.

WHhat IS Data ACCESS PACK? . .ceeeiiiii e e e e e et e e e e e e e e e e s et e s esaaaes 1
Introduction t0 LDAP INtEITACE fOr DAP ....... it eeaaaas 5
DAP Template LanNQUAGE .....ccceeeeieieieee e s 6
Profile Tag FOMMIALS ... ... s 9
XML and SOAP OVEIr HT T PIHT TIPS ..ot e e e st e e e et e s e raa e aees 10
[ LY A 14
D T [0 (=] = To] < TR 15
LTV ST B ] T 16
] =11 ] ({1 TR 17
LDAP TF REPOIS ... s 19

What is Data Access Pack?

Introduction

Oracle Communications Convergent Charging Controller Data Access Pack (DAP) provides the
capability to send requests to external Application Service Providers (ASP) and optionally receive
responses for further processing by the IN platform. The protocol that the system uses is determined by
the ACS service library (libacsService).

Chapter 1, System Overview 1



Diagram

The following diagram shows the architecture of the DAP solution.

. Updates
Replication L
Administrator's Java
Screens
v
SLC Ty {DAP screens)
SMS fV—=—— {ACS screens)
SCP {CPE screens)
DAP Config
Compiled
Control Plans
—
- DAP
ACS slee_acs DAP Macro
MNode
DAP Service
Library
SLEE 4 ‘
e —
¥
daplF |«
(=9

ASP

i XML/
Network TCP/IP

Synchronous and asynchronous connections

Responses over a connection are expected to be asynchronous if the <!--CORRELATE--> or <!--
CORRELATE-ID--> tag is included in the template which specifies the request. In this case, only the
ACK is checked in the (initial) synchronous response, and any later responses (using the same <!--
CORRELATE--> tag) are not checked. Asynchronous mode is not supported for HTTPS connections.
The listening port only supports HTTP connections.

Responses over a connection are expected to be synchronous if the <!--CORRELATE--> tag is not
included in the template which specifies the request. In this case, DAP parses the synchronous
response for component fields.

"Synchronous" mode for HTTPS is supported. This is done using openssl (on page 92) SSL sockets to
encrypt a request/response pair to a remote HTTPS server.

Note: The server does not request any client-side authentication.
For more information about:

e Configuring operations, see Operations (on page 26).
e The <!--CORRELATE--> tag, see Correlation (on page 27)

2 Data Access Pack User's and Technical Guide



Correlation
Correlation is a way to ensure that an asynchronous response is associated with an originating request.

Requests that require an asynchronous response are identified by the setting of a correlated flag in the
template.

HTTP and HTTPS Connections

DAP supports concurrent connections to multiple ASPs, using either HTTP or HTTPS. More than one of
each type of connection can be open at once, including multiple HTTPS connections.

Supported protocols

This table describes the function of each field.

Protocol Description

SOAP Over HTTP or HTTPS. For more information about this protocol, see SOAP (on
page 10).

XML Over HTTP or HTTPS.

HPSA HP-SA formatted XML messages over TCP. For more information about HP-SA
handling, see HP-SA (on page 14).

PIXML PI commands using XML. For more information about this protocol, see DAP and
the PI.

LDAP Enables DAP to send LDAP requests to the LDAP server and receive response.

Message flow

This table describes the message flow for a standard DAP message.

Stage Description

1 When run in a control plan, the DAP Send Request feature node (dapMacroNodes (on
page 89) and libdapChassisActions (on page 91)) sends a request over the SLEE to the
interface specified by the InterfaceHandle (on page 63) parameter for the specified
protocol (usually daplF (on page 88)). The message is populated from the macro node
configuration with the:

e Protocol

e Template ID
e List and number of request parameters
e "Wait flag"

Note: FAST_KEY parameters are replaced with the actual run-time parameter. For
example, the value <aCN> is replaced with the calling number. Other parameters are
simply used "as is".

2 daplF receives a DAP request event over the SLEE, and extracts the request template ID.
daplF uses the ID to query its cache or the SLC database for the XML request template
details.

For each tag name/value pair found in the request, parameter substitution is performed.

If daplF determines a response is required, it searches the script for a correlation
parameter. daplF replaces the correlation tag with a unique ID. The correlation tag is set
in the XML template using the XML tag with the string defined by correlationTagName (on
page 53) (usually <!--CORRELATION-->). This id will be used to assign the incoming
response.

Chapter 1, System Overview 3



Stage

Description

For more information about:
e Substitution, see Parameter Substitution (on page 10)

e Substitution for HP-SA connections, see Parameter substitution (on page 14)

If a primary TCP/IP connection is already established with the ASP but no ASP interaction
is associated with that socket (that is, daplF is idle), then this connection can be re-used
immediately and daplF sends the message.

If no connection is available (and the limit has not yet been reached), daplF opens a
TCP/IP connection to the ASP specified by the host and (optional) port number found in
the destination URL.

daplF wraps the XML in an HTTP header and footer. For more information about how the
headers and footers are constructed, see Message Header Construction (on page 11).

If the wait flag of the incoming DAP request event was set to false, daplF immediately
sends a DAP response event to slee_acs. The DAP response has Operation Status set
to true to indicate success.

For HTTP and HTTPS connections, if no response is expected and the request was sent
on a secondary connection, it is closed unless there is no primary connection, in which
case it becomes the primary connection.

For HP-SA connections, the connection is closed.

daplF starts a timer with the sooner of the value specified in either the template or the
socket timeout (connectionTimeout (on page 53)).

daplF checks whether there is any incoming traffic on any of the TCP/IP sockets it has
previously opened with ASPs.

If a TCP/IP connection is already established with the ASP and there is an ASP
interaction currently associated with that socket (that is, we are waiting for a response),
then the new request from the ASP is queued.

If activity comes from an ASP connection and daplF is waiting for a response from the
ASP, then the incoming TCP/IP traffic is accepted and data is read. The tags are parsed
and a DAP response request is constructed. For more information about parsing
messages from ASPs, see ASP Message Parsing (on page 12). For more information
about parsing HP-SA messages, see HP-SA response messages (on page 14).

daplF sends the message back to libdapChassisActions over the SLEE.

When the DAP response event is received by libdapChassisActions, and the node exits
based on whether the response was a Success or an Error.

DAP and the PI

The DAP provides the ability to automatically log in to the Pl when using the PIXML protocol. This
feature enables PI commands to be triggered from a control plan using the DAP Send Request feature
node. The DAP interface will process the Pl response before returning it to the DAP Send Request
feature node.

For more information on DAP feature nodes, see Feature Nodes Reference Guide.

4 Data Access Pack User's and Technical Guide



Introduction to LDAP interface for DAP

Introduction

The LDAP interface for DAP (LDAP IF) is an extension to DAP that introduces support for the LDAP
protocol. Specifically, it provides the capability to send DAP requests to external ASPs that provide their
services using LDAP. This is an enhancement to DAP's existing ability to communicate with ASPs using
XML, SOAP, HSPA and PIXML.

LDAP requests are made from within ACS control plans by using the DAP Request macro node located
within the Data Access Pack feature node group.

Functionality

The LDAP IF is a protocol translator. The DAP Request node collects the configured request
parameters and passes them to the LDAP Interface via the Service Logic Execution Environment
(SLEE). The LDAP Interface embeds these per-request parameters into a standard template (stored in
XML format). Then the completed template is translated into an ASN.1 format LDAP v2 or v3 request.
The request is sent to the LDAP server, and the response is returned to ACS by the same mechanism.

The LDAP Interface then is responsible for:

e Managing LDAP connections (bind/unbind).

e Translating DAP requests into LDAP search requests.

¢ Relaying valid LDAP search requests to the appropriate LDAP ASP.
e Handling overdue responses.

e Translating LDAP search responses to DAP responses.

¢ Relaying valid ASP responses to SLEE ACS.

Diagram

Here is an example of the main components of the DAP service with LDAP Interface.

UAS

‘DAP Chassis Actions ‘ ‘ DAP Macro Nodes |

SLEE

Inboung and Outbound Network Adaptors

SIGTRAN

Chapter 1, System Overview 5



DAP Template Language

Introduction

DAP uses a template language to describe the format of the messages (requests) that are sent to ASPs.
This template language controls variable substitution and repetition of subtrees.

Variables

There are two formats that variables can take in the XML document.

1 Anempty XML element:

<phone number></phone number>

This is interpreted as a variable called phone_number
2 A specific format of text string:

<<$phone number>>

This is interpreted as a variable called $phone_number.

In addition to user defined variables, there are several other variables which are substituted
automatically by the DAP interface.

Variable Description

<!I--CORRELATE--> This is substituted with the correlation ID wrapped with an element
specified by the correlationTagName (on page 53) configuration value.

<|--CORRELATION_ID- | This is substituted with the correlation ID. The value of the correlation ID
-> should be treated as an opaque, variable length string.

<I--TIMESTAMP--> This is substituted with the current time, in the format
YYYYMMDDHHmMmMSS, wrapped with an element specified by the
timestampTagName (On page 62).

Repetition of subtrees

Using profile fields contained in array profile fields, it is possible to repeat sections of a DAP request
template.

This is done through the use of the dap_main_key attribute. When a tree has the dap_main_key specified
in the root, the subtree will be duplicated for each instance of the variable in dap_main_key.

For example:

The variable FF_numbers is configured to point to an array of three elements (121, 122, 123), the
following template stub:

<number list>

<phone number dap main key="FF numbers"><<SFF numbers>></phone number>
</number list>
This will result in the following template being sent to the ASP:

<number list>
<phone number>121</phone number>
<phone number>122</phone number>
<phone number>123</phone number>
</number list>

Multiple variables

It is possible to have multiple variables in a repeated subtree. If there are not enough elements to
provide each subtree with a different value, the first value in the array will be repeated for the remaining
values.

6 Data Access Pack User's and Technical Guide



Example:

$FF_number = (121,122,123)
$FF_shortCode = (555,666)
$FF_enabled = "Yes"

<number details dap main key="FF number">
<phone number><<$FF number>></phone number>
<short code><<S$FF_shortCode>></short code>
<enabled><<$FF enabled>></enabled>

</number details>

Will result in the following:

<number details>
<phone number>121</phone number>
<short code>555</short code>
<enabled>Yes</enabled>

</number details>

<number details>
<phone number>122</phone number>
<short code>666</short code>
<enabled>Yes</enabled>

</number details>

<number details>
<phone number>123</phone number>
<short code>555</short code>
<enabled>Yes</enabled>

</number details>

Detailed example

This detailed example shows what is sent to the ASP given the variables and template used.

Variables:

CustomerName "Bill"

$CallTo "5551212"
$CallFrom "5557399"
$FF_list(5550000,5550001,5550002)

Template:

<ProvideDiscount>
<RequestType>Regular Call</RequestType>
<CustomerName></CustomerName>
<Destination><<$CallTo>></Destination>
<Source><<$CallFrom>></Source>
<FriendsAndFamily>

<PhoneNumber dap main key="SFF list"><<$FF list>></PhoneNumber>

</FriendsAndFamily>
</ProvideDiscount>
The following will be sent to the ASP:

<ProvideDiscount>
<RequestType>Regular Call</RequestType>
<CustomerName>Bill</CustomerName>
<Destination>5551212</Destination>
<Source>5557399</Source>
<FriendsAndFamily>
<PhoneNumber>5550000</PhoneNumber>
<PhoneNumber>5550001</PhoneNumber>

Chapter 1, System Overview 7



<PhoneNumber>5550002</PhoneNumber>
</FriendsAndFamily>
</ProvideDiscount>

Template contents

This is a list of the various DAP Templates used for real time notifications and their data contents:

Wallet Expiry

e TIMESTAMP

e NOTIFICATION_NAME
e WALLET_NAME

e CLI

e PRODUCT_TYPE

e OLD_STATE

e NEW_STATE

Wallet State Change

e TIMESTAMP

e NOTIFICATION_NAME
e WALLET_NAME

e CLI

e PRODUCT_TYPE

e OLD_STATE

e NEW_STATE

Charging

e TIMESTAMP

e NOTIFICATION_NAME
e WALLET_NAME
e CLI

e PRODUCT_TYPE
e BALANCE_TYPE
e BALANCE_UNIT
e COST

e OLD_BALANCE

e NEW_BALANCE

Recharging

e TIMESTAMP

e NOTIFICATION_NAME
e WALLET_NAME

e CLI

e PRODUCT_TYPE

e BALANCE_TYPE

e BALANCE_UNIT

e AMOUNT

e OLD_BALANCE

8 Data Access Pack User's and Technical Guide



e NEW_BALANCE

Balance Expiry

e TIMESTAMP

e NOTIFICATION_NAME

e WALLET_NAME

e CLI

e PRODUCT_TYPE

e BALANCE_TYPE

e BALANCE_UNIT

o EXPIRED_AMOUNT

e OLD_BALANCE

e NEW_BALANCE

RAR Detailed Example

<RAR>
<instance></instance>
<session></session>

<origin host></origin host>
</RAR>

Profile Tag Formats

Introduction

The profile block values need to be converted to the receiving application's expected format, so that
requests can be transmitted to other systems, and for them to communicate back.

This is impossible without a set of supported types and detailed information about what format the data
is sent and received will be in.

Supported tag types

This table describes the formats and meanings of the supported ACS profile tags.

Format Description

STRING Any character string.

NSTRING String containing only digits, the letters A-F, and the characters # and *.
INTEGER Signed base 10 integer, range -2147483648 to 2147483647 inclusive.
UINTEGER Unsigned base 10 integer, 0 to 4294967295 inclusive.

Chapter 1, System Overview 9




Format

Description

DATE Supported DATE formats include:
e ISO 8601 time date-time format (YYYYMMDDTHHHMMSS)
e Explicit UTC timezone specifier (YYYYMMDDTHHMMSSZ)
= Offset from UTC with : (YYYYMMDDTHHMMSS[+-]hh[:mm])
= Offset from UTC without : (YYYYMMDDTHHMMSS[+-]hh[mm])
e Extended ISO format with - and : delimiters (YYYY-MM-DDTHH:MM:SS)
e Explicit UTC timezone specifier (YYYY-MM-DDTHH:MM:SSZ)
= Offset from UTC timezone specifier with : (YYYY-MM-DDTHH:MM:SS[+-
Jhh[:mm])
= Offset from UTC timezone specifier without : (YYYY-MM-DDTHH:MM:SS[+-
Jhh[mm])
e Date only with midnight time of TO0O0000 is added in all cases to make a date time
(YYYYMMDD and YYYY-MM-DD)
=  Explicit UTC timezone (YYYYMMDDZ and YYYY-MM-DDZ)
= UTC offset with : (YYYYMMDDI[+-]hh[:mm])
= UTC offset without : (YYYYMMDDI[+-]hh[mm])
e Time only with current system date UTC added in all cases to make a date time
(HHMMSS)
= Explicit UTC timezone (HHMMSSZ)
= UTC offset with : (HHMMSSJ[+-]hh[:mm]
= UTC offset without : (HHMMSS[+-]hh[mm]
BOOLEAN String containing "1" for true or "0" for false.
DISCOUNT String of the following format: maxCharge,period1Discount,period2Discount
VXMLANN A plain text string, it is opaque to ACS.

ACS expects (but does not enforce) that it is a valid URL that can be used to retrieve a
VXML document. For example:

http:/lexample.org/ExampleDocument.vxml

XML and SOAP over HTTP/HTTPS

SOAP

When creating an XML template through the Resources (on page 21), the XML is parsed at a simple
level for syntactical validity against the XML standard. Simple Object Access Protocol (SOAP)
messages are formatted XML messages. DAP does not use syntactical parsing to check for properly
formatted SOAP messages.

Parameter Substitution

When daplF (on page 88) is requested to send a message to an ASP, it resolves any variables in the
template as follows:

o |[f the tag name starts with a \ and is then followed by a $, daplF assumes the $ is part of an existing
expression that does not require substitution.

o [f the tag name starts with a $, every occurrence of the tag name is replaced by the tag value.

¢ If the tag name does not start with a $, daplF looks for XML tags with the given name and sets their
value accordingly.

e <date> fields are populated with the date in one of the supported formats listed in the table above.

10 Data Access Pack User's and Technical Guide




o If daplF determines a response is required, it searches the script for a correlation parameter and
replaces it with a unique ID. This substitution results in a user-specific version of the template. The
correlation tag is set in the XML template using the XML tag defined by correlationTagName (on
page 53) (usually <!--CORRELATION-->). This ID is used to assign the incoming response. The ID
the CORRELATION takes place on has the form:

<CORRELATION>HHHHHHHHTTTTTTTTSSSSSSSS</CORRELATION>
Where:

= His the hostID, 8 hex characters in length.
= Tis the current time with accuracy of seconds, 8 hex characters in length.
» Sis asequence number from 0 to FFFFFFFF, generated by the macro node each time it is
invoked which ensures that the resulting string is unique.
Example: For a correlated message with tag/value pairs of: $1 and 999, and MSISDN and
00441473289900:

<!--CORRELATION-->
<emergencyNumber>$1</emergencyNumber>
<msisdn></msisdn>

This results in:
<CORRELATION>abcdef121234561212345678</CORRELATION>

<emergencyNumber>999</emergencyNumber>
<msisdn>00441473289900</msisdn>

For more information about overall message handling, see Message flow (on page 3).

Message Header Construction

When daplF is constructing a message to send to an ASP it constructs a message from an initial HTTP

request line, followed by HTTP headers:
POST path HTTP/1.1
Host: host[:port]
SOAPAction: url
User-Agent: Oracle DAP
Cache-Control: no-cache
Pragma: no-cache
Content-Type: text/html; charset=utf-8
Content-Length: length
clientUrl: http://<listenHost>:<listenPort>/ACK

Where:
e path has been extracted from the destination URL

e host has been extracted from the destination URL.

e port (if any) has been extracted from the destination URL.
e urlis the full destination URL.

¢ length is the length (in bytes) of the template body

Notes:

e The SOAPAction header line is only sent if the protocol associated with the ASP is set to S
(meaning SOAP).

e The clientUrl header is only sent if the listenHost (on page 55) parameter is configured.

e The request line and each of the above HTTP headers is terminated by a CRLF sequence as
specified in 5.1 of RFC 2616: Hypertext Transfer Protocol — HTTP/1.1.

The HTTP headers are followed by an empty line, consisting only of the CRLF sequence.
The HTTP body (that is, the request template body), is sent to the ASP.

If the protocol associated with the ASP is set to S (meaning SOAP), the body is surrounded by the
following SOAP header:

Chapter 1, System Overview 11



<?xml version="1.0" encoding="IS0-8859-1" standalone="no" ?><socapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"><soapenv:Header/><soapenv:Body>

and the following SOAP footer:
</soapenv:Body></soapenv:Envelope>

For more information about overall message handling, see Message flow (on page 3).

ASP Message Parsing

The first line of the response buffer contains the HTTP response status line (as defined in 6.1 of RFC
2616: Hypertext Transfer Protocol — HTTP/1.1). The HTTP status code is extracted from the HTTP
response status line. If it is not 200 (indicating success), an alarm is raised and a DAP response event
is returned to libdapChassisActions (on page 91).

If the original DAP request event contained response tag names, these will have been stored in the ASP
queue. daplF parses the HTTP response body to retrieve the value associated with these tags. The
DAP response event will have its Operation Status set to true to indicate success. The DAP response
event will be sent on the SLEE dialog which the original DAP request event arrived from.

If there is correlation and the response is the:

o First response, then the socket is still closed but the request is queued using the key of the
correlation ID and with a timeout of the timeout value for a response.

e Second response (that is, it contains a correlation ID), then that correlation ID is searched for in the
queue. If found, a response is generated using the parameters found in the response XML.

Note: Correlation data is received on a ‘listening’ socket (these are defined by listenPort (on page 55)).

For more information about overall message handling, see Message flow (on page 3).

HTTPS Connections

A new SSL connection is made whenever there is a queued request to be sent to the remote HTTPS
server (that is, whenever an ASP connection is made on a secure connection). New connections start
as HTTP, and are moved to HTTPS if a secure connection is established.

When the connection is opened:

e openssl (on page 92) (if not already initialized):
= Loads our keys
= Seeds the random number generator
= Verifies the location of the certificates directory

e An SSL socket is created

e An SSL handshake is performed

e Server Authentication (on page 13) is optionally performed

Note: An error is reported if a secure connection cannot be made, or server authentication fails.

However, daplF (on page 88) does not abort on these errors and continues to run for other
response/request pairs on other ASPs.

On a database cache reread (if the ASP has been deleted or modified) the secure socket is shut down,
and if needed, restarted.

When daplF exits normally it sends close_notify messages to the server for each open socket.

12 Data Access Pack User's and Technical Guide



Certificate Checking

Certificate checking, when performed, is done by checking the hostname from the URL in the ASP
against the common name field in the public certificate from the remote server. This check ensures that
more than just the names match, by establishing that the server is who it says it is by encrypting
something with its private key that matches the locally-held public key in the public certificate. This
protects against spoofing-style attacks.

You can configure DAP to verify the full certificate chain. DAP can check ASP certificates against lists of
certificates that have been revoked by Certificate Authorities (CAs). These lists are called Certificate
Revocation Lists (CRLs). Each CA maintains their own CRL list and publishes it for customers as data
files.

When DAP verifies an ASP certificate, it checks whether the certificate appears in any CRL data file.
When a match is found, verification fails.

A CA can revoke a certificate for a variety of reasons, such as:

e The CAissued itin error
e The entity it certifies no longer exists
e The certificate is fraudulent

Verifying ASP Certificates

Follow these steps to configure DAP to check ASP certificates against CRLs:

Step Action

1 Set the CARevocationListChecking parameter to true in the eserv.config file. See
CARevocationListChecking (on page 51).

2 Establish a process to regularly obtain the CRL data file from each CA.

3 Load the CRL data files into the same directory as the ASP certificates. This directory is

specified in the certificatePath parameter. See certificatePath (on page 51).
4 Run the dapReadyCertificates.sh utility. See dapReadyCertificates.sh (on page 95).

Result: The utility processes the standard certificates and ASP certificates in the directory.

Server Authentication

Server authentication against a public certificate provided by the remote HTTPS server is available on a
per-ASP basis. If not configured, the SSL connection will only have handshaking performed which
ensures a minimum of session keys are used for encrypting the traffic to the HTTPS server. This
protects against snoop-style attacks.

Response Validation

Checking of the response from the HTTPS server is limited to checking whether the ACK is returned as
HTTP 200. Any further lines of the response are read, but are not parsed.

Certificate Management

The certificates are stored as *.pem files in the directory specified by certificatePath (on page 51).

The dapReadyCertificates.sh (on page 95) tool prepares the certificates into the form required by
openssl (on page 92).

Note: There is no need to have any certificates if server authentication is not turned on.

Chapter 1, System Overview 13



SOAP Support Over HTTP

DAP supports SOAP by allowing the use of HTTP 1.1 as a container protocol. The basic HTTP
implementation only accepts HTTP/200 as a success response, treating other success messages such
as"204 - No Content" as error conditions.

HP-SA

Introduction

HP-SA messages are generally handled the same way as XML and SOAP messages, though the
contents of the messages are different, and HP-SA is not supported over HTTPS.

For more information about overall message handling, see Message flow (on page 3).

Parameter substitution

When daplF (on page 88) is requested to send a message to an ASP, it resolves any variables in the
template as follows:

e The message_id field (in the header of each request) will be generated as a number in the range 0
to MAXINT. The message_id field will be incremented for each successive request.
e The system time is used at the time of request construction to populate the date_time field.

o All other fields are either hard-coded in the message template, or populated using the profile field
values provided as DAP parameters. For more information about how these parameters are
populated, see Parameter Substitution (on page 10).

HP-SA response messages

Response messages will be received on a new connection to the port defined by listenPort (on page
55). Once received, the connection will be closed. Two responses will be received in the following
order for each request:

1 Command Received Acknowledgment
2 Command Processed Acknowledgment
Both have the same form (activation response).

Each response has a response ID that correlates with the request's message ID.

Response status/details command received

The following response status/details are possible for the command received acknowledgment:

OK/<no details>
NOK/Invalid XML

Response status/details command processed

The following response status/details are possible for the command processed acknowledgment:

OK/<no details>

NOK/Workload Failure

NOK/<platform name>:Network Problem

RB_OK/<platform namel>:0OK | <error code>; ..;<platform nameN>:0K | <error code>
RB_NOK/<platform namel>:0K | <error code>; ..;<platform nameN>:0K | <error code>

14 Data Access Pack User's and Technical Guide



XML Interface

Description

The XML interface is a dedicated DAP interface that allows an XML script to be sent to an ASP as a

request and receive another XML script as a response in order to be parsed.

Synchronous request

This diagram shows a simple example of a synchronous message flow.
XML interface ASP

ASF Request

Simple Message

Synchronous message flow

The following table describes the message flow between the XML Interface and ASP.

Step Action
1 The XML interface sends a request to the ASP.
2 ASP returns an ACK and response on the same socket.

Note: In this example transaction, a response value is required, however a callback is not needed.

Asynchronous request

This diagram shows a simple example of an asynchronous message flow.
XML interface ASP

ASP Request

Simple Massage

ASF Call-Back

Call-Back Responss

Y

Chapter 1, System Overview 15



Asynchronous message flow

The following table describes the message flow between the XML Interface and ASP.

Step Action

1 The XML Interface sends the request to the ASP.
The request contains the clientUrl information.

2 The ASP returns an ACK on the same socket.

3 The ASP initiates a new request back to the XML Interface using the initial clientUrl
information, on a new socket.

4 The XML Interface returns an ACK on the same socket.

Message contents

The XML interface is responsible for issuing a TCP/IP based message to an ASP when it receives an
XML request message from a client. The message contains the specified XML string and any
substituted parameters.

The response from the ASP is parsed to retrieve any requested parameter strings and these are sent
back to the client in the form of an XML response.

WSDL

SOAP bindings

DAP supports WSDL 1.1 and Simple Object Access Protocol (SOAP) bindings. Since WSDL is a
complex specification, some parts of the specification do not match with the capabilities of the DAP
SOAP implementation.

The current SOAP implementation only allows templates to be created that make use of the soap:body
and the soap: fault element. Therefore, the soap:header and soap:headerfault elements in
the WSDL SOAP bindings are not supported. For more information on DAP support for SOAP bindings,
see Data Access Pack Protocol Implementation Conformance Statement.

Note: OSD will report an error when soap:header or soap:headerfault is encountered in the WSDL file.

XSD support

XSD is supported by DAP as a type definition language.

WSDL provides an extension format allowing several different type languages to be used to describe the
format of the messages used by the services, however it recommends the use of XSD. Since the XSD
standard is 300 pages long, DAP only supports the use of XSD as the type definition language.

Note: DAP will report an error if a type definition language other than XSD is encountered in the WSDL
f