
Oracle Communications Messaging Server
Reference

Release 8.1

F15150-02

July 2020

Oracle Communications Messaging Server Reference
Release 8.1
F15150-02

Copyright © 2016, 2020, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed
or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications. Oracle and Java are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron
logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with
respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle.
Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents
Preface ... v
I Configuration syntax

1 Option value syntax .. 1–1
2 Options for migrating to Unified Configuration .. 2–1
3 Special symbolic names .. 3–1
4 Recipe language ... 4–1
5 Sieve filters ... 5–1
6 TCP wrappers .. 6–1

II Messaging Server command line utilities
7 configtoxml .. 7–1
8 configure .. 8–1
9 inetuser .. 9–1
10 init-config ... 10–1
11 msconfig ... 11–1
12 refresh .. 12–1
13 start-msg ... 13–1
14 stop-msg ... 14–1

III Infrastructure
15 restricted.cnf file ... 15–1
16 Base options .. 16–1
17 Scheduler options .. 17–1
18 Watcher options .. 18–1
19 msprobe options ... 19–1
20 Alarm options ... 20–1
21 Auth options ... 21–1
22 sectoken options .. 22–1
23 Deployment Map options .. 23–1
24 rollovermanager options .. 24–1
25 Messaging Server Ports .. 25–1

IV The Message Store
26 Message Store options ... 26–1
27 message_language options ... 27–1
28 Partition options .. 28–1
29 backup_group options ... 29–1
30 Store Transaction Log Format .. 30–1
31 Message expiration .. 31–1
32 Store Index and search .. 32–1
33 Client access to Message Store servers .. 33–1
34 IMAP options .. 34–1
35 POP options .. 35–1
36 Message Trace options ... 36–1
37 notifytarget options .. 37–1
38 IMAP error statuses .. 38–1
39 User identifiers .. 39–1

V Proxies and the MMP
40 Proxy options .. 40–1
41 MMP and IMAP Proxy and POP Proxy and vdomain options 41–1

VI Convergence webmail
42 MSHTTP options ... 42–1
43 SMIME options ... 43–1

iii

44 SSO options .. 44–1
45 icapservice options .. 45–1

VII The MTA
46 Channels ... 46–1
47 Rewrite rules ... 47–1
48 Aliases .. 48–1
49 Mailing lists .. 49–1
50 Mapping tables ... 50–1
51 Message conversions ... 51–1
52 MTA options ... 52–1
53 MTA Tailor options ... 53–1
54 Dispatcher ... 54–1
55 Job Controller ... 55–1
56 Compiling the MTA configuration .. 56–1
57 Mail filtering and access control ... 57–1
58 Spam and virus filtering .. 58–1
59 MeterMaid .. 59–1
60 Notification messages .. 60–1
61 Message tracking and recall ... 61–1
62 TCP/IP channels .. 62–1
63 BSMTP channels .. 63–1
64 ims-ms channels .. 64–1
65 Other channels .. 65–1
66 SMS options .. 66–1
67 Message capture .. 67–1
68 Monitoring the MTA ... 68–1
69 MTA performance tuning .. 69–1
70 Restricting information emitted .. 70–1
71 MTA command line utilities ... 71–1

VIII Additional components
72 PAB options .. 72–1
73 SNMP options ... 73–1
74 ENS options .. 74–1
75 eval_ldapd options .. 75–1

A Supported Standards .. A–1
Glossary ... G–1
Index .. Index–1

iv

Preface
This technical reference manual documents the various options and facilities provided by
Oracle Communications Messaging Server.

The preface covers the following:

• Audience
• Documentation Accessibility
• Related Documents

1.1 Audience
This document is intended for Messaging Server administrators and developers who want to
configure and manage their Messaging Server infrastructure.

1.2 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1.3 Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

1.4 Related Documents
For more information, see the following documents in the Messaging Server documentation
set:

• Messaging Server Installation and Configuration Guide

• Messaging Server Installation and Configuration Guide for Cassandra Message Store

• Messaging Server Release Notes

• Messaging Server Security Guide

• Messaging Server System Administrator's Guide

v

vi

Part I Configuration syntax
In Unified Configuration, nearly all configuration options are stored in the config.xml Message Server
unified configuration file, as XML elements; a few, security-related, options (e.g., unix user ids) are stored
instead in the restricted.cnf file. However, under normal circumstances, the Messaging Server
unified configuration file config.xml is not---indeed should not be--- inspected or editted manually by
the Messaging Server administrator. Instead, normally Messaging Server's msconfig utility is used to
examine the configuration and make configuration changes.

Options in the unified configuration file config.xml generally are typed XML elements. The msconfig
utility performs type checking on configuration settings it makes. See Option value syntax for further
details.

The instancename and rolename options discussed in Options for migrating to Unified Configuration
set the context for option values.

Sets of commands for msconfig may be scripted using the Recipe language.

A few special symbolic names may be used in option values, or in the Recipe langauge.

Another language used by multiple components of Messaging Server, including the MTA and the
Message Store (for purge operations), as well as by external components such as some email user agents,
is the Sieve language.

Several components of Messaging Server make use of the TCP wrapper concept, for access controls.

Chapter 1 Option value syntax
1.1 Available Types ... 1–1
1.2 ISO 8601 P format .. 1–3
1.3 ISO 8601 format ... 1–3
1.4 MTA URL types ... 1–4

1.4.1 LDAP URL substitution sequences ... 1–5

Option settings in Unified Configuation, that is, values in the file config.xml, generally
are typed XML elements. The msconfig utility performs type checking on the configuration
settings it makes, and the msconfig utility will issue an error if an attempt is made to set
an invalid value. The immediate validation and feedback the msconfig utility provides
on configuration option settings is one of the advantages available by using the Unified
Configuration. In contrast, with a legacy configuration, errors in option setting syntax or
option values might not be reported until a process attempted to execute; for instance in the
case of the MTA, perhaps not until an imsimta cnbuild or similar command were issued.

Note: The errors reported by the msconfig utility are typically much easier to understand and
hence correct than the general XML errors that would be reported by an XML validation of
config.xml. This is a significant reason why it is important to use msconfig to inspect and
modify the MTA configuration, rather than attempt to modify config.xml directly.

The msconfig utility can show the type of any option, and the default value, if any, using the
-type switch and -default switch, respectively; for instance:

msconfig
msconfig> show mta.enable -type
mta.enable>: bool
msconfig> show mta.enable -default
mta.enable: 0

The msconfig interactive help text for an option may also provide additional guidance on
proper values for an option; for instance,

msconfig> help option enable

The msconfig utility knows the type permitted for each option and will issue a (reasonably
clear) error if an attempt is made to set an invalid value. For instance:

msconfig> set mta.enable "localhost"
Error setting option mta.enable: Option value is not a valid value for the option (-23)

1.1 Available Types
For the underlying config.xml Unified Configuration, quite a few different XML types are
defined and can potentially be declared as valid for various option values, including but not
necessarily limited to (as this list can be expected to grow) those shown below. Note that NUL
characters are not allowed in string types. Note also that all list types are space separated lists;
in particular, CRs and LFs are not allowed, leading and trailing spaces are not allowed, and
runs of two or more (unquoted) spaces are not allowed.

• String and character types

Option value syntax 1–1

Available Types

• UTF8 string
• UTF8 character
• UTF8 text node
• String (UTF8)
• Non-empty string (UTF8)
• ASCII string
• Non-empty ASCII string
• ASCII character
• Printable ASCII string
• Printable ASCII character
• Printable ASCII string list
• Enumerated string case-sensitive
• Enumerated string case-insensitive
• Name
• Name list
• URL

• Numeric types
• 32 bit integer
• List of 32 bit integers
• Unsigned 32 bit integer
• List of 32 bit unsigned integers
• Unsigned 64 bit integer
• Unsigned 16 bit integer
• List of unsigned 16 bit integers
• Boolean
• Boolean true-only
• Floating point
• Unsigned octal (maximum length 9 octal digits)
• Enumerated 32 bit integer values

• Time types
• ISO 8601 time
• List of ISO 8601 times
• ISO 8601 duration
• List of ISO 8601 durations
• ISO 8601 duration OR time

• Host, domain, and IP types
• Domain
• Domain and port
• Host
• Host and port
• IPv4
• IPv4 list
• IPv6
• IPv6 list
• IPv4 literal
• Domain literal list
• IPv4 and post
• Host list
• IPv4 range

• File and directory types

1–2 Messaging Server Reference

ISO 8601 P format

• MTA-specific directory path
• MTA-specific file path
• MTA-specific file path list
• Directory path
• Absolute directory path
• File path
• Relative path
• Path
• File name

• Password type

• LDAP types
• LDAP URL
• LDAP attribute name
• LDAP DN

• Address types
• RFC 822 address

• Bit mask

• Various enumerated types

1.2 ISO 8601 P format
The ISO 8601 P, or ISO 8601 duration, format is:

PyearYmonthMweekWdayDThourHminuteMsecondS

where the values year, month, etc., are integer values specifying a duration or an offset (delta)
from the current time. The initial P is required; other fields may be omitted, though the T is
required if any time values are specified.

Note that all of the letters in ISO 8601 P values must be written in upper case.

For example, PT1H means a one hour duration or offset.

Besides the backoff channel option and a few alias options, also several MeterMaid
local_table options take ISO 8601 P arguments.

1.3 ISO 8601 format
The ISO 8601, or ISO 8601 time, format is either specified in Greenwich Mean time (GMT or
Zulu):

yyyy-mm-ddThhmmss.ssZ

or with an optional time zone offset:

yyyy-mm-ddThhmmss.ss+hh:mm

or

yyyy-mm-ddThhmmss.ss-hh:mm

Option value syntax 1–3

https://tools.ietf.org/html/rfc822

MTA URL types

The hyphens in the date portion are optional and may be omitted; though for a negative time
zone offset, a hyphen/minus must of course be specified. Spaces are ignored. Year is specified
in four digits, each of month, day, hours, and minutes is specified in exactly two digits (using
a leading zero for values less than 10), and seconds is typically specified in exactly two
digits (using a leading zero for values less than 10) or optionally can include a decimal point
followed two more digits specifying hundredths of a second. Hours are specified on a 24 hour
clock. For instance:

2013-05-22T12:30:00-08:00

Note that prior to Messaging Server 7.0, only a somewhat more restricted format was
supported: hyphens were not permitted in the date, nor was a time zone offset permitted (Z
was required), nor were fractions of a second (hundredths of a second) permitted.

The imsimta test -time utility may be used to test the validity of an ISO 8601 time string,
as well as convert it into the (perhaps more familiar) date-time format used in RFC 822 header
fields, such as Received: and Date: header fields.

1.4 MTA URL types
A number of MTA options, channel options, alias options, etc., allow values of various URL
types. Such URL types may include:

• file: -- used to refer to files stored in the local filesystem

• ldap: -- used to refer to data stored in the LDAP directory

• ldaps: -- used to refer to data stored in the LDAP directory, accessed via LDAP+SSL

• pabldap: -- used to refer to data stored in a Personal Addressbook LDAP directory

• pabldaps:

• extldap:

• extldaps:

• ssrd:

• mailto:

• data: -- URIs make it possible to specify data directly, in the URI itself

• http:

• imap: -- access data using IMAP. The credentials specified by the imap_username and
imap_password MTA options are used to log in to the IMAP server and the URL is
resolved with the URLFETCH IMAP command. Note that imap: URL resolution is part of
the server-side support for the BURL SMTP extension (used to implement forwarding of
messages without having to download them) so any usage of such URLs by the MTA must
take into account the fact that there's only one set of such login credentials.

• imaps: -- access data using IMAP+SSL.

• metermaid:

• memcache: -- new in MS 8.0

1–4 Messaging Server Reference

LDAP URL substitution sequences

• redis: -- new in MS 8.0.2.3

In addition, some such options may also support a non-URL form argument, assumed to be
of an especially "appropriate" type for that option, depending upon the option. For instance,
some options assume a file-path argument when no URL prefix is present, while other options
might assume an e-mail address argument when no URL prefix is present.

Some MTA options, channel options, or alias options may allow use of certain substitution
sequences in their value settings. The most general list of such substitution sequences may be
found in the discussion of LDAP URL substitution sequences. However, some (but only some!)
of these substitution sequences are also valid in other types of URL settings for certain MTA
option or channel option or alias option settings. See discussion of specific options for details.

Note that in order to use as option values forms of URL that involve querying some
external-to-the-MTA component, such as an LDAP URL, or the special "Personal
Addressbook" (pabldap:) form of URL, or an IMAP (BURL) URL, or a MeterMaid URL,
or a Memcache URL, typically configuration of just how the MTA should connect to that
other component is necessary -- that is, configuration of just how to properly interpret such
values is necessary. See MTA options such as the LDAP bind and connect MTA options,
LDAP external directory lookup MTA options, LDAP PAB MTA options, BURL MTA options,
Memcache MTA options, MeterMaid MTA options, or Redis MTA options for performing such
configuration.

1.4.1 LDAP URL substitution sequences
When specifying LDAP URLs for MTA use, various substitution sequences, as shown in Table
of LDAP URL substitution sequences, are generally available.

Table 1.1 LDAP URL substitution sequences

Substitution Sequence Description
$$ Literal $ character
$~account Home directory of user account
$?string? (New in 8.0) Apply the Message Store's hashdir

algorithm to string to produce a directory path
$\ Force subsequent material to lower case
$^ Force subsequent material to upper case
$_ Leave case as-is for subsequent material
$|/table-name/argument| Call out to mapping tabletable-name, probing with

argument; if the mapping table is found and a $Y, $y,
$T, or $t is returned, then use the returned string. Note
that the slash shown before and after the table-name
can in fact be any character; a character should be used
that doesn't conflict with the expected characters in
either table-name or argument.

$A Address
$nA Insert the nth character of the Address
$B LDAP user root; i.e., the value of the ugldapbasedn

base option (in legacy configuration, the
local.ugldapbasedn configutil parameter), or as

Option value syntax 1–5

LDAP URL substitution sequences

overridden by the MTA-specific ldap_user_root
MTA option

$C LDAP domain root; i.e., the value of the dcroot base
option (in legacy configuration, the service.dcroot
configutil parameter), or as overridden by the MTA-
specific ldap_domain_root MTA option

$D Domain name
$E Synonymous with $1E; that is, substitute in the value of

the LDAP attribute named by ldap_spare_1
$nE Substitute in the value of the LDAP attribute named

by the ldap_spare_n MTA option, where n is in the
range 1-18 (any other value is equivalent to 1); note
that ldap_spare_6 was added for Messaging Server
7.0-3.01; ldap_spare_7 through ldap_spare_18
were added for Messaging Server 7.2-7.02.

$F Delivery filename; some syntax checking is done if the
"name" is a file URL (file: syntax)

$G Synonymous with $2G; that is, substitute in the value of
the LDAP attribute named by ldap_spare_2

$nG Similar to $nE, but with the default for n being 2 rather
than 1

$H Host name (first portion of fully qualified domain
name)

$I Host domain (the canonical domain name for the
domain the user is in), unless the host domain is
the same as the defaultdomain option (in legacy
configuration, the service.defaultdomain
configutil parameter), or the MTA-specific override
option ldap_default_domain; when the host
domain matches the defaultdomain, then a null
string is substituted

$1I Host domain (the canonical domain name for the
domain the user is in), unless the host domain is
the same as the defaultdomain option (in legacy
configuration, the service.defaultdomain
configutil parameter), or the MTA-specific override
option ldap_default_domain; when the host
domain matches the defaultdomain, then the entire
substitution operation fails.

$2I Host domain (the canonical domain name for the
domain the user is in), unless the host domain is
the same as the defaultdomain option (in legacy
configuration, the service.defaultdomain
configutil parameter), or the MTA-specific override
option ldap_default_domain; when the host
domain matches the defaultdomain, then no domain
is inserted and also the leading character is removed.
This substitution is typically used to remove a leading

1–6 Messaging Server Reference

LDAP URL substitution sequences

percent character, %, for such cases of the default
domain.

$3I Host domain (the canonical domain name for the
domain the user is in), unless the host domain is
the same as the defaultdomain option (in legacy
configuration, the service.defaultdomain
configutil parameter), or the MTA-specific override
option ldap_default_domain; when the host
domain matches the defaultdomain, then no domain
is inserted and also the next character in the template is
omitted. This substitution is typically used to remove a
trailing slash character, /, for such cases of the default
domain.

$J Host domain minus its first chunk
$K Filter constructed from the user and

group object classes, as specified via the
ldap_user_object_classes and
ldap_group_object_classes MTA options

$L Username minus any special leading characters such as
~ or _

$M uid; when the LDAP URL relates to a user address,
this would be the actual uid value (or whatever
LDAP attribute is named by the ldap_permid MTA
option, and if that attribute is not present, the attribute
named by the ldap_uid MTA option), but in other
contexts may have another meaning (as for instance, $M
substitutes the detailed verdict string for spam/virus
filter package integration spamfilterN_action_M
MTA options)

$nM New in MS 6.2. Insert the nth character of the uid (or
an " a" if the uid has no nth character)

$N Construct a comma-separated list of attributes
(normally those to return in reverse_url
lookups, hence a comma separated list of the
attributes named by the ldap_capture,
ldap_recipientlimit, ldap_recipientcutoff,
ldap_sourceblocklimit,
ldap_preferred_language,
ldap_personal_name, ldap_primary_address,
and ldap_equivalence_addresses
MTA options, as well as (in MS 6.2 and later)
ldap_source_conversion_tag, and (in
MS 6.3-0.15 and later), ldap_blocklimit,
ldap_source_channel, the ldap_source_optinN
MTA options, ldap_preferred_country, and the
ldap_spare_N MTA options)

$O (New in MS 6.1p1/6.2) Substitute the source route
$4O (New in MS 6.1p1/6.2) Substitute the source route if

present; if no source route is present, then instead
remove the following character (normally used in a

Option value syntax 1–7

LDAP URL substitution sequences

pattern to remove the colon character subsequent to
the---nonexistent---source route)

$P Program name, that is, the value of the attribute
named by the ldap_program_info MTA
option (hence normally the value of the
mailProgramDeliveryInfo attribute)

$Q Filter for address reversal in iMS 5.2p2; that is, a
filter constructed from the attribute names listed
in the ldap_mail_reverses MTA option (or the
appropriate default attribute names, depending upon
the schema tag, if ldap_mail_reverses is not set);
this substitution sequence was typically used as the
filter in reverse_url lookups in iMS 5.2, but with
the Messaging Server 6.0 MTA, the $R substitution
sequence is normally used instead

$S Subaddress
$2S Subaddress if present, but if there is no subaddress,

then remove the leading character (used to remove the
plus character, +)

$R Filter for mail aliases; that is, a filter constructed from
the attribute names listed in the ldap_mail_aliases
MTA option (or with legacy configuration in the
local.imta.mailaliases configutil parameter);
as of MS 6.0 and later, also typically used as the search
filter for reverse_url address reversal lookups

$T Turn domain name chunk1.chunk2...chunkn into
dc=chunk1,dc=chunk2,...,dc=chunkn

$U The username portion of the address (that is, the local-
part sans subaddress and sans any leading backwards-
single-quote, tilde, or underscore character)

$nU Insert the nth character of the username
$V The base DN returned by calling domainMap on the

domain in the address; note that this can be affected by
the domain_uplevel MTA option

$1V A variant on the $V substitution, where if
the $V domainMap sort of lookup fails (no
inetDomainBaseDn or aliasedObjectName
matching the domain name is found), then this
$1V substitution instead returns the DN of the top
of the user and group tree, that is, the value of the
ugldapbasedn base option (in legacy configuration,
the local.ugldapbasedn configutil parameter) or
as overridden via the MTA-specific ldap_user_root
MTA option

$X mailHost

$nX Insert the nth component of the mailHost

1–8 Messaging Server Reference

Chapter 2 Options for migrating to
Unified Configuration

2.1 instancename Option .. 2–1
2.2 rolename Option .. 2–1
2.3 plugins Option .. 2–1

There are three options in legacy configuration that provide meta-data for migrating from
legacy configuration to Unified Configuration.

2.1 instancename Option
The instancename option specifies the name of this host's instance in the deployment. This
option is used as a transition option when migrating to a Unified Configuration. Only used for
purposes of migration.

2.2 rolename Option
The rolename option specifies the name of the role this host fulfills in the deployment (e.g.,
backend-store, frontend-mta, relay). This option is used as a transition option when migrating
to a Unified Configuration. It may also be used briefly when adding a new system to an
existing deployment via the Deployment Map server. In that setting, the Deployment Map
client briefly runs, registering the node with the server and reporting as its role, the string
value set with this rolename option.

2.3 plugins Option
The plugins option enables notifications via ENS and/or JMQ by specifying a library name of
"libibiff" or "libjmqnotify" respectively. Each library name should then be followed by
an instance name preceded by a "$" character. Each library/instance pair should be separated
from the next by a "$" character. Several instances of plugins may be specified with different
instance names. The name given in the instance field for each specified plugin is the name
used to look up the configuration for that plugin. The instance name "ms-internal" is
reserved.

This option is not used for Unified Configuration.

Support for JMQ is deprecated and will be removed in a future release.

Options for migrating to Unified
Configuration 2–1

2–2

Chapter 3 Special symbolic names
A few special symbolic names may be used in option values in msconfig, as well as in
recipes. (These names tend to correspond to former, now obsolete, MTA Tailor options; as
such, while the MTA Tailor options per se no longer exist for purposes of setting directory
locations, file names, or values, these corresponding special symbolic names can also still
generally be used in MTA contexts, where they now are interpreted as having values relative
to SERVERROOT.)

 IMTA_ROOT: -> <serverroot> "/"
 IMTA_LIB: -> <serverroot> "/lib/"
 IMTA_BIN: -> <serverroot> "/lib"
 IMTA_TABLE: -> <configroot> "/"
 IMTA_PROGRAM: -> <dataroot> "/site-programs/"
 IMTA_DL: -> <dataroot> "/dl/"
 IMTA_LOG: -> <dataroot> "/log/"
 IMTA_QUEUE: -> <dataroot> "/queue/"
 IMTA_HTTP: -> <dataroot> "/www/"
 IMTA_HOST: -> local.hostname
 IMTA_DEFAULTDOMAIN -> service.defaultdomain
 IMTA_LIBUTIL -> <serverroot> "/lib/libimtautil.so"
 IMTA_LIBMAP -> <serverroot> "/lib/libimtamap.so"
 IMTA_TMP -> tmpdir
 IMTA_LANG -> langdir
 IMTA_VERIFY_RETURN -> return_verify
 IMTA_RETURN_CLEANUP_PERIOD -> return_cleanup_period
 IMTA_RETURN_SPLIT_PERIOD -> return_split_period

The SERVERROOT value is used to construct the DATAROOT value (either /
var/SERVERROOT or SERVERROOT/data) and CONFIGROOT value (either /
var/SERVERROOT/config or SERVERROOT/config).

Special symbolic names 3–1

3–2

Chapter 4 Recipe language
4.1 Comments ... 4–2
4.2 Integer values .. 4–2
4.3 String values and list values ... 4–2

4.3.1 Optlists ... 4–3
4.4 Variables .. 4–3

4.4.1 Variable indices ... 4–3
4.5 Statements ... 4–5
4.6 Operators ... 4–6
4.7 Functions ... 4–8

4.7.1 Configuration option access ... 4–19
4.7.2 System information .. 4–22
4.7.3 msconfig information ... 4–22
4.7.4 Environment access ... 4–23
4.7.5 msconfig information operations .. 4–23
4.7.6 File operations ... 4–23
4.7.7 Terminal I/O operations ... 4–24
4.7.8 Statefile operations .. 4–25
4.7.9 Alias creation and manipulation operations .. 4–25
4.7.10 Channel creation and manipulation operations 4–26
4.7.11 Rewrite rule creation and manipulation operations 4–28
4.7.12 Mapping creation and manipulation operations 4–28
4.7.13 Deployment map operations ... 4–30
4.7.14 Optlist manipulation operations .. 4–34
4.7.15 LDAP operations ... 4–34
4.7.16 Random value generation ... 4–35
4.7.17 Call-out to routine in external library .. 4–35

4.8 User-defined routines ... 4–36
4.9 Preprocessing Directives ... 4–37
4.10 Random number generation .. 4–37

Recipe files are used to automate configuration management tasks within the msconfig
utility. Recipe files are expressed using a domain specific language. Since recipe files are
intended to manipulate configuration information, many parts of which most naturally appear
as names and string values or lists of strings, the recipe language is rather string oriented. The
primary inspirations for the recipe language is the Icon programming language designed by
Ralph Griswald as well as the IETF's Sieve mail filtering language.

Recipe file syntax includes C-like expressions, operators, and assignments, Sieve-like
conditionals, and loops. The available data types are integers, strings, and lists.

Like msconfig itself recipes can only be used with a unified configuration.

Note that imsimta test -expression -xc can be used to test the syntax of recipe
operations.

Recipes are typically written to operate in several phases:

1. Checks are done to make sure the right conditions exist for the recipe to be effective. If the
desired conditions aren't met the recipe can either issue a warning or exit with an error.

2. The recipe asks a number of questions to determine exactly what changes should be made.

Recipe language 4–1

Comments

3. The recipe optionally uses the continue function to make sure the user wishes to proceed
if any warnings were issued.

4. Finally, the recipe implements the requested changes.

Note that while this is the typical ordering, recipes are not constrained to use it and may use
other approaches if appropriate.

4.1 Comments
The # character indicates that the remainder of a line is a comment.

4.2 Integer values
Integers are expressed as decimal values with an optional sign. An optional base specification
prefix can be used to write values in other bases:

 2%10 == 2
 16%ff == 255
 2%-1010 == -10

All integers are represented internally as signed 32 bit values.

4.3 String values and list values
As recipe files are intended for manipulating configuration files and parameters, which are
generally thought of most naturally as strings or lists of strings, the recipe language is rather
string oriented.

A string value is written simply as characters within double quotes, e.g.,

 "a sample string"
 "strings may
 include line breaks"

Backslashes have special meaning in string values:

 "\"" - quote
 "\t" - tab
 "\r" - carriage return
 "\n" - line feed
 "\\" - backslash
 "\uNNNN" - Unicode character, must specify exactly 4 hex digits
 (new in MS 8.0.2.3)

A list value is written as a comma-separated list of elements, delimited by brackets, e.g.,

 ["e1", "e2", "e3", "e4"]

As of MS 8.1.0.1 trailing commas are allowed in lists, making them easier to maintain:

4–2 Messaging Server Reference

Optlists

 ["c1", "c2",]

Note that the elements of a list are always strings.

4.3.1 Optlists
Optlists are regular lists with an even number of elements. The elements are processed in
pairs: the first element in a pair is the "name" element while the second element is the "value"
element. A number of the built-in functions are designed to work with optlists. The special
case of empty string as the first element in a pair is used to represent annotations; in this case
the second element of the pair contains the annotation text.

4.4 Variables
Variables may have integer, string, or list values. Variables are created by assigning them a
value; no type declarations are necessary. Variable names are case-insensitive.

 v = 1;
 w = "this is a test";
 x = ["a", "b", "c"];

Variables may be used in most places where a string, integer, or list value is expected,
including in list constructs. Given:

 s = "string";
 l = ["list"];

the following expressions are true:

 [s] == ["string"]
 [s,s] == ["string", "string"]
 [s,l] == ["string", "list"]
 [l,l] == ["list", "list"]

4.4.1 Variable indices
Substrings and sublists may be referenced through the use of indices. Indices into strings and
lists point not at characters, but between characters, as for strings in the Icon programming
language. That is, 1 points just before the first character, 2 between the first and second
character, etc., and 0 points just after the last character, -1 points between the penultimate and
last characters, -2 between the antepenultimate and penultimate characters, etc. The expression
s[i] returns the character immediately following the interstice pointed to by the index.

For instance, if

 s = "abcdef";

then the following expressions are true:

Recipe language 4–3

Variable indices

 s[1] == "a"
 s[3] == "c"
 s[6] == "f"
 s[-1] == "f"
 s[-4] == "c"
 s[-6] == "a"

whereas s[0] is illegal as it is trying to return the character after the last one in the string.

When a range is specified, then the substring between the two indices is returned. There is no
question about whether this is inclusive or exclusive as the indices point at interstices. Thus
again taking as a sample string:

 s = "abcdef";

the following expressions are true:

 s[1,0] == s
 s[1,0] == "abcdef"
 s[1,2] == "a"
 s[2,0] == "bcdef"
 s[2,-1] == "bcde"
 s[-3, -1] == "de"
 s[i,i] == "" # when 1 <= i <= length(s)+1
 # or -length(s) <= i <= 0
 s[1,i+1] == left(s,i)
 s[-i,0] == right(s,i)

Indices can be used on the left hand side of assignment statements. For example, after the
assignment

 s[1] = "z";

s will have the value "zbcdef".

List indices operate in a similar fashion, except that indices refer to list elements rather than
characters. Single value list indices return a string while two-valued indices return a sublist. So
if l is given a value

 l = ["a","b","c",d","e","f"];

the following expressions are all true:

 l[1] == "a"
 l[3] == "c"
 l[6] == "f"
 l[-1] == "f"
 l[-4] == "c"
 l[-6] == "a"
 l[1,0] == ["a", "b", "c", "d", "e", "f"]
 l[1,2] == ["a"]

4–4 Messaging Server Reference

Statements

 l[2,0] == ["b", "c", "d", "e", "f"]
 l[2,-1] == ["b", "c", "d", "e"]
 l[3,-1] == ["c", "d", "e"]
 l[-3,-1] == ["d", "e"]

Note that parentheses may be used in place of square brackets for indexing.

4.5 Statements
The if...then...else... statements in the recipe language are akin to those of the Sieve email
filtering language:

 if expression { ... }

 if expression { ... }
 else { ... }

 if expression { ... }
 elsif { ... }

 if expression { ... }
 elsif { ... }
 else { ... }

A general loop construct is also provided, with the syntax:

 loop {
 ...
 exitif (expression);
 ...
 nextif (expression);
 ...
 }

A loop may contain zero or more exitif and/or nextif statements. The loop terminates if
the argument to exitif evaluates to true. New in 8.0.2.3, nextif can be used to cause the
loop to restart if the associated condition evaluates to true.

Loops may be nested:

 loop {
 ...
 loop {
 ...
 exitif (expression-1); # Exit from inner loop #1
 }
 ...
 exitif (expression-2); # Exit from outer loop
 ...
 loop {
 ...

Recipe language 4–5

Operators

 exitif (expression-3); # Exit from inner loop #2
 }
 }

Assignment statements are akin to those of the C programming language.

 a = "string";
 b = 2;
 c = d = ["list"];

4.6 Operators
The recipe language provides a variety of prefix, postfix, and infix operators. The following
table lists the available operators in order of decreasing precedence.

Table 4.1 Operators in Order of Precedence

Operator Description Precedence
?v Force interpretation of v as a variable, rather than as a pre-

defined function
19

f(...) Function call 18
Index

sl[i] Return the ith character of string/list sl+ 17
sl[i,j] Return the ith through jth characters of string/list sl+ 17
sl(i) Return the ith character of string/list sl 17
sl(i,j) Return the ith through jth characters of string/list sl 17

Increment/decrement
v++ Return v and then increment its value (v must be a variable

with an integer value)
16

v-- Return v and then decrement its value (v must be a variable
with an integer value)

16

++v Increment the value of v and then return it (v must be a
variable with an integer value)

16

--v Decrement the value of v and then return it (v must be a
variable with an integer value)

16

Unary bitwise and logical
~n Bitwise not 15
!n Logical not 15

Arithmetic and concatenation
-n Integer negation 14
+n Integer plus 14

n * m Integer multiplication, string/list cross product 13
n / m Integer division 13
n % m Integer modulus 13

4–6 Messaging Server Reference

Operators

n + m Integer addition, string/list element by element
concatenation

12

n - m Integer subtraction 12
n . m String/list concatenation 12
n << m Left shift 11
n >> m Right shift 11

Comparisons
n < m Less than 10
n <= m Less than or equal to 10
n >= m Greater than or equal to 10
n > m Greater than 10
n == m Equal to 9
n != m Not equal to 9

Infix bitwise
n & m Bitwise and 8
n ^ m Bitwise xor 7
n | m Bitwise or 6

n contains m String/list n contains string m. The position of the first match
in the string is returned if n is a string; the position of the
first matching string in the list is returned if n is a list.

5

n matches m String/list n is matched by the glob patternm true/false is
returned if n is a string, the position of the first matching
string in the list is returned if n is a list.

5

Infix logical
n && m Logical and 4
n ^^ m Logical xor 3
n || m Logical or 2

Conditional
p ? n : z n if p is nonzero, z otherwise 1
p ? : z (New in MS 8.1.0.3) p if p is nonzero, z otherwise 1
p ? n (New in MS 8.1.0.3) n if p is nonzero, p (0) otherwise 1

Assignment
v = e Assign v the value of e (v must be a variable) 0
v += e Add/concatenate the value of e to v (v must be a variable) 0
v -= e Subtract the value of e from v (v must be a variable with an

integer value)
0

v *= e Multiply/cross product v by the value of e (v must be a
variable)

0

v /= e Divide v by the value of e (v must be a variable with an
integer value)

0

Recipe language 4–7

Functions

v &= e Bitwise and e into v (v must be a variable with an integer
value)

0

v |= e Bitwise or e into v (v must be a variable with an integer
value)

0

v ^= e Bitwise xor e into v (v must be a variable with an integer
value)

0

v <<= e Left shift v by e (v must be a variable with an integer value) 0
v >>= e Right shift v by e (v must be a variable with an integer

value)
0

v .= e Concatenate the value of e onto v (v must be a variable) 0
v1 :=: v2 Exchange the values in v1 and v2 (v1 and v2 must both be

variables)
0

+ Most operators are available for use in Sieve filters, as well as in recipes, except for use of
square brackets, [...], for indexing into strings or lists. Sieve filter syntax uses square
brackets to indicate Sieve lists, so in Sieve filters the alternate syntax for substring indexing of
(...) must be used.

4.7 Functions
The recipe language provides a large number of built-in functions. The following table
lists all of the built-in functions in alphabetical order; subsequent subsections describe all
recipe-specific functions in groups. For general string/list/integer functions, see Symbol table
functions.

Table 4.2 Alphabetical List of Built-in Functions

Function Description
abs(i) Return the absolute value of the numeric value i.
add_alias(s,c[,e]) New in 8.0.1.2. Adds an alias named s containing the optlist c and,

optionally, additional alias entries from the list e. An error will be
returned if the alias already exists. Each element of the optlist specifies
an alias option and its corresponding value. An empty string must be
specified for alias options that do not accept a value.

add_channel(s,c) Adds a channel named s containing the optlist c. An error will be
returned if the channel already exists. Each element of the optlist
specifies a channel option and its corresponding value. An empty string
must be specified for channel options that do not accept a value.

add_group(g,c) Adds a group named g containing the optlist c. An error will be
returned if the group already exists. Each element of the optlist
specifies a group element and its corresponding value.

add_mapping(s,c) Adds a mapping named s containing the optlist c. The mapping must
not already exist. Each element of the optlist specifies either a mapping
rule or an annotation. The name part of an optlist element specifies the
rule pattern while the value part specifies the rule template.

allof(i1[,i2...]) Returns a nonzero (true) value if all of i1, i2, ... are nonzero; returns 0
otherwise.

4–8 Messaging Server Reference

Functions

any(s1,s2) Return 2 if any character in s1 appears as the first character of s2;
return 0 otherwise.

anyof(i1[,i2...]) Returns a nonzero (true) value if any of i1, i2, ... are nonzero, returns 0
if all are zero.

append_alias(s,c[,e]) New in 8.0.1.2. Append the alias options specified in the optlist optlist
 c and, optionally, the alias entries specified by the list e to the alias
named by s. The alias will be created if it doesn't already exist.

append_group(s,c) Appends the contents of optlist c to the group named s. The group
will be created if it doesn't already exist. Each element of the optlist
specifies a group element and its corresponding value.

append_mapping(s,c) Appends the contents of optlist c to the mapping named s. The
mapping will be created if it doesn't already exist. Each element of
the optlist specifies either a mapping rule or an annotation. The name
part of an optlist element specifies the rule pattern while the value part
specifies the rule template.

append_rewrites(c) Appends the contents of optlist c to the current set of rewrite rules.
Each element of the optlist specifies either a rewrite rule or an
annotation. The name part of an optlist element specifies the rule
pattern while the value part specifies the rule template.

argc (New in 8.0) Returns the number of additional arguments given to the
msconfig run command.

argv(n) (New in 8.0) Returns the nth argument given to the the msconfig
run command as a string. The value n must be between 1 and argc
inclusive.

bal(c1,c2,c3,s) Scan s looking for an occurrence of a character in c1 that is balanced
with respect to c2 and c3. Returns the position of the first balanced c3
character in s if one is found, length(s)+1 if no c3 character is found
but the string as a whole is balanced, or 0 if the string isn't balanced.

call_user(s1,s2,e[,e2...]) Call the routine named s2 in the external library image s1, passing the
argument e (and optionally additional, comma-separated arguments).

chr(i1[,i2...]) Returns a string containing successive characters with decimal values
i1, i2, ...

continue([s1[,s2]]) The continue function does nothing if no warnings have been issued
during the execution of the recipe. If one or more warnings have been
issued by the recipe, the administrator is prompted with the string s1.
An empty response or a response beginning with "Y" (yes) or "T" (true)
will cause the script to continue running; any other response will
cause the script to abort. A default prompt of "Some warnings have
occurred. Do you want to continue [N]? " will be used if no
value for s1 is specified. An optional argument s2 may be supplied as
a default response to continue; for instance, continue("Continue
[y]? ","Y") will mean that a user empty (carriage return) response
will mean to continue.

continue The continue function does nothing if no warnings have been issued
during the execution of the recipe. If one or more warnings have been
issued by the recipe, and continue was not provided with a prompt
string, then the administrator is prompted with the default prompt
"Some warnings have occurred. Do you want to continue

Recipe language 4–9

Functions

[N]? ". An empty response or a response beginning with "Y" (yes) or
"T" (true) will cause the script to continue running; any other response
will cause the script to abort.

decode [:e] s Decodes the string s from the specified encoding :e. The :e
nonpositional parameter must be one of :base64, :base85, :hex, :idn,
or :quotedprintable. The default is :hex.

default Undoes the effect of instance or role: options are interpreted as
being of their preferred flavor.

defined(s) Returns 1 if s is defined as a variable; return 0 otherwise.
delete_alias(s) New in 8.0.1.2. Delete the alias named s. No operation is performed if

the alias does not exist.
delete_channel(s) Delete the channel named s. No operation is performed if the channel

does not exist.
delete_file(s) New in 8.0.1.2. Delete the file named s. Returns 1 if the delete operation

succeeded, and 1 if not.
delete_group(s) Delete the group named s. No operation is performed if the group does

not exist.
delete_mapping(s) Delete the mapping named s. No operation is performed if the

mapping does not exist.
delete_options(l) Deletes all values associated with the options specified in the list l.
delete_optlist(o,n...) Delete option n from optlist o and return the resulting modified list.

The original optlist is returned if the specified option does not appear in
the optlist. Additional option names can be specified to delete multiple
options from the optlist. As of MS 8.0.1.3, n can be a two element list
specifying a name/value pair to be removed from the list.

delete_rewrites(l) Delete the rewrite rules specified in list l. No operation is performed if
such rewrite rules do not exist.

delete_statefile(v) Delete the specified statefile variable v. The function returns true if
the delete operation was successful; false if statefile support is not
enabled.

deploymap ... (New in MS 8.0.1.1.0) Perform various operations on and obtain data
from the deployment map.

deploymap :add
[:deployment d] :host h
[:role r]

(New in MS 8.0.1.1.0) Add host(s) h with role r to deployment d in the
deployment map. h may be either a string or list. An error occurs if any
of the hosts already exist. The current deployment is used if d is not
specified; if there is no current deployment, then the first deployment
in the deployment map is selected; a deployment with the default name
"site-01" will be created if no deployment exists in the deployment
map. No role with be associated with the host(s) if r is not specified.
Returns the number of modifications that were made to the deployment
map.

deploymap :add
[:deployment d] :host h
:property p

(New in MS 8.0.1.1.0) Add property/properties p to host h in
deployment d. Host h will be created if it does not already exist. The
current deployment is used if d is not specified; if there is no current
deployment, then the first deployment in the deployment map is
selected; a deployment with the default name "site-01" will be

4–10 Messaging Server Reference

Functions

created if no deployment exists in the deployment map. Returns the
number of modifications that were made to the deployment map.

deploymap :add
[:deployment d] :host h
:property p :role r

(New in MS 8.0.1.1.0) The host h is created in deployment d with
role r and properties p. The host must not already exists. The
current deployment is used if d is not specified; if there is no current
deployment, then the first deployment in the deployment map is
selected; a deployment with the default name "site-01" will be
created if no deployment exists in the deployment map. Returns the
number of modifications that were made to the deployment map.

deploymap :create (New in MS 8.0.1.1.0) Create a new, empty deployment map. Note that
if you write this out using msconfig's DEPLOYMAP WRITE command
you will delete all your existing entries!

deploymap :delete
 :deployment d

(New in MS 8.0.1.1.0) Delete the deployment named by string d
from the deployment map. Deleting a nonexistent deployment is a
no-op. Returns the number of modifications that were made to the
deployment.

deploymap :delete
 [:deployment d] :host h

(New in MS 8.0.1.1.0) Delete host(s) h from deployment d. h can
be either a string or list. Deleting a nonexistent host is a no-op. The
current deployment is used if d is not specified; if there is no current
deployment, the first deployment in the deployment map is selected.
Returns the number of modifications that were made to the deployment
map.

deploymap :delete
 [:deployment d] :host h
:role r

(New in MS 8.0.1.1.0) Delete any role associated with host(s) h in
deployment d. Deleting a nonexistent role is a no-op. An error occurs
if host h does not exist. The current deployment is used if d is not
specified; if there is no current deployment, the first deployment in the
deployment map is selected. Returns the number of modifications that
were made to the deployment map.

deploymap :delete
 [:deployment d] :host h
:property p

(New in MS 8.0.1.1.0) Delete any properties for host(s) h (which may be
a string or list) in deployment d that match the glob-wildcarded values
in string or listp. The current deployment is used if d is not specified; if
there is no current deployment, the first deployment in the deployment
map is selected. Returns the number of modifications that were made to
the deployment map.

deploymap :dump (New in MS 8.0.1.1.0) Returns a string containing an outline of the
entire deployment map.

deploymap :list... (New in MS 8.0.1.1.0)
deploymap :read s (New in MS 8.0.1.1.0) Reads a JSON-format deployment map from

string s.
deploymap :rename s
:deployment d

(New in MS 8.0.1.1.0) Renames deployment d to s. d must specify an
existing deployment; s must be a nonempty utf-8 string. Returns the
mumber of modifications that were made to the deployment map.

deploymap :rename
 [:deployment d] s :host
h

(New in MS 8.0.1.1.0) Renames host h in deployment d to s. The
current deployment is used if d is not specified; if there is no current
deployment, then the first deployment in the deployment map is
selected. Host h must already exist and s must be a valid domain
name. Returns the mumber of modifications that were made to the
deployment map.

Recipe language 4–11

Functions

deploymap :set
 [:deployment d] :host h
:role r

(New in MS 8.0.1.1.0) Sets the role for host(s) h in deployment d to r. h
can be either a string or list. The specified host(s) h must already exist
in the deployment. The current deployment is used if d is not specified;
if there is no current deployment, then the first deployment in the
deployment map is selected. Returns the mumber of modifications that
were made to the deployment map.

deploymap :write (New in MS 8.0.1.1.0) Returns the contents of the current deployment
map as a JSON-formatted string. Note that no mechanism is provided
in the recipe language to update the active deployment map; this can
only be done at the msconfig level.

description(d) The description function is used to provide a description of the
function of a recipe. The value of the string argument d is displayed
when the recipe is processed by the msconfig directory command.
Note that d must be a literal string enclosed in quotes; it cannot be an
expression. When the recipe is executed the description function
does nothing other than return the value of its argument d.

edit(s) Place the value of the string s in a temporary file and invoke the
external editor specified by the EDITOR environment variable on the
file. When the editor returns the edit function returns the (possibly
modified) file content.

encode [:e] s Encodes the string s into the specified encoding
:e. The :e nonpositional parameter must be one
of :base64, :base85, :hex, :idn, :param, :quotedprintable, or :url. The
default is :hex.

error(s) Issue error string s back to administrator executing the recipe.
exists_alias(s) New in 8.0.1.2. Returns a nonzero integer (specifically, the number of

entries in the alias group) if the alias named s exists, zero if it does not.
exists_channel(s) Returns a nonzero integer (specifically, the number of channel options

set on the channel) if the channel named s exists, zero if it does not.
exists_file(s) Returns 1 if the file named by s exists, 0 if it doesn't. If only a file name

is specified with no path, msconfig looks in the MTA configuration
directory, IMTA_TABLE:.

exists_group(s) Returns a nonzero integer if the group named s exists, zero if it does
not.

exists_mapping(s) Returns a nonzero integer if the mapping named s exists, zero if it does
not.

exists_option(s) Returns the number of values currently set for the option s. A value of
0 is returned if the option isn't set.

exists_optlist(o,s) Returns 1 value if the the optlist o contains an option named s, 0
otherwise.

exists_statefile(v) Returns 1 if the statefile variable named v is defined, 0 if it is not, and -1
if statefile support has not been enabled with the --statefile switch.

find(s1,s2[,i,j]) Returns the position of the first occurrence of s1 in s2[i:j]. The
entire string is searched if i and j are omitted.

find(s,l[,i,j]) Returns the position of the first list element from l[i:j] that matches
s. The entire list is searched if i and j are omitted.

4–12 Messaging Server Reference

Functions

get_alias(s) New in 8.0.1.2. Returns the definition (alias options) of the alias named
s as an optlist. An empty list is returned if the alias does not exist.

get_channel(s) Returns the definition (channel options) of the channel named s as an
optlist. An empty list is returned if the channel does not exist.

get_default(s) Returns the built-in default for the specified option s as a string. An
empty string is returned if the option has no default. A error occurs if
the option does not exist. New in MS 8.0.2.1.

get_group(s) Returns the content of the group named s as an optlist. An empty list is
returned if the group does not exist.

get_mapping(s1[,s2[,s3]]) Returns the content of the mapping named s1 as an optlist. An empty
list is returned if the mapping does not exist. Optionally, strings s2
(string with wildcards to match patterns) and s3 (string with wildcards
to match templates) may be specified, to restrict which entries of the
named mapping to return. If not specified, s2 and s3 each default
to "*", meaning that all of the entries of the named mapping will be
returned.

get_msconfig_info(s) New in MS 8.0.2.3. Return the value of the msconfig information item s.
An error occurs if an unknown item is specified. Note that s is not case
sensitive.

get_option(s) Returns the value of the option named s as a string. An error will occur
if the specified option name is invalid or matches multiple options. An
empty string is returned in two cases: if the specified option is a valid
no-value option that is set, or if the specified option is valid but not set.

get_option_modification_locations(New in 8.1.0.6) Returns a list of locations in the current recipe where a
configuration modification occurred.

get_options(s) Returns the names and values of the options named s as an optlist.
(Note that when an option is set in both role and instance flavors, only
the instance is returned.) An empty list is returned if the specified
option is valid but not set.

get_optlist(o,s) Returns the value of the option named s from the optlist o as a string.
An empty string is returned if the specified option is not in the optlist.

get_path(r) (New in 8.0) Returns a path to a directory in the server instance. The
argument r can be one of "server", "data", or "config", which will
return the path to the server root, the data root, or configuration root
directories, respectively.

get_rewrites[(p[,t])] Returns the selected set of rewrite rules as an optlist. p specifies a glob-
style pattern to apply to the pattern part of each rewrite rule; only rules
that match the pattern will be returned. Similarly, t specifies a glob-
style pattern to apply to the template part of each rewrite rule; only
the rules whose templates match the pattern will be returned. Both
arguments are optional; if neither is specified then all rewrite rules are
returned.

get_statefile(v) Returns the value of the statefile variable named v. An empty string
is returned if the specified variable is not in the statefile or statefile
support has not been enabled with the --statefile switch.

get_system_info(s) New in 8.0.1.2. Return the value of the system information item s. An
error occurs if an unknown item is specified. Note that s is not case
sensitive.

Recipe language 4–13

Functions

getenv(s) Return the value of the environment variable s. An empty string is
returned if s is not defined. Note that s is case sensitive.

hash [:e] [:h] v Returns the hash of the value v. v may be either a string or a list; if a list
is specified, a separate hash is computed for each element and returned
as a new list. The hash :h may be any of :md2, :md4, :md5, :sha1,
:sha256, :sha512, :ripemd128, or :ripemd160; the default is
:sha1. (Support for :sha256 and :sha512 is new in MS 8.0.2.3.)
An encoding may optionally be applied; :e may be any of :hex,
:quotedprintable, :base64, :base85, or :binary. :binary, or
no encoding, is the default.

hash_hmac [:e] [:h] k v Returns the hmac of the value v using key k. v may be either a string or
a list; if a list is specified, a separate hmac is computed for each element
and returned as a new list. The underlying hash function :h may be
any of :md2, :md4, :md5, :sha1, :sha256, :sha512, :ripemd128,
or :ripemd160; the default is :sha1. (Support for :sha256 and
:sha512 is new in MS 8.0.2.3.) An encoding may optionally be applied;
:e may be any of :hex, :quotedprintable, :base64, :base85, or
:binary. :binary, or no encoding, is the default.

instance Operate on instance options.
integer(e) Converts e to an integer. If e is already an integer, it is returned

unchanged; if e is a string, it is read as a sequence of ASCII digits. If e
is a list, it must contain one element and that element is treated in the
same way a string would be.

keywords(l) The keywords function is used to provide a list of keywords associated
with a recipe. The value of the list argument l is displayed when the
recipe is processed by the msconfig directory command.

lcase(e) Converts any upper case characters in e to lower case. If e is a number,
it is converted to a string.

ldap_init(o) (New in MS 8.0.1) Initializes the built in LDAP client. This call must
be performed prior to using any of the other ldap_* functions.
The client uses the current settings of the configuration options
ugldaphost, ugldapbinddn, ugldapbindcred, ugldapport, and
ugldapusessl when it initializes. The single argument o is an optlist
specifying override values for any or all of these options. The optlist
may be empty. Repeated calls will shut down and reinitialize the LDAP
client with new settings. The LDAP client is shut down automatically
when the recipe terminates.

ldap_ldif(s[,f]) (New in MS 8.0.1) Apply the LDIF specified in the string s to the
LDAP directory. Any LDAP error that occurs will be treated as a
recipe warning (but see the bit 12 in the flag argument). The optional
argument f is a bit-encoded integer specifying a number of flags. The
currently defined flag bits are:

• Bit 0 (value 1) - if set, continue processing after any error,

• Bit 1 (value 2) - if set, treat "entry exists" on add as success,

• Bit 2 (value 4) - if set, allow no-such-object if hint present, and

4–14 Messaging Server Reference

Functions

• Bit 12 (value 4096) - if set, treat any LDAP error that occurs as a recipe
error.

An integer count of the number of successful modifications performed
is returned. ldap_init must be called before calling ldap_ldif.

ldap_search(o[,n]) (New in MS 8.0.1.1.0) The ldap_search function takes an optlist
argument specifying at least the basedn for the search, and optionally
also the attribute to return (attrs), the scope of the search, and a
filter (filter) for the search. Valid values for the "scope" are: base,
onelevel (or one), subtree (or sub). An optional second integer
argument specifies the number of entries to return, and defaults to -1
(return all entries) if omitted. The function returns an optlist containing
the attribute-value pairs matching the search.

left(s1,i[,s2]) Returns the leftmost i characters of s1. If i is greater than
length(s1) the result is padded with s2. As much of s2 as is
necessary will be used; if s2 is too short it will be used multiple times.
s2 defaults to a space if it is omitted.

left(l1,i[,l2]) Returns the leftmost i elements of l1. If i is greater than length(l1)
the result is padded with l2. As much of l2 as is necessary will be
used; if l2 is too short it will be used multiple times. l2 defaults to one
empty list element if it is omitted.

length(s) Returns the number of 8-bit characters in the string s.
length(l) Returns the number of elements in the list l.
list(s,n) Returns a list n elements long with each element equal to s.
list(l,n) Returns a list consisting of n copies of l.
list_names(s[,n]) Returns the options whose name begins with the specified string s as

an optlist. The optional integer second argument specifies whether or
not to retain backslash characters in the options' values; the default is 0
(false).

make_path(p) Converts a path p using IMTA_TABLE: and similar MTA-specific
constructs into a proper file path. Note that the path that's constructed
may only be valid on the system where msconfig is running.

match(r,s) Returns 1 (true) if the regular expression r matches a substring of
string s, 0 (false) otherwise. Note that the pattern r may be prefixed
with "^" (match beginning of line) and suffixed with "$" (match end of
line) to require a full string match. The regular expression vocabulary is
compatible with that of the TCL/TK scripting language.

map(s1,s2,s3) Returns a string obtained by mapping characters of s1 that occur in s2
into corresponding characters in s3. Characters that don't appear in s2
are unchanged.

max(i,j[,...]) Returns the largest element in a set of integers.
max(s1,s2[,...]) Returns the largest element in a set of strings.
min(i,j[,...]) Returns the smallest element in a set of integers.
min(s1,s2[,...]) Returns the smallest element in a set of strings.
ord(s) Returns the ordinal value of the first character of s, which must contain

at least one character.

Recipe language 4–15

Functions

pop(l) Returns the first element of list l. The element is deleted from the list.
l must be a variable with a list value.

prepend_alias(s,c[,e]) New in 8.0.1.2. Prepends the contents of optlist c, and, optionally,
the alias entries from the list e, to the alias named s. The alias will be
created if it doesn't already exist.

prepend_group(s,c) Prepends the contents of optlist c to the group named s. The group
will be created if it doesn't already exist.

prepend_mapping(s,c) Prepends the contents of optlist c to the mapping named s. The
mapping will be created if it doesn't already exist.

prepend_rewrites(c) Prepends the contents of optlist c to the rewrite rules.
print(s) Print the string s on the administrator's terminal.
push(l,s) Adds the string s to the beginning of list l. The list l is updated as well

as being returned. l must be a variable with a list value.
put_optlist(o,s,v...) Put the option s with the value v in optlist o and return the resulting

modified list. The option's value is replaced if the option is already
present. Additional name-value pairs can be specified in the call to put
multiple options on the optlist.

random(n) Returns a random integer value between 0 and n-1.
randomseed(n) Seeds the random number generater function random with the integer

seed value n.
read(s1[,s2[,s3]]) Read and return a string from the administrator terminal, prompting

with the string s1. The optional string argument s2 provides a default
value for the function to return, if the administrator does not enter an
explicit value (merely enters a null response). New in MS 8.0.2.3, the
string argument s3 specifies the name of a statefile variable whose
value is used if present or will be updated with whatever value is
entered.

read_file(s) Reads and returns the content of the file named by s. msconfig looks
in the MTA configuration directory, IMTA_TABLE:, if s specifies only a
file name with no path. An error occurs if the file doesn't exist or cannot
be read. Line feeds are used as line separators.

read_optlist(s) Converts a string s containing options into an optlist which is
returned. The string s should be formatted with options expressed as
name=value delimited by CR or LF. Leading space or horizontal tab
characters prior to a name will be ignored (though space and horizontal
tab are allowed and retained within a value). Comments, which start
with exclamation point ! or hash character #, will be ignored.

read_password
 [:minlength n1]
[:maxlength n2] [:upper
n3] [:lower n4] [:digit
n5] [:symbol n6] [s1] [s2]

Read a password from the administrator terminal, returning it as a
string. Optional parameters may be used to specify requirements that
the password must meet: :minlength default is -1 (no minimum),
:maxlength default is -1 (no maximum), by default no requirements
are placed on number of upper case characters, lower case characters,
digits, or symbols (respectively, :upper, :lower, :digit, :symbol).
The administrator is prompted with string s1 (default "Password: ")
and optionally may be prompted to verify the password with string s2
(default "Verify ").

repl(s,j) Returns a string consisting of j concatenatations of s.

4–16 Messaging Server Reference

Functions

repl(l,j) Returns a list consisting of j concatenatations of l.
replace_alias(s,c[,e]) New in 8.0.1.2. Replaces the alias named s with the contents of optlist

c and, optionally, alias entries from the list e. The alias will be created if
it doesn't already exist.

replace_channel(s,c) Replaces the channel named s with the contents of optlist c. The
channel will be created if it doesn't already exist.

replace_group(s,c) For the group named by string s, replace its options with those in the
optlist c.

replace_mapping(s,c) Replaces the contents of the mapping named s with the contents of
optlist c. The mapping will be created if it doesn't already exist.

replace_rewrites(c) Replaces the current rewrite rules with the rewrite rules specified in the
optlist c.

resolve_option(o) The string value o is run through the option name resolution process
and the resolution results are returned as a bit-encoded integer. The
option need not exist in the current configuration and is not modified in
any way. Currently four bits are defined: Bit 0 (value 1), if set, indicates
the path specified was valid, bit 1 (value 2), if set, indicates the name
specifies a valid option (as oppose to, say, the name of an option group),
bit 2 (value 4), if set, indicates that the option has been deleted and is
effectively a no-op, bit 3 (value 8), if set, indicates that the option is
restricted, and bit bit 4 (value 16), indicates that this is an instance-only
option.

restricted(p) The restricted function is used to control or check the recipe's
ability to modify the values of restricted options. If the -restricted
switch was given to the run command, the restricted function
returns a value of 1 (true) unconditionally. If -restricted wasn't
specified, the argument p will be evaluated to determine if the user
should be prompted. A zero value will return a value of 0 (false). A
nonzero value will prompt the user for permission to modify restricted
options. A response beginning with "Y", "y", "T", "t", or "1" will enable
modification access to restricted options and the function will return a
value of 1 (true). A response beginning with "N", "n", "F", "f", or "0" will
return a value of 0 (false). Any other response will cause the prompt to
be repeated.

reverse(s) Reverses all the characters in string s and returns the result.
reverse(l) Reverses all the elements in list l and returns the result.
right(s1,i[,s2]) Returns rightmost i characters of s1. If i is greater than length(s1)

the result is p added with s2. As much of s2 as is necessary will be
used; if s2 is too short it will be used multiple times. s2 defaults to a
space if it is omitted.

right(l1,i[,l2]) Returns rightmost i elements of l1. If i is greater than length(l1)
the result is padded with l2. As much of l2 as is necessary will be
used; if l2 is too short it will be used multiple times. l2 defaults to one
empty list element if it is omitted.

role Operate on role options.
set_channel(s,c) Modify the channel named by s with the channel options specified by

the optlist c. The channel will be created if it doesn't already exist.

Recipe language 4–17

Functions

set_option(s[,v]) Set option s (for options that take no value), or set option s to the
string value v. An error will occur if the specified option name is
invalid or matches multiple options.

set_options(o) Set zero or more options specified in optlist form. Option names and
values are taken from optlist o in the obvious way. An error will occur if
any of the specified option names are invalid or match multiple options.

set_statefile(v,s) Set the statefile variable v to the value s. The function returns true
if the delete operation was succesful; false if statefile support is not
enabled.

sign(i) Returns -1 if i < 0, 0 if i = 0, +1 if i > 0.
sort(l1[,i[,l2]]) Sorts the elements of l1 to be in ascending order if i <> 0 and

descending order if i = 0. i defaults to 1 if it is omitted. If l2 is present,
its elements are shifted in the same way as elements in l1 are shifted.

split(s[,c[,i]]) Produces a list of elements consisting of pieces of s delineated by
characters in c. If omitted, c defaults to a comma. If i is 0 or 1, zero
length elements are preserved; if i is 2, they are not. If omitted, i
defaults to 1.

split(l[,c[,i]]) Produces a list of elements consisting of pieces of elements of l
delineated by characters in c. If omitted, c defaults to a comma. If i
is 0, boundaries between the original elements aren't preserved and
zero length elements can be output; if i is 1, boundaries are preserved
and zero length elements can be output; if i is 2, boundaries aren't
preserved and zero length elements are omitted. If omitted, i defaults
to 1.

string(e) Converts e to a string. If e is already a string, it is returned unchanged.
If e is an integer, it is converted to a string. If e is a list, the string that
results from concatenating the elements of e is returned.

string(l,s) Converts the list l to a string, inserting the string s between each pair
of elements of l. So for instance string(["a","cd","e"],"01")
would return the string "a01cd01e".

string(i[,j[,k]]) Converts the integer i to a string, optionally padding with zeros (on
the left) so that the length of the string is j, and optionally outputting
the result in the radix specified by k. So for instance string(15,8,2)
returns 00001111.

strongrandom(n) Returns a string containing the specified number of bytes of random
value.

translate(s1,s2,s3) Interprets the string s1 as being in the character set specified by s2 and
returns a version translated into the character set specified by s3.

trim(s[,c]) Returns s with any trailing characters found in c removed. c defaults to
space and tab if omitted.

trim(l[,c]) Returns list l with any trailing characters found in c removed from
each element. c defaults to space and tab if omitted.

type(e) Returns "integer" if e evaluates to an integer, "string" if e evaluates
to a string, and "list" if e evaluates to a list.

ucase(e) Converts any lower case characters in e to upper case. If e is a number
it is converted to a string.

4–18 Messaging Server Reference

Configuration option access

unset_alias(s,v) New in 8.0.1.2. Remove the option or options specified in the string or
list v from the alias named s. Note that this function is unsuitable for
use on alias entries.

unset_channel(s,v) Remove the option or options specified in the string or list v from the
channel named s.

unset_option(s) Removes option s from the configuration. An error will occur if the
specified option name is invalid or matches multiple options.

validate_option(s1[,s2]) Validate the option named s1: that the option name is valid and, if the
optional value s2 is supplied, that the value is a valid value. Unlike
set_option, validate_option does not set the option to the
specified value: it merely checks validity.

warn(s) Print warning text s to the administrator's terminal, and update
the internal setting (which may be tested via continue) that a (an
additional) warning has occurred.

write_file(s1,s2) Writes the contents of string s2 into the file named by s1. msconfig
writes to the MTA configuration directory, IMTA_TABLE:, if s1 is
merely a file name with no patch. An error occurs if the file cannot be
opened or written. Line feeds should be used as line separators in the
string.

write_file(s1,l[,s2]) Writes the contents of the list l into the file named by s1. Each list
element written is terminated by the value of s2; line feed is the default
terminator if s2 isn't supplied. An error occurs if the file cannot be
opened or written.

write_optlist(o) Convert the optlist o to a series of "name=value" lines and return the
resulting string containing those lines. The string is in a format suitable
for writing to a file with write_file.

yesno(s1[,m[,s2]]) Prompt at the recipe administrator's terminal with prompt string s1.
A response of "y", "Y", "t", "T", or "1" will be accepted as meaning yes;
a response of "n", "N", "f", "F", or "0" will be accepted as meaning no;
these are the valid responses. m is an integer value to use as the default
if the administrator merely returns (NULL response). s2 is a warning
string to output if the administrator's input was not in the valid set of
responses.

4.7.1 Configuration option access
The primary purpose of the recipe language is to manipulate the various option settings in
a Messaging Server configuration. This functionality is provided by a number of separate
functions. These functions all accept either an option name or optlist containing option name/
value pairs as arguments. Some functions allow incomplete option names and/or wildcards
while others do not.

The existence of an option setting can be determined with the exists_option function. This
function accepts an option name string as an argument and returns a count of the number of
options set in the configuration that match the name. 0 (false) is returned if no options are set
that match the name. For example:

 exists_option("os_debug") -> 0 (os_debug is not currently set)
 exists_option("channel:tcp_*") -> 42 (42 options are set on tcp_ channels)

Recipe language 4–19

Configuration option access

As of MS 8.0.2.1, the default value for an option setting can be determined with the
get_default function. It returns the built-in default for the option. An empty string is
returned if the option has no built-in default value. An error occurs if the specified option does
not exist.

The list_names(s[,n]) function returns, as an optlist, a list of the options (and their values)
whose names begin with the specified string s. The optional integer second argument, n,
specifies whether or not to retain backslash characters (for quoting special characters) in the
options' values; the default is 0 (false).

The get_option function returns the value of a single option. An error will occur if the name
given matches multiple options or does not exist. An empty string will be returned in either
or two cases: if the specified option name is valid and the option is a no-value option which
is set, or if the specified option name is valid for a valued option which is not set. (So note
that get_option is not sufficient for checking whether a no-value option is set; instead use
exists_option to check on a whether or not a no-value option is set.)

 get_option("mm_debug") -> 0 (mm_debug is set to 0)
 get_option("os_debug") -> "" (os_debug, valued option, is not set)
 get_option("slave_debug") -> "" (slave_debug, no-value, may be set)
 exists_option("slave_debug") -> 0 (slave_debug not set)
 get_option("*_debug") -> <error> (multiple *_debug options)

The function get_options(s) returns an optlist containing the names and values of the
options with name s. (So note that unlike get_option, the result returned by get_options
has no ambiguity and differentiates between set no-value options vs. unset valued options.)
Note that when both role and instance flavors of an option are set get_options returns only
the instance flavor of the option.

The function set_option(s[,v]) sets the option named s for options that take no value,
or sets the option names s to the value v for options that do take a value. The function
set_options(o) sets the option-value pairs in the optlist o.

The unset_option(s) unsets (deletes) the option named by the string s. The
delete_options(l) function deletes (unsets) the options named in the list l.

New in MS 8.0.2, recipes support a resolve_option function. This function accepts a single
string argument which then undergoes the option resolution process. The result of that process
is then returned as a bit-encoded integer. The bits are:

Table 4.3 resolve_option return bits

Bit Value Meaning
0 1 Set if name resolved, clear if name invalid
1 2 Set if the string specified a valid option name, clear otherwise (Note that an

option string can specify the name of a group, in which case this bit will be
clear but bit 0 will be set.)

2 4 Set if option has been deleted and no longer has any effect
3 8 Set if option is restricted
4 16 Set if option is targeted for use in instances only

4–20 Messaging Server Reference

Configuration option access

The validate_option(s1[,s2]) function validates that the specified option name is valid,
and that the specified value is valid. It does not actually set the option to the specified value.
For instance:

validate_option("service:SMTP.enable","test") -> 0
validate_option("service:SMTP.enable","0") -> 1

The instance and role functions tell the recipe to set the specified flavor of option. The
default function tells the recipe to set options according to the option's own preferred flavor
(which note is role for all but a few options).

For enabling modification of restricted options, see also the -restricted switch to the run
command, or the restricted operation.

4.7.1.1 Configuration group access

In Unified Configuration, some options may be set under a named group. So there are function
to access/set/delete/etc. an entire such named group of options.

The add_group(g,c) function adds the group named (by the string value of) g with options
specified by the optlist c; the function returns 1 if this operation was successful, or 0 if
there was an error (such as in the case where the specified group name already existed). For
example, the call:

add_group("dispatcher.service:SMTP_SPECIAL",
 ["enable", "1",
 "tcp_ports", "28225",
 "image", "IMTA_BIN:tcp_smtp_server",
 "parameter", "CHANNEL=tcp_special"
 "logfilename", "IMTA_LOG:tcp_special_server.log"])

adds a Dispatcher service named SMTP_SPECIAL, which will be a "special" SMTP server
listening on port 28225 running the channel tcp_special.

The append_group(s,c) function appends to the group named (by the string value of) s
the options specified by the optlistc; the function returns 1 if this operation was successful,
or 0 if an error occurred. (The group will be created if it does not already exist; that is,
append_group on a previously non-existent group is not an error.)

The delete_group(s) function deletes the group named (by the string value of) s.

The exists_group(s) function returns 0 if the group named (by the string value of) s
exists, or the number of options set in the group if the group does exist.

The get_group(s) function returns the content of the group (the option names and values)
as an optlist.

The prepend_group(s,c) function prepends to the group named (by the string value of)
s the options specified by the optlistc; the function returns 1 if this operation was successful,
or 0 if an error occurred. (The group will be created if it does not already exist; that is,
prepend_group on a previously non-existent group is not an error.)

Recipe language 4–21

System information

The replace_group(s,c) function replaces the group named (by the string value of) s with
options specified by the optlistc; the function returns 1 if this operation was successful, or 0 if
there was an error (such as in the case where the specified group name does not already exist).

4.7.2 System information
New in 8.0.1.2. The get_system_info function provides access to various pieces of static
information about the system msconfig is running on. The function accepts a single case-
insensitive string as its only argument specifying the piece of information to return.

In the following table, the Messaging Server version is taken to be "a.b.c.d" and the product
build date is "yyyymmdd".

Table 4.4 get_system_info information items

Item Return
Type

Example
Value

Description

ms_build_date string "yyyymmdd" The date the current system was built from
source.

ms_build_date_int integer yyyymmdd The date the current system was built from
source.

ms_version string "a.b.c.d" Messaging Server version
ms_version_int integer aabbccddd Messaging Server version, expressed as a

single integer computed by the formula ((a
* 100 + b) * 100 + c) * 1000 + d. This form is
intended to be used in comparison operations.

ms_version_major string "a" Messaging Server major version.
ms_version_major_int integer a Messaging Server major version.
ms_version_minor string "b" Messaging Server minor version.
ms_version_minor_int integer b Messaging Server minor version.
ms_version_update string "c" Messaging Server update version.
ms_version_update_int integer c Messaging Server update version
ms_version_patch string "d" Messaging Server patch number.
ms_version_patch_int integer d Messaging Server patch number.
ms_version_build string "" Messaging Server build number.
ms_version_build_int integer Messaging Server build number.

4.7.3 msconfig information
New in 8.0.1.2. The get_msconfig_info function provides access to various pieces of
information about how msconfig was invoked and its current status.

The following information items are currently supported:

Table 4.5 get_msconfig_info information items

Item Return
Type

Example
Value

Description

4–22 Messaging Server Reference

Environment access

noprompt boolean false Returns true if msconfig was invoked with
the -noprompt switch.

statefile_name string file.state The name of the statefile specified with the -
statefile switch.

4.7.4 Environment access
The recipe language can find out the values of environment variables, or find file path
specifications using Messaging Server's basic environment variable values or (for the MTA)
special symbolic names.

The getenv(s) function returns the value of the environment variable named s, or the empty
string if no such environment variable is defined.

The get_path(s) function takes a string "server", "data", or "config" as argument,
returning the file path specification of the SERVERROOT, DATAROOT, or CONFIGROOT,
respectively.

The make_path(s) function will return a file path specification by converting any
environment variable or special symbolic name in the string argument s into its path
equivalent.

The get_option_modification_locations function will return a list of locations in the
current recipe where a configuration modification occurred. This action also clears the internal
list, so subsequent calls will only return any additional modifications that have occurred. An
empty list is returned if the configuration has not been changed by the current recipe.

4.7.5 msconfig information operations
The argc function returns the number of additional arguments given to the msconfig RUN
command.

The argv(n) function returns, as a string, the nth argument given to the msconfig RUN
command. The value n must be between 1 and argc inclusive.

The description(d) function sets a string to display when the recipe is listed by the
msconfig DIRECTORY command. Note that dmust be a literal string enclosed in quotes; it
cannot be an expression. When the recipe itself is executed, the description function does
nothing other than return the value of its argument d.

The keywords(l) function specifies keywords to display when the recipe is listed by the
msconfig DIRECTORY command.

4.7.6 File operations
Although recipes primarily operate directly on Messaging Server configuration data without
any need for explicit file operations, situations may arise where additional files need to be read
or written. Accordingly, a set of file manipulation functions is provided in the recipe language.

If no explicit path is given in the file name, the file location defaults to the config root directory.
Explicit paths may be specified or any of the following special prefixes may be used:

 IMTA_ROOT: -> <serverroot> "/"

Recipe language 4–23

Terminal I/O operations

 IMTA_LIB: -> <serverroot> "/lib/"
 IMTA_TABLE: -> <configroot> "/"
 IMTA_PROGRAM: -> <dataroot> "/site-programs/"
 IMTA_LOG: -> <dataroot> "/log/"
 IMTA_QUEUE: -> <dataroot> "/queue/"
 IMTA_HTTP: -> <dataroot> "/www/"

For manipulating paths in file names, see also the get_path and make_path functions.

The exists_file(s) function returns 1 if the file named by s exists, 0 if it doesn't.

Files may be read with read_file(s). The contents of the file named by s are returned as a
string. Line feeds are used as line delimiters in the string. For example:

 split(trim(read_file("a.a"),"\n"),"\n")

returns the contents of the file with each line as a list element and any trailing blank lines
removed.

There are two ways to write files. write_file(s1,s2) writes the contents of string s2 to the
file named by string s1. write_file(s1,l[,s2]) writes the contents of the list l into the file
named by s1. Each list element written is terminated by the value of s2; line feed is the default
terminator if s2 isn't supplied. In either form an error occurs if the file cannot be opened or
written.

(New in MS 8.0.1.2) The delete_file(s) function deletes the file named by the string s,
returning 1 if the delete operation was successful, or 0 if not.

Unless -trusted was specified for the msconfig invocation, the utility will check whether to
perform a requested delete_file operation:

Allow recipe to delete file [Y, N, A]?

and if such prompting is disallowed (-noprompt specified), will not execute the delete
operaiton and instead issue an error:

Delete_file not allowed to prompt for permission in -noprompt mode

4.7.7 Terminal I/O operations
The recipe language has a few terminal I/O primitives.

The print(s) operation prints a string to the terminal of the administrator executing the
recipe.

The warn(s) operation prints a warning string to the terminal of the administrator executing
the recipe, and updates the internal setting (which may be tested via continue) that a
warning (an additional warning) has occurred.

New in MS 8.0.2.3, warn without any arguments returns the number of warnings that have
been issued during the current run.

The error(s) operation issues a specified error string back to the administrator.

4–24 Messaging Server Reference

Statefile operations

The continue([s1[,s2]) operation asks the administrator whether to continue after a
warning. (Note that the prompt string argument s1 and default response string argument s2
are optional, with a default prompt string and empty response string, interpreted as false, used
they are omitted. So merely continue is also valid syntax.)

The yesno(s1[,m[,s2]]) operation asks the administrator to respond with a yes or no
response.

The read(s1[,s2[,s3]]) operation reads a string input from the terminal of the
administrator executing the recipe. s1 specifies the prompt to print on the terminal, s2
specifies a default to return if no value is entered or --noprompt was specified when
msconfig was invoked, and (new in 8.0.2.3) s2 specifies the name of a statefile variable whose
value is used as a default and updated with any value that's entered. The --statefile
switch must be specified on the msconfig command line for s2 to have any effect.

The read_password operation obtains a password string from the administrator executing
the recipe.

If the -restricted switch was specified on a run command, the restricted operation
merely returns a 1 unconditionally. But otherwise, the restricted operation prompts the
administrator for whether or not to enable modification access to restricted options.

4.7.8 Statefile operations
The functions exists_statefile, get_statefile, set_statefile, and
delete_statefile can be used to check the existence of, get, set, and delete statefile
variables, respectively. Note that exists_statefile returns -1 and the other functions
are no-ops if statefile suport is not enabled by specifying the --statefile switch on the
msconfig command line.

4.7.9 Alias creation and manipulation operations
Messaging Server 8.0.1.2 now provides a set of recipe functions to create and manipulate
aliases.

An MTA alias consists of a named set of option-value pairs, always containing one ore
more alias_entry options which specify the alias expansion addresses. A single alias is
represented in the recipe language using an optlist, and a number of functions are provided to
access and manipulate aliases. All of these functions accept the unquoted name of the alias as
the first argument. This name may be specified in any case and is converted to lower case.

Alias existence can be checked with exists_alias. A nonzero value is returned if the named
alias is already part of the configuration; zero if it isn't.

The contents of an alias definition can be retrieved as an optlist using the get_alias function.
For example, if the configuration has a users-prefix@example.com alias:

user-prefix@example.com: [prefix_text] Prefix text, user1@example.com, user2@example.com

The call get_alias("user-prefix@exmaple.com") will return an optlist:

["alias_prefix_text", "Prefix text",
 "alias_entry", "user1@example.com",

Recipe language 4–25

Channel creation and
manipulation operations

 "alias_entry", "user2@example.com"]

Note that alias options that do not accept a value will appear with a zero length string as the
value.

The add_alias function is used to add a new alias to the configuration. A second argument
is required specifying the various alias options as an optlist. An optional third parameter can
also be specified containing a list of alias entries; these are converted to alias_entry alias
options. An error is returned if the alias already exists. For example, the call:

 add_alias("list@example.com",
 ["envelope_from", "list-error@example.com"],
 ["list1@example.com, "list2@example.com])

adds this alias to the configuration:

list@example.com: [envelope_from] list-error@example.com, list1@example.com, list2@example.com

The replace_alias function is the same as add_alias, except that any alias with that
name that already exists will be removed prior to the addition.

The append_alias function is also the same as add_alias, except that specified alias
options and entries will be appended to any existing alias definition.

The preend_alias function is also the same as add_alias, except that specified alias
options and entries will be preended to any existing alias definition.

The delete_alias function deletes the named channel from the configuration. No operation
is performed if the alias doesn't exist.

The unset_alias function takes two arguments: The name of an existing alias and a list of
alias options to delete from it. Note that unset_alias is not designed to work on alias entries.

4.7.10 Channel creation and manipulation operations
An MTA channel consists of a named set of option-value pairs, usually containing an
official_host_name option. A single channel is represented in the recipe language using
an optlist, and a number of functions are provided to access and manipulate channels. All
of these functions accept the name of the channel as the first argument. This name may be
specified in any case and is converted to lower case.

Channel existence can be checked with exists_channel. A nonzero value is returned if the
named channel is already part of the configuration; zero if it isn't.

The contents of a channel definition can be retrieved as an optlist using the get_channel
function. For example, if the configuration has a tcp_tas channel:

tcp_tas deliveryflags 2 mustsaslserver smtp allowswitchchannel maytlsserver
tcp_tas-daemon

The call get_channel("tcp_tas") will return an optlist:

4–26 Messaging Server Reference

Channel creation and
manipulation operations

["official_host_name", "tcp_tas-daemon",
 "deliveryflags", "2",
 "mustsaslserver", "",
 "smtp", "",
 "allowswitchchannel", "",
 "maytlsserver", ""]

Note that channel options that do not accept a value appear with a zero length string as the
value.

The add_channel function is used to add a new channel to the configuration. A second
argument is required specifying the various channel options as an optlist. An error is returned
if the channel already exists. For example, the call:

 add_channel("tcp_aol", ["official_host_name", "tcp-aol",
 "single_sys", "",
 "randonmx", "",
 "noswitchchannel", "",
 "pool", "SMTP_POOL",
 "smtp", ""]);

adds this channel to the configuration:

tcp_aol single_sys randommx noswitchchannel pool SMTP_POOL smtp
tcp-aol

The fact that a channel is represented as an optlist makes it easy to add a channel based on an
existing one:

 add_channel("tcp_new",
 put_optlist(get_channel("tcp_local"),
 "official_host_name", "tcp-new"));

The replace_channel function is the same as add_channel, except that any channel with
that name that already exists will be removed prior to the addition.

The delete_channel function deletes the named channel from the configuration. No
operation is performed if the channel doesn't exist.

Finally, the set_channel function changes an existing channel. The second argument to
set_channel must be an optlist containing the channel options to set. Existing options will
be overridden; new options will be added. For example, given the channel:

tcp_intranet loopcheck maysaslserver mx pool SMTP_POOL \
 saslswitchchannel tcp_auth single_sys smtp \
 allowswitchchannel maytlsserver
tcp_intranet-daemon

The call:

Recipe language 4–27

Rewrite rule creation and
manipulation operations

 set_channel("tcp_intranet", ["master_debug", "",
 "nomx", "",
 "daemon", "router.example.com",
 "multiple", ""]);

will modify the channel to be:

tcp_intranet daemon router.example.com loopcheck master_debug \
 maysaslserver multiple nomx pool SMTP_POOL \
 saslswitchchannel tcp_auth single_sys smtp \
 allowswitchchannel maytlsserver
tcp_intranet-daemon

4.7.11 Rewrite rule creation and manipulation operations
MTA rewrite rules are represented in Unified Configuration a list of rule values under
the rewrite group. Each such rule value has a pattern and a template, separated by white
space. The recipe language supports a number of functions which operate on rewrite rules;
for rewrite rule values, such functions use an optlist specifying pattern-template pairs. For
instance, the call:

append_rewrites([".lmtp", "EF$U%$H.lmtp@lmtpcs-daemon",
 ".lmtp", "BF$U%$H@$H@lmtpcs-daemon"])

adds rewrite rules:

msconfig> show rewrite * .lmtp*
role.rewrite.rule = .lmtp EF$U%$H.lmtp@lmtpcs-daemon
role.rewrite.rule = .lmtp BF$U%$H@$H@lmtpcs-daemon

Note how, in contrast to many other recipe language function uses of optlists, when it comes
to the rewrite rule creation and manipulation functions, the optlist arguments used are not
specifying option-value pairs, but rather are specifying (an ordered rule list of) pattern-
template pairs.

The recipe language functions available specifically for creating or manipulating rewrite rules
are:

• append_rewrites(c)

• delete_rewrites(l)

• get_rewrites[(p[,t])]

• prepend_rewrites(c)

• replace_rewrites(c)

4.7.12 Mapping creation and manipulation operations

4–28 Messaging Server Reference

Mapping creation and
manipulation operations

An MTA mapping consists of a named and possibly annotated set of pattern-template pairs.
A single mapping is represented in the recipe language using an optlist, and a number of
functions are provided to access and manipulate mappings. All of these functions accept
the name of a mapping as the first argument. This name may be specified in any case and is
converted to upper case.

Mapping existence can be checked with exists_mapping. A nonzero value is returned if the
named mapping is already part of the configuration; zero if it isn't.

The contents of a mapping can be retrieved as an optlist using the get_mapping function. For
example, if the configuration has a PORT_ACCESS mapping:

PORT_ACCESS

! Handle internal IP addresse
 ||*|*|* C|INTERNAL_IP;$3|$Y$E
 * $NEXTERNAL

The call get_mapping("PORT_ACCESS") will return an optlist:

["", " Handle internal IP addresses\n",
 "*|*|*|*|*", "C|INTERNAL_IP;$3|$Y$E",
 "*", "$NEXTERNAL"]

Note that the comment appears as name-value pair with an empty string as the name.

The add_mapping function is used to add a new mapping to the configuration. A second
argument is required specifying the content of the mapping as an optlist. An error is returned
if the mapping already exists. For example, the call:

 add_mapping("test_mapping", ["a","b","c","d","","Last","e","f"]);

adds this mapping to the configuration:

TEST_MAPPING

 a b
 c d
! Last
 e f

The replace_mapping function is the same as add_mapping, except that if the mapping
already exists its contents will be replaced.

The delete_mapping function deletes the named mapping from the configuration. No
operation is performed if the mapping doesn't already exist.

Finally, the append_mapping and prepend_mapping functions add entries to an existing
mapping. The second argument to these functions must be an optlist containing the entries to
add. Both functions are equivalent to add_mapping if the specified mapping doesn't already
exist. For example, given the mapping:

Recipe language 4–29

Deployment map operations

TEST_MAPPING

 c d

then the calls:

 prepend_mapping("Test_Mapping", ["a","b"]);
 append_mapping("test_mapping", ["e","f"]);

will modify the mapping to be:

TEST_MAPPING

 a b
 c d
 e f

4.7.13 Deployment map operations
The deploymap recipe language function's semantics closely follow those of the
DEPLOYMAP msconfig command.

All of the deploymap recipe and msconfig support was added in the 8.0.1.1.0 release of
Messaging Server.

4.7.13.1 Add operations

 deploymap :add :deployment d

Adds deployment d to the deployment. Adding a deployment that already exists is a no-op.

 deploymap :add [:deployment d] :host h [:role r]

Adds host(s) h with role r to deployment d in the deployment map. h can be either a string or
a list. An error occurs if any of the hosts already exist. The current deployment is used if d is
not specified; if there is no current deployment the first deployment in the deployment map is
selected. A deployment with the default name of "site-01" will be created if no deployment
exists in the deployment map. No role will be associated with the hosts if r is not specified.

 deploymap :add [:deployment d] :host h :property p

Add property/properties p to host h in deployment d. Host h will be created if it does not
already exist. The current deployment is used if d is not specified; if there is no current
deployment the first deployment in the deployment map is selected. A deployment with the
default name of "site-01" will be created if no deployment exists in the deployment map.

 deploymap :add [:deployment d] :host h :property p :role r

4–30 Messaging Server Reference

Deployment map operations

The host h is created in deployment d with role r and properties p. The host must not already
exist. The current deployment is used if d is not specified; if there is no current deployment the
first deployment in the deployment map is selected. A deployment with the default name of
"site-01" will be created if no deployment exists in the deployment map.

All add operations return the number of modifications that were made to the deployment
map.

4.7.13.2 Create operations

 deploymap :create

Create a new, empty deployment map. Note that if you write this out using msconfig's
deploymap write command you will delete all your existing entries!

4.7.13.3 Delete operations

 deploymap :delete :deployment d

Deletes deployment d from the deployment map. Deleting a nonexistent deployment is a no-
op.

 deploymap :delete [:deployment d] :host h

Deletes host(s) h from deployment d. h can be either a string or a list. Deleting a nonexistent
host is a no-op. The current deployment is used if d is not specified; if there is no current
deployment the first deployment in the deployment map is selected.

 deploymap :delete [:deployment d] :host h :role

Delete any role associated with host(s) h in deployment d. Deleting a nonexistent role is a
no-op. An error occurs if host h does not exist. The current deployment is used if d is not
specified; if there is no current deployment the first deployment in the deployment map is
selected.

 deploymap :delete [:deployment d] :host h :property p

Delete any properties for host h in deployment d that match any of the glob-style wildcard(s)
p. Both p and h can be a string or a list. The current deployment is used if d is not specified; if
there is no current deployment the first deployment in the deployment map is selected.

All delete operations return the number of modifications that were made to the deployment
map.

4.7.13.4 Dump operation

 deploymap :dump

Returns a string containing an outline of the entire deployment map.

Recipe language 4–31

Deployment map operations

4.7.13.5 List operations

 deploymap :list :deployment [d]

Returns a list of all the deployments in the deployment map that match the pattern d. All
deployments are returned if d is omitted.

 deploymap :list [:deployment d] :host [h] [:online | :offline]

Returns a list of all of the hosts in deployment d which match the pattern glob-style pattern h.
The current deployment is used if d is not specified; if there is no current deployment the first
deployment in the deployment map is selected. All hosts are returned if h is not specified.

deploymap :list [:deployment d] [:host h] :role [r] [:online | :offline]

Returns a list of all the unique roles of the hosts in deployment d matching the glob-
style pattern h. The current deployment is used if d is not specified; if there is no current
deployment the first deployment in the deployment map is selected. r is an optional glob-style
pattern used to filter the roles that are returned. A list of all the roles associated with all of the
hosts is returned if :host h is not specified. Note that the expression:

 string(deploymap :list :host h :role)

can be used to obtain the role of host h as a string.

 deploymap :list [:deployment d] :host :role [r] [:online | :offline]

Returns an optlist containing a list of all the hosts in deployment d and their associated roles.
Hosts that do not have roles are not returned. The current deployment is used if d is not
specified; if there is no current deployment the first deployment in the deployment map is
selected. r is an optional glob-style pattern containing one or more wildcards or two or more
non-wildcard strings used to filter the roles that are returned.

Note that a sublist l of the first elements in an optlist t is easily extracted with a loop of the
form:

 l = []; loop {exitif t == []; l = pop(t); pop(t);}

 deploymap :list [:deployment d] :host :role r [:online | :offline]

Returns a list of all the hosts in deployment d with role r. r must not contain more than one
element or any glob-style wildcard characters; if it does an optlist is returned as described
above. The current deployment is used if d is not specified; if there is no current deployment
the first deployment in the deployment map is selected.

deploymap :list [:deployment d] [:host h] [:role r]
 :property [p] [:online | :offline]

4–32 Messaging Server Reference

Deployment map operations

Returns a list of property values for hosts matching h in deployment d and with a role
matching r. The current deployment is used if d is not specified; if there is no current
deployment the first deployment in the deployment map is selected. If :host h is not
specified the properties of all hosts are returned. No role check is performed if r is not
specified. p is an optional glob-style pattern used to filter the properties that are returned.

 deploymap :list [:deployment d] :host [:role r] :property p [:online | :offline]

Returns a list of hosts in deployment d which have properties matching p, and optionally, a
role matching r. The current deployment is used if d is not specified; if there is no current
deployment the first deployment in the deployment map is selected. p must be a string or list
of glob-style patterns.

In all of these operations the :online and :offline parameters will limit hosts to those
known to be online or offline, respectively.

4.7.13.6 Read operations

 deploymap :read s

Reads a JSON-format deployment map from string s.

4.7.13.7 Rename operations

 deploymap :rename n :deployment d

Renames deployment d to n. d must specify an existing deployment; n must be a nonempty
utf-8 string.

 deploymap [:deployment d] :rename n :host h

Renamed host h in deployment d to n. The current deployment is used if d is not specified; if
there is no current deployment the first deployment in the deployment map is selected. Host h
must already exist and n must be a valid domain name.

All rename operations return the number of modifications that were made to the deployment
map.

4.7.13.8 Set operations

 deploymap :set [:deployment d] :host h :role r

Sets the role for host(s) h in deployment d to r. h can be either a string or list. The specified
hosts must already exist in the deployment. The current deployment is used if d is not
specified; if there is no current deployment the first deployment in the deployment map is
selected.

All set operations return the number of modifications that were made to the deployment map.

4.7.13.9 Write operations

Recipe language 4–33

Optlist manipulation operations

 deploymap :write

Returns the contents of the current deployment map as a JSON-formatted string. Note that no
mechanism is provided in the recipe language to update the active deployment map; this can
only be done at the msconfig level.

4.7.14 Optlist manipulation operations
As previously described, an optlist is a list containing an even number of strings which are
interpreted as name-value pairs. A number of functions are provided to manipulate these sorts
of lists.

An optlist can be created and populated just like any other list. Alternately, the put_optlist
function can be used to add elements to an empty optlist. Optlists can also be read from files in
name=value format. For example:

 o = []; # Empty optlist
 o = ["A","B"]; # Optlist containing a single option A with value B
 o = ["A","C", "B", "D"]; Optlist containing two options A and B with values C and D
 o = put_optlist([], "A","C", "B", "D"); # Same as previous optlist
 o = read_optlist(read_file("optlist.txt"); # Read optlist from file optlist.txt

You can get option values from an optlist or check if a given option exists. For example, given
an optlist o = ["A", "C", "B", "D"], the following results would be returned:

 get_optlist(o, "A") -> "C"
 get_optlist(o, "B") -> "D"
 get_optlist(o, "E") -> ""
 exists_optlist(o, "A") -> 1
 exists_optlist(o, "N") -> 0

Options can be set or deleted from an optlist. Note that it is common to assign the results of
these functions back to the same optlist.

 o = put_optlist(o, "E", "F"); # Add option E with value F to optlist o
 o = delete_optlist(o, "A"); # Delete option A from optlist o

And in MS 8.0.1.3 or later:

 o = delete_optlist(o, ["A","B"]); # Delete option A with value B from optlist o

Optlists can be written out as name=value format files:

 write_file("optlist.txt", write_optlist(o));

4.7.15 LDAP operations
(New in MS 8.0.1) The recipe language can access LDAP. Several functions exist for such
operations.

4–34 Messaging Server Reference

Random value generation

The ldap_init(o) function initializes the built in LDAP client. It must be called prior to
using any of the other recipe language ldap_* functions.

By default, the LDAP client uses the current settings of the ugldaphost, ugldapbinddn,
ugldapbindcred, ugldapport, and ugldapusessl base options when it initializes. The
single argument o is an optlist specifying override values for any or all of these options. The
optlist may be empty. Repeated calls will shut down and reinitialize the LDAP client with new
settings. The LDAP client is shut down automatically when the recipe terminates.

The ldap_ldif(s[,f]) function applies the LDIF contained in the string s to an LDAP
directory. (Details of which LDAP directory -- and how to connect to it -- must previously be
established via an ldap_init call; attempting to call ldap_ldif before ldap_init will
result in an error.)

By default, any LDAP errors that occur attempting to perform the operation of applying the
LDAP will be treated as a recipe warning, but see bit 4096 of the optional flags argument f.
The optional flag argument f is a bit-encoded integer specifying flags; the currently defined
flag bits are:

Table 4.6 ldap_ldif optional flag argument bits

Bit Value Usage
0 1 If set, continute processing after any error.
1 2 If set, treat "entry exists" on add as success.
2 4 If set, allow no-such-object if hint present.
12 4096 If set, treat any LDAP error that occurs as a recipe error.

The ldap_ldif function returns an integer count of the number of successful modifications
performed.

(New in MS 8.0.1.1.0) The ldap_search function takes an optlist argument specifying at
least the basedn for the search, and optionally also the attribute to return (attrs), the scope
of the search, and a filter (filter) for the search. Valid values for the "scope" are: base,
onelevel (or one), subtree (or sub). An optional second integer argument specifies the
number of entries to return, and defaults to -1 (return all entries) if omitted. The function
returns an optlist containing the matching attribute-value pairs.

4.7.16 Random value generation
The strongrandom(n) function returns the specified number of bytes of random value. This
is a cryptographically strong generator.

The random(n) function returns a uniformly distributed random number between 0 and n-1.
The linear congruential generator described in "Random Number Generators: Good Ones Are
Hard To Find", S. Park and K. Miller, CACM 31 No. 10, pp. 1192-1201, October 1988 is used to
generate these numbers. The sequence is initially seeded with the sytem time.

An explicit 32 bit integer seed for the random function can be specified by calling the
randomseed(n) function. This may be useful for debugging purposes. A value of 0 will cause
the sequence to be reinitialized from the system clock.

4.7.17 Call-out to routine in external library

Recipe language 4–35

User-defined routines

The call_user(s1,s2,e[,e2...]) function lets recipes call out to routines in external
libraries. The argument s1 specifies the path to the external library (assumed to be in
IMTA_LIB if a full path is not provided); the argument s2 specifies the routine name; and
argument(s) e, e2, e3, etc., specify the arguments to provide to routine s2. The result of the
routine call is returned as the result of call_user.

call_user performs a call of the routine named s2 of the form:

s2(int argc, struct argv, char *reason, int *rlength);

This feature is intended for calling out to site-supplied external routines.

4.8 User-defined routines
As of the 8.0 release, the recipe language supports user-defined routines:

 sub routine(p1, ...) {
 ...
 return expression-1;
 }
 ...
 variable = routine(expression-1, ...);

Up to 20 parameters are allowed. Parameters are passed by value and evaluation is lazy: An
unused parameter is never evaluated. Parameters are only evaluated once, so it is easy to force
evaluation to occur at the beginning of the routine:

 sub f(x, y, z) {
 x; y; z;
 ...
 }

The entire parameter list can be omitted if the routine requires no parameters.

Routines may call themselves recursively, e.g.,

 sub factorial(n) {if n <= 1 {return 1;} else {return n * factorial(n-1);}}

Note, however, that since there is currently no mechanism for forward declarations of routines,
two or more routines cannot call each other recursively.

Routines can reference and modify global variables. Local variables can also be defined by
placing the my control command immediately prior to the first use of the variable:

 sub fib(n) {
 my s = [1, 1];
 my a = 1;
 my b = 1;
 loop {
 exitif --n < 2;
 my c = a + b;

4–36 Messaging Server Reference

Preprocessing Directives

 s .= c;
 a = b;
 b = c;
 }
 return s;
 }

Autoincrement, autodecrement, and the various augmented assignment operators (+=, .=,
and so on) are all allowed on parameters and local variables. So is the exchange operator :=:;
however, exchange cannot be used with a global variable on the right hand side and a local
variable or parameter on the left hand side.

4.9 Preprocessing Directives
The recipe language provides a very limited preprocessor facility as of the 8.0.1 release. The
following preprocessing directives are supported:

Table 4.7 Preprocessor Directives

Directive Description
%define name [value] Define the preprocessor symbol name. A optional value can be

specified but nothing presently makes use of such values.
%elifdef name Combines %else and %ifdef.
%elifndef name Combines %else and %ifndef.
%else Invert the processing state of the preceding %ifdef or %ifndef
%endif Terminates the innermost %ifdef or %ifndef processing block.

The processing state reverts to that of the enclosing block if there
is one.

%ifdef name Only process subsequent material up to a matching %else or
%endif if name is defined.

%ifndef name Only process subsequent material up to a matching %else or
%endif if name is not defined.

%include filename Include the content of the file filename in the recipe at the
point where the %include directive appears. If a path is not
provided in the file specification a series of paths will be checked:
(1) The paths to any nested include files, innermost first, (3)
The path to the recipe file specified in the RUN command, (4)
CONFIGROOT/recipes/, and SERVERROOT/lib/recipes/.
Checking (4) and (5) is new in MS 8.0.1.2.0.

%undef name Remove a previous definition of name.

Preprocessing directives must appear in column 1 to be recognized. Note that preprocessor
directives have lower precedence than quoted strings, so directives won't be recognized inside
of multiline quoted strings.

4.10 Random number generation
Messaging Server uses the special device /dev/urandom for direct generation of random
numbers on all platforms. The direct uses of random numbers include:

Recipe language 4–37

https://sockpuppet.org/blog/2014/02/25/safely-generate-random-numbers/

Random number generation

• The recipe language's strongrandom function.

• The strongrandom function provided for use in system-level sieves.

• Generation of authentication nonce values.

• Generation of initialization vectors when encrypting store message files

• Generation of recall/tracking secrets for message tracking and recall

• Generation of an internal key used for password obfuscation while preserving the ability to
perform comparisons in the msconfig differences command.

Note: Random numbers needed for SSL/TLS operations are generated by the underlying
cryptographic libraries.

Contrary to popular belief, /dev/urandom provides a high quality cryptographically secure
random number source on all modern versions of Linux and Solaris. And with the possible
exception of Solaris SPARC, the inclusion of entropy obtained from the HRNG provided by all
recent Intel CPUs eliminates any "low entropy" conditions on startup.

For the one remaining case of Solaris SPARC, anyone concerned about a lack of entropy on
startup can implement the following two procedures that preserve the entropy in the entropy
pool across reboots:

 echo "Initializing random number generator..."
 random_seed=/var/run/random-seed
 # Load and then save some entropy from the pool
 if [-f $random_seed]; then
 cat $random_seed >/dev/urandom
 else
 touch $random_seed
 fi
 chmod 600 $random_seed
 dd if=/dev/urandom of=$random_seed count=1 bs=512

This first procedure should be run as root at system startup. The second procedure is:

 # Carry a random seed from shut-down to start-up
 # Save some entropy from the entropy pool
 echo "Saving random entropy..."
 random_seed=/var/run/random-seed
 touch $random_seed
 chmod 600 $random_seed
 dd if=/dev/urandom of=$random_seed count=1 bs=512

This second procedure should be run as root at system shutdown as well as periodically.

Finally, a Messaging Server-specific trick that can be used to provide more entropy when
unified configuration is used is to hash the Messaging Server configuration file and use the
result as a source of entropy. This can be done with a command of the general form:

openssl dgst -sha512 /var/opt/sun/comms/messaging64/config/config.xml >/dev/urandom

4–38 Messaging Server Reference

Random number generation

This provides significantly more entropy than expected because every the configuration
generation utilities in Messaging Server tag each option value with a last modified time.

Recipe language 4–39

4–40

Chapter 5 Sieve filters
5.1 Sieve language ... 5–3

5.1.1 Brief overview of Sieve language elements .. 5–4
5.1.2 Sieve supported extensions .. 5–21

5.2 Sieve hierarchy .. 5–81
5.2.1 Sieve filters: types of scripts ... 5–81
5.2.2 Sieve filters: semantics of multiple scripts ... 5–82
5.2.3 Sieve filters: evaluation of multiple scripts .. 5–83

5.3 Sieve filters: implementation internals ... 5–88
5.4 Head of household Sieve filters ... 5–89

RFC 5228 (Sieve) (originally RFC 3028 (Sieve)), later updated by various extensions and
proposed extensions, defined a language for specifying processing of messages appropriate
for performing upon message delivery. Such processing might include: filing those messages
meeting specified criteria into special folders rather than simply delivering into the INBOX,
 redirecting (so-called "forwarding") messages meeting specified criteria to additional
recipients, setting IMAP flags for messages meeting specified criteria, generating new
notification messages when certain sorts of messages are delivered, returning "vacation"
messages, discarding messages matching specified criteria, etc.

The MTA supports a hierarchy of Sieve filters applicable to messages. At the user level and
domain level, this includes user personal Sieve filters, so-called "head of household" or
"parental" Sieve filters, and domain level (domain wide) Sieve filters. And certain user LDAP
attributes are interpreted by the MTA as specifying a Sieve "vacation" action---so essentially
converted on-the-fly into a Sieve pseudo-script---and then merged with whatever other,
explicit, user Sieve actions apply. The MTA also supports system (MTA) level Sieve filters,
including channel level Sieve filters (for either or both of destination channels and source
channels) and an MTA-wide Sieve filter.

The MTA's spam/virus filter package integration also takes the form of Sieve filter scriptlets,
where the MTA is configured to interpret possible spam/virus filter package verdicts as
requests to apply specified Sieve filter actions.

An important (and rather complex) topic is the interaction and hierarchy of how the MTA
merges these multiple "levels" of Sieve scripts (and pseudo-scripts), and which Sieve filter
actions take precedence, when multiple levels of Sieve script apply to a message. See the Sieve
hierarchy topic for further discussion.

The MTA evaluates and applies applicable Sieve scripts (per its Sieve hierarchy rules) during
message enqueue processing. While system-level Sieve scripts are often applicable (depending
upon type and configuration) early in a message's lifetime, such as upon initial message
submission to an MTA, user-level Sieve scripts for local recipients tend to be applicable instead
at the time of enqueue to a delivery channel (enqueue to an ims-ms channel or tcp_lmtpcs*
channel).

A separate and different use of Sieve filters is available to the Message Store, for message
expiration purposes. If enabled with the expiresieve Message Store option, the Message
Store can use Sieve filter tests to determine which messages to expire. Besides using Sieve filter
tests in normal expiration rules (expiration rules defined via either Message Store expirerule
options or for greater flexibility and performance store.expirerule files), new in MS 7.0.5
the imexpire utility also supports invoking spam/virus filter packages to scan messages post-

Sieve filters 5–1

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc3028

delivery for spam or virueses, integrating application of the verdicts from such spam/virus
filter package via Sieve filter scriptlets.

5–2 Messaging Server Reference

Sieve language

5.1 Sieve language
The Sieve filter language was originally defined in RFC 3028 (Sieve: A Mail Filtering
Language), since updated by RFC 5228 (Sieve: An Email Filtering Language). The Sieve
language provides a way to analyze Internet format messages (RFC 822 messages), and
perform processing appropriate for performing upon message delivery. Such processing might
include: filing those messages meeting specified criteria into special folders rather than simply
delivering into the INBOX, redirecting (so-called "forwarding") messages meeting specified
criteria to additional recipients, setting IMAP flags for messages meeting specified criteria,
generating new notification messages when certain sorts of messages are delivered, returning
"vacation" messages, discarding messages matching specified criteria, etc. Additional RFCs,
proposed extensions, and MTA-private extensions, have further extended and modified the
Sieve language; see Sieve supported extensions for a list.

The RFCs defining standard Sieve features, and the Internet drafts for proposed Sieve
extensions, are the most definitive resource for undering Sieve language syntax. For RFCs, see

http://tools.ietf.org/rfc/

and for Internet drafts, search in the "Individual Submissions" area at

http://tools.ietf.org/id/

Here follows a very brief overview of Sieve.

A Sieve script consists of a sequence of commands. Commands are tests, actions, or control
structures. (There are some special cases in the MTA's Sieve implementation, as for instance
the MTA allows "size" to be used not only in its standard capacity as a test, but also as a
function call. And new in MS 8.0, the MTA supports private operators "memcache" and
"metermaid" which have uses both as actions and as tests.) Many actions and tests may take
arguments, both positional and tagged, or have modifiers.

The values in Sieve scripts are generally strings or non-negative integers. However, values
are also subject to a few alternate forms; see in particular the variables and encoded-
character extensions. And the MTA's Sieve implementation supports use of signed integers
(and in particular, negative integers). Furthermore, the MTA's Sieve implementation supports
the use of expressions in places where the base Sieve specification expects values.

Many Sieve extensions, both standard and at proposal stage, plus additional extensions
private-to-the-MTA, are supported by the MTA, adding various additional actions, commands,
and control structures to the base Sieve language. Extensions, especially standardized
extensions, generally need to be enabled using a "require" control structure. An attempt to
use an invalid action, test, or control structure will result in an "Undefined function or
variable "name" referenced" error. As of MS 7.0, the MTA supports the Sieve "ihave"
extension, which allows Sieve scripts to test which extensions are available. An attempt
to "require" an unsupported or unenabled Sieve extension will result in an "Unknown
function required: name" error. (Such errors are reported in an email message to the
Sieve "owner" -- the user to whom the Sieve belongs in the case of user-level Sieves, or the
postmaster in the case of system-level Sieves.)

Note that in addition to supporting private extensions, more generally the MTA also supports
an extended Sieve syntax, including allowing expressions where Sieve expects arguments, and
 allowing assignment statements. The MTA also supports extending the Sieve language via

Sieve filters 5–3

https://tools.ietf.org/html/rfc3028
https://tools.ietf.org/html/rfc3028
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc822

Brief overview of Sieve language
elements

custom tests defined via MTA mapping tables. And because the MTA's Sieve implementation
is built on top of the MTA's implementation of string and mathematical operation processing,
the MTA's Sieve implementation supports some string functions and mathematical functions
(and supports additional numeric forms, such as negative integers) not part of the base Sieve
specification.

Note that as the Sieve filter language has been undergoing rather rapid development, support
for additional language elements will likely be added in future. See release notes for current
versions of the MTA software for notices of additional language element support.

5.1.1 Brief overview of Sieve language elements
For convenience, Sieve language elements provides a tabular overview of Sieve language
elements, grouped into:

• Control structures,
• Actions,
• Tests,
• Functions,
• Values,
• ADDRESS-PARTS,
• BODY-TRANSFORMS,
• COMPARATORS,
• DATE-PARTS,
• ENVELOPE-PARTS,
• ENVIRONMENT-ITEMS,
• MATCH-TYPES, and
• MIMEOPTS.

Sieve language elements summarizes the basic Sieve language elements (but not the
subelements that are standard under an element), plus any supported extension elements and
extension subelements. For full descriptions of Sieve language elements, see the referenced
RFCs and drafts. In Table of Sieve language elements, arguments/values are shown in italics,
optional elements are enclosed in square brackets ([]), choices are enclosed in angle brackets
(<>) with the distinct choices separated by the forward slash character (/), default choices
are shown in bold type, and optional repetition of an element is indicated with the asterisk
character (*).

Table 5.1 Sieve language elements
Element syntax

 Modifier Source Restrictions Main capability Description

 Modifier Additional capability

Control structures

{...} RFC 5228 Block of commands

error string RFC 5463 require "ihave"; Terminate Sieve script with runtime error

foreverypart [:processnestedmessages | :retainnestedmessages] [:name string] command-block

 RFC 5703 require
"foreverypart";

(New in MS 8.0) Loop through the MIME parts of a message

 :name RFC 5703 Specify a name for this foreverypart loop for reference in
enclosed break or continue statements

 :processnestedmessagesPrivate (New in 8.1) Process the inner parts of any nested messages
(default)

 :retainnestedmessages Private (New in 8.1) Treat nested messages as leaf parts

 break [:name string] RFC 5703 (New in MS 8.0) Break out of a foreverypart loop

 :name RFC 5703 Terminate closest enclosing loop having specified name

5–4 Messaging Server Reference

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5463
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703

Brief overview of Sieve language
elements

 continue [:name string] Private (New in MS 8.0) Pass control to the bottom of the
foreverypart loop

 :name RFC 5703 (New in MS 8.0) Pass control to the bottom of the closest
enclosing foreverypart loop having specified name

loop [exitif expression]* [nextif expression]* command-block

 Private system-level General loop

 exitif Private system-level Exit a loop structure

 exitif Private system-level (New in 8.0.1.3) Proceed to the next iteration of the loop
structure

if test command-block [elsif test command-block]* [else command-block]

 RFC 5228 Branch-on-condition control structure

 elsif test command-block RFC 5228 Next case of branch-on-condition structure

 else test command-block RFC 5228 Final case of branch-on-condition structure

require capability-list RFC 5228 strict_require MTA option Declare that a Sieve script may use the named extension(s)

stop RFC 5228 End processing

sub name[(variables-list)] {...}

 Private system-level (New in MS 8.0) Define a subroutine

 my var-name [:= value] Private (New in MS 8.0) Declare a variable is local

 return value Private (New in MS 8.0) Exit subroutine, returning value

Actions

addconversiontag string-or-list

 Private system-level System-level Sieve action to add the specified conversion
tag(s) to the message

addflag [variable-name] list-of-flags

 RFC 5232 (max_variables MTA option, if
using optional variable argument)

require
"imap4flags";
(or require
["imap4flags",
"variables"];
if using optional
variable argument)

Add the specified IMAP flag(s) to the message

addheader [:last] header-field-name value-string

 RFC 5293 max_addheaders MTA option Add the specified header line (by default, at the beginning of
the existing message header)

 :last RFC 5293 Add the specified header line at the end of the existing
message header

 :replace Private Add the specified header line, removing any previously
present such header line(s)

addprefix string

 Private Add prefix text to the beginning of the first plain text part of
the message

addsuffix string

 Private Add suffix text to the end of the first plain text part of the
message

addtag string

 Private Add a tag (prefix text) to the Subject: header line

adjustcounter [:channel channel-name] [:duplicate] counter-name [value]

 Private system-level (New in MS 8.0) System-level Sieve action to adjust value of a
system Sieve accessible MTA counter

 :channel Private system-level Name of channel, one of whose counters is to be adjusted; the
current source channel is assumed if no channel is explicitly
specified

 :duplicate Private system-level By default, "adjustcounter" is suppressed if the Sieve
script is reevaluated (as when a Sieve script that uses an
envelope "To" test applies to a message addressed to multiple
recipients); specifying the " :duplicate" modifier means
that the " adjustcounter" action will be performed even
upon reevaluation

capture [:dsn / :message / :journal] [:header] repository-address

 Private system-level+ Capture a message copy for legal intercept, archival, message
replay, or similar purposes

 :dsn Private system-level Generate an encapsulated (DSN format) capture message;
":dsn" is the default

Sieve filters 5–5

https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5232
https://tools.ietf.org/html/rfc5293
https://tools.ietf.org/html/rfc5293

Brief overview of Sieve language
elements

 :header Private system-level Capture message contains only the header of the original
message, not the body; cannot be combined with ":message"

 :journal Private system-level Generate a MS Exchange "journal" format capture message

 :message Private system-level Generate a capture message as a pure, unencapsulated
message

debug list-or-string

 Private mm_debug MTA option Output the specified debug string; when mm_debug is 2
or more, the string is output to a debug log file, or with
imsimta test -expression -mm -debug=2 the
specified string is output to the terminal

deleteheader [:index value [:last]] [MATCH-TYPE] [COMPARATOR] header-field-name-string [value-patterns-list]

 RFC 5293 require
"editheader";

 Delete the specified header line; (note that per RFC 5293,
attempts to delete Received: or Auto-submitted: header lines
will be ignored). As of MS 8.1.0.1, glob-style wildcards may
be used in the field name.

 :index RFC 5293 Separate though equivalent to the RFC 5260 ":index"
MATCH-TYPE: attempt to match (and hence potentially
delete) only exactly the specified occurrence of the specified
header line, by default starting counting from the beginning
of the message header

 :last RFC 5293 For the ":index" modifier, count backwards from the end of
the message header

discard [log-string]

 RFC 5228, plus
private logging
argument

filter_discard and
log_filter MTA options,
logging channel option

 Discard message (do not deliver, just delete); a log-string may
be specified to be included in the log_filter field in MTA
message transaction log entries

ereject reason-string

 RFC 5429 enable_sieve_ereject MTA
option

require
"ereject";

Refuse message during SMTP transaction (or generate DSN if
SMTP level rejection is not possible); note that use of non-US-
ASCII characters in the reason-string prevents the SMTP level
rejection

extracttext [MODIFIER] [:first number] variable-name

 RFC 5703 max_variables MTA option require
["extracttext",
"foreverypart",
"variables"];

(New in MS 8.0) Store extracted message text into a variable

 :first RFC 5703 Extract only the first N characters of the current MIME body
part into a variable

 :encodeurl RFC 5435 In a variablesset command or an extracttext
command, perform percent-encoding (as per RFC 3986) of the
string value

 :length RFC 5229 Decimal number of characters in the extracted string,
converted to a string

 :lower RFC 5229 Convert upper case characters to lower case

 :lowerfirst RFC 5229 Convert first character to lower case if it is a letter and upper
case; rest of extracted string left unchanged

 :quoteregex Private In a variablesset command or extracttext command,
backslash quote any characters requiring quoting for regex,
namely asterisk, question mark, or backslash (*, ?, \)

 :quotewild Private Prefix "*", "?", "\" characters with "\"

 :quotewildcard RFC 5229 Prefix "*", "?", "\" characters with "\"

 :upper RFC 5229 Convert lower case characters to upper case

 :upperfirst RFC 5229 Convert first character to upper case if it is a letter and lower
case; rest of extracted string left unchanged

fileinto folder-name

 RFC 5228 max_fileintos MTA option,
fileinto and flagtransfer
channel options

require
"fileinto";

Deliver into specified folder

 :copy RFC 3894 require "copy"; Modifies the fileinto and redirect actions so that the
action is performed without affecting Sieve's "implicit keep"

 :flags RFC 5232 require
"imap4flags";

Used with keep or fileinto to deliver the message with
exactly the specified IMAP flag(s)

 :owner Private Do the "fileinto" to the Sieve owner's address, rather than
to the user's address; cases where the Sieve owner is different
than the user on whose behalf the Sieve is being applied
(hence cases where this argument would be relevant) might
be "head of household" Sieves or system Sieves, when one
might want to perform a "fileinto" to a folder belonging
to the "head of household" or postmaster, respectively, rather
than to a folder belonging to the original message recipient

5–6 Messaging Server Reference

https://tools.ietf.org/html/rfc5293
https://tools.ietf.org/html/rfc5293
https://tools.ietf.org/html/rfc5293
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5293
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5429
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc3894
https://tools.ietf.org/html/rfc5232

Brief overview of Sieve language
elements

hold Private system-level+ When specified in a system-level Sieve script, sideline a
message as a .HELD file in the MTA queue area; ignored (no
error) in user-level Sieve scripts

importanceadjust value-string

 Private Set or adjust a message's importance

jettison [log-string]

 Private filter_jettison and
log_filter MTA options,
logging channel option

require
"jettison";

Non-overridable discard; a log-string may be specified to
be included in the log_filter field in MTA message
transaction log entries

keep RFC 5228 Deliver message "normally"

 :flags RFC 5232 require
"imap4flags";

Used with keep or fileinto to deliver the message with
exactly the specified IMAP flag(s)

memcache Private memcache_host,
enable_sieve_memcache MTA
options

 (New in MS 8.0) Used as an action to manipulate data via
the memcache protocol; used as a test to access data via the
memcache protocol

 :add [:host host-string] [:tableprefix prefix-string] [:duplicate] [:timeout timeout-number] key-string value-string

 Private Add a new entry with the specified key, value, and timeout.
The operation only succeeds if the entry does not already
exist. The operation returns TRUE if the entry is added
successfully, FALSE if it is not.

 :adjustdown value [:host host-str] [:tableprefix prefix-str] [:duplicate] [:quotatimeout quotatimeout-num [:penalize]] [:timeout timeout-num] key-str

 Private Decrement the entry with the specified key by the specified
adjustment value. The entry must be an unsigned integer
written in string form or a throttle entry.

 :adjustup value [:host host-str] [:tableprefix prefix-str] [:duplicate] [:quotatimeout quotatimeout-num [:penalize]] [:timeout timeout-num] key-str

 Private Increment the entry with the specified key by the specified
adjustment value. The entry must be an unsigned integer
written in string form or a throttle entry.

 :append [:host host-string] [:tableprefix prefix-string] [:duplicate] key-string value

 Private Append the specified value to the entry with the specified
key. (Returns TRUE if the operation is successful, FALSE if it
is not.)

 :fetch [:host host-string] [:tableprefix prefix-string] key-string

 Private Fetches the value of the entry with the specified key, or
return an empty string if the entry doesn't exist. For throttle
or reservation entries the current hit or reservation count,
respectively, is returned.

 :prepend [:host host-string] [:tableprefix prefix-string] [:duplicate] key-string value-string

 Private Prepend the specified value to the entry with the specified
key. (Returns TRUE if the operation is successful, FALSE if it
is not.)

 :remove [:host host-string] [:tableprefix prefix-string] [:duplicate] [:lockout lockout-numeric] key-string

 Private Remove the entry with the specified key. (Returns TRUE if
the operation is successful, FALSE if it is not.)

 :replace [:host host-string] [:tableprefix prefix-string] [:timeout timeout-value] key-string value-string

 Private Update the value and timeout of an (existing) entry. (Returns
TRUE if the operation is successful, FALSE if it is not.)

 :store [:host host-string] [:tableprefix prefix-string] [:timeout timeout-value] key-string value-string

 Private Creates a new entry or updates an existing entry with the
specified key, setting the entry to have the specified value and
timeout. (Returns TRUE if the operation is successful, FALSE
if it is not.)

metermaid Private enable_sieve_metermaid
MTA option

 (New in MS 8.0) Used as an action to manipulate data
stored in MeterMaid; used as a test to access data stored in
MeterMaid

nonotify Private system-level System-level Sieve action to suppress all applications of
either form of notify action

notify :method "email" [:id string] :options recipient-addr [subject-str] [< :days / :hours / :seconds > num] [:low / :normal / :high] [:mime] [:message
message-str]

 draft-martin-
sieve-notify-01

max_notifys MTA option require
"notify";

Generate a new message, typically some form of notification
message

 :high draft-...-01 Urgent priority

 :id draft-...-01

 :low draft-...-01 Non-urgent priority

 :method draft-...-01 The type of notification to generate: only "email" is
supported

 :normal draft-...-01 Normal priority

Sieve filters 5–7

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5232
https://tools.ietf.org/html/draft-martin-sieve-notify-01
https://tools.ietf.org/html/draft-martin-sieve-notify-01

Brief overview of Sieve language
elements

 :options draft-...-01 :method-specific options; for the "email" method, the
option value is the recipient email address to which to send
the generated notification

 :echo Private

 :mime Private The specified message body is a MIME entity, including
MIME headers as well as content

 :days Private notify_minimum_timeout,
notify_maximum_timeout,
and notify_timeout_default
MTA options

 Specify duplicate notification timeout in units of days

 :hours Private notify_minimum_timeout,
notify_maximum_timeout,
and notify_timeout_default
MTA options

 Specify duplicate notification timeout in units of hours

 :seconds Private notify_minimum_timeout,
notify_maximum_timeout,
and notify_timeout_default
MTA options

 Specify duplicate notification timeout in units of seconds

notify [:from string] [:importance < "1" / "2" / "3" >] [:options string-list] [:mime] [:message string] method-string

 RFC 5435 max_notifys,
notify_ignore_errors MTA
options

require
"enotify";

Generate a new message, typically some form of notification
message

 :fcc draft-ietf-extra-
sieve-fcc-02.txt

 Specify mailbox to receive copy of any generated notification

 :from RFC 5435 Specify author (From address) of notification

 :importance RFC 5435 Specify priority, where 1 corresponds to urgent priority, 2
corresponds to normal priority, and 3 corresponds to non-
urgent priority; the default is 2 (normal)

 :options RFC 5435

 :message RFC 5435

 :echo Private

 :mime Private The specified message body is a MIME entity, including
MIME headers as well as content

 :days Private notify_minimum_timeout,
notify_maximum_timeout,
and notify_timeout_default
MTA options

 Specify duplicate notification timeout in units of days

 :hours Private notify_minimum_timeout,
notify_maximum_timeout,
and notify_timeout_default
MTA options

 Specify duplicate notification timeout in units of hours

 :seconds Private notify_minimum_timeout,
notify_maximum_timeout,
and notify_timeout_default
MTA options

 Specify duplicate notification timeout in units of seconds

novacation Private system-level System-level Sieve action to suppress all applications of the
vacation action

override Private require
"override";

(New in MS 8.0) Mark this Sieve script as determining the
disposition of a message

redirect [MODIFIERS] address

 RFC 5228 max_redirects,
max_redirect_addresses
MTA options

 "Forward" message to specified recipient address(es)

 :copy RFC 3894 require "copy"; Modifies the fileinto and redirect actions so that the
action is performed without affecting Sieve's "implicit keep"

 :keepmailfrom Private Retain original envelope FROM address on redirect;
:keepmailfrom is the default unless :notify is specified
in which case the default switches to :resetmailfrom

 :list RFC 6134 SIEVE_EXTLISTS mapping table,
max_redirect_addresses
MTA option

require
"extlists";

Externally stored list of addresses to which to forward with
redirect action

 :noresent Private sieve_redirect_add_resent
MTA option

 Do not add Resent-*: header lines upon redirect

 :notify RFC 6009 require
"redirect-dsn";

Set message's NOTIFY parameter on redirect

 :resent Private sieve_redirect_add_resent
MTA option

 Add Resent-*: header lines upon redirect

 :resetmailfrom Private Reset envelope FROM address to Sieve owner on redirect

 :ret RFC 6009 require
"redirect-dsn";

Set message's NOTIFY RET (return-of-content) parameter on
redirect

5–8 Messaging Server Reference

https://tools.ietf.org/html/rfc5435
https://datatracker.ietf.org/doc/draft-ietf-extra-sieve-fcc
https://datatracker.ietf.org/doc/draft-ietf-extra-sieve-fcc
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc3894
https://tools.ietf.org/html/rfc6134
https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc6009

Brief overview of Sieve language
elements

redis Private redis.hostlist, redis.port,
redis.servicename, and
enable_sieve_redis MTA
options

 (New in MS 8.0.2.3) Used as an action to manipulate data via
the redis protocol; used as a test to access data via the redis
protocol

 :add [:set] [:sortedset] [:score score] [:tableprefix prefix-string] [:duplicate] [:timeout timeout-number] key-string value-string

 Private Add a new entry with the specified key, value, and timeout.
The operation only succeeds if the entry does not already
exist. The operation returns TRUE if the entry is added
successfully, FALSE if it is not. When a set or sorted set is
specified the entry is added to the set; if the set doesn't exist it
will be created with the single specified. A score of 0 is used
if no score is specified for a sorted set entry.

 :adjustdown value [:tableprefix prefix-str] [:duplicate] [:quotatimeout quotatimeout-num [:penalize]] [:timeout timeout-num] [:sortedset] key-str [set-
member]

 Private Decrement the entry with the specified key by the specified
adjustment value. The entry must be an integer written in
string form, a throttle entry, or a sorted set. Note that set-
member can only be specified if :sortedset is also specified.
The adjusted value is returned.

 :adjustup value [:tableprefix prefix-str] [:duplicate] [:quotatimeout quotatimeout-num [:penalize]] [:timeout timeout-num] [:sortedset] key-str [set-
member]

 Private Increment the entry with the specified key by the specified
adjustment value. The entry must be an integer written in
string form, a throttle entry, or a sorted set. Note that set-
member can only be specified if :sortedset is also specified.
The adjusted value is returned.

 :append [:tableprefix prefix-string] [:duplicate] key-string value

 Private Append the specified value to the entry with the specified
key. (Returns TRUE if the operation is successful, FALSE if it
is not.)

 :fetch [:set] [:sortedset] [:withscores] [:tableprefix prefix-string] key-string

 Private Fetches the value of the entry with the specified key, or
return an empty string if the entry doesn't exist. For throttle
or reservation entries the current hit or reservation count,
respectively, is returned. Set and sorted set members
are returned as lists. :withscores in conjunction with
:sortedset causes set members and their associated scores
to be returned as pairs in the list.

 :remove [:tableprefix prefix-string] [:duplicate] key-string

 Private Remove the entry with the specified key. (Returns TRUE
if the operation is successful, FALSE if it is not.) Note that
:remove works regardless of data type; there is no need
to specify additional parameters when dealing with sets or
sorted sets.

 :replace [:tableprefix prefix-string] [:timeout timeout-value] key-string value-string

 Private Update the value and timeout of an (existing) entry. (Returns
TRUE if the operation is successful, FALSE if it is not.)

 :store [:set] [:sortedset] [:score score] [:tableprefix prefix-string] [:timeout timeout-value] key-string value-string

 Private Creates a new entry or updates an existing entry with the
specified key, setting the entry to have the specified value and
timeout. (Returns TRUE if the operation is successful, FALSE
if it is not.) When a set or sorted set is specified the entry
is added to the set; if the set doesn't exist it will be created
with the single specified. A score of 0 is used if no score is
specified for a sorted set entry.

refuse string

 Private ++ require
"refuse";

Refuse message, at SMTP level if possible, falling back to
generating MDN

reject string

 RFC 5429 require
"reject";

Refuse message

removeconversiontag string-or-list

 Private system-level System-level Sieve action to remove the specified conversion
tag(s) from the message

removeflag [variable-name] list-of-flags

 RFC 5232 (max_variables MTA option, if
using optional variable argument)

require
"imap4flags";
(or require
["imap4flags",
"variables"];
if using optional
variable argument)

Remove the specified IMAP flag(s) from the message

Sieve filters 5–9

https://tools.ietf.org/html/rfc5429
https://tools.ietf.org/html/rfc5232

Brief overview of Sieve language
elements

replaceheader [:index value [:last]] [:newname header-field-name-str] [:newvalue string] [COMPARATOR] [MATCH-TYPE] header-field-name-str [value-patterns-list]

 draft-degener-
sieve-
editheader-00

 require
"editheader";

Replace a header line

 :index draft-...-00 Separate though equivalent to the RFC 5260 ":index"
MATCH-TYPE: attempt to match (and hence potentially
replace) only exactly the specified occurrence of the specified
header line, by default starting counting from the beginning
of the message header

 :last draft-...-00 For the ":index" modifier, count backwards from the end of
the message header

 :newname draft-...-00 Change the name of all matching header fields to the
specified new name

 :newvalue draft-...-00 Change the value of all matching header fields to the
specified new value

set [MODIFIERS] variable-name string-value

 RFC 5229 max_variables MTA option require
"variables";

Set a variable to a value

 :encodeurl RFC 5435 In a variables set command, perform percent-encoding
(as per RFC 3986) of the string value

 :length RFC 5229 Decimal number of characters in the value string, converted
to a string

 :lower RFC 5229 Convert upper case characters to lower case

 :lowerfirst RFC 5229 Convert first character to lower case if it is a letter and upper
case; rest of string left unchanged

 :quoteregex Private In a variables set command, backslash quote any
characters requiring quoting for regex, namely asterisk,
question mark, or backslash (*, ?, \)

 :quotewild Private Prefix "*", "?", "\" characters with "\"

 :quotewildcard RFC 5229 Prefix "*", "?", "\" characters with "\"

 :upper RFC 5229 Convert lower case characters to upper case

 :upperfirst RFC 5229 Convert first character to upper case if it is a letter and lower
case; rest of string left unchanged

setconversiontag string-or-list

 Private system-level System-level Sieve action to set the message to have exactly
the specified conversion tag(s)

setenvelopefrom address-string-or-list

 Private system-level (New in MS 8.0) System-level Sieve action to override a
message's original envelope From address

setflag [variable-name] list-of-flags

 RFC 5232 (max_variables MTA
option if using variables; with
LMTP delivery, see also the
flagtransfer channel option)

require
"imap4flags";
(or require
["imap4flags",
"variables"]; if
using variables)

Set the message to have exactly the specified IMAP flag(s)

setmtpriority integer-or-string

 Private system-level (New in MS 8.0) System-level Sieve action to set a message's
MT-PRIORITY

setnotify string-or-list

 Private system-level System-level Sieve action to set the DSN NOTIFY parameter
(defined in RFC 3461); the value may be the string "NEVER",
or one (or a list) of the strings "FAILURE", "SUCCESS",
"DELAY"

setoperation < "SUBMIT" / "PASSTHROUGH" / "RELAY" / "DEFAULT" >

 Private system-level (New in MS 8.0) System-level Sieve per-recipient override of
type of enqueue operation being performed

setpriority string-or-numeric-priority-value

 Private system-level System-level Sieve action to override message's effective
processing priority

setreturn < "FULL" / "HDRS" / "HEADERS" >

 Private system-level System-level Sieve action to set the DSN RET parameter
(defined in RFC 3461)

spamadjust numeric-value-string

 Private Set a message's "spam level"

transactionlog string-or-list

5–10 Messaging Server Reference

https://tools.ietf.org/html/draft-degener-sieve-editheader-00
https://tools.ietf.org/html/draft-degener-sieve-editheader-00
https://tools.ietf.org/html/draft-degener-sieve-editheader-00
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5232
https://tools.ietf.org/html/rfc3461
https://tools.ietf.org/html/rfc3461

Brief overview of Sieve language
elements

 Private system-level,
log_transactionlog MTA
option, logging channel option

 (New in MS 8.0) System-level Sieve action specifying
additional string to include in the MTA message transaction
log file

vacation [:days number] [:subject string] [:from address] [:addresses string-list] [:mime] [:handle string] reason-string

 RFC 5230 non-system-level,
max_vacations and
vacation_template MTA
options

require
"vacation";

Generate a vacation auto-response (an "I'm on vacation" sort
of message)

 :addresses RFC 5230 Additional addresses to consider as "belonging" to the user,
and hence whose presence on a recipient header line of
an original message satisfies one requirement for vacation
message generation

 :days RFC 5230 autoreply_timeout_default,
vacation_minimum_timeout,
and
vacation_maximum_timeout
MTA options

 Specify timeout in days

 :echo Private Modifier on vacation to produce a "processed" MDN
response

 :fcc draft-ietf-extra-
sieve-fcc-02.txt

 Specify mailbox to receive copy of any generated vacation
notice

 :from RFC 5230 Address to use in the From: header line of the generated
vacation message

 :handle RFC 5230 Explicit label for this vacation operation, to be used instead
of the usual argument-based label, so that vacation actions
with different arguments may have a coordinated label and
thereby respect each other's prior execution (and not generate
yet another vacation message)

 :headers Private Modifier on vacation to produce a response containing
header lines, rather than the default MDN called for by the
standard

 :hours Private autoreply_timeout_default,
vacation_minimum_timeout,
and
vacation_maximum_timeout
MTA options

 Specify the vacation action's autoresponse period in hours,
rather than the normal days

 :mime RFC 5230 The reason-string is a MIME entity, including MIME headers
as well as content

 :noaddresses Private Modifier on vacation to suppress the MTA'S normal
requirement (as per RFC 5230, Section 4.5) to only respond if
the recipient address or one of its aliases appears explicitly on
a recipient header line

 :noheadercheck Private (MS 8.0.2.3) Modifier on vacation to suppress the MTA'S
normal requirement (as per RFC 5230, Section 4.6) to only
respond if various headers, e.g., List-ID:, are not present in
the original message

 :reply Private Modifier on vacation to produce a pure reply, containing
only the reply text, rather than the default MDN called for by
the standard

 :seconds RFC 6131 autoreply_timeout_default,
vacation_minimum_timeout,
and
vacation_maximum_timeout
MTA options

require
"vacation-
seconds";

Specify vacation action's autoresponse period in seconds,
rather than the normal days

 :subject RFC 5230 Text to use in Subject: header line of generated vacation
message

virusset numeric-value-string

 Private Set a message's "virus level"

warn string-or-list

 Private system-level, log_filter MTA
option, logging channel option

 (New in MS 8.0) System-level Sieve action specifying (an
additional) string to appear in the " warn" clause in the
log_filter field of MTA message transaction log entries

Tests

address [ADDRESS-PART] [COMPARATOR] [MATCH-TYPE] header-list value-list

 RFC 5228 Match Internet address in structured headers

 :aindex Private Match against Nth address on header line

 :index RFC 5260 require "index"; Match against Nth named header line for address, header,
or date tests

 :last RFC 5260 require "index"; Used with " :index to match against Nth named header line,
counting backwards, for address, header, or date tests

 :mime [:anychild] [MIMEOPTS]

Sieve filters 5–11

https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230
https://datatracker.ietf.org/doc/draft-ietf-extra-sieve-fcc
https://datatracker.ietf.org/doc/draft-ietf-extra-sieve-fcc
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc6131
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260

Brief overview of Sieve language
elements

 RFC 5703 require "mime"; Alter address, exists, or header tests to check aspects of
structured MIME header lines

 :anychild RFC 5703 require "mime"; Modify :mime to look inside any nested parts

 :raw Private analogue
of RFC 5173

 (New in MS 7.0.5) Do not MIME decode any RFC 2047 MIME
encoded-words

 :text Private analogue
of RFC 5173

 (New in MS 7.0.5) Perform MIME decoding of any RFC 2047
MIME encoded-words

allof test-list RFC 5228 Logical AND of tests; test-list has the form (test [,test]*)

anyof test-list RFC 5228 Logical OR of tests

body [COMPARATOR] [MATCH-TYPE] [BODY-TRANSFORM] value-list

 RFC 5173 enable_sieve_body MTA
option

require "body"; Match content in the body of an email message; (only
supports :contains and :isMATCH-TYPES, and a limited
set of COMPARATORS)

currentdate [:zone time-zone] [COMPARATOR] [MATCH-TYPE] date-part value-list

 RFC 5260 require "date"; Compare against current date-time

 :zone RFC 5260 require "date"; Specify a time zone offset to which to shift the current date-
time prior to testing

date [:zone time-zone / :originalzone] [COMPARATOR] [MATCH-TYPE] header-name date-part value-list

 RFC 5260 require "date"; Match against date from a header line

 :originalzone RFC 5260 require "date"; Test retaining the time zone offset of the original date time

 :zone RFC 5260 require "date"; Specify a time zone offset to which to shift the date-time prior
to testing

duplicate [:handle string] [:header header-name / :uniqueid value] [:seconds timeout] [:last]

 draft-
bosch-sieve-
duplicate-09

max_duplicates,
duplicate_tracking_url
MTA options

require
"duplicate";

(New in MS 8.0) Test whether "the same" message was
(recently) already received

 :handle draft-
bosch-sieve-
duplicate-09

 require
"duplicate";

Distinguish, via handle name, this duplicate test from other
duplicate tests

 :header draft-
bosch-sieve-
duplicate-09

 require
"duplicate";

Use as unique ID (for duplicate detection) the content of the
specified header field

 :last draft-
bosch-sieve-
duplicate-09

duplicate_timeout_default require
"duplicate";

Modify :seconds interpretation (or if :seconds was not
specified, use duplicate_timeout_default value)
interpreting as seconds within which a "duplicate" message
must have been received (counting from the most recent
check of the same unique ID) to count as a duplicate

 :mime Private require "mime";

 :anychild Private require "mime";

 :seconds draft-
bosch-sieve-
duplicate-09

duplicate_timeout_default,
duplicate_minimum_timeout,
duplicate_maximum_timeout
MTA options

require
"duplicate";

Seconds within which a "duplicate" message must have been
received (counting time from the first message with the same
unique ID) to count as duplicate

 :uniqueid draft-
bosch-sieve-
duplicate-09

 require
"duplicate";

Use the specified value as the unique ID (for duplicate
detection)

envelope [COMPARATOR] [ADDRESS-PART] [MATCH-TYPE] envelope-part-list value-list

 RFC 5228 require
"envelope";

Match SMTP envelope address

environment [COMPARATOR] [MATCH-TYPE] environment-item value-list

 RFC 5183 require
"environment";

Match against operating environment information

exists header-list value-list

 RFC 5228 Test whether specified header(s) are present in a message

 :list Private
enhancement of
RFC 6134

SIEVE_EXTLISTS mapping table require
"extlists";

Match against externally stored data in address, envelope,
and header tests; MTA private additional functionality
is that ":list" is also supported on the standard exists
test, as well as on extension tests currentdate, date,
environment, hasflag, spamtest, string, and
virustest, and on deleteheader and replaceheader
actions

 :mime [:anychild] [MIMEOPTS]

 RFC 5703 require "mime"; Alter address, exists, or header tests to check aspects of
structured MIME header lines

 :anychild RFC 5703 require "mime"; Modify :mime to look inside any nested parts

 :regex Private
enhancement

enable_sieve_regex MTA
option

require "regex"; Regex match type

5–12 Messaging Server Reference

https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc6134
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703

Brief overview of Sieve language
elements

of draft-
murchison-
sieve-
regex-08

false RFC 5228 Always evaluate to FALSE

hasflag [MATCH-TYPE] [COMPARATOR] [variable-list] list-of-flags

 RFC 5232 (max_variables MTA option if
using optional variable argument)

require
"imap4flags";
(or require
["imap4flags",
"variables"];
if using optional
variable argument)

Test whether the message has the specified IMAP flag(s)

 :list Private
enhancement of
RFC 6134

SIEVE_EXTLISTS mapping table require
"extlists";

Match against externally stored data in address, envelope,
and header tests; MTA private additional functionality
is that ":list" is also supported on the standard exists
test, as well as on extension tests currentdate, date,
environment, hasflag, spamtest, string, and
virustest, and on deleteheader and replaceheader
actions

header [COMPARATOR] [MATCH-TYPE] header-list value-list

 RFC 5228 defer_header_addition and
(new in MS 8.0) sieve_received
MTA options

 Match header

 :mime [:anychild] [MIMEOPTS]

 RFC 5703 require "mime"; Alter address, exists, or header tests to check aspects of
structured MIME header lines

 :anychild RFC 5703 require "mime"; Modify :mime to look inside any nested parts

 :raw Private analogue
of RFC 5173

 (New in MS 7.0.5) Do not MIME decode any RFC 2047 MIME
encoded-words

 :text Private analogue
of RFC 5173

 (New in MS 7.0.5) Perform MIME decoding of any RFC 2047
MIME encoded-words

ihave capability-list

 RFC 5463 require "ihave"; Test which Sieve extensions are available

importancetest [COMPARATOR] [MATCH-TYPE] value

 Private Test a message's importance

memcache Private memcache_host,
enable_sieve_memcache MTA
options

 (New in MS 8.0) Used as an action to manipulate data via
the memcache protocol; used as a test to access data via the
memcache protocol

memcache :adjustdown value [:host host-string] [:tableprefix prefix-string] [:duplicate] [MATCH-TYPE] [COMPARATOR] [:quotatimeout quotatimeout-
numeric [:penalize]] [:timeout timeout-value] key-string [test-string]

 Private For the entry with the specified key, adjust the value
down as specified and compare that adjusted value
against the specified test-string value, which same test-
string then becomes the entry's new value. MATCH-
TYPE and COMPARATOR default to ':value "lt"' and
'comparator "i;ascii-numeric"', respectively.

memcache :adjustup value [:host host-string] [:tableprefix prefix-string] [:duplicate] [MATCH-TYPE] [COMPARATOR] [:quotatimeout quotatimeout-numeric
[:penalize]] [:timeout timeout-value] key-string [test-string]

 Private For the entry with the specified key, adjust the value up
as specified and compare that adjusted value against
the specified test-string value, which same test-string
then becomes the entry's new value. MATCH-TYPE
and COMPARATOR default to ':value "gt"' and
'comparator "i;ascii-numeric"', respectively.

memcache :fetch [:host host-string] [:tableprefix prefix-string] [MATCH-TYPE] [COMPARATOR] key-string [test-string]

 Private For the entry with the specified key, compare its current
value against the test-string, setting the value to test-string.
The test always fails if the entry does not exist. MATCH-
TYPE and COMPARATOR default to :is and "i;ascii-
casemap", respectively.

memcache :release [:duplicate] [:host host-string] [:tableprefix prefix-string] [:timeout timeout-value] key-string

 Private Implement a generic reservation capability. :release releases
a previous reservation made with :reserve. The test returns
TRUE if the reservation if a reservation is successfully
released, FALSE otherwise.

memcache :reserve :quota quota-numeric [:duplicate] [:host host-string] [:tableprefix prefix-string] [:timeout timeout-value] key-string

 Private Implement a generic reservation capability. :reserve attempts
to take out a reservation for the specified key-string. quota-
numeric specifies the maximum number of reservations
that are allowed. The test returns TRUE if the reservation if
the reservation is taken out successfully, FALSE otherwise.

Sieve filters 5–13

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5232
https://tools.ietf.org/html/rfc6134
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc5463

Brief overview of Sieve language
elements

Multiple reservations may be taken out by multiple :reserve
operations. Note that each :reserve should be matched by a
subsequent :release.

memcache :throttle :quota quota-numeric [:duplicate] :quotetimeout quotatimeout-numeric [:limit] [:penalize] [:host host-string] [:tableprefix prefix-
string] [:timeout timeout-value] [MATCH-TYPE] [COMPARATOR] [:adjustup adjustment-value] [:adjustdown adjustment-value] key-string [test-string]

 Private Implement the MeterMaid throttle capability. The throttle
value is incremented by default, though ":adjustup"
or ":adjustdown" may be used to specify a non-default
adjustment of the value. Then if none of MATCH-TYPE,
COMPARATOR, nor test-string are specified, the test
returns TRUE if the throttle is engaged, or FALSE if it is not
engaged (or an error occurs). If any of the MATCH-TYPE,
COMPARATOR, or test-string parameters is specified, then
the throttle entry's value is adjusted and then the specified
Sieve test is applied to the value. The default MATCH-
TYPE is :value "gt" and the default COMPARATOR is
i;ascii-numeric.

metermaid Private enable_sieve_metermaid
MTA option

 (New in MS 8.0) Used as an action to manipulate data
stored in MeterMaid; used as a test to access data stored in
MeterMaid

 :adjustdown adjustment-value [:host host-string] [:duplicate] [MATCH-TYPE] [COMPARATOR] table-string key-string [test-string]

 Private Decrement the entry with the specified key in the specified
table by the specified adjustment value.

 :adjustup adjustment-value [:host host-string] [:duplicate] [MATCH-TYPE] [COMPARATOR] table-string key-string [test-string]

 Private Increment the entry with the specified key in the specified
table by the specified adjustment value.

 :fetch [:host host-string] [MATCH-TYPE] [COMPARATOR] table-string key-string [test-string]

 Private If none of MATCH-TYPE, COMPARATOR, nor test-string is
specified, the specified entry's value is returned as a string,
or an empty string is returned if the specified entry doesn't
exist. If any of MATCH-TYPE, COMPARATOR, or test-string
is specified, test against the current value of the specified
entry (MATCH-TYPE and COMPARATOR default to ' :is'
and ' :comparator "i;ascii-casemap"', respectively),
returning FALSE if the specified entry does not exist.

 :greylisting [:host host-string] [:duplicate] [MATCH-TYPE] [COMPARATOR] table-string key-string [test-string]

 Private If none of MATCH-TYPE, COMPARATOR, nor test-string
are specified, then return TRUE if greylisting is engaged,
while FALSE is returned if greylisting is not engaged or an
error occurs. If any of MATCH-TYPE, COMPARATOR, or
test-string is specified (MATCH-TYPE and COMPARATOR
default to ' :is' and ' :comparator "i;ascii-
casemap"', respectively), then increment the throttle and
then apply the Sieve test to the value.

 :remove [:host host-string] [:duplicate] table-string key-string

 Private Remove the entry with the specified key from the specified
table. Returns TRUE if the operation is successful; FALSE if it
is not.

 :store [:host host-string] table-string key-string value-string

 Private Creates a new entry or updates an existing entry with the
specified key in the specified table. Returns TRUE if the
operation is successful; FALSE if it is not.

 :throttle [:host: host-string] [:duplicate] [MATCH-TYPE] [COMPARATOR] table-string key-string

 Private MeterMaid throttle functionality. If none of MATCH-TYPE,
COMPARATOR, nor test-string is specified, return TRUE
if the throttle is engaged, or FALSE if the throttle is not
engaged or an error occurs; if any of these three parameters
is specified, then increment the throttle and then apply the
Sieve test to the value. (MATCH-TYPE defaults to ':value
"gt"' and COMPARATOR defaults to ':comparator
"i;ascii-numeric"'.)

not test RFC 5228 Reverse value of test argument

notify_method_capability [COMPARATOR] [MATCH-TYPE] notification-uri notification-capability value-list

 RFC 5435 require
"enotify";

Test whether a capability of a method of notification is
available to be performed as desired

 :list Private
enhancement of
RFC 6134

SIEVE_EXTLISTS mapping table require
"extlists";

Match against externally stored data in address,
envelope, and header tests; MTA private additional
functionality is that ":list" is also supported on the
standard exists test, as well as on extension tests
currentdate, date, environment, hasflag,
notify_method_capability, spamtest, string, and
virustest, and on deleteheader and replaceheader
actions

5–14 Messaging Server Reference

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc6134

Brief overview of Sieve language
elements

redis Private redis.hostlist, redis.port,
redis.servicename, and
enable_sieve_redis MTA
options

 (New in MS 8.0.2.3) Used as an action to manipulate data via
the Redis protocol; used as a test to access data via the Redis
protocol

redis :adjustdown value [:tableprefix prefix-string] [:duplicate] [MATCH-TYPE] [COMPARATOR] [:quotatimeout quotatimeout-numeric [:penalize]]
[:timeout timeout-value] [:sortedset] key-string [test-string]

 Private For the entry with the specified key, adjust the value
down as specified and compare that adjusted value
against the specified test-string value, which same test-
string then becomes the entry's new value. MATCH-
TYPE and COMPARATOR default to ':value "lt"' and
'comparator "i;ascii-numeric"', respectively.

redis :adjustup value [:tableprefix prefix-string] [:duplicate] [MATCH-TYPE] [COMPARATOR] [:quotatimeout quotatimeout-numeric [:penalize]]
[:timeout timeout-value] key-string [test-string]

 Private For the entry with the specified key, adjust the value up
as specified and compare that adjusted value against
the specified test-string value, which same test-string
then becomes the entry's new value. MATCH-TYPE
and COMPARATOR default to ':value "gt"' and
'comparator "i;ascii-numeric"', respectively.

redis :expire timeout-value [:duplicate] [:tableprefix prefix-string] key-string

 Private New in MS 8.1.0.6. Sets the expiration time in seconds for
the specified entry. A time of 0 will cause the entry to be be
deleted immediately. Negative values will cause the entry to
be preserved indefinitely.

redis :fetch [:tableprefix prefix-string] [MATCH-TYPE] [COMPARATOR] key-string [test-string]

 Private For the entry with the specified key, compare its current
value against the test-string, setting the value to test-string.
The test always fails if the entry does not exist. MATCH-
TYPE and COMPARATOR default to :is and "i;ascii-
casemap", respectively.

redis :release [:duplicate] [:tableprefix prefix-string] [:timeout timeout-value] key-string

 Private Implements a generic reservation capability. :release releases
a previous reservation made with :reserve. The test returns
TRUE if the reservation if a reservation is successfully
released, FALSE otherwise.

redis :reserve :quota quota-numeric [:duplicate] [:tableprefix prefix-string] [:timeout timeout-value] key-string

 Private Implements a generic reservation capability. :reserve attempts
to take out a reservation for the specified key-string. quota-
numeric specifies the maximum number of reservations
that are allowed. The test returns TRUE if the reservation if
the reservation is taken out successfully, FALSE otherwise.
Multiple reservations may be taken out by multiple :reserve
operations. Note that each :reserve should be matched by a
subsequent :release.

redis :throttle :quota quota-numeric [:duplicate] :quotetimeout quotatimeout-numeric [:limit] [:penalize] [:tableprefix prefix-string] [:timeout
timeout-value] [MATCH-TYPE] [COMPARATOR] [:adjustup adjustment-value] [:adjustdown adjustment-value] key-string [test-string]

 Private Implements the MeterMaid throttle capability. The throttle
value is incremented by default, though ":adjustup"
or ":adjustdown" may be used to specify a non-default
adjustment of the value. Then if none of MATCH-TYPE,
COMPARATOR, nor test-string are specified, the test
returns TRUE if the throttle is engaged, or FALSE if it is not
engaged (or an error occurs). If any of the MATCH-TYPE,
COMPARATOR, or test-string parameters is specified, then
the throttle entry's value is adjusted and then the specified
Sieve test is applied to the value. The default MATCH-
TYPE is :value "gt" and the default COMPARATOR is
i;ascii-numeric.

metermaid Private enable_sieve_metermaid
MTA option

 (New in MS 8.0) Used as an action to manipulate data
stored in MeterMaid; used as a test to access data stored in
MeterMaid

 :adjustdown adjustment-value [:duplicate] [MATCH-TYPE] [COMPARATOR] table-string key-string [test-string]

 Private Decrement the entry with the specified key in the specified
table by the specified adjustment value.

 :adjustup adjustment-value [:duplicate] [MATCH-TYPE] [COMPARATOR] table-string key-string [test-string]

 Private Increment the entry with the specified key in the specified
table by the specified adjustment value.

 :fetch [MATCH-TYPE] [COMPARATOR] table-string key-string [test-string]

 Private If none of MATCH-TYPE, COMPARATOR, nor test-string is
specified, the specified entry's value is returned as a string,
or an empty string is returned if the specified entry doesn't
exist. If any of MATCH-TYPE, COMPARATOR, or test-string
is specified, test against the current value of the specified
entry (MATCH-TYPE and COMPARATOR default to ' :is'

Sieve filters 5–15

Brief overview of Sieve language
elements

and ' :comparator "i;ascii-casemap"', respectively),
returning FALSE if the specified entry does not exist.

 :greylisting [:duplicate] [MATCH-TYPE] [COMPARATOR] table-string key-string [test-string]

 Private If none of MATCH-TYPE, COMPARATOR, nor test-string
are specified, then return TRUE if greylisting is engaged,
while FALSE is returned if greylisting is not engaged or an
error occurs. If any of MATCH-TYPE, COMPARATOR, or
test-string is specified (MATCH-TYPE and COMPARATOR
default to ' :is' and ' :comparator "i;ascii-
casemap"', respectively), then increment the throttle and
then apply the Sieve test to the value.

 :remove [:duplicate] table-string key-string

 Private Remove the entry with the specified key from the specified
table. Returns TRUE if the operation is successful; FALSE if it
is not.

 :storetable-string key-string value-string

 Private Creates a new entry or updates an existing entry with the
specified key in the specified table. Returns TRUE if the
operation is successful; FALSE if it is not.

 :throttle [MATCH-TYPE] [COMPARATOR] table-string key-string

 Private MeterMaid throttle functionality. If none of MATCH-TYPE,
COMPARATOR, nor test-string is specified, return TRUE
if the throttle is engaged, or FALSE if the throttle is not
engaged or an error occurs; if any of these three parameters
is specified, then increment the throttle and then apply the
Sieve test to the value. (MATCH-TYPE defaults to ':value
"gt"' and COMPARATOR defaults to ':comparator
"i;ascii-numeric"'.)

size < :over / :under > limit-value

 RFC 5228 Test size of message

 :over RFC 5228 Match if message size is over specified value

 :under RFC 5228 Match if message size is under specified value

spamtest [COMPARATOR] [MATCH-TYPE] value

 RFC 3685 require
"spamtest";
or require
"spamtestplus";

Test a message's "spam level"

 :list RFC 6134 SIEVE_EXTLISTS mapping table require
"extlists";

Match against externally stored data in address,
envelope, and header tests; MTA private additional
functionality is that ":list" is also supported on the
standard exists test, as well as on extension tests
currentdate, date, environment, hasflag,
notify_method_capability, spamtest, string, and
virustest, and on deleteheader and replaceheader
actions

 :percent RFC 5235 require
"spamtestplus";

Test a message's "spam level" as a percentage value

string [MATCH-TYPE] [COMPARATOR] source-string-list value-list

 RFC 5229 max_sieve_string_size MTA
option

require
"variables";

Test the (string) value of variable(s)

 :list Private
enhancement of
RFC 6134

SIEVE_EXTLISTS mapping table require
"extlists";

Match against externally stored data in address, envelope,
and header tests; MTA private additional functionality
is that ":list" is also supported on the standard exists
test, as well as on extension tests currentdate, date,
environment, hasflag, spamtest, string, and
virustest, and on deleteheader and replaceheader
actions

true RFC 5228 Always evaluate to TRUE

valid_ext_list extlist-names-list

 RFC 6134 require
"extlists";

Test whether an external list specification is valid (both
syntactically and semantically)

valid_notify_method notification-uris-list

 RFC 5435 require
"enotify";

Test whether notification methods are supported and
syntactically valid

virustest [COMPARATOR] [MATCH-TYPE] value

 RFC 3685 require
"virustest";

Test a message's "virus level"

 :count RFC 5231 require
"relational";

Match type for numeric comparison on number of
occurrences (as of MS 8.0.1.3, :count may also be used as a
modifier to other match types in header and address tests to
count and test the number of matches that occurred)

5–16 Messaging Server Reference

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc3685
https://tools.ietf.org/html/rfc6134
https://tools.ietf.org/html/rfc5235
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc6134
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc6134
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc3685
https://tools.ietf.org/html/rfc5231

Brief overview of Sieve language
elements

 :list RFC 6134 SIEVE_EXTLISTS mapping table require
"extlists";

Match against externally stored data in address,
currentdate, date, envelope, exists, and header
tests, as well as in the string test when the variables
extension is enabled, and in spamtest and virustest tests
when those extensions are enabled

 :regex draft-
murchison-
sieve-
regex-08

enable_sieve_regex MTA
option

require "regex"; Regex match type

 :value RFC 5231 require
"relational";

Match type for comparison on string values

test-name string Private FILTER_test-name mapping table Custom test test-name: probes mapping table FILTER_test-
name with string, evaluating to TRUE if mapping table sets $Y
flag, or FALSE otherwise

Functions

sub name[(variables-list)] {...}

 Private system-level (New in MS 8.0) Define a function/subroutine

 my var-name [:= value] Private (New in MS 8.0) Declare a variable is local

 return value Private (New in MS 8.0) Exit subroutine, returning value

translate string-or-list source-charset dest-charset

 Private (New in MS 8.0.1) Perform character set conversion,
returning translated string or list

test-name string Private FILTER_test-name mapping table require
"variables";

Custom test test-name used as a function: probes mapping
table FILTER_test-name with string, returning mapping's
string result in variable ${0} and mapping's flag result in
variable ${1}

...many-other-functions... Private See Symbol table functions

Values

non-negative-integer RFC 5228 Non-negative integer, range 0 to 2,147,483,647 (2^31 - 1);
suffixes "K" (1024 or 2^10), "M" (2^20), or "G" (2^30) are
permitted

negative-integer Private Negative integers are also supported by the MTA

"utf-8-string" RFC 5228 max_sieve_string_size MTA
option

 String of characters represented in UTF-8; note that non-
printing characters such as CR and LF are permitted, and so
in particular strings can span multiple lines

"\character" RFC 5228 \\ represents the backslash character, \" represents the
double quote character, and otherwise the backslash is
ignored as if it were not present

text:multiline text ended by
CRLF.CRLF

RFC 5228 More convenient way to enter multiline text strings; note
must dot-stuff (as with SMTP messages)

["s1", "s2", ..., "sN"] RFC 5228 max_sieve_list_size MTA
option

 List of strings

"${hex:hex-pair-sequence}" RFC 5228 require
"encoded-
character";

hex-pair-sequence is one or more hexadecimal-encoded
characters, space separated; e.g., "{hex: 40 24}"
represents "@$"

"${unicode: unicode-hex-
sequence}"

RFC 5228 require
"encoded-
character";

unicode-hex-sequence is one or more Unicode hex-encoded
characters, space separated; e.g., "${unicode: 0000040}"
represents "@"

${variable-name} RFC 5229 max_variables MTA option require
"variables";

variable-name may be a variable identifier, or digit(s)
identifying the variable, e.g., ${a} refers to the variable
named "a", while ${0} refers to the 0th variable; variable
namespaces are not currently supported (so in particular
variable names may not include any periods); note that
variable substitutions are not supported in "body" test
arguments

expression Private The MTA supports a variety of string and numeric operators
and functions, and supports expressions to compute values;
see Operators in Order of Precedence and Symbol table
functions

ADDRESS-PARTS

 :all RFC 5228 Entire address

 :comment Private Extract any parenthetical comment appearing after an
address

 :detail RFC 3598 require
"subaddress";

Extract subaddress (e.g., folder name) in address and
envelope tests

 :display Private Extract the display-name phrase (the optional text appearing
outside of and specifically in front of the actual address, the
actual address being the part enclosed in angles)

 :domain RFC 5228 Domain portion of address: the portion to the right of the @
character

Sieve filters 5–17

https://tools.ietf.org/html/rfc6134
https://tools.ietf.org/html/rfc5231
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5229
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc3598
https://tools.ietf.org/html/rfc5228

Brief overview of Sieve language
elements

 :localpart RFC 5228 RFC 822 "local-part" of address: the portion to the left of the
@ character

 :user RFC 3598 require
"subaddress";

Extract username (i.e., local-part minus subaddress) in
address and envelope tests

BODY-TRANSFORMS

 :raw RFC 5173 require "body"; Interpret message body as an unprocessed "blob"; in
particular, do not interpret MIME structure nor decode any
content-transfer-encoding

 :text RFC 5173 require "body"; Decode MIME encoded text

COMPARATORS

 :comparator
"i;ascii-casemap"

RFC 5228, RFC
4790

 Treat uppercase and lowercase characters in the ASCII subset
of UTF8 the same

 :comparator
"i;ascii-casemap-
compress"

Private require
"comparator-
i;ascii-casemap-
compress";

(New in MS 8.0.1.2) Similar to "i;ascii-casemap", except
that all internal folding white space characters (space, tab,
carriage return, line feed) are replaced by a single ASCII
space, and those at the beginining and end of the strings are
removed. This is done to both the target and pattern strings
prior to comparison

 :comparator
"i;ascii-casemap-
collapse"

Private require
"comparator-
i;ascii-casemap-
collapse";

(New in MS 8.0) Similar to "i;ascii-casemap", except
that all folding white space characters (space, tab, carriage
return, line feed) are removed from both the target and
pattern strings prior to comparison; this comparator is
recommended for working around standards-incompliant
client behavior regarding white space, folding white space,
and MIME encoded-words

 :comparator
"i;ascii-integer"

Private require
"comparator-
i;ascii-
integer";

(New in MS 8.0) Test signed or unsigned integer values; (not
supported on "body" tests)

 :comparator
"i:ascii-numeric"

RFC 4790 require
"comparator-
i;ascii-
numeric";

Compare arbitrarily sized, unsigned integer numbers stored
as octet strings, (in particular, disregard leading zeros,
and truncate at the first non-digit character); see RFC 4790,
Section 9.1.1 for further details; (not supported on "body"
tests)

 :comparator
"i;octet"

RFC 5228, RFC
4790

 Compare octets

 :comparator
"i;octet-compress"

Private require
"comparator-
i;octet-
compress";

(New in MS 8.0.1.2) Similar to "i;octet", except that all
internal folding white space characters (space, tab, carriage
return, line feed) are replaced by a single ASCII space, and
those at the beginining and end of the strings are removed.
This is done to both the target and pattern strings prior to
comparison

 :comparator
"i;octet-collapse"

Private require
"comparator-
i;octet-
collapse";

(New in MS 8.0) Similar to "i;octet", except that all
folding white space characters (space, tab, carriage return,
line feed) are removed from both the target and pattern
strings prior to comparison; this comparator is recommended
for working around standards-incompliant client behavior
regarding white space, folding white space, and MIME
encoded-words

 :comparator
"i;utf-8"

? require
"comparator-
i;utf8";

(New in MS 8.0) (not supported on "body" tests)

DATE-PARTS

 date RFC 5260 require "date"; Date in "yyyy-mm-dd" format

 day RFC 5260 require "date"; Two digit day, "01", ..., "31"

 hour RFC 5260 require "date"; Two digit hour, "00", ..., "23"

 iso8601 RFC 5260 require "date"; Date and time in restricted ISO 8601 format

 julian RFC 5260 require "date"; Modified Julian Day, that is, the date expressed as an integer
number of days since 00:00 UTC on November 17, 1958
(using the Gregorian calendar); this corresponds to the Julian
Day minus 2400000.5

 milliunixepoch Private require "date"; (New in 8.1.0.6) Date and time in integer milliseconds since
Unix epoch

 minute RFC 5260 require "date"; Two digit minute, "00", ..., "59"

 month RFC 5260 require "date"; Two digit month, "00", ..., "12"

 second RFC 5260 require "date"; Two digit second, "00", ..., "60"

 std11 RFC 5260 require "date"; Date and time in a format appropriate for use in a Date:
header field (RFC 822 format)

 time RFC 5260 require "date"; Time in "hh:mm:ss" format

 unixepoch Private require "date"; (New in 8.1.0.6) Date and time in integer seconds since Unix
epoch

5–18 Messaging Server Reference

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc3598
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc4790
https://tools.ietf.org/html/rfc4790
https://tools.ietf.org/html/rfc4790
https://tools.ietf.org/html/rfc4790,
https://tools.ietf.org/html/rfc4790,
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc4790
https://tools.ietf.org/html/rfc4790
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260

Brief overview of Sieve language
elements

 weekday RFC 5260 require "date"; Day of the week expressed in range "0" (Sunday) to "6"
(Saturday)

 year RFC 5260 require "date"; Four digit year, "0000", ..., "9999"

 zone RFC 5260 require "date"; Time zone in use, in +hh:mm or -hh:mm format

ENVELOPE-PARTS

 from RFC 5228 require
"envelope";

Envelope From address

 to RFC 5228 require
"envelope";

Envelope To address

 auth Private require
["envelope",
"envelope-
auth"];

Access message's AUTH value

 conversiontag Private system-level require
"envelope";

In system-level Sieve, access message's conversion tag(s)

 envid RFC 6009 require
["envelope",
"envelope-dsn"];

Access message's envelope-id value

 orcpt RFC 6009 require
["envelope",
"envelope-dsn"];

Access message's ORCPT value

 notify RFC 6009 require
["envelope",
"envelope-dsn"];

Access message's DSN NOTIFY value

 ret RFC 6009 require
["envelope",
"envelope-dsn"];

Access message's DSN RET value

ENVIRONMENT-ITEMS

domain RFC 5183 require
"environment";

Preferably the value of ldap_default_domain MTA
option, next the value of received_domain MTA
option, or if neither are defined the value of the L channel
official_host_name

host RFC 5183 require
"environment";

L channel official-host-name

location RFC 5183 require
"environment";

Type of service evaluating the Sieve; "MTA" for MTA
evaluation

name RFC 5183 require
"environment";

"IMTA" for MTA evaluation

phase RFC 5183 require
"environment";

Phase of processing; possible values are "initialize",
"connect", "mail" (reported at both HELO and MAIL
FROM command stages), "rcptin", "rcptout",
"datastart", "dataend", and "pre" (the default value)

remote-host RFC 5183 require
"environment";

Current source system

remote-ip RFC 5183 require
"environment";

Source IP

version RFC 5183 require
"environment";

MTA version string (akin to version reported in Received:
header line)

vnd.oracle.last-
verdict

Private require
"environment";

(New in MS 7.0.5) Prior Sieve's explicit handling action (see
discussion of MTA's Sieve hierarchy)

vnd.oracle.max_mime_widthPrivate require
"environment";

(New in MS 8.0.2.2) The maximum number of MIME parts
found in any multipart in the message.

vnd.oracle.message-
hash

Private require
"environment";

(New in MS 8.0) Return any message hash calculated by the
generatemessagehash channel option; the query will fail
if no message hash was generated

vnd.oracle.mime_levels Private require
"environment";

(New in MS 8.0.2.2) The number of accessible MIME levels in
the current message, i.e. the MIME "depth" of the message.

vnd.oracle.mt-priority Private require
"environment";

(New in MS 8.0) Match against message's current MT-
PRIORITY value

vnd.oracle.notifycount Private require
"environment";

(New in MS 8.0.1.2) Return the count of the number of
notification messages the current sieve has enqueued.

vnd.oracle.notifyquota Private require
"environment";

(New in MS 8.0.1.2) Return the number of additional notify
actions the current sieve is able to perform.

vnd.oracle.operation-
type

Private require
"environment";

(New in MS 8.0) Match against message's current type of
enqueue operation

vnd.oracle.reevaluate Private require
"environment";

(New in MS 8.0) TRUE or FALSE according to whether this
Sieve script is being reevaluated

vnd.oracle.tracking-id Private require
"environment";

(New in MS 8.0) Return the tracking identifier for the current
message; the query will fail if there's no tracking id

Sieve filters 5–19

https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5183

Brief overview of Sieve language
elements

vnd.oracle.vacationcountPrivate require
"environment";

(New in MS 8.0.1.2) Return the count of the number of
vacation messages enqueued by the current sieve. Note
that this is not necessarily the same as number of vacation
actions performed since any number of conditions can turn a
vacation action into a no-op.

vnd.oracle.vacationquotaPrivate require
"environment";

(New in MS 8.0.1.2) Return the number of additional vacation
actions the current sieve is able to perform.

vnd.oracle.warnings Private require
"environment";

(New in MS 8.1.0.3) Returns the text of any warnings that
have been issued since any previous environment test of this
item, or since the start of script execution if no previous tests
have been made. The environment call fails if no warnings
are available to return.

vnd.sun.authenticated-
sender-address

Private require
"environment";

Match against sender address associated with the
authentication for the SMTP session

vnd.sun.authenticated-
sender-id

Private require
"environment";

Match against user identity associated with the
authentication for the SMTP session

vnd.sun.autoreply-
internal

Private require
"environment";

TRUE or FALSE according to whether the autoreply criteria
have been met for use of the "internal" autoreply response
text stored in LDAP

vnd.sun.destination-
channel

Private require
"environment";

Match against message's destination channel

vnd.sun.source-channel Private require
"environment";

Match against message's source channel

custom-item-name Private $+Eitem-name|item-value in an
*_ACCESS address mapping table

require
"environment";

Arbitrary, custom environment items for a message may be
set from the FROM_ACCESS or *_ACCESS recipient accress
mapping tables, for subsequent use in environment tests

MATCH-TYPES

 :aindex Private Match against Nth address on header line

 :contains RFC 5228 Substring match

 :count RFC 5231 require
"relational";

Match type for numeric comparison on number of
occurrences; (not available for use with "body" test)

 :index RFC 5260 require "index"; Match against Nth named header line for address, header,
or date tests

 :last RFC 5260 require "index"; For the :index modifier, count backwards from the end of
the message header

 :is RFC 5228 Exact match

 :list RFC 6134
and private
enhancements

SIEVE_EXTLISTS mapping table require
"extlists";

Match against externally stored data in address, envelope,
and header tests; MTA private additional functionality
is that ":list" is also supported on the standard exists
test, as well as on extension tests currentdate, date,
environment, hasflag, importancetest, memcache,
metermaid, spamtest, string, and virustest, and on
deleteheader and replaceheader actions

 :matches RFC 5228 Wildcard match; (not supported on "body" tests)

 :regex draft-
murchison-
sieve-
regex-08

enable_sieve_regex MTA
option

require "regex"; Regex match type; (not supported on "hasflag" or "body"
tests)

 :value RFC 5231 require
"relational";

Match type for comparison on string values; (may not be
specified on "body" tests)

MIMEOPTS

 :type RFC 5703 require "mime"; For Content-type: MIME header field, parse and test the
value of the MIME type; for Content-disposition: MIME
header field, parse and test the disposition value; for other
MIME headers, use a blank string

 :subtype RFC 5703 require "mime"; For Content-type: MIME header field, parse and test the
value of the MIME subtype; for other MIME headers, use a
blank string

 :contenttype RFC 5703 require "mime"; For Content-type: MIME header field, parse and test the
combined value of the MIME type and subtype; for Content-
disposition: MIME header field, parse and test the disposition
value; for other MIME headers, use a blank string

 :param RFC 5703 require "mime"; Parse the header for MIME parameters, returning true if any
value found matches any of the test string values

+Only displayed in imsimta test -expression -mm if executing process has "world"
privilege

++Prior to MS 6.2, only permitted in system-level Sieves; nowadays supported in arbitrary
Sieves

5–20 Messaging Server Reference

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5231
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc6134
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5231
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703

Sieve supported extensions

5.1.2 Sieve supported extensions
In addition to the core Sieve functionality specified in RFC 5228 (Sieve), the MTA's Sieve
implementation supports a great many standardized extensions, plus many additional private-
to-the-MTA extensions. Standardized extensions supported include:

• Body extension (RFC 5173). The body test provides the means to test material in the message
body. Note that there are are number of restrictions on the implementation of body. (7U2)

• Copy extension (RFC 3894). Copy is a simple extension that allows the "redirect" and
"fileinto" actions to be used without canceling the default action of saving the message to
the "inbox". (6.1)

• Date extension (RFC 5260). The date test provides the means to test fields in date-time
values. (7U4)

• Editheader extension (RFC 5293). The "addheader" and "deleteheader" actions
provide the ability to alter the message header. As of MS 8.1.0.1, the "deleteheader"
action has been extended to allow glob-style wildcards in the field name. (Obviously this
capability should be used with great care, as not only does it make it possible to delete entire
swathes of header information, it also is an expensive operation to perform. In particular,
leading wildcards in the field name should be avoided if at all possible.) Additionally,
the "replaceheader" action described in draft-degener-sieve-editheader-00 has been
implemented. This provides an especially convenient way to add tags to subject fields.

• Encoded-character extension (RFC 5228). This extension provides a way to specify Unicode
characters by numeric value in Sieve character strings. Additionally, \r, \n, and \t can be
used to represent carriage return, line feed, and tab characters respectively in quoted strings.
(7.0)

• Envelope extension (RFC 5228). This extension consists of an "envelope" test that can
access MAIL FROM and RCPT TO address information. (Other extensions have made
additional items available to the "envelope" test.)

• Envelope-dsn (RFC 6009). This extension provides access to additional envelope information
provided by the delivery status notification SMTP extension. (7U2)

• Environment extension (RFC 5183). Environment provides scripts access to information
outside of the current message. (7.0U1)

• Ereject extension (RFC 5429). This extension updates the definition of the "reject" action
to allow messages to be refused during the SMTP transaction (rather than being accepted
and then generating an MDN), and defines the "ereject" action to require messages to be
refused during the SMTP transaction. (6.1)

• Extlists extension (RFC 6134). This extension adds the ":list" match-type to the
"address", "currentdate", "date", "deleteheader", "envelope", "environment",
"hasflag", "header", "replaceheader", "spamtest", "string", and "virustest" tests.
":list" in turn allows the test to check values against externally stored information. (7U1)

• Fcc extension (draft-ietf-extra-sieve-fcc-02.txt). This extension adds support for delivering
a copy of any generated message to the notify and vacation actions to the mailbox
specified by a :fcc nonpositional parameter.

• Fileinto extension (RFC 5228). This extension adds the "fileinto" action for specifying a
folder where the message is to be delivered.

Sieve filters 5–21

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc3894
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5293
https://tools.ietf.org/html/draft-degener-sieve-editheader-00
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5429
https://tools.ietf.org/html/rfc6134
https://datatracker.ietf.org/doc/draft-ietf-extra-sieve-fcc
https://tools.ietf.org/html/rfc5228

Sieve supported extensions

• Ihave extension (RFC 5463). "ihave" makes it possible to write scripts that use a given
extension if it is available but continue to operate if it is not. (7.0)

• Index extension (RFC 5260). The index extension adds a ":index" nonpositional parameter
to the address, date, and header tests, which in turn provides the means to check a specific
instance of header fields that occur multiple times. (7U4)

• Imap4flags extension (RFC 5232). Imap4flags provides the means to set IMAP flags on
messages delivered to the message store. (6.3P1)

• Mime extension (from RFC 5703). The "mime" extension provides facilities for testing
headers in inner MIME parts of messages. (7U1) New in MS 8.0 is support for the
"extracttext" and "foreverypart" Sieve extensions from RFC 5703. New in MS 8.1 is
the ability to control whether or not the foreverypart Sieve control looks inside of nested
messages or treats them as leaf parts. The :processnestedmesssages argument tells
foreverypart to look inside and is the default. :retainnestedmessages causes nested
messages to be treated as leaf parts. (8.0, 8.1)

• Notify extension (RFC 5435) and the mailto notification method (RFC 5436). Notify with the
mailto method provides the means to send an notification email about the current message
being processed. Note that an earlier draft of the "notify" action is also still supported. (6.2,
7.0.5)

• Relational extension (RFC 5231). Relational adds relational comparisons (less than, greater,
than, etc.) to the "header", "address", and "envelope" tests (and other extension tests
as they have subsequently been defined). It also adds the ability to count (":count") the
number of entities that match the test criteria (6.0). As of MS 8.0.1.3, :count may also be used
as a modifier to other match types in header and address tests to count and test the number
of matches that occurred.

• Redirect-dsn extension (RFC 6009). This extends Sieve's "redirect" action to
provide control over delivery status notification parameters with two new arguments
":notify" (":notify support was actually added for 6.3p1, prior to its standardization)
and ":ret". (6.3p1, 7U2)

• "spamtest", "spamtestplus", and "virustest" extensions (RFC 5235). The tests defined
by these extensions provide a means for Sieve scripts to access spam and virus filter "scores".
("spamtest" and "virustest" 6.0; "spamtestplus" 6.3)

• Subaddress extension (RFC 3598). Subaddress ":user" and ":detail" tagged arguments
for the "envelope" and "address" tests to access information embedded in the local part of
an address. (iMS uses a plus sign as the separator between user and detail information in the
local part.) (6.0)

• Vacation extension (RFC 5230). The "vacation" action defined by this extension can be
used in user-level Sieve scripts to generate "out of office" messages in response to incoming
email.

• Vacation-seconds extension (RFC 6131). This extends the vacation time to allow specification
of timeout values in seconds rather than minutes; in particular, it adds a ":seconds"
parameter to the "vacation" action.

• Variables extension (RFC 5229). The core Sieve language does not provide any means of
saving state from one statement to the next. This extension adds variables to the language.
(6.2)

5–22 Messaging Server Reference

https://tools.ietf.org/html/rfc5463
https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5232
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc5436
https://tools.ietf.org/html/rfc5231
https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc5235
https://tools.ietf.org/html/rfc3598
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc6131
https://tools.ietf.org/html/rfc5229

Sieve supported extensions

In addition to the above standardized extensions, the MTA also supports some private
extensions:

• The "address" test supports a private ":aindex" tag. This ":aindex" tag accepts a positive
integer as an argument. If ":aindex n" is specified, then only the nth address in each
header field will be tested. Note that ":aindex" (selecting which address out of multiple
addresses) may be combined with ":index" (selecting which header line out of multiple
header lines), to cause the test to operate on a single address in a single header line. (7.0.5)

• The "address" test supports two new, private, part modifiers, ":display" and
":comment". The ":display" modifier causes the "address" test to operate on the display-
name phrase; note that the display-name phrase is the optional text appearing outside of
and specifically in front of the actual address, the actual address being the part enclosed in
angles. The ":comment" modifier causes the "address" test to operate on any parenthetical
comments that appear after an address. (7.0.5)

• The "addconversiontag", "removeconversiontag", and "setconversiontag"
actions allow operating on the MTA's private conversion tag mechanism.
("addconversiontag" and "setconversiontag" 6.0; "removeconversiontag" 7.0u3)
Also, in system-level Sieves, the "envelope" test accepts "conversiontag" as a field
specifier value, checking the current list of conversion tags, one at a time. (This test only
"sees" the set of conversion tags that were present prior to Sieve processing; the effects of
"setconversiontag" and "addconversiontag" are not visible.) (6.3)

• The "addprefix" and "addsuffix" actions are available for adding a string argument as
text at the beginning or end, respectively, of the first plain text part of a message. (7.0u3)

• The addtag action provides a convenient way to add a prefix string, that is, a "tag", to the
beginning of the Subject: header line. (6.0)

• The "adjustcounter" action is available for system Sieve filters to manipulate any of the
eight signed, 64 bit counters accessible from Sieve filters. (8.0)

• The "capture" action (and the deprecated synonym "monitor"). Two optional
nonpositional parameters, ":dsn" and ":message", were added for MS 6.3; ":journal" (to
generate Microsoft® Exchange "envelope journaling" format) was added for 7.0u2;
":header" (which can be used as a modifier with either :dsn or :journal) was added for
8.0. (6.3, 7.0u2, 8.0)

• In addition to standard Sieve comparators, the MTA also supports some non-standard Sieve
comparators.

• The "debug" action takes a string argument, and makes that string available for logging to a
debug log file if MTA debugging is enabled at mm_debug=2 level or higher.

• The MTA supports the proposed Sieve duplicate extension specified in RFC 7352. (8.0)

• The envelope-auth extension adds a "auth" part to the envelope test, providing access
to the SMTP AUTH value.

• The "hold" action causes a message to be sidelined in the MTA queue area as a .HELD file.

• The "importancetest" test and "importanceadjust" action allow multiple Sieve scripts
to cooperate in making a determination of a message's importance, much like the way that
the "spamtest" and "spamadjust" extensions allow multiple Sieve scripts to cooperate in
determing whether or not a message is spam.

Sieve filters 5–23

https://tools.ietf.org/html/rfc7352

Sieve supported extensions

• The "jettison" action causes a message to be unconditionally discarded; this is a "non-
overridable" discard (for use by system-level Sieve scripts).

• The "loop" construct is supported in system-level Sieve scripts. (7.0.5)

• The "memcache" operator permits querying and updating a memcache server from Sieve
scripts. (8.0)

• The "metermaid" operator permits querying and updating MeterMaid from Sieve scripts.
(8.0)

• The "override" action is supported in system-level Sieve scripts; the capability string is
"override". (8.0)

• The "nonotify" action is supported in system-level Sieve scripts. It suppresses all uses of
the "notify" and "enotify" extensions (all applications of either form of the "notify"
action). (8.0)

• The "novacation" action is supported in system-level Sieve scripts. (6.1)

• By default, the MTA supports a relaxed use of "require" clauses in Sieve scripts, in that
the MTA permits "require" clauses to be sprinkled throughout a Sieve script (rather
than, as the Sieve standard specifies, having all "require" clauses at the beginning of the
Sieve script). This is especially useful in conjunction with the MTA's support for combining
multiple Sieve scriptlets such as those resulting from spam/virus filter package integration,
or from user LDAP attribute mailVacation* settings. However, enforcement of per-the-
Sieve-standard "require" clause location may be selected by setting the strict_require
MTA option.

• The ":raw" and ":text" modifiers defined for the "body" test may now also be used in
"header" and "address" tests. Similarly to when used with "body", the ":raw" modifier
specifies that MIME decoding should be performed; in the case of "address" and "header"
tests, the MIME processing in question is the decoding of MIME encoded-words (see
RFC 2047 for the definition of encoded-words). ":text" is the default for "header" and
"address" tests on ":comment" and ":display" address parts. ":raw" is the default for
other sorts of "address" tests. (7.0.5)

• The proposed "regex" extension adds a ":regex" match type. (6.1)

• The ":resent" and ":noresent" arguments are supported on the Sieve "redirect"
action, for controlling whether Sieve "redirect" actions cause addition of Resent-* header
lines. (6.3p1)

• The ":resetmailfrom" and ":keepmailfrom" parameters are supported on the Sieve
"redirect" action, to control whether or not the original message's envelope From address
is used on the redirected message (vs. using the Sieve owner's address as the envelope From
address for the redirected message). (6.3p1)

• The "setenvelopefrom" action, to override a message's original envelope From address, is
available for use in system-level Sieves. (8.0)

• The "setmtpriority" action is available for system-level Sieves. It accepts a single integer
or string argument and sets the current MT-PRIORITY to the argument value. This action is
only allowed in system-level Sieves and the argument must be in the -9 to 9 range of valid
MT-PRIORITY values. (8.0)

5–24 Messaging Server Reference

https://tools.ietf.org/html/rfc2047

Sieve supported extensions

• The "setnotify" and "setreturn" actions are available in system-level Sieves. (7.0u1)

• The "setoperation" action is available for system-level Sieves, to set the enqueue
operation mode to "submit", "passthrough", "relay", or "default". (8.0)

• The "setpriority" action is available for system-level Sieves, to set an effective message
processing priority. It takes a single string argument which must be one of "non-
urgent", "normal", or "urgent". Note that this priority is NOT stored in the message
header and only affects processing at this particular stage of message transfer. If multiple
"setpriority" actions are specified in different system-level Sieves, the one in the most
specific Sieve wins. (7.0u4)

• The "spamadjust" and "virusset" actions are supported; they tell the MTA how to set
the spam or virus score which a standard "spamtest" and "virustest" test, respectively,
would then test. (6.0)

• The "strongrandom" function takes as an argument an integer value n specifying the
number of bytes of (cryptographically strong) random material to return. "strong" is
permitted only in system-level Sieves; (attempts to use "strongrandom" from user-levels
Sieves are prohibited because of performance concerns).

• The "random" function takes as an argument an integer specifying an upper limit n on the
range of values to return; a uniformly distributed random number between 0 and n-1 is then
returned. The linear congruential generator described in "Random Number Generators:
Good Ones Are Hard To Find", S. Park and K. Miller, CACM 31 No. 10, pp. 1192-1201,
October 1988 is used to generate these numbers; a separate sequence seeded from the system
time is used for each sieve evaluation. An explicit 32 bit integer seed can be specified by
calling the "randomssed" function. (This may be useful for debugging purposes.) A value
of 0 will cause the sequence to be reinitialized from the system clock.

• The "transactionlog" action is available for system-level Sieves. It takes a single
string argument. All of the "transactionlog" actions in all of the applicable Sieves are
concatenated into a single string, which is then available for inclusion in the MTA message
transaction log file; see the log_transactionlog MTA option. (8.0)

• The translate function is available, to convert a string from one charset to another. (8.0.1)

• The warn action is available, to cause additional text to be added to the "warn" clause in the
log_filter field of the MTA message transaction log file. (8.0)

• Custom tests may be defined via MTA FILTER_testname mapping tables. (Updates to MS
6.2 and updates to MS 6.3)

• Subroutines are supported. (8.0)

• Trailing commas are now allowed in string lists. (8.1.0.1)

Finally, one of the most important of the MTA's extensions to Sieve is the MTA's support of a
hierarchy of Sieve filters.

5.1.2.1 Sieve address test

The "address" test is a standard part of the Sieve language. However, MTA support for the
"address" test deserves a few special comments.

Sieve filters 5–25

Sieve supported extensions

In regards to "address" tests, note that the MTA supports the "subaddress" extension
(capability name "subaddress") defined in RFC 3598, which makes available ":user" and
":detail" tagged arguments.

New in Messaging Server 7.0.5, the Sieve "address" test supports several enhancements:

• The Sieve "address" test now uses the MTA's heuristic address parser (instead of the strict
address parser). This helps "address" tests work even when the overall header contains one
or more syntax errors.

• The "address" test supports a private ":aindex" tagged argument. This ":aindex" tag
accepts a positive integer as an argument. If ":aindex n" is specified, then only the nth
address in each header field will be tested. Note that ":aindex" (selecting which address
out of multiple addresses) may be combined with ":index" (selecting which header line out
of multiple header lines), to cause the test to operate on a single address in a single header
line.

• The "address" test supports two new, private, part modifiers, ":display" and
":comment". The ":display" modifier causes the "address" test to operate on the display-
name phrase; note that the display-name phrase is the optional text appearing outside of
and specifically in front of the actual address, the actual address being the part enclosed in
angles. The ":comment" modifier causes the "address" test to operate on any parenthetical
comments that appear after an address.

• The ":raw" and ":text" modifiers defined for the "body" test may also be used in
"address" tests (as well as "header" tests). Similarly to when used with "body", the ":raw"
modifier specifies that MIME decoding should be performed; in the case of "address" and
"header" tests, the MIME processing in question is the decoding of MIME encoded-words
(see RFC 2047 for the definition of encoded-words). ":text" is the default for "header" and
"address" tests on ":comment" and ":display" address parts. ":raw" is the default for
other sorts of "address" tests.

5.1.2.2 Sieve body extension

New in Messaging Server 7.0u2, the MTA supports the Sieve body extension specified in RFC
5173 (Sieve Body Extension), with the following restrictions:

• The only match types supported are :contains and :is; while :matches and
:regex are not supported. This is likely to be a permanent restriction due to the possible
performance impact of supporting these match-types.

• The only body transforms supported are :raw and :text; while :content is not
supported. This restriction is likely to be lifted in a future release.

• Variable substitutions are not allowed in body test arguments. If they are used an error is
likely to occur. This is so that a list of all arguments to body in all scripts can be computed
in advance and searched for in a single pass. If this restriction were to be lifted, it would be
easy to construct scripts that would require an arbitrary number of passes over the message,
which is unacceptable in a server environment. As such, this should be considered to be a
permanent restriction. For example, this script will fail:

require ["variables", "body"];

5–26 Messaging Server Reference

https://tools.ietf.org/html/rfc3598
https://tools.ietf.org/html/rfc2047
https://tools.ietf.org/html/rfc5173
https://tools.ietf.org/html/rfc5173

Sieve supported extensions

set "a" "testing";
if body :contains "${a}" { discard; }

• The :text body transform operates on all message parts with a text type or a 7bit/8bit
encoding. If a charset other than utf-8 is specified on a text part, then that part is converted
to utf-8 before being searched.

Note also that new in Messaging Server 7.0.5, imexpire supports use of the Sieve body
extension.

The availability of the body test is controlled by the enable_sieve_body MTA option. A
value of 0, the default, disables the extension. A value of 1 enables the extension for use in all
Sieves. A value of 2 enables the use of body in system-level Sieves only. Each Sieve script that
wishes to use "body" must also declare it using the "body" capability:

require "body";

5.1.2.3 Sieve copy extension

The MTA supports the Sieve copy extension specified in RFC 3894 (Sieve Extension: Copying
Without Side Effects), which adds a :copy parameter to the Sieve fileinto and redirect
actions allowing these actions to be used without cancelling the default save-to-inbox Sieve
effect. The capability name is "copy":

require "copy";
redirect :copy "another-mailbox@domain.com";
A copy of the message will still be retained/delivered "normally"

5.1.2.4 Sieve discard and jettison actions

In addition to the standard "discard" action, the MTA also supports a private "jettison"
action (capability name also merely "jettison") which causes a "non-overridable" discard.
"jettison" is similar to "discard" in that it causes messages to be silently discarded.
The difference between "jettison" and "discard" is that unlike "discard", which does
nothing but cancel the implicit "keep", "jettison" forces a "discard" to be performed.
The behavioral difference is only relevant when multiple Sieves are involved. For example,
a system-level "discard" can be overridden by a user Sieve explicitly specifying "keep",
whereas a system-level "jettison" will override anything done by a user Sieve.

Whether the MTA immediately discards a message upon a Sieve "discard" or "jettison"
action being applied, vs. routing such messages to the filter_discard channel (for
a short period of retention before being permanently deleted) may be configured via
the filter_discard and filter_jettison MTA options. Configuring use of the
filter_discard channel allows a system administrator to, if desired, "fetch back" messages
a user has very recently, mistakenly, discarded via a Sieve filter. As such,it may be useful either
for debugging purposes, or for assisting users prone to setting up overly aggressive discarding
via personal Sieve filters. (Technical note: When the MTA routes a discarded message to the
filter_discard channel, the MTA also sets a bit in the message envelope that means that
subsequent "discard" or "jettison" actions will be ignored. This has no effect for the
discarded messages that remain in the filter_discard queue until eventually deleted
from disk. However, if instead a "retrieval" procedure is performed on such a message, such

Sieve filters 5–27

https://tools.ietf.org/html/rfc3894
https://tools.ietf.org/html/rfc3894

Sieve supported extensions

as if a system administrator moving a message from the filter_discard channel to the
reprocess channel for subsequent processing, the bit permits delivery to proceed bypassing
any "discard" or "jettison" actions.)

When discarded messages are deleted immediately (rather than being routed to the
filter_discard channel), note that that is logged in MTA message transaction logging
as if the message had been enqueued to the bitbucket channel, though in reality no such
enqueue is performed and instead the message temporary file is merely deleted from disk.

As of Messaging Server 7.0u4, the "discard" and "jettison" Sieve actions now accept a
single, optional string parameter. This parameter value, if specified, is logged as part of the
log_filter filter result field in the MTA message transaction log, assuming of course that
the associated Sieve is the one that determines the disposition of the current message. Note
that this argument is nonstandard; however, since the main application is in system-level
Sieves, this should not present a portability problem in practice.

Note that effects similar to "discard" or "jettison" may be obtained via *_ACCESS
mapping table $V, $v, $Z, or $z flag use.

Note that application of "jettison" will disable user-level Sieve "vacation" or "notify"
actions that might otherwise apply. (Prior to Messaging Server 7.0.5, "jettison" would cancel
all "notify" actions; as of Messaging Server 7.0.5, system-level "notify" actions are not
cancelled by "jettison".)

5.1.2.5 Sieve date and index extensions

As of Messaging Server 7.0u4, the MTA supports the Sieve date and index extensions defined
in RFC 5260 (Sieve Email Filtering: Date and Index Extensions). (Note that prior to Messaging
Server 7.0u4, certain parts of these extensions, notably the "currentdate" test and parts of
the "date" test, had already been made available.) The "date" test matches dates off header
lines; the "currentdate" test matches the current time (the time at which the Sieve script
is evaluated); and the "index" extension adds ":index" and ":last" arguments to the
"address", "header", and "date" tests. The capability strings are "date" (which enables both
"date" and "currentdate" tests) and "index":

require ["date","index"];

Some examples of "date" or "currentdate" use:

 require ["date", "vacation", "relational"];
 if anyof(currentdate :is "day" "05",
 currentdate :is "day" "10",
 allof(currentdate :is "weekday" "2",
 currentdate :value "gt" "14",
 currentdate :value "lt" "22"))
 { vacation "I'm working at the hospital today";
 redirect "hospital-address"; }

require ["date", "relational", "vacation"];
if allof(currentdate :value "ge" "date" "2007-06-30",
 currentdate :value "le" "date" "2007-07-07")

5–28 Messaging Server Reference

https://tools.ietf.org/html/rfc5260

Sieve supported extensions

{ vacation :days 7 "I'm away during the first week in July."; }

require ["variables","date","relational"];
set "startDateTime" "2007-01-18T00:00:00Z";
set "endDateTime" "2007-01-19T00:00:00Z";
if allof(currentdate :value "ge" "iso8601" "${startDateTime}",
 currentdate :value "le" "iso8601" "${endDateTime}")
 { redirect "user+wherever@domain.com"; }

Note that "currentdate" and "date" by default returns time values in the server local
time zone, meaning that ISO 8601 strings such as 2007-01-19T00:00:00-08:00 may
be returned. Alternatively, one may use ':zone "+hhmm"' in the test to force shifting
(conversion) of the original time zone to the specified time zone prior to performing the test.
In contrast, specifying ":originalzone" for a "date" test forces use and retention of the time
zone offset originally present.

The Sieve extlists extension, among other things, also adds a ":list" match type to the "date"
and "currentdate" tests.

When considering ":index", note that as of Messaging Server 7.0.5 the MTA supports a
private ":aindex" tag on Sieve address tests. This ":aindex" tag accepts a positive integer as
an argument. If ":aindex n" is specified, then only the nth address in each header field will
be tested. Note that ":aindex" (selecting which address out of multiple addresses) may be
combined with ":index" (selecting which header line out of multiple header lines), to cause
the test to operate on a single address in a single header line.

5.1.2.6 Sieve duplicate extension

As of the 8.0 release, the MTA supports the Sieve duplicate extension specified in RFC 7352.
The "duplicate" test is intended to assist in detecting and handling cases of so-called
"duplicate" messages such as cases where a user receives both a personally addressed copy as
well as a mailing list copy of a message.

The capability string to enable use of the "duplicate" test is "duplicate":

require "duplicate";

Furthermore, to permit "duplicate" tests, the max_duplicates and
duplicate_tracking_url MTA options must have, respectively, a positive value and a
valid URL value. The max_duplicates MTA option controls how many "duplicate" tests
may be performed in a single Sieve script; the default is 2.

In the MTA's implementation, the MTA maintains a memcache database recording "recent"
duplicate message tracking data: this database is what allows comparing a current message
with a prior message to detect a "duplicate". The duplicate_tracking_url MTA option
specifies where this duplicate tracking information should be stored; at present the value must
be a memcache: URL of the form:

memcache://host:port/key-prefix

Sieve filters 5–29

https://tools.ietf.org/html/rfc7352

Sieve supported extensions

If the host isn't specified, it defaults to the value of the memcache_host MTA option. It is an
error for memcache_host not to be set in this case. If the port isn't specified, it defaults to the
value of the memcache_port MTA option; if that option in turn isn't specified, the default
is 11211, the usual port for memcache servers. key-prefix, if specified, is prepended to the
keys the duplicate extension sends to the memcache server.

Note that "duplicate" tests are performed during Sieve evaluation, but no memcache
updates are performed at the Sieve evaluation stage. It is only after the message has been
successfully processed that updates are done.

Also note that duplicate information is implicitly qualified by the owner of the Sieve. In
the case of system-level Sieves, this will be the applicable postmaster address, so system-
level Sieves operate in shared namespace(s). Note that the ":handle" argument of the
"duplicate" test can be used to force system-level Sieves to operate in their own namespace.

The syntax for the "duplicate" test is:

 duplicate" [":handle" handle-string]
 [":header" header-name-string /
 ":uniqueid" value-string]
 [":seconds" number] [":last"]

where the default is to test for previously seen (within a short period of time) values of
the Message-id: header line, or previously seen values of another header line instead if
":header" is specified, or previously seen other values constructed as the Sieve chooses
per the ":uniqueid" argument string. The time period for which the "seen" values are
retained, so the time period within which duplicates may be detected, may be controlled
by use of the ":seconds" argument, or if not specified defaults to the value of the
duplicate_timeout_default MTA option.

As of the 8.0 release, warnings that occur during Sieve evaluation such as issues with the
duplicate extension (or issues involving the memcache protocol or the vacation extension),
plus any specifically specified warnng text specified via the Sieve "warn" action will result in a
"warn" clause in the log_filter field of MTA message transaction log entries.

5.1.2.7 Sieve editheader extension

The MTA has supported the addheader action (prior to its standardization) since circa MS
6.1, and the standard deleteheader action and proposed replaceheader action since MS
6.3. The standard capability string in order to use an addheader or deleteheader action,
as defined in RFC 5293 (Sieve Email Filtering: Editheader Extension), or a replaceheader
action, as defined in draft-degener-sieve-editheader-00, is "editheader", although note that
the MTA does not enforce this for the addheader action (addheader may be used without a
"require" clause):

require "editheader";

The MTA has a configurable limit on how many addheader actions will be permitted in a
single Sieve script, max_addheaders. The default is 10. As of the 8.0 release, this limit only
applies to user-level Sieves.

5–30 Messaging Server Reference

https://tools.ietf.org/html/rfc5293
https://tools.ietf.org/html/draft-degener-sieve-editheader-00

Sieve supported extensions

When specifying a header label in an addheader action, note that the header label length
is limited to 256 characters, and may not contain any eight bit characters (characters above
ASCII position 126) nor control characters (characters below ASCII position 33) as well as not
containing the colon character, :.

Note that it may often be useful to make use of the Sieve variables extension along with
editheader, and perhaps especially in conjunction with the "replaceheader" action. This
is illustrated in the following example in which a site's broken DMARC usage, which could
break mailing lists for innocent other members of the list is ameliorated by forcibly modifying
the (broken domain's) addresses so as not to trigger bounce messages for messages from
this broken domain to other list recipients thereby causing the innocent list members to be
removed from mailing lists.

require ["editheader","variables"];
if address :domain :is "From" "dmarcbrokenusage.domain.com" {
dmarcbrokenusage.domain.com addresses that include phrase and/or comment:
 replaceheader :newvalue "${1}<${2}@dmarcbrokenusage.domain.com.invalid>>${3}"
 :matches "From" "*<*@dmarcbrokenusage.domain.com>*";
Simple dmarcbrokenusage.domain.com addresses:
 replaceheader :newvalue "${1}@dmarcbrokenusage.domain.com.invalid"
 :matches "From" "*@dmarcbrokenusage.domain.com";
 addprefix text:
Due to dmarcbrokenusage.domain.com's broken use of DMARC, the From: address
in this message has been replaced by <original-address>.invalid.

To reply to the original sender of this message, remove the .invalid
from the end of the domain.

.
}

5.1.2.8 Sieve envelope extension

The capability string in order to use an envelope test, as defined in RFC 5228, is "envelope":

require "envelope";

The "envelope" test has been further extended by additional RFCs to allow access to
additional envelope fields, including the "envelope-dsn" extension defined in RFC 6009
for access to the information provided by the DSN SMTP extension, and the the "envelope-
auth" extension, for access to the SMTP AUTH value; while other RFCs extend "envelope" as
well as other Sieve operations, including the "subaddress", "extlists", and "relational"
extensions which among other effects also supplement the range or types of allowed
"envelope" tests. And the MTA's private conversion tag mechanism can also be accessed
from "envelope" tests using the private "conversiontag" part.

In order to use such supplementary "envelope" parts, the additional extension, as well as
"envelope" itself, must be listed in a "require" action (all except for "conversiontag"
which does not need a "require" action); e.g.:

Sieve filters 5–31

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc6009

Sieve supported extensions

require ["envelope","envelope-dsn"];
require ["envelope","envelope-auth"];
require ["envelope","subaddress"];
require ["envelope","extlists"];
require ["envelope","relational];

The "envelope" test takes a string or list argument.

In addition to supporting the standard envelope test arguments specified in RFC 5228
and the other extensions mentioned above, the envelope test supports a conversiontag
argument. This test checks the current list of tags associated with the current recipient, one
at a time. Note that the :count modifier (from the "relational" extension), if specified,
allows checking of the number of active conversion tags. This type of envelope test is
restricted to system-level Sieves. Also note that this test only "sees" the set of conversion
tags that were present prior to Sieve processing: the effects of "setconversiontag" and
"addconversiontag" actions are not visible.

When using an "envelope" test from a non-channel application or utility such as imexpire,
note that the External filtering context MTA options may be relevant.

5.1.2.9 Sieve environment extension

New in Messaging Server 7.0-3.01, the Sieve environment extension specified in RFC 5183
(Sieve Email Filtering: Environment Extension) has been implemented. All of the items
defined in the RFC are provided, namely: domain, host, location, name, phase, remote-
host, remote-ip, version. Additionally, the vnd.sun.source-channel item returns the
name of the current source channel and the vnd.sun.destination-channel item returns
the name of the current destination channel.

New in Messaging Server 7.3-0.01, the vnd.sun.autoreply-internal item returns
TRUE or FALSE according to whether the autoreply criteria have been met for use of the
"internal" autoreply response text. Also new in Messaging Server 7.3-0.01, the MTA supports
two new Sieve environment items, vnd.sun.authenticated-sender-address and
vnd.sun.authenticated-sender-id. The former provides access to the sender address
that's associated with the authentication state for the SMTP session. The latter provides similar
access to the user identity.

New in 7.0.5, the MTA supports the new Sieve environment item vnd.oracle.last-
verdict. When the Sieves associated with a recipient are evaluated in order, each evaluation
that performs an explicit handling action sets this item as it finishes so the next Sieve in the
sequence can check it. A Sieve script that doesn't perform an explicit handling action will leave
this item unchanged. Possible values that can be set are:

• refuse
• reject
• ereject
• jettison
• fileinto
• redirect
• keep
• discard

5–32 Messaging Server Reference

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc5183
https://tools.ietf.org/html/rfc5183

Sieve supported extensions

Note that testing the vnd.oracle.last-verdict environment item makes the Sieve script
recipient-specific in the same fashion an envelope "To" test does, and will result in this and
subsequent Sieves being reevaluated for every recipient. Although any script can test this item,
it is intended for use when other applications and utilities such as imexpire ask the MTA to
perform antispam and antivirus checks.

New in 8.0, the MTA supports a new Sieve environment item, vnd.oracle.mt-priority.
This item returns the current MT-PRIORITY value as a string.

New in 8.0, the MTA supports a new Sieve environment item, vnd.oracle.operation-
type. This item returns the current type of enqueue operation that is underway. The possible
values are "DEFAULT", "SUBMIT", "RELAY", and "PASSTHROUGH".

New in 8.0.1.2, the MTA supports new Sieve environment items,
vnd.oracle.notifycount, vnd.oracle.notifyquota,
vnd.oracle.vacationcount, vnd.oracle.vacationquota The "count" items return
the number of notification or vacation messages the current sieve has enqueued. The "quota"
items return the number of additional notification or vacation actions the current sieve is
allowed to perform.

Two additional private Sieve environment items have been added in MS 8.0.2.2.
vnd.oracle.mime_levels returns the number of accessible MIME levels in the current
message, i.e. the MIME "depth" of the message. vnd.oracle.max_mime_widh returns the
maximum number of MIME parts found in any multipart in the message.

Arbitrary, custom environment items may be set via the FROM_ACCESS mapping table or any
of the recipient *_ACCESS mapping tables using the $+E flag. The value of such a custom
environment item may subsequently be tested in a Sieve script. For instance, the following
FROM_ACCESS entry defines, for messages coming in via the SMTP port from the tcp_local
channel (the Internet), the custom environment item "heloname", giving it the value "yes" of
the name the SMTP client claimed on the HELO/EHLO line:

FROM_ACCESS

 TCP|*|25|*|SMTP/*/*|MAIL|tcp_local|* C+Eheloname|$2

A Sieve script may then test this custom "heloname" environment item:

require ["environment","fileinto"];
First, check if heloname item is set:
if environment :contains "heloname" "" {
If heloname item IS set, then check its value:
 if environment "heloname" :is "Bogus Name" {fileinto "bogus"; }
}

5.1.2.10 Sieve ereject and reject and refuse extensions

The original Sieve specification, RFC 3028, defined the optional "reject" extension and
action as being required to result in a Message Disposition Notification. RFC 5429 redefined
"reject" to allow it to refuse messages during the SMTP transaction (rather than accepting
messages and generating back a separate MDN), and defined the "ereject" action to require
messages to be refused during the SMTP transaction. The MTA also supports the nonstandard

Sieve filters 5–33

https://tools.ietf.org/html/rfc3028
https://tools.ietf.org/html/rfc5429

Sieve supported extensions

"refuse" action, capability name "refuse", which was an earlier draft approach similar to
"ereject": note that "refuse" attempts to do an SMTP level rejection but falls back to an
MDN when SMTP level rejection is not feasible (as for instance in the case of a multi-recipient
message where not all recipients are to be rejected, or when the acceptalladdresses
channel option is set), whereas "ereject" will, if SMTP rejection is not feasible, discard
messages with forged return-path or fall back to a DSN. The capability name for "reject"
with its original behavior (MDN generation) is "reject"; the capability name for the
"ereject" action and for the updated behavior from the "reject" action is "ereject".

Note that "ereject", as per its design from RFC 5429, is only intended to be made available
on ingress MTAs capable of returning an SMTP level error directly to remote systems in
other administrative domains; the enable_sieve_ereject MTA option which enables
"ereject" availability is on by default, but may (and should) be disabled on "internal" MTA
hosts.

When "refuse" support was first added (MS 6.1), "refuse" was only supported in system-
level Sieve scripts. That restriction was removed for MS 6.2. Also, prior to Messaging Server
7.0, a "refuse" for any recipient caused an SMTP-level "refuse" for all recipients; as of
Messaging Server 7.0, instead "refuse" performs an SMTP-level rejection only if "refuse"
applied to all recipients and otherwise falls back to generating an MDN regarding the
"refuse" recipient(s). Also as of Messaging Server 7.0, a "refuse" in a more general (e.g.,
sytem-level) Sieve will override actions taken by more specific (e.g., user-level) Sieves.

Each of "ereject", "reject", and "refuse" takes a single string argument specifying error
text to include in the SMTP error or notification message.

Note that "ereject, "reject", and "refuse" cannot be combined with anything except
"discard", "capture", "vacation", or "hold".

Note that any Sieve "notify" actions in a user-level Sieve script will be automatically
cancelled when the overall Sieve verdict is "ereject", "reject", or "refuse" (or
"jettison"); but "notify" action in a system-level Sieve script will, as of Messaging Server
7.0.5, be honored despite the overall verdict, thus making it possible to use "notify" for some
limited administrative auditing purposes.

New in 8.0, the "reject", "ereject", and "refuse" actions will parse any extended SMTP
error code (e.g., "5.7.2") that appears at the beginning of the action's string argument in any
system-level Sieve script, and use it in preference to the default 5.7.1 extended SMTP error
code. This feature is not available to user-level Sieve scripts.

5.1.2.11 Sieve external lists

RFC 6134 (Sieve Extension: Externally Stored Lists) defines a Sieve extension for external lists,
EXTLISTS, which is intended for cases where a Sieve script would like to consult an externally-
stored list: this might be data in an LDAP directory, a flat file containing a list of something, a
database, a personal addressbook, etc. In order to use a Sieve external list, a Sieve script must,
per Sieve syntax, declare that it will use this extension via

require "extlists";

The MTA's implementation of EXTLISTS operates as follows. Sieve scripts may use the
":list" argument in a "redirect" action or in tests such as "address", "envelope",
"header", "string", "spamtest", or "virustest", etc., or in the test component of the

5–34 Messaging Server Reference

https://tools.ietf.org/html/rfc5429
https://tools.ietf.org/html/rfc6134

Sieve supported extensions

"deleteheader" or "replaceheader" actions, to indicate a wish to access an "external list".
 The MTA then makes use of the SIEVE_EXTLISTS mapping table to determine the meaning
and contents of the referenced external list.

When an external list is referenced in a Sieve script, via a ":list" argument, e.g.,

if address :list" "from" "pab" { keep; }

or

redirect :list "friends";

the MTA uses the list name (as well as other data) to construct a probe into its
SIEVE_EXTLISTS mapping table. In the case of tests, the probe syntax is:

test-name|sieve-owner|spare_4-value|spare_5-value|spare_6-value|list-name|argument-value

Here test-name can be any of hasflags, address, envelope, spamtest, virustest,
header, string, environment, currentdate, date, replaceheader, deleteheader.
 The sieve-owner is normally the (canonical address of the) "owner" of the Sieve---so the
user's address for user-level Sieves, or normally the postmaster address for system-level
Sieves; or the field can be blank if the Sieve has no owner address. The spare_4-value,
spare_5-value, and spare_6-value fields contain the values of those LDAP attributes
named by the MTA's ldap_spare_4, ldap_spare_5, and ldap_spare_6 MTA options
associated with the current envelope recipient; these ldap_spare_* options have no defaults,
so by default no values appear here. Furthermore, even if ldap_spare_* MTA options are
defined, the spare_* fields will be blank if the current recipient address was not obtained
from an LDAP entry. (And prior to Messaging Server 7.2-0.01, the ldap_spare_* fields
would be blank for system Sieve probes; as of Messaging Server 7.2-0.01, the current recipient
address's LDAP attribute values are used even for system Sieve probes.) The intention is that
such ldap_spare_* MTA options (and corresponding attributes) may be defined and used
to store, or a per-user basis, information about how to construct appropriate access URLs for
different "types" of external lists: for instance, one of these attributes might store a value which
is a sort of template for constructing lookups of lists in that user's personal addressbook, while
another of these attributes might store a value which is a sort of template for constructing
lookups of lists in that user's calendar (so a CardDAV lookup template). The list-name
is the argument to the ":list" parameter; for instance, in the examples above "pab" and
"friends", respectively. (In fact, consulting multiple external lists is supported, in which case
the multiple list names are present in the probe, separated with the vertical bar character.)
Finally, the argument-value is whatever string from the message corresponds to the Sieve
test.

For "redirect" actions, the syntax is:

redirect|sieve-owner|spare_4-value|spare_5-value|spare_6-value|list-name

where note that there is no final argument-value. (The Sieve external lists draft has another,
alternate construct for "redirect :list", where the argument assumed above to be a list
name is instead a URL to which to do the redirection. While the MTA is capable of supporting
such usage, enabling it by matching and returning the argument blindly would be extremely
dangerous and is not recommended. Recommended configuration and usage is instead to
have the SIEVE_EXTLISTS mapping table: (1) expect and match only when a list name is the

Sieve filters 5–35

Sieve supported extensions

argument, and (2) construct and return a sensible URL based upon that list name as well as the
other fields of the probe.)

The S flag will be set if the Sieve is a system Sieve, and may be tested in the template using the
usual $:S (flag set) or $;S (flag clear) flag test syntax.

The mapping template must set the $Y flag if the test succeeds and $N if the test fails. $F may
be set to report an error; in this case the mapping result will be used as the error message.

Failure to set $Y, $N, or $F will cause an "unknown list" error to be signaled.

Note that $Y takes precedence over $N, so a single mapping template can set $N before
performing a lookup, $Y after, and both the success and failure case will be handled.

In the case of a successful redirect action, the template should return a URL pointing to the
desired list of addresses.

In addition, if a Sieve test or "redirect" making use of a Sieve external list employs any
of the spare_* fields, then the mapping template must also set the $* flag. $* tells the
Sieve machinery that the test is recipient-specific and the script must be reevaluated for each
recipient. Failure to set $* can lead to botched test results for multiple recipient messages.

An MTA-specific extension to the Sieve external lists draft is that the MTA will also potentially
return properties associated with list entries. If Sieve variables are enabled, then the use of
":list" with a test sets variables in a fashion similar to ":matches": that is, ${0} is set to
whatever was found on the list, ${1} is set to the first property value associated with the list
entry, ${2} is the second property value, etc. When variables are enabled, the result of the
mapping consists of properties separated by vertical bars.

So for instance, suppose a site has the ldap_spare_5 MTA option defined naming an LDAP
attribute in which the users store the leading portion of the LDAP URL for where each user's
own, personal, PAB information is stored; for instance, suppose that in the user attribute
psroot is each user's PAB DN location information in a form of:

ldap:///user's-pab-dn

Then suppose further that the site wants users to be able to access their personal PAB
information for :list use in their personal Sieve filters. In particular, the site wants the list
named "pab", if used in an address, envelope, or header test, to mean "any address found
in the user's own PAB", and for any other, more specifically named list list-name, to mean
the contact entries in a user's own PAB that are in the list-name PAB group; that is, the
contact entries marked with "memberOfPiGroup=list-id" where the list-id was defined
in a group entry in the user's PAB (an entry with objectClass=PiTypeGroup and with
displayName=list-name and piEntryID=list-id). Also suppose that the site uses the
piEmail1 attribute to store the address most suitable for using to send to users. Then the site
might want an ldap_spare_4 setting of

msconfig set ldap_spare_4 psroot

where in legacy configuration mode, the setting would be made in the MTA option file as

5–36 Messaging Server Reference

Sieve supported extensions

LDAP_SPARE_4=psroot

And the might would also want a SIEVE_EXTLISTS mapping table including entries such as:

SIEVE_EXTLISTS

! Check for the special case of testing whether an 'address' is merely
! present in the user's PAB somewhere -- the test of external list "pab":
!
! test-name|sieve-owner|spare_4|spare_5|spare_6|pab|address-from-message
!
 address|*|*|*|*|pab|* \
N]pab$1?piEmail1?sub?(|(piEmail1=$=$4$_)(piEmail2=$=4_)(piEmail3=$=$4$_))[$Y
 envelope|*|*|*|*|pab|* \
N]pab$1?piEmail1?sub?(|(piEmail1=$=$4$_)(piEmail2=$=4_)(piEmail3=$=$4$_))[$Y
 header|*|*|*|*|pab|* \
N]pab$1?piEmail1?sub?(|(piEmail1=$4)(piEmail2=$4)(piEmail3=$4))[$Y
!
! Note that no entry to allow redirect to the pseudo-list "pab" is included
! above: this is intentional as making it "too easy" for users to resend to
! all their contacts seems unwise. Instead, redirect is enabled below merely
! for specifically named and defined PAB groups.
!
! Now check for named groups (named external lists); that is, for a named
! group, find the piEntryID for that group.
!
! test-name|sieve-owner|spare_4|spare_5|spare_6|group|address-from-message
!
 address|*|*|*|*|*|* \
$CGROUP|address|$2|$5|$]pab$1?piEntryID?sub?(&(objectClass=piTypeGroup)(displayName=$4))[
 envelope|*|*|*|*|*|* \
$CGROUP|envelope|$2|$5|$]pab$1?piEntryID?sub?(&(objectClass=piTypeGroup)(displayName=$4))[
 header|*|*|*|*|*|* \
$CGROUP|header|$2|$5|$]pab$1?piEntryID?sub?(&(objectClass=piTypeGroup)(displayName=$4))[
 redirect|*|*|*|*|* \
$CGROUP|redirect|$2|$]pab$1?piEntryID?sub?(&(objectClass=piTypeGroup)(displayName=$4))[
!
! Now find contact entries that have the correct piEntryID, probing with
!
! GROUP|test-name|spare_4|address-from-message|piEntryID
!
 GROUP|address|*|*|%* \
N]pab$0?piEmail1?sub?(&(memberOfPiGroup=$2$3)(|(piEmail1=$=$1$_)(piEmail2=$=1_)(piEmail3=$=$1$_)))[$Y
 GROUP|envelope|*|*|%* \
N]pab$0?piEmail1?sub?(&(memberOfPiGroup=$2$3)(|(piEmail1=$=$1$_)(piEmail2=$=1_)(piEmail3=$=$1$_)))[$Y
 GROUP|header|*|*|%* \
N]pab$0?piEmail1?sub?(&(memberOfPiGroup=$2$3)(|(piEmail1=$=$1$_)(piEmail2=$=1_)(piEmail3=$=$1$_)))[$Y
!
! Note redirect case needs to return PAB URL itself, rather than lookup result.
! It is assumed that for all lists, the most appropriate user addresses to use
! for redirection are stored in the users' piEmail1 attribute.
!
 GROUP|redirect|*|%* pab$0?piEmail1?sub?(memberOfPiGroup=$1$2)$Y

Note here how the user's initial portion of an LDAP URL value, stored in the attribute
named by ldap_spare_5, is converted by the SIEVE_EXTLISTS mapping table into the
MTA's pabldap: URL format (the format that tells the MTA that this is an LDAP URL for
querying the PAB directory---the LDAP directory that the MTA locates via its ldap_pab_*
options). For the special case of an "address" or "envelope" test against the so-called list
named merely "pab", the user's own entire PAB is searched, looking for entries where the test
argument matches the value of any of the attributes piEmail1, piEmail2, or piEmail3 in
a PAB entry. For other named lists/groups, the list/group name is used to attempt to locate a
corresponding entry (with objectClass of piGroupType and a displayName matching
the specified group/list name), and when found, retrieve the piEntryID value that indicates
that group/list. Then a second lookup is performed, to find those contact entries that have

Sieve filters 5–37

Sieve supported extensions

a memberOfPiGroup value for the group/list in question. In the case of an "address" or
"envelope" test against named lists, the user's PAB is searched looking for entries where both
the list ID is present in the entry in a memberOfPiGroup attribute, and the entry's piEmail1
value matches the test argument. Just in case a user configures a "header" test for address
matching purposes (though note that this is poor user practice, as "address" or "envelope"
tests are more appropriate for such purposes), "header" tests are set up similarly, though
including matching against alias values (piEmail2 and piEmail3 in addressbook attributes,
analogous to the MTa's usual mailAlternateAddress and mailEquivalentAddress
attributes) as well as against the canonical piEmail1 (analogous to MTA's mail attribute)
value. And in the case of a "redirect" action, the mapping returns not the actual addresses,
but rather a "pabldap:" URL specifying where to find the appropriate addresses to which to
redirect; this URL will be the new address (the address to which to redirect) enqueued to the
reprocess channel, which in turn will perform the actual list expansion (expand that URL into
the addresses it specifies). Note that the max_redirect_addresses MTA option limits how
many addresses will actually be used from such a list; additional addresses will be ignored.

With Sieve access to user personal PAB's set up as above, then users can make use of the
addresses in their PAB in various ways in their Sieve scripts.

As a simple example, suppose that a system-level Sieve would do a

discard;

on a message for whatever reason: perhaps because a spam/virus filter package callout
returned a verdict suggesting that a message is spam; perhaps due to the source-IP being
suspect; whatever. But if a user wishes to keep any message purporting to come from one
of their known correspondents, then that user might use a personal Sieve filter with explicit
keep" and "fileinto" actions to override the system-level "discard", e.g.,

require ["envelope","extlists"];
...other-actions-such-as-list-fileintos...
if envelope :list "from" "pab" { keep; }

Or for another example, suppose that a system-level Sieve filter (perhaps configured as part of
a spam/virus filter package callout so configured via a spamfilterN_action_M MTA option
value) has a Sieve effect of:

require ["spamtest","relational"];
if spamtest :value "ge" "200" { discard; }

Then a user might use a Sieve test and action such as:

require ["envelope","extlists"];
if envelope :list "from" "pab" { spamadjust "-10000"; }

In this example above, the user adjusts the spamtest value downward (drastically) for any
sender address found in the user's own PAB. With such a drastically lowered spamtest value,
the message will likely be safe from any system-level Sieve spamtest that might otherwise
choose to discard or reject the message. (And the user's Sieve can continue on to do any
further fileinto" or other operations that may seem desirable to the user. Leaving open
the potential for the user's own Sieve to perform further actions, such as "vacation" or

5–38 Messaging Server Reference

Sieve supported extensions

"fileinto" or "redirect", is a reason why a user might prefer to do a "spamadjust" rather
than an explicit "keep" for known senders.)

Or the user's Sieve might do more subtle adjusting and testing:

require ["envelope","extlists","fileinto","spamtest","relational"];
 /* First, lower the spam score for senders in my PAB */
if envelope :list "from" "pab" { spamadjust "-100"; }
 /* But better check open-list postings -- that list gets
 postings with forged From addresses. If the spam score
 if over 200 even after any adjustment for being
 sent by a recognized contact, discard the message. */
if allof (header :contains ["To","Cc","Bcc"] "open-list@domain.com",
 spamtest :value "ge" "200") {
 discard;
 stop;
 }
 /* File messages to or from my buddies in my "softball" PAB list
 or with softball in the subject, to my softball folder */
if anyof (envelope :list ["from","to"] "softball",
 header :contains "Subject" "softball") { fileinto "softball"; }
 /* Discard mildly spammy messages (mild after adjustment for known
 senders, above) that don't show me on a recipient header
 line */
if allof (not header :contains
 ["To","Cc","Bcc","Resent-to","Resent-Cc","Resent-Bcc"]
 "my-own-address",
 spamtest :value "ge" "50") {
 discard;
 stop;
 }
 /* Keep messages from known (in my PAB) correspondents */
if envelope :list "from" "pab" { keep; }

Comparing date with list of holidays

For another example, suppose that a site keeps a list of site-wide holiday days stored in the
MTA's general database, in general database entries of the form:

HOLIDAY|yyyy-mm-dd Yes

(where for purposes of this example, it is the mere existence of an entry that matters, not the
details of what its right hand side translation value---here Yes---may be), and that the site
wishes users to be able to perform currentdate" and "date" tests against that list using the
special list named "holiday". Then the site might use:

SIEVE_EXTLISTS

 currentdate|*|*|*|*|holiday|* NC${HOLIDAY|$4}YE
 date|*|*|*|*|holiday|* NC${HOLIDAY|$4}YE

Sieve filters 5–39

Sieve supported extensions

This would then allow users to use tests such as

require "["date","extlists"];
if currentdate :list "date" "holiday" { redirect "mobile-address"; }

A more sophisticated use would be to store a label specifying the type of holiday (e.g.,
"National", "Municipal", "Religious", "Corporate", etc.) as the right hand side of each
general database entry. Then Sieve scripts could check that returned value as a property (using
the Sieve variables extension and checking the returned property value via ${1}) and perform
additional decision making based on the type of holiday.

Sieve external list tests don't have to involve checking an actual list. In such cases a string
test is typically used since no value actually comes from the message. For example, the
mechanism can be used to implement a user attribute which, if present, is inserted into all
messages delivered to the user as a header. The first step is to make the attribute, which we'll
call userAddHeader, available to the external list machinery as a spare attribute:

msconfig set ldap_spare_4 userAddHeader

The SIEVE_EXTLISTS mapping would then be:

SIEVE_EXTLISTS

 string|*||*|*|addheader|* N*
 string|*|*|*|*|addheader|* Y1$*

Note the use of $* to make this sieve recipient-specific.

And the sieve to perform the header addition would be:

require ["extlists", "editheader", "variables"];
if string :list "addheader" "addheader" {
 addheader "X-Added-Header" "${1}";}

This would probably best be implemented as a destination channel sieve, although any type of
sieve would work.

5.1.2.11.1 Example Sieve external lists with properties

The MTA supports a private feature of Sieve external lists, whereby external lists can return
properties associated with list entries. This can be a powerful additional tool. This section
presents two examples below, both variants on "capturing" copies of particular messages
passing through the MTA.

Capturing a user's "external" messages

Suppose that you wish to capture copies of certain users' Internet correspondence, without
bothering to capture copies of those users' internal correspondence (meaning that direct use
of an ldap_capture LDAP attribute would capture unneeded messages), and that you'd
like to keep track of which users are in this category in LDAP, rather than hard-coding such
a list directly into a Sieve script. One approach for doing this would be to use channel-level

5–40 Messaging Server Reference

Sieve supported extensions

source and destination Sieve scripts on the tcp_local channel (which is the channel handling
messages coming in from, or going to, the Internet), where such Sieve scripts make use of an
external list to check LDAP to determine which users' messages are eligible for capture. Using
the properties feature of the MTA's Sieve external lists implementation, the external list will
also return the capturer address to use (the address to which to send the captured message
copies). The components of such an approach are:

1. Add some user-level LDAP attribute to the schema (or disable schema checking) and set
that attribute on the users for whom you want capture, with a value which is the address
to which to send the captured message copies. (Note that typically such an attribute should
have ACIs so that users themselves can't even see the attribute, let alone change its value.)
This example will assume there is an attribute named mailCaptureInternet for this
purpose. (Note that if you already have ldap_capture defined and pointing to the name
of some LDAP attribute used for unconditional capture, then you probably don't want
to use the same attribute for this "conditional" capture, as that would merely result in an
additional capture copy in the "conditional" cases. Instead you want a different LDAP
attribute, which will only be consulted and have an effect in this special case.)

2. Set the ldap_spare_4 MTA option to the name of this "conditional capture" attribute; in
unified configuration:

msconfig> set mta.ldap_spare_4 "mailCaptureInternet"

or in legacy MTA configuration mode, set in the option.dat file:

LDAP_SPARE_4=mailCaptureInternet

Pointing ldap_spare_4 at this attribute means that the attribute's value will be included in
probes of the SIEVE_EXTLISTS mapping table, which will turn out to be convenient.

3. Define Sieve external lists named "capture-to" and "capture-from" via a
SIEVE_EXTLISTS mapping table as follows. (In legacy configuration mode, this
SIEVE_EXTLISTS mapping table should be placed in the MTA mappings file; in Unified
Configuration mode, the mapping table can be created by editting from within the
msconfig utility.)

SIEVE_EXTLISTS

! Define an external list named "capture-to" for use in "envelope" tests of
! the To address. Because the LDAP_SPARE_4 field of the pattern has a
! match pattern of %*, a probe will match this entry only when the envelope
! To recipient being tested has a non-empty mailCaptureInternet value:
!
 envelope|*|%*|*|*|capture-to|* Y*$1$2
 envelope|*|*|*|*|capture-to|* $N
!
! When the probe matches, the test succeeds ($Y) and the entry returns
! <mailCaptureInternet-value> for the matched address as the first (indeed
! only) property, so it will be accessible via Sieve ${1} variable.
! Note that because this is a recipient-specific test, making use of the
! LDAP_SPARE_4 value, the entry includes $* in the template.
!
! Now define an external list named "capture-from" for use in "envelope" tests
! of the From address. Because the Sieve language is oriented towards
! performing actions on behalf of message recipients, obtaining information
! from LDAP regarding the message sender (envelope From) requires some
! additional, explicit LDAP lookups (more than is required for the "capture-to"
! external list case).
! First, get the base DN for the user entries in the domain of the From

Sieve filters 5–41

Sieve supported extensions

! address and rebuild a new probe:
!
 envelope|*|*|*|*|capture-from|*@* NCBASEDN|FROM|$4@$5|$}$5,_base_dn_{
!
! If the envelope From was that of a user in one of "our" domains, then
! the $}<domain-name>,_base_dn_{ lookup should succeed, so the entry
! succeeded and the probe is now:
! BASEDN|FROM|<from-address>|<basedn-of-from-domain>
!
 BASEDN|FROM|*|* \
C]ldap:///$1?mailCaptureInternet?sub?(&(|(mail=$=$0$_)(mailEquivalentAddress=$=$0$_))(mailCaptureInternet=$=*$_))[$Y
!
! When this probe matched and the LDAP lookup succeeds, then the test
! succeeds ($Y) and the entry returns <mailCaptureInternet-value>
! as a first property (so accessible via Sieve ${1} variable), thus the
! capture attribute value for that matched address is available.

4. On the tcp_local channel (and any other dedicated-to-Internet-correspondence
channel(s)), use a sourcefilter Sieve along the lines of:

require ["envelope","extlists","variables"];
if envelope :list "to" "capture-to" { capture "${1}"; }

and a destinationfilter Sieve along the lines of:

require ["envelope","extlists","variables"];
if envelope :list "from" "capture-from" { capture "${1}"; }

Note that this example used the same LDAP attribute mailCaptureInternet to determine
capture for both incoming and outgoing directions. (The incoming, "capture-to", list took
advantage of setting ldap_spare_4 to conveniently fetch the value of this attribute for the
recipient; for the outgoing, "capture-from", list, two separate, explicitly configured LDAP
lookups were required to first locate where in the directory to search, and second fetch the
actual attribute value.) But separate attributes could be used, if different criteria were desired
for incoming vs. outgoing. Also, in this example the Sieve external list itself simply checks
the attribute value---and the fact that the capture is (intended) for Internet correspondence is
incorporated by virtue of the Sieve filters being placed on the Internet correspondence channel
(tcp_local). More complicated Sieve filter tests combined with this external list consultation
could further refine which messages are captured; see for instance, the additional, "attachment
type" testing shown in the example below. Or use of a Sieve filter consulting these external lists
on different MTA channels could completely alter which messages get captured.

5.1.2.11.2 Testing Sieve external lists

As usual for Sieve filters, the imsimta test -expression utility is one way to do some
checking and testing on Sieve external lists. And it may be worth making special note that
use of the utility with the switch -debug=3 will show some details of operation of the
SIEVE_EXTLISTS mapping table lookup; this may be especially useful for debugging or
confirming correct configuration of a SIEVE_EXTLISTS mapping table.

5.1.2.12 Sieve fileinto action

RFC 5228 (Sieve) defines the "fileinto" action as optional since though quite desirable, it
may not be possible in some environments. In order to use "fileinto", a Sieve script must,
per Sieve syntax, declare that it will use it via

5–42 Messaging Server Reference

https://tools.ietf.org/html/rfc5228

Sieve supported extensions

require "fileinto";

Note that "fileinto" is not supported for domain Sieves. And the number of "fileinto"
actions that may be performed by a Sieve script is limited (as of the 8.0 release, this limit only
applies to user-level Sieves) by the max_fileintos MTA option (default value 10).

To implement a Sieve script's "fileinto" action, the MTA's behavior is controlled by the
fileinto channel option: that channel option is normally configured to insert the folder-
name specified by the Sieve script's "fileinto" argument into the recipient address in the
form of a subaddress. Next, the MTA must pass along to the Message Store the decision of
whether to "trust" the subaddress for folder delivery purposes; relevant channel options are
deliveryflags and flagtransfer. Note that even if a Sieve script appears to perform
a "fileinto" action, the actual delivery-into-a-folder requires that proper configuration
have been performed to properly implement the transfer to the Message Store of the desired
"fileinto" effect.

The copy extension adds a ":copy" tag to "fileinto" (so that the "fileinto" does not, as
would be normal, cancel the Sieve "implicit keep"). The imap4flags extension adds, among
other features, a ":flags" tagged argument (to specify IMAP flags to set on the message as it
is delivered).

Note that users are permitted to "fileinto" their own folders; in contrast, delivery to another
user (or to a desired folder belonging to another user) is not a "fileinto" effect but rather
requires a "redirect" action. There is one exception to this, and that is the case (such as in
cases of head of household Sieve filters) where the owner of a Sieve differs from the user on
whose behalf the Sieve is being applied; the MTA's private ":owner" tag specifies that the
folder named is that of the owner of the Sieve filter, rather than of the user for whom the Sieve
is being applied.

5.1.2.13 Sieve ihave extension

As of Messaging Server 7.0, the MTA supports the Sieve ihave extension described in RFC
5463 (Sieve Email Filtering: Ihave Extension); the capability name is "ihave". This includes the
"ihave" test and the "error" control structure.

The ihave test takes as argument a list of capability names and returns true if all the listed
capabilities are available to the Sieve script. Thus this permits a Sieve script to be coded in such
a way as to be flexible regarding what extensions it attempts to use, and also potentially to be
portable (run in different environments). In particular, when a capability's availability has been
confirmed via a successful ihave test, then that extension becomes available throughout the
entire Sieve script, as if it had been listed in a require action. The error control structure
may be used when it is desired to exit with a runtime error if an ihave test fails (a capability is
not available).

5.1.2.14 Sieve imap4flags extension

As of MS 6.3p1, the MTA supports the Sieve imap4flags extension of RFC 5232;
the capability name is "imap4flags". This includes the "addflag", "setflag", and
"removeflag" actions, and the "hasflag" test, as well as the ":flags" argument for the
"keep" and "fileinto" actions.

Note that as IMAP system flags always begin with a backslash character, \, and as backslash is
the quoting character in Sieve, when specifying such an IMAP system flag, the backslash in the
flag name must itself be quoted with another backslash, e.g.:

Sieve filters 5–43

https://tools.ietf.org/html/rfc5463
https://tools.ietf.org/html/rfc5463
https://tools.ietf.org/html/rfc5232

Sieve supported extensions

require "imap4flags";
keep :flags "\\Flagged";

An example of setting a user IMAP flag is:

require "imap4flags";
if header :contains "Disposition-Notification-To" "*@domain.com" {
 addflag "$MDNRequired";
 }

Note that as of Messaging Server 7p24 and 7.0.5, imexpire supports expiring messages based
on user flags.

5.1.2.15 Sieve mime extension

As of Messaging Server 7.0u1, the MTA supports the Sieve mime extension of RFC 5703
(Sieve Email Filtering: MIME Part Tests, Iteration, Extraction, Replacement, and Enclosure);
the capability name is "mime". (The MTA does not, however, support either "replace" or
"enclose", also described in RFC 5703; for replacement sorts of effects, see instead the MTA's
charset conversion facility or the conversion channel, and for enclosure sorts of effects, see
instead the MTA's message capture facilities.)

New in the 8.0 release is support for the "foreverypart" Sieve extension (from RFC 5703);
the capabability name is "foreverypart". In addition to the "break" control command, the
MTA's implementation also supports the nonstandard "continue" control command:

continue [:name string]

"continue" has the expected semantics: control is passed to the bottom of the
"foreverypart" loop.

Note that the MTA also supports a nonstandard "loop" extension, discussed under Sieve loop
extension. It is wise to stick with use of "foreverypart" when it suffices for a purpose, but
the "loop" construct does offer another alternative for more complex loop-based processing.

New in the 8.0 release is support for the "extracttext" Sieve extension (from RFC 5703).
Note that since the MTA's Sieve support is implemented as an overlay on top of an underlying
language interpreter, the use of "extracttext" outside of a "foreverypart" is not detected
as an error at compile time. Additionally, "extracttext" is only supported on leaf parts: it
cannot be used on multipart and message/rfc822 parts.

New in MS 8.1 is the ability to control whether or not the foreverypart Sieve control looks
inside of nested messages or treats them as leaf parts. The :processnestedmesssages
argument tells foreverypart to look inside and is the default. :retainnestedmessages
causes nested messages to be treated as leaf parts.

As of the 8.0 release, the behavior of the Sieve "size" test inside of "foreverypart" loops
has been changed. Previously "size" operated on the message as a whole no matter what
the context; now it operates on the current part only. Note that only decoded part data is

5–44 Messaging Server Reference

https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703
https://tools.ietf.org/html/rfc5703

Sieve supported extensions

considered; part headers are not included in the size calculation. Also note that the size of non-
leaf (message and multipart) parts is currently zero; this may or may not be changed in the
future.

This nonstandard extension to the Sieve "size" test is mainly intended to be used to
implement attachment size checks. However, since the "size" test can also be used as function
call (in which case it returns the size in octets), this can also be used in conjunction with
"foreverypart" to build message manifests for insertion into header fields or logging with
the "transactionlog" action.

For instance, one use of "foreverypart" would be to scan the parts of a message to build a
so-called "manifest" of the message, where the addprefix extension could be used to add the
manifest to the first text part of the message:

require ["variables","mime","foreverypart"];
addprefix "Manifest:";
foreverypart {
 if not anyof (header :mime :type :is "Content-type" "multipart",
 header :mime :type :is "Content-type" "message")
 {
 if header :mime :contenttype :matches "Content-type" "*" {
 addprefix "Part " + "${0}" + ", Size " + size + " characters of content";
 }
 }
}
addprefix "Total size: " + size + " characters including header";
addprefix "End of manifest.\r\n\r\n";

In a system-level Sieve (so that addconversiontag may be used), the following Sieve script
will add a conversion tag incorporating the message's content size as part of the conversion
tag:

require ["variables","foreverypart"];
counter = 0;
foreverypart { counter = counter + size; };
addconversiontag "size" . counter;

As of the 8.0 release, when user Sieves are allowed to use integer variables (system-level Sieves
had already been allowed to do so), the following Sieve would work even at user-level to add a
manifest to the first text part of the message:

require ["variables","mime","foreverypart"];
partnumber=0;
total=0;
addprefix "Manifest:";
foreverypart {
 if not anyof (header :mime :type :is "Content-type" "multipart",
 header :mime :type :is "Content-type" "message")
 {
 partnumber += 1;
 total = total + size;
 if header :mime :contenttype :matches "Content-type" "*" {
 addprefix "Part # " . partnumber . " of type " . "${0}" .
 " and size " . size . " characters";

Sieve filters 5–45

Sieve supported extensions

 }
 }
 };
addprefix "Total size: " . size . " characters including header, with";
addprefix " " . total . " characters of content.";
addprefix "End of manifest.\r\n\r\n";

5.1.2.16 Sieve notify extension

New in MS 7.0.5, the MTA supports RFC 5435 (Sieve Email Filtering: Extension for
Notifications) and RFC 5436 (Sieve Notification Mechanism: mailto). As of MS 8.0, a private
nonotify system-level action is also provided. And finally, as of MS 8.0.2.3, the File Carbon
Copy (Fcc) described in the Internet-Draft draft-ietf-extra-sieve-fcc-02.txt is also supported.

5.1.2.16.1 The notify extension

The capability identifier for the notify extension defined in RFC 5435 is "enotify". This
support extends, rather than replaces, the MTA's existing support (since MS 6.2) for a subset of
the "notify" action defined in draft-martin-sieve-notify-01.txt.

The limitations on the implementation of draft-martin-sieve-notify-01.txt are:

1. The message parameter is not optional.

2. The "$...$" substitutions defined in section 3.1 are not supported. (Sieve variables may be
used to provide this functionality.)

3. The "denotify" action is not supported.

Both forms of "notify" can be used simultaneously; e.g.:

require ["enotify","notify"];
New, standard form -- the enotify capability
notify :message "subject-text" "mailto:a@b?body=body-text";
Equivalent older form from the Martin draft -- the notify capability
notify :method "email" :options "a@b" "subject-text" "body-text";

If both "notify" extensions are enabled, the action arguments are examined to determine
which extension is being used.

New in 7.0.5, "notify" actions in user-level Sieves are automatically cancelled when the
overall Sieve verdict is "jettison", "refuse", "reject", or "ereject". "notify" in a
system-level Sieve was treated the same, but no longer: such "notify" actions will now
be honored, making it possible to use "notify" for some limited administrative auditing
functions.

Note that by default, the "notify" action (both types) is disabled; to enable use of it, the
max_notifys MTA option must be set to a positive value. Also note that as of 7.0.5, the MTA
tracks uses of "notify" and limits successive (repeated) such actions within some time period;
configuration of this is controlled by various autoresponse periodicity MTA options.

Normally, specifying a syntactically invalid recipient address, or syntactically invalid ":from"
address, in a "notify" action results in the Sieve script aborting with an error. New in
Messaging Server 7.0.5, the notify_ignore_errors MTA option may be enabled to cause
such syntactic errors to be silently ignored.

5–46 Messaging Server Reference

https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/rfc5436
https://datatracker.ietf.org/doc/draft-ietf-extra-sieve-fcc
https://tools.ietf.org/html/rfc5435
https://tools.ietf.org/html/draft-martin-sieve-notify-01

Sieve supported extensions

5.1.2.16.2 The notify_method_capability and valid_notify_method tests

The enotify extension also adds two new tests, valid_notify_method and
notify_method_capability. valid_notify_method takes an argument consisting of
a list of notification methods and returns true if they are supported and syntactically valid, or
false otherwise. notify_method_capability takes three arguments, a notification-uri, a
notification-capability, and a list of keywords, and succeeds if a match occurs; this is intended
to permit checking whether a desired form of notification can be performed as desired.

The enotify extension also adds a modifier :encodeurl to the set action of the
variables extension. :encodeurl causes percent-encoding of any octet in the string that
doesn't belong to the "unreserved" set for URIs, as described in RFC 3986 (Uniform Resource
Identifier (URI): Generic Syntax).

5.1.2.16.3 The nonotify action

New in 8.0, the MTA supports a private action for system-level Sieves "nonotify", which
suppresses all applications of either form of the "notify" action. (Technical note: "nonotify"
affects those Sieves which are both: attached to the same recipient address, and evaluated later.)

5.1.2.16.4 The :mime nonpositional parameter

Both forms of the notify support support the nonpositional :mime parameter. If specified
this parameter has the same semantics as with the vacation action: The causes the specified
message body to be treated as a MIME entity as defined in RFC 2045 section 2.4, including
both MIME headers and content.

5.1.2.16.5 The fcc extension

The fcc extension defines a new optional tagged argument "":fcc" that can be used with the
notify and vacation actions to allow a copy of the vacation or notification message to be filed
into a target mailbox belonging to the sieve owner. The mailbox argument to :fcc is analogous
has the same semantics as the mailbox argument to the fileinto action; in effect it is as if a copy
of the message was sent to the sieve owner with a user sieve specifying a fileinto action.

Support for the fcc extension was added in MS 8.0.2.3.

5.1.2.17 Sieve override extension

Multiple sieves can be and often are evaluated for a given message recipient. When this
happens some actions, such as addheader, capture, or addconversiontag, are
accumulated across all applicable sieves. But actions that determine the ultimate disposition of
a message have to come from a single sieve.

The general rule is that the most specific sieve that sets a disposition wins. So if, say, a keep
done by a system sieve would be overridden by a discard done by a user sieve.

A couple of nonstandard actions have previously been added to override this determination
order. In particular, the most general sieve that performs a jettison or refuse action will
determine the disposition of a message for a given recipient.

The use cases for jettison and refuse are obvious: If system policy has determined that
a user cannot see a message, the user's own preferences need to be overridden. The jettison
and refuse actions also have the advantage that they are incompatible with other disposition
actions, making them easy to use.

Sieve filters 5–47

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc2045

Sieve supported extensions

In contrast, the other disposition actions (keep, discard, fileinto, redirect, etc.) are all
compatible with each other, and in practice are used in a wide variety of combinations and
permutations. So separate "override" variants of these actions don't make as much sense.

Even so, it may be useful for a system-level sieve to forcibly direct messages using redirect and
possibly fileinto, while retaining their standard semantics in the context of the sieve where
they are specified. For this to work correctly, such sieves need to be able to override disposition
actions specified by more specific sieves. Accordingly, a nonstandard sieve override extension
and corrresponding action has been added. A sieve that uses this action becomes the sieve
determining the disposition of the message. If multiple sieves employ override, the most
general one wins.

For example, suppose you have a system sieve:

redirect "foo@bar";

And the recipient has a user sieve:

keep;

The keep action wins and the message is filed into the recipient's INBOX folder. Now suppose
the system sieve is changed:

require "override"; override; redirect "foo@bar":

Now the redirect action wins and the message is redirected.

5.1.2.18 Sieve redirect action

The Sieve "redirect" action performs a type of forwarding of a message. It cannot be
combined with any of "refuse", "reject", or "jettison", whose semantics all imply no
retention of the message (including no forwarding). The max_redirects MTA option
imposes a limit on the maximum number of "redirect" actions that a user Sieve script is
allowed to apply. As of 8.0, this limit applies only to user-level Sieves. Note that when the
MTA performs a "redirect" action, it generates the new message (the redirected, that is,
forwarded message) via enqueue to (prior to 8.0) the reprocess channel or (as of 8.0) the
process channel.

A number of extensions can modify the effect of the standard Sieve "redirect" action.

The "copy" extension defined in RFC 3894 adds the ":copy" parameter to permit "redirect"
to take effect without cancelling the default action of saving the message to the "INBOX".

Added in MS 6.3p1, the ":resent" and ":noresent" arguments are supported on the Sieve
"redirect" action, for controlling whether Sieve "redirect" actions cause addition of
Resent-* header lines. The sieve_redirect_add_resent MTA option may be used to
control the MTA's default behavior. See also the defer_header_addition MTA option,
which controls whether Sieve filters see added headers on redirected messages.

New in MS 6.3p1, the Sieve "redirect" action supports the ":resetmailfrom" and
":keepmailfrom" parameters, to control whether the envelope FROM for the redirected
message is reset to match the Sieve owner, vs. the "original" envelope FROM address being

5–48 Messaging Server Reference

https://tools.ietf.org/html/rfc3894

Sieve supported extensions

retained for use on the redirected message. Note that by DSN rules, ":keepmailfrom"
cannot be used when ":notify" or ":ret" are also specified on a "redirect" action.

As of Messaging Server 7.0u2, the redirect-dsn extension (capability name "redirect-
dsn") defined in RFC 6009 allows control over delivery status notification (DSN) parameters,
adding two new parameters ":notify" and ":ret". (The ":notify" parameter support was
actually added for MS 6.3p1, prior to standardization; standardization in RFC 6009 occurred in
time for Messaging Server 7.0u2.)

The Sieve "extlists" extension may be used in conjunction with a "redirect"
action, to redirect a message to (an externally stored) list of recipients. The
max_redirect_addresses MTA option imposes a limit on how many such externally
stored recipients will be used from the external list.

Note that when the Sieve environment extension is used, the "vnd.oracle.last-verdict"
item is available, and one of its possible values is "redirect" -- which will be the case if and
when the prior Sieve script that applied performed an explicit handling action of "redirect".

5.1.2.19 Sieve relational extension

RFC 5231 (Sieve Email Filtering: Relational Extension) adds relational operators to Sieve
conditional tests such as "address", "envelope", and "header". The capability identifier is
"relational":

require "relational";

Relational adds the ":count" match-type permitting counting the number of entities, and the
":value" match-type permitting numeric comparisons of the following forms:

:value "gt"
:value "ge"
:value "lt"
:value "le"
:value "eq"
:value "ne"

As of MS 8.0.1.3, the MTA allows :count to be combined with other match-types in header
and address tests. When this is done the test performs the non-count match first, counting the
number of matches. The resulting count is then compared with a third argument. An "i;ascii-
numeric" comparator is always used for this second match.

For example, the following test checks to see if the domain "example.com" appears in more
than five Received: fields and holds the message if it does:

if header :count "gt" :contains "received" "example.com" "5" {hold;}

Note that the address test counts addresses, not fields. For example, the following test checks
to see if there are less than 10 addresses that have a subdomain of example.org as their domain
in a recipient field:

if address :count "lt" :matches

Sieve filters 5–49

https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc6009
https://tools.ietf.org/html/rfc5231

Sieve supported extensions

 :domain ["to", "cc", "bcc"] "*.example.org" "10" {...}

5.1.2.20 Sieve spamtest and virustest extensions

RFC 5235 defines Sieve filter extension tests "spamtest" and "virustest" intended to allow
users to test whether a message is spam (unsolicited bulk e-mail) or contains a virus, with
the Sieve test syntax itself being independent of the exact mechanism by which the message
was determined to be spam or contain a virus. Typically the actual spam/virus determination
might be made by a third-party spam/virus filter package returning a verdict; to convert the
underlying spam/virus filter package verdict to a form usable (testable) with "spamtest" and
"virustest", the MTA provides private extensions "spamadjust"" and "virusset". (The
MTA also (7.0u2) supports setting a spam score via the $, flag in a FROM_ACCESS mapping
table or recipient *_ACCESS mapping table, for cases where, say, a particular message source
can be presumed to be emitting spam and/or virii.)

The capability identifiers for the tests from RFC 5235 are "spamtest" (or "spamtestplus"
if the ":percent" argument to "spamtest" will be used) and "virustest". The MTA's
private "spamadjust" and "virusset" actions are available without any special capability
declaration; no "require" action is needed for their use.

Because the intended purpose of "spamtest" and "virustest" is to increase the portability
and logical clarity of spam and virus handling in Sieve scripts, insulating the Sieve script from
the details of the actual spam or virus detection/determination, understanding the interaction
of multiple Sieve scripts may be of special relevance when setting up to enable use of such
tests. For instance, a typical sort of use might be that when a spam/virus filter package returns
a string verdict including some spam score, then the MTA is configured to convert that string
into a spam score using the "spamadjust" action via a corresponding pair of MTA options
spamfilterN_verdict_M and spamfilterN_action_M:

msconfig> exec get_path "config"
> "/opt/SUNWmsgsr/config"
msconfig> show spamfilter1_*
role.mta.spamfilter1_config_file = IMTA_TABLE:spamassassin.dat
role.mta.spamfilter1_library = IMTA_LIB:libspamass.so
role.mta.spamfilter1_name = SpamAssassin
msconfig> set spamfilter1_verdict_0 False*
msconfig# set spamfilter1_action_0 'require "addheader";virusset "0";addheader "Spam-test: $U";spamadjust "$U";'
msconfig# show spamfilter1_*_0
role.mta.spamfilter1_action_0 = require "addheader";virusset "0";addheader "Spam-test: $U";spamadjust "$U";
role.mta.spamfilter1_verdict_0 = False*

Then a user Sieve filter has a spam score available to test. And for instance, one user might
choose to configure:

require ["fileinto", "spamtest","virustest","relational"];
if virustest :value "ge" "3" { discard; }
if spamtest :value "ge" "100"
 { if spamtest :value "ge" 200" { discard; }
 else {fileinto "spam"; }
 }

The MTA's support for Sieve external lists (7.0u1) includes supporting their use (supporting a
":list" argument) in "spamtest" and "virustest" tests. (For an entirely different in details
and intention use of "spamadjust" and "spamtest" in conjunction with a Sieve external list,

5–50 Messaging Server Reference

https://tools.ietf.org/html/rfc5235
https://tools.ietf.org/html/rfc5235

Sieve supported extensions

see the example of "white-listing" Personal AddressBook addresses via a Sieve external list; in
that example, the external list is a list of addresses, not a list of spam or virus levels.)

As of Messaging Server 7.0u3, the "spamtest" and "virustest" levels in effect for the active
Sieve filter for a given recipient will be included in "E" (Enqueue) MTA message transaction
log file entries when the log_filter MTA option is enabled. This will appear between the
Sieve name and the applied action list, e.g.:

file:///file-spec, spamtest 26.000000, discard

5.1.2.21 Sieve subaddress extension

The MTA supports the Sieve subaddress extension specified in RFC 3598 (Sieve Email Filtering
-- Subaddress Extension). The capability string is "subaddress":

require "subaddress";

The subaddress extension adds support for keywords ":user" (the local-part minus the
subaddress) and ":detail" (the subaddress itself) to the address test and, if the envelope
extension has also been enabled, to envelope tests.

Note that configuration of what character the MTA interprets as the separator between the
username and their subaddress is controlled by the subaddress_char MTA option (by
default, the plus character, +); background on other aspects of the MTA's subaddress handling
can be found in the discussion of subaddressexact and related channel options.

Use of subaddresses on an email address, whether when subscribing to mailing lists, or for
list moderator purposes, or for special purpose message forwarding, can make specialized
handling of particular sorts of messages much more convenient. In reaction to the presence
of a subaddress, a user's Sieve script might: deliver the message directly into a folder (use
"fileinto"), generate an alert notification (use "notify"), perform particular forwarding
(use "redirect"), etc. For instance, suppose a user has subscribed to a mailing list using the
subaddress game-list. Then the following Sieve script:

require ["envelope","subaddress","fileinto"];
if envelope :detail "to" "game-list" { fileinto "games"; }

would cause messages addressed to the user due to their membership of that list to get filed
into the folder named "games".

5.1.2.22 Sieve vacation extension

The MTA supports the standard Sieve extensions "vacation" and "vacation-seconds",
defined in RFC 5230 and RFC 6131, respectively, in user-level Sieve filters. The respective
capability names are "vacation" and "vacation-seconds", with "vacation-seconds"
implying "vacation" which then need not be separately listed in a require clause; it suffices
to list:

require "vacation-seconds";

Sieve filters 5–51

https://tools.ietf.org/html/rfc3598
https://tools.ietf.org/html/rfc3598
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc6131

Sieve supported extensions

In addition to the basic ":days" argument for "vacation", and the ":seconds" argument
added by "vacation-seconds", the MTA also supports a private argument ":hours" (with
the obvious meaning).

The max_vacations MTA option specifies the maximum number of Sieve "vacation"
actions that may be performed by a Sieve script, with the default being 2. Exceeding this
allowed number of vacation actions will result in an error "Too many vacations
specified" during Sieve filter evaluation. (Though as of Messaging Server 7.0.5, if
max_vacations=0 is set, then the "require" clause will fail and instead the error upon
attempting to use "vacation" or "vacation :seconds" will be "Vacation not listed
in require clause prior to use" or "Vacation-seconds not listed in
require clause prior to use".)

The MTA supports a private action for system-level Sieves, "novacation", to disable user-
level use of "vacation". Use of "vacation" may also be disabled via the FROM_ACCESS
mapping table's$! flag; indeed, initial configuration of the MTA normally generates such
a FROM_ACCESS mapping table to disable vacation message generation back to typical list
"owner" addresses. (Technical note: New in 8.0, the effect of "novacation" has been refined
a bit. In previous versions, "novacation" only took effect in Sieves evaluated after the one
where "novacation" was invoked, and then "novacation" affected all subsequent use
of "vacation". Since in practice "novacation" is used in the system Sieve to suppress
any user Sieve use of vacation, and since the system Sieve is evaluated before any user
Sieves, this aspect of "novacation" application had no significant effect. However, as of 8.0,
"novacation" now affects those Sieves which are both: attached to the same recipient address,
and evaluated later. This difference in effect is unlikely to matter for "novacation" -- but has
been implemented for consistency with "nonotify".)

The MTA supports on "vacation" the private arguments ":reply", ":echo", and
":headers, controlling the format of the response message that the MTA generates. The
default, if no such argument is specified, is to generate a Message Disposition Notification
(MDN) as specified by RFC 5230. However, ":echo" will produce a "processed" message
disposition notification (MDN) that contains the original message as returned content; or
":reply" will produce a pure reply containing only the reply text.

The MTA supports a private argument ":noaddresses" that suppresses the MTA's normal
requirement (per the RFC 5230, Section 4.5 requirement) that the recipient address or one of
its aliases (a mailAlternateAddress or mailEquivalentAddress value, or any alias
address specified via the ":addresses" argument) must appear in a recipient header line in
order for a vacation response message to be generated.

As of MS 8.0.2.3, the MTA supports a private argument ":noheadercheck" that suppresses
the MTA's normal requirement (per the RFC 5230, Section 4.6 requirement) that various header
fields, e.g., List-Id:, not be present for a vacation reply to the generated.

 The MTA supports provisioning of users (and domains) with various LDAP attributes
that the MTA will interpret as requesting vacation handling: the MTA will convert the
values of such LDAP attributes into a pseudo-Sieve script (that is, a "vacation" action),
that will be evaluated and applied before any explicit Sieve script of the user's. Such
LDAP attributes typically have names of the form mailAutoReply* or vacation*
-- for exact names in use, see the MTA options ldap_start_date, ldap_end_date,
ldap_autoreply_mode, ldap_autoreply_subject, ldap_autoreply_text,
ldap_autoreply_text_internal, ldap_autoreply_addresses,
ldap_autoreply_timeout, and ldap_domain_attr_autoreply_timeout.

5–52 Messaging Server Reference

https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230

Sieve supported extensions

Previous response tracking, and suppression of additional vacation responses within some
time period, is an essential part of "vacation" processing. For additional details on the MTA's
implementation of such tracking, see the discussion of the Autoresponse periodicity MTA
options.

As of MS 6.3, response message generation due to a "vacation" action will be included in
MTA's message transaction log file Sieve filter field when the log_filter MTA option is
enabled.

As of the 8.0 release, warnings that occur during Sieve evaluation such as issues with the
vacation extension (or issues involving the memcache protocol or the duplicate extension),
plus any specifically specified warning text specified via the Sieve "warn" action will result in a
"warn" clause in the log_filter field of MTA message transaction log entries.

Support for the fcc extension was added in MS 8.0.2.3. The fcc extension defines a new
optional tagged argument "":fcc" that can be used with the notify and vacation actions to allow
a copy of the vacation or notification message to be filed into a target mailbox belonging to the
sieve owner. The mailbox argument to :fcc is analogous has the same semantics as the mailbox
argument to the fileinto action; in effect it is as if a copy of the message was sent to the sieve
owner with a user sieve specifying a fileinto action.

5.1.2.22.1 Why a vacation message was not generated

The list of things that can go "wrong" with vacation messages is pretty much anything that can
go wrong with a message in general, plus a lot more vacation-specific factors. For instance:

• the recipient domain isn't defined properly in LDAP, with the result that the recipient
domain isn't found and matched as desired,

• the recipient address isn't defined properly in LDAP, with the result that (even once the
recipient domain is found) the recipient address isn't found and matched as desired,

• the recipient domain or user is properly defined and found in LDAP, but currently has
a domain or recipient status other than "active" (or a few active-with-special-handling
variants such as "defer", "defer-submit", or "deliver"), that is, has a status such as
"inactive" or "disabled" or "deleted" or "hold"; see the various domain and user or
group status LDAP attributes including mailDomainStatus, mailUserStatus, and
inetMailGroupStatus, (or more precisely, the LDAP attributes named, respectively,
by the ldap_domain_attr_mail_status, ldap_user_mail_status, and
ldap_group_mail_status MTA options),

• the sender didn't use an expected form of the recipient's address; recall that vacation
messages very specifically, (in accordance with what's called for by the standards), don't
get sent unless either: the recipient address is "found" in a recipient header line, or another
alternate-but-expected address form is "found" in a recipient header line (with such alternate
address matching being controlled by the vacation action's :addresses argument or the
LDAP attribute named by the ldap_autoreply_addresses MTA option),

• the actual original message contains any of various vacation disabling (again, as called for
by standards) header lines or notification envelope flags,

• the original message matches a FROM_ACCESS mapping table entry that sets the $! flag or
has a system/channel Sieve script apply a "novacation" action,

• the original message came in when the user was not "on vacation" (as specified via the
vacationStartDate and vacationEndDate LDAP attributes, or more precisely

Sieve filters 5–53

Sieve supported extensions

whatever attributes are named by the ldap_start_date and ldap_end_date MTA
options),

• within the relevant response timeout period, as called for by RFC 5230 (Sieve Vacation
Extension) Section 4.2, the "same" vacation message was already sent to this sender; the
length of the timeout period is controlled by the vacation action's :days parameter,
or via LDAP attributes such as mailAutoReplyTimeout (or whatever attribute
is named by the ldap_autoreply_timeout MTA option) as modified by the
vacation_minimum_timeout MTA option,

• the MTA encountered problems accessing the vacation-response-database file, or (new in
8.0) problems communicating with Memcache if the vacation response data is being stored
in Memcache,

• a Sieve script attempts to execute "too many" vacation actions, where "too many" is
controlled by the max_vacations MTA option (default 2),

• attempting to use vacation from a system level Sieve script,

• attempting to use vacation combined with reject, refuse, or jettison,

• syntax errors in a Sieve vacation action,

• for vacation messages defined via LDAP attributes, suitable vacation response text
is lacking: the user lacks a value for the mailAutoreplyText LDAP attribute, or in
the case of an original message sender in the same domain as the user, lacks values for
both the mailAutoreplyText LDAP attribute and the (preferentially used to respond
to other "internal" users) mailAutoreplyTextInternal LDAP attribute, (or more
precisely, lacks values for the attributes named by the ldap_autoreply_text and
ldap_autoreply_text_internal MTA options),

• etc.

Overall, keep in mind that a vacation message is only supposed to be sent if everything,
absolutely everything, about a particular message lines up just right as far as that particular
message getting a vacation message generated back in response. The fallback in case of
problems or doubt about whether a particular message meets all the criteria for sending back a
vacation message is to not generate a vacation message. See RFC 3834 (Recommendations for
Automatic Responses to Electronic Mail) for some of the principles that apply.

As of the 8.0 release, warnings that occur during Sieve evaluation such as issues accessing
the vacation-prior-response database (whether that "database" is stored as an on-disk file,
or stored in memcache), (as well as similar issues with the duplicate extension), plus any
specifically specified warning text specified via the Sieve "warn" action will result in a "warn"
clause in the log_filter field of MTA message transaction log entries. But most of the above
reasons why a vacation message was not generated will not result in any such warning, as they
are considered part of normal operation.

5.1.2.23 Sieve variables extension

As of MS 6.2, the MTA added initial support for the Sieve variables extension, modified in
MS 6.3 as the initial variables draft changed, eventually to become RFC 5229 (Sieve Email
Filtering: Variables Extension). Note that as part of allowing use of string variables, the
variables extension also adds to the Sieve language a "set" action and a "string" test. Also,

5–54 Messaging Server Reference

https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc5230
https://tools.ietf.org/html/rfc3834
https://tools.ietf.org/html/rfc3834
https://tools.ietf.org/html/rfc5229

Sieve supported extensions

when variables are enabled, the MTA's Sieve implementation allows the use of assignment
statements of the forms:

var-name := string-expression;
var-name = string-expression;

That is, either "=" or ":=" is supported as the assignment operator. (Note that the semi-colon
terminating the statement may be omitted if the statement is at the end of a block.)

The capability string is "variables":

require "variables";

Several items of note regarding variables:

• Variable substitutions are not allowed in body test arguments. If they are used, an error is
likely to occur. For example, this Sieve script will fail:

require ["variables", "body"];
set "a" "testing"
if body :contains "${a}" { discard; }

This restriction exists so that a list of all arguments to body in all scripts can be computed
in advance and searched for in a single pass. If this restriction were to be lifted, it would be
easy to construct scripts that would require an arbitrary number of passes over the message,
which is unacceptable in a server environment. As such, this should be considered to be a
permanent restriction.

• The MTA has a private extension to the Sieve external lists extension, which is that the
MTA also supports properties associated with list entries. When Sieve variables are enabled,
properties may be returned in additional variables.

• The "set" action's ":quotewildcard" modifier was first implemented in MS 6.3.
However, for MS 7.0.4 the name of the modifier was changed (in the mistaken expectation
of a name change in the RFC) to ":quotewild". As of the 8.0 release, either modifier name,
":quotewild" or ":quotewildcard", will be accepted.

• When the Sieve notify extension of RFC 5435 (capability "enotify") is enabled also, it adds
an ":encodeurl" modifier to the variables "set" action.

• When the Sieve regex extension is enabled also, it adds a ":quoteregex" modifier to the
variables "set" action.

• Sieve :regex match type tests now set variables in the same way that :matches match
type test do. Note that unlike glob-style matches (as when :matches is used), where the
default is to store whatever matched any wildcard that appears in the pattern, in :regex
match type tests only those regular expressions enclosed in parentheses are stored. If
parentheses are needed but storage is not desired, then the (?:) form may be used.

• The maximum number of variables that the MTA will permit in a Sieve script is controlled
by the max_variables MTA option, by default 128.

• The maximum length that the MTA will permit for a variable name is 128 characters; this is
not configurable.

Sieve filters 5–55

https://tools.ietf.org/html/rfc5435

Sieve supported extensions

• The MTA does not currently support the use of variable namespaces, so variable names may
not contain any periods.

•

•

Examples of using variables can be found in discussions of the Sieve editheader extension,
Sieve body extension, Sieve external lists, Sieve mime extension, and Sieve custom tests via
mappings.

5.1.2.24 Sieve conversiontag extensions

For system-level Sieve scripts, the MTA's private conversion tag manipulation Sieve actions
"addconversiontag" and "setconversiontag" have been supported since MS 6.3,
and the "removeconversiontag" action has been supported since Messaging Server
7.0u3. No capability name (no "require") clause need be used before using these actions.
These actions take a single argument specifying either a string or list of conversion tags.
"addconversiontag" adds the specified conversion tag(s) to the current list of conversion
tags, while "setconversiontag" empties the existing list before adding the specified new
conversion tags. Note that these actions are performed very "late in the game" of message
processing, so "setconversiontag" can be used to undo all other converison tag setting
mechanisms. "removeconversiontag" can be used to undo all or part of preceeding
"addconversiontag" or "setconversiontag" operations.

Also, in system-level Sieves, as of MS 6.3, the "envelope" test accepts "conversiontag"
as a field specifier value, checking the current list of conversion tags, one at a time. (This test
only "sees" the set of conversion tags that were present prior to Sieve processing; the effects of
"setconversiontag" and "addconversiontag" are not visible.)

For further discussion and examples of using Sieve conversion tag extensions, see Sieve filter
manipulation of conversion tags.

5.1.2.24.1 Sieve filter manipulation of conversion tags

The MTA has a private mechanism of conversion tags, which may be set and used in a variety
of ways and for a variety of purposes including special routing, or user-specific automatic
document conversion. The MTA's Sieve implementation includes private Sieve extensions to
inspect and set these conversion tags. These private Sieve extensions include an envelope test
field conversiontag (new in MS 6.3, and supported only in system Sieves) which takes an
optional :count modifier, as well as several actions supported only in system Sieve filters:
the (new in MS 6.3) addconversiontag and setconversiontag actions, and the (new in
Messaging Server 7.0u3) removeconversiontag action.

The actions addconversiontag, setconversiontag, and removeconversiontag
actions take as argument either a Sieve string (containing a single conversion tag value)
or Sieve list (consisting of a list of strings each of which is a single conversion tag value).
setconversiontag clears whatever existing conversion tags might be present, and then
adds the specified conversion tag(s). Note that these conversion tag actions are performed
relatively late in message processing, so in particular setconversiontag can be used
to undo all other conversion tag setting mechanisms (including LDAP attribute caused
conversion tags).

Note that removeconversiontag operates only on conversion tags set via a
setconversiontag or addconversiontag action. However, it is possible by combining

5–56 Messaging Server Reference

Sieve supported extensions

operations to have removeconversiontag remove a conversion tag present due to some
other reason (such as due to a user LDAP attribute having previously set a conversion
tag): obtain the current set of conversion tags via the envelope field conversiontag
and put it into a Sieve variable, then do a setconversiontag to the value of that
variable, then do a removeconversiontag. The reason why this is required (and why
removeconversiontag operates the way it does) is to avoid triggering per-recipient
message copy split-up: obtaining potentially recipient-specific envelope fields, such as
envelope conversion tags, forces per-recipient sensitivity and evaluation of Sieve scripts, and
hence potentially forces per-recipient message copy split-up.

For instance, in a channel Sieve filter, if one wanted to remove an "unprocessed" conversion
tag (if present) and replace it with a "processed" conversion tag, while preserving any other
existing conversion tags, one could use:

require ["envelope","variables"];
if envelope :matches "conversiontag" "*" {
 setconversiontag ${1};
 removeconversiontag "unprocessed";
 addconversiontag "processed";
 }

Another use of the "envelope" test of the "conversiontag" field is to count how many
active conversion tags are present. For instance, if a "high" number of (distinct) conversion
tags might as well be considered a request for "full" (do everything) processing, and if there
is also a single conversion tag "full-processing" that has that meaning (requesting full
processing), then consider:

require ["envelope","relational"];
if envelope :count "ge" "conversiontag" "3" {
 setconversiontag "full-processing"; }

5.1.2.25 Sieve addprefix and addsuffix extensions

The MTA's private addprefix and addsuffix actions have been supported since Messaging
Server 7.0u3. No capability name (no "require") clause need be used before using these
actions. These actions take a single string argument specifying text to be added at the
beginning or end, respectively, of the first plain text part of a message. (Note that the
Sieve language's text: syntax for entering long, multi-line strings, may be convenient for
specifying prefix or suffix text.)

The effects of "addprefix" or "addsuffix" are similar to the effects of the
mgrpMsgPrefixText or mgrpMsgSuffixText group LDAP attributes (more precisely, the
attributes named by the ldap_prefix_text and ldap_suffix_text MTA options), or the
alias_prefix_text and alias_suffix_text alias options, or the [PREFIX_TEXT] and
[SUFFIX_TEXT]alias file named parameters. Note, however, that the Sieve actions work in
any sort of Sieve, not just Sieves attached to groups.

If multiple Sieves are active and more than one prefix or suffix is specified, they are
concatenated.

When logging of Sieve filter actions applied has been enabled via the log_filter MTA
option, note that only the name of the action, e.g., "addprefix" or "addsuffix", will be

Sieve filters 5–57

Sieve supported extensions

included in the logged field; the actual text added to the message will not be logged (as it
might be very long).

There is an example of use of "addprefix" in the discussion of the Sieve editheader extension.

5.1.2.26 Sieve addtag extension

The MTA's private Sieve extension addtag action has been supported since MS 6.0. addtag
provides a convenient way to add a prefix string, that is, a "tag", to a Subject: header line. (The
replaceheader action provides an alternate, though somewhat more complex, mechanism
to get such an effect.) Note that the addtag effect is not visible to other Sieves being evaluated
at the same time; this is unlike addheader (as of MS 6.1p1 and 6.2).

Adding multiple tags is supported, for instance, "Re:" and "FWD:". Prior to MS 6.3, addtag
took a space-delimited list of arguments; as of MS 6.3, addtag takes a string argument
consisting of vertical bar delimited tags. Each of the tags is searched for separately in the
current Subject: line, and then added if not already present. (This means in particular that
prior to MS 6.3, doing an addtag operation on a Subject: field that itself includes spaces, e.g.,
addtag $U on a SpamAssassin verdict, was not a good idea: "weird" results were possible
when part of the tag string was already present on the Subject: header line. This motivated the
change to use of a vertical bar delimiter for MS 6.3.)

The addtag Sieve action effect is analogous to the effects of the alias_tag alias option,
the [TAG] alias file named parameter, or the mgrpListTag group LDAP attribute (more
precisely, the LDAP attribute named by the ldap_add_tag MTA option).

5.1.2.27 Sieve adjustcounter extension

New in 8.0, a set of eight signed, 64 bit counters has been added to the MTA's counters. The
values of this set of counters can be adjusted from system Sieve scripts, and later be displayed
or accessed via the usual counters display and access facilities. These counters have no
predefined meanings; they can be used for any purpose.

A nonstandard Sieve action "adjustcounter" has been added to manipulate these counters,
with syntax:

adjustcounter [:duplicate] [:channel channel-string] counter [value]

where "counter" specifies the counter to operate on (an integer in the range 1-8). "value" is
the amount by which to adjust the counter; if omitted, it defaults to 1.

The counters associated with the current source channel are affected by default. The
":channel" nonpositional parameter can be used to switch to some other channel. Note that
variable substitution can be used on the "channel-string" argument to select a channel
computed by the script. Also note that the channel must be defined in the configuration;
arbitrary channel names are not allowed.

The "adjustcounter" action can only be used in system-level Sieves; an error will occur if an
attempt is made to use it from user-level sieves.

Sieve scripts may be reevaluated multiple times, e.g., when a message is sent to multiple
recipients and the script employs an envelope "to" test. When this happens it is normally not
desirable for the counter operation to be repeated, so counter adjustments are suppressed

5–58 Messaging Server Reference

Sieve supported extensions

by default when scripts are reevaluated. This default can be overridden by specifying the
":duplicate" nonpositional parameter.

The counters show up in "imsimta counters -show" output as follows:

 Sieve counter [1] 1
 Sieve counter [2] 10
 Sieve counter [3] 10
 Sieve counter [8] -15

Note that counters can have negative values. Also note that counters with a value of 0 are
suppressed from the display.

These counters can also be retrieved through the PMDFgetChannelCounters64 routine in
the PMDF API.

As an example, the following script fragment, if implemented in a system Sieve on a system
that has OpenDKIM set up as a milter, will keep track of DKIM verification operations:

require ["variables", "environment"];
if environment :matches "host" "*" {set "host" "${0}";}
if header :matches :index 1 "authentication-results" "*${host}*dkim*" {
 if header :contains :index 1 "authentication-results" "dkim=pass" {
 adjustcounter 1;
 } else {
 adjustcounter 2;
 }
 adjustcounter 3;
} else {
 adjustcounter 4;
}

Counter 1 will contain the number of successful verifications performed, counter 2 will contain
the number of failed verifications, counter 3 will contain the total verifications, and counter 4
will count the number of messages without a local DKIM result.

5.1.2.28 Sieve capture extension

The MTA supports a private "capture" extension action (capability name "capture" -- but
it may be used without explicitly listing it in a "require" clause) for capturing a message
copy for legal intercept, or archival, or message replay, or similar purposes. "monitor" is a
deprecated synonym for the "capture" action.

Two optional nonpositional parameters, ":dsn" and ":message", were added for MS 6.3;
":journal" (to generate Microsoft® Exchange "envelope journaling" format) was added for
7.0u2; ":header" (which can be used as a modifier with either :dsn or :journal) was
added for 8.0.

See Format of captured message copies for examples of these formats.

See Example Sieve external lists with properties for complex examples using "capture".

5.1.2.29 Sieve hold extension

Sieve filters 5–59

Sieve supported extensions

The MTA supports a private "hold" extension action for system Sieve filters; use of this action
causes the message file to be side-lined as a .HELD file in the MTA queue area. Note that
attempts to use the action in a non-system level Sieve script will be ignored without generating
an error message.

As of MS 8.0.2.2, the "hold" action accepts an optional string argument. This argument is used
to specify a reason string for the hold action; the value will appear in the log_filter field of
MTA message transaction log entries.

5.1.2.30 Sieve comparators

In addition to the standard Sieve comparators "i;ascii-casemap" and "i;octet" described
in RFC 5228, and "i;ascii-numeric" described in RFC 4790, the MTA also supports some
additional, non-standard comparators.

Because the MTA's Sieve implementation supports negative integers in addition to the
standard unsigned integers, the MTA supports a "i;ascii-integer" comparator to
compare signed integers.

New in MS 8.0. The MTA's comparators "i;ascii-casemap-collapse" and "i;octet-
collapse" are similar to the correspondingly named standard comparators, except that
all folding white space characters (space, tab, carriage return, line feed) are removed from
both the target and pattern strings prior to comparison. Use of these white-space-collapsing
comparators is recommended for Sieve comparisons of header values including optional
semantically meaningless white space, as many popular email clients exhibit various
standards-incompliant behaviors regarding white space in header lines occurring next to
MIME encoded-words, or around line folding; standards-compliant Sieve matching may thus
not appear to match users' expectations, when client generation and display of white space
diverges from standards.

New in MS 8.0.1.2. The MTA's comparators "i;ascii-casemap-compress" and "i;octet-
compress" are similar to the correspondingly named standard comparators, except that all
folding white space characters (space, tab, carriage return, line feed) are compressed into a
single ASCII space and those at the begininng and end of the strings are removed. This is
done to both the target and pattern strings prior to comparison. Use of these white-space-
compressing comparators is recommended for Sieve comparisons of structured header values
that include embedded white space.

5.1.2.31 Sieve importance extension

New in 7.0.5, the "importancetest" Sieve test and "importanceadjust" Sieve action
have been implemented. These nonstandard extensions are provided so that multiple Sieve
scripts can cooperate in making a determination of a message's importance, much like the
"spamtest" and "spamadjust" extensions allow multiple Sieves to cooperate in determining
whether or not a message is spam.

"importancetest" and "importanceadjust" work in the same way as "spamtest" and
"spamadjust", except that:

• Importance values range from 0 to 100.

• The initial value of "importancetest", and the value if no "importanceadjust" actions
have been performed, is 50.

5–60 Messaging Server Reference

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc4790

Sieve supported extensions

• Fractional adjustments are allowed, but the importance value is rounded to an integer by the
"importancetest" test.

5.1.2.32 Sieve loop extension

New in 7.0.5, the MTA supports a private "loop" construct in system-level Sieves, specifically in
spamfilter, in alias file [FILTER], or alias_filter alias option defining a non-personal alias
(e.g. a mailing list alias), destination channel, the FROM_ACCESS mapping table or a Recipient
*_ACCESS mapping table, source channel, and system systemfilter (imta.filter)
Sieves. (No "require" clause is needed.) The syntax is:

loop {
 ...
 exitif (expression);
 ...
 nextif (expression);
 ...
 }

A loop may contain zero or more "exitif" and/or "nextif statements. The loop terminates
if the argument to exitif evaluates to true. New in 8.0.2.3, nextif can be used to cause the
loop to restart if the associated condition evaluates to true.

Loops may be nested:

loop {
 ...
 loop {
 ...
 exitif (expression1); # Exit from inner loop #1
 }
 ...
 exitif (expression2); # Exit from outer loop
 ...
 loop {
 ...
 exitif (expression3); # Exit from inner loop #2
 }
 }

Loops should be used with extreme care because of the possibility of putting the MTA
into a CPU loop. It tends to be wise to use more limited capabilities, for instance, the
"foreverypart" extension, when such a more limited capability suffices.

5.1.2.33 Sieve memcache extension

As of the 8.0 release, the MTA supports a private "memcache" operator, which may be used to
perform both actions and tests. (Configuration of MTA connections to memcache is required;
see the Memcache MTA options and in particular see the memcache_host MTA option which
requires an explicit, valid value.) This nonstandard extension is available without any special

Sieve filters 5–61

Sieve supported extensions

capability declaration; no "require" action is needed for its use. By default, the "memcache"
operator may be used in any Sieve script, but its availability may be selectively disabled via the
enable_sieve_memcache MTA option. This extension is provided so that Sieve filters can
access and manipulate data using the memcache protocol.

The various Sieve "memcache" operations share a set of common nonpositional parameters:

:host host-string Specifies the host name(s) and port(s) for the memcached
server to use in host:port format. The port
part is optional and defaults to value given to the
memcache_port MTA option. If ":host" isn't specified,
the host and port are given by the memcache_host and
memcache_port MTA options respectively.

:host [host-string1,
host-string2, ...]

If a list of host:port pairs is specified, one will be chosen
by applying a hash function to the key. This provides
the means to distribute key-value pairs across multiple
memcache servers. Note that the algorithm used is the same
as for the memcache mapping callout.

:tableprefix prefix-
string

Unlike MeterMaid, each memcache server provides a
single storage area; in effect a single "table". Multiple
tables can be implemented by adding a prefix to the key.
":tableprefix" provides a convenient way to specify
such a prefix while making it clear that the string is a prefix
and not logically part of the key. (Note that some servers
that implement the memcache protocol impose additional
structure on the key themselves; the ":tableprefix"
parameter may be useful in specifying such structure.)

:timeout timeout-number Specifies the timeout value in seconds for the entry being
created or updated. The default timeout value is 0, which
means the entry never times out.

:quota quota-int Specifies the maximum number of counts to permit during
the quota timeout period. This corresponds to MeterMaid
throttle table quota setting.

:quotatimeout quota-
timeout-int

Specifies the duration in seconds of the period over which
counts are recorded. This corresponds to MeterMaid
throttle table quota_time setting.

:penalize Corresponds to MeterMaid throttle table option penalize
setting.

:limit (New in MS 8.0.2.3.) Normally :throttle operations
update the throttle even when the throttle engages; this is
appropriate when throttling an external activity that occurs
outside the control of Messaging Server. The addition
of :limit causes a :throttle test to only update when the
throttle does not engage; this is appropriate when a throttle
is being used to limit some internal activity that doesn't
occur when the throttle engages. Any operation failure is
also handled in a failsafe manner when :limit is specified

5–62 Messaging Server Reference

Sieve supported extensions

- server down, network failure, wrong data type, etc. - to
return TRUE rather than the usual FALSE.

:duplicate It may be necessary to evaluate Sieves more than once,
e.g., when a message is sent to multiple recipients and the
Sieve employs an envelope "to" test. Additionally, even
if a particular Sieve script does not contain such a test, it
may nevertheless be necessary to reevaluate it if a previous
script was reevaluated and that action changed one or more
of the inputs to the current script.

MATCH-TYPE and
COMPARATOR

See RFC 5228 for information about MATCH-TYPE and
COMPARATOR parameters.

The memcache Sieve extension provides the following operations:

 memcache :add [:host host-string] [:tableprefix prefix-string]
 [:duplicate] [:timeout timeout-number] key-string
 value-string

Add a new entry with the specified key, value and timeout. The operation only suceeds if the
entry does not already exist. The operation returns TRUE if the entry is added successfully,
FALSE if not. For example:

 if not memcache :add "a" "b" { ... handle failure ... }

memcache ":add" operations are skipped and return success unconditionally on script
reevaluations by default. ":duplicate" forces the operation to be performed on all
reevaluations.

 memcache :adjustdown adjustment-value [:host host-string]
 [:tableprefix prefix-string] [:duplicate] [MATCH-TYPE]
 [COMPARATOR] [:quotatimeout quotatimeout-numeric [:penalize]]
 [:timeout timeout-value] key-string [test-string]

Decrement the entry with the specified key by the specified adjustment value. The entry must
contain an unsigned decimal string. The adjustment value can be either an integer or a string;
if it is a string it must contain an optionally signed decimal value. Negative adjustment value
are allowed and will be converted into an appropriate increment operation.

The specified entry will be created (with a value of 0) prior to adjustment if it doesn't already
exist. The timeout value is only used if the entry has to be created.

memcache ":adjustdown" operations can be applied to throttle entries. If this is done, the
appropriate quota parameters must be specified in case the entry needs to be created.

Note that memcache's increment and decrement operations do not support negative values.
Attempts to decrement an entry to a value below 0 will result in a 0 value being stored.

The adjusted value is returned as an unsigned decimal string if neither MATCH-TYPE,
COMPARATOR, nor test-string are specified. However, if any of these parameters are
specified this operation functions as a test with updated value of the entry being the tested

Sieve filters 5–63

https://tools.ietf.org/html/rfc5228

Sieve supported extensions

value. MATCH-TYPE and COMPARATOR default to :value "lt" and "i;ascii-
numeric" respectively. For example:

 if memcache :adjustdown 1 "entry" "10" {
 ... handle entry less than 10 ... }

memcache ":adjustdown" operations are performed on reevaluations but the adjustment
amount is changed to 0. ":duplicate" causes the adjustment amount to be retained on
reevaluations.

 memcache :adjustup adjustment-value [:host host-string]
 [:tableprefix prefix-string] [:duplicate] [MATCH-TYPE]
 [COMPARATOR] [:quotatimeout quotatimeout-numeric [:penalize]]
 [:timeout timeout-value] key-string [test-string]

Increment the entry with the specified key by the specified adjustment value. The entry must
contain an unsigned decimal string. The adjustment value can be either an integer or a string;
if it is a string it must contain an optionally signed decimal value. Negative adjustments values
are allowed and will be converted into an appropriate decrement operation.

The specified entry will be created (with a value of 0) prior to adjustment if it doesn't already
exist. The timeout value is only used if the entry has to be created.

memcache ":adjustup" operations can be applied to throttle entries. If this is done, the
appropriate quota parameters must be specified in case the entry needs to be created.

The adjusted value is returned as an unsigned decimal string if if neither MATCH-TYPE,
COMPARATOR, nor test-string are specified. However, if any of these parameters are
specified this operation functions as a test with updated value of the entry being the tested
value. MATCH-TYPE and COMPARATOR default to :value "gt" and "i;ascii-
numeric" respectively. For example:

if memcache :adjustup 1 "entry" "10" { ... handle entry greater than 10 ... }

memcache ":adjustup" operations are performed on reevaluations but the adjustment
amount is changed to 0. ":duplicate" causes the adjustment amount to be retained on
reevaluations.

 memcache :append [:host host-string] [:tableprefix prefix-string]
 [:duplicate] key-string value-string

Append the specified value to the entry with the specified key. The entry must already exist.
Returns TRUE if the operation is successful, FALSE if it is not.

memcache ":append" operations are skipped and return success unconditionally on
reevaluations by default. ":duplicate" forces the operation to be performed on all
reevaluations.

 memcache :fetch [:host host-string] [:tableprefix prefix-string]

5–64 Messaging Server Reference

Sieve supported extensions

 [MATCH-TYPE] [COMPARATOR] key-string [test-string]

Fetches the value of the entry with the specified key.

The entry's value is simply returned as a string if neither MATCH-TYPE, COMPARATOR, nor
test-string are specified. An empty string will be returned if the specified entry doesn't exist.

However, if any of the three parameters are specified this operation functions as a test with
current value of the entry being the tested value. MATCH-TYPE and COMPARATOR default
to :is and "i;ascii-casemap" respectively. The test always fails if the entry does not exist.
This can be to test for the existence of an entry:

if memcache :fetch :matches "entry" "*" { ... entry exists ... }

memcache ":fetch" operations are simply repeated on reevaluations.

 memcache :prepend [:host host-string] [:tableprefix prefix-string]
 [:duplicate] key-string value-string

Prepend the specified value to the entry with the specified key. The entry must already exist.
Returns TRUE if the operation is successful, FALSE if it is not.

memcache ":prepend" operations are skipped and return success unconditionally on
reevaluations by default. ":duplicate" forces the operation to be performed on all
reevaluations.

 memcache :release [:duplicate]
 [:host host-string] [:tableprefix prefix-string]
 [:timeout timeout-value] key-string

Implements a generic reservation capability, where a specified key-string can be repeatedly
reserved up to a specified quota. :release releases a reservation previously created by :reserve.
The associated memcache entry contains a record of how many reservations are held by each
process on the host. Outstanding reservations associated with nonexistent processes will be
automatically deteled.

This operation always functions as a test, returning TRUE if the reservatation has been releaves
succesfully, FALSE otherwise.

memcache reservation operations are performed on reevaluations.

 memcache :remove [:host host-string] [:tableprefix prefix-string]
 [:duplicate] [:lockout lockout-numeric] key-string

Remove the entry with the specified key. A lockout value, if specified, is an unsigned integer
specifying the amount of time to "lock" the key - during that time attempts to store an entry
with that key will fail. A lockout default of 0 is the default and causes no lockout to occur.
Returns TRUE if the operation is successful, FALSE if it is not.

memcache ":remove" operations are skipped and return success unconditionally on
reevaluations by default. ":duplicate" forces the operation to be performed on all
reevaluations.

Sieve filters 5–65

Sieve supported extensions

 memcache :replace [:host host-string] [:tableprefix prefix-string]
 [:timeout timeout-value] key-string value-string

Update the value and timeout of an entry. The entry must already exist. Returns TRUE if the
operation is successful, FALSE if it is not.

memcache ":replace" operations are simply repeated on reevaluations.

 memcache :reserve :quota quota-numeric [:duplicate]
 [:host host-string] [:tableprefix prefix-string]
 [:timeout timeout-value] key-string

Implements a generic reservation capability, where a specified key-string can be repeatedly
reserved up to a specified quota. Each reserve operation must be matched by a corresponding
release. The associated memcache entry contains a record of how many reservations are held
by each process on the host. Outstanding reservations associated with nonexistent processes
will be automatically deteled.

Note that since there is no server-side awareness of entry semantics the quota parameter must
be specified in every reserve call in case the entry needs to be created. If the entry already
exists the quota parameter value will be checked against the corresponding value stored in the
entry.

Each reserve operation increments the reservation count by 1, and should be matched by a
corresponding release operation.

This operation always functions as a test, returning TRUE if the reservation is successful,
FALSE otherwise.

memcache reservation operations are performed on reevaluations.

 memcache :store [:host host-string] [:tableprefix prefix-string]
 [:timeout timeout-value] key-string value-string

Creates a new entry or updates an existing entry with the specified key, value and timeout.
Returns TRUE if the operation is successful, FALSE if it is not.

memcache ":store" operations are simply repeated on reevaluations.

 memcache :throttle :quota quota-numeric [:duplicate]
 :quotatimeout quotatimeout-numeric [:penalize] [:limit]
 [:host host-string] [:tableprefix prefix-string]
 [:timeout timeout-value] [MATCH-TYPE] [COMPARATOR]
 [:adjustup adjustment-value] [:adjustdown adjustment-value]
 key-string [test-string]

Implements the MeterMaid throttle capability. See the MeterMaid documentation for details
of throttle semantics. Note that since there is no server-side awareness of entry semantics the
quota and quotatimeout parameters must be specified in every throttle call in case the entry
needs to be created. If the entry already exists the parameter values will be checked against the
corresponding values stored in the entry.

5–66 Messaging Server Reference

Sieve supported extensions

The throttle value is incremented by default. Either ":adjustup" or ":adjustdown" can
be used to specify an alternate adjustment value. (Note that in this case these nonpositional
parameters function as modifiers, not operation specifiers.)

New in MS 8.0.2.3, ":limit" can be specified to prevent the throttle from being adjusted if it
engages and to behave in a failsafe fashion.

This operation always functions as a test. If neither MATCH-TYPE, COMPARATOR, nor test-
string are specified TRUE is returned if the throttle is engaged, FALSE if it is not engaged or an
error occurs. If one of these three parameters is provided the throttle is adjusted and then Sieve
tests are applied to the adjusted value. The default MATCH-TYPE is :value "gt" and the
default COMPARATOR is "i;ascii-numeric".

memcache ":throttle" operations are performed on reevaluations but the adjustment
amount is changed to 0. ":duplicate" causes the adjustment amount to be retained on script
reevaluations.

5.1.2.34 Sieve metermaid extension

As of the 8.0 release, the MTA supports a private "metermaid" operator, to access and
manipulate data stored in MeterMaid; the operator has uses both as an action and as a
test. This nonstandard extension is available without any special capability declaration;
no "require" action is needed for its use. By default, the "metermaid" operator
may be used in any Sieve script, but its availability may be selectively disabled via the
enable_sieve_metermaid MTA option.

The location of the MeterMaid server that Sieve scripts may query, as well as various other
basics of MeterMaid communication, server are specified via MeterMaid MTA options,
especially metermaid_host, metermaid_port, and metermaid_secret.

The various Sieve "metermaid" operations share a set of common nonpositional parameters:

:host host-string Specifies the host name and port for the MeterMaid server
to use in host:port format. The port part is optional
and defaults to value given to the metermaid_port MTA
option. If ":host" isn't specified, the host and port are
given by the metermaid_host and metermaid_port
MTA options respectively.

:duplicate It may be necessary to evaluate Sieves more than once,
e.g., when a message is sent to multiple recipients and the
Sieve employs an envelope "to" test. Additionally, even
if a particular Sieve script does not contain such a test, it
may nevertheless be necessary to reevaluate it if a previous
script was reevaluated and that action changed one or more
of the inputs to the current script.

MATCH-TYPE and
COMPARATOR

See RFC 5228 for information about MATCH-TYPE and
COMPARATOR parameters.

The following "metermaid" operations are available:

 metermaid :adjustdown adjustment-value [:host host-string]
 [:duplicate] [MATCH-TYPE] [COMPARATOR]

Sieve filters 5–67

https://tools.ietf.org/html/rfc5228

Sieve supported extensions

 table-string key-string [test-string]

The "metermaid :adjustdown" operation decrements the entry with the given key in the
specified table by the adjustment value. This operation is only supported on simple tables
configured for integer values and throttle tables.

The adjustment value can be either an integer or a string; if it is a string, it must contain an
optionally signed decimal value. Negative adjustment value are allowed and will be converted
into an appropriate increment operation.

The specified entry will be created (with a value of 0) prior to adjustment if it doesn't already
exist.

The adjusted value is returned as an unsigned decimal string if neither MATCH-TYPE,
COMPARATOR, nor test-string are specified. However, if any of these parameters
are specified, this operation functions as a test with updated value of the entry being the
tested value. MATCH-TYPE and COMPARATOR default to :value "lt" and "i;ascii-
numeric" respectively. For example:

if metermaid :adjustdown 1 "table" "entry" "10"
 { ... handle entry less than 10 ... }

":adjustdown" operations are performed on reevaluations but the adjustment amount is
changed to 0. ":duplicate" causes the adjustment amount to be retained on reevaluations.

 metermaid :adjustup adjustment-value [:host host-string]
 [:duplicate] [MATCH-TYPE] [COMPARATOR]
 table-string key-string [test-string]

The "metermaid :adjustup" operation increments the entry with the specified key in
the given table by the adjustment value. This operation is only supported on simple tables
configured for integer values and throttle tables.

The adjustment value can be either an integer or a string; if it is a string, it must contain
an optionally signed decimal value. Negative adjustments values are allowed and will be
converted into an appropriate decrement operation.

The specified entry will be created (with a value of 0) prior to adjustment if it doesn't already
exist.

The adjusted value is returned as an unsigned decimal string if neither MATCH-TYPE,
COMPARATOR, nor test-string are specified. However, if any of these parameters
are specified this operation functions as a test with updated value of the entry being the
tested value. MATCH-TYPE and COMPARATOR default to :value "gt" and "i;ascii-
numeric" respectively. For example:

if metermaid :adjustup 1 "table" "entry" "10"
 { ... handle entry greater than 10 ... }

":adjustup" operations are performed on reevaluations but the adjustment amount is
changed to 0. ":duplicate" causes the adjustment amount to be retained on reevaluations.

5–68 Messaging Server Reference

Sieve supported extensions

 metermaid :fetch [:host host-string] [MATCH-TYPE] [COMPARATOR]
 table-string key-string [test-string]

The "metermaid :fetch" operation fetches the value of the entry with the specified key
from the given table. Fetch is supported on all types of tables, although in the case of throttle
tables it is implemented by performing an adjust with an adjustment value of 0.

The entry's value is simply returned as a string if neither MATCH-TYPE, COMPARATOR, nor
test-string are specified. An empty string will be returned if the specified entry doesn't
exist.

However, if any of the three parameters are specified, this operation functions as a test with
current value of the entry being the tested value. MATCH-TYPE and COMPARATOR default
to :is and "i;ascii-casemap" respectively. The test always fails if the entry does not exist.
This can be used to test for the existence of an entry:

if metermaid :fetch :matches "table" "entry" "*" { ... entry exists ... }

":fetch" operations are simply repeated on reevaluations.

 metermaid :greylisting [:host host-string] [:duplicate]
 [MATCH-TYPE] [COMPARATOR]
 table-string key-string [test-string]

The "metermaid :greylisting" operation provides access to the MeterMaid greylisting
capability. See the MeterMaid documentation for details of greylisting semantics. Of course
this operation only works on greylisting tables.

This operation always functions as a test. If neither MATCH-TYPE, COMPARATOR, nor
test-string are specified, then TRUE is returned if greylisting is engaged, while FALSE is
returned if greylisting is not engaged or an error occurs.

If one of these three parameters is provided, the throttle is incremented and then Sieve tests
are applied to the value. The default MATCH-TYPE is :is and the default COMPARATOR is
"i;ascii-casemap". Note that this is implemented as an adjust operation since the connect
operation doesn't provide the throttle value as a result.

The test aspect of ":greylisting" operations is repeated on reevaluations, but the entry is
not updated. ":duplicate" causes the entire operation to be performed on reevaluations.

 metermaid :remove [:host host-string] [:duplicate]
 table-string key-string

The "metermaid :remove" operation removes the entry with the specified key from the
given table. Returns TRUE if the operation is successful, FALSE if it is not.

Remove is supported on all types of tables.

":remove" operations are skipped and return success unconditionally on reevaluations by
default. ":duplicate" forces the operation to be performed on all reevaluations.

 metermaid :store [:host host-string]
 table-string key-string value-string

Sieve filters 5–69

Sieve supported extensions

The "metermaid :store" operation creates a new entry or updates an existing entry with
the specified key in the given table. Returns TRUE if the operation is successful, FALSE if it is
not.

Store is supported on all table types except throttle tables.

":store" operations are simply repeated on reevaluations.

 metermaid :throttle [:host host-string] [:duplicate]
 [MATCH-TYPE] [COMPARATOR]
 table-string key-string

The "metermaid :throttle" operation provides access to the MeterMaid throttle capability.
See the MeterMaid documentation for details of throttle semantics. Of course this operation
only works on throttle tables.

This operation always functions as a test. If neither MATCH-TYPE, COMPARATOR, nor
test-string are specified, then TRUE is returned if the throttle is engaged, while FALSE is
returned if the throttle is not engaged or an error occurs.

If one of these three parameters is provided, the throttle is incremented and then Sieve
tests are applied to the value. The default MATCH-TYPE is :value "gt" and the default
COMPARATOR is "i;ascii-numeric". Note that this is implemented as an adjust
operation since the connect operation doesn't provide the throttle value as a result.

The test aspect of ":throttle" operations is repeated on reevaluations but the entry is not
updated. ":duplicate" causes the entire operation to be performed on reevaluations.

5.1.2.35 Sieve redis extension

As of the 8.0.2.3 release, the MTA supports a private "redis" operator, which may be used to
perform both actions and tests. (Configuration of MTA connections to Redis is required.) This
nonstandard extension is available without any special capability declaration; no "require"
action is needed for its use. By default, the "redis" operator may be used in any Sieve script,
but its availability may be selectively disabled via the enable_sieve_redis MTA option.
This extension is provided so that Sieve filters can access and manipulate data using the redis
protocol.

The various Sieve "redis" operations share a set of common nonpositional parameters:

:tableprefix prefix-
string

Unlike MeterMaid, each redis server provides a single
storage area; in effect a single "table". Multiple tables
can be implemented by adding a prefix to the key.
":tableprefix" provides a convenient way to specify
such a prefix while making it clear that the string is a prefix
and not logically part of the key.

:timeout timeout-number Specifies the timeout value in seconds for the entry being
created or updated. The default timeout value is 0, which
means the entry never times out.

:quota quota-int Specifies the maximum number of counts to permit during
the quota timeout period. This corresponds to MeterMaid
throttle table quota setting.

5–70 Messaging Server Reference

Sieve supported extensions

:quotatimeout quota-
timeout-int

Specifies the duration in seconds of the period over which
counts are recorded. This corresponds to MeterMaid
throttle table quota_time setting.

:penalize Corresponds to MeterMaid throttle table option penalize
setting.

:limit Normally :throttle operations update the throttle even when
the throttle engages; this is appropriate when throttling
an external activity that occurs outside the control of
Messaging Server. The addition of :limit causes a :throttle
test to only update when the throttle does not engage;
this is appropriate when a throttle is being used to limit
some internal activity that doesn't occur when the throttle
engages. Any operation failure is also handled in a failsafe
manner when :limit is specified - server down, network
failure, wrong data type, etc. - to return TRUE rather than
the usual FALSE.

:set New in MS 8.1.0.3. Specifies that the data associated with
the key is a Redis set.

:sortedset New in MS 8.1.0.3. Specifies that the data associated with
the key is a Redis sorted set.

:score score-number New in MS 8.1.0.3. Specifies the score for an entry in a Redis
sorted set. The default score is 0.

:duplicate It may be necessary to evaluate Sieves more than once,
e.g., when a message is sent to multiple recipients and the
Sieve employs an envelope "to" test. Additionally, even
if a particular Sieve script does not contain such a test, it
may nevertheless be necessary to reevaluate it if a previous
script was reevaluated and that action changed one or more
of the inputs to the current script.

MATCH-TYPE and
COMPARATOR

See RFC 5228 for information about MATCH-TYPE and
COMPARATOR parameters.

The redis Sieve extension provides the following operations:

 redis :add [:tableprefix prefix-string] [:duplicate]
 [:timeout timeout-number] [:set | :sortedset]
 [:score score] key-string value-string

Add a new entry with the specified key, value and timeout. The operation only suceeds if the
entry does not already exist. The operation returns TRUE if the entry is added successfully,
FALSE if not. If :set or :sortedset are specified add the specified value to the set. The set
will be created if it doesn't already exist. A score of 0 is used for entries assed to sorted sets if
no other value is specified.

For example:

Sieve filters 5–71

https://tools.ietf.org/html/rfc5228

Sieve supported extensions

 if not redis :add "a" "b" { ... handle failure ... }

redis ":add" operations are skipped and return success unconditionally on script
reevaluations by default. ":duplicate" forces the operation to be performed on all
reevaluations.

 redis :adjustdown adjustment-value [:tableprefix prefix-string]
 [:duplicate] [MATCH-TYPE] [COMPARATOR]
 [:quotatimeout quotatimeout-numeric [:penalize]]
 [:timeout timeout-value] [:sortedset] key-string [test-string]

Decrement the entry with the specified key by the specified adjustment value. The entry must
contain an unsigned decimal string, The adjustment value can be either an integer or a string;
if it is a string it must contain an optionally signed decimal value. Negative adjustment value
are allowed.

The specified entry will be created (with a value of 0) prior to adjustment if it doesn't already
exist. The timeout value is only used if the entry has to be created.

Redis ":adjustdown" operations can be applied to throttle entries. If this is done, the
appropriate quota parameters must be specified in case the entry needs to be created.

New in MS 8.1.0.3, Redis ":adjustdown" operations can be applied to members of sorted sets
by specifying the :sortedset parameter. If this is done test-string is interpreted as the
name of the set member.

The adjusted value is returned as an unsigned decimal string if neither MATCH-TYPE,
COMPARATOR, nor test-string are specified. However, if any of these parameters are
specified this operation functions as a test with updated value of the entry being the tested
value. MATCH-TYPE and COMPARATOR default to :value "lt" and "i;ascii-
numeric" respectively. For example:

 if redis :adjustdown 1 "entry" "10" {
 ... handle entry less than 10 ... }

redis ":adjustdown" operations are performed on reevaluations but the adjustment amount
is changed to 0. ":duplicate" causes the adjustment amount to be retained on reevaluations.

 redis :adjustup adjustment-value [:tableprefix prefix-string]
 [:duplicate] [MATCH-TYPE] [COMPARATOR]
 [:quotatimeout quotatimeout-numeric [:penalize]]
 [:timeout timeout-value] [:sortedset] key-string [test-string]

Increment the entry with the specified key by the specified adjustment value. The entry must
contain an unsigned decimal string. The adjustment value can be either an integer or a string;
if it is a string it must contain an optionally signed decimal value. Negative adjustments values
are allowed.

The specified entry will be created (with a value of 0) prior to adjustment if it doesn't already
exist. The timeout value is only used if the entry has to be created.

Redis ":adjustup" operations can be applied to throttle entries. If this is done, the
appropriate quota parameters must be specified in case the entry needs to be created.

5–72 Messaging Server Reference

Sieve supported extensions

New in MS 8.1.0.3, Redis ":adjustup" operations can be applied to members of sorted sets
by specifying the :sortedset parameter. If this is done test-string is interpreted as the
name of the set member.

The adjusted value is returned as an unsigned decimal string if if neither MATCH-TYPE,
COMPARATOR, nor test-string are specified. However, if any of these parameters are
specified this operation functions as a test with updated value of the entry being the tested
value. MATCH-TYPE and COMPARATOR default to :value "gt" and "i;ascii-
numeric" respectively. For example:

if redis :adjustup 1 "entry" "10" { ... handle entry greater than 10 ... }

Redis ":adjustup" operations are performed on reevaluations but the adjustment amount is
changed to 0. ":duplicate" causes the adjustment amount to be retained on reevaluations.

 redis :append [:tableprefix prefix-string]
 [:duplicate] key-string value-string

Append the specified value to the entry with the specified key. The entry must already exist.
Returns TRUE if the operation is successful, FALSE if it is not.

Redis ":append" operations are skipped and return success unconditionally on reevaluations
by default. ":duplicate" forces the operation to be performed on all reevaluations.

 redis :expire [:tableprefix prefix-string]
 [:duplicate] key-string

Sets the expiration time in seconds for the entry with the specified key. A time of 0 will
cause the entry to be be deleted immediately. Negative values will cause the entry to be
preserved indefinitely.Remove the entry with the specified key. Returns TRUE if the operation
is successful, FALSE if it is not. Note that the expiration time for sets and sorted sets can be set
without specifying any additional parameters.

Redis ":expire" operations are skipped and return success unconditionally on reevaluations
by default. ":duplicate" forces the operation to be performed on all reevaluations.

 redis :fetch [:tableprefix prefix-string]
 [MATCH-TYPE] [COMPARATOR] [:set | :sortedset]
 [:withscores] key-string [test-string]

Fetches the value of the entry with the specified key.

The entry's value is simply returned as a string if neither MATCH-TYPE, COMPARATOR, nor
test-string are specified. An empty string will be returned if the specified entry doesn't exist.

However, if any of the three parameters are specified this operation functions as a test with
current value of the entry being the tested value. MATCH-TYPE and COMPARATOR default
to :is and "i;ascii-casemap" respectively. The test always fails if the entry does not exist.
This can be to test for the existence of an entry:

Sieve filters 5–73

Sieve supported extensions

if redis :fetch :matches "entry" "*" { ... entry exists ... }

The members of Redis sets and sorted sets may be fetched by specifying the corresponding
parameter. Multiple members are returned as lists. If :withscores is specified member-score
pairs are returned.

redis ":fetch" operations are simply repeated on reevaluations.

 redis :release [:duplicate] [:tableprefix prefix-string]
 [:timeout timeout-value] key-string

Implements a generic reservation capability, where a specified key-string can be repeatedly
reserved up to a specified quota. :release releases a reservation previously created by :reserve.
The associated Redis entry contains a record of how many reservations are held by each
process on the host. Outstanding reservations associated with nonexistent processes will be
automatically deteled.

This operation always functions as a test, returning TRUE if the reservatation has been releaves
succesfully, FALSE otherwise.

Redis reservation operations are performed on reevaluations.

 redis :remove [:tableprefix prefix-string]
 [:duplicate] key-string

Remove the entry with the specified key. Returns TRUE if the operation is successful, FALSE
if it is not. Note that sets and sorted sets can be removed without specifying any additional
parameters.

redis ":remove" operations are skipped and return success unconditionally on reevaluations
by default. ":duplicate" forces the operation to be performed on all reevaluations.

 redis :replace [:tableprefix prefix-string]
 [:timeout timeout-value] key-string value-string

Update the value and timeout of an entry. The entry must already exist. Returns TRUE if the
operation is successful, FALSE if it is not.

redis ":replace" operations are simply repeated on reevaluations.

 redis :reserve :quota quota-numeric [:duplicate]
 [:tableprefix prefix-string]
 [:timeout timeout-value] key-string

Implements a generic reservation capability, where a specified key-string can be repeatedly
reserved up to a specified quota. Each reserve operation must be matched by a corresponding
release. The associated redis entry contains a record of how many reservations are held by
each process on the host. Outstanding reservations associated with nonexistent processes will
be automatically deteled.

Note that since there is no server-side awareness of entry semantics the quota parameter must
be specified in every reserve call in case the entry needs to be created. If the entry already

5–74 Messaging Server Reference

Sieve supported extensions

exists the quota parameter value will be checked against the corresponding value stored in the
entry.

Each reserve operation increments the reservation count by 1, and should be matched by a
corresponding release operation.

This operation always functions as a test, returning TRUE if the reservation is successful,
FALSE otherwise.

redis reservation operations are performed on reevaluations.

 redis :store [:tableprefix prefix-string]
 [:timeout timeout-value] [:set | :sortedset]
 [:score score] key-string value-string

Creates a new entry or updates an existing entry with the specified key, value and timeout.
Returns TRUE if the operation is successful, FALSE if it is not.

Store operations are identical to add operations for sets and sorted sets.

redis ":store" operations are simply repeated on reevaluations.

 redis :throttle :quota quota-numeric [:duplicate]
 :quotatimeout quotatimeout-numeric [:penalize] [:limit]
 [:tableprefix prefix-string]
 [:timeout timeout-value] [MATCH-TYPE] [COMPARATOR]
 [:adjustup adjustment-value] [:adjustdown adjustment-value]
 key-string [test-string]

Implements the MeterMaid throttle capability. See the MeterMaid documentation for details
of throttle semantics. Note that since there is no server-side awareness of entry semantics the
quota and quotatimeout parameters must be specified in every throttle call in case the entry
needs to be created. If the entry already exists the parameter values will be checked against the
corresponding values stored in the entry.

The throttle value is incremented by default. Either ":adjustup" or ":adjustdown" can
be used to specify an alternate adjustment value. (Note that in this case these nonpositional
parameters function as modifiers, not operation specifiers.)

New in MS 8.0.2.3, ":limit" can be specified to prevent the throttle from being adjusted if it
engages and to behave in a failsafe fashion.

This operation always functions as a test. If neither MATCH-TYPE, COMPARATOR, nor test-
string are specified TRUE is returned if the throttle is engaged, FALSE if it is not engaged or an
error occurs. If one of these three parameters is provided the throttle is adjusted and then Sieve
tests are applied to the adjusted value. The default MATCH-TYPE is :value "gt" and the
default COMPARATOR is "i;ascii-numeric".

redis ":throttle" operations are performed on reevaluations but the adjustment amount
is changed to 0. ":duplicate" causes the adjustment amount to be retained on script
reevaluations.

5.1.2.36 Sieve regex extension

Sieve filters 5–75

Sieve supported extensions

As of MS 6.1, the MTA supports the proposed Sieve "regex" extension (see draft-
murchison-sieve-regex-08), which adds a ":regex" match type to the Sieve language.
The capability name is "regex":

require "regex";

Because evaluating arbitrary regex expressions is potentially computationally
expensive, whether -- and which -- Sieves may use ":regex" may be controlled with the
enable_sieve_regex MTA option; the default is 1, meaning that ":regex" is supported in
all Sieves.

Restrictions on ":regex": Note that ":regex" is not supported with the "hasflag" test (from
the "imap4flags" extension). Another restriction is that utf-8 comparator use with ":regex"
is not supported. For performance reasons, the ":regex" match type is not supported for use
with the Sieve "body" test.

 New in 8.0, Sieve ":regex" match type tests now set variables in the same way that
":matches" match type tests do. Note that unlike glob-style matches (as when ":matches" is
used) where the default is to store whatever matched any wildcard that appears in the pattern,
in regex match type tests only those regular expressions enclosed in parentheses are stored. If
parentheses are needed but storage is not desired, then the "(?:)" form may be used.

5.1.2.37 Sieve setenvelopefrom extension

New in MS 8.0, the MTA supports a private "setenvelopefrom" action in system level Sieve
scripts. This nonstandard extension is available without any special capability declaration; no
"require" action is needed for its use. "setenvelopefrom" accepts a single string argument
specifying the new envelope From address.

For other Sieve actions especially relevant to notification messages, see also the Sieve
"setnotify" and "setreturn" extensions.

5.1.2.38 Sieve setnotify and setreturn extensions

Introduced in Messaging Server 7.0u1, and available in system Sieves only, are the
nonstandard Sieve actions "setnotify" and "setreturn". "setnotify" specifies a new
value for the DSN NOTIFY parameter and "setreturn" specifies a new value for the DSN
RET parameter. Both of these parameters are specified in RFC 3461, as are the possible values
that can specified for each one.

The primary use of these actions is expected to be to adjust return policies for suspected
spam. For example, if address validation cannot be performed, it may be prudent to disable
nondelivery reports, return of content, or both for messages suspected of being spam:

setnotify "NEVER";
setreturn "HDRS";

For another Sieve action relevant to notification messages, see also the (new in MS 8.0)
"setenvelopefrom" action which, by overriding a message's envelope From address, alters
who will be informed if and when a notification message is later generated.

5–76 Messaging Server Reference

https://tools.ietf.org/html/rfc3461

Sieve supported extensions

5.1.2.39 Sieve setoperation extension

As of the 8.0 release, the MTA supports a private "setoperation" action in system-level
Sieves. This nonstandard extension is available without any special capability declaration; no
"require" action is needed for its use. This extension is provided so that system-level Sieve
filters can override the type of enqueue operation being performed. Note that this action can
be performed on a per-recipient basis.

"setoperation" accepts a single string argument specifying the operation type. The possible
operation types are:

"relay"
"submit"
"passthrough"
"default"

Note that since "setoperation" is a Sieve action, any effects it has only affect MTA behavior
after Sieve evaluation. In particular, initial header fixups done on receipt of the header occur
before Sieve evaluation and are therefore unaffected by this action. Only the passthrough
channel option affects initial header fixups.

Note that for the Sieve "environment" extension, the MTA supports a private item
vnd.oracle.operation-type to discover a message's existing operation mode.

5.1.2.40 Sieve setpriority and setmtpriority extensions

As of MS 7.0u4, the private "setpriority" action is available for system-level Sieves, to set
an effective message processing priority. This nonstandard extension is available without
any special capability declaration; no "require" action is needed for its use. "setpriority"
takes a single string or integer argument which must be one of "non-urgent", "normal", or
"urgent", or an integer in the range 0 to 4; (note that non-urgent corresponds to 2, normal to
3, and urgent to 4). Note that this priority is not stored in the message header and only affects
processing at this particular stage of message transfer. If multiple "setpriority" actions are
specified in different system-level Sieves, the one in the most specific Sieve wins.

New in MS 8.0, the "setmtpriority" action is available for system-level Sieves. This
nonstandard extension is available without any special capability declaration; no "require"
action is needed for its use. "setmtpriority" accepts a single integer or string argument and
sets the current MT-PRIORITY to the argument value. This action is only allowed in system-
level Sieves and the argument must be in the -9 to 9 range of valid MT-PRIORITY values.

5.1.2.41 Sieve transactionlog extension

New in 8.0, for system-level Sieve scripts, the MTA's private "transactionlog" Sieve
action can be used to annotate the transaction log. The action takes a single string argument
specifying the annotation text.

All of the "transactionlog" actions in all of the applicable Sieves are concatenated into a
single string, which is then available for inclusion in the MTA message transaction log file; see
the log_transactionlog MTA option for details.

5.1.2.42 Sieve translate extension

Sieve filters 5–77

Sieve supported extensions

New in MS 8.0.1, the MTA supports a private "translate" function, to translate a string (or
a list) from one character set to another. No "require" clause is needed to use this private
extension.

Note that RFC 5228 requires that Sieve filters represent strings in UTF-8. Even strings that (in
original messages) were in some other charset are converted to UTF-8 for purposes of Sieve
processing. So usually the entire issue of character sets can be ignored for Sieve processing:
everything is represented in UTF-8. However, on occasion malformed messages may be
encountered that contain incorrectly labelled, or incorrectly structured MIME encoded-words,
where proper conversion to UTF-8 cannot be performed. Or special purpose generation of
explicitly encoded-in-a-specific-charset strings may be desired. These are cases where the
"translate" function may be of use.

"translate" takes three (positional) arguments: the original string, the character set of the
original string, and the character set to which to translate the string. Note that the original
string remains unchanged; the translated string is returned as a function result.

Either of the following two Sieve sequences of commands will request "fileinto" (folder
delivery) to the folder named "nopNOP". The first example does this making use of a variable,
plus the MTA Sieve implementation feature of allowing an assignment statement:

require ["variables","fileinto"];
set "string" "abcABC";
rotstring := translate "${string}" "US-ASCII" "ROT13";
fileinto "${rotstring}";

The second example does this by making use of the MTA Sieve implementation feature
allowing expressions where arguments are normally expected, to perform the "translate"
in-line, without use of any named variable:

require "fileinto";
fileinto (translate "abcABC" "US-ASCII" "ROT13");

5.1.2.43 Sieve warn extension

As of the 8.0 release, warnings that occur during Sieve evaluation (such as memcache protocol
issues and issues with the duplicate or vacation extensions) will result in a "warn" clause in the
log_filter field of MTA message transaction log entries.

Additionally, as of 8.0 the "warn" action, which takes either a string or list as an argument, is
available for system-level Sieve scripts; its argument will be included in the "warn" clause in
the log_filter field. This nonstandard extension is available without any special capability
declaration; no "require" action is needed for its use.

New in MS 8.1.0.3, the private Sieve environment item, vnd.oracle.warnings, allows
scripts to check and see if any Sieve warnings have occurred. The operation only succeeds if
one or more warnings have occurred since the last check of vnd.oracle.warnings - or if no
previous calls have been made, since the start of script processing. The item return value is the
text of those warnings.

5.1.2.44 Sieve custom tests via mappings

5–78 Messaging Server Reference

https://tools.ietf.org/html/rfc5228

Sieve supported extensions

As of updates to MS 6.2 and updates to MS 6.3, the MTA's Sieve implementation supports
custom Sieve tests defined via MTA mapping tables. (This functionality also existed in an
alternate, much less esthetic form, in earlier versions.)

Any mapping table with a name of the form FILTER_testname is presumed to define a new,
custom Sieve test testname. The string result of the mapping will be returned in the "${0}"
Sieve variable; the flag result of the mapping will be returned in the Sieve "${1}" variable.

For instance, a mapping table

FILTER_fruitcolor

 apple red-or-yellow-or-green-or-pink$Y
 apricot orange$Y
 avocado green$Y
 banana yellow$Y
 blackberry purple$Y
 blueberry blue-or-purple$Y
 grape green-or-red-or-purple$Y
 kiwi green$Y
 lemon yellow$Y
 lime green$Y
 mango orange$Y
 orange orange$Y
 peach yellow-or-white$Y
 pineapple yellow$Y
 raspberry pink-or-yellow$Y
 strawberry red-or-pink$Y
 watermelon red-or-pink-or-yellow$Y
 * $N

would allow use of a "fruitcolor" test in Sieve; e.g.,

require ["variables","fileinto"];
if header :matches "Fruit-of-the-day" "*" {set "todaysfruit" "${0}";}
if fruitcolor "${todaysfruit}" {
 set "color" "${0}"; set "flags" "${1}";
 if "${flags}" :is "N" {fileinto "unknown-color-fruits";}
 else {
 if "${color}" :contains "red" {fileinto "red-fruits";}
 if "${color}" :contains "yellow" {fileinto "yellow-fruits";}
 if "${color}" :contains "green" {fileinto "green-fruits";}
 }
}

5.1.2.45 Sieve subroutines

(New in MS 8.0.) Support for user-defined routines has been added to the recipe language, and
to system-level Sieves. Subroutine definitions have the general form:

Sieve filters 5–79

Sieve supported extensions

sub routine-name {routine-body}

or if parameters are needed:

sub routine-name(parameter1, parameter2, ...) {routine-body}

The "return" control command can be used to return a specified result from the routine.

Parameters are passed by value and evaluation of parameters is lazy. If a parameter is never
referenced it will never be evaluated. Note that evaluation of parameters in a particular order
can be forced very easily:

sub f(p1,p2,p3) { p1; p2; p3; ... }

Local variables can be declared in a routine by specifying the "my" control command
immediately preceeding the first use of the variable.

Autoincrement, autodecrement, and the various augmented assignment operators are all
allowed on parameters and local variables. So is the exchange operator :=:. However,
exchange cannot be used with a global variable on the right hand side and a local variable or
parameter on the left hand side.

For example, a factorial function can be defined as follows:

sub f(n) {if n <= 1 {return 1;} else {return f(n-1)*n;}}

Recursion is limited to 20 levels. A routine can only call itself recursively since there is
currently no forward declaration mechanism.

An example of the use of "my" would be:

sub fib(n) {my s = [1, 1];
 my a = 1;
 my b = 1;
 loop {exitif --n < 2;
 my c = a + b;
 s .= c;
 a = b;
 b = c;}
 return s;}

Note that use of user-defined routines in Sieves is restricted to system-level Sieves.

5.1.2.46 Sieve expressions

The MTA's Sieve implementation supports the use of expressions in places where the base
Sieve specification expects values. Such expressions can make use of a number of arithmetic
and string functions and operators.

5–80 Messaging Server Reference

Sieve hierarchy

Note that because Sieve syntax uses square brackets to denote lists, the MTA's usual support
for using square brackets to index into strings is not supported within Sieve filters; within
Sieve filters, parentheses must be used rather than square brackets to index into a string, i.e.,
a(1) rather than a[1].

Note that the imsimta test -expression utility can be used to test expression evaluation,
and in particular Sieve filter expression evaluation.

5.2 Sieve hierarchy
Messaging Server's Sieve implementation has, as its most significant, major extension to Sieve,
a nonstandard one: the ability for multiple scripts to apply to a single recipient. (The Sieve
specifications assume a single Sieve script per user.) The MTA supports a number of types of
Sieve scripts, whose specified effects are combined to result in an overall Sieve effect for each
user.

Sieve scripts come in two general classes, system-level vs. user-level. Within these classes there
are multiple different types of Sieve scripts. Such multiple Sieve scripts are combined in a
logical order, as discussed in Sieve filters: semantics of multiple scripts. Then such multiple
Sieve scripts are evaluated in a logical order, as discussed in Sieve filters: evaluation of
multiple scripts.

5.2.1 Sieve filters: types of scripts
Messaging Server supports Sieve scripts of various types specified at multiple levels, whose
specified effects will then be "combined" to yield an overall Sieve result for each user. The
various types of Sieve scripts, in order from the most general to the most specific, are:

1. Spam filter Sieve scripts. Results produced by spam/virus filter package plugins are
interpolated into Sieve scripts. Up to eight such spam/virus filter package plugins can be
defined, hence up to eight such Sieve scripts can be produced. Among such spam/virus
filter package Sieve scripts, package 1 is the most general proceeding through package 8 as
the most specific. (*)

2. Source channel Sieve filters. The sourcefilter channel option is used to specify the
location (via a URL) for a Sieve script applying for messages received via that source
channel. (*)

3. System Sieve filter. A single system-wide (per MTA host) Sieve filter can be specified
that applies to all recipients of all messages passing through this MTA. In Unified
Configuration, the system Sieve filter is specified via the systemfilter MTA option;
in legacy configuration, the normal location for this script is the file CONFIGROOT/
imta.filter. (*)

4. Destination channel script. The destinationfilter channel option specifies the location
(via a URL) for a Sieve script applying to messages enqueued to this destination channel. (*)

5. ORIG_SEND_ACCESS, SEND_ACCESS, ORIG_MAIL_ACCESS, and MAIL_ACCESS mapping
table Sieve scripts (in the listed order; that is, the most general being ORIG_SEND_ACCESS
through the most specific being MAIL_ACCESS). The $S sequence, when specified in any of
these mapping tables, causes a Sieve URL to be read from the mapping result string.

6. Mailing list domain scripts. The domain entry associated with mailing lists defined in LDAP
can use the mailDomainSieveRuleSource LDAP attribute (more technically, whatever

Sieve filters 5–81

Sieve filters: semantics of multiple
scripts

LDAP attribute is named by the ldap_domain_attr_filter MTA option) to specify a
Sieve script. (*)

7. Mailing list scripts. Mailing lists defined in LDAP can use the mailSieveRuleSource
LDAP attribute (more technically, whatever LDAP attribute is named by the ldap_filter
MTA option) to specify a Sieve script. Lists defined via Unified Configuration alias
options can use the alias_filter alias option to specify a Sieve script, just as in
legacy configuration lists defined in the aliases file or database can use a [FILTER]
nonpositional parameter to specify a Sieve URL. Also (and note that this is different
from the user script case), any "head of household" script applied to a mailing list
(specified by having on the group/list LDAP entry the LDAP attributes named by the
ldap_filter_reference and ldap_hoh_filter MTA options) is also considered to
be at this same level of generality as other mailing list scripts. The mailing list scripts are
considered in the order in which they are encountered.

8. User domain scripts. The domain entry associated with users defined in LDAP can use the
mailDomainSieveRuleSource attribute (more technically, whatever LDAP attribute is
named by the ldap_domain_attr_filter MTA option) to specify a Sieve script. (*)

9. User scripts. Users defined in LDAP can use the mailSieveRuleSource LDAP attribute
(more technically, whatever LDAP attribute is named by the ldap_filter MTA option) to
specify a Sieve script. In Unified Configuration, users defined via alias options can use the
alias_filter alias option to specify a Sieve script, just as in legacy configuration users
defined in the aliases file or database can use a [FILTER] nonpositional parameter to
specify a Sieve URL.

10.Head of household scripts. LDAP user entries can contain an attribute (specified by the
ldap_filter_reference MTA option) that provides the distinguished name of the
so-called "head of household", another LDAP user entry. This entry is read and any Sieve
stored in the attribute specified by the ldap_hoh_filter MTA option (which defaults to
mailSieveRuleSource) will be processed.

11.Finally, the filter channel option can applied to the destination channel; if used, it
specifies a Sieve URL for a user Sieve (that is, it typically specifies a template including user-
specific substitutions for how to locate user Sieve scripts).

The types marked with (*) are considered to be "system-level" scripts. Certain capabilities,
most notably the "capture" action, are only available to system-level scripts. In the other
direction, the vacation action is only available to user-level (non-system-level) scripts.

Many types of Sieve scripts may be specified or located via a URL; in particular, file:,
ldap:, data:, and imap: URLs are supported, and a file: URL type is normally assumed
so bare filenames (the name of a file containing a Sieve script) will also work as an argument in
most places.

5.2.2 Sieve filters: semantics of multiple scripts

Since multiple Sieve scripts can apply to each recipient and different scripts can produce
different results, there has to be a way to resolve conflicting results. The rules for determining
the final result are:

1. The scripts associated with a particular recipient are scanned in order from most specific to
most general. The result of the most specific script that executes an action which determines

5–82 Messaging Server Reference

Sieve filters: evaluation of multiple
scripts

the status of a message is used preferentially. The actions that determine the status of a
message are:

• discard,

• fileinto,

• keep,

• redirect,

• reject, and

• (Messaging Server 7.0 or later) ereject.

2. A set of special, nonstandard actions are provided which, if used, work the other way
around: the most general script that specifies them is used preferentially. These special
actions are:

• jettison(like discard) and

• refuse (like reject)

3. A Sieve script marked with the (new in 8.0) override action becomes the Sieve
determining the disposition of a message. If multiple Sieve scripts are marked override,
then the most general Sieve script "wins". (Thus this is a generalization of the "jettison"
and "refuse" sorts of effects -- but in addition to being able to combine "override"
with "discard" to obtain a "jettison" effect, or "override" with "reject" to obtain a
"refuse" effect, "override" may also be combined with actions such as "fileinto" or
"redirect".)

4. "capture" actions in system-level Sieve scripts are executed unconditionally, regardless
of whether or not the Sieve script that contains the "capture" action is selected as the one
which determines message handling for this recipient.

5. Conversion tags set or added by the "setconversiontag" and "addconversiontag"
actions, respectively, are processed unconditionally in a fashion similar to "capture"
actions.

6. An error in any Sieve script forces a "keep" action and aborts further scanning.
Additionally, a notification message is sent to the Sieve script owner reporting the problem.

Prior to the 7.0 release, "refuse" actions were only available to system-level Sieve scripts, and
"refuse", when used, forced the return of a 5yx response to the DATA command in SMTP.
In 7.0 and later this is no longer the case: "refuse" now behaves like "jettison", making
it possible for it to apply to only a subset of all recipients. However, the MTA checks and
whenever possible will continue to use a 5yz response whenever it is possible to do so.

5.2.3 Sieve filters: evaluation of multiple scripts
The various different types of Sieve scripts are located, loaded, and associated with the
appropriate recipient addresses as early as possible: Source channel scripts and the system
Sieve script (sourcefilter and systemfilter) are dealt with during MAIL FROM
processing and all others, with the exception of spam filter Sieves, are dealt with during

Sieve filters 5–83

Sieve filters: evaluation of multiple
scripts

RCPT TO processing. Spam filter Sieves (see the spamfilter*_action* MTA options) are
determined last: since they are derived from spam filter verdict processing, they can only be
determined after message data is available.

Prior to Messaging Server 7.0, the internal linkage of Sieve script to recipients looked
something like this:

Note that any given tier of the linkage tree can be omitted. As the arrows indicate, evaluation
of Sieve scripts proceeded from the bottom to the top, while interpretation of Sieve script
results proceeds from the recipients at the leaves down to the root (source channel Sieve filter).

The prior-to-7.0 organization just described was fine in terms of Sieve script evaluation
semantics. However, after it was implemented and various additional Sieve extensions were
defined, a number of problems emerged:

• Information flow up the tree from the root (source channel Sieve filter) to the leaves
(recipient Sieve filters) wasn't possible. This was a nonissue prior to the availability of the
"editheader", "spamtest", and "virustest" extensions. But once these extensions
entered the picture, it was only logical that the effects of more general scripts would be
visible to more specific scripts. For example, a system Sieve that performs some test and
decides a message is likely to be spam might want to indicate this fact either by adjusting

5–84 Messaging Server Reference

Sieve filters: evaluation of multiple
scripts

the spamtest score or by inserting a header. But this doesn't accomplish much when more
specific scripts cannot see the results of these actions.

• In some situations, Sieve scripts were loaded but then the recipient addresses they were
associated with ended up being dropped from the recipient list. When this happened there
was no easy way to remove the scripts from the evaluation list and scripts were evaluated
unnecessarily.

• Since the envelope test can examine recipient addresses, any Sieve script that employs
such a test is necessarily recipient-specific and must be reevaluated for each recipient. Even
worse, since this can change the result of the script, it has a cascade effect forcing all more
specific scripts to be reevaluated as well. In order to get these semantics, the linkage tree
had to be split and dummy nodes had to be inserted. For example, if the system Sieve script
called for the "envelope" extension, the recipient tree shown above ended up looking like
this:

Sieve filters 5–85

Sieve filters: evaluation of multiple
scripts

• All Sieve scripts must list all of the extensions they employ in an initial require clause.
However, it is common for an extension to be listed but not actually used - and this is not
necessarily a result of poor coding practice. For example, a script might perform a header
or address test and depending on the result of that test only then perform an envelope test,
as in the following example where the script is only recipient-specific given certain header
values and it is unnecessary to reevaluate it for every recipient. But since the linkage tree
has to be constructed prior to script evaluation the presence of the envelope extension in the
require clause forces unnecessary reevaluations.

require ["envelope", "subaddress"];
if address :is "from" "user1@example.com" {
 if envelope :is :detail "to" "whatever" { ... }
}

• Sieve scripts often can be written to take advantage of a given extension if it is available but
still function if it is not. The approach of enumerating of all extensions in the "require"
clause does not allow the construction of such scripts. The "ihave" extension eliminates this
restriction by adding a test that succeeds if the requested extension is available and fails if it
is not. This would be extremely difficult to implement using the linkage tree approach since
the extensions a given Sieve script uses can no longer be determined prior to Sieve script
evaluation.

A new way of linking scripts to users was needed and has been implemented in 7.0. The
linkage tree is gone, replaced with a per-recipient array:

5–86 Messaging Server Reference

Sieve filters: evaluation of multiple
scripts

Sieve filters 5–87

Sieve filters: implementation
internals

This new structure eliminates all of the issues the linkage tree had. Scripts are now evaluated
during final recipient address processing, eliminating unnecessary evaluation. Evaluation
poceeds down the array, and if a particular script has already been evaluated on behalf of
some other recipient the results can easily be checked for recipient specificity and reused if
no dependency exists. Even better, information can be passed from more general scripts to
more specific ones, and the additional checks for recipient-specific information inheritance are
reasonably straightforward. And finally, when reevaluation is required the resulting "split" is
much more straightforward.

For example, given the previous set of scripts, a recipient-specific system sieve results in the
following augmented data structure:

5.3 Sieve filters: implementation internals
NOTE: This discussion is technical; while it may be of interest during debugging or in
discussions with Oracle technical support, it is otherwise unlikely to be relevant or of interest
for casual perusal.

Sieve parsing and evaluation is implemented using a generic parse/evaluation subsystem.
In addition to Sieve, this system has also been used to implement other languages, most
notably the language used by the PMDF-DIRSYNC product. Specific language details, in
particular what "functions" can be called and what arguments they require, are specified
through callbacks.

Parsed expressions are stored in two separate linked lists of arrays: One for instructions and
the other for string data. The use of a series of array segments makes it possible to write parsed

5–88 Messaging Server Reference

Head of household Sieve filters

expressions out to disk and read them back in later. This feature is used to store the system
Sieve in the compiled configuration so it doesn't need to be reparsed.

This subsystem only understands basic script syntax; it knows nothing about specific Sieve
semantics. Information about Sieve semantics is provided through callbacks passed to the
parser and evaluator. The Sieve-specific callbacks are the routines mm_check_function and
mm_eval_function.

5.4 Head of household Sieve filters
The MTA supports the concept of "head of household" (also referred to as "parental controls")
filtering of incoming messages. This refers to cases where the MTA applies a "parent" or "head
of household" Sieve filter to a user's incoming messages in addition to the user's own personal
Sieve filter. This allows the "parent" or "head of household" user to exert some control over the
receipt and handling of messages addressed to the "child" user.

Such "head of household" controls are enabled by marking a "child" user entry with:

• a site-chosen LDAP attribute enabling application of "head of household" control (see the
ldap_parental_controls MTA option), and

• a site-chosen LDAP attribute (see the ldap_filter_reference MTA option) whose value
will be the DN of the entry that contains the actual "head of household" Sieve filter (typically
the DN of the "head of household" user).

By default, the "head of household" Sieve filter to be applied will simply be the "head of
household" user's own Sieve filter as stored in mailSieveRuleSource; note that use of the
Sieve "envelope" extension permits a Sieve filter to be sensitive to the recipient of a message,
thus to distinguish between those messages addressed to the "head of household" user him/
herself, vs. those messages having the "head of household" Sieve filter applied, but which
were addressed to some other "child" user. However, see the ldap_hoh_filter MTA option
which may be used to select use of a differently named LDAP attribute as the location of the
"head of household" Sieve filter, if it is preferred to store the Sieve filter to be applied in a
"head of household" capacity to "child" messages separately from the Sieve filter applying to
the "head of household"'s own messages.

Sieve filter application requires a Sieve "owner" for certain purposes. By default, the "head of
household" user's mail LDAP attribute is taken to be the Sieve "owner" when a Sieve filter
is being applied in "head of household" capacity. However, see the ldap_hoh_owner MTA
option which may be used to specify a different LDAP attribute whose value to consider as
"owner" for such purposes.

Sieve filters 5–89

5–90

Chapter 6 TCP wrappers
6.1 TCP wrapper filter syntax .. 6–2

6.1.1 TCP wrapper filter wildcard names .. 6–4
6.1.2 TCP wrapper filter wildcard patterns ... 6–4
6.1.3 TCP wrapper filter EXCEPT operator .. 6–5
6.1.4 TCP wrapper filter server-host specification .. 6–5

6.2 TCP wrapper filter examples .. 6–6
6.3 TCP wrapper filter creation .. 6–7
6.4 Component domainallowed and domainnotallowed options 6–8

6.4.1 domainallowed Option ... 6–8
6.4.2 domainnotallowed Option .. 6–9

Access control for clients connecting to Message Store servers (or MMP or proxies) is
implemented using the TCP wrapper concept. A TCP wrapper is a program that listens at the
same port as the TCP daemon it serves. It uses access filters to verify client identity, and it
gives the client access to the daemon if the client passes the filtering process. The design of the
Messaging Server TCP wrapper is based on the Unix Tcpd access-control facility (created by
Wietse Venema).

As part of its processing, the Messaging Server TCP client access-control system performs
(when necessary) the following analyses of the socket end-point addresses:

• Reverse DNS lookups of both end points (to perform name-based access control)

• Forward DNS lookups of both end points (to detect DNS spoofing)

The system compares this information against access-control statements called filters to decide
whether to grant or deny access. For each service, separate sets of Allow filters and Deny filters
control access. Allow filters explicitly grant access. Deny filters explicitly forbid access.

When a client requests access to a service, the access-control system compares the client's
address or name information to each of that service's filters, in order, by using these criteria:

• The search stops at the first match. Because Allow filters are processed before Deny filters,
Allow filters take precedence.

• Access is granted if the client information matches an Allow filter for that service.

• Access is denied if the client information matches a Deny filter for that service.

• If no match with any Allow or Deny filter occurs, access is granted, except in the case where
there are Allow filters but no Deny filters, in which case lack of a match means that access is
denied.

The filter syntax described here is flexible enough that you should be able to implement many
different kinds of access-control policies in a simple and straightforward manner. You can
use both Allow filters and Deny filters in any combination, even though you can probably
implement most policies by using almost exclusively Allows or almost exclusively Denies.

See TCP wrapper filter syntax for a discussion of TCP wrapper filter syntax. Note that MMP
and the proxies use a general tcpaccess option to set any combination of Allow and Deny
filters, whereas the IMAP and POP servers, the ENS server, and the eval_ldapd server, instead

TCP wrappers 6–1

TCP wrapper filter syntax

use a domainallowed option and a domainnotallowed option to set, respectively, Allow
and Deny filters.

There are also LDAP attributes at the user level, mailAllowedServiceAccess, and domain
level, mailDomainAllowedServiceAccess, that are available to specify per-user or per-
domain TCP wrapper access filters. (Note that the MMP and its proxies permit revectoring
of exactly what LDAP attribute is used at the user level, via their tcpaccessattr option.)
See the ldap_domain_timeout option for a discussion of the caching of domain level LDAP
attributes such as mailDomainAllowedServiceAccess.

6.1 TCP wrapper filter syntax
TCP wrapper filter statements contain both service information and client information. The
service information can include the name of the service, names of hosts, and addresses of
hosts. The client information can include host names and host addresses. Both the server and
client information can include wildcard names or patterns.

The general syntax of an access filter rule is:

< "+" | "-" > service-list: client-list

where multiple rules can be placed on the same line, separated by the $ character, and where

• + (allow filter)1 means the services in the service-list are being granted to the client-
list;

• - (deny filter)1 means the services are being denied to the client-list;

• service-list is a comma separated list of services to which access is being granted or
denied;

• client-list is a comma separated list of the clients to be allowed or denied access to the
service-list.

In more detail, service-list is a comma or space separated list of service-
specifications. A service-specification consists of simply a defined service-
name, or service-name@host-pattern, or the special wildcard name ALL, or may make
use of combinations of the above with the EXCEPT operator. Defined service names are imap,
imaps, pop, pops, smtp, smtps, http, smime, and as of MS 7.0.5 mshttpd.2. See TCP
wrapper filter wildcard patterns for more details on host-patterns, and TCP wrapper filter
EXCEPT operator for further details on the EXCEPT operator.

client-list is a comma or space separated list of client-specifications. A client-
specification consists of any of a specific host-name, a host-wildcard-pattern,
username@host-wildcard-pattern, or in the above forms may make use of the wildcard
names described in Wildcard names for TCP wrapper service filters, and optionally the TCP
wrapper filter EXCEPT operator.

The very simplest form of a filter is:

service: host-specification

where service is the name of the service (such as smtp, pop, imap, or http) and host-
specification is the host name, IPv4 address, or wildcard name or wildcard pattern that

6–2 Messaging Server Reference

TCP wrapper filter syntax

represents the client requesting access. When a TCP wrapper filter is processed, if the client
seeking access matches host-specification, access is either allowed or denied (depending
on which type of filter this is) to the service specified by service. Here are some examples:

imap: roberts.newyork.siroe.com
pop: ALL
http: ALL

If these are Allow filters, the first one grants the host roberts.newyork.siroe.com access to the
IMAP service, and the second and third grant all clients access to the POP and HTTP services,
respectively. If they are Deny filters, they deny those clients access to those services. (For
descriptions of wildcard names such as ALL, see TCP wrapper filter wildcard names.)

Or for a more complex example, making use of a host name in a service-specification
and a user name in a client-specification:

pop@mailserver1.siroe.com: ALL
imap: srashad@xyz.europe.siroe.com

If these are Deny filters, the first filter denies all clients access to the SMTP service on
the host mailserver1.siroe.com. The second filter denies the user srashad at the host
xyz.europe.siroe.com access to the IMAP service. (For more information on when to use these
expanded server and client specifications, see TCP wrapper filter server-host specification and
Client User-Name Specification.

When a TCP wrapper filter is processed, if the client seeking access matches any of the
client-specification entries in client-list, then access is either allowed or denied
(depending on which type of filter this is) to all the services specified in service-list. Here
is an example:

pop, imap, http: .europe.siroe.com .newyork.siroe.com

If this is an Allow filter, it grants access to POP, IMAP, and HTTP services to all clients in either
of the domains europe.siroe.com and newyork.siroe.com. For information on using a leading
dot or other pattern to specify domains or subnet, see TCP wrapper filter wildcard patterns.

The following example enables multiple services on all clients.

+imap,pop,http:*

The following example shows multiple rules with the $ rule separator, but each rule is
simplified to have only one service name and uses wildcards for the client list. (This is the
most commonly used method of specifying access control in LDIF files.)

+imap:ALL$+pop:ALL$+http:ALL

An example of how to disallow all services for a user is:

-imap:*$-pop:*$-http:*

TCP wrappers 6–3

TCP wrapper filter wildcard
names

The following example shows how to restrict user access so that only SSL-encrypted POP
and IMAP are permitted. Because back-end servers do not recognize the imaps and pops
service names,2 it is necessary to grant the MMP IP address(es) pop and imap service access;
otherwise, connections between the MMP and the back-end servers will be rejected.

+imaps,pops:*$+imap,pop:MMP-IP-address(es)

1 Note that use of "+" and "-" in access filters makes sense in values of LDAP attributes such
as mailAllowedServiceAccess or for components such that MMP which set a general
access filter via a tcpaccess option; but for components such as the IMAP and POP servers
which separately specify Allow and Deny filters (domainallowed and domainnotallowed
options), the explicit "+" and "-" are not needed.

2 Note that the MMP supports service names imap, imaps, pop, pops, and smtp, and smime.
The back-end (Message Store) system (with its servers such as IMAP and POP) supports imap,
pop, smtp, http, and smime.

6.1.1 TCP wrapper filter wildcard names
Wildcard names for TCP wrapper service filters shows the TCP wrapper filter wildcard names
that may be used to represent service names, host names, or user names.

Table 6.1 Wildcard names for TCP wrapper service filters

Wildcard name Description
ALL, * The universal wildcard. Matches all names.
LOCAL Matches any local short-form host name (one whose name does not

contain a dot character). Note that if your deployment uses only canonical
names -- fully qualified domain names, hence including dots -- then even
local short-form host names will contain dots and thus will not match this
wildcard.

UNKNOWN Matches any host whose name or address is unknown. Use this wildcard
name carefully. Host names may be unavailable due to temporary DNS
nameserver problems -- in which case all filters that use UNKNOWN will
match all client hosts. A network address is unavailable when the software
cannot identify the type of network with which it is communicating -- in
which case all filters that use UNKNOWN will match all client hosts on that
network.

KNOWN Matches any host whose name and address are known. Use this wildcard
name carefully. Host names may be unavailable due to temporary DNS
nameserver problems -- in which case all filters that use KNOWN will fail
for all client hosts. A network address is unavailable when the software
cannot identify the type of network with which it is communicating -- in
which case all filters that use KNOWN will fail for all client hosts on that
network.

DNSSPOOFER Matches any host whose DNS name does not match its own IP address.

6.1.2 TCP wrapper filter wildcard patterns

6–4 Messaging Server Reference

TCP wrapper filter EXCEPT
operator

You can use the following patterns in service or client addresses:

• A string that begins with a dot character (.). A host name is matched if the last components
of its name match the specified pattern. For example, the wildcard pattern .siroe.com
matches all hosts in the domain siroe.com.

• A string of the form n.n.n.n/m.m.m.m. This wildcard pattern is interpreted as a net/mask
pair. A host IP address is matched if net is equal to the bitwise AND of the IP address and
mask. For example, the pattern 123.45.67.0/255.255.255.128 matches every address
in the range 123.45.67.0 through 123.45.67.127. Note that 255.255.255.255 is not
permitted as a mask; use CIDR notation with /32 instead.

• A string of the form n.n.n.n/p. This wildcard pattern is interpreted as being in CIDR
notation, where p is the routing prefix. The corresponding subnet mask, mask, is p one bits
followed by 32-p zero bits for a total of 32 bits. A host address is matched if the bitwise AND
of n.n.n.n and mask is equal to the bitwise AND of the address and mask. For example,
the pattern 123.45.67.0/25 matches every address in the range 123.45.67.0 through
123.45.67.127.

6.1.3 TCP wrapper filter EXCEPT operator
The TCP wrapper access-control system supports a single operator. You can use the EXCEPT
operator to create exceptions to matching names or patterns when you have multiple entries in
either service-list or client-list. For example, the expression:

list1 EXCEPT list2

means that anything that matches list1 is matched, unless it also matches list2.

Here is an example:

ALL: ALL EXCEPT isserver.siroe.com

If this were a Deny filter, it would deny access to all services to all clients except those on the
host machine isserver.siroe.com.

EXCEPT clauses can be nested. The expression:

list1 EXCEPT list2 EXCEPT list3

is evaluated as if it were:

list1 EXCEPT (list2 EXCEPT list3)

6.1.4 TCP wrapper filter server-host specification
You can further identify the specific service being requested in a TCP wrapper filter by
including server host name or address information in the service-specification entry. In that case
the entry has the form service@host-specification.

You might want to use this feature when your Messaging Server host machine is set up for
multiple Internet addresses with different Internet host names. If you are a service provider,
you can use this facility to host multiple domains, with different access-control rules, on a
single server instance.

TCP wrappers 6–5

TCP wrapper filter examples

6.2 TCP wrapper filter examples
The examples in this section show a variety of approaches to controlling access using TCP
wrapper access filters. In studying the examples, keep in mind that Allow filters are processed
before Deny filters, the search terminates when a match is found, and access is granted when
no match is found at all.

The examples listed here use host and domain names rather than IP addresses. Remember that
you can include address and netmask information in TCP wrapper filters, which can improve
reliability in the case of nameservice failure.

Example TCP wrapper filter: mostly denying

In this example, access is denied by default. Only explicitly authorized hosts are permitted
access.

The default policy (no access) is implemented with a single, trivial deny rule via the
domainnotallowed option:

ALL: ALL

This filter denies all service to all clients that have not been explicitly granted access by an
Allow filter (set via the domainallowed option). The Allow filters, then might be something
like these:

ALL: LOCAL @netgroup1
ALL: .siroe EXCEPT externalserver.siroe.com

The first rule permits access from all short-form host names in the local domain and from
members of the group netgroup1. The second rule uses a leading-dot wildcard pattern
to permit access from all hosts in the siroe.com domain, with the exception of the host
externalserver.siroe.com.

Example TCP wrapper filter: mostly allowing

In this example, access is granted by default. Only explicitly specified hosts are denied access.

The default policy (access granted) makes explicit Allow filters unnecessary. The unwanted
clients are listed explicitly in Deny filters (set via the domainnotallowed option) such as
these:

ALL: externalserver.siroe1.com, .siroe.asia.com
ALL EXCEPT pop: contractor.siroe1.com, .siroe.com

The first filter denies all services to a particular host and to a specific domain. The second filter
permits nothing but POP access from a particular host and from a specific domain.

Example TCP wrapper filter: Denying access from spoofed IPs or hosts

You can use the DNSSPOOFER wildcard name in a filter to detect host-name spoofing. When
you specify DNSSPOOFER, the access-control system performs forward or reverse DNS
lookups to verify that the client's presented host name matches its actual IP address. Here is an
example for a Deny filter (which would be set via the domainnotallowed option):

6–6 Messaging Server Reference

TCP wrapper filter creation

ALL: DNSSPOOFER

This filter denies all services to all remote hosts whose IP addresses don't match their DNS
host names.

Example TCP wrapper filter: Controlling access to Virtual Domains

If your messaging installation uses virtual domains, in which a single server instance is
associated with multiple IP addresses and domain names, you can control access to each
virtual domain through a combination of Allow and Deny filters. For example, you can use
Allow filters like:

ALL@msgServer.siroe1.com: @.siroe1.com
ALL@msgServer.siroe2.com: @.siroe2.com
...

coupled with a Deny filter like:

ALL: ALL

Each Allow filter permits only hosts within domainN to connect to the service whose IP
address corresponds to msgServer.siroeN.com. All other connections are denied.

Example TCP wrapper filter: Controlling IMAP access while permitting Webmail access

If you wish to allow users to access Webmail, but not access IMAP, create a filter like this:

+imap:access-server-host1,access-server-host2

This permits IMAP only from the access server hosts access-server-host1 and and
access-server-host2. You can set the access filter at the IMAP server level by using
the option imap.domainallowed, or set the access filter at the user level via
the mailAllowedServiceAccess LDAP attribute or at the domain level via
the mailDomainAllowedServiceAccess LDAP attribute. (The MMP and
its proxies will at the proxy level use the tcpaccess option, as well as at the
user level whatever user LDAP attribute is named by the tcpaccessattr
option, by default mailAllowedServiceAccess, and at the domain level the
mailDomainAllowedServiceAccess LDAP attribute.)

6.3 TCP wrapper filter creation
The IMAP, POP, and HTTP services support Allow and Deny filters via options
domainallowed and domainnotallowed; (such filters may also be created for SMTP
services, but will only apply to authenticated SMTP sessions; instead see Mail filtering and
access control for discussion of the MTA's approaches for controlling access). The MMP and
its proxy services, the IMAP Proxy, POP Proxy, and vdomain for specifying Virtual Domain
specific controls, instead support a tcpaccess option.

The msconfig utility is used to create or edit server level TCP wrapper filters in Unified
Configuration; for example:

TCP wrappers 6–7

Component domainallowed and
domainnotallowed options

msconfig> set imap.domainallowed .siroe.com
msconfig> set pop.domainnotallowed imap.siroe.com
msconfig> set mmp.tcpaccess "+imap: siroe.com"

Note: Restart the relevant services after making changes to their access filters.

TCP wrapper access filters can also be set at the user level or domain level via LDAP attributes;
see the user level mailAllowedServiceAccess LDAP attribute1 and the domain level
mailDomainAllowedServiceAccess LDAP attribute.
1 The MMP and its proxy servers and virtual domains permit renaming of the user level LDAP
attribute via their tcpaccessattr option. The IMAP, POP, and MSHTTP servers, however,
do not support such renaming and expect use of the mailAllowedServiceAccess user
level LDAP attribute.

6.4 Component domainallowed and
domainnotallowed options

Various components allow setting allow or deny TCP access filters via
component.domainallowed or component.domainnotallowed options. (However, the
MMP and its subcomponents instead use a general tcpaccess option.)

6.4.1 domainallowed Option
The domainallowed option (available under ens, eval_ldapd, http, imap, imapproxy,
pop, popproxy) specifies access filters specifying which domains and/or IP addresses are
allowed access for the selected server.

6.4.1.1 Use with the IMAP proxy

The domainallowed IMAP Proxy/POP Proxy option (also available under ens,
eval_ldapd, http, imap, and pop) specifies access filters specifying which domains and/or
IP addresses are allowed access for the selected server.

6.4.1.2 Use with the POP proxy

The domainallowed IMAP Proxy/POP Proxy option (also available under ens,
eval_ldapd, http, imap, and pop) specifies access filters specifying which domains and/or
IP addresses are allowed access for the selected server.

6.4.1.3 Use with http

The domainallowed MSHTTP option specifies access filters specifying which domains and/
or IP addresses are allowed HTTP access.

6.4.1.4 Use with imap

The domainallowed IMAP option specifies access filters specifying which domains and/or IP
addresses are allowed IMAP access.

6.4.1.5 Use with pop

6–8 Messaging Server Reference

domainnotallowed Option

The domainallowed POP option specifies access filters specifying which domains and/or IP
addresses are allowed POP access.

6.4.1.6 Use with ens

The domainallowed ENS option specifies access filters specifying which domains and/or IP
addresses are allowed ENS access.

6.4.1.7 Use with eval_ldapd

The domainallowed option under eval_ldapd allows setting access filters specifying which
domains and/or IP addresses are allowed evaluation ldapd access.

6.4.2 domainnotallowed Option
The domainnotallowed option specifies access filters specifying which domains and/or IP
addresses are not allowed access for the selected server.

6.4.2.1 Use with the IMAP proxy

The domainnotallowed IMAP Proxy/POP Proxy option (also available at other levels)
specifies access filters specifying which domains and/or IP addresses are not allowed access for
the selected server.

6.4.2.2 Use with the POP proxy

subsubitem="domainnotallowed MMP/IMAP Proxy option"/>

The domainnotallowed IMAP Proxy/POP Proxy option (also available at other levels)
specifies access filters specifying which domains and/or IP addresses are not allowed access for
the selected server.

6.4.2.3 Use with eval_ldapd

The domainnotallowed option under eval_ldapd allows setting access filters specifying
which domains and/or IP addresses are not allowed evaluation ldapd access.

6.4.2.4 Use with http

The domainnotallowed MSHTTP option specifies access filters specifying which domains
and/or IP addresses are not allowed HTTP access.

6.4.2.5 Use with imap

The domainnotallowed IMAP option specifies access filters specifying which domains and/
or IP addresses are not allowed IMAP access.

6.4.2.6 Use with pop

The domainnotallowed POP option specifies access filters specifying which domains and/or
IP addresses are not allowed POP access.

TCP wrappers 6–9

domainnotallowed Option

6.4.2.7 Use with ens

The domainnotallowed ENS option specifies access filters specifying which domains and/or
IP addresses are not allowed ENS access.

6–10 Messaging Server Reference

Part II Messaging Server
command line utilities

Messaging Server comes with a collection of command line utilities. Utilities for the MTA are documented
in the MTA command line utilties chapter.

Most Message Store utilities are documented in the "Message Store Command Reference" chapter
of the System Administrator's Guide. This includes the following command line utilities: configutil,
counterutil, deliver, hashdir, imcheck, imdbverify, imexpire, iminitquota, immonitor-access, impurge,
imquotacheck, imsasm, imsbackup, imsconnutil, imscripter, imsexport, imsimport, imsrestore,
mboxutil, mkbackupdir, msprobe, msuserpurge, readership, reconstruct, rehostuser, relinker, stored.

Utilities in the bin directory are considered public interfaces unless otherwise documented, and
utilities in the lib directory are considered private interfaces unless they are documented. Output from
command line interfaces is considered unstable (subject to change at any time) unless the documentation
explicitly states otherwise.

A subset of the Mozilla Network Security Services tools are included in the lib directory as a
convenience. These include: certutil, modutil, pk12util, cmsutil, ssltap. The included versions have no
functional changes from the Mozilla versions; refer to the Mozilla NSS project for documentation of these
utilities.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/tools

Chapter 7 configtoxml_utility
7.1 Syntax ... 7–1

7.1.1 Restrictions ... 7–1
7.2 Description .. 7–1
7.3 Switches .. 7–1

7.3.1 -32|-64 ... 7–1
7.3.2 --force, -f ... 7–1
7.3.3 --help, -h ... 7–2
7.3.4 --instance INSTANCE, -i INSTANCE ... 7–2
7.3.5 --location DIR, -l DIR ... 7–2
7.3.6 --noactive, -n ... 7–2
7.3.7 --output CONFIG-FILE PASSWORD-FILE RESTRICTED-FILE, -
o CONFIG-FILE PASSWORD-FILE RESTRICTED-FILE 7–2
7.3.8 --role ROLE, -r ROLE ... 7–2
7.3.9 --yes, -y ... 7–2
7.3.10 --undo, -u ... 7–2

7.4 Usage Notes .. 7–2
7.5 Example .. 7–3

7.1 Syntax

 configtoxml [switches]

7.1.1 Restrictions
This is implemented as a Perl script, so a reasonably modern version of Perl must be installed
on the system to run this.

7.2 Description
The configtoxml utility converts a legacy configuration to a Unified Configuration.

7.3 Switches

7.3.1 -32|-64
Installation is a 32 bit (-32) or 64 bit (-64) Messaging Server. Default is 64 bit.

7.3.2 --force, -f
Ignore safety checks: allow running as non-root and permit overwriting of any pre-existing
Unified Configuration files.

Caution: Using this option may result in a non-functioning configuration. The
restricted.cnf file must be owned by root or the user listed in that file.

configtoxml 7–1

--help, -h

7.3.3 --help, -h
Print usage information.

7.3.4 --instance INSTANCE, -i INSTANCE
Instance name to insert in the generated configuration files. The default is ims.

7.3.5 --location DIR, -l DIR
Read the legacy configuration files from the specified directory DIR. The default is the normal
configuration directory.

7.3.6 --noactive, -n
Do not generate an active configuration and do not move the legacy configuration files to
config-root/legacy-config/. The generated Unified Configuration files will have the names
config_.xml, xpass_.xml, and restricted_.cnf and will be written to config-root. This may not be
used in conjuction with the --output or --undo switches.

7.3.7 --output CONFIG-FILE PASSWORD-
FILE RESTRICTED-FILE, -o CONFIG-FILE PASSWORD-
FILE RESTRICTED-FILE

Direct the Unified Configuration file output to the designated files. By default, the files
config.xml, xpass.xml, and resricted.cnf are written to the config-root directory. This may not be
used in conjunction with the --noactive or --undo switches.

7.3.8 --role ROLE, -r ROLE
Role name to insert in the generated configuration files. The default is to use ims.

7.3.9 --yes, -y
Pre-answer any confirmation questions with a "yes" response so that this script can be run
without user intervention.

7.3.10 --undo, -u
Remove any active Unified Configuration files and restore any legacy configuration files.

7.4 Usage Notes
Usage Notes: Stop the Messaging Server before running the configtoxml command.
Alternatively, use the --noactive switch to prevent writing out an active configuration.

When generating an active Unified Configuration, the configtoxml command moves all the
processed legacy configuration files to the config-root/legacy-config directory.

7–2 Messaging Server Reference

Example

The --undo switch removes the Unified Configuration and restores the legacy configuration
files.

7.5 Example

imsimta version
Oracle Communications Messaging Server 7u5-28.12 64bit (built Nov 5 2012)
libimta.so 7u5-28.12 64bit (built 15:58:11, May 23 2012)
Using /opt/sun/comms/messaging/config/imta.cnf (not compiled)
Linux host1.example.com 2.6.39-100.5.1.el5uek #1 SMP Tue Mar 6 20:25:25 EST 2012 x86_64 x86_64 x86_64 GNU/Linux

configtoxml
WARNING: This procedure will produce an active Unified Configuration which
 will override any existing legacy configuration.

Continue anyway [no]? yes
Creating the directory /opt/sun/comms/messaging/config/legacy-config/
Moving the processed legacy configuration files to /opt/sun/comms/messaging/config/legacy-config/

bin/imsimta version
Oracle Communications Messaging Server 7u5-28.12 64bit (built May Nov 5 2012)
libimta.so 7u5-28.12 64bit (built 15:58:11, Nov 5 2012)
Using /opt/sun/comms/messaging/config/config.xml (not compiled)
Linux host1.example.com 2.6.39-100.5.1.el5uek #1 SMP Tue Mar 6 20:25:25 EST 2012 x86_64 x86_64 x86_64 GNU/Linux

configtoxml 7–3

7–4

Chapter 8 configure_utility
The configure utility generates an initial product configuration. This is an alias for the init-
config utility; see the documentation of that command for details.

configure 8–1

8–2

Chapter 9 inetuser utility
9.1 Syntax ... 9–1

9.1.1 Restrictions ... 9–1
9.2 Parameters ... 9–2
9.3 Description .. 9–2
9.4 Examples ... 9–2
9.5 Switches .. 9–3

9.5.1 --command-file=file, -f file ... 9–3
9.5.2 --help, -? .. 9–3
9.5.3 --version, -V .. 9–3
9.5.4 --admin=type, -a type ... 9–3
9.5.5 --attrlist=attrs, -A attrs ... 9–3
9.5.6 --autocreate, -c .. 9–3
9.5.7 --bind-dn=binddn, -D binddn ... 9–3
9.5.8 --bind-pwfile=file, -j file ... 9–3
9.5.9 --default-domain=domain, -d domain ... 9–3
9.5.10 --dry-run, -n ... 9–4
9.5.11 --hostlist=host, -h host ... 9–4
9.5.12 --ldapattrval=avl, -p avl ... 9–4
9.5.13 --ldif=file, -l file ... 9–4
9.5.14 --logfile=file, -L file ... 9–4
9.5.15 --myhost=host, -H host ... 9–4
9.5.16 --novalidate ... 9–4
9.5.17 --orgdn=dn, -O dn ... 9–4
9.5.18 --postmaster=mailaddr, -M mailaddr ... 9–5
9.5.19 --port=port, -P port ... 9–5
9.5.20 --preserveCritical ... 9–5
9.5.21 --pwfile=file, -J file ... 9–5
9.5.22 --quiet, -q ... 9–5
9.5.23 --require-ssl, -Z ... 9–5
9.5.24 --verbose, -v ... 9–5

The inetuser utility is a very limited LDAP provisioning utility for Messaging Server.

9.1 Syntax

 inetuser --command-file=file
 inetuser --help
 inetuser --version
 inetuser create [switches]user
 inetuser show [switches]user
 inetuser checkpw [switches]user
 inetuser show-domain [switches]domain
 inetuser check-dssetup

9.1.1 Restrictions
This command uses LDAP configuration settings by default. However, commands that update
LDAP generally require Directory Manager credentials and it is a best practice to limit the

inetuser 9–1

Parameters

access rights available to the administrative account specified by base.ugldapbinddn and by
base.ugldapbindcred. As a result, it's typically necessary to specify the --bind-dn=binddn
and --bind-pwfile=file switches to specify a Directory Manager account when updating
LDAP directly.

9.2 Parameters
The create, show, and checkpw subcommands take a user identity as a parameter. The user
identity is typically the value of the uid LDAP attribute (possibly modified by the ldap_uid
option) and may include @domain to refer to an LDAP domain.

The show-domain subcommand takes a domain provisioned in LDAP as a parameter.

No parameters are present when a top-level switch is used or other subcommands are used.

9.3 Description
The inetuser utility is a very limited LDAP provisioning utility for Messaging Server that
supports LDAP schema 1 and LDAP schema 2. This tool has been present in Messaging Server
for some time and is used by the init-config utility to provision an initial administrative user,
group, and associated default domain.

The create subcommand is used to create users and domains.

The show subcommand is used to show a user's LDAP entry.

The checkpw subcommand is used to check a user's LDAP password against the directory.
The inetuser utility will return a status of 0 if the password is correct.

The show-domain subcommand shows a domain's LDAP entry.

The check-dssetup subcommand shows information from the comms_dsseetup utility
that is present in the LDAP directory.

9.4 Examples
The following command creates a user with common name "John Smith" and user identity
'jsmith'. With this command, the email address defaults to 'jsmith@defaultdomain' (this assumes
the directory manager password is stored in the file pwfile in the current directory):

inetuser create -D "cn=Directory Manager" -j pwfile -p "cn=John Smith" jsmith
password:

The following command creates a new domain with a new administrative user:

inetuser create -D "cn=Directory Manager" -j pwfile -a all -c newadmin@newdomain.example.com
password:

9–2 Messaging Server Reference

Switches

9.5 Switches

9.5.1 --command-file=file, -f file
This top-level switch reads and executes inetuser subcommands from the specified file instead
of executing one subcommand from the command line.

9.5.2 --help, -?
This top-level switch displays command usage summary.

9.5.3 --version, -V
This top-level switch displays command version information.

9.5.4 --admin=type, -a type
This create subcommand switch specifies the type of admin user to create. Supported values
are all (store administrator) and access (administrative account used by Messaging Server
to authenticate). If not specified, the user account will not have administrative privilege.

9.5.5 --attrlist=attrs, -A attrs
This show subcommand switch specifies a comma-separated list of attributes to show from the
user entry, instead of showing all known attributes.

9.5.6 --autocreate, -c
This create subcommand switch will cause the domain to be created when creating a user
if it doesn't already exist. Note that the tool requires the first user in a domain to be a store
administrator so it's generally necessary to include the --admin=all switch with this one.

9.5.7 --bind-dn=binddn, -D binddn
This subcommand switch specifies the bind DN to use for LDAP server authentication. If not
specified, the value of the base.ugldapbinddn option is used instead. The credentials specified
by that option typically do not have permission to write to the LDAP directory so this switch is
usually necessary with the create subcommand (as is the --bind-pwfile switch).

9.5.8 --bind-pwfile=file, -j file
This subcommand switch specifies a file containing the bind password to use for LDAP server
authentication. If not specified, the value of the base.ugldapbindcred option is used as the bind
password instead.

9.5.9 --default-domain=domain, -d domain
This subcommand switch specifies the default domain to use if a domain is not explicitly
specified. When this switch is not specified, the value of the base.defaultdomain option is
used.

inetuser 9–3

--dry-run, -n

9.5.10 --dry-run, -n

This subcommand switch prevents the tool from modifying the LDAP directory. It may be
useful to combine this with the --ldif switch.

9.5.11 --hostlist=host, -h host

This subcommand switch specifies one or more LDAP server host names to use when
connecting to the LDAP server. If not provided, the value of the base.ugldaphost option is
used. This may be needed with the create subcommand if that option specifies a slave LDAP
server rather than a master LDAP server.

9.5.12 --ldapattrval=avl, -p avl

This create subcommand switch specifies an LDAP attribute value list of additional known
attributes to include when creating a user. The syntax of the list is attr1=value1,attr2=value2.
Special characters may be escaped with backslash (\). Alternatively, the value can be base64-
encoded by specifying a $ symbol before the equals (=) symbol. The set of known attributes is
limited, so if the attribute name is not known by the utility, an error will result.

9.5.13 --ldif=file, -l file

This create subcommand switch specifies a file that will record a copy of the LDIF generated
internally by this tool that is used to modify the LDAP directory. Combing this with the --
dry-run switch is useful to review the changes the tool would make to LDAP. This may also
be helpful to customers developing their own provisioning tools.

9.5.14 --logfile=file, -L file

This subcommand switch requests that any diagnostics are appended to the specified file.

9.5.15 --myhost=host, -H host

This subcommand switch specifies the name of the host used to provision store-related
attributes such as mailHost. If this is not provided, the value of the base.hostname option is
used.

9.5.16 --novalidate

Normally the tool will prompt and abort if a mismatch or error is detected. This subcommand
switch suppresses that behavior.

9.5.17 --orgdn=dn, -O dn

This create subcommand switch specifies the LDAP DN to use when provisioning a schema 1
organization group in LDAP when creating a domain. This switch is primarily for use by the
init-config utility.

9–4 Messaging Server Reference

--postmaster=mailaddr, -M
mailaddr

9.5.18 --postmaster=mailaddr, -M mailaddr
This create subcommand switch specifies the mail address of the user to include in the
postmaster group when creating a domain with a postmaster group. This switch is primarily
for use by the init-config utility.

9.5.19 --port=port, -P port
This subcommand switch specifies the LDAP server port to use. If not specified, the value of
the base.ugldapport option is used.

9.5.20 --preserveCritical
Normally the tool will prompt and default to overwrite certain critical attributes when
performing a create operation and the specified user and/or domain already exists. The
subcommand switch prevents the tool from overwriting such attributes.

9.5.21 --pwfile=file, -J file
This create subcommand switch specifies a file containing the password to use when creating a
user. If this is not provided, the tool will prompt for a password.

9.5.22 --quiet, -q
This subcommand switch suppresses some prompts and diagnostics.

9.5.23 --require-ssl, -Z
This subcommand switch require use of SSL when communicating with the LDAP server.

9.5.24 --verbose, -v
This subcommand switch requests additional diagnostics from the utility. May be used more
than once to increase the amount of diagnostic information.

inetuser 9–5

9–6

Chapter 10 init-config utility
10.1 Syntax .. 10–1

10.1.1 Restrictions .. 10–1
10.2 Parameters ... 10–1
10.3 Description ... 10–1
10.4 Switches ... 10–5

10.4.1 --cassandra .. 10–5
10.4.2 --dataroot=dataroot .. 10–5
10.4.3 --debug .. 10–5
10.4.4 --help, -? ... 10–5
10.4.5 --ignoreSendmail .. 10–5
10.4.6 --ldapport=ldapPort .. 10–5
10.4.7 --ldif .. 10–5
10.4.8 --list-recipes .. 10–5
10.4.9 --noldap .. 10–5
10.4.10 --novalidate .. 10–6
10.4.11 --noxml .. 10–6
10.4.12 --preserveCritical .. 10–6
10.4.13 --quiet, -q .. 10–6
10.4.14 --recipes=recipe-list, -r recipe-list 10–6
10.4.15 --saveState=statefile .. 10–6
10.4.16 --ssl .. 10–6
10.4.17 --state=statefile .. 10–6
10.4.18 --version, -V .. 10–6
10.4.19 --xml .. 10–7

10.5 Examples .. 10–7

The init-config utility initializes the system for use by Messaging Server and generates an
initial product configuration.

10.1 Syntax

 init-config [switches]

10.1.1 Restrictions
Must have superuser privileges in order to use this utility. This is implemented as a Perl
script, so a reasonably modern version of Perl must be installed on the system to run this. It
is more convenient to use this tool if an LDAP server has been installed previously and the
comms_dssetup tool has been used to initialize the LDAP server.

10.2 Parameters
None.

10.3 Description
The init-config tool prepares a system for use by Messaging Server and generates an
initial configuration for the product. It can be run in an interactive mode or in a silent mode

init-config 10–1

Description

(when a state file is provided). By default, the initial configuration generated is designed for
product evaluation purposes and enables the primary product services (MTA & Message
Store) including a number of common channels and mappings. Alternatively, the tool can
be used to generate a limited configuration appropriate as a starting point for a deployment
by using the --recipes= (or -r) switch with a list of initial config recipes (this is new in
Messaging Server 8.1). Note that in initial config recipe mode, statefile variables are limited to
1024 characters in length.

The following list summarizes the functions performed by init-config:

1. Creates the Unix user and group for Messaging Server, if needed.

2. If in evaluation or ldapinit mode, it creates LDAP server entries (or LDIF) for the default
domain, administrative user and postmaster, along with access control lists.

3. If in evaluation or ldapinit mode, it creates Directory Server entries (or LDIF) for an
administrative group and user for the host where configure is run; this administrative
group and user have limited write access to the directory. If in useldap mode, this account
must already exist and be provided by prompt or state file.

4. Creates DataRoot and ConfigRoot directories with correct permissions.

5. Creates subdirectories of the DataRoot and ConfigRoot directories with correct permissions.

6. Generates a random secret for authentication to local-only services, such as the
job_controller and watcher.

7. Prompts you with the minimum number of questions about your environment to create an
initial Messaging Server configuration with correct permissions.

8. Attempts to disable mail servers that come with the operating system, for example, Postfix
and Sendmail.

9. Prior to MS 8.0.2: runs the imsimta chbuild command to compile character set conversion
tables. Starting with MS 8.0.2 a compiled table is bundled in the install package and used
unless the customer overrides.

10.Creates convenience symlinks from the install directory to the DataRoot, ConfigRoot, and log
directories. Prior to MS 8.0.2, these symlinks were required for correct product functionality.

The following table describes the state file variables used by init-config. State file variables
starting with an "ic" prefix are ignored if unrecognized; other state file variables will generate a
warning if unrecognized.

Table 10.1 State File variables for initial configuration

Variable Name Related Configuration Description
Fqdn.TextField base.hostname Fully qualified local hostname. Mandatory.
msg.DataPath N/A Use a non-default DataRoot (not recommended).
iMS.UserId user in restricted.cnf Specifies the Unix user identity for server

processes. Mandatory.
iMS.GroupId N/A Specifies the primary Unix group of the Unix user if

user creation is needed.
UGDIR_URL multiple An ldap or ldaps URL for the LDAP server.

10–2 Messaging Server Reference

Description

UGDIR_BINDDN N/A Specifies the LDAP administrator user (required for
evaluation or ldapinit modes).

UGDIR_BINDPW N/A Specifies the LDAP administrator password
(required for evaluation or ldapinit modes). This
password is obfuscated using a ROT-13 variant.

Postmaster.TextField alias MTAs require a postmaster for error reports. This
option is used directly as an alais value by the mta
initial config recipe, or to initialize a Postmaster
group by evaluation or ldapinit modes.

admin.password base.proxyadminpass,
etc.

Password for the store administrative user
primarily used for proxy login between servers.
This password is base64-encoded for obfuscation.

EmailDomain.TextField base.defaultdomain Default email domain.
OrgName.TextField N/A Default organization DN, only used by evaluation

or ldapinit modes.
InternalIPlist INTERNAL_IP mapping

table
Specifies IP address information, in comma-
delimited form, for systems permitted to relay
mail without authentication. Note: when used in
initial config recipe mode, all statefile variables
have a length limit of 1024 characters. As a result,
additional statefile variables ic.iplist2,
ic.iplist3, ... can be used to provide additional
values for this setting.

ic.iplist2, ic.iplistn INTERNAL_IP mapping
table

In initial config recipe mode, this specifies IP
addresses for systems permitted to relay in
addition to the ones in the InternalIPlist. Each
of these values is limited to 1024 characters. These
are read in order, starting with InternalIPlist, then
ic.iplist2, ic.iplist3, ic.iplist4, ... stopping when no
value is found in the statefile. The values are sorted
before producing the INTERNAL_IP mapping
table.

XMLCONFIG N/A Starting in Messaging Server 8.1, this option is
ignored and Unified Configuration is always used.
For previous versions, when set to 1 this creates a
Unified Configuration and when set to 0, creates
a legacy configuration. The --xml and --noxml
command options override what is specified in the
statefile.

cassandra store.dbtype, isc.enable When set to 1, use a Cassandra message store
rather than a classic message store. New in
Messaging Server 8.0.2.

dssetup.ugsuffix base.ugldapbasedn Specifies the user/group suffix. Unless --noldap
is specified, the default comes from LDAP
cn=CommsServers,o=comms-config.

dssetup.dcsuffix base.dcroot Specifies the domain suffix. Unless --noldap
is specified, the default comes from LDAP
cn=CommsServers,o=comms-config.

init-config 10–3

Description

dssetup.schematype base.ldap_schemalevel Specifies the schema type. Unless --noldap
is specified, the default comes from LDAP
cn=CommsServers,o=comms-config.

admin.user store.admins,
base.proxyadmin

Administrative user for proxy authentication and
store administration. Defaults to "admin". New in
Messaging Server 8.0.2.3.

ugldap.hostlist base.ugldaphost LDAP server (a space-delimited failover server
is permitted). When present, this overrides
UGDIR_URL. New in Messaging Server 8.0.2.3.

ugldap.port base.ugldapport LDAP server default port. When present, this
overrides UGDIR_URL. New in Messaging Server
8.0.2.3.

ugldap.usessl base.ugldapusessl When to require SSL for LDAP. When present, this
overrides UGDIR_URL. New in Messaging Server
8.0.2.3.

ugldap.binddn base.ugldapbinddn LDAP administrative user for server operations.
This user should be able to read all user entries but
should have limited write access to the directory.
Such a user is created by evaluation or ldapinit
modes. New in Messaging Server 8.0.2.3.

ugldap.bindcred base.ugldapbindcred Password for server operations. This password is
base64-encoded for obfuscation. New in Messaging
Server 8.0.2.3.

ic_lmtp_ipmask_list LMTP_ACCESS
mapping

Used only by lmtpserver initial config recipe.
This specifies IP address information, in comma-
delimited form, for systems permitted to deliver
mail to the LMTP server without authentication.
The LMTP_ACCESS mapping table works the same
way as the INTERNAL_IP mapping table. New in
Messaging Server 8.1.

icmmpimap_enable mmp.enable, etc. Used only by proxy initial config recipe. When set
to 1, this enables the MMP and settings for an MMP
IMAP proxy. New in Messaging Server 8.1.

icmmppop_enable mmp.enable, etc. Used only by proxy initial config recipe. When set
to 1, this enables the MMP and settings for an MMP
POP proxy. New in Messaging Server 8.1.

icmshttpd_enable http.enable, etc. Used only by proxy initial config recipe. When set
to 1, this enables the Convergence mshttpd proxy
and settings for submission proxy via mshttpd.
New in Messaging Server 8.1.

icsubmithost alarm.noticehost,
http.smtphost

Required by the proxy initial config recipe.
This specifies the hostname of a submission
server used for mail from the alarm subsystem
and Convergence mshttpd (if enabled). New in
Messaging Server 8.1.

icsubmitport http.smtpport Used only by proxy initial config recipe. This
specifies the port of a submission server used
for mail from Convergence mshttpd (if enabled).

10–4 Messaging Server Reference

Switches

This defaults to 587; however use of 465 for SSL-
encrypted submission should be considered. New
in Messaging Server 8.1.

10.4 Switches
10.4.1 --cassandra

Configure use of the Cassandra Message Store rather than classic Message Store.

10.4.2 --dataroot=dataroot
Specifies an alternate location for the data root directory where read/write product
configuration and operational data will be stored. The default location for the data root
directory is /var/server-root where server-root is the installation directory. Use of a
non-default dataroot is not recommended.

10.4.3 --debug
Requests additional debugging information while generating initial configuration; this
primarily impacts LDAP operations.

10.4.4 --help, -?
Display command usage summary.

10.4.5 --ignoreSendmail
Ignore the presence of Sendmail or Postfix on the system. By default, the initial configuration
tool attempts to avoid port conflicts by disabling Sendmail or Postfix if those tools are enabled.

10.4.6 --ldapport=ldapPort
Use a non-default LDAP port to communicate with the LDAP server.

10.4.7 --ldif
Treat the LDAP directory as read-only and generate an LDIF file in a DataRoot/install/
configure.ldif file for any desired changes to the directory. The administrator must apply the
LDIF file to the directory after initial configuration but before starting the Messaging Server
product. This is helpful if the person doing the Messaging Server installation does not have
directory administrative rights.

10.4.8 --list-recipes
Displays the available initial configuration recipes and exits.

10.4.9 --noldap
Create a full evaluation installation without an LDAP server present. This is used in
combination with the --state=statefile and --ldif switches to configure Messaging Server

init-config 10–5

--novalidate

when the LDAP server is not available at the time initial configuration is generated. Normally
the answers provided to comms_dssetup questions are read from the LDAP server by this
tool; but when this switch is used, those values should be provided in the state file. Note
that it's possible to both configure and use a routing-only MTA without LDAP; use of the --
recipes switch (new in Messaging Server 8.1) is the recommended way of doing that.

10.4.10 --novalidate
Skip most validation of user input and state file variables. This may result in a non-functional
configuration. This is provided primarily as a mechanism to work around possible bugs in the
init-config tool's validation logic.

10.4.11 --noxml
Generate an initial legacy configuration rather than an initial Unified Configuration (XML
based). This option is not supported starting with Messaging Server 8.0.2, and no longer works
starting with Messaging Server 8.1.

10.4.12 --preserveCritical
When initializing the LDAP server for use by Messaging Server, this prevents certain critical
attributes from being overwritten with different values, even if new values are provided. See
the installation guide for a more in-depth discussion of critical LDAP attributes.

10.4.13 --quiet, -q
Suppress most non-error console output (a logfile is still created containing necessary
information to diagnose issues).

10.4.14 --recipes=recipe-list, -r recipe-list
Generate a minimal configuration for a particular deployment function as determined by a list
of initial configuration recipes. LDAP will not be involved unless ldapinit or useldap is
included in the recipe list.

10.4.15 --saveState=statefile
Specifies the location to save a state file. The default location is DataRoot/setup/saveState.

10.4.16 --ssl
Require SSL when communicating with the LDAP server. Any necessary SSL certificates and
configuration must be manually set up prior to using this option.

10.4.17 --state=statefile
Use a silent installation file and do not prompt the administrator for information.

10.4.18 --version, -V
Displays the product version and exits.

10–6 Messaging Server Reference

--xml

10.4.19 --xml
Force use of Unified Configuration, even if the statefile specifies use of legacy configuration.
Starting with Messaging Server 8.1, this is the default behavior so this switch has no effect.

10.5 Examples
To configure an evaluation installation of Messaging Server when an LDAP server is present
(interactive).

init-config

To initialize LDAP server and configure the first classic Message Store in a multi-system
deployment (interactive).

init-config -r ldapinit,store,lmtpserver

To configure an additional classic Message Store in a multi-system deployment (interactive).

init-config -r useldap,store,lmtpserver

To add an MTA with submission service to a Messaging Server multi-system deployment
(interactive).

init-config -r useldap,mta,submit

To add an MMP and/or mshttpd service to a Messaging Server multi-system deployment
(interactive).

init-config -r useldap,proxy

To configurate a routing-only MTA without LDAP (interactive).

init-config -r mta

To configurate using a state file (non-interactive).

init-config --state=/path/to/statefile

To list available initial configuration recipes.

init-config --list-recipes
Available Initial Configuration Recipes:
 ldapinit Initialize LDAP directory for use by Messaging Server
 lmtpserver LMTP server (used by initial configuration)
 mta Configure an MTA (used by initial configuration)
 none Minimal configuration with external services disabled

init-config 10–7

Examples

 proxy Proxy configuration (MMP, Convergence mshttpd)
 store Configure a message store (used by initial configuration)
 submit Add submission service to an MTA (initial configuration)
 useldap Enable support for LDAP users (doesn't initialize LDAP)

10–8 Messaging Server Reference

Chapter 11 msconfig utility
11.1 Syntax .. 11–1
11.2 Parameters ... 11–1

11.2.1 Switches .. 11–1
11.2.2 Commands .. 11–3

11.3 Description ... 11–4
11.4 Prompts ... 11–4
11.5 Return status .. 11–5
11.6 Some Useful Commands ... 11–5

11.6.1 Help Command ... 11–5
11.6.2 Show Command ... 11–6
11.6.3 Set Command .. 11–6
11.6.4 Edit Command ... 11–6
11.6.5 List and Compare Configurations Commands 11–7

11.1 Syntax

 msconfig [switches] [command] [\command]...

11.2 Parameters
The msconfig utility may be used interactively by invoking it without any commands:

 msconfig

or noninteractively by specifying one or more commands as an argument, e.g.,

 msconfig SET <option> <value>

11.2.1 Switches
The msconfig utility accepts a number of switches on the invocation line.

11.2.1.1 -directory=config-directory

Specifies an alternate location for Messaging Server configuration files. msconfig will read and
write config.xml and xpass.xml from this alternate location. The directory where the files are
located must be given as an argument.

11.2.1.2 -help

Prints basic information about using msconfig and enters the msconfig help system. msconfig
exits after help system access is terminated.

msconfig 11–1

Switches

11.2.1.3 -input=input-file

If specified, msconfig will read commands from a file instead of from the terminal. The input
file name must be given as an argument. If -input is specified no msconfig commands can be
given on the invocation line.

11.2.1.4 -multiple

If specified, the -multiple switch allows multipe commands to be specified on the command
line separated by backslashes "\".

11.2.1.5 -novalidate

Read the configuration but do not validate it. Warning: This should only be used in extreme
situations where a broken configuration needs to be analyzed. Such a configuration should
NEVER be used in production.

11.2.1.6 -output=output-file

If specified, msconfig will direct its output to the specified file.

11.2.1.7 -page

Controls whether or not msconfig help system output stops and prompts after each page. -
page is the default; use -nopage to disable output paging.

11.2.1.8 -prompt

Controls whether or not the help system prompts for additional topics after a topic has been
output. -prompt is the default; use -noprompt to turn off help system prompting.

11.2.1.9 -readonly

Open configuration in readonly mode and without locking. This is useful when performing
display operations that should not fail when someone is editing the configuration.

11.2.1.10 -remark=remark-string

Specifies a remark to attach to configuration as it is written. The remark string must be given
as an argument.

The primary use of -remark is to specify a remark when a command is given on the invocation
line, e.g.,

 msconfig -remark "Enable enqueue debugging" set mm_debug 5

11.2.1.11 -require=conditions

The -require switch specifies a list of conditions that must be met for "successful" operation.
msconfig will exit with a nonzero status if these conditions are not met. The available
conditions are:

11–2 Messaging Server Reference

Commands

• write - One or more configuration writes must have been performed.

11.2.2 Commands
List of msconfig utility commands:

11.2.2.1 DEFAULT

Reset the location where options are set to default location.

11.2.2.2 DEPLOYMAP operation

Manipulate deployment maps. The supported operations are ADD, DELETE, DUMP, LIST,
CREATE, RENAME, SET, READ, and WRITE.

11.2.2.3 DIRECTORY [filter]

Displays the recipes whose names match the specified <filter>.

11.2.2.4 DIFFERENCES [m [n]]

Compare configurations.

11.2.2.5 EDIT object

Places the specified object in a file and invokes the editor to enable editing.

11.2.2.6 EXECUTE string

Execute the specified string as if it were a one-line recipe. The final value computed by the
recipe is printed at the end of execution.

11.2.2.7 EXIT

Exit msconfig utility with a prompt to write if configuration was modified.

11.2.2.8 HELP [topic[subtopic...]]

Display help.

11.2.2.9 HISTORY

Display previous saved configurations.

11.2.2.10 INSTANCE

Store options in instance.

11.2.2.11 IMPORT config

Read configuration from alternate file(s).

msconfig 11–3

Description

11.2.2.12 LOG

Display previous saved configurations. Synonym for HISTORY

11.2.2.13 QUIT

Exit msconfig utility discarding changes.

11.2.2.14 REVERT [n]

Discard modifications and reload configuration.

11.2.2.15 ROLE

Store options in role.

11.2.2.16 RUN recipe [arg1 [arg2....]]

Run the specified recipe file with the specified arguments. If no file path is given as part of
"recipe" the command will look for the file in <configroot>/recipes, and if not found there, it
will look in <serverroot>/lib/recipes.

The arguments specified in the run command can be accessed in the recipe with the argc and
argv functions.

11.2.2.17 SET option [value1 [value2....]]

Set option to the specified value(s).

11.2.2.18 SHOW option [namefilter [valuefilter]]

Show value of option.

11.2.2.19 UNSET option

Delete option setting.

11.2.2.20 WRITE

Write out configuration changes.

11.3 Description
The msconfig utility is used to examine and modify Messaging Server configuration. See
Configuration syntax for more information on the Messaging Server configuration.

The utility performs type checking on configuration settings it makes. See Option value syntax
for further details.

11.4 Prompts
When run interactively, msconfig's default prompt is:

11–4 Messaging Server Reference

Return status

 msconfig>

When modifications have been made to the configuration the prompt will change to:

 msconfig#

The DEFAULT, INSTANCE, and ROLE commands also affect the prompt:

• Default mode:

 msconfig>

• Instance mode:

 msconfig.instance>

• Role mode:

 msconfig.role>

11.5 Return status
msconfig returns a status of 0 if the last command executed successfully, 1 if the last
command generated an error, and 2 if the last command could not be performed because the
configuration was locked.

msconfig will also return a status of 1 if the conditions specified as arguments to the -require
switch are not met.

11.6 Some Useful Commands

11.6.1 Help Command
The msconfig utility is a comprehensive help utility and its help command can be used to get
help not only on the utility and its commands but also on various topics pertaining to the
Messaging Server.

 msconfig help

This lists all the Topics on which help is available. Choose a specific Topic which gives some
information and then one can enter additional sub-topics for more in depth information.

Help on specific msconfig commands can be accessed in interactive mode by entering:

 help commands <- List of available commands
 help commands <command> <- Information about command <command>

msconfig 11–5

Show Command

Help on the options msconfig can manipulate can be accessed by entering:

 help option <option> <- Information about option <option>

Note that options in the help system should be specified without any associated scope.

Use the -search switch along with list of strings to display ALL articles that contain the
specified strings.

help -search string1 [string2...]

Use the -keyword switch along with list of keywords to display ALL articles marked with any
of the specified keywords.

To disable the prompts when additional information is available, use the -noprompt switch.

Help output by default is paged. Use <space> to display additional pages. <return>
displays an additional line. a displays remaining information without paging and q stops the
output. Use -nopage switch to disable paging.

11.6.2 Show Command
Use the msconfig show command to display current settings.

For example, to show all currently enabled options:

 msconfig show *enable

11.6.3 Set Command
Use the msconfig set option [value1 [value2]] command to set option values.

Use the -prompt switch for entering passwords since it causes the utility to prompt for the value
without echoing it.

Values must be quoted if they contain spaces. In non-interactive mode, each special
character must be prefixed with the escape character "\". For example, to set the value of the
auth.searchfilter option to (|(uid=%U)(mail=%o)):

 msconfig set auth.searchfilter \"\(\|\(uid\=\%U\)\(mail\=\%o\)\)\"

11.6.4 Edit Command
Use the msconfig editobject command to edit the specified object in a file in an appropriate
textual form. The msconfig edit command invokes the editor specified by the EDITOR shell
variable. You can then make the change, save it, exit, and your configuration is updated.

For example, suppose you want to set the master_debug option on the tcp_local channel:

msconfig set channel:tcp_local.master_debug

11–6 Messaging Server Reference

List and Compare Configurations
Commands

Even if you did not know the preceding command, you could still use the msconfig command
to perform this operation by invoking it in edit mode:

msconfig edit channels

You can also edit a single channel block by itself by running the following command:

msconfig edit channel tcp_local

Channel-specific option files are mapped into the Unified Configuration as sub-elements of
a general "options" channel option. These options appear at the bottom of each channel block
when you run edit channels. The following example illustrates this point:

tcp_local identnonenumeric inner loopcheck maysaslserver maytlsserver mx \
 pool SMTP_POOL remotehost saslswitchchannel tcp_auth smtp sourcespamfilter1 \
 switchchannel
tcp_local-daemon
==
trace_level=2

The msconfig command provides the same editing capability for MTA rewrite rules (edit
rewrites), mappings (edit mappings), MTA conversion channel control entries (edit conversions),
Sieve filters (edit filter), options (edit option) and MTA aliases (edit aliases)

All objects placed in the file for editing are deleted prior to reloading the file's contents. Use -
noreplace to treat the resulting file contents as configuration additions.

All configuration changes are normalized and validated by default. Use -novalidate to
disable validation.

11.6.5 List and Compare Configurations Commands
The repository of previous configurations, known as the graveyard, is stored in the ConfigRoot/
old-configs/ directory. The move from current configuration to the graveyard is performed
when a new configuration is written to disk. The graveyard maintains the most recent 100
configurations. With the graveyard, you can restore an old configuration by reverting to
a previous configuration. Furthermore, you can compare differences between any two
configurations, for example, between the active configuration and a previous configuration, or
two old configurations.

 msconfig history <- List of configurations in the graveyard

 msconfig differences <- Compare configurations

msconfig 11–7

11–8

Chapter 12 refresh utility
12.1 Syntax .. 12–1

12.1.1 Restrictions .. 12–1
12.2 Parameters ... 12–1

12.2.1 component ... 12–1
12.3 Description ... 12–1
12.4 Example ... 12–1

The refresh utility refreshes the configuration of running Messaging Server components.

12.1 Syntax

 refresh [components ...]

12.1.1 Restrictions
Must have superuser privileges or use the Solaris RBAC feature in order to use this utility.

12.2 Parameters

12.2.1 component
One or more component parameters may be supplied to refresh specific running components.
See start-msg utility for a list of the valid values for component.

12.3 Description
This triggers a configuration refresh of one or more running Messaging Server processes. The
actual configuration refresh by each process happens asynchronously.

Note: The MTA's design makes it easy to restart a dispatcher server process without service
impact. In general, therefore, MTA options are not refreshable (with mappings being a notable
exception). For example, imsimta restart smtp causes the dispatcher to start new SMTP
server processes for future incoming connections, reading a new configuration. This happens
without service interruption. The Message Store, ENS, and MMP design makes restarting a
process a service outage, so it is important for refresh logic to be built for most options in these
servers. Most of these options are therefore refreshable.

Having msconfig print a restart required warning would generate a lot of pointless warnings
for MTA options which is undesirable behavior for Unified Configuration. Because of this, the
msconfig utility does not issue a warning when an option that requires a restart is modified.
The legacy configutil tool does issue such a warning.

12.4 Example
The following command refreshes the IMAP server:

refresh 12–1

Example

refresh imap

12–2 Messaging Server Reference

Chapter 13 start-msg utility
13.1 Syntax .. 13–1

13.1.1 Restrictions .. 13–1
13.2 Parameters ... 13–1

13.2.1 ha ... 13–1
13.2.2 component ... 13–1

13.3 Description ... 13–2
13.4 Switches ... 13–2

13.4.1 -l .. 13–2
13.4.2 -L .. 13–2
13.4.3 -m .. 13–2

13.5 Examples .. 13–3

The start-msg utility starts enabled Messaging Server components.

13.1 Syntax

 start-msg [-m] [-l] [-L] [components ...]

13.1.1 Restrictions
Must have superuser privileges or use the Solaris RBAC feature in order to use this utility.
Only one start-msg or stop-msg process may run at a time on the system.

13.2 Parameters

13.2.1 ha
The ha parameter starts the server in high-availability mode and is normally only used by a
cluster agent control script.

13.2.2 component
One or more component parameters may be supplied to start a specific enabled component.
Valid values for component include:

• watcher - watches for process failure and triggers restart of appropriate components.

• ens - event notification server (enpd); required for IMAP IDLE.

• metermaid - legacy RAM-based storage facility similar to memcache or Redis; see
MeterMaid documentation.

• store - stored message store maintenance process.

• purge - impurge message store daemon.

start-msg 13–1

Description

• imap - IMAP server.

• pop - POP3 server.

• isc - Indexed search converter service (required by Elasticsearch feature).

• cert - Certificate validation daemon used by Convergence S/MIME feature.

• http - Convergence mshttpd proxy.

• sched - Scheduler daemon for period tasks.

• deploymap - feature in development.

• dispatcher - Multi-process service controller used by the MTA and LMTP server (starts
other processes).

• job_controller - MTA's outbound delivery controller (starts other processes).

• snmp - SNMP monitoring sub-agent.

• sms - SMS gateway service.

• mmp - Messaging Multiplexor (POP and IMAP proxy).

• rollovermanager - Time-based log-file rollover service.

• mta - an alias for the dispatcher and job_controller.

13.3 Description
This starts one or more enabled Messaging Server components. Which components are started
can be controlled by using the appropriate enable option, e.g., store.enable to enable
the store, or the appropriate enablesslport option the appropriate component's scope., e.g.,
imap.enablesslport for IMAP's SSL port. If a specified component is already running, the
component will continue running unchanged. If a specified component is not enabled, an error
will be displayed for that component.

13.4 Switches

13.4.1 -l
List active servers and exit.

13.4.2 -L
List enabled servers and exit.

13.4.3 -m
Start the message stored process as the preferred replication master when using classic
Message Store with automatic failover and DB replication enabled. This should be used once
when setting up a replication affinity group.

13–2 Messaging Server Reference

Examples

13.5 Examples
The following command starts all enabled Messaging Server components:

start-msg

The following command starts the imap server process(es):

start-msg imap

start-msg 13–3

13–4

Chapter 14 stop-msg utility
14.1 Syntax .. 14–1

14.1.1 Restrictions .. 14–1
14.2 Parameters ... 14–1

14.2.1 ha ... 14–1
14.2.2 component ... 14–1

14.3 Description ... 14–1
14.4 Switches ... 14–1

14.4.1 -f ... 14–1
14.5 Examples .. 14–2

The stop-msg utility stops running Messaging Server components.

14.1 Syntax

 stop-msg [-f] [components ...]

14.1.1 Restrictions
Must have superuser privileges or use the Solaris RBAC feature in order to use this utility.
Only one start-msg or stop-msg process may run at a time on the system.

14.2 Parameters

14.2.1 ha
The ha parameter stops the server in high-availability mode and is normally only used by a
cluster agent control script.

14.2.2 component
One or more component parameters may be supplied to stop a specific running component.
See start-msg utility for a list of the valid values for component.

14.3 Description
This stops one or more running Messaging Server components. Stopping components
generally results in a service outage for that component. If the goal is to activate changes in
refreshable product options, see the refresh utility and the imsimta reload utility.

14.4 Switches

14.4.1 -f
Force stop using SIGKILL (may result in metadata corruption in the classic Message Store).

stop-msg 14–1

Examples

14.5 Examples
The following command stops all running Messaging Server components:

stop-msg

The following command stops the impurge server process:

start-msg purge

14–2 Messaging Server Reference

Part III Infrastructure
Core infrastructure of Message Server includes the Scheduler and Watcher, with the Watcher's associated
msprobe facility and Alarm facility, and the Deployment Map facility.

Fundamentals of configuration affecting Messaging Server as a whole, or at least many components, tend
to be set as Base options, or for authentication-specific settings, as Auth options. (A few special, security-
related options establishing the main Messaging Server user id, etc., are not set as config.xml options,
but instead are stored in the restricted.cnf file.)

Chapter 15 restricted.cnf file
As of MS 7.0.5, certain special, security-related "options" -- defining fundamental Messaging
Server Unix accounts -- are stored in the restricted.cnf file (for both Unified
Configuration and legacy configuration). (Note that these few "options" are not settable using
msconfig; instead edit the restricted.cnf file.) These "options" include:

1. user, replacing as of MS 7.0.5 the former imta_user MTA Tailor option (specifying
the UNIX user id of the MTA user) and the former serveruid Message Store option
(specifying the UNIX user id of the Message Store user).

2. group, replacing as of MS 7.0.5 the former imta_world_group MTA Tailor option
(specifying the UNIX group id of the MTA user). Note that the servergid Message
Store option (specifying the UNIX group id of the Message Store user) was deleted in MS
7.0.4; the Message Store now always uses the primary group of the user specified via the
serveruid Message Store option.

3. pipeuser, as of MS 8.0 preferred to the deprecated use of the user channel option on the
pipe channel (specifying the username under which the channel runs).

4. allow_pipe_setuid, new in MS 8.0; when set to 0 (the default), the pipe channel is only
allowed to run as the specified pipeuser; if set to 1, then the pipe channel is allowed to
run as other users.

5. noprivuser, replacing as of MS 7.0.5 the former imta_user_username MTA Tailor
option (specifying the UNIX user id for certain untrusted operations such as MTA mapping
table sequence number file access, or untrusted pipe channel operations).

restricted.cnf file 15–1

15–2

Chapter 16 Base options
16.1 accounturl Option ... 16–3
16.2 authcachesize Option ... 16–3
16.3 authcachettl Option Under base ... 16–3
16.4 bgmax Option ... 16–3
16.5 bgpenalty Option ... 16–3
16.6 bgmaxbadness Option ... 16–4
16.7 bgdecay Option ... 16–4
16.8 bglinear Option ... 16–4
16.9 bgexcluded Option ... 16–4
16.10 dblockcount Option ... 16–4
16.11 dbtxnsync Option ... 16–4
16.12 dcroot Option ... 16–4
16.13 debugkeys Option Under base ... 16–5
16.14 defaultdomain Option Under base ... 16–5
16.15 dnsresolveclient Option ... 16–5
16.16 enablelastaccess Option ... 16–5
16.17 filterurl Option ... 16–5
16.18 folderurl Option ... 16–6
16.19 hostname Option Under base ... 16–6
16.20 installedlanguages Option ... 16–6
16.21 ipv6in Option ... 16–6
16.22 ipv6out Option ... 16–6
16.23 ipv6usegethostbyname Option ... 16–6
16.24 ipv6sortorder Option ... 16–6
16.25 ldap_schemalevel option .. 16–7
16.26 ldap_domain_timeout MTA (and base) option ... 16–7
16.27 ldap_domain_known_attributes Option ... 16–7
16.28 ldap_domain_attr_basedn MTA (and base) option 16–8
16.29 ldap_domain_attr_alias MTA (and base) option 16–8
16.30 ldap_domain_attr_uid_separator MTA (and base) option 16–8
16.31 ldap_domain_attr_status MTA (and base) option 16–8
16.32 ldap_domain_attr_mail_status MTA (and base) option 16–9
16.33 ldap_basedn_filter_schema1 and ldap_basedn_filter_schema2 MTA
(and base) options ... 16–9
16.34 ldap_domain_filter_schema* MTA (and base) options 16–10
16.35 ldap_host_alias_list Option Under base ... 16–10
16.36 ldapconnecttimeout Option ... 16–10
16.37 ldapmodifytimeout Option ... 16–10
16.38 ldappoolrefreshinterval Option ... 16–10
16.39 ldaprequiretls Option ... 16–11
16.40 ldapsearchtimeout Option ... 16–11
16.41 ldaptrace Option ... 16–11
16.42 listenaddr Option Under base ... 16–11
16.43 listurl Option ... 16–11
16.44 lockdir Option ... 16–11
16.45 loginseparator Option ... 16–12
16.46 obsoleteimap Option ... 16–12
16.47 preferpoll Option ... 16–12
16.48 projectid Option Under base ... 16–12
16.49 properties Option ... 16–12

Base options 16–1

16.50 proxyadmin Option ... 16–12
16.51 proxyadminpass Option ... 16–12
16.52 proxyimapport Option ... 16–13
16.53 proxyimapssl Option ... 16–13
16.54 proxyserverlist Option ... 16–13
16.55 proxytrustmailhost Option ... 16–13
16.56 pwchangeurl Option ... 16–13
16.57 rbac Option ... 16–13
16.58 rfc822headerallow8bit Option ... 16–13
16.59 secret Option Under base ... 16–14
16.60 serveruid Option ... 16–14
16.61 sitelanguage Option ... 16–14
16.62 softtokendir Option ... 16–14
16.63 ssladjustciphersuites Option ... 16–14
16.64 sslcachedir Option ... 16–18
16.65 ssldbpath Option ... 16–19
16.66 ssldblegacy Option ... 16–19
16.67 ssldbprefix Option ... 16–19
16.68 sslcompress Option ... 16–19
16.69 sslnicknames Option Under base ... 16–19
16.70 sslpkix Option ... 16–20
16.71 sslrequiresafenegotiate Option ... 16–20
16.72 sslrenegotiate Option ... 16–20
16.73 sslconnlimit Option ... 16–20
16.74 stressperiod Option ... 16–20
16.75 stressfdwait Option ... 16–20
16.76 supportedlanguages Option ... 16–21
16.77 threadholddelay Option ... 16–21
16.78 tlsminversion Option ... 16–21

16.78.1 Use with base ... 16–21
16.78.2 Use with channel .. 16–21

16.79 tlsv12enable Option ... 16–21
16.80 tlsv13enable Option ... 16–21
16.81 tmpdir Option Under base ... 16–22
16.82 ugldapbasedn Option ... 16–22
16.83 ugldapbindcred Option ... 16–22
16.84 ugldapbinddn Option ... 16–22
16.85 ugldaphost Option ... 16–22
16.86 ugldapport Option ... 16–22
16.87 ugldapusessl Option ... 16–23
16.88 welcomemsg Option Under base ... 16–23
16.89 logfile options ... 16–23

16.89.1 expirytime Option .. 16–23
16.89.2 flushinterval Option .. 16–23
16.89.3 filemode Option .. 16–23
16.89.4 logmillisecond Option ... 16–24
16.89.5 loglevel Option Under logfile .. 16–24
16.89.6 maxlogfiles Option .. 16–24
16.89.7 maxlogfilesize Option ... 16–24
16.89.8 maxlogsize Option .. 16–25
16.89.9 rollovertime Option .. 16–25
16.89.10 rolloverpolicy Option ... 16–25
16.89.11 syslogfacility Option ... 16–25

16–2 Messaging Server Reference

accounturl Option

16.90 Base autorestart options .. 16–26
16.90.1 enable Option Under autorestart ... 16–26
16.90.2 timeout Option Under autorestart ... 16–26

16.91 Base certmap options .. 16–26
16.91.1 dncomps Option .. 16–26
16.91.2 filtercomps Option .. 16–26
16.91.3 verifycert Option .. 16–27
16.91.4 cmapldapattr Option .. 16–27

16.92 Base domainmap options ... 16–27
16.92.1 debug Option Under domainmap ... 16–27

Options set at base level tend to be those that either affect overall Messaging Server operation,
or else that set a default which may then be overridden for particular services.

Underneath base are also the groups of options domainmap (which only has the option
debug), as well as autorestart options, certmap options.

See also the umask Message Store option, which affects more than only Message Store files.

16.1 accounturl Option
The accounturl base option specifies the location of the server administration resource for
end users (obsolete).

16.2 authcachesize Option
The authcachesize base option specifies the maximum number of concurrent users/entries
in the user/authentication cache.

The Messaging Server can cache the results of LDAP user lookups and successful
authentication (e.g., when logging into IMAP, POP or SMTP). The authcachesize option
defines the number of authentication user cache entries. A higher setting for authcachesize
improves performance while using more memory. A lower setting reduces performance and
reduces the amount of memory used.

16.3 authcachettl Option Under base
The authcachettl base option specifies the length of time in seconds an authentication
cache entry will remain valid. Set to 0 to disable authentication caching.

Note that setting ldapcachettl smaller than authcachettl causes the entire user entry to
expire, thereby also expiring the user authentication information in the user entry.

16.4 bgmax Option
The bgmax option (available under base, imap, pop, mmp, imapproxy, and popproxy)
specifies the maximum number of IP addresses associated with authentication failures to keep
track of simultaneously. See bgpenalty for more information.

16.5 bgpenalty Option

Base options 16–3

bgmaxbadness Option

When an authentication failure occurs from a particular client IP address, subsequent
authentication attempts from that IP address are treated as "BadGuys" and are delayed. If an
authentication failure is followed by a successful authentication, the successful authentication
is delayed, but the IP address ceases to be treated as a "BadGuy" for subsequent attempts.

The bgpenalty option (available under base, imap, pop, mmp, imapproxy, and popproxy)
specifies the length of time in seconds added to the authentication delay after each failed
authentication.

16.6 bgmaxbadness Option
The bgmaxbadness option (available under base, imap, pop, mmp, imapproxy, and
popproxy) specifies the maximum length of time in seconds for the authentication delay
which occurs after a series of failed authentication attempts. See bgpenalty for more
information.

16.7 bgdecay Option
The bgdecay option (available under base, imap, pop, mmp, imapproxy, and popproxy)
represents the time in seconds it takes for a BadGuy's penalty to be forgiven. See bgpenalty
for more information.

16.8 bglinear Option
The bglinear option (available under base, imap, pop, mmp, imapproxy, and popproxy)
defines whether a BadGuy's penalty decays linearly over time (1), or is a step function on
expiration (0). See bgpenalty for more information.

16.9 bgexcluded Option
The bgexcluded option (available under base, imap, pop, mmp, imapproxy, and
popproxy) represents a list of excluded IP/mask pairs, or the name of a file to read for these
pairs. These client addresses will not be penalized for authentication failure (there is no default
value).

16.10 dblockcount Option
The dblockcount base option sets the maximum number of BDB locks. The minimum
allowed value is 5000; the maximum is 500000.

16.11 dbtxnsync Option
The dbtxnsync base option sets the database transaction synchronization level. A value of 0
or 1 selects none while a value of 2 requests that all writes be synchronously flushed to the log
on every transaction commit.

16.12 dcroot Option
The dcroot base option specifies the root of the DC tree in Directory Server. Normally initial
configuration sets this option to an appropriate value.

16–4 Messaging Server Reference

debugkeys Option Under base

The MTA has a "twin" option, ldap_domain_root, which may be set to specify an MTA-
specific override for this option.

16.13 debugkeys Option Under base
The debugkeys base option specifies a space-separated list of keywords used to enable
various optional debugging facilities; see Keywords That May Be Included in debugkeys
Option Value.

Note that the SMTP server's AUTH_DEBUG TCP/IP-channel-specific option can override
debugkeys for SMTP server authentication purposes.

For Message Store and other non-MTA processes, setting a relevant debugkey will enable
NOTICE-level logging in the logfile for that process. The MTA has a different logging model
and requires two additional settings to see debugging associated with a debugkey. First, MTA
debug log files must be enabled (via master_debug, slave_debug, or the equivalent finer-
grained mechanism). Second, it's necessary to set mta.mm_debug to a value of at least 3 for
the DKIM-related debugkeys or to set mta.os_debug to 1 for the LDAP and authentication-
related debugkeys.

16.14 defaultdomain Option Under base
The defaultdomain base option specifies the Messaging Server default domain. This is used
to determine whether a domain is the default domain or a hosted domain.

Normally the defaultdomain base option is set to an appropriate value during initial
configuration.

The MTA has a "twin" option, ldap_default_domain, that can override
the defaultdomain base option for MTA purposes. See the description of
ldap_default_domain for details on how the MTA uses the defaultdomain value (if
ldap_default_domain is not set).

16.15 dnsresolveclient Option
The dnsresolveclient base option forces servers -- the IMAP server, POP server, and
MSHTTP server -- to perform a DNS reverse lookup on client connections to attempt to
determine a corresponding host name. Note that if TCP wrappers are enabled -- see the
tcpaccess server option -- then such DNS reverse lookups will be performed regardless of
the setting of dnsresolveclient.

For the MTA's SMTP server and DNS reverse lookups, see the ident* channel options.

16.16 enablelastaccess Option
The enablelastaccess base option enables last access time tracking. Access time data is
used by imsconnutil and mboxutil -o -t.

16.17 filterurl Option
The filterurl base option specifies the URL for incoming mail (server side) filter (obsolete).

Base options 16–5

folderurl Option

16.18 folderurl Option
The folderurl base option specifies the URL for personal folder management (obsolete).

16.19 hostname Option Under base
The hostname base option specifies the fully qualified DNS hostname of this mail server.
Normally this option is set to an appropriate value during initial configuration.

The MTA has a "twin" option, ldap_local_host, that may be set to override this base option
for MTA-specific purposes.

16.20 installedlanguages Option
The installedlanguages base option takes a comma separated list of language codes:
alphabetic characters only, comma separated list (e.g. "en, fr"). This is identical to RFC 2068's
Accept-Language: field definition, but with no q-value.

16.21 ipv6in Option
When set to a value of 1, the ipv6in option instructs Messaging Server to accept inbound
IPv6 connections for all services provided that the host has at least one network interface
configured for IPv6. Services specifically configured to listen on only IPv4 interfaces cannot
also accept inbound IPv6 connections. When set to a value of 0, inbound IPv6 connections are
not allowed.

Inbound IPv4 connections will always be permitted.

16.22 ipv6out Option
When set to a value of 1, the ipv6out option instructs Messaging Server to attempt outbound
IPv6 connections for all services provided that the host has at least one network interface
configured for IPv6. Services specifically configured to bind their source IP address only
to IPv4 interfaces cannot attempt IPv6 outbound connections. For example, an SMTP client
bound to a specific IPv4 interface cannot then establish an outbound IPv6 connection. When
set to a value of 0, outbound IPv6 connections are not allowed.

When set to a value of 1, outbound services will attempt DNS lookups of both A and AAAA
records. Connection attempts will then be made in the order dictated by the ipv6sortorder
option. Note the DNS lookups will always request A records. This option only controls
whether or not AAAA records are also requested.

16.23 ipv6usegethostbyname Option
By setting the ipv6usegethostbyname option to the value "1", Messaging Server will use
gethostbyname() for all host name to IP address lookups. This has the immediate effect of
forcing the use of IPv4 for all outbound connections and host name to IP address lookups.
Usage of this option is restricted.

16.24 ipv6sortorder Option

16–6 Messaging Server Reference

https://tools.ietf.org/html/rfc2068

ldap_schemalevel option

The ipv6sortorder option controls the order in which IPv4 (A) and IPv6 (AAAA) DNS
address records are used when attempting connections to other named systems.

Table 16.1 ipv6sortorder Option Values

Value Behavior
default Process A and AAAA records in the order returned by

the operating system.
a Process only A records; ignore AAAA records.
aaaa Process only AAAA records; ignore A records.
a-aaaa Process A records, then AAAA records.
aaaa-a Process AAAA records, then A records

16.25 LDAP bind and connect options:
ldap_schemalevel (1 or 2)

The ldap_schemalevel base option specifies the schema level in use. This option is also
available at MTA level. Supported values are 1 or 2. If this option is not set, schema level 1 is
assumed to be in use.

16.26 LDAP lookup cache MTA options:
ldap_domain_timeout (integer)

The ldap_domain_timeout option (available at both base and MTA levels) controls the
retention time (in seconds) for entries in the domain map cache. The default is -900; as the
value used is the absolute value of the ldap_domain_timeout setting, this corresponds to
15 minutes. If setting ldap_domain_timeout explicitly, set it to a positive value so that the
MTA can detect that it has indeed been intentionally set.

16.27 ldap_domain_known_attributes
Option

The ldap_domain_known_attributes MTA (and base) option controls whether the MTA's
domain lookup LDAP queries request all domain attributes, vs. building and requesting a list
of "known" domain attributes. The default of 0 means to request all domain attributes; setting
this option to 1 causes the MTA to request its hard-coded list of "known" domain attributes.

It has been claimed that the ldap_domain_known_attributes setting can have a
performance impact in some LDAP server environments.

The "known" attribute list consists of all attributes specified in the various
ldap_domain_attr_* and similar MTA options, as well as any attributes specified in any
LDAP domain map attribute substitutions. This should cover all the cases where the MTA
requests domain attributes via its internal domain lookup facilities. However, in the unlikely
event that other calls are made to the domain map facility, a site that has added additional

Base options 16–7

ldap_domain_attr_basedn
MTA (and base) option

domain attributes may be forced to use the default setting of 0 so that LDAP domain queries
will return those additional, custom LDAP attribute values.

16.28 Direct LDAP attribute name MTA options:
ldap_domain_attr_basedn (LDAP attribute
name)

The ldap_domain_attr_basedn MTA (and base) option names the domain LDAP attribute,
by default inetDomainBaseDn, used to store the base DN for the domain's users and groups.

The presence in a domain entry of the attribute named by ldap_domain_attr_basedn is
not always obligatory with Schema 2, as with Schema 2 in the domain attribute's absence user
and group entries will be assumed to reside directly under the domain entry.

Note that the mapping table domain map attribute substitution $}domain,_base_dn_{
returns either the value of the LDAP attribute named by the ldap_domain_attr_basedn
MTA option (so normally the value of the inetDomainBaseDN LDAP attribute), or if no
such LDAP attribute is set as can be the case in Schema 2 mode, returns a constructed DN
corresponding to the DN for the domain entry.

16.29 Direct LDAP attribute name MTA options:
ldap_domain_attr_alias (LDAP attribute
name)

The ldap_domain_attr_alias MTA (and base) option specifies the name of an LDAP
attribute (by default aliasedObjectName) used to identify domain alias entries in the
directory. The attribute is present only on a domain alias entry, not on the canonical domain
entry; it contains the DN of the entry for which it is an alias. It is used only in Schema 1 or in
Schema 2 compatibility mode (with a DC Tree), not in Schema 2 native mode (no DC Tree).

16.30 Direct LDAP attribute name MTA options:
ldap_domain_attr_uid_separator (LDAP
attribute name)

The ldap_domain_attr_uid_separator MTA (and base) option names the domain LDAP
attribute, by default domainUidSeparator, used to store what the separator character is
between UIDs and domains for addresses in this domain. This option is used both by the MTA,
and by the authentication code; the authentication code looks first for the option to be set at
base level, but if not set there, the authentication code will use the MTA level option setting.

16.31 Direct LDAP attribute name MTA options:
ldap_domain_attr_status (LDAP attribute
name)

16–8 Messaging Server Reference

ldap_domain_attr_mail_status
MTA (and base) option

The ldap_domain_attr_status MTA (and base) option names the domain LDAP
attribute, by default inetDomainStatus, whose value specifies the current status of
the domain. (The analogous user level attribute is inetUserStatus or whatever user
LDAP attribute is named by the ldap_user_status MTA option; an analogous group
attribute can be defined via the ldap_group_status MTA option. Compare also with
the ldap_domain_attr_mail_status MTA option naming the domain LDAP attribute
specifying the current mail status of the domain.) Valid values for the attribute named by
the ldap_domain_attr_status option are active, inactive, or deleted. If no such
attribute is present, or is present but with no value, a value of active is assumed.

16.32 Direct LDAP attribute name MTA options:
ldap_domain_attr_mail_status (LDAP
attribute name)

The ldap_domain_attr_mail_status MTA (and base) option names the domain
LDAP attribute, by default mailDomainStatus, whose value specifies the current
mail status of the domain. (The analogous user level attribute is mailUserStatus or
whatever user LDAP attribute is named by the ldap_user_mail_status MTA option;
the analogous group attribute is inetMailGroupStatus or whatever group LDAP
attribute is named by the ldap_group_mail_status MTA option. Compare also with the
ldap_domain_attr_status MTA option naming the domain LDAP attribute specifying
the current general status of the domain.) Valid values for the attribute named by the
ldap_domain_attr_mail_status option are: active, inactive, deleted, hold,
disabled, overquota, and (new in MS 6.0) unused and removed and (new in 8.0)
nonlocal; other values are interpreted as inactive. Note that the imquotacheck utility is
what updates mailDomainStatus to set it to overquota.

(Note that the acceptalladdresses channel option, if used, modifies the timing and form
of the rejection.)

16.33 Direct LDAP schema MTA options:
ldap_basedn_filter_schema1 (LDAP URL
filter), ldap_basedn_filter_schema2 (LDAP
URL filter elements)

(New in MS 6.3-0.15.) The ldap_basedn_filter_schema1 MTA option specifies
the filter used to identify schema 1 domains when performing baseDN searches.
The ldap_basedn_filter_schema2 MTA option specifies additional filter
elements used to identify schema 2 domains when performing baseDN searches.
The default is that neither the ldap_basedn_filter_schema1 MTA option nor
ldap_basedn_filter_schema2 MTA option is set. When these options are not set, then
the values of ldap_domain_filter_schema1 and ldap_domain_filter_schema2,
respectively, are used if those options are set. But if none of these options are set, then the
default for ldap_basedn_filter_schema1 is "(objectclass=inetDomain)", while the
default for ldap_basedn_filter_schema2 is the empty string.

Base options 16–9

ldap_domain_filter_schema*
MTA (and base) options

16.34 Direct LDAP schema MTA options:
ldap_domain_filter_schema1 (LDAP URL
filter), ldap_domain_filter_schema2 (LDAP
URL filter)

The default is that neither the ldap_domain_filter_schema1 nor
ldap_domain_filter_schema2 option is set, neither at the MTA level nor at the base
level. When these options are not set, then internal defaults in the domain map code are used,
equivalent to:

ldap_domain_filter_schema1=(|(objectclass=inetDomain)(objectclass=inetdomainalias))
ldap_domain_filter_schema2=(objectclass=sunManagedOrganization)

16.35 ldap_host_alias_list Option Under
base

The ldap_host_alias_list Base option allows setting a list of host names that will
be recognized as synonyms for the host name. It corresponds to the configutil parameter
local.imta.hostnamealiases in legacy configuration. The value takes a comma-
separated list of up to 40 host aliases; each host alias may be at most 256 characters long; the
total length of the entire list is limited to 1024 characters. (In iMS 5.2, the limits were smaller: at
most 20 host aliases and each host alias at most 252 characters long.)

In Unified Configuration, this value is used by the Message Store when interpreting the
mailHost attribute to determine whether a user's mailboxes can be accessed locally. In legacy
configuration, the local.imta.hostnamealiases must be used for this purpose.

Unless mta.local_host_alias_list has been set (thereby overriding the
base.local_host_alias_list), the local_host_alias_list base option also affects
MTA operation. The ldap_host_alias_list value(s) are used by the MTA when deciding
whether a domain's mailRoutingHosts value(s) or a user's mailHost value is "local" (this
MTA itself). That is, once an LDAP lookup of a domain or user occurs, this option's value(s)
affect the interpretation of the result of the LDAP lookup.

16.36 ldapconnecttimeout Option
The ldapconnecttimeout base option specifies the time in seconds to wait for a new LDAP
connection to complete.

16.37 ldapmodifytimeout Option
The ldapmodifytimeout base option specifies the time in seconds to wait for LDAP modify
operations to complete.

16.38 ldappoolrefreshinterval Option

16–10 Messaging Server Reference

ldaprequiretls Option

The ldappoolrefreshinterval base option specifies the length of time in minutes before
LDAP connections are automatically closed then re-established to the LDAP server. Also,
length of elapsed time in minutes until the failover directory server reverts back to the primary
directory server. If set to -1, use the code default which is 35 minutes.

16.39 ldaprequiretls Option
If SSL is not already being used on a given LDAP connection (e.g., due to ugldapusessl
or an ldaps: URL), enabling the ldaprequiretls base option will require successful
negotiation of TLS (using LDAP StartTLS) before proceeding with the connection.

16.40 ldapsearchtimeout Option
The ldapsearchtimeout base option specifies how many seconds the server will wait for an
LDAP search to complete (unless there is a more specific timeout option for that LDAP search),
before the search will failover to a backup LDAP server or the operation will fail.

Note that the MTA has its own configuration setting, ldap_timeout.

16.41 ldaptrace Option
The ldaptrace base option enables LDAP trace (debug) logging. Deprecated in favor of
debugkeys (Unified Configuration) or local.debugkeys 'ldap' key.

16.42 listenaddr Option Under base
The listenaddr base option specifies the IPv4 address to listen on when accepting
connections, or to bind to when making connections. The allowed values for the listenaddr
option include an IPv4 address in dotted decimal form (e.g., 127.0.0.1), or a short form or fully-
qualified DNS host name which will be resolved to an IPv4 address by obtaining the DNS A
record for the name. To explicitly specify the default value of binding to all available interfaces,
the string "INADDR_ANY" may be used. To bind to the loopback device, 127.0.0.1, the string
"localhost" may be specified.

If base.listenaddr is not explicitly set, then the default for accepting connections is the
string "INADDR_ANY", while the default for making connections is the loopback address.

Note that one of the (several) implications of listenaddr is that it sets the host IP for most
servers in the product, including the ENS server. Versions prior to 7 Update 4 instead used a
legacy syntax in the local.ens.port option for the ENS server host IP address.

16.43 listurl Option
The listurl base option specifies the URL for mailing list management (obsolete).

16.44 lockdir Option
The lockdir base option specifies the full pathname of server lock directory.
Defaults to /tmp/.ENCODED_SERVERROOT/lock/ on Solaris and /dev/
shm/.ENCODED_SERVERROOT/lock/ on Linux, where ENCODED_SERVERROOT is

Base options 16–11

loginseparator Option

composed of mail server user plus the $SERVERROOT with / replaced by _.e.g., /
tmp/.mailsrv_opt_sun_comms_messaging64/lock/

If the directory does not exist, it will be created.

On Linux, it is a better choice to locate the directory under /dev/shm rather than under /tmp.

IMPORTANT: Stop and restart all Message Store processes immediately after changing this
value. New processes will use the new value and be unable to communicate with a stored
using the old value.

16.45 loginseparator Option
The loginseparator base option specifies the character(s) to be used as login separator
(between userid and domain).

16.46 obsoleteimap Option
The obsoleteimap base option allows use of old IMAP2bis and IMAP4 commands.

16.47 preferpoll Option
To improve performance, the IMAP and MMP servers use Solaris Event Completion Ports on
Solaris instead of the poll system call starting with the Messaging Server 7.0.5 release. Since the
Messaging Server 8.0.1 release, the servers use epoll on Linux instead of the poll system call.
Setting the preferpoll option (available at base and MMP level) to 1 will revert to use of the
standard Posix poll API instead. When preferpoll is set to 1, then the polldelay option also
applies.

16.48 projectid Option Under base
The projectid option specifies the numeric identifier Messaging Server uses when obtaining
shared memory segments. This identifier is used in ftok() calls to generate a shared memory
segment key. By default, a value of 7 is used. Only the lowest eight bits of the value are
significant.

16.49 properties Option
The properties base option and rolename option are used only during initial configuration
by a Deployment Map client to convey information to a remote Deployment Map server.

16.50 proxyadmin Option
The proxyadmin base option specifies the default store admin login name. It may be
overridden for any particular backend host using the imapadminproxy option.

16.51 proxyadminpass Option
The proxyadminpass base option specifies the default store admin password corresponding
to the proxyadmin account. It may be overridden for each particular backend host using the
imapadminpassproxy option.

16–12 Messaging Server Reference

proxyimapport Option

16.52 proxyimapport Option
The proxyimapport base option specifies the default IMAP port number for connections
to backend store servers. It may be overridden for particular backend hosts by setting the
imapport proxy option for that backend host, proxy.hostname.imapport, (where note
that any periods in the hostname must be quoted at the msconfig command line using the
backslash character).

16.53 proxyimapssl Option
The proxyimapssl base option enables SSL access to backend store servers. Defaults to 1 if
the backend store IMAP port is 993, and 0 otherwise.

16.54 proxyserverlist Option
The proxyserverlist base option specifies a Message Store server list from which to list
shared folders. Takes a space-separated string. Not configured by default.

Note that if the proxytrustmailhost Base option is enabled, then a user's mailHost
LDAP attribute value will be "trusted" for proxying purposes as if it had been specified in the
proxyserverlist.

16.55 proxytrustmailhost Option
The proxytrustmailhost base option controls whether to proxy commands such as
URLFETCH to the user's LDAP mailHost, if that server is not listed in proxyserverlist.

16.56 pwchangeurl Option
The pwchangeurl base option specifies the URL a user visits to change his/her password.
If specified, this will be sent with password expiration warnings (e.g., IMAP ALERT). (If this
option is not set, the IMAP server will also check the accounturl base option.)

Note that a trailing "/" is required on the URL, e.g.,

 msconfig set base.pwchangeurl http://webmail.example.com/

See also the IMAP password expiration alert options.

16.57 rbac Option
The rbac base option enables use of Role-Based Access Controls on Solaris (don't require root
access).

16.58 rfc822headerallow8bit Option
The rfc822headerallow8bit base option, if set to 1, allows 8-bit characters in message
headers in Messenger Express. If this parameter is set to 0 (in legacy configuration, a value of
"no" for the local.rfc822header.allow8bit configutil parameter), or if the 8-bit
character is invalid, then the character will be displayed as "?".

Base options 16–13

secret Option Under base

16.59 secret Option Under base
The secret Base option specifies a default to be used by the Watcher, if the Watcher's own
watcher.secret option has not been specified. The value should match that of the Job
Controller's secret, job_controller.secret.

16.60 serveruid Option
The serveruid base option specifies the UNIX user id of Messaging Server. This is
deprecated in favor of the user option in restricted.cnf which is used preferentially. In
Messaging Server 8, this option is always ignored and configutil -o local.serveruid
returns the value of the user option in restricted.cnf.

16.61 sitelanguage Option
The sitelanguage base option specifies the default language tag for use by the Message
Store (and its command line utilities), and the MSHTTP server.

16.62 softtokendir Option
When using both Sun Cluster and Solaris libpkcs11 soft token, the Sun Cluster agent
will clear the environment so the normal SOFTTOKEN_DIR environment variable can't be
used. The softtokendir Base option will be used by the ims_svc_* utilities to set the
SOFTTOKEN_DIR environment variable.

16.63 ssladjustciphersuites Option
The ssladjustciphersuites option allows adjusting which SSL cipher suites are
enabled or disabled. (This option is available under base, mmp, imapproxy, popproxy,
and vdomain.) SSL cipher suites control the level of protection required between SSL client
and server. Different cipher suites have different properties and use different cryptographic
algorithms. At any time a specific crytographic algorithm might be weakened or compromised
by new research in cryptography. The ability to change the default cipher suites allows the
software to adapt as security technology changes. In addition as CPUs get faster, the key size
necessary to provide several years of comfortable protection increases, even if the algorithm is
considered state-of-the-art.

The default set of SSL cipher suites used will change over time as more secure ones are
introduced and weaker ones are deprecated. It is expected most deployments will be happy
with the default set of cipher suites and it is generally not a good idea to adjust the available
cipher suites without reason. However, here are some scenarios where it may be helpful to
adjust cipher suites:

1. A site with specific security policies may wish to provide a fixed list of cipher suites to use
that is set by site policy rather than simply using state-of-the-art suites provided by the
NSS library. Such a site would typically configure this setting to '-ALL,...' where '...'
contains the cipher suite names.

2. A site which is experimenting cipher suites that require installation of special server
certificate types, for example the DSS cipher suites. Such a site would enable these
additional suites once installation was complete.

16–14 Messaging Server Reference

ssladjustciphersuites
Option

3. If a site is forced to continue supporting a particularly old client that only supports old
cipher suites, they can be explicitly enabled (for example '+RC4' enables the RC4 cipher
suites).

4. A site that chooses to disable an older cipher or hash function pro-actively despite potential
interoperability issues may choose to do so. For example, to disable all ciphers using the
'3DES' or 'SHA1' algorithms, simply set '-3DES,-SHA1'. Be aware that this sort of pro-active
action may generate support calls from end users running older mail clients.

5. In the event the cryptographic research community discovers a vulnerability in one or more
of the ciphers enabled by default, this provides a mechanism to immediately disable those
ciphers. For example, to disable all ciphers using the '3DES' algorithm, simply set '-3DES'.

As of NSS 3.28 (2017), the following cipher suites are enabled by default in the NSS
library: TLS_AES_128_GCM_SHA256, TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_256_GCM_SHA384, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, TLS_RSA_WITH_AES_128_GCM_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384, TLS_RSA_WITH_AES_128_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_RSA_WITH_3DES_EDE_CBC_SHA.

The complete list of cipher suites present in NSS 3.28 (2017) follows:
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA, SSL_DHE_DSS_WITH_DES_CBC_SHA,
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA_WITH_DES_CBC_SHA,
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5, SSL_RSA_EXPORT_WITH_RC4_40_MD5,
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA, SSL_RSA_FIPS_WITH_DES_CBC_SHA,
SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_RSA_WITH_DES_CBC_SHA,
SSL_RSA_WITH_NULL_MD5, SSL_RSA_WITH_NULL_SHA,
SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA,
TLS_AES_128_GCM_SHA256, TLS_AES_256_GCM_SHA384,
TLS_CHACHA20_POLY1305_SHA256, TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_RC4_128_SHA, TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,

Base options 16–15

ssladjustciphersuites
Option

TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_ECDSA_WITH_NULL_SHA, TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_RSA_WITH_NULL_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDH_ECDSA_WITH_NULL_SHA,
TLS_ECDH_ECDSA_WITH_RC4_128_SHA, TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_NULL_SHA, TLS_ECDH_RSA_WITH_RC4_128_SHA,
TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA,
TLS_RSA_EXPORT1024_WITH_RC4_56_SHA, TLS_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_GCM_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_NULL_SHA256, TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384, TLS_CHACHA20_POLY1305_SHA256,
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384,
TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA,
TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA,
TLS_DHE_DSS_WITH_RC4_128_SHA, TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,

16–16 Messaging Server Reference

ssladjustciphersuites
Option

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_RC4_128_SHA, TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_RC4_128_SHA, TLS_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_GCM_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, TLS_RSA_WITH_CAMELLIA_256_CBC_SHA,
TLS_RSA_WITH_RC4_128_MD5, TLS_RSA_WITH_RC4_128_SHA,
TLS_RSA_WITH_SEED_CBC_SHA.

TLS 1.3 (NSS 3.39+) has its own cipher suites separate from previous TLS versions.
These include: TLS_AES_128_GCM_SHA256, TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_256_GCM_SHA384.

Always keep in mind that adjusting the available ciphersuites can impact multiple protocols;
NSS is tightly integrated into Messaging Server, as the following diagram illustrates:

Base options 16–17

sslcachedir Option

16.64 sslcachedir Option
The sslcachedir option, (available under base, mmp, imapproxy, and popproxy),
specifies the SSL session cache directory used to track SSL sessions across multiple connections
by the MMP. Prior to 7.0.5.31.0, this also controlled the location of the SSL database files and

16–18 Messaging Server Reference

ssldbpath Option

defaulted to the config directory. As of the 7.0.5.31.0 release, the ssldbpath base option takes
precedence over this option for specifying the location of SSL database files.

NOTE: In order for results to predictable, this option must be the same for the IMAP Proxy
and POP Proxy -- any settings of this option for the proxies must match. (Or better yet, don't
set it explicitly for any of the proxies; instead set it at MMP level.)

16.65 ssldbpath Option
The ssldbpath base option specifies the location of certificate and key files. This defaults to
the product configuration directory; see the CONFIGROOT environment variable.

Additional base options impacting the certificate and key file names and format are
ssldbprefix and (prior to MS 8.0) ssldblegacy. Prior to MS 7.0.5.31.0, see also the
sslcachedir option.

16.66 ssldblegacy Option
When set, the ssldblegacy base option requires SSL/TLS server certificates, CAs and
CRLs to be stored in the legacy cert8.db and key3.db formats supported by our SSL/
TLS library. When this is not set, both the legacy cert8.db/key3.db and the modern
cert9.db/key4.db formats are supported. The legacy format requires servers to be shut
down when updating the database for any reason. The modern format allows updates to be
performed while the servers are running. The default was changed from 1 to 0 in the 7.0.5
release. Starting with the 8.0 release, this setting is ignored, the modern format is preferred and
the legacy format will be migrated to the modern format on upgrade.

Additional base options impacting the certificate and key file location and names are
ssldbpath and ssldbprefix.

16.67 ssldbprefix Option
The ssldbprefix base option specifies the prefixes of the certificate and key files.

Additional base options impacting the certificate and key file location and format are
ssldbpath and (prior to MS 8.0) ssldblegacy.

16.68 sslcompress Option
The sslcompress base option determines whether support for the SSL/TLS Compression
option (RFC 3749) is enabled. Enabling this is not recommended.

16.69 sslnicknames Option Under base
The sslnicknames Base option specifies a list of the nicknames of the certificates in the
SSL certificate database to offer as the server certificate if SSL/TLS is enabled. Only one
nickname of each certificate type is permitted (e.g., one RSA certificate, one DSS certificate) so
normally only one will be specified. The default is "Server-Cert". This base level list may be
overridden for particular services.

Base options 16–19

https://tools.ietf.org/html/rfc3749

sslpkix Option

16.70 sslpkix Option
The sslpkix base option enables use of PKIX verification for SSL/TLS client certificates (RFC
3280). Full PKIX validation can involve network connections to validate certificates via OCSP
or check CRLs. We have not tested these scenarios for correct operation when the system is
under load and to verify that network timeouts and server shut down operate correctly when
such verifications are in progress.

16.71 sslrequiresafenegotiate Option
Setting the sslrequiresafenegotiate base option requires all SSL/TLS peers to
implement safe SSL re-negotiation as specified in RFC 5746. In late 2009, an attack against
the SSL/TLS protocol was discovered that makes any client that does not require secure re-
negotiation insecure when talking to almost any SSL/TLS server that implements pre-5746 re-
negotiation. While our servers are safe from the attack once the NSS 3.12.5 or later patch is
installed, this option causes the server to refuse to talk to SSL/TLS clients unless those clients
have also been upgraded to be safe from the attack. This feature can be helpful at a security-
sensitive site to detect clients that need to be upgraded to improve site security.

16.72 sslrenegotiate Option
The SSL/TLS protocol includes a re-negotiation feature that is primarily used by classic HTTP
for client certificate authentication. This feature is not needed by Messaging Server and is
disabled by default as of the 7.0.5.31.0 release. Setting this option will enable this feature.

16.73 sslconnlimit Option
The sslconnlimit boolean option determines when SSL connections will be rejected if a
connection limit specified by connlimits or a DNS RBL blocklist specified by dnsrbl is
encountered. By default, the connection is rejected after SSL is negotiated using an application-
level protocol error describing the rejection. If this is set, the connection is rejected prior to SSL
negotiation by sending a fatal SSL user_canceled alert at the SSL protocol layer.

16.74 stressperiod Option
When a process such as the MMP becomes stressed due to high load or a denial of service
attack, the stressperiod option controls how long (in seconds) the Watcher will consider
that process stressed as well as how often that process will send a new stress notification to the
Watcher. This allows msprobe to tell the difference between a wedged server (which should
be restarted to improve the system) and a stressed process that is making forward progress
but may have a response time larger than the msprobe timeout. Restarting such a process may
reduce overall system performance as any disconnected clients are likely to reconnect to the
system thus increasing the load. If a stressed process becomes wedged, then msprobe will be
able to restart that process after the stressperiod expires.

This is presently only implemented by the MMP.

16.75 stressfdwait Option

16–20 Messaging Server Reference

https://tools.ietf.org/html/rfc3280
https://tools.ietf.org/html/rfc3280
https://tools.ietf.org/html/rfc5746

supportedlanguages Option

When a process is running out of available file descriptors and the stressfdwait Base
option is set, then the process is permitted to stop accepting new connections until the file
descriptor shortage goes away. If this is turned off, the process will continue trying to accept
connections until it fails. This is presently only implemented for the MMP and is on by default.
As stress fd wait is a new feature, it may be helpful to disable the feature temporarily if it is
causing an unexpected problem.

16.76 supportedlanguages Option
The supportedlanguages base option specifies the languages supported by server code.

16.77 threadholddelay Option
The threadholddelay base option sets a thread hold delay time (in milliseconds) for IMAP
and POP connections. This is the amount of time that asynchronous read and write operations
will try to keep a worker thread around.

16.78 tlsminversion Option

16.78.1 Use with base
The tlsminversion base option determines the minimum acceptable version of TLS
(the modern version of the SSL protocol). This presently takes a value of TLS1.0, TLS1.1,
TLS1.2, and new in Messaging Server 8.1: TLS1.3. This option defaults to TLS1.2 (disabling
TLS 1.0 & 1.1 by default). Prior to the 8.1 release, TLS 1.1 was the default and prior to the 8.0.1
release, TLS 1.0 was the default. If this is set to TLS1.2 (the current default), the setting of the
tlsv12enable option is ignored. If this is set to TLS1.3, the setting of the tlsv13enable
option is ignored.

16.78.2 Use with channel
When placed on a channel, the tlsminversion option overrides the base default for the
minimum TLS version for all messages dequeued from the channel.

16.79 tlsv12enable Option
The tlsv12enable base option determines whether TLS version 1.2 (the recommended
version of the SSL protocol) is enabled. For releases prior to 8.0 this defaulted to 0; starting
with 8.0 this defaults to 1. As of MS 8.0.1, if tlsminversion is set to TLS1.2 or TLS1.3, this
option is ignored and TLS 1.2 is enabled.

16.80 tlsv13enable Option
The tlsv13enable base option determines whether TLS version 1.3 (the modern version
of the SSL protocol) is enabled. For releases prior to 8.0 this defaulted to 0; starting with 8.0
this defaults to 1. If tlsminversion is set to TLS1.3, this option is ignored and TLS 1.3 is
enabled.

Base options 16–21

tmpdir Option Under base

16.81 tmpdir Option Under base
The tmpdir base option specifies the temporary file directory; defaults to $DATAROOT/tmp/.

On Linux, this option should instead be set to /dev/shm/.

16.82 ugldapbasedn Option
The ugldapbasedn base option specifies the root of the user/group configuration tree
in the Directory Server. Normally this option is set to an appropriate value during initial
configuration.

The MTA has a "twin" option, ldap_user_root, which may be used to override this base
option for MTA-specific purposes.

16.83 ugldapbindcred Option
The ugldapbindcred base option specifies the password for the user/group administrator.

The MTA has a "twin" option, ldap_password, which may be used to override this base
option for MTA-specific purposes.

16.84 ugldapbinddn Option
The ugldapbinddn base option specifies the DN of the user/group administrator. Normally
initial configuration sets this option to a value of the form:

uid=msg-admin-<msg.ServerHostName>-<msg.product.InstallationTimestamp>, ou=People, <deforgdn>

The MTA has a "twin" option, ldap_username, which may be used to override this base
option for MTA-specific purposes.

16.85 ugldaphost Option
The ugldaphost base option specifies the LDAP server list for user/group lookup. Takes a
space-separated string. A port may be specified by appending ":port" to a host name in the
list. If empty or not set, the loopback interface is used.

Normally this option is set to an appropriate value during initial configuration.

The MTA has a "twin" option, ldap_host, which may be set to specify an MTA-specific
override of this option's value.

16.86 ugldapport Option
The ugldapport base option specifies the LDAP port for user/group lookup if a port is not
specified in the ugldaphost list. The default is 389, though initial configuration may set it to a
different value. As of the 7.0.5 release, if this is set to 636, then SSL will be used regardless of
ugldapusessl setting.

16–22 Messaging Server Reference

ugldapusessl Option

The MTA has a "twin" option, ldap_port, which may be set to specify an MTA-specific
override of this option's value.

16.87 ugldapusessl Option
The ugldapusessl base option if enabled says to use SSL to connect to the user/group LDAP
server. Note that as of 7.0.5, if ugldapport is set to 636, then SSL will be used regardless of
the value of ugldapusessl.

16.88 welcomemsg Option Under base
The welcomemsg Base option specifies a default welcome message for new users of the
Message Store. The maximum size is 1 MB.

Syntax: "$" line separators, with headers.

Note that the base value can be localized using the welcomemsg option set under named
message_language groups.

This default welcome message message specified at base level is only used
if there is no domain-specific welcome message in a preferred language (no
mailDomainWelcomeMessage tagged with a preferred language) set on the LDAP entry of
the domain in which the new user resides.

16.89 logfile options
There are a number of options relating to nslog log files, set under a logfile group,
under the appropriate component. logfile options may be set under base, http,
imap, metermaid, mmp, mta, imapproxy, popproxy, messagetrace, pop, snmp,
rollovermanager, tcp_lmtp_server, transactlog, msadmin, ens, job_controller,
or dispatcher.

For additional debugging, see also the debugkeys option available for a number of Messaging
Server components.

Certain components support automatic log file rollover; see the rollovermanager options.

16.89.1 expirytime Option
The expirytime logfile option, component.logfile.expirytime, specifies the
maximum time in seconds a log file is kept. The default is 604800 seconds (corresponding to
one week).

16.89.2 flushinterval Option
The flushinterval logfile option, component.logfile.flushinterval, specifies
the time interval in seconds between logfile buffer flushes.

16.89.3 filemode Option

Base options 16–23

logmillisecond Option

The filemode logfile option, component.logfile.filemode, specifies the file mode
in octal used to create log files for the specified component. The value will be masked with
octal 0666 and the process umask to set actual log file permissions. If you want a process with
a different userid but in the same group as the Messaging Server user to have read access to
log files, use 0640. The store.umask option can be used to modify the process umask to allow
this.

Note that the filemode option does not apply to MTA debug logs or MTA transaction log
files.

For the 8.0 release and later, it is no longer necessary to modify the umask.

16.89.4 logmillisecond Option
When the logmillisecond logfile option, component.logfile.logmillisecond, is
turned on (that is, set to 1), then milliseconds will be shown in nslog log files.

16.89.5 loglevel Option Under logfile
The loglevel logfile option specifies the logging level for the whatever component's
logfile it is set under. E.g., imap.logfile.loglevel specifies the logging level for the IMAP
server's log file.

Valid values for the loglevel option are: nolog, emergency, alert, critical, error,
warning, notice, information, or debug. The default is notice.

The loglevel logfile option for the MTA specifies an MTA log level used for the imta
log file (primarily used by ims_master and the LMTP server).

16.89.6 maxlogfiles Option
The maxlogfiles logfile option, component.logfile.maxlogfiles, specifies the
maximum number of log files to retain.

16.89.6.1 Use with mmp Under logfile

For the MMP, the maxlogfiles logfile option, mmp.logfile.maxlogfiles, was new
for Messaging Server 7u1.

16.89.7 maxlogfilesize Option
When an nslog log file for a component reaches the
component.logfile.maxlogfilesize size, a log rollover operation will be triggered;
logging may continue to the log file while the rollover operation is in progress. In the
Messaging Server 7.0.5 release, the default value was increased to keep more historical data. In
previous versions, the default value was 2097152 (2MB).

16.89.7.1 Use with mmp Under logfile

For the MMP, the maxlogfilesize logfile option, mmp.logfile.maxlogfilesize,
was new for Messaging Server 7u1.

16–24 Messaging Server Reference

maxlogsize Option

16.89.8 maxlogsize Option
When an nslog log file rollover operation occurs, if the maximum total size in bytes of all log
files for this service exceeds the component.logfile.maxlogsize value, then the older
log files will be removed as part of the rollover process until the sum of the file sizes observed
at the start of the rollover operation falls below this threshold. In the Messaging Server 7.0.5
release, the default value was increased to keep more historical data. In previous versions, the
default value was 20971520 (20MB).

16.89.8.1 Use with mmp Under logfile

For the MMP, the maxlogsize logfile option, mmp.logfile.maxlogsize, was new for
Messaging Server 7u1.

16.89.9 rollovertime Option
The rollovertime logfile option, component.logfile.rollovertime, specifies
the length of time in seconds to keep a log file active. That is, the maximum period of time to
record data to a single log file. The default is 86400 seconds (corresponding to one day).

16.89.9.1 Use with mmp Under logfile

For the MMP, the rollovertime logfile option, mmp.logfile.rollovertime, was
new for Messaging Server 7u1.

16.89.10 rolloverpolicy Option
The rolloverpolicy logfile option, component.logfile.rolloverpolicy,
specifies the policy of rolling over an active log file.

Starting with Messaging Server 8.0.2, this option is deleted. Rollover based on size is always
performed, and rollover based on time is performed if the rollover manager process is enabled.
DELETED: simplify rollover model.

• 0: disabled;
• 1: rollover based on time specified by rollovertime logfile option;
• 2: rollover based on log file size specified by maxlogfilesize logfile option;
• 3: rollover based on both time and log file size.

16.89.11 syslogfacility Option
The syslogfacility logfile option, component.logfile.syslogfacility,
specifies whether or not logging for that component is directed to the syslog service. The
value of such an option can be none, user, mail, daemon, or local0 to local7. If the value
is set, messages are logged to the syslog facility corresponding to the set value and all other log
file service options are ignored. The special value of none (which is the default) disables use of
the syslog service.

16.89.11.1 Use with mmp Under logfile

For the MMP, the syslogfacility logfile option, mmp.logfile.syslogfacility,
was new for Messaging Server 7u1.

Base options 16–25

Base autorestart options

16.90 Base autorestart options
Under the base group is the autorestart group, with merely two options available,
base.autorestart.enable and base.autorestart.timeout (which may also be set
and referred to simply as autorestart.enable and autorestart.timeout). Enabling
autorestart means that Messaging Server can attempt to restart components that seem to be in
trouble.

Autorestart of Messaging Server components is triggered if/when msprobe detects a
"problem" with a component of Messaging Server, at which point msprobe requests that the
Watcher attempt a restart of that "troubled" component of Messaging Server.

16.90.1 enable Option Under autorestart
The enable Autorestart option (base.autorestart.enable or more simply
autorestart.enable in Unified Configuration, or local.autorestart in legacy
configuration) enables automatic restart of failed or frozen (unresponsive) servers including
IMAP, POP, MSHTTP, Job Controller, Dispatcher, and MMP servers.

16.90.2 timeout Option Under autorestart
The timeout Autorestart option, (autorestart.timeout in Unified Configuration, or
local.autorestart.timeout in legacy configuration), specifies a failure retry time-out,
in seconds. The default is 600 seconds. If a server fails more than once during this designated
period of time, then the system will stop trying to restart this server. If this happens in an HA
system, Messaging Server is shutdown and a failover to the other system occurs. The value
(set in seconds) should be set to a period value longer than the msprobe interval. (See the
schedule.task:msprobe.crontab option setting for msprobe's schedule).

16.91 Base certmap options
Several options affect certificate map operation. These options are grouped under
base.certmap, but may be referred to and set more simply as merely under certmap.

For debugging of certificate map operations, see also the certmap keyword of the debugkeys
option.

16.91.1 dncomps Option
The dncomps certmap option determines how to search for a client certificate in the directory.
If this is not supplied, the server will expect the client certificate subject to contain the exact
DN of the user in LDAP. If this is set to the empty string, a search will be performed under the
ugldapbasedn based on a search filter from the filtercomps. If this is set to a space-separated
list of components, then a DN will be constructed by extracting the values of those components
from the certificate subject in the order listed. If the component in the certificate subject is
different from the component that will be used in the LDAP DN, then a translation is specified
by using subject-component=ldap-component in the space separated list. For backwards
compatibility, "mail" and "e" are treated as synonyms.

16.91.2 filtercomps Option

16–26 Messaging Server Reference

verifycert Option

The filtercomps certmap option determines the search filter to use when locating the user
entry in LDAP associated with a client certificate subject. If this is not provided or empty,
then a search filter of (objectclass=*) will be used. If this is set to a space separated list
of components, then a search filter will be formed by extracting values from components
in the certificate subject in the order listed and combining them with a logical and. If the
component in the certificate subject is different from the attribute name that will be used in
the LDAP search filter, then a translation is specified by using subject-component=ldap-
component in the space separated list. For backwards compatibility, "mail" and "e" are
treated as synonyms.

Typically, filtercomps is not used unless dncomps is set to the empty string.

16.91.3 verifycert Option
If the verifycert certmap option is set to 1, then when a user record in LDAP is found
for a given client certificate, the binary DER form of that certificate will be compared to the
userCertificate;binary attribute in LDAP. Authentication will succeed only if there is
an exact match.

16.91.4 cmapldapattr Option
The cmapldapattr certmap option specifies the name of an LDAP attribute that will contain
the certificate subjects for valid client certificates. There is no standard LDAP attribute defined
for this purpose so it will be necessary to extend your LDAP schema. The attribute name
certSubjectDN is suggested. If this is specified, the server will perform a subtree search
under ugldapbasedn to locate a user. This is performed before the server attempts to use
dncomps or filtercomps to find the user entry.

16.92 Base domainmap options
The only domainmap option is debug.

See also the usedomainmap Auth option.

The imsimta test -domain_map utility may be used to verify domain definitions.

16.92.1 debug Option Under domainmap
The base.domainmap.debug option sets the level of debugging messages for the domain
map library code.

Base options 16–27

16–28

Chapter 17 Scheduler options
17.1 enable Option Under schedule .. 17–1
17.2 enablelog Option ... 17–2
17.3 Scheduler task options .. 17–2

17.3.1 enable Option Under task ... 17–3
17.3.2 expire task options ... 17–3
17.3.3 msprobe task options ... 17–4
17.3.4 purge task options .. 17–4
17.3.5 return_job options .. 17–5
17.3.6 snapshot task options ... 17–6
17.3.7 snapshotverify task options ... 17–6

The Messaging Server Scheduler schedules and initiates execution of various periodic jobs for
Messaging Server. These jobs may include the following named tasks:

1. return_job, the MTA's message return job (message bouncer job), that returns (bounces)
excessively old, undelivered messages,

2. expire, the Message Store's message expiration job, that deletes from disk messages that
users have deleted from their mailboxes,

3. msprobe, checking whether Messaging Server components such as server processes are
available ("up") and responsive,

4. purge, the MTA's log file purge job, that purges "older" MTA log files,

5. snapshot, the Message Store's database "snapshot" job, that captures a current-moment
"snapshot" of the messages in the Message Store,

6. snapshotverify, the Message Store's database "snapshot verification" job, that verifies
whether snapshots are sound.

The only options for the Scheduler itself are enable (to enable the Scheduler's own operation)
and enablelog. The settings of more interest are those under named task groups under the
Scheduler, configuring behavior of each named task.

The Scheduler does not have its own logfile option group. This means that in unified
configuration Scheduler debugging is controlled by the base.logfile option group. For
example, Scheduler debug output to the default log can be enabled by setting:

msconfig> set base.logfile.loglevel debug

Note that this enables debug output for other utilities, e.g., msprobe, as well.

17.1 enable Option Under schedule
The enable Scheduler option, schedule.enable (Unified Configuration) or
local.sched.enable (legacy configuration), enables the Scheduler service on start-
msg startup. This option defaults to 0 if not set, but initial configuration normally enables the
option.

Scheduler options 17–1

enablelog Option

17.2 enablelog Option
To enable output from the Scheduler's tasks to go to separate log files in the DATAROOT/log
directory, set enablelog to 1. This creates logfiles named <task-name>.log.<unix-timestamp>
each time a scheduler task is executed. These log files are not removed automatically, so
customers using this option will need to configure their own mechanism to remove older log
files of this format.

This option is not refreshable; the scheduler must be stopped and restarted if this option is
changed.

17.3 Scheduler task options
When the Scheduler is enabled, each named task known to the Scheduler may be explicitly
enabled or disabled via the task's own enable option (but typically the task's enable value
defaults appropriately based on which Messaging Server components are enabled), and if
enabled (whether implicitly or explicitly) will be executed at the schedule set via the crontab
option for that task; e.g.,

msconfig> show schedule.enable
role.schedule.enable = 1
msconfig> show mta.enable
role.mta.enable = 1
msconfig> show schedule.task:return_job.*
role.schedule.task:return_job.crontab = 30 0 * * * lib/return_job

The Scheduler supports the following named tasks in particular:

1. expire, the Message Store's message expiration job, that deletes from disk messages that
users have deleted from their mailboxes, and purges messages from users' mailboxes
according to administrative criteria,

2. msprobe, checking whether Messaging Server components such as server processes are
available ("up") and responsive,

3. purge, the MTA's log file purge job, that purges older MTA log files,

4. return_job, the MTA's message return job (message bouncer job), that returns (bounces)
excessively old, undelivered messages,

5. snapshot, the Message Store's database "snapshot" job, that captures a current-moment
"snapshot" of the messages in the Message Store,

6. snapshotverify, the Message Store's database "snapshot verification" job, that verifies
whether snapshots are sound.

Individual Scheduler tasks can themselves be enabled or disabled through the use of the
enable task option. For example, the following commands disable msprobe and explicitly
enable imexpire:

17–2 Messaging Server Reference

enable Option Under task

msconfig> set schedule.task:msprobe.enable 0
msconfig# set schedule.task:expire.enable 1

Almost all Scheduler settings are refreshable: New tasks can be added, task parameters can be
changed, disabled tasks can be enabled, and as of Messaging Server 8.0.1.2, enabled tasks can
be enabled. In all of these cases a refresh imsched will cause the changes to take effect.

At present only the outright deletion of a task requires a Scheduler restart:

stop-msg sched
start-msg sched

Other tasks can be executed by the Scheduler. For instance, rather than executing the Message
Store's impurge job as a daemon as normally configured when store.enable is enabled,
a site can disable that daemon via store.purge.enable=0 and instead configure the
Scheduler to run the impurge command periodically.

17.3.1 enable Option Under task
The enable Scheduler task option, schedule.task:name.enable (Unified Configuration)
or local.schedule.name.enable (legacy configuration), controls whether a task should
be scheduled.

If the Scheduler has been enabled, schedule.enable=1, all tasks default to being scheduled,
unless explicitly disabled via schedule.task:task-name.enable=0. That is, the purpose
of the task-level enable option is to provide a way to disable tasks.

17.3.2 expire task options
The expire Scheduler task has a few options: enable to enable automatic scheduling of
execution of imexpire and crontab to control that schedule.

Note that configuration of what imexpire actually does when it runs involves additional
other, potentially complex, configuration. See Message Store expire options, Message Store
expirerule options, the expiresieve Message Store option, and the discussion of imexpire
invoking spamfilter packages for discussions of configuration of what imexpire actually does
when it executes.

17.3.2.1 enable Option Use With expire Under task

The enable Scheduler task option for the expire task controls whether the expire
task should be scheduled. It defaults to the setting of the store.enable option (Unified
Configuration) or local.store.enable configutil parameter (legacy configuration).

17.3.2.2 crontab Option Use With expire Under task

The crontab Scheduler task option for the expire task controls the interval for
running imexpire, enabled with schedule.task:expire.enable (Unified
Configuration) which defaults to the setting of the store.enable setting, (or in legacy
configuration, local.schedule.expire.enable which defaults to the setting of
local.store.enable).

Scheduler options 17–3

msprobe task options

schedule.task:expire.crontab uses UNIX crontab format: minute hour day-of-month
month-of-year day-of-week command arguments.

Initial configuration normally sets this to:

msconfig> show schedule.task:expire.crontab
role.schedule.task:expire.crontab = 0 23 * * * bin/imexpire

17.3.3 msprobe task options
The msprobe Scheduler task, which runs msprobe to check on the status of various services,
has a couple of options.

Note the distinction between these options set under the Scheduler task msprobe,
schedule.task:msprobe.option-name, which control the scheduling of execution
of msprobe, compared to the separate set of msprobe options controlling the actual
operation of msprobe, set as msprobe.option-name or under specific service probes as
msprobe.probe:specific-service-name.option-name.

17.3.3.1 enable Option Use With msprobe Under task

The enable Scheduler task option for the msprobe task controls whether the msprobe task
should be scheduled.

17.3.3.2 crontab Option Use With msprobe Under task

The crontab Scheduler task option for the msprobe task controls the msprobe
run schedule, enabled with schedule.task:msprobe.enable (Unified
Configuration) or local.schedule.msprobe.enable (legacy configuration).
msprobe is a daemon that probes servers to see if they respond to service requests.
schedule.task:msprobe.crontab uses UNIX crontab format: minute hour day-of-
month month-of-year day-of-week command arguments.

Initial configuration sets this to:

msconfig> show schedule.task:msprobe.crontab
role.schedule.task:msprobe.crontab = 5,15,25,35,45,55 * * * * lib/msprobe

17.3.4 purge task options
The purge Scheduler task, which purges "old" versions of MTA log files, has a couple of
options.

(Note the distinction between this MTA log file purge job, vs. the similarly named impurge
job/daemon which purges old Message Store messages.)

17.3.4.1 enable Option Use With purge Under task

The enable Scheduler task option for the purge task controls whether the MTA's log file
purge task should be scheduled. Defaults to the setting of the mta.enable option (Unified
Configuration) or local.imta.enable configutil parameter (legacy configuration).
Starting with the 8.0 release, this instead defaults to 1 if any of the following are set:

17–4 Messaging Server Reference

return_job options

dispatcher.enable option (Unified Configuration), the local.dispatcher.enable
configutil parameter (legacy configuration), the job_controller.enable option
(Unified Configuration), the local.job_controller.enable configutil parameter
(legacy configuration); and otherwise will default to 0. As the new dispatcher and
job_controller enable options default to the mta.enable setting, upgrading customers should
see no behavior change.

17.3.4.2 crontab Option Use With purge Under task

The crontab Scheduler task option for the purge task controls the interval for
running imsimta purge, enabled with schedule.task:purge.enable (Unified
Configuration) which defaults to the value of mta.enable, (or in legacy configuration
local.schedule.purge.enable which defaults to the value of local.imta.enable).
imsimta purge removes older MTA log files. schedule.task:purge.crontab uses
UNIX crontab format: minute hour day-of-month month-of-year day-of-week command
arguments.

Initial configuration sets this to:

msconfig> show schedule.task:purge.crontab
role.schedule.task:purge.crontab = 0 0,4,8,12,16,20 * * * bin/imsimta purge -num=5

17.3.5 return_job options
The return_job Scheduler task has a couple of options. The return_job checks for
messages in the MTA queue area that have not yet been delivered, and then generates delay
warning messages, or bounces the messages, as appropriate and configured via the *notices
channel options and return_units MTA option.

A number of MTA options modify operation of the return_job. In particular the
return_split_period and return_cleanup_period MTA options affect the
return_job's management of MTA transaction log files, while for debugging the
return_job, see the return_debug and return_verify MTA options.

17.3.5.1 enable Option Use With return_job Under task

The enable Scheduler task option for the return_job task controls whether the return_job
task should be scheduled. Defaults to the setting of the mta.enable option (Unified
Configuration) or local.imta.enable configutil parameter (legacy configuration).
Starting with the 8.0 release, the mta.enable option is deprecated so this instead defaults
to the value of the job_controller.enable option (Unified Configuration) or the
local.job_controller.enable configutil parameter (legacy configuration). As
the job_controller.enable option defaults to the value of the mta.enable option,
upgrading customers should see no behavior change.

17.3.5.2 crontab Option Use With return_job Under task

The crontab Scheduler task option for the return_job task controls the interval for
running the MTA return_job, enabled with schedule.task:return_job.enable
(Unified Configuration) which defaults to the setting of mta.enable (or in legacy
configuration local.schedule.return_job.enable which defaults to the setting of
local.imta.enable).

Scheduler options 17–5

snapshot task options

schedule.task:return_job.crontab uses UNIX crontab format: minute hour day-of-
month month-of-year day-of-week command arguments.

Initial configuration sets this to:

msconfig> show schedule.task:return_job.crontab
role.schedule.task:return_job.crontab = 30 0 * * * lib/return_job

17.3.6 snapshot task options
See also the Scheduler's snapshotverify task options. See also the snapshotdirs and
snapshotpath Message Store options.

17.3.6.1 enable Option Use With snapshot Under task

The enable Scheduler task option for the snapshot task controls whether the snapshot /
verify task should be scheduled. Defaults to the setting of the store.enable option (Unified
Configuration) or local.store.enable configutil parameter (legacy configuration).

17.3.6.2 crontab Option Use With snapshot Under task

The imdbverify snapshot and verify option, enabled with
schedule.task:snapshot.enable (Unified Configuration) which defaults to
store.enable (or in legacy configuration local.schedule.snapshot.enable which
defaults to local.store.enable). imdbverify will take a snapshot backup copy of the
database and verify it for use during automatic recovery.

Initial configuration sets this to:

msconfig> show schedule.task:snapshot.crontab
role.schedule.task:snapshot.crontab = 0 2 * * * bin/imdbverify -s -m

17.3.7 snapshotverify task options
See also the Scheduler snapshot task options.

17.3.7.1 enable Option Use With snapshotverify Under task

The enable Scheduler task option for the expire task controls whether the process
log verify task for rolling backups should be scheduled. Defaults to the setting of the
store.enable option (Unified Configuration) or local.store.enable configutil
parameter.

17.3.7.2 crontab Option Use With snapshotverify Under task

The imdbverify utility updates snapshots of the mboxlist database incrementally.
The snapshots can be used during automatic recovery. The imdbverify utility is
enabled with schedule.task:snapshotverify.enable (Unified Configuration) or
local.schedule.snapshotverify.enable (legacy configuration).

Initial configuration sets this to:

17–6 Messaging Server Reference

snapshotverify task options

msconfig> show schedule.task:snapshotverify.crontab
role.schedule.task:snapshotverify.crontab = 5,15,25,35,45,55 * * * * bin/imdbverify

Scheduler options 17–7

17–8

Chapter 18 Watcher options
18.1 enable Option Under watcher ... 18–1
18.2 port Option Under watcher ... 18–1
18.3 secret Option Under watcher ... 18–1

The Watcher has just a few options.

See also msprobe options and Base autorestart options.

18.1 enable Option Under watcher
The enable Watcher option, watcher.enable (Unified Configuration) or
local.watcher.enable (legacy configuration), enables the Watcher service on start-msg
startup. The Watcher service is a daemon that monitors Messaging Server and restarts services
that fail. Refer to autorestart.enable (local.autorestart in legacy configuration) and
the Administration Guide for details.

This option defaults to 0 if not set, but initial configuration normally enables the option.

18.2 port Option Under watcher
The port Watcher option specifies the watcher listen port. The default is 49994.

18.3 secret Option Under watcher
The secret Watcher option specifies the shared secret used by the Watcher when
communicating with watched processes. If watcher.secret is not specified, it will default to
the value of the secret Base option, base.secret. The value should match that of the Job
Controller's secret, job_controller.secret.

Watcher options 18–1

18–2

Chapter 19 msprobe options
19.1 queuedir Option .. 19–1
19.2 timeout Option Under msprobe .. 19–1
19.3 warningthreshold Option Under msprobe .. 19–1
19.4 Probe options ... 19–1

There are a few options affecting msprobe operation. msprobe's service-specific probes can
also individually override some of the general msprobe values.

Note the distinction between these options controlling operation of msprobe, set
as msprobe.option-name, compared to the separate set of msprobe Scheduler
task options which control the timing of execution of msprobe, and which are set as
schedule.task:msprobe.option-name.

When msprobe detects a possible problem, it can, depending upon other configuration,
potentially let the Watcher know (at which point the Watcher can attempt to restart a troubled
component) and/or generate an alarm message; see the Base autorestart options especially
base.autorestart.enable) and Watcher options, and Alarm options, respectively.

See also the stressperiod and stressfdwait base options (which currently affect only
the MMP).

19.1 queuedir Option
The queuedir msprobe option specifies the full pathname of spool directory or local queue
directory to be monitored by msprobe. On an MTA system, to have msprobe monitor the
MTA queue area, set this option to DATAROOT/queue/; since this option has no default value,
leaving it unset means that msprobe will not monitor the MTA queue area.

19.2 timeout Option Under msprobe
The msprobe.timeout msprobe option specifies the time in seconds that msprobe waits
after sending a request that goes unfulfilled before restarting a service. This is a general
default for msprobe's probes; a service-specific probe can set its own, override timeout via the
msprobe.probe:service-name.timeout option.

Attempting to set a value of 0 will result in the value 30 (the default) getting used as the
msprobe default.

19.3 warningthreshold Option Under
msprobe

The msprobe.warningthreshold option sets a default warning threshold for any
msprobe probe that does not have its own, more explicit, warning threshold set (via a
msprobe.probe:name.warningthreshold option).

19.4 Probe options

msprobe options 19–1

Probe options

msprobe's service-specific probes can set their own warningthreshold and timeout
values, overriding msprobe's general default such values. Such probe values are set within a
named probe group, where the name may (currently) be one of:

• cert
• deploymap
• ens
• http
• imap
• job_controller
• lmtp
• metermaid
• pop
• smtp
• submit

So for instance:

msconfig> set msprobe.probe:submit.timeout 120

19–2 Messaging Server Reference

Chapter 20 Alarm options
20.1 noticehost Option .. 20–1
20.2 noticeport Option .. 20–1
20.3 noticercpt Option .. 20–1
20.4 noticesender Option .. 20–1
20.5 noticetemplate Option ... 20–2
20.6 smtpauthpassword Option Under alarm ... 20–2
20.7 smtpauthuser Option Under alarm ... 20–2
20.8 Alarm system options ... 20–2

20.8.1 description Option Use With diskavail Under system 20–2
20.8.2 description Option Use With serverresponse Under system 20–2
20.8.3 statinterval Option .. 20–3
20.8.4 threshold Option .. 20–3
20.8.5 thresholddirection Option .. 20–3
20.8.6 warninginterval Option .. 20–4

20.9 smtptls Option Under alarm ... 20–4

msprobe can generate warning messages (so-called "alarms") if it detects possible problems
such as server non-responsiveness, or disk unavailability. Several options control such warning
("alarm") messages. The options relating to the submission and format of such messages are set
directly under the top-level alarm group. Options relating to the triggering of generation of
such warning ("alarm") messages are set under a named alarm.system group.

20.1 noticehost Option
The noticehost alarm option specifies the SMTP host to which msprobe should submit
warning messages. If noticehost is not set, it will default (as of Messaging Server 7 update
2) to the value of http.smtphost (in legacy configuration, service.http.smtphost), or
the loopback address. Do not use the SMTP server being monitored (the local instance) as the
noticehost. To disable alarm message, set noticeport to 0.

20.2 noticeport Option
The noticeport alarm option specifies the SMTP port to which msprobe will connect when
submitting alarm messages. A value of 0 will disable alarm message submission.

20.3 noticercpt Option
The noticercpt alarm option specifies the recipient of msprobe alarm messages. If not set,
"Postmaster@local-hostname" will be used, where local-hostname is the value of the
hostname Base option.

20.4 noticesender Option
The noticesender Alarm option specifies the address used in From: header (and envelope
From) of msprobe alarm messages. If not set, "Postmaster@local-hostname" will be used,
where local-hostname is the value of the hostname Base option.

Alarm options 20–1

noticetemplate Option

20.5 noticetemplate Option
The noticetemplate alarm option specifies the msprobe alarm message template. %s in the
template is replaced with the following in order: sender, recipient, alarm description, alarm
instance, alarm current value and alarm summary text. DELETED: Too prone to format errors;
support dropped in 6.3 release; use of the former default value is now hard-coded.

As of MS 6.3, and the removal of this option, the msprobe alarm messages are always
constructed as:

From: <noticesender>
To: <noticercpt>
Subject: ALARM: <description> of "<instance>" is <current-value>

<summary-text>

(corresponding to the former default template).

20.6 smtpauthpassword Option Under alarm
The smtpauthpassword alarm option specifies the password that will be used when
msprobe submits mail to the MTA. See also smtpauthuser.

20.7 smtpauthuser Option Under alarm
When msprobe submits, SMTP authentication will be used if both smtpauthuser and
smtpauthpassword are set. These two Alarm options specify the administrative user name
and password that are used to submit alarm.

20.8 Alarm system options
Options regarding the triggering of msprobe warning ("alarm") messages regarding various
components or "systems" are set under alarm.system:system-name, where system-name
is either diskavail or serverreponse.

20.8.1 description Option Use With diskavail Under
system

The alarm.system:diskavail.description option specifies the description for the
diskavail alarm.

20.8.2 description Option Use With serverresponse
Under system

The alarm.system:serverresponse.description option specifies the description for
the serverresponse alarm.

20–2 Messaging Server Reference

statinterval Option

20.8.3 statinterval Option
The statinterval option under a named alarm.system
group, so either alarm.system:diskavail.statinterval or
alarm.system:serverresponse.statinterval, specifies the interval in seconds
between checks on the named system. Set to 0 to disable checks.

20.8.3.1 Use with diskavail Under system

The alarm.system:diskavail.statinterval option specifies the interval in seconds
between disk availability checks. The default is 3600 seconds. Set to 0 to disable checks of disk
usage.

20.8.3.2 Use with serverresponse Under system

The alarm.system:serverresponse.statinterval option specifies the interval in
seconds between checks on server responsiveness. The default is 600 seconds. Set to 0 to
disable checking of server response.

20.8.4 threshold Option
The threshold option, available under the alarm system named groups diskavail and
serverresponse, specifies the threshold measurement for triggering an alarm.

20.8.4.1 Use with diskavail Under system

The alarm.system:diskavail.threshold option specifies the percentage of disk space
availability below which an alarm is sent. The default is 10 percent.

20.8.4.2 Use with serverresponse Under system

The alarm.system:serverresponse.threshold option specifies the server response
time, in seconds, triggering an alarm. The default is 10 seconds.

20.8.5 thresholddirection Option
Specifies whether an alarm is issued when the measurement is greater than (1) or less than
(-1) the specified threshold.

20.8.5.1 Use with diskavail Under system

The alarm.system:serverresponse.thresholddirection option specifies whether
the alarm is issued when disk space availability is below threshold (-1) or above it (1). The
default is -1.

20.8.5.2 Use with serverresponse Under system

The alarm.system:serverresponse.thesholddirection option specifies whether an
alarm is issued when server response time is greater than (1) or less than (-1) the threshold.
The default is 1.

Alarm options 20–3

warninginterval Option

20.8.6 warninginterval Option
The warninginterval Alarm system option specifies, for a named system, the interval in
hours between subsequent issuances of the alarm.

20.8.6.1 Use with diskavail Under system

msprobe can generate warning messages if it detects possible disk availability problems. The
alarm.system:diskavail.warninginterval option specifies the interval in hours
between subsequent repetition of disk availability alarms. The default is 24 hours.

20.8.6.2 Use with serverresponse Under system

msprobe can generate warning messages if it detects possible server problems (i.e., server
non-responsiveness). The alarm.system:serverresponse.warninginterval option
specifies the interval in hours between subsequent repetition of server response alarm. The
default is 24 hours.

20.9 smtptls Option Under alarm
The smtptls Alarm options specifies whether to use TLS for SMTP connections; that is,
whether alarm uses the SMTP extension STARTTLS and negotiates TLS use.

20–4 Messaging Server Reference

Chapter 21 Auth options
21.1 authenticationldapattributes Option ... 21–1
21.2 authenticationserver Option .. 21–1
21.3 auto_transition Option ... 21–2
21.4 broken_client_login_charset Option ... 21–2
21.5 canonicalsearchfilter Option ... 21–3
21.6 has_plain_passwords Option ... 21–3
21.7 requireauthenticationserver Option ... 21–3
21.8 searchfilter Option ... 21–3
21.9 searchfordomain Option ... 21–3
21.10 usedomainmap Option ... 21–4

A number of options may be set under the auth group to affect authentication in general.

For debugging of authentication, see also the debugkeys option. For the format for
addresses used in authentication, see also the ldap_domain_attr_uid_separator and
loginseparator Base options and defaultdomain IMAP, POP, and MMP et al. option.

Caching of authentication results is controlled by the authcachesize and authcachettl
Base options.

Regarding client certificate based authentication, see also the Base certmap options.

For configuration of authentication use for SMTP message submission, see TLS and SASL
channel options and Password and TLS MTA options and the AUTH_ACCESS mapping table.

For tracking and penalization of "bad guy" failed authentication attempts, see the bg* options
such as bgpenalty, settable at Base, IMAP, POP, and IMAP Proxy and POP Proxy levels. Or
for monitoring or penalizing failed SMTP AUTH attempts, see various example uses of the
LOG_ACTION mapping table.

See also the allowanonymouslogin option available under imap, pop, and http.

21.1 authenticationldapattributes Option
The authenticationldapattributes Auth option specifies a space-separated list of
additional LDAP user attributes to look up and pass to the third-party authentication server.
This option is also available at imapproxy, popproxy, and vdomain level (to override,
for the respective lookups, the general Auth option). To enable support for a third-party
authentication server, set the authenticationserver option. For developer instructions
and SDK see the directory msg_svr_base/examples/tpauth.

21.2 authenticationserver Option
The authenticationserver Auth option specifies the hostname and port for a third-party
authentication service to use for authentication. This option is also available at imapproxy
and popproxy level (to override, for the respective server, the general Auth option). The
recommended value is :56 when a third-party authentication service is available on the
loopback interface of the server process performing authentication. For developer instructions
and SDK see the directory msg_svr_base/examples/tpauth.

Auth options 21–1

auto_transition Option

When not set, the servers will authenticate via LDAP.

21.3 auto_transition Option
When the auto_transition Auth option is set to 1 and a user provides a plain text
password, the password storage format will be transitioned to the default password storage
method for the directory server. This can be used to migrate from plaintext passwords to
APOP or CRAM-MD5.

21.4 broken_client_login_charset Option
Some mail clients violate the IMAP and POP standards that require usernames and passwords
to be in US-ASCII for the LOGIN and USER/PASS commands. These broken clients may
instead use another charset, such as UTF-8 or ISO-8859-1 for usernames and passwords. Note
that standards compliant clients may use the SASL PLAIN mechanism for IMAP, POP and
SMTP submission. SASL PLAIN requires use of the UTF-8 charset and thus supports multiple
languages with interoperable codepoints.

When the broken_client_login_charset Auth option has the default value of UTF-8,
clients that incorrectly send UTF-8 for the LOGIN or USER/PASS commands will be allowed
to authenticate and will interoperate with clients that use standards-compliant SASL PLAIN
usernames and passwords.

When this option is set to the ISO-8859-1 value, then a three step workaround is enabled to
attempt to achieve partially interoperable behavior:

1. First, the usernames and passwords are converted from ISO-8859-1 to UTF-8 and a
standards-compliant search and bind to the LDAP directory is attempted. If this succeeds, the
user is authenticated and everything works fine. If the search fails, then the username does not
exist in the directory and the authentication fails.

2. If the standard bind fails, Messaging Server will attempt to use the ISO-8859-1 password
in an LDAP simple bind operation (this step is compliant with the 1997 version of LDAP,
but not the 2006 version of LDAP). Directory Server Enterprise Edition does not enforce the
UTF-8 password restriction for simple bind and is thus compatible with this second step of the
workaround. If this succeeds, the user is considered authenticated.

3. After a successful non-standard LDAP bind, Messaging Server will attempt to correct
the incompliant password entry in the LDAP directory by writing the UTF-8 version of the
password to the user's userPassword attribute. If this succeeds, subsequent authentications
for that user will be faster and standards compliant and the user will be compatible with
standard authentication mechanisms such as SASL PLAIN. When this step occurs a message is
written to the log at notice log level.

Before setting this to a non-default value, customers should verify they have no other systems
that perform LDAP simple bind operations with a charset other than UTF-8 to the LDAP
server used by Messaging Server. LDAP clients that violate RFC 4511 in that way will not
interoperate with standard use of SASL PLAIN or this workaround.

For step 3 to operate correctly, the Messaging Server End User administrator (as specified
in the ugldapbinddn option) must have write access to the userPassword attribute. The
LDAP Access Control Instructions (ACI) set up by Messaging Server's configure utility
do not include this write access, so the LDAP ACI titled Messaging Server End User

21–2 Messaging Server Reference

https://tools.ietf.org/html/rfc4511

canonicalsearchfilter
Option

Adminstrator Write Access Rights on the user/group tree must be updated to add
userPassword to the attribute list. See the Directory Server documentation for instructions
on editing Directory Server Access Control.

21.5 canonicalsearchfilter Option
The canonicalsearchfilter Auth option value is used when locating a user in an LDAP
domain using the user's canonical identity. When a user authenticates, a translation is done
from authentication identity to canonical identity. With default settings there is no difference
between these two identities and the search filters are the same. However, if a site wishes to
have users authenticate using an attribute other than uid, then these identities can be different
and thus different search filters are needed for authentication user lookup and canonical user
lookup. The syntax is the same as inetDomainSearchFilter (see schema guide).

For Messaging Server 8.0.2, the default was changed to use %P as the attribute name instead
of 'uid'. The %P substitution refers to the LDAP attribute name specified by the ldap_permid
option. This means it is only necessary to change the ldap_permid option to control the
canonical user identity.

21.6 has_plain_passwords Option
The has_plain_passwords Auth option is a boolean to indicate that the directory stores
plaintext passwords, which enables APOP and CRAM-MD5.

21.7 requireauthenticationserver Option
The requireauthenticationserver option is available under auth and under
imapproxy and popproxy.

When an authentication server is configured using the authenticationserver
option, and requireauthenticationserver is 1 (the default), that server
must be running and responding to requests or authentication will not succeed. If
requireauthenticationserver is set to 0, then built-in authentication mechanisms will
be permitted even if the authentication server ceases to respond to requests.

21.8 searchfilter Option
The searchfilter Auth option specifies the default search filter used to look
up users for basic authentication and identity purposes when one is not specified
in the inetDomainSearchFilter for the domain. The syntax is the same as
inetDomainSearchFilter (see schema guide).

21.9 searchfordomain Option
By default, the authentication system looks up the domain in LDAP following the rules for
domain lookup, and then looks up the user. However, if the searchfordomain Auth option
is set to "0" rather than the default value of "1", then the domain lookup does not happen and
a search for the user (using the searchfilter option's value) occurs directly under the
LDAP tree specified by the ugldapbasedn option. This is provided for compatibility with
legacy single-domain schemas, but use is not recommended for new deployments as even a

Auth options 21–3

usedomainmap Option

small company may go through a merger or name change which requires support for multiple
domains.

21.10 usedomainmap Option
The usedomainmap Auth option controls whether to look up domains prior to locating users
when performing authentication. If disabled, then search the entire user/group subtree when
authenticating a user.

Note that the imsimta test -domain_map utility can perform certain basic checks of
domain layout validity.

21–4 Messaging Server Reference

Chapter 22 sectoken options
22.1 tokenpass Option .. 22–1

The only security token option is tokenpass, which may be set inside a named sectoken
group, taking the place in Unified Configuration of settings made in the sslpassword.conf
file in legacy configuration.

22.1 tokenpass Option
The tokenpass option is set inside a named sectoken group; this Unified Configuration
setting takes the place of what in legacy configuration would be set as a token-
name:password pair inside the sslpassword.conf file.

When configuring Secure Sockets Layer (SSL) or Transport Layer Security (TLS), the private
keys are stored in a configuration private key file (presently key8.db) or a physical hardware
device. These storage locations are collectively referred to as tokens. The private keys
are typically encrypted with a password that the server requires to accept an SSL or TLS
connection. The password for a given token is stored in the tokenpass option in a sectoken
group whose name is the name of the token. The default software token's name is "Internal
(Software) Token".

For instance, the legacy configuration setting in the sslpassword.conf file of:

Internal (Software) Token:whatever

would be set using Unified Configuration as:

msconfig> set "sectoken:Internal (Software) Token.tokenpass" whatever

sectoken options 22–1

22–2

Chapter 23 Deployment Map options
23.1 enable Option Under deploymap .. 23–1
23.2 capability_starttls Option Under deploymap .. 23–1
23.3 debug Option Under deploymap .. 23–1
23.4 heartbeat Option .. 23–1
23.5 port Option Under deploymap .. 23–2
23.6 properties Option ... 23–2
23.7 run_as_server Option ... 23–2
23.8 server_host Option Under deploymap .. 23–2
23.9 sslusessl Option Under deploymap .. 23–2
23.10 userid and passwd Options .. 23–2

Several options relate to the Deployment Map service.

See also the properties Base option.

Note that msprobe can probe for whether the Deployment Map server is running; see
msprobe's probe options.

23.1 enable Option Under deploymap
The enable Deployment Map option, deploymap.enable, enables use of the Deployment
Map service. Whether to run as a client or server is specified with the run_as_server option.
The default is to run as a client.

23.2 capability_starttls Option Under
deploymap

The capability_starttls deploymap option, when set to 1 (the default), causes
the Deployment Map server to enable the STARTTLS extension. Advertising TLS (SSL)
support does not mandate its use. Requiring use of TLS (SSL) is accomplished with the
deploymap.sslusessl option.

23.3 debug Option Under deploymap
The debug Deployment Map option, deploymap.debug, enables the generation of debug
output in the Deployment Map server or client's log file.

23.4 heartbeat Option
Deployment Map clients keep their TCP connection open indefinitely to the Deployment Map
server. Typically, there is only traffic over the connection when a client connects or disconnects
or a change is made to the deployment map. Consequently, the TCP connection can remain
silent for hours if not days. To prevent network hardware from closing the connection due
to inactivity, the client periodically sends a simple heartbeat to the server. By default, this
heartbeat is sent every 30 minutes plus or minus a random number of seconds. The period of
this heartbeat is controlled with this option. To disable heartbeats entirely, specify a value of 0.

Deployment Map options 23–1

port Option Under deploymap

23.5 port Option Under deploymap
The port Deployment Map option, deploymap.port, specifies the TCP port on which the
Deployment Map service listens for incoming TCP connections. The default is 4570.

23.6 properties Option
The properties base option and rolename option are used only during initial configuration
by a Deployment Map client to convey information to a remote Deployment Map server.

23.7 run_as_server Option
The Deployment Map service consists of a single server running on one Messaging Server
host, and all other Messaging Server hosts running Deployment Map clients. When the
Deployment Map service is enabled, the host runs a Deployment Map client by default.
To instead run a Deployment Map server, set this option to the value 1. The other hosts
-- the clients -- should either not specify this option or, if they do specify it, set it to
the value 0. Further, clients must specify the server_host Deployment Map option
(local.deploymap.serverhost for legacy config). That option specifies the hostname or
IP address of the host running the Deployment Map server.

23.8 server_host Option Under deploymap
The server_host Deployment Map option specifies the fully qualified hostname or
IP address of the remote Deployment Map server. This option is only used when the
run_as_server option is set to 0 (false) or not specified. Use the port option to specify the
TCP port which the remote Deployment Map server listens on.

23.9 sslusessl Option Under deploymap
Setting sslusessl to 1 instructs Deployment Map clients and servers to require the use
of SSL (also known as TLS). When enabled on the server, the server will not allow clients to
authenticate without first having successfully negotiated SSL. When enabled on the client, the
client will negotiate SSL before attempting to authenticate. If the server does not advertise the
TLS capability, then the client will not authenticate.

A server with this option enabled must also have the deploymap.capability_starttls
option enabled (local.deploymap.capability.starttls in a legacy configuration).

23.10 userid and passwd Options
The userid and passwd Deployment Map options (local.deploymap.userid and
local.deploymap.passwd for legacy config) are the shared secret pair used by Deployment
Map clients to authenticate with the Deployment Map server. They will be sent in the clear
unless the use of SSL has been enabled with the deploymap.sslusessl Deployment Map
option (local.deploymap.sslusessl in legacy configuration).

A password and userid pair must be used in order for a client to connect to the Deployment
Map server and be recognized by the server as being online. Without the authentication pair,

23–2 Messaging Server Reference

userid and passwd Options

a client may only request the current deployment map file and list of online hosts. This shared
secret pair must also be used to add or remove a host from the deployment map file.

Deployment Map options 23–3

23–4

Chapter 24 rollovermanager options
24.1 enable Option Under rollovermanager .. 24–1

The Messaging Server's rollovermanager process performs time-based roll over for nslog-
style log files. Criteria for log file "roll over" for these components is configured via the usual
logfile options for the respective service.

The rollovermanager log file is controlled by rollovermanager.logfile.* options
and the process is controlled by rollovermanager.enable.

For 8.0, the rollover manager only performed time-based rollover for three log files (imap, pop,
transactlog). This was expanded to cover all log files with the 8.0.2 release.

24.1 enable Option Under rollovermanager
The enable rollovermanager option enables its operation.

rollovermanager options 24–1

24–2

Chapter 25 Messaging Server Ports
The Messaging Server uses different TCP (and UDP) Ports for different services. Some of these
are intended for use by end-users, some for use by the deployment, and some for use only
by the local host. This table lists the ports used by the product and their typical values. It's
important to appropriately configure firewalls to only expose the intended ports.

Table 25.1 Table of TCP/IP Ports used by Messaging Server
Service Port Usage Option Description

Cassandra
client

9042 product
deployment

store.casconnectpoints Cassandra Query Protocol used by Cassandra Message Store.

Certificate
Port

55443 product
deployment

http.cert_port Private certificate validation protocol for Convergence S/MIME
client.

ClamAV
Port

3310 product
deployment

PORT ClamAV plugin option Used to talk to ClamAV via libclamav.so spam filter plugin.

dbreplicate
server &
client

55000 product
deployment

store.dbreplicate.port Berkeley DB replication for classic store automatic failover.

DNS client 53 (UDP &
TCP)

nameserver
in /etc/
resolv.conf

N/A DNS client used for MTA MX lookups, DNS RBL lookups, etc.

Elasticsearch
client

9200 product
deployment

elasticsearch.port Port used to communicate with Elasticsearch.

ens 7997 product
deployment

ens.port Non-SSL product internal event notification service. Client port is
specified via the ensport notifytarget option with ensusessl
determining if SSL is used.

ens ssl 8997 product
deployment

ens.sslport SSL product internal event notification service.

icap client 1344 product
deployment

PORT ICAP plugin option Typically used to talk to Nortan AV via libicap.so spam filter plugin;
RFC 3507.

imap 143 end-user
(or product
deployment
with MMP)

imap.port Non-SSL Internet Message Access Protocol (IMAP) RFC 3501.

imaps 993 end-user
(or product
deployment
with MMP)

imap.sslport SSL Internet Message Access Protocol (IMAP) RFC 8314, RFC 3501.

isc client 8070 product
deployment

isc_client.server_port Indexed search converter service used to support Elastic Search and
Cassandra store search. Use isc_client.sslusessl to control
SSL

isc server 8070 product
deployment

isc.server_port Indexed search converter service used to support Elastic Search and
Cassandra store search. Use isc.sslusessl to control SSL

job
controller

27442 host internal job_controller.tcp_ports Internal service used to notify job controller of message enqueues.

LDAP client 389 or 636 product
deployment

base.ugldapport Lightweight Directory Access Protocol (LDAPv3) RFC 4511 used for
domain, user, and group lookups and authentication. Use 636 for
SSL.

LMTP client 225 product
deployment

channel:tcp_lmtpcs.port Local Mail Transfer Protocol product interface based on RFC 2033.

LMTP
server

225 product
deployment

dispatcher.service:LMTPSS.tcp_ports Local Mail Transfer Protocol product interface based on RFC 2033.

ManageSieve
server

4190 end-user dispatcher.service:MANAGESIEVE.tcp_ports Protocol for managing Sieve scripts in RFC 5804.

memcache
client

11211 product
deployment

mta.memcache_port A de-facto standard protocol used to talk to a fast key/value
database typically used for deployment-wide tracking, metering,
and rate-limiting.

metermaid
client

63837 product
deployment

metermaid_client.server_port Product private RAM database similar to memcached. Use of
memcached/Redis is recommended instead of metermaid for newer
deployments.

metermaid
server

63837 product
deployment

metermaid.port Product private RAM database similar to memcached. Use of
memcached/Redis is recommended instead of metermaid for newer
deployments.

mmp-imap 143 end-user imapproxy.tcp_listen:imapproxy1.tcp_ports Non-SSL MMP IMAP proxy RFC 3501.

mmp-imaps 995 end-user imapproxy.tcp_listen:imapproxy1.ssl_ports SSL MMP IMAP proxy RFC 8314, RFC 3501.

Messaging Server Ports 25–1

https://tools.ietf.org/html/rfc3507
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc8314
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc4511
https://tools.ietf.org/html/rfc2033
https://tools.ietf.org/html/rfc2033
https://tools.ietf.org/html/rfc5804
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc8314
https://tools.ietf.org/html/rfc3501

mmp-pop3 110 end-user popproxy.tcp_listen:popproxy1.tcp_ports Non-SSL MMP POP3 proxy RFC 1939.

mmp-pop3s 993 end-user popproxy.tcp_listen:popproxy1.ssl_ports SSL MMP POP3 proxy RFC 8314, RFC 1939.

mtqp client 1038 product
deployment
or intranet
deployments

mta.mtqp_port Message Tracking Query Protocol (RFC 3887) with private
extensions for message recall.

mtqp server 1038 product
deployment
or external
tracking/recall
clients

dispatcher.service:MTQP.tcp_ports Message Tracking Query Protocol (RFC 3887) with private
extensions for message recall.

pop3 110 end-user
(or product
deployment
with MMP)

pop.port Non-SSL Post Office Protocol version 3 (POP3) RFC 1939.

pop3s 993 end-user
(or product
deployment
with MMP)

pop.sslport SSL Post Office Protocol version 3 (POP3) RFC 8314, RFC 1939.

Redis client 6379 product
deployment

redis.port Protocol used to talk to a Redis server key/value database typically
used for deployment-wide tracking, metering, and rate-limiting.

Redis
sentinel
client

26379 product
deployment

TBD Protocol used to talk to a Redis sentinel server to determine the
active Redis master host for a named Redis master/slave pool.

smpp client none product
deployment

sms_gateway.smpp_relay.server_port Relay port for SMS gateway via Short Message Peer-to-Peer (SMPP)
service.

snmp server 161 (UDP) product
deployment

snmp.port SNMP monitoring port (RFC 2789, RFC 3411-3418).

smtp server 25 Internet MTAs dispatcher.service:SMTP.tcp_ports Simple Mail Transfer Protocol Relay Service (SMTP relay) RFC 5321.

Socks client 1080 product
deployment

socksport channel option Used to traverse a SOCKS 5 firewall (RFC 1928, RFC 1929).

Solr client 8983 product
deployment

store.solrconnectpoints Used by Cassandra store to bootstrap Datastax Solr search indexing.
No longer used starting with Messaging Server 8.1.

Spamd
client

783 product
deployment

PORT Spam Assassin plugin option Used to talk to Spam Assassin via libspamass.so spam filter plugin.

submission
client

25 product
deployment

http.smtpport, alarm.noticeport Webmail & alarm SMTP Message Submission RFC 6409.

submission
server

587 end-user dispatcher.service:SMTP_SUBMIT.tcp_ports Non-SSL Message Submission (SMTP submission) RFC 6409.

submissions
server

465 end-user dispatcher.service:SMTP_SUBMIT.ssl_ports SSL Message Submission (SMTP submission) RFC 8314, RFC 6409.

watcher 49994 host internal watcher.port Private service to detect stressed and crashed processes for self-
repair.

wmap /
mshttpd

8990 product
deployment

http.port Non-SSL private webmail proxy layer between Convergence and
IMAP, based on HTTP.

wmaps /
mshttpd

8991 product
deployment

http.sslport SSL private webmail proxy layer between Convergence and IMAP,
based on HTTP.

25–2 Messaging Server Reference

https://tools.ietf.org/html/rfc1939
https://tools.ietf.org/html/rfc3887
https://tools.ietf.org/html/rfc3887
https://tools.ietf.org/html/rfc1939
https://tools.ietf.org/html/rfc8314
https://tools.ietf.org/html/rfc1939
https://tools.ietf.org/html/rfc2789
https://tools.ietf.org/html/rfc3411
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc1928
https://tools.ietf.org/html/rfc1929
https://tools.ietf.org/html/rfc6409
https://tools.ietf.org/html/rfc6409
https://tools.ietf.org/html/rfc8314
https://tools.ietf.org/html/rfc6409

Part IV The Message Store
Messaging Server provides a Message Store for storing users' email, and provides servers that support
email client access to user mail.

There are a great many options for controlling and modifying Message Store operation; besides general
Base options, see specifically the Message Store options and Partition options. A few options relating to
localization of automatically generated messages may be found under message_language_options.

For configuration of the servers that support email client access to user mail in the Message Store, see
IMAP options, POP options, and MSHTTP options.

For configuration of some automatic maintenance jobs relating to the Message Store, see Scheduler task
options.

Chapter 26 Message Store options
26.1 enable Option Under store .. 26–4
26.2 admins Option ... 26–5
26.3 allowbadmailbox Option ... 26–5
26.4 autounsubscribe Option ... 26–5
26.5 autorepair Option ... 26–5
26.6 autorepairdebug Option ... 26–5
26.7 backupdir Option ... 26–5
26.8 backupexclude Option ... 26–6
26.9 cachepreviewlen Option ... 26–6
26.10 cachesynclevel Option ... 26–6
26.11 casconnectpoints Option ... 26–6
26.12 solrconnectpoints Option ... 26–6
26.13 msgconnectpoints Option ... 26–6
26.14 cacheconnectpoints Option ... 26–6
26.15 casusername Option ... 26–7
26.16 caspassword Option ... 26–7
26.17 casmetarf Option ... 26–7
26.18 casmsgrf Option ... 26–7
26.19 cassolrrf Option ... 26–7
26.20 cascacherf Option ... 26–7
26.21 casmaxconnectionsperhost Option ... 26–7
26.22 casnumthreadsio Option ... 26–7
26.23 cascasopretrycount Option ... 26–7
26.24 cascasopretryintervalinms Option ... 26–7
26.25 caskeyspaceprefix Option ... 26–8
26.26 cascachedc Option ... 26–8
26.27 casmetadc Option ... 26–8
26.28 casmsgdc Option ... 26–8
26.29 cassolrdc Option ... 26–8
26.30 checkdiskusage Option ... 26–8
26.31 checkmailhost Option ... 26–8
26.32 cleanupage Option ... 26–8
26.33 cleanupsize Option ... 26–9
26.34 dbcachesize Option Under store .. 26–9
26.35 dblogregionmax Option ... 26–9
26.36 dbnumcaches Option ... 26–9
26.37 dbregionmax Option ... 26–9
26.38 dbsync Option ... 26–9
26.39 dbtmpdir Option ... 26–10
26.40 dbtype Option ... 26–10
26.41 deadlockaggressive Option ... 26–10
26.42 defaultmailboxquota Option ... 26–10
26.43 defaultmessagequota Option ... 26–10
26.44 defaultpartition Option ... 26–11
26.45 diskusagethreshold Option ... 26–11
26.46 encryptnew Option ... 26–11
26.47 ensureownerrights Option ... 26–11
26.48 expiresieve Option ... 26–11
26.49 expungesynclevel Option ... 26–11
26.50 finalcheckpoint Option ... 26–11

Message Store options 26–1

26.51 folderlockcount Option ... 26–12
26.52 indexeradmins Option ... 26–12
26.53 indexmapreadonly Option ... 26–12
26.54 indexsynclevel Option ... 26–12
26.55 keypass Option ... 26–12
26.56 keylabel Option ... 26–12
26.57 listimplicit Option ... 26–12
26.58 logexpungedetails Option ... 26–12
26.59 mailboxpurgedelay Option ... 26–13
26.60 maxcachefilesize Option ... 26–13
26.61 maxfolders Option ... 26–13
26.62 maxlog Option ... 26–13
26.63 maxmessages Option ... 26–13
26.64 messagesynclevel Option ... 26–13
26.65 overquotastatus Option ... 26–13
26.66 perusersynclevel Option ... 26–14
26.67 pin Option ... 26–14
26.68 quotaenforcement Option ... 26–14
26.69 quotaexceededmsg Option Under store .. 26–14
26.70 quotaexceededmsginterval Option ... 26–15
26.71 quotagraceperiod Option ... 26–15
26.72 quotanotification Option ... 26–15
26.73 quotaoverdraft Option ... 26–15
26.74 quotawarn Option ... 26–16
26.75 rollingdbbackup Option ... 26–16
26.76 searchengine Option ... 26–16
26.77 seenckpinterval Option ... 26–16
26.78 seenckpstart Option ... 26–16
26.79 serviceadmingroupdn Option ... 26–16
26.80 sharedfolders Option ... 26–17
26.81 snapshotdirs Option ... 26–17
26.82 snapshotpath Option ... 26–17
26.83 subscribesynclevel Option ... 26–17
26.84 synclevel Option ... 26–17
26.85 undeleteflag Option ... 26–17
26.86 umask Option ... 26–18
26.87 Message Store archive options ... 26–18

26.87.1 tmpdir Option Under archive .. 26–18
26.87.2 compliance Option .. 26–19
26.87.3 operational Option .. 26–19
26.87.4 source_channel Option ... 26–19
26.87.5 destination Option .. 26–19
26.87.6 style Option .. 26–19
26.87.7 reportdir Option .. 26–19
26.87.8 intext Option .. 26–19
26.87.9 posteddatemode Option ... 26–20
26.87.10 useheaderrecipients Option ... 26–20
26.87.11 retrieveport Option ... 26–20
26.87.12 retrieveserver Option ... 26–20
26.87.13 retrievetimeout Option ... 26–20
26.87.14 path Option Under archive ... 26–20

26.88 Message Store checkpoint options .. 26–20
26.88.1 stresslimit Option .. 26–20

26–2 Messaging Server Reference

26.88.2 debug Option Under checkpoint ... 26–20
26.89 Message Store dbreplicate options .. 26–20

26.89.1 enable Option Under dbreplicate ... 26–21
26.89.2 port Option Under dbreplicate .. 26–21
26.89.3 dbremotehost Option .. 26–21
26.89.4 dbpriority Option .. 26–21
26.89.5 twosites Option .. 26–21
26.89.6 queuemax Option .. 26–21
26.89.7 ackpolicy Option .. 26–21
26.89.8 acktimeout Option .. 26–22

26.90 Message Store deadlock options ... 26–22
26.90.1 autodetect Option .. 26–22
26.90.2 checkinterval Option .. 26–22

26.91 Message Store expire options ... 26–22
26.91.1 exploglevel Option .. 26–23

26.92 Message Store expirerule options ... 26–23
26.92.1 deleted Option .. 26–23
26.92.2 exclusive Option .. 26–23
26.92.3 folderpattern Option .. 26–24
26.92.4 foldersizebytes Option ... 26–24
26.92.5 messagecount Option .. 26–24
26.92.6 messagedays Option .. 26–24
26.92.7 messagesize Option .. 26–24
26.92.8 messagesizedays Option ... 26–24
26.92.9 seen Option .. 26–24

26.93 Message Store folderquota options ... 26–24
26.93.1 enable Option Under folderquota .. 26–25

26.94 Message Store messagetype and typequota options 26–25
26.94.1 enable Option Under messagetype .. 26–26
26.94.2 enable Option Under typequota .. 26–26
26.94.3 header Option .. 26–26
26.94.4 contenttype Option .. 26–26
26.94.5 flagname Option .. 26–26
26.94.6 quotaroot Option .. 26–26

26.95 Message Store msghash options ... 26–27
26.95.1 enable Option Under msghash .. 26–27
26.95.2 dbcachesize Option Under msghash .. 26–27
26.95.3 nummsgs Option .. 26–27

26.96 Message Store purge options ... 26–27
26.96.1 enable Option Under purge .. 26–28
26.96.2 count Option .. 26–28
26.96.3 maxthreads Option Under purge .. 26–28
26.96.4 percentage Option .. 26–28
26.96.5 crontab Option Use With purge Under task 26–28

26.97 Message Store relinker options .. 26–29
26.97.1 enable Option Under relinker ... 26–29
26.97.2 maxage Option .. 26–29
26.97.3 minsize Option .. 26–29
26.97.4 purgecycle Option .. 26–29

26.98 Message Store shared folder options .. 26–30
26.98.1 restrictanyone Option ... 26–30
26.98.2 restrictdomain Option ... 26–30
26.98.3 shareflags Option .. 26–30

Message Store options 26–3

enable Option Under store

26.98.4 user Option Under publicsharedfolders .. 26–30

Many options for the Message Store are set directly under the store group, e.g.:

msconfig> set store.option-name option-value

Under the store group are also other named groups with their own additional options:

• archive
• checkpoint
• dbreplicate
• deadlock
• expire
• expirerule
• folderquota
• messagetype
• msghash
• privatesharedfolders
• publicsharedfolders
• purge
• relinker
• typequota

Options under a store subgroup may be set with a command of the form:

msconfig> set store.subgroup.option-name option-value

For example:

msconfig> set store.deadlock.checkinterval 12

A number of Message Store options from previous versions are now obsolete and have been
deleted.

Note that options specifically about Message Store partition setup are grouped under the (top-
level) partition group; they are not grouped under store.

Of course base level options, as they affect Messaging Server as a whole, can be significant
for Message Store operation. But there are a couple of base level options that are particularly
oriented towards the Message Store:

• dbtxnsync

• enablelastaccess

• dblockcount

• welcomemsg

26.1 enable Option Under store

26–4 Messaging Server Reference

admins Option

The enable Message Store option, store.enable (Unified Configuration) or
local.store.enable (legacy configuration), enables the Message Store when starting
services. This option defaults to 0 if not set, but initial configuration normally enables the
option.

26.2 admins Option
The admins Message Store option takes a space separated list of user ids with message store
administrator privileges. The default is the user id admin. If single-valued or not set, the MMP
will use this as the default value for its storeadmin option.

26.3 allowbadmailbox Option
The allowbadmailbox Message Store restricted option will disable certain mailbox validity
checks in the message store. A value of 1 will disable Unicode normalization and a value of
2 will disable validity checks of the IMAP international naming convention. Use of this can
have unpredictable results, including breaking ISS synchronization, causing backup problems
and breaking IMAP clients. It exists primarily for testing purposes and as a contingency in
case there are unexpected problems with ICU normalization. This option may be removed in a
future release.

This option is ignored if Cassandra store is used or if an IMAP client negotiates
UTF8=ACCEPT -- in both cases bad mailbox names are unconditionally forbidden.

Customers using ISS should never set this option on a production system; ISS requires all
mailbox names to be RFC 5198 compliant.

26.4 autounsubscribe Option
Cassandra store only. The autounsubscribe Message Store option controls whether folders
are unsubscribed by imapd automatically when they are deleted. The default is 1, meaning
that folders are unsubscribed automatically. This option has no effect in classic store. Classic
store does not unsubscribe folders automatically.

26.5 autorepair Option
The autorepair Message Store option may be set to repair damaged mailboxes
automatically.

26.6 autorepairdebug Option
The autorepairdebug Message Store option enables the backup of mailbox index files,
before repair, to the /storedebug subdirectory under the Messaging Server temporary file
directory specified by base.tmpdir in Unified Configuration (local.tmpdir in legacy
configuration). The maximum number of backup mailboxes is 10.

Note: Sites should remove the files and directories under /storedebug manually when they
are not needed.

26.7 backupdir Option

Message Store options 26–5

https://tools.ietf.org/html/rfc5198

backupexclude Option

The backupdir Message Store option specifies the directory for backup image of Message
Store data.

26.8 backupexclude Option
The backupexclude Message Store option specifies mailboxes to be excluded from a
backup operation. You can specify a single mailbox or a list of mailboxes separated by the "%"
character.

See also the backup_group options.

26.9 cachepreviewlen Option
The cachepreviewlen Message Store option specifies the message preview cache record
length. Save the first chunk of the message body in the cache file for fast preview access.

26.10 cachesynclevel Option
The cachesynclevel Message Store option controls the synchronization level for the store
cache file, overriding the general synclevel value. 0: no sync, 1: data sync only, 2: data sync
and metadata sync (that is, all file attributes, including access time and modification time).

If synclevel is at its default value (-1), then cachesynclevel defaults to 1. However, if
synclevel has been set to a non-default value, then that value also becomes the default for
cachesynclevel.

26.11 casconnectpoints Option
The casconnectpoints Message Store option specifies a space-separated list of Cassandra
Cluster connect points (ip addresses). If not specified, this option defaults to the IPv4 loopback
address (127.0.0.1). specified, this option defaults to the local host (127.0.0.1).

26.12 solrconnectpoints Option
The solrconnectpoints Message Store option specifies a space-separated list of Cassandra
Cluster connect points (ip addresses) for IMAP solr search. If not specified, casconnectpoints is
used.

26.13 msgconnectpoints Option
The msgconnectpoints Message Store option specifies a space-separated list of
Cassandra Cluster connect points (ip addresses) for msg keyspace access. If not specified,
casconnectpoints is used.

26.14 cacheconnectpoints Option
The cacheconnectpoints Message Store option specifies a space-separated list of
Cassandra Cluster connect points (ip addresses) for cache keyspace access. If not specified,
casconnectpoints is used.

26–6 Messaging Server Reference

casusername Option

26.15 casusername Option
The casusername Message Store option specifies the username for cassandra cluster
authentication.

26.16 caspassword Option
The caspassword Message Store option specifies the password for cassandra cluster
authentication.

26.17 casmetarf Option
The casmetarf Message Store option specifies the replication factor for the store meta
keyspace. If not specified, this option defaults to 1.

26.18 casmsgrf Option
The casmsgrf Message Store option specifies the teplication factor for the store msg
keyspace. If not specified, this option defaults to 1.

26.19 cassolrrf Option
The cassolrrf Message Store option specifies the replication factor for the store solr
keyspace. If not specified, this option defaults to 1.

26.20 cascacherf Option
The cascacherf Message Store option specifies the replication factor for the store cache
keyspace. If not specified, this option defaults to 1.

26.21 casmaxconnectionsperhost Option
RESTRICTED: The casmaxconnectionsperhost Message Store option specifies the
maximum number of connections per host. If not specified, this option defaults to 500.

26.22 casnumthreadsio Option
RESTRICTED: The casnumthreadsio Message Store option specifies the number of IO
threads that will handle Cassandra query requests. If not specified, this option defaults to 5.

26.23 cascasopretrycount Option
RESTRICTED: The cascasopretrycount Message Store option specifies the cassandra CAS
operation retry count upon write timeout. If not specified, this option defaults to 3.

26.24 cascasopretryintervalinms Option

Message Store options 26–7

caskeyspaceprefix Option

RESTRICTED: The cascasopretryintervalinms Message Store option specifies the
cassandra CAS operation retry interval (in milliseconds) upon write timeout. If not specified,
this option defaults to 10.

26.25 caskeyspaceprefix Option
The caskeyspaceprefix Message Store option specifies a prefix to all Cassandra keyspace
names used by the Message Store. This can be used to have multiple message stores in the
same Cassandra ring. This should not be changed on an operational server. This option
defaults to "ms_".

26.26 cascachedc Option
The cascacheadc Message Store option specifies the datacenter of the cache keyspace. This
option defaults to "DC1".

26.27 casmetadc Option
The casmetadc Message Store option specifies the datacenter of the meta keyspace. This
option defaults to "DC1".

26.28 casmsgdc Option
The casmsgdc Message Store option specifies the datacenter of the msg keyspace. This option
defaults to "DC1".

26.29 cassolrdc Option
The cassolrdc Message Store option specifies the datacenter of the solr keyspace. This
option defaults to "DC1".

26.30 checkdiskusage Option
The checkdiskusage Message Store option enables stopping messages from being delivered
to a Message Store partition when the partition fills more than a specified percentage of
available disk space. If disk usage goes higher than the specified threshold, the store daemon
locks the partition and logs a message to the default log files. When disk usage falls below the
threshold, the partition is unlocked, and messages are again delivered to the store.

See also the alarm.system:diskavail.threshold option which sets a threshold for disk
availability below which an alarm message will be sent to the postmaster.

26.31 checkmailhost Option
The checkmailhost Message Store option enables checking that the user mailhost
attribute matches this server.

26.32 cleanupage Option

26–8 Messaging Server Reference

cleanupsize Option

The cleanupage Message Store option specifies the age (in hours) of an expired or expunged
message before purge will permanently remove it. The minimum allowed value is 1; the
maximum is 2400 (100 days).

26.33 cleanupsize Option
The cleanupsize Message Store option specifies the minimum number of expunged
messages before purge will permanently remove them.

26.34 dbcachesize Option Under store
The dbcachesize Message Store option specifies the mailbox list database cache size. Setting
the optimal cache size can make a big difference in overall Message Store performance. Cache
efficiency can be determined by running msg-svr-base/imcheck -s.

As of Messaging Server 7.0.5, the default for the Message Store option dbcachesize
is 67108864 (previously the default had been 16777216). Only values in the range
1048576-1073741824 (from 1024*1024 to 1024*1024*1024) will be used, with smaller values
being silently adjusted up, while attempting to set a larger value will result in only this
maximum being used (and a warning message, if warning level logging is enabled for the
Message Store).

Note that there is also a separate dbcachesize option available at the Message Store
msghash level, store.msghash.dbcachesize.

26.35 dblogregionmax Option
The dblogregionmax Message Store option sets the size of the underlying logging area of the
mboxlist environment, in bytes. The log region is used to store filenames and commit records.
The log region size should be at least (600 * number of message store processes) + (100 * max
commit records) + 32000. Values in the range 131072-2097152 (from 128*1024 to 2*1024*1024)
are permitted; the default is 655360 (640*1024).

26.36 dbnumcaches Option
The dbnumcaches Message Store option controls the number of mboxlist db caches. If
dbnumcaches is 0 or 1, the cache will be allocated contiguously in memory. If it is n greater
than 1, the cache will be broken up into n equally sized, separate pieces of memory. The
maximum value permitted is 32.

26.37 dbregionmax Option
The dbregionmax Message Store option sets the maximum amount of memory to be used
by shared structures in the mboxlist environment region. These are the structures used to
coordinate access to the environment other than mutexes and those in the page cache. Values
in the range 33554432-536870912 (from 32*1024*1024 to 512*1024*1024) are allowed, with the
default being 33554432.

26.38 dbsync Option

Message Store options 26–9

dbtmpdir Option

The dbsync Message Store option affects flushing of store database data to disk. If this is set to
1, cached database information will be flushed to disk before the database file is closed.

26.39 dbtmpdir Option
The dbtmpdir Message Store option specifies the mailbox list database temporary directory.
Defaults to /tmp/.ENCODED_SERVERROOT/store/, where ENCODED_SERVERROOT
is composed of mail server user plus the $SERVERROOT with / replaced by _.e.g. /
tmp/.mailsrv_opt_sun_comms_messaging64/store/

This is a directory which is very heavily accessed. If the disks that house the mboxlist database
temporary directory are not fast enough at very large sites, performance problems might
occur. As part of their performance and tuning steps, sites should take a note of this and define
a value for this parameter which either points to a memory mapped file system, or which
points to a location on a fast file system.

26.40 dbtype Option
The dbtype Message Store option specifies the Message Store type. Use 'bdb' for the classic
message store based on files and Oracle Berkeley DB or 'cassandra' for the Cassandra
message store. The Cassandra Message Store was introduced in Messaging Server 8.0.2 and
presently requires Unified Config. See the installation guide for additional requirements to run
Cassandra Mesage Store.

26.41 deadlockaggressive Option
A non zero integer N value for the deadlockaggressive Message Store option indicates
aggressive deadlock resolution, combined by delaying transaction retries by N seconds.

26.42 defaultmailboxquota Option
The defaultmailboxquota Message Store option specifies the default mailbox quota in
bytes, kilobytes, megabytes, or gigabytes, i.e., 3221225472, or 3145728K, or 3072M, or 3G.

Note that the maximum value that will be handled properly is 4294967292K.

Note that there is a user level LDAP attribute for setting per-user mailbox quota (overriding
for that user this Message Store defaultmailboxquota default quota). The user level LDAP
attribute is normally named mailQuota, but see the ldap_disk_quota MTA option; and see
also the ldap_domain_attr_disk_quota MTA option for defining a domain level LDAP
attribute.

26.43 defaultmessagequota Option
The defaultmessagequota Message Store option specifies the default message quota (in
number of messages).

Note that the maximum value that will be handled properly is 4294967292.

Note that there is a user level LDAP attribute for setting per-user message quota (overriding
for that user this Message Store defaultmessagequota default quota). The user level

26–10 Messaging Server Reference

defaultpartition Option

LDAP attribute is normally named mailMsgQuota, but see the ldap_message_quota MTA
option; and see also the ldap_domain_attr_message_quota MTA option for defining a
domain level LDAP attribute.

26.44 defaultpartition Option
The defaultpartition Message Store option specifies the default partition. The default
is "primary". Only applicable on INBOX. Subfolders will be created in the partition of the
parent folder.

For further configuration of partitions, see the Partition options.

26.45 diskusagethreshold Option
Specifies the disk-usage threshold for the partition-monitoring feature. (For details
about this feature, see the checkdiskusage option in Unified Configuration, or the
local.store.checkdiskusage parameter in legacy configuration). The value of
diskusagethreshold is a percentage from 1 to 99.

26.46 encryptnew Option
RESTRICTED: The encryptnew Message Store option enables encrypting new messages.

26.47 ensureownerrights Option
By default, the Message Store grants list and administer rights to a folder's owner. If the
ensureownerrights Message Store option is set to "0", however, then these owner rights
can be removed in order to create hidden folders.

26.48 expiresieve Option
The expiresieve Message Store option enables use of Sieve scripts in store.expirerule
file rule sets; it particular, it enables application of sieve attributes in such files.

26.49 expungesynclevel Option
The expungesynclevel Message Store option specifies the synchronization level for the
store expunge file, overriding the general synclevel value. 0: no sync, 1: data sync only, 2:
data sync and metadata sync (that is, all file attributes, including access time and modification
time).

If synclevel is at its default value (-1), then expungesynclevel defaults to 1. However,
if synclevel has been set to a non-default value, then that value also becomes the default for
expungesynclevel.

26.50 finalcheckpoint Option
If the finalcheckpoint Message Store option is set to 1, then the Message Store performs a
final checkpoint of the transaction log before closing the mailbox list database.

Message Store options 26–11

folderlockcount Option

26.51 folderlockcount Option
The folderlockcount Message Store option sets the maximum number of folder locks. The
minimum allowed value is 1000; the maximum is 100000.

26.52 indexeradmins Option
The indexeradmins Message Store option takes a space separated list of user ids with
Message Store indexer administrator privileges. The last access timestamp will not be updated
when authenticating with a user id in this list.

26.53 indexmapreadonly Option
The indexmapreadonly Message Store option is a potential optimization for NFS on some
operating systems. Normally Messaging Server opens the index file for read/write access and
maps that file for read-only use. When this option is set, Messaging Server will open the index
file twice, once in read/write and once in read-only mode and memory map the read-only
file descriptor. This may reduce performance on some filesystems (due to the extra file open
operation), but may be helpful if you're seeing high system CPU usage in munmap on NFS.

26.54 indexsynclevel Option
The indexsynclevel Message Store option specifies the synchronization level for store
index file, overriding the general synclevel value. 0: no sync, 1: data sync only, 2: data sync
and metadata sync (that is, all file attributes, including access time and modification time).

If synclevel is at its default value (-1), then indexsynclevel defaults to 1. However, if
synclevel has been set to a non-default value, then that value also becomes the default for
indexsynclevel.

26.55 keypass Option
RESTRICTED: Keystore password.

26.56 keylabel Option
RESTRICTED: The keylabel Message Store option specifies the label of the Message Store
key in the keystore.

26.57 listimplicit Option
When the listimplicit Message Store option is set to "1", implicitly shared folders will
appear in lists performed by store admins.

26.58 logexpungedetails Option
The logexpungedetails Message Store option controls whether details of expunge
operation will be logged. If set to "1", expunge details will be logged. Starting with Messaging

26–12 Messaging Server Reference

mailboxpurgedelay Option

Server 8.0.1, expunge details are logged to the transactlog if it is enabled. Starting with
Messaging Server 8.0.2, when the transactlog is enabled, this option is ignored and the actions
option controls whether expunge events are logged.

26.59 mailboxpurgedelay Option
The mailboxpurgedelay Message Store option When a mailbox is deleted by the end
user, expunge all the messages and purge the data after store.cleanupage has expired.
Expunged messages can be restored with 'mboxutil -R'. Expunged messages are moved to
the new location when a mailbox is renamed.

26.60 maxcachefilesize Option
The maxcachefilesize Message Store option specifies the maximum cache file size (in
bytes). A new cache file is created when the current cache file size has exceeded this limit.
Minimum value is 1048576.

26.61 maxfolders Option
The maxfolders Message Store option specifies a maximum number of folders per user. Set
to 0 (the default) for infinite.

26.62 maxlog Option
The maxlog Message Store option specifies the maximum number of allowable accumulated
database transaction log files before the server is deemed unhealthy, after which msprobe will
trigger a restart of stored.

26.63 maxmessages Option
The maxmessages Message Store option specifies a maximum number of messages per folder.

26.64 messagesynclevel Option
The messagesynclevel Message Store option specifies the synchronization level for store
message file, overriding the general synclevel value. 0: no sync, 1: data sync only, 2: data
sync and metadata sync (that is, all file attributes, including access time and modification
time).

If synclevel is at its default value (-1), then messagesynclevel defaults to 1. However,
if synclevel has been set to a non-default value, then that value also becomes the default for
messagesynclevel.

26.65 overquotastatus Option
The overquotastatus Message Store option enables tracking of user quota status, thus
enabling quota enforcement before messages are enqueued in the MTA and thereby reducing
the potential for MTA queues to fill up. When set, and a user is not yet over quota, but
an incoming message pushes the user over quota, then the message is delivered, but the

Message Store options 26–13

perusersynclevel Option

mailUserStatus LDAP attribute is set (by the Message Store) to overquota so no more
messages will be accepted by the MTA.

Note that enbling the overquotastatus Message Store option causes the quotaoverdraft
Message Store option to be enabled automatically.

26.66 perusersynclevel Option
The perusersynclevel Message Store option specifies the synchronization level for the
store peruser file, overriding the general synclevel value. 0: no sync, 1: data sync only, 2:
data sync and metadata sync (that is, all file attributes, including access time and modification
time).

If synclevel is at its default value (-1), then perusersynclevel defaults to 1. However,
if synclevel has been set to a non-default value, then that value also becomes the default for
perusersynclevel.

26.67 pin Option
The pin Message Store option specifies a list of IMAP mailbox names -- in common
terminology, folder names -- to protect from deletion or modification except by the Message
Store Administrator. The format is as follows: "mailbox1%mailbox2%mailbox3", where
mailbox1, mailbox2 and mailbox3 are the IMAP mailboxes to be protected (note that
spaces can be used in mailbox names), and % is the separator between each mailbox.

For instance, if a Messaging Server administrator has used

mboxutil -r mboxname mboxname partition

to move certain folders to a specified partition and wishes to ensure that the folders stay
on that specified partition, rather than getting deleted and recreated on another partition,
(for instance, has moved "Trash" and "Spam" folders to less expensive storage), then the
administrator will also want to "pin" the folders in question, e.g.:

msconfig> set store.pin Trash%Spam

26.68 quotaenforcement Option
The quotaenforcement Message Store option enables quota enforcement. When off, the
quota database is still updated, but messages are always delivered.

26.69 quotaexceededmsg Option Under store
The quotaexceededmsg Message Store option specifies the warning message
to be sent to a user when a user's quota exceeds the warning threshold. In default
operation (quotaoverdraft not enabled), the warning threshold is determined by the
quotawarn Message Store option (legacy configuration, store.quotawarn). But when
quotaoverdraft has been enabled, either explicitly or implicitly via overquotastatus,
then instead the warning is generated only when a user actually exceeds their quota.

There is support for the following variable substitutions:

26–14 Messaging Server Reference

quotaexceededmsginterval
Option

[ID] userid

[DISKUSAGE] disk usage

[DOMAIN] user's domain (new in 8.0.1.3)

[NUMMSG] number of messages

[PERCENT] store.quotawarnpercentage

[POSTMASTER] postmaster address for user's domain (new in 8.0.1.3)

[QUOTA] mailquota attribute value

[MSGQUOTA] mailmsgquota attribute value

The message must contain a header (with at least a subject line), followed by $$, then the
message body. The $ represents a new line.

Note that the From: header line on the notification message will be:

From: Mail Administrator <Postmaster@base.hostname>

substituting in the value of base.hostname (or local.hostname in legacy configuration).

26.70 quotaexceededmsginterval Option
The quotaexceededmsginterval Message Store option specifies the interval (in days) to
wait before sending another quota exceeded message.

26.71 quotagraceperiod Option
The quotagraceperiod Message Store option specifies the time (in hours) a mailbox must
be over quota before messages to the mailbox will bounce back to the sender.

26.72 quotanotification Option
The quotanotification Message Store option enables quota notification for the Message
Store. Such notification may include both an actual e-mail message, generated at a frequency
controlled by the quotaexceededmsginterval Message Store option, and (if the user's e-
mail client supports IMAP ALERT) also a notification pop-up on the user's e-mail client screen
every time the user selects a mailbox.

Note that the quotanotification option must be disabled (at least temporarily) when
using the imquotacheck utility to generate quota warning messages, so that the quota
database's last-warn-time can be properly updated.

26.73 quotaoverdraft Option
The quotaoverdraft Message Store option is used to provide compatibility with systems
that migrated from the Netscape Messaging Server. When set to 1, the Message Store allows
delivery of one additional message that puts disk usage over quota. After the user is over

Message Store options 26–15

quotawarn Option

quota, any additional messages are deferred or bounced, the quota warning message is
sent, and the quota grace period timer starts. The option is treated as being enabled if the
overquotastatus option is set.

Note that enabling quotaoverdraft means that quota enforcement does not start until after
a user goes over quota, and in particular, means that the quotawarn Message Store option
(used to warn users that they are nearing their quota limit when strict, no-overdraft, quota
limits are in effect) does not take effect.

26.74 quotawarn Option
The quotawarn Message Store option specifies the percentage of quota that must be exceeded
before clients are sent an over quota warning.

Note that such quota warning messages are only generated automatically when strict
quota enforcement is in effect: that is, when the quotaoverdraft Message Store option
is not enabled (whether explicitly or implicitly due to overquotastatus having being
enabled). To generate quota warning messages before a user has exceeded their quota when
quotaoverdraft is permitted, instead see the imquotacheck utility.

26.75 rollingdbbackup Option
The rollingdbbackup Message Store option controls whether rolling store database
backups are made. The default is 1, meaning that such database backups are made.

26.76 searchengine Option
The searchengine Message Store option specifies the Message search engine type. Use
'iss' for the ISS search engine on Classic store (bdb); 'dse' for the DSE/Solr search engine on
DSE Cassandra message store; Or, 'elastic' for the Elasticsearch engine on Classic message
store and Cassandra store. The DSE Cassandra Message Store with Solr search engine was
introduced in Messaging Server 8.0.2 and is no longer supported starting with Messaging
Server 8.1. The Classic Store with Elasticsearch engine was introduced in Messaging Server
8.0.2.2. The Cassandra Message Store with Elasticsearch engine was introduced in Messaging
Server 8.0.2.3. Both Open Source Cassandra and DSE Cassandra are supported. See the Index
and Search section for additional requirements to run Elasticsearch. When searchengine isn't
set, the messaging Server uses DSE/Solr on Cassandra store, ISS if ISS is enabled or brute force
on Classic store.

26.77 seenckpinterval Option
The seenckpinterval Message Store option sets the peruser db archive interval (in number
of hours). The default is 6. Set to 0 to disable peruser archiving.

26.78 seenckpstart Option
The seenckpstart Message Store option sets the initial hour of the peruser db archive after
stored starts running. Allowed values are 0 (midnight) - 23 (11PM). The default is 0.

26.79 serviceadmingroupdn Option

26–16 Messaging Server Reference

sharedfolders Option

The serviceadmingroupdn Message Store option specifies the DN of the service
administrator group.

Normally initial configuration sets this option to a value of the form:

cn=Service Administrators,ou=Groups, <local.ugldapbasedn>

26.80 sharedfolders Option
The sharedfolders Message Store option enables shared folder listing and namespaces.
SELECT and LSUB are not affected by this option. Users can SELECT their shared folders and
use LSUB to list subscribed shared folders when this option is disabled.

26.81 snapshotdirs Option
The snapshotdirs Message Store option specifies the number of separate snapshots to store
on disk. Minimum is 2. Recommend enough to be sure you have a good database back by the
time you figure out the current one is beyond repair.

26.82 snapshotpath Option
The snapshotpath Message Store option specifies the path in which to copy the mboxlist
directory. Permissions must be set for the message store owner. Snapshots will be placed in
subdirectories.

26.83 subscribesynclevel Option
The subscribesynclevel Message Store option controls the synchronization level for store
subscribe file, overriding the general synclevel value. 0: no sync, 1: data sync only, 2: data
sync and metadata sync (that is, all file attributes, including access time and modification
time).

If synclevel is at its default value (-1), then subscribesynclevel defaults to 1. However,
if synclevel has been set to a non-default value, then that value also becomes the default for
subscribesynclevel.

26.84 synclevel Option
The synclevel Message Store option specifies the default sync level for store files. -1: no
default, 0: no sync, 1: data sync only, 2: data sync and metadata sync (that is, all file attributes,
including access time and modification time).

The synchronization level may be set more specifically for particular types of Message
Store files, overriding this general synclevel setting, via the more specific options
messagesynclevel, cachesynclevel, indexsynclevel, expungesynclevel,
perusersynclevel, and subscribesynclevel.

26.85 undeleteflag Option

Message Store options 26–17

umask Option

When the undeleteflag Message Store boolean option is set, it causes imapd to set an
explicit $undeleted message flag when the \Deleted flag is removed. This feature allows
clients to detect when a previously deleted message is no longer deleted, which can be helpful
when providing a gateway to a protocol that has to treat this scenario as if a new message
arrived. The $undeleted message flag has no additional special semantics and may be set or
cleared by clients if the IMAP ACL on the mailbox permits flag changes.

26.86 umask Option
The umask Message Store option specifies the file mode creation mask (in octal) for many
files created by Messaging Server, including the MTA as well as the Message Store. By default,
store file access by other users or users in the same group is forbidden by file permissions.
Setting umask to '027' will allow users in the same primary group as the Messaging Server
user to read subsequently created message store files. A more restrictive '037' setting may be
appropriate for log file access. See also the filemode logfile option.

26.87 Message Store archive options
There are a number of options relating to the Message Store's facility for performing
compliance archiving. (Note that if configured to perform archiving, the Message Store
generates archive message copies when users perform IMAP APPEND operations. Message
Store archiving is enabled by setting store.archive.compliance or See also use of the
archive value of the action attribute in imexpire's store.expirerule files to perform
archiving, rather than expiration, of messages meeting expiration rule set criteria. See also
Archiving messages for discussion of configuring the MTA to generate archive message copies
while messages are transitting the MTA.) Note that a list of such options and related topics
may be obtained using the command:

msconfig> apropos archive

A Message Store archive option may be set using a command such as

msconfig> set store.archive.option-name option-value

See also the store.msghash.enable and store.msghash.nummsgs options.

See also the general discussion of Archiving messages.

New in MS 8.0.1, the Message Store supports generating archive message copies in Microsoft
Exchange "envelope journaling" format, directed to some archival address; see the style,
destination, and source_channel Archive options in particular.

New in MS 8.0.1, the Message Store no longer supports the operational archiving option.
DELETED: operational.

For debugging of archiving operations, see also the archive keyword of the debugkeys
option.

26.87.1 tmpdir Option Under archive

26–18 Messaging Server Reference

compliance Option

The tmpdir Message Store archive option specifies the temporary directory for archived
message retrieval. If not set, the tmpdir Base option value (local.tmpdir in legacy
configuration) is used.

On Linux, this option should instead be set to /dev/shm/.

26.87.2 compliance Option
The compliance Message Store archive option enables compliance archive.

26.87.3 operational Option
The operational Message Store archive option enables operational archive. DELETED:
Removed in MS 8.0.2.

26.87.4 source_channel Option
The store.archive.source_channel option specifies the name of the MTA channel
used to submit Microsoft Exchange Journal format messages. This option must be set
(to the name of a valid MTA channel) when Message Store archive journal format is set
(store.archive.style=3). It is recommended that a distinct MTA channel be created for
this Message Store journal archive purpose, so that such submissions are clearly identifiable in
the MTA message transaction logs.

26.87.5 destination Option
If set, the store.archive.destination option specifies the address where Exchange
Journal format archive messages generated by message store compliance archiving are to be
sent. If the option is not set, archive messages are sent to the addresses specified in the domain
capture and user capture LDAP attributes associated with the user performing the IMAP
APPEND operation.

26.87.6 style Option
The store.archive.style option controls the archive format that is created by store
compliance archiving. Currently the supported values are:

1. AXS:One

2. it.com format

3. Microsoft Exchange Journal format

The default value is 1, meaning AXS:One archiving is the default.

26.87.7 reportdir Option
Archive confirm report directory.

26.87.8 intext Option
The intext Message Store archive option controls whether or not address reversal
processing is done while archiving to determine whether addresses are internal or external.

Message Store options 26–19

posteddatemode Option

26.87.9 posteddatemode Option
The posteddatemode Message Store archive option controls how the Axs:One PostedDate
field is populated. A setting of 0 uses the header Date: field. A positive value N that's less than
100 uses the date information from the Nth header Received: field counting from the top of the
header. A negative value N greater than -100 uses the date information from the (-N)th header
Date: field counting from the bottom of the header. A value of 100, the default, uses the IMAP
message internal date.

26.87.10 useheaderrecipients Option
The useheaderrecipients Message Store archive option controls whether header recipient
addresses (To:, Cc:, and Bcc: fields) are treated as specifying actual message recipients. In
operational mode no envelope information is available, so header information is the only
source of possible message recipients.

26.87.11 retrieveport Option
The retrieveport Message Store archive option specifies the archive retrieve server port.

26.87.12 retrieveserver Option
Archive retrieve server.

26.87.13 retrievetimeout Option
The retrievetimeout Message Store archive option specifies the archive retrieve timeout
in seconds.

26.87.14 path Option Under archive
The path Message Store archive option specifies the archive injection directory.

26.88 Message Store checkpoint options
There are a few options relating to the Message Store's facility for checkpointing.

26.88.1 stresslimit Option
The stresslimit Message Store checkpoint option specifies the maximum stored
checkpoint duration in seconds. Throttling starts when checkpoint duration exceeds this limit.

26.88.2 debug Option Under checkpoint
The debug Message Store checkpoint option (i.e., store.checkpoint.debug), if set,
enables stored checkpoint debug.

26.89 Message Store dbreplicate options

26–20 Messaging Server Reference

enable Option Under dbreplicate

There are a number of options relating to the Message Store's facility for performing
replication of its database. Note that a list of such options and related topics may be obtained
using the command:

msconfig> apropos dbreplicate

A Message Store dbreplicate option may be set using a command such as

msconfig> set store.dbreplicate.option-name option-value

26.89.1 enable Option Under dbreplicate
Tne enable Message Store dbreplicate option enables the mboxlist database replication
feature.

26.89.2 port Option Under dbreplicate
The port Message Store dbreplicate option specifies the mailbox list database replication
TCP port number. The default is 55000. This will be used to listen for incoming connections.

26.89.3 dbremotehost Option
The dbremotehost Message Store dbreplicate option specifies a space separated list of
remote hosts in the replication group. Host format is host[:port]. If port is not specified,
default port number 55000 is used. If this is not set, but a storehostlist value is set
for a proxy group including the current server, then this will default to the value of that
storehostlist setting.

26.89.4 dbpriority Option
The dbpriority Message Store dbreplicate options specifies the replication site priority
in group elections. A special value of 0 indicates that this site cannot be a replication group
master.

26.89.5 twosites Option
The twosites Message Store dbreplicate option enables two sites replication. When this
option is disabled, the Message Store cannot take over as master if the original master fails in a
replication group with only two sites. In the event this happens, the Message Store cluster will
be unavailable for write access. A two-site replication group is vulnerable to duplicate masters
when there is a disruption to communications between the sites. You should strongly consider
having three or more electable sites in your replication group. All sites in the group must have
the same value for this option.

26.89.6 queuemax Option
The queuemax Message Store dbreplicate options specifies the replication manager
incoming queue size limit.

26.89.7 ackpolicy Option

Message Store options 26–21

acktimeout Option

The ackpolicy Message Store dbreplicate option controls the replication manager
transaction commit acknowledgment policy. All nodes in a cluster must have the same policy.
Valid values are:

• 0 = Do not wait for any client replication message acknowledgments.
• 1 = Wait until at least one client site has acknowledged.
• 2 = Wait until at least one electable peer has acknowledged.
• 3 = Wait until it has received acknowledgements from the majority of electable peers.
• 4 = Wait until all electable peers have acknowledged.
• 5 = Wait until all connected clients have acknowledged.
• 6 = Wait until all replicaton clients have acknowledged.

26.89.8 acktimeout Option
The acktimeout Message Store dbreplicate options specifies the amount of time, in
seconds, the replication manager waits to collect enough acknowledgments from replication
group clients, before giving up and returning a failure indication.

26.90 Message Store deadlock options
Under the deadlock group are a few Message Store options relating to deadlocks. See also
the Message Store option (directly under store, rather than under store.deadlock)
deadlockaggressive.

26.90.1 autodetect Option
The autodetect Message Store deadlock option sets whether all or just one thread resolves
deadlock.

26.90.2 checkinterval Option
The checkinterval Message Store deadlock option specifies the sleep length in
milliseconds between deadlock detections. Note that previous versions of the documentation
for this option (such as provided by configutil -H) incorrectly stated the units as
microseconds, but the implementation has always interpreted this as milliseconds.

26.91 Message Store expire options
The exploglevel option is presently the only Message Store option specifically set under
the expire group.

Several former expire Message Store options have been deleted.

Additional Unified Configuration Message Store options relating to message expiry (but which
are not specifically store.expire options) include:

• schedule.task:expire.crontab
• store.expiresieve
• store.expirerule.* options
• store.cleanupage
• store.mailboxpurgedelay

26–22 Messaging Server Reference

exploglevel Option

Also see the Scheduler options for the expire task:

• schedule.task:expire.enable
• schedule.task:expire.crontab

26.91.1 exploglevel Option
The exploglevel Message Store expire option specifies an expire log level.

• 0: no log.
• 1: log summary for the entire expire session.
• 2: log one message per mailbox expired.
• 3: log one message per message expired.

26.92 Message Store expirerule options
There are two separate ways to configure the Message Store's rules for expiring (purging) old
(or otherwise undesired) messages. Global expiration rules can be defined via Message Store
expirerule options (or the corresponding configutil parameters in legacy configuration),
as discussed below; however, the preferred (more flexible, and more performant) approach is
to define expiration rules using store.expirerule files. See the discussion of such files, as
they allow more flexible, targetted rule sets (such as different per-user or per-partition rules),
and they support additional criteria, and their use is more efficient for larger numbers of rules.

There are a number of options relating to the Message Store's rules for expiring (purging) old
(or otherwise undesired) messages. Note that a list of such expiration rule options and related
topics may be obtained using the command:

msconfig> apropos expirerule

A Message Store expirerule option may be set using a command such as

msconfig> set store.expirerule.option-name option-value

See also Message Store expire options for a list of additional Message Store options relating to
message expiry (but which are not expirerule options), and see the expiresieve Message
Store option which can enable use of Sieve filter tests in expire rules, and the discussion
of imexpire invoking spamfilter packages. For the scheduling of automatic execution of
imexpire, see the Scheduler expire task.

26.92.1 deleted Option
Syntax: "and"|"or".

When the deleted Message Store expirerule option is set to "or", expire messages if the
'\Deleted' IMAP system flag is set or other criteria in the expire rule are met. When set to
"and", expire messages if the '\Deleted' IMAP system flag is set and other criteria in the
expire rule are met.

26.92.2 exclusive Option

Message Store options 26–23

folderpattern Option

When the exclusive Message Store expirerule option is set to "1", it is the only rule
applied even if other rules match the given criteria.

26.92.3 folderpattern Option
The folderpattern Message Store expirerule option specifies the folders for which the
rule apply. The value must start with a "user/", which represents the directory store-root/
partition/*/.

Syntax: POSIX regular expression. For examples, refer to imexpire folder patterns.

26.92.4 foldersizebytes Option
The foldersizebytes Message Store expirerule option specifies the maximum number
of bytes in folder. Older messages will be expunged if this limit is exceeded.

26.92.5 messagecount Option
The messagecount Message Store expirerule option specifies the upper limit on number
of messages to be kept in the specified folders. Older messages will be expunged if this limit is
exceeded.

26.92.6 messagedays Option
The messagedays Message Store expirerule option specifies the upper limit on the age
of messages in the specified folder(s), using for message age the time when a message was
originally deposited into the Message Store; messages "old" in terms of original delivery to
the Message Store can thus be deleted even if such a message has only recently been moved to
the current folder. Compare with the expire rule file setting "savedays", which uses the time
since a message was placed into the current folder.

26.92.7 messagesize Option
The messagesize Message Store expirerule option specifies the size of an over-sized
message.

26.92.8 messagesizedays Option
The messagesizedays Message Store expirerule option specifies the days an over-sized
message should remain in a folder.

26.92.9 seen Option
Syntax: "and"|"or".

When the seen Message Store expirerule option is set to "or", expire messages if the
'\Seen' system flag is set or other criteria in the expire rule are met. When set to "and", expire
messages if the '\Seen' system flag is set and other criteria in the expire rule are met.

26.93 Message Store folderquota options

26–24 Messaging Server Reference

enable Option Under folderquota

Currently, the only Message Store folderquota option is enable.

26.93.1 enable Option Under folderquota
The enable Message Store folderquota option enables quota by folder.

26.94 Message Store messagetype and
typequota options

The Message Store messagetype option enable enables Message Store message typing;
by default, the standard MIME Content-type: header field is inspected, but optionally the
messagetype option header may be set, for sites that wish to inspect an alternate header
field (the Message-context: header field, defined in RFC 3458 (Message Context for Internet
Mail) can be a good choice); then under messagetype the further integer-indexed mtindex
groups of options contenttype and flagname specify the actual message types, and
optionally a corresponding quotaroot may be set for purposes of type-specific quotas. That
is, with the header Message Store messagetype option specifying what header field to
inspect, then integer-indexed sets of mtindex options define the types themselves, where
an integer-indexed mtindex contenttype option defines a value to recognize in that
header field, and then the correspondingly indexed flagname Message Store messagetype
mtindex option specifies the Message Store name to use for such messages; e.g.:

msconfig> set store.messagetype.enable 1
msconfig# set store.messagetype.header Message-context
msconfig# set store.messagetype.mtindex:1.contenttype voice-message
msconfig# set mtindex:1.flagname Voice
msconfig# set mtindex:2.contenttype fax-message
msconfig# set mtindex:2.flagname Fax
msconfig# set mtindex:3.contenttype pager-message
msconfig# set mtindex:3.flagname Pager
msconfig# set mtindex:4.contenttype multimedia-message
msconfig# set mtindex:4.flagname Multimedia
msconfig# set mtindex:5.contenttype text-message
msconfig# set mtindex:5.flagname Text

Sites that wish to perform Message Store message typing that find they are receiving messages
lacking the header line which the site wishes to use as a basis for message typing decisions,
(e.g., receiving messages lacking Message-context:), may wish to consider configuring an
MTA system level Sieve filter to add an appropriate header line based upon other message
characteristics (e.g., an addheader action based upon the message's outermost MIME
Content-type: header line) to provide a basis for the Message Store's message typing.

Sites that wish to enforce per-message-type quotas would also set the enable Message
Store typequota option, and define per-message-type quotas using the quotaroot option
under Message Store messagetype with mtindex appropriately indexed for each type. For
instance, continuing the above example (that is, assuming that five message types have already
been defined as above), enabling use of user per-message-type quotas would involve:

msconfig# set store.typequota.enable 1
msconfig# set store.messagetype.mtindex:1.quotaroot Voice

Message Store options 26–25

https://tools.ietf.org/html/rfc3458
https://tools.ietf.org/html/rfc3458

enable Option Under
messagetype

msconfig# set mtindex:2.quotaroot Fax
msconfig# set mtindex:3.quotaroot Pager
msconfig# set mtindex:4.quotaroot Multimedia
msconfig# set mtindex:5.quotaroot Text

and then setting a user's actual quotas would mean setting the user's MailQuota LDAP
attribute (quota on space) and/or mailMsgQuota LDAP attribute (quota on number of
messages) with per-message-type value syntax; e.g.:

mailQuota: 80M;#Voice%40M;#Fax%10M;#Pager%5M;#Multimedia%20M;#Text%10M
mailMsgQuota: 10000;#Voice%300;#Fax%40;#Pager%300;#Multimedia%300;#Text%9000

26.94.1 enable Option Under messagetype
The enable Message Store messagetype option enables the Message Store's message typing
feature.

26.94.2 enable Option Under typequota
The enable Message Store typequota option is checked only if Message Store message
typing has been enabled (store.messagetype.enable is 1). When Message Store message
typing has been enabled, then setting store.typequota.enable enables quota by message
type. To set different quotas for different message types, see the quotaroot Message Store
messagetype mtindex option.

26.94.3 header Option
By default, Message Store message typing (if enabled -- see the
store.messagetype.enable option) determines message type from the MIME Content-
type: header field. The header Message Store messagetype option allows a site to inspect an
alternate header field for Message Store message typing purposes.

26.94.4 contenttype Option
The contenttype Message Store messagetypemtindex option defines a message type.
More specifically, each integer-indexed mtindexcontenttype value defines a string to
recognize on the store.messagetype.header field, whereas the correspondingly integer-
indexed flagname Message Store messagetype mtindex option specifies the Message
Store name to use for such messages.

26.94.5 flagname Option
The flagname Message Store messagetype mtindex option specifies the flag name
of a message type. The flagname option would always be used in conjunction with a
(correspondingly indexed mtindex) contenttype option.

26.94.6 quotaroot Option
The quotaroot Message Store messagetype mtindex option specifies the quota root
suffix for a message type. (See the IMAP QUOTA extension, RFC 2087.) The quotaroot

26–26 Messaging Server Reference

https://tools.ietf.org/html/rfc2087

Message Store msghash options

option would always be used in conjunction with a (correspondingly indexed mtindex)
contenttype and flagname options.

Note that enforcement of different quotas for different message types will not occur unless the
enable Message Store typequota option has been set (and of course also the user's LDAP
entry must define different quotas in its mailQuota and/or mailMsgQuota LDAP attributes).

26.95 Message Store msghash options
A Message Store msghash option may be set using a command such as

msconfig> set store.msghash.option-name option-value

26.95.1 enable Option Under msghash
The enable Message Store msghash option enables message hash database.

26.95.2 dbcachesize Option Under msghash
The dbcachesize Message Store msghash option, store.msghash.dbcachesize,
specifies the message hash database cache size. Only values in the range 524288-536870912
(from 512*1024 to 512*1024*1024) will be used (other values will be silently adjusted into that
range), with the default being 8388608 (8*1024*1024).

Note that this store.msghash.dbcachesize option is separate from the
store.dbcachesize option, which controls a different cache size.

26.95.3 nummsgs Option
The nummsgs Message Store msghash option specifies the message hash database size.

26.96 Message Store purge options
The Message Store has several options under the purge group:

• count
• enable
• maxthreads
• percentage

A Message Store purge option may be set using a command such as

msconfig> set store.purge.option-name option-value

Additional Message Store options that relate to purging of messages but which are not under
purge include:

• store.cleanupage
• store.cleanupsize
• store.mailboxpurgedelay

Message Store options 26–27

enable Option Under purge

• store.relinker.maxage
• store.relinker.purgecycle

Also see the Scheduler expire task options

• schedule.task:expire.enable
• schedule.task:expire.crontab

26.96.1 enable Option Under purge
The enable Message Store purge option, store.purge.enable (Unified Configuration)
or local.purge.enable (legacy configuration), enables the purge server on start-msg
startup. Initial configuration normally sets this option based on the setting of the enable
Message Store option, store.enable (Unified Configuration) or local.store.enable
(legacy configuration).

If store.enable is 0, the value of this option is ignored and the impurge daemon is not
started. If store.enable is 1, the impurge daemon will run unless this option is explicitly set
to 0.

Note that a setting of store.purge.enable=1 (whether set explicitly, or in effect due
to store.enable=1) enables the Message Store impurge process to run as a daemon
(server) process. Alternatively, it is possible to instead disable such a daemon process,
store.purge.enable=0, and instead configure the Scheduler to execute an impurge
command periodically, using a Scheduler task. impurge cannot be executed manually by
an administrator, nor run by the Scheduler, if it is already running as a daemon process;
attempting to run it again will result in an error in the Messaging Server default log file
along the lines of:

[24/Feb/2009:14:47:15 +1100] hostname impurge[17986]: General Error: Could not get purge session lock. Possibly another impurge is running

26.96.2 count Option
The count Message Store purge option specifies the minimum number of expunged cache
records (for a folder) before purge will permanently remove them. The minimum allowed
value is 1; maximum is 1000000.

26.96.3 maxthreads Option Under purge
The maxthreads Message Store purge option specifies the maximum number of threads. The
default is 64; the maximum value that will be used is 100; attempts to set a higher value will
result in a value of 100 getting used.

26.96.4 percentage Option
The percentage Message Store purge option specifies the percentage of expunged cache
records (for a folder) before purge will permanently remove them.

26.96.5 crontab Option Use With purge Under task
The crontab Scheduler task option for the purge task controls the interval for
running imsimta purge, enabled with schedule.task:purge.enable (Unified

26–28 Messaging Server Reference

Message Store relinker options

Configuration) which defaults to the value of mta.enable, (or in legacy configuration
local.schedule.purge.enable which defaults to the value of local.imta.enable).
imsimta purge removes older MTA log files. schedule.task:purge.crontab uses
UNIX crontab format: minute hour day-of-month month-of-year day-of-week command
arguments.

Initial configuration sets this to:

msconfig> show schedule.task:purge.crontab
role.schedule.task:purge.crontab = 0 0,4,8,12,16,20 * * * bin/imsimta purge -num=5

26.97 Message Store relinker options
A Message Store relinker option may be set using a command such as

msconfig> set store.relinker.option-name option-value

26.97.1 enable Option Under relinker
The enable Message Store relinker option enables real-time re-linking of messages in the
append code, and stored purge. The relinker command-line tool may be run even if this
option is off, however since stored will not purge the repository, relinker -d must be
used for this task. Turning this option on affects message delivery performance in exchange for
the disk space savings.

26.97.2 maxage Option
The maxage Message Store relinker option specifies the maximum age in hours for
messages to be kept in the repository, or considered by the relinker command-line. -1
means no age limit, that is, only purge orphaned messages from the repository. For relinker
it means process existing messages regardless of age. Shorter values keep the repository
smaller thus allow relinker or stored purge to run faster and reclaim disk space faster,
while longer values allow duplicate message re-linking over a longer period of time, for
example, when users copy the same message to the store several days apart, or when running
a migration over several days or weeks.

26.97.3 minsize Option
The minsize Message Store relinker option specifies the minimum size in kilobytes for
messages to be considered by run-time or command-line relinker. Setting a non-zero value
gives up the relinker benefits for smaller messages in exchange for a smaller repository.

26.97.4 purgecycle Option
The purgecycle Message Store relinker option specifies the approximate duration in
hours of an entire stored purge cycle. The actual duration depends on the time it takes to
scan each directory in the repository. Smaller values will use more I/O and larger values will
not reclaim disk space as fast. 0 means run purge continuously without any pause between
directories. -1 means don't run purge in stored (then purge must be performed using the
relinker -d command).

Message Store options 26–29

Message Store shared folder
options

26.98 Message Store shared folder options
Message Store privatesharedfolders options include:

• restrictanyone
• restrictdomain
• shareflags

Message Store publicsharedfolders options include:

• user

Other Message Store options relating to shared folders include:

• store.listimplicit
• store.sharedfolders

Other components with options relating to shared folders include:

• proxyserverlist base option
• imap.immediateflagupdate

26.98.1 restrictanyone Option
The restrictanyone Message Store privatesharedfolders option disallows regular
users sharing private folders to anyone.

26.98.2 restrictdomain Option
Classic store only. The restrictdomain Message Store privatesharedfolders option
disallow regular users sharing private folders to users in another domain. This option has no
effect in cassandra store. Regular users cannot share private folders to users in another domain
in cassandra store.

26.98.3 shareflags Option
The shareflags Message Store privatesharedfolders option controls whether private
shared folders share \Seen and \Deleted flags across users.

26.98.4 user Option Under publicsharedfolders
The user Message Store publicsharedfolders option specifies the public shared folder
owner's store user identity. For non-ASCII users or domains, this should use the Net-Unicode
(RFC 5198) form of the user and domain (IDN A-labels should not be used).

26–30 Messaging Server Reference

Chapter 27 message_language options
27.1 quotaexceededmsg Option Under message_language .. 27–1
27.2 welcomemsg Option Under message_language ... 27–1

There are a few options available for localizing certain automatically generated
messages. These options may be set under named message_language groups, e.g.,
message_language:language-name.option-name.

27.1 quotaexceededmsg Option Under
message_language

The quotaexceededmsg option under a named message_language group specifies a
localized message to be sent to user when quota exceeds the warning threshold. In default
operation (quotaoverdraft not enabled), the warning threshold is determined by the
quotawarn Message Store option (legacy configuration, store.quotawarn). But when
quotaoverdraft has been enabled, either explicitly or implicitly via overquotastatus,
then instead the warning is generated only when a user actually exceeds their quota.

There is support for the following variables:

[ID] userid

[DISKUSAGE] disk usage

[DOMAIN] user's domain (new in 8.0.1.3)

[NUMMSG] number of messages

[PERCENT] store.quotawarnpercentage

[POSTMASTER] postmaster address for user's domain (new in 8.0.1.3)

[QUOTA] mailquota attribute value

[MSGQUOTA] mailmsgquota attribute value

The message must contain a header (with at least a subject line), followed by $$, then the
message body. The $ represents a new line.

27.2 welcomemsg Option Under
message_language

The welcomemsg option specified under a named message_language specifies a localized
welcome message for new Message Store users. The maximum size is 1 MB.

Syntax: "$" line separators, with headers.

message_language options 27–1

27–2

Chapter 28 Partition options
28.1 messagepath Option .. 28–1
28.2 cachepath Option .. 28–1
28.3 path Option Under partition .. 28–1
28.4 path Option Use With primary Under partition .. 28–1

There are several options specifically concerning Message Store partitions. A partition
option may be set using a command such as:

msconfig> set partition:primary.path partition1

For other, general Message Store configuration, see the Message Store options, such as
checkdiskusage and defaultpartition.

28.1 messagepath Option
The messagepath partition option specifies the path name of a store partition containing the
message files. If this is not a full path, this is relative to the /store/partition subdirectory
of the DATAROOT data directory. If not specified, the value for the partition:partition-
name.path option (in legacy configuration, the store.partition.*.path configutil
parameter) is used.

28.2 cachepath Option
The cachepath partition option specifies the path name of a store partition containing
the mailbox cache files. If this is not a full path, this is relative to the store/partition
subdirectory of the data directory (DATAROOT). If not specified, the value for
the partition:partition-name.path option (in legacy configuration, the
store.partition.*.path configutil parameter) is used.

28.3 path Option Under partition
The path partition option specifies the path name of a Message Store partition. If this is
not a full path, this is relative to the store/partition subdirectory of the data directory
(DATAROOT).

The partition:partition-name.path value is also used as the default for the
messagepath and cachepath partition options, if they are not set explicitly.

Note that message expiration rules for this partition may be stored in files located in this
directory; see store.expirerule files.

28.4 path Option Use With primary Under
partition

The partition:primary.path option specifies the path name of the primary partition; (if
not a full path, this is relative to the store/partition subdirectory of the data directory).

Partition options 28–1

path Option Use With primary
Under partition

Note that the defaultpartition Message Store option defaults to "primary" -- so the
definition of the partition named "primary" normally defines the partition that the Message
Store uses by default.

28–2 Messaging Server Reference

Chapter 29 backup_group options
29.1 re_pattern Option .. 29–1

Under backup_group, there is a single option, re_pattern.

See also the backupexclude Message Store option.

29.1 re_pattern Option
The re_pattern option under backup_group specifies the regular expression pattern used
to select a group of user mailboxes for backup. If no patterns are specified for any backup
groups, the backup group 'user' can be used (defined with the pattern '%') which matches all
users.

backup_group options 29–1

29–2

Chapter 30 Store Transaction Log
Format

30.1 XML Log Attributes Always Present in Store Transaction log 30–1
30.2 XML Log Common Attributes ... 30–1
30.3 XML Log Entity Names and Specific Attributes: ... 30–2

Message store XML transaction logging is enabled by setting the messagetrace.activate
option to transactlog. Both the MTA and store have legacy transaction log formats that are
deprecated in favor of the XML format. For a discussion of the MTA XML logging format, see
the log_format MTA option.

Each log entry is a self-closing XML entity with a two-letter entity name that contains
attributes (also with two-letter names). New attributes may be added and the attributes may
be re-ordered in any patch release, so use of an XML-aware parser is recommended. The
content of the log is intended to be extended in a backwards-compatible format (with possible
exceptions for a major release), unlike the legacy store messagetrace and server log formats
which are unstable. Due to the size of transaction log files on busy systems, use of a SAX-style
parser is recommended.

To control what actions are logged, use the actions option (unified configuration only). To
control what attributes are logged, use the actionattributes option. Note that the MTA uses
a different mechanism to control what is logged; see the Transaction logging MTA options
section.

30.1 XML Log Attributes Always Present in
Store Transaction log

The following attributes appear on all Store Transaction Log entries and are thus not
mentioned in the event-specific descriptions below:

• pi - Process id (integer). Note that the MTA uses a different format for this attribute
documented in the log_process option.

• sn - service name (e.g., imap, pop, imquotacheck)

• ts - time stamp. Both MTA & store use ISO 8601 format as of 8.0.2; but in 8.0 the store used a
legacy timestamp format.

30.2 XML Log Common Attributes
The following attributes may appear on several XML log entry event types with largely
consistent meaning. When these are mentioned in the 'Common' attribute list for an event
type, they will be included unless disabled by the actionattributes option.

• ma - IMAP Mailbox name (internal form)

• mi - Message id

Store Transaction Log Format 30–1

XML Log Entity Names and
Specific Attributes:

• om - Source mailbox for copy/rename (ma is destination mailbox)

• si - session id (IMAP & POP): a unique integer identifier for a client session/connection.

• tr - transport information (MTA & store). Prior to 8.0.2, the store only included the client's
address and port in this field.

• us - User name: the canonial authorization user identity (the permanent identity of the
primary mail account being accessed). For more information on user identifiers see User
Identifiers. Can also be [unauthenticated] when appropriate. For the ac action, the string
"Admin" is used when this can't be determined (typically for mboxutil).

30.3 XML Log Entity Names and Specific
Attributes:

ac - Access Control Change (IMAP only). Attributes include:

• Common: ma, si, us

• ao - Old ACL using permanent user identifiers. New in 8.0.2.

• an - New ACL using permanent user identifiers. New in 8.0.2.

• nt - Old and new ACL with ':' delimiter (Messaging Server prior to 8.0.2 only).

bm - Big Memory Allocation Event (new in MS 8.0.2.2). Attributes include:

• nt - Big memory function (malloc, calloc, realloc)

• sz - Bytes allocated

• fn - Source filename of allocation

• ln - Source line number of allocation

cp - Copy Message Event (new in MS 8.0.2.2). Attributes include:

• Common: ma, om, si

• mc - number of copied messages

• sz - total size of copied messages

• su - source IMAP UID set for copy operation

• uc - destination IMAP UID set for copy operation

• uv - IMAP UIDVALIDITY for destination

• nt - Error message on copy failure (omitted on success, new in MS 8.1.0.5.0)

co - Socket Connection (open/close). Attributes include:

• Common: si, tr

• ac - Action code. First letter is 'O' for connection open and 'C' for connection close.
Subsequent letters are extensible flags. See MTA transaction log entry format for the

30–2 Messaging Server Reference

XML Log Entity Names and
Specific Attributes:

meaning of the subsequent flags for the MTA. Subcodes that can be used by the MMP and
store include:

• D - Closed due to DNS RBL

• I - Closed due to internal/config error

• L - Closed due to connection limit

• P - Closed due to broken pipe

• R - Closed due to connection reset

• S - Closed due to socket error

• T - Closed due to timeout

• W - Closed due to TCP Access wrap filter

• F - Closed due to force kill, imsconnutil -k

• at - Store only: will be 'ssl' if SSL was used at connection open time or empty string if SSL
was not used.

• br - bytes received during connection (new in MS 8.0.2).

• bs - bytes sent during connection (new in MS 8.0.2).

• fu - flag update page scan count (new in MS 8.0.2.2). A large number indicates potentially
significant server CPU consumed by this user's client.

• nm - number of mailboxes selected during session (new in MS 8.0.2, imap/pop only).

• nt - In 8.0, contains unstructured information about the connection at connection close.
Removed in MS 8.0.2 in favor of separate attributes.

• rr - Reason connection was rejected (new in 8.0.2.1, MMP only)

• sb - Search body count (new in MS 8.0.2.2). This counts the number of messages mapped
for searching purposes by this user. This does not count searches performed by ISS, DSE or
elastic search.

• sd - Session duration with HHH:MM:SS format (new in MS 8.0.2).

• td - Time spent on DNS RBL lookups in milliseconds (new in MS 8.0.2.1, MMP only).

ex - Expunge Action (store IMAP expunge/expire). Attributes include:

• Common: ma, mi, si

• mc - Messages in mailbox (post-expunge). Prior to MS 8.0.2 this attribute combined me with
the pre-expunge message count using a '/' delimiter.

• me - Messages changed (for ex action, messages expunged). New in MS 8.0.2.

• mi - Message Id. Note that when this attribute is enabled, a separate expunge log entry is
created for each message. If this attribute is not enabled, then only one expunge entry is
created for each expunge operation.

Store Transaction Log Format 30–3

XML Log Entity Names and
Specific Attributes:

• no - Node name (local host name or remote client IP & port).

fc - Flag Change Action (store +/-flags). New in MS 8.0.2.2.

• Common: ma, si

• ac - Action code; one of "S" for set, "C" for clear or "R" for replace.

• fl - Flag list (space delimited)

• me - Number of messages changed

• sq - IMAP modification sequence for this change

• uc - UIDs changed in IMAP uid set format

• uv - IMAP UIDVALIDITY for mailbox

fe - Fetch Message Action (POP & IMAP only). Attributes include:

• Common: ma, mi, si, us

• fd - Fetch decoding (b64, qp or omitted) (8.0.2 IMAP only)

• fo - Offset to message part in stored message (8.0.2 IMAP only)

• fp - Fetch offset into message part (8.0.2 IMAP only)

• om - Alternate for ma code (8.0.1 POP only)

• sz - Actual bytes fetched. For 8.0.2 this is a number. For earlier 8.0 versions, this instead
contains a string combining: fetch start offset ":" fetch data size or "Binary:" followed by the
offset into the message, the offset into the decoded data and the fetch data size (IMAP only).

• ui - IMAP UID for message (8.0.2 IMAP only)

li - Login/Authenticate Action (store/MMP). Attributes include:

• Common: si, tr, us

• ae - Integer authentication error code; see nt for description. Omitted if not known (MMP
only, new in MS 8.0.2.1)

• at - Authentication Type (SASL mechanism name, ssl-port-cert, anonymous or plaintext)

• bd - badness delay (seconds) before next authentication attempt (MMP only, new in MS
8.0.2.1)

• cs - Ciphersuite used followed by TLS version. If SSL/TLS is not used, this will be 'noSSL'.

• nt - Authentication Error or Reply

• ph - Proxy host name from mailHost or affinity config (MMP only, new in MS 8.0.2.1).

• pt - Proxy transport information (MMP only, new in MS 8.0.2.1)

• ua - User authentication identity. This is the user whose password is used to authenticate;
which differs from us when administrative proxy authentication is used (new in MS 8.0.2).

30–4 Messaging Server Reference

XML Log Entity Names and
Specific Attributes:

• uo - Original user identity. This is the identity originally specified by the client prior to
canonicalization (MMP only, new in MS 8.0.2.1)

lo - Logout action; (POP-only, only if poplogmboxstat is set). Attributes include:

• Common: si, tr, us

• ct - Unix timestamp of POP login.

• mc - Number of messages not marked for deletion.

• sz - Total bytes in messages not marked for deletion.

ma - Message Append Action. Attributes include:

• Common: ma, mi, si, us

• cx - alternate name for session identifier (MS 8.0.1 only).

• sz - Total bytes in the appended message.

• ui - IMAP UID for message

• uv - IMAP UIDVALIDITY for message

is - ISC Convertion Action. Attributes include:

• Common: us

• ma - The user-folderId information .

• ui - IMAP UID for message

• sz - Total bytes in the message.

• ez - Total bytes sent to ElasticSearch

• it - Indexing of document in Elasticsearch response time in microseconds

mc, md, mr - Mailbox Create, Delete, Rename Actions (IMAP only). Attributes include:

• Common: ma, om, si, us

• fi - partition name (classic store only)

• rt - Mailbox Rename duration (introduced in 8.1.0.1)

ms, mu - Mailbox Subscribe, Unsubscribe Actions (IMAP only). Attributes include:

• Common: ma, si, us

• fi - namespace (IMAP2bis only)

qc - Quota Change (IMAP only). Attributes include:

• Common: si, us

• ur - Quota Root

Store Transaction Log Format 30–5

XML Log Entity Names and
Specific Attributes:

• dq - Disk storage quota (number in KB)

qe - Quota Exceeded Action (quotacheck tool only). Attributes include:

• Common: us

• dq - Disk storage quota (number in KB)

• du - Disk storage usage (number in KB)

• mq - Message count quota (number)

• mc - Message count used (number)

• qt - Overquota Trigger (numeric percentage)

• qr - Quota Rule Name ('General' if not using a rule file)

se - Search, Sort or Thread Mailbox (IMAP only). Attributes include: (new in 8.0.2.2)

• Common: ma, si

• mc - Number of matching messages

• nm - Number of mailboxes searched (only counts local mailboxes when remote shared
folders are present).

• nt - Error message on search failure (omitted on success)

• sb - Search body count. This counts the number of messages mapped for searching purposes
for this search. This does not count searches performed by ISS, DSE or Elasticsearch.

• sf - Search flags (Q=Message sequence search, U=Uid search, I=iss, D=dse, E=elastic,
C=classic, T=Thread, X=Context, S=Sort, M=multi-mailbox search)

• td - Time passed during search in milliseconds (omitted if 0)

sl - Select Mailbox (IMAP only). Attributes include:

• Common: ma, si, tr, us

30–6 Messaging Server Reference

Chapter 31 Message expiration
31.1 store.expirerule files ... 31–1

31.1.1 store.expirerule file rulesets .. 31–2
31.2 imexpire folder patterns ... 31–3
31.3 imexpire and localized mailbox names .. 31–4

Message expiration automatically removes messages from the Message Store based on
configured criteria. For example, automatic expiration can selectively remove old messages,
overly large messages, seen or deleted messages, messages with specific Subject: lines,
messages of a certain type, etc..

Note: Oracle Communications Messaging Server removes messages without giving a warning,
so it is important to inform users about message expiration policies! Unexpected message
removal can be a source of consternation for users and administrators.

Message expiration is performed by the imexpire utility. This utility may be run manually,
and/or be configured to run automatically on a schedule as configured for the Scheduler's
expire task.

The rules for what the imexpire utility (the expire task) does -- which messages it checks,
for which expiration criteria -- may be controlled in two distinct ways. An older, and
nowadays less preferred, method is to define global rules (applying to all messages and
users) via Message Store expirerule options (corresponding to legacy configuration configutil
parameters). The preferred method is to define the expiration rule via store.expirerule
files.

For use of imexpire post-message-delivery to scan messages for spam or viruses, see
imexpire invoking spamfilter pacakges.

31.1 store.expirerule files
The use of store.expirerule files (rather than Message Store expirerule options) is the
preferred way to configure message expiration rules for the Message Store.

Multiple store.expirerule files may be configured, each located in the directory that
pertains to the scope of the expiration rules. That is, rules that apply globally to the entire
Message Store are located in one directory, rules that apply to a particular partition are
located in a directory for that partition, while rules that apply to specific users are located
in user-specific directories, which may be further scoped as applying only to a particular
folder of that user. (This feature of scoped expiration rules is one of the benefits of using
store.expirerule files, rather than Message Store expirerule options, as such options
are inherently global and apply to the whole Message Store.)

1. The global message expiration rules are stored in the CONFIGROOT/store.expirerule
file. (Note that each global rule will be checked against every user's every folder, potentially
resulting in noticeable processing overhead depending upon the number of global rules and
the number of users and folders. Therefore, in general, avoid putting any more expiration
rules than necessary in this file; in particular, do not put partition, user, or folder rules in
this global rules file.)

2. Partition message expiration rules are stored in the directory location specified by the
corresponding partition's partition:partition-name.path value, so typically

Message expiration 31–1

store.expirerule file rulesets

DATAROOT/store/partition/partition-name/store.expirerule

3. User message expiration rules are stored as a:

DATAROOT/store/partition/partition-name/userid/store.expirerule file.

Alternatively, user message expiration rules may be stored in a partition
store.expirerule file, but defined to apply to a user via the file's setting of a ruleset
folderpattern attribute to a value user/userid.*

4. Folder-specific message expiration rules are stored as a:

DATAROOT/store/partition/partition-name/userid/folder/store.expirerule

file. Alternatively, user message expiration rules may be stored in a partition
store.expirerule file, but defined to apply only to a folder via the file's setting of a
ruleset folderpattern attribute to a value user/userid/folder-name

It is also possible to exclude specified users from the expiration rules via use of a
expire_exclude_list file, located in the CONFIGROOT directory. (For instance, an
administrator, postmaster, or archival address might be exempted from message expiration via
this mechanism.) The format of the file is line oriented; the user ID of each user to be exempted
from message expiration should be listed, one user ID per line of the file.

When imexpire runs, it will create one thread per partition; each partition thread will go
through the list of user folders under its assigned partition, loading the relevantly scoped
store.expirerule files as it goes. It checks each folder against the expiration rules
applicable to that folder, and expunge messages as needed.

31.1.1 store.expirerule file rulesets
As of MS 6.2p4, the rules in a store.expirerule file can be grouped into rule sets by
prefixing the attribute names with a textual rule name. For instance:

Rule1.regexp: 1
Rule1.folderpattern: user/.*
Rule1.messagedays: 30
Rule2.folderpattern: user/.*@example.org/.*
Rule2.messagedays: 15

The attributes which may be specified in a rule set are listed in imexpire Ruleset Attributes.

Table 31.1 imexpire Ruleset Attributes
Attribute expirerule Option Description (Attribute Value)

action None; expirerule
options always operate as
discard rule

Specifies an action to perform on the messages matching the expiration rules. The possible values are:

• discard -- discards the message. This is the default.

• report -- prints the mailbox name, uid-validity, and uid to stdout. The message is not changed by this
action.

• archive -- archives the message with the Compliance and Content Management System. The message is not
changed by this action. This is a form of operational archiving, and is no longer supported as of MS 8.0.2.

• fileinto: folder-name -- files the message into the specified folder. The shared folder prefix can be
specified to file messages to folders owned by another user. The original message is discarded if the fileinto
operation is successful.

31–2 Messaging Server Reference

imexpire folder patterns

exclusive exclusive Specifies whether or not this is an exclusive rule. The default is 0 (this rule is not exclusive) If specified as
exclusive, then only this rule applies to the specified mailbox(es) and all other rules are ignored. If more than
one exclusive rule exists, the last exclusive rule loaded will be used. For example, if a global and a local exclusive
rule are specified, the local rule will be used. If there is more than one global exclusive rule, the last global rule
listed by configutil is used. (1 or 0)

expires imexpire will select the message if the date value specified by an Expires: header field value is older than the
expiration date based on the messagedays attribute value. If multiple expiration header fields are specified, the
earliest expiration date will be used. (string)

expiry-date imexpire will select the message if the date value specified by an Expiry-date: header field value is older than
the expiration date based on the messagedays attribute value. If multiple expiration header fields are specified,
the earliest expiration date will be used. (string)

folderpattern folderpattern Specifies the folders affected by this rule. The format must start with user/, which represents the directory
DATAROOT/store/partition/*/. See imexpire folder patterns. (POXIX regular expression)

messagecount messagecount Maximum number of messages in a folder. Oldest messages are expunged as additional messages are delivered.
(integer)

foldersizebytes foldersizebytes Maximum size of folder, in bytes, before the oldest messages are expunged when additional messages are
delivered. (integer in bytes)

messagedays messagedays Number of days in the Message Store before message is expunged. (integer)

messagesize messagesize Maximum size of message, in bytes, before it is marked to be expunged. (integer in bytes)

messagesizedays messagesizedays Grace period: days an over-sized message should remain in a folder. (integer)

messageheader.field-name Specifies a header field name and header field value string. The header field name and header field values are
not case-sensitive, and regular expressions are not recognized. Example:

Rule1.messageheader.Subject: Get Rich Now!

Headers other than Subject: can be used. (string)

regexp Enable UNIX regular expression in rules creation. If not set, IMAP expressions will be used. See imexpire
folder patterns for further details. (0 or 1)

savedays Number of days a message is saved in a folder until being expunged. (integer)

seen seen \Seen is an IMAP system flag set by the Message Store when the user opens a message. If the
store.expirerule file rule set attribute seen is set to and, then the message must be seen and another rule
criterion must be met before the rule is fulfilled. If the attribute seen is set to or, then a message only needs to
be seen or another rule criterion be met before the rule is fulfilled. The default is and. (and or or)

sieve A Sieve test specifying message selection criteria. Example:

Rule17.sieve: header :contains "Subject" "Make money fast"

In order for sieve attribute values to take effect, the expiresieve Message Store option must be enabled; they
will be ignored otherwise. Note that by also using a rule set action of fileinto: folder-name in a rule set
with a sieve test, an effect of performing a Sieve "fileinto" based on a Sieve test can be obtained; that is, the
rule set's sieve value supplies the Sieve test and the rule set's action: fileinto: supplies the fileinto folder
name. (string)

deleted deleted \Deleted is an IMAP system flag set by the Message Store when the user deletes a message. If the
store.expirerule file rule set attribute deleted is set to and, then the message must be deleted and another
rule criterion must be met before the rule is fulfilled. If the attribute deleted is set to or, then a message only
needs to be deleted or another rule criterion be met before the rule is fulfilled. The default is and. (and or or)

join (New in MS 7.0.4) join may only be specified(set 1) when exclusive rule is set . The default is 0. Specifying
join: 1 means all rule criterias are combined as single rule. (0 or 1)

userflag.flag-name (New in MS 7.0.5, as well as MS 7.0.4.24) Valid values are 'and' and 'or'; the default is 'and'. Specify user IMAP
flags in expiration rules. For instance, the following rule expires those messages with the 'junk' flag set, and
which are older than 30 days:

messagedays: 30
userflag.junk: and

channel (New in MS 7.0.5) Specify the name of an MTA channel as which to "run" for purposes of spam/virus filtering.
In order for a channel attribute value to take effect, the expiresieve Message Store option must be enabled.
(string)

rescanhours (New in MS 7.0.5) When using imexpire to perform post-delivery spam/virus filtering, the rescanhours tells
imexpire to rescan those message that have not been scanned for the specified number of hours. The default is
10. In order for any rescanhours attribute value to take effect, the expiresieve Message Store option must
be enabled. (integer)

Note that discarded messages are only expunged at the end of the imexpire run, that is, only
one expunge operation is performed on each folder.

31.2 imexpire folder patterns
Folder patterns can be specified using POSIX regular expressions, if the imexpire attribute
regexp is set to 1. If the regexp attribute is not set (the default), IMAP expressions will

Message expiration 31–3

imexpire and localized mailbox
names

be used. The format is that the folder pattern must start with user/, followed by a pattern.
imexpire folder pattern examples shows the both formats of folder pattern for various
folders.

Table 31.2 imexpire folder pattern examples
Scope Folder patterns (regexp: 0) Folder patterns (regexp: 1)

Apply rule to all message in all folders of userid. user/userid/* user/userid.*

Apply to messages of userid in folder Sent. user/userid/Sent user/userid/Sent

Apply rule to entire Message Store. user/* user/.*

Apply rule to any folder named Trash, anywhere in any user's hierarchy. user/*/Trash user/.*/Trash

Apply rule to folders of users in hosted domain example.org. user/*@example.org/* user/.*@example.org/.*

Apply rule to folders of users in the default domain. Not applicable user/[^@]*/.*

31.3 imexpire and localized mailbox names
The IMAP protocol specifies that mailbox names use modified UTF-7 encoding. Messaging
Server supports localized character sets on external interfaces so that mailbox names can be
localized. Internally, however, the system converts the localized name to MUTF-7. Thus, a
folder that has a localized mailbox name on a client will have a corresponding mailbox file
name in MUTF-7. (Note that IMAP error messages will output mailbox names in MUTF-7 and
not the localized character set.)

In general, most Message Store utilities that require mailbox names expect the names in the
localized character set, although they may have an option flag that allows a different character
set to be used. These utilities include reconstruct, mboxutil, imsbackup, imsrestore,
and hashdir. However, imexpire requires that the mailbox name, specified as the attribute
folderpattern, be in MUTF-7. Using a localized name will not work.

To obtain the appropriate folderpattern value for use with imexpire, it may be necessary
to convert a localized mailbox name to the modified UTF-7 equivalent. This can be done using
the mboxutil -E command as follows:

$ mboxutil -l -p user/han/*

 msgs Kbytes last msg partition quotaroot mailbox

 57 100 2010/04/29 11:18 primary 5242880 user/han/INBOX
 1 1 2010/04/30 12:56 primary -
user/han/multibyte-mailbox-name

$ mboxutil -l -E MUTF-7 -p user/han/*

 57 100 2010/04/29 11:18 primary 5242880 user/han/INBOX
 1 1 2010/04/30 12:56 primary -
user/han/&kAFP4W4IMH8wojCkMMYw4A-

The output of the first mboxutil command shows the localized mailbox name. The output of
the second mboxutil command shows the mailbox name in MUTF-7. The MUTF-7 mailbox
name is identical to that shown in response to an IMAP LIST command:

x list "" *

31–4 Messaging Server Reference

imexpire and localized mailbox
names

* LIST (\NoInferiors) "/" INBOX
* LIST (\HasNoChildren) "/" &kAFP4W4IMH8wojCkMMYw4A-

To convert the local charset to modified UTF-7 encoding, use the mboxutil command's -E
option:

$ mboxutil -l -E MUTF-7 -P user/han/multibyte-mailbox-name

 msgs Kbytes last msg partition quotaroot mailbox

 1 1 2010/04/30 12:56 primary -
user/han/&kAFP4W4IMH8wojCkMMYw4A-

Such a mboxutil -E command can be used in preparation for use of any utility that requires
the use of an MUTF-7 mailbox name, including as discussed here in preparation to use
imexpire.

Message expiration 31–5

31–6

Chapter 32 Store Index and search
32.1 Migrating from ISS to Elasticsearch .. 32–3
32.2 Migrating from DSE SOLR to Elasticsearch .. 32–3
32.3 Search Technology Comparison ... 32–4

32.3.1 Substring vs. Indexed Search .. 32–4
32.3.2 Search Complexity ... 32–5
32.3.3 Index Storage ... 32–5
32.3.4 Search Host Failures ... 32–5
32.3.5 High Availability .. 32–5
32.3.6 Data Growth .. 32–5
32.3.7 Reindexing ... 32–5
32.3.8 Stop Words .. 32–6
32.3.9 Whitespace ... 32–6
32.3.10 Punctuation .. 32–6
32.3.11 Diacritical Sensitivity .. 32–6
32.3.12 Convergence/ISS Attachment Search .. 32–6
32.3.13 Non-IMAP Search API .. 32–6

32.4 Elasticsearch options ... 32–6
32.4.1 hostlist Option Under elasticsearch .. 32–6
32.4.2 port Option Under elasticsearch .. 32–7
32.4.3 authusername Option Under elasticsearch .. 32–7
32.4.4 authpassword Option Under elasticsearch .. 32–7
32.4.5 sslusessl Option Under elasticsearch .. 32–7
32.4.6 storesource Option .. 32–7
32.4.7 numshards Option .. 32–7
32.4.8 numreplicas Option .. 32–7

32.5 Indexer options ... 32–8
32.5.1 enable Option Under indexer ... 32–8
32.5.2 port Option Under indexer ... 32–8
32.5.3 server_host Option Under indexer .. 32–8
32.5.4 timeout Option Under indexer .. 32–9
32.5.5 connecttimeout Option Under indexer .. 32–9
32.5.6 bodytextonly Option .. 32–9
32.5.7 substring_search Option .. 32–9
32.5.8 suffix_search Option .. 32–9
32.5.9 prefix_search Option .. 32–9
32.5.10 sslusessl Option Under indexer .. 32–10

32.6 ISC options ... 32–10
32.6.1 enable Option Under isc ... 32–10
32.6.2 authpassword Option Under isc ... 32–10
32.6.3 basicjavaswitches Option .. 32–10
32.6.4 cachettl Option Under isc ... 32–11
32.6.5 extrajavaswitches Option .. 32–11
32.6.6 sslusessl Option Under isc ... 32–11
32.6.7 authusername Option Under isc ... 32–11
32.6.8 server_port Option Under isc ... 32–11
32.6.9 maxthreads Option Under isc ... 32–12
32.6.10 logdir Option Under isc ... 32–12
32.6.11 authusername Option Under isc_client .. 32–12
32.6.12 authpassword Option Under isc_client .. 32–12
32.6.13 ischosts Option Under isc_client .. 32–12

Store Index and search 32–1

32.6.14 max_conns Option Under isc_client .. 32–12
32.6.15 sslusessl Option Under isc_client .. 32–12
32.6.16 server_port Option Under isc_client .. 32–12

32.7 FIT options ... 32–13
32.7.1 logdir Option Under fit ... 32–13
32.7.2 jloglevel Option Under fit ... 32–13

The message store supports three index and search services: ISS, DSE Solr, and Elasticsearch.
Note that DSE Solr is no longer available starting with the Messaging Server 8.1 release. Classic
store supports ISS and Elasticsearch. DSE Cassandra store supports Solr and Elasticsearch.
Open source Cassandra store supports Elasticsearch. The classic message store does not enable
any index and search services by default. When index and search service is not enabled,
IMAP uses brute force for body search. Brute force message body search is very I/O intensive.
Consider using an index and search service when search performance is crucial.

When either Elasticsearch or DSE Solr is enabled, the message store uses ISC to convert binary
message content to text before indexing. Therefore, ISC must be configured on when either
Elasticsearch or DSE Solr is enabled. ISS has built-in content conversion, so ISC is not required.

ISC

Indexed Search Converter (ISC) is a Java and http-based server that converts message content
to text for index and search purposes. ISC is included in the Messaging Server package and
uses Apache Tika to detect and extract text content from email messages. The converted texts
are cached. On indexing, the message store looks up the text content in the cache. If the text is
found, the message store reads it from the cache. Otherwise, the message store sends the meta
data to ISC. ISC reads the message content, converts it to text, and writes the text to the cache.

In classic store, ISC uses the file system to cache the text content. In Cassandra store, ISC uses
Cassandra to store the cache content.

ISC requires read access to the message store in order to convert the content of a message.
When used with classic store, ISC can be co-located with other message store processes or can
run on a separate server with shared filesystem access to message store data.

Review the ISC Options for more information about configuring ISC.

Elasticsearch

Elasticsearch is a distributed search engine based on Lucene. It provides full text search
services with built-in high availability, replication, horizontal scaling, and automatic load
balancing. When Elasticsearch is enabled, the message store sends the message content to
Elasticsearch for indexing when messages are appended to the mailboxes; the IMAP server
sends search queries to Elasticsearch to perform textual searches.

To enable elasticsearch:

• set store.searchengine to elastic

• set elasticsearch.hostlist to a list of Elasticsearch hosts

• set elasticsearch.numshards to the number of shareds

• set elasticsearch.numreplicas to the number of replicas

32–2 Messaging Server Reference

Migrating from ISS to Elasticsearch

• set elasticsearch.storesource to false if storage space is limited

Review the Elasticsearch options for more information about configuring use of Elasticsearch.

DSE Solr

Datastax Enterprise (DSE) Solr is an index and search component provided by Datastax. DSE
Solr index and search is enabled by default when Cassandra message store is enabled prior
to Messaging Server 8.1. Messaging Server provides the FIT plugin to prepare the message
content for indexing. FIT must be installed on all the Solr nodes.

ISS

Oracle Communications Indexing and Search Service (ISS) is a separate index and search
service developed by Oracle. The message store uses Glassfish MQ event notification services
to send data for indexing to ISS and ISS re-synchronizes with the Message Store over IMAP.
Starting with Messaging Server 8.0.2.2, ISS is deprecated and support for ISS may be removed
in a future release of Messaging Server. Starting with Messaging Server 8.1, ISS is no longer
included with Messaging Server and use of a previous version of ISS is only supported for the
purpose of migrating from ISS to Elasticsearch.

Review the Indexer Options for more information about configuring use of ISS.

32.1 Migrating from ISS to Elasticsearch
The message store supports the following migration strategies:

Side by side migration

• Install a new message store.

• Enable Elasticsearch and ISC on the new message store.

• Migrate users from the old store to the new store with rehostuser.

• Decommission the old store when all the users are migrated to the new store.

In-place migration

• Upgrade the messaging server to 8.0.2.2.

• Enable Elasticsearch and ISC.

• Enable impurge if it is not enabled.

• Restart the server.

• Folders are scheduled for migration automatically when they are accessed.

• Run 'imcheck -H' to migrate all the folders.

• Remove ISS event notification target and ISS client configuration on the message store.

32.2 Migrating from DSE SOLR to Elasticsearch

Store Index and search 32–3

Search Technology Comparison

The message store supports the following migration strategies:

Side by side migration

• Install an Elasticsearch cluster.

• Install a Cassandra cluster.

• Install a new message store.

• Enable Elasticsearch, Cassandra and ISC on the new message store.

• Migrate users from the old store to the new store with rehostuser.

• Decommission the old store when all the users are migrated to the new store.

In-place migration

• Install an Elasticsearch cluster.

• Upgrade the messaging server to the latest version.

• Enable Elasticsearch.

• Enable ISC and impurge if it is not enabled.

• Configure store.solrconnectpoints if it is not configured

• Restart the server.

• Folders are scheduled for migration automatically when they are accessed.

• Run 'imcheck -H' to migrate all the folders.

• Remove Solr configuration on the message store.

• Disable Solr in DSE cluster, or remove the Solr DC and update the mbox keyspace
accordingly

32.3 Search Technology Comparison
Comparisons can be made based on various different criteria. The following sections cover
some of the possibilities.

32.3.1 Substring vs. Indexed Search
The classic search technology built-in to imapd performs a substring search (a search term
matches any word containing that substring). The indexed search technologies (Elasticsearch,
DSE Solr, and ISS) use a word-based search where a search term must match an entire
word (or root word). Wildcard options for indexed search are available, but add significant
overhead so searches take longer and require more resources. It may be desirable to configure
wildcard use for address headers. In order to strictly comply with the IMAP standard
for searching, all textual searches must be configured as substring searches (using the
imap.indexer.substring_search option). However, modern web searches tend to be

32–4 Messaging Server Reference

Search Complexity

word-based so our product defaults to word-based searches for message text as we believe that
behavior will be faster and familiar to end-users.

32.3.2 Search Complexity
Elasticsearch supports all searches that IMAP supports (flag and annotation terms in an
IMAP search command are converted to UID lists by imapd). DSE Solr supports all searches;
however the ANNOTATE extension (RFC 5257) is not implemented on Cassandra Store. ISS
only supports a subset of search operations; see the imap.indexer.enable option for a
description of ISS limitations.

32.3.3 Index Storage
Elasticsearch can store indexes on Elasticsearch local disk without the need for a storage array.
Use of local SSD will reduce the number of nodes required in the Elasticsearch cluster for a
given workload. Use of local SSD is recommended for DSE Solr search. Use of a storage array
with fast iSCSI support is recommended for ISS.

32.3.4 Search Host Failures
The imapd Elasticsearch client will round-robin between hosts listed in the
elasticsearch.hostlist option; it will periodically retry Elasticsearch hosts that
were previously down. The message store ISC client will failover to a backup host if more
than one host is listed in the isc_client.ischosts option; otherwise conversion
will be deferred and performed by impurge later. The DSE Solr client will use the
store.solrconnectpoints option to bootstrap a list of available DSE Solr servers; and
DSE Solr uses the Cassandra Gossip protocol to stay current on the list of available Cassandra/
Solr nodes as long as at least one of the nodes listed in solrconnectpoints is online when
the server process starts. When the ISS host is unavailable, search will be performed by classic
search. With ISS, it is important to keep your JMQ broker running reliably.

32.3.5 High Availability
Elasticsearch has built-in high availability; a minimum cluster size of three nodes is
recommended. DSE Solr search uses Cassandra's high availability mechanism. A minimum
cluster of three Cassandra-only and two Cassandra/Solr nodes is recommend for the msgindex
table. ISS has no HA mechanism; a reliable filesystem is recommended and fallback to classic
search occurs when ISS fails.

32.3.6 Data Growth
Elasticsearch and DSE Solr scale horizontally; as your data size grows you will need to add
servers to your Elasticsearch or Cassandra clusters. For ISS, once the capacity of a message
store or ISS server is exceeded; you must use the rehostuser tool to move users to a new
message store with a new ISS server.

32.3.7 Reindexing
Elasticsearch will require a reindex when a classic store userid is renamed. However,
rehostuser and renaming mailboxes will not require a reindex with Elasticsearch as long as
source and target hosts share the same Elasticsearch cluster. Cassandra store supports separate

Store Index and search 32–5

Stop Words

external and persistent userids so DSE Solr will not require a reindex when the external userid
is changed. ISS requires a reindex of impacted content when a userid is renamed, rehostuser is
used, or a mailbox is renamed.

32.3.8 Stop Words
In order to reduce the size of the index, English stop words are not included in the index by
default for Elasticsearch and DSE Solr search. Stop words in a search query will match no
messages if they are part of a single search key or are in a boolean OR clause. For Elasticsearch,
stop words in an AND clause will match all messages. Stop words used in a wildcard search
will only match text containing a word that contains the stop word as a substring.

32.3.9 Whitespace
The classic search ignores whitespace, so search terms will match across whitespace breaks.
Whitespace is significant to indexed search technologies.

32.3.10 Punctuation
The classic search is punctuation sensitive. The indexed search technologies treat most
punctuation as whitespace equivalent.

32.3.11 Diacritical Sensitivity
The classic search is case and diacritical insensitive by default. The
diacritical_sensitive_languages option can be used to make classic search diacritical
sensitive for certain languages. The indexed search technologies are diacritical sensitive by
default.

32.3.12 Convergence/ISS Attachment Search
The attachment search feature is only available with ISS which is deprecated. If your
deployment depends on this feature please contact Oracle support and explain how you
use it to assist Oracle's determination on whether to implement an equivalent feature with
Elasticsearch.

32.3.13 Non-IMAP Search API
ISS supports a non-IMAP search API via an HTTP-based protocol. At this time, Oracle reserves
the right to make incompatible changes to the elasticsearch and DSE/Solr indexing models if
that is necessary to improve the product (the odds of such changes will decrease over time).
If you have a business use case that requires an HTTP-based search API please contact Oracle
support for consideration of such a request.

32.4 Elasticsearch options
Elasticsearch options control IMAP search operations when the searchengine is set to
elastic. See also the ISC Options and Indexer Options.

32.4.1 hostlist Option Under elasticsearch

32–6 Messaging Server Reference

port Option Under elasticsearch

The hostlist elasticsearch option specifies a space separated list of elasticsearch hosts.
Host format is host[:port]. If port is not specified, the port number is determined based on
the setting of the elasticsearch.port option.

32.4.2 port Option Under elasticsearch
The port elasticsearch option specifies the default elasticsearch server TCP port number.
This is used if no port is specified in the elasticsearch.hostlist option. The default is 9200.

32.4.3 authusername Option Under elasticsearch
The authusername Elasticsearch option sets the username that will be used
for HTTP basic authentication when communicating with Elasticsearch. The
elasticsearch.authpassword option must also be set. This option is only used when the
store.searchengine option is set to elastic.

32.4.4 authpassword Option Under elasticsearch
The authpassword Elasticsearch option sets the password that will be used
for HTTP basic authentication when communicating with Elasticsearch. The
elasticsearch.authusername option must also be set. This option is only used when the
store.searchengine option is set to elastic.

32.4.5 sslusessl Option Under elasticsearch
The sslusessl Elasticsearch option will require use of SSL when communicating with
Elasticsearch. This option is only used when the store.searchengine option is set to
elastic.

32.4.6 storesource Option
The _source field in Elasticsearch contains the document body that was passed at index time.
If elasticsearch.storesource is enabled, the message store will create the elasticsearch
store/msg index mapping with the _source field enabled; IMAP copy will use the _source
field from Elasticsearch to index the message on the destination folder. The _source field data
consumes a lot of disk space. You might want to disable the _source field if storage space
is limited. Disabling the _source field will disable the ability to reindex, upgrade or repair
index from Elasticsearch. See https://www.elastic.co/guide/en/elasticsearch/reference/current/
mapping-source-field.html before disabling this option.

32.4.7 numshards Option
The numshards field in Elasticsearch specifies the number of shards in the Elasticsearch
message store index. The elasticsearch.numshards is used by stored to create the
message store index in Elasticsearch. The number of shards cannot be changed after the index
is created.

32.4.8 numreplicas Option
The numreplicas field in Elasticsearch specifies the number of replicas in the Elasticsearch
message store index. The elasticsearch.numreplicas is used by stored to create the

Store Index and search 32–7

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-source-field.html

Indexer options

elasticsearch message store index. The message store does not update the number of replicas
after the index is created. The number can be updated in Elasticsearch manually.

32.5 Indexer options
Enabling the Messaging Server's ISS client (via imap.indexer.enable=1 and a
valid setting for the imap.indexer.server_host option) causes certain IMAP
search and sort commands to be sent to ISS (the Indexing and Search Service). See the
imap.indexer.enable description for more details.

There are several Indexer options further affecting Messaging Server's consultations of ISS.
Also see the indexeradmins Message Store option, store.indexeradmins.

32.5.1 enable Option Under indexer
The enable Indexer option, if set to 1, causes sending some IMAP search and sort commands
to ISS, the Indexing and Search Service. The server_host Indexer option must also be set for
this to function correctly. The ISS processes search operations based on words rather than
substrings so results may not be IMAP standards compliant and may differ from a search
performed by the IMAP server.

If the ESEARCH RETURN (ALL) result option is present in the search command, then ISS
is used. For all other ESEARCH extension features, the ISS is not used. The ISS is not used if
KEYWORD, HEADER, OLDER, YOUNGER, MODSEQ, ANNOTATION, or RECENT appear.
At least one of the following search terms: SUBJECT, FROM, TO, CC, BCC, TEXT or BODY
must be present for the ISS to be used. If an error occurs from the ISS, then the search may fall
back to processing by the IMAP server. See the ISS documentation for details on what searches
it supports as it may not support all combinations of AND, OR and NOT operators that IMAP
supports. The specific rules of what is sent to the ISS and what is processed locally on the
IMAP server may change in future releases.

The bodytextonly option modifies the above rules so that TEXT or BODY must be present
or the search will not be sent to the ISS.

As of Messaging Server 7.0.5.30.0, the ISS is used to process IMAP ESEARCH commands with
RETURN (ALL) result option. For all other ESEARCH extension features, the ISS is not used.

Also see the debugkeys option's search key to enable IMAP search and sort command related
debug.

32.5.2 port Option Under indexer
The port Indexer option specifies the TCP port on which ISS listens for incoming TCP
connections, i.e., the TCP port to which Messaging Server should connect to communicate with
ISS. The default is 8070.

If the indexer.sslusessl option (service.imap.indexer.sslusessl option in legacy
configuration) is set, the IMAP server uses SSL to authenticate to ISS on this port.

32.5.3 server_host Option Under indexer
The server_host Indexer option specifies the fully qualified host name or IP address
where the Indexing and Search Server runs. This indexer.server_host option must

32–8 Messaging Server Reference

timeout Option Under indexer

be set, to tell Messaging Server where ISS is running, if the IMAP server has been told via
imap.indexer.enable=1 to consult ISS.

32.5.4 timeout Option Under indexer
The timeout Indexer option specifies the timeout in seconds for read and write operations
between the IMAP server and ISS.

32.5.5 connecttimeout Option Under indexer
The connecttimeout indexer option , (indexer.connecttimeout in Unified
Configuration, or service.imap.indexer.connectwait in legacy configuration),
specifies how long in seconds the IMAP server should wait for a connection to be established
to the Indexing and Search Service (ISS). Attempting to set this option to a value greater than
30 will result in a value of 10 being used.

32.5.6 bodytextonly Option
If the bodytextonly Indexer option is set to 1, then send IMAP search queries to ISS, the
Indexing and Search Server, if the query contains BODY or TEXT terms and the query does not
contain any search terms that ISS does not support.

32.5.7 substring_search Option
The substring_search Indexer option specifies which, if any, search parameters sent to
an external searchengine, should be preceded and followed by a "*", so that a search for
subject ear would match "searches" as well as "ear". The search parameter will not be
preceded and followed by the '*' character, if it contains a space character or a double quote
character or a opening parentheses in the beginning or a closing parenthesis at the end. The
value given should be one or more of subject text body from to cc bcc separated by
one or more spaces. Use with caution as this imposes a significant load on the search engine.

When the internal search engine is used, a substring match is always performed and this
option is ignored.

32.5.8 suffix_search Option
The suffix_search Indexer option specifies which, if any, search parameters sent to an
external searchengine should be followed by a "*", so that a search for subject book
would match "bookmark" as well as "book". The search parameter will not be followed
by the '*' character, if it contains a space character or a double quote character or a opening
parentheses in the beginning or a closing parenthesis at the end. The value given should be
one or more of subject text body from to cc bcc header separated by one or more
spaces. The default is the empty string.

(Note that the meanings of suffix_search and prefix_search could be considered
reversed; read carefully before setting.)

When the internal search engine is used, a substring match is always performed and this
option is ignored.

32.5.9 prefix_search Option

Store Index and search 32–9

sslusessl Option Under indexer

The prefix_search Indexer option specifies which, if any, search parameters sent to an
external search engine should be preceded by a "*", so that a search for subject mine
would match "determine" as well as "mine". The search parameter will not be preceded
by the '*' character, if it contains a space character or a double quote character or a opening
parentheses in the beginning or a closing parenthesis at the end. The value given should be
one or more of subject text body from to cc bcc header separated by one or more
spaces. Use with caution as this imposes a significant load on the search engine. The default is
the empty string.

(Note that the meanings of suffix_search and prefix_search could be considered
reversed; read carefully before setting.)

When the internal search engine is used, a substring match is always performed and this
option is ignored.

32.5.10 sslusessl Option Under indexer
If the sslusessl Indexer option is set to 1, then the IMAP server uses SSL to
authenticate to the ISS, connecting to the port specified by the port Indexer option
(service.imap.indexer.port option in legacy configuration).

32.6 ISC options
ISC Options control the Indexed Search Converter process. The ISC process is used to extract
text from messages for use by an indexed search engine. It is presently required when your
searchengine is set to dse or elastic.

32.6.1 enable Option Under isc
The enable ISC option, (isc.enable in Unified Configuration, not available in legacy
configuration), enables the ISC service on start-msg startup.

This option defaults to 0 if not set, but initial configuration may enable the option as
appropriate.

32.6.2 authpassword Option Under isc
The authpassword ISC option sets the password that will be used by the Message Store
to communicate with the ISC server and will be used by the ISC server for server-to-server
authentication. This option is only applicable when use of the Indexed Search Converter is
enabled.

32.6.3 basicjavaswitches Option
The basicjavaswitches ISC option specifies a space-separated list of JVM options
(heap settings, GC options, etc) to use when starting the java isc process. The default
settings for this option are the recommended JVM switches for running ISC, described
below. The recommended JVM switches may change between releases as Oracle gains
tuning experience with ISC. Unless the customer determines one of the recommended JVM
switches is inappropriate for their environment changes to this option are discouraged as
an explicit setting means future changes to the recommended defaults will not be applied.

32–10 Messaging Server Reference

cachettl Option Under isc

The extrajavaswitches option can be used to append customer preferred JVM switches
without replacing the recommended default settings.

Heap options
Sets the initial size (in bytes) of the heap.
-Xms8g

Specifies the maximum size (in bytes) of the heap.
-Xmx32g

Specifies the recommended garbage collector for ISC
-XX:+UseG1GC

Specifies the maximum pause for garbage collection
-XX:MaxGCPauseMillis=200

Changes to this option do not take effect until ISC is restarted.

32.6.4 cachettl Option Under isc
The cachettl option specifies the time-to-live, measured in seconds, for the converted text
in the conversion cache. The converted contents expire after this time, and ISC will have to re-
convert any new document with the same content. The default is 30 days. The minimum is one
hour.

32.6.5 extrajavaswitches Option
The extrajavaswitches ISC option specifies a space-separated list of JVM options that are
used in addition to the recommended Java switches present in the basicjavaswitches ISC
option. This option is for customer-provided JVM modifications while basicjavaswitches
should only be used to override the recommended JVM switches. For a full list of available
JVM options, please refer to the Java official documentation at http://docs.oracle.com.

Changes to this option do not take effect until ISC is restarted.

32.6.6 sslusessl Option Under isc
Flag to enable SSL for ISC server connections. SSL is disabled by default. If this option is set to
1, then the corresponding isc_client.sslusessl option must also be set to 1 on the LMTP host(s),
and the fit.sslusessl option must be set to 1 on the Cassandra host(s) that connect to this ISC
server.

If this option is set to 1, then the base.ssljkspath and base.ssljkspassword options must be set to
the Java SSL keystore path and the Java keystore password respectively.

32.6.7 authusername Option Under isc
The authusername ISC option sets the username that will be used by the Message Store
to communicate with the ISC server and will be used by the ISC server for server-to-server
authentication. This option is only applicable when use of the Indexed Search Converter is
enabled.

32.6.8 server_port Option Under isc

Store Index and search 32–11

http://docs.oracle.com

maxthreads Option Under isc

The server_port isc option specifies the Http port for the ISC process. If empty or not set,
the default is 8070.

If isc.sslusessl is set to 1, this will be setup as an https port.

32.6.9 maxthreads Option Under isc
The maxthreads isc option specifies the maximum number of parallel requests that the isc
http server can process. Default is 10000. Cannot exceed 60000.

Starting with 8.0.2.2, this has no effect and may be removed in a future release.

32.6.10 logdir Option Under isc
The logdir isc option specifies the log files location for ISC.

The user that owns the ISC process must have write permissions to this location.

32.6.11 authusername Option Under isc_client
The authusername isc_client option sets the username that will be used by the LMTP server
to communicate with the ISC server and will be used by the ISC server for server-to-server
authentication. This option is only applicable when use of the Indexed Search Converter is
enabled.

32.6.12 authpassword Option Under isc_client
The authpassword ISC_CLIENT option sets the password that will be used by the LMTP
server to communicate with the ISC server for authentication. This option is only applicable
when use of the Indexed Search Converter is enabled.

32.6.13 ischosts Option Under isc_client
The ischosts isc_client option specifies a space-separated list of hosts (with optional :port)
for the isc server. List multiple hosts to avoid a single point of failure.

32.6.14 max_conns Option Under isc_client
The max_conns isc_client option specifies the maximum number of connections that are
permitted from a single LMTP process to the ISC server. Starting with 8.0.2.2, this option is
preferred over the isc_client.connlimits option.

32.6.15 sslusessl Option Under isc_client
Flag to enable SSL for ISC server connections. SSL is disabled by default. If this option is set to
1, then the corresponding isc.sslusessl option must also be set to 1 on the host(s) specified by
isc_client.ischosts.

32.6.16 server_port Option Under isc_client

32–12 Messaging Server Reference

FIT options

The server_port isc_client option specifies the ISC server port number. If empty or not
set, the default is 8070.

The value for this option must match the isc.server_port on the host(s) specified by
isc_client.ischosts.

32.7 FIT options

32.7.1 logdir Option Under fit
The logdir fit option specifies the log files location for FIT.

The user that owns the DSE (Cassandra) process must have write permissions to this location.

32.7.2 jloglevel Option Under fit
The jloglevel stats option specifies the FIT log level. Default is INFO. Available options (in
increasing order of importance) are FINEST, FINER, FINE, INFO, WARNING and SEVERE.

Store Index and search 32–13

32–14

Chapter 33 Client access to Message
Store servers

The TCP client access control mechanism used by Message Store servers such as the POP and
IMAP servers, and proxy servers such as the MMP and MSHTTP, uses TCP wrappers. The
ENS server also uses this mechanism.

Note that the MMP behaves a bit differently with respect to access control than do the other
services, in that the MMP "imap" service controls both IMAP and IMAP+SSL services; that is,
it controls both ports 143 and 993. In contrast, other Messaging Server services treat IMAP and
IMAP+SSL as separate services, each with their own separate access control.

See also the connlimits option, which may be used to limit the number of connections,
(rather than outright blocking). And see the bg* options, such as bgpenalty, which may be
configured to penalize failed authentication attempts.

For allowing inspection of (rather than controlling/limiting) when a user last accessed
the Message Store, see the enablelastaccess base option. For allowing inspection of
what users are currently connected via the IMAP server or via the MSHTTP server, see the
imap.enableuserlist and http.enableuserlist options. And see the imsconnutil
utility for displaying such information.

For access control on the MTA's SMTP server and other Dispatcher services, see instead Mail
filtering and access control and in particular the PORT_ACCESS mapping table.

Client access to Message Store
servers 33–1

33–2

Chapter 34 IMAP options
34.1 enable Option Under imap ... 34–3
34.2 actions Option ... 34–3
34.3 actionattributes Option ... 34–3
34.4 adminbypassquota Option ... 34–4
34.5 allowanonymouslogin Option Under imap .. 34–4
34.6 authfaildelay Option ... 34–4
34.7 banner Option Under imap ... 34–4
34.8 bgmax Option ... 34–4
34.9 bgpenalty Option ... 34–4
34.10 bgmaxbadness Option ... 34–4
34.11 bgdecay Option ... 34–5
34.12 bglinear Option ... 34–5
34.13 bgexcluded Option ... 34–5
34.14 broken_client_defer_exists Option ... 34–5
34.15 capability_acl Option ... 34–5
34.16 capability_annotate Option ... 34–5
34.17 capability_binary Option ... 34–5
34.18 capability_catenate Option ... 34–6
34.19 capability_children Option ... 34–6
34.20 capability_condstore Option ... 34–6
34.21 capability_context_search Option ... 34–6
34.22 capability_context_sort Option ... 34–6
34.23 capability_create_special_use Option ... 34–6
34.24 capability_enable Option ... 34–6
34.25 capability_esearch Option ... 34–6
34.26 capability_esort Option ... 34–7
34.27 capability_id Option ... 34–7
34.28 capability_idle Option ... 34–7
34.29 capability_imap4 Option ... 34–7
34.30 capability_imap4rev1 Option ... 34–7
34.31 capability_language Option ... 34–7
34.32 capability_list_status Option ... 34–7
34.33 capability_literal Option ... 34–8
34.34 capability_login_referrals Option ... 34–8
34.35 capability_metadata Option ... 34–8
34.36 capability_multisearch Option ... 34–8
34.37 capability_namespace Option ... 34–8
34.38 capability_notify Option ... 34–8
34.39 capability_qresync Option ... 34–8
34.40 capability_quota Option ... 34–9
34.41 capability_savedate Option ... 34–9
34.42 capability_sasl_ir Option ... 34–9
34.43 capability_searchres Option ... 34–9
34.44 capability_sort Option ... 34–9
34.45 capability_sort_display Option ... 34–9
34.46 capability_special_use Option ... 34–9
34.47 capability_starttls Option Under imap .. 34–10
34.48 capability_status_size Option ... 34–10
34.49 capability_thread_references Option ... 34–10
34.50 capability_thread_subject Option ... 34–10

IMAP options 34–1

34.51 capability_uidplus Option ... 34–10
34.52 capability_unselect Option ... 34–10
34.53 capability_url_partial Option ... 34–10
34.54 capability_urlauth Option ... 34–10
34.55 capability_utf8_accept Option ... 34–11
34.56 capability_within Option ... 34–11
34.57 capability_x_netscape Option ... 34–11
34.58 capability_x_orcl_as Option ... 34–11
34.59 capability_x_sun_imap Option ... 34–11
34.60 capability_x_sun_sort Option ... 34–11
34.61 capability_x_unauthenticate Option ... 34–11
34.62 capability_unauthenticate Option ... 34–12
34.63 capability_xrefresh Option ... 34–12
34.64 capability_xsender Option ... 34–12
34.65 capability_xserverinfo Option ... 34–12
34.66 capability_xsnippet Option ... 34–12
34.67 capability_xum1 Option ... 34–12
34.68 connlimits Option ... 34–12

34.68.1 Use with isc_client .. 34–13
34.69 diacritical_sensitive_languages Option ... 34–14
34.70 domainallowed Option Under imap .. 34–14
34.71 domainnotallowed Option Under imap .. 34–14
34.72 enablesslport Option Under imap .. 34–14
34.73 enableuserlist Option Under imap .. 34–14
34.74 extra_capabilities Option ... 34–14
34.75 fixinternaldate Option ... 34–14
34.76 forcetelemetry Option Under imap .. 34–15
34.77 idletimeout Option Under imap .. 34–15
34.78 immediateflagupdate Option ... 34–15
34.79 legacy_proxyauth Option ... 34–15
34.80 logauthsessionid Option ... 34–16
34.81 logcommands Option ... 34–16
34.82 logprotocolerrors Option Under imap .. 34–16
34.83 logunauthsession Option Under imap .. 34–16
34.84 maxmessagesize Option Under imap .. 34–16
34.85 maxnoops Option ... 34–16
34.86 maxprotocolerrors Option Under imap .. 34–16
34.87 maxsearchmailboxes Option ... 34–16
34.88 maxsearchnest Option ... 34–17
34.89 maxsessions Option Under imap .. 34–17
34.90 maxthreads Option Under imap .. 34–17
34.91 numprocesses Option Under imap .. 34–17
34.92 plaintextmincipher Option Under imap .. 34–17
34.93 polldelay Option ... 34–17
34.94 port Option Under imap .. 34–17
34.95 sslcachesize Option Under imap .. 34–18
34.96 sslnicknames Option Under imap .. 34–18
34.97 sslport Option Under imap .. 34–18
34.98 sslusessl Option Under imap .. 34–18
34.99 submituser Option ... 34–18
34.100 withinresolution Option ... 34–18
34.101 IMAP password expiration alert options ... 34–18

34.101.1 firstwarn Option ... 34–19

34–2 Messaging Server Reference

enable Option Under imap

34.101.2 viametermaid Option ... 34–19
34.101.3 metermaidtable Option ... 34–19

There are many options affecting IMAP operation.

See also the following options which are described rather generically under Base options, but
which may also be set specifically under imap (as for instance if one wishes to have IMAP use
a different value than the general base value): the logfile options, the various bg* options,
and defaultdomain.

See also the Indexer options; though they are set under imap.indexer, they are documented
separately.

Of notable relevance to IMAP operation, see also the base.obsoleteimap,
base.threadholddelay, base.dnsresolveclient, base.pwchangeurl options, and
on Solaris, see also the base.preferpoll option.

Note that msprobe can probe for whether the IMAP server is running; see msprobe's
msprobe.probe:imap. options.

34.1 enable Option Under imap
The enable IMAP option, (imap.enable in Unified Configuration, or
service.imap.enable in legacy configuration), enables the IMAP service on
start-msg startup. Note: IMAP over SSL service is enabled/disabled separately using
imap.enablesslport in Unified Configuration, or service.imap.enablesslport in
legacy configuration.

This option defaults to 0 if not set, but initial configuration may enable the option as
appropriate.

34.2 actions Option
The actions option (available for imap, pop, and messagetrace) specifies the actions
enabled in Message Store transaction logging. This can take the value of "all" to enable logging
of all actions, or "+(a1 a2 a3)" to enable only attributes listed, or "-(a1 a2 a3)" to enable all
attributes except those listed. See the Store Transaction Log Format section for permitted
attribute codes.

For 8.0.1 this is "all" by default and for 8.0.2 this is "-(fe)" (log everything except the fetch
action) by default.

34.3 actionattributes Option
The actionattributes option (available for imap, pop, and messagetrace) specifies the
action attributes enabled in Message Store transaction logging. This can take the value of "all"
to enable logging of all actions, or "+(e1 e2 e3)" to enable only event codes listed, or "-(e1 e2
e3)" to enable all events except those listed. See the Store Transaction Log Format section for
permitted event codes.

For 8.0.1 this is "all" by default and for 8.0.2 this is "-(mi)" (log all attributes except the message
id attribute) by default. Note that the message id is expensive to extract from message headers
and requires per-message logging of expunge events.

IMAP options 34–3

adminbypassquota Option

34.4 adminbypassquota Option
Enabling the adminbypassquota IMAP option allows admin users to bypass quota
enforcement when they append messages to mailboxes with the IMAP APPEND command.

34.5 allowanonymouslogin Option Under
imap

The allowanonymouslogin IMAP option enables the SASL ANONYMOUS mechanism for
use by IMAP.

34.6 authfaildelay Option
The authfaildelay option (available under IMAP and POP) determines how long the
server delays before reporting an authentication failure. This option is present only for the
back-end POP3 and IMAP servers. The MMP uses a more sophisticated badguyslist facility
(see bgpenalty). Decreasing the authfaildelay option below the default value (3) is not
recommended.

34.7 banner Option Under imap
The banner IMAP option specifies the IMAP protocol welcome banner. The value is a one
line string, with virtual parameters: %h=hostname, %p=protocol (ESMTP, POP or IMAP),
%P=product-name, %v and %V=version (short or long).

34.8 bgmax Option
The bgmax option (available under base, imap, pop, mmp, imapproxy, and popproxy)
specifies the maximum number of IP addresses associated with authentication failures to keep
track of simultaneously. See bgpenalty for more information.

34.9 bgpenalty Option
When an authentication failure occurs from a particular client IP address, subsequent
authentication attempts from that IP address are treated as "BadGuys" and are delayed. If an
authentication failure is followed by a successful authentication, the successful authentication
is delayed, but the IP address ceases to be treated as a "BadGuy" for subsequent attempts.

The bgpenalty option (available under base, imap, pop, mmp, imapproxy, and popproxy)
specifies the length of time in seconds added to the authentication delay after each failed
authentication.

34.10 bgmaxbadness Option
The bgmaxbadness option (available under base, imap, pop, mmp, imapproxy, and
popproxy) specifies the maximum length of time in seconds for the authentication delay

34–4 Messaging Server Reference

bgdecay Option

which occurs after a series of failed authentication attempts. See bgpenalty for more
information.

34.11 bgdecay Option
The bgdecay option (available under base, imap, pop, mmp, imapproxy, and popproxy)
represents the time in seconds it takes for a BadGuy's penalty to be forgiven. See bgpenalty
for more information.

34.12 bglinear Option
The bglinear option (available under base, imap, pop, mmp, imapproxy, and popproxy)
defines whether a BadGuy's penalty decays linearly over time (1), or is a step function on
expiration (0). See bgpenalty for more information.

34.13 bgexcluded Option
The bgexcluded option (available under base, imap, pop, mmp, imapproxy, and
popproxy) represents a list of excluded IP/mask pairs, or the name of a file to read for these
pairs. These client addresses will not be penalized for authentication failure (there is no default
value).

34.14 broken_client_defer_exists Option
Starting in Messaging Server 8.0, the IMAP server notifies the client as soon as new mail
arrives regardless of whether the IDLE command is in use. The IMAP specification requires
clients to support this behavior (RFC 3501 section 2.2.2). Some clients fail to comply with
the standard and lose state information about new messages. This option can be set to
workaround clients that are broken in this way. It causes IMAP EXISTS and RECENT
responses to be deferred unless a command is in progress.

34.15 capability_acl Option
The capability_acl IMAP option, when set to 1 (the default), causes the IMAP server
to enable the ACL IMAP extension. (See RFC 4314 (IMAP4 Access Control List (ACL)
Extension).)

34.16 capability_annotate Option
The capability_annotate IMAP option, when set to 1 (the default), causes the IMAP
server to enable the ANNOTATE-EXPERIMENT-1 IMAP extension. (See RFC 5257 (IMAP
ANNOTATE Extension).)

34.17 capability_binary Option
The capability_binary IMAP option, when set to 1 (the default), causes the IMAP server
to enable the BINARY IMAP extension. (See RFC 3516 (IMAP4 Binary Content Extension).)

IMAP options 34–5

https://tools.ietf.org/html/rfc4314
https://tools.ietf.org/html/rfc4314
https://tools.ietf.org/html/rfc5257
https://tools.ietf.org/html/rfc5257
https://tools.ietf.org/html/rfc3516

capability_catenate Option

34.18 capability_catenate Option
The capability_catenate IMAP option, when set to 1 (the default), causes the IMAP
server to enable the CATENATE IMAP extension. (See RFC 4469 (IMAP CATENATE
Extension).)

34.19 capability_children Option
The capability_children IMAP option, when set to 1 (the default), causes the IMAP
server to enable the CHILDREN IMAP extension (See RFC 3348 (IMAP4 Child Mailbox
Extension).)

34.20 capability_condstore Option
The capability_condstore IMAP option, when set to 1 (the default), causes the IMAP
server to enable the CONDSTORE IMAP extension. (See RFC 4551 (IMAP Extension for
Conditional STORE Operation or Quick Flag Changes Resynchronization).)

Note that the QRESYNC extension subsumes all of CONDSTORE. So if
capability_qresync is enabled, CONDSTORE is effectively enabled regardless of whether
or not it is enabled due to capability_condstore.

34.21 capability_context_search Option
The capability_context_search IMAP option, when set to 1 (the default), causes the
IMAP server to enable the CONTEXT=SEARCH IMAP extension. (See RFC 5267 (Contexts for
IMAP4).)

34.22 capability_context_sort Option
The capability_context_sort IMAP option, when set to 1 (the default), causes the IMAP
server to enable the CONTEXT=SORT IMAP extension. (See RFC 5267 (Contexts for IMAP4).)

34.23 capability_create_special_use
Option

The capability_create_special_use IMAP option, when set to 1 (the default), causes
the IMAP server to enable the CREATE-SPECIAL-USE IMAP extension. This was introduced
in the 8.0 release of Messaging Server and is described in RFC 6154 (IMAP LIST Extension for
Special-Use Mailboxes).

34.24 capability_enable Option
The capability_enable IMAP option, when set to 1 (the default), causes the IMAP server
to enable the ENABLE IMAP extension. (See RFC 5161 (The IMAP ENABLE Extension).)

34.25 capability_esearch Option

34–6 Messaging Server Reference

https://tools.ietf.org/html/rfc4469
https://tools.ietf.org/html/rfc4469
https://tools.ietf.org/html/rfc3348
https://tools.ietf.org/html/rfc3348
https://tools.ietf.org/html/rfc4551
https://tools.ietf.org/html/rfc4551
https://tools.ietf.org/html/rfc5267
https://tools.ietf.org/html/rfc5267
https://tools.ietf.org/html/rfc5267
https://tools.ietf.org/html/rfc6154
https://tools.ietf.org/html/rfc6154
https://tools.ietf.org/html/rfc5161

capability_esort Option

The capability_esearch IMAP option, when set to 1 (the default), causes the IMAP
server to enable the ESEARCH IMAP extension. (See RFC 4731 (IMAP4 Extension to SEARCH
Command for Controlling What Kind of Information Is Returned).)

See also the capability_multisearch and maxsearchmailboxes IMAP options.

34.26 capability_esort Option
The capability_esort IMAP option, when set to 1 (the default), causes the IMAP server to
enable the ESORT IMAP extension. (See RFC 5267 (Contexts for IMAP4).)

34.27 capability_id Option
The capability_id IMAP option, when set to 1 (the default), causes the IMAP server to
enable the IMAP ID extension. (See RFC 2971 (IMAP4 ID extension).)

34.28 capability_idle Option
Setting the capability_idle IMAP option to 1 (the default) causes the IMAP server
to enable the IDLE IMAP extension, if ENS is also enabled. (See RFC 2177 (IMAP4 IDLE
command).)

34.29 capability_imap4 Option
Enable the IMAP4 capability. The default is normally 0 (false), but the default is 1 (true) if
obsoleteimap (in legacy configuration, local.obsoleteimap) is set. Compare with
capability_imap4rev1, which enables the modern IMAP protocol. (For the definition of
IMAP4, see RFC 1730 (INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4). The more
modern version of IMAP is IMAPv4rev1, initially defined in RFC 2060 (INTERNET MESSAGE
ACCESS PROTOCOL - VERSION 4rev1), since updated by RFC 3501 (INTERNET MESSAGE
ACCESS PROTOCOL - VERSION 4rev1).)

34.30 capability_imap4rev1 Option
The capability_imap4rev1 IMAP option, when set to 1 (the default), causes the IMAP
server to enable the IMAP4rev1 capability. (See RFC 3501 (INTERNET MESSAGE ACCESS
PROTOCOL - VERSION 4rev1).)

34.31 capability_language Option
The capability_language IMAP option, when set to 1 (the default), causes the IMAP
server to enable the LANGUAGE IMAP extension. (See RFC 5255 (Internet Message Access
Protocol Internationalization).)

34.32 capability_list_status Option
The capability_list_status IMAP option, when set to 1 (the default), causes the IMAP
server to enable the LIST-STATUS IMAP extension. This extension was initially introduced

IMAP options 34–7

https://tools.ietf.org/html/rfc4731
https://tools.ietf.org/html/rfc4731
https://tools.ietf.org/html/rfc5267
https://tools.ietf.org/html/rfc2971
https://tools.ietf.org/html/rfc2177
https://tools.ietf.org/html/rfc2177
https://tools.ietf.org/html/rfc1730
https://tools.ietf.org/html/rfc2060
https://tools.ietf.org/html/rfc2060
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc5255
https://tools.ietf.org/html/rfc5255

capability_literal Option

in the 8.0 release of Messaging Server and is described in RFC 5258 (IMAPv4 LIST Command
Extensions).

34.33 capability_literal Option
The capability_literal IMAP option, when set to 1 (the default), causes the IMAP server
to enable the LITERAL+ IMAP extension. (See RFC 2088 (IMAP4 non-synchronizing literals).)

34.34 capability_login_referrals Option
The capability_login_referrals IMAP option, when set to 1 (the default), causes
the back-end IMAP server to enable the LOGIN-REFERRALS IMAP extension. LOGIN OK
referrals are generated when the user connects to a mailstore that is not that user's primary
read-write mailstore. Presently only OK referrals are generated because the client may be
connecting to access shared folders owned by another user who is local to that server. The
MMP does not generate login referrals but will follow them as part of the store failover feature.
(See RFC 2221 (IMAP4 Login Referrals).)

34.35 capability_metadata Option
The capability_metadata IMAP option, when set to 1 (the default), causes the IMAP
server to enable the METADATA IMAP extension. (See RFC 5464 (The IMAP METADATA
Extension).)

34.36 capability_multisearch Option
For 7.0.5.31.0 and later, the capability_multisearch IMAP option is disabled by default
and if enabled will enable the experimental XMSEARCH IMAP extension that is a subset
of the functionality described in RFC 6237 (IMAP4 Multimailbox SEARCH Extension). The
ESEARCH command will be disabled unless this is set to 1.

For the 8.0 release and later, this is enabled by default and controls visibility of the
MULTISEARCH capability as described in RFC 7377 (IMAP4 Multimailbox SEARCH
Extension).

See also the capability_esearch and maxsearchmailboxes IMAP options.

34.37 capability_namespace Option
The capability_namespace IMAP option, when set to 1 (the default), causes the IMAP
server to enable the NAMESPACE IMAP extension. (See RFC 2342 (IMAP4 Namespace).)

34.38 capability_notify Option
The capability_notify IMAP option, when set to 1, causes the IMAP server to enable the
NOTIFY IMAP extension. The default is 0. (See RFC 5465 (The IMAP NOTIFY Extension).)

34.39 capability_qresync Option

34–8 Messaging Server Reference

https://tools.ietf.org/html/rfc5258
https://tools.ietf.org/html/rfc5258
https://tools.ietf.org/html/rfc2088
https://tools.ietf.org/html/rfc2221
https://tools.ietf.org/html/rfc5464
https://tools.ietf.org/html/rfc5464
https://tools.ietf.org/html/rfc6237
https://tools.ietf.org/html/rfc7377
https://tools.ietf.org/html/rfc7377
https://tools.ietf.org/html/rfc2342
https://tools.ietf.org/html/rfc5465

capability_quota Option

The capability_qresync IMAP option, when set to 1 (the default), causes the IMAP server
to enable the QRESYNC IMAP extension. (See RFC 7162 (IMAP Extensions: CONDSTORE and
QRESYNC).)

Note that the QRESYNC extension subsumes all of the CONDSTORE extension. So if
capability_qresync is enabled, CONDSTORE is effectively enabled regardless of whether
or not it is enabled due to capability_condstore.

34.40 capability_quota Option
The capability_quota IMAP option, when set to 1 (the default), causes the IMAP server to
enable the QUOTA IMAP extension. (See RFC 2087 (IMAP4 QUOTA extension).)

34.41 capability_savedate Option
The capability_savedate IMAP option, when set to 1 (the default), causes the IMAP
server to enable the SAVEDATE IMAP extension. (See RFC 8514.)

34.42 capability_sasl_ir Option
The capability_sasl_ir IMAP option, when set to 1 (the default), causes the IMAP
server to enable the SASL-IR IMAP extension. (See RFC 4959 (IMAP Extension for Simple
Authentication and Security Layer (SASL) Initial Client Response).)

34.43 capability_searchres Option
The capability_searchres IMAP option, when set to 1 (the default), causes the IMAP
server to enable the SEARCHRES IMAP extension. (See RFC 5182 (IMAP Extension for
Referencing the Last SEARCH Result).)

34.44 capability_sort Option
The capability_sort IMAP option, when set to 1 (the default), causes the IMAP server to
enable the SORT IMAP extension (RFC 5256 (Internet Message Access Protocol - SORT and
THREAD Extensions)).

34.45 capability_sort_display Option
The capability_sort_display IMAP option, when set to 1 (the default), causes the IMAP
server to enable the SORT=DISPLAY IMAP extension (RFC 5957).

34.46 capability_special_use Option
The capability_special_use IMAP option, when set to 1 (the default), causes the IMAP
server to enable the SPECIAL-USE IMAP extension. This was introduced in the 8.0 release
of Messaging Server and is described in RFC 6154 (IMAP LIST Extension for Special-Use
Mailboxes).

IMAP options 34–9

https://tools.ietf.org/html/rfc7162
https://tools.ietf.org/html/rfc7162
https://tools.ietf.org/html/rfc2087
https://tools.ietf.org/html/rfc8514
https://tools.ietf.org/html/rfc4959
https://tools.ietf.org/html/rfc4959
https://tools.ietf.org/html/rfc5182
https://tools.ietf.org/html/rfc5182
https://tools.ietf.org/html/rfc5256
https://tools.ietf.org/html/rfc5256
https://tools.ietf.org/html/rfc5957
https://tools.ietf.org/html/rfc6154
https://tools.ietf.org/html/rfc6154

capability_starttls Option
Under imap

34.47 capability_starttls Option Under
imap

The capability_starttls IMAP option, when set to 1 (the default), causes the IMAP
server to enable the STARTTLS IMAP extension. (See RFC 2595 (Using TLS with IMAP, POP3,
and ACAP) and RFC 3501 (IMAP4rev1).)

34.48 capability_status_size Option
The capability_status_size IMAP option, when set to 1 (the default), allows an IMAP
client to ask the IMAP server for the size of all messages in a mailbox. For more information,
see RFC 8438 IMAP Extension for STATUS=SIZE.

34.49 capability_thread_references
Option

The capability_thread_references IMAP option, when set to 1 (the default), causes the
IMAP server to enable the THREAD=REFERENCES IMAP extension. (See RFC 5256 (Internet
Message Acces Protocol - SORT and THREAD Extensions).)

34.50 capability_thread_subject Option
The capability_thread_subject IMAP option, when set to 1 (the default), causes the
IMAP server to enable the THREAD=ORDEREDSUBJECT IMAP extension. (See RFC 5256
(Internet Message Acces Protocol - SORT and THREAD Extensions).)

34.51 capability_uidplus Option
The capability_uidplus IMAP option, when set to 1 (the default), causes the IMAP server
to enable the UIDPLUS IMAP extension. (See RFC 2359 (IMAP4 UIDPLUS extension).)

34.52 capability_unselect Option
The capability_unselect IMAP option, when set to 1 (the default), causes the IMAP
server to enable the UNSELECT IMAP extension. (See RFC 3691 (Internet Message Access
Protocol (IMAP) UNSELECT command).)

34.53 capability_url_partial Option
The capability_url_partial IMAP option, when set to 1 (the default), tells the IMAP
client that it can use partial references in an IMAP URL. See RFC 5550 section 5.7 for more
information.

34.54 capability_urlauth Option

34–10 Messaging Server Reference

https://tools.ietf.org/html/rfc2595
https://tools.ietf.org/html/rfc2595
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc8438
https://tools.ietf.org/html/rfc5256
https://tools.ietf.org/html/rfc5256
https://tools.ietf.org/html/rfc5256
https://tools.ietf.org/html/rfc5256
https://tools.ietf.org/html/rfc2359
https://tools.ietf.org/html/rfc3691
https://tools.ietf.org/html/rfc3691
https://tools.ietf.org/html/rfc5550

capability_utf8_accept
Option

The capability_urlauth IMAP option, when set to 1 (the default), causes the IMAP server
to enable the URLAUTH IMAP extension. (See RFC 4467 (Internet Message Access Protocol
(IMAP) - URLAUTH Extension).)

34.55 capability_utf8_accept Option
The capability_utf8_accept IMAP option, when set to 1 (the default), allows an IMAP
client to enable use of UTF-8 mailbox names, quoted strings, and messages. See RFC 6855
IMAP Support for UTF-8 for more details.

Note that whether or not this is explicitly enabled by a client, the message store is presently
liberal about allowing UTF-8 in the protocol and email messages with UTF-8 headers into
the message store. The primary behavior difference when a client ENABLEs this extension is
to disallow use of the modified-UTF-7 mailbox naming convention in the IMAP session and
convert all mailboxes to UTF-8 when performing IMAP LIST operations.

34.56 capability_within Option
The capability_within IMAP option, when set to 1 (the default), causes the IMAP server
to enable the WITHIN IMAP extension. (See RFC 5032 (WITHIN Search Extension to the IMAP
Protocol).)

34.57 capability_x_netscape Option
The capability_x_netscape IMAP option, if set to 1, (the default being 0), causes the
IMAP server to enable the X-NETSCAPE IMAP extension.

34.58 capability_x_orcl_as Option
The capability_x_orcl_as IMAP option, when set to 1 (the default), causes the IMAP
server to enable the X-ORCL-AS IMAP capability. This capability was added in the 8.0 release
of Messaging Server and refers to protocol extensions that may be useful for ActiveSync
gateways.

34.59 capability_x_sun_imap Option
The capability_x_sun_imap IMAP option, when set to 1 (the default), causes the IMAP
server to enable the X-SUN-IMAP IMAP extension.

34.60 capability_x_sun_sort Option
The capability_x_sun_sort IMAP option, when set to 1 (the default), causes the IMAP
server to enable the X-SUN-SORT IMAP extension.

34.61 capability_x_unauthenticate Option
The capability_x_unauthenticate IMAP option, when set to 1, causes the IMAP server
to advertise the X-UNAUTHENTICATE IMAP extension. Starting with Messaging Server 8.1,

IMAP options 34–11

https://tools.ietf.org/html/rfc4467
https://tools.ietf.org/html/rfc4467
https://tools.ietf.org/html/rfc6855
https://tools.ietf.org/html/rfc6855
https://tools.ietf.org/html/rfc5032
https://tools.ietf.org/html/rfc5032

capability_unauthenticate
Option

this has been replaced by the imap.capability_unauthenticate option. The default is 0. This
should only be turned on when imap.capability_unauthenticate has been set to 1 and there is a
need for backwards compatibility with a client that only recognizes X-UNAUTHENTICATE.

34.62 capability_unauthenticate Option
The capability_unauthenticate IMAP option, when set to 1, causes the IMAP server to
advertise the UNAUTHENTICATE IMAP extension from RFC 8437. This is off by default (0).

34.63 capability_xrefresh Option
The capability_xrefresh IMAP option, when set to 1 (the default), causes the IMAP
server to Enable the XREFRESH IMAP extension.

34.64 capability_xsender Option
The capability_xsender IMAP option, when set to 1 (the default), causes the IMAP server
to advertise the XSENDER IMAP extension. In version 8.0 and later, the XSENDER feature was
removed from imapd and this option has been deleted. DELETED: simplify message store by
removing non-standard feature.

Important note: If the MMP imapproxy.capability option is explicitly configured, it is
critical that XSENDER not be included in the value for MS 8.0 and later, as this can lead to
clients trying to use the capability and failing. Similar considerations apply to third-party
IMAP proxies that advertise a fixed set of capabilities.

34.65 capability_xserverinfo Option
The capability_xserverinfo IMAP option, if set to 1 (the default being 0), causes the
IMAP server to enable the XSERVERINFO IMAP extension.

34.66 capability_xsnippet Option
The capability_xsnippet IMAP option, when set to 1 (the default), causes the IMAP
server to enable the XSNIPPET IMAP extension (draft). This extension is experimental and
subject to change in the event equivalent functionality is standardized.

34.67 capability_xum1 Option
The capability_xum1 IMAP option, when set to 1 (the default), causes the IMAP server to
enable the XUM1 IMAP extension.

34.68 connlimits Option
The connlimits option (available under http, imap, pop, mmp, imapproxy, popproxy,
specifies the maximum number of connections per IP address for the selected server. The
syntax is: "realm1,realm2,..." where a realm has the form of address ranges and maximum
number of connections expressed as any of the following four forms:

34–12 Messaging Server Reference

https://tools.ietf.org/html/rfc8437

Use with isc_client

Table 34.1 connlimits Option Value Forms

a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
a.b.c.d/p:m IPv4 address, routing prefix, connection max
 a.b.c.d IPv4 address
 p routing prefix
 m maximum connection count
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
[a/p]:m IPv6 address, routing prefix, connection max
 a IPv6 address; compressed "::" format allowed
 p routing prefix
 m maximum connection count
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
:m Match any address
 m maximum connection count

There should be at least one realm of the form ":m" to cover the default case by matching any
IPv4 or IPv6 address. To match only IPv4 addresses, use "0.0.0.0/0:m" or "0.0.0.0|0.0.0.0:m".
And to match only IPv6 addresses, use "[::0/0]:m".

The option has no default value; however, initial configuration normally sets a value of :20 for
the IMAP Proxy, and POP Proxy:

msconfig> show connlimits
role.imapproxy.connlimits = :20
role.popproxy.connlimits = :20

For backwards compatibility reasons, this option may instead specify the full path to a
configuration file name that contains one realm per line. Such a file name must begin with '/'.
This usage is deprecated and may be removed in a future release.

34.68.1 Use with isc_client
The connlimits isc_client option specifies the maximum number of connections that are
permitted from a single LMTP process to the ISC server. Starting with 8.0.2.2, this isc_client
option is deprecated; the isc_client.max_conns option should be used instead.

IMAP options 34–13

diacritical_sensitive_languages
Option

34.69 diacritical_sensitive_languages
Option

By default, IMAP search is diacritical insensitive (meaning diacritical marks are ignored
when searching for a string) while ISS search (as is used when imap.indexer.enable and
imap.indexer.server_host are set) is diacriticial sensitive (meaning only exact diacritical
matches are returned). This option can be used to make IMAP search diacritical sensitive
for specific languages. The value is a space separated list of language tags (RFC 5646). If the
IMAP LANGUAGE extension (RFC 5255) is used to negotiate a language in this list or a user's
preferredLanguage LDAP attribute includes one of the languages in this list, then IMAP
searches that are not sent to ISS will be diacritical sensitive instead of the default diacritical
insensitive. If the language 'i-default' is included in this option then IMAP searches will
be diacritical sensitive if the LANGUAGE extension is not used or the default language is
explicitly selected.

34.70 domainallowed Option Under imap
The domainallowed IMAP option specifies access filters specifying which domains and/or IP
addresses are allowed IMAP access.

34.71 domainnotallowed Option Under imap
The domainnotallowed IMAP option specifies access filters specifying which domains and/
or IP addresses are not allowed IMAP access.

34.72 enablesslport Option Under imap
The enablesslport IMAP option sets whether or not IMAP over SSL service is started; if
enabled, this service uses the port set in the sslport IMAP option. For the 7.0.5 release, the
sslusessl IMAP option must also be explicitly set to enable the separate SSL port. For the
8.0 release, setting this option enables the separate SSL port and it is no longer necessary to
explicitly set the sslusessl IMAP option.

34.73 enableuserlist Option Under imap
The enableuserlist IMAP option enables imsconnutil connected user listing for IMAP
service.

34.74 extra_capabilities Option
If the extra_capabilities IMAP option is set, the string specified is included in the IMAP
server capability list. The use of capability names that do not begin with 'X' will often break
IMAP standards compliance and manifest as client compatibility problems that may result in
support calls. As a result, use of this option is not recommended. Including ']' in this value
will also violate the standard and break client compatibility.

34.75 fixinternaldate Option

34–14 Messaging Server Reference

https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5255

forcetelemetry Option Under
imap

The fixinternaldate IMAP option specifies whether to fix the IMAP internaldate for
appended messages when the client fails to pass a valid date argument. With the default value
of 1, this will read the date from the most recent received header in the message content and
use that as the default internal date. When this is 0, the server's current time will be used as the
default internal date. Set this to 0 if strict compliance with the IMAP standard is required. The
default setting of 1 is more likely to behave as end-users expect when an IMAP client moves
mail to the IMAP server.

34.76 forcetelemetry Option Under imap
Setting the forcetelemetry IMAP option to 1 forces telemetry for all users. Warning: this
generates a lot of data and should not be used on a production system.

See also the logcommands IMAP option.

34.77 idletimeout Option Under imap
The idletimeout IMAP option specifies a maximum idle time, in minutes, for IMAP
connections.

If an IMAP client has no activity for longer than the idletimeout value, then the IMAP
server will close the connection with a message:

* BYE timeout surpassed

The default is 30 minutes, which RFC 3501 (IMAP v4rev1) specifies as the minimum such
timeout. Attempting to set this option to a smaller value will result in a value of 30 being used
(and an nslog Warning level message); attempting to set this option to a value larger than
two days (larger than 2880=48*60) will result in a value of 48*60 being used (with no nslog
message).

If using the MMP, see also its mmp.timeout option, where client IMAP connections can be
affected by the setting under mmp as well as imapproxy.

34.78 immediateflagupdate Option
When the immediateflagupdate IMAP option is set to 1, then \Seen and \Deleted flags
for users other than the mailbox owner are updated in the database on disk immediately,
instead of being buffered and updated once in a while. This is needed for IMAP IDLE to show
flag changes correctly with shared folders.

The default was changed to 1 for the 7.0.5 release.

34.79 legacy_proxyauth Option
The legacy_proxyauth IMAP option enables the legacy proxy authorization IMAP
PROXYAUTH command; this command was useful prior to 1999 when the standards-based
replacement mechanism was published. This non-standard command, provides a mechanism
that is similar but inferior to the standard SASL authorization identity that can be provided
with the SASL PLAIN mechanism, as documented in RFC 2595. This option is available for

IMAP options 34–15

https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc2595

logauthsessionid Option

customers who have not yet adapted their systems to use the standard mechanism. Note that
the PROXYAUTH command is not compatible with the MMP (it may or may not work).

34.80 logauthsessionid Option
Set the logauthsessionid IMAP option to include a numeric session id in square brackets
at the end of protocol authentication responses. This can be used to correlate authentication
errors in the log with authentication errors sent over the network.

34.81 logcommands Option
If the logcommands IMAP option is enabled, this will record information about IMAP client
commands in a file called imapcmd in the log directory. Each line will have a session identifier
followed by command information. This differs from the telemetry facility in that user-specific
information is omitted to protect privacy, server responses are omitted, there is no timing
information, it is controlled globally for all users and commands prior to authentication are
logged. This option is refreshable (via a refresh imapd command) and is intended to gather
a sample of client behavior rather than to be used continuously. The present version does not
have the ability to size limit or rollover this log file.

34.82 logprotocolerrors Option Under imap
If the logprotocolerrors IMAP option is greater than zero, protocol errors are logged as
debug messages for IMAP.

34.83 logunauthsession Option Under imap
The logunauthsession IMAP option enables log messages from unauthenticated client
IMAP sessions. Prior to turning this on, consider verifying that your logging filesystem can
handle the amount of I/O possible from unauthenticated clients connecting frequently.

34.84 maxmessagesize Option Under imap
The maxmessagesize IMAP option specifies the maximum message size (in bytes) that
IMAP clients are allowed to save via the append command. A legacy configutil option,
service.imap.maxmessagesize is introduced in 8.0.2.1.

34.85 maxnoops Option
The maxnoops IMAP option specifies the maximum number of NOOP commands accepted
before connection is forcibly closed.

34.86 maxprotocolerrors Option Under imap
The maxprotocolerrors IMAP option specifies the maximum number of protocol errors
allowed before the IMAP connection is forcibly closed.

34.87 maxsearchmailboxes Option

34–16 Messaging Server Reference

maxsearchnest Option

The maxsearchmailboxes IMAP option specifies the maximum number of mailboxes
that may be searched by one IMAP ESEARCH command. If this limit is exceeded, the search
command will return an error. Setting this to 0 results in no limit.

34.88 maxsearchnest Option
The maxsearchnest IMAP option specifies the maximum nesting depth in an IMAP
SEARCH command. If this limit is exceeded, the search command will return an error. Nesting
of at least 20 levels is always permitted regardless of this setting.

34.89 maxsessions Option Under imap
The maxsessions IMAP option specifies the maximum number of sessions per IMAP server
process.

34.90 maxthreads Option Under imap
The maxthreads IMAP option specifies the maximum number of threads per IMAP server
process.

34.91 numprocesses Option Under imap
the numprocesses IMAP option specifies the number of IMAP server processes.

Note that the Watcher must be enabled for stop-msg to correctly shut down all processes if
this is set to a value larger than one.

34.92 plaintextmincipher Option Under
imap

If the imap.plaintextmincipher option is > 0, then disable use of plaintext passwords
unless a security layer (SSL or TLS) is activated. This forces users to enable SSL or TLS on their
client to login which prevents exposure of their passwords on the network.

34.93 polldelay Option
Solaris-only. The polldelay (IMAP and MMP) option specifies the wait time before calling
poll() in milliseconds. Workaround for poll performance bug on Solaris (6438988, 6379476).
Setting this to -1 activates a different workaround as of 7 update 4 patch 24. The alternate code
tries to keep the size of the poll array relatively constant and instead uses -1 in the poll array
for inactive descriptors. The poll array will be larger, but change size less frequently. To date
this appears to noticably improve performance under stress.

The default has changed from 1 to -1 in the Messaging Server 7.0.5 release. In addition, poll
is no longer used in the Messaging Server 7.0.5 release (and thus this option is ignored) unless
preferpoll is set.

34.94 port Option Under imap

IMAP options 34–17

sslcachesize Option Under
imap

The port IMAP option specifies the IMAP server port number. The default is 143.

34.95 sslcachesize Option Under imap
The sslcachesize IMAP option specifies the number of SSL sessions to be cached by the
IMAP server. If this is set to 0 or not set, this will use a default provided by the Mozilla NSS
library which was 10000 last time this was checked (March 2016).

34.96 sslnicknames Option Under imap
The sslnicknames IMAP option specifies a list of SSL/TLS server certificate nicknames
(only one per certificate type) for IMAP to offer clients if SSL/TLS enabled. Overrides for
IMAP the base level sslnicknames option (corresponding to the legacy configuration
encryption.rsa.nssslpersonalityssl configutil parameter).

34.97 sslport Option Under imap
The sslport IMAP option specifies the port number for the IMAP over SSL service. The
default is 993. Note that to enable the IMAP+SSL service, the enablesslport IMAP option
must be set also. (In MS 7.0.5, it was also necessary to set the sslusessl IMAP option
explicitly to 1 even though the default was 1; but as of MS 8.0, setting sslusessl is not
necessary for the IMAP server.)

When using the MMP (IMAP Proxy), see its sslbacksideport option to tell the IMAP Proxy
to attempt to connect with SSL to the IMAP sslport.

34.98 sslusessl Option Under imap
If a server certificate is installed and the sslusessl IMAP option is not set to 0, then
STARTTLS is enabled on the IMAP server (listening at its regular port).

As regards listening at a separate sslport, note that for the 7.0.5 release, the sslusessl
option must be explicitly set to 1 (even though the default was 1) as well as setting
imap.enablesslport to enable SSL connections on a separate sslport. For the 8.0 release,
it is no longer necessary to explicitly set this option in order to enable SSL connections on a
separate port.

34.99 submituser Option
The submituser IMAP option specifies the Message Store userid used by the MTA when
resolving submit IMAP URLs in BURL commands.

34.100 withinresolution Option
The withinresolution IMAP option specifies the interval (in minutes) between
recalculations of Contexts involving the search options YOUNGER or OLDER.

34.101 IMAP password expiration alert options

34–18 Messaging Server Reference

firstwarn Option

A few pwexpirealert options under imap control the sending of IMAP ALERT notifications
to IMAP users to warn that the user's password will expire.

See also the pwchangeurl Base option.

34.101.1 firstwarn Option
Setting the firstwarn IMAP password expiration alert option,
imap.pwexpirealert.firstwarn, causes sending an IMAP ALERT to notify a user that
their password will expire soon. The value specifies the number of seconds of remaining
password validity before a warning is sent. For example, specify 259200 (3*24*60*60) to begin
sending warnings 3 days before expiration.

34.101.2 viametermaid Option
By default the IMAP server limits password expirations to once per day on a per-
process basis. Set the viametermaid IMAP password expiration alert option,
imap.pwexpirealert.viametermaid, to use MeterMaid to get per-metermaid instance
limits instead. If this is set, then is is also necessary to set at least the MeterMaid secret
option (metermaid.config.secret in legacy configuration, or in Unified Configuration
metermaid.secret or alternatively mta.metermaid_secret), as well as other relevant
MeterMaid client settings.

34.101.3 metermaidtable Option
The metermaidtable IMAP password expiration alert option,
imap.pwexpirealert.metermaidtable, specifies the name of the MeterMaid table to use
for password expiration alerts in IMAP.

IMAP options 34–19

34–20

Chapter 35 POP options
35.1 enable Option Under pop ... 35–2
35.2 actions Option ... 35–2
35.3 actionattributes Option ... 35–2
35.4 allowanonymouslogin Option Under pop .. 35–2
35.5 authfaildelay Option ... 35–2
35.6 banner Option Under pop ... 35–3
35.7 bgmax Option ... 35–3
35.8 bgpenalty Option ... 35–3
35.9 bgmaxbadness Option ... 35–3
35.10 bgdecay Option ... 35–3
35.11 bglinear Option ... 35–3
35.12 bgexcluded Option ... 35–3
35.13 connlimits Option ... 35–4

35.13.1 connlimits Option Under isc_client .. 35–5
35.14 domainallowed Option Under pop .. 35–5
35.15 domainnotallowed Option Under pop .. 35–5
35.16 emulateqpopper Option ... 35–5
35.17 enablesslport Option Under pop .. 35–5
35.18 forcetelemetry Option Under pop .. 35–5
35.19 idletimeout Option Under pop .. 35–5
35.20 lockmailbox Option ... 35–5
35.21 logprotocolerrors Option Under pop .. 35–6
35.22 logunauthsession Option Under pop .. 35–6
35.23 maxprotocolerrors Option Under pop .. 35–6
35.24 maxsessions Option Under pop .. 35–6
35.25 maxthreads Option Under pop .. 35–6
35.26 numprocesses Option Under pop .. 35–6
35.27 plaintextmincipher Option Under pop .. 35–6
35.28 poplogmboxstat Option ... 35–6
35.29 popstatuskludge Option ... 35–6
35.30 port Option Under pop ... 35–7
35.31 sslcachesize Option Under pop .. 35–7
35.32 sslnicknames Option Under pop .. 35–7
35.33 sslport Option Under pop .. 35–7
35.34 sslusessl Option Under pop .. 35–7

The POP server has a number of options.

See also the following options which are described rather generically under Base options, but
which may also be set specifically under pop (as for instance if one wishes to have POP use a
different value than the general base value): the logfile options, the various bg* options,
and defaultdomain.

Of notable relevance to POP operation, see also the base.threadholddelay and
base.dnsresolveclient options.

Note that msprobe can probe for whether the POP server is running; see msprobe's
msprobe.probe:pop. options.

POP options 35–1

enable Option Under pop

The MSHTTP server can optionally be configured to perform collection of messages from
remote POP servers; see the allowcollect, maxcollectmsglen, and popbindaddr
MSHTTP options.

35.1 enable Option Under pop
The enable POP option, (pop.enable in Unified Configuration, or service.pop.enable
in legacy configuration), enables the POP service on start-msg startup. Note: POP over SSL
service is enabled/disabled separately using pop.enablesslport in Unified Configuration,
or service.pop.enablesslport in legacy configuration.

This option defaults to 0 if not set, but initial configuration may enable the option as
appropriate.

35.2 actions Option
The actions option (available for imap, pop, and messagetrace) specifies the actions
enabled in Message Store transaction logging. This can take the value of "all" to enable logging
of all actions, or "+(a1 a2 a3)" to enable only attributes listed, or "-(a1 a2 a3)" to enable all
attributes except those listed. See the Store Transaction Log Format section for permitted
attribute codes.

For 8.0.1 this is "all" by default and for 8.0.2 this is "-(fe)" (log everything except the fetch
action) by default.

35.3 actionattributes Option
The actionattributes option (available for imap, pop, and messagetrace) specifies the
action attributes enabled in Message Store transaction logging. This can take the value of "all"
to enable logging of all actions, or "+(e1 e2 e3)" to enable only event codes listed, or "-(e1 e2
e3)" to enable all events except those listed. See the Store Transaction Log Format section for
permitted event codes.

For 8.0.1 this is "all" by default and for 8.0.2 this is "-(mi)" (log all attributes except the message
id attribute) by default. Note that the message id is expensive to extract from message headers
and requires per-message logging of expunge events.

35.4 allowanonymouslogin Option Under pop
The allowanonymouslogin POP option sets whether or not anonymous login is allowed by
POP.

35.5 authfaildelay Option
The authfaildelay option (available under IMAP and POP) determines how long the
server delays before reporting an authentication failure. This option is present only for the
back-end POP3 and IMAP servers. The MMP uses a more sophisticated badguyslist facility
(see bgpenalty). Decreasing the authfaildelay option below the default value (3) is not
recommended.

35–2 Messaging Server Reference

banner Option Under pop

35.6 banner Option Under pop
The banner POP option specifies the POP protocol welcome banner. One line string, with
virtual parameters: %h=hostname, %p=protocol (ESMTP,POP or IMAP), %P=product-name, %v
and %V=version (short or long).

35.7 bgmax Option
The bgmax option (available under base, imap, pop, mmp, imapproxy, and popproxy)
specifies the maximum number of IP addresses associated with authentication failures to keep
track of simultaneously. See bgpenalty for more information.

35.8 bgpenalty Option
When an authentication failure occurs from a particular client IP address, subsequent
authentication attempts from that IP address are treated as "BadGuys" and are delayed. If an
authentication failure is followed by a successful authentication, the successful authentication
is delayed, but the IP address ceases to be treated as a "BadGuy" for subsequent attempts.

The bgpenalty option (available under base, imap, pop, mmp, imapproxy, and popproxy)
specifies the length of time in seconds added to the authentication delay after each failed
authentication.

35.9 bgmaxbadness Option
The bgmaxbadness option (available under base, imap, pop, mmp, imapproxy, and
popproxy) specifies the maximum length of time in seconds for the authentication delay
which occurs after a series of failed authentication attempts. See bgpenalty for more
information.

35.10 bgdecay Option
The bgdecay option (available under base, imap, pop, mmp, imapproxy, and popproxy)
represents the time in seconds it takes for a BadGuy's penalty to be forgiven. See bgpenalty
for more information.

35.11 bglinear Option
The bglinear option (available under base, imap, pop, mmp, imapproxy, and popproxy)
defines whether a BadGuy's penalty decays linearly over time (1), or is a step function on
expiration (0). See bgpenalty for more information.

35.12 bgexcluded Option
The bgexcluded option (available under base, imap, pop, mmp, imapproxy, and
popproxy) represents a list of excluded IP/mask pairs, or the name of a file to read for these
pairs. These client addresses will not be penalized for authentication failure (there is no default
value).

POP options 35–3

connlimits Option

35.13 connlimits Option
The connlimits option (available under http, imap, pop, mmp, imapproxy, popproxy,
specifies the maximum number of connections per IP address for the selected server. The
syntax is: "realm1,realm2,..." where a realm has the form of address ranges and maximum
number of connections expressed as any of the following four forms:

Table 35.1 connlimits Option Value Forms
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
a.b.c.d/p:m IPv4 address, routing prefix, connection max
 a.b.c.d IPv4 address
 p routing prefix
 m maximum connection count
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
[a/p]:m IPv6 address, routing prefix, connection max
 a IPv6 address; compressed "::" format allowed
 p routing prefix
 m maximum connection count
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
:m Match any address
 m maximum connection count

There should be at least one realm of the form ":m" to cover the default case by matching any
IPv4 or IPv6 address. To match only IPv4 addresses, use "0.0.0.0/0:m" or "0.0.0.0|0.0.0.0:m".
And to match only IPv6 addresses, use "[::0/0]:m".

The option has no default value; however, initial configuration normally sets a value of :20 for
the IMAP Proxy, and POP Proxy:

msconfig> show connlimits
role.imapproxy.connlimits = :20
role.popproxy.connlimits = :20

For backwards compatibility reasons, this option may instead specify the full path to a
configuration file name that contains one realm per line. Such a file name must begin with '/'.
This usage is deprecated and may be removed in a future release.

35–4 Messaging Server Reference

connlimits Option Under
isc_client

35.13.1 connlimits Option Under isc_client
The connlimits isc_client option specifies the maximum number of connections that are
permitted from a single LMTP process to the ISC server. Starting with 8.0.2.2, this isc_client
option is deprecated; the isc_client.max_conns option should be used instead.

35.14 domainallowed Option Under pop
The domainallowed POP option specifies access filters specifying which domains and/or IP
addresses are allowed POP access.

35.15 domainnotallowed Option Under pop
The domainnotallowed POP option specifies access filters specifying which domains and/or
IP addresses are not allowed POP access.

35.16 emulateqpopper Option
Hack.

35.17 enablesslport Option Under pop
The enablesslport POP option sets whether or not POP over SSL service is started; if
enabled, this service uses the port set in the sslport POP option. For the 7.0.5 release, the
sslusessl POP option must also be explicitly set to enable the separate SSL port. For the
8.0 release, setting this option enables the separate SSL port and it is no longer necessary to
explicitly set the sslusessl POP option.

35.18 forcetelemetry Option Under pop
Setting the forcetelemetry POP option to 1 forces telemetry for all users. Warning: this
generates a lot of data and should not be used on a production system.

35.19 idletimeout Option Under pop
The idletimeout POP option specifies a maximum idle time, in minutes, for POP
connections. After this timeout, an idle POP connection will be disconnected. The default is
10 minutes. Only values between 10 and 1440 (24*60) will be used; attempting to set a value
outside this range will result in the nearest permissible value being used.

If using the MMP, see also its mmp.timeout option, where client POP connections can be
affected by the setting under mmp as well as popproxy.

35.20 lockmailbox Option
When set to 1 (on), the lockmailbox POP option limits the number of POP sessions allowed
to access a mailbox at a time to one. When set to 0 (off), POP users can access mailboxes in
multiple sessions concurrently.

POP options 35–5

logprotocolerrors Option
Under pop

35.21 logprotocolerrors Option Under pop
If the logprotocolerrors POP option is greater than zero, protocol errors are logged as
debug messages for POP.

35.22 logunauthsession Option Under pop
The logunauthsession POP option enables log messages from unauthenticated client POP
sessions. Prior to turning this on, consider verifying that your logging filesystem can handle
the amount of I/O possible from unauthenticated clients connecting frequently.

35.23 maxprotocolerrors Option Under pop
The maxprotocolerrors POP option specifies the maximum number of protocol errors
allowed before the POP connection is forcibly closed.

35.24 maxsessions Option Under pop
The maxsessions POP option specifies the maximum number of sessions per server process.

35.25 maxthreads Option Under pop
The maxthreads POP option specifies the maximum number of threads per POP server
process.

35.26 numprocesses Option Under pop
The numprocesses POP option specifies the number of POP server processes.

Note that the Watcher must be enabled for stop-msg to correctly shut down all processes if
this is set to a value larger than one.

35.27 plaintextmincipher Option Under pop
If the pop.plaintextmincipher option is > 0, then disable use of plaintext passwords
unless a security layer (SSL or TLS) is activated. This forces users to enable SSL or TLS on their
client to login which prevents exposure of their passwords on the network.

35.28 poplogmboxstat Option
The poplogmboxstat POP option, if set to 1 (the default being 0), causes the POP log to
show mailbox statistics on login and logout.

35.29 popstatuskludge Option
RESTRICTED: The popstatuskludge POP option, if set to 1 (the default of this restricted
option being 0), enables the POP server to generate a message Status: header line on the fly

35–6 Messaging Server Reference

port Option Under pop

indicating messages as unread or read based upon saving the highest message read by the
client.

35.30 port Option Under pop
The port POP option specifies the POP server port number. The default is 110.

35.31 sslcachesize Option Under pop
The sslcachesize POP option specifies the number of SSL sessions to be cached by the POP
server. If this is set to 0 or not set, this will use a default provided by the Mozilla NSS library
which was 10000 last time this was checked (March 2016).

35.32 sslnicknames Option Under pop
The sslnicknames POP option specifies a list of SSL/TLS server certificate nicknames
(only one per certificate type) for POP to offer clients if SSL/TLS enabled. Overrides for
POP the base level sslnicknames option (corresponding to the legacy configuration
encryption.rsa.nssslpersonalityssl configutil parameter).

35.33 sslport Option Under pop
The sslport POP option specifies the port number for the POP over SSL port. The default
is 995. Note that to enable the POP+SSL service, the enablesslport POP option must also
be set. (In MS 7.0.5 it was also necessary to set the sslusessl POP option explicitly to 1 even
though the default was 1; but as of MS 8.0, the POP server does not require that option.)

When using the MMP (POP Proxy), see its sslbacksideport option to tell the POP Proxy to
attempt to connect with SSL to the POP sslport.

35.34 sslusessl Option Under pop
If a server certificate is installed and the sslusessl POP option is not set to 0, then
STARTTLS is enabled on the POP server (listening at its regular port).

As regards listening at a separate sslport, note that for the 7.0.5 release, the sslusessl
option must be explicitly set to 1 (even though the default was 1) as well as setting
pop.enablesslport to enable SSL connections on a separate sslport. For the 8.0 release,
it is no longer necessary to explicitly set this option in order to enable SSL connections on a
separate port.

POP options 35–7

35–8

Chapter 36 Message Trace options
36.1 activate Option .. 36–1
36.2 actions Option .. 36–1
36.3 actionattributes Option .. 36–1
36.4 loglevel Option Under messagetrace .. 36–2

Message Trace can be enabled by setting the messagetrace.activate option to
transactlog (recommended), yes (deprecated), or messagetrace (deprecated). The
actions and actionattributes options may be used to further control the detail
included in message tracing. The only other Message Trace options are logfile options set as
transactlog.logfile.* (for transactlog log file) or messagetrace.logfile.* (for
messagetrace log file).

36.1 activate Option
The activate Message Trace option, messagetrace.activate (or in legacy configuration
the configutil parameter local.msgtrace.active), enables message tracing.
Permitted values are no, yes, msgtrace, and transactlog. Specifying msgtrace causes
message tracing to be written in traditional format, to a file named msgtrace. Specifying
transactlog causes message trace entries to be written in an easy-to-parse XML format,
similar to the MTA's XML format message transaction entries, to a file named transactlog.
As of MS 8.0.1, the Message Store msgtrace log format (selected via msgtrace) is deprecated
in favor of the Message Store action log format (selected via transactlog) which uses an
easy-to-parse format (XML) described in the Store Transaction Log Format section.

Note that the default values for the actions and actionattributes have changed in 8.0.2; they
both need to be set to "all" explicitly to get functionality that is a superset of the old msgtrace
or yes settings.

Starting with the Messaging Server 8.1 release, the legacy msgtrace format has been removed
so both msgtrace and yes values are treated as synonyms for transactlog.

36.2 actions Option
The actions option (available for imap, pop, and messagetrace) specifies the actions
enabled in Message Store transaction logging. This can take the value of "all" to enable logging
of all actions, or "+(a1 a2 a3)" to enable only attributes listed, or "-(a1 a2 a3)" to enable all
attributes except those listed. See the Store Transaction Log Format section for permitted
attribute codes.

For 8.0.1 this is "all" by default and for 8.0.2 this is "-(fe)" (log everything except the fetch
action) by default.

36.3 actionattributes Option
The actionattributes option (available for imap, pop, and messagetrace) specifies the
action attributes enabled in Message Store transaction logging. This can take the value of "all"
to enable logging of all actions, or "+(e1 e2 e3)" to enable only event codes listed, or "-(e1 e2

Message Trace options 36–1

loglevel Option Under
messagetrace

e3)" to enable all events except those listed. See the Store Transaction Log Format section for
permitted event codes.

For 8.0.1 this is "all" by default and for 8.0.2 this is "-(mi)" (log all attributes except the message
id attribute) by default. Note that the message id is expensive to extract from message headers
and requires per-message logging of expunge events.

36.4 loglevel Option Under messagetrace
Legacy Message Trace data is inherently information level. So setting the
messagetrace.loglevel option to a higher value than information will suppress the
recording of Message Trace data. Data in the transactlog is inherently critical level.

36–2 Messaging Server Reference

Chapter 37 notifytarget options
37.1 enable Option Under notifytarget .. 37–2
37.2 notifytype Option ... 37–2
37.3 enseventkey Option Under notifytarget .. 37–2
37.4 enshost Option Under notifytarget .. 37–2
37.5 ensport Option Under notifytarget .. 37–2
37.6 enspwd Option ... 37–3
37.7 ensuser Option ... 37–3
37.8 ensusessl Option ... 37–3

37.8.1 Use with notifytarget .. 37–3
37.8.2 Use with ms-internal Under notifytarget .. 37–3

37.9 jmqhost Option Under notifytarget .. 37–3
37.10 jmqport Option Under notifytarget .. 37–4
37.11 jmqpwd Option Under notifytarget .. 37–4
37.12 jmqtopic Option Under notifytarget .. 37–4
37.13 jmquser Option Under notifytarget .. 37–4
37.14 jmqqueue Option ... 37–4
37.15 maxbodysize Option Under notifytarget .. 37–5
37.16 maxheadersize Option Under notifytarget .. 37–5
37.17 msgflags Option Under notifytarget .. 37–5
37.18 destinationtype Option ... 37–5
37.19 ldapdestination Option ... 37–5
37.20 persistent Option ... 37–5
37.21 priority Option ... 37–6
37.22 ttl Option ... 37–6
37.23 deletemsg Option Under notifytarget .. 37–6
37.24 loguser Option Under notifytarget .. 37–6
37.25 newmsg Option Under notifytarget .. 37–6
37.26 overquota Option Under notifytarget .. 37–6
37.27 underquota Option Under notifytarget .. 37–6
37.28 setacl Option ... 37–7
37.29 noninbox Option Under notifytarget .. 37–7
37.30 msgtypes Option ... 37–7
37.31 purgemsg Option Under notifytarget .. 37–7
37.32 readmsg Option Under notifytarget .. 37–7
37.33 updatemsg Option Under notifytarget .. 37–7
37.34 expungemsg Option ... 37–7
37.35 annotatemsg Option ... 37–7
37.36 changeflag Option ... 37–8
37.37 copymsg Option ... 37–8

Named notifytarget groups are used to control the operation of sending notifications to
an ENS server or JMQ broker. Such notifytarget groups replace the legacy configuration
local.store.notifyplugin.*.* configutil options.

For instance, to configure notifications to an ENS server (whose basic options are shown in the
example below), one makes a named notifytarget group, in this example ens1, and sets
any necessary options below that:

msconfig> show ens.*

notifytarget options 37–1

enable Option Under notifytarget

role.ens.enable = 1
msconfig> show -default base.listenaddr
base.listenaddr: <no-default>
msconfig> show -default ens.port
ens.port: 7997
msconfig> set notifytarget:ens1.enable 1
msconfig# set notifytarget:ens1.enshost 127.0.0.1
msconfig# set notifytarget:ens1.ensport 7997

37.1 enable Option Under notifytarget
The enable option under notifytarget, notifytarget:target-name.enable,
specifies whether to generate notifications for this destination. This defaults to 1. This can also
be used to disable the default destination for a JMQ plugin, so notifications are only sent to
destinations specified in the ldapdestination attribute in users' directory entries.

37.2 notifytype Option
The notifytype option under notifytarget specifies the type of this notification target.
Presently the value can be either ens (the default) or jmq. Note that support for jmq is
deprecated and will be removed in a future release. For XML mode this setting is used in each
notifytarget instead of having one "local.store.notifyplugin" string that lists all
the plugins.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.3 enseventkey Option Under notifytarget
The enseventkey option under notifytarget, notifytarget:target-
name.enseventkey, specifies the event key to use for ENS notifications. The default is
"enp://127.0.0.1/store/%M" where %M is replaced at runtime with the mailbox name for
mailbox-related events. The value of the enseventkey option must not contain any question
mark "?" characters.

37.4 enshost Option Under notifytarget
The enshost option under notifytarget, notifytarget:target-name.enshost,
specifies the IP address or hostname of the ENS server. If unset, defaults to the value of the
listenaddr base option (service.listenaddr in legacy configuration) or the loopback
address.

37.5 ensport Option Under notifytarget
The ensport option under notifytarget, notifytarget:target-name.ensport,
specifies the TCP port number of the ENS server. This will generally correspond to the setting
of the ens.port option (local.ens.port in legacy configuration).

Prior to MS 8.0, this option defaulted to a value of 7997. As of MS 8.0, if
ens.enablesslport (local.ens.enablesslport in legacy configuration) is set,

37–2 Messaging Server Reference

enspwd Option

then this option defaults to the value of ens.sslport (local.ens.sslport in legacy
configuration) if it is set or 8997 if the sslport is not explicitly set; otherwise, this option
defaults to the value of ens.port (local.ens.port in legacy configuration) if it is set to a
valid value, or 7997 if ens.port does not have a valid value.

37.6 enspwd Option
The enspwd option under notifytarget, notifytarget:target-name.enspwd,
specifies the ENS Broker user password that is used to authenticate to the ENS broker. The
default value of the option will be the value of the option ens.secret, if the target-name
of the notifytarget is ms-internal or the notifytarget:target-name.enshost
is not set or the notifytarget:target-name.enshost is same as the value of the
listenaddr Base option (service.listenaddr in legacy configuration) or the
notifytarget:target-name.enshost is 127.0.0.1 or the notifytarget:target-
name.enshost is ::1.

37.7 ensuser Option
The ensuser option under notifytarget, notifytarget:target-name.ensuser,
specifies the ENS username. The default is "guest".

37.8 ensusessl Option
The ensusessl option is available for notifytargets. The defaulting is special for
notifytarget:ms-internal.

37.8.1 Use with notifytarget
The ensusessl option under notifytarget, notifytarget:target-name.ensusessl,
specifies whether the connection to the ENS broker for this notification target should use TLS/
SSL or not. This works only if the notifytype of the notifytarget is equal to "ens". Setting
ensusessl to 1 directs the notifytarget to connects to the specified ENS enshost using
TLS/SSL.

Arbitrary, remote targets of notifytarget default to an ensusessl value of 0. But if the
target-name of the notifytarget is ms-internal, the default value will be equal to
value of the enablesslport ENS option.

37.8.2 Use with ms-internal Under notifytarget
The ensusessl option under notifytarget:ms-internal, notifytarget:ms-
internal.ensusessl, specifies whether the connection to the ENS broker for this
notification target should use TLS/SSL or not. This works only if the notifytype of
notifytarget:target-name is equal to "ens". Setting ensusessl to 1 directs the
notifytarget to connect to the specified ENS enshost using TLS/SSL.

While arbitrary, remote targets of notifytarget default to 0, for ms-internal, the default
value will be equal to value of the enablesslport ENS option.

37.9 jmqhost Option Under notifytarget

notifytarget options 37–3

jmqport Option Under
notifytarget

The jmqhost option under notifytarget, notifytarget:target-name.jmqhost,
specifies the hostname of the JMQ broker.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.10 jmqport Option Under notifytarget
The jmqport option under notifytarget, notifytarget:target-name.jmqport,
specifies the port number of the JMQ broker. The default is 7676.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.11 jmqpwd Option Under notifytarget
The jmqpwd option under notifytarget, notifytarget:target-name.jmqpwd,
specifies the Glassfish MQ (formerly called Java MQ or JMQ) user password that is used to
authenticate to the Glassfish MQ broker. The default value was removed in the 8.0 release. For
security reasons, this should not be set to an easy-to-guess value such as guest. Starting with
the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated. This feature is
only supported for customers migrating from ISS to Elasticsearch.

37.12 jmqtopic Option Under notifytarget
The jmqtopic option under notifytarget, notifytarget:target-name.jmqtopic,
specifies the name of the topic or queue to which JMQ will publish events. The default is
JES-MS. Note that if notifytarget:target-name.jmqqueue is set, it will override the
jmqtopic value.

Note that the corresponding target-name setting of notifytarget:target-
name.destinationtype is what controls whether in fact a topic vs. queue is used.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.13 jmquser Option Under notifytarget
The jmquser option under notifytarget, notifytarget:target-name.jmquser,
specifies the JMQ username. The default is "guest".

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.14 jmqqueue Option
The jmqqueue option under notifytarget, notifytarget:target-
name.jmqqueue, specifies the name of the topic or queue to which JMQ will

37–4 Messaging Server Reference

maxbodysize Option Under
notifytarget

publish events; (if set, this overrides jmqtopic, or in legacy configuration
local.store.notifyplugin.*.jmqtopic).

Note that the corresponding target-name setting of notifytarget:target-
name.destinationtype is what controls whether in fact a topic vs. queue is used.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.15 maxbodysize Option Under notifytarget
The maxbodysize option under notifytarget, notifytarget:target-
name.maxbodysize, specifies the maximum size (in bytes) of the body that will be
transmitted with the notification. If the body is longer than this, it will be truncated.

37.16 maxheadersize Option Under
notifytarget

The maxheadersize option under notifytarget, notifytarget:target-
name.maxheadersize, specifies the maximum size (in bytes) of the header that will be
transmitted with the notification. If the header is longer than this, it will be truncated and
padded with a blank line.

37.17 msgflags Option Under notifytarget
The msgflags option under notifytarget, notifytarget:target-name.msgflags,
enables the msgflag notification mechanism.

37.18 destinationtype Option
The destinationtype option under notifytarget, notifytarget:target-
name.destinationtype, specifies the JMQ destination type, queue or topic (the default).

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.19 ldapdestination Option
The ldapdestination option under notifytarget, notifytarget:target-
name.ldapdestination, specifies what LDAP attribute is to be used to look up a JMQ
notification destination. If this is not specified, or the user lacks this attribute, or the value of
this attribute is zero length, the library id is used as the destination. Although any attribute
can be used, the mailEventNotificationDestination attribute has been defined for this
purpose.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.20 persistent Option

notifytarget options 37–5

priority Option

The persistent option under notifytarget, notifytarget:target-
name.persistent, specifies whether persistent JMQ messages are to be used. The default of
0 means that non-persistent JMQ messages are used.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.21 priority Option
The priority option under notifytarget, notifytarget:target-name.priority,
specifies the priority to be used for JMQ notification messages.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.22 ttl Option
The ttl option under notifytarget, notifytarget:target-name.ttl, specifies the
time-to-live (in milliseconds) for JMQ messages. 0, the default, means no timeout.

Starting with the Messaging Server 8.1 release, the JMQ notifytargets feature is deprecated.
This feature is only supported for customers migrating from ISS to Elasticsearch.

37.23 deletemsg Option Under notifytarget
The deletemsg option under notifytarget, notifytarget:target-name.deletemsg,
specifies whether DeleteMsg events will generate a notification.

37.24 loguser Option Under notifytarget
The loguser option under notifytarget, notifytarget:target-name.loguser,
specifies whether LogUser events will generate a notification. For JMQ notifications
(notifytarget:target-name.notifytype=jmq), the default is 0. For ENS notifications
(notifytarget:target-name.notifytype=ens), the default is 1 for the ms-internal
target, but 0 for other target-name targets.

37.25 newmsg Option Under notifytarget
The newmsg option under notifytarget, notifytarget:target-name.newmsg,
specifies whether NewMsg events will generate a notification.

37.26 overquota Option Under notifytarget
The overquota option under notifytarget, notifytarget:target-name.overquota,
specifies whether OverQuota events will generate a notification.

37.27 underquota Option Under notifytarget

37–6 Messaging Server Reference

setacl Option

The underquota option under notifytarget, notifytarget:target-
name.underquota, specifies whether UnderQuota events will generate a notification.

37.28 setacl Option
The setacl option under notifytarget, notifytarget:target-name.setacl,
specifies whether SetAcl events will generate a notification.

37.29 noninbox Option Under notifytarget
The noninbox option under notifytarget, notifytarget:target-name.noninbox,
determines whether all folders generate notifications or if only the INBOX generates
notifications: 0: only INBOX, 1: all folders. As of 7 Update 4, this defaults to 1 for ENS and 0
for JMQ. As of Messaging Server 7.0.5, this defaults to 1 for both ENS and JMQ.

37.30 msgtypes Option
For JMQ notifications (notifytarget:target-name.notifytype=jmq), the msgtypes
option under notifytarget, notifytarget:target-name.msgtypes, determines
whether to include message type counts in PurgeMsg, DeleteMsg, CopyMsg, NewMsg, and
UpdateMsg messages.

37.31 purgemsg Option Under notifytarget
The purgemsg option under notifytarget, notifytarget:target-name.purgemsg,
specifies whether PurgeMsg events will generate a notification.

37.32 readmsg Option Under notifytarget
The readmsg option under notifytarget, notifytarget:target-name.readmsg,
specifies whether ReadMsg events will generate a notification.

37.33 updatemsg Option Under notifytarget
The updatemsg option under notifytarget, notifytarget:target-name.updatemsg,
specifies whether UpdateMsg events will generate a notification.

37.34 expungemsg Option
The expungemsg option under notifytarget, notifytarget:target-
name.expungemsg, specifies whether ExpungeMsg events will generate a notification.

37.35 annotatemsg Option
The annotatemsg option under notifytarget, notifytarget:target-
name.annotatemsg, specifies whether AnnotateMsg events will generate a notification.

notifytarget options 37–7

changeflag Option

37.36 changeflag Option
The changeflag option under notifytarget, notifytarget:target-
name.changeflag, specifies whether ChangeFlag events will generate a notification. For
JMQ notifications (notifytarget:target-name.notifytype=jmq), the default is 0. For
ENS notifications (notifytarget:target-name.notifytype=ens), the default is 1.

37.37 copymsg Option
The copymsg option under notifytarget, notifytarget:target-name.copymsg,
specifies whether IMAP COPY operations will generate Copy events or UpdateMsg events.

37–8 Messaging Server Reference

Chapter 38 IMAP error statuses
When users attempt to access or manipulate their mailboxes or messages via an IMAP client
or POP client may, various Message Store errors may occur and be reported or logged; these
errors are referred to as IMAP errors, since the Message Store is a fundamentally IMAP-
oriented repository of messages. Utilities operating on the Message Store may also encounter
such IMAP errors. And MTA channels attempting to deliver to the Message Store, i.e., ims-
ms channels or tcp_lmtpcs* channels, can also encounter a subset of such IMAP errors
(discussed further in ims-ms channel error messages).

Additional details on the underlying Message Store issue that gave rise to an IMAP error
status may be available in the Message Store NSLOG logging for the component which
encountered the issue; in the case of the ims-ms channel or LMTP server, see the imta
NSLOG file discussed in ims-ms channel debugging and error logging.

Table 38.1 IMAP error statuses
Name Type RFC 5530 code Text+ Meaning

 IMAP_IOERROR MTA-temp [CONTACTADMIN] System I/O error.
Administrator, check
server log for details.

The Message Store may be corrupted, or otherwise
inaccessible (e.g., disk not mounted); or the Message Store
store.idx file may have reached its 2 gigabyte size
limit.

IMAP_CONFIG_ERROR MTA-perm [CONTACTADMIN] Configuration error For the MTA Message Store delivery channels, returned if
either LDAP pool code, or the domain map code, cannot
be initialized. For Message Store servers and Message
Store utilities, returned if the Message Store or library
code cannot be initialized.

 IMAP_PERMISSION_DENIED MTA-perm [NOPERM] Permission denied Typically, this error relates to an attempt to create
or delete a mailbox (i.e., folder), where either there
was a (semantic) problem with the folder name, or
a problem with IMAP ACLs on the folder. (Note
that for privacy reasons, IMAP ACL problems
may instead be reported with the less informative
IMAP_MAILBOX_NONEXISTENT error.) This error may
also be reported in cases of ACL problems attempting to
read or modify an IMAP flag on a message.

 IMAP_QUOTA_EXCEEDED MTA-temp [OVERQUOTA] Over quota The recipient has exceeded their configured quota, but for
less than the configured grace period.

IMAP_QUOTA_EXCEEDED_PERSISTENT
MTA-perm [OVERQUOTA] Over quota The user has exceeded their configured quota for more

than the configured grace period.

 IMAP_MESSAGE_TOO_LARGE MTA-perm [LIMIT] Message too large Message is larger than the user's entire quota.

 IMAP_USERFLAG_EXHAUSTED [LIMIT] Too many keywords in
mailbox

 IMAP_MAILBOX_BADFORMAT MTA-temp [CORRUPTION] Mailbox has an invalid
format

The mailbox may be corrupted.

 IMAP_MAILBOX_NOTSUPPORTED MTA-temp Operation is not
supported on mailbox

The mailbox may be corrupted.

 IMAP_MAILBOX_NONEXISTENT MTA-perm [NONEXISTENT] Mailbox does not exist (Recall that these error messages are general IMAP error
messages, that may occur in other contexts besides ims-
ms channel or LMTP channel delivery.) When this error
occurs in the context of an ims-ms or LMTP channel
delivery, the meaning is as follows. Normally, the ims-
ms channel and LMTP server tcp_lmtpss* channel will
create a mailbox, if it does not exist. And when delivery
to a specific folder is being attempted due to a Sieve
"fileinto" action, and the folder does not exist, the
channel will attempt to create the folder. (If the folder part
of the address was not generated by the user's Sieve filter
nor world writeable, then the channel will log a General
facility, Information level notice to the imta file saying
"append_setup path failed, trying INBOX:"
followed by the IMAP_MAILBOX_NONEXISTENT error
text. If the folder part was due to the user's Sieve filter
but the folder could not be created, then the channel will
log a General facility, Error level notice to the imta file
saying "mboxlist_createmailbox path failed,
trying INBOX:" with the specific IMAP error text.) But
if the partition is bogus, then this error will be returned.

 IMAP_WRONG_MAILHOST MTA-perm Mailbox is on a different
server

Arises when attempting to create a mailbox (folder). For
the MTA's delivery channels, this suggests that either

IMAP error statuses 38–1

the user's LDAP entry is missing a mailHost attribute
entirely, or their mailHost has been changed (their
mailbox has been moved) while old messages were
awaiting delivery in the ims-ms channel queue area, or
that there is an error in the MTA configuration (causing it
to attempt to deliver a message on the wrong mailHost),
or operator error whereby messages have been manually
moved (incorrectly) from one host to another.

IMAP_MAILBOX_EXISTS [ALREADYEXISTS] Mailbox already exists When attempting to create a folder, this is a success status

 IMAP_MAILBOX_BADNAME MTA-perm [CANNOT] Invalid mailbox name

Delivery temporary errors

 IMAP_MAILBOX_LOCKED MTA-temp [INUSE] Mailbox is busy The mailbox was locked. When this status is encountered,
the MTA delivery channel (ims-ms or tcp_lmtpcs*)
first retries 10 times at 100 millisecond intervals
(before this error is ever even reported back from the
channel). Prior to 8.0, lock attempts were nonblocking;
a 1 second time is used in 8.0 or later. If the mailbox
remains locked, then the channel gives up on this
delivery attempt, generating a "Q" record with the
"Mailbox is busy" reason if logging is enabled.
And then there is special code in the ims-ms channel
(and as of MS 7.0 in the LMTP client channel; see the
MAILBOX_BUSY_FAST_RETRY TCP/IP-channel-specific
option) to ask the Job Controller to retry delivery again
very, very soon---with a randomly generated backoff
of between one second and two minutes---overriding
the normal *backoff values. Occasional occurrences
of such a temporary error are normal, as for instance
if a user is logged in and performing extensive, time-
consuming operations on a mailbox; indeed, it is because
an occasional such occurrence is "normal" that the
delivery channels have special code to handle this
(usually transient) error condition by retrying delivery
very soon. However, persistent occurrences for the same
user might suggest a problem with that user's mailbox.
Or, if such errors suddenly start occurring at around
the same time for all (or many) users, that could be
a suggestion of some more widespread and general
problem with the Message Store.

IMAP_MAILBOXLIST_NONEXISTENT [NONEXISTENT] Mailbox list does not
exist

IMAP_MAILBOX_EXHAUSTED [LIMIT] Too many mailboxes IMAP client attempt to perform an IMAP search on more
than maxsearchmailboxes.

IMAP_MAILBOX_PINNED [NOPERM] Mailbox is pinned Attempt to deleted a "pinned" mailbox (that is, folder); see
the pin Message Store option.

 IMAP_PARTITION_UNKNOWN Temporary Unknown/invalid
partition

The user's mailMessageStore LDAP attribute does
not correspond to a partition-name defined via
a path partition option in Unified Configuration
(a store.partition.partition-name.path
configutil parameter in legacy configuration), or the
value of that option or configutil parameter does
not point to a valid location, or contains invalid
characters (only alphanumeric characters are allowed).
(If a user does not have a mailMessageStore set
at all, then the Message Store's default partition,
defaultpartition Message Store option in Unified
Configuration or store.defaultpartition
configutil parameter in legacy configuration, is assumed,
which defaults to primary. When the absence of an
explicit mailMessageStore is causing use of the
default partition, then whatever the default partition
is, it must then have a valid path specified in the
path option for that named partition in Unified
Configuration (partititon:whatever.path)
or the store.partition.whatever.path
configutil parameter; in particular, when
store.defaultpartition has its default value of
primary, then the primary partition must have a valid
path specified in partition:primary.path in Unified
Configuration or store.partition.primary.path in
legacy configuration.)

 IMAP_INVALID_IDENTIFIER [CANNOT] Invalid identifier May occur when attempting to set an ACL on a folder

IMAP_INVALID_MSGNO Invalid message number

 IMAP_MESSAGE_CONTAINSNULL MTA-perm [UNKNOWN-CTE] Message contains NUL
characters

(A message that has gone through the MTA will not
normally cause such an error, as the MTA will normally
legalize message content.)

 IMAP_MESSAGE_BADHEADER MTA-perm Message contains
invalid header

 IMAP_MESSAGE_NOBLANKLINE MTA-perm Message has no header/
body separator

(A message that has gone through the MTA will
not normally cause such an error, as the MTA will

38–2 Messaging Server Reference

normally legalize messages one way or another; see the
*headertermination channel options.)

IMAP_MESSAGE_EXHAUSTED [LIMIT] Too many messages

 IMAP_QUOTAROOT_NONEXISTENT Quota root does not
exist

IMAP_MAILBOX_TOO_LARGE [LIMIT] Mailbox too large

IMAP_ANNOTATEMORE_TOOBIG [LIMIT] Data too big

IMAP_UIDVALIDITY_INCORRECT Mailbox has been
replaced by a newer
version

IMAP_UNRECOGNIZED_CHARSET [BADCHARSET] Unrecognized character
set

IMAP_UNRECOGNIZED_LANGUAGE Unrecognized language

 IMAP_INVALID_USER MTA-perm Invalid user The recipient address did not parse into syntactically
valid uid, channel part, and optionally domain and/or
folder portions

IMAP_INVALID_LOGIN [AUTHENTICATIONFAILED] Login incorrect

IMAP_ANONYMOUS_NOT_PERMITTED IMAP-only Anonymous login is not
permitted

Returned by the IMAP server to any attempt to login as
"anonymous" when imap.allowanonymouslogin has
not been set.

IMAP_USER_NOT_PERMITTED [AUTHORIZATIONFAILED] User not permitted

IMAP_TEMP_AUTH_FAILURE [UNAVAILABLE] Authentication server
temporarily unavailable

IMAP_UNSUPPORTED_QUOTA Unsupported quota
resource

IMAP_UNRECOGNIZED_COMPARATOR [BADCOMPARATOR] Unrecognized
comparator

IMAP_BADURLPART nonexistant message
section

IMAP_BADURL Invalid or inappropriate
URL

IMAP_JUNK_AT_END Junk at end of command

IMAP_NO_OVERQUOTA [OVERQUOTA] Mailbox is over quota

IMAP_NO_CLOSEQUOTA [ALERT] Mailbox is at <x>% of
quota

IMAP_NO_MSGGONE Message no longer
exists

IMAP_NO_MSGTMPFAIL [UNAVAILABLE] Message temporarily
unavailable

IMAP_NO_DECODE [UNKNOWN-CTE] Unable to decode
message

IMAP_NO_CHECKPERUSER Unable to checkpoint
per-user flags

IMAP_NO_CHECKPRESERVE Unable to preserve per-
user flags

IMAP_PROXY_UNAVAILABLE [UNAVAILABLE] Server hosting this
mailbox is not available

IMAP_PROXY_ERROR [CONTACTADMIN] Error parsing backend
IMAP server response

IMAP_PROXY_DISCONNECTED [UNAVAILABLE] The backend IMAP
server has disconnected

IMAP_PROXY_CONDSTORE_ERROR The backend IMAP
server does not support
CONDSTORE

 IMAP_PARTITION_FULL MTA-temp [CONTACTADMIN] Store partition is full See also the (new in MS 6.2) configutil parameters
local.store.checkdiskusage and
local.store.diskusagethreshold (initially instead
named local.store.diskthreshold in MS 6.2),
or in Unified Configuration the checkdiskusage
and diskusagethreshold Message Store options,
which control whether---and when---the store performs
checks on its disk space usage. With such checks enabled,
the store will "lock" a partition (at which point the
IMAP_PARTITION_FULL error will be returned) slightly
before the partition is actually filled up. This is a safety
measure, to ensure that expunge operations (which need
to rewrite the index files) have disk room in which to
operate.

IMAP error statuses 38–3

IMAP_PROXY_ONLY MTA-perm Server is not configured
for local users

IMAP_REPLACEMENT_STRING_TOO_LONG unknown-character-
replacement value is too
long

IMAP_CANNOT_CONVERT_FROM_CHARSET Charset of original body
unrecognised

IMAP_CANNOT_CONVERT_TO_CHARSET Destination charset
unrecognized

IMAP_CONVERT_ERROR Conversion failed

IMAP_BAD_CONVERT_PARAMETERS Bad convert parameter
specified

IMAP_MISSING_CONVERT_PARAMETER Required convert
parameter missing

IMAP_UNKNOWN_CHARACTER_FOUND unknown character
found. try specifying
unknown-character-
replacement

IMAP_NO_CONVERTER No converter defined
for this pair of body
types

IMAP_CONVERT_MULTIPART Cannot convert whole
message or multipart
parts

IMAP_URLERR_SCHEME Invalid URL scheme
found in URL

IMAP_URLERR_RELPATH Relative path found in
URL

IMAP_URLERR_USER Invalid user name found
in URL

IMAP_URLERR_PASS Invalid password found
in URL

IMAP_URLERR_HOST Invalid host found in
URL

IMAP_URLERR_PORT Invalid port found in
URL

IMAP_INVALID_ACCESS [NOPERM] Access denied

IMAP_ANNOTATE_TOOBIG [ANNOTATE TOOBIG] Annotation too large.

IMAP_ANNOTATE_TOOMANY [ANNOTATE TOOMANY] Too many annotations.

IMAP_INVALID_USEATTR [USEATTR] Use attribute not
supported.

 IMAP_MESSAGE_CONTAINSNL Permanent Message contains bare
newlines

(A message that has gone through the MTA will not
normally cause such an error, as the MTA will normally
canonicalize message content resulting in proper use of
CRLF for line breaks, and encoded newlines in binary
content; see the discussion of the lmtp* and smtp*
channel options.)

Untagged BYE responses

IMAP_BYE_LOGOUT LOGOUT received

IMAP_BYE_SHUTDOWN System shutting down

IMAP_ACCOUNT_TEMP_UNAVAILABLE [UNAVAILABLE] Account temporarily
unavailable for system
maintenance

Tagged OK responses

IMAP_OK_COMPLETED Completed

Password expiration warnings

IMAP_PWEXPIRE_LESS1DAY [ALERT] Your password will
expire in less than one
day.

See the IMAP password expiration alert options.

IMAP_PWEXPIRE_1DAY [ALERT] Your password will
expire in one day.

See the IMAP password expiration alert options.

IMAP_PWEXPIRE_NDAYS [ALERT] Your password will
expire in <n> days.

See the IMAP password expiration alert options.

IMAP_PWCHANGE_URL You may change your
password by directing
your web browser to
<url>.

Additional text added to above password expiration
warnings, if the pwchangeurl base option is set (or if it is
not set, if the accounturl base option is set).

Used when archiving causes APPEND to fail

38–4 Messaging Server Reference

IMAP_ARCHIVE_FAILAPPEND [CONTACTADMIN] Mailbox append
disabled due to
archiving failure.

If the compliance Message Store archive option is set,
but the archiving could not be performed during an
attempted IMAP APPEND operation, this is the error
returned.

Additional IMAP errors

IMAP_FSCORRUPT File system error.
Administrator, check
server log for details.

Typically means that the cache file or index file is
corrupted.

IMAP_SYS_ERROR System error.
Administrator, check
server log for details
(new in 8.0.2).

IMAP_SERVER_TEMP_BUSY Server temporary busy.
Administrator, check
server log for details
(new in 8.0.2).

IMAP_REFER_USER Follow referral to access
INBOX and personal
folders.

IMAP server referral attempt.

IMAP_REFER_MASTER This is a read-only
replica, follow referral
for read-write master.

IMAP server referral attempt.

IMAP reporting underlying authentication (HULA) errors

HULA_TRANS [TRANSITION-NEEDED] A transition is needed
to use the specified
mechanism

HULA_EXPIRED [EXPIRED] Password expired

HULA_NOMEM [UNAVAILABLE] Not enough memory
available

HULA_TRYAGAIN [UNAVAILABLE] Transient failure -- try
authentication again

HULA_UNAVAIL [UNAVAILABLE] Service temporarily
unavailable

HULA_NOAUTHZ [AUTHORIZATIONFAILED] Not authorized to login
as specified user

HULA_DISABLED [AUTHORIZATIONFAILED] Account disabled Domain status, or user status, is "disabled"

HULA_ENCRYPT [PRIVACYREQUIRED] Encryption required

HULA_all-other-errors [AUTHENTICATIONFAILED] error-detail-text All other authentication (HULA) errors.

+ The IMAP error text is localizable. The text shown in this table is merely the default text
(which happens to be English).

IMAP error statuses 38–5

38–6

Chapter 39 User identifiers
A user in a mail store can have multiple user identifiers for different purposes; this section
provides a summary of some of the possible identifiers for a user:

Canonical Identifier The canonical identifier for a user is typically derived from
an LDAP lookup. In a default configuration, this is the
value of the LDAP entry's uid followed by "@" and the
domain name containing the user. The ldap_permid option
(or if that's not set, the ldap_uid option) determine which
LDAP attribute is used to construct this identifier. The
domainUidSeparator domain LDAP attribute also alters
how this attribute is constructed. This is also the value used
for %s in the canonicalsearchfilter option.

External Identifier For Cassandra store, this is the identifier used in IMAP ACL
commands and when referencing shared folders through
IMAP. Both ACL identifiers and shared folder names are
internally stored using the store user identifer, but that
is converted to and from the external identifier (if one
exists) when IMAP is used. The ldap_extid option must be
set to specify the LDAP attribute containing the external
identifier, otherwise the store user identifier will be used.

LDAP Distinguished Name
(DN)

The LDAP distinguished name provides a unique reference
to a user entry in LDAP. Messaging Server does not have
any specific requirements on which attributes are present
in a user LDAP DN, although it is recommended that a
subtree is created in LDAP for each set of users associated
with one or more domain names. Messaging Server does
not support multi-valued RDNs.

Original Login Identifier The original login identifier is the identifier the user sends
over the wire when performing a login or authentication
operation. It may or may not be qualified by a domain
name. There can be multiple valid login identifiers for the
same user, but a given login identifier should uniquely
match an LDAP entry. For LDAP search filter template
options such as searchformat and replayformat, this
identifier is referred to with the %o substitution. The
inetDomainSearchFilter LDAP domain attribute
typically determines how this is translated into a specific
user's LDAP entry.

Permanent or Persistent User
Identifier

Another name for the store user identifier, but explicitly
noting that the identifier should be permanent and/or
persistent. The ldap_permid option controls the LDAP
attribute that contains this identifier for a given user.

Pre-Lookup Login Identifier The pre-lookup login identifier is derived from the original
login identifier by making sure it is qualified by the
appropriate domain name. This includes converting
any non-default domain delimiter (specified by the

User identifiers 39–1

loginseparator option) into the canonical delimiter
(typically '@' or the first character listed in that option).
This is determined prior to performing LDAP lookups for
authentication purposes.

Store User Identifier The store user identifier is the same as the canonical
identifier, except that if the domain name is the default
domain, then the domain portion of the identifier is
omitted. Message store command line tools use this
identifier when referring to users. For the classic message
store, mboxutil can be used to migrate the content of a store
user identifier's account to a new user identifier (due to
IMAP ACLs and shared folder subscriptions, the process
is not fast and will cause problems when the user being
renamed is logged in). For Cassandra store, this identifier
can not be changed; instead an external identifier should be
used as that can be changed easily.

39–2 Messaging Server Reference

Part V Proxies and the MMP
Proxies and the MMP, for accessing the Message Store have a number of configuration options.

Chapter 40 Proxy options
40.1 httpadmin Option .. 40–1
40.2 httpadminpass Option .. 40–1
40.3 imapadmin Option .. 40–1
40.4 imapadminpass Option .. 40–1
40.5 imapport Option ... 40–2
40.6 storehostlist Option ... 40–2
40.7 hostselect Option ... 40–2

Various options may be set under a named proxy group to control aspects of proxy
connection authentication and port and hosts. Note that since such options are set under a
named proxy group, where the group name is a host name, such options are set using syntax
such as:

msconfig> set proxy:host\.domain\.com.proxy-option-name option-value

(In particular, note that when a group name has embedded period characters, as is routine
for hostnames, each such embedded period in the name requires backslash quoting on the
command line.)

See also the base options with names beginning proxy* as they set defaults if the proxy
options are not set.

40.1 httpadmin Option
DEPRECATED: See the proxyadmin Base option instead.

Store admin login name for a specific host if different from
local.service.http.proxy.admin. Not configured by default.

40.2 httpadminpass Option
DEPRECATED: See the proxyadminpass Base option instead.

The httpadminpass Proxy option specifies the store admin password for a specific host if
different from local.service.http.proxy.adminpass. Not configured by default.

40.3 imapadmin Option
The imapadmin proxy option specifies the store admin login name for a specific host
if different from proxyadmin base option (local.service.proxy.admin in legacy
configuration). Not configured by default.

40.4 imapadminpass Option
The imapadminpass proxy option specifies a store admin password for a specific host
if different from proxyadminpass (local.service.proxy.adminpass in legacy
configuration). Not configured by default.

Proxy options 40–1

imapport Option

40.5 imapport Option
The imapport proxy option (legacy configuration
local.service.proxy.imapport.hostname) specifies the IMAP port number used
when connecting to the backend mail store hostname specified by the Unified Configuration
group name for the proxy group. Thus a setting of imapport could appear along the lines of:

msconfig> set proxy:host\.domain\.com.imapport 143

where each period character in the backend host name host.domain.com must be quoted
with a backslash character in the msconfig command. If imapport is set, then it overrides
for connections to that backend mail store the base.proxyimapport option's value (default
143).

40.6 storehostlist Option
The storehostlist Proxy option specifies a list of server hostnames that have access to the
same message store data. For classic store, the first hostname in the list should be the default
master for the message store while the other hosts in the list should be configured to act as
failover hosts for the master. For Cassandra store, the hosts are considered equivalent but
connections are attempted in order.

 When a mailHost attribute is found in LDAP, it is first resolved via this configuration. This
allows MMP, mshttpd, imapd and MTA clients (with affinitylist) to try connecting to the mail
store via an alternative host. The hostnames used in this option must match the hostnames in
the mailHost attributes exactly (although ASCII case variations are permitted).

The value of the base.hostname option must be present in the storehostlist if you want
the current host to participate in that replication group.

40.7 hostselect Option
The hostselect Proxy option specifies how the back-end server is selected from a list of
possible hosts in the storehostlist option when a front-end service such as the MMP, mshttpd
or LMTP client connects to a back-end service. The failover value routes all connections to
the first host in the list or the host that was most recently successful for this affinity group. This
value is recommended when using the automatic failover feature of the classic message store.
The roundrobin value uses each host in the list in sequence to provide limited load balancing
between the hosts and is recommended for use with the Cassandra message store.

40–2 Messaging Server Reference

Chapter 41 MMP and IMAP Proxy and
POP Proxy and vdomain options

41.1 enable Option Under the MMP ... 41–5
41.2 adminpolicy Option ... 41–5
41.3 memcached_enable Option ... 41–5
41.4 memcached_host Option ... 41–5
41.5 memcached_port Option ... 41–5
41.6 authcachettl Option Under the MMP ... 41–5
41.7 authenticationldapattributes Option ... 41–6
41.8 authenticationserver Option ... 41–6
41.9 authservice Option ... 41–6
41.10 authservicettl Option ... 41–6
41.11 backsideport Option ... 41–6
41.12 banner Option Under the MMP ... 41–7
41.13 banner Option Under the IMAP proxy ... 41–7
41.14 banner Option Under the POP proxy .. 41–7
41.15 bethegroup Option ... 41–7
41.16 betheuser Option ... 41–7
41.17 bgmax Option ... 41–7
41.18 bgpenalty Option ... 41–8
41.19 bgmaxbadness Option ... 41–8
41.20 bgdecay Option ... 41–8
41.21 bglinear Option ... 41–8
41.22 bgexcluded Option ... 41–8
41.23 binddn Option ... 41–8
41.24 bindpass Option ... 41–9
41.25 canonicalvirtualdomaindelim Option ... 41–9
41.26 capability Option ... 41–9
41.27 certmapdn Option ... 41–9
41.28 certmapfile Option ... 41–9
41.29 connecttimeout Option Under the MMP .. 41–9
41.30 connecttimeout Option Under the IMAP proxy .. 41–10
41.31 connecttimeout Option Under the POP proxy .. 41–10
41.32 connlimits Option ... 41–10

41.32.1 connlimits Option Under isc_client .. 41–11
41.33 connrejectthreshold Option ... 41–11
41.34 crams Option ... 41–11
41.35 debugkeys Option ... 41–11

41.35.1 Use with base ... 41–13
41.36 defaultdomain Option ... 41–13

41.36.1 Use with base ... 41–13
41.37 dnsrbl Option ... 41–13
41.38 domainallowed Option Under the IMAP proxy .. 41–14
41.39 domainnotallowed Option Under the IMAP proxy 41–14
41.40 domainsearchformat Option ... 41–14
41.41 hosteddomains Option ... 41–14
41.42 ipv6in Option ... 41–15
41.43 ipv6out Option ... 41–15
41.44 langlist Option ... 41–15
41.45 ldapcachesize Option ... 41–15

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–1

41.46 ldapcachettl Option ... 41–16
41.47 ldappendingoplimit Option ... 41–16
41.48 ldaprefreshinterval Option ... 41–16
41.49 ldaptimeout Option ... 41–16
41.50 ldapurl Option ... 41–16
41.51 logdir Option ... 41–17

41.51.1 Use with isc ... 41–17
41.51.2 Use with fit .. 41–17

41.52 loglevel Option Under the MMP .. 41–17
41.53 loglevel Option Under the IMAP proxy ... 41–17
41.54 loglevel Option Under the POP proxy .. 41–17
41.55 mailhostattrs Option ... 41–18
41.56 maxconcurrentconnectionattempts Option ... 41–18
41.57 maxthreads Option Under the MMP .. 41–18
41.58 numprocesses Option Under the MMP .. 41–18
41.59 numthreads Option ... 41–18
41.60 plaintextmincipher Option Under the IMAP proxy 41–18
41.61 polldelay Option ... 41–19
41.62 preauth Option ... 41–19
41.63 preauthtimeout Option ... 41–19
41.64 preferpoll Option ... 41–19
41.65 replayformat Option Under the MMP .. 41–19
41.66 replaypass Option ... 41–20
41.67 requireauthenticationserver Option ... 41–20
41.68 restrictplainpasswords Option ... 41–20
41.69 searchformat Option ... 41–20
41.70 serverdownalert Option ... 41–21
41.71 servicelist Option ... 41–21
41.72 spoofemptymailbox Option ... 41–21
41.73 spooftempfail Option ... 41–21
41.74 spoofmessagefile Option ... 41–21
41.75 ssladjustciphersuites Option ... 41–22
41.76 sslbacksideport Option ... 41–26
41.77 sslcachedir Option ... 41–27
41.78 sslcertprefix Option ... 41–27
41.79 sslenable Option ... 41–27
41.80 sslkeypasswdfile Option ... 41–27
41.81 sslkeyprefix Option ... 41–27
41.82 sslnicknames Option Under the MMP .. 41–28
41.83 sslsecmodfile Option ... 41–28
41.84 storeadmin Option ... 41–28
41.85 storeadminpass Option ... 41–28
41.86 syncldap Option ... 41–28
41.87 tcp_listen options .. 41–28

41.87.1 tcp_ports Option Under tcp_listen ... 41–29
41.87.2 ssl_ports Option Under tcp_listen ... 41–29
41.87.3 listen_addresses Option Under tcp_listen 41–29
41.87.4 backlog Option Under tcp_listen ... 41–29

41.88 tcpaccess Option ... 41–29
41.89 tcpaccessattr Option ... 41–29
41.90 timeout Option Under the MMP .. 41–30
41.91 timeout Option Under the IMAP proxy ... 41–30
41.92 timeout Option Under the POP proxy .. 41–30

41–2 Messaging Server Reference

41.93 use_nslog Option Under the MMP .. 41–30
41.94 usenslog Option ... 41–30
41.95 usergroupdn Option ... 41–30
41.96 virtualdomaindelim Option ... 41–31
41.97 virtualdomainfile Option ... 41–31

There are many options affecting MMP operation, or operation of its subcomponents the
IMAP Proxy, or the POP Proxy, plus additional options modifying the support for "virtual
domains". These options are often available for setting at more than one scope; they are listed,
with their defaults, in MMP and its subcomponents, available options and their defaults.

Table 41.1 MMP and its subcomponents, available options and their defaults

Option MMP IMAP Proxy POP Proxy SUBMIT Proxy vdomain

authcachettl ✓ 900 ✓ 900 ✓ 900 ✓ 900

authenticationldapattributes ✓ ✓ ✓

authenticationserver ✓ ✓

authservice ✓ 0 ✓ 0

authservicettl ✓ -1 ✓ -1

backsideport ✓ 143 ✓ 110

banner ✓ complex ✓ complex ✓ complex

bethegroup: deleted; see user in restricted.cnf instead

betheuser: deleted; see user in restricted.cnf instead

bgdecay ✓ 900 ✓ 900 ✓ 900

bgexcluded ✓ ✓ ✓

bglinear ✓ 0 ✓ 0 ✓ 0

bgmax ✓ 10000 ✓ 10000 ✓ 10000

bgmaxbadness ✓ 60 ✓ 60 ✓ 60

bgpenalty ✓ 2 ✓ 2 ✓ 2

binddn: deprecated; see
base.ugldapbinddn instead

 ✓ ✓ ✓ ✓

bindpass: deprecated; see
base.ugldapbindcred instead

 ✓ ✓ ✓ ✓

canonicalvirtualdomaindelim ✓ @ ✓ @ ✓ @

capability ✓ very long list---see
text

certmapdn: alias for usergroupdn

certmapfile: deleted

connecttimeout ✓ 30 ✓ 30 ✓ 30

connlimits ✓ :20 ✓ ✓ ✓

connrejectthreshold ✓ complex---see text

crams ✓ 0 ✓ 0 ✓ 0 ✓ 0

debugkeys ✓ ✓ ✓ ✓ ✓

defaultdomain ✓ ✓ ✓ ✓ ✓

domainallowed ✓ ✓ ✓

domainnotallowed ✓ ✓ ✓

domainsearchformat ✓ (uid=%U) ✓ (uid=%U) ✓ (uid=%U) ✓ (uid=%U)

enable ✓ 0

hosteddomains ✓ 1 ✓ 1 ✓ 1 ✓ 1

ipv6in ✓ 0

ipv6out ✓ 0

ipv6sortorder ✓ default

langlist ✓ i-default EN ✓ i-default EN

ldapcachesize ✓ complex ✓ complex ✓ complex ✓ complex ✓ complex

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–3

ldapcachettl ✓ 900 ✓ 900 ✓ 900 ✓ 900

ldappendingoplimit ✓ 128 ✓ 128 ✓ 128

ldaprefreshinterval ✓ 2100 ✓ 2100 ✓ 2100

ldaptimeout: deprecated ✓ 60 ✓ 60 ✓ 60

ldapurl: deprecated ✓ ldap://
localhost/
o=internet

✓ ldap://
localhost/
o=internet

✓ ldap://
localhost/
o=internet

✓ ldap://
localhost/
o=internet

logdir ✓ ✓ ✓ ✓

logfile.option-name ✓ ✓ ✓ ✓

loglevel ✓ notice ✓ notice ✓ notice ✓ notice

mailhostattrs ✓ mailHost ✓ mailHost ✓ mailHost ✓ mailHost

maxconcurrentconnectionattempts ✓ 32 ✓ 32 ✓ 32

maxthreads ✓ 250

numprocesses ✓ 1

numthreads: deleted; see maxthreads

plaintextmincipher ✓ 0 ✓ 0

polldelay ✓ -1

preauth ✓ 0 ✓ 0 ✓ 0 ✓ 0

preauthtimeout ✓ 600 ✓ 600 ✓ 600

preferpoll ✓ 0

replaypass ✓ 1 ✓ 1 ✓ 1

replayformat ✓ %U@%V ✓ %U@%V ✓ %U@%V ✓ %U@%V

requireauthenticationserver ✓ 1 ✓ 1

restrictplainpasswords ✓ 0 ✓ 0 ✓ 0 ✓ 0

searchformat ✓ (uid=%s) ✓ (uid=%s) ✓ (uid=%s) ✓ (uid=%s)

serverdownalert ✓ long string---see text

servicelist: deleted; see tcp_listen options

spoofemptymailbox ✓ 0

spooftempfail ✓ 0

spoofmessagefile ✓

ssladjustciphersuites ✓ ✓ ✓ ✓ ✓

sslbacksideport ✓ 0 ✓ 0

sslcachedir ✓ ✓ ✓ ✓

sslcertnicknames: alias for sslnicknames

sslcertprefix: deprecated; use base.ssldbprefix instead

sslenable ✓ 0 ✓ 0 ✓ 0 ✓ 0

sslkeypasswdfile: deleted

sslkeyprefix: deprecated; use base.ssldbprefix instead

sslnicknames ✓ Server-Cert ✓ Server-Cert ✓ Server-Cert ✓ Server-Cert ✓ Server-Cert

sslports: deleted

sslsecmodfile: deleted

storeadmin ✓ complex ✓ complex ✓ complex ✓ complex

storeadminpass ✓ ✓ ✓ ✓

syncldap ✓ 1 ✓ 1

tcp_listen:group-name.option-
name

 ✓ ✓ ✓

tcpaccess ✓ complex ✓ complex ✓ complex ✓ complex ✓ complex

tcpaccessattr ✓ mailAllowed
ServiceAccess

✓ mailAllowed
ServiceAccess

✓ mail
AllowedService
Access

 ✓ mailAllowed
ServiceAccess

timeout ✓ 1800 ✓ 1800 ✓ 1800 ✓ 1800

usergroupdn: deprecated; see base.ugldapbasedn instead

use_nslog: deprecated ✓ 1 ✓ 1 ✓ 1 ✓ 1

usenslog: alias for use_nslog

virtualdomaindelim ✓ complex ✓ complex ✓ complex ✓ complex

virtualdomainfile: deleted; see vdomain options instead

41–4 Messaging Server Reference

enable Option Under the MMP

See also the logfile options, which are available at many levels, including for the MMP and its
components.

Note that many Base options are relevant to the MMP, including stressperiod and
stressfdwait.

41.1 enable Option Under the MMP
The enable MMP option enables the MMP service on start-msg startup. The default if
this option is not set is 0, but initial configuration may set the option to enable the MMP, as
appropriate.

To actually run a proxy server, note that the proxy server must have a tcp_listen block
defined with at least one non-zero port specified within that block; see in particular the
tcp_ports and ssl_ports tcp_listen block options.

41.2 adminpolicy Option
The adminpolicy MMP option specifies the algorithm used to determine which users
have administrative proxy privilege when authenticating to the MMP. The default simple
setting means there is only one administrator specified by the storeadmin option. The
group setting causes the MMP to ignore the storeadmin option when determining who
is and administrator and instead use the group-based admin policy used by the MTA and
message store. In particular, proxy admins can be specified by the store.admins option,
the store.indexeradmins option, the service administrators group as determined by
the serviceadmingroupdn option, or a domain administrator group (a group within the
domain with the inetMailAdministrator objectclass).

41.3 memcached_enable Option
The memcached_enable MMP option specifies whether badguy information is stored in
memcached server or in process memory. The default is 0. If set to 1, stored in memcached.

41.4 memcached_host Option
The memcached_host MMP option specifies the memcached server host name. The default is
local host.

41.5 memcached_port Option
The memcached_port MMP option specifies the port Number memcached listens to. The
default port is 11211.

41.6 authcachettl Option Under the MMP
The Messaging Server can cache the results of successful LDAP authentication (e.g., when
logging into IMAP, or POP, or when the MMP has preauth enabled). The authcachettl

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–5

authenticationldapattributes
Option

option (available at base, MMP, IMAP Proxy, POP Proxy, and vdomain levels) defines the
length of time that authentication cache entries are preserved in seconds. Lower values will
reduce performance, but result in faster recognition of server password changes. Higher values
will increase performance, but result in delayed recognition of server password changes.
Changes made to a userPassword value in a user's LDAP entry are not seen until the cache
entry's time-to-live (TTL) has expired. If you wish to have password changes seen at least
every 15 minutes, then set the authcachettl value to 900.

41.7 authenticationldapattributes Option
The authenticationldapattributes Auth option specifies a space-separated list of
additional LDAP user attributes to look up and pass to the third-party authentication server.
This option is also available at imapproxy, popproxy, and vdomain level (to override,
for the respective lookups, the general Auth option). To enable support for a third-party
authentication server, set the authenticationserver option. For developer instructions
and SDK see the directory msg_svr_base/examples/tpauth.

41.8 authenticationserver Option
The authenticationserver Auth option specifies the hostname and port for a third-party
authentication service to use for authentication. This option is also available at imapproxy
and popproxy level (to override, for the respective server, the general Auth option). The
recommended value is :56 when a third-party authentication service is available on the
loopback interface of the server process performing authentication. For developer instructions
and SDK see the directory msg_svr_base/examples/tpauth.

When not set, the servers will authenticate via LDAP.

41.9 authservice Option
If authservice is set to 1 and authservicettl is positive, the MMP will allow queries
about who is currently logged into the MMP, for the purpose of POP before SMTP relay
authentication. This option is available at the popproxy and vdomain levels. This option
should almost never be turned on globally; you should configure this by virtual domain.
Setting the authservice parameter to 1 permits probing of the authservice cache with the
xqueryauth ip-address command over the POP protocol.

41.10 authservicettl Option
The MMP can be configured to remember from which IP address a particular user has
authenticated for a period of time. authservicettl controls that period of time; it may be
set at the popproxy or vdomain level. This is primarily used for POP before SMTP service, in
which case this should be a value greater than 0. A setting of -1 will disable this feature.

41.11 backsideport Option
The backsideport option, available for the IMAP Proxy and POP Proxy, specifies the port
the MMP will use when connecting to a message store server. This option lets you run a
multiplexor and a store server on the same machine, with the store server on a different port. If

41–6 Messaging Server Reference

banner Option Under the MMP

the value of backsideport option is same as sslbacksideport then the MMP will use SSL
to connect to the message store server.

41.12 banner Option Under the MMP
The banner MMP option specifies a banner replacement string. The MMP will use the string
you specify for its greeting line. The default banner string contains the software name and
version information:

Messaging Multiplexor (product-name version numberbit (built build-date))

41.13 banner Option Under the IMAP proxy
The banner IMAP Proxy option specifies a banner replacement string. The IMAP Proxy will
use the string you specify for its greeting line. The default banner string contains the software
name and version information.

41.14 banner Option Under the POP proxy
The banner POP Proxy option specifies a banner replacement string. The POP Proxy will
use the string you specify for its greeting line. The default banner string contains the software
name and version information.

41.15 bethegroup Option
Group ID of for the MMP AService process. DELETED: As of 7u4 (7.4-18.01), the MMP uses
the primary group of the user specified by betheuser; or in Unified Configuration, the user
option in restricted.cnf is preferred.

41.16 betheuser Option
This specifies the Unix user ID that will be used as the owner of the MMP's AService process
(the process group owner will be the primary group of that user). This is deprecated in favor
of the user option in restricted.cnf which will be used preferentially. If this is not set and
restricted.cnf is not present, the MMP will attempt to use the imta_user option from
imta_tailor instead. For the 7.0.5 release, the MMP will attempt to use local.serveruid
before checking imta_tailor. The value of this option must match the values of the
imta_user and local.serveruid options.

Note that this option is not migrated into the Unified configuration, but is checked to ensure
that it is the same as the user option in restricted.cnf.

41.17 bgmax Option
The bgmax option (available under base, imap, pop, mmp, imapproxy, and popproxy)
specifies the maximum number of IP addresses associated with authentication failures to keep
track of simultaneously. See bgpenalty for more information.

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–7

bgpenalty Option

41.18 bgpenalty Option
When an authentication failure occurs from a particular client IP address, subsequent
authentication attempts from that IP address are treated as "BadGuys" and are delayed. If an
authentication failure is followed by a successful authentication, the successful authentication
is delayed, but the IP address ceases to be treated as a "BadGuy" for subsequent attempts.

The bgpenalty option (available under base, imap, pop, mmp, imapproxy, and popproxy)
specifies the length of time in seconds added to the authentication delay after each failed
authentication.

41.19 bgmaxbadness Option
The bgmaxbadness option (available under base, imap, pop, mmp, imapproxy, and
popproxy) specifies the maximum length of time in seconds for the authentication delay
which occurs after a series of failed authentication attempts. See bgpenalty for more
information.

41.20 bgdecay Option
The bgdecay option (available under base, imap, pop, mmp, imapproxy, and popproxy)
represents the time in seconds it takes for a BadGuy's penalty to be forgiven. See bgpenalty
for more information.

41.21 bglinear Option
The bglinear option (available under base, imap, pop, mmp, imapproxy, and popproxy)
defines whether a BadGuy's penalty decays linearly over time (1), or is a step function on
expiration (0). See bgpenalty for more information.

41.22 bgexcluded Option
The bgexcluded option (available under base, imap, pop, mmp, imapproxy, and
popproxy) represents a list of excluded IP/mask pairs, or the name of a file to read for these
pairs. These client addresses will not be penalized for authentication failure (there is no default
value).

41.23 binddn Option
DEPRECATED: Consider using the ugldapbinddn option instead.

The binddn option specifies the Distinguished Name used by the MMP to authenticate to the
Directory Server. For schema 1, the binddn must have privileges to access the domain tree as
specified by the ldapurl option as well as any users referenced from that domain tree. For
schema 2, the binddn must have privileges to access the usergroupdn tree.

The Messaging Server default directory ACIs require a bind to authenticate users against the
Directory Server.

41–8 Messaging Server Reference

bindpass Option

41.24 bindpass Option
Password the MMP uses in conjunction with the binddn option. DEPRECATED: Consider
using ugldapbinddn and ugldapbindcred instead.

41.25 canonicalvirtualdomaindelim Option
The canonicalvirtualdomaindelim option (available for mmp, imapproxy, and
popproxy) specifies the canonical virtual domain delimiter: that is, the character used by
the POP and IMAP proxy to separate the user ID from the appended virtual domain when
replaying the user name to the Message Store server. The default is the at-sign character, @, so
user IDs passed to the Message Store servers have the form userid@virtual.domain.

41.26 capability Option
The capability IMAP Proxy option specifies the capability replacement string. The MMP
will use the string you specify for capability instead of its default (own) capability to
tell IMAP clients what it (or the servers behind it) can do. This variable has no effect in
POP3. There is no need to include STARTTLS and AUTH= extensions as they are added
automatically based on the other relevant MMP configuration settings.

There is no need to adjust this string if the backend IMAP servers are entirely from the same
version of the Messaging Server installer. Otherwise, it is important to specify a capability list
that includes only the features supported by all the backend IMAP servers. The appropriate
string can be determined by telnetting to port 143 on each kind of backend server and entering
the command c capability. Then list only the capabilities present on all backend IMAP
servers.

41.27 certmapdn Option
The legacy configuration certmapdn has been replaced in Unified Configuration by use of the
more general usergroupdn option.

41.28 certmapfile Option
Legacy config only: The name of the certmap file (for SSL client-cert-based authentications).
It may be a full path, but the product's configuration directory will be searched if only a file
name is provided.

When this is not set, there is no certmap file and thus the MMP will not request client
certificates from the client.

The recommended setting is certmap.conf.

This points to the certmap file that will be migrated into the relevant part of the MMP's
Unified configuration.

41.29 connecttimeout Option Under the MMP
The connecttimeout MMP option specifies how long the MMP should wait for a connection
to be established to a back-end mailstore (seconds).

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–9

connecttimeout Option Under
the IMAP proxy

41.30 connecttimeout Option Under the IMAP
proxy

The connecttimeout IMAP Proxy option specifies how long the MMP IMAP proxy should
wait for a connection to be established to a back-end mailstore (seconds).

41.31 connecttimeout Option Under the POP
proxy

The connecttimeout POP Proxy option specifies how long the MMP POP proxy should wait
for a connection to be established to a back-end mailstore (seconds).

41.32 connlimits Option
The connlimits option (available under http, imap, pop, mmp, imapproxy, popproxy,
specifies the maximum number of connections per IP address for the selected server. The
syntax is: "realm1,realm2,..." where a realm has the form of address ranges and maximum
number of connections expressed as any of the following four forms:

Table 41.2 connlimits Option Value Forms

a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
a.b.c.d/p:m IPv4 address, routing prefix, connection max
 a.b.c.d IPv4 address
 p routing prefix
 m maximum connection count
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
[a/p]:m IPv6 address, routing prefix, connection max
 a IPv6 address; compressed "::" format allowed
 p routing prefix
 m maximum connection count
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
:m Match any address

41–10 Messaging Server Reference

connlimits Option Under
isc_client

 m maximum connection count

There should be at least one realm of the form ":m" to cover the default case by matching any
IPv4 or IPv6 address. To match only IPv4 addresses, use "0.0.0.0/0:m" or "0.0.0.0|0.0.0.0:m".
And to match only IPv6 addresses, use "[::0/0]:m".

The option has no default value; however, initial configuration normally sets a value of :20 for
the IMAP Proxy, and POP Proxy:

msconfig> show connlimits
role.imapproxy.connlimits = :20
role.popproxy.connlimits = :20

For backwards compatibility reasons, this option may instead specify the full path to a
configuration file name that contains one realm per line. Such a file name must begin with '/'.
This usage is deprecated and may be removed in a future release.

41.32.1 connlimits Option Under isc_client
The connlimits isc_client option specifies the maximum number of connections that are
permitted from a single LMTP process to the ISC server. Starting with 8.0.2.2, this isc_client
option is deprecated; the isc_client.max_conns option should be used instead.

41.33 connrejectthreshold Option
The connrejectthreshold MMP option specifies the number of connections to accept
before rejecting client connections with a soft error at connection time. The default value is
computed based on the operating system file descriptor limits for the MMP server process, or
2000 if such file descriptor limits can not be determined. If this is set too high, connections can
fail with a 'Too many open files' error.

The default calculation is the file descriptor limit minus 64 (to leave space for log files, LDAP
connection pools, internal pipes, etc) divided by 2.

41.34 crams Option
The crams option (available under mmp, imapproxy, popproxy, and vdomain) is a
boolean indicating whether or not to enable the legacy Challenge-Response Authentication
Mechanisms (CRAMs) including APOP and CRAM-MD5. For this to work, passwords
must be stored in LDAP in plain text format and the BindDN must have read access to the
userPassword attribute -- or in more modern configurations ugldapbinddn must have read
access to ugldapbindcred. If crams is not set, the has_plain_passwords option will be used
instead.

Use of this option in new deployments is strongly discouraged as these authentication
mechanisms provide poor security characteristics for the modern Internet.

41.35 debugkeys Option
The debugkeys option (available under base, mmp, imapproxy, popproxy, and vdomain)
specifies a space-separated list of keywords used to enable various optional debugging
facilities. Currently recognized keywords are listed in the table below.

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–11

debugkeys Option

Table 41.3 Keywords for debugkeys option value

Keyword Function
archive log diagnostics for imapd archiving interface
authserv log auth server protocol communications (new in 7.0.5)
bind log additional details about some TCP socket bind attempts
certmap log debug-level details about certificate mapping operations used for client

certificate authentication (new in 7.0.5)
connect log additional details about some TCP connection attempts (more coverage

in 7.0.5)
dkim diagnostics for built-in DKIM signing (new in 8.1.0.1)
dkimsig perform an extra sanity check for built-in DKIM signing (new in 8.1.0.1)

that is slower but may produce better diagnostics.
dkhash log information about exactly how the DKIM hash is computed, including

message content (may have privacy concerns).
dkimkey log parsed DKIM private keys used for signing (may have privacy

concerns).
dnsrbl diagnostics for MMP DNS RBL function in main MMP log file (new in

8.0.2.3)
enssub enable logging of ENS subscribe/unsubscribe events at notice level (new in

8.0)
gdisp help diagnose generic dispatcher API issues
gdwork GDisp worker thread information
gdcvar GDisp condition variables (not presently used by the MMP).
eventloop Log GDisp event loop statistics. May be helpful to diagnose performance

problems (new in 8.0.2.2).
http Log http transcripts related to Elasticsearch and ISC. (new in 8.0.2.2).
hula log state changes in HULA (user lookup / authentication, new in 7.0.5)
ldap log an LDAP directory protocol trace (replaces the now deprecated

ldaptrace base option)
lpool log ldap connection activity (mostly INFO & DEBUG level, new in 7.0.5);

for MTA output, see also the os_debug MTA option
maparse Diagnostics for IMAP mail access parser (new in 8.0). The set of

IMAP commands this covers presently includes APPEND, STORE,
SETMETADATA, SEARCH, ESEARCH, SORT, THREAD. Additional
commands will be added over time. This is refreshable.

metermaid log transcript of metermaid client used to limit IMAP password expiration
alerts (new in 7.0.5)

perf log performance-related timestamps particularly with respect to MMP
authentication

search log IMAP search and sort command processing at DEBUG level (new in
7.0.5)

tls enable additional SSL/TLS debugging (presently just lists active cipher
suites in the MMP log)

41–12 Messaging Server Reference

Use with base

unicodembox enable debugging for unicode normalization of mailbox names (new in MS
8.0.2)

41.35.1 Use with base
The debugkeys base option specifies a space-separated list of keywords used to enable
various optional debugging facilities; see Keywords That May Be Included in debugkeys
Option Value.

Note that the SMTP server's AUTH_DEBUG TCP/IP-channel-specific option can override
debugkeys for SMTP server authentication purposes.

For Message Store and other non-MTA processes, setting a relevant debugkey will enable
NOTICE-level logging in the logfile for that process. The MTA has a different logging model
and requires two additional settings to see debugging associated with a debugkey. First, MTA
debug log files must be enabled (via master_debug, slave_debug, or the equivalent finer-
grained mechanism). Second, it's necessary to set mta.mm_debug to a value of at least 3 for
the DKIM-related debugkeys or to set mta.os_debug to 1 for the LDAP and authentication-
related debugkeys.

41.36 defaultdomain Option
When POP, IMAP and SMTP users authenticate, they typically provide an unqualified user ID
(a user ID without a domain portion). The value of the defaultdomain option is appended
to unqualified user IDs. When used as an MMP virtual domain option, this allows a single
MMP server with multiple IP addresses to support unqualified user IDs for multiple hosted
domains. This may also be set as a service-wide option.

41.36.1 Use with base
The defaultdomain base option specifies the Messaging Server default domain. This is used
to determine whether a domain is the default domain or a hosted domain.

Normally the defaultdomain base option is set to an appropriate value during initial
configuration.

The MTA has a "twin" option, ldap_default_domain, that can override
the defaultdomain base option for MTA purposes. See the description of
ldap_default_domain for details on how the MTA uses the defaultdomain value (if
ldap_default_domain is not set).

41.37 dnsrbl Option
The dnsrbl MMP option provides a list of domain names used to perform a DNS Realtime
Blackhole List check for incoming POP and IMAP connections. The checks are performed
in serial and may significantly impact the time it takes for clients to connect to the proxy.
When a connection is rejected, a protocol-appropriate access denied error will be provided
unless the connection is over SSL and the sslconnlimit option is also set, in which case
an SSL user_canceled alert will be sent. If the messagetrace.activate option is set to
transactlog, then the rejection will be noted in a co log entry in the store transaction log.

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–13

domainallowed Option Under
the IMAP proxy

41.38 domainallowed Option Under the IMAP
proxy

The domainallowed IMAP Proxy/POP Proxy option (also available under ens,
eval_ldapd, http, imap, and pop) specifies access filters specifying which domains and/or
IP addresses are allowed access for the selected server.

41.39 domainnotallowed Option Under the
IMAP proxy

The domainnotallowed IMAP Proxy/POP Proxy option (also available at other levels)
specifies access filters specifying which domains and/or IP addresses are not allowed access for
the selected server.

41.40 domainsearchformat Option
The domainsearchformat option (available under mmp, imapproxy, popproxy, and
vdomain) specifies a printf-style format string with which to construct Users/Groups LDAP
queries for the user's mailhost when hosteddomains is enabled. If domainsearchformat
is not set, then the searchfilter option will be used (regardless of whether hosteddomains is
set). Valid escape sequences are:

%s (userid+virtualdomain)
%U (userid only)
%V (virtual domain only)
%C (client IP address)
%S (server IP address)
%D (client cert subject DN)
%o (original user as passed from client)

41.41 hosteddomains Option
The hosteddomains option (available under mmp, imapproxy, popproxy, and vdomain)
specifies whether the MMP should use Hosted Domains. The default is 1, meaning that
Hosted Domains are supported. If hosteddomains is set to 0, then the value of the
searchfordomain authentication option controls the behavior during user authentication
lookups.

If you are using the Messaging Server directory schema (LDAP Schema, v1 or LDAP Schema,
v2), hosteddomains should be set to the default value of 1

If set to 0, then the MMP assumes the server supports only one domain and the
ugldapbasedn option points to a directory subtree containing all users supported by the
server, each user with a unique UID. Setting hosteddomains to "0" is not recommended as
even a small company is likely to eventually go through a name change or acquisition where
support for multiple domains would be helpful.

When set to 1, the MMP honors the following additional options (for legacy configuration,
these appear in the MTA's option.dat configuration file):

41–14 Messaging Server Reference

ipv6in Option

ldap_schemalevel
ldap_domain_filter_schema1
ldap_domain_filter_schema2
ldap_attr_domain1_schema2
ldap_attr_domain2_schema2
ldap_global_config_templates
ldap_attr_domain_search_filter
ldap_domain_attr_basedn
ldap_domain_attr_canonical
ldap_domain_attr_alias

These settings may be used to enable LDAP Schema, v2 with the MMP.

41.42 ipv6in Option
When set to a value of 1, the ipv6in option instructs Messaging Server to accept inbound
IPv6 connections for all services provided that the host has at least one network interface
configured for IPv6. Services specifically configured to listen on only IPv4 interfaces cannot
also accept inbound IPv6 connections. When set to a value of 0, inbound IPv6 connections are
not allowed.

Inbound IPv4 connections will always be permitted.

41.43 ipv6out Option
When set to a value of 1, the ipv6out option instructs Messaging Server to attempt outbound
IPv6 connections for all services provided that the host has at least one network interface
configured for IPv6. Services specifically configured to bind their source IP address only
to IPv4 interfaces cannot attempt IPv6 outbound connections. For example, an SMTP client
bound to a specific IPv4 interface cannot then establish an outbound IPv6 connection. When
set to a value of 0, outbound IPv6 connections are not allowed.

When set to a value of 1, outbound services will attempt DNS lookups of both A and AAAA
records. Connection attempts will then be made in the order dictated by the ipv6sortorder
option. Note the DNS lookups will always request A records. This option only controls
whether or not AAAA records are also requested.

41.44 langlist Option
The langlist option (under mmp or imapproxy) controls the list of supported
languages returned by the IMAP LANGUAGE extension when issued to the MMP prior to
authentication.

41.45 ldapcachesize Option
The MMP can cache results of user searches. The ldapcachesize option (available
under mmp, imapproxy, popproxy, and vdomain) defines the number of cache entries;
ldapcachettl defines the length of time the entries are preserved in seconds. Lower
values will reduce performance, but result in faster recognition of LDAP user entry changes.
Higher values will increase performance, but result in delayed recognition of LDAP user

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–15

ldapcachettl Option

entry changes. If this is not set, then the authcachesize option's value will be used instead. If
ldapcachesize is set, it will override authcachesize for MMP purposes only.

41.46 ldapcachettl Option
The MMP can cache results of user searches. The ldapcachesize option defines the
number of cache entries; ldapcachettl (available under mmp, imapproxy, popproxy,
and vdomain) defines the length of time the entries are preserved in seconds. Lower values
will reduce performance, but result in faster recognition of LDAP user entry changes. Higher
values will increase performance, but result in delayed recognition of LDAP user entry
changes.

Note that setting ldapcachettl smaller than authcachettl causes the entire user entry to
expire, thereby also expiring the user authentication information in that user entry.

41.47 ldappendingoplimit Option
The ldappendingoplimit option (available under mmp, imapproxy, and popproxy)
specifies the number of in-progress LDAP connections the MMP will allow before it will delay
incoming connections to wait for previous LDAP operations to complete. This prevents a
denial-of-service attack on the MMP from impacting the LDAP server.

The default has changed from 20 to 128 in the 7.0.5 release.

41.48 ldaprefreshinterval Option
The ldaprefreshinterval option (available under mmp, imapproxy, and popproxy)
specifies the seconds that the MMP will keep a connection open to the LDAP server. When the
MMP notices that the refresh interval has passed, the MMP will close the LDAP connection
and open a new one.

41.49 ldaptimeout Option
The ldaptimeout option specifies the number of seconds the MMP will wait for an LDAP
operation to complete before it will attempt a failover to a backup LDAP server or fail the
operation. DEPRECATED: Consider using the ldapsearchtimeout and ldapmodifytimeout
options instead.

41.50 ldapurl Option
DEPRECATED as of 7.0.5: consider using ugldaphost, ugldapusessl, dcroot and ugldapbasedn
instead.

The ldapurl option, available for the MMP, IMAP Proxy, and POP Proxy specifies an LDAP
URL pointing to the top of the site's DC directory tree (used by schema 1), if hosteddomains
is set to yes (default). If hosteddomains is set to no, then ldapurl points to a directory
subtree containing all users supported by the server. Prior to 7.0.5, this option was needed for
the MMP to operate correctly. For schema 2 support, the usergroupdn option must be set and
is used instead of the path portion of this URL.

SSL (LDAPS) is supported, but the SSL configuration must also be correct, and SSL-enabled.

41–16 Messaging Server Reference

logdir Option

To enable failover, the host part of the URL may be a space-separated list of hosts. Be sure to
enclose the entire URL in double-quotes if it contains a space. For example:

"ldap://ldap1.example.com ldap2.example.com/o=internet"

41.51 logdir Option
The logdir logfile option, component.logfile.logdir, specifies the directory path
for log files. If this is not specified, log files will be placed in the DATAROOT/log directory.

For the MTA, the mta.logfile.logdir option is only used by Message Store insertion
tasks. It specifies the directory path to the imta log file used for Message Store insertion
(ims_master, LMTP). It is not used by other parts of the MTA which always log to the
default location. The default location is DATAROOT/log. Changing that path to a soft-link is
supported.

41.51.1 Use with isc
The logdir isc option specifies the log files location for ISC.

The user that owns the ISC process must have write permissions to this location.

41.51.2 Use with fit
The logdir fit option specifies the log files location for FIT.

The user that owns the DSE (Cassandra) process must have write permissions to this location.

41.52 loglevel Option Under the MMP
The MMP's loglevel option can be: nolog, emergency, alert, critical, error,
warning, notice, information or debug. Note that loglevel will be ignored by the
MMP if use_nslog is set to 0.

The MMP will not generate messages with priority higher than 'error'. For backwards
compatibility, MMP configuration files may use integer settings from 3 to 7 for 'error' to
'debug' respectively, or 0 for 'nolog'.

41.53 loglevel Option Under the IMAP proxy
The IMAP Proxy loglevel option can be: nolog, emergency, alert, crticial, error, warning,
notice, information or debug. The MMP will not generate messages with priority higher than
'error'.

41.54 loglevel Option Under the POP proxy
The POP Proxy loglevel option can be: nolog, emergency, alert, crticial, error, warning,
notice, information or debug. The MMP will not generate messages with priority higher than
'error'.

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–17

mailhostattrs Option

41.55 mailhostattrs Option
The mailhostattrs option (available under mmp, imapproxy, popproxy, and vdomain)
specifies a space-separated list of LDAP attributes identifying the user's mail host; the default
is simply mailHost. The multiplexor tries each attribute returned by the search in the order
specified by the list to identify the mail store where that user's mail lives.

This is rather analogous to the MTA's ldap_mailhost option.

41.56 maxconcurrentconnectionattempts
Option

The maxconcurrentconnectionattempts option (available under mmp, imapproxy,
and popproxy) specifies the number of outstanding connection attempts permitted to the
same backend mailstore. If this is exceeded, users on that mailstore will have their connections
rejected with a temporary service outage error. This limit prevents a DNS or mailstore outage
of one server from consuming all the MMP worker threads.

The default has changed from 10 to 32 in the Messaging Server 7.0.5 release.

41.57 maxthreads Option Under the MMP
The maxthreads MMP option specifies the maximum number of threads allowed
per server process for the selected server. The MMP does not count worker threads
attempting to lookup or connect to a back-end server against this limit; see the separate
maxconcurrentconnectionattempts option to limit such connections.

41.58 numprocesses Option Under the MMP
The numprocesses MMP option specifies the number of MMP AService processes.

Note that the Watcher must be enabled for stop-msg to correctly shut down all processes if
this is set to a value larger than one.

41.59 numthreads Option
The numthreads MMP option had specified the maximum number of worker threads to
permit for the MMP.

DELETED: This MMP AService.cfg option was removed in favor of the maxthreads option.

41.60 plaintextmincipher Option Under the
IMAP proxy

If the plaintextmincipher option under imapproxy or popproxy is > 0, then disable
use of plaintext passwords over the respective service unless a security layer (SSL or TLS) is
activated for the selected service. This forces users to enable SSL or TLS on their client to login
which prevents exposure of their passwords on the network.

41–18 Messaging Server Reference

polldelay Option

41.61 polldelay Option
Solaris-only. The polldelay (IMAP and MMP) option specifies the wait time before calling
poll() in milliseconds. Workaround for poll performance bug on Solaris (6438988, 6379476).
Setting this to -1 activates a different workaround as of 7 update 4 patch 24. The alternate code
tries to keep the size of the poll array relatively constant and instead uses -1 in the poll array
for inactive descriptors. The poll array will be larger, but change size less frequently. To date
this appears to noticably improve performance under stress.

The default has changed from 1 to -1 in the Messaging Server 7.0.5 release. In addition, poll
is no longer used in the Messaging Server 7.0.5 release (and thus this option is ignored) unless
preferpoll is set.

41.62 preauth Option
The preauth option (available under mmp, imapproxy, popproxy, and vdomain) enables
pre-authentication by the MMP. When preauth is set to 1 (yes in legacy configuration), a
user is authenticated against the LDAP server before a connection is made to the backend
mailstore server. When preauth is set to 0 (no in legacy configuration), the MMP connects
to the backend mailstore server and simply replays the authentication information. Because
of the additional authentication step, preauth reduces the overall performance, but protects
the backend mailstore servers from denial-of-service attacks by unapproved users. preauth is
mandatory for the POP-before-SMTP feature of the MMP.

When using hosteddomains, the mailAccessProxyPreAuth attribute in the domain node
in the LDAP server overrides this option.

41.63 preauthtimeout Option
The preauthtimeout option (available for the IMAP Proxy, POP Proxy) specifies the MMP
session timeout prior to authentication.

41.64 preferpoll Option
To improve performance, the IMAP and MMP servers use Solaris Event Completion Ports on
Solaris instead of the poll system call starting with the Messaging Server 7.0.5 release. Since the
Messaging Server 8.0.1 release, the servers use epoll on Linux instead of the poll system call.
Setting the preferpoll option (available at base and MMP level) to 1 will revert to use of the
standard Posix poll API instead. When preferpoll is set to 1, then the polldelay option also
applies.

41.65 replayformat Option Under the MMP
The replayformat MMP/IMAP Proxy/POP Proxy/vdomain option takes an argument of a
printf-style format string that says how to construct the user ID for replay to the Message Store
server. Valid escape sequences are:

%s (user@domain where '@' is the canonical domain delimiter)
%o (original user as sent by the client)

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–19

replaypass Option

%U (userid only, prior to LDAP lookup)
%V (virtual domain only)
%A[attr] (value of user's attribute "attr")

For example, %A[uid]@%V for a user with joe as the value of the UID LDAP attribute and
domain=siroe.com would yield:

joe@siroe.com

For the MMP, when using hosteddomains, the mailAccessProxyReplay attribute in the
domain node in the LDAP server overrides this option.

41.66 replaypass Option
The replaypass option (available under mmp, imapproxy, and popproxy) is a boolean
indicating whether to replay the end-user's password to the back-end IMAP or POP server. If
this is set to 0, then the password is not replayed and administrative proxy authentication is
used, so the storeadminpass option must also be set.

41.67 requireauthenticationserver Option
The requireauthenticationserver option is available under auth and under
imapproxy and popproxy.

When an authentication server is configured using the authenticationserver
option, and requireauthenticationserver is 1 (the default), that server
must be running and responding to requests or authentication will not succeed. If
requireauthenticationserver is set to 0, then built-in authentication mechanisms will
be permitted even if the authentication server ceases to respond to requests.

41.68 restrictplainpasswords Option
When the restrictplainpasswords option (available under mmp, imapproxy, popproxy,
and vdomain) is set to 1, this will forbid use of plaintext passwords unless an SSL/TLS security
layer is active. If this is not set, the plaintextmincipher option will be used.

41.69 searchformat Option
The searchformat option (available under mmp, imapproxy, popproxy, and vdomain)
specifies a printf-style format string with which to construct Users/Groups LDAP queries
to locate a user in the directory (and in particular to determine the user's mailhost) when
hosteddomains is disabled -- or if hosteddomains is enabled but domainsearchformat
is not set. Valid escape sequences are:

%s (userid+virtualdomain)
%U (userid only)
%V (virtual domain only)
%C (client IP address)
%S (server IP address)

41–20 Messaging Server Reference

serverdownalert Option

%D (client cert subject DN)
%o (original user as passed from client)

41.70 serverdownalert Option
The serverdownalert IMAP Proxy option specifies the string returned to client in an IMAP
ALERT message when the MMP cannot connect to a user's store server.

41.71 servicelist Option
For legacy MMP config only: The servicelist MMP option pecifies which services to start
and the ports/interfaces on which the MMP will listen for those services. Services are listed all
on a single line in the following format:

SERVICENAME @ HOSTPORT [| HOSTPORT]

where SERVICENAME is popproxyaservice, imapproxyaservice or
smtpproxyaservice; (any prefix to these names is ignored for backwards compatibility).

This option must be set for the MMP to function correctly. The initial configuration (as of
release 7 Update 3) will set this to:

ImapProxyAService@143 PopProxyAService@110

Note that this option is not migrated directly to the Unified configuration. Equivalent settings
appear in the tcp_listen sections of the popproxy, and imapproxy sections.

41.72 spoofemptymailbox Option
If the spoofemptymailbox POP Proxy option is set to 1 (default is 0) and the user's POP
server is unavailable, the MMP will simply return an empty mailbox listing. Turning this
option on will override the spoofmessagefile option. We have received reports that this
will cause certain clients (including Microsoft® Outlook) to re-download the mailbox when the
back-end server comes back online.

41.73 spooftempfail Option
If the spooftempfail POP Proxy option is set to 1 (default is 0) and a temporary
authentication error occurs subsequent to locating the user in LDAP, the MMP will simply
return an empty mailbox listing or if spoofemptymailbox is 0 and spoofmessagefile
is set, then the spoof message file will be used. We have received reports that this will cause
certain clients (including Microsoft Outlook) to re-download the mailbox when the temporary
condition is resolved.

 A temporary authentication error can occur as a result of defer (or as of Messaging Server
7.5 defer-submit) or hold mail user status (mailUserStatus) or as a result of hold mail
domain status (mailDomainStatus) prior to connecting to the back-end POP server, and can
also occur if the back-end server returns a [SYS/TEMP] authentication failure. In the former
case, the MMP's LDAP cache settings apply.

41.74 spoofmessagefile Option
MMP and IMAP Proxy and POP

Proxy and vdomain options 41–21

ssladjustciphersuites
Option

The spoofmessagefile POP Proxy option specifies the file to use for POP3 inbox spoofing.
The MMP can imitate a base-functionality POP3 server in case it can't connect to a client's
store machine. In such a situation, the MMP creates an inbox for the user and places this one
message into it. The format of the message contained in this file should conform to dot-stuffed
RFC 822 (including the final '.').

By default, there is no spoof message file.

41.75 ssladjustciphersuites Option
The ssladjustciphersuites option allows adjusting which SSL cipher suites are
enabled or disabled. (This option is available under base, mmp, imapproxy, popproxy,
and vdomain.) SSL cipher suites control the level of protection required between SSL client
and server. Different cipher suites have different properties and use different cryptographic
algorithms. At any time a specific crytographic algorithm might be weakened or compromised
by new research in cryptography. The ability to change the default cipher suites allows the
software to adapt as security technology changes. In addition as CPUs get faster, the key size
necessary to provide several years of comfortable protection increases, even if the algorithm is
considered state-of-the-art.

The default set of SSL cipher suites used will change over time as more secure ones are
introduced and weaker ones are deprecated. It is expected most deployments will be happy
with the default set of cipher suites and it is generally not a good idea to adjust the available
cipher suites without reason. However, here are some scenarios where it may be helpful to
adjust cipher suites:

1. A site with specific security policies may wish to provide a fixed list of cipher suites to use
that is set by site policy rather than simply using state-of-the-art suites provided by the
NSS library. Such a site would typically configure this setting to '-ALL,...' where '...'
contains the cipher suite names.

2. A site which is experimenting cipher suites that require installation of special server
certificate types, for example the DSS cipher suites. Such a site would enable these
additional suites once installation was complete.

3. If a site is forced to continue supporting a particularly old client that only supports old
cipher suites, they can be explicitly enabled (for example '+RC4' enables the RC4 cipher
suites).

4. A site that chooses to disable an older cipher or hash function pro-actively despite potential
interoperability issues may choose to do so. For example, to disable all ciphers using the
'3DES' or 'SHA1' algorithms, simply set '-3DES,-SHA1'. Be aware that this sort of pro-active
action may generate support calls from end users running older mail clients.

5. In the event the cryptographic research community discovers a vulnerability in one or more
of the ciphers enabled by default, this provides a mechanism to immediately disable those
ciphers. For example, to disable all ciphers using the '3DES' algorithm, simply set '-3DES'.

As of NSS 3.28 (2017), the following cipher suites are enabled by default in the NSS
library: TLS_AES_128_GCM_SHA256, TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_256_GCM_SHA384, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,

41–22 Messaging Server Reference

https://tools.ietf.org/html/rfc822

ssladjustciphersuites
Option

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256, TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA, TLS_RSA_WITH_AES_128_GCM_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384, TLS_RSA_WITH_AES_128_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_RSA_WITH_3DES_EDE_CBC_SHA.

The complete list of cipher suites present in NSS 3.28 (2017) follows:
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA, SSL_DHE_DSS_WITH_DES_CBC_SHA,
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA_WITH_DES_CBC_SHA,
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5, SSL_RSA_EXPORT_WITH_RC4_40_MD5,
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA, SSL_RSA_FIPS_WITH_DES_CBC_SHA,
SSL_RSA_WITH_3DES_EDE_CBC_SHA, SSL_RSA_WITH_DES_CBC_SHA,
SSL_RSA_WITH_NULL_MD5, SSL_RSA_WITH_NULL_SHA,
SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA,
TLS_AES_128_GCM_SHA256, TLS_AES_256_GCM_SHA384,
TLS_CHACHA20_POLY1305_SHA256, TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_RC4_128_SHA, TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_ECDSA_WITH_NULL_SHA, TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–23

ssladjustciphersuites
Option

TLS_ECDHE_RSA_WITH_NULL_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDH_ECDSA_WITH_NULL_SHA,
TLS_ECDH_ECDSA_WITH_RC4_128_SHA, TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_NULL_SHA, TLS_ECDH_RSA_WITH_RC4_128_SHA,
TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA,
TLS_RSA_EXPORT1024_WITH_RC4_56_SHA, TLS_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_GCM_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_NULL_SHA256, TLS_AES_128_GCM_SHA256,
TLS_AES_256_GCM_SHA384, TLS_CHACHA20_POLY1305_SHA256,
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_DSS_WITH_AES_128_CBC_SHA256,
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256, TLS_DHE_DSS_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256,
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384,
TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA,
TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA,
TLS_DHE_DSS_WITH_RC4_128_SHA, TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA, TLS_DHE_RSA_WITH_AES_256_CBC_SHA256,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA,
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA,
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_RC4_128_SHA, TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA, TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_RC4_128_SHA, TLS_RSA_WITH_3DES_EDE_CBC_SHA,

41–24 Messaging Server Reference

ssladjustciphersuites
Option

TLS_RSA_WITH_AES_128_CBC_SHA, TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_AES_128_GCM_SHA256, TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA256, TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA, TLS_RSA_WITH_CAMELLIA_256_CBC_SHA,
TLS_RSA_WITH_RC4_128_MD5, TLS_RSA_WITH_RC4_128_SHA,
TLS_RSA_WITH_SEED_CBC_SHA.

TLS 1.3 (NSS 3.39+) has its own cipher suites separate from previous TLS versions.
These include: TLS_AES_128_GCM_SHA256, TLS_CHACHA20_POLY1305_SHA256,
TLS_AES_256_GCM_SHA384.

Always keep in mind that adjusting the available ciphersuites can impact multiple protocols;
NSS is tightly integrated into Messaging Server, as the following diagram illustrates:

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–25

sslbacksideport Option

41.76 sslbacksideport Option
The sslbacksideport IMAP Proxy and POP proxy option specifies the port number to
which the MMP will try to connect on the store servers using SSL if an SSL connection was
made to the MMP. If this parameter is not set, the MMP will not use SSL when connecting to
the store. There are no default values, but ports 993 and 995 are recommended for IMAP and

41–26 Messaging Server Reference

sslcachedir Option

POP, respectively. (On the relevant back end Message Store systems, see the sslport option
for IMAP and POP, respectively, to see on what ports the backend Message Store is actually
listening for such incoming SSL connections.)

41.77 sslcachedir Option
The sslcachedir option, (available under base, mmp, imapproxy, and popproxy),
specifies the SSL session cache directory used to track SSL sessions across multiple connections
by the MMP. Prior to 7.0.5.31.0, this also controlled the location of the SSL database files and
defaulted to the config directory. As of the 7.0.5.31.0 release, the ssldbpath base option takes
precedence over this option for specifying the location of SSL database files.

NOTE: In order for results to predictable, this option must be the same for the IMAP Proxy
and POP Proxy -- any settings of this option for the proxies must match. (Or better yet, don't
set it explicitly for any of the proxies; instead set it at MMP level.)

41.78 sslcertprefix Option
The sslcertprefix option (available under mmp, imapproxy, and popproxy) specifies the
filename prefix to the SSL certificate database file. The certificate database file must be in the
directory specified by the ssldbpath setting. No prefix will be used by default. DEPRECATED:
The ssldbprefix option should be used instead.

NOTE: In order for results to predictable, this option must be the same for the IMAP and POP
proxies.

41.79 sslenable Option
The sslenable option, available for the MMP, IMAP Proxy, and POP Proxy, specifies whether
SSL is enabled for the specified proxy service (via the STARTTLS command).

41.80 sslkeypasswdfile Option
DELETED as of MS 7.0.5.

File location for the passwords that protect access to the private key file. Passwords may be
null if the key is not password-protected. This option is deprecated, and will go away. Use
is not recommended as all product components except the MMP: simply use the default
sslpassword.conf name. If multiple SSL configurations are required, use ssldbpath to
relocate these files instead.

NOTE: In order for results to predictable, this option must be the same for the IMAP,
POP,and SMTP proxies -- that is, in legacy configuration it must be the same in the files
ImapProxyAService.cfg, PopProxyAService.cfg and SmtpProxyAService.cfg, or
in Unified Configuration any settings of this option for the various proxies must match.

41.81 sslkeyprefix Option
Filename prefix to the SSL key database file. The key database file must be in the directory
specified by the ssldbpath setting. No prefix will be used by default. DEPRECATED: The
ssldbprefix option should be used instead.

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–27

sslnicknames Option Under the
MMP

NOTE: In order for results to predictable, this option must be the same for the IMAP,
POP,and SMTP proxies -- that is, in legacy configuration it must be the same in the files
ImapProxyAService.cfg, PopProxyAService.cfg and SmtpProxyAService.cfg, or
in Unified Configuration any settings of this option for the various proxies must match.

41.82 sslnicknames Option Under the MMP
The sslnicknames option (available at MMP, IMAP Proxy, POP Proxy, and vdomain level,
as well as at Base and other levels) specifies a list of the nicknames of the certificates in the
SSL certificate database to offer as the server certificate. Only one nickname of each certificate
type is permitted (e.g., one RSA certificate, one DSS certificate) so normally only one will be
specified.

41.83 sslsecmodfile Option
Security module database file name. If you have hardware accelerators for SSL ciphers, this file
describes them to the Messaging Server. DELETED: Support removed in 7.0.5 as customized
module file name feature in NSS goes away with new cert9.db/key4.db/pkcs11.txt
format.

41.84 storeadmin Option
The storeadmin option (available under mmp, imapproxy, popproxy, and vdomain) is
set to the user name of the store administrator for proxy authentication and is necessary to
support SSL client certificates and RFC 2595-style proxy authentication. If this is not set and
the admins Message Store option is single-valued, the value of the admins option will be used
instead. Otherwise MMP features requiring store admin credentials will be disabled.

41.85 storeadminpass Option
The storeadminpass option (available under mmp, imapproxy, popproxy, and vdomain)
specifies the password for the store administrator used by MMP proxy authentication
necessary to support SSL client certificates and RFC 2595-style proxy authentication. If not set,
this defaults to the value of proxyadminpass.

41.86 syncldap Option
The syncldap option (available under imapproxy and popproxy) causes the IMAP Proxy
or POP Proxy to do synchronous LDAP lookups instead of async LDAP lookups. This may
improve performance under high load conditions by reducing the number of round-trips
through the main poll dispatch loop. Make sure the ldappendingoplimit option is set to
a value below maxthreads if this is enabled. Set this to 0 to get the pre-7.0.5 async LDAP
behavior. The async LDAP behavior is deprecated and may be removed in a future release.

41.87 tcp_listen options
Named tcp_listen groups can appear under the imapproxy, and popproxy groups.
Several options may be set under tcp_listen.

41–28 Messaging Server Reference

https://tools.ietf.org/html/rfc2595
https://tools.ietf.org/html/rfc2595

tcp_ports Option Under
tcp_listen

41.87.1 tcp_ports Option Under tcp_listen
Under a top level imapproxy or popproxy component, inside a named tcp_listen group,
the tcp_ports option specifies the TCP port(s) on which that proxy server listens; e.g.:

msconfig> set imapproxy.tcp_listen:imap-proxy-1.tcp_ports 143

41.87.2 ssl_ports Option Under tcp_listen
Under a top level imapproxy or popproxy component, inside a named tcp_listen group,
the ssl_ports option specifies the TCP port(s) on which that proxy server listens for SSL
connections; e.g.:

msconfig> set imapproxy.tcp_listen:imap-proxy-1.ssl_ports 993

41.87.3 listen_addresses Option Under tcp_listen
Under a top level imapproxy or popproxy component, inside a named tcp_listen group,
the listen_addresses option specifies the list of interface addresses on which that proxy
server listens; e.g.:

msconfig> set imapproxy.tcp_listen:imap-proxy-1.listen_addresses "192.168.1.0 190.168.1.1"

The list of interface address values may include hostnames, IPv4 address literals, or the string
"INADDR_ANY" (which is the default).

41.87.4 backlog Option Under tcp_listen
RESTRICTED: Under a top level imapproxy or popproxy component, inside a named
tcp_listen group, the backlog option is intended to control the depth of the TCP backlog
queue for the socket for that proxy server. However, currently this option's value is not used
when set in a tcp_listen block, and instead the hard-coded value 1024 is used.

41.88 tcpaccess Option
The tcpaccess option (available under mmp, imapproxy, popproxy, and vdomain)
specifies wrap-style filters that describes TCP access control for the MMP (globally). If this is
not set, then the domainallowed and domainnotallowed options for the service will be used
instead.

See "Configuring Client Access to POP, IMAP, and HTTP Services" in the "Configuring Security
and Access Control" chapter of the Messaging Server Administrator's Guide for background
on TCP wrapper filter syntax.

41.89 tcpaccessattr Option
MMP and IMAP Proxy and POP

Proxy and vdomain options 41–29

timeout Option Under the MMP

The tcpaccessattr option -- available for the MMP, IMAP proxy, POP proxy, and virtual
domains -- specifies the name of a per-user LDAP attribute that contains a wrap-style filter
describing the TCP access control for the user.

41.90 timeout Option Under the MMP
The timeout MMP option specifies the session timeout in seconds. To be standards-
compliant, the value of this option must not be set lower than 1800 seconds (30 minutes) for
IMAP, 600 seconds (10 minutes) for POP or SMTP.

See also the options for the IMAP server, POP server, and SMTP SUBMIT server:
imap.idletimeout, pop.idletimeout, and the SMTP SUBMIT server's various *_TIME
channel-specific options.

41.91 timeout Option Under the IMAP proxy
The timeout IMAP Proxy option specifies the session timeout in seconds. To be standards-
compliant, the value of this option must not be set lower than 1800 seconds (30 minutes) for
IMAP.

See also the IMAP server's own idletimeout option.

41.92 timeout Option Under the POP proxy
The timeout POP Proxy option specifies the session timeout in seconds. To be standards-
compliant, the value of this option must not be set lower than 600 seconds (10 minutes) for
POP.

See also the POP server's own idletimeout option.

41.93 use_nslog Option Under the MMP
DEPRECATED for the MMP and its components as of MS 8.0: The use_nslog option
(available at levels including mmp, imapproxy, and popproxy) may be set to 1 to enable
use of nslog() for debugging output. This then enables the use of the logfile options,
component.logfile.option-name, (or logfile.component.* in legacy configuration)
for controlling logfile creation and rollover.

41.94 usenslog Option
The legacy configuration usenslog has been replaced in Unified Configuration by
use_nslog.

41.95 usergroupdn Option
The usergroupdn option (available for the MMP, IMAP Proxy, POP Proxy, and Submit Proxy)
specifies the baseDN for user, group and domain searches by the MMP in LDAP Schema, v2
mode. It is also used for client certificate mapping lookups in LDAP Schema, v1 mode. If this is
not set, it defaults to the value of the ugldapbasedn option.

41–30 Messaging Server Reference

virtualdomaindelim Option

41.96 virtualdomaindelim Option
The virtualdomaindelim option (available under mmp, popproxy, imapproxy, and
vdomain) takes a string value specifying the acceptable virtual domain delimiters. Any
character in this string will be treated as a domain delimiter in a user ID received by the MMP.
(The MMP searches user IDs from the end.) If this is not set, then the loginseparator option's
value will be used instead.

41.97 virtualdomainfile Option
For legacy MMP config only: The name of the file containing your virtual domain mapping
(a full path may be provided, but the product's configuration directory is used if no path is
provided).

The recommended setting is vdmap.cfg. Uncomment this line in the configuration file to
enable support for virtual domains.

This option is deleted during Unified Configuration migration and its contents are included in
vdomain option groups.

MMP and IMAP Proxy and POP
Proxy and vdomain options 41–31

41–32

Part VI Convergence webmail
Messaging Server includes a specialized HTTP server, MSHTTPD, that provides webmail client access to
the Message Store.

The Oracle Communications Convergence webmail client supports S/MIME (Secure/Multipurpose
Internet Mail Extension). This support has a number of configuration options.

New in MS 8.0.1, MSHTTP may call out to ICAP to perform HTML sanitization; this support has a
number of icapservice configuration options.

For Messenger Express, see also the rfc822headerallow8bit base option.

Chapter 42 MSHTTP options
42.1 enable Option Under http ... 42–3
42.2 enablesslport Option Under http ... 42–3
42.3 allowanonymouslogin Option Under http ... 42–4
42.4 allowcollect Option ... 42–4
42.5 allowldapaddresssearch Option ... 42–4
42.6 altservice Option ... 42–4
42.7 cert_enable Option ... 42–4
42.8 cert_port Option ... 42–4
42.9 charsetvalidation Option ... 42–4
42.10 connlimits Option ... 42–5

42.10.1 connlimits Option Under isc_client .. 42–6
42.11 convergencefilterenabled Option ... 42–6
42.12 cookiedomain Option ... 42–6
42.13 cookiename Option ... 42–6
42.14 da_host Option ... 42–6
42.15 da_port Option ... 42–6
42.16 detectcharset Option ... 42–6
42.17 domainallowed Option Under http ... 42–7
42.18 domainnotallowed Option Under http .. 42–7
42.19 enableblacklistfilter Option ... 42–7
42.20 enableuserlist Option Under http ... 42–7
42.21 extrauserldapattrs Option ... 42–7
42.22 filterhiddenmailinglists Option ... 42–7
42.23 forcenbsptospace Option ... 42–7
42.24 forcetelemetry Option Under http ... 42–8
42.25 fullfromheader Option ... 42–8
42.26 generatereceivedheader Option ... 42–8
42.27 gzipattach Option ... 42–8
42.28 gzipdynamic Option ... 42–8
42.29 gzipstatic Option ... 42–8
42.30 htmlprocessor Option ... 42–8
42.31 httpproxyadmin Option ... 42–9
42.32 httpproxyadminpass Option ... 42–9
42.33 idletimeout Option Under http ... 42–9
42.34 ims5compat Option ... 42–9
42.35 ipsecurity Option ... 42–9
42.36 ldapaddresssearchattrs Option ... 42–9
42.37 logunauthsession Option Under http .. 42–9
42.38 maxcollectmsglen Option ... 42–9
42.39 maxldaplimit Option ... 42–10
42.40 maxmessagesize Option Under http ... 42–10
42.41 maxpostsize Option ... 42–10
42.42 maxsessions Option Under http ... 42–10
42.43 maxthreads Option Under http ... 42–10
42.44 nofilecache Option ... 42–10
42.45 numprocesses Option Under http ... 42–10
42.46 plaintextconvspace Option ... 42–11
42.47 plaintextmincipher Option Under http .. 42–11
42.48 plaintexttabsize Option ... 42–11
42.49 popbindaddr Option ... 42–11

MSHTTP options 42–1

42.50 port Option Under http ... 42–11
42.51 proxyport Option ... 42–11
42.52 replayformat Option Under http ... 42–11
42.53 resourcetimeout Option ... 42–12
42.54 rfc2231compliant Option ... 42–12
42.55 sessiontimeout Option ... 42–12
42.56 showunreadcounts Option ... 42–12
42.57 singlesignoff Option ... 42–12
42.58 smtpauthpassword Option Under http .. 42–12
42.59 smtpauthuser Option Under http ... 42–12
42.60 smtphost Option ... 42–13
42.61 smtpport Option ... 42–13
42.62 smtptls Option Under http ... 42–13
42.63 sourceurl Option ... 42–13
42.64 spooldir Option ... 42–13
42.65 sslcachesize Option Under http ... 42–14
42.66 sslnicknames Option Under http ... 42–14
42.67 sslport Option Under http ... 42–14
42.68 sslsourceurl Option ... 42–14
42.69 sslusessl Option Under http ... 42–14
42.70 sso_enable Option ... 42–14
42.71 sso_id Option ... 42–14
42.72 sso_prefix Option ... 42–15
42.73 usesentdate Option ... 42–15
42.74 uwcenabled Option ... 42–15
42.75 uwccontexturi Option ... 42–15
42.76 uwchome Option ... 42–15
42.77 uwclogouturl Option ... 42–15
42.78 uwcport Option ... 42–15
42.79 uwcsslport Option ... 42–16
42.80 xmailer Option ... 42–16
42.81 MSHTTP errors ... 42–16
42.82 MSHTTP feedback options .. 42–16

42.82.1 spam Option .. 42–16
42.82.2 notspam Option .. 42–16

42.83 MSHTTP httpcharset and mailcharset options ... 42–16
42.83.1 af Option .. 42–17
42.83.2 ar Option .. 42–17
42.83.3 be Option .. 42–17
42.83.4 bg Option .. 42–17
42.83.5 ca Option .. 42–17
42.83.6 cs Option .. 42–18
42.83.7 da Option .. 42–18
42.83.8 de Option .. 42–18
42.83.9 el Option .. 42–18
42.83.10 en Option ... 42–18
42.83.11 es Option ... 42–19
42.83.12 et Option ... 42–19
42.83.13 eu Option ... 42–19
42.83.14 fi Option ... 42–19
42.83.15 fr Option ... 42–19
42.83.16 ga Option ... 42–20
42.83.17 gl Option ... 42–20

42–2 Messaging Server Reference

enable Option Under http

42.83.18 he Option ... 42–20
42.83.19 hr Option ... 42–20
42.83.20 hu Option ... 42–20
42.83.21 is Option ... 42–21
42.83.22 it Option ... 42–21
42.83.23 ja Option ... 42–21
42.83.24 ko Option ... 42–21
42.83.25 lt Option ... 42–21
42.83.26 lv Option ... 42–22
42.83.27 mk Option ... 42–22
42.83.28 nl Option ... 42–22
42.83.29 no Option ... 42–22
42.83.30 pl Option ... 42–22
42.83.31 pt Option ... 42–23
42.83.32 ro Option ... 42–23
42.83.33 ru Option ... 42–23
42.83.34 sk Option ... 42–23
42.83.35 sl Option ... 42–23
42.83.36 sq Option ... 42–24
42.83.37 sr Option ... 42–24
42.83.38 sv Option ... 42–24
42.83.39 th Option ... 42–24
42.83.40 tr Option ... 42–24
42.83.41 uk Option ... 42–25
42.83.42 yi Option ... 42–25
42.83.43 zh-cn Option ... 42–25
42.83.44 zh-tw Option ... 42–25

42.84 MSHTTP sieve options .. 42–25
42.84.1 port Option Under sieve .. 42–25
42.84.2 sslport Option Under sieve .. 42–26

The http.enable and/or http.enablesslport options are the fundamental options for
enabling operation of the MSHTTP server. Many other options are available to further modify
and tune its operation.

Under http, there are additional groupings of options under feedback, httpcharset and
mailcharset, and sieve.

42.1 enable Option Under http
The enable MSHTTP option (service.http.enable in legacy configuration)
enables the HTTP service on start-msg startup. Note: HTTP over SSL service is
enabled/disabled separately using http.enablesslport in Unified Configuration, or
service.http.enablesslport in legacy configuration.

42.2 enablesslport Option Under http
Sets whether or not the HTTP over SSL service for Convergence is started. If enabled, the
HTTP+SSL service listens on the port specified by the sslport MSHTTP option. For the 7.0.5
release, the sslusessl MSHTTP option must also be explicitly set to enable the separate SSL
port. For the 8.0 release, setting this option enables the separate SSL port and it is no longer
necessary to explicitly set the sslusessl MSHTTP option.

MSHTTP options 42–3

allowanonymouslogin Option
Under http

Note that if both http.enable and http.enablesslport (Unified Configuration) or
service.http.enable and service.http.enablesslport (legacy configuration) are
turned off, then msprobe does not try to monitor http.

42.3 allowanonymouslogin Option Under http
The allowanonymouslogin MSHTTP option enables the SASL ANONYMOUS mechanism
for mshttpd.

42.4 allowcollect Option
Set the allowcollect MSHTTP option to 0 to prevent the server from performing remote
POP mailbox collection.

Note that the maxcollectmsglen MSHTTP option specifies a maximum on the message size
that may be collect, while the popbindaddr MSHTTP option specifies the IP address to which
to bind outgoing POP connections when collecting external mail.

42.5 allowldapaddresssearch Option
The allowldapaddresssearch MSHTTP option controls whether legacy webmail client
users (i.e., users of Messenger Express & Communications Express) can search the directory for
addresses.

42.6 altservice Option
The mshttpd daemon (webmail proxy) normally checks the mailAllowedServiceAccess
and related LDAP attributes to see if the 'http' service is enabled for that user. If the
altservice MSHTTP option is set to 1, it will instead use 'mshttpd' as the service name
for such checks. This is useful if different access control settings are needed for the mshttpd
daemon than for a front-end http server such as the one used by Convergence.

42.7 cert_enable Option
The cert_enable MSHTTP option controls whether to verify certificates against a CRL.
When this is set, ensure that the crlenable S/MIME option (in legacy configuration, the
crlenable parameter in the smime.conf file) is set to 1.

42.8 cert_port Option
The cert_port MSHTTP option specifies a port number on the machine where the
Messaging Server runs to use for CRL communication. This port is used locally for that
machine only. The value must be greater than 1024; the default is 55443.

42.9 charsetvalidation Option
Set the charsetvalidation MSHTTP option to "0" to disable charset validation on data sent
to webmail client (not recommended). Setting this to "0" is a workaround to view messages

42–4 Messaging Server Reference

connlimits Option

in webmail that are not labelled with the correct charset (the charset would be set then in the
browser), but this will also likely generate Javascript errors and so cannot be recommended.

42.10 connlimits Option
The connlimits option (available under http, imap, pop, mmp, imapproxy, popproxy,
specifies the maximum number of connections per IP address for the selected server. The
syntax is: "realm1,realm2,..." where a realm has the form of address ranges and maximum
number of connections expressed as any of the following four forms:

Table 42.1 connlimits Option Value Forms

a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
a.b.c.d/p:m IPv4 address, routing prefix, connection max
 a.b.c.d IPv4 address
 p routing prefix
 m maximum connection count
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
[a/p]:m IPv6 address, routing prefix, connection max
 a IPv6 address; compressed "::" format allowed
 p routing prefix
 m maximum connection count
a.b.c.d|e.f.g.h:m IPv4 address, netmask, connection max
 a.b.c.d IPv4 address
 e.f.g.h network mask
 m maximum connection count
:m Match any address
 m maximum connection count

There should be at least one realm of the form ":m" to cover the default case by matching any
IPv4 or IPv6 address. To match only IPv4 addresses, use "0.0.0.0/0:m" or "0.0.0.0|0.0.0.0:m".
And to match only IPv6 addresses, use "[::0/0]:m".

The option has no default value; however, initial configuration normally sets a value of :20 for
the IMAP Proxy, and POP Proxy:

msconfig> show connlimits
role.imapproxy.connlimits = :20
role.popproxy.connlimits = :20

MSHTTP options 42–5

connlimits Option Under
isc_client

For backwards compatibility reasons, this option may instead specify the full path to a
configuration file name that contains one realm per line. Such a file name must begin with '/'.
This usage is deprecated and may be removed in a future release.

42.10.1 connlimits Option Under isc_client
The connlimits isc_client option specifies the maximum number of connections that are
permitted from a single LMTP process to the ISC server. Starting with 8.0.2.2, this isc_client
option is deprecated; the isc_client.max_conns option should be used instead.

42.11 convergencefilterenabled Option
Starting with MS 8.0.2, mshttpd disables the built-in security filter for HTML and only has
a filter to process URLs. As a result, use of Convergence version 3.0.1.1.0 or later with the
modern whitelist HTML filter it provides is recommended. Once you have verified your
Convergence version is compatible, and you have verified that the Convergence option
mail.htmlsanitizer.enable is on, then you may set this option to 1. If you set this option
to 1 without first verifying correct Convergence version and configuration, your Convergence
end-users will be vulnerable to a number of security attacks.

42.12 cookiedomain Option
The cookiedomain MSHTTP option is a trusted circle SSO (legacy) parameter. The string
value of this option is used to set the cookie domain value of all SSO cookies set by the
Messenger Express HTTP server. This domain must match the DNS domain used by the
Messenger Express browser to access the server. It is not the hosted domain name. This value
must start with a period.

42.13 cookiename Option
The cookiename MSHTTP option specifies the cookie name to use to pass the HTTP session
ID rather than including it as part of the URL. cookiename defaults to webmailsid if the
uwcenabled MSHTTP option (local.webmail.sso.uwcenabled in legacy configuration)
is enabled, and is unset if uwcenabled (local.webmail.sso.uwcenabled in legacy
configuration) is not enabled.

42.14 da_host Option
The da_host MSHTTP option specifies the Delegated Administrator 1.x hostname. Initially
set to value of the hostname Base option (in legacy configuration, local.hostname). This
option is available for backwards compatibility only, and should no longer be used.

42.15 da_port Option
The da_port MSHTTP option specifies the Delegated Administrator 1.x port, by default
8080. This option is available for backwards compatibility only, and should no longer be used.

42.16 detectcharset Option

42–6 Messaging Server Reference

domainallowed Option Under
http

The detectcharset option for mshttpd enables automatic character set detection for
unlabeled text parts supplied by Convergence.

42.17 domainallowed Option Under http
The domainallowed MSHTTP option specifies access filters specifying which domains and/
or IP addresses are allowed HTTP access.

42.18 domainnotallowed Option Under http
The domainnotallowed MSHTTP option specifies access filters specifying which domains
and/or IP addresses are not allowed HTTP access.

42.19 enableblacklistfilter Option
Starting with MS 8.0.2, mshttpd disables the built-in blacklist HTML filter by default and
only has a filter to process URLs. Use of the modern whitelist HTML sanitizer available in
Convergence 3.0.1.1.0 or later is recommended. This option can be set to 1 if the Convergence
mail.htmlsanitizer.enable option is set. This can also be used if a deployment is unable
to upgrade Convergence and is comfortable with the legacy blacklist filter.

42.20 enableuserlist Option Under http
The enableuserlist MSHTTP option enables imsconnutil connected user listing for
HTTP service.

42.21 extrauserldapattrs Option
The extrauserldapattrs MSHTTP option, http.extrauserldapattrs, specifies the
names of extra LDAP attributes returned to client (for customization). Syntax: attrname[:w]
[,attrname]... (:w if read-write attribute).

42.22 filterhiddenmailinglists Option
The filterhiddenmailinglists MSHTTP option excludes the mgmanhidden LDAP
attribute from the search filter when set to 0.

42.23 forcenbsptospace Option
Enabling forcenbsptospace will cause mshttpd to scan the incoming text and html parts
of submitted messages for UTF-8 non-breaking spaces (0xC2A0) and replace them with ASCII
spaces (0x20).

Note that this option will only function when the incoming content is UTF-8 encoded. Also
note that this replacement is done blindly and may have a negative impact on space-sensitive
content.

MSHTTP options 42–7

forcetelemetry Option Under
http

42.24 forcetelemetry Option Under http
Setting the forcetelemetry MSHTTP option to 1 forces telemetry for all users. Warning: this
generates a lot of data and should not be used on a production system.

42.25 fullfromheader Option
If the fullfromheader MSHTTP option is set, then use the cn attribute (as well as the mail
attribute) from the user's LDAP entry to build the "From:" header for outgoing messages; that
is, include the cn value, if there is one.

42.26 generatereceivedheader Option
If the generatereceivedheader MSHTTP option is set to "0", webmail will not generate a
Received: header, which normally contains the IP address of the sender.

42.27 gzipattach Option
The gzipattach MSHTTP option enables (when set to 1) or disables attachment download
gzip by default for Internet Explorer clients.

42.28 gzipdynamic Option
The gzipdynamic MSHTTP option enables or disables compression of dynamic content (for
example: request to *.msc files) delivered to Messenger Express or Communications Express
mail clients. This can be disabled if Messenger Express or Communications Express users are
getting corrupted content and cannot open their mail pages.

42.29 gzipstatic Option
The gzipstatic MSHTTP option enables or disables compression of static content (for
example: HTML files) delivered to Messenger Express or Communications Express mail
clients. This can be disabled if Messenger Express or Communications Express users are
getting corrupted content and cannot open their mail pages.

42.30 htmlprocessor Option
The htmlprocessor MSHTTP option controls how html mail is sanitized prior to display
by the Convergence webmail client. The mshttpd built-in blacklist processor is used when the
value is set to 0 or 1. In MS 8.0.1, setting this option to 2 enables use of the ICAP service for
HTML sanitization.

Use of the white-list sanitizer available in Convergence 3.0.1.1.0 or later is recommended. That
filter is enabled by setting the Convergence option mail.htmlsanitizer.enable.

Starting with MS 8.0.2, mshttpd disables the built-in blacklist filter by default and only has
a filter to process URLs. As a result, Convergence 3.0.1.1.0 or later is strongly recommended

42–8 Messaging Server Reference

httpproxyadmin Option

with MS 8.0.2 and the Convergence option mail.htmlsanitizer.enable should be on. See
the http.convergencefilterenabled option.

42.31 httpproxyadmin Option
The httpproxyadmin MSHTTP option specifies a back-end store admin login name.
DEPRECATED: Consider using proxyadmin instead; httpproxyadmin will be ignored if
proxyadmin has a value.

42.32 httpproxyadminpass Option
The httpproxyadminpass MSHTTP option specifies a back-end store admin password.
DEPRECATED: Consider using proxyadminpass instead; httpproxyadminpass will be
ignored if proxyadminpass has been set.

42.33 idletimeout Option Under http
The idletimeout MSHTTP option specifies a timeout, in minutes, for the low-level HTTP
connection (which is different from the webmail session). Lower values will use fewer
socket handles and higher values cause less overhead when the client needs to recreate the
connection.

42.34 ims5compat Option
Set the ims5compat MSHTTP option to 1 on the MEMs and the backend servers to use 5.2
Messaging Express with a 6.x MEM.

42.35 ipsecurity Option
The ipsecurity MSHTTP option sets whether or not to restrict session access to login IP
addresses. If set to 1, then when the user logs in, the server remembers which IP address the
user used to log in. Then it only allows that IP address to use the session cookie it issues to the
user.

42.36 ldapaddresssearchattrs Option
The ldapaddresssearchattrs MSHTTP option specifies a string containing a comma-
delineated list of LDAP attributes returned to legacy webmail client users (i.e., users of
Messenger Express or Communications Express) in a directory search.

42.37 logunauthsession Option Under http
The logunauthsession MSHTTP option enables log messages from unauthenticated client
sessions. Prior to turning this on, consider verifying that your logging filesystem can handle
the amount of I/O possible from unauthenticated clients connecting frequently.

42.38 maxcollectmsglen Option

MSHTTP options 42–9

maxldaplimit Option

The maxcollectmsglen MSHTTP option specifies the maximum message size the server
collects from a remote POP mailbox. If any message in the mailbox to be collect exceeds this
size, the collection will halt when that message is encountered.

Note that the allowcollect MSHTTP option controls whether or not such external collection
is permitted, while the popbindaddr MSHTTP option specifies the IP address to which to
bind outgoing POP connections when collecting external mail.

42.39 maxldaplimit Option
The maxldaplimit MSHTTP option sets the maximum LDAP lookup limit.

42.40 maxmessagesize Option Under http
The maxmessagesize MSHTTP option specifies the maximum message size (in bytes) client
is allowed to send through MSHTTP. Note that the SMTP server to which the message is
submitted may also impose its own, separate size limit.

See also the maxpostsize MSHTTP option.

42.41 maxpostsize Option
The maxpostsize MSHTTP option specifies the maximum HTTP post content length, in
bytes. If not specified, the default is max(5*1024*1024, http.maxmessagesize). In legacy
configuration this would be max(5*1024*1024, service.http.maxmessagesize).

42.42 maxsessions Option Under http
The maxsessions MSHTTP option specifies the maximum number of sessions per MSHTTP
server process.

42.43 maxthreads Option Under http
The maxthreads MSHTTP option specifies the maximum number of threads per MSHTTP
server process.

42.44 nofilecache Option
The nofilecache MSHTTP option disables html files caching; used for debugging.

42.45 numprocesses Option Under http
The numprocesses MSHTTP option specifies the number of HTTP server processes.

Note that the Watcher must be enabled for stop-msg to correctly shut down all processes if
this is set to a value larger than one.

42–10 Messaging Server Reference

plaintextconvspace Option

42.46 plaintextconvspace Option
If the plaintextconvspace MSHTTP option is set to "1", spaces in text messages will be
converted to non-breaking spaces in webmail.

42.47 plaintextmincipher Option Under http
If the http.plaintextmincipher option is > 0, then disable use of plaintext passwords
unless a security layer (SSL or TLS) is activated. This forces users to enable SSL or TLS on their
client to login which prevents exposure of their passwords on the network.

42.48 plaintexttabsize Option
The plaintexttabsize MSHTTP option sets the tabsize for text message display in
webmail.

42.49 popbindaddr Option
The popbindaddr MSHTTP option specifies the IP address to which to bind outgoing POP
connections when collecting external mail. If unset, defaults to the value of listenaddr.

Note that the allowcollect MSHTTP option controls whether or not such external collection
is permitted, and the maxcollectmsglen MSHTTP option specifies a maximum on the
message size that may be collected.

42.50 port Option Under http
The port MSHTTP option specifies the Messenger Express HTTP port. The default is 8990.

42.51 proxyport Option
The proxyport MSHTTP option configures the port number of the back-end Messenger
Express (HTTP) server with the Messaging Multiplexor.

42.52 replayformat Option Under http
The replayformat MSHTTPD option, http.replayformat, specifies the format for
authentication replay from mshttpd to IMAP and MTA backends. Supports:

• %o for original userid as sent by the client,

• %s for user@domain,

• %U for userid only (prior to LDAP lookup),

• %V for virtual domain,

• %A[attr] for value of specified user's attribute.

MSHTTP options 42–11

resourcetimeout Option

42.53 resourcetimeout Option
The resourcetimeout MSHTTP option specifies the time, in seconds, after which mshttpd
flushes cached session data from memory. Lower values will use less memory and higher
values incur less overhead from resynchronizing from the session database. For correct session
expiration this timeout is never higher than half the session timeout (and mshttpd enforces
this). The default is min (900, sessiontimeout/2), thus normally 900, (corresponding to 15
minutes), unless sessiontimeout has been set to an unusually low value.

42.54 rfc2231compliant Option
The rfc2231compliant MSHTTP option enables webmail's RFC 2231 encoder so that the
attachment filename will be encoded in the method defined by RFC 2231.

For the MTA's handling of RFC 2231 encoded material, see the parameterformat* channel
options.

42.55 sessiontimeout Option
The sessiontimeout MSHTTP option specifies the Webmail client session timeout in
seconds. The default is 7200 (corresponding to 2 hours); setting sessiontimeout to 0
will result in a timeout value of 30*24*3600 (corresponding to 30 days); attempting to set
sessiontimeout to a positive value less than 10 will result in a value of 10 (10 seconds)
being used.

42.56 showunreadcounts Option
The showunreadcounts MSHTTP option controls showing the unread message count in
parentheses after the folder name. This option is only applicable for the Messenger Express
and Communications Express web clients. For the Convergence web client this setting is
always enabled.

42.57 singlesignoff Option
The singlesignoff MSHTTP option is used by trusted circle SSO (legacy). When this option
is set, the server will remove all single sign-on cookies for the user matching the value of
sso_prefix (in legacy configuration, local.webmail.sso.prefix). If set to 0 in this
context, the server removes only its single sign-on user cookie.

42.58 smtpauthpassword Option Under http
The smtpauthpassword MSHTTP option specifies the password that will be used when
mshttpd submits mail to the MTA. See also smtpauthuser.

Although this option has no default, initial configuration usually sets this option to have the
value of the admin user's password.

42.59 smtpauthuser Option Under http

42–12 Messaging Server Reference

https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231

smtphost Option

When mshttpd submits mail to the MTA, SMTP authentication will be used if both
smtpauthuser and smtpauthpassword are set. These two MSHTTP options specify the
administrative user name and password that are used to submit mail on behalf of end users.

42.60 smtphost Option
The smtphost MSHTTP option specifies a space-separated list of SMTP server hostnames.
 If smtphost is not specified, it will default to the value of the listenaddr base option
(in legacy configuration, service.listenaddr) and if that's not set it will default to the
value of the hostname base option (in legacy configuration, local.hostname). If none of
the servers respond, a last resort attempt will be made to connect to the user's mailHost (as
determined from the mailHost LDAP attribute in the user's LDAP entry).

Normally the SMTP server or SMTP SUBMIT server to which MSHTTP submits would be a
Messaging Server SMTP server or SMTP SUBMIT server; see TCP/IP channels for a starting
point discussion on configuration of Messaging Server SMTP and SMTP SUBMIT servers.

42.61 smtpport Option
The smtpport MSHTTP option specifies the SMTP or SMTP SUBMIT port to which MSHTTP
will connect when submitting messages. The host(s) to which MSHTTP connects are set via the
smtphost MSHTTP option.

Normally the SMTP server or SMTP SUBMIT server to which MSHTTP submits
would be a Messaging Server SMTP server or SMTP SUBMIT server -- see TCP/
IP channels for a starting point discussion on configuration of Messaging Server
SMTP and SMTP SUBMIT servers. So in particular, for the port(s) on which such a
Messaging Server SMTP server or SMTP SUBMIT server listens, see the tcp_ports
Dispatcher service option, e.g., dispatcher.service:SMTP.tcp_ports or
dispatcher.service:SMTP_SUBMIT.tcp_ports.

The default for smtpport is 25. To have MSHTTP submit to an SMTP SUBMIT server instead,
note that smtpauthuser and smtpauthpassword must be set properly, and then set
http.smtpport to 587.

42.62 smtptls Option Under http
The smtptls MSHTTP option specifies whether to use TLS for SMTP connections; that is,
whether MSHTTP uses the SMTP extension STARTTLS and negotiates TLS use.

42.63 sourceurl Option
The sourceurl MSHTTP option specifies the URL of the webmail server.

42.64 spooldir Option
The spooldir MSHTTP option specifies the attachment spool directory for client outgoing
mail; if unspecified, uses the directory specified in the tmpdir Base option (in legacy
configuration, local.tmpdir).

MSHTTP options 42–13

sslcachesize Option Under
http

42.65 sslcachesize Option Under http
The sslcachesize MSHTTP option specifies the number of SSL sessions to be cached by the
MSHTTP server. If this is set to 0 or not set, this will use a default provided by the Mozilla NSS
library which was 10000 last time this was checked (March 2016).

42.66 sslnicknames Option Under http
The sslnicknames MSHTTP option specifies a list of SSL/TLS server certificate nicknames
(only one per certificate type) for HTTP to offer clients if SSL/TLS enabled. Overrides for
HTTP the base level sslnicknames option (corresponding to the legacy configuration
encryption.rsa.nssslpersonalityssl configutil parameter).

42.67 sslport Option Under http
The sslport MSHTTP option, http.sslport, specifies the port number for the HTTP
over SSL service. The default is 8891. Note that to enable the HTTP+SSL service, the
enablesslport MSHTTP option must also be set. (In MS 7.0.5, the sslusessl MSHTTP
option has to be explicitly set to 1 as well, even though the default was 1; as of MS 8.0, the
sslusessl option is not needed, and indeed is ignored, by MSHTTP.)

42.68 sslsourceurl Option
The sslsourceurl MSHTTP option specifies the URL of the webmail server when SSL is
enabled. (For enabling SSL, see the enablesslport MSHTTP option; note that in order for
the sslsourceurl URL to be used, not only must enablesslport be enabled, but the SSL
initialization must indeed have succeeded.)

42.69 sslusessl Option Under http
Starting with the 8.0 release, this option has no effect on the mshttpd server.

As regards listening at a separate sslport, note that for the 7.0.5 release, the sslusessl
option must be explicitly set to 1 (even though the default was 1) as well as setting
http.enablesslport to enable SSL connections on a separate sslport.

42.70 sso_enable Option
The sso_enable MSHTTP option enables (legacy) trusted circle single sign on functions,
including accepting and verifying SSO cookies presented by the client when the login page is
fetched. It returns an SSO cookie to the client for a successful login and responds to requests
from other SSO partners to verify its own cookies. Setting this option to 0 (the default) disables
trusted circle SSO.

42.71 sso_id Option
The sso_id MSHTTP option is a trusted circle SSO (legacy) parameter. The string value of this
option is used as the application ID value when formatting SSO cookies set by the Messenger

42–14 Messaging Server Reference

sso_prefix Option

Express HTTP server. The default value is null. This is an arbitrary string. Its value must match
what you specify for the Delegated Administrator in its resource.properties file. The
corresponding entry in resource.properties would be: Verificationurl-XXX-YYY
= http://webmailhost:webmailport/VerifySSO? Where XXX is the ssl_prefix (in
legacy configuration, local.webmail.sso.prefix) value set above, and YYY is the value of
sso_id (in legacy configuration, local.webmail.sso.id) set here.

42.72 sso_prefix Option
The sso_prefix MSHTTP option is a trusted circle SSO (legacy) parameter. It specifies the
prefix value when formatting SSO cookies set by the webmail server. Only SSO cookies with
this prefix value are recognized by the server; all other SSO cookies are ignored.

42.73 usesentdate Option
If the usesentdate MSHTTP option is set to "1", webmail will use a message's Date: header
for the date the message was received. If set to "0", webmail will use the date the message
arrived in the user's mailbox, which is considered more accurate.

42.74 uwcenabled Option
The uwcenabled MSHTTP option enables (when set to 1) or disables (when set to 0)
Communications Express access to Messenger Express. When enabled, the session ID
will be passed in a cookie with the name of the value of the cookiename MSHTTP
option (Unified Configuration) or local.service.http.cookiename configutil
parameter (legacy configuration) if such an option is set, or with the name webmailsid
if cookiename (local.service.http.cookiename in legacy configuration) is not
set. Both uwcenabled and cookiename (local.webmail.sso.uwcenabled and
local.service.http.cookiename in legacy configuration) must match on the front and
back ends.

42.75 uwccontexturi Option
The uwccontexturi MSHTTP option specifies the path in which Communications
Express is deployed. Specify this parameter only when Communications Express is
not deployed under /. For example, if Communications Express is deployed in /uwc,
local.webmail.sso.uwccontexturi=uwc.

42.76 uwchome Option
The uwchome MSHTTP option specifies the URL required to access the home link.

42.77 uwclogouturl Option
The uwclogouturl MSHTTP option specifies the URL Messenger Express uses to invalidate
the Communications Express session.

42.78 uwcport Option

MSHTTP options 42–15

uwcsslport Option

The uwcport MSHTTP option specifies the Communications Express port.

42.79 uwcsslport Option
The uwcsslport MSHTTP option specifies the Communications Express SSL port.

42.80 xmailer Option
The xmailer MSHTTP option may be set to override the X-Mailer: header field value with the
specified string.

42.81 MSHTTP errors
To localize/customize MSHTTP error messages:

1. Copy the files SERVERROOT/lib/bundles/http_err_*.properties to a site-private
(not a Messaging Server) directory.

2. Modify the files as desired.

3. Use the genrb utility to generate a new .res file.

4. Copy the site-generated .res file back to the SERVERROOT/lib/bundles/
http_err_*.properties

Note that the lib/bundles directory can be rewritten by patches; check for changes to the
files with any patches and version updates, so that you can reinstantiate the site-specific
changes.

42.82 MSHTTP feedback options
The http.feedback.spam and http.feedback.notspam specify the e-mail addresses to
which reports of spam/not-spam are to be directed.

42.82.1 spam Option
The spam MSHTTP feedback option, http.feedback.spam (Unified Configuration) or
service.feedback.spam (legacy configuration), specifies an email address to which to
send reports of spam mail.

42.82.2 notspam Option
The notspam MSHTTP feedback option, http.feedback.notspam (Unified
Configuration) or service.feedback.notspam (legacy configuration), specifies an email
address where to send reports of not-spam mail.

42.83 MSHTTP httpcharset and mailcharset
options

42–16 Messaging Server Reference

af Option

Under http are httpcharset and mailcharset options to set the (default) character set for
various languages.

42.83.1 af Option
The af option (available under http.httpcharset and http.mailcharset) sets the
character set used for Afrikaans.

42.83.1.1 Use with httpcharset

Default http character set for Afrikaans.

42.83.1.2 Use with mailcharset

Default mail character set for Afrikaans.

42.83.2 ar Option

42.83.2.1 Use with httpcharset

Default http character set for Arabic.

42.83.2.2 Use with mailcharset

Default mail character set for Arabic.

42.83.3 be Option

42.83.3.1 Use with httpcharset

Default http character set for Byelorussian.

42.83.3.2 Use with mailcharset

Default mail character set for Byelorussian.

42.83.4 bg Option

42.83.4.1 Use with httpcharset

Default http character set for Bulgarian.

42.83.4.2 Use with mailcharset

Default mail character set for Bulgarian.

42.83.5 ca Option

42.83.5.1 Use with httpcharset

Default http character set for Catalan.

MSHTTP options 42–17

cs Option

42.83.5.2 Use with mailcharset

Default mail character set for Catalan.

42.83.6 cs Option

42.83.6.1 Use with httpcharset

Default http character set for Czech.

42.83.6.2 Use with mailcharset

Default mail character set for Czech.

42.83.7 da Option

42.83.7.1 Use with httpcharset

Default http character set for Danish.

42.83.7.2 Use with mailcharset

Default mail character set for Danish.

42.83.8 de Option

42.83.8.1 Use with httpcharset

Default http character set for German.

42.83.8.2 Use with mailcharset

Default mail character set for German.

42.83.9 el Option

42.83.9.1 Use with httpcharset

Default http character set for Greek.

42.83.9.2 Use with mailcharset

Default mail character set for Greek.

42.83.10 en Option

42.83.10.1 Use with httpcharset

Default http character set for English.

42–18 Messaging Server Reference

es Option

42.83.10.2 Use with mailcharset

Default mail character set for English.

42.83.11 es Option

42.83.11.1 Use with httpcharset

Default http character set for Spanish.

42.83.11.2 Use with mailcharset

Default mail character set for Spanish.

42.83.12 et Option

42.83.12.1 Use with httpcharset

Default http character set for Estonian.

42.83.12.2 Use with mailcharset

Default mail character set for Estonian.

42.83.13 eu Option

42.83.13.1 Use with httpcharset

Default http character set for Basque.

42.83.13.2 Use with mailcharset

Default mail character set for Basque.

42.83.14 fi Option

42.83.14.1 Use with httpcharset

Default http character set for Finnish.

42.83.14.2 Use with mailcharset

Default mail character set for Finnish.

42.83.15 fr Option

42.83.15.1 Use with httpcharset

Default http character set for French.

MSHTTP options 42–19

ga Option

42.83.15.2 Use with mailcharset

Default mail character set for French.

42.83.16 ga Option

42.83.16.1 Use with httpcharset

Default http character set for Irish.

42.83.16.2 Use with mailcharset

Default mail character set for Irish.

42.83.17 gl Option

42.83.17.1 Use with httpcharset

Default http character set for Galician.

42.83.17.2 Use with mailcharset

Default mail character set for Galician.

42.83.18 he Option

42.83.18.1 Use with httpcharset

Default http character set for Hebrew.

42.83.18.2 Use with mailcharset

Default mail character set for Hebrew.

42.83.19 hr Option

42.83.19.1 Use with httpcharset

Default http character set for Croatian.

42.83.19.2 Use with mailcharset

Default mail character set for Croatian.

42.83.20 hu Option

42.83.20.1 Use with httpcharset

Default http character set for Hungarian.

42–20 Messaging Server Reference

is Option

42.83.20.2 Use with mailcharset

Default mail character set for Hungarian.

42.83.21 is Option

42.83.21.1 Use with httpcharset

Default http character set for Icelandic.

42.83.21.2 Use with mailcharset

Default mail character set for Icelandic.

42.83.22 it Option

42.83.22.1 Use with httpcharset

Default http character set for Italian.

42.83.22.2 Use with mailcharset

Default mail character set for Italian.

42.83.23 ja Option

42.83.23.1 Use with httpcharset

Default http character set for Japanese.

42.83.23.2 Use with mailcharset

Default mail character set for Japanese.

42.83.24 ko Option

42.83.24.1 Use with httpcharset

Default http character set for Korean.

42.83.24.2 Use with mailcharset

Default mail character set for Korean.

42.83.25 lt Option

42.83.25.1 Use with httpcharset

Default http character set for Lithuanian.

MSHTTP options 42–21

lv Option

42.83.25.2 Use with mailcharset

Default mail character set for Lithuanian.

42.83.26 lv Option

42.83.26.1 Use with httpcharset

Default http character set for Latvian.

42.83.26.2 Use with mailcharset

Default mail character set for Latvian.

42.83.27 mk Option

42.83.27.1 Use with httpcharset

Default http character set for Macedonian.

42.83.27.2 Use with mailcharset

Default mail character set for Macedonian.

42.83.28 nl Option

42.83.28.1 Use with httpcharset

Default http character set for Dutch.

42.83.28.2 Use with mailcharset

Default mail character set for Dutch.

42.83.29 no Option

42.83.29.1 Use with httpcharset

Default http character set for Norwegian.

42.83.29.2 Use with mailcharset

Default mail character set for Norwegian.

42.83.30 pl Option

42.83.30.1 Use with httpcharset

Default http character set for Polish.

42–22 Messaging Server Reference

pt Option

42.83.30.2 Use with mailcharset

Default mail character set for Polish.

42.83.31 pt Option

42.83.31.1 Use with httpcharset

Default http character set for Portuguese.

42.83.31.2 Use with mailcharset

Default mail character set for Portuguese.

42.83.32 ro Option

42.83.32.1 Use with httpcharset

Default http character set for Romanian.

42.83.32.2 Use with mailcharset

Default mail character set for Romanian.

42.83.33 ru Option

42.83.33.1 Use with httpcharset

Default http character set for Russian.

42.83.33.2 Use with mailcharset

Default mail character set for Russian.

42.83.34 sk Option

42.83.34.1 Use with httpcharset

Default http character set for Slovak.

42.83.34.2 Use with mailcharset

Default mail character set for Slovak.

42.83.35 sl Option

42.83.35.1 Use with httpcharset

Default http character set for Slovenian.

MSHTTP options 42–23

sq Option

42.83.35.2 Use with mailcharset

Default mail character set for Slovenian.

42.83.36 sq Option

42.83.36.1 Use with httpcharset

Default http character set for Albanian.

42.83.36.2 Use with mailcharset

Default mail character set for Albanian.

42.83.37 sr Option

42.83.37.1 Use with httpcharset

Default http character set for Serbian.

42.83.37.2 Use with mailcharset

Default mail character set for Serbian.

42.83.38 sv Option

42.83.38.1 Use with httpcharset

Default http character set for Swedish.

42.83.38.2 Use with mailcharset

Default mail character set for Swedish.

42.83.39 th Option

42.83.39.1 Use with httpcharset

Default http character set for Thai.

42.83.39.2 Use with mailcharset

Default mail character set for Thai.

42.83.40 tr Option

42.83.40.1 Use with httpcharset

Default http character set for Turkish.

42–24 Messaging Server Reference

uk Option

42.83.40.2 Use with mailcharset

Default mail character set for Turkish.

42.83.41 uk Option

42.83.41.1 Use with httpcharset

Default http character set for Ukrainian.

42.83.41.2 Use with mailcharset

Default mail character set for Ukrainian.

42.83.42 yi Option

42.83.42.1 Use with httpcharset

Default http character set for Yiddish.

42.83.42.2 Use with mailcharset

Default mail character set for Yiddish.

42.83.43 zh-cn Option

42.83.43.1 Use with httpcharset

Default http character set for Simplified Chinese.

42.83.43.2 Use with mailcharset

Default mail character set for Simplified Chinese.

42.83.44 zh-tw Option

42.83.44.1 Use with httpcharset

Default http character set for Traditional Chinese.

42.83.44.2 Use with mailcharset

Default mail character set for Traditional Chinese.

42.84 MSHTTP sieve options
The port of the web container where the Mail Filter has been deployed may be specified via an
option under http.sieve, either http.sieve.port or http.sieve.sslport.

42.84.1 port Option Under sieve

MSHTTP options 42–25

sslport Option Under sieve

The port MSHTTP sieve option, http.sieve.port, specifies the port of the web container
where the Mail Filter has been deployed.

42.84.2 sslport Option Under sieve
The sslport MSHTTP sieve option, http.sieve.sslport (Unified Configuration) or
local.webmail.sieve.sslport (legacy configuration), specifies the the SSL port of the
web container where the Mail Filter has been deployed.

42–26 Messaging Server Reference

Chapter 43 SMIME options
43.1 enable Option Under smime ... 43–1
43.2 usercertfilter Option .. 43–1
43.3 trustedurl Option ... 43–2
43.4 certurl Option ... 43–2
43.5 sslrootcacertsurl Option ... 43–2
43.6 logindn Option ... 43–2
43.7 loginpw Option ... 43–2
43.8 platformwin Option ... 43–3
43.9 platformmac Option ... 43–3
43.10 platformlinuxx86 Option ... 43–3
43.11 platformhpux Option ... 43–3
43.12 platformsolarissparc Option ... 43–3
43.13 alwaysencrypt Option ... 43–3
43.14 alwayssign Option ... 43–4
43.15 crlenable Option ... 43–4
43.16 crldir Option ... 43–4
43.17 crlurllogindn Option ... 43–4
43.18 crlurlloginpw Option ... 43–5
43.19 crlmappingurl Option ... 43–5
43.20 timestampdelta Option ... 43–5
43.21 crlaccessfail Option ... 43–5
43.22 checkoverssl Option ... 43–5
43.23 readsigncert Option ... 43–6
43.24 revocationunknown Option ... 43–6
43.25 sendencryptcert Option ... 43–6
43.26 sendencryptcertrevoked Option ... 43–6
43.27 sendsigncert Option ... 43–7
43.28 sendsigncertrevoked Option ... 43–7
43.29 crlusepastnextupdate Option ... 43–7
43.30 appletlogging Option ... 43–7

Several options affect S/MIME operation.

In addition to the options set under smime, a few MSHTTP options (set under http) are also
relevant when using S/MIME, including cert_enable and cert_port.

43.1 enable Option Under smime
The enable S/MIME option controls whether the S/MIME features are available to Web Client
Mail users who have permission to use them.

43.2 usercertfilter Option
The usercertfilter SMIME option specifies the URL filter string used to search for
certificates by attributes of directory objects. It is used in conjunction with the certurl
option. It is required when S/MIME features are enabled. Use any combination of these three
email address attributes (but at least one). Example:

SMIME options 43–1

trustedurl Option

(|(mail=%e)(mailAlternateAddress=%e)(mailEquivalentAddress=%e))

43.3 trustedurl Option
The trustedurl S/MIME option specifies the URL used to search for trusted certificates
used to verify user certificates. It is required when S/MIME features are enabled. Optional
logindn/loginpw credentials for use when accessing this url can be appended in the form:
|logindn|loginpw Both or neither must appear.

Note: the administrator must create the ldap entry for "SMIME Admin". Example:

ldap://mail.siroe.com:389/cn=SMIME Admin, ou=people, o=mail.siroe.com,
o=mailUsers?cacertificate;binary?sub?(objectclass=certificationauthority)

43.4 certurl Option
The certurl SMIME option specifies the URL used to search for user certificates. The filter
in usercertfilter is appended to this URL with the "%e" specifiers replaced by the email
address of the user for whom certificates are being searched. It is required when S/MIME
features are enabled. Optional logindn/loginpw credentials for use when accessing this url can
be appended in the form: |logindn|loginpw Both or neither must appear. Example:

ldap://mail.siroe.com:389/ou=people, o=mail.siroe.com, o=mailUsers?userCertificate;binary?sub?

43.5 sslrootcacertsurl Option
The sslrootcacertsurl S/MIME option specifies the URL used to locate the Root
certificates used for secure HTTP protocol It is required when S/MIME features are enabled
and SSL protocols are enabled. Optional logindn/loginpw credentials for use when accessing
this url can be appended in the form: |logindn|loginpw Both or neither must appear. Note:
the administrator must create the ldap entry for "SSL Root CA Certs". Example:

ldap://mail.siroe.com:389/cn=SSL Root CA Certs, ou=people, o=mail.siroe.com,
o=mailQA?cacertificate;binary?base?(objectclass=certificationauthority)

43.6 logindn Option
The logindn S/MIME option specifies the Root UID for LDAP access to all the URLs specified
for SMIME (options certurl, crlmappingurl, sslrootcacertsurl, trustedurl).
It is optional; if not specified, the credentials of the Messaging Server are used. If specified,
loginpw must also be specified. Note: any local credentials appended to a URL are used
instead of this specification.

Example: cn=Directory Manager

43.7 loginpw Option

43–2 Messaging Server Reference

platformwin Option

The loginpw S/MIME option specifies the password for LDAP access to all the URLs specified
for SMIME (options certurl, crlmappingurl, sslrootcacertsurl, trustedurl).
It is optional; if not specified, the credentials of the Messaging Server are used. If specified,
logindn must also be specified. The value may be obfuscated with base64 by using $==
instead of == as the smime.conf delimiter (this feature might appear in a future release). Note:
any local credentials appended to a URL are used instead of this specification.

43.8 platformwin Option
The platformwin S/MIME option specifies one or more library names needed by
smart cards or local key store on the Windows platform. The example below is the
default; you need to specify this option only if your library settings differ. This option is
required if any Communications Express Mail users use the Windows platform. Example:
CAPI:library=capibridge.dll;

43.9 platformmac Option
The platformmac S/MIME option specifies one or more library names needed by
smart cards or local key store on the Macintosh platform. The example below is the
default; you need to specify this option only if your library settings differ. This option is
required if any Communications Express Mail users use the Macintosh platform. Example:
MOZILLA:library=libsoftokn3.dylib;

43.10 platformlinuxx86 Option
The platformlinuxx86 S/MIME option specifies one or more library names needed
by smart cards or local key store on the Linux platform. The example below is the
default; you need to specify this option only if your library settings differ. This option is
required if any Communications Express Mail users use the Linux platform. Example:
MOZILLA:library=libsoftokn3.so;

43.11 platformhpux Option
The platformhpux S/MIME option specifies one or more library names needed
by smart cards or local key store on the HPUX platform. The example below is the
default; you need to specify this option only if your library settings differ. This option is
required if any Communications Express Mail users use the HPUX platform. Example:
MOZILLA:library=libsoftokn3.sl;

43.12 platformsolarissparc Option
The platformsolarissparc S/MIME option specifies one or more library names needed
by smart cards or local key store on the Sparc Solaris platform. The example below is the
default; you need to specify this option only if your library settings differ. This option is
required if any Communications Express Mail users use the Sparc Solaris platform. Example:
MOZILLA:library=libsoftokn3.so;

43.13 alwaysencrypt Option

SMIME options 43–3

alwayssign Option

The alwaysencrypt S/MIME option controls the initial setting for whether all outgoing
messages are automatically encrypted for all Communications Express Mail users with
permission to use S/MIME. Choose one of these values:

Table 43.1 Possible alwaysencrypt option values

Value Meaning
0 Do not encrypt messages. The encryption checkboxes within

Communications Express Mail are displayed as unchecked. This is the
default.

1 Always encrypt messages.The encryption checkboxes within
Communications Express Mail are displayed as checked.

43.14 alwayssign Option
The alwayssign S/MIME option controls the initial setting for whether all outgoing messages
are automatically signed for all Communications Express Mail users with permission to use S/
MIME. Choose one of these values:

Table 43.2 Possible alwayssign option values

Value Meaning
0 do not sign messages. The signature checkboxes within Communications

Express Mail are displayed as unchecked. This is the default.
1 always sign messages. The signature checkboxes within Communications

Express Mail are displayed as checked.

43.15 crlenable Option
The crlenable S/MIME option controls whether certificates are checked against CRLs. If
there is a match, a certificate is considered revoked. The values of the send*revoked options
(sendencryptcertrevoked and sendsigncertrevoked) determine whether a revoked
certificate is rejected or used by Communications Express Mail. Choose one of these values:

Table 43.3 Possible crlenable option values

Value Meaning
0 each certificate is not checked against a CRL.
1 each certificate is checked against a CRL. This is the default.

43.16 crldir Option
The crldir S/MIME option specifies the directory path information to locate the database
where CRL information is stored. The default value is DATAROOT/store/mboxlist.

43.17 crlurllogindn Option

43–4 Messaging Server Reference

crlurlloginpw Option

The crlurllogindn S/MIME option specifies the Root UID for LDAP access to all the
URLs specified in the CRL Mapping table. It is optional; if not specified, the credentials of
the Messaging Server are used. If specified, crlurlloginpw must also be specified. Note:
any local credentials appended to a URL in the CRL Mapping table are used instead of this
specification. Example: cn=Directory Manager

43.18 crlurlloginpw Option
Specifies the password for LDAP access to all the URLs specified in the CRL Mapping table.
It is optional; if not specified, the credentials of the Messaging Server are used. If specified,
crlurllogindn must also be specified. The value may be obfuscated with base64 by using
$== instead of == as the smime.conf delimiter (this feature might appear in a future release).
Note: any local credentials appended to a URL in the CRL Mapping table are used instead of
this specification.

43.19 crlmappingurl Option
The crlmappingurl S/MIME option specifies the URL used to locate the CRL mapping.
Optional logindn/loginpw credentials for use when accessing this url can be appended in the
form "|logindn|loginpw". Both or neither must appear. Note: the administrator must create
the ldap entry for "SMIME Admin". Example: ldap://mail.siroe.com:389/cn=SMIME
Admin, ou=people, o=mail.siroe.com, o=mailQA?msgCRLMappingRecord?sub?
(objectclass=msgCRLMappingTable)

43.20 timestampdelta Option
The timestampdelta S/MIME option specifies the time interval in seconds before the
received time on messages.

43.21 crlaccessfail Option
The crlaccessfail S/MIME option specifies the time interval to wait after multiple CRL
attempts, in the form: "#fails:#mins:#minswait" where:

Table 43.4 crlaccessfail fields

Field Meaning
#fails number of CRL URL failures before triggering wait
#mins number of minutes during which the #fails must occur
#minswait number of minutes to wait until another CRL URL attempt will be allowed

If crlaccessfail is used, no fields are optional, and all values must be greater
than 0.

Example: 2:20:10.

43.22 checkoverssl Option
The checkoverssl S/MIME option controls whether an SSL communications link is used
when checking a certificate against a CRL. Choose one of these values:

SMIME options 43–5

readsigncert Option

Table 43.5 checkoverssl S/MIME option values

Value Meaning
0 do not use an SSL communications link.
1 use an SSL communications link. This is the default.

43.23 readsigncert Option
The readsigncert S/MIME option controls whether the certificate used to sign a message is
checked against a CRL when the message is read. Choose one of these values:

Table 43.6 readsigncert fields

Value Meaning
0 do not check the certificate against a CRL.
1 check the certificate against a CRL. This is the default.

43.24 revocationunknown Option
The revocationunknown S/MIME option determines the action to take when an ambiguous
status is returned when checking a certificate against a CRL. In this case, it is not certain if the
certificate is valid or has a revoked status. Choose one of these values:

Table 43.7 revocationunknown S/MIME option Values

Value Meaning
ok treat the certificate as valid.
revoked treat the certificate as revoked. This is the default.

43.25 sendencryptcert Option
The sendencryptcert S/MIME option controls whether a certificate used to encrypt an
outgoing message is checked against a CRL before using it. Choose one of these values:

Table 43.8 sendencryptcert fields

Value Meaning
0 do not check the certificate against a CRL.
1 check the certificate against a CRL. This is the default.

43.26 sendencryptcertrevoked Option
The sendencryptcertrevoked S/MIME option determines the action to take if a certificate
used to encrypt an outgoing message has been revoked. Choose one of these values:

43–6 Messaging Server Reference

sendsigncert Option

Table 43.9 sendencryptedcertrevoked fields

Value Meaning
allow use the certificate.
disallow do not use the certificate. This is the default.

43.27 sendsigncert Option
The sendsigncert S/MIME option controls whether a certificate used for signing an
outgoing message is checked against a CRL before using it. Choose one of these values:

Table 43.10 sendsigncert fields

Value Meaning
0 do not check the certificate against a CRL.
1 check the certificate against a CRL. This is the default.

43.28 sendsigncertrevoked Option
The sendsigncertrevoked S/MIME option determines the action to take if the certificate
used to sign an outgoing message has been revoked. Choose one of these values:

Table 43.11 sendsigncertrevoked fields

Value Meaning
allow use the certificate.
disallow do not use the certificate. This is the default.

43.29 crlusepastnextupdate Option
The crlusepastnextupdate S/MIME option specifies whether to continue to use a CRL
after its next update date (in case a new CRL is not available or accessible). Choose one of these
values:

Table 43.12 crlusepastnextupdate fields

Value Meaning
0 do not use a CRL after its next update date.
1 continue to use a CRL after its next update date. This is the default.

43.30 appletlogging Option
The appletlogging S/MIME option specifies whether to enable logging on the applet.
Choose one of these values:

SMIME options 43–7

appletlogging Option

Table 43.13 appletlogging fields

Value Meaning
0 do not log applet output. This is the default.
1 log applet output.

43–8 Messaging Server Reference

Chapter 44 SSO options
44.1 verifyurl Option .. 44–1

The verifyurl option is the only option under the sso group. See also various MSHTTP
options relating to SSO, especially the sso_* MSHTTP options.

44.1 verifyurl Option
The verifyurl option specifies a trusted circle SSO (legacy) parameter. It sets the verify URL
values for peer SSO applications. The standard form of the value of the verify URL is:

http://[peer_hostname]:[port]/VerifySSO?

This value should be set for the application ID of a peer SSO application whose SSO cookies
are to be honored.

SSO options 44–1

44–2

Chapter 45 icapservice options
45.1 forcetelemetry Option Under icapservice ... 45–1
45.2 service_name Option .. 45–1
45.3 server_host Option Under icapservice ... 45–1
45.4 server_port Option Under icapservice ... 45–1

New in MS 8.0.1, if the htmlprocessor MSHTTP option is set to 2, then the ICAP service
will be used to perform HTML sanitization. There are a few options that configure this use of
the ICAP service.

45.1 forcetelemetry Option Under
icapservice

Setting the forcetelemetry icapservice option to 1 forces telemetry for all users. Warning:
this generates a lot of data and should not be used on a production system.

45.2 service_name Option
The service_name option sets the name used by the ICAP client when performing HTML
sanitization. The default is "email" and there's no need to change this.

45.3 server_host Option Under icapservice
The server_host icapservice option specifies the ICAP server host name. If empty or
not set, the loopback interface is used.

45.4 server_port Option Under icapservice
The server_port icapservice option specifies the ICAP server port. The default is 1344.

icapservice options 45–1

45–2

Part VII The MTA
The Messaging Server MTA is a general-purpose, store-and-forward system for distributing computer-
based mail. The term store-and-forward means that the Messaging Server MTA automatically handles
the requeuing and retransmission of mail messages necessitated when network links or services
are temporarily unavailable. In contrast to mail user agents (MUAs) such as Messenger Express or
Communications Express (UWC) which are used to create and read electronic mail messages, the
Messaging Server MTA is a mail transport agent (MTA) responsible for directing messages to the
appropriate network transport and ensuring reliable delivery over that transport.

The MTA provides a uniform distribution environment that can be interfaced to multiple user interfaces
(MUAs), networks, protocols, and transport mechanisms. As this interfacing, from the user's point of
view, is accomplished transparently, the MTA presents to the user a homogeneous mail network; i.e., the
MTA seamlessly blends heterogeneous mail networks into a single, coherent mail system.

There are many components to the MTA.

Chapter 46 Channels
46.1 Available channels .. 46–2
46.2 Channel configuration ... 46–5

46.2.1 Using defaults and nodefaults pseudo-channels to simplify
configurations .. 46–6

46.3 Channel options .. 46–7
46.3.1 Alphabetic list of channel options .. 46–8
46.3.2 Functional group list of channel options .. 46–19
46.3.3 Addresses channel options .. 46–34
46.3.4 Attachments and MIME processing channel options 46–51
46.3.5 BSMTP-specific channel options .. 46–58
46.3.6 Character sets and eight bit data channel options 46–59
46.3.7 Conversion tag and service conversion channel options 46–62
46.3.8 Display label channel options ... 46–63
46.3.9 DKIM channel options .. 46–63
46.3.10 Error interpretation channel options .. 46–65
46.3.11 File creation in the MTA queue area channel options 46–65
46.3.12 Gateway or firewall or mailhub channel options 46–68
46.3.13 Headers channel options ... 46–71
46.3.14 Host name channel options ... 46–87
46.3.15 Incoming channel match and switch channel options 46–90
46.3.16 ISC channel options .. 46–93
46.3.17 Logging and debugging channel options .. 46–93
46.3.18 Long address lists or headers channel options 46–95
46.3.19 Message hash channel options ... 46–100
46.3.20 Message tracking channel options .. 46–101
46.3.21 MLS channel options .. 46–103
46.3.22 Notification messages and postmaster messages channel options 46–103
46.3.23 Processing control and job submission channel options 46–109
46.3.24 Sensitivity limits channel options ... 46–117
46.3.25 Sieve filters and delivery flags channel options 46–118
46.3.26 Size limits on messages channel options ... 46–122
46.3.27 Spamfilter channel options .. 46–126
46.3.28 SMTP and LMTP protocol channel options ... 46–127
46.3.29 TCP/IP connections and DNS lookups channel options 46–148
46.3.30 TLS and SASL channel options .. 46–161

46.4 Header option files ... 46–175
46.4.1 Header option file location ... 46–175
46.4.2 Header option file format ... 46–176
46.4.3 Header Fields Known to the MTA ... 46–178

The MTA consists of a large number of components, but the central unifying construct in the
MTA is the channel. A channel represents an e-mail connection with another computer system
or group of systems. The actual hardware connection or software transport or both may vary
widely from one channel to the next. Only the MTA administrator need know anything about
the MTA's channels; users are never aware of the existence of channels and only see a single,
uniform interface regardless of how messages reach their destination.

Each channel consists of one or more channel programs and an outgoing message queue for
storing messages that are destined to be sent to one or more of the systems associated with
the channel. Channel programs perform two functions: (1) they transmit messages to remote

Channels 46–1

Available channels

systems, deleting them from their queue after they are sent, and (2) they accept messages from
remote systems, placing them in the channel queues. Note that while a channel program only
removes messages from its own queue it can enqueue messages on any queue whatsoever,
including its own.

A channel program which initiates a transfer to a remote system on its own is called a "master"
program, while a program which accepts transfers initiated by a remote system is called a
"slave" program. A channel may be served by a master program, a slave program, or both.
Either type of program may or may not be bidirectional; the direction in which a message
is travelling may have nothing to do with the type of program that handles it. Very often,
however, a master program transmits messages, while a slave program receives messages. An
SMTP channel, for instance, has a master program that only transmits messages (the SMTP
client) and a slave program that only receives messages (the SMTP server).

The execution of channel programs is primarily triggered and controlled by the two major
"control" processes of the MTA: the Dispatcher listens on TCP ports and triggers execution
of appropriate "slave" channel programs (such as the SMTP server and LMTP server "slave"
programs), while the Job Controller maintains a database of what messages are awaiting
delivery attempts, and schedules and triggers execution of channel programs (primarily
channel "master" programs) to attempt deliveries. However, channel programs can be run via
other mechanisms; see, for instance, the imsimta run utility, used for manual triggering of
channel program execution.

46.1 Available channels
Every MTA channel has a unique name containing up to 32 characters. Only lowercase letters,
numbers, underscores, and dollar signs should be used in channel names.

Certain channel names are reserved for particular uses. Moreover, the MTA (especially the Job
Controller) recognizes certain families of channel names, (channel name prefixes), and will
make internal assumptions about such channels. There are both hard-coded expectations of
certain special channel name usage, plus in particular some historical but now wide-spread
"conventions" regarding use of certain tcp_* channel names. Using channel names in a
conflicting manner can lead to serious problems. MTA administrators are encouraged to use
these channels for the stated purposes and in general to pick channel names of their own that
do not conflict with these usage conventions.

Table 46.1 Modern reserved channel names
Name Reserved For

bitbucket Bit bucket channel (deletes all messages queued to it)
bsin_* BSMTP inbound channels
bsout_* BSMTP outbound channels
circuitcheck Message circuit checking channel
conversion Message body part conversion channel
defragment Message defragmentation channel
filter_discard Channel for delayed deletion of message discarded or jettisoned

due to Sieve actions (or analogous *_ACCESS mapping table flag
effects)

hold Channel where messages are temporarily detained for
administrative purposes such as user migration

46–2 Messaging Server Reference

Available channels

ims-ms Channel delivering to the Message Store (without use of LMTP;
see also the tcp_lmtpss channel when LMTP is used instead).

ims-ms_* Additional channels delivering to the Message Store.
l The local channel; in modern Messaging Server configurations,

a "placeholder" channel that performs no delivery but rather
performs alias processing only.

native Delivery to UNIX /var/mail mailboxes.
pipe Pipe channel
pipe_* Additional pipe channels
process Processing channel
process_* Additional processing channels
reprocess Reprocessing channel
reprocess_ Additional reprocessing channels
sms* SMS channels
tcp_auth By convention, the SMTP-over-TCP/IP channel handling

incoming authenticated messages.
tcp_intranet By convention, the SMTP-over-TCP/IP channel communicating

with other internal hosts.
tcp_lmtpcs* By convention, LMTP client channels.
tcp_lmtpss By convention, the LMTP server delivering to the Message Store

on an LMTP back end system.
tcp_local By convention, the SMTP-over-TCP/IP channel communicating

with the Internet.
tcp_submit By convention, the SMTP SUBMIT server channel.
tcp_tas By convention, the SMTP-over-TCP/IP channel receiving

telephony messages that need so-called "Guaranteed Message
Deposit" (quota bypass for message delivery).

tcp_* Additional TCP/IP SMTP (or LMTP) channels
test_smtp_* Test (sample code) channels
uucp_ UUCP channel (UNIX, or DEC/Shell UUCP)

In addition to the above modern channel names, there are various obsolete or historical
channels where use of those old channel names may cause confusion:

Table 46.2 Outdated reserved channel names

Name or prefix Reserved For
address Extract addressing information from the body of a message
address_* Additional addressing channels
aoce_ Apple AOCE channels
anje_ ANJE (BITNET)
bit_ Jnet (BITNET)
bull_ BULLETIN channels

Channels 46–3

Available channels

cc_ cc:Mail channels
cn_ Internal usage by the national Australian network
ctcp_ Carnegie Mellon University TCP/IP channels; obsolete
d The DECnet MAIL channel; used to deliver messages across

DECnet via VMS MAIL
d_ Additional MAIL-11 over DECnet channels
data_to_bitmap Raw FAX data to bitmap channel
data_to_bitmap_ Additional data to bitmap channels
directory Directory alias expansion channel
directory_ Directory alias expansion channels
dn_ PhoneNet over DECnet
dsmtp_ SMTP over DECnet
era_ ERA channels
etcp_ Excelan TCP/IP channels; obsolete
faxsr_ Fax Sr. channels
fax_to_data Inbound FAX to raw data channel
fax_to_data_ Inbound FAX to raw data channel
ff_ Microsoft® Mail channels
ftcp_ Network Research Corporation FUSION TCP/IP channels;

obsolete
g3_to_fax Group 3 to FAX modem spooler
g3_to_fax_ Group 3 to FAX modem channels
ker_ Kermit protocol
ln_ Lotus Notes channels
mail_ General VMS MAIL delivery
mailserv Mail and list server channel
mhs_ Novell MHS channels
mime_to_x400 MIME to X.400 conversion channel
mime_to_x400_ MIME to X.400 conversion channels
mime_to_x40084_ MIME to X.400-1984 conversion channels; obsolete
mint MINT user agent from Wesleyan University
mr_ PMDF-MR gateway
mrif_ PMDF-MR as Message Router TS replacement channels
msgstore PMDF Message Store delivery channel
msgstore_ PMDF MessageStore channel
mtcp_ Process Software MultiNet (formerly Cisco MultiNet, formerly

TGV MultiNet) TCP/IP channels; obsolete
netdata_ Netdata (PROFS) channels
notes_ VAX NOTES channels

46–4 Messaging Server Reference

Channel configuration

osfl_ UNIX local channels
ovvm_ OV/VM (PROFS) channels
p Generic PhoneNet channel; used to communicate with a central

PhoneNet host
p_ PhoneNet channels
pager E-mail to pager channel
pager_ Pager channels
popstore PMDF popstore delivery channel; a msgstore channel can be---

and typically is -- used instead
profs_ PROFS channels
printer e-mail to spooled printer
printer_* Additional e-mail to spooled printer channels
ps_to_g3 PostScript to Group 3 FAX interpreter
ps_to_g3_ PostScript to Group 3 FAX channels
ptcp_ Process Software TCPware
px25_ PhoneNet over X.25; obsolete
qm_ QuickMail channels
snads_ SNADS channels
subject Channel to extract information from Subject: lines
sync_db_ Database synchronization channels
sync_dirbot_ Directory synchronization robot (DIRBOT) channels
sync_ldap_ LDAP directory synchronization channels
sync_ldif_ LDIF directory agent channels
sync_ln_ Lotus Notes directory agent channels
text_to_ps Text to PostScript converter
text_to_ps_ Additional text to PostScript channels
utcp_ ULTRIX (UCX) Connection TCP/IP channels; obsolete
vn_ UUCP channel (DECUS UUCP)
wpo_ GroupWise (WordPerfect Office) channels
wtcp_ Wollongong TCP/IP (WIN/TCP) channels; obsolete
x400_ X.400 channels
x40084_ X.400-1984 channels; obsolete
x400_to_mime X.400 to MIME conversion channel
x400_local X.400 transport channel
xapi_ MAILbus 400 channels
xsmtp_ SMTP over X.25; obsolete

46.2 Channel configuration

Channels 46–5

Using defaults and
nodefaults pseudo-channels to
simplify configurations

In Unified Configuration, each MTA channel is configured as a named set of options under a
channel group. For instance, configuration of the tcp_local channel (the typical channel
used to communicate with the Internet) could be along the lines of:

msconfig> show channel:tcp_local
role.channel:tcp_local.official_host_name = tcp-daemon
role.channel:tcp_local.identnonenumeric (novalue)
role.channel:tcp_local.inner (novalue)
role.channel:tcp_local.loopcheck (novalue)
role.channel:tcp_local.maysaslserver (novalue)
role.channel:tcp_local.maytlsserver (novalue)
role.channel:tcp_local.defaultmx (novalue)
role.channel:tcp_local.pool = SMTP_POOL
role.channel:tcp_local.remotehost (novalue)
role.channel:tcp_local.saslswitchchannel = tcp_auth
role.channel:tcp_local.single_sys (novalue)
role.channel:tcp_local.smtp (novalue)
role.channel:tcp_local.switchchannel (novalue)

In legacy configuration, each MTA channel was configured in the imta.cnf file, with blank
lines separating distinct channel definitions. For instance, a tcp_local channel definition in
imta.cnf might appear as (with a blank line before and after these lines):

tcp_local smtp mx single_sys identnonenumeric pool SMTP_POOL \
 switchchannel maysaslserver saslswitchchannel tcp_auth maytlsserver \
 inner loopcheck remotehost
tcp-daemon

Note that in Unified Configuration, the edit channels command may be used to edit
channel definitions "as if" they were in the familiar, legacy configuration file form:

msconfig> edit channels

Note that the channel-specific options -- those set in legacy configuration in channel option
files, rather than as legacy configuration channel keywords -- in Unified Configuration are set
under the options named group, e.g.,

msconfig> set channel:tcp_local.options.ALLOW_ETRNS_PER_SESSION 2

Since channel-specific options are specific to the type of channel in question -- different types
of channels tend to have completely different channel-specific options -- look under the
discussions of the specific channel type to find out details of what channel-specific options are
available for a particular channel type, as channel-specific options do not appear under the
general list of options.

46.2.1 defaults and nodefaults pseudo-channels
Many configurations involve repetition of various channel options on all or nearly all channels.
Maintaining such a configuration is both tedious and error-prone. The MTA offers a simple
way to change what options are set by default on various channels. This mechanism can be
used to greatly simplify some configurations.

46–6 Messaging Server Reference

Channel options

Note that in Unified Configuration channel neither multiple defaults channel nor the relative
ordering of channels in the configuration are preserved. However, care is taken when the
configuration is read to process the defaults channel first. As such, unified configuration is
limited to having a single defaults channel that affects all subsequent channels.

If a line of the form:

defaults option1 option2 option3 ...

is inserted into the configuration, all channel blocks following this line will inherit the options
specified on the line. The defaults line can be thought of as a special channel block that
changes the option defaults without actually specifying a channel. The defaults line,
or pseudo-channel definition, also does not require any additional lines of channel block
information (if any are specified they will be ignored); in Unified Configuration terms, the
defaults pseudo-channel does not need (and will ignore) any official_host_name,
local_host_alias, or additional_host_names option settings.

There is no limit on the number of defaults lines that can be specified in a legacy
configuration --- the effects of multiple defaults lines are cumulative with the most recently
encountered (reading from top to bottom) line having precedence. Unified configurations are
limited to a single defaults channel.

It may be useful to unconditionally eliminate the effects of any defaults lines starting at
some point in a legacy configuration file (at the start of a standalone section of channel blocks
in an external file, for example). The nodefaults line is provided for this purpose. It takes
the form:

nodefaults

and has the obvious effect --- it nullifies all settings established by any previous defaults
channel and returns the configuration to the state that would apply if no defaults had been
specified. This functionality is not available in unified configurations.

Like regular channel blocks, a blank line must separate each defaults or nodefaults
channel block from other channel blocks. The defaults and nodefaults channel blocks are
the only channel blocks which may appear before the local channel in the configuration file.
However, like any other channel block, they must appear after the last rewrite rule.

Initial configuration generates a defaults pseudo-channel located prior to any other channel
definition (so applying to all other initially configured channels):

msconfig> show channel:defaults.*
role.channel:defaults.defaulthost = &/IMTA_DEFAULTDOMAIN/ &/IMTA_DEFAULTDOMAIN/
role.channel:defaults.maxjobs = 7
role.channel:defaults.noswitchchannel (novalue)
role.channel:defaults.notices = 1 2 4 7

46.3 Channel options
Channel options are available to adjust many attributes and aspects of channel operation.
Unified Configuration channel options subsume the channel keywords of legacy configuration,
as well as the second and optional additional lines of legacy configuration channel definitions;
and the Unified Configuration options group allows setting the channel-specific options

Channels 46–7

Alphabetic list of channel options

of legacy configuration (those set in legacy configuration in a channel option file). That is, in
legacy configuration, channel keywords would appear after the channel name on the first line
of the channel definition in imta.cnf, and then the second and optional additional lines of
a channel definition in imta.cnf would set the official_host_name for a channel and
optionally the local_host_alias and additional_host_names; while channel-specific
options would be set in the channel-name_option channel option file.

In Unified Configuration, any desired channel options are set under a named channel group;
e.g., for options that merely need to be turned on:

msconfig> set channel:channel-name.option-name

or for channel options that take an argument:

msconfig> set channel:channel-name.option-name option-value

Some channel options take arguments; each option argument is limited in general to 40
characters, though some special options allow arguments of 256 characters (252 characters
in iMS 5.2 and earlier), and a few options (as of 7.0.5 including sourcefilter and
destinationfilter) allow arguments up to 1024 characters.

In Unified Configuration, option argument case is preserved even if not quoted. Quoting is not
necessary for most option arguments; but options that take multiple "arguments" (in legacy
configuration terms), must in Unified Configuration be set by specifying a single, quoted
argument. For instance:

msconfig> set channel:tcp_local.saslswitchchannel tcp_auth
role.channel:tcp_local.saslswitchchannel = tcp_auth
msconfig# set channel:tcp_local.backoff "PT30M PT1H PT1H PT2H PT4H PT8H"
role.channel:tcp_local.backoff = PT30M PT1H PT1H PT2H PT4H PT8H

In legacy configuration, option arguments are normally forced to lowercase, but case will
be preserved if the option argument is quoted. Also, while legacy configuration options are
normally limited to taking at most five arguments, when the arguments themselves are quoted
that restriction is lifted; (see for instance, the backoff channel option).

Note that the channel-specific options -- those set in legacy configuration in channel option
files, rather than as legacy configuration channel keywords -- in Unified Configuration are set
under the options group, e.g.,

msconfig> set channel:tcp_local.options.ALLOW_ETRNS_PER_SESSION 2

Since channel-specific options are specific to the type of channel in question -- different types
of channels tend to have completely different channel-specific options -- look under the
discussions of the specific channel types to find out details of what channel-specific options
are available, as channel-specific options do not appear under the general list of options, nor as
channel options.

46.3.1 Alphabetic list of channel options
Channel options listed alphabetically below lists channel keywords alphabetically. Channel
options shown in bold face type are defaults.

46–8 Messaging Server Reference

Alphabetic list of channel options

Table 46.3 Channel options listed alphabetically
Option Usage

_733 Use % routing in the envelope; synonymous with percents

_822 Use source routes in the envelope; synonymous with sourceroute

acceptalladdresses (New in MS 6.1) Accept messages despite certain errors that would normally cause message rejection

accepttemporaryfailures (New in 8.0.1.1.0) Accept messages despite recipient address temporary error conditions (e.g., over quota, LDAP server
unavailable, Spam/virus filter unavailable, etc.).

acceptvalidaddresses (New in MS 6.1) Perform normal rejection checks on incoming messages

additional_host_names Additional hosts the channel can reach

addlineaddrs RESTRICTED: Attempt to extract additional envelope recipient addresses from X-VMS-To: and X-VMS-Cc: header lines

addresssrs (New in MS 6.3p1) Addresses matching this channel are eligible for SRS encoding

addreturnpath Add a Return-Path: header line

addrsperfile Number of addresses per message file

addrsperjob Number of addresses to be processed by a single job

addrtypescan (New in MS 7.0.5) Store recipient address "type" in an envelope flag

addrtypescanbccdefault (New in MS 7.0.5) Store recipient address "type" in an envelope flag, assuming unmatched recipient addresses are Bcc: addresses

affinitylist (New in MS 8.0) Enable affinity lookups, disable MX lookups

after Specify time delay before master channel programs run

aliasdetourhost Specify an "override" mailHost for any user found in LDAP; effect is to "detour" messages for such a user to the specified host

aliaslocal Look up aliases; e.g., query alias file and alias database, and perform alias_url* lookups

aliasmagic (New in MS 6.0) RESTRICTED: Destination channel override of the alias_magic MTA option, controlling the order of the
different types of alias lookups

aliasoptindetourhost (New in MS 6.2p4) Specify an "override" mailHost for any user who is opted-in via whatever LDAP attribute is named by the
ldap_detourhost_optin MTA option; the effect is to "detour" messages for such a user to the specified host

aliaspostmaster Redirect postmaster messages to the local channel postmaster

aliaswild Do an * lookup if no exact alias match is found

allowetrn Honor SMTP client ETRN commands

allowswitchchannel Allow switching to this channel from a switchchannel channel

alternateblocklimit Divert messages that exceed the specified number of blocks to the alternatechannel

alternatechannel Messages that exceed a channel's alternateblocklimit, alternatelinelimit, or alternaterecipientlimit will be
diverted to the channel's specified alternatechannel

alternatelinelimit Divert messages that exceed the specified number of lines to the alternatechannel

alternaterecipientlimit Divert messages that exceed the specified number of recipients to the alternatechannel

authhost (New in 8.0.2.1) Use the domain of the authenticated user's primary address complete addresses

authpassword (New in MS 7.0.5) Password for SMTP channel's client use of SMTP AUTH PLAIN

authrewrite Use SMTP AUTH information in header

authusername (New in MS 7.0.5) Username for SMTP channel's client use of SMTP AUTH PLAIN

autosecretary RESTRICTED: Not yet implemented

backoff Channel delivery retry backoff intervals

bangonly Source channel: disable interpretation of % host-routing

bangoverpercent Group A!B%C as A!(B%C)

bangstyle Use UUCP ! routing in the envelope; synonymous with uucp

bccserver (New in MS 8.0.2.3) XBCC extension is enabled

bidirectional Channel is served by both a master and slave program

binaryclient (New in MS 6.3.) RESTRICTED: Not yet fully implemented. Enable BINARYMIME support in the SMTP client

binaryserver (Introduced in MS 6.3 but at that time RESTRICTED as not yet fully implemented; actual implementation new in MS 8.0) Enable
BINARYMIME support in the SMTP server

blocketrn Do not honor SMTP client ETRN commands

blocklimit Maximum number of MTA blocks allowed per message

cacheeverything Cache all connection information

cachefailures Cache only connection failure information

cachesuccesses Cache only connection success information

caption (New in MS 6.3) Channel caption: a short description, suitable as the caption for a column of a table

channelfilter Specify the location of channel filter file; synonym for destinationfilter

charset7 Default character set to associate with 7-bit text messages

charset8 Default character set to associate with 8-bit text messages

Channels 46–9

Alphabetic list of channel options

charsetesc Default character set to associate with text containing the escape character

checkehlo Check the SMTP greeting banner for whether to use EHLO

chunkingclient (New in MS 6.3) Enable CHUNKING support in the SMTP client

chunkingserver (New in MS 6.3) Enable CHUNKING support in the SMTP server

commentinc Leave comments in message header lines intact

commentmap Apply COMMENT_STRINGS mapping to comments in message header lines

commentomit Remove comments from message header lines

commentstrip Remove problematic characters from comment field in message header lines

commenttotal Strip comments (material in parentheses) everywhere

conditionalpassthrough "Pass-through" mode, if any Received: header lines are present

conditionalrelay "Relay" mode, if any Received: header lines are present

conditionalsecuritymultiparts Process inside security multiparts, retaining preamble material

connectalias Do not rewrite addresses upon message dequeue

connectcanonical Rewrite addresses upon message dequeue

contchar DEPRECATED: Specify batch SMTP continuation line character

contposition DEPRECTED: Specify folding point in batch SMTP lines

convertoctetstream Convert application/octet-stream material as appropriate

copysendpost Send copies of failures to the postmaster unless the originator address is blank

copywarnpost Send copies of warnings to the postmaster unless the originator address is blank

daemon Specify name of a gateway daemon (host) to route to

datefour Convert date/time specifications to four digit years

datetwo Convert date/time specifications to two digit years

dayofweek Include day of week in date/time specifications

defaulthost Specify a domain name to use to complete addresses

defaultmx Channel determines whether or not to do MX lookups from network

defaultnameservers Consult TCP/IP stack's choice of nameservers

deferralrejectlimit New in MS 6.2. Limit the number of bad (failing) recipient addresses

deferred Honor deferred delivery dates in Deferred-delivery: header lines; as of MS 7.0, deprecated in favor of deferreddestination

deferreddestination (New in MS 7.0) Honor deferred delivery dates in Deferred-delivery: header lines; synonym for deferred

deferredsource (New in MS 7.0) Honor deferred delivery dates in Deferred-delivery: header lines

defertemporaryfailures (New in 8.0.1.1.0) Defer, with SMTP temporary rejection, recipient addresses with temporary error conditions (e.g., over quota,
LDAP server unavailable, Spam/virus filter unavailable, etc.).

defragment Reassemble any MIME-compliant message/partial parts queued to this channel

deletemessagehash (New in MS 6.3) Delete message hash

deliveryflags Set flags controlling certain delivery behaviors

dequeue_removeroute Alias for dequeueremoveroute; in legacy configuration, strip source route (@source-route:address) when dequeuing message

dequeueremoveroute (Unified Configuration only) Strip source route (@source-route:address) when dequeuing message

description Channel description

destinationbrightmail DEPRECATED: Alias for destinationspamfilter1

destinationbrightmailoptin DEPRECATED: Alias for destinationspamfilter1optin

destinationconversiontag (New in MS 7.0.5.) Conversion tags to add to outgoing recipients

destinationdkimignore (New in MS 8.0.) Take no special action in regards to DKIM-Signature: header fields

destinationdkimpreserve (New in MS 8.0) Don't rewrite DKIM-signed messages for specified domains

destinationdkimremove (New in MS 8.0) Remove DKIM signatures

destinationfilter Specify the location of channel Sieve filter to apply to outgoing messages

destinationnosolicit New in MS 6.2. List of solicitation types not accepted

destinationspamfilter Alias for destinationspamfilter1

destinationspamfilter1 (New in MS 6.2) Enable spam/virus filtering (by spam/filter package 1) for messages enqueued to this destination channel

destinationspamfilter1optin (New in MS 6.2) Enable spam/virus filtering (by spam/filter package 1) for messages enqueued to this destination channel, with
the optin value provided as argument

destinationspamfilter2 (New in MS 6.2) Enable spam/virus filtering (by spam/filter package 2) for messages enqueued to this destination channel

destinationspamfilter2optin (New in MS 6.2) Enable spam/virus filtering (by spam/filter package 2) for messages enqueued to this destination channel, with
the optin value provided as argument

destinationspamfilter3 (New in MS 6.2) Enable spam/virus filtering (by spam/filter package 3) for messages enqueued to this destination channel

destinationspamfilter3optin (New in MS 6.2) Enable spam/virus filtering (by spam/filter package 3) for messages enqueued to this destination channel, with
the optin value provided as argument

46–10 Messaging Server Reference

Alphabetic list of channel options

destinationspamfilter4 (New in MS 6.2) Enable spam/virus filtering (by spam/filter package 4) for messages enqueued to this destination channel

destinationspamfilter4optin (New in MS 6.2) Enable spam/virus filtering (by spam/filter package 4) for messages enqueued to this destination channel, with
the optin value provided as argument

destinationspamfilter5 (New in MS 6.3) Enable spam/virus filtering (by spam/filter package 5) for messages enqueued to this destination channel

destinationspamfilter5optin (New in MS 6.3) Enable spam/virus filtering (by spam/filter package 5) for messages enqueued to this destination channel, with
the optin value provided as argument

destinationspamfilter6 (New in MS 6.3) Enable spam/virus filtering (by spam/filter package 6) for messages enqueued to this destination channel

destinationspamfilter6optin (New in MS 6.3) Enable spam/virus filtering (by spam/filter package 6) for messages enqueued to this destination channel, with
the optin value provided as argument

destinationspamfilter7 (New in MS 6.3) Enable spam/virus filtering (by spam/filter package 7) for messages enqueued to this destination channel

destinationspamfilter7optin (New in MS 6.3) Enable spam/virus filtering (by spam/filter package 7) for messages enqueued to this destination channel, with
the optin value provided as argument

destinationspamfilter8 (New in MS 6.3) Enable spam/virus filtering (by spam/filter package 8) for messages enqueued to this destination channel

destinationspamfilter8optin (New in MS 6.3) Enable spam/virus filtering (by spam/filter package 8) for messages enqueued to this destination channel, with
the optin value provided as argument

destinationspamfilteroptin Synynom for destinationspamfilter1optin

destinationsrs (New in MS 6.3p1) Messages destined out this channel are eligible for SRS encoding

disabledestinationbrightmail DEPRECATED: Alias for disabledestinationspamfilter1

disabledestinationfilter (New in MS 7.0u3) Disable evaluation and application of specified Sieve filters

disabledestinationspamfilter Alias for disabledestinationspamfilter1

disabledestinationspamfilter1 (New in MS 6.2) Disable spam/virus filtering (via spam/filter package 1) for messages enqueued to this channel

disabledestinationspamfilter2 (New in MS 6.2) Disable spam/virus filtering (via spam/filter package 2) for messages enqueued to this channel

disabledestinationspamfilter3 (New in MS 6.2) Disable spam/virus filtering (via spam/filter package 3) for messages enqueued to this channel

disabledestinationspamfilter4 (New in MS 6.2) Disable spam/virus filtering (via spam/filter package 4) for messages enqueued to this channel

disabledestinationspamfilter5 (New in MS 6.3) Disable spam/virus filtering (via spam/filter package 5) for messages enqueued to this channel

disabledestinationspamfilter6 (New in MS 6.3) Disable spam/virus filtering (via spam/filter package 6) for messages enqueued to this channel

disabledestinationspamfilter7 (New in MS 6.3) Disable spam/virus filtering (via spam/filter package 7) for messages enqueued to this channel

disabledestinationspamfilter8 (New in MS 6.3) Disable spam/virus filtering (via spam/filter package 8) for messages enqueued to this channel

disableetrn Disable support for the ETRN SMTP command

disablesourcebrightmail DEPRECATED: Alias for disablesourcespamfilter1

disablesourcefilter (New in MS 7.0u3) Disable evaluation and application of specified Sieve filters

disablesourcespamfilter (New in MS 6.1) Synynom for disablesourcespamfilter1

disablesourcespamfilter1 (New in MS 6.2) Disable spam/virus filtering (via spam/virus filter package 1) for messages enqueued by this channel

disablesourcespamfilter2 (New in MS 6.2) Disable spam/virus filtering (via spam/virus filter package 2) for messages enqueued by this channel

disablesourcespamfilter3 (New in MS 6.2) Disable spam/virus filtering (via spam/virus filter package 3) for messages enqueued by this channel

disablesourcespamfilter4 (New in MS 6.2) Disable spam/virus filtering (via spam/virus filter package 4) for messages enqueued by this channel

disablesourcespamfilter5 (New in MS 6.3) Disable spam/virus filtering (via spam/virus filter package 5) for messages enqueued by this channel

disablesourcespamfilter6 (New in MS 6.3) Disable spam/virus filtering (via spam/virus filter package 6) for messages enqueued by this channel

disablesourcespamfilter7 (New in MS 6.3) Disable spam/virus filtering (via spam/virus filter package 7) for messages enqueued by this channel

disablesourcespamfilter8 (New in MS 6.3) Disable spam/virus filtering (via spam/virus filter package 8) for messages enqueued by this channel

disconnectbadauthlimit (New in MS 6.2) Force SMTP session disconnect after a specified number of failed SMTP AUTH attempts

disconnectbadburllimit (New in MS 7.0u4) Force SMTP SUBMIT session disconnect after a specified number of invalid BURL commands is exceeded

disconnectbadcommandlimit New in MS 6.2. Force SMTP session disconnect after a specified number of bad (unrecognized) SMTP commands is exceeded

disconnectcommandlimit New in MS 7.0u1. Force SMTP session disconnect after a specified number of SMTP commands is exceeded

disconnectrecipientlimit New in MS 6.2. Force SMTP session disconnect after a specified number of recipients is exceeded

disconnectrejectlimit New in MS 6.2. Force SMTP session disconnect after a specified number of bad recipients (rejected recipients) is exceeded

disconnecttransactionlimit (New in MS 6.2) Force SMTP session disconnect after a specified transaction limit is exceeded

dispositionchannel New in MS 6.2. Channel to use when generating message disposition notifications

dkimignore (New in MS 7.0.5) Take no special action in regards to DKIM-Signature: header fields

dkimpreserve (New in MS 7.0.5) Don't rewrite DKIM-signed messages for specified domains

dkimremove (New in MS 7.0.5) Remove DKIM signatures

dnsforcetemporary Treat host not found and no address lookup errors as temporary failures. This option is new in 8.0.1.3.

domainetrn Honor only those SMTP client ETRN commands that specify a domain

domainvrfy Issue SMTP VRFY commands using full address

dropblank Strip blank To:, Resent-To:, Cc:, or Resent-Cc: headers

ehlo Use EHLO on all initial SMTP connections

Channels 46–11

Alphabetic list of channel options

eightbit Channel supports eight bit characters

eightnegotiate Channel should negotiate use of eight bit transmission if possible

eightstrict Channel should reject messages that contain unnegotiated eight bit data

enqueue_removeroute Strip source route (@source-route:address) when enqueuing message

envelopetunnel (New in 8.0.1) Tunnel envelope fields via header lines

errsendpost Send copies of failures to the postmaster if the originator address is illegal

errwarnpost Send copies of warnings to the postmaster if the originator address is illegal

expandchannel Channel in which to perform deferred expansion due to application of expandlimit

expandlimit Process an incoming message "off-line" when the number of addressees exceeds this limit

expirysource (New in MS 7.0) Source channel supports Expiry-date: header value

explicitsaslexternal (New in MS 8.0) Disable automatic use of AUTH EXTERNAL at MAIL FROM

expnallow (New in MS 6.1) Explicitly enable support of the SMTP command EXPN

expndefault (New in MS 6.1) Default handling of the SMTP command EXPN

expndisable (New in MS 6.1) Disable support of the SMTP command EXPN

exproute Explicit routing for this channel's addresses

externalidentity (New in MS 7.0.5) Identity for SMTP channel's client use of SMTP AUTH EXTERNAL

fileinto Specify effect on address when a Sieve filter fileinto action is applied

filesperjob Number of queue entries to be processed by a single job

filter Specify the location of user Sieve filter files

fixsyntaxerrors (New in MS 8.0) Correct syntax errors in header fields

flagtransfer Support private XDFLG/XAFLG SMTP/LMTP extensions and (new in MS 8.0.2.3) XCONVTAG SMTP extension; pass along
delivery flags, such as trusting a subaddress, IMAP flags, and conversion tags.

forcedreceivedfrom (New in MS 8.0.1) When constructing a Received: header line, force use of the specified string in the "from ..." clause

foreign DEPRECATED: Use VMS MAIL's foreign message format as needed with VMS MAIL

forwardcheckdelete If a reverse DNS lookup has been performed, next perform a forward lookup on the returned name to check that the returned IP
number matches the original; if not, delete the name and use the IP address

forwardchecknone Do not perform a forward lookup after a DNS reverse lookup

forwardchecktag If a reverse DNS lookup has been performed, next perform a forward lookup on the returned name to check that the returned IP
number matches the original; if not, tag the name with *

futurerelease (New in MS 7.0) Enable source channel support for the future release SMTP extension

generatemessagehash (New in MS 6.3) Generate a hash of specified message header fields

header_733 Use % routing in the message header

header_822 Use source routes in the message header

header_uucp Use ! routing in the header

headerbottom DEPRECATED: Place the message header at the bottom of the message (usage discouraged; use with caution)

headerdecodesrs Decode SRS encoding of addresses in header lines

headerfoldpreserve Attempt to preserve original header line fold points

headerfoldremove Re-do header line folding

headerinc Place the message header at the top of the message

headerkeeporder (New in MS 6.3) Preserve ordering of header lines

headerlabelalignment Align headers

headerlimit Truncate message header at specified size

headerlineincrement Increment used when attempting to fold header lines

headerlinelength Fold long headers

headeromit DEPRECATED: Omit the message header from the message (usage discouraged; use with caution)

headerread Apply source channel header trimming rules from a header option file to the message headers before headers are processed (use
with caution)

headerset7 RESTRICTED: Decode the specified charset in headers when dequeuing

headerset8 RESTRICTED: Decode the specified charset in headers when dequeuing

headersetesc RESTRICTED: Decode the specified charset in headers when dequeuing

headertrailingpreserve Preserve trailing spaces (including before fold points) in header lines

headertrailingremove Remove trailing spaces (including before fold points) in header lines

headertrim Apply destination channel header trimming rules from a header option file to the message headers after headers are processed
(use with caution)

holdlimit .HELD an incoming message when the number of addressees exceeds this limit

identnone Do not perform IDENT lookups; do perform IP to hostname translation; include both hostname and IP address in Received:
header

46–12 Messaging Server Reference

Alphabetic list of channel options

identnonelimited Do not perform IDENT lookups; do perform IP to hostname translation, but do not use the hostname during channel switching;
include both hostname and IP address in Received: header

identnonenumeric Do not perform IDENT lookups or IP to hostname translation

identnonesymbolic Do not perform IDENT lookups; do perform IP to hostname translation; include only the hostname in Received: header

identtcp Perform IDENT lookups on incoming SMTP connections and IP to hostname translation; include both hostname and IP address
in Received: header

identtcplimited Do perform IDENT lookups; do perform IP to hostname translation, but do not use the hostname during channel switching;
include both hostname and IP address in Received: header

identtcpnumeric Perform IDENT lookups on incoming SMTP connections, but do not perform IP to hostname translation

identtcpsymbolic Perform IDENT lookups on incoming SMTP connections and IP to hostname translation; include only hostname in Received:
header

ignoreencoding Ignore Encoding: header on incoming messages

ignoremessageencoding (New MS 6.3.) Ignore any Content-transfer-encoding: header line present on incoming MIME message parts

ignoremultipartencoding (New in MS 6.3.) Ignore any Content-transfer-encoding: header line present on incoming MIME multipart parts

implicitsaslexternal (New in MS 8.0) Enable automatic use of AUTH EXTERNAL at MAIL FROM after successful negotiation of TLS

improute Implicit routing for this channel's addresses

includefinal Include final form of address in delivery notifications

includereceivedip (New in 8.0.1.2) Include IP address information in the from clauses of generated Received: lines.

inner Rewrite inner message headers on messages queued to this channel

innertrim Apply header trimming rules from an options file to inner message headers (use with caution)

interfaceaddress Bind to the specified TCP/IP interface address

interpretencoding Interpret Encoding: header on incoming messages

interpretmessageencoding (New in MS 6.3.) Interpret any Content-transfer-encoding: header line present on incoming MIME message parts

interpretmultipartencoding (New in MS 6.3.) Interpret any Content-transfer-encoding: header line present on incoming MIME multipart parts

ipbackoff (New in MS 8.0.2.3) Channel delivery retry backoff intervals for messages in IP backoff mode

ipbackofftimeout (New in MS 8.0.2.3) Timeout for IP backoff entries made in memcache or Redis.

keepmessagehash (New in MS 6.3) Keep message hash

language Specify a preferred language for messages that have none

lastresort Specify a last resort host

limitheadertermination (New in MS 7.0.5) Only CRLFCRLF terminates message header

linelength Message lines exceeding this length limit will be wrapped

linelimit Maximum number of lines allowed per message

lmtp Channel uses LMTP

lmtp_cr Accept CR as an LMTP line terminator

lmtp_crlf Require CRLF as the LMTP line terminator

lmtp_crorlf Allow any of CR, LF, or CRLF as the LMTP line terminator

lmtp_lf Accept LF as an LMTP line terminator

localbehavior RESTRICTED: Control some local-channel-like behaviors

localvrfy Issue SMTP VRFY command using local address

logging Log message enqueues and dequeues into the MTA message transaction log file

logheader Include message headers in the MTA message transaction log entries

loopcheck Enable support for the XLOOP SMTP extension (used to detect a type of message loop)

mailfromdnsverify Verify that the domain specified on MAIL FROM: line is in the DNS

master Channel is served only by a master program

master_debug Generate debugging output in the channel's master program output

maxblocks Maximum number of MTA blocks per message; longer messages are broken into multiple messages

maxconnectionrateperdomain Implements a limit on the rate of connections made to a domain using the smartsend plugin

maxconnectionsperdomain Implements limits on the number of simultaneous connections to a domain using the smartsend plugin

maxheaderaddrs Maximum number of addresses per message header line; longer header lines are broken into multiple header lines

maxheaderchars Maximum number of characters per message header line; longer header lines are broken into multiple header lines

maxjobs Maximum number of jobs which can be created at once

maxlines Maximum number of message lines per message; longer messages are broken into multiple messages

maxmessagerateperdomain Implements a limit on the rate of messages sent to a domain using the smartsend plugin

maxperiodicnonurgent Specify that periodic jobs should only process messages of non-urgent or lower priority

maxperiodicnormal Specify that periodic jobs should only process messages of normal or lower priority

maxperiodicurgent Specify that periodic jobs should process messages of urgent or lower priority

Channels 46–13

Alphabetic list of channel options

maxprocchars Specify maximum length of headers to process

maysasl Allow SMTP server and client SASL authentication

maysaslclient SMTP client attempts to use SASL authentication

maysaslserver SMTP server offers SASL authentication

maytls SMTP client and server allow TLS use

maytlsclient SMTP client will attempt TLS use

maytlsserver SMTP server allows TLS use

minperiodicnonurgent Specify that periodic jobs should only process messages of non-urgent or higher priority

minperiodicnormal Specify that periodic jobs should only process messages of normal or higher priority

minperiodicurgent Specify that periodic jobs should only process messages of urgent priority

missingrecipientpolicy Set policy for how to legalize (which header to add) messages that are lacking any recipient headers

mlslabel (New in MS 7.0) RESTRICTED: Not yet fully implemented

mlsrange (New in MS 7.0) RESTRICTED: Not yet fully implemented

msexchange Channel serves MS Exchange gateways

mtprioritiesallowed (New in MS 8.0) Range of SMTP MT-PRIORITY values accepted during enqueue; other values adjusted to be within range

mtprioritiesrequired (New in MS 8.0) Range of SMTP MT-PRIORITY values accepted during enqueue; messages with other values will be rejected.

multigate Channel serves multiple BITNET gateways, or LMTP back ends

multiple Accepts multiple destination hosts in a single message copy

mustsasl Must use SASL authentication

mustsaslclient SMTP client insists upon SASL authentication

mustsaslserver SMTP server insists upon SASL authentication

musttls SMTP client and server insist upon TLS use and will not transfer messages with remote sides that do not support TLS

musttlsclient SMTP client insists upon TLS use and will not send messages to any remote SMTP server that does not support TLS use

musttlsserver SMTP server insists upon TLS use and will not accept messages from any remote SMTP client that does not support TLS use

mx TCP/IP network and software supports MX record lookups

nameparameterlengthlimit Maximum length to allow for NAME parameter of MIME Content-type: header line

nameservers Consult specified nameservers rather than TCP/IP stack's choice (only for MX records as of MS 7.0)

noaddlineaddrs Do not attempt the (risky) extraction of recipient addresses from VMS MAIL header lines

noaddresssrs (New in MS 6.3p1) Addresses matching this channel will not be SRS encoded.

noaddreturnpath Do not add a Return-Path: header line

noaddrtypescan (New in MS 7.0.5) Do not store recipient address "type" in an envelope flag

noauthhost (New in 8.0.2.1) Disable use the domain of the authenticated user's primary address to complete addresses

nobangoverpercent Group A!B%C as (A!B)%C (default)

nobccserver (New in MS 8.0.2.3) XBCC extension is disabled

nobinaryclient (New in MS 6.3.) Disable BINARYMIME support in the SMTP client

nobinaryserver (New in MS 6.3.) Disable BINARYMIME support in the SMTP server

noblocklimit No limit specified for the number of MTA blocks allowed per message

nocache Do not cache any connection information

nochannelfilter Do not perform channel filtering for outgoing messages; synonym for nodestinationfilter

nochunkingclient (New in MS 6.3) Disable CHUNKING support in the SMTP client

nochunkingserver (New in MS 6.3) Disable CHUNKING support in the SMTP server

noconvert_octet_stream Alias for noconvertoctetstream; in legacy configuration, do not convert application/octet-stream material

noconvertoctetstream (Unified Configuration only) Do not convert application/octet-stream material

nodayofweek Remove day of week from date/time specifications

nodefaulthost Do not specify a domain name to use to complete addresses

nodeferred Alias for nodeferreddestination (do not honor deferred delivery dates)

nodeferreddestination (New in MS 7.0u4) Do not honor deferred delivery dates

nodeferredsource (New in MS 7.0u4) Do not honor deferred delivery dates

nodefragment Do not perform special processing for message/partial messages

nodestinationfilter Do not perform channel filtering for outgoing messages

nodestinationsrs (New in MS 6.3p1) Messages matching this destination channel will not have addresses SRS encoded.

nodns TCP/IP network does not support DNS (nameserver) lookups; on UNIX, merely disables MX lookups since on UNIX it is
nsswitch.conf that controls consultation of nameservers

nodnsforcetemporary Treat host not found and no address lookup errors as permanent failures. This option is new in 8.0.1.3.

nodropblank Do not strip blank To:, Resent-To:, Cc:, or Resent-Cc: headers

46–14 Messaging Server Reference

Alphabetic list of channel options

noehlo Never use the SMTP EHLO command

noexpirysource (New in MS 7.0) Source channel ignores Expiry-date: header value

noexproute No explicit routing for this channel's addresses

nofileinto Sieve filter fileinto action has no effect

nofilter No external-to-LDAP user Sieve filters

noflagtransfer Disable private XDFLG/XAFLG SMTP/LMTP extensions and (new in MS 8.0.2.3) XCONVTAG SMTP extension; do not pass
along delivery flags, IMAP flags, and conversion tags.

noheaderdecodesrs Do not decode SRS encoding of addresses in header lines (default)

noheaderread Do not apply header trimming rules from header option file upon message enqueue

noheadertrim Do not apply header trimming rules from header option file

noimproute No implicit routing for this channel's addresses

noinner Do not rewrite inner message headers on messages queued to this channel

noinnertrim Do not apply header trimming to inner message headers

nolinelimit No limit specified for the number of lines allowed per message

nolocalbehavior No special local-channel-like behavior requested

nologging Do not log message enqueues and dequeues into the MTA message transaction log file

noloopcheck Disable support for the XLOOP SMTP extension (used to detect a type of message loop)

nomailfromdnsverify Do not perform DNS domain verification on the MAIL FROM: address

nomaster_debug Do not generate debugging output in the channel's master program output

nomsexchange Channel does not serve MS Exchange gateways

nomultigate Channel does not serve multiple BITNET gateways or LMTP back ends

nomx TCP/IP network does not support MX lookups

nonotary RESTRICTED: Disable DSN extension use by SMTP/LMTP client

nonrandommx Do MX lookups; do not randomize returned entries with equal precedence

nonurgentafter Specify time delay before master channel programs run for non-urgent priority messages

nonurgentbackoff Channel delivery retry backoff intervals for non-urgent priority messages

nonurgentblocklimit Force messages above this size to wait unconditionally for a periodic job

nonurgentnotices Specify the amount of time which may elapse before notices are sent and messages returned for messages of non-urgent priority

noproxyprotocol (New in MS 8.1.0.1) Proxy protocol support is disabled

noreceivedfor Do not include envelope To address in Received: header

noreceivedfrom Do not include the envelope From address when constructing Received: header

noremotehost Use local host's domain name as the default domain name to complete addresses

norestricted Do not apply RFC 1137 restricted encoding to addresses

noreturnaddress Use the value of the return_address MTA option

noreturnpersonal Use the value of the return_personal MTA option

noreverse Do not apply address reversal to addresses

normalafter Specify time delay before master channel programs run for normal priority messages

normalbackoff Channel delivery retry backoff intervals for normal priority messages

normalblocklimit Force messages above this size to nonurgent priority

normalnotices Specify the amount of time which may elapse before notices are sent and messages returned for messages of normal priority

norules Do not do channel-specific rewrite rule checks

nosasl SASL authentication not attempted or permitted

nosaslclient SMTP client does not attempt SASL authentication

nosaslpassauth Do not pass along a MAIL FROM AUTH parameter

nosaslserver SMTP server does not permit SASL authentication

nosaslswitchchannel Do not switch channel upon successful SASL authentication

nosasltrustauth (New in MS 7.0u3) Do not promote a MAIL FROM AUTH parameter to the MTA's authenticated originator address envelope
field

nosendetrn Do not send SMTP ETRN command

nosendpost Do not send copies of failures to the postmaster

noserviceconversion (New in MS 7.0.3) Service conversions for messages coming in this channel must be enabled via the CHARSET-CONVERSION
mapping table

noslave_debug Do not generate debugging output in the channel's slave program output

nosmtp Channel does not use SMTP

nosocks Do not do SOCKS connections

Channels 46–15

https://tools.ietf.org/html/rfc1137

Alphabetic list of channel options

nosourcefilter Source channel does not have an associated Sieve filter

nosourceinner (New in MS 8.1.0.1) Do not rewrite inner message headers on message sent from this channel

nosourcesrs (New in MS 6.3p1) Messages matching this source channel will not have addresses SRS encoded.

noswitchchannel Stay with the server channel; do not switch to the channel associated with the originating host; do not permit being switched to

notary Normal NOTARY support

nothurman Do not perform thurman format conversion

notices Specify the amount of time which may elapse before notices are sent and messages returned

notick RESTRICTED: Do not put a ticket in the BSMTP stream

notificationchannel (New in MS 6.2.) Channel to use when generating notifications

notls SMTP client and server neither attempt nor allow TLS use

notlsclient SMTP client does not attempt TLS use when sending messages

notlsserver SMTP server does not offer or allow TLS use when receiving messages

notrackingclient (New in MS 8.0) Disable SMTP client support of message tracking

notrackingserver (New in MS 8.0) Disable SMTP server support of message tracking

noturn Disable the SMTP TURN command

nouma Do not perform "thurman on demand" format conversion

novrfy Do not issue SMTP VRFY commands

nowarnpost Do not send copies of warnings to the postmaster

nox_env_to Do not add X-Envelope-to: header lines while enqueuing

noxclient (New in MS 8.0) XCLIENT SMTP extension is disabled

parameterformatdefault (New in MS 7.0.5) Normal handling of MIME parameters, using RFC 2231 encoding when appropriate

parameterformatminimizeencoded (New in MS 7.0.5) Remove unnecessary, redundant RFC 2231 encoding from MIME parameters

parameterformatstripencoded (New in MS 7.0.5) Strip any characters requiring RFC 2231 encoding from MIME parameters, so that RFC 2231 encoding may be
removed

parameterlengthlimit Maximum length to allow for parameters of MIME Content-type: header line

passsyntaxerrors (New in MS 8.0) Disable certain header field syntax error fixup

passthrough Do no message processing

percentonly Interpret percent character in an address local-part

percents Use % routing in the envelope; (legacy configuration's 733 is an alias for percents)

personalinc Leave personal names in message header lines intact

personalmap Apply PERSONAL_NAMES mapping to personal names in message header lines

personalomit Remove personal name fields from message header lines

personalstrip Strip problematic characters from personal name fields in message header lines

pool Specify Job Controller pool in which channel programs run

port Send to the specified TCP/IP port

postheadbody Both the message's header and body are copied to the postmaster when a delivery failure occurs

postheadonly Only the message's header is copied to the postmaster when a delivery failure occurs

presence RESTRICTED: Not yet implemented

processsecuritymultiparts Process inside security multiparts

proxyprotocol (New in MS 8.1.0.1) Proxy protocol support is enabled

randommx Do MX lookups; randomize returned entries with equal precedence

receivedfor Include envelope to address in Received: header

receivedfrom Include the envelope From address when constructing Received: header

receivedstate (New in MS 8.0) Include a state indicator when constructing Received: header

recipientcutoff Set a limit for the number of recipients-per-message-copy accepted on a channel; attempts to submit a message with more than
this number of recipients will cause all recipients to be rejected

recipientlimit Set a limit for the number of recipients-per-message-copy accepted on a channel; additional recipients will get a temporary
rejection error

refuseehlo RESTRICTED: Disable EHLO support in SMTP server

refusenotary (New in MS 8.0.1) RESTRICTED: Disable DSN extension support in SMTP server

rejectsmtplonglines Reject incoming SMTP messages with illegally long lines

relaxheadertermination Allow lines containing white space characters to terminate the header of a message

relay Mark the channel as a relay channel

remotehost Use remote host's name as the default domain name to complete addresses

reportboth Generate both header and NOTARY delivery receipt requests from "foreign" delivery receipt requests

46–16 Messaging Server Reference

https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231

Alphabetic list of channel options

reportheader Generate only header delivery receipt requests from "foreign" delivery receipt requests

reportnotary Generate only NOTARY delivery receipt requests from "foreign" delivery receipt requests

reportsuppress Suppress delivery receipt requests from "foreign" delivery receipt requests

restricted Apply RFC 1137 restricted encoding to addresses

retainsecuritymultiparts Do not process inside security multiparts

returnaddress Set the return address for the local Postmaster

returnenvelope Control use of blank envelope return addresses

returnpersonal Set the personal name for the local Postmaster

reverse Apply address reversal to addresses; that is, apply reverse_url LDAP-based address reversal, the reverse database, and the
REVERSE mapping to addresses

routelocal Rewriting should shortcircuit routing addresses

rules Do channel-specific rewrite rule checks

saslpassauth Pass along a MAIL FROM AUTH parameter

saslruleset Specify the security configuration rule set to use for SASL transactions

saslswitchchannel Switch to another channel when SASL authentication is successful

sasltrustauth (New in MS 7.0u3) Promote any MAIL FROM AUTH parameter to the MTA's authenticated originator address envelope field

secondclassafter Specify time delay before channel runs for secondclass priority messages

secondclassblocklimit Force messages above this size to third class priority

secondclassqueue RESTRICTED: Not implemented for Messaging Server MTA; (for PMDF, specified the queue for master channel program
processing of second class messages)

sendetrn Send SMTP ETRN command

sendpost Send copies of failures to the postmaster

sensitivitycompanyconfidential Allow messages of any sensitivity

sensitivitynormal Reject messages whose sensitivity is higher than normal

sensitivitypersonal Reject messages whose sensitivity is higher than personal

sensitivityprivate Reject messages whose sensitivity is higher than private

serviceconversion (New in MS 7.3) Perform service conversions for messages coming in this channel regardless of CHARSET-CONVERSION

sevenbit Channel does not support eight bit characters; eight bit characters must be encoded

silentetrn Honor SMTP client ETRN commands, without echoing channel information

single Only one envelope To address per message copy

single_sys Each message copy must be for a single destination system

slave Channel is serviced only by a slave program

slave_debug Generate debugging output in the channel's slave program output

smtp Channel uses SMTP

smtp_cr Accept CR as an SMTP line terminator

smtp_crlf Require CRLF as the SMTP line terminator

smtp_crorlf Allow any of CR, LF, or CRLF as the SMTP line terminator; default on TCP/IP channels

smtp_lf Accept LF as an SMTP line terminator

sourceblocklimit Maximum number of MTA blocks allowed per incoming message

sourcebrightmail DEPRECATED: Alias for sourcespamfilter1

sourcebrightmailoptin DEPRECATED: Alias for sourcespamfilter1optin

sourcecommentinc Leave comments in incoming message header lines intact

sourcecommentmap Apply COMMENT_STRINGS mapping to comments in incoming message header lines

sourcecommentomit Remove comments from incoming message header lines

sourcecommentstrip Remove problematic characters from comment field in incoming message header lines

sourcecommenttotal Strip comments (material in parentheses) everywhere in incoming messages

sourceconversiontag (New in MS 7.0.5) Conversion tags to add to message

sourcefilter Specify the location of the channel's Sieve filter for incoming messages

sourceinner (New in MS 8.1.0.1) Rewrite inner message headers on message sent from this channel

sourcenosolicit (New in MS 6.2.) List of solicitation types not accepted

sourcepersonalinc Leave personal names in incoming message header lines intact

sourcepersonalmap Apply PERSONAL_NAMES mapping to personal names in incoming message header lines

sourcepersonalomit Remove personal name fields from incoming message header lines

sourcepersonalstrip Strip problematic characters from personal name fields in incoming message header lines

sourceroute Use source routes in the message envelope; (_822 is an alias for sourceroute, synonymous with legacy configuration's 822)

Channels 46–17

https://tools.ietf.org/html/rfc1137

Alphabetic list of channel options

sourcespamfilter Alias for sourcespamfilter1

sourcespamfilter1 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 1) for messages enqueued by this source channel

sourcespamfilter1optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 1) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter2 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 2) for messages enqueued by this source channel

sourcespamfilter2optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 2) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter3 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 3) for messages enqueued by this source channel

sourcespamfilter3optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 3) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter4 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 4) for messages enqueued by this source channel

sourcespamfilter4optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 4) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter5 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 5) for messages enqueued by this source channel

sourcespamfilter5optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 5) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter6 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 6) for messages enqueued by this source channel

sourcespamfilter6optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 6) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter7 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 7) for messages enqueued by this source channel

sourcespamfilter7optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 7) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter8 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 8) for messages enqueued by this source channel

sourcespamfilter8optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 8) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilteroptin Alias for sourcespamfilter1optin

sourcesrs (New in MS 6.3p1) Messages from this source channel are eligible for SRS encoding

spareN (New in 8.0.2.2) Fill in the corresponding spare value slot with the specified value

spfhelo (New in MS 6.3) Perform an SPF lookup at the HELO/EHLO command

spfmailfrom (New in MS 6.3) Perform an SPF lookup at the MAIL FROM command

spfnone (New in MS 6.3) Do not perform any SPF lookups

spfrcptto (New in MS 6.3) Perform an SPF lookup at the RCPT TO command

streaming Specify degree of protocol streaming for channel to use

subaddressexact Alias must match exactly, including exact subaddress match

subaddressrelaxed Alias without subaddress may match

subaddresswild Alias with subaddress wildcard may match

subdirs Use multiple subdirectories for messages queued to channel

submit Mark the channel as a submit-only channel

suppressfinal Include only original form of address in notification messages

suppressreceivedip (New in 8.0.1.2) Do not include IP address information in the from clauses of generated Received: lines.

switchchannel Switch effective source channel to the channel associated with the originating host's source IP

threaddepth Number of messages triggering new thread with SMTP client

tick RESTRICTED: Put a ticket in the BSMTP stream

tlsswitchchannel Switch to specified source channel upon successful TLS negotiation

trackingclient (New in MS 8.0.) Enable SMTP client support of message tracking

trackingdelivered (New in MS 8.0.) Treat messages dequeued from this channel as delivered

trackingfirst (New in MS 8.0.) Tracking information goes to first alias expansion result

trackinggenerate (New in MS 8.0.) Enable SMTP client support of message tracking

trackinginternal (New in MS 8.0.) This channel transfers internally

trackingmultiple (New in MS 8.0.) Tracking information passes through aliases

trackingrelayed (New in MS 8.0.) Treat messages dequeued from this channel as relayed

trackingserver (New in MS 8.0.) Enable SMTP server support of message tracking

trackingsingle (New in MS 8.0.) Only pass tracking info through single recipient alias

trackingtimeoutdefault (New in MS 8.0.) Default timeout (s) for tracking requests

trackingtimeoutmax (New in MS 8.0.) Maximum timeout (s) for tracking requests

trackingtimeoutmin (New in MS 8.0.) Minimum timeout (s) for tracking requests

transactionlimit (New in MS 6.1) Limit the number of transactions per SMTP session (messages per SMTP connection) accepted

46–18 Messaging Server Reference

Functional group list of channel
options

truncatesmtplonglines Truncate incoming SMTP messages with illegally long lines

turn RESTRICTED: Enable the SMTP TURN command

turn_in RESTRICTED: Enable the SMTP TURN command for incoming connections; that is, the SMTP server will accept SMTP TURN
commands

turn_out RESTRICTED

uma Perform thurman conversion if would be MIME-ifying the message anyway for other reasons

unrestricted Do not apply RFC 1137 restricted encoding to addresses

urgentafter Specify time delay before master channel programs run for urgent priority messages

urgentbackoff Channel delivery retry backoff intervals for urgent priority messages

urgentblocklimit Force messages above this size to normal priority

urgentnotices Specify the amount of time which may elapse before notices are sent and messages returned for messages of urgent priority

useintermediate Include the "intermediate" form of recipient address, that form previously presented as active from the MTA's point of view, in
delivery status notification messages

usepermanenterror (New in MS 8.0) Override use_permanent_error MTA option on a per-source-channel basis

user DEPRECATED as of MS 8.0; instead use the pipeuser option in restricted.cnf. Specify account under which to run the
pipe channel

usereplyto Specify mapping of Reply-to: header

useresent Specify mapping of Resent- headers for non RFC 822 environments

userswitchchannel (New in MS 6.3) Enable switching from this source channel to a channel selected via a per-user or per-domain LDAP attribute

usetemporaryerror (New in MS 8.0) Override use_temporary_error MTA option on a per-source-channel basis

utf8header (New in MS 8.0.2) Enable unconditional EAI support

utf8negotiate (New in MS 8.0.2) Enable EAI support

utf8strict (New in MS 8.0.2) Enable EAI support with strict enforcement

uucp Alias for bangstyle; (use UUCP ! routing in the envelope)

validatelocalnone Enqueuing channels perform no validation check on the local part of addresses they enqueue to this channel

validatelocalsystem Enqueuing channels check that the local part of addresses they enqueue to this channel matches an account on the system

verb_never RESTRICTED: Ignore VERB commands in the BSMTP stream

verb_none RESTRICTED: Accept VERB commands in the BSMTP stream

verb_off RESTRICTED: Insert a VERB OFF command into the BSMTP stream

verb_on RESTRICTED: Insert a VERB ON command into the BSMTP stream

viaaliasoptional Alias match not required

viaaliasrequired Alias match required

vrfyallow Provide informative responses to SMTP VRFY command

vrfydefault Default responses to SMTP VRFY command, according to channel's TCP/IP-channel-specific HIDE_VERIFY option setting

vrfyhide Provide obfuscatory responses to SMTP VRFY command

warnpost Send copies of warnings to the postmaster

wrapsmtplonglines Wrap incoming SMTP messages with illegally long lines

x_env_to Add X-Envelope-to: header lines while enqueuing

xclient (New in MS 8.0) XCLIENT SMTP extension is enabled, only one group of XCLIENT commands permitted

xclientrepeat (New in MS 8.0) XCLIENT SMTP extension is enabled, and groups of XCLIENT commands are permitted

xclientsasl (New in MS 8.0) XCLIENT SMTP extension is enabled, and LOGIN attribute is allowed

xclientsaslrepeat (New in MS 8.0) XCLIENT SMTP extension is enabled, LOGIN attribute is permitted, and groups of XCLIENT commands are
permitted

46.3.2 Functional group list of channel options

There are a great many channel options available for configuring channel behavior. The
channel options may be viewed in an alphabetic list; alternatively, they may also be viewed
grouped by functionality for convenience in considering inter-related options.

In Unified Configuration, channel options are configured directly under the channel name:

channel:channel-name.channel-option

Channels 46–19

https://tools.ietf.org/html/rfc1137

Functional group list of channel
options

In legacy configuration, channel options were set as keywords on the channel definition in the
MTA configuration file, imta.cnf; channel options appeared on the first line of a channel
definition, after the channel name.

Note that there are also many MTA options affecting MTA operation in general (rather than
affecting specific channels); in general such MTA level options are distinct from channel
options (not merely global defaults for channels) as MTA options may alter more fundamental
aspects of MTA operation, but in some cases an MTA level option does establish a default for
all channels which may then be overridden via a channel option analogue.

Note also that besides the normal channel options under discussion here, some channels
also support some channel-specific options. These are channel-specific options which are
only supported and available for that specific type of channel: for historical (and functional)
reasons they are implemented differently from the usual channel options. Such channel-
specific options were, in legacy configuration, configured in channel option files; in Unified
Configuration they are configured under the options channel option:

channel:channel-name.options.channel-specific-option-name

See the specific type of channel for a list of that channel's valid channel-specific options.

Channel options listed alphabetically lists channel options alphabetically; Channel options
grouped by functionality below lists channel options by functional group:

• Addresses
• Attachments and MIME processing
• BSMTP-specific
• Character sets and eight bit data
• Conversion tag and service conversion
• Display labels
• DKIM
• Error interpretation
• File creation in the MTA queue area
• Gateway/firewall/mailhub/Message Router channel connection
• Headers
• Host names
• Incoming channel matching and switching
• Logging and debugging
• Long address lists or headers
• Message hash
• Message tracking
• MLS
• Notification messages and postmaster messages
• Processing control and job submission
• Sensitivity limits
• Sieve filters and delivery flags
• Size limits on messages
• Spam/virus filter package use
• SMTP and LMTP protocol
• TCP/IP connections, DNS lookups, and SOCKS connections
• TLS and SASL

46–20 Messaging Server Reference

Functional group list of channel
options

Channel options shown in bold face type are defaults; channel options marked with + are
only supported under OpenVMS.

Table 46.4 Channel options grouped by functionality

Option Usage

Addresses

_733 Use % routing in the envelope; alias for percents

_822 Use source routes in the envelope; alias for sourceroute

acceptalladdresses (New in MS 6.1) Accept messages despite certain errors that would normally cause message rejection

accepttemporaryfailures (New in 8.0.1.1.0) Accept messages despite recipient address temporary error conditions (e.g., over quota, LDAP server
unavailable, Spam/virus filter unavailable, etc.).

acceptvalidaddresses (New in MS 6.1) Perform normal rejection checks on incoming messages

addlineaddrs RESTRICTED: Attempt to extract additional envelope recipient addresses from X-VMS-To: and X-VMS-Cc: header lines

addresssrs (New in MS 6.3p1) Addresses matching this channel are eligible for SRS encoding

addreturnpath Add a Return-Path: header line

addrtypescan (New in MS 7.0.5) Store recipient address "type" in an envelope flag

addrtypescanbccdefault (New in MS 7.0.5) Store recipient address "type" in an envelope flag, assuming unmatched recipient addresses are Bcc: addresses

aliasdetourhost Specify an "override" mailHost for any user found in LDAP; effect is to "detour" messages for such a user to the specified host

aliaslocal Look up aliases; i.e., query alias file and alias database and alias options and perform alias_url* lookups

aliasmagic (New in MS 6.0) RESTRICTED: Destination channel override of the alias_magic MTA option, controlling the order of the
different types of alias lookups

aliasoptindetourhost (New in MS 6.2p4) Specify an "override" mailHost for any user who is opted-in via whatever LDAP attribute is named by the
ldap_detourhost_optin MTA option; the effect is to "detour" messages for such a user to the specified host

aliaswild Do an * lookup if no exact alias match is found

authhost (New in 8.0.2.1) Use the domain of the authenticated user's primary address to complete addresses

authrewrite Use SMTP AUTH information in header

bangonly Source channel: disable interpretation of % host-routing

bangoverpercent Group A!B%C as A!(B%C)

bangstyle Use UUCP ! routing in the envelope; (uucp from legacy configuration is an alias for bangstyle)

defaulthost Specify a domain name to use to complete addresses

defertemporaryfailures (New in 8.0.1.1.0) Defer, with SMTP temporary rejection, recipient addresses with temporary error conditions (e.g., over quota,
LDAP server unavailable, Spam/virus filter unavailable, etc.).

dequeue_removeroute Alias for dequeueremoveroute; in legacy configuration, strip source route (@source-route:address) when dequeuing message

dequeueremoveroute (Unified Configuration only) Strip source route (@source-route:address) when dequeuing message

destinationsrs (New in MS 6.3p1) Messages destined out this channel are eligible for SRS encoding

enqueue_removeroute Alias for enqueueremoveroute; in legacy configuration, strip source route (@source-route:address) when enqueuing message

enqueueremoveroute (Unified Configuration only) Strip source route (@source-route:address) when enqueuing message

exproute Explicit routing for this channel's addresses

headerdecodesrs Decode SRS encoding of addresses in header lines

holdlimit .HELD an incoming message when the number of addressees exceeds this limit

improute Implicit routing for this channel's addresses

localbehavior RESTRICTED: Control some local-channel-like behavior

missingrecipientpolicy Set policy for how to legalize (which header to add) messages that are lacking any recipient headers

noaddlineaddrs Do not attempt the (risky) extraction of recipient addresses from VMS MAIL header lines

noaddresssrs (New in MS 6.3p1) Addresses matching this channel will not be SRS encoded.

noaddreturnpath Do not add a Return-Path: header line

noaddrtypescan Do not store recipient address "type" in an envelope flag

noauthhost (New in 8.0.2.1) Disable use the domain of the authenticated user's primary address to complete addresses

nobangoverpercent Group A!B%C as (A!B)%C (default)

nodefaulthost Do not specify a domain name to use to complete addresses

nodestinationsrs (New in MS 6.3p1) Messages matching this destination channel will not have addresses SRS encoded.

noexproute No explicit routing for this channel's addresses

noheaderdecodesrs Do not decode SRS encoding of addresses in header lines (default)

noimproute No implicit routing for this channel's addresses

nolocalbehavior No special local-channel-like behavior requested

Channels 46–21

Functional group list of channel
options

noremotehost Use local host's domain name as the default domain name to complete addresses

norestricted Do not apply RFC 1137 restricted encoding to addresses

noreverse Do not apply address reversal to addresses

norules Do not do channel-specific rewrite rule checks

nosourcesrs (New in MS 6.3p1) Messages matching this source channel will not have addresses SRS encoded.

percents Use % routing in the envelope; (legacy configuration's 733 is an alias for percents)

recipientcutoff Set a limit for the number of recipients-per-message-copy accepted on a channel; attempts to submit a message with more than
this number of recipients will cause all recipients to be rejected

recipientlimit Set a limit for the number of recipients-per-message-copy accepted on a channel; additional recipients will get a temporary
rejection error

remotehost Use remote host's name as the default domain name to complete addresses

restricted Apply RFC 1137 restricted encoding to addresses

reverse Apply address reversal to addresses in messages destined to this channel; i.e., apply reverse_url LDAP-provisioned address
reversal, the reverse database, and the REVERSE mapping table to addresses

routelocal Rewriting should shortcircuit routing addresses

rules Do channel-specific rewrite rule checks

sourceroute Use source routes in the message envelope; (_822 is an alias for sourceroute, synonymous with legacy configuration's 822)

sourcesrs (New in MS 6.3p1) Messages from this source channel are eligible for SRS encoding

spareN (New in 8.0.2.2) Fill in the corresponding spare value slot with the specified value

subaddressexact Alias must match exactly, including exact subaddress match

subaddressrelaxed Alias without subaddress may match

subaddresswild Alias with subaddress wildcard may match

unrestricted Do not apply RFC 1137 restricted encoding to addresses

uucp Alias for bangstyle

utf8header (New in MS 8.0.2) Enable unconditional EAI support

utf8negotiate (New in MS 8.0.2) Enable EAI support

utf8strict (New in MS 8.0.2) Enable EAI support with strict enforcement

validatelocalnone Enqueuing channels perform no validation check on the local part of addresses they enqueue to this channel

validatelocalsystem Enqueuing channels check that the local part of addresses they enqueue to this channel matches an account on the system

viaaliasoptional Alias match not required

viaaliasrequired Alias match required

Attachments and MIME processing

conditionalsecuritymultiparts Process inside security multiparts, retaining preamble material

convert_octet_stream Alias for convertoctetstream; in legacy configuration, convert application/octet-stream material as appropriate

convertoctetstream (Unified Configuration only) Convert application/octet-stream material as appropriate

defragment Reassemble any MIME-compliant message/partial parts queued to this channel

ignoreencoding Ignore Encoding: header on incoming messages

ignoremessageencoding (New in MS 6.3.) Ignore any Content-transfer-encoding: header line present (illegally) on incoming MIME message parts

ignoremultipartencoding (New in MS 6.3.) Ignore any Content-transfer-encoding: header line present on incoming MIME multipart parts

interpretencoding Interpret Encoding: header on incoming messages

interpretmessageencoding (New in MS 6.3.) Interpret any Content-transfer-encoding: header line present (illegally) on incoming MIME message parts

interpretmultipartencoding (New in MS 6.3.) Interpret any Content-transfer-encoding: header line present on incoming MIME multipart parts

linelength Message lines exceeding this length limit will be wrapped

maxblocks Maximum number of MTA blocks per message; longer messages are broken into multiple messages

maxlines Maximum number of message lines per message; longer messages are broken into multiple messages

nameparameterlengthlimit Maximum length to allow for NAME parameter of MIME Content-type: header line

noconvert_octet_stream Alias for noconvertoctetstream; in legacy configuration, do not convert application/octet-stream material

noconvertoctetstream (Unified Configuration only) Do not convert application/octet-stream material

nodefragment Do not perform special processing for message/partial messages

nolinelimit No limit specified for the number of lines allowed per message

nothurman Do not perform thurman format conversion

nouma Do not perform "thurman on demand" format conversion

parameterformatdefault (New in MS 7.0.5) Normal handling of MIME parameters, using RFC 2231 encoding when appropriate

parameterformatminimizeencoded (New in MS 7.0.5) Remove unnecessary, redundant RFC 2231 encoding from MIME parameters

parameterformatstripencoded (New in MS 7.0.5) Strip any characters requiring RFC 2231 encoding from MIME parameters, so that RFC 2231 encoding may be
removed

46–22 Messaging Server Reference

https://tools.ietf.org/html/rfc1137
https://tools.ietf.org/html/rfc1137
https://tools.ietf.org/html/rfc1137
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231

Functional group list of channel
options

parameterlengthlimit Maximum length to allow for parameters of MIME Content-type: header line

passthrough Do no message processing

processsecuritymultiparts Process inside security multiparts

retainsecuritymultiparts Do not process inside security multiparts

thurman Convert uuencoded and Binhex "blobs" to MIME format

uma Perform thurman conversion if would be MIME-ifying the message anyway for other reasons

BSMTP and Bitnet

contchar DEPRECATED: Specify batch SMTP continuation line character

contposition DEPRECATED: Specify folding point in batch SMTP lines

notick RESTRICTED: Do not put a ticket in the BSMTP stream

tick RESTRICTED: Put a ticket in the BSMTP stream

verb_never RESTRICTED: Ignore VERB commands in the BSMTP stream

verb_none RESTRICTED: Accept VERB commands in the BSMTP stream

verb_off RESTRICTED: Insert a VERB OFF command into the BSMTP stream

verb_on RESTRICTED: Insert a VERB ON command into the BSMTP stream

Character sets and eight bit data and EAI

charset7 Default character set to associate with 7-bit text messages

charset8 Default character set to associate with 8-bit text messages

charsetesc Default character set to associate with text containing the escape character

eightbit Channel supports eight bit characters

eightnegotiate Channel should negotiate use of eight bit transmission if possible

eightstrict Channel should reject messages that contain unnegotiated eight bit data

headerset7 RESTRICTED: Decode the specified charset in headers when dequeuing

headerset8 RESTRICTED: Decode the specified charset in headers when dequeuing

headersetesc RESTRICTED: Decode the specified charset in headers when dequeuing

parameterformatdefault (New in MS 7.0.5) Normal handling of MIME parameters, using RFC 2231 encoding when appropriate

parameterformatminimizeencoded (New in MS 7.0.5) Remove unnecessary, redundant RFC 2231 encoding from MIME parameters

parameterformatstripencoded (New in MS 7.0.5) Strip any characters requiring RFC 2231 encoding from MIME parameters, so that RFC 2231 encoding may be
removed

sevenbit Channel does not support eight bit characters; eight bit characters must be encoded

utf8header (New in MS 8.0.2) Enable unconditional EAI support

utf8negotiate (New in MS 8.0.2) Enable EAI support

utf8strict (New in MS 8.0.2) Enable EAI support with strict enforcement

Conversion tags and service conversions

destinationconversiontag (New in MS 7.0.5) Conversion tags to add to outgoing recipients

noserviceconversion (New in MS 7.0.3) Service conversions for messages coming in this channel must be enabled via the CHARSET-CONVERSION
mapping table

serviceconversion (New in MS 7.0.3) Perform service conversions for messages coming in this channel regardless of CHARSET-CONVERSION

sourceconversiontag (New in MS 7.0.5) Conversion tags to add to message

Display labels

caption (New in MS 6.3) Channel caption: a short description, suitable as the caption for a column of a table

description Channel description

DKIM

dkimignore (New in MS 7.0.5) Take no special action in regards to DKIM-Signature: header fields

dkimpreserve (New in MS 7.0.5) Don't rewrite DKIM-signed messages for specified domains

dkimremove (New in MS 7.0.5) Remove DKIM signatures

Error interpretation

usepermanenterror (New in MS 8.0) Override use_permanent_error MTA option on a per-source-channel basis

usetemporaryerror (New in MS 8.0) Override use_temporary_error MTA option on a per-source-channel basis

File creation in the MTA queue area

addrsperfile Number of addresses per message file

expandchannel Channel in which to perform deferred expansion due to application of expandlimit

expandlimit Process an incoming message "off-line" when the number of addressees exceeds this limit

multiple Accepts multiple destination hosts in a single message copy

single Only one envelope To address per message copy

Channels 46–23

https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231

Functional group list of channel
options

single_sys Each message copy must be for a single destination system

subdirs Use multiple subdirectories for messages queued to channel

Gateway/firewall/mailhub/Message Router channel connection

aliasdetourhost Specify an "override" mailHost for any user found in LDAP; effect is to "detour" messages for such a user to the specified host

aliasoptindetourhost (New in MS 6.2p4) Specify an "override" mailHost for any user who is opted-in via whatever LDAP attribute is named by the
ldap_detourhost_optin MTA option; the effect is to "detour" messages for such a user to the specified host

daemon Specify name of a gateway daemon (host) to route to

lastresort Specify a last resort host

multigate Channel serves multiple BITNET gateways, or multiple LMTP back ends

nomultigate Channel does not serve multiple BITNET gateways, or multiple LMTP back ends

user DEPRECATED as of MS 8.0; instead use the pipeuser option in restricted.cnf. Specify account under which to run the
pipe channel

Headers

addreturnpath Add a Return-Path: header line

authhost (New in 8.0.2.1) Use the domain of the authenticated user's primary address to complete addresses

authrewrite Use SMTP AUTH information in header

commentinc Leave comments in message header lines intact

commentmap Apply COMMENT_STRINGS mapping to comments in message header lines

commentomit Remove comments from message header lines

commentstrip Remove problematic characters from comment field in message header lines

commenttotal Strip comments (material in parentheses) everywhere

datefour Convert date/time specifications to four digit years

datetwo Convert date/time specifications to two digit years

dayofweek Include day of week in date/time specifications

defaulthost Specify a domain name to use to complete addresses

dropblank Strip blank To:, Resent-To:, Cc:, or Resent-Cc: headers

envelopetunnel (New in Cayenne) Tunnel envelope fields via header lines

fixsyntaxerrors (New in MS 8.0) Correct syntax errors in header fields

forcedreceivedfrom (New in MS 8.0.1) When constructing a Received: header line, force use of the specifed string in the "from ..." clause

header_733 Use % routing in the message header

header_822 Use source routes in the message header

header_uucp Use ! routing in the header

headerbottom+ (OpenVMS only) Place the message header at the bottom of the message (usage discouraged; use with caution)

headerdecodesrs Decode SRS encoding of addresses in header lines

headerfoldpreserve Attempt to preserve original header line fold points

headerfoldremove Re-do header line folding

headerinc Place the message header at the top of the message; i.e., normal handling

headerkeeporder (New in MS 6.3) Preserve ordering of header lines

headerlabelalignment Align headers

headerlimit Truncate message header at specified size

headerlineincrement Increment used when attempting to fold header lines

headerlinelength Fold long headers

headeromit+ (OpenVMS only) Omit the message header from the message (usage discouraged; use with caution)

headerread Apply source channel header trimming rules from a header option file to the message headers before headers are processed (use
with caution)

headerset7 RESTRICTED: Decode the specified charset in headers when dequeuing

headerset8 RESTRICTED: Decode the specified charset in headers when dequeuing

headersetesc RESTRICTED: Decode the specified charset in headers when dequeuing

headertrim Apply destination channel header trimming rules from an header option file to the message headers after headers are processed
(use with caution)

includereceivedip (New in 8.0.1.2) Include IP address information in the from clauses of generated Received: lines.

inner Rewrite inner message headers on message queued to this channel

innertrim Apply header trimming rules from a header option file to inner message headers (use with caution)

limitheadertermination (New in MS 7.0.5) Only CRLFCRLF terminates message header

maxheaderaddrs Maximum number of addresses per message header line; longer header lines are broken into multiple header lines

maxheaderchars Maximum number of characters per message header line; longer header lines are broken into multiple header lines

46–24 Messaging Server Reference

Functional group list of channel
options

missingrecipientpolicy Set policy for how to legalize (which header to add) messages that are lacking any recipient headers

noaddreturnpath Do not add a Return-Path: header line

noauthhost (New in 8.0.2.1) Disable use the domain of the authenticated user's primary address to complete addresses

nodayofweek Remove day of week from date/time specifications

nodefaulthost Do not specify a domain name to use to complete addresses

nodropblank Do not strip blank To:, Resent-To:, Cc:, or Resent-Cc: headers

noheaderdecodesrs Do not decode SRS encoding of addresses in header lines (default)

noheaderread Do not apply header trimming rules from any header option file upon message enqueue

noheadertrim Do not apply header trimming rules from any header option file

noinner Do not rewrite inner message headers on messages queued to this channel

noinnertrim Do not apply header trimming to inner message headers

noreceivedfor Do not include envelope To address in Received: header

noreceivedfrom Do not include the envelope From address when constructing Received: header

noremotehost Use local host's domain name as the default domain name to complete addresses

norestricted Do not apply RFC 1137 restricted encoding to addresses

noreverse Do not apply address reversal to addresses

norules Do not do channel-specific rewrite rule checks

nosourceinner (New in MS 8.1.0.1) Do not rewrite inner message headers on message sent from this channel

nox_env_to Do not add X-Envelope-to: header lines while enqueuing

passsyntaxerrors (New in MS 8.0) Disable certain header file syntax error fixup

passthrough Do no message processing

personalinc Leave personal names in message header lines intact

personalmap Apply PERSONAL_NAMES mapping to personal names in message header lines

personalomit Remove personal name fields from message header lines

personalstrip Strip problematic characters from personal name fields in message header lines

receivedfor Include envelope to address in Received: header

receivedfrom Include the envelope From address when constructing Received: header

receivedstate (New in MS 8.0) Include a state indicator when constructing Received: header

relaxheadertermination Allow lines containing white space characters to terminate the header of a message

remotehost Use remote host's name as the default domain name to complete addresses

restricted Apply RFC 1137 restricted encoding to addresses

reverse Apply address reversal to addresses; that is, apply reverse_url LDAP-based address reversal, the reverse database, and the
REVERSE mapping to addresses

rules Do channel-specific rewrite rule checks

sensitivitycompanyconfidential Allow messages of any sensitivity

sensitivitynormal Reject messages whose sensitivity is higher than normal

sensitivitypersonal Reject messages whose sensitivity is higher than personal

sensitivityprivate Reject messages whose sensitivity is higher than private

sourcecommentinc Leave comments in incoming message header lines intact

sourcecommentmap Apply COMMENT_STRINGS mapping to comments in incoming message header lines

sourcecommentomit Remove comments from incoming message header lines

sourcecommentstrip Remove problematic characters from comment field in incoming message header lines

sourcecommenttotal Strip comments (material in parentheses) everywhere in incoming messages

sourceinner (New in MS 8.1.0.1) Rewrite inner message headers on message sent from this channel

sourcepersonalinc Leave personal names in incoming message header lines intact

sourcepersonalmap Apply PERSONAL_NAMES mapping to personal names in incoming message header lines

sourcepersonalomit Remove personal name fields from incoming message header lines

sourcepersonalstrip Strip problematic characters from personal name fields in incoming message header lines

suppressreceivedip (New in 8.0.1.2) Do not include IP address information in the from clauses of generated Received: lines.

unrestricted Do not apply RFC 1137 restricted encoding to addresses

usereplyto Specify mapping of Reply-to: header

useresent Specify mapping of Resent- headers for non RFC 822 environments

x_env_to Add X-Envelope-to: header lines while enqueuing

Host names

additional_host_names (Unified Configuration only) Additional hosts the channel can reach

Channels 46–25

https://tools.ietf.org/html/rfc1137
https://tools.ietf.org/html/rfc1137
https://tools.ietf.org/html/rfc1137

Functional group list of channel
options

daemon Specify name of a gateway daemon to route to

defaulthost Specify a domain name to use to complete addresses

lastresort Specify a last resort host

local_host_alias (Unified Configuration only) Override official_host_name on outgoing messages

nodefaulthost Do not specify a domain name to use to complete addresses

noremotehost Use local host's domain name as the default domain name to complete addresses

official_host_name (Unified Configuration only) Official host name for the channel

remotehost Use remote host's name as the default domain name to complete addresses

Incoming channel matching and switching

allowswitchchannel Allow switching to this channel from a switchchannel channel

nosaslswitchchannel Do not switch channel upon successful SASL authentication

noswitchchannel Stay with the server channel; do not switch to the channel associated with the originating host; do not permit being switched to

saslswitchchannel Switch to another channel when SASL authentication is successful; the channel to switch to is specified via the value
of the user's mailSMTPSubmitChannel LDAP attribute (or as of MS 8.0, whatever LDAP attribute is named by the
ldap_auth_attr_submit_channel MTA option

switchchannel Switch effective source channel to the channel associated with the originating host's source IP

tlsswitchchannel Switch to specified source channel upon successful TLS negotiation

userswitchchannel (New in MS 6.3) Enable switching from this source channel to a channel selected via a per-user or per-domain LDAP attribute

Logging and debugging

logging Log message enqueues and dequeues into the MTA message transaction log file

logheader Include message header records in the MTA message transaction log file

master_debug Generate debugging output in the channel's master program output

nologging Do not log message enqueues and dequeues into the MTA message transaction log file

nomaster_debug Do not generate debugging output in the channel's master program output

noslave_debug Do not generate debugging output in the channel's slave program output

slave_debug Generate debugging output in the channel's slave program output

Long address lists or headers

alternatechannel Messages that exceed a channel's alternateblocklimit, alternatelinelimit, or alternaterecipientlimit will be
diverted to the channel's specified alternatechannel

alternaterecipientlimit Divert messages that exceed the specified number of recipients to the alternatechannel

deferralrejectlimit (New in MS 6.2) Limit the number of bad (failing) recipient addresses

disconnectrecipientlimit (New in MS 6.2) Force SMTP session disconnect after the specified number of recipients is exceeded

disconnectrejectlimit (New in MS 6.2) Force SMTP session disconnect after the specified number of bad recipients (rejected recipients) is exceeded

expandchannel Channel in which to perform deferred expansion due to application of expandlimit

expandlimit Process an incoming message "off-line" when the number of addressees exceeds this limit

holdlimit .HELD an incoming message when the number of addressees exceeds this limit

maxprocchars Specify maximum length of headers to process

recipientcutoff Set a limit for the number of recipients-per-message-copy accepted on a channel; attempts to submit a message with more than
this number of recipients will cause all recipients to be rejected

recipientlimit Set a limit for the number of recipients-per-message-copy accepted on a channel; additional recipients will get a temporary
rejection error

Message hashes

deletemessagehash (New in MS 6.3) Delete message hash

generatemessagehash (New in MS 6.3) Generate a hash of specified message header fields

keepmessagehash (New in MS 6.3) Keep message hash

Message tracking

notrackingclient (New in MS 8.0.) Disable SMTP client support of message tracking

notrackingserver (New in MS 8.0.) Disable SMTP server support of message tracking

trackingclient (New in MS 8.0.) Enable SMTP client support of message tracking

trackingdelivered (New in MS 8.0.) Treat messages dequeued from this channel as delivered

trackingfirst (New in MS 8.0.) Tracking information goes to first alias expansion result

trackinggenerate (New in MS 8.0.) Enable SMTP client support of message tracking

trackinginternal (New in MS 8.0.) This channel transfers internally

trackingmultiple (New in MS 8.0.) Tracking information passes through aliases

trackingrelayed (New in MS 8.0.) Treat messages dequeued from this channel as relayed

trackingserver (New in MS 8.0.) Enable SMTP server support of message tracking

46–26 Messaging Server Reference

Functional group list of channel
options

trackingsingle (New in MS 8.0.) Only pass tracking info through single recipient alias

trackingtimeoutdefault (New in MS 8.0.) Default timeout (s) for tracking requests

trackingtimeoutmax (New in MS 8.0.) Maximum timeout (s) for tracking requests

trackingtimeoutmin (New in MS 8.0.) Minimum timeout (s) for tracking requests

Multi Level Security

mlslabel (New in MS 7.0) RESTRICTED: Not yet fully implemented

mlsrange (New in MS 7.0) RESTRICTED: Not yet fully implemented

Notification messages and postmaster messages

aliaspostmaster Redirect postmaster messages to the local channel postmaster

copysendpost Send copies of failures to the postmaster unless the originator address is blank

copywarnpost Send copies of warnings to the postmaster unless the originator address is blank

dispositionchannel (New in MS 6.2) Channel to use when generating dispositions

errsendpost Send copies of failures to the postmaster if the originator address is illegal

errwarnpost Send copies of warnings to the postmaster if the originator address is illegal

expirysource (New in MS 7.0) Source channel supports Expiry-date: header value

includefinal Include final form of address in delivery notifications

language Specify a preferred language for messages that have none

noexpirysource (New in MS 7.0) Source channel ignores Expiry-date: header value

nonotary RESTRICTED: Disable DSN extension use by SMTP/LMTP client

nonurgentnotices Specify the amount of time which may elapse before notices are sent and messages returned for messages of non-urgent priority

noreturnaddress Use the value of the return_address MTA option

noreturnpersonal Use the value of the return_personal MTA option

normalnotices Specify the amount of time which may elapse before notices are sent and messages returned for messages of normal priority

nosendpost Do not send copies of failures to the postmaster

notary Support SMTP DSN extensions

notices Specify the amount of time which may elapse before notices are sent and messages returned

notificationchannel (New in MS 6.2) Channel to use when generating notifications

nowarnpost Do not send copies of warnings to the postmaster

postheadbody Both the message's header and body are sent to the postmaster when a delivery failure occurs

postheadonly Only the message's header is sent to the postmaster when a delivery failure occurs

processsecuritymultiparts Process inside security multiparts

reportboth Generate both header and NOTARY delivery receipt requests from "foreign" delivery receipt requests

reportheader Generate only header delivery receipt requests from "foreign" delivery receipt requests

reportnotary Generate only NOTARY delivery receipt requests from "foreign" delivery receipt requests

reportsuppress Suppress delivery receipt requests from "foreign" delivery receipt requests

retainsecuritymultiparts Do not process inside security multiparts

returnaddress Set the return address for the local Postmaster

returnenvelope Control use of blank envelope return addresses

returnpersonal Set the personal name for the local Postmaster

sendpost Send copies of failures to the postmaster

suppressfinal Include only original form of address in notification messages

urgentnotices Specify the amount of time which may elapse before notices are sent and messages returned for messages of urgent priority

useintermediate Include the "intermediate" form of recipient address, that form previously presented as active from the MTA's point of view, in
delivery status notification messages

warnpost Send copies of warnings to the postmaster

Processing control and job submission

addrsperjob Number of addresses to be processed by a single job

after Specify time delay before master channel programs run

backoff Channel delivery retry backoff intervals

bidirectional Channel is served by both a master and slave program

deferred DEPRECATED as of MS 7.0, in favor of deferreddestination, which it is an alias for in Unified Configuration; honor
deferred delivery dates in Deferred-delivery: header lines;

deferreddestination (New in MS 7.0) Honor deferred delivery dates in Deferred-delivery: header lines; (deferred is an alias for
deferreddestination)

deferredsource (New in MS 7.0) Honor deferred delivery dates in Deferred-delivery: header lines

Channels 46–27

Functional group list of channel
options

expandchannel Channel in which to perform deferred expansion due to application of expandlimit

expandlimit Process an incoming message "off-line" when the number of addressees exceeds this limit

filesperjob Number of queue entries to be processed by a single job

futurerelease (New in MS 7.0) Enable source channel support for the future release SMTP extension

ipbackoff (New in MS 8.0.2.3) Channel delivery retry backoff intervals for messages in IP backoff mode

ipbackofftimeout (New in MS 8.0.2.3) Timeout for IP backoff entries made in memcache or Redis.

master Channel is served only by a master program

maxjobs Maximum number of jobs which can be created at once

maxperiodicnonurgent OBSOLETE: Job Controller behavior is unaffected by this option; (used to specify that periodic jobs should only process
messages of non-urgent or lower priority); see instead Job Controller priority-based processing

maxperiodicnormal OBSOLETE: Job Controller behavior is unaffected by this option; (used to specify that periodic jobs should only process
messages of normal or lower priority); see instead Job Controller priority-based processing

maxperiodicurgent OBSOLETE: Job Controller behavior is unaffected by this option; (used to specify that periodic jobs should process messages of
urgent or lower priority); see instead Job Controller priority-based processing

minperiodicnonurgent OBSOLETE: Job Controller behavior is unaffected by this option; (used to specify that periodic jobs should only process
messages of non-urgent or higher priority); see instead Job Controller priority-based processing

minperiodicnormal OBSOLETE: Job Controller behavior is unaffected by this option; (used to pecify that periodic jobs should only process messages
of normal or higher priority); see instead Job Controller priority-based processing

minperiodicurgent OBSOLETE: Job Controller behavior is unaffected by this option; (used to specify that periodic jobs should only process
messages of urgent priority); see instead Job Controller priority-based processing

mtprioritiesallowed (New inMS 8.0) Range of SMTP MT-PRIORITY values accepted during enqueue; other values adjusted to be within range

mtprioritiesrequired (New in MS 8.0) Range of SMTP MT-PRIORITY values accepted during enqueue; messages with other values will be rejected.

nodeferred Do not honor deferred delivery dates

nodeferreddestination (New in MS 7.0u4) Do not honor deferred delivery dates

nodeferredsource (New in MS 7.0u4) Do not honor deferred delivery dates

nonurgentafter Specify time delay before master channel programs run for non-urgent priority messages

nonurgentbackoff Channel delivery retry backoff intervals for non-urgent priority messages

nonurgentblocklimit Force messages above this size to wait unconditionally for a periodic job

normalafter Specify time delay before master channel programs run for normal priority messages

normalbackoff Channel delivery retry backoff intervals for normal priority messages

normalblocklimit Force messages above this size to non-urgent priority

pool Specify Job Controller pool in which channel programs run

secondclassafter Specify time delay before channel runs for secondclass priority messages

secondclassblocklimit Force messages above this size to third class priority

slave Channel is serviced only by a slave program

threaddepth Number of messages triggering new thread with SMTP client

urgentafter Specify time delay before master channel programs run for urgent priority messages

urgentbackoff Channel delivery retry backoff intervals for urgent priority messages

urgentblocklimit Force messages above this size to normal priority

user DEPRECATED as of MS 8.0; instead use the pipeuser option in restricted.cnf. Specify account under which to run the
pipe channel

Sensitivity limits

sensitivitycompanyconfidential Allow messages of any sensitivity

sensitivitynormal Reject messages whose sensitivity is higher than normal

sensitivitypersonal Reject messages whose sensitivity is higher than personal

sensitivityprivate Reject messages whose sensitivity is higher than private

Sieve filters and delivery flags

addrtypescan (New in MS 7.0.5) Store recipient address "type" in an envelope flag

addrtypescanbccdefault (New in MS 7.0.5) Store recipient address "type" in an envelope flag, assuming unmatched recipient addresses are Bcc: addresses

channelfilter Alias for destinationfilter

deliveryflags Set flags controlling certain delivery behaviors

destinationfilter Specify the location of channel filter file for outgoing messages; (channelfilter is an alias for destinationfilter)

fileinto Specify effect on address when a Sieve "fileinto" action is applied

filter Specify the location of user filter files

flagtransfer Support private XDFLG/XAFLG SMTP/LMTP extensions and (new in MS 8.0.2.3) XCONVTAG SMTP extension; pass along
delivery flags, such as trusting a subaddress, IMAP flags, and conversion tags.

noaddrtypescan (New in MS 7.0.5) Do not store recipient address "type" in an envelope flag

46–28 Messaging Server Reference

Functional group list of channel
options

nochannelfilter Alias for nodestinationfilter

nodestinationfilter Do not perform channel filtering on outgoing messages; (nochannelfilter is an alias for nodestinationfilter)

nofileinto Sieve "fileinto" action has no effect

nofilter No external-to-LDAP user Sieve filters

noflagtransfer Disable private XDFLG/XAFLG SMTP/LMTP extensions and (new in MS 8.0.2.3) XCONVTAG SMTP extension; do not pass
along delivery flags, IMAP flags, and conversion tags.

nosourcefilter Source channel does not have an associated Sieve filter

scriptlimit (New in MS 8.0) Maximum number of Sieve scripts a user can have

sievelimit (New in MS 8.0) Maximum size of a user Sieve script

sizelimit (New in MS 8.0) Maximum combined size of a user's Sieve scripts

sourcefilter Specify the location of the channel's Sieve filter for incoming messages

Size limits on messages

alternateblocklimit Divert messages that exceed the specified number of blocks to the alternatechannel

alternatechannel Messages that exceed a channel's alternateblocklimit, alternatelinelimit, or alternaterecipientlimit will be
diverted to the channel's specified alternatechannel

alternatelinelimit Divert messages that exceed the specified number of lines to the alternatechannel

alternaterecipientlimit Divert messages that exceed the specified number of recipients to the alternatechannel

blocklimit Maximum number of MTA blocks allowed per message

holdlimit .HELD an incoming message when the number of addressees exceeds this limit

linelimit Maximum number of lines allowed per message

noblocklimit No limit specified for the number of MTA blocks allowed per message

nonurgentblocklimit Force messages above this size to wait unconditionally for a periodic job

normalblocklimit Force messages above this size to non-urgent priority

sourceblocklimit Maximum number of MTA blocks allowed per incoming message

urgentblocklimit Force messages above this size to normal priority

Spam/virus filter package use

destinationbrightmail DEPRECATED: Alias for destinationspamfilter1

destinationbrightmailoptin DEPRECATED: Alias for destinationspamfilter1optin

destinationspamfilter Alias for destinationspamfilter1

destinationspamfilter1 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 1) for messages enqueued to this destination channel

destinationspamfilter1optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 1) for messages enqueued to this destination channel,
with the optin value provided as argument

destinationspamfilter2 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 2) for messages enqueued to this destination channel

destinationspamfilter2optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 2) for messages enqueued to this destination channel,
with the optin value provided as argument

destinationspamfilter3 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 3) for messages enqueued to this destination channel

destinationspamfilter3optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 3) for messages enqueued to this destination channel,
with the optin value provided as argument

destinationspamfilter4 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 4) for messages enqueued to this destination channel

destinationspamfilter4optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 4) for messages enqueued to this destination channel,
with the optin value provided as argument

destinationspamfilter5 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 5) for messages enqueued to this destination channel

destinationspamfilter5optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 5) for messages enqueued to this destination channel,
with the optin value provided as argument

destinationspamfilter6 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 6) for messages enqueued to this destination channel

destinationspamfilter6optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 6) for messages enqueued to this destination channel,
with the optin value provided as argument

destinationspamfilter7 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 7) for messages enqueued to this destination channel

destinationspamfilter7optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 7) for messages enqueued to this destination channel,
with the optin value provided as argument

destinationspamfilter8 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 8) for messages enqueued to this destination channel

destinationspamfilter8optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 8) for messages enqueued to this destination channel,
with the optin value provided as argument

destinationspamfilteroptin Alias for destinationspamfilter1optin

disabledestinationbrightmail DEPRECATED: Alias for disabledestinationspamfilter1

disabledestinationspamfilter Alias for disabledestinationspamfilter1

disabledestinationspamfilter1 (New in MS 6.2) Disable spam/virus filtering (via spam/filter package 1) for messages enqueued to this channel

disabledestinationspamfilter2 (New in MS 6.2) Disable spam/virus filtering (via spam/filter package 2) for messages enqueued to this channel

Channels 46–29

Functional group list of channel
options

disabledestinationspamfilter3 (New in MS 6.2) Disable spam/virus filtering (via spam/filter package 3) for messages enqueued to this channel

disabledestinationspamfilter4 (New in MS 6.2) Disable spam/virus filtering (via spam/filter package 4) for messages enqueued to this channel

disabledestinationspamfilter5 (New in MS 6.3-0.15) Disable spam/virus filtering (via spam/filter package 5) for messages enqueued to this channel

disabledestinationspamfilter6 (New in MS 6.3-0.15) Disable spam/virus filtering (via spam/filter package 6) for messages enqueued to this channel

disabledestinationspamfilter7 (New in MS 6.3-0.15) Disable spam/virus filtering (via spam/filter package 7) for messages enqueued to this channel

disabledestinationspamfilter8 (New in MS 6.3-0.15) Disable spam/virus filtering (via spam/filter package 8) for messages enqueued to this channel

disablesourcebrightmail DEPRECATED: Alias for disablesourcespamfilter1

disablesourcespamfilter DEPRECATED: Alias for disablesourcespamfilter1

disablesourcespamfilter1 (New in MS 6.2) Disable spam/virus filtering (via spam/virus filter package 1) for messages enqueued by this channel

disablesourcespamfilter2 (New in MS 6.2) Disable spam/virus filtering (via spam/virus filter package 2) for messages enqueued by this channel

disablesourcespamfilter3 (New in MS 6.2) Disable spam/virus filtering (via spam/virus filter package 3) for messages enqueued by this channel

disablesourcespamfilter4 (New in MS 6.2) Disable spam/virus filtering (via spam/virus filter package 4) for messages enqueued by this channel

disablesourcespamfilter5 (New in MS 6.3-0.15) Disable spam/virus filtering (via spam/virus filter package 5) for messages enqueued by this channel

disablesourcespamfilter6 (New in MS 6.3-0.15) Disable spam/virus filtering (via spam/virus filter package 6) for messages enqueued by this channel

disablesourcespamfilter7 (New in MS 6.3-0.15) Disable spam/virus filtering (via spam/virus filter package 7) for messages enqueued by this channel

disablesourcespamfilter8 (New in MS 6.3-0.15) Disable spam/virus filtering (via spam/virus filter package 8) for messages enqueued by this channel

sourcebrightmail DEPRECATED: Alias for sourcespamfilter1

sourcebrightmailoptin DEPRECATED: Alias for sourcespamfilter1optin

sourcespamfilter Alias for sourcespamfilter1

sourcespamfilter1 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 1) for messages enqueued by this source channel

sourcespamfilter1optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 1) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter2 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 2) for messages enqueued by this source channel

sourcespamfilter2optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 2) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter3 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 3) for messages enqueued by this source channel

sourcespamfilter3optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 3) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter4 (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 4) for messages enqueued by this source channel

sourcespamfilter4optin (New in MS 6.2) Enable spam/virus filtering (by spam/virus filter package 4) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter5 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 5) for messages enqueued by this source channel

sourcespamfilter5optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 5) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter6 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 6) for messages enqueued by this source channel

sourcespamfilter6optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 6) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter7 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 7) for messages enqueued by this source channel

sourcespamfilter7optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 7) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilter8 (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 8) for messages enqueued by this source channel

sourcespamfilter8optin (New in MS 6.3) Enable spam/virus filtering (by spam/virus filter package 8) for messages enqueued by this source channel, with
the optin value provided as argument

sourcespamfilteroptin Alias for sourcespamfilter1optin

SMTP and LMTP protocol

allowetrn Honor SMTP client ETRN commands

bccserver (New in MS 8.0.2.3) XBCC extension is enabled

binaryclient (New in MS 6.3.) RESTRICTED: Not yet fully implemented. Enable BINARYMIME support in the SMTP client

binaryserver (New in MS 6.3 but at that time RESTRICTED: Not yet fully implemented; actual implementation new in MS 8.0) Enable
BINARYMIME support in the SMTP server

blocketrn Do not honor SMTP client ETRN commands

checkehlo Check the SMTP greeting banner for whether to use EHLO

chunkingclient (New in MS 6.3-0.15) Enable CHUNKING support in the SMTP client

chunkingserver (New in MS 6.3-0.15) Enable CHUNKING support in the SMTP server

conditionalpassthrough "Pass-through" mode, if any Received: header lines are present

conditionalrelay "Relay" mode, if any Received: header lines are present

deferralrejectlimit (New in MS 6.2) Limit the number of bad (failing) recipient addresses

destinationnosolicit (New in MS 6.2) List of solicitation types not accepted

46–30 Messaging Server Reference

Functional group list of channel
options

disableetrn Disable support for the ETRN SMTP command

disconnectbadburllimit (New in MS 7.0u4) Force SMTP SUBMIT session disconnect after a specified number of invalid BURL commands is exceeded

disconnectbadcommandlimit New in (MS 6.2) Force SMTP session disconnect after a specified number of bad (unrecognized) SMTP commands is exceeded

disconnectcommandlimit (New in MS 7.0u1) Force SMTP session disconnect after a specified number of SMTP commands is exceeded

disconnectrecipientlimit (New in MS 6.2) Force SMTP session disconnect after a specified number of recipients is exceeded

disconnectrejectlimit (New in MS 6.2) Force SMTP session disconnect after a specified number of bad recipients (rejected recipients) is exceeded

disconnecttransactionlimit (New in MS 6.2) Force SMTP session disconnect after a specified transaction limit is exceeded

domainetrn Honor only those SMTP client ETRN commands that specify a domain

domainvrfy Issue SMTP VRFY commands using full address

ehlo Use EHLO on all initial SMTP connections

eightbit Channel supports eight bit characters

eightnegotiate Channel should negotiate use of eight bit transmission if possible

eightstrict Channel should reject messages that contain unnegotiated eight bit data

expnallow (New in MS 6.1) Explicitly enable support of the SMTP command EXPN

expndefault (New in MS 6.1) Default handling of the SMTP command EXPN

expndisable (New in MS 6.1) Disable support of the SMTP command EXPN

flagtransfer Support private XDFLG/XAFLG SMTP/LMTP extensions and (new in MS 8.0.2.3) XCONVTAG SMTP extension; pass along
delivery flags, such as trusting a subaddress, IMAP flags, and conversion tags.

futurerelease (New in MS 7.0) Enable source channel support for the future release SMTP extension

lmtp Channel uses LMTP

lmtp_cr Accept CR as an LMTP line terminator

lmtp_crlf Require CRLF as the LMTP line terminator

lmtp_crorlf Allow any of CR, LF, or CRLF as the LMTP line terminator

lmtp_lf Accept LF as an LMTP line terminator

localvrfy Issue SMTP VRFY command using local address

loopcheck Enable support for the XLOOP SMTP extension (used to detect a type of message loop)

mailfromdnsverify Verify that the domain specified on MAIL FROM: line is in the DNS

maxconnectionrateperdomain Implements a limit on the rate of connections made to a domain using the smartsend plugin

maxconnectionsperdomain Implements limits on the number of simultaneous connections to a domain using the smartsend plugin

maxmessagerateperdomain Implements a limit on the rate of messages sent to a domain using the smartsend plugin

mtprioritiesallowed (New in MS 8.0) Range of SMTP MT-PRIORITY values accepted during enqueue; other values adjusted to be within range

mtprioritiesrequired (New in MS 8.0) Range of SMTP MT-PRIORITY values accepted during enqueue; messages with other values will be rejected.

nobccserver (New in MS 8.0.2.3) XBCC extension is disabled

nobinaryclient (New in MS 6.3.) Disable BINARYMIME support in the SMTP client

nobinaryserver (New in MS 6.3.) Disable BINARYMIME support in the SMTP server

nochunkingclient (New in MS 6.3.) Disable CHUNKING support in the SMTP client

nochunkingserver (New in MS 6.3.) Disable CHUNKING support in the SMTP server

noehlo Never use the SMTP EHLO command

noflagtransfer Disable private XDFLG/XAFLG SMTP/LMTP extensions and (new in MS 8.0.2.3) XCONVTAG SMTP extension; do not pass
along delivery flags, IMAP flags, and conversion tags.

noloopcheck Disable support for the XLOOP SMTP extension (used to detect a type of message loop)

nomailfromdnsverify Do not perform DNS domain verification on the MAIL FROM: address

noproxyprotocol (New in MS 8.1.0.1) Proxy protocol support is disabled

nosendetrn Do not send SMTP ETRN command

nosmtp Channel does not use SMTP

notary Normal NOTARY support

noturn Disable the SMTP TURN command

novrfy Do not issue SMTP VRFY commands

noxclient (New in MS 8.0) XCLIENT SMTP extension is disabled

passthrough Do no message processing

proxyprotocol (New in MS 8.1.0.1) Proxy protocol support is enabled

recipientcutoff Set a limit for the number of recipients-per-message-copy accepted on a channel; attempts to submit a message with more than
this number of recipients will cause all recipients to be rejected

recipientlimit Set a limit for the number of recipients-per-message-copy accepted on a channel; additional recipients will get a temporary
rejection error

refuseehlo RESTRICTED: Disable EHLO support in SMTP server

Channels 46–31

Functional group list of channel
options

refusenotary (New in MS 8.0.1) RESTRICTED: Disable DSN extension support in SMTP server

rejectsmtplonglines Reject incoming SMTP messages with illegally long lines

relay Mark the channel as a relay channel

sendetrn Send SMTP ETRN command

sevenbit Channel does not support eight bit characters; eight bit characters must be encoded

silentetrn Honor SMTP client ETRN commands, without echoing channel information

smtp Channel uses SMTP

smtp_cr Accept CR as an SMTP line terminator

smtp_crlf Require CRLF as the SMTP line terminator

smtp_crorlf Allow any of CR, LF, or CRLF as the SMTP line terminator; default on TCP/IP channels

smtp_lf Accept LF as an SMTP line terminator

sourcenosolicit (New in MS 6.2) List of solicitation types not accepted

streaming Specify degree of protocol streaming for channel to use

submit Mark the channel as a submit-only channel

transactionlimit (New in MS 6.1) Limit the number of transactions per SMTP session (messages per SMTP connection) accepted

truncatesmtplonglines Truncate incoming SMTP messages with illegally long lines

turn RESTRICTED: Enable the SMTP TURN command

turn_in RESTRICTED: Enable the SMTP TURN command for incoming connections; that is, the SMTP server will accept SMTP TURN
commands

turn_out RESTRICTED

vrfyallow Provide informative responses to SMTP VRFY command

vrfydefault Default responses to SMTP VRFY command, according to channel's TCP/IP-channel-specific HIDE_VERIFY option setting

vrfyhide Provide obfuscatory responses to SMTP VRFY command

wrapsmtplonglines Wrap incoming SMTP messages with illegally long lines

xclient (New in MS 8.0) XCLIENT SMTP extension is enabled, only one group of XCLIENT commands permitted

xclientrepeat (New in MS 8.0) XCLIENT SMTP extension is enabled, and groups of XCLIENT commands are permitted

xclientsasl (New in MS 8.0) XCLIENT SMTP extension is enabled, and LOGIN attribute is allowed

xclientsaslrepeat (New in MS 8.0) XCLIENT SMTP extension is enabled, LOGIN attribute is permitted, and groups of XCLIENT commands are
permitted

TCP/IP connections, DNS lookups, and SOCKS connections

affinitylist (New in MS 8.0) Enable affinity lookups, disable MX lookups

cacheeverything Cache all connection information

cachefailures Cache only connection failure information

cachesuccesses Cache only connection success information

connectalias Do not rewrite addresses upon message dequeue

connectcanonical Rewrite addresses upon message dequeue

daemon Specify name of a gateway daemon to route to

defaultmx Channel determines whether or not to do MX lookups from network

defaultnameservers Consult TCP/IP stack's choice of nameservers

dnsforcetemporary Treat host not found and no address lookup errors as temporary failures. This option is new in 8.0.1.3.

forwardcheckdelete If a reverse DNS lookup has been performed, next perform a forward lookup on the returned name to check that the returned IP
number matches the original; if not, delete the name and use the IP address

forwardchecknone Do not perform a forward lookup after a DNS reverse lookup

forwardchecktag If a reverse DNS lookup has been performed, next perform a forward lookup on the returned name to check that the returned IP
number matches the original; if not, tag the name with *

identnone Do not perform IDENT lookups; do perform IP to hostname translation; include both hostname and IP address in Received:
header

identnonelimited Do not perform IDENT lookups; do perform IP to hostname translation, but do not use the hostname during channel switching;
include both hostname and IP address in Received: header

identnonenumeric Do not perform IDENT lookups or IP to hostname translation

identnonesymbolic Do not perform IDENT lookups; do perform IP to hostname translation; include only the hostname in Received: header

identtcp Perform IDENT lookups on incoming SMTP connections and IP to hostname translation; include both hostname and IP address
in Received: header

identtcplimited Do perform IDENT lookups; do perform IP to hostname translation, but do not use the hostname during channel switching;
include both hostname and IP address in Received: header

identtcpnumeric Perform IDENT lookups on incoming SMTP connections, but do not perform IP to hostname translation

identtcpsymbolic Perform IDENT lookups on incoming SMTP connections and IP to hostname translation; include only hostname in Received:
header

46–32 Messaging Server Reference

Functional group list of channel
options

interfaceaddress Bind to the specified TCP/IP interface address

lastresort Specify a last resort host

mailfromdnsverify Verify that the domain specified on MAIL FROM: line is in the DNS

mx TCP/IP network and software supports MX record lookups

nameservers Consult specified nameservers rather than TCP/IP stack's choice (only for MX records as of MS 7.0)

nocache Do not cache any connection information

nodns+ On OpenVMS, TCP/IP network does not support DNS (nameserver) lookups; on UNIX, merely disables MX lookups since on
UNIX it is nsswitch.conf that controls consultation of nameservers

nodnsforcetemporary Treat host not found and no address lookup errors as permanent failures. This option is new in 8.0.1.3.

nomailfromdnsverify Do not perform DNS domain verification on the MAIL FROM: address

nomx TCP/IP network does not support MX lookups

nonrandommx Do MX lookups; do not randomize returned entries with equal precedence

nosocks Do not do SOCKS connections

port Send to the specified TCP/IP port

randommx Do MX lookups; randomize returned entries with equal precedence

spfhelo (New in MS 6.3) Perform an SPF lookup at the HELO/EHLO command

spfmailfrom (New in MS 6.3) Perform an SPF lookup at the MAIL FROM command

spfnone (New in MS 6.3) Do not perform any SPF lookups

spfrcptto (New in MS 6.3) Perform an SPF lookup at the RCPT TO command

threaddepth Number of messages triggering new thread with multithreaded SMTP client

TLS and SASL

authpassword (New in MS 7.0.5) Password for SMTP channel's client use of SMTP AUTH PLAIN

authrewrite Use SMTP AUTH information in header

authusername (New in MS 7.0.5) Username for SMTP channel's client use of SMTP AUTH PLAIN

disconnectbadauthlimit (New in MS 6.2) Force SMTP session disconnect after a specified number of failed SMTP AUTH attempts

explicitsaslexternal (New in MS 8.0) Disable automatic use of AUTH EXTERNAL at MAIL FROM

externalidentity (New in MS 7.0.5) Identity for SMTP channel client use of SMTP AUTH EXTERNAL

implicitsaslexternal (New in MS 8.0) Enable automatic use of AUTH EXTERNAL at MAIL FROM after successful negotiation of TLS

maysasl Allow SMTP server and client SASL authentication

maysaslclient (Effective as of MS 7.0-3.01) SMTP client attempts to use SASL authentication

maysaslserver SMTP server offers SASL authentication

maytls SMTP client and server allow TLS use

maytlsclient SMTP client will attempt TLS use

maytlsserver SMTP server allows TLS use

msexchange Channel serves MS Exchange gateways

mustsasl Must use SASL authentication

mustsaslclient (Effective as of MS 7.0-3.01) SMTP client insists upon SASL authentication

mustsaslserver SMTP server insists upon SASL authentication

musttls SMTP client and server insist upon TLS use and will not transfer messages with remote sides that do not support TLS

musttlsclient SMTP client insists upon TLS use and will not send messages to any remote SMTP server that does not support TLS use

musttlsserver SMTP server insists upon TLS use and will not accept messages from any remote SMTP client that does not support TLS use

nomsexchange Channel does not serve MS Exchange gateways

nosasl SASL authentication not attempted or permitted

nosaslclient SMTP client does not attempt SASL authentication

nosaslpassauth Do not pass along a MAIL FROM AUTH parameter

nosaslserver SMTP server does not permit SASL authentication

nosaslswitchchannel Do not switch channel upon successful SASL authentication

nosasltrustauth (New in MS 7.0u3) Do not promote a MAIL FROM AUTH parameter to the MTA's authenticated originator address envelope
field

notls SMTP client and server neither attempt nor allow TLS use

notlsclient SMTP client does not attempt TLS use when sending messages

notlsserver SMTP server does not offer or allow TLS use when receiving messages

saslpassauth Pass along a MAIL FROM AUTH parameter

saslruleset Specify the security configuration rule set to use for SASL transactions

saslswitchchannel Switch to another channel when SASL authentication is successful

Channels 46–33

Addresses channel options

sasltrustauth (New in MS 7.0u3) Promote any MAIL FROM AUTH parameter to the MTA's authenticated originator address envelope field

tlsswitchchannel Switch to specified channel upon successful TLS negotiation

+Supported only on OpenVMS.

46.3.3 Addresses channel options
There are many channel options relating to address handling. These are some of those most
directly relating to address handling. See also the Long address lists or headers channel
options for special handling of large numbers (long lists) of addresses, and the Headers
channel options as a number of channel options relate to insertion or propagation of addresses
in header lines.

46.3.3.1 _733 Option

The legacy configuration 733 channel option has been replaced in Unified Configuration by
percents.

46.3.3.2 _822 Option

The legacy configuration 822 channel option has been replaced in Unified Configuration by
sourceroute.

46.3.3.3 Envelope recipient validity checks (acceptalladdresses,
acceptvalidaddresses)

When specified on a source channel, the acceptalladdresses option causes all envelope
recipient addresses to be accepted unconditionally. Rather than returning errors during
the SMTP session, a delivery status notification, or DSN, will be returned later if the
message cannot be delivered to the specified recipient. With acceptalladdresses,
various sorts of normally "invalid: recipient addresses will be accepted: syntactically invalid
addresses, addresses of local users with problematic status (such as being "over quota"
or "disabled" -- see the ldap_user_mail_status, ldap_group_mail_status, and
ldap_domain_attr_mail_status MTA options), and recipients of messages that fail
message acceptability checks. Relevant message acceptability checks include checking on
whether a message: exceeds a configured sensitivity limit, or contains unnegotiated eight
bit data (on a source channel marked eightstrict or utf8strict), or contains too-
long-for-SMTP lines (on a source channel marked rejectsmtplonglines), or exceeds a
configured message size limit (such as blocklimit, sourceblocklimit, block_limit,
ldap_blocklimit, ldap_sourceblocklimit, ldap_maximum_message_size,
ldap_domain_attr_blocklimit, ldap_domain_attr_sourceblocklimit,
alias_blocklimit, or [BLOCKLIMIT]) or message line limit (such as linelimit,
line_limit, alias_linelimit, or [LINELIMIT]) when the excessive size is detected after
the DATA stage, or is entirely lacking in recipient header lines (on a source channel marked
missingrecipientpolicy 6, or if the MTA option missing_recipient_policy=6
is set), or is rejected via the AUTH_REWRITE mapping table. Setting acceptalladdresses
will also disable the SMTP protocol level rejection feature of the Sieve "refuse" action; with
acceptalladdresses, addresses to be rejected due to application of a "reject" action
will be accepted during the SMTP dialogue, and instead a subsequent non-delivery DSN
generated.

In contrast, setting the acceptvalidaddresses option on a source channel causes all
envelope recipient addresses to be validated prior to being accepted by the MTA. If an address

46–34 Messaging Server Reference

Addresses channel options

fails to validate, an appropriate error will be returned to the client during the SMTP dialogue.
acceptvalidaddresses is the default.

Note that the MTA's default, acceptvalidaddresses, behavior is normally far preferable
to acceptalladdresses: rejecting invalid addresses and messages "up front" rather than
accepting them initially only to have to generate and send back a non-delivery notification
later has advantages that should hardly need to be pointed out, including:

• Less work for the MTA. The reductions in work are in several areas, including: less
processing required on incoming messages (in cases where a recipient address can be
detected as invalid), less work generating non-delivery notification messages, less work
attempting to deliver non-delivery notification messages, etc.

• Less network bandwidth required.

• Due to the above two points, less potential impact on throughput of other, valid, messages.

• Immediate (via an SMTP error) notification to e-mail clients of the error in their message,
rather than a delayed notification via DSN.

• Avoiding "blow-back" spam, in cases of so-called "joe-job" (forged envelope From) spam.

However, acceptalladdresses can sometimes be useful in certain limited cases, such
as when attempting to support poorly designed e-mail clients that fail to report SMTP
errors correctly to the user. In such cases a DSN, while providing only a delayed indication
rather than an immediate indication of an address or message problem, may be the only
way to convey the MTA's accurate error information to the user. So appropriate use of
acceptalladdresses tends to be restricted to cases of special incoming TCP/IP channels
dedicated for submission of messages by applications or user e-mail clients with known
limitations; *switchchannel effects, or else channels associated with special Dispatcher
services listening on special ports or interface addresses, are features typically used for setting
up such special channels.

Unconditional address acceptance (acceptalladdresses) should be used with extreme
care; in particular, it should never be used on a source channel that accepts unauthenticated
transactions from the Internet. The problem with such usage is that spammers will attempt
to send mail to invalid addresses, which will be accepted and later result in a DSN being
returned. Since envelope From addresses on spam are commonly forged, this will turn the
system into a major source of blowback spam and is likely to result in blacklisting and other
operational issues.

These options were first added in MS 6.1.

Compare with the (new in 8.0.1.1.0) accepttemporaryfailures and
defertemporaryfailures channel options.

46.3.3.4 Envelope recipient error handling
(accepttemporaryfailures, defertemporaryfailures)

(New in MS 8.0.1.1.0.) The accepttemporaryfailures and defertemporaryfailures
source channel options control how recipient address temporary errors such as user over
quota, spam filter temporarily unavailable, LDAP server unavailable, and so on are handled by
the SMTP server. defertemporaryfailures is the default, and causes such errors to return
an immediate 4yz error in the SMTP session. Setting accepttemporaryfailures causes

Channels 46–35

Addresses channel options

the address to be accepted, but the message will be placed in the reprocess queue and retried
until it either times out and is returned or the error clears.

These channel options are only intended for use on SMTP channels. Placing them on an
internal channel may have unexpected results.

Compare with the acceptalladdresses and acceptvalidaddresses channel options.

46.3.3.5 Filling in missing header addresses (addlineaddrs,
noaddlineaddrs)

Situations can arise where messages are submitted to the MTA without proper originator and
recipient address information in the message header. In such cases there may be additional
information available in a nonstandard form, either in the header or elsewhere, that can
be used to reconstruct the missing header information. When the addlineaddrs option
is placed on a source channel it instructs submission agents to use whatever additional
information is available to reconstruct the missing information. noaddlineaddrs is the
default and prevents this from happening.

Currrently the only submission agent that supports addlineaddrs is the VMS MAIL
interface in PMDF. This option has no effect on any Messaging Server channel.

46.3.3.6 Controlling Sender Rewriting Scheme (SRS)
rewriting (addresssrs, noaddresssrs, destinationsrs,
nodestinationsrs, sourcesrs, nosourcesrs)

(New in MS 6.3p1.) Sender Rewriting Scheme (SRS) rewriting is used by sites providing
autoforwarding services to encapsulate MAIL FROM addresses so as to avoid running afoul
of Sender Permitted From (SPF) checks. In order for an address to undergo SRS rewriting,
SRS support must be configured and the following three conditions must be met: (1) The
current source channel must be marked with the sourcesrs option, (2) The current
destination channel must be marked with the destinationsrs option, and (3) Rewriting the
MAIL FROM address must have matched a channel marked with the addresssrs option.
noaddresssrs, nodestinationsrs and nosourcesrs are the default for all channels.

See also the headerdecodesrs and noheaderdecodesrs channel options.

46.3.3.7 Address type flags (addrtypescan,
addrtypescanbccdefault, noaddrtypescan)

(New in 7.0.5.) If the addrtypescan channel option is set, then RCPT TO addresses (that
is, envelope recipients) are compared with header recipient fields (To:, Cc:, Bcc:, Resent-To:,
Resent-Cc:, and Resent-Bcc:). When a match is found, that fact is recorded in the delivery
flags associated with that envelope recipient. Those flags are then used when generating the
report part of Microsoft® Exchange 2007 envelope journaling archive messages, distinguishing
between various types of envelope recipient addresses.

addrtypescanbccdefault operates in the same way as addrtypescan, except that when
no matches are found for a given address, that address is assumed to be a blind carbon (Bcc:)
recipient. This option should only be used when it is certain the messages have come directly
from a client that implements Bcc: by simply omitting the blind carbon recipient from the
header and which doesn't support any form of local mailing lists. Use in any other context is
guaranteed to result in incorrect types being attached!

46–36 Messaging Server Reference

Addresses channel options

noaddrtypescan is the default.

Also note that since the MTA's delivery flags are used to store this informtion, the MTA's
delivery flag transfer facilities may be used to transport this information between MTAs; see
the deliveryflags channel option.

46.3.3.8 Force "detour" routing of hosted users (aliasdetourhost,
aliasoptindetourhost)

The (new in iMS 5.2p2, and MS 6.1) aliasdetourhost channel option allows source-
channel-specific overriding of hosted users' mailHost attribute value. In particular,
aliasdetourhost is commonly used to achieve a "detour" in the routing of messages
destined for local (hosted on this system) users. It allows better configuration and use of
"intermediate filtering" sorts of channels and third party filtering hosts.

The aliasdetourhost channel option takes a single host/domain name as an argument.
When specified on a source channel, this channel option causes alias expansion of addresses
stored in LDAP to stop (short-circuit) just prior to the point where mailHost (more precisely,
the attribute named by the ldap_mailhost MTA option) information is checked. The host
specified by the aliasdetourhost channel option is used as the (assumed to be non-local)
mailHost. That is, a source route containing the specified host is added to the address (just as
if a non-local mailHost had been found) and processing continues onward from that point.
Note that in particular, this forced use of the aliasdetourhost specified host as a non-
local mailHost stops further expansion of the alias for purposes of things such as application
of user forwarding and Sieve filter application (which normally would occur subsequently
during alias expansion when a user's real mailHost is this MTA).

Thus use of aliasdetourhost on an incoming channel lets the MTA do address validation
(check that an incoming address corresponds to a valid user entry), while "delaying" complete
expansion and processing (in particular, forwarding and Sieve evaluation) of the valid local
recipient addresses. This combination of effects is potentially very useful.

A typical application of this channel option is for purposes of "detouring" messages through
a special channel or host, most often for purposes of spam/virus filtering. It is often used in
conjunction with use of an "alternate" conversion channel for such "detour" purposes, where
the "alternate" conversion channel approach is used to handle cases of non-local recipient
addresses, while aliasdetourhost is used to handle cases of local-to-this-mailHost
recipient addresses. (Use of an "alternate" conversion channel approach for a routing "detour"
on local-to-this-mailHost recipient addresses incurs various problems, in particular in the
areas of forwarding and Sieve filter evaluation timing. It is desirable to delay Sieve filter
evaluation until after the "detour" - for instance, so that Sieve filters can look for headers added
by the "detour" host. It is also desirable to delay application of user forwarding until after the
"detour", to avoid potential duplication of the forwarding. Such a delay in the final parts of
user alias expansion is exactly what aliasdetourhost can be used to achieve.)

The (new in MS 6.2p4) aliasoptindetourhost option has the same function as
aliasdetourhost, except that it only applies for users in LDAP who have "opted-in" via
whatever user attribute is named by the ldap_detourhost_optin MTA option, or whatever
domain attribute is named by the ldap_domain_attr_detourhostoptin MTA option.
The argument of the aliasoptindetourhost channel option specifies a list of detour hosts
separated by commas. The value(s) of the optin attribute are compared with the list; the first
match will be used as the "override" mailHost for any users who are "opted-in". However,
any attribute that doesn't contain at least one period (which would be necessary to match a

Channels 46–37

Addresses channel options

legitimate mail host) is treated as an effective wildcard; the first host from the list will be used
in this case.

Finally, if the option value matches the special value specified by the
aliasdetourhost_null_optin MTA option it will simply be ignored. This mechanism
is provided to accomodate provisioning systems that insist on every known attribute having
a value. Omitting the attribute value entirely is the preferred method for disabling detour
processing, however.

One disadvantage of using aliasoptindetourhost is that all alias expansion is deferred,
including expansions that result in mail being discarded. This can lead to messages sent to the
bitbucket wasting processing resources.

One way to work around this problem is to use a $* rewrite rule and an associated mapping
to direct such addresses to the bitbucket channel, bypassing any use of aliasdetourhost. For
example:

$* EF${bitbucket_check,U@$H}

BITBUCKET_CHECK

 noreply@example.com $Y$$U%$$H@bitbucket-daemon
 unattended@example.net $Y$$U%$$H@bitbucket-daemon

This will caused any mail sent to noreply@example.com and unattended@example.net to be
discarded before any other lookups or redirection.

46.3.3.9 Local address processing control (aliaslocal)

Normally only addresses rewritten to the local channel undergo alias processing. The
aliaslocal channel option may be associated with a channel to cause addresses rewritten to
that channel to undergo alias expansion.

46.3.3.10 Sources of alias information (aliasmagic)

Alias expansion is performed by consulting various sources of alias information one after
another until a match is found. The aliasmagic channel option provides a means to control
what sources are consulted and in what order. The argument to aliasmagic is an unsigned
decimal value. Each decimal digit value specifies a different source of alias information.
Possible values are:

Table 46.5 Alias_magic digits

Value Meaning
0 No operation
1 Personal alias database
2 Local name table aliases
3 System alias database
4 System alias file
5 Special aliases

46–38 Messaging Server Reference

Addresses channel options

6 alias_url0

7 alias_url1

8 alias_url2

9 alias_url3

The digits of aliasmagic are processed from left to right. Processing stops when a match
occurs. The default value for aliasmagic is given by the alias_magic MTA option.

46.3.3.11 Wildcard alias lookups (aliaswild)

Setting the aliaswild option on a destination channel causes an address of the form
*@domain to be checked in the alias file and alias database if the regular lookup for
localpart@domain fails. This lookup is performed before checking in the alias file and alias
database for local parts without domains.

The effect of this setting is the same as if bit 2 (value 4) of the alias_domains MTA option is
set; the only difference is that aliaswild only applies to a specific destination channel.

46.3.3.12 Authenticated originator information processing
(authrewrite)

The authrewrite option may be used on a source channel to have the MTA propagate
authenticated originator information, if available, into the headers. Normally the SMTP
AUTH information is used (specifically, the user's canonical e-mail address, that is, the
value of the mail attribute or new in MS 8.0 the value of whatever attribute is named by the
ldap_auth_attr_sender MTA option, found when looking up the user for authentication),
though this may be overridden via the FROM_ACCESS mapping. authrewrite takes a
required bit-encoded integer value as an argument, according to the following table:

Table 46.6 authrewrite option values

Bit Value Usage

0-3 1 Add a Sender: header line, or a Resent-sender: header line if a Resent-from: or Resent-sender: was already present,
containing the AUTH originator

0-3 2 Add a Sender: header line containing the AUTH originator

0-3 3 Use the AUTH_REWRITE mapping table, probing with any Resent-Sender: and Resent-From: info if present, and
otherwise probing with Sender: and From: info

0-3 4 Use the AUTH_REWRITE mapping table, probing with Sender: and From: info

0-3 5 Add a From: header line, or a Resent-From: header line if a Resent-From: or Resent-Sender: was already present,
containing the AUTH originator. This is NOT RECOMMENDED and CONTRARY TO INTERNET STANDARDS,
and likely to HARM the security of your users. This option should almost NEVER be used: THIS MEANS YOU!.

0-3 6 Add a From: header line containing the AUTH originator. This is NOT RECOMMENDED and CONTRARY TO
INTERNET STANDARDS, and likely to HARM the security of your users. This option should almost NEVER be
used: THIS MEANS YOU!.

4 16 (New in 6.2) If set, apply the AUTH_REWRITE mapping table, even if SMTP AUTH has not been used

5 32 (New in 6.2) If set, probes to AUTH_REWRITE include the source-channel as a prefix field, separated by a vertical bar
character from the rest of the probe string; that is, when this bit is set then probes take the form:

src-chan|env-from|[resent-]sender|[resent-]from|auth-originator

6 64 (New in 7.2-7.02.) If set, use the rewritten version of the envelope from address in constructing the AUTH_REWRITE
probe.

7 128 (New in 7.2-7.02.) If set, use the canonical version of the envelope from address in constructing the AUTH_REWRITE
probe. Bit 6 (value 64) is a no-op if this bit is set.

Channels 46–39

Addresses channel options

8 256 (New in 7.3-11.01.) If set, add the value of the AUTH parameter from the SMTP MAIL FROM command to the
AUTH_REWRITE probe, appearing just after the authorized originator address; that is, when this bit is set then probes
take the form

env-from|[resent-]sender|[resent-]from|auth-originator|auth-param

9 512 (New in MS 7.0.5) If set, the final tag set via $T in the *_ACCESS mappings will be prefixed to the AUTH_REWRITE
mapping probe; that is, when this bit is set then probes take the form:

ACCESS-tag|env-from|[resent-]sender|[resent-]from|auth-originator

46.3.3.13 Interpretation of local parts (bangoverpercent,
nobangoverpercent, bangonly, percentonly,
nobangorpercent)

The local parts of addresses are interpreted in accordance with the rules specified in RFC 5322
and RFC 976. However, there may be occasions when interpretation of embedded routing
information is inappropriate. Additionally, ambiguities in the treatment of certain composite
addresses that are not addressed by these standards. In particular, the interpretation of
exclamation points and percent signs appearing in the local parts of addresses in domains the
MTA has administrative authority over are not specified in any standard. These characters are
sometimes used to provide a form of explicit multihop routing comparable to source routes.

Several source channel options are provided to control the interpretation of these characters.
nobangorpercent disables special interpretation of both characters completely. bangonly
treats local parts of the form A!B as a route from routing host A to user B; percent signs have
no special meaning. percentonly treats local parts of the form A%B as a route from routing
host B to user A; exclamation points have no special meaning.

If both characters are used to specify routing a question arises as to which one has precedence.
In particular, an address of the form A!B%C can be interpreted as either A as the routing host
and C as the final destination host, or C as the routing host and A as the final destination host.

While RFC 976 implies that it is all right for mailers to interpret addresses using the latter set
of conventions, it does not say that such an interpretation is required. In fact, some situations
may be better served by the former interpretation.

In any case, the bangoverpercent channe; option forces the former A!(B%C) interpretation.
nobangoverpercent forces the latter (A!B)%C interpretation. nobangoverpercent is the
default for all channels.

46.3.3.14 Address types and conventions (sourceroute, percents,
bangstyle, header_822, header_733, header_uucp)

This group of destination channel options controls what types of addresses will be used in
messages queued to the channel. A distinction is made between the addresses used in the
transport layer (the message envelope) and those used in message headers.

The sourceroute option is the default and specifies that source routed envelope addresses
should be used. This channel supports full RFC 5322 format envelope addressing conventions
including source routes. The keyword 822 was a supported synonym for sourceroute in old
configuration files but is not supported in XML-based configurations.

percents specifies that percent sign addressing conventions should be used in the envelope.
The channel supports full RFC 5322 format envelope addressing with the exception of source
routes; source routes will be rewritten using percent sign conventions instead. The channel

46–40 Messaging Server Reference

https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc976
https://tools.ietf.org/html/rfc976
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5322

Addresses channel options

keyword 733 was a supported synonym for percents in old configuration files but is not
supported in XML-based configurations.

Use of percent sign addresses on an SMTP channel will result in these conventions being
carried over to the transport layer addresses in the SMTP envelope. This may violate RFC 5321.
Only use percent sign addressing conventions when you are sure they are necessary.

The bangstyle channel option specifies that this channel uses addresses that conform to
RFC 976 bang-style address conventions in the envelope (i.e., this is a UUCP channel). The
keyword uucp was a supported synonym for bangstyle in legacy configuration files but is
not supported in unified configurations.

The header_822 channel option specifies that source routes should be used in header
addresses. This channel supports full RFC 5322 format header addressing conventions
including source routes. This is the default if no other header address type option is specified.

The header_733 channel option specifies that percent sign addresses should be used in
the header. This channel supports RFC 5322 format header addressing with the exception of
source routes; source routes should be rewritten using percent sign conventions instead.

Note that the use of 733 address conventions in message headers may violate RFC 5322 and
RFC 976. Only use this option if messages are known to contain source route addresses in the
header and you are sure that the channel connects to a system that simply cannot deal with
source route addresses.

header_uucp specifies that bang-style addresses should be used in the header. The use of this
option is not recommended. Such usage grossly violates RFC 976.

46.3.3.15 Recipient validity date check (checkrrvs, ignorerrvs)

The checkrrvs and ignorerrvs source channel options, for support of RFC 7293, are new
in MS 8.0. ignorerrvs is the default.

ignorerrvs means that the SMTP server will not offer or support the RRVS SMTP extension.
In particular, client attempts to use an RRVS parameter in a RCPT TO command will cause an
error, and the MTA will ignore any Require-Recipient-Valid-Since: header line.

checkrrvs when set on an SMTP source channel means that the SMTP server offers and
supports use of the SMTP RRVS extension. In particular, the MTA will check for a valid date
for recipient mailbox ownership, whether specified (preferentially) in a RRVS parameter in the
RCPT TO command, or in a Require-Recipient-Valid-Since: header field, and check for a valid
date for the domain in the recipient address.

If the checkrrvs check fails on the recipient mailbox address, the recipient will be rejected
with the SMTP error:

550 5.7.15 account information on file is older than actual user account

or alternate text as controlled by the error_text_wrong_account MTA option; if the
checkrrvs check fails due to the domain creation date, the recipient will be rejected with the
SMTP error:

550 5.7.18 domain owner has changed

Channels 46–41

https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc976
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc976
https://tools.ietf.org/html/rfc976
https://tools.ietf.org/html/rfc7293

Addresses channel options

or alternate text as controlled by the error_text_wrong_domain MTA option.

46.3.3.16 Clone messages to alternate destination (clonehosts)

(New in MS 8.0) A commonly requested capability is to "clone" all messages that meet some
criteria and send them to an alternate destination. This can be accomplished in a variety
of ways, including the Sieve "capture" action, the MESSAGE-SAVE-COPY mapping, the
FORWARD mapping, and various sorts of address rewriting tricks, and all of these mechanisms
have different characteristics as well as different advantages and disadvantages.

In the specific case when the desire is to clone all messages sent to a particular channel to
another channel while preserving the initial address that expanded to that channel, none of the
previously mentioned methods provide that specific result. (A capture action in a destination
channel Sieve script can capture the message, but not the initial address. MESSAGE-SAVE-
COPY has similar limitations and also requires playing queue management games.)

The clonehosts channel option provides this result. It accepts a single argument: A space-
separated list of host names. When given a clonehosts setting of "host1 host2 host3"
and a message sent to the addresses initial1 and initial2, both of which expanded
to one or more final recipient addresses destined to that channel, this setting will add the
recipient addresses:

 @host1:initial1
 @host2:initial1
 @host1:initial2
 @host2:initial2

46.3.3.17 Host name to use when correcting incomplete addresses
(auththost, noauthhost,defaulthost, nodefaulthost,
remotehost, noremotehost)

The MTA often receives addresses consisting of a bare local-part and no "@domain" from
misconfigured or incompliant mailers and SMTP clients. (Note that the standards do in fact
require acceptance of one special address - "postmaster" in SMTP, but do not state how such
an address is to be represented in a message header.) This happens often enough that simply
disallowing such addresses is rarely an acceptable strategy.

The MTA, showing at least some respect for standards, must attempt to make such addresses
legal before passing the message along. The MTA does this by appending a domain name to
the address (e.g., appends "@acme.com" to "mrochek", producing "mrochek@acme.com").

The set of options described here control how this domain name is selected. In this process
the MTA makes a distinction between envelope To (RCPT TO) addresses versus addresses
appearing in all other contexts (header, MAIL FROM), as well as distinguishing SUBMIT from
SMTP.

In the following table showing what domain is used when various options or protocols are
used, o.org is the domain attached to the local channel, a.com is the domain associated with
the current authenticated user's primary email address, l.com is the first argument of the
defaulthost option setting on the current source channel, r.com is the second argument
of the defaulthost option setting on the current source channel, and r.edu is the domain
associated with the remote SUBMIT/SMTP client.

46–42 Messaging Server Reference

Addresses channel options

Table 46.7 Options controlling missing domain fixups

Option Protocol Header/
MAIL
FROM

RCPT TO

authhost (and authenticated) SUBMIT/SMTP @a.com @a.com
defaulthost SUBMIT/SMTP @o.org @o.org
defaulthost l.com SUBMIT @l.com @l.com
defaulthost l.com SMTP @l.com @o.org
defaulthost l.com r.com SUBMIT @l.com @l.com
defaulthost l.com r.com SMTP @l.com @r.com
nodefaulthost (MS 8.0.2.1 or
later)

SUBMIT/SMTP <no fixup> <no fixup>

remotehost SUBMIT @r.edu @r.edu
remotethost SMTP @r.edu @o.org
<no options> SUBMIT/SMTP @o.org @o.org

Note: The option in the preceding table are shown in precedence order, that is, a given option
setting will override option settings further down the table.

The usual configuration is to have both arguments to defaulthost set to the
defaultdomain on the defaults channel, overriding any use of the local channel host. It may
be appropriate in multitenant configurations to set authhost on all channels that are marked
with the submit channel option

Use of the remotehost channel option may be considered in rare cases where remote SMTP
client exist in another administrative domain which partial addresses to refer to their own
users.

Note that rewrite rules can make use of whatever default has been selected via the the $G and
$nG substitutions.

Note that the switchchannel, saslswitchchannel, tlsswitchchannel and various
other options can be used to associated incoming SMTP connections with a particular channel,
and thus control what set of options are used.

46.3.3.18 dequeue_removeroute Option

The legacy configuration dequeue_removeroute channel option has been replaced in
Unified Configuration by dequeueremoveroute.

46.3.3.19 Removing source routes (dequeueremoveroute,
enqueueremoveroute)

The dequeueremoveroute channel option, when placed on a destination channel, causes
source routes to be stripped from envelope recipient addresses when the channel dequeues
messages (but after the channel has determined how to route the message). For instance, on
a dequeueremoveroute TCP/IP channel that is not a daemon channel, the source route
host is used to determine to what remote host to connect, but is stripped from the envelope

Channels 46–43

Addresses channel options

To addresses before they are presented to that remote host. In particular, this channel option
may be useful at sites that use the mailHost LDAP attribute (more precisely, whatever LDAP
attribute is named by the ldap_mailhost MTA option) to direct messages (via source routes,
@mailhost:orig-address), to NMS systems or other systems that do not support source
routes; the dequeueremoveroute channel option would be placed on a special TCP/IP
channel set up to send to such an NMS system. But this channel option should not be used on
a general channel where source routing in addresses may need to be preserved.

The enqueueremoveroute option, when placed on a destination channel, causes
source routes to be stripped from recipient addresses enqueued to that channel after the
regular address rewriting has been performed. Thus the enqueueremoveroute channel
option may be useful in cases where a mailHost or mailRoutingSmartHost LDAP
attribute (more precisely, whatever LDAP attribute is named by the ldap_mailhost or
ldap_domain_attr_smarthost MTA option) has been set for a user or domain merely in
order to force a particular channel match to some special channel during rewriting, but where
the host specified in such an attribute is not relevant for actual mail delivery.

The obsolete dequeue_removeroute and enqueue_removeroute options are aliases for
dequeueremoveroute and enqueueremoveroute, respectively. These obsolete options are
not supported in unified configuration mode.

46.3.3.20 enqueue_removeroute Option

The legacy configuration enqueue_removeroute channel option has been replaced in
Unified Configuration by enqueueremoveroute.

46.3.3.21 Routing information in addresses (exproute,
noexproute, improute, noimproute)

The ideal addressing model that the MTA deals with assumes that all systems are aware of
the addresses of all other systems and how to get to them. Unfortunately, this ideal is not
attainable in many cases. The usual exception occurs when a channel connects to one or
more systems that are not known to the rest of the world (e.g., internal machines on a private
network). Addresses for systems on this channel may not be legal on remote systems outside
of the site. If such addresses are to be made repliable, they must contain a source route that
tells remote systems to route messages through the local machine. The local machine can then
(automatically) route the messages to these machines.

The exproute channel option (short for "explicit routing") tells the MTA that the associated
channel requires explicit routing when its addresses are passed on to remote systems. If this
option is specified on a channel, the MTA will add routing information containing the name
of the local system (channel:l.official_host_name) (or the current alias for the local
system, the current channel's local_host_alias) to all header addresses and all envelope
From addresses that match the channel. noexproute, the default, specifies that no routing
information should be added.

The MTA option exproute_forward can be used to restrict the action of exproute to
backward-pointing addresses if desired.

Another scenario occurs when the MTA connects to a system via a channel that cannot
perform proper routing for itself. In this case all addresses associated with other channels need
to have routing inserted into them when they are used in mail sent to the channel that connects
to the incapable system.

46–44 Messaging Server Reference

Addresses channel options

Implicit routing and the improute channel option are used to handle this situation. The
MTA knows that all addresses matching other channels need routing when they are used in
mail sent to a channel marked improute. noimproute, the default, specifies that no routing
information should be added to addresses in messages going out on the specified channel.

The improute_forward MTA option can be used to restrict the action of improute to
backward-pointing addresses if desired.

The exproute and improute channel options should be used sparingly. It makes addresses
longer, more complex, and may defeat intelligent routing schemes used by other systems.

Explicit and implicit routing should not be confused with specified routes. Specified routes
are used to insert routing information from rewrite rules into addresses. This is activated
by the special A@B@C rewrite rule template. Specified routes, when activated, apply to all
addresses, both in the header and the envelope. Specified routes are activated by particular
rewrite rules and as such are usually independent of the channel currently in use. Explicit and
implicit routing, on the other hand, are controlled on a per-channel basis and the route address
inserted is always the local system.

46.3.3.22 Controlling Sender Rewriting Scheme (SRS) rewriting in
header lines (headerdecodesrs, noheaderdecodesrs)

New in 8.0.1.3. The headerdecodesrs channel option, if set on the current source or
destination channel, causes any SRS-encoded addresses found in any address header fields
to be decoded. The decoding in this case does not enforce password or timeout checks; it is
sufficient that the SRS domain match for decoding to occur.

The default is noheaderdecodesrs.

46.3.3.23 Local-channel-like behavior (localbehavior,
nolocalbehavior)

Use of localbehavior or nolocalbehavior is RESTRICTED: do not use unless explicitly
instructed to do so by Oracle.

The localbehavior channel option enables certain local-channel-like behaviors, including
subsuming aliaslocal and routelocal effects. Explicit setting of localbehavior or
nolocalbehavior is not usually appropriate; instead, channel defaults, optionally modified
in specific ways via options such as aliaslocal or routelocal, should be used.

46.3.3.24 Handling messages that lack any recipient headers
(missingrecipientpolicy)

RFC 822, the original Internet message format standard, had a requirement that all messages
contain at least one recipient header field: a To:, Cc:, or Bcc:.

As of RFC 2822, the original update to RFC 822, relaxed the RFC 822 requirement and allowed
submitted messages to be lacking in any recipient header line. This change was carried
forward to the current message format standard, RFC 5322.

However, there are still MTAs around that operate according to RFC 822, and in particular
may try to be helpful by adding a To: field containing all of the envelope recipients when no
recipient fields are present. As such, it may be unwise to emit a message lacking all recipient

Channels 46–45

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc2822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc822

Addresses channel options

header lines, since the behavior of an RFC 822-compliant MTA or mail user agent may be
undesirable when encountering a message that is, from its point of view, illegal---results may
include rejection of such a message, potentially undesired exposure of recipient information
such as recipients intended as Bcc: recipients, etc.

The missingrecipientpolicy channel option provides various capabilities that may be
useful in addressing this issue. It takes an integer value specifying what approach to use to
"fix" messages with no recipient field; the default value, if the channel option is not explicitly
present, is to use the MTA option missing_recipient_policy value (which itself defaults
to 0, if not set, which as of MS 6.2 is equivalent to a value of 1 meaning that messages are
passed through unchanged---in MS 6.0 and MS 6.1 the default value of 0 had been equivalent
to a value of 2 meaning that envelope To addresses are placed in a To: header).

Table 46.8 missingrecipientpolicy MTA option values

Value Action
0 Use current best practices to resolve the situation. Prior to 6.2 this was

the same as 2, in 6.2 and later it is the same as 1.
1 Pass the illegal-per-RFC 822 (though legal per RFC 5322) message

through unchanged.
2 Place envelope To recipients in a To: header.
3 Place all envelope To recipients in a single Bcc: header.
4 Generate an empty group construct (i.e., ;) To: header line.

The phrase used in the group construct is controlled by the
missing_recipient_group_text MTA option, so for instance "
To: Recipients not specified: ;".

5 Generate a blank Bcc: header.
6 Reject the message (with a "554 5.6.0 Error writing message

- message is missing required recipient header
fields" error). (Note that the acceptalladdresses channel
option, if used, modifies the timing and form of the rejection.)

Note that the missing_recipient_policy MTA option can be used to set an MTA system
default for this behavior.

46.3.3.25 Restricted mailbox encoding (restricted,
unrestricted, norestricted)

Some mail systems have great difficulty dealing with the full spectrum of addresses allowed
by RFC 822. A particularly common example of this is sendmail-based mailers with incorrect
configuration files. Quoted local-parts (or mailbox specifications) are a frequent source of
trouble:

"freed, ned"@ymir.claremont.edu

This is such a major source of difficulty that a methodology was laid out in RFC 1137 to work
around the problem. The basic approach is to remove quoting from the address and then apply
a translation that maps the characters requiring quoting into characters allowed in an atom
(see RFC 822 for a definition of an atom as it is used here). For example, the preceding address
would become:

46–46 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1137
https://tools.ietf.org/html/rfc822

Addresses channel options

freed#m#_ned@ymir.claremont.edu

The restricted channel option tells the MTA that the channel connects to mail systems that
require this encoding. The MTA then encodes quoted local-parts in both header and envelope
addresses as messages are written to the channel. Incoming addresses on the channel are
decoded automatically. The unrestricted channel option tells the MTA that this channel
wants to see quoted addresses and that any restricted encodings should be decoded.

The norestricted channel option tells the MTA not to perform RFC 1137 encoding and
decoding. norestricted is the default.

IMPORTANT NOTE: The restricted and unrestricted channel options should be
applied to the channels that connects to systems unable to accept quoted or restricted local-
parts respectively. They should not be applied to the channels that actually generate the quoted
or restricted local-parts! (It is assumed that a channel capable of generating such an address is
also capable of handling such an address.)

46.3.3.26 Channel-specific use of address reversal (reverse,
noreverse)

The reverse channel option tells the MTA that addresses in messages enqueued to the
channel should be checked against and possibly modified by address reversal (that is,
modified by reverse_url controlled LDAP lookups, or the address reversal database, or the
REVERSE mapping). noreverse exempts addresses in messages queued to the channel from
address reversal processing. The reverse channel option is the default.

Note that, due to intended critical side-effects of reverse_url LDAP lookups, side-effects
that will not occur if the noreverse channel option is used, typical Messaging Server sites
should not use the noreverse channel option.

46.3.3.27 Channel-specific rewrite rules (rules, norules

The rules channel option tells the MTA to enforce channel-specific rewrite rule checks, and
can be placed on source channels and on destination channels. When placed on a source
channel, rules allows source channel-specific effects from $N or $M control sequences in
a rewrite rule template to take effect when that source channel is enqueueing a message
and rewriting addresses. When placed on a destination channel, rules allows destination
channel-specific effects from $C or $Q control sequences in a rewrite rule template to take
effect for addresses in messages being enqueued to that destination channel. rules is the
default. norules tells the MTA not to check. These two channel options are usually used for
debugging and are rarely used in actual applications.

46.3.3.28 Personal names in address message headers
(personalinc, personalmap, personalomit,
personalstrip, sourcepersonalinc, sourcepersonalmap,
sourcepersonalomit, sourcepersonalstrip)

The MTA only interprets the contents of header lines when necessary. However, all registered
headers containing addresses must be parsed in order to rewrite and eliminate shortform
addresses and otherwise convert them to legal addresses. During this process personal names

Channels 46–47

https://tools.ietf.org/html/rfc1137

Addresses channel options

(strings preceding angle-bracket-delimited addresses) are extracted and may optionally be
modified or excluded when the header line is rebuilt.

On destination channels, this behavior is controlled by the use of the personalinc,
personalmap, personalomit, and personalstrip channel options. personalinc
tells the MTA to retain personal names in the headers. It is the default. personalmap tells
the MTA to apply the PERSONAL_NAMES mapping table to personal names appearing
in addressing header lines if such a mapping table exists, while if no such mapping table
exists then personalmap is equivalent to personalstrip. personalomit tells the MTA
to remove all personal names. And finally, personalstrip tells the MTA to strip any
nonatomic characters from all personal name fields.

On source channels, this behavior is controlled by the use of a sourcepersonalinc,
sourcepersonalmap, sourcepersonalomit, or sourcepersonalstrip channel
option. sourcepersonalinc tells the MTA to retain personal names in the headers. It is
the default. sourcepersonalmap tells the MTA to apply the PERSONAL_NAMES mapping
table to personal names appearing in addressing header lines if such a mapping table
exists, while if no such mapping table exists then sourcepersonalmap is equivalent to
sourcepersonalstrip. sourcepersonalomit tells the MTA to remove all personal
names. And finally, sourcepersonalstrip tells the MTA to strip any nonatomic characters
from all personal name fields.

These options can be applied to any channel.

46.3.3.29 Short circuiting rewriting of routing addresses
(routelocal)

The routelocal channel option causes the MTA, when rewriting an address to the channel,
to attempt to "short circuit" any explicit routing in the address. Explicitly routed addresses
(using !, %, or @ characters, or with an address embedded within quotes as the local-part of the
address) will be simplified. (The "l" channel defaults to routelocal behavior.)

For instance, if domain.com is a domain that rewrites to a channel marked with the
routelocal channel option, then any of the addresses

somewhere.else.com!user@domain.com
user%somewhere.else.com@domain.com
@domain.com:user@somewhere.else.com
"user@somewhere.else.com"@domain.com

will be rewritten to simply user@somewhere.else.com.

Use of this keyword on "internal" channels, such as internal TCP/IP channels, can potentially
allow simpler configuration of SMTP relay blocking.

However, note that this option should not be used on channels that may require explicit
@mailhost source routing or other routing, such as typical Oracle Messaging Server MTA
internal TCP/IP channels.

46.3.3.30 Extra value channel options: spare* (string)

The spareN source channel options provide functionality (N = 1,...,18) are analogous to
the attributes named by the ldap_spare_N MTA options, except with these options the
corresponding spare slot is filled in when the source channel is selected.

46–48 Messaging Server Reference

Addresses channel options

The spare value slots are intended for site-customizable purposes, to be made known to the
MTA (and hence be more easily accessible in MTA LDAP URLs and certain MTA mapping
tables, etc.).

46.3.3.31 Subaddresses and alias matching (subaddressexact,
subaddressrelaxed, subaddresswild)

A subaddress consists of extra detail information in the RFC 5322 "local-part" of an address
(the portion to the left of the "@" sign); the subaddress is typically encoded into the local-
part by using a separator character such as the plus character, +, and is subject to site-
specific interpretation. (See for instance the discussion in the introduction of RFC 5233, Sieve:
Subaddress Extension.) Use of subaddresses can be a convenient way to, e.g.:

• Request delivery directly to a named folder.

• Indicate that a message is being received due to membership of some mailing list.

• Request other special delivery handling, such as delivery to a voice mailbox.

In regard to subaddresses, the Messaging Server ims-ms and tcp_lmtps* channels interpret
a + character in the local portion of an address (the mailbox portion) specially: in an address
of the form name+subaddress@domain the Messaging Server Message Store delivery
code considers the portion of the mailbox after the plus character a subaddress; if either the
subaddress is "trusted" (as in the case of a subaddress added due to a Sieve filter "fileinto"
action and confirmed for the channel via the fileinto channel option), or the folder has the
IMAP post ACL set, then such channels may treat a subaddress as a request to deliver directly
into the correspondingly named folder.

Subaddresses also affect the lookup of aliases by the local channel and the lookup of aliases by
any channel marked with the aliaslocal channel option, and the lookup of mailboxes by
the directory channel. The exact handling of subaddresses for such matching is configurable:
when comparing an address against an entry, the MTA always first checks the entire mailbox
including the subaddress for an exact match; whether or not the MTA performs additional
checks after that is configurable. As of MS 6.1, the subaddress support in aliases includes
alias_urlN alias lookups; that is, as of MS 6.1, the subaddress* channel options apply for
alias_urlN lookups.

The subaddressexact channel option instructs the MTA to perform no special subaddress
handling during entry matching; the entire mailbox, including the subaddress, must match an
entry in order for the alias to be considered to match. No additional comparisons (in particular,
no wildcarded comparisons or comparisons with the subaddress removed) will be performed.
The subaddresswild channel option instructs the MTA that after looking for an exact match
including the entire subaddress, the MTA should next look for an entry of the form name+*.
(For wildcarding the entire localpart, not just the subaddress, see the alias_domains MTA
option.) The subaddressrelaxed channel option instructs the MTA that after looking for an
exact match and then a match of the form name+*, that the MTA should make one additional
check for a match on just the name portion. With subaddressrelaxed, an alias entry of the
form

name: newname+*

will match either name or name+subaddress, transforming a plain name to newname, and
transforming name+subaddress to newname+subaddress. The LDAP entry equivalent with

Channels 46–49

https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5233,
https://tools.ietf.org/html/rfc5233,

Addresses channel options

subaddressrelaxed set, to get the "transfer" of the subaddress to the forwarded-to address,
would be to set:

mailDeliveryOption: forward
mailForwardingAddress: newname+*@newdomain

The default is subaddressrelaxed.

Thus the subaddresswild channel option or the subaddressrelaxed channel option
may be useful when aliases or a directory channel are in use yet users wish to receive mail
addressed using arbitrary subaddresses. These channel options obviate the need for a separate
entry for every single subaddress variant on an address.

For the Messaging Server MTA, these channel options make sense on the L channel as a
destination (or rather, as an alias application) channel.

New in 7.0.5, a subaddress* channel option setting on a source channel will affect address
reversal performed on messages coming in that source channel. Previously, the presence of
a subaddress would prevent address reversal from occurring. (This long-standing behavior
was a remnant of the past when if a user was sophisticated enough to put on a subaddress,
one might presume that the user was sophisticated enough to have already specified the exact
address that they wanted to send from -- so altering such an address wouldn't be necessary
and indeed would be dubious. However, nowadays many other behaviors and side-effects
are triggered via address reversal so matching regardless of subaddress is typically desirable;
the old assumption that reversal was not desirable in such cases is outdated.) As of 7.0.5, the
default behavior is to attempt to match the address with or without the subaddress. If there's
a match, then the subaddress will be transferred to any rewritten address. This behavior may
be explicitly specified by setting the subaddressrelaxed channel option (the default) on
the source channel. subaddresswild, if set, will match against subaddresses but disables
transfer of the subaddress to the rewritten address. Finally, subaddressexact disables
special subaddress handling during the reversal process.

46.3.3.32 Alias and address channel options: usereversedatabase
(bitmask)

As of MS 8.0.1.3, the usereversedatabase source channel option provides a way to
override the setting of the use_reverse_database MTA option on a channel by channel
basis. All bits have identical meaning in both options.

46.3.3.33 uucp Option

The legacy configuration uucp channel option has been replaced in Unified Configuration by
bangstyle.

46.3.3.34 Validating local part of address (validatelocalnone,
validatelocalsystem, validatelocalexternal,
validatelocalpopstore, validatelocalmsgstore,
validatelocalprofile)

The validatelocal* channel options control whether any validity check on the
local part (username) of an address is performed when messages are enqueued to the

46–50 Messaging Server Reference

Attachments and MIME
processing channel options

channel. Different sorts of channels have different defaults; most channels default to
validatelocalnone, meaning that no validation of the local part of the address is
performed by the channel doing the enqueuing to the channel in question, but the local
channel defaults to validatelocalsystem, meaning that the local part (username)
of an address must be a valid, e-mail receiving account on the system. More specifically,
validatelocalsystem means that on UNIX platforms, the local part (username) must have
an account on the system, or on OpenVMS platforms that the local part (username) must have
an account or VMS MAIL profile entry.

When validatelocalnone is placed on a channel, messages matching that channel are
enqueued to the channel with no validation by the enqueuing channel; it will be up to the
destination channel itself to validate the address. So for instance if validatelocalnone
were placed on the local channel, then incoming SMTP messages apparently matching the
local channel would be accepted by the SMTP server and enqueued to the local channel; if
the local part turned out not to be a valid account, that would not be discovered until the
local channel itself actually ran and checked the local part. (Note that the local channel isn't
normally used for actual enqueues in Messaging Server.)

Conversely, if the name space for some other destination channel, say a MRIF_A1 channel,
happened to exactly match the name space for the accounts on the local channel, then placing
validatelocalsystem on the MRIF_A1 channel would cause enqueuing PMDF agents such
as the SMTP server to reject messages destined for the MRIF_A1 channel for which the local
part (username) could not be validated as if it were a VMS MAIL account.

The validatelocalexternal, validatelocalpopstore, validatelocalmsgstore,
validatelocalprofile channel options are all currently unimplemented; their behavior is
the same as validatelocalnone.

46.3.3.35 Require use of aliases (viaaliasrequired,
viaaliasoptional)

The default is viaaliasoptional, meaning that an alias match and resulting expansion
are not required to be part of address processing prior to enqueing to this channel. If
viaaliasrequired is specified on a channel, then only addresses whose processing
involved expansion of some sort of alias (LDAP entry, alias file entry, alias database entry, etc.)
are allowed to be enqueued to the channel.

Note that viaaliasrequired must be used on the local channel for direct LDAP
configuration to work properly.

46.3.4 Attachments and MIME processing channel
options

A number of channel options affect the processing of so-called attachments and MIME parts.
(Note that these are channel options which can generally be set on anytype of channel. See also
Message conversions for optional, more complex, processing of attachments and MIME parts,
sometimes involving a "hop" through the specialized Conversion channel.)

See also the conditionalpassthrough and conditionalrelay channel options which,
by setting operation type, have implications regarding "fixup" of MIME structure in messages,
and also the inner, noinner, sourceinner, and nosourceinner channel options which,
by controlling whether the MTA's processing looks "inside" messages, among other things
affects "fixup" of the MIME header lines on encapsulated parts of messages. See also the

Channels 46–51

Attachments and MIME
processing channel options

limitheadertermination and relaxheadertermination channel options which, by
controlling what is interpreted as the division between the message header and the message
body, thereby affects detection of a message's MIME structure.

46.3.4.1 Processing within security multiparts
(conditionalsecuritymultiparts,
processsecuritymultiparts, retainsecuritymultiparts)

The conditionalsecuritymultiparts, processsecuritymultiparts, and
retainsecuritymultiparts channel options control the handling of security
multiparts, (that is, multipart/signed and multipart/encrypted parts), by the MTA's
message structure parsing code. They are particularly relevant for the conversion channel,
as they control whether the conversion channel processes "inside" such multiparts.
retainsecuritymultiparts is the default: multipart/signed and multipart/encrypted
are treated as monolithic and not "looked inside" by MIME message structure parsing.
For instance, by default (returnsecuritymultiparts) the conversion channel won't
process any parts inside such parts. With processsecuritymultiparts, the conversion
channel sees the parts inside the security multipart; note that enabling this breaks all
signatures, since the MTA redoes all the boundary markers during its MIME structure
parsing. conditionalsecuritymultiparts processes the multiparts similarly to
processsecuritymultiparts, but retaining any "preamble" material inside the multipart.

46.3.4.2 convert_octet_stream Option

The legacy configuration convert_octet_stream channel option has been replaced in
Unified Configuration by convertoctetstream.

46.3.4.3 Conversion of application/octet-stream material
(convertoctetstream, noconvertoctetstream)

MIME provides a general-purpose type for exchange of pure untyped binary data. Such data
may or may not be usable in any given circumstance; no other information about the data is
available. Various MTA channels provide mechanisms for dealing with such data that may
or may not be appropriate. The convertoctetstream and noconvertoctetstream
options control these mechanisms; if the former is specified on a source channel conversions
are performed and if the latter is specified no conversions are performed. The latter option is
the default for all channels.

convertoctetstream is not relevant for any currently available Oracle Messaging Server
channels.

46.3.4.4 Automatic defragmentation of message/partial messages
(defragment, nodefragment)

The MIME standard provides the message/partial content type for breaking up messages
into smaller parts. This is useful when messages have to traverse networks with size limits.
Information is included in each part so that the message can be automatically reassembled
once it arrives at its destination.

The defragment channel option and the defragmentation channel provide the means to
reassemble messages in the MTA. When a channel is marked defragment any message/

46–52 Messaging Server Reference

Attachments and MIME
processing channel options

partial messages queued to the channel will be placed in the defragmentation channel queue
instead. Once all the parts have arrived the message is rebuilt and sent on its way.

The nodefragment disables this special processing. nodefragment is the default.

A defragment channel must be present in the configuration in order for the defragment
channel option to have any effect. Initial configuration normally includes a defragment
channel in the MTA configuration.

46.3.4.5 Encoding header interpretation (ignorencoding,
ignoremessageencoding, ignoremultipartencoding,
interpretencoding, interpretmessageencoding,
interpretmultipartencoding)

The MTA has the ability to convert various non-standard message formats to MIME via
the Yes CHARSET-CONVERSION. In particular, the RFC 1154 format uses a non-standard
Encoding: header line. However, some gateways emit incorrect information on this header
line, with the result that sometimes it is desirable to ignore this header. The ignoreencoding
source channel option instructs the MTA to ignore any Encoding: header. (Note that unless
the MTA has a CHARSET-CONVERSION enabled, such headers will be ignored in any case.)
The interpretencoding source channel option instructs the MTA to pay attention to any
Encoding: header line, if otherwise configured to do so, and is the default.

New in 6.3 are the ignoremessageencoding, interpretmessageencoding,
ignoremultipartencoding, and interpretmultipartencoding source channel
options. The MIME standards, RFC 2045 (which updates RFC 1521) and RFC 2046, restrict
the set of allowed content-transfer-encodings permitted on MIME multipart or message parts
to 7BIT, 8BIT, or BINARY in general, with the particular message subtypes message/partial
and message/external-body being further restricted to allow only 7BIT. Nevertheless, buggy/
incompliant software may sometimes emit messages that illegally label multipart or message
parts as having another content-transfer-encoding. Now when such an illegal encoding label is
seen, the question is whether the material is in fact encoded (illegally) as claimed, or whether
the material is not in fact encoded and the claim is simply false.

Prior to 7.0.5, the MTA's default handling (and the only handling available prior to
6.3) is to believe the Content-transfer-encoding: label---and the MTA can (and will)
"decode" such messages. This corresponds to interpretmessageencoding and
interpretmultipartencoding channel options. This leads to "successful" handling of
messages that are broken due to illegally being encoded---but will not be equally satisfactory
for messages that are broken due to an outright false labelling with the contents not actually
being encoded.

Alternatively, the new in 6.3 ignoremessageencoding and ignoremultipartencoding
channel options, when placed on a source channel, will cause the MTA to ignore any claimed
Content-transfer-encoding: on message parts or multipart parts, respectively, which can be
more useful when broken software is emitting messages that falsely claim encoding of such
parts. (Note that since what RFC 2045 specifies as the permitted and legal 7BIT, 8BIT, and
BINARY content-transfer-encodings are all identity encodings---no transformation of the data
is involved, with the content-transfer-encoding label merely recording what sort of material
the part contains, which the MTA can determine for itself---it causes no harm to RFC 2045
conformant message or multipart parts to ignore the content-transfer-encoding. So for the
moment, use of ignore*encoding channel options is "safe" for RFC 2045 legal messages.
However, the experimental EAI (Email Address Internationalization) specifications are likely

Channels 46–53

https://tools.ietf.org/html/rfc1154
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc1521
https://tools.ietf.org/html/rfc2046
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045

Attachments and MIME
processing channel options

to change this MIME restriction, permitting encodings on such parts; at such time, support
for correct messages would require respecting and interpreting any encodings on such parts.
So the ignore*encoding channel options, while a useful and safe-for-the-moment short-
term workaround for broken, remote software, must be considered short-term: they may not
continue to be safe to use in future.)

Note that the imsimta test -mime utility has switches for testing and describing the
(MIME) structure of messages, switches which correspond to these channel keywords.

Note that in Messaging Server 7.0u3 and prior versions, the ignoremultipartencoding
and ignoremessageencoding channel options would have no effect (be ignored) when
placed on a conversion or SMS channel, or on any site-written channels.

The interpretmessageencoding channel option is the default in all versions.
Prior to 7.0.5, interpretmultipartencoding was also the default. But as of 7.0.5,
ignoremultipartencoding is the default.

46.3.4.6 Soft wrap (encode) long lines in messages (linelength)

The SMTP specification allows for lines of text containing up to 1000 bytes. However, some
transports may impose more severe restrictions on line length, and even some SMTP systems,
in violation of the relevant standards, cannot handle full length lines.

First the MTA performs any appropriate header line wrapping: see the headerlinelength
channel option. Then the linelength channel option provides a mechanism for limiting
the maximum permissible message body line length on a channel by channel basis. Messages
queued to a given channel with body lines longer than the linelength limit specified for
that channel will have the message body encoded automatically. (Note that linelength
is a destination channel option modifying what the MTA emits; for controlling how the
MTA handles illegally long lines that it receives via SMTP, see instead the *smtplonglines
options.) The various encodings available always result in a reduction of line length to fewer
than 80 characters. The original message may be recovered after such encoding is done by
applying an appropriating decoding filter. (In most cases MIME-aware mail user agents are
able to detect that such decoding is necessary and perform it automatically.)

Note that encoding can only reduce line lengths to fewer than 80 characters. For this reason
specification of line length values less than 80 may not actually produce lines with lengths that
comply with the stated restriction.

Note also that linelength causes encoding of data so as to do "soft" line wrapping for
transport purposes. The encoding is normally decoded at the receiving side so that the original
"long" lines are recovered. For "hard" line wrapping, see instead the "Record,Text" CHARSET-
CONVERSION.

The default for arbitrary channels is 1023 channels; but channels marked with an smtp*
or lmtp* channel option will not allow more than 998 characters and attempts to set
linelength larger (or not setting linelength explicitly on such channels) will result in
using 998 characters on such channels.

46.3.4.7 Automatic fragmentation of large messages (maxblocks,
maxlines)

Some mail systems or network transports cannot handle messages that exceed certain size
limits. The MTA provides facilities to impose such limits on a channel-by-channel basis.

46–54 Messaging Server Reference

Attachments and MIME
processing channel options

Messages larger than the set limits will automatically be split (fragmented) into multiple,
smaller messages. The Content-type: used for such fragments is message/partial, and a unique
id parameter is added so that parts of the same message can be associated with one another
and, possibly, be automatically reassembled by the receiving mailer.

Message fragmentation and defragmentation may also be used to effectively provide
"checkpointing" of message transmission.

The maxblocks and maxlines channel options are used to impose size limits beyond which
automatic fragmentation will be activated. Both of these channel options require a single
integer argument. maxblocks specifies the maximum number of blocks allowed in a message.
An MTA block is normally 1024 bytes; this can be changed with the block_size MTA option.
maxlines specifies the maximum number of lines allowed in a message. These two limits can
be imposed simultaneously if necessary.

Message headers are to a certain extent included in the size of a message. Since message
headers cannot be split into multiple messages, and yet they themselves may exceed the
specified size limits, a rather complex mechanism is used to account for message header sizes.
This logic is controlled by the max_header_block_use and max_header_line_use MTA
options.

max_header_block_use is used to specify a real number between 0 and 1. The default
value is 0.5. A message's header is allowed to occupy this much of the total number of blocks
a message can consume (specified by the maxblocks channel option). If the message header
is larger, the MTA takes the product of max_header_block_use and maxblocks as the
size of the header; i.e., the header size is taken to be the smaller of the actual header size and
maxblocks * max_header_block_use.

For example, if maxblocks is 10 and max_header_block_use is the default, 0.5, any
message header that is larger than 5 blocks is treated as a 5 block header, and if the message
is 5 or fewer blocks in size it will not be fragmented. A value of 0 will cause headers to be
effectively ignored insofar as message size limits are concerned. A value of 1 allows headers to
use up all of the size that's available. Note, however, that each fragment will always contain at
least one message line, regardless of whether or not the limits are exceeded by this.

The max_header_line_use channel option operates in a similar fashion in conjunction with
the maxlines channel option.

See the defragment channel option and the Defragmentation channel for discussion
of the reverse operation: that is, how the MTA can be configured to perform automatic
defragmentation of message fragments that it receives.

46.3.4.8 Microsoft Exchange gateway channels (msexchange,
nomsexchange)

The msexchange channel option may be used on TCP/IP channels to tell the MTA that this
is a channel that communicates with Microsoft® Exchange gateways and clients. Use of the
option tells the MTA to try and accomodate nonstandard behavior on the part of Microsoft
Exchange. Exactly what nonstandard behaviors are dealt with is subject to change.

Currently the msexchange channel option on a channel configured to allow TLS use (see the
tls channel options) causes advertisement (by the MTA's SMTP server) and recognition (by
the MTA's SMTP client) of the non-standard TLS capability string, in addition to the standard
STARTTLS capability string, to indicate that TLS is supported.

Channels 46–55

Attachments and MIME
processing channel options

New in 7.0.5, setting msexchange on a destination channel will cause the MTA, if performing
any sort of MIME processing operation, to remove any Content-disposition: header line from
any text/calendar message parts, as despite Content-disposition:'s long-standing existence as
a standardized header line, not to mention the basic MIME rule that unrecognized Content-
* header lines should be ignored, Microsoft® Outlook's handling of text/calendar parts is
disturbed when such parts have a Content-disposition: specified. So specifying msexchange
on a channel sending to Microsoft Exchange, if text/calendar parts will flow through that
channel, should allow Microsoft Outlook to process calendar parts more successfully.

nomsexchange is the default.

46.3.4.9 MIME Content-type: and Content-disposition: header
line parameter lengths (nameparameterlengthlimit,
parameterlengthlimit)

A number of popular e-mail clients (mail user agents) have had a history of security problems
involving buffer overruns during header line processing, such as during processing of the
Content-type: or Content-disposition: header lines. So although RFC 2045 (MIME) does
not impose any length constraints on such parameters, keeping in mind the historical
vulnerabilities of many popular e-mail clients, the MTA normally truncates MIME parameters
in an attempt to protect any downstream, vulnerable clients. By default, the MTA truncates the
Content-type: NAME and Content-disposition: FILENAME parameters at 128 characters each,
and other general parameters at 1024 characters. These defaults may be changed by using the
nameparameterlengthlimit and parameterlengthlimit channel options, respectively.
Each takes an integer argument specifying the desired maximum length to allow for such
parameters; (longer parameters will be truncated).

A distinct but related issue to parameter truncation is parameter segmentation, per RFC 2231
rules, which can be controlled in part by the parameterformatdefault and related channel
options.

46.3.4.10 noconvert_octet_stream Option

The legacy configuration noconvert_octet_stream channel option has been replaced in
Unified Configuration by noconvertoctetstream.

46.3.4.11 Convert some non-standard "attachments" to MIME format
(thurman, nothurman, uma, nouma)

The thurman channel option on a source channel causes the MTA to "sniff" incoming, non-
MIME messages and convert them to MIME format, in the process converting certain non-
standard "attachment" formats (e.g., uuencoded or BinHex "blobs" embedded in messages)
into MIME format attachments. While this may seem like a positive transformation to perform
on messages, modifications of message content should always be a last resort, the resulting
MIME-ification of messages has limitations and may be considered undesirable in some
circumstances or to some users, this "sniffing" does incur processing overhead, and such an
approach may appear as a deceptively "easy" fix for communicating with non-standard e-mail
software (when a better, more permanent solution would be to upgrade the out-of-date, non-
standard software that is emitting such "blobs"). As such, the nothurman channel option is the
default -- and any decision to configure with thurman should be made with due consideration
and caution.

46–56 Messaging Server Reference

https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2231

Attachments and MIME
processing channel options

The uma source channel option is like thurman, except that with uma, the message "sniffing"
and content transformation only occurs if the MTA was already performing message body
processing (and hence would have been converting the message body to MIME format
already), for instance cases of incoming non-MIME messages that illegally contain unlabelled
eight bit characters. nouma is the default.

Note that CHARSET-CONVERSION mapping table keywords exist to configure thurman or
uma type processing on a somewhat more selective basis.

The thurman or uma processing on its own merely causes "blobs" in non-MIME messages
to get converted to fairly "generic" MIME parts, with Content-type of application/octet-
stream and a Content-transfer-encoding of X-UUENCODE. Optionally, one may configure
to guess (typically based on filename, especially filename extension) at a better Content-type
labelling, and/or to convert to a different Content-transfer-encoding, using the MTA's facility
for Relabelling MIME header lines.

46.3.4.12 MIME Content-type: and Content-
disposition: header line parameter RFC 2231 encoding
(parameterformatdefault, parameterformatminimizeencoded,
parameterformatstripencoded)

As of Messaging Server 7.2-0.01, the MTA supports RFC 2231 (MIME Parameter Value and
Encoded Word Extensions), thus supporting use of alternate character sets and languages in
MIME parameters, as well as supporting the segmentation of "long" parameter values.

As a separate issue from the truncation of very long parameter values as controlled by
parameterlengthlimit and nameparameterlengthlimit, note that as of Messaging
Server 7.2-0.01 when RFC 2231 support was added, the MTA will automatically segment
long parameter values according to RFC 2231 rules. (Note that the length at which RFC 2231
segmentation is triggered is not configurable.) For Messaging Server 7.2-0.01, parameter values
over 65 characters in length will automatically be segmented into 40 character segments; e.g.,

filename="veryveryveryveryveryveryveryveryveryveryveryveryveryveryverylong.name"

would become

filename*0="veryveryveryveryveryveryveryveryveryvery";
filename*1="veryveryveryveryverylong.name"

As of Messaging Server 7.4-0.01 and the implementation of CR # 6924445, the length limit
for triggering parameter segmentation was increased from the prior 65 characters up to 70
characters. (In particular, as RFC 2046 limits the length of MIME boundary delimiters to at
most 70 characters, this larger trigger length avoids triggering MIME parameter segmentation
of compliant boundary delimiters.)

New in 7.0.5 are the channel options parameterformatdefault,
parameterformatminimizeencoded, and parameterformatstripencoded, with these
last two options providing new features to aide with cases of dealing with other software that
does not yet support RFC 2231. parameterformatdefault is the default and means to

Channels 46–57

https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2046
https://tools.ietf.org/html/rfc2231

BSMTP-specific channel options

do normal RFC 2231 encoding, as needed. parameterformatminimizeencoded tells the
MTA to attempt to remove any unnecessary or redundant RFC 2231 encoding from MIME
parameters including removing any RFC 2231 segmentation of parameters; when it is applied,
parameter segmentation will be removed and those encoded words not involving charset
or language information or 8 bit characters will be replaced with regular parameter values.
parameterformatstripencoded tells the MTA to strip any characters that would require
RFC 2231 encoding from MIME parameters, thereby allowing the parameter to be represented
without any RFC 2231 encoding or segmentation.

For webmail (MSHTTP) generation of RFC 2231 encoded format, see the rfc2231compliant
MSHTTP option.

46.3.5 BSMTP-specific channel options
A few (now DEPRECATED or RESTRICTED) channel options relate to BSMTP-specific
protocol details. For channel options relevant to today's BSMTP channels, see instead
more general options such as the SMTP and LMTP protocol channel options and the
serviceconversion channel option.

46.3.5.1 Batch SMTP Continuation Lines (contchar,
contposition)

DEPRECATED.

The contposition channel option specifies the point at which batch SMTP lines are
folded onto a continuation line. The default value for contposition is 0, which disables
continuation lines.

The contchar channel option is used to specify a continuation character for commands in
batch SMTP. Commands longer than contposition characters long will have the character
specified by the integer argument to contchar inserted in the contposition position and
the remainer of the line will be wrapped to another line. The default value for contchar is 0.

See also the TCP/IP-channel-specific option CONTINUATION_CHARS which allows for
specification of additional continuation characters.

These options were used to accomodate the peculiar form of batch SMTP that was employed
by BITNET. Now that BITNET is no more these options are obsolete and deprecated.

46.3.5.2 Generation of TICKet BSMTP Commands (tick, notick)

Some batch SMTP (BSMTP) implementations require the presence of a ticket number,
specified with the TICK BSMTP command. The tick channel option tells the MTA to issue
this command; notick suppresses it. tick is the default on channels that support tickets.
Currently only PMDF's BN_MASTER channel program uses this channel option.

46.3.5.3 Generation of VERBose BSMTP Commands (verb_on,
verb_off, verb_none, verb_never)

Some batch SMTP (BSMTP) implementations support the use of the VERB command to control
the nature of their replies. On the client side the verb_on command tells the MTA to issue a
VERB ON command in the BSMTP command sequence; verb_off tells the MTA to issue a

46–58 Messaging Server Reference

https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231

Character sets and eight bit data
channel options

VERB OFF command. The verb_never and/or the verb_none channel option tells the MTA
not to issue any VERB commands. verb_never is the default, and this default should not be
changed.

On the server side, the verb_never channel option causes VERB commands in the BSMTP
stream to be accepted but ignored. verb_none can be used to enable processing of VERB
commands.

46.3.6 Character sets and eight bit data channel options
A number of channel options control handling of character sets in messages, as well as eight
bit data.

See also the general topic of Character set conversion.

46.3.6.1 Automatic character set labelling (charset7, charset8,
charsetesc)

The MIME specification provides a mechanism to label the charset used in plain text messages:
A "charset=" parameter can be specified as part of the Content-type: header line. Various
charset names are defined in MIME, including US-ASCII (the default), ISO-8859-1, ISO-8859-2,
and so on, and many more have been registered with the Internet Assigned Numbers
Authority (IANA).

Some existing systems and user agents, however, do not provide any mechanism for
generating these charset labels. The charset7, charset8 and charsetesc channel options,
when placed on a source channel, provide a mechanism to specify charset names to be inserted
into message headers. Each option requires an argument giving a charset name. The names are
not checked for validity. Note, however, that charset conversion can only be done on charsets
specified in the MTA's charset definition file charsets.txt. The names defined in this file
should be used if possible.

The charset7 charset name is used if the message contains only seven bit characters; the
charset8 name will be used if eight bit data is found in the message; charsetesc will
be used if a message containing only seven bit data happens to contain one or more escape
characters. If the appropriate option is not specified no character set name will be inserted
during MIME processing into Content-type: header lines for text parts that lack an existing
charset label.

When the presence of a charset* channel option on a channel causes a MIME "charset"
parameter clause to be added to an incoming message, that of course also means that the
message gets the more fundamental MIME-version: and Content-type: header lines added, if
not already present.

New in Messaging Server 7.4-18.01, the charset7, charset8, and charsetesc channel
options will also cause labelling (with the specified charset) of incoming illegal, unlabelled
parameter values on MIME Content-type: or Content-disposition: header lines, when such
parameters must be encoded due to their content. That is, while such parameter values have
always been subject to encoding (to make them syntactically legal, if not necessarily usable)
by the MTA, the new feature is that charset labelling will be inserted also, making them more
usable.

Note that the charset8 option also controls the MIME encoding of eight bit characters
found in message headers (where such eight bit data is unconditionally illegal). The MTA

Channels 46–59

Character sets and eight bit data
channel options

will normally always MIME encode any such (illegal) eight bit data encountered in message
headers, labelling it as the UNKNOWN charset if no charset8 value has been specified on
the current source channel. (Actual addresses are a special case. In the actual address, that is,
in the RFC 822 addr-spec, where eight bit categorically must not appear, any eight bit data
will be replaced by the MTA with the asterisk character, *. Note that an RFC 822 phrase, or
"personal name", however, is subject to the above described MIME encoding of any illegal
eight bit, using the charset8 charset name.)

These charset specifications never override existing labels; that is, they have no effect if a
message already has a charset label or is of a type other than text.

The charsetesc option tends to be particularly useful on channels that receive unlabelled
messages using Japanese or Korean character sets that contain the escape character (e.g.,
iso-2022-jp or iso-2022-kr).

46.3.6.2 Eight bit SMTP capability and EAI capability (eightbit,
eightnegotiate, eightstrict, sevenbit, utf8header,
utf8negotiate, utf8strict)

Some transports restrict the use of characters with ordinal values greater than 127 (decimal).
Most notably, some SMTP servers will strip the high bit and thus garble messages that use
characters in this "eight bit" range. Indeed, there have even been past cases of SMTP servers
which will crash when presented with eight bit data.

The MTA provides facilities to automatically encode such messages so that troublesome
eight bit characters do not appear directly in the message. This encoding can be applied to all
messages on a given channel by specifying the sevenbit channel option. A channel should be
marked eightbit if no such restriction exists.

Some transports such as extended SMTP may actually support a form of negotiation to
determine if eight bit characters can be transmitted. The eightnegotiate channel option
can be used to instruct the channel to encode messages when negotiation fails. This is the
default for all channels; channels that do not support negotiation will simply assume that the
transport is capable of handling eight bit data.

The eightstrict source channel option tells the MTA to reject any messages that
contain unnegotiated eight bit data; the exact text of this error may be controlled via the
error_text_unnegotiated_eightbit MTA option. (Note that the timing of the rejection
can be postponed via the acceptalladdresses channel option.)

The MS 8.0.2 release adds MTA support for EAI messages and the SMTPUTF8 extension. EAI
messaging is documented in RFC 6530 (overview), RFC 6531 (SMTPUTF8 extension), RFC 6532
(header format changes), and RFC 6533 (DSN and MDN format changes). Three additional
channel options have been added to enable and control EAI support:

utf8header As a SMTP source channel option, offer the SMTPUTF8 SMTP extension.
As a destination channel option, allow enqueue and dequeue of EAI
messages unconditionally; in particular, the SMTPUTF8 extension will not
be required. Note that delivery of EAI messages via SMTP/LMTP to a non-
EAI system is a standards violation.

utf8negotiate As a SMTP source channel option, offer the SMTPUTF8 SMTP extension.
As a destination channel option, allow enqueue unconditionally. On

46–60 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc6530
https://tools.ietf.org/html/rfc6531
https://tools.ietf.org/html/rfc6532
https://tools.ietf.org/html/rfc6533

Character sets and eight bit data
channel options

dequeue, require the SMTPUTF8 extension be offered by SMTP/LMTP
servers for EAI messages with EAI recipient (RCPT TO) addresses or un-
downgradable EAI originator (MAIL FROM) addresses.

utf8strict Same as utf8negotiate as far as SMTP/LMTP destination channels are
concerned. But additionally, for SMTP/LMTP servers (source channels),
reject messages that contain 8bit headers without having negotiated the
SMTPUTF8 extension and 8bit bodies without having negotiated the
8BITMIME extension. (Note that such rejections are postponed if the
acceptalladdress channel option is used.)

As of MS 8.0.2.2 the channel default for internal channels has changed from eightnegotiate
to utf8always. Note, however, that the channel default remains eightnegotiate
on all other channels; EAI support must therefore be explicitly enabled. A channel set to
eightnegotiate will not offer the SMTPUTF8 extensions or allow EAI messages with EAI
recipient or originator addresses to be enqueued. Also note that the Message Store does not
support EAI at the present time.

46.3.6.3 Unencoded non-ASCII headers (headerset7, headerset8,
headersetesc)

In extremely rare situations very old and standards-incompliant SMTP servers must be
accomodated. One of the behaviors such servers sometimes exhibit is an inability to deal
with MIME encoded words in headers. Instead such servers expect headers to simply contain
unencoded material in some other charset.

The headerset7, headerset8, and headersetesc channel options are used to deal with
such situations. Each accepts a charset name as an argument. When applied to a destination
channel, they cause encoded words in the specified charsets to be decoded. Any combination
of the options can be specified, meaning from 1 to 3 charsets can be decoded. Note that the
names of these options were selected to match up with other charset options but there is
essentially no difference between the three options.

Extreme care should be exercised when using these options, as the messages they produce
will be grossly standards incompliant and may cause serious interoperability problems, to the
point of crashing some very old SMTP servers.

46.3.6.4 MIME Content-type: and Content-disposition:
header line parameter RFC 2231 encoding
(parameterformatdefault, parameterformatminimizeencoded,
parameterformatstripencoded)

As of Messaging Server 7.2-0.01, the MTA supports RFC 2231 (MIME Parameter Value and
Encoded Word Extensions), thus supporting use of alternate character sets and languages in
MIME parameters, as well as supporting the segmentation of "long" parameter values.

As a separate issue from the truncation of very long parameter values as controlled by
parameterlengthlimit and nameparameterlengthlimit, note that as of Messaging
Server 7.2-0.01 when RFC 2231 support was added, the MTA will automatically segment
long parameter values according to RFC 2231 rules. (Note that the length at which RFC 2231
segmentation is triggered is not configurable.) For Messaging Server 7.2-0.01, parameter values
over 65 characters in length will automatically be segmented into 40 character segments; e.g.,

Channels 46–61

https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231

Conversion tag and service
conversion channel options

filename="veryveryveryveryveryveryveryveryveryveryveryveryveryveryverylong.name"

would become

filename*0="veryveryveryveryveryveryveryveryveryvery";
filename*1="veryveryveryveryverylong.name"

As of Messaging Server 7.4-0.01 and the implementation of CR # 6924445, the length limit
for triggering parameter segmentation was increased from the prior 65 characters up to 70
characters. (In particular, as RFC 2046 limits the length of MIME boundary delimiters to at
most 70 characters, this larger trigger length avoids triggering MIME parameter segmentation
of compliant boundary delimiters.)

New in 7.0.5 are the channel options parameterformatdefault,
parameterformatminimizeencoded, and parameterformatstripencoded, with these
last two options providing new features to aide with cases of dealing with other software that
does not yet support RFC 2231. parameterformatdefault is the default and means to
do normal RFC 2231 encoding, as needed. parameterformatminimizeencoded tells the
MTA to attempt to remove any unnecessary or redundant RFC 2231 encoding from MIME
parameters including removing any RFC 2231 segmentation of parameters; when it is applied,
parameter segmentation will be removed and those encoded words not involving charset
or language information or 8 bit characters will be replaced with regular parameter values.
parameterformatstripencoded tells the MTA to strip any characters that would require
RFC 2231 encoding from MIME parameters, thereby allowing the parameter to be represented
without any RFC 2231 encoding or segmentation.

For webmail (MSHTTP) generation of RFC 2231 encoded format, see the rfc2231compliant
MSHTTP option.

46.3.7 Conversion tag and service conversion channel
options

One place at which conversion tags can be added is on a destination or source channel basis,
controlled by channel options.

Triggering the check for service conversions can be controlled by channel options.

46.3.7.1 Channel-based conversion tags
(destinationconversiontag, sourceconversiontag)

(New in 7.0.5.) The channel options destinationconversiontag and
sourceconversiontag allow for per-channel addition of conversion tags to messages. Each
option accepts a single argument consisting of a comma-separated list of conversion tags. The
source conversion tags are attached to all message recipients; any destination conversion tags
are attached to all recipients associated with that destination channel.

See also the domain level and user level LDAP attributes for adding per-sender and
per-recipient conversion tags, ldap_domain_attr_source_conversion_tag,
ldap_domain_attr_conversion_tag, ldap_source_conversion_tag,
and ldap_conversion_tag, and in Unified Configuration the alias option

46–62 Messaging Server Reference

https://tools.ietf.org/html/rfc2046
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231
https://tools.ietf.org/html/rfc2231

Display label channel options

alias_conversion_tag or in legacy configuration the [CONVERSION_TAG] alias file
named parameter.

46.3.7.2 Source channel trigger for service conversions
(serviceconversion, noserviceconversion)

The serviceconversion and noserviceconversion channel options are new under
these names in Messaging Server 7.3-11.01; in earlier versions, the names (obsolete for Unified
Configuration) service and noservice had been used.

Instead of triggering a check for applicable service conversions via a matching entry in the
CHARSET-CONVERSION mapping table, setting serviceconversion on a source channel
equivalently triggers the check for applicable service conversions, for all messages coming
in that channel. noserviceconversion is the default, and means that the CHARSET-
CONVERSION mapping table is, as normal, the trigger for whether to check for applicable
service conversions.

46.3.8 Display label channel options
A couple of channel options are intended for labelling purposes, for future use.

46.3.8.1 Channel caption and description fields (caption,
description)

The description channel option takes a string argument and provides a way to associate
a descriptive term or phrase with a channel. This feature is intended for future management
utility use. The (new in 6.3) caption channel option is similar, though it would normally be
given a shorter argument, one suitable for use as the caption for a table column, for instance.

46.3.9 DKIM channel options
As of MS 7.0.5, a number of channel options can be used to affect message handling based on
the presence of DKIM signatures. See also the DKIM MTA options.

MS 8.0.2.3 introduced native DKIM signing capbilities, controled by various DKIM channel
options.

46.3.9.1 DKIM channel options: (destinationdkimignore,
destinationdkimpreserve, destinationdkimremove)

The destinationdkim* channel options are destination channel analogues of the dkim*
channel options. They operate in the same sort of way as their source channel analogues,
except that note that since destination channel determination is made later in message
processing, after some message processing has already occurred, then for instance the switch to
"passthrough" mode resulting from destinationdkimpreserve applying will occur after
some message processing may already have occurred. Thus destinationdkimpreserve
may be more specific in terms of which messages it applies to, but is potentially less
comprehensive in its avoidance of message processing, than dkimpreserve.

46.3.9.2 Source channel handling of DKIM-Signature: header fields
(dkimignore, dkimpreserve, dkimremove)

Channels 46–63

DKIM channel options

DKIM-Signature: header fields may require special handling, or their presence may indicate
the need for special handling. The dkimignore, dkimpreserve, and dkimremove source
channel options provide various capabilities in this area.

The dkimignore source channel option instructs the MTA to take no special action in regards
to DKIM-Signature: header fields. This option is the default.

The behavior of the dkimpreserve source channel option depends on whether the
dkim_preserve_domains and dkim_ignore_domains MTA options are set. If neither of
these options are set, the presence of any DKIM-Signature: header field in the message puts the
MTA in "passthrough" mode, where no header rewriting will be performed.

If either of the dkim_ignore_domains or dkim_preserve_domains MTA options is
set, every DKIM-Signature: header field that is present will be parsed and the domain value
specified by the "d=" will be extracted. Each extracted domain is first compared against the
space-separated list of domains specified by the dkim_ignore_domains MTA option. If a
match is found no action is taken and processing continues with the next DKIM-Signature:
field. If no match is found the domain is next checked against the space-separated list of
domains specified by the dkim_preserve_domains MTA option. If a match is found there
the MTA is placed in "passthrough" mode and scanning is terminated.

The behavior of the dkimremove source channel option depends on whether the
dkim_remove_domains and dkim_ignore_domains MTA options are set. If neither
of these options are set, all DKIM-Signature: fields are unconditionally removed from the
message.

If either of the dkim_remove_domains or dkim_ignore_domains MTA options is set,
every DKIM-Signature: header field that is present will be parsed and the domain value
specified by the "d=" will be extracted. Each extracted domain is first compared against the
space-separated list of domains specified by the dkim_ignore_domains MTA option. If a
match is found no action is taken and processing continues with the next DKIM-Signature:
field. If no match is found the domain is next checked against the space-separated list of
domains specified by the dkim_remove_domains MTA option. If a match is found there the
corresponding DKIM-Signature: field is removed from the message.

See also the analogous destination channel options destinationdkim*, introduced in 8.0.

46.3.9.3 Channel-based DKIM signing
(destinationdkimidentityN, destinationdkimselectorN,
sourcedkimidentityN, sourcedkimselectorN)

The destinationdkimidentityN/destinationdkimselectorN and
sourcedkimidentityN/sourcedkimselectorN channel options provide the ability to
apply DKIM signatures to messages based on destination and source channels, respectively.

The specification of one or more DKIM identities enables signing as enqueued messages are
written to disk. Each identity is used to access a corresponding private key in PEM format
stored as DATAROOT/dkim_private/<identity>/<selector>.pem.

Multiple "slots" are provided so that multiple signatures can be applied simultaneously. Slot
values starting at 0 appear at the end of the option name. At present four slots are available, so
N can range from 0 to 3.

46–64 Messaging Server Reference

Error interpretation channel
options

Identity values specifies the DKIM identity. This can take the form "user@domain", "@domain",
"domain", or the special value "*" can be given which specifies that the domain of From: header
address should be used.

Some DKIM errors will be sent to syslog (see mta.sndopr_priority). Additional
diagnostics are available by turning on MTA debugging, setting mta.mm_debug to at least 3,
and setting dkim-related base.debugkeys as desired.

New in MS 8.1, when a "*" is specified an additional check is made to see if a
DKIM_SIGN_DOMAINS mapping exists. If it does it is consulted with a probe of the form:

source-channel|destination-channel|from-address

If $Y is specified the result of the mapping is used as the DKIM identity. If $N is specified
DKIM signing is disabled.

For example, a mapping that would cause the foo.example.com subdomain to be signed with
the bar.example.com identity, all other subdomains of example.com to be signed with the
example.com identity, and example.com without a subdomain not to be signed would look
like:

DKIM_SIGN_DOMAINS

 ||*@foo.example.com bar.example.com$Y
 ||*@*.example.com example.com$Y
 ||*@example.com $N

The optional selector value given by the destinationdkimselectorN options specify a
space-separated list of selectors that may be used. The newest key associated with the identity
will be used if no selector is specified.

Note that CONVERSION mappings can also specifify DKIM identity and selector values. If
multiple values for the same slot are specified the CONVERSION mapping value will override
any destination channel value, which in turn will override any source channel value.

46.3.10 Error interpretation channel options
A couple of channel options override general MTA option settings regarding error
interpretation.

46.3.10.1 Error interpretation (usepermanenterror,
usetemporaryerror)

The usepermanenterror and usetemporaryerror source channel options override, on a
per-source-channel basis, the use_permanent_error and use_temporary_error MTA
options, respectively.

46.3.11 File creation in the MTA queue area channel
options

Several channel options can affect the creation of message files in the MTA queue area.

Channels 46–65

File creation in the MTA queue
area channel options

IMPORTANT NOTE: The various MTA queue directories are reserved for use by Oracle
software only. Customers MUST NOT create files in these areas.

46.3.11.1 Addresses per message copy (multiple, addrsperfile,
single, single_sys)

The MTA allows multiple destination addresses to appear in each queued message copy. Some
channel programs, however, may only be able to process messages with one recipient per copy,
or with a limited number of recipients, or with a single destination system per message copy.
For example, the SMTP client programs for TCP/IP channels only establish a connection to
a single remote host in a given transaction, so only addresses to that host can be processed
(this despite the fact that a single TCP/IP channel is typically used for all outbound Internet
message traffic). Another example is that some SMTP servers may impose a limit on the
number of recipients they can handle at one time, and they may not handle errors in this area
at all gracefully.

The channel options multiple, addrsperfile, single, and single_sys can be used to
control how the MTA handles multiple addresses. single means that a separate copy of the
message should be created for each destination address on the channel. single_sys creates
a single copy of the message for each destination system (more precisely, each destination
domain name) associated with a recipient address. multiple creates a single copy of the
message for the entire channel. Note that at least one copy of each message is created for each
channel the message is queued to, regardless of the options used. multiple is the default
for all channels marked with the nosmtp channel option. Channels marked with one of the
smtp* channel options default to single_sys unless the daemon option has been set. Prior
to 7.0 channels marked with one of the LMTP options defaulted to multiple, as of 7.0 they
also default to single_sys unless daemon has been set. (Actually, calling this the "default"
is something of a misnomer - without daemon SMTP and LMTP channels will be forced to
single_sys regardless of the channel setting. This is done to prevent delivery of messages to
the wrong system and possibly to the wrong user.)

These options also affect the Job Controller's "sorting" and organization of messages on a
channel. The single_sys option causes the Job Controller to organize messages into separate
internal lists based on destination domain. (And hence a command such as imsimta qm
messages will show messages sorted by destination host.)

The addrsperfile channel option is used to put a limit on the maximum number of
recipients that can be associated with a single message file in an MTA channel queue, thus
limiting the number of recipients that will be processed in a single operation. This option
requires a single integer argument specifying the maximum number of recipient addresses
allowed in a message file; if this number is reached the MTA will automatically create
additional message files to accomodate them.

Note that the default of addrsperfile depends on the channel type. For most channel types,
addrsperfile defaults to effectively unlimited (2147483647), but setting an smtp* option on
a channel causes addrsperfile to default to 99, while setting an lmtp* option on a channel
causes addrsperfile to default to 999.

The default messages per channel copy setting varies by channel type. The multiple option
is the default for everything except tcp_* channels. tcp_* channels default to multiple
if daemon is set, and single_sys if it is not. The combination of an explicit multiple and
no daemon isn't allowed on tcp_* channels and will be overridden by forcing a setting of
single_sys.

46–66 Messaging Server Reference

File creation in the MTA queue
area channel options

46.3.11.2 Expansion of multiple addresses (expandlimit,
expandchannel, holdlimit)

Most MTA channels support the specification of multiple recipient addresses in the transfer
of each inbound message. The specification of many recipient addresses in a single message
may result in delays in message transfer processing ("on-line" delays). In particular, multi-
recipient messages that require a great deal of processing of the message body can be affected
by processing delays, or that require creation of many different file copies on disk in the MTA
queue area can be affected by slow disk performance. If the resulting delays are long enough,
network timeouts can occur, which in turn can lead to repeated message submission attempts
and other problems.

The MTA provides a special facility to force deferred ("off-line") processing of additional
recipient message copies once a given number of addresses are specified for a single
message. The deferral happens after processing of the "initial" recipients (those before the
expandlimit value was reached), and after address processing for the additional recipients
too, (for instance, after *_ACCESS mapping table checks and after alias processing), but before
message processing. In particular, such deferral means that for the "additional" recipients, only
one message file (storing all of the "additional" recipients), is written to the queue area (to a
reprocess* or process* channel queue area, depending upon use of the expandchannel
channel option). Deferral of message processing can decrease on-line delays enormously. Note,
however, that the processing overhead is deferred, not avoided completely.

This special facility is activated by using a combination of, for instance, the generic
reprocessing channel and the expandlimit channel option. The expandlimit option takes
an integer argument that specifies at what number of recipients to begin deferring processing
of the message copy (or copies) to that and additional recipient addresses. The default value is
effectively infinite if the expandlimit channel option is not specified. A value of 1 will force
deferred processing on all incoming addresses from the channel.

The expandlimit channel option must not be specified on the local channel or the
reprocessing channel itself; the results of such a specification are unpredictable.

The channel actually used to perform the deferred processing may be specified on a per-
source-channel basis using the expandchannel channel option; the reprocessing channel is
used by default, if expandchannel is not specified, but use of some other reprocessing or
processing channel may be useful for some purposes. In particular, for Messaging Server MTA
versions 5.2 and earlier, typical configuration usage required that a processing channel, rather
than a reprocessing channel, be used. If a channel for deferred processing is specified via
expandchannel, that channel should be a reprocessing or processing channel; specification
of other sorts of channels may lead to unpredictable results.

The reprocessing channel, or whatever channel is used to perform the deferred processing,
must be added to the MTA configuration file in order for the expandlimit option to have
any effect. If your configuration was built by the initial configuration utility, then you should
already have a reprocessing channel.

(Note that typical Messaging Server sites running version 5.2 or earler could not use the
expandlimit option unless they also marked the affected channel expandchannel
process (or expandchannel process_somethingorother redirecting the
expansion to an alternate process_* sort of channel), as enqueues to a channel marked
viaaliasrequired would not succeed if deferred to a reprocess* channel.)

Extraordinarily large lists of recipient addresses are often a characteristic of so-called SPAM---
junk e-mail. The holdlimit channel option tells the MTA that messages coming in the

Channels 46–67

Gateway or firewall or mailhub
channel options

channel that result in more than the specified number of recipients should be marked as
.HELD messages and enqueued to the reprocess channel (or to whatever channel is
specified via the expandchannel channel option). As .HELD messages, the files will sit
unprocessed in that MTA queue area awaiting manual intervention by the MTA postmaster.

46.3.11.3 Using multiple subdirectories to store queued messages
(subdirs)

The MTA by default spreads all messages queued to a channel across 20 subdirectories.
However, a channel which handles a large number of messages and tends to build up a
large store of message files waiting for processing, e.g., a TCP/IP channel, may get better
performance out of the file system if those message files are spread across even more
subdirectories. The subdirs channel option provides this capability: it accepts an integer
argument which specifies the number of subdirectories across which to spread messages for
the channel. The allowed range of integer values is 1 through 999. The default value is 20.

To disable the use of subdirectories for channel queues, use the nosubdirs keyword.

46.3.12 Gateway or firewall or mailhub channel options
There are a number of channel options of particular interest when configuring channels
intended to communicate with gateway, firewall, or mailhub systems.

46.3.12.1 Force "detour" routing of hosted users
(aliasdetourhost, aliasoptindetourhost)

The (new in iMS 5.2p2, and MS 6.1) aliasdetourhost channel option allows source-
channel-specific overriding of hosted users' mailHost attribute value. In particular,
aliasdetourhost is commonly used to achieve a "detour" in the routing of messages
destined for local (hosted on this system) users. It allows better configuration and use of
"intermediate filtering" sorts of channels and third party filtering hosts.

The aliasdetourhost channel option takes a single host/domain name as an argument.
When specified on a source channel, this channel option causes alias expansion of addresses
stored in LDAP to stop (short-circuit) just prior to the point where mailHost (more precisely,
the attribute named by the ldap_mailhost MTA option) information is checked. The host
specified by the aliasdetourhost channel option is used as the (assumed to be non-local)
mailHost. That is, a source route containing the specified host is added to the address (just as
if a non-local mailHost had been found) and processing continues onward from that point.
Note that in particular, this forced use of the aliasdetourhost specified host as a non-
local mailHost stops further expansion of the alias for purposes of things such as application
of user forwarding and Sieve filter application (which normally would occur subsequently
during alias expansion when a user's real mailHost is this MTA).

Thus use of aliasdetourhost on an incoming channel lets the MTA do address validation
(check that an incoming address corresponds to a valid user entry), while "delaying" complete
expansion and processing (in particular, forwarding and Sieve evaluation) of the valid local
recipient addresses. This combination of effects is potentially very useful.

A typical application of this channel option is for purposes of "detouring" messages through
a special channel or host, most often for purposes of spam/virus filtering. It is often used in
conjunction with use of an "alternate" conversion channel for such "detour" purposes, where

46–68 Messaging Server Reference

Gateway or firewall or mailhub
channel options

the "alternate" conversion channel approach is used to handle cases of non-local recipient
addresses, while aliasdetourhost is used to handle cases of local-to-this-mailHost
recipient addresses. (Use of an "alternate" conversion channel approach for a routing "detour"
on local-to-this-mailHost recipient addresses incurs various problems, in particular in the
areas of forwarding and Sieve filter evaluation timing. It is desirable to delay Sieve filter
evaluation until after the "detour" - for instance, so that Sieve filters can look for headers added
by the "detour" host. It is also desirable to delay application of user forwarding until after the
"detour", to avoid potential duplication of the forwarding. Such a delay in the final parts of
user alias expansion is exactly what aliasdetourhost can be used to achieve.)

The (new in MS 6.2p4) aliasoptindetourhost option has the same function as
aliasdetourhost, except that it only applies for users in LDAP who have "opted-in" via
whatever user attribute is named by the ldap_detourhost_optin MTA option, or whatever
domain attribute is named by the ldap_domain_attr_detourhostoptin MTA option.
The argument of the aliasoptindetourhost channel option specifies a list of detour hosts
separated by commas. The value(s) of the optin attribute are compared with the list; the first
match will be used as the "override" mailHost for any users who are "opted-in". However,
any attribute that doesn't contain at least one period (which would be necessary to match a
legitimate mail host) is treated as an effective wildcard; the first host from the list will be used
in this case.

Finally, if the option value matches the special value specified by the
aliasdetourhost_null_optin MTA option it will simply be ignored. This mechanism
is provided to accomodate provisioning systems that insist on every known attribute having
a value. Omitting the attribute value entirely is the preferred method for disabling detour
processing, however.

One disadvantage of using aliasoptindetourhost is that all alias expansion is deferred,
including expansions that result in mail being discarded. This can lead to messages sent to the
bitbucket wasting processing resources.

One way to work around this problem is to use a $* rewrite rule and an associated mapping
to direct such addresses to the bitbucket channel, bypassing any use of aliasdetourhost. For
example:

$* EF${bitbucket_check,U@$H}

BITBUCKET_CHECK

 noreply@example.com $Y$$U%$$H@bitbucket-daemon
 unattended@example.net $Y$$U%$$H@bitbucket-daemon

This will caused any mail sent to noreply@example.com and unattended@example.net to be
discarded before any other lookups or redirection.

46.3.12.2 Clone messages to alternate destination (clonehosts)

(New in MS 8.0) A commonly requested capability is to "clone" all messages that meet some
criteria and send them to an alternate destination. This can be accomplished in a variety
of ways, including the Sieve "capture" action, the MESSAGE-SAVE-COPY mapping, the
FORWARD mapping, and various sorts of address rewriting tricks, and all of these mechanisms
have different characteristics as well as different advantages and disadvantages.

Channels 46–69

Gateway or firewall or mailhub
channel options

In the specific case when the desire is to clone all messages sent to a particular channel to
another channel while preserving the initial address that expanded to that channel, none of the
previously mentioned methods provide that specific result. (A capture action in a destination
channel Sieve script can capture the message, but not the initial address. MESSAGE-SAVE-
COPY has similar limitations and also requires playing queue management games.)

The clonehosts channel option provides this result. It accepts a single argument: A space-
separated list of host names. When given a clonehosts setting of "host1 host2 host3"
and a message sent to the addresses initial1 and initial2, both of which expanded
to one or more final recipient addresses destined to that channel, this setting will add the
recipient addresses:

 @host1:initial1
 @host2:initial1
 @host1:initial2
 @host2:initial2

46.3.12.3 Forced routing to gateways (daemon)

The interpretation and usage of the daemon channel option depends upon the type of channel
to which it is applied. Currently, the only type of channel for which the daemon option is
relevant is SMTP over TCP/IP channels. Normally such channels connect to whatever host is
listed in the envelope address of the message being processed. The daemon option is used to
tell the channel to instead connect to a specific remote system, generally a firewall or mailhub
system, regardless of the envelope address. The actual remote system name is given as an
argument to daemon, e.g.:

msconfig> set channel:tcp_firewall.daemon firewall.domain.com

If the argument after the daemon option is not a fully qualified domain name (or alternatively
a square bracket enclosed literal IP address), the argument will be ignored and the channel will
connect to the channel's official host. When specifying the firewall or gateway system name
as the channel's official host name, channel:channel-name.official_host_name, the
argument given to the daemon option is typically specified as router, e.g.:

msconfig> show channel:tcp_firewall
role.channel:tcp_firewall.official_host_name = firewall.domain.com
role.channel:tcp_firewall.daemon = router
role.channel:tcp_firewall.mx (novalue)
role.channel:tcp_firewall.pool = SMTP_POOL
role.channel:tcp_firewall.smtp (novalue)

46.3.12.4 Specify a last resort host for delivery (lastresort)

The lastresort channel option is used to specify a host to which to connect when all other
connection attempts fail. In effect this acts as an MX record of last resort. This is only useful on
SMTP over TCP/IP channels.

Note that the lastresort host is attempted only for hosts that are in the DNS, having either
MX records or an A record, and for whom the connection attempts to all the MX records --
or to the A record, if there were no MX records---have encountered temporary connection

46–70 Messaging Server Reference

Headers channel options

failures. (In particular, the lastresort host will not be attempted for a host that is only in the
hosts file, not in the DNS at all. Also keep in mind that a permanent 5xx error in response to
a connection attempt to a host is a permanent error, and will result in bouncing a message; in
particular, the lastresort host will not be attempted after such a permanent rejection error.
 Also, the lastresort host will not be attempted if a connection succeeds, but the MTA's
wait for an SMTP banner line to be returned times out; that again is not a temporary connection
failure.)

This channel option requires a single parameter specifying the name of the "system of last
resort".

See also the IP_ACCESS mapping table, which can provide an alternate way of doing "fail
over" for outbound IP connections for SMTP and LMTP channels.

Note that in most cases, it is preferable to fix problematic DNS records rather than to use
lastresoft; lastresort is intended merely for a few, special sorts of cases where
correcting DNS records may not be possible, yet some "last ditch", MX-like, re-routing may be
useful.

46.3.12.5 Multiple gateways on a single channel (multigate,
nomultigate)

The multigate channel option tells the MTA to perform an additional rewrite of the envelope
To: address during message dequeue processing in order to determine the host to connect
to for message delivery. This differs from the MTA's normal behavior when the multigate
channel option is not used, in which case the MTA routes the message to whatever host is
specified using the daemon channel keyword, and to the not the host specified in the message's
To: address if daemon is not set.

nomultigate is the default.

The recipient address is rewriten as if it were a forward-pointing header address, so BF is
typically used in rewrite rule templates intended to only apply during this specific rewrite
operation.

There are a variety of caveats associated with using the multigate channel option; some of
its former uses are now obsolete. The remaining usage is on LMTP channels.

46.3.12.6 user Option Under channel

The user channel option is used on pipe channels to indicate under what Unix user id to run.

In the 8.0 release and later, this option is deprecated and the pipeuser option from
restricted.cnf is used instead.

46.3.13 Headers channel options
There are a number of channel options especially relevant regarding header line processing
and handling; those channel options relating to header line processing other than address
handling in header lines are listed here. Note that channel options that relate more to general
address handling (including address handling in headers) are instead listed primarily under
Addresses channel options.

Channels 46–71

Headers channel options

46.3.13.1 Adding Return-path: header fields (addreturnpath,
noaddreturnpath)

When specified on a destination channel, the addreturnpath channel option causes the
MTA to add a Return-path: header field and possibly an Original-recipient: header field to all
messages enqueued to the channel. noaddreturnpath disables this feature.

The Return-path: header field will contain the current envelope from (SMTP MAIL FROM)
address enclosed in angle brackets. The Original-recipient: header field will contain the value
of any SMTP ORCPT parameter associated with the message's recipient(s). Original-recipient:
header fields are only generated when all recipients of the current copy of the message have
the same ORCPT value.

Note that the addition of Return-path: and Original-recipient: header fields is usually a
function of a final delivery agent (such as a final delivery channel). Most final delivery
channels know to add these header fields themselves. But for the convenience of some
channels such as the ims-ms channel, where adding a Return-path: header line in the channel
program itself is not convenient, the MTA is also capable of adding the Return-Path: header
itself if configured to do so via this channel option.

The addreturnpath channel option is the default on the ims-ms channel and any channel
marked with one of the lmtp* channel options; noaddreturnpath is the default for all other
channels.

46.3.13.2 Authenticated originator information processing
(authrewrite)

The authrewrite option may be used on a source channel to have the MTA propagate
authenticated originator information, if available, into the headers. Normally the SMTP
AUTH information is used (specifically, the user's canonical e-mail address, that is, the
value of the mail attribute or new in MS 8.0 the value of whatever attribute is named by the
ldap_auth_attr_sender MTA option, found when looking up the user for authentication),
though this may be overridden via the FROM_ACCESS mapping. authrewrite takes a
required bit-encoded integer value as an argument, according to the following table:

Table 46.9 authrewrite option values

Bit Value Usage

0-3 1 Add a Sender: header line, or a Resent-sender: header line if a Resent-from: or Resent-sender: was already present,
containing the AUTH originator

0-3 2 Add a Sender: header line containing the AUTH originator

0-3 3 Use the AUTH_REWRITE mapping table, probing with any Resent-Sender: and Resent-From: info if present, and
otherwise probing with Sender: and From: info

0-3 4 Use the AUTH_REWRITE mapping table, probing with Sender: and From: info

0-3 5 Add a From: header line, or a Resent-From: header line if a Resent-From: or Resent-Sender: was already present,
containing the AUTH originator. This is NOT RECOMMENDED and CONTRARY TO INTERNET STANDARDS,
and likely to HARM the security of your users. This option should almost NEVER be used: THIS MEANS YOU!.

0-3 6 Add a From: header line containing the AUTH originator. This is NOT RECOMMENDED and CONTRARY TO
INTERNET STANDARDS, and likely to HARM the security of your users. This option should almost NEVER be
used: THIS MEANS YOU!.

4 16 (New in 6.2) If set, apply the AUTH_REWRITE mapping table, even if SMTP AUTH has not been used

5 32 (New in 6.2) If set, probes to AUTH_REWRITE include the source-channel as a prefix field, separated by a vertical bar
character from the rest of the probe string; that is, when this bit is set then probes take the form:

46–72 Messaging Server Reference

Headers channel options

src-chan|env-from|[resent-]sender|[resent-]from|auth-originator

6 64 (New in 7.2-7.02.) If set, use the rewritten version of the envelope from address in constructing the AUTH_REWRITE
probe.

7 128 (New in 7.2-7.02.) If set, use the canonical version of the envelope from address in constructing the AUTH_REWRITE
probe. Bit 6 (value 64) is a no-op if this bit is set.

8 256 (New in 7.3-11.01.) If set, add the value of the AUTH parameter from the SMTP MAIL FROM command to the
AUTH_REWRITE probe, appearing just after the authorized originator address; that is, when this bit is set then probes
take the form

env-from|[resent-]sender|[resent-]from|auth-originator|auth-param

9 512 (New in MS 7.0.5) If set, the final tag set via $T in the *_ACCESS mappings will be prefixed to the AUTH_REWRITE
mapping probe; that is, when this bit is set then probes take the form:

ACCESS-tag|env-from|[resent-]sender|[resent-]from|auth-originator

46.3.13.3 Comments in address message headers (commentinc,
commentmap, commentomit, commentstrip, commenttotal,
sourcecommentinc, sourcecommentmap, sourcecommentomit,
sourcecommentstrip, sourcecommenttotal)

The MTA only interprets the contents of header lines when necessary. However, all registered
headers containing addresses must be parsed in order to rewrite and eliminate shortform
addresses and otherwise convert them to legal addresses. During this process comments
(strings enclosed in parentheses) are extracted and may optionally be modified or excluded
when the header line is rebuilt.

On destination channels, this behavior is controlled by the use of the commentinc,
commentmap, commentomit, commentstrip, and commenttotal channel options.
commentinc tells the MTA to retain comments in header lines. It is the default. commentmap
tells the MTA to apply the COMMENT_STRINGS mapping table to comments in addressing
header lines if such a mapping table exists, while if no such mapping table exists then
commentmap is equivalent to commentstrip. commentomit tells the MTA to remove any
comments from addressing headers, e.g., To:, From:, Cc: headers, etc. commenttotal tells the
MTA to remove any comments from all headers, except Received: headers; as such, this option
is not normally useful or recommended. And finally, commentstrip tells the MTA to strip
any nonatomic characters from all comment fields.

On source channels, this behavior is controlled by the use of the sourcecommentinc,
sourcecommentmap, sourcecommentomit, sourcecommentstrip, and
sourcecommenttotal channel options. sourcecommentinc tells the MTA to retain
comments in header lines. It is the default. sourcecommentmap tells the MTA to apply the
COMMENT_STRINGS mapping table to comments in incoming addressing header lines if such
a mapping table exists, while if no such mapping table exists then sourcecommentmap is
equivalent to sourcecommentstrip. sourcecommentomit tells the MTA to remove any
comments from addressing headers, e.g., To:, From:, Cc: headers, etc. sourcecommenttotal
tells the MTA to remove any comments from all headers, except Received: headers; as such,
this option is not normally useful or recommended. And finally, sourcecommentstrip tells
the MTA to strip any nonatomic characters from all comment fields.

These options can be applied to any channel.

46.3.13.4 Two or four digit date conversion (datefour, datetwo)

The original RFC 822 specification called for two digit years in the date fields in message
headers. This was later changed to four digits by RFC 1123. However, some older mail systems

Channels 46–73

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1123

Headers channel options

cannot accommodate four digit dates. In addition, some newer mail systems can no longer
tolerate two digit dates! (Please note that systems which cannot handle both formats are in
violation of the standards.)

The datefour and datetwo channel options control the MTA's processing of the year field
in message header dates. datefour, the default, instructs the MTA to expand all year fields to
four digits. Two digit dates with a value less than 50 will have 2000 added while values greater
than 50 will have 1900 added.

datetwo instructs the MTA to remove the leading two digits from four digit dates. This is
intended to provide compatibility with incompliant mail systems that require two digit dates;
it should never be used for any other purpose.

46.3.13.5 Day of week in date specifications (dayofweek,
nodayofweek)

The RFC 822 specification allows for a leading day of the week specification in the date fields
in message headers. However, some systems cannot accomodate day of the week information.
This makes some systems reluctant to include this information, even though it is quite useful
information to have in the headers.

The dayofweek and nodayofweek channel options control the MTA's processing of day of
the week information. dayofweek, the default, instructs the MTA to retain any day of the
week information and to add this information to date/time headers if it is missing.

nodayofweek instructs the MTA to remove any leading day of the week information from
date/time headers. This is intended to provide compatibility with incompliant mail systems
that cannot process this information properly; it should never be used for any other purpose.

46.3.13.6 Host name to use when correcting incomplete addresses
(auththost, noauthhost,defaulthost, nodefaulthost,
remotehost, noremotehost)

The MTA often receives addresses consisting of a bare local-part and no "@domain" from
misconfigured or incompliant mailers and SMTP clients. (Note that the standards do in fact
require acceptance of one special address - "postmaster" in SMTP, but do not state how such
an address is to be represented in a message header.) This happens often enough that simply
disallowing such addresses is rarely an acceptable strategy.

The MTA, showing at least some respect for standards, must attempt to make such addresses
legal before passing the message along. The MTA does this by appending a domain name to
the address (e.g., appends "@acme.com" to "mrochek", producing "mrochek@acme.com").

The set of options described here control how this domain name is selected. In this process
the MTA makes a distinction between envelope To (RCPT TO) addresses versus addresses
appearing in all other contexts (header, MAIL FROM), as well as distinguishing SUBMIT from
SMTP.

In the following table showing what domain is used when various options or protocols are
used, o.org is the domain attached to the local channel, a.com is the domain associated with
the current authenticated user's primary email address, l.com is the first argument of the
defaulthost option setting on the current source channel, r.com is the second argument

46–74 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Headers channel options

of the defaulthost option setting on the current source channel, and r.edu is the domain
associated with the remote SUBMIT/SMTP client.

Table 46.10 Options controlling missing domain fixups

Option Protocol Header/
MAIL
FROM

RCPT TO

authhost (and authenticated) SUBMIT/SMTP @a.com @a.com
defaulthost SUBMIT/SMTP @o.org @o.org
defaulthost l.com SUBMIT @l.com @l.com
defaulthost l.com SMTP @l.com @o.org
defaulthost l.com r.com SUBMIT @l.com @l.com
defaulthost l.com r.com SMTP @l.com @r.com
nodefaulthost (MS 8.0.2.1 or
later)

SUBMIT/SMTP <no fixup> <no fixup>

remotehost SUBMIT @r.edu @r.edu
remotethost SMTP @r.edu @o.org
<no options> SUBMIT/SMTP @o.org @o.org

Note: The option in the preceding table are shown in precedence order, that is, a given option
setting will override option settings further down the table.

The usual configuration is to have both arguments to defaulthost set to the
defaultdomain on the defaults channel, overriding any use of the local channel host. It may
be appropriate in multitenant configurations to set authhost on all channels that are marked
with the submit channel option

Use of the remotehost channel option may be considered in rare cases where remote SMTP
client exist in another administrative domain which partial addresses to refer to their own
users.

Note that rewrite rules can make use of whatever default has been selected via the the $G and
$nG substitutions.

Note that the switchchannel, saslswitchchannel, tlsswitchchannel and various
other options can be used to associated incoming SMTP connections with a particular channel,
and thus control what set of options are used.

46.3.13.7 Strip illegal blank recipient headers (dropblank,
nodropblank)

In RFC 822 messages, any To:, Resent-To:, Cc:, or Resent-Cc: header is required to contain at
least one address - such a header may not have a blank value. Nevertheless, some mailers
may emit such illegal headers. The dropblank channel option, if specified on a source
channel, causes the MTA to strip any such illegal blank headers from incoming messages.
nodropblank disables this action and is the default.

46.3.13.8 Envelope tunneling via header fields (envelopetunnel))

Channels 46–75

https://tools.ietf.org/html/rfc822

Headers channel options

The envelopetunnel channel option controls the transfer of envelope information to and
from special header fields defined for this purpose. The use of these fields provides a means of
tunneling information associated with various SMTP extensions through systems that do not
support the extensions. The option's value is a bit-encoded integer, with each bit controlling
a different header field and associated piece of envelope information. Setting the bit enables
tunneling; clearing it disables it.

The default value of this option is 0, meaning all tunneling is disabled. Setting the option to -1
enables all available tunneling capabilities.

At present only one bit is defined: Bit 0 (value 1) controls the use of the MT-Priority: header
line as a means of tunneling the message's MT-PRIORITY value. The syntax and use of the
field are specified in RFC 6758 (Tunneling of SMTP Message Transfer Priorities).

46.3.13.9 Header-based message expiration(expirysource,
expirysource)

(New in Messaging Server 7.0.) The expirysource channel option instructs the MTA to
honor Expiry-date: header fields - messages will be returned as undeliverable if the time
specified by this header field is exceeded. noexpirysource disables this check and is the
default.

46.3.13.10 Syntax Error Fixup (fixsyntaxerrors,
passsyntaxerrors)

The MTA normally attempts to fix common syntax errors when it processes message header
fields. It is sometimes useful to disable this behavior so certain syntax errors aren't corrected.
The passsyntaxerrors source channel keyword enables this behavior. fixsyntaxerrors
is the default.

At present disabling syntax error fixup is limited to header fields containing addresses and
message ids. This may be extended to include other types of fields in the future.

Important note: Many other agents depend on syntax error fixup by the MTA. Disabling it may
fix some problem but cause unexpected side effects. It is always preferable to fix whatever is
generating the syntax errors so it doesn't do that any more.

46.3.13.11 Received: from clause content (forcedreceivedfrom))

(New in 7.0.5.37) The forcedreceivedfrom source channel option is used to specify the text
string that appears as the source within the "from source" clause value in any Received:
header fields that are generated. The default, if forcedreceivedfrom is not specified, is for
the "from" clause value to be generated in the usual way from the value of the remote client's
HELO/EHLO command and its IP address.

Specifying an empty string as the forcedreceivedfrom value causes the "from" clause to be
suppressed. Note that the "from" clause is required by the Received: field syntax specified in
RFC 5321 but is optional in the syntax specified in RFC 822.

46.3.13.12 Location of message header (headerbottom,
headerinc, headeromit)

46–76 Messaging Server Reference

https://tools.ietf.org/html/rfc6758
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc822

Headers channel options

VMS MAIL only provides support for four message header lines: From:, To:, Cc: and Subject:.
However, RFC 822 headers can contain many additional types of header lines. On OpenVMS
systems, PMDF supports these additional header lines by optionally prepending or appending
them to the message body whenever a message is delivered to a local user.

This behavior is controlled by the use of the headerinc, headeromit, and headerbottom
channel options. The default is headerinc, which tells PMDF to prepend the header lines to
the message. On OpenVMS systems, the channel option headerbottom, which tells PMDF
to append the header lines to the end of the message, and headeromit, which tells PMDF to
strip all header lines, are also available.

In some rare cases an SMTP server is used to deliver message content to something other than
a proper mail user agent. Under these very rare circumstances it may be appropriate to omit
header information or to place it at the end of the message, so these channel options are also
supported for SMTP channels.

Extreme care should be taken not to use these options on channels connecting to other message handling
systems --- relocating or eliminating message headers violates RFC 821 and RFC 822 and can lead
to serious problems. Note also that many seemingly "bothersome" header lines may contain valuable
information required to decode messages, track down problems, or even authenticate who really sent the
message and thus thwart attempts at forging mail messages.

46.3.13.13 Cutting header to fit (headercut)

The headercut channel option cuts the current message header down to no more than the
specified number of bytes using a heuristic algorithm that removes or truncates header fields
based on their relative importance. Unlike headertrim, which should be used to deal with
issues of the mere presence, or the number, or the size, of specific header fields, headercut is
intended for use to meet constraints on overall header size.

The headercut option requires a single nonnegative integer argument. A value of 0, the
default, disables header cutting.

46.3.13.14 Controlling Sender Rewriting Scheme (SRS) rewriting in
header lines (headerdecodesrs, noheaderdecodesrs)

New in 8.0.1.3. The headerdecodesrs channel option, if set on the current source or
destination channel, causes any SRS-encoded addresses found in any address header fields
to be decoded. The decoding in this case does not enforce password or timeout checks; it is
sufficient that the SRS domain match for decoding to occur.

The default is noheaderdecodesrs.

46.3.13.15 Header alignment and folding (headerfoldpreserve,
headerfoldremove, headerlabelalignment,
headerlineincrement, headerlinelength)

The headerlabelalignment channel option controls the alignment point for message
headers enqueued on this channel; it takes an integer-valued argument. The alignment point
is the margin where the contents of headers are aligned. For example, sample headers with an
alignment point of 10 would appear as follows:

Channels 46–77

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc822

Headers channel options

To: ned@innosoft.com
From: kristin@innosoft.com
Subject: Alignment test

The default headerlabelalignment is 0, which causes headers not to be aligned.

The headerlinelength channel option controls the length of message header lines
enqueued on this channel. The default, if this channel option is not explicitly set, is 80.
Lines longer than this are folded in accordance with RFC 822 folding rules. Note that
headerlinelength applies to all header lines; when some header lines should get different
folding points than other header lines, then see instead the LINELENGTH header trimming
option.

The MTA attempts to fold the lines at or before the length specified by headerlinelength,
but if no suitable folding point can be found, then the length is adjusted by
headerlineincrement. headerlineincrement takes a required non-negative integer
argument. Only values between (inclusive) 1 and 100 are permitted; note that setting values
that diverge dramatically from the default value of 20 may result in problematic behavior.

Note that these channel options only control the format of the headers of the message in the
message queue; the actual display of headers is normally controlled by the user agent. In
addition, headers are routinely reformatted as they are transported across the Internet, so these
channel options may have no visible effect even when used in conjunction with simple user
agents that do not reformat message headers.

Whether the MTA attempts to preserve "original" fold points in folded header lines when
practicable, or whether the MTA automatically unfolds and then later re-folds header lines, is
controlled by the headerfoldremove and headerfoldpreserve channel options. These
options apply to source channels.

headerfoldremove is the default; it means that the MTA unfolds all incoming header lines
when first receiving a message (and then refolds when outputting header lines, at fold points
chosen in accordance with the headerlinelength channel option or LINELENGTH header
trimming option).

The headerfoldpreserve channel option tells the MTA to attempt to preserve "original"
fold points in header lines. Note that fold points in addressing header lines (such as To:,
Cc:, Bcc:, etc.) are not preserved by this channel option, nor are fold points in date header
lines or MIME header lines. This keyword instead affects primarily text header lines such
as the Subject: header line. When this option is used, it is usually most appropriate to
also set headertrailingpreserve; that is, when attempting to preserve original fold
points, typically one also wants to preserve all original white space, including trailing
white space, that might be present in the header line. However, note that enabling the
headerfoldpreserve channel option causes any originally present horizontal tab characters
to be converted to space characters, except that immediately after each fold point a horizontal
tab character will be used as the initial linear white space character (regardless of whether the
original white space character was a tab or a space).

Note that various aspects of this sort of header line processing can be testing using the test -
header utility.

Note that message bodies are potentially subject to MIME encoding to ensure transport-safe
line length, as controlled by the linelength channel option; such message body encoding is
separate and distinct from (and happens after) the header line processing discussed here.

46–78 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Headers channel options

46.3.13.16 Trimming message header lines (headertrim,
noheadertrim, headerkeeporder, headerread, noheaderread,
innertrim, noinnertrim)

The MTA provides per-channel facilities for trimming or removing selected message header
lines from messages. This is done through a combination of a channel option and an associated
header option file or two. The headertrim channel option instructs the MTA to consult a
header option file associated with the channel and to trim the headers on messages queued
to that destination channel accordingly, after the original message headers are processed. The
noheadertrim option bypasses header trimming, but does cause the MTA to re-order
header lines according to its internal header line order defaults (plus any configured ordering
rules). New in MS 6.3 is the headerkeeporder channel option, which (making use of new
MTA header line handling) preserves whatever header line ordering was present in the
message as enqueued. noheadertrim was the default in MS 6.2 and earlier; as of MS 6.3,
headerkeeporder is the default.

The innertrim channel option instructs the MTA to perform header trimming on inner
message parts, i.e., embedded MESSAGE/RFC822 parts, as well. Note that setting innertrim
overrides headerkeeporder, causing at a minimum noheadertrim effect (that is, potential
re-ordering of header lines). The noinnertrim channel option, which is the default, tells the
MTA not to perform any header trimming on inner message parts.

The headerread channel option instructs the MTA to consult a header option file associated
with the channel and to trim the headers on messages enqueued by that source channel
accordingly, before the original message headers are processed. Note that headertrim header
trimming, on the other hand, is applied after the messages have been processed, and is
destination channel, rather than source channel, related. The noheaderread channel option
bypasses message enqueue header trimming. noheaderread is the default.

Unlike the headeromit and headerbottom options, the headertrim and headerread
options may be applied to any channel whatsoever. Note, however, that stripping away vital
header information from messages may cause improper MTA operation. Be extremely careful
when selecting headers to remove or limit. This facility exists because there are occassional
situations where selected header lines must be removed or otherwise limited. Do not merely
trim header lines away because you or your users find them annoying --- those header lines are there
for a reason. More often than not, the header lines that users feel are superfluous are among the most
important. Before trimming or removing any header line, be sure that you understand the usage of that
header line and have considered the possible implications of its removal.

Header options files for the headertrim and innertrim channel options have names of
the form channel_headers.opt with channel the name of the channel with which the
header option file is associated. Similarly, header options files for the headerread channel
option have names of the form channel_read_headers.opt. See Header option files for
information on the format of these files.

Note that as of MS 6.3, the MTA supports the Sieveeditheader extension, which offers quite
a different way to modify message header lines.

46.3.13.17 Limiting header storage (headerlimit)

The MTA stores outermost message headers in memory. This means that a single extremely
large header could potentially consume all available memory, possibly leading to a denial of
service attack. When placed on a source channel, the headerlimit channel option provides

Channels 46–79

Headers channel options

a means to prevent such attacks. It accepts a single integer argument specifying the maximum
number of MTA blocks that can be consumed by the message header. Messages with headers
that exceed this limit will be silently truncated.

Note that the header_limit MTA option can be used to implement the same limit for all
channels. The lower of the two option values is used as the actual limit.

The default value for headerlimit is essentially unlimited if the channel option isn't
specified. Note, however, that since the default value for the header_limit MTA option
is 2000 blocks, the effective default limit on the size of a header if no limiting options are
specified is 2000 blocks.

The headerlimit channel option initially appeared in Messaging Server 6.1.

46.3.13.18 Trailing spaces on header lines
(headertrailingpreserve, headertrailingremove)

The headertrailingremove and headertrailingpreserve channel options, applicable
on source channels, control whether the MTA strips (removes) trailing white space from the
ends of physical header lines.

By default (headertrailingremove) the MTA removes trailing white space from the ends
of physical header lines; this means both from the ends of logical (unfolded) header lines, and
from the ends of folded portions (physical lines) of a single (logical) header line.

The headertrailingpreserve channel option may be used to instead preserve such
trailing white space. This may be of particular interest for folded header lines, when it is
desired to preserve original, "interior" white space in the logical (unfolded) header line. It is
also typically used in conjunction with the headerfoldpreserve channel option.

46.3.13.19 Received: from clause content (includereceivedip,
suppressreceivedip))

New in 8.0.1.2. The includereceivedip and suppressreceivedip source channel
options control the inclusion of IP address information in generated Received: from clauses.
The default is includereceivedip.

46.3.13.20 Inner header rewriting (inner, noinner, sourceinner,
nosourceinner)

The MTA only interprets the contents of header lines when necessary. However, MIME
messages can contain multiple sets of message headers as a result of the ability to imbed
messages within messages (message/rfc822). The MTA normally only interprets and rewrites
the outermost set of message headers. The MTA can optionally be told to apply header
rewriting to inner headers within the message as well.

This behavior is controlled by the use of the noinner and inner channel options on
destination channels and/or the nosourceinner and (new in 8.1.0.1) sourceinner
channel options on source channels. noinner and/or nosourceinner tells the MTA there
is no special need to rewrite inner message header lines (though inner message header line
processing may be triggered by other MTA facilities). It is the default. inner, when placed on
a destination channel, or sourceinner, when placed on a source channel, tells the MTA to
parse messages and rewrite inner headers.

46–80 Messaging Server Reference

Headers channel options

These options can be applied to any channel.

46.3.13.21 Default language tag (language)

Certain MTA operations, especially those involving selection of textual content to send to
users, may need to take language into account. For example, nondelivery notification text
may be available in multiple languages and the NOTIFICATION_LANGUAGE mapping and
DISPOSITION_LANGUAGE mapping can be used to select the appropriate language to use.
 The MTA also supports use (and selection amongst) language-tagged values for various
mailAutoReply* LDAP attributes used to construct vacation messages; see the discussion of
the ldap_autoreply_subject and ldap_autoreply_text* MTA options in particular.

It is axiomatic that in order to make decisions based on language langage tagging information
must be available. Normally this information is derived from the message being processed,
e.g., from an Accept-language: header field, from a Preferred-language: header field, or even
from the country code found in the From: address. However, not all messages contain such
information.

The language channel option can be used to associaed a default language with a particular
source channel. A single string argument is required specifying a language tag. Messages
originating from this channel which aren't tagged in any other way will be effectively tagged
with this value. The default is not to assume any language tag on a per-channel basis.

46.3.13.22 Detecting the end of the message header
(limitheadertermination, relaxheadertermination)

Message headers consist of a series of fields, each folded onto one or more lines. As a result
a header consists of, at the outermost syntactic level, CRLF terminated lines that begin with
either one or more whitespace characters or an alphanumeric label followed by a colon. In all
cases the header is supposed to be terminated by a CRLFCRLF sequence.

A header line that doesn't meet these syntactic requirement can arise in two different ways:
(1) Something emitted a syntactically invalid header line or (2) The CRLFCRLF separator is
missing and message content has been elided with the preceding header.

By default, the MTA handles syntactically invalid lines as part of the message content,
terminating header processing. Setting the limitheadertermination channel option on
an incoming (source) channel) will cause the MTA to treat such lines as part of the header and
continue header processing.

RFC 822 was ambiguous as to whether a line containing merely white space was allowed in
a message header. (RFC 5322 clarifies this by disallowing the generation of such a line in a
message header and requiring that it be accepted as part of a header.) By RFC 822 rules, it
is ambiguous whether such a line should be interpreted as the end of the message header
(interpreted as the "blank" line separating message header from message body), or whether it
is merely additional white space from the previous header line "folded" onto a new line.

By default, the MTA only interprets a strict CRLFCRLF sequence as the end of the message
header. Setting the relaxheadertermination channel option on an incoming (source)
channel) will cause the MTA to also interpret lines that contain merely white space (spaces or
TABs) as terminating the message header.

limitheadertermination is the default, though it did not exist as a distinct channel option
prior to MS 7.0.5. (In earlier versions, this default behavior was selected by not setting the
relaxheadertermination channel option.)

Channels 46–81

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc822

Headers channel options

46.3.13.23 Automatic splitting of long header lines
(maxheaderaddrs, maxheaderchars)

Some message transports, notably some older sendmail implementations, cannot process long
header lines properly. This often leads not just to damaged headers but to erroneous message
rejection. Although this is a gross violation of standards it is nevertheless a fairly common
problem.

The MTA provides per-channel facilities to split (break) long header lines into multiple,
independent header lines. The maxheaderaddrs channel option controls how many
addresses can appear on a single line. The maxheaderchars channel option controls how
many characters can appear on a single line. Both channel options require a single integer
argument that specifies the associated limit. By default, no limit is imposed on the length of a
header line nor on the number of addresses which may appear.

46.3.13.24 Handling messages that lack any recipient headers
(missingrecipientpolicy)

RFC 822, the original Internet message format standard, had a requirement that all messages
contain at least one recipient header field: a To:, Cc:, or Bcc:.

As of RFC 2822, the original update to RFC 822, relaxed the RFC 822 requirement and allowed
submitted messages to be lacking in any recipient header line. This change was carried
forward to the current message format standard, RFC 5322.

However, there are still MTAs around that operate according to RFC 822, and in particular
may try to be helpful by adding a To: field containing all of the envelope recipients when no
recipient fields are present. As such, it may be unwise to emit a message lacking all recipient
header lines, since the behavior of an RFC 822-compliant MTA or mail user agent may be
undesirable when encountering a message that is, from its point of view, illegal---results may
include rejection of such a message, potentially undesired exposure of recipient information
such as recipients intended as Bcc: recipients, etc.

The missingrecipientpolicy channel option provides various capabilities that may be
useful in addressing this issue. It takes an integer value specifying what approach to use to
"fix" messages with no recipient field; the default value, if the channel option is not explicitly
present, is to use the MTA option missing_recipient_policy value (which itself defaults
to 0, if not set, which as of MS 6.2 is equivalent to a value of 1 meaning that messages are
passed through unchanged---in MS 6.0 and MS 6.1 the default value of 0 had been equivalent
to a value of 2 meaning that envelope To addresses are placed in a To: header).

Table 46.11 missingrecipientpolicy MTA option values

Value Action
0 Use current best practices to resolve the situation. Prior to 6.2 this was

the same as 2, in 6.2 and later it is the same as 1.
1 Pass the illegal-per-RFC 822 (though legal per RFC 5322) message

through unchanged.
2 Place envelope To recipients in a To: header.
3 Place all envelope To recipients in a single Bcc: header.

46–82 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc2822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322

Headers channel options

4 Generate an empty group construct (i.e., ;) To: header line.
The phrase used in the group construct is controlled by the
missing_recipient_group_text MTA option, so for instance "
To: Recipients not specified: ;".

5 Generate a blank Bcc: header.
6 Reject the message (with a "554 5.6.0 Error writing message

- message is missing required recipient header
fields" error). (Note that the acceptalladdresses channel
option, if used, modifies the timing and form of the rejection.)

Note that the missing_recipient_policy MTA option can be used to set an MTA system
default for this behavior.

46.3.13.25 Envelope to address in Received: header (receivedfor,
noreceivedfor, receivedfrom, noreceivedfrom)

The receivedfor channel option instructs the MTA that if a message is addressed to just one
envelope recipient, to include that envelope To: address in the Received: header it constructs.
In such cases, the envelope To: address will be noted within the Received: header line via a
clause of the form:

for recipient

The receivedfor channel option is the default. The noreceivedfor channel option
instructs the MTA to construct Received: headers without including any envelope addressee
information.

The receivedfrom channel option instructs the MTA to include the original envelope
From: address when constructing a Received: header for an incoming message if the MTA
has changed the envelope From: address due to, for instance, certain sorts of mailing list
expansions; in such cases the original envelope From: address will be noted in the Received:
header line via comment of the form

(original mail from original-envelope-from)

The receivedfrom channel option is the default. The noreceivedfrom channel option
instructs the MTA to construct Received: headers without including the original envelope
From: address.

See also the [RECEIVEDFOR], [NORECEIVEDFOR], [RECEIVEDFROM], and
[NORECEIVEDFROM] alias file named parameters, or in Unified Configuration, the alias
options alias_receivedfor, alias_noreceivedfor, alias_receivedfrom, and
alias_noreceivedfrom, which all override the channel settings on a per-alias (or per-
mailing list) basis.

46.3.13.26 XBCC SMTP Extension Support (bccserver,
nobccserver)

The bccserver channel option, when placed on a SUBMIT server channel, enables the XBCC
extension. This extension adds a single XBCC argument to the RCPT TO command. When

Channels 46–83

Headers channel options

present, it marks the corresponding recipient as a blind carbon recipient and the MTA will
generate a separate message copy to this recipient and add a Bcc: header field to the copy.

The XBCC argument value may optionally be used to specify a phrase which will preceed the
recipient address in the Bcc: header field.

The nobccserver channel option disables this extension and is the default.

46.3.13.27 Generation of X-Envelope-to: header lines (x_env_to,
nox_env_to)

The x_env_to and nox_env_to channel options control the generation or suppression of X-
Envelope-to: header lines on copies of messages queued to a specific channel. On channels that
are marked with the single channel option, the x_env_to channel option enables generation
of these headers while the nox_env_to will remove such headers from enqueued messages.
The default is nox_env_to; (note that this default behavior is a change in PMDF V5.0 from
previous versions of PMDF). Note that the fact that x_env_to also requires the single
channel option in order to take effect represents a change of behavior from PMDF V5.1 and
earlier.

The (non-standard) X-Envelope-to: header line contains a duplicate of the recipient addresses
that appear in the message envelope. The X-Envelope-to: header line for a particular copy of
a message contains only the addresses that that particular copy is being sent to; it does not
contain all the addresses on the header To: line (except in the simplest case where only a single
copy of the message is needed). Also note that there can be envelope recipient addresses that
are mentioned nowhere in the header due to the use of things like autoforwarders or blind
carbon copies.

New in 6.3, the x_env_to channel option no longer requires accompanying use of the
single channel option in order to take effect. If used without single, the header will simply
contain a comma-separated list of all recipients this copy of the message is intended for. This
can be useful in situations where the current recipient list needs to be provided as part of the
header to some processing agent.

Note that the full recipient list for a message can, if retained at the time of final delivery, reveal
the presence of blind carbon recipient to the other, regular recipients. As such, this facility
should only be used when it is absolutely necessary.

46.3.13.28 XCLIENT SMTP Extension Support (noxclient,
xclient, xclientsasl, xclientrepeat, xclientsaslrepeat)

(New in 8.0.) The MTA's SMTP server provides support for Postfix's XCLIENT SMTP
extension. The PostFix documentation for the extension can be found here:

http://www.postfix.org/XCLIENT_README.html

Use of XCLIENT is controlled by three main source channel keywords, noxclient, xclient,
and xclientsasl, and variants xclientrepeat and xclientsaslrepeat. noxclient
is the default, and means that XCLIENT is not advertised in the response to EHLO and the
XCLIENT command itself is disabled. If xclient is set, the XCLIENT command is enabled
and the NAME, ADDR, PORT, PROTO, and HELO attributes may be used. xclientsasl

46–84 Messaging Server Reference

Headers channel options

enables the LOGIN attribute in addition to all the others. It should be noted that LOGIN
specifies an external identity that must then be bound to the session identity through the use of
SASL EXTERNAL.

By default, only one set of XCLIENT commands is allowed in a single SMTP session.
Specifying xclientrepeat allows groups of XCLIENT commands to be repeated, allowing a
proxy or similar agent to share a connection between multiple clients. xclientsaslrepeat
allows multiple groups of XCLIENT commands including LOGIN. Note that care should be
taken when these keywords are used since the server cannot determine the origin of a given
XCLIENT command.

The primary visible effect of XCLIENT is on the contents of the Received: field the MTA adds.
For example, if this XCLIENT command was executed:

xclient name=foo.domain.com addr=1.2.3.4 helo=bar.domain.com port=12345

it would result in a header of the general form:

 Received: from bar.domain.com (foo.domain.com [1.2.3.4])
 by server.domain.com (Oracle Communications Messaging Server 7.0.5.32
 64bit (built Aug 18 2014)) with imapsubmit
 id <01OJ9P51WPFC007KNZ@server.domain.com> for user@domain.com;
 Mon, 20 Aug 2012 08:17:31 -0700 (PDT)

However, the ADDR, PORT, DESTADDR, and DESTPORT attributes also change the contents
of the transportinfo that appears in various mapping table probes, such as the probe to
PORT_ACCESS. Given the preceding XCLIENT command, the transportinfo part of the
mapping probes would change to something like:

 TCP|this-mta's-ip|25|1.2.3.4|12345

where note that the values to use in the "source IP" and "source port" fields have been specified
via ADDR and PORT, respectively.

Note: Support for DESTADDR and DESTPORT was added in MS 8.0.2.3.

46.3.13.29 Personal names in address message
headers (personalinc, personalmap, personalomit,
personalstrip, sourcepersonalinc, sourcepersonalmap,
sourcepersonalomit, sourcepersonalstrip)

The MTA only interprets the contents of header lines when necessary. However, all registered
headers containing addresses must be parsed in order to rewrite and eliminate shortform
addresses and otherwise convert them to legal addresses. During this process personal names
(strings preceding angle-bracket-delimited addresses) are extracted and may optionally be
modified or excluded when the header line is rebuilt.

On destination channels, this behavior is controlled by the use of the personalinc,
personalmap, personalomit, and personalstrip channel options. personalinc

Channels 46–85

Headers channel options

tells the MTA to retain personal names in the headers. It is the default. personalmap tells
the MTA to apply the PERSONAL_NAMES mapping table to personal names appearing
in addressing header lines if such a mapping table exists, while if no such mapping table
exists then personalmap is equivalent to personalstrip. personalomit tells the MTA
to remove all personal names. And finally, personalstrip tells the MTA to strip any
nonatomic characters from all personal name fields.

On source channels, this behavior is controlled by the use of a sourcepersonalinc,
sourcepersonalmap, sourcepersonalomit, or sourcepersonalstrip channel
option. sourcepersonalinc tells the MTA to retain personal names in the headers. It is
the default. sourcepersonalmap tells the MTA to apply the PERSONAL_NAMES mapping
table to personal names appearing in addressing header lines if such a mapping table
exists, while if no such mapping table exists then sourcepersonalmap is equivalent to
sourcepersonalstrip. sourcepersonalomit tells the MTA to remove all personal
names. And finally, sourcepersonalstrip tells the MTA to strip any nonatomic characters
from all personal name fields.

These options can be applied to any channel.

46.3.13.30 State clause in Received: header field (receivedstate)

Received: header fields can contain a "state" clause which indicates the type of processing a
message is about to undergo; such state clauses were defined in RFC 6729 (Indicating Email
Handling States in Trace Fields). The primary use for these clauses is to indicate when an
operation is being undertaken that could cause a delivery delay, e.g., the message has been
quarantined.

The receivedstate destination channel option controls the generation of state clauses. A
single arugment is required which specifies the state name to insert into the Received: fields of
messages enqueued to the corresponding channel. The default, when receivedstate is not
specified, is not to insert any state clause.

State values are restricted by RFC 6729 to be a state keyword "token" (as defined in RFC 2045),
several such keywords being already registered, optionally followed by a slash character and
another (unregistered) token as a detail label. Any token must consist solely of US-ASCII
characters not including space, control characters, or the so-called "tspecials" characters:

tspecials := "(" / ")" / "<" / ">" / "@" /
 "," / ";" / ":" / "\" / <">
 "/" / "[" / "]" / "?" / "="

The initial set of registered state keywords is: auth, content, convert, moderation,
normal, other, outbound, quarantine, and timed.

Appropriate usage with the MTA could include:

msconfig> show channel:*.receivedstate
role.channel:conversion = convert
role.channel:defragment = convert/defragment
role.channel:filter_discard = quarantine/sieve-discarded
role.channel:reprocess = other
role.channel:tcp_intranet = normal

46–86 Messaging Server Reference

https://tools.ietf.org/html/rfc6729
https://tools.ietf.org/html/rfc6729
https://tools.ietf.org/html/rfc6729
https://tools.ietf.org/html/rfc2045

Host name channel options

role.channel:tcp_local = outbound

with use on the conversion channel, defragment channel, filter_discard channel,
and reprocess channel being particularly relevant to note message transitions/points where
messages could be delayed.

46.3.13.31 Mapping Reply-to: header when gatewaying to non RFC
822 environments (usereplyto)

The usereplyto channel option controls the mapping of the Reply-to: header in certain
non RFC 822 environments. (Currently, the usereplyto channel option is relevant only for
the OpenVMS local channel, and the PMDF-LAN cc:Mail, GroupWise, and Microsoft® Mail
channels.) The default argument for usereplyto is 0, which means to use the channel default
behavior (which varies from channel to channel).

Table 46.12 usereplyto MTA option values

Value Action
-1 Never map Reply-to: addresses to anything.
0 Use the channel default mapping of Reply-to: addresses; (varies from

channel to channel). This is the default.
1 Map Reply-to: to From: if no usable From: address exists.
2 If there is a usable Reply-to: address, then map it to From:; otherwise

fall back to the From: address.

46.3.13.32 Mapping Resent- headers when gatewaying to non RFC
822 environments (useresent)

The useresent channel option controls the use of Resent- headers when gatewaying to
environments that do not support RFC 822 headers. This channel option takes a single integer-
valued argument. Legal values include:

Table 46.13 useresent MTA option values

Value Action
+2 Use any Resent- headers that are present to generate address

information.
+1 Only use Resent-From: headers to generate address information; all

other Resent- headers are ignored.
0 Do not use Resent- headers to generate address information. This is

the default.

Currently the useresent channel option applies for the l (lowercase "L") channel on
OpenVMS, and for PMDF-MR, PMDF-X400, and some PMDF-LAN channels.

Note that the default of 0 constitutes a change in the behavior of the OpenVMS l channel
compared with PMDF version 4.3 and earlier.

46.3.14 Host name channel options

Channels 46–87

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822

Host name channel options

There are three options that, for any type of channel, configure the fundamentals of a channel's
own "host name" (official_host_name), the channel's knowledge of the host name of the
system on which it is operating (local_host_alias), and optionally remote "hosts" with
which it communicates (additional_host_names); these three basic options correspond to
separate syntactic components of channel configuration in legacy configuration, but are set via
options in Unified Configuration.

In addition to these three fundamental options, other channel options relating (in the
case of TCP/IP channels) both to a system's own host name and to remote host names
include daemon, lastresort, and the set of authhost, noauthhost, defaulthost,
nodefaulthost, remotehost, and noremotehost channel options.

46.3.14.1 official_host_name Option

The official_host_name channel option specifies the "name" of the system with which this
channel communicates. The official_host_name may be either a fully qualified host name,
in the case of a channel dedicated to communicating with one particular system,

msconfig> show channel:l.official_host_name
role.channel:l.official_host_name = host.domain.com

or in the case of a more "generic" channel used for communicating with multiple systems (such
as the Internet-communication channel tcp_local), the official_host_name tends to be
a generic, place-holder name, e.g.,

msconfig> show channel:tcp_local.official_host_name
role.channel:tcp_local.official_host_name = tcp-daemon

In legacy configuration, the official host name is specified as the first name on the second line
of a channel definition:

tcp_local ...keywords...
tcp-daemon

 Each channel must have its own, unique official_host_name; no duplication with other
channels is allowed. As of MS 6.1, the official host name is limited to 128 characters; in prior
versions the limit was 40 characters. An official host name is required for each channel;
omitting an official host name from a channel definition is an error.

Note that the official_host_name on the l channel (lowercase "L" channel) has somewhat
special significance, as it is used/assumed at certain times by the MTA; and normally, it would
be set to match the value of the ldap_local_host MTA option.

As of 8.0.1, the option if not set for a channel will default to channel-name.hostname in
Unified Configurations.

46.3.14.2 local_host_alias Option

The local_host_alias channel option is used to specify an alternate name for the MTA
system itself. Normally, the local host system is known by the name that appears as the

46–88 Messaging Server Reference

Host name channel options

official_host_name on the l channel. But it is sometimes useful for the local host to have
different names depending on the channel being used. This situation usually arises when a
machine is connected to more than one network. For example, a system may need to be known
as ymir.uucp on the UUCP network, ymir.claremont.edu on the Internet, and ymir.bitnet on
BITNET.

If local_host_alias is specified, it is communicated as the local host's name to any remote
hosts with which this channel communicates. This alias will replace the local host's name
wherever it appears in the envelope and header of messages queued to the associated channel.
If this alias is omitted the local host's official name (that is, the official host name associated
with the l channel, channel.l.official_host_name) is used.

In legacy configuration, a local host alias is specified by placing it on the second line of a
channel definition, subsequent to the official host name:

channel-name ...keywords...
official-host-name local-host-alias

The local host alias only affects the name of the local host. No other system names are affected.
The effects of the local host alias are strictly limited to the channel to which the alias applies.

A local_host_alias on the SMTP server channel (typically tcp_local) overrides
the TCP/IP stack's official host name for use on the SMTP server's 220 banner line. (If
the TCP/IP stack doesn't have a value for some reason, we finally fall through to the
official_host_name from the l channel.) A local_host_alias on an outgoing tcp_*
channel overrides the TCP/IP stack's official host name for use on the EHLO/HELO/LHLO
line. As of iMS 5.2, the new-in-that-version BANNER_HOST TCP/IP-channel-specific option
takes precedence over the local_host_alias (in both directions, server and client).

Note: The use of local host aliases is discouraged. If at all possible, each system should be
known by one and only one name on all networks. Networks should strive to make this
a reality. (Back when Internet vs. UUCP vs. BITNET names were an issue, when it was
impossible for a host to have the same name on both BITNET and the Internet, local host
aliases were a necessary feature. Since different networks are always associated with different
channels, a per-channel local host alias was an ideal way to give the local host a per-network
name.) Note especially that when a single network is involved, it may appear that local host
aliases can solve lots of problems, but often the end result is a worse mess than if the proper
course of action is selected --- pick a single name and stick to it, living with the consequences
of the conversion now instead of putting them off until it becomes even more difficult.

46.3.14.3 additional_host_names Option

In Unified Configuration, the additional_host_names channel option is used to specify
the names of additional hosts, or additional destination domain names, with which the
channel communicates.

In legacy configuration, each such additional host name is specified as the name on the third or
subsequent lines of a channel definition:

tcp_local ...keywords...
tcp-daemon
special1.domain.com
special2.domain.com

Channels 46–89

Incoming channel match and
switch channel options

...etc...

46.3.15 Incoming channel match and switch channel
options

Many MTA configuration choices look at the incoming channel (source channel) for a message.
A number of channel options affect such initial channel "matching" and channel "switching".

46.3.15.1 Selection of alternate source channels (switchchannel,
allowswitchchannel, noswitchchannel, userswitchchannel)

When an MTA server process (e.g., an SMTP server process) accepts an incoming connection
from a remote system it must choose a so-called source channel with which to associate the
connection. Normally this decision is based on the transport used; for example, an incoming
TCP/IP connection to an SMTP server (a Dispatcher service running the SMTP server image) is
automatically associated with the tcp_local channel, while an incoming TCP/IP connection
to an LMTP server (a Dispatcher service running the LMTP server that delivers to the Message
Store) is automatically associated with the tcp_lmtpss channel - unless such automatic,
default associations are overridden via the Dispatcher's parameter option being set to a
CHANNEL=channel-name value, e.g.:

msconfig> ! Do not need to set the dispatcher.service:SMTP_SPECIAL.image
msconfig> ! since the service name begins with "SMTP"
msconfig> set dispatcher.service:SMTP_SPECIAL.logfilename IMTA_LOG:tcp_special_server.log
msconfig# set dispatcher.service:SMTP_SPECIAL.tcp_ports special-port
msconfig# set dispatcher.service:SMTP_SPECIAL.parameter "CHANNEL=tcp_special"

(Note the quoting of the value of the parameter option, required due to the presence of the
equal sign character, =.)

In legacy configuration, this corresponds to a definition in the dispatcher.cnf file along the
lines of:

[SERVICE=SMTP_SPECIAL]
IMAGE=IMTA_BIN:tcp_smtp_server
LOGFILE=IMTA_LOG:tcp_special_server.log
PORT=special-port
PARAMETER=CHANNEL=tcp_special

In the case of SMTP, however, the convention of a single incoming channel breaks down when
it is desired to handle connections from different sources differently. That is, in the SMTP case,
it can be useful to have the association of source channel with connections be controlled not
only at the Dispatcher level, but for further distinctions (so-called source channel "switching")
to be performed based on additional criteria, within the SMTP server process itself.

The switchchannel channel option provides a way associate different incoming channels
with different source IP addresses. If switchchannel is specified on the initial channel the
SMTP server uses, the IP address of the connecting (originating) host will be rewritten (using
envelope From style rewriting) and matched against the channel table and if it matches then
the source channel will change accordingly. If no IP address match is found or if a match
is found that matches the original default incoming channel, the MTA may optionally try

46–90 Messaging Server Reference

Incoming channel match and
switch channel options

matching using the host name found by doing a DNS reverse lookup. The source channel may
change to any channel marked switchchannel or allowswitchchannel (the default).
noswitchchannel specifies that no channel switching should be done to or from the
channel.

Specification of switchchannel on anything other than a channel that a server associates
with by default will have no effect. At present switchchannel only affects SMTP channels,
but there are actually no other channels where switchchannel would be reasonable. In
particular, internal channels like conversion or process never need to switch. Also, LMTP
servers do not support switchchannel.

Note that use of the (not-recommended) CHECK_SOURCE TCP/IP-channel-specific option
setting with a value of 0 effectively disables switchchannel from taking effect.

The (new in MS 6.3-0.15) userswitchchannel channel option, if enabled on the current
SMTP source channel, allows channel switching based on the envelope From address. If the
envelope From address after rewriting is that of a user in the LDAP directory, then a per-
user LDAP attribute (the attribute named by the ldap_source_channel MTA option), or
if the user has no such attribute a per-domain LDAP attribute (the attribute named by the
ldap_domain_attr_source_channel MTA option) will be consulted to find the name of a
channel to which to switch as the new source channel. The source channel may change to any
channel marked switchchannel or allowswitchchannel (the default).

Note that since the userswitchchannel plus user-or-domain LDAP attribute based
switching is being done based on the envelope From (MAIL FROM) address and since such
addresses are easily forged, this functionality should be used with great care. It is provided
as a convenience for achieving esthetic and convenience features in the handling of messages
purportedly from particular users or domains; but userswitchchannel does not provide
the security of switching based on source IP address (switchchannel) or on authenticated
sender information (saslswitchchannel and even more so the mailSMTPSubmitChannel
LDAP attribute). When truly secure user-based channel switching is desired, instead
the use of SMTP AUTH should be enforced and mailSMTPSubmitChannel used. (As
of the 8.0 release, the LDAP attribute of relevance may be named something other than
mailSMTPSubmitChannel, as specified via the ldap_auth_attr_submit_channel MTA
option.)

See also the FROM_ACCESS mapping table's $~ flag which provides another way to do source
channel "switching" (particularly well suited for "switching" the source channel for incoming
notification messages).

46.3.15.2 Channel switching based on SMTP authentication
(saslswitchchannel, nosaslswitchchannel)

The saslswitchchannel channel option is used to cause incoming connections to be
switched to a specified channel upon a client's successful SASL use. (See the maysasl* and
mustsasl* channel options for configuration of permitting/requiring SMTP AUTH and SASL
use.) saslswitchchannel takes a required value, specifying the channel to which to switch.
nosaslswitchchannel is the default, and means that channel switching is not performed
upon a client's successful SASL use.

See also the mailSMTPSubmitChannel user LDAP attribute, (or as of the 8.0 release,
whatever LDAP attribute is named by the ldap_auth_attr_submit_channel MTA
option) which when set on a user entry will cause channel "switching" to the specified channel;

Channels 46–91

Incoming channel match and
switch channel options

it thus permits "finer-grained" channel switching than saslswitchchannel which merely
switches all authenticated submissions to a particular named channel.

See also the (new in MS 6.3) userswitchchannel channel option which, in conjunction with
site-selected user or domain LDAP attributes, also allows "fine-grained" channel switching, in
this case based merely on the purported From: address.

The saslswitchchannel channel option is typically used when it is desired to
distinguish between authenticated vs. unauthenticated submissions as a class; the
mailSMTPSubmitChannel user LDAP attribute (or as of the 8.0 release, whatever LDAP
attribute is named by the ldap_auth_attr_submit_channel MTA option) is typically
used when it is desired to securely distinguish submissions from particular users (say to allow
"special privileges" to particular users); the (new in MS 63) userswitchchannel channel
option and associated LDAP attribute(s) are typically used when it is desired to make esthetic
distinctions (rather than more critical "secure" distinctions) on users' submissions without
requiring authenticated verification of the sender address.

See also Blocking SMTP relaying for an example of typical use of saslswitchchannel.

Note that any channel switching done by saslswitchchannel will be undone if/when
a client issues a (nonstandard, new in 8.0) XUNAUTHENTICATE command. (SMTP
server support for the nonstandard XUNAUTHENTICATE extension and associated
XUNAUTHENTICATE command is new in 8.0; note that XUNAUTHENTICATE is not
supported for the LMTP server. XUNAUTHENTICATE is only valid after successful
authentication has been performed, and the capability only shows up in the EHLO response at
this point at well. Successful execution of the XUNAUTHENTICATE command will return the
SMTP session to an unauthenticated state.)

46.3.15.3 Transport Layer Security (maytls, maytlsclient,
maytlsserver, musttls, musttlsclient, musttlsserver,
notls, notlsclient, notlsserver, tlsswitchchannel)

The maytls, maytlsclient, maytlsserver, musttls, musttlsclient,
musttlsserver, notls, notlsclient, notlsserver, and tlsswitchchannel channel
options are used to configure STARTTLS use for the various protocols supported by the MTA,
including but not limited to SMTP, LMTP, and MTQP.

Note that prior to 7.0.5, the LMTP server did not support TLS use; as of 7.0.5, the LMTP
server does support TLS, configured via the same maytls, maytlsserver, musttls,
mustlsserver, channel options used to configure SMTP server TLS support.

The ManageSieve server only supports the server subset of the TLS options since there is no
ManageSieve client.

notls is the default, and means that STARTTLS will not be permitted or attempted. It
subsumes the notlsclient channel option, which means that TLS use will not be attempted
by the SMTP/LMTP/MTQP client on outgoing connections (the STARTTLS command will not
be issued during outgoing connections) and the notlsserver channel option, which means
that TLS use will not be permitted by the SMTP/LMTP/MTQP server on incoming connections
(the STARTTLS extension will not be advertised by the SMTP/LMTP/MTQP server nor the
command itself accepted).

Specifying maytls causes the MTA to offer TLS to incoming connections and to attempt TLS
upon outgoing connections. It subsumes maytlsclient, which means that the SMTP/LMTP/

46–92 Messaging Server Reference

ISC channel options

MTQP client will attempt TLS use when sending outgoing messages, if sending to an SMTP/
LMTP/MTQP server that supports TLS, and maytlsserver, which means that the SMTP/
LMTP/MTQP server will advertise support for the STARTTLS extension and will allow TLS
use when receiving messages. Note that maytls* settings mean that the MTA will want to
use TLS with remote sides that support STARTTLS, while allowing remote sides that do not
have STARTTLS support to communicate without TLS; but maytls* settings do not inherently
mean that the MTA will "fall back" to non-TLS use when TLS negotiation is attempted but fails:
failure of TLS negotiation will result in that connection being closed as a failed connection
(recorded with an "X" record). As of 8.0, with maytlsclient set, the MTA's client will
attempt a new connection to attempt sending without TLS in cases where the remote SMTP/
LMTP server advertised TLS support but where the actual TLS negotiation failed; prior to 8.0,
a failure in the TLS negotiation would immediately abort the delivery attempt for the message.
This support is not available in MTQP.

Specifying musttls will cause the MTA to insist upon TLS in both outgoing and incoming
connections; e-mail will not be exchanged with remote systems that fail to successfully
negotiate TLS use. It subsumes musttlsclient, which means that the SMTP/LMTP
client will insist on TLS use when sending outgoing messages and will not send to SMTP/
LMTP servers that do not successfully negotiate TLS use (the MTA will issue the STARTTLS
command and that command must succeed), and musttlsserver, which means that the
SMTP/LMTP server will advertise support for the STARTTLS extension and will insist upon
TLS use when receiving incoming messages and will not accept messages from clients that do
not successfully negotiate TLS use. When musttls or musttlsserver is on a channel, then
unless TLS has been successfully negotiated all MAIL FROM: attempts will be rejected with
the error:

530 5.7.0 No STARTTLS command has been given.

The tlsswitchchannel channel option is used to cause incoming connections to be
switched to a specified channel upon a client's successful TLS negotiation. (This includes either
successful STARTTLS use on a "regular" port, or negotiating upon connection to a "dedicated
to TLS" port, usually port 465, configured via the Dispatcher's ssl_ports option in Unified
Configuration, or its TLS_PORT option in legacy configuration.) tlsswitchchannel takes a
required value, specifying the channel to which to switch.

Note that TLS library initialization is performed for any SMTP/LMTP channel which has any
TLS usage permitted (or required). In particular, TLS library initialization will be performed by
the TCP client for a channel marked merely maytlsserver. (This overhead is normally fairly
neglible.)

Note that these options affect only TLS use negotiated at the protocol level via STARTTLS;
they do not affect potential TLS use triggered by connection to a port dedicated to TLS use
such as with the ssl_ports Dispatcher service option.

46.3.16 ISC channel options
The ISC channel options were removed in MS 8.0.2.2.

See also the ISC options.

46.3.17 Logging and debugging channel options

Channels 46–93

Logging and debugging channel
options

Basic channel logging of message transactions, and basic channel debugging, are controlled by
several channel options.

For greater fine-tuning of exactly what is logged in transaction log entries, see Transaction
logging MTA options. For greater detail in debug log files, see Debug MTA options.

46.3.17.1 Message transaction logging (logging, nologging,
logheader)

The MTA provides facilities for logging each message as it is enqueued and dequeued. All log
entries are made to the MTA message transaction log file mail.log_current in the MTA
log directory, (i.e., DATAROOT/log/mail.log_current). Message transaction logging is
controlled on a per-channel basis. The logging channel option activates message transaction
logging for a particular channel while the nologging channel option disables it. Logging is
disabled on all channels by default although most default configurations enable logging on all
channels.

The message return_job, which runs every night around midnight, appends any
existing mail.log_yesterday to the cumulative log file, mail.log, renames the
current mail.log_current file to mail.log_yesterday, and then begins a new
mail.log_current file. Note that the MTA itself never does anything to the cumulative
mail.log file and it is up to each site to manage (e.g., delete, truncate, backup, etc.) that log
file however they choose.

The MTA message transaction log file is written as a normal ASCII text file, whose exact
format is configurable via the log_format MTA option.

If you wish to have all of your channels log message activity to the logging file, then simply
add the logging channel option to a defaults channel.

When message transaction logging is enabled, the (new in MS 6.0) logheader option
may be used on channels to additionally enable logging of message headers. It takes an
encoded integer argument, where bit 0 (value 1) causes logging during both enqueue and
dequeue operations, while a value of 2 causes logging during enqueue operations without
enabling logging for message dequeues. As of MS 8.0.2, a value of 3 causes logging during
dequeues without enabling logging for message enqueues. The specific header lines to be
logged are controlled by the log_headers.opt file, discussed along with the MTA option
log_header.

When enabling logheader, consider also enabling the log_process MTA option, as it is
helpful for correlating header entries with corresponding regular message entries.

If the goal is to record subsets of information from one or more header lines, rather than
necessarily logging full header lines via logheader, see as an alternative the (both new-in-
MS-8.0) log_transaction MTA option and Sieve "transactionlog" action.

46.3.17.2 Debugging channel master and slave programs
(master_debug, nomaster_debug, slave_debug, noslave_debug)

Some channel programs include optional code to assist in debugging by producing additional
diagnostic output. Two channel options are provided to enable generation of this debugging
output on a per-channel basis. The options are master_debug, which enables debugging
output in master programs, and slave_debug, which enables debugging output in slave

46–94 Messaging Server Reference

Long address lists or headers
channel options

programs. Both types of debugging output are disabled by default, corresponding to
nomaster_debug and noslave_debug.

When activated, debugging output ends up in the log file associated with the channel
program. The location of the log file may vary from program to program. Log files are usually
kept in the MTA log directory. Master programs usually have log file names of the form
x_master.log, where "x" is the name of the channel; slave programs usually have log file
names of the form x_slave.log.

For the UNIX L and native channels, the "normal" debugging when the L channel is delivering
is caused by slave_debug.

For the reprocess channel, since it performs some of its functions/checks as if it "were" the
prior channel (the channel that enqueued to the reprocess channel), to get debugging of
the reprocess channel's enqueuing operation, you will need to enable master_debug on that
prior channel, rather than on the reprocess channel itself.

Note that the TCP/IP channel master program will produce multiple tcp_y_master.log
files per master channel program execution when master_debug is enabled. The first such
file produced shows the channel's determination of how many outgoing threads to start up; an
additional log file will be created for each individual outgoing thread.

Similarly, the TCP/IP channel slave program -- the SMTP server or SMTP SUBMIT
server -- will produce multiple files when slave_debug is enabled. The first such
file produced is a SMTP server or SMTP SUBMIT server log file, with the base name
specified via the logfilename Dispatcher option for the respective service (by default
tcp_smtp_server.log and tcp_submit_server.log, respectively) with a unique
identifying string appended, so typically tcp_smtp_server.log-uniqueid or
tcp_submit_server.log-uniqueid. Some debugging regarding general server process
initialization is written to such server log files: debugging regarding TLS initialization,
the setting of TCP/IP-channel-specific options for the server, etc. However, the debugging
regarding channel operation handling SMTP connections is written to channel slave
log files, with names controlled by the name of the default channel for the service (see
the parameter Dispatcher option for the service), so have names typically of the form
tcp_local_slave.log-uniqueid or tcp_submit_slave.log-uniqueid.

The Message Store delivery channels, ims-ms and tcp_lmtpss* (LMTP back end TCP/IP
channel, that is, the LMTP server), have two (or three) types of debug output: the MTA type of
debug output (enabled as normal for MTA channels via the MTA channel options discussed
here, and going to MTA channel debug log files as normal), plus some Message Store injection
debugging (which is enabled by the loglevel option for the MTA, and which goes to the log
file named, literally, imta, plus if message tracing is enabled (the activate messagetrace
option is enabled) more detailed Message Store message tracing (which goes to the log file
named, literally, msgtrace).

Not all MTA channel programs have debugging support code, and the amount of debugging
output available also varies among those channel programs that include debug support.

46.3.18 Long address lists or headers channel options

Sites may desire to configure special handling of messages with many recipient addresses, or
excessively long header lines. There are a number of channel options relating to such special
handling.

Channels 46–95

Long address lists or headers
channel options

46.3.18.1 Triggering alternate channel processing
(alternatechannel, alternateblocklimit,
alternatelinelimit, alternaterecipientlimit)

It is sometimes useful to force processing of messages meeting certain criteria to occur on a
channel distinct from the one chosen by the MTA's alias expansion and rewriting process.
The alternatechannel channel option provides a means to specify such a channel while
the alternateblocklimit, alternatelinelimit, and alternaterecipientlimit
channel options specify the criteria for when the alternate channel should be used.

alternatechannel takes the name of the alternate channel to use as an argument.
alternateblocklimit takes an unsigned integer as an argument; the alternate
channel will be used if the computed block size of the message exceeds this value.
alternaterecipientlimit also takes an unsigned integer argument; the message will
be queued to the alternate chanmel if the number of recipients queued to the current channel
exceeds this value. Finally, the alternatelinelimit channel option takes an unsigned
integer argument; the alternate channel will be used if the computed number of lines in the
message exceeds this value.

Note that alternaterecipientlimit is a limit on envelope recipients for this message
copy, on this channel; it has nothing to do with how many addresses may or may not be
in the header; and envelope recipients on other channels are also irrelevant. However, the
alternaterecipientlimit check does get performed before any message copy split-up
due to storage of recipients per file controls such as addrsperfile, single, or single_sys
channel option application.

Note that any *SEND_ACCESS or *MAIL_ACCESS mapping table probes will use the "original"
destination channel name, not the alternate destination channel name, but a CONVERSIONS
mapping table probe will use the alternate destination channel name.

Note that the alternate channel selection process is neither iterative nor recursive: Once an
alternate channel has been selected it will be used regardless of what the various alternate
channel options on that channel say to do.

46.3.18.2 Maximum allowed recipients or bad commands
(recipientlimit, recipientcutoff, deferralrejectlimit,
disconnectrecipientlimit, disconnectrejectlimit,
disconnectbadcommandlimit, disconnectbadburllimit,
disconnectcommandlimit)

The recipientlimit, recipientcutoff and (new in MS 6.2) deferralrejectlimit
channel options, when placed on a source channel, impose per-channel limits on the number
of recipients for a submitted message. Each of these options accepts a single integer argument;
they default to no limit. (Note that setting recipientlimit or recipientcutoff to 0 has
no effect; only positive limit values will be enforced.) These options are all per-channel (as
opposed to per-SMTP-server) analogues of the ALLOW_RECIPIENTS_PER_TRANSACTION,
REJECT_RECIPIENTS_PER_TRANSACTION, and ALLOW_REJECTIONS_BEFORE_DEFERRAL
SMTP channel settings.

recipientlimit limits the total number of recipient addresses that will be accepted for
the message; additional recipients will be rejected. The text in the rejection is configurable

46–96 Messaging Server Reference

Long address lists or headers
channel options

via the error_text_recipient_over MTA option, which by default is "too many
recipients specified". The error is a temporary rejection by default, but if bit 4 (value 16) of the
use_permanent_error MTA option is set, then the rejection is permanent. So in the case of
attempted SMTP message submissions, the default temporary error, with the default error text,
would appear as:

451 4.5.3 too many recipients specified

whereas with the default error_text_recipient_over text but with bit 4 (value 16) of the
use_permanent_error MTA option set, then a permanent error would appear as:

550 4.5.3 too many recipients specified

recipientcutoff compares the total number of recipients that were presented to the MTA
to the specified value and a message will not be accepted for delivery to any recipients if the
value is exceeded. In the case of attempted SMTP submissions, the message will be rejected at
the DATA command with the SMTP rejection:

451 4.4.5 Error ending envelope - Too many recipients specified for this message

New in MS 6.2, and supported only for SMTP (not for LMTP), deferralrejectlimit limits
the number of bad (failing) addresses that will be allowed during a single session; after this
number, all subsequent recipient addresses, good or bad, will be rejected with a temporary
error. In the case of attempted SMTP submissions, additional RCPT TO: commands will be
rejected with the error:

451 4.5.3 Too many rejections; try again later

while attempted VRFY: commands will be rejected with the error:

451 4.5.3 Verification blocked; too many rejections

 Similar limits controlled on a per-user and per-domain basis can be configured via LDAP
attributes; see the MTA options ldap_recipientlimit, ldap_recipientcutoff,
ldap_domain_attr_recipientlimit and ldap_domain_attr_recipientcutoff.

The disconnect* channel options are new in Messaging Server 6.2 (except:
disconnectcommandlimit new in Messaging Server 7.1, disconnectbadburllimit
new in Messaging Server 7.4-18.01). They are supported only for SMTP, not for LMTP. Each
takes an integer argument specifying the maximum number of (recipients, rejections, bad
commands, or commands, as applicable) which will be accepted for messages submitted via
that source channel; any more will result in the MTA forcing a disconnect of the SMTP session,
after issuing an error response to the client consisting of (for disconnectrecipientlimit):

421 4.7.0 Session recipient limit reached; disconnecting

for disconnectrejectlimit in MS 6.2:

450 4.7.0 Session bad recipient limit reached; disconnecting

Channels 46–97

Long address lists or headers
channel options

or in MS 6.3 and later (MS 6.3 also being when behavior was enhanced so that rejected MAIL
FROM's count against the disconnectrejectlimit, whereas in MS 6.2 only rejections at
the RCPT TO or VRFY stages counted; MS 6.3 is also when behavior was enhanced so that
disconnectrejectlimit is checked at the VRFY stage and with a negative value applied
at the VRFY stage, whereas previously such VRFY rejections were counted but the disconnect
would not be triggered until a subsequent RCPT TO attempt "noticed" that the threshold was
exceeded):

421 4.7.0 Session rejection limit reached; disconnecting

or (for disconnectcommandlimit):

450 4.7.0 Maximum number of commands exceeded

In the case of the disconnectrecipientlimit or disconnectrejectlimit channel
options, once the limit is exceeded, the error-response-and-disconnect normally will occur
after the next MAIL FROM or RSET command (or in the case of disconnectrejectlimit
in MS 6.3 and later, potentially after a failed VRFY attempt). (Note that because the disconnect
usualy does not happen until after a subsequent MAIL FROM or RSET, these disconnect*
channel options would most often be used in conjunction with other channel keywords or
TCP/IP-channel-specific option settings: perhaps recipientlimit or recipientcutoff
to limit the number of recipient addresses accepted, or deferralrejectlimit or the
ALLOW_REJECTIONS_BEFORE_DEFERRAL TCP/IP-channel-specific option setting.)
In the case of disconnectbadcommandlimit, disconnectbadburllimit, and
disconnectcommandlimit, once the limit is exceeded the error response is issued and the
MTA forces the disconnect.

The disconnectbadburllimit channel option is new in Messaging Server 7.4-18.01. A
single integer parameter is accepted specifying the number of invalid BURL commands that
will be allowed before disconnecting. The default is 3.

Note that VRFY attempts are counted separately from RCPT TO attempts against the recipient
count; that is, one may have up to the recipient limit of VRFYs and up to the recipient limit
of RCPT TOs. The VRFYs are counted, but counted separately from RCPT TOs. In contrast,
failed VRFY attempts are added to the same rejection counter used for counting failed RCPT
TO attempts and MAIL FROM attempts for purposes of comparison against the rejection
limit; that is, one may have up to the rejection limit of any combination of failed VRFYs, MAIL
FROMs, or RCPT TOs.

When the deferralrejectlimit has been reached (or a TCP/IP-channel-specific option
setting of ALLOW_REJECTIONS_BEFORE_DEFERRAL has been reached), a client VRFY attempt
will receive from the MTA an error response:

451 4.5.2 Verification blocked; too many rejections

Note that prior to MS 6.3, the error was instead:

452 4.5.2 Verification blocked; too many bad addresses.

Note that the FROM_ACCESS mapping table's $S flag may also be used to set limits such as
recipientlimit or recipientcutoff.

46–98 Messaging Server Reference

Long address lists or headers
channel options

For forcing IMAP or POP disconnection after a specified number of protocol errors -- similar to
the disconnectbadcommandlimit effect for SMTP -- see the maxprotocolerrorsIMAP
or POP option.

46.3.18.3 Expansion of multiple addresses (expandlimit,
expandchannel, holdlimit)

Most MTA channels support the specification of multiple recipient addresses in the transfer
of each inbound message. The specification of many recipient addresses in a single message
may result in delays in message transfer processing ("on-line" delays). In particular, multi-
recipient messages that require a great deal of processing of the message body can be affected
by processing delays, or that require creation of many different file copies on disk in the MTA
queue area can be affected by slow disk performance. If the resulting delays are long enough,
network timeouts can occur, which in turn can lead to repeated message submission attempts
and other problems.

The MTA provides a special facility to force deferred ("off-line") processing of additional
recipient message copies once a given number of addresses are specified for a single
message. The deferral happens after processing of the "initial" recipients (those before the
expandlimit value was reached), and after address processing for the additional recipients
too, (for instance, after *_ACCESS mapping table checks and after alias processing), but before
message processing. In particular, such deferral means that for the "additional" recipients, only
one message file (storing all of the "additional" recipients), is written to the queue area (to a
reprocess* or process* channel queue area, depending upon use of the expandchannel
channel option). Deferral of message processing can decrease on-line delays enormously. Note,
however, that the processing overhead is deferred, not avoided completely.

This special facility is activated by using a combination of, for instance, the generic
reprocessing channel and the expandlimit channel option. The expandlimit option takes
an integer argument that specifies at what number of recipients to begin deferring processing
of the message copy (or copies) to that and additional recipient addresses. The default value is
effectively infinite if the expandlimit channel option is not specified. A value of 1 will force
deferred processing on all incoming addresses from the channel.

The expandlimit channel option must not be specified on the local channel or the
reprocessing channel itself; the results of such a specification are unpredictable.

The channel actually used to perform the deferred processing may be specified on a per-
source-channel basis using the expandchannel channel option; the reprocessing channel is
used by default, if expandchannel is not specified, but use of some other reprocessing or
processing channel may be useful for some purposes. In particular, for Messaging Server MTA
versions 5.2 and earlier, typical configuration usage required that a processing channel, rather
than a reprocessing channel, be used. If a channel for deferred processing is specified via
expandchannel, that channel should be a reprocessing or processing channel; specification
of other sorts of channels may lead to unpredictable results.

The reprocessing channel, or whatever channel is used to perform the deferred processing,
must be added to the MTA configuration file in order for the expandlimit option to have
any effect. If your configuration was built by the initial configuration utility, then you should
already have a reprocessing channel.

(Note that typical Messaging Server sites running version 5.2 or earler could not use the
expandlimit option unless they also marked the affected channel expandchannel
process (or expandchannel process_somethingorother redirecting the

Channels 46–99

Message hash channel options

expansion to an alternate process_* sort of channel), as enqueues to a channel marked
viaaliasrequired would not succeed if deferred to a reprocess* channel.)

Extraordinarily large lists of recipient addresses are often a characteristic of so-called SPAM---
junk e-mail. The holdlimit channel option tells the MTA that messages coming in the
channel that result in more than the specified number of recipients should be marked as
.HELD messages and enqueued to the reprocess channel (or to whatever channel is
specified via the expandchannel channel option). As .HELD messages, the files will sit
unprocessed in that MTA queue area awaiting manual intervention by the MTA postmaster.

46.3.18.4 Specify maximum length header line that the MTA will
rewrite (maxprocchars)

Processing of long header lines containing lots of addresses can consume significant system
resources. (Note, however, that resource consumption is much reduced in PMDF V5.0 as
compared with previous versions of PMDF.) The maxprocchars source channel option
is used to specify the maximum length header line that the MTA will process and rewrite.
Messages with header lines longer than this are still accepted and delivered; the only
difference is that the long header lines are not rewritten in any way. A single integer argument
is required. The default is to process header lines of any length.

46.3.19 Message hash channel options
Message hash channel options are typically used in conjunction with a message archiving
configuration, and hence with the Message archival and hashing MTA options.

46.3.19.1 Message hashes (deletemessagehash,
generatemessagehash, keepmessagehash)

The generatemessagehash, keepmessagehash, and deletemessagehash destination
channel options control whether the MTA generates, retains, or deletes a message hash,
respectively. All of these channel options first apppeared in the 6.3 release. A message hash, if
present, is stored in a Message-hash: header line. deletemessagehash is the default.

These keywords are intended to be used in conjunction with message archiving, along with
message archiving MTA options, and Message Store archive options.

Note that AXS:One archiving will generate its own message hash on the messages it
receives, if the MTA has not already generated and inserted such a message hash. However,
in order to correlate messages in the Message Store with the messages archived by
AXS:One, it is necessary that the MTA generates the hash and that that hash is retained
in the messages delivered to the Message Store. Therefore, channels that deliver to the
Message Store (ims-ms or tcp_lmtpcs* sorts of channels) should be marked either
generatemessagehash or (if the message hashes are being initially generated at an earlier
channel stage) keepmessagehash. In contrast, a channel delivering to remote Internet hosts,
such as typically the tcp_local channel, would typically be marked deletemessagehash
even if messages going out tcp_local are being archived, since there would in general be
no expectation that the remote Internet sites would do anything (get any benefit) from the
message hashes.

The choice of which channel(s) to mark with generatemessagehash will depend upon
how "soon" vs. "late" one wishes to choose to consider a message's essential characteristics

46–100 Messaging Server Reference

Message tracking channel options

to be established. Generating a hash "early" (as soon as a message first comes into the MTA)
may be before various changes (e.g., changes performed by the conversion channel) occur,
or before "split up" of a message into separate copies for different classes of recipients. More
"different" (in one way or another) "copies" of a message may be considered "the same" for
the archival purposes when hash generation is performed "early". Whereas when hashing
is performed "late" (at the final delivery channel stage), then additional sorts of differences
in message "copies" can be reflected in the message hash value (more distinctions between
"copies" occur). But this may be either a plus or a minus depending upon site goals.

46.3.20 Message tracking channel options
New in the 8.0 release, a general message tracking and recall facility has been implemented.
There are a number of channel options relating to message tracking.

46.3.20.1 Message Tracking and Recall Channel Options
(notrackingclient, notrackingserver, trackingclient,
trackingdelivered, trackingfirst, trackinginternal,
trackingmultiple, trackingrelayed, trackingserver,
trackingsingle, trackingtimeoutdefault,
trackingtimeoutmax, trackingtimeoutmin)

The message tracking and recall facility consists of an SMTP service extension (RFC 3885) as
well as a separate MTQP server (RFC 3887). (Note that these standards only specify message
tracking; message recall is an Oracle extension.) Mail clients can use this facility to track and
possibly recall messages they have sent. This set of keywords controls the availability and
handling of the Message Tracking SMTP extension.

The extension is enabled with the trackingserver source channel option. The
notrackingserver channel option disables the availability of the extension, and is the
default. The trackingtimeoutdefault source channel option specifies the default timeout
in seconds if no timeout value is specified in the MTRK command, as allowed by the protocol.
The default is 3 days.

The trackingtimeoutmin and trackingtimeoutmax source channel options specify
the minimum and maximum allowed timeout value in seconds; any value greater than the
maximum or less than the minimum is silently lowered or raised to the corresponding limit.
The defaults are 1 and 14 days, respectively.

The SMTP client's use of the extension is controlled by the trackingclient and
notrackingclient channel options. The former enables use of the extension; the latter
disables it and is the default. Note that the extension must be enabled on clients and servers
throughout a deployment in order for tracking and recall to work across that deployment.

The handling of messages relayed internal to a deployment, including internal channel hops,
needs to be distinguished from the case where messages leave the administrative domain for
tracking and recall to work properly. However, the SMTP protocol is commonly used in both
cases. Additionally, the case where a successful channel dequeue results in message delivery
also needs to be distinguished from dequeues where this does not occur.

Three channel options are provided to specify these semantics: trackinginternal,
trackingrelay, and trackingdelivered. trackinginternal, the default, specifies

Channels 46–101

https://tools.ietf.org/html/rfc3885
https://tools.ietf.org/html/rfc3887

Message tracking channel options

that the message is being transferred internally. trackingrelayed specifies that the channel
transfers messages to some external system. Finally, trackingdelivered specifies that the
channel performs final delivery of the message.

RFC 3885 specifies how the Message Tracking SMTP Extension interacts with aliases and
mailing lists. In particular, it says, "MTAs MUST NOT copy MTRK certifiers when a recipient
is aliased, forwarded, or otherwise redirected and the redirection results in more than one
recipient. However, an MTA MAY designate one of the multiple recipients as the "primary"
recipient to which tracking requests shall be forwarded; other addresses MUST NOT receive
tracking certifiers. MTAs MUST NOT forward MTRK certifiers when doing mailing list
expansion."

This arguably makes sense for tracking-only applications where presenting the results of a
complex alias expansion process to the end user may be confusing; however, the situation with
message recall is different. Users expect recall to work when feasible, including when alias
expansion is involved. (Mailing lists are different; a mailing list effectively "owns" its messages
once it expands, so recall past a mailing list expansion is inappropriate.)

Accordingly, three source channel options are provided to control the MTA's behavior in
this regard. trackingmultiple, the default, tells the MTA to pass tracking id/timeout
information to all recipients of an alias expansion. trackingsingle causes tracking id/time
information to pass through only when there is a single recipient. Finally, trackingfirst
causes tracking information to pass through to the first alias expansion recipient. (Note that in
the case of aliases stored in LDAP, the first recipient is unpredictable.)

46.3.20.2 Automatic Tracking ID Generation (trackinggenerate)

Message tracking and recall depends on the generation, attachment, and transfer of tracking
identifiers. Such identifiers are normally generated and attached to messages by the
submitting client. However, essentially no clients currently support the generation of such
identifiers, making it impossible to write a separate tracking/recall client to deal with messages
submitted by a non-tracking-enabled client. Additionally, a user who elects to use multiple
clients, some tracking-enabled and some not, will end up with only a subset of their messages
able to be tracked and recalled.

Tracking identifiers can also provide, independent of their use for user tracking and recall,
a stable identifier that ties MTA log entries across multiple systems together in ways that
envelope ids and messag-id header fields do not and cannot. As such, automatic assignment of
tracking identifiers to message on ingress as well as submission has real utility independent of
user tracking and recall functions.

The trackinggenerate source channel addresses these needs. A single required integer
parameter specifies the default tracking timeout. If set, a tracking identifier for the message is
generated in one of two ways:

• If authentication has been used and the user has a general recall secret associated with
their LDAP entry (see the ldap_auth_attr_recall_secret MTA option), then a per-
message recall secret is generated by computing a SHA-1 hash of the concatenation of the
content of Message-id: header field , the Date: header field (if present), and the user's general
recall secret. The per-message recall is then hashed twice with SHA-1 to create the tracking
identifier. The tracking timeout is controlled by the trackinggenerate value.

• If authentication wasn't used or no general recall secret is associated with the account, a
tracking identifier is created by hashing a unique identifier with an MD4 hash. Note that

46–102 Messaging Server Reference

https://tools.ietf.org/html/rfc3885

MLS channel options

the security of this process is controlled not by the randomness of the unique identifier or
the use of MD4, but rather by the infeasilbility of computing X given T, where SHA1(X) =
MD4(T).

46.3.21 MLS channel options
RESTRICTED: Not yet fully implemented. There are a few channel options relating to MLS
(Multi Layer Security).

46.3.21.1 MLS (Multi Layer Security) Channel options: mlslabel
(string), mlsrange (string)

RESTRICTED: Not yet fully implemented.

46.3.22 Notification messages and postmaster messages
channel options

Notification message handling, especially notification message generation, is an important
function of the MTA with therefore a number of related channel options. See also the
Notification message MTA options.

46.3.22.1 Postmaster address recognition (aliaspostmaster)

Specifying the aliaspostmaster option on a destination channel causes any messages
addressed to the username "postmaster" (lowercase, uppercase, or mixed case) at the official
channel name to be redirected to postmaster@local-host, where local-host is the
official local host name (the official_host_name on the local channel). Note that Internet
standards require that any domain in the DNS that accepts mail have a valid postmaster
account that will receive mail. So this setting can be useful when a site wants to centralize
postmaster responsibilities, rather than having separate postmaster accounts for separate
domains. That is, whereas the returnaddress channel option controls what return
postmaster address is used when a notification message is generated from the postmaster,
aliaspostmaster affects what is done with messages addressed to the postmaster.

46.3.22.2 Returned messages (sendpost, nosendpost,
copysendpost, errsendpost)

A channel program may be unable to deliver a message due to long-term service failures or
invalid addresses. When this happens the MTA channel program returns the message to the
sender with an accompanying explanation of why the message was not delivered. The MTA
will also optionally send a copy of certain failed messages to the local postmaster. This is
useful for monitoring message failures, but it can result in lots of traffic for the postmaster to
deal with.

The options sendpost, copysendpost, errsendpost, and nosendpost are used to
control the sending of failed messages to the postmaster. sendpost tells the MTA to send
a copy of all failed messages to the postmaster unconditionally. copysendpost instructs
the MTA to send a copy of the failure notice to the postmaster unless the originator address
on the failing message is blank; i.e., the postmaster gets copies of all failed messages except
those messages that are actually themselves reporting on bounces or other notifications.

Channels 46–103

Notification messages and
postmaster messages channel
options

errsendpost instructs the MTA to only send a copy of the failure notice to the postmaster
when the notice cannot be returned to the originator. No failed messages are ever sent to the
postmaster if nosendpost is specified.

The default in releases prior to 7.3-11.01 was copysendpost. As of 7.3-11.01 the default has
been changed to nosendpost.

46.3.22.3 Warning messages (warnpost, nowarnpost,
copywarnpost, errwarnpost)

In addition to returning messages as undeliverable, the MTA sometimes sends warnings
detailing messages that it has been unable to deliver for some period of time. This is generally
due to timeouts based on the setting of the notices channel option, although in some cases
channel programs may produce warning messages after failed delivery attempts. The warning
messages contain a description of what's wrong and how long delivery attempts will continue.
In most cases they also contain the headers and possibly some additional content from the
message in question.

The MTA will also optionally send a copy of certain warning messages to the local postmaster.
This can be somewhat useful for monitoring the state of the various MTA queues, although it
does result in lots of traffic for the postmaster to deal with.

The options warnpost, copywarnpost, errwarnpost, and nowarnpost are used to
control the sending of warning messages to the postmaster. warnpost tells the MTA to send
a copy of all warning messages to the postmaster unconditionally. copywarnpost instructs
the MTA to send a copy of the warning to the postmaster unless the originator address
on the as yet undelivered message is blank; i.e., the postmaster gets copies of all warnings
of undelivered messages except for those as yet undelivered messages that are actually
themselves reports on bounces or notifications. errwarnpost instructs the MTA to only send
a copy of the warning to the postmaster when the notice cannot be returned to the originator.
No warning messages are ever sent to the postmaster if nowarnpost is specified.

If no *warnpost channel option is in effect the default is taken from any *sendpost
channel option setting. If no such setting exists the default in releases prior to 7.3-11.01 was
copywarnpost. As of 7.3-11.01 the default has been changed to nowarnpost.

46.3.22.4 Notification and disposition channels
(dispositionchannel, notificationchannel)

New in 6.2: By default, the MTA always generates notification messages (Delivery Status
Notifications) such as bounce messages, warnings of delayed delivery, etc., and disposition
messages (Message Disposition Notifications) such as "vacation" messages, through the
process channel. That is, the channel that needs to generate a DSN or MDN submits the
DSN or MDN, respectively, to the process channel; and the process channel subsequently
enqueues the DSN or MDN on to the appropriate outbound channel (back to the sender of the
original message).

The notificationchannel channel option may be used on a channel to tell it to generate
DSNs through the specified channel, rather than through the (default) process channel. It
takes a required argument, which is the name of the channel to which to enqueue the newly
generated DSNs; normally, this should be some process_something channel that a site
defines for this purpose.

46–104 Messaging Server Reference

Notification messages and
postmaster messages channel

options

The notificationchannel channel option may be helpful when a channel is prone to
generating an exceptionally large number of DSNs, or when it is desired to handle DSNs
generated by a particular channel in some special way, in combination with source specific
rewrite rules.

The dispositionchannel channel option may be used on a channel to tell it to generate
MDNs through the specified channel, rather than through the (default) process channel. It
takes a required argument, which is the name of the channel to which to enqueue the newly
generated MDNs; normally, this should be some process_something channel that a site
defines for this purpose.

46.3.22.5 Including altered addresses in notification messages
(includefinal, suppressfinal, useintermediate)

When the MTA generates a notification message (bounce message, delivery receipt message,
etc.), there may be several forms of an address available to the MTA: the preserved "original"
form of a recipient address (the ORCPT form---in principle, that form originally typed by the
sending user, but in practice that true original form may not have been preserved and instead
some "later", transformed version may be the earliest form preserved), the "recently" active
form (referred to here as the "intermediate" form) corresponding to the form of the address
prior to any most recent forwarding applied by the MTA, and an altered "final" form of that
recipient address (as for instance a final form after forwarding is applied). The MTA always
includes the original form (assuming it is present) in the notification message, since that is
the form that the recipient of the notification message (the sender of the original message
which the notification message concerns) is most likely to recognize. The includefinal,
suppressfinal, and useintermediate channel options, as set on a channel generating
a notification message, control whether the MTA also includes the intermediate or final form
of the address. includefinal means to include the final form of the recipient address;
useintermediate is the default, and means to include the intermediate address form rather
than the final address form; suppressfinal causes the MTA to suppress the final and
intermediate address forms, if an original address form is present, from notification messages.

See Notification message format for an example of a DSN to see where these options would
affect notification format.

Including the intermediate form is normally useful, especially to the postmaster of the MTA
system itself, as the original address form, while presumably recognizable to the original
sending user, may bear no obvious relationship to the form of address active by the time the
MTA processed the message; in order to figure out what recipient on the MTA system was
intended, something like the intermediate or even final address form may well be necessary.
Suppressing the inclusion of any final or intermediate form of address entirely may be of
interest to sites that are "hiding" their internal mailbox names from external view; such sites
may prefer that only the original, "external" form of address be included in notification
messages.

Note that only some channels fully support the useintermediate channel option; for other
channels (including all channels written using the API), the effect of useintermediate is
merely to use the final address form, that is, it is effectively equivalent to includefinal.

See also the special use of a colon character, :, as the leading character of an alias value which
provides an alias-specific, rather than channel-wide, version of the useintermediate effect.

46.3.22.6 Default language tag (language)

Channels 46–105

Notification messages and
postmaster messages channel
options

Certain MTA operations, especially those involving selection of textual content to send to
users, may need to take language into account. For example, nondelivery notification text
may be available in multiple languages and the NOTIFICATION_LANGUAGE mapping and
DISPOSITION_LANGUAGE mapping can be used to select the appropriate language to use.
 The MTA also supports use (and selection amongst) language-tagged values for various
mailAutoReply* LDAP attributes used to construct vacation messages; see the discussion of
the ldap_autoreply_subject and ldap_autoreply_text* MTA options in particular.

It is axiomatic that in order to make decisions based on language langage tagging information
must be available. Normally this information is derived from the message being processed,
e.g., from an Accept-language: header field, from a Preferred-language: header field, or even
from the country code found in the From: address. However, not all messages contain such
information.

The language channel option can be used to associaed a default language with a particular
source channel. A single string argument is required specifying a language tag. Messages
originating from this channel which aren't tagged in any other way will be effectively tagged
with this value. The default is not to assume any language tag on a per-channel basis.

46.3.22.7 SMTP DSN extension support (notary, refusenotary,
nonotary

The notary and (the RESTRICTED) nonotary channel options control whether client TCP/IP
channels attempt to use the SMTP DSN extension (defined in RFC 3461). The notary channel
option is the default on SMTP over TCP/IP channels.

The nonotary channel option, if set, disables the use of the SMTP NOTARY extension. Its
use on SMTP client channels is RESTRICTED, and it is normally used only on LMTP client
channels. Note that setting lmtp or an lmtp_* channel option on a channel implicitly sets
nonotary.

New in 8.0.1 is the refusenotary channel option. This RESTRICTED option disables
the DSN extension in the SMTP/LMTP client and additionally, the SMTP server. (The DSN
extension is never offered by the LMTP server.)

46.3.22.8 Undeliverable message notification times (notices,
nonurgentnotices, normalnotices, urgentnotices)

The notices, nonurgentnotices, normalnotices, and urgentnotices channel
options control the amount of time an undeliverable message is silently retained in a given
channel queue. The MTA is capable of returning a series of warning messages to the originator
and, if the message remains undeliverable, the MTA will eventually return the entire message.

Different return handling for messages of different priorities may be explicitly set using
the nonurgentnotices, normalnotices, or urgentnotices channel options. Setting
values for the notices option is equivalent to setting those values for nonurgentnotices,
normalnotices, and urgentnotices, so those values will be used for all messages. (In
particular, if you wish to have, for example, an urgentnotices setting override a more
general notices setting, then the urgentnotices option must appear after the notices
option.)

This channel option's required argument is a list of up to five monotonically increasing
positive integer values. These values refer to the message ages at which warning messages are

46–106 Messaging Server Reference

https://tools.ietf.org/html/rfc3461

Notification messages and
postmaster messages channel

options

sent. The ages have units of days if the MTA option return_units is 0 or not specified in
the MTA option file, or hours if the MTA option return_units is 1. When an undeliverable
message attains or exceeds the last listed age, it is returned (i.e., bounced). When it attains
any of the other ages, a warning notice is sent. (Note that when return_units is 0, so that
the ages are interpreted as days, the ages to be exceeded are interpreted as full, twenty-four
hour days; for instance, in order for a notices value of 1 to apply to a message, the message
must have been tried already for a full twenty-four hours. For instance, if the return_job,
as is usual, is configured to run at thirty minutes after midnight each day, and if the initial
notices value is 1, then a message originally submitted on the first of a month will not get a
notification message generated until thirty minutes after midnight on the third of the month;
consider that on the second of the month, the message had not yet been being tried for a full
twenty-four hours.)

The default if no notices channel option is given is to use the notices setting for the local, l,
channel. If no setting has been made for the local channel, then the defaults 3, 6, 9, 12 are used
meaning that warning messages are sent when the message attains the ages 3, 6, and 9 days (or
hours) and the message is returned after remaining in the channel queue for more than 12 days
(or hours).

If you wish to change the notification ages for all of your channels, then the simplest thing to
do is to add a defaults channel block at the top of your configuration (assuming you don't
already have one) and set the appropriate *notices options there.

46.3.22.9 Postmaster address (returnaddress, noreturnaddress,
returnpersonal, noreturnpersonal)

By default, the Postmaster return address used when the MTA constructs bounce or
notification messages is postmaster@local-host, where local-host is the official local
host name (the name on the local channel), and the Postmaster personal name is "Internet Mail
Delivery" for the Messaging Server and "PMDF e-Mail Interconnect" for PMDF. Care should be
taken in the selection of the Postmaster address---an illegal selection may cause rapid message
looping and pile-ups of huge numbers of spurious error messages.

The return_address and return_personal MTA options can be used to set the system
default for the Postmaster address and personal name. Or if per channel controls are desired,
the returnaddress and returnpersonal channel options may be used. And finally, a
hosted-domain specific Postmaster address can be set using the LDAP attribute (normally
mailDomainReportAddress) named by the ldap_domain_attr_report_address MTA
option.

These channel options returnaddress and returnpersonal each take a required
argument specifying the Postmaster address and Postmaster personal name, respectively.
noreturnaddress and noreturnpersonal are the defaults and mean to use the default
values, either defaults established via the return_address and return_personal MTA
options, or the normal default values if such options are not set.

46.3.22.10 Postmaster returned message content (postheadonly,
postheadbody)

When an MTA channel program or the periodic message return_job returns messages
to both the postmaster and the original sender, the postmaster copy can either be the entire
message or just the headers. Restricting the postmaster copy to just the headers adds an
additional level of privacy to user mail. Note, however, this by itself does not guarantee

Channels 46–107

Notification messages and
postmaster messages channel
options

message security; postmasters and system managers are typically in a position where the
contents of messages can be read using system privileges if they so choose.

The channel options postheadonly and postheadbody are used to control what gets sent to
the postmaster. postheadbody returns both the headers and the contents of the message. It is
the default. postheadonly causes only the headers of the returned message to be sent to the
postmaster.

46.3.22.11 Delivery receipt request style (reportboth,
reportheader, reportnotary, reportsuppress)

The reportboth, reportheader, reportnotary, and reportsuppress channel options
control which sort, if any, of delivery receipt request the MTA constructs from "foreign"
delivery receipt requests, such as for messages coming in to PMDF via PMDF-LAN, PMDF-
MR, PMDF-X400, or PMDF-MB400 channels, or via the addressing channel. On OpenVMS,
these keywords also control the interpretation of delivery receipt requests from VMS MAIL
or PMDF MAIL via L or D channels. For PMDF-LAN, PMDF-MR, PMDF-X400, and PMDF-
MB400 channels, these keywords also control which sort of delivery receipt request the MTA
will convert into the respective "foreign" delivery receipt request. (In the case of PMDF-
X400, note that the keyword on the MIME_TO_X400 channel controls the behavior in both
directions, to and from the X.400 world.) The current default is reportheader meaning
to turn "foreign" delivery receipt requests into the old ad-hoc header style delivery receipt
requests. reportnotary requests that only NOTARYg style delivery receipt requests be
generated; this may become the default in a future version. reportboth causes the MTA
to generate both a header style and a NOTARY style delivery receipt request when seeing a
"foreign" delivery receipt request; setting this may result in two delivery receipts from MTAs
that support both forms of delivery receipt request. reportsuppress causes the MTA to
ignore (suppress) incoming "foreign" delivery receipt requests.

46.3.22.12 Blank envelope return addresses (returnenvelope)

The returnenvelope channel option takes a bitmask argument.

Bit 0 (value = 1) controls whether or not return notifications generated by the MTA are written
with a blank envelope address or with the address of the local postmaster. Setting the bit forces
the use of the local postmaster address, clearing the bit forces the use of a blank addresses.
Note that the use of a blank address is mandated by RFC 1123. However, some systems do not
handle blank envelope from address properly and may require the use of this option.

Bit 1 (value = 2) controls whether or not the MTA replaces all blank envelope addresses with
the address of the local postmaster. Again, this is used to accomodate incompliant systems that
don't conform to RFC 821, RFC 822, or RFC 1123.

Bit 2 (value = 4) controls whether or not the MTA checks that any (non-empty) envelope From
address matches (rewrites to) an MTA channel.

Setting bit 3 (value = 8) is equivalent to setting the mailfromdnsverify channel option:
it controls whether or not the MTA checks that the domain in the envelope From address
resolves in the DNS. That is, setting the bit causes the MTA to require that a DNS entry can be
found corresponding to the domain in the envelope From address; but the type of DNS entry
does not matter.

Setting bit 4 (value = 16) causes the MTA to enforce that if the envelope From address claims a
local domain name, the envelope From address must correspond to a user address (user alias).

46–108 Messaging Server Reference

https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1123

Processing control and job
submission channel options

Bit 5 (value = 32) modifies the effect of bit 3 (value 8). When bits 3 and 5 are both set (value
= 40), then a DNS query resulting in an authoritative HOST_NOT_FOUND response will
be treated as a temporary error (a 450 error), rather than being rejected with a permanent
rejection (a 550 error) as mailfromdnsverify (returnenvelope 8) would otherwise
normally cause.

New in 8.0, bit 6 (value = 64) modifies the effect of setting bit 3 (value = 8) on domain validity
checks. With both these bits set, if the domain in the MAIL FROM address corresponds to a
null MX domain, that address will be rejected as invalid. That is, setting bit 6 causes the bit 3
domain check to also implement support for draft-delany-nullmx-01.txt.

Note that the return_envelope MTA option can be used to set an MTA system default for
this sort of behavior.

46.3.23 Processing control and job submission channel
options

There are a number of important channel options reflecting the fundamental nature of the
channel, and interacting with the Job Controller's scheduling of messages.

46.3.23.1 Number of message files or addresses to handle per
service job or file (addrsperjob, filesperjob)

The MTA normally creates one delivery service job per channel that needs service. This
applies to both immediate service and periodic service jobs: when a message is initially sent
and immediate service is needed one job is created for each channel to which the message is
queued, and when the MTA creates periodic jobs it normally creates one periodic job for each
channel that needs service.

A single service job may not be sufficient to insure prompt delivery of all messages, however.

The addrsperjob and filesperjob channel options can be used to cause the MTA to create
additional service jobs. Each one of these options takes a single positive integer parameter
which specifies how many addresses or queue entries (i.e., files) must be sent to the associated
channel before more than one service job is created to handle them. If a value less than or equal
to zero is given it is interpreted as a request to queue only one service job. Not specifying an
option is equivalent to specifying a value of zero. The effect of these options is maximized; the
larger number computed will be the number of service jobs that are actually created.

The addrsperjob channel option computes the number of services jobs to start by dividing
the total number of To: addressees in all entries by the given value. The filesperjob channel
option divides the number of actual queue entries or files by the given value. Note that the
number of queue entries resulting from a given message is controlled by a large number of
factors, including but not limited to the use of the single and single_sys channel options
and the specification of header-modifying actions in mailing lists. Also note that the maxjobs
channel option places an upper bound on the total number of service jobs that can be created.

For example, if a message with 4 recipient addresses is queued to a channel marked
addrsperjob 2 and maxjobs 5 a total of 2 service jobs will be created. But if a message
with 23 recipient addresses is queued to the same channel only 5 jobs will be created because
of the maxjobs restriction.

Channels 46–109

Processing control and job
submission channel options

Note that these channel options affect the creation of both periodic and immediate service jobs.
In the case of periodic jobs the number of jobs created is calculated from the total number of
messages in the channel queue. In the case of immediate service jobs the calculation is based
only on the message being entered into the queue at the time.

Finally, note that the addrsperjob option is generally only useful on channels that provide
per-address service granularity. Currently this is limited to PMDF-FAX channels; there is no
case where it is useful for the Messaging Server.

46.3.23.2 Service job execution deferral (after, urgentafter,
normalafter, nonurgentafter, secondclassafter,
thirdclassafter)

Service jobs are created to deliver messages; the creation of such jobs on an as-needed basis
is managed by the MTA's Job Controller. The creation of service jobs can be deferred using
the after channel option, or deferred on a priority-sensitive basis using the other *after
channel options. Note, however, that such deferral is seldom of interest given the modern Job
Controller's internal, "smart" management of jobs.

Each *after option accepts an argument specifying either an absolute time at which to
initiate a delivery job, or an amount of time to delay (a delta time). For the Messaging Server
MTA, if the argument is an unsigned integer value, it is interpreted as an absolute time at
which to initiate a delivery job, in GMT time zone; if the argument begins with the plus
character, +, it is interpreted as the number of seconds by which to defer the execution of the
job -- a delta time value. (Note that for PMDF, the argument syntax was different: all values
were interpreted as delta time values.)

Historical note: For PMDF, deferred execution with a (typically small) delta time value was
most often used to increase throughput (e.g., as a result of cutting down on process creation
overhead) for heavily used channels. By using after to introduce a slight latency in the
creation of a service job, each such job had a window of time during which to "collect" all the
messages sent to the channel in that time. Whereas otherwise a service job might handle only
one (or at especially busy times perhaps two or three) messages, such use of after allowed
a service job to handle larger numbers of messages. For channels with high connection or
process activation overhead, this could result in higher overall throughput. But this is no
longer the case for the Messaging Server MTA.

Separate deferral settings are allowed for messages with different effective priority values.
The urgentafter channel option sets the delay for urgent messages, normalafter sets
the delay for normal priority messages, and nonurgentafter sets the delay for non-urgent
messages. secondclassfter and thirdclassafter set the delay for second-class and
third-class (nonstandard priority levels below non-urgent) messages respectively. after sets
the delay for all messages regardless of priority; setting it is equivalent to setting all of the
other *after options to that same delay value.

46.3.23.3 Delivery retry intervals (backoff, urgentbackoff,
normalbackoff, nonurgentbackoff, ipbackoff)

Backoff options specify the frequency of message delivery retries when messages aren't
successfully delivered the first time. These options all accept a series of intervals as arguments.
The first interval specifies the time to wait before the first retry, the second specifies the time
to wait for the second retry, and so on. The last value given specifies the time to wait for all

46–110 Messaging Server Reference

Processing control and job
submission channel options

subsequent retries. Up to eight intervals can be specified. Deliveries are attempted for a period
of time specified by the notices channel option. Delivery will fail if successful delivery
cannot be made within the time allowed by the last notices channel option setting.

Interval values use ISO 8601 periodic time syntax:

P[yearsY][monthsM][weeksW][daysD][T[hoursH][minutesM][secondsS]]

years, months, weeks, days, hours, minutes and seconds are all integer values.

Note that all of the letters in the value must be written in upper case.

Separate interval settings are allowed for messages with different priority settings.
The urgentbackoff channel option sets the retry intervals for urgent messages,
normalbackoff sets the retry intervals for normal priority messages, and
nonurgentbackoff sets the interval for non urgent messages. backoff sets the retry
intervals for all messages regardless of priority.

Additionally, as of MS 8.0.2.3, an additional ipbackoff option is provided to set backoff
times for messages that have been placed in IP backoff mode. The ability to set ipbackoff
values on a per-domin basis is also provided by the ipbackoff smartsend parameter.

The default intervals between delivery retry attempts in minutes are:

urgent: 30, 60, 60, 120, 120, 120, 240
normal: 60, 120, 120, 240, 240, 240, 480
nonurgent: 120, 240, 240, 480, 480, 480, 960
ip: 60, 120, 120, 240, 240, 240, 480

Note that setting the various options on the defaults channel can be used to override these
built-in defaults, as opposed to having to set the options on every channel with an associated
queue in the configuration, e.g.,

msconfig> set channel:defaults.backoff "PT30M PT1H PT2H PT4H"

Also note that the MTA has special handling of the case of problems delivering to some
recipients of multi-recipient messages: in such cases, the failing recipients are eligible for
another "immediate" delivery attempt without regard to *backoff setting; see the discussion
of MTA message transaction log file "Z" records.

 Note that ims-ms channels and LMTP client TCP/IP channels have special case
handling that overrides normal backoff for the specific error condition of encountering
IMAP_MAILBOX_LOCKED when attempting delivery to a Message Store user.

46.3.23.4 Initiating delivery processing (bidirectional, master,
slave)

Three options are used to specify whether a channel is served by a master program (master),
a slave program (slave), or both (bidirectional). The default, if none of these options is
specified, is bidirectional. These options determine whether the MTA bothers to initiate

Channels 46–111

Processing control and job
submission channel options

delivery activity when a message is queued to the channel - there is no point in doing this on a
slave-only channel.

The use of these options reflects certain fundamental characteristics of the corresponding
channel program or programs. The descriptions of the various channels the MTA supports
indicate when and where these options should be used.

Note that the Job Controller configuration should, normally, include definitions for what actual
image(s) a channel should execute for master or slave mode operations, as appropriate for
that channel. For instance, a channel which is bidirectional (and where both directions
are truly used) should normally have both master_command and slave_command Job
Controller options defined, whereas a channel which operates solely in master mode needs
only a master_command option, not a slave_command.

46.3.23.5 Deferred delivery dates (deferredsource,
nodeferredsource, deferreddestination,
nodeferreddestination)

The deferredsource and deferreddestination channel options implement recognition
and honoring of the Deferred-delivery: header. These options are newly implemented in the
7.0 release of Messaging Server. When set on a source or destination channel respectively,
messages with a deferred delivery date in the future will be held in that channel queue until
the deferred delivery date is reached. See RFC 2156 for details on the format and operation
of the Deferred-delivery: header line. Both channel options accept a single integer argument
specifying the maximum number of seconds in the future a Deferred-delivery: date value can
specify and still be honored. If both options apply to a transaction the lower of the two limits
will apply. The integer arguments are optional in a traditional imta.cnf file - if the value is
omitted a default of 60*60*24*7 (7 days) will be assumed.

Prior to the 7.0 release the deferred channel option provides similar functionality
to deferreddestination. In 7.0 the MTA accepts deferred as a synonym for
deferreddestination in the imta.cnf file; in Unified Configuration, deferred and
nodeferred may no longer be used and the preferred deferreddestination and
nodeferreddestination must be used instead. Note also that prior to 7.0 deferred delivery
was not a reliable service. In particular, deferred handling information does not survive Job
Controller restarts.

nodeferredsource and nodeferreddestination are the defaults. It is important to
realize that while support for deferred message processing is mandated by RFC 2156, actual
implemention of it effectively lets people use the mail system as an extension of their disk
quota.

See also the [DEFERRED] alias file named parameter and, in Unified Configuration, the
alias_deferred alias option, which provide a per-alias (per-recipient) mechanism to add a
Deferred: header line. For users defined in LDAP, the attribute mgrpAddHeader, or whatever
attribute is named by the ldap_add_header MTA option, also provides a way to add such a
header line.

See also the futurerelease channel option, which enables use of the SMTP
FUTURERELEASE extension, offering superior functionality over Deferred-delivery: header
line based message deferral.

46.3.23.6 Expansion of multiple addresses (expandlimit,
expandchannel, holdlimit)

46–112 Messaging Server Reference

https://tools.ietf.org/html/rfc2156
https://tools.ietf.org/html/rfc2156

Processing control and job
submission channel options

Most MTA channels support the specification of multiple recipient addresses in the transfer
of each inbound message. The specification of many recipient addresses in a single message
may result in delays in message transfer processing ("on-line" delays). In particular, multi-
recipient messages that require a great deal of processing of the message body can be affected
by processing delays, or that require creation of many different file copies on disk in the MTA
queue area can be affected by slow disk performance. If the resulting delays are long enough,
network timeouts can occur, which in turn can lead to repeated message submission attempts
and other problems.

The MTA provides a special facility to force deferred ("off-line") processing of additional
recipient message copies once a given number of addresses are specified for a single
message. The deferral happens after processing of the "initial" recipients (those before the
expandlimit value was reached), and after address processing for the additional recipients
too, (for instance, after *_ACCESS mapping table checks and after alias processing), but before
message processing. In particular, such deferral means that for the "additional" recipients, only
one message file (storing all of the "additional" recipients), is written to the queue area (to a
reprocess* or process* channel queue area, depending upon use of the expandchannel
channel option). Deferral of message processing can decrease on-line delays enormously. Note,
however, that the processing overhead is deferred, not avoided completely.

This special facility is activated by using a combination of, for instance, the generic
reprocessing channel and the expandlimit channel option. The expandlimit option takes
an integer argument that specifies at what number of recipients to begin deferring processing
of the message copy (or copies) to that and additional recipient addresses. The default value is
effectively infinite if the expandlimit channel option is not specified. A value of 1 will force
deferred processing on all incoming addresses from the channel.

The expandlimit channel option must not be specified on the local channel or the
reprocessing channel itself; the results of such a specification are unpredictable.

The channel actually used to perform the deferred processing may be specified on a per-
source-channel basis using the expandchannel channel option; the reprocessing channel is
used by default, if expandchannel is not specified, but use of some other reprocessing or
processing channel may be useful for some purposes. In particular, for Messaging Server MTA
versions 5.2 and earlier, typical configuration usage required that a processing channel, rather
than a reprocessing channel, be used. If a channel for deferred processing is specified via
expandchannel, that channel should be a reprocessing or processing channel; specification
of other sorts of channels may lead to unpredictable results.

The reprocessing channel, or whatever channel is used to perform the deferred processing,
must be added to the MTA configuration file in order for the expandlimit option to have
any effect. If your configuration was built by the initial configuration utility, then you should
already have a reprocessing channel.

(Note that typical Messaging Server sites running version 5.2 or earler could not use the
expandlimit option unless they also marked the affected channel expandchannel
process (or expandchannel process_somethingorother redirecting the
expansion to an alternate process_* sort of channel), as enqueues to a channel marked
viaaliasrequired would not succeed if deferred to a reprocess* channel.)

Extraordinarily large lists of recipient addresses are often a characteristic of so-called SPAM---
junk e-mail. The holdlimit channel option tells the MTA that messages coming in the
channel that result in more than the specified number of recipients should be marked as

Channels 46–113

Processing control and job
submission channel options

.HELD messages and enqueued to the reprocess channel (or to whatever channel is
specified via the expandchannel channel option). As .HELD messages, the files will sit
unprocessed in that MTA queue area awaiting manual intervention by the MTA postmaster.

46.3.23.7 SMTP Future Release Extension (futurerelease)

Release 7 of the Messaging Server MTA implements support for future release SMTP SUBMIT
extension defined in RFC 4865. This support is enabled by placing the futurerelease
channel option on the submit source channel used for initial message submission. The option
takes a single integer argument: The maximum number of seconds a message can be deferred.

Care should be used when enabling future release since it allows messages to be in effect
stored in the MTA's queues. Future release should only be used for channels handling initial
message submission and authentication should be required.

Note that similar functionality is available in earlier Messaging Server releases: Specification
of a Deferred-delivery: header field in a submitted message coupled with use of the
deferreddestination channel option on the destination channel provided the ability to
defer delivery of messages. However, future release provides superior functionality:

• The facility is controlled by a setting on the source channel, allowing it to be provided to
a subset of the user population. Placing deferreddestination option on a destination
channel opens the door to anyone submitting a message to that channel that will be deferred
for some period of time.

• There's no way for a client which sets a Deferred-delivery: header field to know whether or
not the header has actually caused the message to be deferred. The future delivery SMTP
extension, on the other hand, lets the client know how long a message can be deferred and
an error will be returned to the client if the message cannot be deferred for the time the
client wants.

• There was no way to place a limit on the amount of time a message could be deferred.
Instead what happened was that a message deferred longer than the channel's last notices
value would simply be returned as undeliverable.

• Deferred-delivery settings on messages did not survive a Job Controller restart.

As part of the implementation work for future release the old Deferred-delivery:
mechanism has been redesigned to address some (but not all) of these points. In particular,
the deferred channel option has been replaced by two new channel keywords,
deferredsource and deferreddestination. (The deferred option is now a synonym
for deferreddestination.) Both of these options accept an integer argument (required in
unified configurations, optional in imta.cnf) specifying in seconds the maximum amount
of time in the future a Deferred-delivery: header can specify and still be honored. The default
if no argument is specified is 60*60*24*7, or 7 days. deferredsource enables Deferred-
delivery: processing on the basis of the source channel while deferreddestination operates
on destination channels. Finally, Deferred-delivery settings on messages now survive job
controller restarts. This addresses all of the points on the above list except the second one -
use of a Deferred-delivery: header field still provides no mechanism for informing the client
whether or not the setting will be honored.

However, as a purely practical matter, the mechanism chosen to provide delayed release
of messages is likely to be dictated by the choice of email client and what mechanisms it
supports.

46–114 Messaging Server Reference

https://tools.ietf.org/html/rfc4865

Processing control and job
submission channel options

46.3.23.8 Header-based message expiration(expirysource,
expirysource)

(New in Messaging Server 7.0.) The expirysource channel option instructs the MTA to
honor Expiry-date: header fields - messages will be returned as undeliverable if the time
specified by this header field is exceeded. noexpirysource disables this check and is the
default.

46.3.23.9 Maximum number of simultaneous jobs for this channel
(maxjobs)

The maxjobs channel option places an upper bound on the total number of service jobs that
can be created. This option must be given an integer argument; if the computed number of
service jobs is greater than this value only maxjobs jobs will actually be created. The default
for this value if maxjobs is not specified is 100. Normally maxjobs is set to a value that is
less than or equal to the total number of jobs that can run simultaneously in whatever Job
Controller pool the channel uses.

See also the job_limit Job Controller option.

Note that a imsimta cache -change -channel=NAME -job_limit=N command can
change the effective maxjobs value for a channel "on the fly".

46.3.23.10 Priority of messages to be handled by periodic
jobs (minperiodicnonurgent, minperiodicnormal,
minperiodicurgent, maxperiodicnonurgent,
maxperiodicnormal, maxperiodicurgent)

OBSOLETE: These channel options have no effect nowadays, with the Job Controller. See
instead Job Controller priority-based processing.

In the past: When periodic delivery jobs were used, they normally processed all messages
queued for the channel. However, on some channels it may be desirable to limit normal
periodic job processing to only messages of specified priorities. Other special site-supplied
periodic jobs may then process the remaining messages. For instance, a site might choose
to have normal MTA periodic jobs pass over nonurgent messages, leaving those nonurgent
messages to be delivered by some site-supplied job (perhaps scheduled to run at off-peak
hours).

The minperiodicnonurgent, minperiodicnormal, or minperiodicurgent
channel options specify the minimum priority of message that a periodic job should try
to deliver; the job will ignore messages of lower priority. The maxperiodicnonurgent,
maxperiodicnormal, or maxperiodicurgent options specify the maximum priority
of message that a periodic job should try to deliver; the job will ignore messages of higher
priority.

46.3.23.11 Per-channel MT-PRIORITY control
(mtprioritiesallowed, mtprioritiesrequired)

mtprioritiesallowed and mtprioritiesrequired are new in the 8.0 release. These
channel options enable the MTA's support of RFC 6710 (SMTP Extension for Message Transfer

Channels 46–115

https://tools.ietf.org/html/rfc6710

Processing control and job
submission channel options

Priorities). New in Cayenne, see the envelopetunnel channel option for "tunneling" MT-
PRIORITY, via a header field, through systems that do not support the MT-PRIORITY SMTP
extension, as described in RFC 6758 (Tunneling of SMTP Message Transfer Priorities).

The mtprioritiesallowed source channel option specifies the range of MT-PRIORITY
values that will be accepted. MT-PRIORITY values outside this range will be adjusted up
or down so they fall within the allowed range. If a single argument is given, it specifies the
highest priority value that will be accepted. The default if this option is not specified is for
the MT-PRIORITY extension not to be offered and for MT-PRIORITY parameters not to be
accepted.

The mtprioritiesrequired source channel option specifies the range of MT-PRIORITY
that will be accepted for enqueue. If a single argument is given, it specifies the lowest priority
value that will be accepted. The message will be rejected if the message's specified MT-
PRIORITY value, or if the default MT-PRIORITY value of 0 (assumed if MT-PRIORITY was not
specified in the SMTP transaction), falls outside the required range with the SMTP error:

550 5.7.0 Message priority outside curretly allowed range

With either channel option, two integer arguments specify the range. Each argument must be
an integer in the range -9..9. The arguments can be given in any order.

46.3.23.12 Service job pool usage (pool)

The Messaging Server's Job Controller creates channel jobs (jobs to deliver messages) as
needed: the MTA's enqueueing processes inform the Job Controller regarding newly enqueued
messages, and the Job Controller then decides which existing service job whould attempt the
message's delivery, or creates a new service job, as needed.

To manage the allocation of channel delivery job processes, the Job Controller has "processing
pools" (in old PMDF terminology, "queues"). Different channels may be configured to run in
different processing pools via the pool channel option.

Note that for iMS/MS/the Oracle Messaging Server, the priority-sensitive queues of PMDF
days are obsolete. Instead, the Job Controller takes care of managing different priority
messages in different priority internal processing "queues" within a processing pool. That
is, priority-sensitive sorting of messages is handled internally by the Job Controller, without
needing explicit configuration.

46.3.23.13 Triggering new jobs (threaddepth)

The threaddepth channel option tells the Job Controller when to start a new channel "job"
to handle messages: for multithreaded channels, when to start a new thread (if the process is
allowed to have more threads) or failing that a new process (if more processes are allowed); for
single threaded channels, when to start a new process (if more processes are allowed).

For multithreaded channels, the threaddepth channel option controls how many messages
are handled in any one thread before the channel will consider starting to use another thread.

In particular, the MTA's SMTP client (for channels not marked with the daemon channel
option) sorts outgoing messages to different destinations to different threads. The
threaddepth channel option may be used to instruct the MTA's multithreaded SMTP client

46–116 Messaging Server Reference

https://tools.ietf.org/html/rfc6710
https://tools.ietf.org/html/rfc6758

Sensitivity limits channel options

to handle only the specified number of messages in any one thread, using additional threads
even for messages all to the same destination (hence normally all handled in one thread).
The value specified must be greater than 1 and less than 10000. The default as of MS 6.0 is
threaddepth 10. (This is a change from previous versions, in which the default was 128.)

Use of threaddepth may be of particular interest for achieving multithreading with daemon
router on a TCP/IP channel - a TCP/IP channel that connects to a single specific SMTP server
- when the SMTP server to which the channel connects can handle multiple simultaneous
connections.

Similarly, the threaddepth option affects operation of the multithreaded ims-ms channel.

For single threaded channels, such as the conversion, process, and reprocess channels, the
threaddepth channel option controls how many messages are handled in a single process;
more messages cause the Job Controller to create another process (up to the maxjobs channel
option setting for the channel and the job_limit Job Controller option value for the pool in
which the channel runs) to process the messages.

46.3.23.14 user Option Under channel

The user channel option is used on pipe channels to indicate under what Unix user id to run.

In the 8.0 release and later, this option is deprecated and the pipeuser option from
restricted.cnf is used instead.

46.3.24 Sensitivity limits channel options
Several channel options set channel-specific message sensitivity limits.

46.3.24.1 Sensitivity checking (sensitivitynormal,
sensitivitypersonal, sensitivityprivate,
sensitivitycompanyconfidential)

The sensitivitynormal, sensitivitypersonal, sensitivityprivate, and
sensitivitycompanyconfidential channel options set an upper limit on the
sensitivity of messages that may be accepted by a destination channel. The default is
sensitivitycompanyconfidential; i.e., messages of any sensitivity are allowed through.
A message with no Sensitivity: header is considered to be of normal, i.e., lowest, sensitivity.
Messages with a higher sensitivity than that specified by such a channel option will be rejected
when enqueued to the channel with an error:

message too sensitive for one or more paths used

Note that the MTA does this sort of sensitivity checking at a per-message, not per-recipient,
level: if a destination channel for one recipient fails the sensitivity check, then the message
bounces for all recipients, not just for those recipients associated with the sensitive channel.
(Also note that the acceptalladdresses channel option, if used, postpones the timing of
the message rejection.)

The log_sensitivity MTA option permits logging of the sensitivity of messages passing
through the MTA.

Channels 46–117

Sieve filters and delivery flags
channel options

46.3.25 Sieve filters and delivery flags channel options
There are a number of channel options controlling Sieve filters and message envelope and
delivery flags.

46.3.25.1 Address type flags (addrtypescan,
addrtypescanbccdefault, noaddrtypescan)

(New in 7.0.5.) If the addrtypescan channel option is set, then RCPT TO addresses (that
is, envelope recipients) are compared with header recipient fields (To:, Cc:, Bcc:, Resent-To:,
Resent-Cc:, and Resent-Bcc:). When a match is found, that fact is recorded in the delivery
flags associated with that envelope recipient. Those flags are then used when generating the
report part of Microsoft® Exchange 2007 envelope journaling archive messages, distinguishing
between various types of envelope recipient addresses.

addrtypescanbccdefault operates in the same way as addrtypescan, except that when
no matches are found for a given address, that address is assumed to be a blind carbon (Bcc:)
recipient. This option should only be used when it is certain the messages have come directly
from a client that implements Bcc: by simply omitting the blind carbon recipient from the
header and which doesn't support any form of local mailing lists. Use in any other context is
guaranteed to result in incorrect types being attached!

noaddrtypescan is the default.

Also note that since the MTA's delivery flags are used to store this informtion, the MTA's
delivery flag transfer facilities may be used to transport this information between MTAs; see
the deliveryflags channel option.

46.3.25.2 Delivery flags (deliveryflags, flagtransfer,
noflagtransfer)

The deliveryflags channel option may be placed on source or destination channels. It takes
a required, bit-encoded integer argument, which controls various options regarding message
delivery:

Table 46.14 deliveryflags MTA option bit values

Bit Value Usage
 0 1 Interpret subaddresses as folder names for delivery. This bit is

also set by Sieve "fileinto" actions.
 1 2 When placed on a source channel, enable quota bypass (that is,

delivery even if the recipient user is overquota) for messages
enqueued by this channel. (The tcp_tas channel, for example,
has this set.)

2 4 Reserved for internal use only.
3 8 Reserved for internal use only.
4 16 Force single copy per recipient
5 32 Ignore discard or jettison actions (e.g., from Sieve filters).

This corresponds to setting the message envelope bit normally

46–118 Messaging Server Reference

Sieve filters and delivery flags
channel options

set automatically by the MTA when applying a discard or
jettison action and enqueueing to the filter_discard
channel, so that if a "retrieval" procedure should later be
performed on such a "discarded" message (such as moving the
message to the reprocess channel), the message will then get
delivered bypassing any discard or jettison actions.

6 64 When placed on a source channel for an SMTP/LMTP
server, enable transfer of delivery flags; equivalent to the
flagtransfer channel option

 7 128 Messages enqueued to the channel are considered, for purposes
of CONVERSIONS mapping table testing, to have a conversion
tag set. This bit is set automatically when it is needed and is not
intended to be set using the channel option.

8 256 Reserved for internal use only.
 9 512 Handle as if SMTP AUTH (SASL) had been used as far as access

checks are concerned. This bit is set automatically when it is
needed and is not intended to be set using the channel option.

10 1024 Handle as if TLS had been used as far as access checks are
concerned.

 11 2048 Handle as if address produced by alias as far as access checks are
concerned.

12 4096 Bypass all list access checks.

All remaining bits in this option are reserved for internal use and should not be set. The
default value for deliveryflags is 0.

The flagtransfer channel option may be placed on a SMTP server or LMTP server channel.
It causes the server to advertise support of the XDFLG and XAFLG private SMTP/LMTP
extension parameters to the RCPT TO command. As of MS 8.0.2.3, flagtransfer also causes
the SMTP server (but not the LMTP server) to advertise the XCONVTAG extension.

If a Messaging Server SMTP client is sending to an SMTP server (or a Messaging Server LMTP
client is sending to an LMTP server) that supports this extension, then that SMTP client (or
LMTP client) will pass along (transfer) delivery flags, IMAP flags, and (in the case of SMTP)
conversion tags.

For instance, this can be useful when user filters (performing fileinto Sieve operations)
will be performed on a "front-line" system that must then relay the messages to a "back-end"
system. noflagtransfer disables delivery flag transfer and is the default.

Some of the delivery flag bits affect server security, as such, the flagtransfer channel
option should never be set on a channel that is exposed to untrusted traffic.

Setting flagtransfer is equivalent to setting bit 6 (value 64) of the deliveryflags
channel option.

46.3.25.3 Filter file location (filter, nofilter,
destinationfilter, nodestinationfilter,
sourcefilter, nosourcefilter, disablesourcefilter,
disabledestinationfilter)

Channels 46–119

Sieve filters and delivery flags
channel options

For the Messaging Server MTA, user and group Sieve filters are normally enabled simply by
storing them in the users' (and groups') mailSieveRuleSource attribute - or more precisely,
storing them in the attribute named by the ldap_filter MTA option. However, user Sieve
filters may be located in an alternate sort of location (in files on disk, for instance) via use of
the filter channel option. So while not normally used, in principle the filter option may
be used on the ims-ms, native, and tcp_lmtpc* channels to specify the location of user
Sieve filters for that channel. It takes a required URL argument describing the users' Sieve
filter location -- typically a (templated, making use of substitution based on user) file location.
nofilter is the default; it means that only filters enabled implicitly via user/group LDAP
entries will be used (and no additional, external Sieve lookup will be performed by the MTA).

IMPORTANT NOTE: Due to the way the MTA caches Sieves internally - the URL is used as
a cache key - it's vital that each user have a distinct Sieve file or be associated with a distinct
LDAP entry when the filter channel option is used. Failure to insure this separation will
cause Sieve ownership checks to behave in unexpected ways and may allow users to bypass
certain security checks.

The sourcefilter and destinationfilter channel options may be used on general
MTA channels to specify a channel-level Sieve filter to apply to incoming and outgoing
messages, respectively. (More precisely, a sourcefilter is applied when the source channel
on which it is specified is enqueueing a message; a destinationfilter is applied when
any channel is enqueuing a message to the destination channel on which it is specified.) These
channel options take a required URL argument describing the channel Sieve filter location
(typically a file). nosourcefilter and nodestinationfilter are the defaults and mean
that no channel Sieve filter is enabled for either direction of the channel.

The obsolete channelfilter and nochannelfilter channel options are synonyms for
destinationfilter and nodestinationfilter, respectively.

IMPORTANT NOTE: It's very important not to confuse the filter and
destinationfilter channel options. The critical difference is that destinationfilter
Sieves are system-level whereas filter Sieves are user-level. As such, a system-level Sieve
invoked with filter may not have access to the capabiities it needs, while a user-level Sieve
invoked with destinationfilter would give the user control over various aspects of
message disposition handling they should not be able to change.

New in Messaging Server 7.0 update 3 are the disablesourcefilter and
disabledestinationfilter channel options. These options can be used to suppress
the evaluation and interpretation of Sieve filters based on source or destination channel,
respectively. Each option takes a single nonnegative integer argument, whose value is
interpreted as follows:

Table 46.15 disablesourcefilter and disabledestinationfilter
MTA options values

Value Usage
0 Disable all Sieves
1 Only spam filter Sieves are evaluated and interpreted
2 Only spam filter and source channel Sieves are evaluated and interpreted
3 Spam filter and source channel Sieves, and the systemfilter MTA

system Sieve (which in legacy configuration was imta.filter), are
evaluated and interpreted

46–120 Messaging Server Reference

Sieve filters and delivery flags
channel options

4 Spam filter, source channel, the systemfilter MTA system Sieve (which
in legacy configuration was imta.filter), and destination channel
Sieves are evaluated and interpreted

5 Spam filter, source channel, the systemfilter MTA system Sieve (which
in legacy configuration was imta.filter), destination channel, and
ORIG_SEND_ACCESS Sieves are evaluated and interpreted

6 Spam filter, source channel, the systemfilter MTA system Sieve
(which in legacy configuration was imta.filter), destination channel,
ORIG_SEND_ACCESS, and SEND_ACCESS Sieves are evaluated and
interpreted

7 Spam filter, source channel, the systemfilter MTA system Sieve
(which in legacy configuration was imta.filter), destination channel,
ORIG_SEND_ACCESS, SEND_ACCESS, and ORIG_MAIL_ACCESS Sieves
are evaluated and interpreted

8 Spam filter, source channel, the systemfilter MTA system Sieve
(which in legacy configuration was imta.filter), destination channel,
ORIG_SEND_ACCESS, SEND_ACCESS, ORIG_MAIL_ACCESS and
MAIL_ACCESS Sieves are evaluated and interpreted

46.3.25.4 Sieve filter fileinto action channel options (fileinto,
nofileinto)

The fileinto channel option, currently only especially meaningful for channels delivering
into the Messaging Server Message Store (that is, ims-ms and tcp_lmtpc* channels),
specifies how to alter an address when a Sieve filter "fileinto" action is applied.
nofileinto is the default, and means that a Sieve filter "fileinto" action has no address-
modifying meaning for that destination channel.

For ims-ms channels, the usual usage is

fileinto $U+$S@$D

meaning that the folder name should be inserted as a subaddress into the original address,
replacing any originally present subaddress. (The default value for the FILEINTO ims-ms-
channel-specific option then results in the ims-ms channel interpreting that subaddress as a
request for folder delivery.)

For tcp_lmtpc* channels, the usual usage is

fileinto @$4O:$U+$S@$D

(where note that in $4O the O is the capital or majuscule letter "o", not the numeral zero 0).
The effect is that the explicit source route to the mailhost should be preserved if present, and
the foldername should be inserted as a subaddress into the original address, replacing any
originally present subaddress.

The Message Store delivery code normally considers any "trusted" subaddress present on
a recipient address as a request to deliver directly into the correspondingly named folder.
(This can be overridden for the ims-ms channel by disabling the FILEINTO ims-ms-channel-
specific option.) Application of the fileinto channel option also sets a bit in the message

Channels 46–121

Size limits on messages channel
options

envelope that means that for Message Store delivery "trust this subaddress as a folder name for
delivery purposes". So when the fileinto channel option is applied on an ims-ms channel
or a tcp_lmtpcs* channel, subaddresses added due to a Sieve filter "fileinto" action will
cause folder delivery. Note that unless a subaddress has been added/replaced due to such a
Sieve "fileinto" action and the fileinto channel option's resulting setting of the proper
message envelope bit, any other subaddress will not normally be considered as a valid request
for folder delivery---not unless the IMAP post ACL (RFC 4314, IMAP4 Access Control List
(ACL) Extension) has been set on that folder in the Message Store.

46.3.25.5 Sieve filter and delivery flags channel options:
scriptlimit (integer), sievelimit (integer), sizelimit (integer)

The scriptlimit, sievelimit, and sizelimit source channel options set limits on how
many Sieve scripts a user may have, how large each individual script may be, and the total size
limit with scripts combined.

46.3.26 Size limits on messages channel options
A number of channel options relate to message size limits. See also the Message size MTA
options. The SMTP server also has some message size related limits; see TCPIP-channel-
specific options. And for web-based email clients, see also the maxmessagesize MSHTTP
option.

46.3.26.1 Triggering alternate channel processing
(alternatechannel, alternateblocklimit,
alternatelinelimit, alternaterecipientlimit)

It is sometimes useful to force processing of messages meeting certain criteria to occur on a
channel distinct from the one chosen by the MTA's alias expansion and rewriting process.
The alternatechannel channel option provides a means to specify such a channel while
the alternateblocklimit, alternatelinelimit, and alternaterecipientlimit
channel options specify the criteria for when the alternate channel should be used.

alternatechannel takes the name of the alternate channel to use as an argument.
alternateblocklimit takes an unsigned integer as an argument; the alternate
channel will be used if the computed block size of the message exceeds this value.
alternaterecipientlimit also takes an unsigned integer argument; the message will
be queued to the alternate chanmel if the number of recipients queued to the current channel
exceeds this value. Finally, the alternatelinelimit channel option takes an unsigned
integer argument; the alternate channel will be used if the computed number of lines in the
message exceeds this value.

Note that alternaterecipientlimit is a limit on envelope recipients for this message
copy, on this channel; it has nothing to do with how many addresses may or may not be
in the header; and envelope recipients on other channels are also irrelevant. However, the
alternaterecipientlimit check does get performed before any message copy split-up
due to storage of recipients per file controls such as addrsperfile, single, or single_sys
channel option application.

Note that any *SEND_ACCESS or *MAIL_ACCESS mapping table probes will use the "original"
destination channel name, not the alternate destination channel name, but a CONVERSIONS
mapping table probe will use the alternate destination channel name.

46–122 Messaging Server Reference

https://tools.ietf.org/html/rfc4314,
https://tools.ietf.org/html/rfc4314,

Size limits on messages channel
options

Note that the alternate channel selection process is neither iterative nor recursive: Once an
alternate channel has been selected it will be used regardless of what the various alternate
channel options on that channel say to do.

46.3.26.2 Message size limits (blocklimit, linelimit,
sourceblocklimit, noblocklimit, nolinelimit)

Although fragmentation may be used to break messages into smaller pieces automatically, it
may also be appropriate in some cases to simply reject outright messages larger than some
administratively defined limit, (e.g., so as to avoid service denial attacks on the system or
individual mailboxes).

The blocklimit, linelimit and sourceblocklimit channel options are used to impose
absolute size limits. Each of these options requires a single integer argument. blocklimit
specifies the maximum number of blocks allowed in a message. The MTA will reject attempts
to queue messages containing more blocks than this to the channel. The sourceblocklimit
specifies the maximum number of blocks allowed in an incoming message. The MTA will
reject attempts to submit a message containing more blocks than this to the channel. In other
words, blocklimit applies to destination channels;

sourceblocklimit applies to source channels. An MTA block is normally 1024 bytes; this
can be changed with the block_size MTA option. linelimit specifies the maximum
number of lines allowed in a message. The MTA will reject attempts to queue messages
containing more than this number of lines to the channel. These limits can be imposed
simultaneously if necessary.

Note that the line_limit and block_limit MTA options can be used to impose similar
limits on all channels. These limits have the advantage that since they apply across all channels
the MTA can make them known to mail clients via the SMTP SIZE extension prior to obtaining
message recipient information. This simplifies the process of message rejection in some
situations.

The nolinelimit and noblocklimit settings are the default and mean that no per-
channel limits are imposed. But message size may still be limited via other configuration
choices: global limits imposed via the line_limit or block_limit MTA options, per-
domain limits imposed via the attributes named by the ldap_domain_attr_blocklimit
or ldap_domain_attr_sourceblocklimit MTA options, or per-user limits imposed
via the attributes named by the ldap_blocklimit or ldap_sourceblocklimit
MTA options, or a per-group/mailing list limit imposed via the attribute named by the
ldap_maximum_message_size MTA option, or per-group/mailing list limits imposed via
the alias_blocklimit or alias_linelimit alias options (or in legacy configuration the
equivalent [BLOCKLIMIT] or [LINELIMIT] alias file named parameters), or a limit imposed
via use of the $S flag in the FROM_ACCESS mapping table.

Note that the block_limit MTA option, or similarly the sourceblocklimit channel
option on an incoming TCP/IP channel, causes the MTA's SMTP server to advertise the
stated size (the minimum of block_limit and the channel's sourceblocklimit) as the
maximum size accepted in response to a sender's EHLO command. This means that clients/
senders that understand the SIZE SMTP extension (see RFC 1870, ESMTP message size
extension) may not bother to even try to submit larger messages after seeing the MTA's EHLO
response. Or if they do start to submit a larger message, if they at least specify the SIZE via the
SMTP extension on the MAIL FROM command, then the MTA's SMTP server will reject the
message at the MAIL FROM. This contrasts with the effect of the blocklimit channel option

Channels 46–123

https://tools.ietf.org/html/rfc1870

Size limits on messages channel
options

which cannot be applied (even if the sender used the SIZE extension on the MAIL FROM)
until after the RCPT TO is specified so that the MTA can determine the blocklimit for the
relevant destination channel.

Related to the above effects, is the fact that messages rejected due to the block_limit MTA
option, or similarly due to the sourceblocklimit channel option, do not necessarily result
in a "J" rejection entry in the mail.log* file, since potentially a client/sender-SMTP doesn't
even bother to submit a message when it sees the advertised size limit. Or even if the MTA
does perform a "rejection" itself, it may occur at the MAIL FROM stage (if the client uses the
SIZE SMTP extension to include the expected message size on the MAIL FROM command
line); this is before the MTA has its normal log information (such as receipient information),
but will nevertheless be logged as a "J" record (missing some fields such as recipient fields) as
of MS 6.0 and later. (In earlier versions, such rejections at the MAIL FROM stage would not be
recorded in a mail.log* record; in particular, would not cause a "J" record to be generated.)
This contrasts with messages rejected due to blocklimit on the destination channel which
do, and have even in older versions, get logged as "J" entries with recipient field(s) filled in
"normally".

(Note also that the acceptalladdresses channel option, if used, may modify the timing
and form of rejections due to exceeding message size constraints.)

46.3.26.3 Expansion of multiple addresses (expandlimit,
expandchannel, holdlimit)

Most MTA channels support the specification of multiple recipient addresses in the transfer
of each inbound message. The specification of many recipient addresses in a single message
may result in delays in message transfer processing ("on-line" delays). In particular, multi-
recipient messages that require a great deal of processing of the message body can be affected
by processing delays, or that require creation of many different file copies on disk in the MTA
queue area can be affected by slow disk performance. If the resulting delays are long enough,
network timeouts can occur, which in turn can lead to repeated message submission attempts
and other problems.

The MTA provides a special facility to force deferred ("off-line") processing of additional
recipient message copies once a given number of addresses are specified for a single
message. The deferral happens after processing of the "initial" recipients (those before the
expandlimit value was reached), and after address processing for the additional recipients
too, (for instance, after *_ACCESS mapping table checks and after alias processing), but before
message processing. In particular, such deferral means that for the "additional" recipients, only
one message file (storing all of the "additional" recipients), is written to the queue area (to a
reprocess* or process* channel queue area, depending upon use of the expandchannel
channel option). Deferral of message processing can decrease on-line delays enormously. Note,
however, that the processing overhead is deferred, not avoided completely.

This special facility is activated by using a combination of, for instance, the generic
reprocessing channel and the expandlimit channel option. The expandlimit option takes
an integer argument that specifies at what number of recipients to begin deferring processing
of the message copy (or copies) to that and additional recipient addresses. The default value is
effectively infinite if the expandlimit channel option is not specified. A value of 1 will force
deferred processing on all incoming addresses from the channel.

The expandlimit channel option must not be specified on the local channel or the
reprocessing channel itself; the results of such a specification are unpredictable.

46–124 Messaging Server Reference

Size limits on messages channel
options

The channel actually used to perform the deferred processing may be specified on a per-
source-channel basis using the expandchannel channel option; the reprocessing channel is
used by default, if expandchannel is not specified, but use of some other reprocessing or
processing channel may be useful for some purposes. In particular, for Messaging Server MTA
versions 5.2 and earlier, typical configuration usage required that a processing channel, rather
than a reprocessing channel, be used. If a channel for deferred processing is specified via
expandchannel, that channel should be a reprocessing or processing channel; specification
of other sorts of channels may lead to unpredictable results.

The reprocessing channel, or whatever channel is used to perform the deferred processing,
must be added to the MTA configuration file in order for the expandlimit option to have
any effect. If your configuration was built by the initial configuration utility, then you should
already have a reprocessing channel.

(Note that typical Messaging Server sites running version 5.2 or earler could not use the
expandlimit option unless they also marked the affected channel expandchannel
process (or expandchannel process_somethingorother redirecting the
expansion to an alternate process_* sort of channel), as enqueues to a channel marked
viaaliasrequired would not succeed if deferred to a reprocess* channel.)

Extraordinarily large lists of recipient addresses are often a characteristic of so-called SPAM---
junk e-mail. The holdlimit channel option tells the MTA that messages coming in the
channel that result in more than the specified number of recipients should be marked as
.HELD messages and enqueued to the reprocess channel (or to whatever channel is
specified via the expandchannel channel option). As .HELD messages, the files will sit
unprocessed in that MTA queue area awaiting manual intervention by the MTA postmaster.

46.3.26.4 Message size affecting priority (urgentblocklimit,
normalblocklimit, nonurgentblocklimit,
secondclassblocklimit)

Note that as of the 8.0 release, these size-based priority override channel option effects are
nullified if the MT-PRIORITY SMTP extension has been used to set an explicit priority value.

The urgentblocklimit, normalblocklimit, nonurgentblocklimit and
secondclassblocklimit channel options may be used to instruct the MTA to downgrade
the priority of messages based on size. These options all require a single integer argument
specifying the message size, in MTA blocks, at which to perform the priority downgrading. An
MTA block is normally 1024 bytes; this can be changed with the block_size MTA option.
This effective priority, in turn, affects the Job Controller's scheduling of delivery attempts,
higher priority messages normally being attempted before lower priority messages, or see
the *_delivery Job Controller options for further control over the scheduling of even initial
message delivery attempts, or the *backoff channel options for further control over the
scheduling of additional delivery attempts, as well as the *notices channel options for
further control over the "timing out" (bouncing) of undelivered messages.

The urgentblocklimit channel option instructs the MTA to downgrade messages larger
than the specified size to normal priority. The normalblocklimit channel option instructs
the MTA to downgrade messages larger than the specified size to nonurgent priority. The
nonurgentblocklimit channel option instructs the MTA to downgrade messages larger
than the specified size to second-class priority. Finally, the secondclassblocklimit
instructs the MTA to downgrade messages larger than the specified size to third-class priority.

Note: Both second-class and third-class are nonstandard priority values.

Channels 46–125

Spamfilter channel options

46.3.27 Spamfilter channel options
The MTA supports use of up to eight external spam/virus filter packages. For each such spam/
virus filter package, there is a set of channel options selecting which channel(s) invoke the
spam/virus filter package. For conciseness, listed here are solely the options for spam/virus
filter package 1; but note that there are analogous channel options *spamfilterN* for
N=2,...,8 as well.

See also the Spamfilter MTA options for configuration of the location and operation of the
spam/virus filter package interfaces. Note that "opt in" to spam/virus filter package processing
may also be selected on a per-user, per-domain, or per-alias basis.

As of Messaging Server 7.0.5, imexpire also supports invoking spam/virus filter packages; in
particular, this can be used to perform post-delivery removal of spam/virus-infected messages
from the Message Store. For this purpose, imexpire is told a source channel "as which" to
execute, and then any sourcespamfilterN or sourcespamfilterNoptin for that channel
will be invoked by imexpire.

46.3.27.1 destinationspamfilterN,
destinationspamfilterNoptin, sourcespamfilterN,
sourcespamfilterNoptin, disabledestinationspamfilterN,
disablesourcespamfilterN Channel Options

The destinationspamfilterN, destinatationspamfilterNoptin,
sourcespamfilterN, sourcespamfilterNoptin,
disabledestinationspamfilterN, and disablesourcespamfilterN channel options
control whether spam/virus filter package processing is invoked by the MTA during message
enqueue processing.

As of Messaging Server 7.0.5, the imexpire utility is also capable of invoking spam/
virus filter packages, "as if" it were an MTA channel. For such use, imexpire is
told a source channel as which to operate, and then any sourcespamfilterN and
sourcespamfilterNoptin channel options for that channel specify what spam/virus filter
package(s) to invoke.

The MTA supports the use of up to eight distinct spam/virus filtering packages, as configured
via the spamfilterN_* MTA options (with N ranging between 1 and 8); the set of options
with the same number all configure one of the distinct packages. And the number in a
spamfilterN channel option correlates with which spam/virus filter package is to be
invoked (or not invoked). (Note that the *brightmail* options, and the *spamfilter*
options without an explicit number, are deprecated synonyms for the *spamfilter1*
options. These deprecated forms are not allowed in a Unified Configuration.)

The *spamfilterNoptin channel options not only trigger spam/virus filter package
processing, but do so with a particular "opt-in" value or values set, as some spam/virus filter
packages (such as Brightmail) support different "choices" or "opt-in" values for what type of
filtering will be performed (e.g., spam vs. virus). The MTA supports use of multiple, comma-
separated "opt-in" values as an argument to an *optin channel option. Spam/virus filter
package processing may also be triggered, with a specific "opt-in" value or values, via use of
a per-user attribute (see the ldap_optinN and ldap_source_optinN MTA options) or a
per-domain attribute (see the ldap_domain_attr_optinN MTA options). When "opt-in"
values from multiple sources apply for a message -- for instance, if an "opt-in" value is set via a

46–126 Messaging Server Reference

SMTP and LMTP protocol channel
options

channel option as well as via an attribute---the MTA will pass all the applicable "opt-in" values
to the spam/virus filter package.

The sourcespamfilter* channel options enable spam/virus filter package processing
based upon source channel; when such a channel option applies, the spam/virus filter
package will be activated towards the start of the SMTP dialogue (MAIL FROM stage).
(For even earlier spam/virus filter package activation, see Spamfilter early verdicts.) The
destinationspamfilter* channel options enable spam/virus filter package processing
based upon destination channel, which is determined for each recipient at the RCPT TO stage
of the SMTP dialogue; so if a destinationspamfilter* channel option applies, that spam/
virus filter package activation occurs at RCPT TO stage.

The disable*spamfilterN channel options can be used to disable, on a channel-
specific basic, spam/virus filtering that would otherwise be performed. In particular,
note that the disable*spamfilterN channel options override any user-level opt-
in to spam/filter package processing (as for instance selected via an LDAP attribute
named by an ldap_optinN MTA option), and override any channel level opt-in (as
for instance via a *spamfilterNoptin channel option). For instance, one might use
disablesourcespamfilter1 on a tcp_auth channel to disable spam/virus filtering
(by spam/virus filter package number 1) for all messages coming in the tcp_auth channel,
overriding any spam/virus filter package use that might normally be triggered due to the
destination channel or recipient address(es).

As of MS 8.0.1.3, the $+^ flag in the FROM_ACCESS mapping table can also be used to disable
source channel spam filter optins. Also as of 8.0.1.3, the same $+^ flag in a recipient access
mapping table can be used to disable any active spam filter optins at the current aliasing level.
In either case the flag takes a comma separated list of spam filters to disable.

46.3.28 SMTP and LMTP protocol channel options
For additional channel options affecting the SMTP protocol, specifically those relating to the
SMTP extensions AUTH or STARTTLS (SASL or TLS use), see TLS and SASL channel options.

For additional channel options affecting TCP/IP connections and DNS lookups, see TCP/IP
connections and DNS lookups channel options.

46.3.28.1 Receiving an SMTP ETRN command (allowetrn,
blocketrn, disableetrn, domainetrn, silentetrn)

The allowetrn, blocketrn, disableetrn, domainetrn, and silentetrn channel
options affect the MTA's response when a sending SMTP client issues the SMTP ETRN
command, requesting that the MTA attempt to deliver messages in the MTA's queues. See RFC
1985 for the specification of the SMTP ETRN command syntax. In particular, note that the
MTA's SMTP server interprets a received ETRN hostname command as a request to deliver
all messages for hostname, a received ETRN #channelname command as a request to run
the channelname channel, and a received ETRN @hostname command as a request to run
the channel which hostname rewrites to.

allowetrn means that the MTA will attempt to honor all ETRN commands and will
echo back the name of the channel that will be run in response to the ETRN command.
silentetrn tells the MTA to honor all ETRN commands, but without echoing back the name
of the channel which the domain matched and which the MTA will hence be attempting to
run. domainetrn tells the MTA to honor only those ETRN commands that specify a domain;

Channels 46–127

https://tools.ietf.org/html/rfc1985
https://tools.ietf.org/html/rfc1985

SMTP and LMTP protocol channel
options

it also causes the MTA not to echo back the name of the channel which the domain matched
and which the MTA will hence be attempting to run. disableetrn disables support for the
ETRN command entirely; ETRN will not be advertised by the SMTP server as a supported
command. The default behavior, if none of these channel options is explicitly specified,
corresponds most closely to silentetrn.

When ETRN is permitted (allowetrn, domainetrn, or silentetrn is set, or no option is
set), the ETRN_ACCESS mapping table can be used to exert more precise control over which
SMTP clients are allowed to issue which ETRN commands (and optionally control over what
channel is actually run as a result of the ETRN command).

The blocketrn channel option tells the MTA not to honor an ETRN command if the ETRN
command attempts to run that channel. Note that this channel option is therefore relevant
on a destination channel, not on the incoming TCP/IP channel (unless that incoming channel
would also be the destination channel for an attempted ETRN command). Note that having
disableetrn set on a destination channel also has this effect.

Also see the discussion of the ALLOW_ETRNS_PER_SESSION SMTP channel setting, which
may be used to limit the number of ETRN commands which the MTA will honor during a
single session.

46.3.28.1.1 ETRN_ACCESS mapping table

When the MTA's SMTP server is configured to support (at least some uses of) the ETRN
command (allowetrn, domainetrn, or silentetrn is set, or the default behavior when no
*etrn option is set), then the ETRN_ACCESS mapping table can be used to exert more precise
control over which SMTP clients are allowed to issue which ETRN commands (and optionally
control over what channel is actually run as a result of the ETRN command). Probes of the
ETRN_ACCESS mapping table have the form:

transport-info|app-info|channel-to-run|full-name|claimed-system

(Here claimed-system is the ETRN parameter, and full-name is a processed version of
that parameter. See discussion of the PORT_ACCESS mapping table, or the MAIL_ACCESS
mapping table, for discussion of the transport-info and app-info portions of the probe
string.) If the mapping table returns a $N, $n, $F, or $f, the ETRN command is rejected with
a "459 4.5.0" error. If the mapping table returns a $S or $s, the ETRN is attempted. If the
mapping table also returns a $Dchannel-name or $dchannel-name, then the MTA tries
to lookup channel-name (in the channel/host table from the configuration file) and if that
lookup is successful, runs that channel (rather than whatever channel the original ETRN
command might have run).

46.3.28.2 XBCC SMTP Extension Support (bccserver,
nobccserver)

The bccserver channel option, when placed on a SUBMIT server channel, enables the XBCC
extension. This extension adds a single XBCC argument to the RCPT TO command. When
present, it marks the corresponding recipient as a blind carbon recipient and the MTA will
generate a separate message copy to this recipient and add a Bcc: header field to the copy.

The XBCC argument value may optionally be used to specify a phrase which will preceed the
recipient address in the Bcc: header field.

The nobccserver channel option disables this extension and is the default.

46–128 Messaging Server Reference

SMTP and LMTP protocol channel
options

46.3.28.3 Binary SMTP (binaryclient, nobinaryclient,
binaryserver, nobinaryserver)

The BINARYMIME SMTP extension defined in RFC 3030 provides support for transferring
messages containing binary parts without encoding over SMTP.

New in MS 8.0, the binaryserver source channel option enables this extension in the SMTP
server. The nobinaryserver source channel option disables it, and is the default. Note that
binaryserver enables the BDAT command for BODY=BINARYMIME messages even if
chunkingserver is not in effect.

Binary messages submitted using this extension are immediately converted by the MTA to
regular 8bit MIME so the format of messages in the MTA queues is not affected, nor is the
format of messages that are passed through the spam filter interface.

The BINARYMIME extension is not presently supported by the SMTP client, so the
binaryclient and nobinaryclient channel options are currently unimplemented.

46.3.28.4 SMTP EHLO command (ehlo, checkehlo, noehlo,
refuseehlo)

The SMTP protocol has been extended (RFC 1869) to allow for negotiation of additional
commands. This is done via the new EHLO command, which replaces RFC 821's HELO
command. Extended SMTP servers respond to EHLO by providing a list of the extensions they
support. Unextended servers return an unknown command error and the client then sends the
old HELO command instead.

This fallback strategy normally works well with both extended and unextended servers.
Problems can arise, however, with servers that do not implement SMTP according to RFC 821.
In particular, some incompliant servers are known to drop the connection on receipt of an
unknown command. And in some cases use of facilities negotiated by EHLO will confuse a
standards-incompliant proxy intermediary.

The MTA's SMTP client implements a strategy whereby it will attempt to reconnect and use
HELO when any server drops the connection on receipt of an EHLO. However, this strategy
still may not work if the remote server not only drops the connection but also goes into a
problematic state upon receipt of EHLO.

The channel options ehlo, noehlo, and checkehlo are provided to deal with such
situations. ehlo tells the MTA to use the EHLO command on all initial connection attempts.
noehlo disables all use of the EHLO command. checkehlo tests the greeting banner
returned by the remote SMTP server for the string "ESMTP". If this string is found EHLO
is used; if not HELO is used. The default behavior is to use EHLO on all initial connection
attempts, unless the banner line contains the string "fire away", in which case HELO is used;
note that there is no option corresponding to this default behavior, which lies between the
behaviors resulting from the ehlo and checkehlo options.

Finally, in the event of the MTA's SMTP server not working properly with a remote SMTP
client due to the use of some SMTP extension that isn't understood by a broken intermediate
proxy, the refuseehlo channel option can be used to simultaneously disable client use of
EHLO and cause the SMTP server to refuse to accept EHLO, insisting on HELO instead. Note
that this option should be used sparingly if at all: A far superior approach is to either fix or
eliminate the incompliant intermediary.

Channels 46–129

https://tools.ietf.org/html/rfc3030
https://tools.ietf.org/html/rfc1869
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc821

SMTP and LMTP protocol channel
options

46.3.28.5 Recipient validity date check (checkrrvs, ignorerrvs)

The checkrrvs and ignorerrvs source channel options, for support of RFC 7293, are new
in MS 8.0. ignorerrvs is the default.

ignorerrvs means that the SMTP server will not offer or support the RRVS SMTP extension.
In particular, client attempts to use an RRVS parameter in a RCPT TO command will cause an
error, and the MTA will ignore any Require-Recipient-Valid-Since: header line.

checkrrvs when set on an SMTP source channel means that the SMTP server offers and
supports use of the SMTP RRVS extension. In particular, the MTA will check for a valid date
for recipient mailbox ownership, whether specified (preferentially) in a RRVS parameter in the
RCPT TO command, or in a Require-Recipient-Valid-Since: header field, and check for a valid
date for the domain in the recipient address.

If the checkrrvs check fails on the recipient mailbox address, the recipient will be rejected
with the SMTP error:

550 5.7.15 account information on file is older than actual user account

or alternate text as controlled by the error_text_wrong_account MTA option; if the
checkrrvs check fails due to the domain creation date, the recipient will be rejected with the
SMTP error:

550 5.7.18 domain owner has changed

or alternate text as controlled by the error_text_wrong_domain MTA option.

46.3.28.6 Chunking SMTP (chunkingclient, nochunkingclient,
chunkingserver, nochunkingserver)

RFC 3030 defines the CHUNKING extension to SMTP. Chunking provides an alternative
BDAT command that can be used instead of the normal DATA command to tranfer message
content. BDAT uses octet counts rather than dot-stuffing and hence is more efficient. The
chunkingclient option, the default, tells the SMTP client to use BDAT if the server says it
supports it. nochunkingclient disables this usage.

The chunkingserver option tells the SMTP server to announce support for and allow use
of the CHUNKING extension. nochunkingserver disables chunking support in the server.
chunkingserver is the default.

46.3.28.7 Channel operation type (submit, relay, passthrough,
conditionalpassthrough, conditionalrelay,
destinationpassthrough, destinationrelay)

The MTA supports the concept of a general "operating mode" for message enqueue. Different
modes provide different levels of message inspection, fixup, and error checking. There are four
basic modes: default, submit, relay, and passthrough.

46–130 Messaging Server Reference

https://tools.ietf.org/html/rfc7293
https://tools.ietf.org/html/rfc3030

SMTP and LMTP protocol channel
options

The MTA supports RFC 6409's Message Submission protocol (which is an update of RFC 4409,
which is in turn an update of RFC 2476). The submit source channel option may be used to
mark a channel as a submit-only channel. This is normally useful mostly on TCP/IP channels,
such as an SMTP server run on a special port used solely for submitting messages; RFC 2476,
since updated by RFC 6409, established port 587 for such message submission use.

Note that a channel marked submit has ETRN unconditionally disabled; that is, it gets
the effect of disableetrn, irrespective of any *etrn channel option setting. A channel
marked submit will also add a Date: header line, if one was missing from the original
submitted message, without also adding a Date-Warning: header line; that is, since submission
of messages without the (normally required for regular SMTP submission) Date: header line is
legal on the Message Submission port, the MTA does not flag such messages originally lacking
a Date: header line with the Date-Warning: header line it would generate in the case of such
messages improperly submitted to the regular SMTP port.

Proper practice (configuration) on a submit channel includes requiring some form of
user authentication, typically use of SMTP AUTH, and permitting (if not requiring) use
of STARTTLS; see RFC 6409 (Message Submission for Mail). Thus a properly configured
submit channel should normally be marked with mustsaslserver and maytlsserver
(or musttlsserver if a site wishes to require STARTTLS use). Although requiring use
of SMTP AUTH is what Message Submission channels should do, sites that wish to allow
message submission without authentication (submission to the Message Submission port
without requiring SMTP AUTH) may do so if enforcing some other form of sender verification,
such as limiting such submissions only to certain "trusted" IP sources; see for instance the
FROM_ACCESS mapping table which may be used to enforce IP source based restrictions.

Relay mode performs fewer checks than submit mode, however, certain structural message
problems will cause message enqueue to fail with an error. For example, a missing Date:
header field will result in an SMTP-level error in relay mode.

Relay mode is specified by adding the relay option to the appropriate source channel.

Passthrough mode disables as many checks and message modification steps as practical. For
example, a message that is missing its required Date: header field will not have one added.

Passthrough mode is specified by adding the passthrough option to the appropriate source
channel.

IMPORTANT NOTE: Passthrough can be a dangerous setting because it disables a number of
checks clients are known to depend on. Additionally, various internal MTA functionality that
depends on message inspection taking place, such as header field canonicalization, is disabled
in passthrough mode. While it is tempting to use passthrough mode in some cases to work
around problems caused by agents that insist on receiving standards-incompliant messages,
field experience has shown that this "cure" is almost invariably worse than the disease.

Default mode (which of course is the default) lies somewhere between submit and relay. Most
available checks and fixups are performed but few will cause an enqueue failure. Continuing
the example of the missing Date: header field, in default mode a Date: field will be added by
the MTA and a Date-warning: header field will also be added explaining that this was done.

There is no option associated with default mode.

New in MS 8.0, the destinationpassthrough channel option, if set on a destination
channel, causes any enqueue of a message to that channel to be done in passthrough mode

Channels 46–131

https://tools.ietf.org/html/rfc6409
https://tools.ietf.org/html/rfc4409
https://tools.ietf.org/html/rfc2476
https://tools.ietf.org/html/rfc2476
https://tools.ietf.org/html/rfc6409
https://tools.ietf.org/html/rfc6409

SMTP and LMTP protocol channel
options

as long as the source channel isn't itself marked with the submit channel keyword. If submit
mode is engaged the destinationpassthrough channel option is a no-op.

The default is destinationrelay, meaning the destination channel does not activate
passthrough mode.

Finally, there are two additional mode setting options: conditionalrelay and
conditionalpassthrough. These settings first check to see if the message already contains
any Received: header fields. If such fields exist the mode specified in the option name is
enabled, if not the MTA stays in its original mode.

For the Sieve "environment" extension, the MTA supports a private item
vnd.oracle.operation-type, allowing Sieve scripts to discover what the current
operation mode is.

New in 8.0, see the Sieve "setoperation" action, which enables system-level Sieve scripts to
set what mode of operation to use for a message.

A common use-case for passthrough mode is to prevent message modification after DKIM
signing. This is normally done by introducing an additional channel hop so that normal
message rewriting, canonicalization, and so on can take place, attaching an appropriately
configured DKIM signing milter to that channel, and marking the channel with the
passthrough channel option to prevent any additional modifications. For example, assuming
that all traffic from the tcp_submit channel to the tcp_local should be signed, an appropriate
DKIM signing milter is set up on spam filter slot 3, the following configuration could be used:

Conversion mapping:

CONVERSION

 IN-CHAN=TCP_SUBMIT;OUT-CHAN=TCP_LOCAL;CONVERT YES,CHANNEL=PROCESS-DKIM-SIGN

Channel definition:

process-dkim-sign sourcespamfilter3 passthrough \
 noreceivedfor noreceivedfrom enqueueremoveroute
dkim-sign.example.com

46.3.28.8 Maximum allowed recipients or bad commands
(recipientlimit, recipientcutoff, deferralrejectlimit,
disconnectrecipientlimit, disconnectrejectlimit,
disconnectbadcommandlimit, disconnectbadburllimit,
disconnectcommandlimit)

The recipientlimit, recipientcutoff and (new in MS 6.2) deferralrejectlimit
channel options, when placed on a source channel, impose per-channel limits on the number
of recipients for a submitted message. Each of these options accepts a single integer argument;
they default to no limit. (Note that setting recipientlimit or recipientcutoff to 0 has
no effect; only positive limit values will be enforced.) These options are all per-channel (as
opposed to per-SMTP-server) analogues of the ALLOW_RECIPIENTS_PER_TRANSACTION,

46–132 Messaging Server Reference

SMTP and LMTP protocol channel
options

REJECT_RECIPIENTS_PER_TRANSACTION, and ALLOW_REJECTIONS_BEFORE_DEFERRAL
SMTP channel settings.

recipientlimit limits the total number of recipient addresses that will be accepted for
the message; additional recipients will be rejected. The text in the rejection is configurable
via the error_text_recipient_over MTA option, which by default is "too many
recipients specified". The error is a temporary rejection by default, but if bit 4 (value 16) of the
use_permanent_error MTA option is set, then the rejection is permanent. So in the case of
attempted SMTP message submissions, the default temporary error, with the default error text,
would appear as:

451 4.5.3 too many recipients specified

whereas with the default error_text_recipient_over text but with bit 4 (value 16) of the
use_permanent_error MTA option set, then a permanent error would appear as:

550 4.5.3 too many recipients specified

recipientcutoff compares the total number of recipients that were presented to the MTA
to the specified value and a message will not be accepted for delivery to any recipients if the
value is exceeded. In the case of attempted SMTP submissions, the message will be rejected at
the DATA command with the SMTP rejection:

451 4.4.5 Error ending envelope - Too many recipients specified for this message

New in MS 6.2, and supported only for SMTP (not for LMTP), deferralrejectlimit limits
the number of bad (failing) addresses that will be allowed during a single session; after this
number, all subsequent recipient addresses, good or bad, will be rejected with a temporary
error. In the case of attempted SMTP submissions, additional RCPT TO: commands will be
rejected with the error:

451 4.5.3 Too many rejections; try again later

while attempted VRFY: commands will be rejected with the error:

451 4.5.3 Verification blocked; too many rejections

 Similar limits controlled on a per-user and per-domain basis can be configured via LDAP
attributes; see the MTA options ldap_recipientlimit, ldap_recipientcutoff,
ldap_domain_attr_recipientlimit and ldap_domain_attr_recipientcutoff.

The disconnect* channel options are new in Messaging Server 6.2 (except:
disconnectcommandlimit new in Messaging Server 7.1, disconnectbadburllimit
new in Messaging Server 7.4-18.01). They are supported only for SMTP, not for LMTP. Each
takes an integer argument specifying the maximum number of (recipients, rejections, bad
commands, or commands, as applicable) which will be accepted for messages submitted via
that source channel; any more will result in the MTA forcing a disconnect of the SMTP session,
after issuing an error response to the client consisting of (for disconnectrecipientlimit):

Channels 46–133

SMTP and LMTP protocol channel
options

421 4.7.0 Session recipient limit reached; disconnecting

for disconnectrejectlimit in MS 6.2:

450 4.7.0 Session bad recipient limit reached; disconnecting

or in MS 6.3 and later (MS 6.3 also being when behavior was enhanced so that rejected MAIL
FROM's count against the disconnectrejectlimit, whereas in MS 6.2 only rejections at
the RCPT TO or VRFY stages counted; MS 6.3 is also when behavior was enhanced so that
disconnectrejectlimit is checked at the VRFY stage and with a negative value applied
at the VRFY stage, whereas previously such VRFY rejections were counted but the disconnect
would not be triggered until a subsequent RCPT TO attempt "noticed" that the threshold was
exceeded):

421 4.7.0 Session rejection limit reached; disconnecting

or (for disconnectcommandlimit):

450 4.7.0 Maximum number of commands exceeded

In the case of the disconnectrecipientlimit or disconnectrejectlimit channel
options, once the limit is exceeded, the error-response-and-disconnect normally will occur
after the next MAIL FROM or RSET command (or in the case of disconnectrejectlimit
in MS 6.3 and later, potentially after a failed VRFY attempt). (Note that because the disconnect
usualy does not happen until after a subsequent MAIL FROM or RSET, these disconnect*
channel options would most often be used in conjunction with other channel keywords or
TCP/IP-channel-specific option settings: perhaps recipientlimit or recipientcutoff
to limit the number of recipient addresses accepted, or deferralrejectlimit or the
ALLOW_REJECTIONS_BEFORE_DEFERRAL TCP/IP-channel-specific option setting.)
In the case of disconnectbadcommandlimit, disconnectbadburllimit, and
disconnectcommandlimit, once the limit is exceeded the error response is issued and the
MTA forces the disconnect.

The disconnectbadburllimit channel option is new in Messaging Server 7.4-18.01. A
single integer parameter is accepted specifying the number of invalid BURL commands that
will be allowed before disconnecting. The default is 3.

Note that VRFY attempts are counted separately from RCPT TO attempts against the recipient
count; that is, one may have up to the recipient limit of VRFYs and up to the recipient limit
of RCPT TOs. The VRFYs are counted, but counted separately from RCPT TOs. In contrast,
failed VRFY attempts are added to the same rejection counter used for counting failed RCPT
TO attempts and MAIL FROM attempts for purposes of comparison against the rejection
limit; that is, one may have up to the rejection limit of any combination of failed VRFYs, MAIL
FROMs, or RCPT TOs.

When the deferralrejectlimit has been reached (or a TCP/IP-channel-specific option
setting of ALLOW_REJECTIONS_BEFORE_DEFERRAL has been reached), a client VRFY attempt
will receive from the MTA an error response:

451 4.5.2 Verification blocked; too many rejections

Note that prior to MS 6.3, the error was instead:

46–134 Messaging Server Reference

SMTP and LMTP protocol channel
options

452 4.5.2 Verification blocked; too many bad addresses.

Note that the FROM_ACCESS mapping table's $S flag may also be used to set limits such as
recipientlimit or recipientcutoff.

For forcing IMAP or POP disconnection after a specified number of protocol errors -- similar to
the disconnectbadcommandlimit effect for SMTP -- see the maxprotocolerrorsIMAP
or POP option.

46.3.28.9 Delivery flags (deliveryflags, flagtransfer,
noflagtransfer)

The deliveryflags channel option may be placed on source or destination channels. It takes
a required, bit-encoded integer argument, which controls various options regarding message
delivery:

Table 46.16 deliveryflags MTA option bit values

Bit Value Usage
 0 1 Interpret subaddresses as folder names for delivery. This bit is

also set by Sieve "fileinto" actions.
 1 2 When placed on a source channel, enable quota bypass (that is,

delivery even if the recipient user is overquota) for messages
enqueued by this channel. (The tcp_tas channel, for example,
has this set.)

2 4 Reserved for internal use only.
3 8 Reserved for internal use only.
4 16 Force single copy per recipient
5 32 Ignore discard or jettison actions (e.g., from Sieve filters).

This corresponds to setting the message envelope bit normally
set automatically by the MTA when applying a discard or
jettison action and enqueueing to the filter_discard
channel, so that if a "retrieval" procedure should later be
performed on such a "discarded" message (such as moving the
message to the reprocess channel), the message will then get
delivered bypassing any discard or jettison actions.

6 64 When placed on a source channel for an SMTP/LMTP
server, enable transfer of delivery flags; equivalent to the
flagtransfer channel option

 7 128 Messages enqueued to the channel are considered, for purposes
of CONVERSIONS mapping table testing, to have a conversion
tag set. This bit is set automatically when it is needed and is not
intended to be set using the channel option.

8 256 Reserved for internal use only.
 9 512 Handle as if SMTP AUTH (SASL) had been used as far as access

checks are concerned. This bit is set automatically when it is
needed and is not intended to be set using the channel option.

Channels 46–135

SMTP and LMTP protocol channel
options

10 1024 Handle as if TLS had been used as far as access checks are
concerned.

 11 2048 Handle as if address produced by alias as far as access checks are
concerned.

12 4096 Bypass all list access checks.

All remaining bits in this option are reserved for internal use and should not be set. The
default value for deliveryflags is 0.

The flagtransfer channel option may be placed on a SMTP server or LMTP server channel.
It causes the server to advertise support of the XDFLG and XAFLG private SMTP/LMTP
extension parameters to the RCPT TO command. As of MS 8.0.2.3, flagtransfer also causes
the SMTP server (but not the LMTP server) to advertise the XCONVTAG extension.

If a Messaging Server SMTP client is sending to an SMTP server (or a Messaging Server LMTP
client is sending to an LMTP server) that supports this extension, then that SMTP client (or
LMTP client) will pass along (transfer) delivery flags, IMAP flags, and (in the case of SMTP)
conversion tags.

For instance, this can be useful when user filters (performing fileinto Sieve operations)
will be performed on a "front-line" system that must then relay the messages to a "back-end"
system. noflagtransfer disables delivery flag transfer and is the default.

Some of the delivery flag bits affect server security, as such, the flagtransfer channel
option should never be set on a channel that is exposed to untrusted traffic.

Setting flagtransfer is equivalent to setting bit 6 (value 64) of the deliveryflags
channel option.

46.3.28.10 Limiting time to deliver (deliverbychannel))

The deliverbychannel source channel option specifies the source channel used for the
generation of nondelivery receipts associated with the DELIVERYBY SMTP extension in
the absence of any other information. The default is to use the l channel if this option is not
specified. Note that there should be few if any cases where this option should be set.

46.3.28.11 Limiting time to deliver (deliverbymin))

The deliverbymin channel option controls the availability and the minimum by-time
allowed by the DELIVERBY SMTP extension specified in RFC 2852. A value of -1, the default,
disables the extension. A value of 0 enables the extension with no minimum by-time. Any
other value is treated as the minimum by-time.

46.3.28.12 Solicitation control (destinationnosolicit,
sourcenosolicit)

The NO-SOLICITING SMTP extension described in RFC 3865 provides the means to
label messages with solicitation types and for MTAs to block solicitations by type. The
sourcenosolicit source channel option is used to specify a list of solicitation field values
that will be blocked in mail submitted by this channel. This list of values will appear in the
NO-SOLICITING EHLO response. Glob-style wildcards can be used in the values; however,
values containing wildcards will not appear in the EHLO announcement.

46–136 Messaging Server Reference

https://tools.ietf.org/html/rfc2852
https://tools.ietf.org/html/rfc3865

SMTP and LMTP protocol channel
options

The destinationnosolicit channel option specifies a list of solicitation field values that
will not be accepted in mail queued to this channel.

Note that alternatively, recipient-based no-solicitation settings can be established using
the Unified Configuration alias option alias_nosolicit, or the alias file named
parameter [NOSOLICIT], or the LDAP attributes named by the ldap_nosolicit and
ldap_domain_attr_nosolicit MTA options.

46.3.28.13 SMTP transaction limit (transactionlimit,
disconnecttransactionlimit)

transactionlimit: new in Messaging Server 6.1. The transactionlimit channel
option may be used to impose a limit on how many transactions (that is, messages) will
be accepted during a single SMTP session (that is, connection). It is a channel analogue of
the ALLOW_TRANSACTIONS_PER_SESSION TCP/IP-channel-specific option setting, which
applies more generally to all incoming connections on all channels handled by the same
Dispatcher SMTP service. After transactionlimit is exceeded, additional attempts to
submit messages (additional MAIL FROM: commands) will be rejected with an error response:

450 4.5.3 number of transactions exceeds allowed maximum

The text in the above error message may be site-customized by using the (new in MS 6.3)
error_text_transaction_limit_exceeded MTA option.

disconnecttransactionlimit: new in MS 6.2. The disconnecttransactionlimit
channel option causes the MTA to actually disconnect after the specified transaction limit is
exceeded. Once the limit is reached, the MTA will issue an error response

450 4.7.0 Session transaction limit reached; disconnecting

after the next MAIL FROM or RSET command, and then disconnect.

46.3.28.14 Sending an SMTP VRFY command (domainvrfy,
localvrfy, novrfy)

These options control the MTA's use of the VRFY command in its SMTP client. Under normal
circumstances there is no reason for the MTA to issue a VRFY command as part of an SMTP
dialogue - the SMTP MAIL TO command should perform the same function that VRFY does
and return an appropriate error. However, while fairly rare, SMTP servers exist that will
accept any address in a MAIL TO (and bounce it later), whereas they perform more extensive
checking as part of a VRFY command.

Therefore the MTA can be configured to issue SMTP VRFY commands for each recipient
address. The channel option domainvrfy causes the MTA to issue a VRFY command with
a full address (e.g., user@host) as its argument. The localvrfy option causes the MTA
to issue a VRFY command with just the local part of the address (e.g., user). novrfy is the
default.

Note that while RFC 1123 updated RFC 821 to require support of the VRFY command
so modern SMTP servers should have VRFY support, originally RFC 821 did not require

Channels 46–137

https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc821

SMTP and LMTP protocol channel
options

that SMTP implementations support VRFY so obsolete SMTP implementations may not
have any VRFY support at all. Also note that RFC 821 intentionally left it up to individual
implementations to decide on the syntax of the VRFY argument---to decide, that is, what sorts
of arguments would get successful responses. So relying on getting a successful response
to any sort of VRFY command to determine whether or not to try submitting an address is
not, in general, wise. Thus use of localvrfy or domainvrfy is normally only suitable on
special channels sending to known special SMTP hosts with well-understood and special
VRFY response behavior.

For controlling the MTA's SMTP server responses to VRFY commands, see the vrfy* channel
options.

46.3.28.15 Eight bit SMTP capability and EAI capability (eightbit,
eightnegotiate, eightstrict, sevenbit, utf8header,
utf8negotiate, utf8strict)

Some transports restrict the use of characters with ordinal values greater than 127 (decimal).
Most notably, some SMTP servers will strip the high bit and thus garble messages that use
characters in this "eight bit" range. Indeed, there have even been past cases of SMTP servers
which will crash when presented with eight bit data.

The MTA provides facilities to automatically encode such messages so that troublesome
eight bit characters do not appear directly in the message. This encoding can be applied to all
messages on a given channel by specifying the sevenbit channel option. A channel should be
marked eightbit if no such restriction exists.

Some transports such as extended SMTP may actually support a form of negotiation to
determine if eight bit characters can be transmitted. The eightnegotiate channel option
can be used to instruct the channel to encode messages when negotiation fails. This is the
default for all channels; channels that do not support negotiation will simply assume that the
transport is capable of handling eight bit data.

The eightstrict source channel option tells the MTA to reject any messages that
contain unnegotiated eight bit data; the exact text of this error may be controlled via the
error_text_unnegotiated_eightbit MTA option. (Note that the timing of the rejection
can be postponed via the acceptalladdresses channel option.)

The MS 8.0.2 release adds MTA support for EAI messages and the SMTPUTF8 extension. EAI
messaging is documented in RFC 6530 (overview), RFC 6531 (SMTPUTF8 extension), RFC 6532
(header format changes), and RFC 6533 (DSN and MDN format changes). Three additional
channel options have been added to enable and control EAI support:

utf8header As a SMTP source channel option, offer the SMTPUTF8 SMTP extension.
As a destination channel option, allow enqueue and dequeue of EAI
messages unconditionally; in particular, the SMTPUTF8 extension will not
be required. Note that delivery of EAI messages via SMTP/LMTP to a non-
EAI system is a standards violation.

utf8negotiate As a SMTP source channel option, offer the SMTPUTF8 SMTP extension.
As a destination channel option, allow enqueue unconditionally. On
dequeue, require the SMTPUTF8 extension be offered by SMTP/LMTP
servers for EAI messages with EAI recipient (RCPT TO) addresses or un-
downgradable EAI originator (MAIL FROM) addresses.

46–138 Messaging Server Reference

https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc6530
https://tools.ietf.org/html/rfc6531
https://tools.ietf.org/html/rfc6532
https://tools.ietf.org/html/rfc6533

SMTP and LMTP protocol channel
options

utf8strict Same as utf8negotiate as far as SMTP/LMTP destination channels are
concerned. But additionally, for SMTP/LMTP servers (source channels),
reject messages that contain 8bit headers without having negotiated the
SMTPUTF8 extension and 8bit bodies without having negotiated the
8BITMIME extension. (Note that such rejections are postponed if the
acceptalladdress channel option is used.)

As of MS 8.0.2.2 the channel default for internal channels has changed from eightnegotiate
to utf8always. Note, however, that the channel default remains eightnegotiate
on all other channels; EAI support must therefore be explicitly enabled. A channel set to
eightnegotiate will not offer the SMTPUTF8 extensions or allow EAI messages with EAI
recipient or originator addresses to be enqueued. Also note that the Message Store does not
support EAI at the present time.

46.3.28.16 Responding to SMTP EXPN commands (expnallow,
expndefault, expndisable)

New in MS 6.1-0.01: These options control, at a channel level, the SMTP server's response
when a sending SMTP client issues an SMTP EXPN command. (These channel options do not
apply to or affect LMTP servers.) When placed on a source channel, the expnallow option
tells the SMTP server to issue a detailed, informative response. The expndefault tells the
SMTP server to provide a detailed, informative response, unless the TCP/IP channel option
DISABLE_EXPAND=1 has been specified. The expndisable channel option tells the SMTP
server to reject the command with an error:

550 5.7.2 EXPN command has been disabled

Thus these options allow per-channel control of EXPN responses, as opposed to the
DISABLE_EXPAND TCPIP-channel-specific option setting which normally applies to all
incoming TCP/IP channels handled via the same SMTP server.

Note that even when EXPN responses are allowed in general, mailing lists or address groups
may be configured to disallow EXPN expansion of their membership set of addresses.
Such mailing list controls are configured via either the alias_nonexpandable alias
option (in legacy configuration, the aliases file [NONEXPANDABLE] named parameter),
or the LDAP attributes named by the ldap_expandable MTA option (normally the
mgmanMemberVisibility and expandable LDAP attributes). The channel restriction on
EXPN, if any, is applied first; only if the channel permits EXPN does any mailing list specific
restriction get checked.

46.3.28.17 SMTP Future Release Extension (futurerelease)

Release 7 of the Messaging Server MTA implements support for future release SMTP SUBMIT
extension defined in RFC 4865. This support is enabled by placing the futurerelease
channel option on the submit source channel used for initial message submission. The option
takes a single integer argument: The maximum number of seconds a message can be deferred.

Care should be used when enabling future release since it allows messages to be in effect
stored in the MTA's queues. Future release should only be used for channels handling initial
message submission and authentication should be required.

Note that similar functionality is available in earlier Messaging Server releases: Specification
of a Deferred-delivery: header field in a submitted message coupled with use of the

Channels 46–139

https://tools.ietf.org/html/rfc4865

SMTP and LMTP protocol channel
options

deferreddestination channel option on the destination channel provided the ability to
defer delivery of messages. However, future release provides superior functionality:

• The facility is controlled by a setting on the source channel, allowing it to be provided to
a subset of the user population. Placing deferreddestination option on a destination
channel opens the door to anyone submitting a message to that channel that will be deferred
for some period of time.

• There's no way for a client which sets a Deferred-delivery: header field to know whether or
not the header has actually caused the message to be deferred. The future delivery SMTP
extension, on the other hand, lets the client know how long a message can be deferred and
an error will be returned to the client if the message cannot be deferred for the time the
client wants.

• There was no way to place a limit on the amount of time a message could be deferred.
Instead what happened was that a message deferred longer than the channel's last notices
value would simply be returned as undeliverable.

• Deferred-delivery settings on messages did not survive a Job Controller restart.

As part of the implementation work for future release the old Deferred-delivery:
mechanism has been redesigned to address some (but not all) of these points. In particular,
the deferred channel option has been replaced by two new channel keywords,
deferredsource and deferreddestination. (The deferred option is now a synonym
for deferreddestination.) Both of these options accept an integer argument (required in
unified configurations, optional in imta.cnf) specifying in seconds the maximum amount
of time in the future a Deferred-delivery: header can specify and still be honored. The default
if no argument is specified is 60*60*24*7, or 7 days. deferredsource enables Deferred-
delivery: processing on the basis of the source channel while deferreddestination operates
on destination channels. Finally, Deferred-delivery settings on messages now survive job
controller restarts. This addresses all of the points on the above list except the second one -
use of a Deferred-delivery: header field still provides no mechanism for informing the client
whether or not the setting will be honored.

However, as a purely practical matter, the mechanism chosen to provide delayed release
of messages is likely to be dictated by the choice of email client and what mechanisms it
supports.

46.3.28.18 Channel protocol selection (smtp, smtp_cr, smtp_crlf,
smtp_crorlf, smtp_lf, nosmtp, lmtp, lmtp_cr, lmtp_crlf,
lmtp_crorlf, lmtp_lf)

These channel options specify whether or not a channel supports the SMTP protocol (or LMTP
protocol) and what type of SMTP line terminator (or LMTP line terminator) the MTA expects
to see as part of that protocol. nosmtp means that the channel doesn't support either SMTP or
LMTP; all the rest of these channel options imply either SMTP or LMTP support.

The selection of whether or not to use the SMTP or LMTP protocol is implicit for most
channels; the correct protocol is chosen by the use of the appropriate channel program or
programs.

The channel option smtp---or one of the smtp_* variants---should be set explicitly on all
SMTP channels; but if no such option is set on a tcp_* channel, the channel will default to

46–140 Messaging Server Reference

SMTP and LMTP protocol channel
options

smtp_crorlf. The channel option lmtp---or one of the lmtp_* variants---is mandatory for
all LMTP channels.

The channel options smtp_cr, smtp_crlf, smtp_crorlf, and smtp_lf may be used on
SMTP channels to specify what character sequences to accept as line terminators. smtp or
smtp_crlf means that lines must be terminated with a carriage return (CR) line feed (LF)
sequence. smtp_crorlf means that lines may be terminated with any of a carriage return
(CR), or a line feed (LF) sequence, or a full CRLF. (Note that prior to MS 6.0, smtp used to be
synonymous with smtp_crorlf, rather than with smtp_crlf as currently; this change to
a more strict insistence on proper SMTP line terminators was made in accordance with RFC
2821.) smtp_lf means that a LF without a preceding CR will be accepted. Finally, smtp_cr
means that a CR will be accepted without a following LF. It is normal to use CRLF sequences
as the SMTP line terminator, and this is what the MTA itself always generates; this option only
affects the MTA's handling of incoming material.

The lmtp* channel options are similar, applying to the LMTP protocol rather than the SMTP
protocol.

Note that the setting of the original, "default" incoming TCP/IP channel is what controls
the behavior for all incoming TCP/IP channels to which that channel may subsequently
"switch". That is, subsequent "switching" (due, for instance, to switchchannel,
saslswitchchannel, tlsswitchchannel, or mailSMTPSubmitChannel sorts of effects)
will not result in a change of SMTP line terminator regardless of what may be set on that
"switched to" channel; the option specified on the original incoming TCP/IP channel (typically
tcp_local) stays in effect.

46.3.28.19 The XLOOP SMTP extension for blocking message loops
(loopcheck, noloopcheck)

The SMTP server unconditionally includes the XLOOP extension and an identifying string in
its EHLO response.

Specifying the loopcheck channel option tells the SMTP client to make use of XLOOP if
advertised by a "remote" server. An SMTP client can then check a hash (of the configuration
file), to compare with that advertised by the SMTP server to which it is connected to see
if it, too, is on the same system. If so, the SMTP client bounces the message, generating a
notification message with a "SMTP client-server loop detected" reason and a "5.4.6 (SMTP
client-server loop detected)" error status in the notification message. Note that this rejection
is done by the SMTP client itself, immediately upon processing the SMTP server's EHLO
response. Thus using loopcheck causes certain sorts of looping messages to be immediately
bounced, rather than looping until they become .HELD files.

In terms of logging of such cases if the logging channel option is used, note that the SMTP
server does not generate a "J" record rejecting the message, since the SMTP server did not in
fact reject the message, but rather it was the SMTP client that decided to abort sending of the
message. And the SMTP client's "R" record for the rejection of the message(s) does not show
an SMTP error (such as the 5.4.6 error shown in the notification message itself) issued from the
SMTP server; (the SMTP server did not in fact issue that error). The fact that it was a rejection
due to loopcheck is instead implicit in the fact that the host connected to was the same as
the SMTP client host. This may be seen via the transport information in the "R" record, if bit 1
(value 2) of the log_connection MTA option was enabled.

noloopcheck is the default.

Channels 46–141

https://tools.ietf.org/html/rfc2821
https://tools.ietf.org/html/rfc2821

SMTP and LMTP protocol channel
options

See also the (new in 6.3) IP_ACCESS mapping table, which provides an alternate way to block
connecting to specified destination IP addresses (e.g., 127.0.0.1).

46.3.28.20 Verify that the domain on the MAIL FROM: line is in the
DNS (mailfromdnsverify, nomailfromdnsverify)

Setting mailfromdnsverify on an incoming TCP/IP channel causes the MTA to verify that
an entry in the DNS exists for the domain used on the SMTP MAIL FROM: command, and to
reject the message if no such entry exists. nomailfromdnsverify is the default, and means
that no such check is performed.

Note that performing DNS checks on the return address domain may result in rejecting some
desired valid messages (for instance, from legitimate sites that simply have not yet registered
their domain name, or at times of bad information in the DNS); it is contrary to the spirit of
being generous in what you accept and getting the e-mail through, expressed in RFC 1123,
Requirements for Internet Hosts. However, some sites may desire to perform such checks in
cases where junk e-mail (SPAM) is being sent with forged e-mail addresses from non-existant
domains.

The introduction of DNS wildcard entries in the COM and ORG top level domains which
occurred in September 2003 severely limited the effectiveness of the mailfromdnsverify
channel option. (The wildcards have subsequently been removed, however, such
practices could resume at any time.) As of the 6.1 release of the Messaging Server MTA,
mailfromdnsverify code has been modified to address this. When the DNS returns one or
more A records (which would normally be considered a "success" and the message would be
allowed in), their values are compared against the domain literals specified by the MTA option
blocked_mail_from_ips. If a match is found, then the domain is considered to be invalid.

With mailfromdnsverify on, as of Messaging Server 6.0 and later the MTA attempts an
MX lookup on the domain of the MAIL FROM: command. As of MS 6.1 and later, if that
MX lookup returns no data (no MX record exists) then the MTA moves on to attempting a
gethostbyname call. That is, a success at the MX record lookup stage allows the message in;
errors other than simply no such MX record (e.g., a nameserver "server failed" error) at this MX
record lookup stage will result in a temporary rejection with error

450 4.1.8 invalid/host-not-in-DNS return address not allowed

while (with MS 6.1 or later) a no such MX record found case moves onward to checking the
result of a gethostbyname call. (In iMS 5.2, only the gethostbyname was attempted; no
explicit MX record lookup was performed.)

When the MTA does a gethostbyname call, if this DNS query results in an authoritative
"host not found" response, then the message will be rejected with a permanent rejection

550 5.1.8 invalid/host-not-in-DNS return address not allowed

error message. A no data response, as would occur for the case of a name which has only a
CNAME record in the DNS, is considered a successful response; the message will be allowed
in. Any other error responses from the DNS will result in a temporary error

450 4.1.8 invalid/host-not-in-DNS return address not allowed

46–142 Messaging Server Reference

https://tools.ietf.org/html/rfc1123,
https://tools.ietf.org/html/rfc1123,

SMTP and LMTP protocol channel
options

deferring the message: the MTA will not accept the message at the present time, but the
sending side should try sending it again later (in case perhaps their DNS problem, whatever it
was, gets fixed).

New in 8.0 is specialized handling for MX entries of the form:

nomail IN MX 0 .

Such entries are intended to be an indication that host "nomail" does not operate a mail server.
Support has been added so that mailfromdnsverify will treat such hosts as not being a
valid source of mail. (Additionally, attempts to send to such a host will fail immediately after
the MX lookup instead of attempting any sort of A record lookup.)

If the logging channel option has been enabled on an incoming channel, then rejections due
to a mailfromdnsverify check on that channel will be logged to the mail.log* file as a "J"
record.

46.3.28.21 Microsoft Exchange gateway channels (msexchange,
nomsexchange)

The msexchange channel option may be used on TCP/IP channels to tell the MTA that this
is a channel that communicates with Microsoft® Exchange gateways and clients. Use of the
option tells the MTA to try and accomodate nonstandard behavior on the part of Microsoft
Exchange. Exactly what nonstandard behaviors are dealt with is subject to change.

Currently the msexchange channel option on a channel configured to allow TLS use (see the
tls channel options) causes advertisement (by the MTA's SMTP server) and recognition (by
the MTA's SMTP client) of the non-standard TLS capability string, in addition to the standard
STARTTLS capability string, to indicate that TLS is supported.

New in 7.0.5, setting msexchange on a destination channel will cause the MTA, if performing
any sort of MIME processing operation, to remove any Content-disposition: header line from
any text/calendar message parts, as despite Content-disposition:'s long-standing existence as
a standardized header line, not to mention the basic MIME rule that unrecognized Content-
* header lines should be ignored, Microsoft® Outlook's handling of text/calendar parts is
disturbed when such parts have a Content-disposition: specified. So specifying msexchange
on a channel sending to Microsoft Exchange, if text/calendar parts will flow through that
channel, should allow Microsoft Outlook to process calendar parts more successfully.

nomsexchange is the default.

46.3.28.22 Per-channel MT-PRIORITY control
(mtprioritiesallowed, mtprioritiesrequired)

mtprioritiesallowed and mtprioritiesrequired are new in the 8.0 release. These
channel options enable the MTA's support of RFC 6710 (SMTP Extension for Message Transfer
Priorities). New in Cayenne, see the envelopetunnel channel option for "tunneling" MT-
PRIORITY, via a header field, through systems that do not support the MT-PRIORITY SMTP
extension, as described in RFC 6758 (Tunneling of SMTP Message Transfer Priorities).

The mtprioritiesallowed source channel option specifies the range of MT-PRIORITY
values that will be accepted. MT-PRIORITY values outside this range will be adjusted up
or down so they fall within the allowed range. If a single argument is given, it specifies the

Channels 46–143

https://tools.ietf.org/html/rfc6710
https://tools.ietf.org/html/rfc6710
https://tools.ietf.org/html/rfc6758

SMTP and LMTP protocol channel
options

highest priority value that will be accepted. The default if this option is not specified is for
the MT-PRIORITY extension not to be offered and for MT-PRIORITY parameters not to be
accepted.

The mtprioritiesrequired source channel option specifies the range of MT-PRIORITY
that will be accepted for enqueue. If a single argument is given, it specifies the lowest priority
value that will be accepted. The message will be rejected if the message's specified MT-
PRIORITY value, or if the default MT-PRIORITY value of 0 (assumed if MT-PRIORITY was not
specified in the SMTP transaction), falls outside the required range with the SMTP error:

550 5.7.0 Message priority outside curretly allowed range

With either channel option, two integer arguments specify the range. Each argument must be
an integer in the range -9..9. The arguments can be given in any order.

46.3.28.23 SMTP DSN extension support (notary, refusenotary,
nonotary

The notary and (the RESTRICTED) nonotary channel options control whether client TCP/IP
channels attempt to use the SMTP DSN extension (defined in RFC 3461). The notary channel
option is the default on SMTP over TCP/IP channels.

The nonotary channel option, if set, disables the use of the SMTP NOTARY extension. Its
use on SMTP client channels is RESTRICTED, and it is normally used only on LMTP client
channels. Note that setting lmtp or an lmtp_* channel option on a channel implicitly sets
nonotary.

New in 8.0.1 is the refusenotary channel option. This RESTRICTED option disables
the DSN extension in the SMTP/LMTP client and additionally, the SMTP server. (The DSN
extension is never offered by the LMTP server.)

46.3.28.24 Proxy protocol support

New in MS 8.1.0.1, the proxyprotocol enables server-side use of the proxy protocol. Note
that the proxy protocol is not negotiated; enabling it on the server side will cause connections
to hang if the client doesn't send the necessary PROXY command. Presently, only proxy
protocol v1 (text format) is supported.

At present only the SMTP and MMP servers support the proxy protocol for incoming
connections. This is supported with SMTP and Submission protocols (port 25 & 587), but
works incorrectly with the submissions protocol (port 465) so it's important to make sure any
slave channel used to offer submissions service is configured with noproxyprotocol.

46.3.28.25 Sending an SMTP ETRN command (sendetrn,
nosendetrn)

The extended SMTP command ETRN (RFC 1985) allows an SMTP client to request that a
remote SMTP server start up processing of the remote side's message queues destined for
sending to the original SMTP client; that is, it allows an SMTP client and SMTP server to
negotiate "switching roles", where the side originally the sender becomes the receiver, and the
side originally the receiver becomes the sender. Or in other words, ETRN provides a way to
implement "polling" of remote SMTP systems for messages incoming to one's own system.

46–144 Messaging Server Reference

https://tools.ietf.org/html/rfc3461
https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt
https://tools.ietf.org/html/rfc1985

SMTP and LMTP protocol channel
options

This can be useful for systems that only have transient connections between each other, for
instance, over dial up lines. When the connection is brought up and one side sends to the
other, via the ETRN command the SMTP client can also tell the remote side that it should now
try to deliver any messages that need to travel in the reverse direction.

The SMTP client specifies on the SMTP ETRN command line the name of the system to which
to send messages (generally the SMTP client system's own name). If the remote SMTP server
supports the ETRN command, it will trigger execution of a separate process to connect back to
the named system and send any messages awaiting delivery for that named system.

The sendetrn and nosendetrn channel options control whether the SMTP client sends
an ETRN command at the beginning of an SMTP connection. The default is nosendetrn,
meaning that the MTA will not send an ETRN command. The sendetrn channel option tells
the MTA to send an ETRN command, if the remote SMTP server says it supports ETRN. The
sendetrn requires an argument giving the name of the system requesting that its messages
receive a delivery attempt to send in the ETRN command.

46.3.28.26 SMTP TURN command channel options (noturn, turn,
turn_in, turn_out)

RFC 821 defined an optional TURN command, for the client (sender) and server (receiver)
to switch roles. It is not normally appropriate to enable use of TURN: it is quite dangerous,
as it allows any arbitrary client to "snatch" your messages! Use of the default noturn is thus
STRONGLY RECOMMENDED!

For a safer "relay upon demand" feature, see the ATRN SMTP extension (RFC 2645).

46.3.28.27 XCLIENT SMTP Extension Support (noxclient,
xclient, xclientsasl, xclientrepeat, xclientsaslrepeat)

(New in 8.0.) The MTA's SMTP server provides support for Postfix's XCLIENT SMTP
extension. The PostFix documentation for the extension can be found here:

http://www.postfix.org/XCLIENT_README.html

Use of XCLIENT is controlled by three main source channel keywords, noxclient, xclient,
and xclientsasl, and variants xclientrepeat and xclientsaslrepeat. noxclient
is the default, and means that XCLIENT is not advertised in the response to EHLO and the
XCLIENT command itself is disabled. If xclient is set, the XCLIENT command is enabled
and the NAME, ADDR, PORT, PROTO, and HELO attributes may be used. xclientsasl
enables the LOGIN attribute in addition to all the others. It should be noted that LOGIN
specifies an external identity that must then be bound to the session identity through the use of
SASL EXTERNAL.

By default, only one set of XCLIENT commands is allowed in a single SMTP session.
Specifying xclientrepeat allows groups of XCLIENT commands to be repeated, allowing a
proxy or similar agent to share a connection between multiple clients. xclientsaslrepeat
allows multiple groups of XCLIENT commands including LOGIN. Note that care should be
taken when these keywords are used since the server cannot determine the origin of a given
XCLIENT command.

The primary visible effect of XCLIENT is on the contents of the Received: field the MTA adds.
For example, if this XCLIENT command was executed:

Channels 46–145

https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc2645

SMTP and LMTP protocol channel
options

xclient name=foo.domain.com addr=1.2.3.4 helo=bar.domain.com port=12345

it would result in a header of the general form:

 Received: from bar.domain.com (foo.domain.com [1.2.3.4])
 by server.domain.com (Oracle Communications Messaging Server 7.0.5.32
 64bit (built Aug 18 2014)) with imapsubmit
 id <01OJ9P51WPFC007KNZ@server.domain.com> for user@domain.com;
 Mon, 20 Aug 2012 08:17:31 -0700 (PDT)

However, the ADDR, PORT, DESTADDR, and DESTPORT attributes also change the contents
of the transportinfo that appears in various mapping table probes, such as the probe to
PORT_ACCESS. Given the preceding XCLIENT command, the transportinfo part of the
mapping probes would change to something like:

 TCP|this-mta's-ip|25|1.2.3.4|12345

where note that the values to use in the "source IP" and "source port" fields have been specified
via ADDR and PORT, respectively.

Note: Support for DESTADDR and DESTPORT was added in MS 8.0.2.3.

46.3.28.28 SMTP long line handling (rejectsmtplonglines,
truncatesmtplonglines, wrapsmtplonglines)

The SMTP protocol is a line oriented protocol, and in particular, SMTP transmissions are
limited to a maximum of 1000 characters including the carriage-return CR and line-feed LF
characters, or 998 characters not including the CRLF sequence; (though see RFC 3030 for a
proposed extension of the SMTP protocol that relaxes this definition). Nevertheless, there are
some clients (typically arising in HTML applications) that try to send illegally long lines over
SMTP.

The channel options truncatesmtplonglines, rejectsmtplonglines, and
wrapsmtplonglines control the MTA's behavior when it sees such illegal long lines in
incoming SMTP messages. truncatesmtplonglines is the default, and causes the MTA to
truncate illegally long SMTP lines to the legal length limit; the MTA also in MS 6.0 inserts a
header line

Sun-ONE-SMTP-Warning: Lines longer than SMTP allows found and truncated.

or in MS 6.1 or later, a header line

Sun-Java-System-SMTP-Warning: Lines longer than SMTP allows found and truncated.

when it sees such long lines. The rejectsmtplonglines option normally causes the MTA to
reject such illegal messages with a

 550 5.6.0 lines longer than SMTP allows encountered; message rejected

46–146 Messaging Server Reference

https://tools.ietf.org/html/rfc3030

SMTP and LMTP protocol channel
options

SMTP error (but see the acceptalladdresses channel option which postpones the error
generation), and may be useful when it is desired to enforce strict standards compliance upon
message submissions. The wrapsmtplonglines keyword causes the MTA to forcibly wrap
(insert hard line breaks) into illegally long incoming lines, and insert a header line of (in MS
6.0)

Sun-One-SMTP-Warning: Lines longer than SMTP allows found and wrapped.

or in MS 6.1 or later

Sun-Java-System-SMTP-Warning: Lines longer than SMTP allows found and wrapped.

The MTA will attempt to find a space or TAB character in the line as a suitable place at which
to perform the line break. In the absence of such a white space character, the MTA may have
to add the hard line break at a less suitable location, changing the character of the data; in
particular, wrapsmtplonglines when applying to a header line (to an illegally long line in
a message header) may damage the message header since the forced line break may (in the
absence of white space characters) cause a syntactically illegal line. wrapsmtplonglines
is hence only intended for dealing with cases of illegally long lines in the message body.
Furthermore, some charsets (e.g., ISO-2022-JP) have encoding requirements that are triggered
at line wraps, so that forcible line wrapping can interact badly with such charsets; or even
when a message body is in a charset that has no line wrap/encoding issues, the message
content itself may be "damaged" by line wrapping. wrapsmtplonglines is thus only a
partial workaround to cases of illegally long data in SMTP transmitted messages; it makes an
attempt to more-or-less preserve message contents, but some damage is not unexpected.

Note that these channel options must be placed on the initial (default) incoming TCP/IP
channel in order to take effect, that is, the SMTP server default channel; for instance, these
options would typically be used on a tcp_local or tcp_submit channel. These channel
options do not take effect on a channel "switched to" subsequently (due for instance to a
switchchannel, tlsswitchchannel, or saslswitchchannnel channel option effect, or
a mailSMTPSubmitChannel LDAP attribute effect).

46.3.28.29 Protocol streaming (streaming)

Some mail protocols support streaming operations. This means that the MTA can issue more
than one operation at a time and wait for replies to each operation to arrive in batches. The
streaming channel option controls the degree of protocol streaming used in the protocol
associated with a channel. This option requires an integer argument; how the argument is
interpreted is specific to the protocol in use.

Currently the MTA only supports the use of streaming on SMTP channels. Streaming is
enabled automatically for the MTA's SMTP client if the SMTP server to which the MTA has
connected offers the pipelining extension and the streaming setting is nonnegative. The
streaming option can be used to enable (force) streaming by the MTA's SMTP client even
when a remote SMTP server doesn't offer the pipelining extension.

The streaming values available for SMTP range from -2 to 4. Negative values (new in 7.2-7.02)
disables streaming completely; not even the remote SMTP server advertising pipelining
can enable it. A value of 0 specifies no streaming, a value of 1 causes groups of RCPT TO

Channels 46–147

TCP/IP connections and DNS
lookups channel options

commands to stream, a value of 2 causes MAIL FROM/RCPT TO to stream, a value of 3 causes
HELO/MAIL FROM/RCPT TO or RSET/MAIL FROM/RCPT TO streaming to be used, and
a value of 4 enables streaming all the way through DATA (equivalent to the remote server
advertising pipelining). The default value is 0.

The SMTP server offers the pipelining extension by default. A streaming value of -2 (new in
7.2-7.02) can be used to disable pipelining announcment.

Some SMTP implementations are known to react badly to streaming. In particular, many
versions of sendmail are known to be incapable of handling streaming levels greater than 1.
The MTA's server implementation of SMTP should work properly at any streaming level.

New in Messaging Server 7.0, MTA message transaction log entries will record whether
PIPELINING was used by means of a "Q" modifier on the relevant "E" (Enqueue) and
"D" (Dequeue) entries.

46.3.28.30 Responding to SMTP VRFY commands (vrfyallow,
vrfydefault, vrfyhide)

These channel options control the MTA's SMTP server's response when a sending SMTP
client issues an SMTP VRFY command. The vrfyallow channel option tells the SMTP
server to issue a detailed, informative response. The vrfydefault option tells the SMTP
server to provide a detailed, informative response, unless the TCP/IP-channel-specific option
HIDE_VERIFY=1 has been specified. The vrfyhide option tells the MTA to issue only a
vague, ambiguous response. Thus these channel options allow per-channel control of VRFY
responses, as opposed to the HIDE_VERIFY TCP/IP-channel-specific option which normally
applies to all incoming TCP/IP channels handled via the same SMTP server.

For controlling the MTA's SMTP client use of VRFY commands, see the *vrfy channel
options.

46.3.29 TCP/IP connections and DNS lookups channel
options

A number of channel options affect TCP/IP connections and DNS lookups.

46.3.29.1 Channel connection information caching
(cacheeverything, cachesuccesses, cachefailures, nocache)

Channels using the SMTP and LMTP protocols maintain a per-process cache containing a
history of prior connection attempts. This cache is used to avoid reconnecting multiple times to
inaccessible hosts, which can waste lots of time and delay other messages. The cache only lasts
for the duration of the delivery process; subsequent processes start with an empty cache.

(In this context, "connection failure" includes both connection transaction log file "Y" entries --
where the MTA's client couldn't even make a connection -- and at least some "X" entries, such
as connecting but immediately seeing a 5xx or 4xx error instead of an SMTP banner.)

Such a process cache normally records both connection successes and failures. (Successful
connection attempts are recorded in order to offset subsequent failures --- a host that
succeeded before but fails now doesn't warrant as long of a delay before making another
connection attempt as does one that has never been tried or one that has failed previously.)

46–148 Messaging Server Reference

TCP/IP connections and DNS
lookups channel options

However, the caching strategy used by the MTA is not necessarily appropriate for all
situations. For example, a channel that is used to connect to a single flakey host does not
benefit from caching. Or in the case of connection attempts to an internal LMTP "back end",
it may be desirable to continue to try to connect regardless of previous connection failures.
Therefore channel options are provided to adjust the MTA's SMTP and LMTP client process
caches.

The cacheeverything channel option enables all forms of caching and is the default.
nocache disables all caching. cachefailures enables caching of connection failures but
not successes --- this forces a somewhat more draconian retry than cacheeverything does.
Finally, cachesuccesses caches only successes. This last option is effectively equivalent to
nocache for SMTP and LMTP channels.

In the MTA message transaction log file, "Q" entries with the notation:

Too many failures to this host during this run; skipping this host: error-text

are cases where a process cache had come into play.

46.3.29.2 Envelope address rewriting upon message dequeue
(connectalias, connectcanonical)

The MTA normally rewrites addresses as it enqueues messages to its channel queues. No
additional rewriting is done during message dequeue. This presents a potential problem when
host names change while there are messages in the channel queues still addressed to the old
name.

The connectalias option tells the MTA to simply deliver to whatever host is listed in
the recipient address. This is the default. connectcanonical tells the MTA to compare
the recipient envelope address domain with the channel host proper names, and if the
domain name matches one of the channel's host proper names, then connect to the host name
corresponding to that host proper name. For instance, if a channel is defined (in pmdf.cnf/
imta.cnf format) as:

tcp_scanner smtp connectcanonical ...rest-of-keywords...
SCANNER-DAEMON
scanner1.domain.com host1.domain.com
scanner2.domain.com host2.domain.com

then an address of user@host1.domain.com that rewrites to the tcp_scanner channel
will be routed out to the host scanner1.domain.com, rather than to host1.domain.com as would
occur by default.

connectcanonical should only be used specifically to deal with problems with queued
messages---it may have unintended effects on other message traffic.

46.3.29.3 Forced routing to gateways (daemon)

The interpretation and usage of the daemon channel option depends upon the type of channel
to which it is applied. Currently, the only type of channel for which the daemon option is
relevant is SMTP over TCP/IP channels. Normally such channels connect to whatever host is
listed in the envelope address of the message being processed. The daemon option is used to

Channels 46–149

TCP/IP connections and DNS
lookups channel options

tell the channel to instead connect to a specific remote system, generally a firewall or mailhub
system, regardless of the envelope address. The actual remote system name is given as an
argument to daemon, e.g.:

msconfig> set channel:tcp_firewall.daemon firewall.domain.com

If the argument after the daemon option is not a fully qualified domain name (or alternatively
a square bracket enclosed literal IP address), the argument will be ignored and the channel will
connect to the channel's official host. When specifying the firewall or gateway system name
as the channel's official host name, channel:channel-name.official_host_name, the
argument given to the daemon option is typically specified as router, e.g.:

msconfig> show channel:tcp_firewall
role.channel:tcp_firewall.official_host_name = firewall.domain.com
role.channel:tcp_firewall.daemon = router
role.channel:tcp_firewall.mx (novalue)
role.channel:tcp_firewall.pool = SMTP_POOL
role.channel:tcp_firewall.smtp (novalue)

46.3.29.4 TCP/IP nameserver and MX record support (mx, nomx,
nodns, defaultmx, randommx, nonrandommx, affinitylist,
nameservers, defaultnameservers)

Most TCP/IP networks support the use of MX (mail forwarding) records for SMTP relay but
a few do not. The MTA's TCP/IP channel programs can be configured to not use MX records
if they are not provided by the network to which the MTA system is connected. Some TCP/IP
channel programs can be configured to not do DNS (nameserver) lookups at all. randommx
specifies that MX lookups should be done and MX record values of equal precedence should
be processed in random order. nonrandommx specifies that MX lookups should be done
and MX values of equal precedence should be processed in the same order in which they
were received. The mx option is currently equivalent to nonrandommx; it may change to
be equivalent to randommx in a future release. The nomx option disables MX lookups. The
defaultmx option specifies that mx should be used (with randomization) if the network says
that that MX records are supported, and if the destination port is port 25 for SMTP; (with
defaultmx, destination ports other than port 25 do not get MX lookups by default).

LMTP channels do not normally make use of MX lookups. Additionally, LMTP channels need
to connect to the correct store taking failover events into account. As of the 8.0 release, the
affinitylist channel option provides this functionality. affinitylist disables MX
lookups completely and translates the logical host given into the corresponding affinity group.
Connections are then attempted sequentially to all the hosts in the group.

The default is defaultmx on channels that support MX lookups in any form.

New in MS 8.0 is specialized handling for MX entries of the form:

nomail IN MX 0 .

Such entries are intended to be an indication that host "nomail" does not operate a mail server.
So when MX lookups are enabled, attempts to send to such a host will fail immediately

46–150 Messaging Server Reference

TCP/IP connections and DNS
lookups channel options

after the MX lookup instead of attempting any sort of A record lookup. (Additionally,
mailfromdnsverify will treat such hosts as not being a valid source of mail.)

Whether the operating system's TCP/IP local host tables are used in addition to the DNS
for lookups is generally controlled by /etc/nsswitch.conf or the equivalent. Generally,
operating system distributions are configured so that local host tables will indeed be
consulted.

When nameserver lookups are being performed, that is, unless the nsswitch.conf file
selects no use of nameservers, then prior to Messaging Server 7.0 the nameservers channel
option may be used to specify a list of nameservers to consult rather than consulting the TCP/
IP stack's own choice of nameservers. This affects the SMTP server and client and LMTP
client, but not the LMTP server (which, if it needs to do any lookups, always relies on the
TCP/IP stack's own choice of nameservers). Futhermore, as of Messaging Server 7.0, the
nameservers channel option only affects MX record lookups, with all other lookups using
the TCP/IP stack's choice of nameservers regardless of any nameservers channel option
setting. nameservers requires a space separated list of IP addresses for the nameservers, e.g.,

1.2.3.1 1.2.3.2

defaultnameservers is the default, and means to use the TCP/IP stack's own choice of
nameservers.

Note that while a nameservers setting is primarily meaningful to the SMTP client -- hence
TCP/IP destination channels -- it also, prior to Messaging Server 7.0, potentially had meaning
to the SMTP server -- hence TCP/IP source channels -- as for instance in cases where the SMTP
server channel had been configured to perform DNS reverse lookups on incoming connections,
or to perform forms of DNS verification.

46.3.29.5 Name lookup failure handling(dnsforcetemporary,
nodnsforcetemporary)

When attempting to make an outgoing connection, name lookups that return a "host not
found" or "no addresses" sorts of errors are normally treated as permanent failures. The
dnsforcetemporary channel option, which places on the dequeuing channel, alters this
behavior and causes this errors to be treated as temporary. nodnsforcetemporary is the
default.

Important note: This restricted option is only intended for use in special situations where the
list of possible remote hosts is tightly controlled. Use in other situatiions, especially ones where
users are able to specify the remote host, will lead to delays in reporting failures conditions.

46.3.29.6 Reverse DNS and IDENT lookups on incoming SMTP
connections (identtcp, identtcplimited, identtcpnumeric,
identtcpsymbolic, identnone, identnonelimited,
identnonenumeric, identnonesymbolic, forwardchecknone,
forwardchecktag, forwardcheckdelete)

The identtcp channel option tells the MTA to perform a connection and lookup using the
IDENT protocol (RFC 1413). The information obtained from the IDENT protocol (usually the
identity of the user making the SMTP connection) is then inserted into the Received: header for

Channels 46–151

https://tools.ietf.org/html/rfc1413

TCP/IP connections and DNS
lookups channel options

the message, with the hostname corresponding to the incoming IP number, as reported from a
DNS reverse lookup, and the IP number itself.

The identtcpsymbolic channel option tells the MTA to perform a connection and lookup
using the IDENT protocol (RFC 1413). The information obtained from the IDENT protocol
(usually the identity of the user making the SMTP connection) is then inserted into the
Received: header for the message, with the hostname corresponding to the incoming IP
number, as reported from a DNS reverse lookup; the IP number itself is not included in the
Received: header.

The identtcpnumeric channel option tells the MTA to perform a connection and lookup
using the IDENT protocol (RFC 1413). The information obtained from the IDENT protocol
(usually the identity of the user making the SMTP connection) is then inserted into the
Received: headers of the message, with the actual incoming IP number --- no DNS reverse
lookup on the IP number is performed.

Note that the remote system must be running an IDENT server in order for the IDENT
lookup caused by the identtcp, identtcpsymbolic, or identtcpnumeric options to
be useful. In addition, be aware that IDENT query attempts may incur a serious performance
hit. Increasingly routers simply "black hole" attempted connections to ports that they don't
recognize; if this happens on an IDENT query, then the MTA does not hear back until
the connection times out (a TCP/IP package controlled timeout, typically on the order
of a minute or two). A lesser performance factor is that when comparing identtcp or
identtcpsymbolic vs.identtcpnumeric, note that the DNS reverse lookup called for with
identtcp or identtcpsymbolic incurs some additional overhead to obtain the more "user-
friendly" hostname.

The identnone channel option disables this IDENT lookup, but does do IP to hostname
translation, and both IP number and hostname will be included in the Received: header for the
message. The identnonesymbolic channel option disables this IDENT lookup, but does do
IP to hostname translation; only the hostname will be included in the Received: header for the
message. The identnonenumeric channel option disables this IDENT lookup and inhibits
the usual DNS reverse lookup translation of IP number to hostname, and may therefore result
in a performance improvement at the cost of less user-friendly information in the Received:
headers. identnone is the default.

The identtcplimited and identnonelimited channel options have the same effect
as identtcp and identnone, respectively, as far as IDENT lookups, reverse DNS
lookups, and information displayed in Received: header lines. Where they differ is that with
identtcplimited or identnonelimited the IP literal address is always used as the sole
basis for any channel switching due to use of the switchchannel channel option, regardless
of whether the DNS reverse lookup succeeds in determining a host name. Note that since
channel switching is always performed preferentially based on IP address rather than host
name, the effect of identtcplimited or identnonelimited is merely to disable ever
trying host name switching in case all IP address rewriting failed.

Table 46.17 Available ident* MTA options and interpretations

Channel option IDENT
lookup

DNS reverse
lookup

IP address
in Received:
header line

Reverse
hostname

in Received:
header line

Fall back to
hostname
channel
switch

identtcp Yes Yes Yes Yes Yes

46–152 Messaging Server Reference

https://tools.ietf.org/html/rfc1413
https://tools.ietf.org/html/rfc1413

TCP/IP connections and DNS
lookups channel options

identtcplimited Yes Yes Yes Yes No
identtcpnumeric Yes No Yes No No
identtcpsymbolic Yes Yes No Yes Yes

identnone No Yes Yes Yes Yes
identnonelimited No Yes Yes Yes No
identnonenumeric No No Yes No No
identnonesymbolic No Yes No Yes Yes

The forwardchecknone, forwardchecktag, and forwardcheckdelete channel options
can modify the effects of doing reverse lookups, controlling whether the MTA does a forward
lookup of an IP name found via a DNS reverse lookup, and if such forward lookups are
requested, further control what the MTA does in case the forward lookup of the IP name does
not match the original IP number of the connection. The forwardchecknone channel option
is the default, and means that no forward lookup is done. The forwardchecktag channel
option tells the MTA to do a forward lookup after each reverse lookup and to tag the IP name
with an asterisk, *, if the number found via the forward lookup does not match that of the
original connection. The forwardcheckdelete channel option tells the MTA to do a forward
lookup after each reverse lookup and to ignore (delete) the reverse lookup returned name
if the forward lookup of that name does not match the original connection IP address, and
stick with the original IP address instead. (Note that having the forward lookup not match the
original IP address is normal at many sites, where a more "generic" IP name is used for several
different IP addresses.)

These options are only useful on SMTP channels that run over TCP/IP.

46.3.29.7 TCP/IP interface address (interfaceaddress)

The interfaceaddress channel option controls the address to which a TCP/IP channel
binds as the source address for outbound connections; that is, on a system with multiple
interface addresses this channel option controls which address will be used as the source
IP address when the MTA sends outgoing SMTP messages. Note that it complements
the Dispatcher option listenaddr (INTERFACE_ADDRESS in legacy configuration),
which controls which interface address a TCP/IP channel's SMTP server program listens
on for accepting incoming connections and messages. Also note that such channel
interfaceaddress settings are quite separate from the Job Controller's own listenaddr
setting (INTERFACE_ADDRESS setting in legacy configuration), which merely controls what
IP address the Job Controller listens on for purposes of its own, internal communications.

As of MS 8.0.2.3 two different addresses, one used for logging and the other as the actual TCP/
IP source address, can be specified. Normally the same address is used for both purposes,
but in cases where NAT or other forms of address translation are in use it may be useful to
have the actual IP address that appears to external agents appear as the address in transport
information fields in the logs. The address that's actually used does need to be logged
somewhere, so it is appended to the application information field with the usual "/" separator,
prefixed with a sharp sign.

When two addresses are specified they must be separated by a sharp sign with the logging
address appearing first, i.e., "logging-address#bind-address".

46.3.29.8 Specify a last resort host for delivery (lastresort)

Channels 46–153

TCP/IP connections and DNS
lookups channel options

The lastresort channel option is used to specify a host to which to connect when all other
connection attempts fail. In effect this acts as an MX record of last resort. This is only useful on
SMTP over TCP/IP channels.

Note that the lastresort host is attempted only for hosts that are in the DNS, having either
MX records or an A record, and for whom the connection attempts to all the MX records --
or to the A record, if there were no MX records---have encountered temporary connection
failures. (In particular, the lastresort host will not be attempted for a host that is only in the
hosts file, not in the DNS at all. Also keep in mind that a permanent 5xx error in response to
a connection attempt to a host is a permanent error, and will result in bouncing a message; in
particular, the lastresort host will not be attempted after such a permanent rejection error.
 Also, the lastresort host will not be attempted if a connection succeeds, but the MTA's
wait for an SMTP banner line to be returned times out; that again is not a temporary connection
failure.)

This channel option requires a single parameter specifying the name of the "system of last
resort".

See also the IP_ACCESS mapping table, which can provide an alternate way of doing "fail
over" for outbound IP connections for SMTP and LMTP channels.

Note that in most cases, it is preferable to fix problematic DNS records rather than to use
lastresoft; lastresort is intended merely for a few, special sorts of cases where
correcting DNS records may not be possible, yet some "last ditch", MX-like, re-routing may be
useful.

46.3.29.9 Verify that the domain on the MAIL FROM: line is in the
DNS (mailfromdnsverify, nomailfromdnsverify)

Setting mailfromdnsverify on an incoming TCP/IP channel causes the MTA to verify that
an entry in the DNS exists for the domain used on the SMTP MAIL FROM: command, and to
reject the message if no such entry exists. nomailfromdnsverify is the default, and means
that no such check is performed.

Note that performing DNS checks on the return address domain may result in rejecting some
desired valid messages (for instance, from legitimate sites that simply have not yet registered
their domain name, or at times of bad information in the DNS); it is contrary to the spirit of
being generous in what you accept and getting the e-mail through, expressed in RFC 1123,
Requirements for Internet Hosts. However, some sites may desire to perform such checks in
cases where junk e-mail (SPAM) is being sent with forged e-mail addresses from non-existant
domains.

The introduction of DNS wildcard entries in the COM and ORG top level domains which
occurred in September 2003 severely limited the effectiveness of the mailfromdnsverify
channel option. (The wildcards have subsequently been removed, however, such
practices could resume at any time.) As of the 6.1 release of the Messaging Server MTA,
mailfromdnsverify code has been modified to address this. When the DNS returns one or
more A records (which would normally be considered a "success" and the message would be
allowed in), their values are compared against the domain literals specified by the MTA option
blocked_mail_from_ips. If a match is found, then the domain is considered to be invalid.

With mailfromdnsverify on, as of Messaging Server 6.0 and later the MTA attempts an
MX lookup on the domain of the MAIL FROM: command. As of MS 6.1 and later, if that

46–154 Messaging Server Reference

https://tools.ietf.org/html/rfc1123,
https://tools.ietf.org/html/rfc1123,

TCP/IP connections and DNS
lookups channel options

MX lookup returns no data (no MX record exists) then the MTA moves on to attempting a
gethostbyname call. That is, a success at the MX record lookup stage allows the message in;
errors other than simply no such MX record (e.g., a nameserver "server failed" error) at this MX
record lookup stage will result in a temporary rejection with error

450 4.1.8 invalid/host-not-in-DNS return address not allowed

while (with MS 6.1 or later) a no such MX record found case moves onward to checking the
result of a gethostbyname call. (In iMS 5.2, only the gethostbyname was attempted; no
explicit MX record lookup was performed.)

When the MTA does a gethostbyname call, if this DNS query results in an authoritative
"host not found" response, then the message will be rejected with a permanent rejection

550 5.1.8 invalid/host-not-in-DNS return address not allowed

error message. A no data response, as would occur for the case of a name which has only a
CNAME record in the DNS, is considered a successful response; the message will be allowed
in. Any other error responses from the DNS will result in a temporary error

450 4.1.8 invalid/host-not-in-DNS return address not allowed

deferring the message: the MTA will not accept the message at the present time, but the
sending side should try sending it again later (in case perhaps their DNS problem, whatever it
was, gets fixed).

New in 8.0 is specialized handling for MX entries of the form:

nomail IN MX 0 .

Such entries are intended to be an indication that host "nomail" does not operate a mail server.
Support has been added so that mailfromdnsverify will treat such hosts as not being a
valid source of mail. (Additionally, attempts to send to such a host will fail immediately after
the MX lookup instead of attempting any sort of A record lookup.)

If the logging channel option has been enabled on an incoming channel, then rejections due
to a mailfromdnsverify check on that channel will be logged to the mail.log* file as a "J"
record.

46.3.29.10 Maximum rate to connect to a domain
(maxconnectionrateperdomain)

The maxconnectionrateperdomain smartsend channel option provides the means to
limit the rate at which connections are made from the channel. The value of this option is one
or two space-separated rate limit lists. The first limit list value specifies the rate limits to use
when things are operating normally; the second specifies the limits to use when operating in IP
backoff mode. If the IP backoff value is omitted it defaults to the first value.

Note that the identically named maxmessagerateperdomain smartsend parameter provides
the same functionality at the domain or IP level.

Channels 46–155

TCP/IP connections and DNS
lookups channel options

This option requires that the smartsend callouts, in particular the callout from the
AUTH_ACCESS mapping, be installed. This option will be ignored if smartsend is not
configured.

This option also currently requires that a memcache or Redis protocol server be configured at
either the MTA or channel level.

46.3.29.11 Maximum number of connections from an IP to a domain
(maxconnectionsperdomain)

The maxconnectionsperdomain smartsend channel option implements limits on the
number of simultaneous connections that can be opened to a destination domain. The value
of this parameter is one or two space-separated limit lists. The first value specifies the limits
to use when the IP address is operating normally; the second specifies the limits to use when
operating in IP backoff mode. If the IP backoff value is omitted it defaults to the first value.

Note that the identically named maxconnectionsperdomain smartsend parameter provides
the same functionality at the domain or IP level.

This option requires that the smartsend callouts, in particular the callouts from the
AUTH_ACCESS and AUTH_DEACCESS mappings, be installed. This option will be ignored if
smartsend is not configured.

46.3.29.12 Maximum rate to send to a domain
(maxmessagerateperdomain)

The maxmessagerateperdomain smartsend channel option provides the means to limit the
rate at which messages are delivered from the channel queue. The value of this option is one
or two space-separated rate limit lists. The first limit list value specifies the rate limits to use
when things are operating normally; the second specifies the limits to use when operating in IP
backoff mode. If the IP backoff value is omitted it defaults to the first value.

Note that the identically named maxmessagerateperdomain smartsend parameter provides
the same functionality at the domain or IP level.

This option requires that the smartsend callouts, in particular the callout from the
AUTH_ACCESS mapping, be installed. This option will be ignored if smartsend is not
configured.

This option also currently requires that a memcache or Redis protocol server be configured at
either the MTA or channel level.

46.3.29.13 SOCKS connections (nosocks, socksnoauth,
socksuserpassword)

SOCKS connections (see RFC 1928 and RFC 1929) can be used to traverse a firewall that would
not normally permit outbound SMTP message traffic. If the firewall offers a SOCKS service,
then one can connect to the firewall's SOCKS server and authenticate, pass over the remote
host name and remote port to which one wishes to make an SMTP connection, and then the
SOCKS server on the firewall will make the remote connection and transform the SOCKS
connection into the desired SMTP connection. The nosocks and socksuserpassword
channel options control whether a TCP/IP channel uses a SOCKS connection, rather than

46–156 Messaging Server Reference

https://tools.ietf.org/html/rfc1928
https://tools.ietf.org/html/rfc1929

TCP/IP connections and DNS
lookups channel options

attempting a normal, direct SMTP connection. nosocks, the default, specifies that no
SOCKS connection will be used. socksuserpassword tells the channel to attempt a SOCKS
connection (using the username/password method of SOCKS authentication), rather than
attempting a direct SMTP connection.

To achieve a SOCKS connection, one must set additional options. In legacy configuration, one
must set TCP/IP-channel-specific options specifying the SOCKS host and port to which to
connect, and the username and password with which to authenticate the SOCKS connection;
see the SOCKS_HOST, SOCKS_PORT, SOCKS_USERNAME, and SOCKS_PASSWORD
channel settings. In Unified Configuration, one must instead set channel options sockshost,
socksport, socksusername, and sockspassword.

Note that the SOCKS protocol is a general protocol for TCP/IP-based applications (e.g., SMTP),
and makes no provision for application-specific issues such as, in the case of SMTP, MX host
name DNS lookups. Thus when using a socksuserpassword channel, one must be sure
that the host names that the channel is attempting to send messages to are all fully resolved
hostnames (A record names). As such, socksuserpassword channels are all, in effect, nomx
channels, and hence should only be used for special, point-to-point connections to known,
specific remote systems where the proper mail host name is "known" (need not be looked
up as a possible MX record in the DNS). In particular, any rewrite rules that direct domains
to a socksuserpassword channel should output only domain names that are proper mail
destination host systems (fully resolved domain names, with any MX references already taken
into account).

46.3.29.14 port Option Under channel

SMTP over TCP/IP channels normally connect to the remote system's port 25 when sending
messages. The port channel option may be used to instruct an SMTP over TCP/IP channel to
connect to a non-standard port.

46.3.29.15 SOCKS connections channel options: sockshost (host),
socksport (port), socksusername (string) sockspassword (string)

The sockshost, socksport, socksusername, sockspassword channel options (for SMTP
client channels) are used to configure SOCKS connections. SOCKS connections (see RFC 1928
and RFC 1929) can be used to traverse a firewall that would not normally permit outbound
SMTP message traffic. If the firewall offers a SOCKS service, then one can connect to the
firewall's SOCKS server (sockshost and socksport) and authenticate (socksusername
and sockspassword), pass over the remote host name and remote port to which one wishes
to make an SMTP connection, and then the SOCKS server on the firewall will make the remote
connection and transform the SOCKS connection into the desired SMTP connection. The
sockshost option specifies the host name of the SOCKS server system. The socksport
option specifies the SOCKS port on the SOCKS server system; by convention, port 1080 is
usually used as the SOCKS port. The MTA's SOCKS implementation currently only supports
the username/password method of SOCKS authentication; the username and password
to be used are controlled by the socksusername and sockspassword channel options,
respectively.

The sockshost, socksusername, and sockspassword options have no default; the default
for the socksport option is 1080.

In order for these socks* channel options to take effect, the outbound TCP/IP channel must
also be marked with the socksuserpassword channel option.

Channels 46–157

https://tools.ietf.org/html/rfc1928
https://tools.ietf.org/html/rfc1929

TCP/IP connections and DNS
lookups channel options

46.3.29.16 SPF DNS lookups (spfhelo, spfmailfrom, spfnone,
spfrcptto)

New in MS 6.3-0.15. The spfhelo, spfmailfrom, and spfrcptto channel options,
when placed on a source TCP/IP channel, cause the MTA to attempt an SPF lookup at the
corresponding stage of the SMTP dialogue. spfnone, the default, disables such SPF lookups.

With spfhelo set (so that SPF verification of the claimed EHLO/HELO domain is attempted),
possible SMTP error results (rejections) are:

451 4.4.3 Temporary error in SPF verification of HELO domain
500 5.5.2 Permanent error in SPF verification of HELO domain
451 4.4.3 Permanent error in SPF verification of HELO domain
500 5.5.2 Permanent error in SPF verification of HELO domain
451 4.3.0 SPF verification failed
451 4.3.0 SPF verification failed: explanation
550 5.7.1 SPF verification failed
550 5.7.1 SPF verification failed: explanation

The specific cases are as follows. The interpretation of the result of an SPF lookup
is controlled by MTA options such as spf_smtp_status_temperror and
spf_smtp_status_permerror. While temporary SPF lookup errors are normally
configured to be considered as temporary errors and permanent SPF lookup errors are
normally configured to be considered as permanent errors, accomplished by setting
spf_smtp_status_temperror to 4 and spf_smtp_status_permerror to 5 respectively,
each such option can take any of the values 2 (ignore the error condition), 4 (treat it as
temporary), or 5 (treat it as permanent). Thus, with a temporary error from the SPF lookup,
then the setting of the spf_smtp_status_temperror MTA option to 2, 4, or 5 controls,
respectively, whether that SPF lookup problem is considered okay, or results in a temporary
error such as (in this example, when spfhelo is set):

451 4.4.3 Temporary error in SPF verification of HELO domain

or a permanent error such as (in this example, when spfhelo is set):

500 5.5.2 Temporary error in SPF verification of HELO domain

Similarly, with a permanent error returned from the SPF lookup, the setting of the
spf_smtp_status_permerror MTA option to 2, 4, or 5 controls, respectively, whether the
permanent error returned by the SPF lookup is ignored (considered to be an okay condition) or
results in a temporary error such as (in this example, when spfhelo is set):

451 4.4.3 Permanent error in SPF verification of HELO domain

or a permanent error such as (in this example, when spfhelo is set):

500 5.5.2 Permanent error in SPF verification of HELO domain

46–158 Messaging Server Reference

TCP/IP connections and DNS
lookups channel options

New in 8.0, an SPF HELO/EHLO check failure will result in a "J" record in the MTA message
transaction log file, if message transaction logging has been enabled.

New in 8.0, the error text is configurable via various error_text_spf_ehlo_* MTA
options. Also, the SMTP error codes and extended codes have been adjusted to accord with
draft-ietf-appsawg-email-auth-codes-07.

With spfmailfrom set (so that SPF verification of the claimed MAIL FROM address is
attempted), possible SMTP error results (rejections) are, in the case of temporary errors, and
depending upon the setting of the spf_smtp_status_temperror MTA option, either:

451 4.4.3 Temporary error in SPF verification of MAIL FROM domain

or

550 5.5.2 Temporary error in SPF verification of MAIL FROM domain

In the case of permanent errors, depending upon the setting of the
spf_smtp_status_permerror MTA option, either:

451 4.4.3 Permanent error in SPF verification of MAIL FROM domain

or

550 5.5.2 Permanent error in SPF verification of MAIL FROM domain

In the case of an SPF fail result (the lookup shows that such a MAIL FROM address
is not authorized), depending upon the setting of the spf_smtp_status_fail and
spf_smtp_status_fail_all MTA options, either

451 4.4.3 SPF verification failed

or

550 5.7.1 SPF verification failed

or when additional explanation is available, either

451 4.4.3 SPF verification failed: explanation

or

550 5.7.1 SPF verification failed: explanation

Channels 46–159

TCP/IP connections and DNS
lookups channel options

In the case of an SPF soft failure, depending upon the setting of the
spf_smtp_status_softfail and spf_smtp_status_softfail_all MTA options,
either:

451 4.4.3 SPF verification failed (soft)

or

550 5.7.1 SPF verification failed (soft)

With spfrcptto set, so that the attempt to perform an SPF verification of the MAIL FROM
address is delayed until the RCPT TO stage of processing, possible errors are:

450 4.5.1 temporary error in SPF verification of MAIL FROM domain (domain)
550 5.5.0 temporary error in SPF verification of MAIL FROM domain (domain)
450 4.5.1 permanent error in SPF verification of MAIL FROM domain(domain)
550 5.5.0 permanent error in SPF verification of MAIL FROM domain(domain)
450 4.5.1 SPF verification of MAIL FROM domain (domain) failed
450 4.5.1 SPF verification of MAIL FROM domain (domain) failed: spf-explanation
550 5.5.0 SPF verification of MAIL FROM domain (domain) failed
550 5.5.0 SPF verification of MAIL FROM domain (domain) failed: spf-explanation
450 4.5.1 SPF verification of MAIL FROM domain (domain) failed (soft)
550 5.5.0 SPF verification of MAIL FROM domain (domain) failed (soft)

New in 8.0, the error text used at MAIL FROM stage (spfmailfrom) and RCPT TO stage
(spfrcptto) is configurable via various error_text_spf_* MTA options; note that these
options had existed since MS 6.3, but were not effective until 8.0. Also new in 8.0, the SMTP
error codes and extended codes have been adjusted to accord with draft-ietf-appsawg-
email-auth-codes-07.

Note that when SPF lookups are configured and a message is allowed in (due to either passing
the SPF lookup check, or due to a configuration that allows in even messages with certain sorts
of SPF lookup failures, or failure responses from SPF), then the MTA will add a "Received-
SPF:" header line:

Received-SPF: spf-result (spf-explanation)

Note that SPF is prone to causing problems for autoforwarding; (such problems are not with
the MTA's implementation, but rather are due to fundamental oversights in the original design
of SPF). Use of SRS address encoding is one approach to work around SPF's fundamental
difficulties with autoforwarding.

46.3.29.16.1 SPF_LOCAL mapping table

The SPF_LOCAL mapping table, if defined, provides a way to avoid performing actual DNS
lookups for SPF verification of any domains matching a pattern in the mapping table: instead,
the mapping table template of a matching entry will be used as if it were the DNS result of an

46–160 Messaging Server Reference

TLS and SASL channel options

SPF lookup. Thus, this mapping table allows providing "short-circuited" results for specified
(typically local) domains.

The syntax is:

SPF_LOCAL

 domain-pattern result

46.3.29.17 Triggering new jobs (threaddepth)

The threaddepth channel option tells the Job Controller when to start a new channel "job"
to handle messages: for multithreaded channels, when to start a new thread (if the process is
allowed to have more threads) or failing that a new process (if more processes are allowed); for
single threaded channels, when to start a new process (if more processes are allowed).

For multithreaded channels, the threaddepth channel option controls how many messages
are handled in any one thread before the channel will consider starting to use another thread.

In particular, the MTA's SMTP client (for channels not marked with the daemon channel
option) sorts outgoing messages to different destinations to different threads. The
threaddepth channel option may be used to instruct the MTA's multithreaded SMTP client
to handle only the specified number of messages in any one thread, using additional threads
even for messages all to the same destination (hence normally all handled in one thread).
The value specified must be greater than 1 and less than 10000. The default as of MS 6.0 is
threaddepth 10. (This is a change from previous versions, in which the default was 128.)

Use of threaddepth may be of particular interest for achieving multithreading with daemon
router on a TCP/IP channel - a TCP/IP channel that connects to a single specific SMTP server
- when the SMTP server to which the channel connects can handle multiple simultaneous
connections.

Similarly, the threaddepth option affects operation of the multithreaded ims-ms channel.

For single threaded channels, such as the conversion, process, and reprocess channels, the
threaddepth channel option controls how many messages are handled in a single process;
more messages cause the Job Controller to create another process (up to the maxjobs channel
option setting for the channel and the job_limit Job Controller option value for the pool in
which the channel runs) to process the messages.

46.3.30 TLS and SASL channel options
A number of channel options relate to SASL (SMTP AUTH) and/or TLS use.

For global MTA configuration, see also Password and TLS MTA options. And for general
Messaging Server configuration of authentication and certificate handling, see the Auth
options, various base.auth*, base.ssl*, and base.tls* options (and for LDAP
connections, the ugldapusessl and ldaprequiretls base options), the Base certmap
options, and the sectoken options.

46.3.30.1 authusername Option Under channel

The authusername channel option is described in the externalidentity section.

Channels 46–161

TLS and SASL channel options

46.3.30.2 authpassword Option Under channel

The authpassword channel option is described in the externalidentity section.

46.3.30.3 Credentials for client SMTP AUTH use channel options:
authpassword, acceptvalidaddresses, externalidentity

 The authusername, authpassword, and externalidentity channel options may
only be set (are only valid) in Unified Configuration; they replace the (legacy configuration
only) TCP/IP-channel-specific options AUTH_PASSWORD, AUTH_USERNAME, and
EXTERNAL_IDENTITY.

SASL authentication will be attempted if either the maysaslclient or mustsaslclient
channel option is set, with success required for message transmission if mustsaslclient is
set.

The PLAIN and EXTERNAL SASL mechanisms are currently supported. The authusername
and authpassword channel options provide the credentials for the PLAIN mechanism and
the externalidentity channel option provides the identity string for SASL EXTERNAL.
(externalidentity can be set to the empty string to enable SASL EXTERNAL without an
identity string.)

See the Base certmap options for general configuration of certificate mapping, as needed for
EXTERNAL authentication via client certificates.

46.3.30.4 Authenticated originator information processing
(authrewrite)

The authrewrite option may be used on a source channel to have the MTA propagate
authenticated originator information, if available, into the headers. Normally the SMTP
AUTH information is used (specifically, the user's canonical e-mail address, that is, the
value of the mail attribute or new in MS 8.0 the value of whatever attribute is named by the
ldap_auth_attr_sender MTA option, found when looking up the user for authentication),
though this may be overridden via the FROM_ACCESS mapping. authrewrite takes a
required bit-encoded integer value as an argument, according to the following table:

Table 46.18 authrewrite option values
Bit Value Usage

0-3 1 Add a Sender: header line, or a Resent-sender: header line if a Resent-from: or Resent-sender: was already present,
containing the AUTH originator

0-3 2 Add a Sender: header line containing the AUTH originator

0-3 3 Use the AUTH_REWRITE mapping table, probing with any Resent-Sender: and Resent-From: info if present, and
otherwise probing with Sender: and From: info

0-3 4 Use the AUTH_REWRITE mapping table, probing with Sender: and From: info

0-3 5 Add a From: header line, or a Resent-From: header line if a Resent-From: or Resent-Sender: was already present,
containing the AUTH originator. This is NOT RECOMMENDED and CONTRARY TO INTERNET STANDARDS,
and likely to HARM the security of your users. This option should almost NEVER be used: THIS MEANS YOU!.

0-3 6 Add a From: header line containing the AUTH originator. This is NOT RECOMMENDED and CONTRARY TO
INTERNET STANDARDS, and likely to HARM the security of your users. This option should almost NEVER be
used: THIS MEANS YOU!.

4 16 (New in 6.2) If set, apply the AUTH_REWRITE mapping table, even if SMTP AUTH has not been used

5 32 (New in 6.2) If set, probes to AUTH_REWRITE include the source-channel as a prefix field, separated by a vertical bar
character from the rest of the probe string; that is, when this bit is set then probes take the form:

46–162 Messaging Server Reference

TLS and SASL channel options

src-chan|env-from|[resent-]sender|[resent-]from|auth-originator

6 64 (New in 7.2-7.02.) If set, use the rewritten version of the envelope from address in constructing the AUTH_REWRITE
probe.

7 128 (New in 7.2-7.02.) If set, use the canonical version of the envelope from address in constructing the AUTH_REWRITE
probe. Bit 6 (value 64) is a no-op if this bit is set.

8 256 (New in 7.3-11.01.) If set, add the value of the AUTH parameter from the SMTP MAIL FROM command to the
AUTH_REWRITE probe, appearing just after the authorized originator address; that is, when this bit is set then probes
take the form

env-from|[resent-]sender|[resent-]from|auth-originator|auth-param

9 512 (New in MS 7.0.5) If set, the final tag set via $T in the *_ACCESS mappings will be prefixed to the AUTH_REWRITE
mapping probe; that is, when this bit is set then probes take the form:

ACCESS-tag|env-from|[resent-]sender|[resent-]from|auth-originator

46.3.30.4.1 AUTH_REWRITE mapping table

Certain values of the authrewrite channel option cause the AUTH_REWRITE mapping table
to be consulted to allow for more complex decision making and alterations of addresses. And
bits of authrewrite also affect the form of probe to the AUTH_REWRITE mapping table.

Probes for the AUTH_REWRITE mapping table normally have the following format:

env-from|[resent-]sender|[resent-]from|auth-originator

If (new in MS 6.2) bit 5 (value 32) is set in the the authrewrite argument, the probe is
prefixed with the source channel and a vertical bar; if (new in MS 7.3-11.01) bit 8 (value 256)
is set in the authrewrite argument, the probe is suffixed with a vertical bar and the AUTH
parameter from the MAIL FROM command; if (new in MS 7.0.5) bit 9 (value 512) is set in the
authrewrite argument, the probe is prefixed with the final tag set by the FROM_ACCESS or
recipient address *_ACCESS mapping tables and a vertical bar. Thus with these three optional
bits set, the probe has the format:

ACCESS-tag|src-chan|env-from|[resent-]sender|[resent-]from|auth-originator|auth-param

New in MS 8.0.2.3, the authrewrite_extra_headers MTA option may be used to specify
additional header fields to include in the mapping probe. These fields always appear at the
end of the probe, separated by vertical bars.

With authrewrite 3, the probes preferentially use any Resent-Sender: or Resent-From:
header line values present, whereas with authrewrite 4 the probes always use Sender:
and From:. (Note that normally the AUTH_REWRITE mapping table is only consulted when
a submission has included SMTP AUTH info; that is, in order for the AUTH_REWRITE
mapping table to be consulted not only must the relevant incoming channel be marked with
an authrewrite value of 3 or 4, but also the submission included use of the SMTP AUTH
command. However, if bit 4 (value 16) is set in the authrewrite channel option's argument,
then AUTH_REWRITE will be consulted even for non-authenticated submissions.)

New in 7.2-7.02, bit 6 (value 64) of authrewrite will, if set, cause a rewritten version of the
envelope from address to be used for the env-from address in the probe as opposed to the
original form given in the SMTP MAIL FROM command. The specific rewritten form used is
controlled by bit 7 (value 128): if set, the canonical form return address will be used, if clear
the normally rewritten form will be used instead. These rewritten forms are useful when
access checking is done using the AUTH_REWRITE mapping in order to prevent envelope From
forgery by authenticated users.

Channels 46–163

TLS and SASL channel options

If the mapping table output contains a $J, $j, $K, or $k, then the envelope From address is
replaced with the specified string. If the mapping table output contains a $Y, $y, $T, or $t,
then a Sender: header line is added (if authrewrite 3 was specified and if a Resent-Sender:
or Resent-From: was already present, then a Resent-Sender: header line is added instead of a
Sender: header line) containing the specified string.

If the mapping table output contains a $Z or $z, then a From: header line is added (a Resent-
From: in the case of authrewrite 3 and a Resent-From: or Resent-Sender: header line
already being present) containing the specified string. (Such replacing of the From: header
address is NOT RECOMMENDED and CONTRARY TO INTERNET STANDARDS and
quite likely to HARM the overall security of your users. It should almost NEVER be done:
THIS MEANS YOU! Despite the wishes and mistaken notions of many sites and users, the
From: header line, in Internet e-mail, is NOT INTENDED to represent the "real" originator of a
message; it is intentionally defined permitting alternate usages.)

New in MS 7.0, if a $A is specified, then its argument is interpreted as a header line to add to
the primary message header.

New in 7.3-11.01, if a $O is specified, then another vertical-bar-separated string will be read
from the mapping result string and used to set or override the value of the SMTP AUTH
parameter for the current transaction. The saslpassauth channel option may then be
applied to the destination channel to cause this value to be propagated as an AUTH parameter
on the SMTP MAIL FROM command.

New in MS 6.2, if a $N is specified, then the message will be rejected. Optional rejection text
may be specified after another vertical bar character, |. And as of MS 6.3, $X may also be used
to specify the extended error code (specified before the $N text, separated by a |) in the form
x.y.z. In the absence of such optional text and optional extended error code, the default text
"invalid originator address used" and default extended error code 5.7.0 will be
used. (Note that use of the acceptalladdresses channel option postpones the rejection.)

When using multiple such flags, separate the string arguments with the vertical bar character,
|, and specify the string arguments in the order listed in the paragraphs above; for instance,

JYZA$Oenv-from|sender|from-hdr|hdr-line-to-add|auth-param

or

XN|error-code|rejection-text

Technically, one could use all seven flags in the same entry, though it does not seem likely to be
useful (as in particular the changes to the message, such as changes of address or addition of a
header line) do not apply since the rejection is going to occur at the SMTP protocol level):

JYZAOX$Nenv-from|sender|from-hdr|hdr-line-to-add|auth-param|error-code|rejection-text

As of the 8.0 release, the following input flags will be set:

• $A if SASL authentication has succeeded

• $E if EHLO (EMSMTP) was used

46–164 Messaging Server Reference

TLS and SASL channel options

• $L if LHLO (LMTP) was used

• $P if POP-before-SMTP was used

• $R if this is an internal channel enqueue operation, i.e., from a conversion, process,
reprocess, or similar sort of channel

• $T if a SSL/TLS security layer has been negotiated

AUTH_REWRITE mapping flags summarizes the available (output) flags and input flags.

Table 46.19 AUTH_REWRITE mapping flags

Flag Description
$* (New in MS 7.0u2) Force disconnect of the SMTP session

Flags with arguments, in argument reading order1

$Jaddress Override original envelope From with specified address
$Kaddress Override original envelope From with specified address
$T Force addition of a Sender: address or Resent-Sender: address

header line
$Y Force addition of a Sender: address or Resent-Sender: address

header line
$Zaddress Force replacement of the original From: (or Resent-From:) header line

with From: address or Resent-From: address; note this is NOT
RECOMMENDED, as it is CONTRARY TO INTERNET STANDARDS and
quite likely to HARM the overall security of your users. It should almost
NEVER be done--- THIS MEANS YOU!

$Aheader-
line

Add the specified header-line

$OAUTH-
parameter

(New in MS 7.0u3) Use the specified AUTH-parameter as the new value to
relay as the AUTH value for this message in MAIL FROM.

$<syslog-
text

(New in MS 8.0.2.3) Send the specified text to syslog.

$>syslog-
text

(New in MS 8.0.2.3) Send the specified text to syslog if $N is also specified.

$>syslog-
text

(New in MS 8.0.2.3) Send the specified text to syslog if $N is also specified.

$Ddkim-
parameters

(New in MS 8.1.0.1) Specify one or more comma-separated DKIM signing
parameters to enable DKIM signing. The format is the same as that used in the
CONVERSIONS mapping.

$Hreceived-
domain

(New in MS 8.1.0.1) Specify a value to override the current received_domain
option setting.

$Iid-
domain

(New in MS 8.1.0.1) Specify a value to override the current id_domain option
setting.

$
+Lheader1,header2,...

(New in MS 8.1.0.1) Specifies a comma-separated list of header fields to include
in any transaction log records that are generated.

$Xx.y.z (New in MS 6.3) Set the extended error code to x.y.z, in place of the default of
5.7.0. $X is only active if $N is also specified.

Channels 46–165

TLS and SASL channel options

$Nerror-
text

(New in MS 6.2) Reject the message, optionally specifying error-text to use
in place of the default text "invalid original address used".

Input flag
comparisons

Description

$:| (New in an MS 7.0 patch) Match only if external material (e.g., an envelope
address) in the probe contained a vertical bar

$;| (New in an MS 7.0 patch) Match only if no vertical bars were present in any
external material in the probe

$:A (New in MS 8.0) Match only if SASL authentication (SMTP AUTH) has
succeeded

$;A (New in MS 8.0) Match only if SASL authentication (SMTP AUTH) has not
been used, or if attempted has not succeeded

$:E (New in MS 8.0) Match only if EHLO (ESMTP) was used
$;E (New in MS 8.0) Match only if EHLO (ESMTP) was not used
$:L (New in MS 8.0) Match only if LHLO (LMTP) was used
$;L (New in MS 8.0) Match only if LHLO (LMTP) was not used
$:P (New in MS 8.0) Match only if POP-before-SMTP was used
$;P (New in MS 8.0) Match only if POP-before-SMTP was not used
$:R (New in MS 8.0) Match if the current, enqueueing channel is an "internal"

channel such as the reprocess channel
$;R (New in MS 8.0) Match if the current, enqueueing channel is something other

than an "internal" channel
$:T (New in MS 8.0) Match only if a SSL/TLS security layer has been negotiated
$;T (New in MS 8.0) Match only if SSL/TLS was not used

1 To use multiple flags with arguments, separate the arguments with the vertical bar character,
|, placing the arguments in the order listed in this table.

An example of an AUtH_REWRITE mapping that prevents authenticated users from sending
messages from addresses other than the ones listed in their mail, mailAltnerateAddress, or
mailEquivalentAddress mappings would be:

AUTH_REWRITE

! Probe format: env-from|[resent-]sender|[resent-]from|auth-originator
! Check to see if the From: matches the authenticated user's mail attribute;
! exit with success if it does
 ||*|$2* $E
! Fetch the base DN we'll need to look up the user
 |@*|*@* $CBASE|$}$4,_base_dn_{|$1@$2|$3@$4
! Probe now: BASE|base-DN|from|auth-originator
! Check to see if the From: matches the authenticated user's
! mailAlternateAddress or mailEquivalentAddress attributes.
 BASE|*|*|* $CFOUND|$]ldap:///$0?uid?sub?(&(mail=$=2_)(|(mailAlternateAddress=$=$1$_)(mailEquivalentAddress=$=$1$_)))[|$1|$2
! Exit with success if it does
 FOUND|*|*|* $E
! Fail any other From: address
 * $NFrom$ address$ is$ not$ one$ of$ your$ addresses.

Note that the authrewrite source channel option needs to be set to 3 for the
AUTH_REWRITE mapping to be invoked.

46–166 Messaging Server Reference

TLS and SASL channel options

A more sophisticated version of this mapping that allows users to specify arbitrary
subaddresses would be:

REMOVE_SUBADDRESS

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y0@$2
 "$_*+$_*"@* $Y"$0"@$2
 $_*+$_*@* Y0@$2
 * Y0

REMOVE_SUB_LDAP_QUOTE

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y=$0@2_
 "$_*+$_*"@* Y="$0"@$2$_
 $_*+$_*@* Y=$0@$2$_
 * Y=0_

MATCH_NOSUBADDRESS

 | C|REMOVE_SUBADDRESS;$0||$|REMOVE_SUBADDRESS;$1|
 |$0 $Y

AUTH_REWRITE

! Check to see if the From: matches the authenticated user's mail attribute;
! exit with success if it does
 ||*|* C|MATCH_NOSUBADDRESS;2|$3|$E
! Fetch the base DN we'll need to look up the user
 |@*|*@* $CBASE|$}$4,_base_dn_{|$1@$2|$3@$4
! Check to see if the From: matches the authenticated user's
! mailAlternateAddress or mailEquivalentAddress attributes.
 BASE|*|*|* \
 $CFOUND|$]ldap:///$0?uid?sub?(&(mail=$=2_)(|(mailAlternateAddress=$|REMOVE_SUB_LDAP_QUOTE;$1|)(mailEquivalentAddress=$|REMOVE_SUB_LDAP_QUOTE;$1|)))[|$1|$2
! Exit with success if it does
 FOUND|*|*|* $E
! Fail any other From: address
 * $NFrom$ address$ is$ not$ one$ of$ your$ addresses.

An even more sophisticated approach that provides "send on behalf of" functionality is
possible. Assuming a sendOnBehalfOf attribute has been added to the user's entry listing the
addresses the user is authorized to send on behalf of, the following mapping could be used:

REMOVE_SUBADDRESS

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y0@$2
 "$_*+$_*"@* $Y"$0"@$2
 $_*+$_*@* Y0@$2
 * Y0

REMOVE_SUB_LDAP_QUOTE

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y=$0@2_
 "$_*+$_*"@* Y="$0"@$2$_
 $_*+$_*@* Y=$0@$2$_
 * Y=0_

MATCH_NOSUBADDRESS

 | C|REMOVE_SUBADDRESS;$0||$|REMOVE_SUBADDRESS;$1|
 |$0 $Y

AUTH_REWRITE

! Check to see if the From: matches the authenticated user's mail attribute;
! exit with success if it does
 ||*|* C|MATCH_NOSUBADDRESS;2|$3|$E
! Fetch the base DN we'll need to look up the user
 |@*|*@* $CBASE|$}$4,_base_dn_{|$1@$2|$3@$4
! Check to see if the From: matches the authenticated user's
! mailAlternateAddress or mailEquivalentAddress attributes.
 BASE|*|*|* \
 $CFOUND|$]ldap:///$0?uid?sub?(&(mail=$=2_)(|(mailAlternateAddress=$|REMOVE_SUB_LDAP_QUOTE;$1|)(mailEquivalentAddress=$|REMOVE_SUB_LDAP_QUOTE;$1|)(sendOnBehalfOf=$1)))[|$1|$2
! Exit with success if it does
 FOUND|*|*|* $E
! Fail any other From: address
 * $NYou$ are$ not$ authorized$ to$ send$ from$ the$ address$ you$ specified

If the "send on behalf of" permissions are instead stored on the "other side" - in, say, an,
mailGrantSendPermissionsTo on the granting user's entry that specifies the mail attribute of
the user permissions are being granted to, the following mapping could be used:

REMOVE_SUBADDRESS

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y0@$2
 "$_*+$_*"@* $Y"$0"@$2
 $_*+$_*@* Y0@$2
 * Y0

REMOVE_SUB_LDAP_QUOTE

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y=$0@2_
 "$_*+$_*"@* Y="$0"@$2$_
 $_*+$_*@* Y=$0@$2$_
 * Y=0_

MATCH_NOSUBADDRESS

 | C|REMOVE_SUBADDRESS;$0||$|REMOVE_SUBADDRESS;$1|
 |$0 $Y

AUTH_REWRITE

! Check to see if the From: matches the authenticated user's mail attribute;
! exit with success if it does
 ||*|* C|MATCH_NOSUBADDRESS;2|$3|$E
! Fetch the base DN we'll need to look up the user
 |@*|*@* $CBASE|$}$4,_base_dn_{|$1@$2|$3@$4
! Check to see if the From: matches the authenticated user's
! mailAlternateAddress, mailEquivalentAddress, or sendOnBehalfOf attributes.
 BASE|*|*|* \
 $CFOUND|$]ldap:///$0?uid?sub?(&(mail=$=2_)(|(mailAlternateAddress=$|REMOVE_SUB_LDAP_QUOTE;$1|)(mailEquivalentAddress=$|REMOVE_SUB_LDAP_QUOTE;$1|)(sendOnBehalfOf=$1)))[|$1|$2
! Exit with success if it does
 FOUND|*|*|* $E
! Now switch the base DN to that of the domain specified in the From: address
 BASE|*|*@*|*@* $CSECONDARY_BASE|$}$2,_base_dn_{|$1@$2|$3@$4
! Check and see if the address owner granted send-on-behalf-of permissions
 SECONDARY_BASE|*|*|* \
 $CSECONDARY_FOUND|$]ldap:///$0?uid?sub?(&(|(mail=$=1_)(mailAlternateAddress=$=$1$_)(mailEquivalentAddress=$=$1$_))(mailGrantSendPermissionsTo=$=$2$_))[|$2

Channels 46–167

TLS and SASL channel options

! Exit with success if permission was granted - also add a Sender: field
 SECONDARY_FOUND|*|* Y1
! Fail any other From: address
 * $NYou$ are$ not$ authorized$ to$ send$ from$ the$ address$ you$ specified

In the case of a "mailGrantSendPermissionsTo" granting permission, this mapping also adds a
Sender: field containing the authenticated address of the actual sender. This can be disabled by
changing the "Y!" in the SECONDARY_FOUND check to "$E".

Note that this example retains the ability to specify a sendOnBehalfOf attribute on the user
permissions are being granted to. If this is not desirable the "(sendOnBehalfOf=$1))" search
clause should be removed from the associated LDAP URL.

Also note that neither of the two preceding examples grant permissions to "send on behalf of"
using subaddresses; adding this capability is straightforward.

Finally, if permission checks on both sides must succeed - a logical AND rather than an OR -
the following set of mappings could be used:

REMOVE_SUBADDRESS

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y0@$2
 "$_*+$_*"@* $Y"$0"@$2
 $_*+$_*@* Y0@$2
 * Y0

REMOVE_SUB_LDAP_QUOTE

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y=$0@2_
 "$_*+$_*"@* Y="$0"@$2$_
 $_*+$_*@* Y=$0@$2$_
 * Y=0_

MATCH_NOSUBADDRESS

 | C|REMOVE_SUBADDRESS;$0||$|REMOVE_SUBADDRESS;$1|
 |$0 $Y

AUTH_REWRITE

! Check to see if the From: matches the authenticated user's mail attribute;
! exit with success if it does
 ||*|* C|MATCH_NOSUBADDRESS;2|$3|$E
! Fetch the base DN we'll need to look up the user
 |@*|*@* $CBASE|$}$4,_base_dn_{|$1@$2|$3@$4
! Check to see if the From: matches the authenticated user's
! mailAlternateAddress, mailEquivalentAddress
 BASE|*|*|* \
 $CUSER|$]ldap:///$0?uid?sub?(&(mail=$=2_)(|(mailAlternateAddress=$|REMOVE_SUB_LDAP_QUOTE;$1|)(mailEquivalentAddress=$|REMOVE_SUB_LDAP_QUOTE;$1|)))[|$1|$2
! Exit with success if it does
 USER|*|*|* $E
! Must now match the sendOnBehalfOf attribute.
 BASE|*|*|* $CFOUND|$]ldap:///$0?uid?sub?(&(mail=$=2_)(sendOnBehalfOf=$=$1$_))[|$1|$2
! Now switch the base DN to that of the domain specified in the From: address
 FOUND|*|*@*|*@* $CSECONDARY_BASE|$}$2,_base_dn_{|$1@$2|$3@$4
! Check and see if the address owner granted send-on-behalf-of permissions
 SECONDARY_BASE|*|*|* \
 $CSECONDARY_FOUND|$]ldap:///$0?uid?sub?(&(|(mail=$=1_)(mailAlternateAddress=$=$1$_)(mailEquivalentAddress=$=$1$_))(mailGrantSendPermissionsTo=$=$2$_))[|$2
! Exit with success if permission was granted - also add a Sender: field
 SECONDARY_FOUND|*|* Y1
! Fail any other From: address
 * $NYou$ are$ not$ authorized$ to$ send$ from$ the$ address$ you$ specified

46.3.30.4.2 Additional fields in AUTH_REWRITE probe
(authrewrite_extra_headers)

New in MS 8.0.2.3. The authrewrite_extra_headers MTA option provides the means to
include the content of additional header fields in AUTH_REWRITE mapping probes. The value
consists of a space-separated list of header field names. Each field name specified creates an
additional AUTH_REWRITE string argument at the end of the AUTH_REWRITE mapping
probe, separated by vertical bars. If one or more of the specified field is present in the message
header the value of the first such field will be included in the probe. Note that the separators
are always present regardless of whether or not the associated field is part of the message.

All of the header field names must be known to the MTA; an error will be signalled if an
unknown field name is specified. A colon, if specified at the end of a field name, will be
ignored.

46–168 Messaging Server Reference

TLS and SASL channel options

46.3.30.5 SMTP authentication and SASL (maysasl,
maysaslclient, maysaslserver, mustsasl, mustsaslclient,
mustsaslserver, nosasl, nosaslclient, nosaslserver,
disconnectbadauthlimit)

As of Messaging Server 7.0-3.01, maysasl and mustsasl take effect for the SMTP client
direction, as well as the SMTP server direction.

The maysasl, maysaslclient, maysaslserver, mustsasl, mustsaslclient,
mustsaslserver, nosasl, nosaslclient, nosaslserver, and
disconnectbadauthlimit channel options are used to configure SASL use, specifically
the use of the AUTH command, during the SMTP protocol by SMTP based channels such
as TCP/IP channels. nosasl is the default, and means that SASL authentication will not be
permitted nor attempted. It subsumes nosaslserver, which means that the SMTP server
will not permit SASL authentication, and nosaslclient, which means that the SMTP client
will not attempt SASL authentication.

Specifying maysaslserver will cause the SMTP server to permit clients to attempt to use
SASL authentication. Specifying mustsaslserver will cause the SMTP server to insist that
clients use SASL authentication: the SMTP server will not accept messages unless the remote
client successfully authenticates. Unless authentication has been performed, the SMTP server
will issue an error to any attempted EXPN: command of:

530 5.7.0 Authentication required prior to EXPAND

while any attempted MAIL FROM: command will receive an error of:

520 5.7.0 Authentication required prior to MAIL/SAML/SEND/SOML

Note that the authentication code performs various checks on the user account when
attempting to authenticate, as when a client attempts to authenticate to the MTA's SMTP
server. This may result in authentication errors being returned to the SMTP server, which will
in turn issue an SMTP error back in response to the SMTP AUTH attempt. Some errors of note
are discussed in Authentication errors and resultant SMTP errors.

New in Messaging Server 7.0 update 1 (Messaging Server 7.0-3.01) is support for limited
SASL capabilities in the MTA's SMTP client. Thus it is new in Messaging Server 7.0
update 1 that the (previously existing but not meaningful) keywords maysaslclient,
mustsaslclient have meaning, and the (previously existing but now with enhanced
meaning) nosaslclient, maysasl, and mustsasl channel options truly affect SMTP
client operation. SASL authentication will be attempted by the SMTP/LMTP client if the
maysaslclient, mustsaslclient, maysasl, or mustsasl channel options are set---and
must succeed in order for message transmission if mustsaslclient or mustsasl is set. The
PLAIN and EXTERNAL SASL mechanisms are currently supported. In legacy configuration,
the AUTH_PASSWORD and AUTH_USERNAME TCP/IP-channel-specific options provide
the credentials for the plain mechanism and the EXTERNAL_IDENTITY TCP/IP-channel-
specific option provides the identity string for SASL EXTERNAL. (EXTERNAL_IDENTITY
can be set to the empty string to enable SASL EXTERNAL without an identity string.) In
Unified Configuration, those TCP/IP-channel-specific options have been replaced by the
authpassword, authusername, and externalidentity channel options.

Channels 46–169

TLS and SASL channel options

Normal configuration includes setting maysaslserver on the tcp_local channel
and mustsaslserver on the tcp_submit channel. As of Messaging Server 7.0u1,
maysaslserver is placed also on the tcp_intranet channel definition. Additional
discussion of normal configuration can also be found in Blocking SMTP relaying.

New in MS 6.2 is the disconnectbadauthlimit channel option, applicable to source
channels. It takes a (required) integer argument, specifying an upper limit on the number
of bad (failed) SMTP AUTH attempts that will be permitted during a single SMTP session
(connection). The default is 3. (Note that this default of 3 complies with the recommendation
in RFC 4954 that servers permit at least 3 authentication attempts prior to disconnecting due
to failed attempts.) Once a client's unsuccessful SMTP AUTH attempts reaches the specified
number, the SMTP server will close the connection after rejecting the SMTP AUTH attempt,
including in the SMTP AUTH rejection error the additional text: "(bad authentication
limit reached; disconnecting)".

See also the saslswitchchannel channel option, to cause source channel "switching" based
upon successful client authentication. And see also the sasltrustauth and saslpassauth
channel options for control of the handling of any MAIL FROM AUTH parameter value. And
see also the authrewrite channel option for some options on propagating SMTP AUTH
information into message headers.

Note that client configuration may be required in order to get clients to make use of the MTA's
SMTP AUTH support (that is, to get clients to attempt to authenticate). For instance, in order
for Messenger Express (Webmail) and Communications Express (UWC) to use SMTP AUTH
(SASL), one must set the smtpauthuser and smtpauthpassword MSHTTP options in
Unified Configuration (or the smtpauthuser and smtpauthpassword configutil http
parameters in legacy configuration) to the user ID (and corresponding password) of a store
administrator (a user who exists in the list in the admins Message Store option in Unified
Configuration, or in legacy configuration the store.admins list---often for instance, a user
id of admin). (This will cause the mshttpd server to use the specified credentials to "vouch" for
the identity of the sending user---who in turn has already had to login to mshttpd.)

Note that the plaintextmincipher MTA option, if set to a value greater than 0, will restrict
the user of plaintext passwords for authentication unless a security layer (SSL or TLS) is
activated; see TLS and SASL channel options and Password and TLS MTA options for further
discussion of SSL/TLS configuration for the MTA.

46.3.30.6 Automatic use of AUTH EXTERNAL at MAIL FROM
(explicitsaslexternal, implicitsaslexternal)

The SUBMIT/SMTP authentication model when authentication credentials are provided by
an SSL/TLS client certification is for the SUBMIT/SMTP client to issue an AUTH EXTERNAL
command after the connection is secured with SSL/TLS. Unfortunately, several popular clients
do not issue an AUTH EXTERNAL command and instead rely on the binding being done
automatically.

The implicitsaslexternal source channel option causes the SMTP/SUBMIT server to
perform an implicit AUTH EXTERNAL SASL operation when a MAIL FROM command is
received and the following conditions have been met:

• The mustsaslserver channel option at a minimum (or mustsasl) is in effect and no
authentication operations have been performed.

• An SSL/TLS layer has been successfully negotiated.

46–170 Messaging Server Reference

https://tools.ietf.org/html/rfc4954

TLS and SASL channel options

• The client provided a valid certificate as part of the SSL/TLS exchange.

The explicitsaslexternal source channel option disables this behavior. It is the default.

46.3.30.7 Transport Layer Security (maytls, maytlsclient,
maytlsserver, musttls, musttlsclient, musttlsserver,
notls, notlsclient, notlsserver, tlsswitchchannel)

The maytls, maytlsclient, maytlsserver, musttls, musttlsclient,
musttlsserver, notls, notlsclient, notlsserver, and tlsswitchchannel channel
options are used to configure STARTTLS use for the various protocols supported by the MTA,
including but not limited to SMTP, LMTP, and MTQP.

Note that prior to 7.0.5, the LMTP server did not support TLS use; as of 7.0.5, the LMTP
server does support TLS, configured via the same maytls, maytlsserver, musttls,
mustlsserver, channel options used to configure SMTP server TLS support.

The ManageSieve server only supports the server subset of the TLS options since there is no
ManageSieve client.

notls is the default, and means that STARTTLS will not be permitted or attempted. It
subsumes the notlsclient channel option, which means that TLS use will not be attempted
by the SMTP/LMTP/MTQP client on outgoing connections (the STARTTLS command will not
be issued during outgoing connections) and the notlsserver channel option, which means
that TLS use will not be permitted by the SMTP/LMTP/MTQP server on incoming connections
(the STARTTLS extension will not be advertised by the SMTP/LMTP/MTQP server nor the
command itself accepted).

Specifying maytls causes the MTA to offer TLS to incoming connections and to attempt TLS
upon outgoing connections. It subsumes maytlsclient, which means that the SMTP/LMTP/
MTQP client will attempt TLS use when sending outgoing messages, if sending to an SMTP/
LMTP/MTQP server that supports TLS, and maytlsserver, which means that the SMTP/
LMTP/MTQP server will advertise support for the STARTTLS extension and will allow TLS
use when receiving messages. Note that maytls* settings mean that the MTA will want to
use TLS with remote sides that support STARTTLS, while allowing remote sides that do not
have STARTTLS support to communicate without TLS; but maytls* settings do not inherently
mean that the MTA will "fall back" to non-TLS use when TLS negotiation is attempted but fails:
failure of TLS negotiation will result in that connection being closed as a failed connection
(recorded with an "X" record). As of 8.0, with maytlsclient set, the MTA's client will
attempt a new connection to attempt sending without TLS in cases where the remote SMTP/
LMTP server advertised TLS support but where the actual TLS negotiation failed; prior to 8.0,
a failure in the TLS negotiation would immediately abort the delivery attempt for the message.
This support is not available in MTQP.

Specifying musttls will cause the MTA to insist upon TLS in both outgoing and incoming
connections; e-mail will not be exchanged with remote systems that fail to successfully
negotiate TLS use. It subsumes musttlsclient, which means that the SMTP/LMTP
client will insist on TLS use when sending outgoing messages and will not send to SMTP/
LMTP servers that do not successfully negotiate TLS use (the MTA will issue the STARTTLS
command and that command must succeed), and musttlsserver, which means that the
SMTP/LMTP server will advertise support for the STARTTLS extension and will insist upon
TLS use when receiving incoming messages and will not accept messages from clients that do
not successfully negotiate TLS use. When musttls or musttlsserver is on a channel, then

Channels 46–171

TLS and SASL channel options

unless TLS has been successfully negotiated all MAIL FROM: attempts will be rejected with
the error:

530 5.7.0 No STARTTLS command has been given.

The tlsswitchchannel channel option is used to cause incoming connections to be
switched to a specified channel upon a client's successful TLS negotiation. (This includes either
successful STARTTLS use on a "regular" port, or negotiating upon connection to a "dedicated
to TLS" port, usually port 465, configured via the Dispatcher's ssl_ports option in Unified
Configuration, or its TLS_PORT option in legacy configuration.) tlsswitchchannel takes a
required value, specifying the channel to which to switch.

Note that TLS library initialization is performed for any SMTP/LMTP channel which has any
TLS usage permitted (or required). In particular, TLS library initialization will be performed by
the TCP client for a channel marked merely maytlsserver. (This overhead is normally fairly
neglible.)

Note that these options affect only TLS use negotiated at the protocol level via STARTTLS;
they do not affect potential TLS use triggered by connection to a port dedicated to TLS use
such as with the ssl_ports Dispatcher service option.

46.3.30.8 Microsoft Exchange gateway channels (msexchange,
nomsexchange)

The msexchange channel option may be used on TCP/IP channels to tell the MTA that this
is a channel that communicates with Microsoft® Exchange gateways and clients. Use of the
option tells the MTA to try and accomodate nonstandard behavior on the part of Microsoft
Exchange. Exactly what nonstandard behaviors are dealt with is subject to change.

Currently the msexchange channel option on a channel configured to allow TLS use (see the
tls channel options) causes advertisement (by the MTA's SMTP server) and recognition (by
the MTA's SMTP client) of the non-standard TLS capability string, in addition to the standard
STARTTLS capability string, to indicate that TLS is supported.

New in 7.0.5, setting msexchange on a destination channel will cause the MTA, if performing
any sort of MIME processing operation, to remove any Content-disposition: header line from
any text/calendar message parts, as despite Content-disposition:'s long-standing existence as
a standardized header line, not to mention the basic MIME rule that unrecognized Content-
* header lines should be ignored, Microsoft® Outlook's handling of text/calendar parts is
disturbed when such parts have a Content-disposition: specified. So specifying msexchange
on a channel sending to Microsoft Exchange, if text/calendar parts will flow through that
channel, should allow Microsoft Outlook to process calendar parts more successfully.

nomsexchange is the default.

46.3.30.9 XCLIENT SMTP Extension Support (noxclient, xclient,
xclientsasl, xclientrepeat, xclientsaslrepeat)

(New in 8.0.) The MTA's SMTP server provides support for Postfix's XCLIENT SMTP
extension. The PostFix documentation for the extension can be found here:

46–172 Messaging Server Reference

TLS and SASL channel options

http://www.postfix.org/XCLIENT_README.html

Use of XCLIENT is controlled by three main source channel keywords, noxclient, xclient,
and xclientsasl, and variants xclientrepeat and xclientsaslrepeat. noxclient
is the default, and means that XCLIENT is not advertised in the response to EHLO and the
XCLIENT command itself is disabled. If xclient is set, the XCLIENT command is enabled
and the NAME, ADDR, PORT, PROTO, and HELO attributes may be used. xclientsasl
enables the LOGIN attribute in addition to all the others. It should be noted that LOGIN
specifies an external identity that must then be bound to the session identity through the use of
SASL EXTERNAL.

By default, only one set of XCLIENT commands is allowed in a single SMTP session.
Specifying xclientrepeat allows groups of XCLIENT commands to be repeated, allowing a
proxy or similar agent to share a connection between multiple clients. xclientsaslrepeat
allows multiple groups of XCLIENT commands including LOGIN. Note that care should be
taken when these keywords are used since the server cannot determine the origin of a given
XCLIENT command.

The primary visible effect of XCLIENT is on the contents of the Received: field the MTA adds.
For example, if this XCLIENT command was executed:

xclient name=foo.domain.com addr=1.2.3.4 helo=bar.domain.com port=12345

it would result in a header of the general form:

 Received: from bar.domain.com (foo.domain.com [1.2.3.4])
 by server.domain.com (Oracle Communications Messaging Server 7.0.5.32
 64bit (built Aug 18 2014)) with imapsubmit
 id <01OJ9P51WPFC007KNZ@server.domain.com> for user@domain.com;
 Mon, 20 Aug 2012 08:17:31 -0700 (PDT)

However, the ADDR, PORT, DESTADDR, and DESTPORT attributes also change the contents
of the transportinfo that appears in various mapping table probes, such as the probe to
PORT_ACCESS. Given the preceding XCLIENT command, the transportinfo part of the
mapping probes would change to something like:

 TCP|this-mta's-ip|25|1.2.3.4|12345

where note that the values to use in the "source IP" and "source port" fields have been specified
via ADDR and PORT, respectively.

Note: Support for DESTADDR and DESTPORT was added in MS 8.0.2.3.

46.3.30.10 AUTH parameter handling (saslpassauth,
nosaslpassauth, sasltrustauth, nosasltrustauth)

The SMTP Service Extension for Authentication, specified in RFC 4954, defines an AUTH
parameter for the MAIL FROM command. This parameter is normally used to pass
information about the identity associated with the agent that submitted the message between
SMTP servers. As required by the specification, the MTA always accepts and retains any value
presented in an AUTH parameter.

Channels 46–173

https://tools.ietf.org/html/rfc4954

TLS and SASL channel options

If the saslpassauth channel option is set on a destination channel, any AUTH parameter
value associated with the message will be passed on to the next SMTP server, assuming that
server supports the authentication extension. nosaslpassauth is the default.

New in Messaging Server 7.3-11.01, if the sasltrustauth channel option is set on a source
channel, any value presented in the AUTH parameter will be promoted to the authenticated
originator address that's used throughout the MTA. nosasltrustauth is the default. The
sasltrustauth option should be used with great care because the AUTH parameter is
not, in general, trustworthy and the authenticated originator address is used for a variety of
authentication checks. So setting sasltrustauth, if not done thoughtfully and carefully,
may negate the value of certain authentication checks and allow more malicious spoofing of
e-mail. Normally sasltrustauth would only be appropriate on a channel that is dedicated
to receiving messages from a trustworthy (and itself careful and meticulous to require
authentication) source; note that such a source must not only verify any authentication on the
messages it accepts, but indeed require authentication on any of its incoming messages that
it will relay to your host, or itself be part of a chain of such trusted relaying. The situation to
avoid is trusting MAIL FROM AUTH values relayed by a -- possibly reliable enough on what
it happened to authenticate itself---host that itself accepted for relaying a message with an
unreliable MAIL FROM AUTH parameter.

An example of appropriate sasltrustauth use would be where there is a user-client-facing,
dedicated-to-accepting-message-submissions host that relays to your host. Then on your
host, on a channel dedicated to accepting only messages from that client-submission host,
use of sasltrustauth could allow desirable passing along of known-to-be-accurate AUTH
parameters, without opening the security door wide to passing along potentially inaccurate
AUTH parameters.

See also the AUTH_ACCESS mapping table and AUTH_REWRITE mapping table, both of which
can affect the MAIL FROM AUTH parameter.

46.3.30.11 saslruleset Option

RESTRICTED: Not yet implemented.

46.3.30.12 Channel switching based on SMTP authentication
(saslswitchchannel, nosaslswitchchannel)

The saslswitchchannel channel option is used to cause incoming connections to be
switched to a specified channel upon a client's successful SASL use. (See the maysasl* and
mustsasl* channel options for configuration of permitting/requiring SMTP AUTH and SASL
use.) saslswitchchannel takes a required value, specifying the channel to which to switch.
nosaslswitchchannel is the default, and means that channel switching is not performed
upon a client's successful SASL use.

See also the mailSMTPSubmitChannel user LDAP attribute, (or as of the 8.0 release,
whatever LDAP attribute is named by the ldap_auth_attr_submit_channel MTA
option) which when set on a user entry will cause channel "switching" to the specified channel;
it thus permits "finer-grained" channel switching than saslswitchchannel which merely
switches all authenticated submissions to a particular named channel.

See also the (new in MS 6.3) userswitchchannel channel option which, in conjunction with
site-selected user or domain LDAP attributes, also allows "fine-grained" channel switching, in
this case based merely on the purported From: address.

46–174 Messaging Server Reference

Header option files

The saslswitchchannel channel option is typically used when it is desired to
distinguish between authenticated vs. unauthenticated submissions as a class; the
mailSMTPSubmitChannel user LDAP attribute (or as of the 8.0 release, whatever LDAP
attribute is named by the ldap_auth_attr_submit_channel MTA option) is typically
used when it is desired to securely distinguish submissions from particular users (say to allow
"special privileges" to particular users); the (new in MS 63) userswitchchannel channel
option and associated LDAP attribute(s) are typically used when it is desired to make esthetic
distinctions (rather than more critical "secure" distinctions) on users' submissions without
requiring authenticated verification of the sender address.

See also Blocking SMTP relaying for an example of typical use of saslswitchchannel.

Note that any channel switching done by saslswitchchannel will be undone if/when
a client issues a (nonstandard, new in 8.0) XUNAUTHENTICATE command. (SMTP
server support for the nonstandard XUNAUTHENTICATE extension and associated
XUNAUTHENTICATE command is new in 8.0; note that XUNAUTHENTICATE is not
supported for the LMTP server. XUNAUTHENTICATE is only valid after successful
authentication has been performed, and the capability only shows up in the EHLO response at
this point at well. Successful execution of the XUNAUTHENTICATE command will return the
SMTP session to an unauthenticated state.)

46.3.30.13 tlsmaxversion Option

The tlsmaxversion channel option determines the maximum acceptable version of TLS
(the modern version of the SSL protocol). This presently takes a value of TLS1.0, TLS1.1,
TLS1.2, orTLS1.3. This option defaults to TLS1.3.

46.4 Header option files
Some special option files may be associated with a channel that describe how to trim the
headers on messages either enqueued to, or enqueued by, that channel. This facility is
completely general and may be applied to any channel; it is controlled by the headertrim,
noheadertrim, innertrim, noinnertrim, headerread, and noheaderread channel
options.

Various MTA channels have their own channel-level option files as well. Header option files
have a different format than other MTA option files and thus a header option file is always a
separate file.

Note that the test -header utility with its -option switch can be used to test the effects of
header trimming option files.

As of MS 6.3, note that the Sieve "editheader" extension provides an alternate way to alter
header lines. While header trimming may be a simpler approach for performing simple
changes, the Sieve "editheader" approach is more powerful in some respects such as
allowing changes to specific, unrecognized-by-the-MTA, header lines, or alterations of the
values on header lines.

46.4.1 Header option file location
For destination channel based header trimming to be applied upon message enqueue after
normal header processing, the MTA looks in the table directory, IMTA_TABLE:, for header
options files with names of the form channel_headers.opt, where channel is the name

Channels 46–175

Header option file format

of the channel with which the header option file is associated. (In Unified Configuration,
such header options files continue to be used.) The headertrim channel option and/or the
innertrim channel option must be specified on the channel to enable the use of such a
header option file.

For source channel based header trimming to be applied upon message enqueue before
normal header processing, the MTA looks in the table directory, IMTA_TABLE:, for header
options files with names of the form channel_read_headers.opt, where channel is the
name of the channel with which the header option file is associated. (In Unified Configuration,
such header options files continue to be used.) The headerread channel option must be
specified on the channel to enable the use of such a header option file.

Header option files should be world readable.

46.4.2 Header option file format
Simply put, the contents of a header option file are formatted as a set of message header lines.
Note, however, that the bodies of the header lines do not conform to RFC 822.

The general structure of a line from a header options file is then:

Header-name: OPTION=VALUE, OPTION=VALUE, OPTION=VALUE, ...

where Header-name is the name of a header line that the MTA recognizes. (Any of
the header lines described in this manual may be specified, plus any of the header lines
standardized in RFC 822, RFC 987, RFC 1049, RFC 1421, RFC 1422, RFC 1423, RFC 1424, RFC
2156, and RFC 2045. More generally, see the file mtasdkhdr.h in the MTA include directory.)

Header lines not recognized by the MTA are controlled by the special header line name Other:.
A set of options to be applied to all header lines not named in the header option file can also
be given on a special Defaults: line. Use of Defaults: guards against the inevitable expansion of
the MTA's known header line table in future releases.

Various options may then be specified to control the retention of the corresponding header
lines. The available options are:

46.4.2.1 ADD (quoted string)

The ADD option creates a completely new header line of the given type. The new header
line contains the specified string. The header line created by ADD will appear after any
existing header lines of the same type. The ADD option cannot be used in conjunction with the
Defaults: header line type; it will be ignored if it is specified as part of an Other: option list.

46.4.2.2 FILL (quoted string)

The FILL option creates a completely new header line of the given type if and only if there are
no existing header lines of the same type. The new header line contains the specified string.
The FILL option cannot be used in conjunction with the header line type; it will be ignored if it
is specified as part of an Other: option list.

46.4.2.3 FOLDITEMS (integer)

This option takes an integer that specifies the maximum number of "items" that can appear on
a line before folding. "Items" are normally defined as comma-separated sets of tokens, but if
FOLDITEMS is set to a negative value, then encoded words are also considered to be "items".

46–176 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc987
https://tools.ietf.org/html/rfc1049
https://tools.ietf.org/html/rfc1421
https://tools.ietf.org/html/rfc1422
https://tools.ietf.org/html/rfc1423
https://tools.ietf.org/html/rfc1424
https://tools.ietf.org/html/rfc2156
https://tools.ietf.org/html/rfc2156
https://tools.ietf.org/html/rfc2045

Header option file format

This option can be useful, for instance, when dealing with Netscape 4.7* clients which have a
bug whereby they will insert an extra space between successive encoded words, unless there is
a CRLF between the encoded word items.

46.4.2.4 GROUP (integer 0 or 1)

This option controls grouping of header lines of the same type at a particular precedence
level. A GROUP value of 0 is the default, and indicates that all header lines of a particular
type should appear together. A value of 1 indicates that only one header line of the respective
type should be output and the scan over all header lines at the associated level should resume,
leaving any header lines of the same type unprocessed. Once the scan is complete it is then
repeated in order to pick up any remaining header lines. This header option is primarily
intended to accomodate Privacy Enhanced Mail (PEM) header processing.

46.4.2.5 LINELENGTH (integer)

This option controls the length at which to fold headers. See also the discussion of the
headerlinelength channel option.

46.4.2.6 MAXCHARS (integer)

This option controls the maximum number of characters which may appear in a single header
line of the specified type. Any header line exceeding that length is truncated to a length of
MAXCHARS. This option pays no attention to the syntax of the header line and should never
be applied to header lines containing addresses and other sorts of structured information.
The length of structured header lines should be controlled with the maxheaderchars and
maxheaderaddrs channel options.

46.4.2.7 MAXIMUM (integer)

This option controls the maximum number of header lines of this type that may appear.
This has no effect on the number of lines, after wrapping, each individual header line might
consume. A value of -1 is interpreted as a request to suppress this header line type completely.

46.4.2.8 MAXLINES (integer)

This option controls the maximum number of lines all header lines of a given type may occupy.
It complements the MAXIMUM option in that it pays no attention to how many header lines
are involved, only to how many lines of text they collectively occupy. As with the MAXIMUM
option, headers are trimmed from the bottom to meet the specified requirement.

46.4.2.9 PRECEDENCE (integer)

This option controls the order in which header lines are output. All header lines have a
default precedence of zero. The smaller the value, the higher the precedence. Thus, positive
PRECEDENCE values will push header lines towards the bottom of the header while negative
values will push them towards the top. Equal precedence ties are broken using the MTA's
internal rules for header line output ordering.

Note that prior to MS 6.3, the MTA's header line precedence processing was always applied.
As of MS 6.3, the MTA by default does not do header line re-ordering, and so header line re-
ordering only takes place if header trimming is enabled. (This change was made to improve
interoperability with poorly designed message signing mechanisms.)

Channels 46–177

Header Fields Known to the MTA

46.4.2.10 RELABEL (header name)

This option changes a header line to another header line; that is, the name of the header is
changed, but the value remains the same. For instance,

X-MSMail-Priority: RELABEL="Priority"
X-Priority: RELABEL="Importance"

46.4.3 Header Fields Known to the MTA
The MTA maintains an internal list of "known" header fields. This list is used to perform
and in some cases optimize various operations the MTA performs on message headers. In
particular, the MTA's header trimming facilities are built on top of this list and only the
specific fields on this list can be individually manipulated using header trimming. (The header
addition facility, on the other hand, does not depend on this list in the same way and can be
used to add arbitrary headers.)

The header fields currently on the list are:

A1-format:
A1-forward:
A1-function:
A1-type:
Accept-Language:
Action:
Address:
Addresses-referred-to:
Alternate-recipient:
App-message-id:
Apparently-to:
Application-name:
Approved-by:
Approved:
Archived-at: (added in MS 8.0)
Arrival-date:
Article-creation-date:
Attachment-date:
Attachment-encoding:
Attachment-import:
Attachment-name:
Attachment-type:
Attachment:
Authentication-results: (added in MS 7u3)
Authors:
Auto-forwarded:
Auto-submitted:
Autoforwarded:
Autosubmitted:
Bcc:
Beak:
Bilateral-Info:
Btw:

46–178 Messaging Server Reference

Header Fields Known to the MTA

Cc:
Certificate:
Change-history:
Change-id:
Comments:
Complete-subject:
Content-access-control:
Content-alternative: (added in iMS 6.0)
Content-annotation:
Content-charset:
Content-class:
Content-comments:
Content-compression:
Content-correlator:
Content-creation-date:
Content-creator:
Content-description:
Content-disposition:
Content-encoding:
Content-features:
Content-future-object-size:
Content-id:
Content-identifier:
Content-label:
Content-language:
Content-last-modification-date:
Content-last-modifier:
Content-last-read-date:
Content-last-reader:
Content-legal-qualifications:
Content-length:
Content-lines:
Content-machine:
Content-MD5:
Content-mode:
Content-notification:
Content-object-size:
Content-operating-system:
Content-pathname:
Content-permitted-actions:
Content-privacy:
Content-related-stored-file:
Content-return:
Content-service:
Content-storage-account:
Content-transfer-encoding:
Content-type:
Conversation-id:
Conversion-with-loss:
Conversion:
Copies-to:
Data-description:
Data-encoding:

Channels 46–179

Header Fields Known to the MTA

Data-name:
Data-type:
Date-delivered:
Date-posted:
Date-received:
Date-transferred:
Date-warning:
Date:
Deferred-delivery:
Defragment-failed:
DEK-info:
Deliver-by-date: (added in MS 8.0.1.0)
Delivered-to:
Delivery-date:
Delivery-receipt-to:
Delivery-report-content-billing-information:
Delivery-report-content-intermediate-trace:
Delivery-report-content-original:
Delivery-report-content-reported-recipient-info:
Delivery-report-content-UA-Content-id:
Destination-application:
Diagnostic-code:
Discarded-X400-IPMS-Extensions:
Discarded-X400-MTS-Extensions:
Disclose-recipients:
Disposition-notification-options:
Disposition-notification-to:
Disposition:
Distribution:
DKIM-Signature: (added in MS 7u1)
DL-expanded:
DL-expansion-history:
DL-expansion:
DomainKey-Signature: (added in MS 7u1)
DSN-gateway:
Encoding-info:
Encoding:
Encrypted:
Envelope-to: (added in MS 8.0.2.2)
Error-report:
Error: (added in iMS 6.0)
Errors-to:
Expiration-date:
Expires:
Expiry-date:
Exported-to:
Failure: (added in iMS 6.0)
Fake-sender:
Fcc:
Final-log-id:
Final-MTA:
Final-MTS-type:
Final-recipient:

46–180 Messaging Server Reference

Header Fields Known to the MTA

Final-status:
Followup-to:
Form-type:
Forwarded-Message-ID: (added in MS 8.0.2.3)
Forwarded:
From:
Fruit-of-the-day-warning:
Fruit-of-the-day:
Full-name:
Future-release-request: (added in MS 7.0)
Generate-delivery-report:
Header-encoding:
Hop-count:
HTTP-Proxy:
HTTP-User-Agent:
Importance:
In-reply-to:
Incomplete-copy:
Information-type:
iPlanet-SMTP-Warning: (added in iMS 6.0)
Issuer-certificate:
Key-info:
Keywords:
Language:
Last-attempt-date:
Latest-delivery-time:
Licensed-to:
Lines:
List-Archive:
List-Digest:
List-Help:
List-Host:
List-Id:
List-Info:
List-Owner:
List-Post:
List-Software:
List-Subscribe:
List-Unsubscribe:
Mac-fcreator:
Mac-ftype:
Mail-followup-to:
Mail-system-version:
Mailer:
Mailing-List: (added in JES MS 6.2)
MCB-options:
MCB-type:
MDN-gateway:
Media-accept-features: (added in iMS 6.0)
Message-context: (added in iMS 6.0)
Message-discard:
Message-encoding:
Message-hash: (added in JES MS 6.2)

Channels 46–181

Header Fields Known to the MTA

Message-id:
Message-sequence:
Message-type:
MHS-id:
MIC-info:
MIME-version:
MMDF-Warning:
MMHS-Acp127-Message-Identifier: (added in MS 8.0.1.0)
MMHS-Codress-Message-Indicator: (added in MS 8.0.1.0)
MMHS-Copy-Precedence: (added in MS 8.0.1.0)
MMHS-Exempted-Address: (added in MS 8.0.1.0)
MMHS-Extended-Authorisation-Info: (added in MS 8.0.1.0)
MMHS-Handling-Instructions: (added in MS 8.0.1.0)
MMHS-Message-Instructions: (added in MS 8.0.1.0)
MMHS-Message-Type: (added in MS 8.0.1.0)
MMHS-Originator-PLAD: (added in MS 8.0.1.0)
MMHS-Originator-Reference: (added in MS 8.0.1.0)
MMHS-Other-Recipients-Indicator-CC: (added in MS 8.0.1.0)
MMHS-Other-Recipients-Indicator-To: (added in MS 8.0.1.0)
MMHS-Primary-Precedence: (added in MS 8.0.1.0)
MMHS-Subject-Indicator-Codes: (added in MS 8.0.1.0)
MR-Received:
MS-TNEF-Correlator: (added in MS 8.0.1.0)
Msg-class:
MT-Priority: (added in MS 8.0.1.0)
Net-attachment:
News-software:
Newsgroups:
Next-attachment:
NNTP-posting-date:
NNTP-posting-host:
Notification-correlator:
Obsoletes:
Office:
Openpgp: (added in MS 8.0.2.3)
Organization:
Original-content-disposition:
Original-content-type:
Original-encoded-information-types:
Original-encoding-types:
Original-envelope-id:
Original-From: (added in MS 8.0.1.0)
Original-message-id:
Original-MTS-type:
Original-recipient:
Original-recipients:
Original-to: (added in MS 8.0)
Originating-client:
Originator-and-DL-expansion-history:
Originator-certificate:
Originator-ID-asymmetric:
Originator-ID-symmetric:
Originator-info:

46–182 Messaging Server Reference

Header Fields Known to the MTA

Originator-return-address:
Originator:
P1-content-type:
P1-message-id:
P1-recipient:
P2-originator:
Path:
Phone:
PMDF-SMTP-Warning: (added in iMS 6.0)
Posted:
Posting-date:
Posting-status:
PP-Warning:
Precedence:
Prefer-Language:
Preferred-Language:
Prev-Resent-date:
Prev-Resent-from:
Prev-Resent-to:
Prevent-nondelivery-report:
Priority:
Proc-type:
Re-sent-by:
Read-receipt-to:
Received-by:
Received-from-MTA:
Received-from:
Received-SPF: (added in MS 7u4)
Received:
Recipient-ID-asymmetric:
Recipient-ID-symmetric:
Recipient-ID:
Recipient-info:
Recipient-reassignment:
Recipient:
Redirection-history:
References:
Refused-by:
Registered-mail-reply-requested-by:
Rejected-for:
Remote-MTA:
Remote-MTS-type:
Remote-recipient:
Remote-status:
Reply-by:
Reply-copies-to:
Reply-to:
Reporting-DL-name:
Reporting-MTA:
Reporting-UA:
Repository:
Requested-delivery-method:
Require-Recipient-Valid-Since: (added in MS 8.0)

Channels 46–183

Header Fields Known to the MTA

Resent-bcc:
Resent-cc:
Resent-date:
Resent-from:
Resent-message-id:
Resent-reply-to:
Resent-sender:
Resent-to:
Resent-wide-reply-to:
Respond-by:
Ret-message:
Return-path:
Return-receipt-requested:
Return-receipt-to:
Send-to:
Sender-ID:
Sender:
Sensitivity:
Service-message:
Session-id:
Signature:
SMF-version:
Solicitation: (added in JES MS 6.2)
Source-info:
Spam-test: (added in iMS 6.0)
Status:
Structure:
Subject-submission-identifier:
Subject:
Summary:
Sun-Java-System-SMTP-Warning: (added in MS 7.0)
Sun-ONE-SMTP-Warning: (added in iMS 6.0)
Supersedes:
Telefax:
Text-type:
Thread-index:
Thread-topic:
To:
Total-copies-to:
Total-to:
Transport-options:
UA-content-id:
UID:
UIDL:
User-Agent: (added in iMS 6.0)
Version:
Via-host:
VMS-FDL:
Wanted-X400-conversion:
Warning: (added in iMS 6.0)
Warnings-to:
Wide-Reply-to:
Will-retry-until:

46–184 Messaging Server Reference

Header Fields Known to the MTA

X-10:
X-11:
X-12:
X-1:
X-2:
X-3:
X-4:
X-5:
X-6:
X-7:
X-8:
X-9:
X-Accept-Language:
X-Address:
X-Admin:
X-Advertisement:
X-attachments:
X-Authentication-warning:
X-Authentication:
X-Author-info:
X-BCC:
X-BeenThere:
X-BFT:
X-BTW:
X-Buckslip:
X-CC:
X-Certificate:
X-Charset:
X-CLREnv-To: (added in iMS 6.0)
X-Comment:
X-Complaints-to:
X-Confirm-reading-to:
X-Content-description:
X-Content-disposition:
X-Content-id:
X-Content-transfer-encoding:
X-Content-type:
X-Corrupt-Content:
X-DEK-info:
X-Die-Spammers:
X-Dispatcher:
X-DMW-Body-names:
X-eGroups-Return: (added in JES MS 6.2)
X-Envelope-from:
X-Envelope-to:
X-EPUB-ListID:
X-EPUB-MsgID:
X-EPUB-SubID:
X-Eric-conspiracy:
X-Exchange-Antispam-Report-CFA-Test: (added in MS 8.0.2.2)
X-Exchange-Antispam-Report-Test: (added in MS 8.0.2.2)
X-EXP32-SerialNo:
X-Expiredinmiddle:

Channels 46–185

Header Fields Known to the MTA

X-Face:
X-Favorite-drink:
X-Favourite-drink:
X-FAX-defaults:
X-FAX-number:
X-FAX:
X-Finfo:
X-Forefront-Antispam-Report: (added in MS 8.0.2.2)
X-Forwarded-for: (added in JES MS 6.2)
X-Gateway-source-info:
X-GBUdb-Analysis: (added in MS 8.0.1.0)
X-Genie-from:
X-Genie-id:
X-Gm-Message-State: (added in MS 8.0)
X-Google-DKIM-Signature: (added in MS 8.0)
X-Hop-count:
X-HPDesk-priority:
X-Incognito-format:
X-Incognito-SN:
X-Info:
X-Invoice: (added in MS 8.0)
X-Issuer-certificate:
X-Job: (added in MS 8.0.2.3)
X-Juno-Line-Breaks:
X-Key-info:
X-Keywords:
X-Licensed-to:
X-List-Archive:
X-List-Digest:
X-List-Help:
X-List-Host:
X-List-Id:
X-List-Info:
X-List-Owner:
X-List-Post:
X-List-Software:
X-List-Subscribe:
X-List-Unsubscribe:
X-List:
X-Listname:
X-Listprocessor-Version:
X-Listserver:
X-Listservers:
X-Loop:
X-Lotus-FromDomain:
X-LSV-ListID:
X-Machine:
X-Mailer:
X-Mailing-List:
X-Mailman-Version:
X-Message-flag: (added in iMS 6.0)
X-MessageSniffer-Clean: (added in MS 8.0.1.0)
X-MessageSniffer-Identifier: (added in MS 8.0.1.0)

46–186 Messaging Server Reference

Header Fields Known to the MTA

X-MessageSniffer-License: (added in MS 8.0.1.0)
X-MessageSniffer-RulebaseUTC: (added in MS 8.0.1.0)
X-MessageSniffer-Rules: (added in MS 8.0.1.0)
X-MessageSniffer-Scan-Result: (added in MS 8.0.1.0)
X-MessageSniffer-SNF-Group: (added in MS 8.0.1.0)
X-MessageSniffer-Spam: (added in MS 8.0.1.0)
X-MessageSniffer-Version: (added in MS 8.0.1.0)
X-MessageSniffer-White: (added in MS 8.0.1.0)
X-MIC-info:
X-Microsoft-Exchange-Diagnostics: (added in MS 8.0.2.2)
X-MIME-Autoconverted:
X-MIME-version:
X-MIMEOLE:
X-MIMETrack:
X-Mms-3GPP-MMS-Version: (added in MS 8.0)
X-Mms-Ack-Request: (added in MS 8.0)
X-Mms-Delivery-Report: (added in MS 8.0)
X-Mms-Expiry: (added in MS 8.0)
X-Mms-Forward-Counter: (added in MS 8.0)
X-Mms-Message-Class: (added in MS 8.0)
X-Mms-Message-ID: (added in MS 8.0)
X-Mms-Message-Type: (added in MS 8.0)
X-Mms-MM-Status-Code: (added in MS 8.0)
X-Mms-Originator-System: (added in MS 8.0)
X-Mms-Previously-sent-by: (added in MS 8.0)
X-Mms-Previously-sent-date-and-time: (added in MS 8.0)
X-Mms-Priority: (added in MS 8.0)
X-Mms-Protocol: (added in JES MS 6.2)
X-Mms-Read-Reply: (added in MS 8.0)
X-Mms-Request-Status-Code: (added in MS 8.0)
X-Mms-Sender-Visibility: (added in MS 8.0)
X-Mms-Status-text: (added in MS 8.0)
X-Mms-Transaction-ID: (added in JES MS 6.2)
X-MS-Attachment:
X-MS-Embedded-Report:
X-MS-Exchange-CrossTenant-OriginalArrivalTime: (added in MS 8.0.2.2)
X-MS-Exchange-Organization-Journal-Report: (added in MS 7u4)
X-MS-Has-Attach: (added in MS 8.0.1.0)
X-MS-Journal-Report: (added in MS 7u4)
X-MSMail-conversation-id:
X-MSMail-message-id:
X-MSMail-priority:
X-MSXMTId:
X-MTS-LoopDetect:
X-MTS-Priority:
X-MTS:
X-MyDeja-info:
X-Netmessenger-type:
X-News-software:
X-Newsgroups:
X-Newsreader:
X-No-Archive:
X-Notes-form:

Channels 46–187

Header Fields Known to the MTA

X-Notes-item:
X-NS-transfer-id:
X-NVL-Content-charset:
X-NVL-Content-filename:
X-NVL-Content-modification-date:
X-NVL-Content-transfer-encoding:
X-NVL-Content-type:
X-OldDate:
X-Open-Mail-hops:
X-Orcl-application:
X-Orcl-content-type:
X-Org-addr:
X-Org-misc:
X-Organisation:
X-Organization:
X-Orig-sender:
X-Original-From: (added in MS 8.0.1.0)
X-Original-MessageID: (added in MS 8.0.1.0)
X-Original-To: (added in MS 8.0.1.0)
X-OriginalArrivalTime:
X-Originating-IP:
X-OriginatorOrg: (added in MS 8.0.2.2)
X-Perlmx-Spam: (added in JES MS 6.2)
X-PGP-signed:
X-PGP-version:
X-Phone-number:
X-Phone:
X-PipeGCOS:
X-Pipehub:
X-Pipeuser:
X-PMrqc:
X-PMuue:
X-Priority:
X-Proc-type:
X-Proofpoint-Spam-Details: (added in MS 8.0.1.0)
X-Proofpoint-Virus-Version: (added in MS 8.0.1.0)
X-PS-Qualifiers:
X-Received:
X-Recipient-ID:
X-Reply-to:
X-Report-type:
X-Reposting-Policy:
X-Resent-bcc:
X-Resent-cc:
X-Resent-date:
X-Resent-from:
X-Resent-message-id:
X-Resent-to:
X-RPost-ClientCode: (added in MS 8.0)
X-RPost-Convert-CleanMetadata: (added in MS 8.0)
X-RPost-Convert-Pdf-Doc: (added in MS 8.0)
X-RPost-Convert-Pdf-Password: (added in MS 8.0)
X-RPost-Convert-Pdf-Ppt: (added in MS 8.0)

46–188 Messaging Server Reference

Header Fields Known to the MTA

X-RPost-Convert-Pdf-Xls: (added in MS 8.0)
X-RPost-Convert-Pdf: (added in MS 8.0)
X-RPost-Convert-Zip: (added in MS 8.0)
X-RPost-Distrib: (added in MS 8.0)
X-RPost-Esign-Expiration: (added in MS 8.0)
X-RPost-Esign-Sequential: (added in MS 8.0)
X-RPost-Esign-Text: (added in MS 8.0)
X-RPost-Esign: (added in MS 8.0)
X-RPost-Language: (added in MS 8.0)
X-RPost-NoAck: (added in MS 8.0)
X-RPost-ReceiptCopy: (added in MS 8.0)
X-RPost-ReplyRegistered: (added in MS 8.0)
X-RPost-Seal-Hash: (added in MS 8.0)
X-RPost-Seal: (added in MS 8.0)
X-RPost-SecuRmail-AutoPassword: (added in MS 8.0)
X-RPost-SecuRmail-Password: (added in MS 8.0)
X-RPost-SecuRmail: (added in MS 8.0)
X-RPost-Sidenote-Bcc: (added in MS 8.0)
X-RPost-Sidenote-Cc: (added in MS 8.0)
X-RPost-Sidenote-Text: (added in MS 8.0)
X-RPost-Type: (added in MS 8.0)
X-Save-Headers:
X-Save-Outgoing:
X-Scanner:
X-Security:
X-Sender-ID:
X-Sender-IP:
X-Sender:
X-Sent-Mail:
X-Server-Date:
X-SMAP-Received-from:
X-SMTP-Client:
X-Source-IP: (added in MS 8.0.1.0)
X-SPAM-BAYESIAN__TOKEN: (added in JES MS 6.2)
X-SPAM-BDY-QUOTED_EMAIL_TEXT: (added in JES MS 6.2)
X-Spam-Flag: (added in MS 8.0)
X-SPAM-HDR-IN_REP_TO: (added in JES MS 6.2)
X-SPAM-HDR-REFERENCES: (added in JES MS 6.2)
X-SPAM-HDR-X_ACCEPT_LANG: (added in JES MS 6.2)
X-Spam-Level: (added in iMS 6.0)
X-SPAM-META-REPLY_WITH_QUOTES: (added in JES MS 6.2)
X-Spam-Score: (added in MS 8.0)
X-Spam-Status: (added in iMS 6.0)
X-Spook:
X-Status:
X-Sun-Charset:
X-Sun-Content-encoding:
X-Sun-Content-label:
X-Sun-Content-length:
X-Sun-Content-lines:
X-Sun-Data-description:
X-Sun-Data-name:
X-Sun-Data-type:

Channels 46–189

Header Fields Known to the MTA

X-Sun-Encoding-info:
X-Sun-Text-type:
X-Sybari-Space:
X-To:
X-Trace:
X-Truth:
X-UID:
X-UIDL:
X-URI: (added in iMS 6.0)
X-URL:
X-Virus-Scanned: (added in MS 8.0.1.0)
X-VMS-Cc:
X-VMS-From:
X-VMS-To:
X-WebMail-Urgent:
X-WebMail-UserId:
X-WM-Posted-At:
X-X-Sender:
X-Yow:
X400-Content-correlator:
X400-Content-identifier:
X400-Content-return:
X400-Content-type:
X400-MTS-identifier:
X400-Originator:
X400-Received:
X400-Recipients:
X400-Trace:
Xref:

46–190 Messaging Server Reference

Chapter 47 Rewrite rules
47.1 The rewrite group ... 47–2
47.2 Application of rewrite rules to addresses ... 47–2

47.2.1 Rewriting: extraction of the first host or domain specification 47–3
47.2.2 Rewriting: scanning for a domain match .. 47–5
47.2.3 Rewriting: applying the rewrite rule template 47–7
47.2.4 Rewriting: finishing the rewriting process .. 47–8
47.2.5 Rewriting: rewrite rule failure ... 47–8
47.2.6 Syntax checks after rewriting .. 47–8
47.2.7 Rewriting: domain literals ... 47–8

47.3 Rewrite rule patterns and tags ... 47–9
47.3.1 Initial match-all rule ... 47–11
47.3.2 A rule to match percent hacks ... 47–11
47.3.3 A rule to match bang-style addresses .. 47–12
47.3.4 A rule to match any domain literal .. 47–12
47.3.5 Rules to match domains containing exact numbers of components 47–12
47.3.6 A rule to match any address ... 47–13
47.3.7 Tagged rewrite rule sets .. 47–13

47.4 Rewrite rule templates .. 47–14
47.4.1 Rewrite rule template formats ... 47–14
47.4.2 Rewrite rule template substitutions and control sequences 47–16

47.5 Domain database .. 47–36

Domain rewriting rules, or, as they are more frequently called, rewrite rules, play two
important roles for the MTA: rewrite rules are used to convert addresses into true domain
addresses, and to determine their corresponding channels. These rules are used to rewrite
addresses appearing in both the transport layer and the message header. The transport layer is
the message's "envelope", which contains routing information and is invisible to the user. The
determination of to which channels a message should be enqueued results from rewriting its
envelope To addresses.

The rewrite rules and the table of channels cooperate to determine the disposition of each
address. Each address detected in a message is rewritten, startinga with the envelope To
address(es). The result of the rewrite process is a rewritten address and a "routing system" (as
determined from rewriting the envelope To address); i.e., the system to which the message is to
be sent. Depending upon the topology of the network, the routing system may only be the first
step along the path the message takes to reach its destination or it may be the final destination
system itself.

After the rewrite process has finished, a search is made for the routing system among the
MTA's channels. Each channel will have one or more host names associated with it. The
routing system name is compared against each of these names to determine to which channel
to enqueue the message.

Note that the MTA provides (many) other means of manipulating addresses for the purposes
of changing them for varied purposes, such as cosmetic changes, message forwarding,
mailing list processing, etc. See for instance Aliases. Rewrite rules are appropriate for global,
unconditional transformations of domain names to be controlled purely by the MTA (as
opposed to provisioning of domain name handling in, for instance, an LDAP directory), and
are required for configuring MTA routing of messages based on envelope To address.

Rewrite rules 47–1

The rewrite group

Every rewrite rule consists of two parts: a pattern (left hand side) followed by an equivalence
string or template (right hand side). The two parts must be separated by one or more spaces.
Spaces are not allowed in the parts themselves. In general, the template specifies a mailbox
name (e.g., username), a host/domain specification, and the name of a system attached to an
existing MTA channel to which messages to this address should be enqueued. The total length
of a line in the configuration file is limited to 1024 characters; the pattern is limited to 256
characters, and template (prior to substitutions) is also limited to 256 characters.

In legacy configuration, note that each rewrite rule would appear on a single line in the upper
half of the MTA configuration file. Comment lines (lines beginning with a comment character
such as exclamation point in the first column) but not blank lines could be placed between
rules. Rewrite rules could also, optionally, be stored in an auxiliary database called the domain
database.

In Unified Configuration, rewrite rules are stored under the rewrite XML element. But
they are most conveniently viewed and editted "as if" they were in the legacy configuration
imta.cnf file, by using the msconfig command EDIT REWRITES.

The syntax of rewrite rules is discussed in further detail in Rewrite rule patterns and tags
and Rewrite rule templates. First, however, Application of rewrite rules to addresses gives an
overview of the action of rewrite rules in operation.

aTechnically, rewriting begins with a preliminary rewrite of the envelope From address, for
access control and source channel determination purposes. After that, the envelope To address
is rewritten (possibly sensitive to the source channel), and then with destination channel(s)
determined (due to the rewriting of the envelope To address) the envelope From address
receives another, "real" rewriting now that the destination channels are known.

47.1 The rewrite group
In Unified Configuration, the rewrite group is not an option itself, but rather a list of all the
MTA's rewrite rules. For instance:

msconfig> show rewrite *
role.rewrite.rule = $* AEFU%HV$H@&/IMTA_HOST/
role.rewrite.rule = &/IMTA_HOST/ $U%$D@&/IMTA_HOST/
role.rewrite.rule = &/IMTA_DEFAULTDOMAIN/ $U%$D@&/IMTA_HOST/
role.rewrite.rule = .ims-ms-daemon $U%$H.ims-ms-daemon@ims-ms-daemon
role.rewrite.rule = .pipe-daemon $U%$H.pipe-daemon@pipe-daemon
role.rewrite.rule = . $U%$H$,$H@TCP-DAEMON
role.rewrite.rule = [] ER${INTERNAL_IP,$L}$U%[$L]@tcp_intranet-daemon
role.rewrite.rule = hold-daemon $U%$H@hold-daemon
role.rewrite.rule = .hold-daemon $U%$H@hold-daemon

Rewrite rules are typically most conveniently manipulated by using the msconfig command
EDIT REWRITES, which allows viewing them and editting them "as if" they were the upper
half of a legacy imta.cnf file.

47.2 Application of rewrite rules to addresses
This section presents a discussion of the operation of domain rewriting rules: how an address
is parsed and then transformed via rewrite rules. This section touches briefly on the syntax of

47–2 Messaging Server Reference

Rewriting: extraction of the first
host or domain specification

rewrite rules as such syntax relates to example addresses, but for full details on rewrite rule
syntax, see Rewrite rule patterns and tags and Rewrite rule templates.

There are four steps in the application of the domain rewriting rules to a given address:

1. The first host or domain specification is extracted from the address. (Note that an address
may specify more than one host or domain name as is the case with the address jdoe
%host1@domain.com.)

2. After extracting the first host or domain name specification, the rewrite rules are scanned
for a matching rewrite rule. That is, a search is conducted for a rewrite rule whose pattern
portion matches the extracted host/domain name.

3. Once a matching rewrite rule is found, the address is rewritten according to the template
portion of that rule. The template also specifies the name of a routing system to which
messages to this address should be routed.8

4. The routing system name is then compared with the host names associated with each
channel. If a match is found, then the message is enqueued to that channel; otherwise, the
rewriting process is considered to have failed. If the matching channel is the local channel,
then some additional rewriting of the address may occur.

These four steps are described in detail in the following subsections. There are also special
template formats which allow for variations in these four steps.

Note 8The term "routing system" can be misleading. It does not necessarily mean the name of a
system through which the message will be routed but rather is a host name, possibly fictitious,
associated with a specific channel.

47.2.1 Rewriting: extraction of the first host or domain
specification

The process of rewriting an address starts by extracting the first host/domain specification
from the address. (Readers who are not familiar with RFC 822 address conventions are advised
to read that standard, at least in a cursory fashion, at this point in order to understand the
following discussion.) The order in which host/domain specifications in the address are
scanned is as follows:

1. Hosts in source routes (read from left to right).

2. Hosts appearing to the right of the at sign.

3. Hosts appearing to the right of the last singleton percent sign.

4. Hosts appearing to the left of the first exclamation point.

The order of the last two items are switched if the bangoverpercent channel option is
in effect on the channel that is doing the address rewriting, that is, if the channel which is
attempting to enqueue the message is itself marked with the bangoverpercent channel
option.9

Some highly hypothetical examples of addresses and the host name that would be extracted
first are shown below:

Rewrite rules 47–3

https://tools.ietf.org/html/rfc822

Rewriting: extraction of the first
host or domain specification

Table 47.1 Example Host Name Extractions During Rewriting

Address First host/domain
specification

Comments

user@a a a is a "short-form" domain name
user@a.b.c a.b.c a.b.c is a "fully-qualified" domain name

(FQDN)
user@[0.1.2.3] [0.1.2.3] [0.1.2.3] is a "domain literal"
@a:user@b.c.d a This is a source-routed address with a a short-

form domain name, the "route"
@a.b.c:user@d.e.f a.b.c Source routed address, route part is fully-

qualified
@[0.1.2.3]:user@d.e.f [0.1.2.3] Source-routed address, route part is a domain

literal
@a,@b,@c:user@d.e.f a Source-routed address with an a to b to c

routing
@a,@[0.1.2.3]:user@b a Source-routed address with a domain literal

in the route part
user%A@B B This non-standard form of routing is called a

"percent hack"
user%A%B%C@D D A built up percent hack
user%A A
user%A%B B
user%%A%B B
user%A%%B A%%B Of questionable value
@A:user%B@C A
A!user A "Bang-style" addressing; commonly used for

UUCP
A!user@B B
A!user%B@C C
A!user%B B nobangoverpercent channel option active;

the default
A!user%B A bangoverpercent channel option active
@A:B!user@C A
@A,@B:C!user%D@E A Too grotesque to consider, really

Note that RFC 822 does not say anything about the interpretation of exclamation points, !, and
percent signs, %, in addresses. It is customary to interpret percent signs in the same manner as
at signs, @, if no at sign is present, so this convention is adopted by the MTA.

The special interpretation of repeated percent signs is used to allow percent signs as part
of local usernames, which is used in handling PSIMail and other foreign mail system
addresses. The interpretation of exclamation points conforms to RFC 976's "bang-style" address
conventions and makes it possible to use UUCP addresses with the MTA.

47–4 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc976

Rewriting: scanning for a domain
match

 The order of interpretation of exclamation points vs. percent signs is not specified by either
RFC 822 or RFC 976, so the bangoverpercent and nobangoverpercent keywords can be
used to control the order in which they are applied by the channel doing the rewriting. Note
that the default is more "standard", although the alternate setting may be useful under some
circumstances.
9 For instance, if this is a message being submitted to the SMTP port from a "local" client, then
the enqueueing channel is typically tcp_intranet, or tcp_auth if the user authenticates.
If this is a message being submitted to the SMTP SUBMIT port from a "local" client, then the
enqueueing channel is typically tcp_submit. If it is a message coming in from a remote
Internet user, then usually it will be the tcp_local channel doing the enqueueing.

47.2.2 Rewriting: scanning for a domain match
Once the first host/domain specification has been extracted from the address, the MTA
consults the rewrite rules to find out what to do with it. Initially, the exact host/domain
specification is compared with the pattern part of each rule (i.e., the left-hand side of each
rule). This comparison is (and the rest of the comparisons discussed below are also) case
insensitive. Case insensitivity is mandated by RFC 822, UUCP addresses notwithstanding. The
MTA is insensitive to case but preserves it whenever possible.

As of MS 8.0.2.2, if A-labels (see RFC 5890 section 2.3.2.1) are present they are both looked
up as-is and in U-label form. Similarly, if U-labels are present they are converted to A-labels,
looked up, then converted back to U-labels and looked up. Finally, any U-labels specified
on the left hand side of a rewrite rule are converted to A-labels and back again when the
rewrite rules are loaded, so they will match even if they are specified in uncanonical and/or
unnormalized formats.

If the pattern matches, then the host/domain is transformed as specified by the rewrite rule
template (right hand side). If that (transformed, as appropriate) host/domain specification then
matches a channel official host name, the rewriting is considered complete and the address is
considered to match that channel.

 New in Comms Suite 7.0 is support for attempting an initial, special rewrite of a host/domain
with a trailing dot. (Such a trailing dot on a host/domain name is illegal in Internet domain
names, but has been tolerated in some contexts by the MTA for a long time. RFC 1123 points
out that trailing dots are syntactically illegal in email but notes that some convention needs
to exist in user interfaces where short form names can be used. Accordingly, it may be handy
in contexts like SMTP submission of messages, SMTP SUBMIT, to be able to accept addresses
with trailing dots, and then remove the dot while attaching special semantics to its initial
presence.) New in 7.0, the MTA will attempt to rewrite the host/domain with the trailing dot
present; if that fails, then the MTA will remove the trailing dot from the host/domain and then
continue rewriting attempts, as normal, from that point on with the trailing dot removed.

As of MS 7.0U3, if the host/domain doesn't match and is a domain literal of the form
"[channel:name]", where "name" is the name of an existing channel, a rewrite rule of the form:

[channel:name] $U%$D@official-host-name

where "official-host-name" is the official channel host associated with the channel "name", is
synthesized and used. This channel name form for domain names is primarily intended for use
in source routes.

If the host/domain specification does not match any pattern, in which case it is said to "not
match any rule", then the first part of the host/domain specification --- the part before the

Rewrite rules 47–5

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc976
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5890
https://tools.ietf.org/html/rfc1123

Rewriting: scanning for a domain
match

first period, usually the host name --- is removed and replaced with an asterisk and another
attempt is made to locate the resulting host/domain specification, but only in the regular
rewrite rules (those in the imta.cnf file or in Unified Configuration rewrite group -- the
domain database is not consulted). If this fails the first part is removed and the process is
repeated. If this also fails the next part is removed (usually a subdomain) and the rewriter
tries again, first with asterisks and then without, as long as there is still at least one portion of
the original host/domain specification remaining. All probes that contain asterisks are only
done in the regular rewrite rules table (those rewrite rules in imta.cnf or in the rewrite
group in Unified Configuration); the domain database is not checked. This process proceeds
until either a match is found or the host/domain specification up to (but not including) its last
portion is exhausted. The effect of this procedure is to try to match the most specific domain
first, working outward to less specific and more general domains.

If the entire host/domain specification with the exception of its last (right-most) portion has
been exhausted looking for a rewrite rule pattern that matches and a match has still not been
found, then an additional check of the entire host/domain specification is performed; namely
the channel host table is scanned for a matching host name associated with a channel; that is,
the entire host/domain specification is compared against any channel official host names and
host name aliases on channel definitions to look for a mtach.

If a match has still not been found, then a special all-components-replaced-by-asterisks attempt
is made, (in particular, in the case of short-form host names an * lookup is attempted) in the
regular rewrite rules (those in imta.cnf or in the rewrite group in Unified Configuration),
see Rules to match domains containing exact numbers of components; and if that did not
succeed then the special "match-all" rule described in A_rule_to_match_any_address is
attempted.

A somewhat more algorithmic view of this matching procedure is given below.

1. The host/domain specification is used as the initial value for the comparison strings spec_1
and spec_2. E.g., spec_1 = spec_2 = a.b.c).

2. The comparison string spec_1 is compared with the pattern part of each rewrite rule in
the imta.cnf configuration file (legacy configuration) or the rewrite group (Unified
Configuration), and then the domain database, until a match is found. The matching
procedure is exited if a match is found.

3. If no match is found then the leftmost, non-asterisk part of spec_2 is converted to an
asterisk. E.g., if spec_2 is a.b.c then it is changed to *.b.c; if spec_2 is *.b.c then it is changed
to *.*.c; etc. The resulting comparison string spec_2 is compared with only the configuration
file (legacy configuration) or the rewrite group (Unified Configuration). The domain
database is not consulted. The matching procedure is exited if a match is found.

4. If no match is found then the first part, including any leading period, of the comparison
string spec_1 is removed. In the case where spec_1 has only one part (e.g., .c or c), the string
is replaced with a single period, ".". If the resulting string spec_1 is of non-zero length, then
we return to Step 1. If the resulting string has zero length (i.e., was previously ".") then the
lookup process has failed and we exit the matching procedure.

For example, suppose the address dan@sc.cs.cmu.edu is to be rewritten. This causes the
rewriter to look for the following patterns in the given order:

Table 47.2 Rewriting dan@sc.cs.cmu.edu Example

Pattern Files Scanned

47–6 Messaging Server Reference

Rewriting: applying the rewrite
rule template

$* configuration file/rewrite group rules and then domain database;
this is the Initial match-all rule

sc.cs.cmu.edu configuration file/rewrite group rules and then domain database
*.cs.cmu.edu configuration file/rewrite group rules only
.cs.cmu.edu configuration file/rewrite group rules and then domain database
..cmu.edu configuration file/rewrite group rules only
.cmu.edu configuration file/rewrite group rules and then domain database
..*.edu configuration file/rewrite group rules only
.edu configuration file/rewrite group rules and then domain database
sc.cs.cmu.edu channel host name table (those official host names and host name

aliases specified in channel definitions)
..*.* configuration file/rewrite group rules only; this is an example of

Rules to match domains containing exact numbers of components
. match-all rule described in A rule to match any address

Note: Always remember that patterns involving asterisks (except the initial match-all pattern,
$*) are only searched for in the configuration file's set of rewrite rules; no searching is done for
these patterns in the domain database.

47.2.3 Rewriting: applying the rewrite rule template
Once a host/domain specification matches a rewrite rule, it is rewritten using the template part
of the rule. The template specifies three things:

1. a new username for the address,

2. a new host/domain specification for the address, and

3. the name of a system attached to an existing MTA channel (the "routing system") to which
messages to this address should actually be sent.

Template format is discussed in detail in Rewrite_rule_templates. As a quick overview, note
that the most common format for templates is A%B@C, where A is the new username, B is the
new host/domain specification, and C is the routing system. And the format A@C (which is an
abbreviation for A%C@C) is also commonly used.

Substitution strings are allowed in the template. For instance, to mention some of the more
commonly used substitution strings, any occurrences of $U in the template are replaced with
the username from the original address, any occurrences of $H are replaced with the portion of
the host/domain specification that was not matched by the rule, and any occurrences of $D are
replaced by the portion of the host/domain specification that was matched by the rewrite rule.
Summary of template substitutions and control sequences contains a summary of these and
other substitution strings which are presented in detail in Rewrite rule template substitutions
and control sequences.

As an example, suppose that the host/domain specification jdoe@domain.com has matched the
rewrite rule

domain.com $U@DOMAIN.COM

Rewrite rules 47–7

Rewriting: finishing the rewriting
process

Then the template will produce the username jdoe, the host/domain specification
DOMAIN.COM, and the routing system DOMAIN.COM. In a slightly more complicated
example, assume that the host/domain specification has matched the rewrite rule

.com $U%$H$D@TCP-DAEMON

In this case, $U = jdoe, $H = domain, and $D = .com. The template produces the username
jdoe, the host/domain specification domain.com, and the routing system TCP-DAEMON.

47.2.4 Rewriting: finishing the rewriting process
One of two things can happen once the host/domain specification is rewritten. If the routing
system is not associated with either the local channel or a channel explicitly marked with
the routelocal channel option, or in any case when there are no additional host/domain
specifications in the address, then the rewritten specification is substituted into the address
replacing the original specification that was extracted for rewriting, and the rewriting process
terminates.

If the routing system matches the local channel (or a channel marked with the routelocal
channel option) and there are additional host/domain specifications that appear in the address,
then the rewritten address is discarded, the original (initial) host/domain specification is
removed from the address, a new host/domain specification is extracted from the address
and the entire process is repeated. Rewriting will continue until either all the host/domain
specifications are gone or a route through a non-local, non-routelocal channel is found.
This iterative mechanism is the MTA's way of providing support for source routing. In effect,
superfluous routes through the "local system" are removed from addresses by this process.

47.2.5 Rewriting: rewrite rule failure
If a host/domain specification fails to match any rewrite rule and no default rule (that is,
match-all rule) is present, the MTA simply uses the specification "as-is"; i.e., the original
specification becomes both the new specification and the routing system. If the address has a
nonsensical host/domain specification it will be detected when the routing system does not
match any system name associated with any channel. This relaxed interpretation of rewrite
rule failures allows isolated MTA sites that only communicate with a small number of systems
to get by without any rewrite rules whatsoever.

47.2.6 Syntax checks after rewriting
No additional syntax checking is done after the rewrite rules have been applied to an address.
This laxity is deliberate --- it makes it possible for rewrite rules to be used to convert addresses
into formats that do not conform to RFC 822. However, this also means that configuration
mistakes in the rewrite rules may result in messages leaving the MTA system with incorrect or
illegal addresses.

47.2.7 Rewriting: domain literals
Domain literals are handled specially during the rewriting process. If a domain literal
appearing in the domain portion of an address does not match a rewrite rule pattern as-is,
the literal is interpreted as a group of strings separated by periods and surrounded by square
brackets.a The rightmost string is removed and the search is repeated. If this does not work
the next string is removed, and so on until only empty brackets are left. If the search for empty
brackets fails, the entire domain literal is removed and rewriting proceeds with the next

47–8 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Rewrite rule patterns and tags

section of the domain address, if there is one. No asterisks are used in the internal processing
of domain literals; when an entire domain literal is replaced by an asterisk the number of
asterisks corresponds to the number of elements in the domain literal.

Like normal domain/host specifications, domain literals are also tried in most specific to least
specific order. The first rule whose pattern matches will be the one used to rewrite the host/
domain specification. If there are two identical patterns in the rules list, the one which appears
first will be used.

As an example, suppose the address dan@[128.6.3.40] is to be rewritten. The rewriter looks for
[128.6.3.40], then [128.6.3.], then [128.6.], then [128.], then [], then [*.*.*.*], and finally the match-
all rule ".".

When domain literals are combined with domain names the number of lookup attempts gets
to be quite large. This is not normal usage and its use is strongly discouraged. For example, the
address dan@[1.2].a.[3.4].b would generate requests for:

[1.2].a.[3.4].b
[1.].a.[3.4].b
[].a.[3.4].b
[*.*].a.[3.4].b
.a.[3.4].b
[*.*].*.[3.4].b
.[3.4].b
[*.*].*.[3.].b
.[3.].b
[*.*].*.[].b
.[].b
[*.*].*.[*.*].b
.b
[*.*].*.[*.*].*
.

 New in MS 7.0, the MTA supports the RFC 2822 definition of spaces in domain literals as
FWP, or in other words, semantically null; (note that the meaning of such spaces had not been
specified in RFC 822). That is, as of MS 7.0, the MTA will canonicalize user@[a . b . c .
d] as user@[a.b.c.d], which would not have occurred in previous versions.
a Note that the support of numeric domain literals is not required by either the MTA or RFC
822. Their support is enabled by including IP literal rewrite rules in the MTA configuration.

47.3 Rewrite rule patterns and tags
Most rewrite rule patterns consist either of a specific host name that will match only and
exactly that host, e.g.,

host.domain.com

or consist of a subdomain pattern that will match any host/domain in the entire subdomain,
e.g.,

.domain.com

Rewrite rules 47–9

https://tools.ietf.org/html/rfc2822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822

Rewrite rule patterns and tags

A rewrite rule pattern such as the above would match any host.domain.com or
host.subnet.domain.com sort of host/domain name. Note, however, that it will not match
the exact host name domain.com; to match the exact host name domain.com, a separate
domain.com pattern would be needed.

The matching in rewrite rule patterns is case-insensitive: uppercase and lowercase are not
significant, in either the pattern, or in the domain of the address being rewritten. (Note,
however, that rewrite rule templates preserve case.)

Since as discussed in Rewriting: scanning for a domain match the MTA attempts to rewrite
host/domain names starting from the specific host name and then incrementally generalizing
the name to make it less specific, this means that a more specific rewrite rule pattern will be
preferentially used over more general rewrite rule patterns. For instance, if the rewrite rule
patterns

hosta.subnet.domain.com
.subnet.domain.com
.domain.com

are present in the configuration file (legacy configuration) or the rewrite group
(Unified Configuration),b then an address of jdoe@hosta.subnet.domain.com will
match the specific hosta.subnet.domain.com rewrite rule pattern, while an address of
jdoe@hostb.subnet.domain.com will match the more general .subnet.domain.com rewrite rule
pattern, and an address of jdoe@hostc.domain.com will match the .domain.com rewrite rule
pattern.

In particular, the use of rewrite rules incorporating subdomain rewrite rule patterns is
common for sites on the Internet. Such a site will typically have a number of rewrite rules
for their own internal hosts and subnets, and then will include rewrite rules for the top-
level Internet subdomains into their configuration: in older configuration, from the file
internet.rules stored in the MTA's table (config) directory, or in newer configurations
from the tlds.txt file.

In older configurations, the incorporation of rewrite rules from internet.rules such as

! Ascension Island
.AC $U%$H$D@TCP-DAEMON
 ...[text removed for brevity]...
! Zimbabwe
.ZW $U%$H$D@TCP-DAEMON

with rewrite rule patterns that match the top level Internet domains and rewrite rule templates
that rewrite addresses matching such patterns to an outgoing TCP/IP channel, ensure that
messages to Internet destinations (other than to the internal host destinations handled via
more specific rewrite rules) will be properly rewritten and routed out an outgoing TCP/IP
channel.

In newer configurations, a similar effect is obtained via the special rewrite rule:

. $U%$H$,$H@TCP-DAEMON

where the special $,$H sequence causes a lookup of the entire unmatched domain (the $H) in
the tlds.txt file (the $,) listing current Top Level Domains.

47–10 Messaging Server Reference

Initial match-all rule

IP domain literals follow a similar hierarchical matching pattern, though with right-to-left
(rather than left-to-right) matching. For instance, the pattern

[1.2.3.4]

matches only and exactly the IP literal [1.2.3.4], while

[1.2.3.]

matches anything in the 1.2.3.0 subnet.

In addition to the more common sorts of host or subdomain rewrite rule patterns discussed
above, rewrite rules may also make use of several special patterns, summarized in Summary of
special patterns for rewrite rules, and discussed in the following subsections.

Table 47.3 Summary of special patterns for rewrite rules

Pattern Name Usage
$* Match-first rule Initial, prior-to-all-else rewrite rule,

matches everything
$% Percent hack rule Matches any host/domain specification of

the form A%B.
$! Bang-style rule Matches any host/domain specification of

the form B!A.
[] IP literal match-all rule Match any IP domain literal.
*, *.*, *.*.*, etc. Match-exactly-n-components-

domain-names rules
A rule with all asterisks will match any
domain name containing that exact
number of components; in particular, *
matches any short form host.

. Match-all rule Matches any host/domain specification.

In addition to these special patterns, the MTA also has the concept of "tags" which may appear
in rewrite rule patterns. These tags are used in situations where an address may be rewritten
several times and, based upon previous rewritings, distinctions must be made in subsequent
rewritings by controlling which rewrite rules match the address; see Tagged rewrite rule sets.

47.3.1 Initial match-all rule
The special pattern $* is applied before any other rewriting, and matches all addresses. Its
usual use is as a fundamental part of a "direct LDAP" setup, to achieve LDAP-based routing of
domains. That is, its usual use is in conjunction with a template looking up domains in LDAP,
so that domains are looked up in LDAP prior to any other rewriting. For example:

$* AEFU%HV$H@official-host-name-of-l-channel

47.3.2 A rule to match percent hacks
If the MTA tries to rewrite an address of the form A%B and fails, it tries one extra rule before
falling through and treating this address form as A%B@localhost. This extra rule is the percent
hack rule. The pattern is $%. The pattern never changes. This rule is only activated when a

Rewrite rules 47–11

A rule to match bang-style
addresses

local part containing a percent sign has failed to rewrite any other way (including the match-
all rule described below).

The percent hack rule is useful for assigning some special, internal meaning to percent hack
addresses.

47.3.3 A rule to match bang-style addresses
If the MTA tries to rewrite an address of the form B!A and fails, it tries one extra rule before
falling through and treating this address form as B!A@localhost. This extra rule is the bang-style
rule. The pattern is $!. The pattern never changes. This rule is only activated when a local part
containing an exclamation point has failed to rewrite any other way (including the match-all
rule).

The bang-style rule can be used to force UUCP style addresses to be routed to a system with
comprehensive knowledge of UUCP systems and routing.

47.3.4 A rule to match any domain literal
If the MTA tries to rewrite an address whose domain is of the form [n.m.p.q] and fails, it
tries one extra rule (prior to trying [*.*.*.*], and then the "." match-all rule). This extra
rule is the IP literal match-all rule. The pattern is []. The pattern never changes. This rule
is only activated when more specific probes including all or part of the IP address have not
matched. (See Handling of domain literals for a discussion of the order in which portions of an
IP address are checked for a match.)

In particular, a rewrite rule using the [] pattern and with ER in the template (thus meaning
that the rewrite rule applies only to envelope From addresses) is typically used in modern
MTA configurations to perform a lookup of a pseudo-address constructed from the incoming
source IP of SMTP connections against the INTERNAL_IP mapping table and then to
"switch" the incoming SMTP connection to an "internal" channel such as tcp_intranet, if
appropriate.

47.3.5 Rules to match domains containing exact
numbers of components

Special patterns of the form *, *.*, *.*.*, etc., may be used to provide penultimate, fall-
through matches for domains containing the specified number of components (the same
number of components in the original host/domain specification as the number of asterisks
in the pattern). A rewrite rule pattern with the same number of asterisks as components in
the original host/domain specification will be checked after the comparison of the original,
unmatched host/domain specification against the channel host name table, and before the "."
match-all rule. That is, when no more specific rewrite rule match has been found, nor has a
match been found in the channel host name table, then all components of the original host/
domain specification are replaced by asterisks for one last probe (prior to the "." match-all
rule). If a rewrite rule pattern containing that exact same number of asterisk components is
found, then that rewrite rule is considered to match the host/domain and is applied.

One of the more common uses of this form of pattern is that of a * pattern for matching all
short form host names (host names unadorned by any higher-level domain components). For
example:

* $U%$H.domain.com

47–12 Messaging Server Reference

A rule to match any address

(Though in the modern Internet environment, in the interests of encouraging proper use of
correct domain names, it is often better to instead discourage all use/acceptance of short form
names.)

Note that, as with all asterisk-in-place-of-component(s) probes, these probes are only made to
the configuration file (legacy configuration) or rewrite group (Unified Configuration), not to
the domain database.

47.3.6 A rule to match any address
The special pattern "." (a single period) will match any host/domain specification if no other
rule matches and the host/domain specification cannot be found anywhere in the channel
table. In other words, the "." rule is used as a last resort when address rewriting would fail
otherwise.

In times past, with a slower changing set of Top Level Domains, the "." rewrite rule was less
commonly used. Instead, in the past, use of an internet.rules file of rewrite rules for
matching the (seldom changing) known top-level Internet Domains permitted immediate
feedback on addresses with clearly invalid Top Level Domains -- immediate feedback on
obvious mispellings of TLDs. With that approach, "known" Internet TLDs could be routed
by the rewrite rules in internet.rules, but "bogus" TLDs, not matching any rewrite rule,
would be detected during rewriting, and rejected. As such, in the past, the special "." rule
tended to be used only when the MTA did not have complete routing information available
and had to defer judgment of address validity to another system or systems. In those cases,
the "." pattern was used to simplify the MTA configuration at the expense of allowing
propagation of possibly bogus addresses.

However, nowadays "." is routinely used in an important rewrite rule making a comparison
against a (frequently updated) tlds.txt list of Top Level Domains to achieve routing of
Internet addresses with apparently valid TLDs, while not propagating addresses with invalid
TLDs. Nowadays, the internet.rules file, instead of containing distinct rewrite rules for
each Top Level Domain, merely contains the one special rewrite rule:

. $U%$H$,$H@TCP-DAEMON

Here the "." pattern causes all domain names not matched by other, more specific rewrite
rules to get matched. However, the $, compares the top-level portion of the domain
substituted by $H (in the case of this rewrite rule with a "." match, the $H substitutes back
the entire domain in the address) against the list in tlds.txt and the rewrite rule will only
succeed if a match is found: this rewrite rule will only succeed if the top-level portion of the
domain of the address being rewritten can be found in tlds.txt.

Note: When the match-all rule matches and its template is expanded, $H expands to the full
host name and $D expands to a single dot ".". Thus, $D is of limited use in a match-all rule
template!

47.3.7 Tagged rewrite rule sets
As the rewrite process proceeds it may be appropriate to bring different sets of rules into play.
This is accomplished by the use of the rewrite rule tag. The current tag is prepended to each
pattern before looking it up in the configuration file (legacy configuration) or rewrite group
(Unified Configuration), or domain database. The tag can be changed by any rewrite rule that
matches by using the $T substitution string in the rewrite rule template (described below).

Rewrite rules 47–13

Rewrite rule templates

Tags are somewhat sticky; once set they will continue to apply to all hosts that are extracted
from a single address. This means that care must be taken to provide alternate rules that begin
with the proper tag values once any tags are used. In practice this is rarely a problem since
tags are usually used in only very specialized applications. Once the rewriting of the address is
finished the tag is reset to the default tag --- an empty string.

By convention all tag values end in a vertical bar |. This character is not used in normal
addresses and thus is free to delineate tags from the rest of the pattern.

See Section 2.2.6.19 for an example of using tagged rewrite rules.

47.4 Rewrite rule templates
Once a host/domain specification matches a rewrite rule, it is rewritten using the template part
(right hand side) of the rule. The template specifies three things:

1. a new username for the address,

2. a new host/domain specification for the address, and

3. the name of a system attached to an existing MTA channel (the "routing system") to which
messages to this address should actually be sent.

There are several general formats for rewrite rule templates, which will be discussed in
Rewrite rule template formats, depending upon whether an address is merely being changed
or whether source routing should be explicitly specified (or even added to the address).
Various substitutions and control sequences are available to further fine-tune the application of
rewrite rules.

Note that the character case in templates is preserved. This is necessary when using rewrite
rules to provide an interface to a mail system such as UUCP which is sensitive to character
case. Substitution sequences like $U and $D that substitute material extracted from addresses
also preserve the original case of characters. (Special Rewrite case control substitutions may be
used when it is desirable to alter case, rather than preserve it.)

47.4.1 Rewrite rule template formats
A summary of the template formats for rewrite rules is presented in Summary of template
formats for rewrite rules. The substitution strings and control sequences which may be used
with templates are discussed in Rewrite rule template substitutions and control sequences.

Table 47.4 Summary of template formats for rewrite rules

Template Usage
A%B A becomes the new user/mailbox name, B becomes the new host/

domain specification, rewrite again
A@B Treated as A%B@B
A%B@C A becomes the new user/mailbox name, B becomes the new host/

domain specification, route to C
A@B@C Treated as A@B@C@C.
A@B@C@D A becomes the new user/mailbox name, B becomes the new host/

domain specification, insert C as a source route, route to D

47–14 Messaging Server Reference

Rewrite rule template formats

Other formats, such as A%B%C and so forth, are reserved for the implementation of future
capabilities in the MTA and should not be used as their function may change in a future
release.

47.4.1.1 Ordinary rewriting templates, A@B or A%B@C

The most commonly used form of rewrite rule template is A%B@C, where A is the new
username, B is the new host/domain specification, and C is the routing system (official channel
name). If B and C are identical, %B may be omitted; i.e., you may simply use A@C when B and
C are identical.

For instance, if an MTA for domain.com has the system (host) name host.domain.com
(the official host name of the "l" channel), and if the default email domain name is
mail.domain.com, then typical rewrite rules could include:

host.domain.com $U%host.domain.com@hostname.domain.com
mail.domain.com $U%mail.domain.com@hostname.domain.com

meaning that addresses with domain names of host.domain.com or mail.domain.com
will be routed, (without any beforehand domain name change) to the "l" channel.

Note that in a current Unified Configuration, such rewrite rules would typically
be automatically generated, and make use of the $D and &/IMTA_HOST/ and &/
IMTA_DEFAULTDOMAIN/substitutions, to appear as:

msconfig> show rewrite
...other rewrite rules...
role.rewrite.rule = &/IMTA_HOST/ $U%$D@&/IMTA_HOST/
role.rewrite.rule = &/IMTA_DEFAULTDOMAIN/ $U%$D@&/IMTA_HOST/
...other rewrite rules

47.4.1.2 Repeated rewriting template, A%B

The special rewrite rule template format A%B is used for "meta-rules" that require additional
rewriting after their application. When an A%B pattern is encountered, A becomes the new
username and B becomes the new host/domain specification, and then the entire rewriting
process is repeated on the resulting new address. All other rewrite rule formats cause the
rewriting process to terminate after the rule has been applied.

For example, the rule

.removeable $U%$H

has the effect of removing all occurrences of the .removeable domain from the ends of
addresses.

Extreme care must be taken when using these repeating rules; careless use can create a "rules
loop" that will hang the MTA in an infinite loop. (The MTA will attempt to detect simple cases
of such loops to abort out after 100 repetitions: but even so this is (a) inefficient use of the MTA
computation time, and (b) not fail-safe, as more complex loops may not be detectedable by the
MTA.) For this reason meta-rules should only be used when absolutely necessary. Be sure to
test them with the command imsimta test -rewrite.

Rewrite rules 47–15

Rewrite rule template substitutions
and control sequences

47.4.1.3 Specified route rewriting templates, A@B@C or
A@B@C@D

The special rewrite rule template format A@B@C works in the same way as the usual A%B@C
rule, except that the routing system C will also be inserted into the address as a source route.
This inclusion of the routing system in the address may be needed by some channels that have
to establish a connection to the routing system and determine the name of the routing system
from the envelope To address. For instance, the rewrite rule

host1.domain.com $U@host1.domain.com@hub.domain.com

would rewrite the address jdoe@host1.domain.com into the source routed address
@hub.domain.com:jdoe@host1.domain.com. The routing system will be hub.domain.com.

The template format A@B@C@D uses A as the new username, B is the new host/domain
specification, C is inserted as a source route, and D is the routing system. This is the most
general template format available.

47.4.2 Rewrite rule template substitutions and control
sequences

Substitutions are used to substitute into the rewritten address a character string the value of
which is determined by the particular substitution sequence used. For instance in the template

$U@domain.com

the $U is a substitution sequence. It causes the username portion of the address being rewritten
to be substituted into the output of the template. Thus, if jdoe@host1.domain.com was
being rewritten by this template, the resulting output would be jdoe@domain.com, the $U
substituting in the username portion, jdoe, of the original address.

Special control sequences may also appear in rewrite rule templates. These sequences impose
additional conditions to the applicability of a given rewrite rule: not only must the pattern
portion of the rewrite rule match the host/domain specification being examined, but other
aspects of the address being rewritten must meet conditions set by the control sequence or
sequences. For instance, the $E control sequence requires that the address being rewritten be
an envelope address while the $F sequence requires that it be a forward pointing address.
Thus, the rewrite rule

domain.com $U@domain.com$E$F

will only apply to (i.e., only rewrite) envelope To addresses of the form user@domain.com. If a
domain/host specification matches the pattern portion of a rewrite rule but doesn't meet all of
the criteria imposed by control sequences in the rule's template, then the rewrite rule fails and
the rewriter continues to look for other applicable rules. This makes possible sets of rewrite
rules such as

domain.com $U%domain.com@conversion-daemon$Nconversion
domain.com $U@domain.com

47–16 Messaging Server Reference

Rewrite rule template substitutions
and control sequences

which will result in messages to user@domain.com being passed to the conversion
channel. However, should the conversion channel rewrite a message with the address
user@domain.com, that message will not again pass through the conversion channel. This
then allows all mail to user@domain.com to pass through the conversion channel and for the
conversion channel to emit mail to that address without causing a mail loop. (Note: This is
not a realistic example, as actual routing through the conversion channel is normally instead
handling via the CONVERSIONS mapping table rather than through rewrite rules; but this sort
of rewrite rule approach could be used with other channels, such as a tcp_scanner type of
channel.)

A summary of template substitutions and control sequences is presented in Summary of
template substitutions and control sequences.

Table 47.5 Summary of template substitutions and control sequences

Substitution
sequence

Substitutes

$D Portion of domain specification that matched
$G Insert current default host
$nG Insert nth element, counting from left to right, of current default host
$H Unmatched portion of host/domain specification; left of dot in pattern
$L Unmatched portion of domain literal; right of dot in pattern literal
$U Username from original address
$0U Local part (username) from original address, minus any subaddress
$1U Subaddress, if any, from local part (username) of original address
$$ Inserts a dollar sign (literal)
$% Inserts a percent sign (literal)
$@ Inserts an at sign (literal)
$\ Force substituted material to lowercase
$^ Force substituted material to uppercase
$_ Use original case (and do not do LDAP URL character encoding)
$= Force subsequent material to be properly quoted (encoded) according to LDAP

URL syntax rules
$.text. Specify text to use as the rewrite result in cases of temporary LDAP lookup failures

and as of MS 8.1.0.6, temporary failures from routine callouts
$.. Turn off special handling of temporary failures; temporary failures will be

interpreted as rewrite rule failure
$W Substitutes in a random, unique string
$<...> Substitute in a hash of the argument
$n<...> Substitute in a hash of the argument, modulo n
$]...[LDAP search URL lookup
$(text) General "database" substitution; rule fails if lookup fails
${...} Apply specified mapping to supplied string
$n{...} Apply specified mapping to supplied string along with prefixes specified by n.

Rewrite rules 47–17

Rewrite rule template substitutions
and control sequences

$[...] Invoke customer supplied routine; substitute in result
$&n nth part of unmatched (or wildcarded) host as counting from left to right starting

from 0
$!n nth part of unmatched (wildcarded) host as counted from right to left starting from

0
$*n nth part of matching pattern as counting from left to right starting from 0
$#n nth part of matching pattern as counted from right to left starting from 0
$nD Portion of domain specification that matched, preserving from the nth leftmost part

starting from 0
$nH Portion of host/domain specification that didn't match, preserving from the nth

leftmost part starting from 0
$Y Equivalent to $1Y; that is, substitute in the 1st (counting from the left, starting from

0) field of the transport information; for the case of incoming SMTP messages, this
corresponds to the SMTP server IP address

$nY Substitute in the nth (counting from the left, starting from 0) field of the transport
information; hence, for incoming SMTP messages $0Y substitutes in the literal
string " TCP", $1Y (see also $Y) substitutes in the SMTP server IP address, $2Y
substitutes in the SMTP server port, $3Y substitutes in the SMTP client IP address,
and $4Y substitutes in the SMTP client port

Control sequence Effect on rewrite rule
$1~ Force channel match "success" effect, although truncating the rewrite rule at this

point if the "real" channel match failed
$, (New in MS 7.0.5) Rewrite rule succeeds only if the top-level part of the domain

name argument following this metacharacter is present in the current list of known
Top Level Domains (the list as constructed from the tlds.txt file)

$> (New in MS 7.0.5) Rewrite rule succeeds only if the top-level part of the domain
name argument following this metacharacter is not present in the current list of
known Top Level Domains (the list as constructed from the tlds.txt file)

$: Apply only if the address being rewritten is the result of an alias
$; Fail if the address being rewritten is the result of an alias
$E Apply only to envelope addresses
$B Apply only to header/body addresses
$F Apply only to forward-directed (e.g., To:) addresses
$R Apply only to backwards-directed (e.g., From:) addresses
$Mchannel Apply only if channel channel is rewriting the address
$1M Apply only if an "internal" channel is rewriting the address
$Nchannel Fail if channel channel is rewriting the address
$1N Fail if an "internal" channel is rewriting the address
$Qchannel Apply if sending to channel channel
$Cchannel Fail if sending to channel channel
$S Apply if host is from a source route
$A Apply if host is to the right of the at sign

47–18 Messaging Server Reference

Rewrite rule template substitutions
and control sequences

$P Apply if host is to the right of a percent sign
$X Apply if host is to the left of an exclamation point
$Tnewtag Set the rewrite rule tag to newtag
$Ilist-name Apply only if the list-name matches
$Olist-name Fail if the list-name matches
$?errmsg If rewriting fails, return errmsg instead of the default error message
$nxxxyyy?errmsg If rewriting fails, return SMTP error code n.xxx.yyy and error text errmsg instead of

the default SMTP error code and error message
$Vdomain Succeed if domainMap succeeds (that is, if the domain name domain is found in the

LDAP directory)
$Zdomain Succeed if domainMap fails (that is, if the domain name domain is not found in the

LDAP directory)
$nJ Set mailbox flags
$nK Clear mailbox flags
$nT Set override alias_magic value to be used for the domain which matched this

rewrite rule when the rewrite rule is being used during alias expansion; n must be
an appropriate alias_magic value

$n=B (New in MS 8.0) Rewrite fails unless n is the message block size
$n>B (New in MS 8.0) Rewrite fails unless n is greater than the message block size
$n>=B (New in MS 8.0) Rewrite fails unless n is greater than or equal to the message block

size
$n<B (New in MS 8.0) Rewrite fails unless n is less than the message block size
$n<=B (New in MS 8.0) Rewrite fails unless n is less than or equal to the message block

size
$n<>B (New in MS 8.0) Rewrite fails when n is the message block size
$n=L (New in MS 8.0) Rewrite fails unless n is the number of lines in the message
$n>L (New in MS 8.0) Rewrite fails unless n is greater than the number of lines in the

message
$n>=L (New in MS 8.0) Rewrite fails unless n is greater than or equal to the number of

lines in the message
$n<L (New in MS 8.0) Rewrite fails unless n is less than the number of lines in the

message
$n<=L (New in MS 8.0) Rewrite fails unless n is less than or equal to the number of lines in

the message
$n<>L (New in MS 8.0) Rewrite fails when n is the number of lines in the message
$n=P (New in MS 8.0) Rewrite fails unless n is the message priority
$n>P (New in MS 8.0) Rewrite fails unless n is greater than the message priority
$n>=P (New in MS 8.0) Rewrite fails unless n is greater than or equal to the message

priority
$n<P (New in MS 8.0) Rewrite fails unless n is less than the message priority
$n<=P (New in MS 8.0) Rewrite fails unless n is less than or equal to the message priority
$n<>P (New in MS 8.0) Rewrite fails when n is the message priority

Rewrite rules 47–19

Rewrite rule template substitutions
and control sequences

47.4.2.1 Rewrite username and subaddress substitutions, $U, $0U,
$1U

Any occurrences of $U in the template are replaced with the username (local part) from
the original address. Note that usernames of the form a."b" will be replaced by "a.b" as
current Internet standardization work is deprecating the former syntax from RFC 822 and it is
expected that the latter usage will become mandatory in future.

Any occurrences of $0U in the template are replaced with the username from the
original address, minus any subaddress (and subaddress indication character such
as +). Any occurrences of $1U in the template are replaced with the subaddress and
subaddress indication character, if any, from the original address. (See the discussion of
the subaddressexact channel option and Subaddresses in aliases for background on
subaddresses.) So note that $0U and $1U are complementary pieces of the username, with $0U
$1U being equivalent to a simple $U.

$0U and $1U might be used when it is desired to force the account portion of the local-part
to lowercase, while retaining original case in the subaddress since the subaddress indicates a
folder name. For instance, a rewrite rule:

org.domain.com $\$0U$_$1U@org.domain.com

will cause an address such as nAmE@org.domain.com to be transformed (rewritten) to
name@org.domain.com, while an address such as nAmE+sUbAdDrEsS@org.domain.com
would be transformed to name+sUbAdDrEsS@org.domain.com.

47.4.2.2 Rewrite host/domain and IP literal substitutions, $D, $H,
$nD, $nH, $L

Any occurrences of $H are replaced with the portion of the host/domain specification that was
not matched by the rule. Any occurrences of $D are replaced by the portion of the host/domain
specification that was matched by the rewrite rule. $nH and $nD are variants that preserve the
normal $H or $D portion from the nth leftmost part starting counting from 0. Or another way
of putting it is that $nH and $nD omit the leftmost n parts (starting counting from 1) of what
would normally be a $H or $D, substitution, respectively. In particular, $0H is equivalent to $H
and $0D is equivalent to $D.

For example, suppose the address jdoe@host.domain.com matches the rewrite rule

host.domain.com $U%$1D@TCP-DAEMON

Then the result of the rewrite rule will be jdoe@domain.com with TCP-DAEMON used as the
outgoing channel. Here where $D would have substituted in the entire domain that matched,
host.domain.com, the $1D instead substitutes in the portions of the match starting from part 1
(part 1 being domain), so substitutes in domain.com.

$L substitutes the portion of a domain literal that was not matched by the rewrite rule.

47.4.2.3 Rewrite subdomain single field substitutions, $&n, $!n,
$*n, $#n

47–20 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Rewrite rule template substitutions
and control sequences

Subdomain single field substitutions extract a single subdomain part from the host/domain
specification being rewritten. The available single field substitutions are shown in Single field
substitutions.

Table 47.6 Single field substitutions

Control Sequence Usage
$&n Substitute the nth element, n=0,1,2,..,9, in the host specification (the part

that did not match explicit text in the pattern or matched a wildcard of
some kind). Elements are separated by dots; the first element on the left is
element zero. The rewrite fails if the requested element does not exist.

$!n Substitute the nth element, n=0,1,2,..,9, in the host specification (the part
that did not match explicit text in the pattern or matched a wildcard of
some kind). Elements are separated by dots; the first element on the right is
element zero. The rewrite fails if the requested element does not exist.

$*n Substitute the nth element, n=0,1,2,...,9, in the domain specification (the
part that did match explicit text in the pattern). Elements are separated
by dots; the first element on the left is element zero. The rewrite fails if the
requested element does not exist.

$#n Substitute the nth element, n=0,1,2,...,9, in the domain specification (the
part that did match explicit text in the pattern). Elements are separated by
dots; the first element on the right is element zero. The rewrite fails if the
requested element does not exist.

Suppose the address jdoe@msgstore.domain.com matches the rewrite rule

*.DOMAIN.COM $U%$&0.domain.com@mailhub.domain.com

Then the result from the template will be jdoe@msgstore.domain.com with
mailhub.domain.com used as the routing system.

47.4.2.4 Rewrite default host substitutions, $G, $nG

Any occurrences of $G are replaced with the current default host, as selected by the
defaulthost and related channel option settings on the current source channel. Any
occurrences of $nG are replaced with the value of the nth element, counting from zero, of the
current default host; thus if the current default host has been determined to be a.b.c.d.com,
$0G will substitute "a", $1G will substitute "b", etc. If no default host is set, e.g. through the
use of nodefaulthost, then $G or $nG rewrite rules will fail (will not be considered to have
matched).

47.4.2.5 Rewrite literal character substitutions, $$, $%, $@

The $, %, and @ characters are normally metacharacters in rewrite rule templates. To insert a
literal such character, quote it with a dollar character, $. I.e., $$ expands to a single dollar sign,
$; $% expands to a single percent, % (the percent is not interpreted as a template field separator
in this case); and $@ expands to a single at sign, @ (also not interpreted as a field separator).

47.4.2.6 Rewrite case control substitutions, $\, $^, $_

Rewrite rules 47–21

Rewrite rule template substitutions
and control sequences

Character case in templates is normally preserved. In addition to preservation of the case of
the literal text in a template, note that substitution sequences such as $U or $D that substitute
material extracted from original addresses also preserve the original case of that material.

When it is desirable to force substituted material to use a particular case, for instance, to
force mailboxes to lowercase on UNIX systems, special substitution sequences can be used
in templates to force substituted material to a desired case. Specifically, $\ forces subsequent
substituted material into lower case, $^ forces subsequent substituted material into upper case,
and $_ says to use the original case (as well as turning off LDAP URL character encoding). So
you can use a rule such as

unix.domain.com $\$U$_%unix.domain.com

to force mailboxes to lowercase for unix.domain.com addresses.

47.4.2.7 Rewrite LDAP query URL substitutions, $]...[, $=

A substitution of the form $]ldap-url[is handled specially. ldap-url is interpreted as an
LDAP query URL and the result of the LDAP query is substituted. (If the LDAP query fails,
it is as if the rewrite rule never matched in the first place.) Standard LDAP URLs as per RFC
2255 are used, with the host and port typically omitted; the host and port are instead typically
specified via the ldap_host and ldap_port MTA options. (Indeed, prior to MS 7.0u4 the
host and port could not be specified in the URL itself; as of MS 7.0u4 explicitly specifying the
host and/or port in the URL is supported.) That is, the LDAP URL should be specified as

ldap:///dn[?attributes[?scope?filter]]

or if specifying the LDAP host and LDAP port explicitly

ldap://ldap-host:ldap-port/dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of the
URL. The dn is required and is a distinguished name specifying the search base. The optional
attributes, scope, and filter portions of the URL further refine what information
to return. For a rewrite rule, the desired attributes to specify returning might be a
mailRoutingSystem attribute (or some similar attribute). The scope may be any of base
(the default), one, or sub. And the desired filter might be to request the return of the object
whose mailDomain value matches the domain being rewritten.

For instance, at a site domain.com with an LDAP server running on port 389 of the system
ldap.domain.com, a legacy configuration MTA option file might set

LDAP_HOST=ldap.domain.com
LDAP_PORT=389

or in Unified Configuration

msconfig> show mta.ldap_host
role.mta.ldap_host = ldap.domain.com

47–22 Messaging Server Reference

https://tools.ietf.org/html/rfc2255
https://tools.ietf.org/html/rfc2255

Rewrite rule template substitutions
and control sequences

msconfig> show mta.ldap_port
msconfig> show -default mta.ldap_port
mta.ldap_port: 389

If the LDAP directory schema includes attributes mailRoutingSystem and mailDomain,
then a possible rewrite rule to determine to which system to route a given sort of address
might appear as:

.domain.com \
 $U%$H$D@$]ldap:///o=domain.com?mailRoutingSystem?sub?(mailDomain=$D)[

where here the rewrite substitution sequence $D is used to substitute in the current domain
name into the LDAP query constructed; for ease in reading, the backslash character, \, is used
to continue the single logical rewrite rule line onto a second physical line.

Note that LDAP URLs have special character quoting (encoding) requirements. The $=
metacharacter forces subsequent material to be properly quoted (encoded) for LDAP
URL usage as shown in LDAP character encoding rules. Note that the "leave case as-is"
substitution, $_, discussed in Rewrite case control substitutions can be used to turn off LDAP
URL character encoding.

Table 47.7 LDAP character encoding rules

Original character Quoted (encoded) version
 %20

$ %24

& %26

(%5C28

) %5C29

* %5C2A

+ %2B

, %2C

: %3A

; %3B

= %3D

? %3F

\ %5C5C

That is, any of the characters

$ &+,:;=?

will be converted to the percent character, "%", followed by the hexadecimal representation of
their location in US-ASCII; any of the characters

Rewrite rules 47–23

Rewrite rule template substitutions
and control sequences

()*

will be converted to "%5C" followed by the hexadecimal representation of their location in
US-ASCII (the encoded form of the backslash character followed by the hexadecimal for the
particular character); while the backslash character itself

\

will be converted to "%5C5C".

The overall length of the LDAP URL (after any substitutions are performed) is limited to 252
characters in iMS 5.2, limited to 256 characters in MS 6.0 through MS 6.2, and limited to 1024
characters as of MS 6.3. Note also that the length of the original template in which such an
LDAP URL appears is limited: to 252 characters in iMS 5.2 and earlier, or to 256 characters as
of MS 6.0 and later; but substitutions in the template, and in particular substitutions used to
construct the LDAP URL, may increase the LDAP URL length.

47.4.2.8 Rewrite general database substitutions, $(...)

A substitution of the form $(text) is handled specially. The text part is used as a key to
access the MTA's general database. If text is found in the database, then the corresponding
template from the database is substituted. If text does not match an entry in the database,
then the rewrite process fails; it is as if the rewrite rule never matched in the first place. If
the substitution is successful, then the template extracted from the database is re-scanned
for additional substitutions. However, additional $(text) substitutions from the extracted
template are prohibited in order to prevent endless recursive references.

Depending upon the setting of the MTA option use_text_databases, the general
"database" is either stored and accessed as an on-disk database (formerly the default; now
deprecated), or as an in-memory structure constructed (during configuration compilation or
MTA initialization) from an on-disk flat text file. Or new in MS 8.0, the general "database"
can instead be stored in memcache; see the general_database_url MTA option. The on-
disk database, if that is what is being used, is IMTA_DATAROOT:db/generaldb (which
formerly could be redirected via the now-deleted imta_general_database MTA Tailor
option), which must be generated using the imsimta crdb utility from some site-supplied
source text file. If an in-memory database structure is instead being used, then when the MTA
configuration is compiled (or at MTA process initialization time, if a compiled configuration
is not in use) the MTA reads the IMTA_TABLE:general.txt file (which formerly could
be redirected via the now-deleted imta_general_data MTA Tailor file option) and
compiles it into an in-memory structure. Use of an in-memory "database" is normally
recommended (for reasons of performance and reliability); however, do note that use of
this in-memory "database" does require recompiling the configuration to get changes to the
"database" (changes to the source text file) incorporated into the compiled configuration.

As an example, suppose that the address jdoe@host1.domain.privateuse matches the rewrite
rule

.privateuse $($H)

Then, the text string host1.domain will be looked up in the general database and the result
of that look up, if any, instead used for the rewrite rule's template. Suppose that the result
of looking up host1.domain is $u%mailhost.domain.com@tcp_intranet-daemon. Then the
output of the template will be jdoe@mailhost.domain.com (i.e., username = jdoe, host/domain

47–24 Messaging Server Reference

Rewrite rule template substitutions
and control sequences

specification = mailhost.domain.com), and the routing system will be tcp_intranet-
daemon (the typical official host name of the tcp_intranet channel).

 If a general database exists it should be world readable to insure that it operates properly.

47.4.2.9 Rewrite apply specified mapping substitutions, ${...},
$n{...}

A substitution of the form ${mapping,argument} is handled specially. The
mapping,argument part is used to find and apply an MTA mapping table. The mapping
field specifies the name of the mapping table to use while argument specifies the string to
pass to the mapping. The mapping must exist and must set the $Y flag in its output if it is
successful; if it doesn't exist or doesn't set $Y, then the rewrite will fail. If successful, the result
of the mapping is merged into the template at the current location and reexpanded.

A substitution of the form $n{mapping,argument}, where n is a non-zero bit-encoded value
works in same way, except that one or more |-separated prefixes are added to the mapping
probe. The available prefixes are:

Table 47.8 Rewrite rule mapping probe prefixes

Bit Value Prefix
0 1 Transport information in the usual "TCP|server-address|server-

port|client-address|client-port" format.
1 2 Application information.
2 4 Source channel (blank if no source channel is currently active).
3 8 Destination channel (blank if no destination channel is currently active).
4 16 Authenticated sender address (blank if no authenticated sender is currently

active).

If multiple bits are set the corresponding prefixes are added in numerical order with the least
significant bit on the left.

The ability to call out to a mapping can be used to make up for the lack of flexibility in
rewrite rule matching - which sacrifices flexibility for speed. For example, a rewrite rule that
matches and blocks attempts to send to DHCP client host names that take the form "dhcp-
*.example.com" can be constructed using a mapping of the form:

DHCP_MATCH

 dhcp-* $Y

And a rewrite rule of the form:

*.example.com EF${DHCP_MATCH,$H}$?Cannot$ send$ to$ DHCP$ client

This mechanism also allows the MTA's rewriting process to be extended in complex
ways. Substring matches on subdomains can be implemented and so can changes
that cross subdomain boundaries. For example, suppose that domains of the form *-

Rewrite rules 47–25

Rewrite rule template substitutions
and control sequences

subdomain.example.org are to be rewritten to *.subdomain.example.org in both header and
envelope addresses and routed to the tcp_local channel. This can be done with a table:

DASH_TO_SUBDOMAIN

 *-subdomain Y0.subdomain

And a rewrite rule of the form:

*.example.org $U%${DASH_TO_SUBDOMAIN,$H}$D@TCP-DAEMON

The username part of an address can also be be selectively analyzed and modified, either alone
or in conjunction with the domain part. For example, the following table and rewrite rule
removes enclosing single quotes from all addresses, modifying both the local part and domain:

QUOTE_CHECK

 '*@*' Y0%$1

$* ${QUOTE_CHECK,$U$@$H}

47.4.2.10 Rewrite routine substitutions, $[...]

A substitution of the form $[image,routine,argument] is handled specially. The
image,routine,argument part is used to find and call an Oracle-supplied or customer-
supplied routine. At run-time on UNIX, the MTA uses dlopen and dlsym to dynamically
load and call the routine routine from the shared library image. The routine routine is
then called as a function with the following argument list:

status := routine (argument, arglength, result, reslength)

where argument and result are 256 byte long (252 byte long in iMS 5.2 and earlier) character
string buffers. On Solaris, argument and result are passed as a pointer to a character
string, (e.g., in C, as char*). arglength and reslength are signed, long integers passed
by reference. On input, argument contains the argument string from the rewrite rule
template, and arglength the length of that string. On return, the resultant string should
be placed in result and its length in reslength. This resultant string will then replace the
"$[image,routine,argument]" in the rewrite rule template. The routine routine should
return 0 if the rewrite rule should fail and -1 if the rewrite rule should succeed. As of MS
8.1.0.6, the special value 1112064044 may be returned to indicate a temporary failure.

This mechanism allows the MTA's rewriting process to be extended in all sorts of complex
ways. For example, a call to some type of name service could be performed and the result
used to alter the address in some fashion. For instance, directory service lookups for forward
pointing addresses (e.g., To: addresses) to the host domain.com might be performed as follows
with the following rewrite rule (the $F, described in Address direction and location-specific
rewrites causes this rule to only be used for forward pointing addresses):

domain.com F[LOOKUP_IMAGE,LOOKUP,$U]

47–26 Messaging Server Reference

Rewrite rule template substitutions
and control sequences

A forward pointing address jdoe@domain.com will, when it matches this rewrite rule, cause
LOOKUP_IMAGE (which is a shared library on UNIX) to be loaded into memory, and then cause
the routine LOOKUP called with "jdoe" as the argument parameter. The routine LOOKUP might
then return a different address, say, John.Doe%specialhost.domain.com in the result parameter
and the value -1 to indicate that the rewrite rule succeeded. The percent sign in the result
string causes, as described in Repeated rewriting template, the rewriting process to start over
again using John.Doe@specialhost.domain.com as the address to be rewritten.

The site-supplied shared library image image should be readable but not writable by the
Messaging Server user.

Note: This facility is not designed for use by casual users; it is intended to be used to extend
the MTA's capabilities system-wide.

47.4.2.11 Rewrite temporary failure handling, $.text., $..

By default, temporary LDAP failures and as of MS 8.1.0.6, routine callout failures, cause the
current rewrite rule to fail. This is problematic in cases where different actions need to be taken
depending on, say, whether the LDAP lookup failed to find anything versus the directory
server being unavailable or misconfigured. As of MS 6.3, the $. metacharacter sequence can
be used in a rewrite rule to establish a string which will be processed as the rewrite rule result
in the event of a temporary LDAP lookup failure. As of MS 8.1.0.6, this functionality has been
extended to cover callout routine failures. The temporary failure string is terminated by an
unescaped ".". Thus the format is $.text. in its complete form.

For rewrite rules, (unlike the similar $.text. mechanism available in mapping tables where
the temporary failure string is "sticky"), a temporary failure string remains set only for the
duration of the current rewrite rule. "$.." can be used to return to the default state where no
temporary failure string is set and temporary failures cause rewrite rule failure.

Note that all LDAP errors other than failure to match an entry in the directory are considered
to be temporary errors; in general it isn't possible to distinguish between errors caused by
incorrect LDAP URLs and errors caused by directory server configuration problems. This is in
constrast to callout routines, where an explicit return value (1112064044) is used to indicate a
temporary failure.

47.4.2.12 Rewrite unique string substitution, $W

Each use of the $W substitution inserts a text string composed of upper case letters and
numbers that is designed to be unique and unrepeatable. $W is useful in situations where
nonrepeating address information must be constructed.

47.4.2.13 Rewrite hash substitutions, $<...>, $n<...>

$<text> substitutes a hash of text. $n<text> substitutes a hash of text, modulo n.

47.4.2.14 Rewrite transport substitutions, $Y, $nY

$nY substitutes in the nth field of the transport information, with a plain $Y being
synonymous with $1Y. Transport information is as it would appear in PORT_ACCESS
mapping table probes, or optionally various other access mapping tables as enabled via the
include_connectioninfo MTA option, or be logged in MTA transaction log entries,
as controlled by the log_connection MTA option (bit 1/value 2 causes generation of

Rewrite rules 47–27

Rewrite rule template substitutions
and control sequences

connection transaction entries, which normally include tranport information, and bit 3/value 8
caused inclusion of tranport information in message transaction log entries); that is, transport
information has the format:

TCP|server-address|server-port|client-address|client-port

Hence for incoming SMTP/SMTP SUBMIT messages, $0Y substitutes in the literal string "TCP";
$1Y (or $Y which is synonymous) substitutions in the SMTP/SMTP SUBMIT server IP address;
$2Y substitutes in the SMTP/SMTP SUBMIT server port; $3Y substitutes in the SMTP/SMTP
SUBMIT client IP address; and $4Y substitutes in the SMTP/SMTP SUBMIT client port.

If $Y and $nY is used in a rewrite rule template but transport information is not available for
the address being rewritten, the rewrite rule will fail.

47.4.2.15 Source channel-specific rewrites, $M, $N, $1M, $1N

It is possible to have rewrite rules that act only in conjunction with specific source channels.
This can be useful when a hostname has a different meaning when it appears in a message
arriving on one channel and another when it appears in a message arriving on a different
channel -- such name "collisions" used to arise in Bitnet days. Source channel-specific rewrite
rules can also be useful when it is desired to achieve different routing for messages coming in
on different channels:a perhaps routing through a spam/virus scanner box for messages from
some "untrusted" source.

Source channel-specific rewriting is associated with the channel that is operating and the
channel options rules and norules. If norules is specified on the channel associated with
an MTA component that is doing the rewriting, no channel-specific rewrite checking is done.
If rules is specified on the channel, channel-specific rule checks are enforced. rules is the
default.

Source channel-specific rewriting is not associated with the channel a given address matches. It
depends only on the MTA component doing the rewriting and that component's channel table
entry.

Source channel-specific rewrite checking is triggered by the presence of a $N or $M control
sequence in the template part of a rewrite rule. The characters following the $N or $M, up until
either an at sign, @, percent sign, %, or subsequent $N, $M, $Q, $C, $T, or $? are interpreted as a
channel name.

$Mchannel causes the rule to fail if the channel channel is not currently doing the rewriting.
$Nchannel causes the rule to fail if the channel channel is doing the rewriting.

Multiple $M and $N clauses may be specified. If any one of multiple $M clauses matches, the
rule will succeed. If any of multiple $N clauses matches, the rule will fail.

The $1M control sequence causes the rule to fail if a non-"internal" channel is currently doing
the rewriting; that is, the rule will succeed only if an "internal" channel is doing the rewriting.
The $1N control sequence causes the rule to fail if an "internal" channel is currently doing the
rewriting; that is, the rule will succeed only if a non-"internal" channel is doing the rewriting.
("Internal" here means internal-to-the-MTA: a reprocess, process, or conversion channel type of
channel; it does not mean a tcp_intranet type of channel.)

a Alternatively, and often more conveniently, source-specific routing can be achieved via the
CONVERSIONS mapping table.

47–28 Messaging Server Reference

Rewrite rule template substitutions
and control sequences

47.4.2.16 Destination channel-specific rewrites, $C, $Q

It is possible to have rewrite rules whose application is dependent upon the channel to which
a message is being enqueued. This is useful when there are two names for some host, one
known to one group of hosts and one known to another. By using different channels to send
mail to each group, addresses can be rewritten to refer to the host under the name known to
each group.

Destination channel-specific rewriting is associated with the channel to which a message is
being enqueued and the channel options rules and norules on that channel. If norules is
specified on the destination channel, no channel-specific rewrite checking is done. If rules is
specified on the destination channel, channel-specific rule checks are enforced. rules is the
default.

Destination channel-specific rewriting is not associated with the channel a given address
matches. It depends only on the message's envelope To address. When a message is enqueued,
its envelope To address is first rewritten to determine to which channel the message will be
enqueued. During the rewriting of the envelope To address any $C and $Q control sequences are
ignored. Once the envelope To address is rewritten and the destination channel determined,
then the $C and $Q control sequences are honored as other addresses associated with the
message are rewritten.

Destination channel-specific rewrite checking is triggered by the presence of a $C or $Q control
sequence in the template part of a rule. The characters following the $C or $Q, up until either
an at sign, @, percent sign, %, or subsequent $N, $M, $C, $Q, $T, or $?, are interpreted as a
channel name.

$Qchannel causes the rule to fail if the channel channel is not the destination. $Cchannel
causes the rule to fail if the channel channel is the destination.

Multiple $Q and $C clauses may be specified. If any one of multiple $Q clauses matches, the
rule will succeed. If any of multiple $C clauses matches, the rule will fail.

For example, suppose the local host's TCP/IP channel used to communicate with the Internet
is the tcp_local channel. Then, to prevent "raw" user@host.bitnet style addresses from
appearing on messages queued to that channel, a rewrite rule of the form

.BITNET U%HD@interbit.cren.net$Qtcp_local

might be used. This will, in messages destined to the tcp_local channel, transform
addresses of the form user@host.bitnet to user%host.bitnet@interbit.cren.net.

47.4.2.17 Address direction and location-specific rewrites, $B, $E,
$F, $R

It is sometimes useful to specify rewrite rules that only apply to envelope addresses or,
alternately, only apply to header addresses. The control sequence $E forces a rewrite to fail
if the address being rewritten is not an envelope address. The control sequence $B forces a
rewrite to fail if the address being rewritten is not from the message header or body. These
sequences have no other effects on the rewrite and may appear anywhere in the rewrite rule
template.

Addresses may also be categorized by direction. A forward-pointing address is an envelope
To address or an address that originates on a To:, Cc:, Resent-To:, or other header line that

Rewrite rules 47–29

Rewrite rule template substitutions
and control sequences

refers to a destination. A backwards-pointing address is an envelope From address or an
address from a header line such as From:, Sender:, or Resent-From:, referring to a source. The
control sequence $F causes the rewrite to fail if the address is backwards-pointing. The control
sequence $R causes the rewrite to fail if the address is forward-pointing.

The first of the following rewrite rules causes forward pointing envelope addresses
(i.e., envelope To addresses) of the form user@oldhost.domain.com to be rewritten to
user@newhost.domain.com and the message routed to the tcp_intranet channel:

oldhost.domain.com $U%newhost.domain.com@tcp_intranet-daemonEF
oldhost.domain.com $U@domain.com

All other, non-envelope-To occurrences, of addresses of the form user@oldhost.domain.com
are rewritten to user@domain.com by the second rewrite rule.

47.4.2.18 Host location-specific rewrites, $A, $P, $S, $X

Circumstances occasionally require rewriting that's sensitive to the location where a host name
appears in an address. Host names can appear in several different contexts in an address: in a
source route, to the right of the at sign, to the right of a percent sign in the local-part, or to the
left of an exclamation point in the local-part. Under normal circumstances a host name should
be handled in the same way regardless of where it appears. Situations can arise, however,
which may necessitate specialized handling.

Four control sequences are used to control matching on the basis of the host's location in the
address. $S specifies that the rule may match a host extracted from a source route, $A specifies
that the rule may match a host found to the right of the at sign, $P specifies that the rule may
match a host found to the right of a percent sign, and $X specifies that the rule may match a
host found to the left of an exclamation point. The rule will fail if the host is from a location
other than one specified.

These sequences can be combined in a single rewrite rule. For example, if $S and $A are
specified the rule will match hosts specified in either a source route or to the right of the at
sign. Specifying none of these sequences is equivalent to specifying all of them; the rule can
match regardless of location.

47.4.2.19 Deployment map role-specific rewrites, $/, $|

As of the MS 8.0.2 release, it is possible to have rewrite rules whose application is dependent
on the role of a host in the current deployment map.

Deployment map role rewrite checking is triggered by the presence of a $/ or $| control
sequence in the template part of a rule. The characters following the $C or $Q, up until either
an at sign, @, percent sign, %, subsequent channel, domain, or TLD check, or an error message
$?, is should be of the form "host|role", where host is a host name and role is a role
pattern.

A $/channel control sequence causes the rule to fail if the host host is not in the deployment
map or it's role doesn't match the role pattern role. $|host|role causes the rule to fail if the
role pattern matches the host's role in the deployment map.

Normally the host specification will itself be some sort of substitution, e.g. HD, $H, or $D.
The exact form will depend on the desired effect as well as the form of the rewrite rule pattern.

47–30 Messaging Server Reference

Rewrite rule template substitutions
and control sequences

The role pattern can contain glob-style wildcards.

Multiple $/ and $| clauses may be specified. If any one of multiple $/ clauses matches, the
rule will succeed. If any of multiple $| clauses matches, the rule will fail.

47.4.2.20 Domain LDAP lookup rewrites, $V, $Z

The $V and $Z flags interpret the material following (up to the first @ or % character, or $C, $M,
$N, $Q, or $T) as a domain name to look up in the LDAP directory; (in Schema 1, this would
be a lookup in the DC tree within the directory; in Schema 2, domains are stored as part of the
Organization tree so it is a lookup in the Organization tree). $V means succeed if the LDAP
lookup of the domain succeeds (i.e., the domain is found, as a local/hosted/vanity domain). $Z
means succeed if the LDAP lookup of the domain fails (i.e., the domain is not a local/hosted/
vanity domain).

Note that the imsimta test -domain_map utility, and in particular its ENUMERATE
command, can be used to probe/check/list domain definitions stored in LDAP.

For instance, a typical Oracle Messaging Server MTA configuration will include a rewrite rule:

$* AEFU%HV$H@local-channel-official-hostname

where local-channel-official-hostname corresponds to the value of
channel:l.official_host_name. Note that this fundamental rewrite rule of Direct LDAP
configuration makes use of the Initial match-all rule, $*, so that it is the very first rewrite rule
checked for any domain name appearing to the right of the @ sign ($A control sequence) in an
envelope To address ($E and $F control sequences).

Note that in Unified Configuration, this same rewrite rule would typically be expressed using
the &/IMTA_HOST/ substitution, so appear as:

msconfig> show rewrite * "$*"
role.rewrite.rule = $* AEFU%HV$H@&/IMTA_HOST/

The LDAP server to query, as well as other basic LDAP query parameters relevant in
domainMap lookups, are controlled by certain MTA options and/or (in legacy configuration)
configutil parameters; see Basic configuration settings relevant to domain LDAP lookups.
The MTA options, if explicitly set, take precedence over (override) their corresponding
configutil parameters.

Table 47.9 Basic configuration settings relevant to domain LDAP lookups
msconfig base option configutil parameter MTA option Default Description

ugldaphost local.ugldaphost ldap_host ++ LDAP host to which to connect

ugldapport local.ugldapport ldap_port 389 LDAP port to which to connect

ldapsearchtimeout+ local.ldapsearchtimeout+ ldap_timeout 180000 Time out, in seconds, for LDAP queries

ugldapbinddn local.ugldapbinddn ldap_username The username with which to bind when doing
LDAP queries

ugldapbindcred local.ugldapbindcred ldap_password The password with which to bind when doing
LDAP queries

ldaprequiretls 0 (New in 8.0) If SSL is not already being used
on a given LDAP connection (e.g., due to
ugldapusessl being set or use of an ldaps:
URL), then enabling base.ldaprequiretls
will require successful negotiation of TLS (using

Rewrite rules 47–31

Rewrite rule template substitutions
and control sequences

LDAP StartTLS) before proceeding with the
connection.

 ldap_max_connections 1024 The maximum number of simultaneous LDAP
connections to allow using

defaultdomain service.defaultdomain ldap_default_domain The default domain name

dcroot service.dcroot ldap_domain_root o=internet The base DN for the domain portion of the DIT

 local.imta.schematag ldap_schematag ims50 The tag for the schema in use

ldap_domain_
filter_schema1

 ldap_domain_
filter_schema1

(|(objectclass=
inetDomain)
(objectclass=
inetdomainalias))

Specifies the filter for domains when schema 1 is
in use

ldap_domain_
filter_schema2

 ldap_domain_
filter_schema2

 Specifies the filter for domains when schema 2 is
in use

ldap_domain_
known_attributes

 ldap_domain_
known_attributes

-1 This option controls whether the MTA requests
the return of all domain attributes, or (the
default) requests the return of only "known"
domain attributes, specifically the per-domain
attributes listed in Table of MTA LDAP attribute
name options

 domain_match_url Specify an additional LDAP query URL to
attempt if a domain name cannot be found as a
"real" domain; for instance, this option would
be set to ldap:///$B?msgVanityDomain?
sub?(msgVanityDomain=$D) if one wishes to
support vanity domains

 domain_uplevel 0 This option affects how domain names are
searched for and used; in particular, it controls
whether the MTA iteratively looks "up" for a
domain when a subdomain cannot be found

 domain_failure reprocess-daemon
$Mtcp_local$1M
$1~-error$4000000?
Temporary lookup
failure

What rewrite template to use if a $V or $Z
rewrite rule lookup encounters an LDAP error,
such as an LDAP connection error

ldap_domain_timeout ldap_domain_timeout 900 Time (in seconds) to retain cached results of
domain lookups (in the domain map library code
cache)

 domain_match_
cache_size

100000 Number of domain lookup results to cache (in
the MTA's cache)

 domain_match_
cache_timeout

600 Time (in seconds) to retain (in the MTA's cache)
cached results of domain lookups

+The ldapsearchtimeout base option (Unified Configuration) or
local.ldapsearchtimeout configutil parameter (legacy configuration) is a global
default for all searches done through the LDAP pool API, including those done by the MTA.

++The MTA option ldap_host defaults to the value of the ugldaphost base option, which in
turn defaults, if not set, to the loopback interface.

Compare this Basic configuration settings relevant to domain LDAP lookups with Table of
Basic configuration settings relevant to alias LDAP lookups.

The domain_match_url and domain_uplevel MTA options further affect domain lookups,
with domain_match_url potentially specifying an additional lookup to look for vanity
domains (which are not real domains), and with domain_uplevel controlling things such
as whether if a subdomain is not found, the MTA then looks instead for the domain "over" the
subdomain.

If a $V or $Z lookup attempt encounters an LDAP error condition (such as the LDAP directory
being temporarily inaccessible), then the MTA option domain_failure specifies what the
MTA will take to be the rewriting process result. The default value for domain_failure
means that LDAP error conditions will result in messages being diverted to the reprocess
channel for additional subsequent rewriting and lookup attempts.

The results of a domain name lookup due to a $V and $Z flag will be cached; that is, the
MTA caches not only whether the domain name lookup was successful, but also (in the

47–32 Messaging Server Reference

Rewrite rule template substitutions
and control sequences

case of a successful lookup) any attribute values successfully returned. In its queries,
the MTA can request that successful lookups return either all attributes for the domain,
or instead request an explicit list of "known to the MTA attributes" (see the per-domain
attributes in Table of MTA LDAP attribute name options); note that for some directory
setups, there may be an LDAP directory performance difference between requesting all
attributes or requesting an explicit (even large explicit) list of attributes. Whether domain
name lookup requests are for all attributes, or a list of known attributes, is controlled by the
ldap_domain_known_attributes MTA option; the default is to request the return of all
domain attributes. For control of domain name lookup result caching at the MTA-level, see the
domain_match_cache_size and domain_match_cache_timeout MTA options; note
that the underlying domain Map code also does its own caching, with timeout (when called by
the MTA) controlled by the ldap_domain_timeout MTA option.

47.4.2.21 Channel match force truncation rewrite, $1~

The special-purpose $1~ rewrite rule control sequence is normally used in conjunction with the
domain_failure MTA option.

The $1~ control sequence modifies the effect of channel matching checks, such as the $C, $Q,
$M, and $N channel match checks. Normally such checks either succeed, in which case the
rewrite rule is used, or fail, in which case it is as if the rewrite rule never even matched and
the rewrite rule is not used at all for the address in question. The $1~ control sequence is used
when it is desired to instead have the rewrite rule always be used, but with a different right
hand side depending upon whether the initial channel match succeeded or failed. That is, the
$1~ control sequence overrides the original channel match results (forces a channel match
success state), and then either truncates the rewrite rule template (if the original channel match
check failed), or allows additional material to be suffixed to the rewrite rule template (if the
original channel match check succeeded).

For instance, given channel definitions such as

tcp_local smtp mx ...rest-of-keywords...
tcp-daemon

tcp_domainrelay smtp mx ...rest-of-keywords...
tcp-daemon-domainrelay

then a rewrite rule such as

domain.com $U%domain.com@tcp-daemon$Mtcp_local$1~-domainrelay

means that when the tcp_local channel is rewriting a domain.com address, then the
effective template used will be

$U%domain.com@tcp-daemon-domainrelay

whereas when any other channel is rewriting a domain.com address, then the effective
template used will be

$U%domain.com@tcp-daemon

Rewrite rules 47–33

Rewrite rule template substitutions
and control sequences

That is, messages coming in the tcp_local channel addressed to domain.com will be routed
out the tcp_domainrelay channel, whereas messages coming in from any non-tcp_local
channel addressed to domain.com will be routed out the tcp_local channel.

The $1~ control sequence is typically used in the value of the domain_failure MTA option;
see the discussion of that option which includes another example of use of $1~.

47.4.2.22 TLD comparison rewrites, $, and $>

New in 7.0.5, the $, and $> control sequences allow checking domain top level portions
against the current1 TLD (Top Level Domain) list. They act like $V and $W, respectively, except
that instead of checking for a domain known to the directory, they check the top-level part of
the current domain against the list of known valid TLDs. $, succeeds if the top-level part is on
the list; $> succeeds if the top-level part isn't on the list.
1 To keep the tlds.txt file on your host up-to-date, it is recommended that you regularly
fetch a new version. See, for instance, https://data.iana.org/TLD/tlds-alpha-by-
domain.txt. After fetching a new tlds.txt file, issue the command imsimta chbuild to
have the MTA rebuild its list.

As of MS 8.0.2.2, U-labels (see RFC 5890 section 2.3.2.1) are converted to A-labels before
looking them up in tlds.txt. Note that the opposite is not true and specification of U-label
domains in tlds.txt will not work.

47.4.2.23 alias_magic override rewrite, $nT

Rewrite rules can override the alias_magic MTA option setting and aliasmagic (source)
channel option setting. Specifically, a construct of the form $nT, where n is an appropriate
value for the alias_magic MTA option, overrides the setting for the domain when the rule
matches during alias expansion.

47.4.2.24 Alias-sensitive rewrites, $: and $;

It is possible to have rewrite rules whose application is dependent upon whether or not the
address being rewritten was the result of an alias. (Note that inherently, only envelope To
addresses can possibly be the result of an alias.) This can be useful in the case, for instance,
where certain rewrite rule(s) should be applied only before alias expansion has occurred, while
other rewrite rule(s) should be applied only after alias expansion has occured.

Alias-sensitive rewrite checking is triggered by the presence of the $: or $; control sequence
in the template part of a rule. The $: control sequence means that the rewrite rule will match
only if the address being rewritten is the result of an alias. (So note that such a rewrite rule
also is implicitly a EF rewrite rule---it can only ever match envelope To addresses.) The $;
control sequence means that the rewrite rule will match only if the address being rewritten is
not the result of an alias.

47.4.2.25 List-name-sensitive rewrites, $I, $O

Mailing lists defined in the MTA can have amn associated list name, list-name, established
via the mgrpListName LDAP attribute (or whatever LDAP attribute is named by the
ldap_list_name MTA option), or via the alias_list_name alias option, or via the
[LIST_NAME] alias file named parameter.

List name sensitive rewrite checking is triggered, when rewriting addresses that have a list
name set, by the presence of a $I or $O control sequence in the template part of the rule. The

47–34 Messaging Server Reference

https://tools.ietf.org/html/rfc5890

Rewrite rule template substitutions
and control sequences

characters following the $I or $O, up until either an at sign, percent sign, or subsequent $N,
$M, $C, $Q, $T, or $?, are interpreted as a list name. If the address being rewritten has an
associated list name, then the list name specified must match that in a $I rewrite rule, or must
not match that in a $O rewrite rule.

Note that if the address being rewritten has no associated list name, which would normally be
the case for most addresses, then any list name check clauses in a rewrite rule are ignored.

47.4.2.26 Message size or priority comparison rewrites

As of MS 8.0, rewrite rules can be made sensitive to the expected size and/or priority (SMTP
MT-PRIORITY; see RFC 6710 (SMTP Extension for Message Transfer Priorities)) of an
incoming message. Such checking is triggered by the presence of a

$NcomparisonC

control sequence in the template part of a rule, where N is an appropriate numeric value
(which note should be in the range -9 through 9 for MT-PRIORITY checks), comparison
is one of =, >, >=, <, <=, or <>, and where C (the characteristic code) is one of B, L, or P
(indicating message block size, message number of lines, and message priority, respectively).

So for instance the control sequences:

$100<B
$2000>=L
$4=P

would limit a rewrite rule to applying only when a message matched the conditions,
respectively, (1) block size less than 100, (2) line size greater than or equal to 2000, (3) MT-
PRIORITY value of 4.

47.4.2.27 Changing the current tag value, $T

The $T control sequence is used to change the current rewrite rule tag. The rewrite rule
tag is prepended to all rewrite rule patterns before they are looked up in the configuration
file/rewrite group and domain database. Text following the $T, up until either an at sign,
percent sign, $N, $M, $Q, $C, $T, or $?, is taken to be the new tag.

Tags are useful in handling special addressing forms where the entire nature of an address is
changed when a certain component is encountered. For example, suppose that the special host
name internet, when found in a source route, should be removed from the address and the
resulting address forcibly matched against the channel whose official_host_nameTCP-
DAEMON. This could be implemented with rules like the following (localhost is assumed to
be the official name of the local host):

internet SU@localhost$Ttcp-force|
tcp-force|. $U%$H@TCP-DAEMON

The first rule will match the special host name internet if it appears in the source route. It
forcibly matches internet against the local channel, which insures that it will be removed
from the address. A rewrite tag is then set. Rewriting proceeds, but no regular rule will match
because of the tag. Finally, the default rule is tried with the tag, and the second rule of this set

Rewrite rules 47–35

https://tools.ietf.org/html/rfc6710

Domain database

fires, forcibly matching the address against the channel with official_host_name of TCP-
DAEMON, regardless of any other criteria.

47.4.2.28 Controlling error messages associated with rewriting, $?,
$nxxxyyy?

The MTA provides default error messages when rewriting and channel matching fail. The
ability to change these messages can be useful under certain circumstances. For example, if
someone tries to send mail to an ethernet router box, it may be considered more informative
to say something like "our routers cannot accept mail" rather than the usual "unknown host
or domain" (see the error_text_unknown_host MTA option). A special control sequence
can be used to change the error message that will be printed if the rule fails. The sequence $?
is used to specify an error message. Text following the $?, up until either an at sign, percent
sign, $N, $M, $Q, $C, $T, or $? is taken to be the text of the error message to print if the result
of this rewrite fails to match any channel. The setting of an error message is "sticky" and will
last through the rewriting process.

A rule that contains a $? operates just like any other rule. The special case of a rule containing
only a $? and nothing else receives special attention --- the rewriting process is terminated
without changing the mailbox or host portions of the address and the host is looked up as-is
in the channel table. This lookup is expected to fail and the error message will be returned as a
result.

For instance, if the final rewrite rule in the MTA configuration file is

. $?Unrecognized address; contact postmaster@xyzzy.com

then any unrecognized host/domain specifications which will fail will, in the process of failing,
generate the error message "Unrecognized address; contact postmaster@xyzzy.com".

Optionally, an extended SMTP error code may be included in the $? template, controlling
among other things whether the error returned is a temporary error, or a permanent error; the
format is:

$nxxxyyy?error-text

where the n is either 4 (meaning a temporary error) or 5 (meaning a permanent error) and
the xxx and yyy specify the second and third digits, respectively, of the extended SMTP error
code. E.g.,

offline.domain.com $4002001?Mailboxes$ temporarily$ unavailable;$ try$ later

will result in extended SMTP error code and error text "4.2.1 Mailboxes temporarily
unavailable; try later". If an extended SMTP error code is specified but no error-
text is specified, then the text of error_text_temporary_failure or
error_text_permanent_failure will be used, as appropriate.

47.5 Domain database
The MTA's domain database, seldom used nowadays, provided an alternate location for
storing rewrite rules, for cases of exceptionally large numbers of rewrite rules.

47–36 Messaging Server Reference

Domain database

In early versions of the MTA, the format of the domain database was an on-disk database, built
using the imsimta crdb utility based upon a flat text file input. The allowed format of the
flat text input file is:

key value

one entry per line, with the key beginning in column one, one or more white space (SP or
TAB) characters, and then the value on the right hand side.

The comment_chars MTA option controls which characters (by default exclamation point
and semicolon) in column one of a line are considered to indicate a comment line. The left
angle character may be used to read another file into the domain database text input file.

For a crdb "on disk" database, the left hand side (the key) cannot contain spaces or tabs unless
the -quoted switch is used; the maximum length of the key and value depend upon whether
the -long_records switch is used.

New in the 8.0 release, the MTA supports use of memcache for certain database/storage uses,
including the domain database; see the domain_database_url MTA option.

The use_domain_database MTA option controls whether or not the MTA makes use of the
domain database. In MS 7.2 and earlier, the default for use_domain_database was 1, so
the mere presence of the domain database file was enough to activate this database facility in
the MTA. As of MS 7.3, the default for use_domain_database changed to 0 from the prior
default of 1, so as of MS 7.3 it is necessary to explicitly set use_domain_database=1 (and
then if using a compiled configuration, recompile the configuration), and restart any long-
running processes (e.g., SMTP server processes) to enable consultation of the domain database.
Note that the domain database is consulted only when no match was found among the rules
in the rewrite group (Unified Configuration) or the configuration file (legacy configuration).
That is, the domain database is only consulted if a given rule is not found in the rewrite
group or configuration file, so rules can always be added to override those in the database.

Rewrite rules 47–37

47–38

Chapter 48 Aliases
48.1 Overview of Direct LDAP configuration .. 48–3
48.2 Aliases in LDAP ... 48–5
48.3 Aliases in Unified Configuration ... 48–8

48.3.1 The alias group .. 48–9
48.4 Alias options .. 48–9

48.4.1 alias_entry alias option ... 48–9
48.4.2 alias_alternate_recipient Option .. 48–10
48.4.3 alias_and and alias_or alias options .. 48–10
48.4.4 alias_auth_channel and alias_cant_channel alias options 48–10
48.4.5 alias_*_list alias options .. 48–10
48.4.6 alias_auth_mapping and alias_cant_mapping alias options 48–11
48.4.7 alias_auth_username and alias_cant_username alias options ... 48–11
48.4.8 alias_autosecretary alias option ... 48–11
48.4.9 alias_blocklimit and alias_linelimit alias options 48–11
48.4.10 alias_capture and alias_journal alias options 48–11
48.4.11 alias_capture_header and alias_journal_header alias options48–12
48.4.12 alias_conversion_tag alias option .. 48–12
48.4.13 alias_creation_date alias option .. 48–12
48.4.14 alias_deferred* alias options .. 48–13
48.4.15 alias_*delay_notifications alias options 48–14
48.4.16 alias_description Option ... 48–14
48.4.17 alias_digest_recurrence alias option .. 48–14
48.4.18 alias_direct_list and alias_direct_mapping alias options ... 48–14
48.4.19 alias_envelope_from alias option .. 48–15
48.4.20 alias_error_text alias option .. 48–15
48.4.21 alias_expandable and alias_nonexpandable alias options 48–15
48.4.22 alias_expiry alias option .. 48–16
48.4.23 alias_filter alias option .. 48–16
48.4.24 alias_header_addition and alias_header_trim alias options .. 48–16
48.4.25 alias_header_* alias expansion options .. 48–17
48.4.26 alias_header_check alias option .. 48–17
48.4.27 alias_hold_list, alias_nohold_list, alias_hold_mapping,
alias_nohold_mapping alias options ... 48–17
48.4.28 alias_importance, alias_precedence, alias_priority, and
alias_sensitivity alias options ... 48–17
48.4.29 alias_keep_delivery and alias_keep_read alias options 48–18
48.4.30 alias_list_name alias option .. 48–18
48.4.31 alias_moderator_* and alias_username_moderator_list alias
options .. 48–18
48.4.32 alias_*originator_reply alias options 48–19
48.4.33 alias_received*, alias_noreceived* alias options 48–20
48.4.34 alias_nosolicit alias option .. 48–20
48.4.35 alias_optin alias option .. 48–20
48.4.36 alias_optinN alias options .. 48–20
48.4.37 alias_optoutN alias options .. 48–20
48.4.38 alias_password alias option .. 48–21
48.4.39 alias_*_text alias options .. 48–21
48.4.40 alias_presence alias option .. 48–21
48.4.41 alias_private and alias_public alias options 48–21
48.4.42 alias_reprocess alias option .. 48–22

Aliases 48–1

48.4.43 alias_sasl_* alias options .. 48–22
48.4.44 alias_sequence_* alias options .. 48–23
48.4.45 alias_single alias option .. 48–23
48.4.46 alias_spare* alias options .. 48–23
48.4.47 alias_tag alias option .. 48–24
48.4.48 alias_toalias option ... 48–24
48.4.49 alias_username alias option .. 48–24

48.5 Alias file ... 48–24
48.5.1 Alias file format ... 48–25

48.6 Alias database .. 48–43
48.6.1 Using another alias source and the alias database 48–43
48.6.2 Alias database format ... 48–45

48.7 Subaddresses in aliases ... 48–46
48.8 Alias special formats ... 48–47
48.9 Alias header addition modifiers ... 48–47
48.10 Alias recursion and nested list definitions ... 48–48
48.11 Alias restrictions ... 48–48

48.11.1 General alias restrictions ... 48–48
48.11.2 Additional LDAP alias restrictions ... 48–49
48.11.3 Additional alias file (or database) restrictions 48–49

48.12 Address reversal ... 48–50
48.12.1 LDAP lookups for address reversal .. 48–50
48.12.2 Reverse database .. 48–52
48.12.3 REVERSE mapping table ... 48–54
48.12.4 Subaddresses and address reversal .. 48–56
48.12.5 RFC 822 comment strings and personal name modification 48–56

48.13 Forwarding mail ... 48–59
48.13.1 Forwarding via user LDAP attributes .. 48–60
48.13.2 FORWARD mapping table .. 48–60
48.13.3 Forward database ... 48–63

As part of the MTA's central role of routing messages, the MTA must recognize and potentially
transform addresses to determine whither to route them. Aliases -- addresses that translate to
one or more other addresses -- are a fundamental part of the processing. The MTA supports
various mechanisms for implementing aliases, and many variants on alias handling.

Aliases are used for "simple" forwarding (which may not be all that simple), for supporting
"hosted domains", for defining "mail forwarders" (mail groups), for defining true mailing
lists (which have additional semantics beyond mail groups), and for "centralized naming".
The term address reversal is used for the process (and techniques) of esthetic transformations
of addresses (as in the appearance of addresses in header lines) for purposes of centralized
naming, or conforming to site addressing conventions.

Typical site provisioning nowadays is to store the bulk of user definitions (and therefore local
domain definitions), as well as group and mailing list definitions, in an LDAP directory. The
MTA supports such usage, often referred to as Direct LDAP configuration.

The MTA also supports the older style of defining user aliases via the MTA's alias file (legacy
configuration), or alias options (Unified Configuration) -- techniques which are still used for
special users (e.g., postmaster) or special, limited purposes even in primarily LDAP-based
configurations.

Note that the MTA limits aliases, and addresses in general, to a maximum of 256 characters.
(Internet mailers were originally only required to support domain names up to a length of 63

48–2 Messaging Server Reference

Overview of Direct LDAP
configuration

characters, though support for lengths up to 255 characters was recommended, and similarly
are only required to support a local-part -- that is, the part to the left of the "@" sign -- of up
to 64 characters. See for instance RFC 1123, Requirements for Internet Hosts, Section 2.1, and
RFC 5321, SMTP, Section 4.5.3.1. Keep such limits in mind if you wish your addresses to work
reliably on the Internet.) This limit of 256 characters is on the actual address itself; the RFC 822
"phrase" more commonly referred to as a personal name is a separate string with its own 256
character limit.

48.1 Overview of Direct LDAP configuration
A normal Direct LDAP configuration, as typically used at most sites nowadays, consists
of provisioning local domain definitions and local user entries in LDAP, plus optionally
provisioning mail group and mailing list entries in LDAP, and then configuring the MTA to
consult LDAP to find and use those domain and user (and group and mailing list) definitions.

Once domains and users (and optionally mail groups and mailing lists) are provisioned in
LDAP, then configuring the MTA to make use of this information has five main steps:

1. Inform the MTA where the LDAP directory resides. In legacy configuration, the MTA consults
the local.ugldaphost and local.ugldapport configutil parameters (which may
be overridden specifically for the MTA's purposes by the MTA options ldap_host and
ldap_port, respectively); in Unified Configuration, the MTA consults the base options
ugldaphost and ugldapport (which similarly may be overridden for MTA purposes by
the MTA options ldap_host and ldap_port). Various other configuration settings can
further adjust aspects of the MTA's connections and consultations of LDAP, for instance,
those discussed in LDAP bind and connect MTA options.

2. Configure the MTA to consult LDAP to determine which domains are "local", that is, which domains
are hosted by this site. This is achieved by a special rewrite rule, which in legacy configuration
appears as:

 $* AEFU%HV$H@official-host-name-of-l-channel

or in Unified Configuration:

 msconfig> show rewrite.rule * $*
 role.rewrite.rule = $* AEFU%HV$H@&/IMTA_HOST/

This rewrite rule uses the match-all match-first $* template (so that it matches all domains
and will be consulted before all other rewrite rules---see Initial match-all rule), but with $E
$F in the template so that it applies only to envelope To addresses (see Address direction
and location-specific rewrites), then uses a pattern that uses VH to look up the currently-
being-rewritten-envelope-to domain in LDAP (see Domain LDAP lookup rewrites) to
determine whether the domain is a "local" domain.

a. If the domain is not "local" (is not found in LDAP), then the rewrite fails, and the
envelope To address is routed per the rest of the rewrite rules.

b. If the domain is "local" (is found in LDAP) but the domain is provisioned for override
routing, as with the mailRoutingHosts LDAP attribute (or more precisely whatever
LDAP attribute is named by the ldap_domain_attr_routing_hosts MTA option),
then the envelope To address is converted to a form using source-routing to the routing

Aliases 48–3

https://tools.ietf.org/html/rfc1123#page-13
https://tools.ietf.org/html/rfc5321#section-4.5.3.1
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822#section-3.3

Overview of Direct LDAP
configuration

host, and then routed per the rest of the rewrite rules (typically out a tcp_intranet
channel).

c. If the domain is "local" (found in LDAP) and has no override routing provisioned, then
this rewrite rule forces this envelope To address to "match" the local channel. Such
forcing of the recipient address to match-the-local-channel then sets the stage for step 3...

3. Configure the MTA to consult LDAP to find "local" recipient addresses. Recipient (envelope To)
addresses matching the local channel are looked up in LDAP via the alias_url0 MTA
option template to determine whether the recipient address corresponds to a valid "local"
user (or group or mailing list).

4. Configure the interpretation of routing and delivery settings. When a recipient
(envelope To) address (user, group, or mailing list) is found in LDAP (step 3), then
the MTA checks whether or not this MTA system should apply the recipient's
mailDeliveryOption values, (more precisely, the values of the LDAP attribute
named by the ldap_delivery_option MTA option), with interpretation of such
mailDeliveryOption values performed as defined via the MTA's delivery_options
option.

a. If the recipient address has a mailHost (MTA option ldap_mailhost) value set which
does not match "this" host (as determined by comparing with the ldap_local_host
and ldap_host_alias_list MTA options' values) and at least some of the recipient
address's mailDeliveryOption clauses are "mailhost-sensitive", or if the source
channel was configured with aliasdetourhost or aliasoptindetourhost , then
the address is converted to a source-routed form which explicitly routes to the mailHost
or aliasdetourhost system.

b. If the recipient address has a mailHost value matching "this" host (as determined by
comparing with the ldap_local_host and #ldap_host_alias_list~mta MTA
options' value), or has no mailHost attribute at all (common for groups and lists),
or has mailDeliveryOption clauses which are all "mailhost-independent", then its
mailDeliveryOption value(s) (more precisely, the values of whatever LDAP attribute
is named by the ldap_delivery_option MTA option) will be interpreted as specified
by the delivery_options MTA option, and any appropriate address changes or
forwarding will be applied. For instance, a recipient address that is found to correspond
to a local user LDAP entry with a mailDeliveryOption value of mailbox will be
converted to the proper local mailbox address as defined by delivery_options;
and a recipient address that is found to have a mailDeliveryOption value of
forward will (in accordance with delivery_options) be converted to any specified
mailForwardingAddress value(s) (more precisely, be converted to values of the LDAP
attribute named by the ldap_forwarding_address MTA option).

5. Configure canonicalization of all non-envelope-To occurrences of "local" addresses. All non-
envelope-To addresses (all addresses which didn't meet the EF criteria of the rewrite
rule in step (2)) are looked up in LDAP via the reverse_url MTA option template to
determine whether (and if so, how) the address should be "reversed" (canonicalized) to
some preferred form.

A great many refinements, adjustments, and further optional processing can be configured for
the MTA---see especially the various LDAP attribute semantics supported by the MTA listed
in Direct LDAP attribute name MTA options as some modify address handling, as well as
further MTA options discussed in Direct LDAP attribute interpretation MTA options, Direct
LDAP usergroup lookup MTA options, and Direct LDAP domain lookup MTA options---so the
above steps provide merely a somewhat over-simplified description of the major components

48–4 Messaging Server Reference

Aliases in LDAP

of Direct LDAP configuration. Note that combinations of Direct LDAP address handling and
more traditional MTA aliasing (via alias file, alias database, or Unified Configuration alias
options) are also possible.

48.2 Aliases in LDAP
If at least one of the alias_url0, alias_url1, alias_url2, or alias_url3 MTA
options is specified, then for each address matching the local channel (or any channel
marked aliaslocal) the MTA will automatically perform the LDAP query specified by the
alias_urlN option(s). (If more than one such option is specified, then queries are normally
performed in order beginning with alias_url0 and ending with alias_url3; but see the
alias_magic MTA option and aliasmagic channel option.)

The LDAP server to query, as well as other basic LDAP query parameters, are controlled
by certain MTA options and/or configutil parameters (legacy configuration) or Unified
Configuration base options and PAB options; see Table of Basic configuration settings relevant
to alias LDAP lookups. The MTA options, if explicitly set, for MTA lookup purposes take
precedence over (override) their corresponding configutil parameters (legacy configuration) or
base options and PAB options (Unified Configuration).

Note that the MTA's SMTP AUTH user authentication lookups are done using general SASL
library code, also used for IMAP, POP, or MSHTTP user logins (authentication). The SASL code
does not use the MTA-specific options, but rather uses the configutil parameters or Unified
Configuration options.

Table 48.1 Basic configuration settings relevant to alias LDAP lookups
msconfig base option configutil parameter MTA option Default Description

ugldaphost local.ugldaphost ldap_host ++ LDAP host to which to connect

ugldapport local.ugldapport ldap_port 389 LDAP port to which to connect

ldapconnecttimeout local.ldapconnecttimeout 10 Time out, in seconds, for LDAP connections

ldapsearchtimeout+ local.ldapsearchtimeout+ ldap_timeout 180000 Time out, in seconds, for LDAP queries

ugldapbinddn local.ugldapbinddn ldap_username The username with which to bind when doing
LDAP queries

ugldapbindcred local.ugldapbindcred ldap_password The password with which to bind when doing
LDAP queries

ugldapusessl local.ugldapusessl no Whether to use SSL (LDAP-S) to connect
to the user/group LDAP directory; also
controls use of SSL for LDAP PAB lookups,
and "external" LDAP (extldap) lookups.
If set to yes, then the MTA will expect
to find a certificate located either in the
local.ssldbpath directory, if it is specified,
or in the MTA's config directory (located as
local.instancedir/config, rather than via
the usual IMTA_TABLE option value), named
local.ssldbprefix.secmod.db. In that
directory also must be the password file named
sslpassword.conf.

ldaprequiretls 0 (New in 8.0) If SSL is not already being used
on a given LDAP connection (e.g., due to
ugldapusessl being set or use of an ldaps:
URL), then enabling base.ldaprequiretls
will require successful negotiation of TLS (using
LDAP StartTLS) before proceeding with the
connection.

Not used as of 7.0 local.instancedir Prefix for where Messaging Server is installed. In
particular, /config is appended onto this as the
location for where to find the certificate (if SSL is
being used; that is, if local.ugldapusessl is
set).

Deleted in 7.0u4 (never used) service.imta.ldappoolsize 0 The initial number of LDAP connections to start
up

Aliases 48–5

Aliases in LDAP

 ldap_max_connections 1024 The maximum number of simultaneous LDAP
connections to allow using

defaultdomain service.defaultdomain ldap_default_domain The default domain name

dcroot service.dcroot ldap_domain_root o=internet The base DN for the domain portion of the DIT

ugldapbasedn local.ugldapbasedn ldap_user_root o=isp The LDAP user root, that is, the base DN for the
user and group portion of the DIT

 local.imta.schematag ldap_schematag ims50 The tag for the schema in use

 ldap_group_object_classes Varies with the
schema tag

The object classes required for a group; the
default depends upon the schema tag; in
particular, for the default schema tag of
ims50, the default required object classes are
inetLocalMailRecipient+inetmailgroup

 ldap_user_object_classes Varies with the
schema tag

The object classes required for a user; the
default depends upon the schema tag; in
particular, for the default schema tag of
ims50, the default required object classes are
inetLocalMailRecipient+inetmailuser

 local.imta.mailaliases ldap_mail_aliases Varies with
schema tag

The attributes in which aliases are stored;
the default depends upon the schema tag;
in particular, for the default schema tag
of ims50, the default alias attributes are
mail, mailAlternateAddress, and
mailEquivalentAddress

hostname local.hostname ldap_local_host The local host name (official host name for the "l"
channel)

 local.imta.hostnamealiases ldap_host_alias_list Local host aliases

ldappoolrefreshinterval local.ldappoolrefreshinterval 35 Time (minutes) LDAP connections are
maintained

msconfig PAB option configutil parameter MTA option Default Description

ldaphost local.service.pab.ldaphost ldap_pab_host (New in 7.0)

ldapbinddn local.service.pab.ldapbinddn ldap_pab_username (New in Messaging Server 7.0)

ldappasswd local.service.pab.ldappasswd ldap_pab_password (New in 7.0)

ldapport local.service.pab.ldapport ldap_pab_port ldap_port
value

(New in 7.0) If neither pab.ldapport nor
local.service.pab.ldapport is set, then
the ldap_port value is used.

 ldap_pab_max_connections 1024 (New in 7.0u1) Maximum simultaneous
connections to the PAB

+The ldapsearchtimeout base option (Unified Configuration) or
local.ldapsearchtimeout configutil parameter (legacy configuration) is a global
default for all searches done through the LDAP pool API, including those done by the MTA.

++The MTA option ldap_host defaults to the value of the ugldaphost base option, which in
turn defaults, if not set, to the loopback interface.

Compare this Table of Basic configuration settings relevant to alias LDAP lookups with Basic
configuration settings relevant to domain LDAP lookups.

 For the alias_url0, alias_url1, alias_url2, or alias_url3 MTA options, standard
LDAP URLs as per RFC 2255 must be used, with the following exception and special
interpretations:

• The LDAP server and port are typically omitted, and are instead specified via MTA options
or configutil parameters (legacy configuration) or base options (Unified Configuration),
as shown above in Table of Basic LDAP settings relevant to alias lookups. Indeed, prior to
Messaging Server 7.0u4, the host and port had to be omitted; as of Messaging Server 7.0u4,
specifying the host and port in the URL itself is supported.

• The MTA makes a distinction between a completely omitted attributes field, which as per
RFC 2255 means to request the return of all attributes, and an attributes field consisting of
the asterisk character, *, which the MTA instead interprets as meaning to request the return
of all known-to-the-MTA attributes, that is, all attributes specified by direct LDAP attribute
name MTA options. This distinction is available since for some directory setups, there may

48–6 Messaging Server Reference

https://tools.ietf.org/html/rfc2255
https://tools.ietf.org/html/rfc2255

Aliases in LDAP

be a noticeable performance difference in LDAP directory response to one type of query
(all attributes requested) vs. the other type of query (specific, though large, list of attributes
requested).

• Also, certain substitution sequences are available, as shown in Table of LDAP URL
substitution sequences.

Thus the LDAP URL value for an alias_urlN option should be specified as

ldap:///dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of the
URL. The dn is required and is a distinguished name specifying the search base; it might
correspond to the organization's top level in the Directory Information Tree. The optional
attributes, scope, and filter portions of the URL further refine what information to
return. For an alias, the desired attributes to specify returning would typically be the mail
attribute (or some similar attribute). The scope may be any of base (the default), one, or sub.
And the desired filter would typically be based upon the mailbox (local portion) of the
incoming addresses.

Note that the usual LDAP URL encoding rules should be followed; see especially RFC 1738
(Uniform Resource Locators (URL)) and RFC 2255 (LDAP URL Format).

Substitution sequences, as shown in Table of LDAP URL substitution sequences, are available
for use in constructing the LDAP URL.

The LDAP URL, before any substitutions, is limited to 256 characters in length (252 characters
in iMS 5.2 and earlier); the substitutions may insert additional material and the length
after such substitutions is limited to 1024 characters. Note that the substitution of "known"
attributes when asterisk, *, is specified as the attribute to return, is not considered as part of
the regular substitution; this substitution is performed at a later step and the length after this
"known" attributes substitution is limited to 4096 characters.

For instance, at a Messaging Server site using direct LDAP mode, alias_url0 is typically set
as follows:

domain_uplevel=2
alias_url0=ldap:///$V?*?sub?$R

Here the domain_uplevel=2 setting means that:

• Since bit 0 (value 1) is not set, domain matches must be exact; (e.g., a domain entry in the
DC tree for siroe.com will not imply that host.siroe.com should also be considered a "local"
domain).

• Since bit 2 (value 2) is set, then user alias lookups will be performed looking not
only for the exact address presented, but also for that address with the domain name
replaced by the "canonical" domain name; for instance, if a domain name is an alias
for another domain name (see ldap_domain_attr_alias in Schema 1 mode or
ldap_attr_domain2_schema2 in Schema 2 mode), then the user alias lookup will be
performed both with the address as originally presented, and with the address with the
domain name replaced by the aliased (to) domain name.

Aliases 48–7

https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc1738
https://tools.ietf.org/html/rfc2255

Aliases in Unified Configuration

The alias_url0 setting means that the result of a previous domainMap lookup will be used
as the base for the search (this is the $V substitution), and the MTA will look for its standard
set of mail alias attributes (the $R substitution); see the ldap_mail_aliases MTA option.

If a Messaging Server site is using direct LDAP mode with vanity domains enabled, then
typical settings are:

domain_uplevel=2
alias_url0=ldap:///$V?*?sub?$R
alias_url1=ldap:///$B?*?sub?(&(msgVanityDomain=$D)$R)
alias_url2=ldap:///$1V?*?sub?(mailAlternateAddress=@$D)
domain_match_url=ldap:///$B?msgVanityDomain?sub?(msgVanityDomain=$D)

In addition to the usual settings (see above), notice the additional alias_url1, alias_url2,
and domain_match_url settings. Here the domain_match_url setting, used to do an extra
lookup when doing domainMap checking, means that the user tree base will be used as the
base for the search (the $B substitution), searching for a msgVanityDomain attribute that
has the value of the domain name of the address being processed; that is, this is enabling the
finding of vanity domain names. The alias_url1 setting means that the user tree base will
be used as the base for a search for entries with msgVanityDomain attribute equal to the
domain name of the address being processed, and with at least one of the entry's standard
mail alias attributes (see the ldap_mail_aliases MTA option) equal to the address being
processed. The alias_url2 setting, used if neither the alias_url0 nor alias_url1
searches resulted in a match, is looking for an entry that is the "catch-all" address for the
domain or vanity domain of the address being processed.

48.3 Aliases in Unified Configuration
In Unified Configuration, plain MTA aliases (but see also Aliases in LDAP) are set as a named
set of options under an alias group. At the simplest, an alias can be set as:

msconfig> set alias:alias-with-quoted-periods.alias_entry address-or-alias

e.g.,

msconfig> set alias:first\.last@subdomain\.domain.\com.alias_entry "mailbox@mailhost.domain.com"

where the alias-with-quoted-periods (appearing between alias: and
.alias_entry) is the alias, and the value on the right hand side is an address or alias to
which the alias translates.

Note that each period in the alias name itself must be quoted with the backslash character.
After the alias name, an unquoted period marks the end of the alias name, and the start of an
alias option. The alias_entry option is required, being the fundamental definition of the
alias; additional alias options are optional.

An alias may translate to multiple addresses or aliases, (forming a so-called mail group). For
such an alias, use multiple set commands, e.g.,

msconfig> set alias:first\.last@subdomain\.domain.\com.alias_entry "mailbox@mailhost.domain.com"

48–8 Messaging Server Reference

The alias group

msconfig> set alias:first\.last@subdomain\.domain.\com.alias_entry "remote-mailbox@remote-domain.com"

Optionally, other alias options in addition to alias_entry may be set on an alias. Such
optional alias options are especially relevant when defining a mailing list (which is merely
a specially decorated form of alias, from the MTA's point of view), but may also be set on
individual user aliases, e.g.:

msconfig> set alias:first\.last@subdomain\.domain\.com.alias_blocklimit 200

As an alternative to using msconfig set commands, you may instead issue the command
edit aliases within msconfig to enter an interactive mode of editting aliases as if they
were in the legacy configuration alias file; use :q to quit interactive editting mode, or :x to
save your edits and exit interactive editting mode.

48.3.1 The alias group
In Unified Configuration, the alias group is not an option itself, but rather a grouping of
alias setting defining a particular named alias.

48.4 Alias options
Alias options are the Unified Configuration equivalent of what in legacy configuration were
termed Alias file named parameters, plus the alias translation value itself (specified by the
alias_entry alias option). The alias options under each named alias group, together with
the name, comprise the alias.

The action of those alias options that cause addition of a header, e.g.,
alias_deferredalias_importance, etc., can be modified by special characters suffixed
on the end of the value, as discussed in Alias header addition modifiers.

48.4.1 Alias options: alias_entry (alias or address)
The alias_entry alias option is the fundamental part of an alias: it specifies a translation
address (or alias) for an alias. For an alias that translates to multiple addresses or aliases,
multiple alias_entry settings may be made. Each value specified as an alias_entry may
be a fully qualified address, or a short form alias name itself. Each individual alias_entry
value corresponds to what in legacy configuration would be one address or alias on the right
hand side of an alias. The entire set of alias_entry values for an alias corresponds to what
in legacy configuration would be the list of addresses/aliases on the right hand side of an alias.

Every MTA configuration should include at least a postmaster alias. E.g.,

msconfig> show alias.*
role.alias:root@default-domain.alias_entry = postmast
role.alias:root@mta-host.alias_entry = postmast
role.alias:postmaster@mta-host.alias_entry = postmast

Since the initial configuration creates in LDAP a postmaster group with
postmaster@default-domain as the primary address (mail attribute) and with
postmast@default-domain as an alias (mailAlternateAddress attribute), these

Aliases 48–9

alias_alternate_recipient
Option

alias entries ensure that alternate "postmaster-ish" sorts of addresses, such as for instance
postmaster@mta-host, will be directed to the postmaster group.

The distinction between default-domain and mta-host is the distinction between the
default domain for users' e-mail addresses, vs. the (possibly different -- indeed a different
name is recommended) DNS name of the host system itself. For instance:

msconfig> show alias.*
role.alias:root@example\.com.alias_entry = postmast
role.alias:root@host\.example\.com.alias_entry = postmast
role.alias:postmaster@host\.example\.com.alias_entry = postmast

48.4.2 alias_alternate_recipient Option
(New in MS 8.0.1.) The alias_alternate_recipient alias option is used to associate
additional alternate recipient addresses with a group or mailing list.

For users defined in LDAP, see the ldap_alternate_recipient MTA option.

48.4.3 Alias options: alias_and and alias_or
The alias_and and alias_or alias options control whether subsequent access control
clauses (e.g., alias_auth_list, alias_auth_mapping, etc.) are ANDed or ORed. They
are analogues of the legacy configuration alias file named parameters [AND] and [OR],
respectively. The default is controlled by the or_clauses MTA option---and is AND (for
backwards compatibility) by default.

For groups and lists defined in LDAP, see also the AND and OR values for the
mgrpBroadcasterPolicy attribute (or more precisely, the attribute named by the
ldap_auth_policy MTA option). For a more detailed discussion, see Mailing list multiple
access control interpretation.

48.4.4 Alias options: alias_auth_channel and
alias_cant_channel

The alias_auth_channel alias option is used to specify a source channel or channels that
may submit messages to the mailing list. The alias_cant_channel alias option is used
to specify a source channel or channels that may not submit messages to the mailing list.
These alias options are analogues of the legacy configuration alias file named parameters
[AUTH_CHANNEL] and [CANT_CHANNEL], respectively. The argument for such options
should be a (possibly wildcarded) channel name, or a space-separated list of (possibly
wildcarded) channel names.

48.4.5 Alias options: alias_auth_list,
alias_cant_list, alias_username_auth_list, and
alias_username_cant_list

These options are analogues of the alias file named parameters [AUTH_LIST], [CANT_LIST],
[USERNAME_AUTH_LIST], and [USERNAME_CANT_LIST], respectively.

48–10 Messaging Server Reference

alias_auth_mapping and
alias_cant_mapping alias

options

48.4.6 Alias options: alias_auth_mapping and
alias_cant_mapping

These options are analogues of the alias file named parameters [AUTH_MAPPING] and
[CANT_MAPPING], respectively.

48.4.7 Alias options: alias_auth_username and
alias_cant_username

The alias_auth_username and alias_cant_username alias options are analogues of the
alias file named parameters [AUTH_USERNAME] and [CANT_USERNAME], respectively.

48.4.8 Alias options: alias_autosecretary
RESTRICTED: Not yet implemented.

48.4.9 Alias options: alias_blocklimit and
alias_linelimit

The alias_blocklimit and alias_linelimit alias options may be used to limit the size
of messages that may be posted to the address (whether user or group or list). The value must
be an integer number of MTA blocks for alias_blocklimit, or an integer number of lines
for alias_linelimit. The number of bytes in a block is specified via the block_size
MTA option. By default, neither alias_blocklimit nor alias_linelimit is set; being
unset (or being set to a value of 0) means that they impose no limit on the size of message that
may be posted to the address (though other limits, such as channel or system wide limits, may
be in effect). In particular, neither alias_blocklimit and alias_linelimit will override
more general limits that may be in effect; they are minimized with any such general limits.

For user, groups, and lists defined in LDAP, see mailMsgMaxBlocks attribute (or more
precisely, the attribute named by the ldap_blocklimit MTA option).

The legacy configuration analogues are the [BLOCKLIMIT] and [LINELIMIT] alias file named
parameters.

48.4.10 Alias options: alias_capture and
alias_journal

The alias_capture alias option may be used to set an address to which to direct an
encapsulated, "captured" copy of each message posted to the list. The alias_journal alias
option works similarly, but generates an envelope "journal" format message. The value item
should be the address to which to send the "captured" message copies. These alias options are
exactly analogous to use of the LDAP attribute named by the ldap_capture MTA option on
a user or group or mailing list defined via an LDAP entry.

The legacy configuration analogues are the [CAPTURE] and [JOURNAL] alias file named
parameters.

New in MS 8.0.1, see also the alias_capture_header alias option.

Aliases 48–11

alias_capture_header and
alias_journal_header alias
options

48.4.11 Alias options: alias_capture_header and
alias_journal_header

(New in MS 8.0.1) The alias_capture_header alias option may be used to set an address
to which to direct an encapsulated, "captured" copy of the message header of each message
posted to the list. The alias_journal_header alias option works similarly, but generates
an envelope "journal" format message header. (For full message content, not merely message
header, in the captured copies, see the alias_capture and alias_journal alias options.)
The value item should be the address to which to send the "captured" message copies.
The alias_capture_header and alias_journal_header alias options are exactly
analogous to use of the LDAP attribute named by the ldap_capture MTA option on a user
or group or mailing list defined via an LDAP entry, when the LDAP attribute's value is tagged,
respectively, ;format-report-header or ;format-journal-header.

The legacy configuration analogues are the [CAPTURE_HEADER] and [JOURNAL_HEADER]
alias file named parameters.

48.4.12 Alias options: alias_conversion_tag
The alias_conversion_tag alias option may be used to set a tag which conversion file
entries can match upon. The value item should be the string to use as the tag. For instance, if
a list is defined

msconfig> show alias:testlist@domain\.com.*
role.alias:testlist@domain\.com.alias_entry = user1@domain.com
role.alias:testlist@domain\.com.alias_entry = user2@domain.com
role.alias:testlist@domain\.com.alias_entry = remoteuser@remote.com
role.alias:testlist@domain\.com.conversion_tag = listtag
role.alias:testlist@domain\.com.envelope_from = user2@domain.com

then conversion entries could include a tag=listtag; clause to match. For instance, if for
some mailing list it was desired to convert any text/html parts in posted messages to text/
plain, and if a site had an HTML to TEXT converter called htmltotextconvert stored in the
IMTA_PROGRAM directory (data-root/site-programs/), and had set up the conversion
channel and a CONVERSIONS mapping table to apply to list postings, then a conversion file
entry could be

in-chan=*; out-chan=*; in-type=text; in-subtype=html; tag=listtag;
 out-type=text; out-subtype=plain; parameter-copy-0=*;
 command="IMTA_PROGRAM:htmltotextconvert $INPUT_FILE $OUTPUT_FILE"

For users, groups, and lists defined in LDAP, see the mailConversionTag attribute (or more
precisely, the attribute named by the ldap_conversion_tag MTA option).

In legacy configuration, the analogue is the [CONVERSION_TAG] alias file named parameter.

48.4.13 Alias options: alias_creation_date
(New in 8.0.) The alias_creation_date alias option may be used to set a creation date
for the alias (intended to be used for RRVS purposes). The creation date value must be in RFC

48–12 Messaging Server Reference

https://tools.ietf.org/html/rfc3339

alias_deferred* alias options

3339 (Date and Time on the Internet: Timestamps) format (a profile of ISO 8601 format), along
the lines of:

YYYY-MM-DDTHH:MM:SS.ssZ

or

YYYY-MM-DDTHH:MM:SS.ssplus-or-minusHH:MM

where the hundredths of seconds portion is optional, and T and (if used) Z are not case
sensitive. For instance:

2014-02-28T12:13:14.30-07:00

This alias option is analogous to use of the LDAP attribute named by the
ldap_creation_date MTA option on a user or group or mailing list defined via an LDAP
entry, or to use of the LDAP attribute named by the ldap_domain_attr_creation_date
MTA option on a domain entry.

The legacy configuration analogue is the [CREATION_DATE] alias file named parameter.

48.4.14 Alias options: alias_deferred (ISO 8601 P time
duration string), alias_deferred_list (filepath or
MTA URL), alias_deferred_mapping (MTA mapping
name)

The alias_deferred alias option may be used to add a Deferred-delivery: header line. The
value should be a date and time, in ISO 8601 P format.

The alias_deferred_list alias option takes two values, a file specification for a file
containing a list of originator addresses (or a URL returning a list of originator addresses) to
whose postings to add a Deferred-delivery: header, and the deferral date/time in ISO 8601
format.

As of 8.0 (in prior versions, this feature "existed" but was not working), the
alias_deferred_mapping alias option may be used to specify a mapping table through
which to run originator addresses. The alias_deferred_mapping alias option takes one
or two arguments, with a space between if the optional second argument is included. The first
argument is required and must contain at a minimum the name of an MTA mapping table; the
first argument may also, optionally, include a vertical bar followed by a string to use as a prefix
in the mapping table probe, prior to the originator address. The second argument is optional,
consisting of a deferral date/time in ISO 8601 format.

mapping-name[|probe-prefix] ISO-8601-deferral-time

Originator addresses will will be run through the specified mapping. If the mapping template
does not begin with an N, n, F, or f, and if it contains a valid date/time specification in ISO
8601 format, then that date/time will be used as a deferral time. If the mapping template does
not contain a date/time specification yet does not begin with N, n, F, or f, then the deferral
date/time specified as the second argument to alias_deferred_mapping will be used. The
default, if no mapping entry matches, or if an entry that begins with an N, n, F, or f matches, is
not to add a Deferred-delivery: header.

Aliases 48–13

https://tools.ietf.org/html/rfc3339

alias_*delay_notifications
alias options

Note that the intended purpose of a probe-prefix is for convenience in using a single
MTA mapping table for multiple mailing list deferral settings, e.g., by using a probe prefix
consisting of the list name, so that entries in the mapping table may be list specific. Similarly, a
deferral time specified as the second argument permits a default deferral time, that may then
be overridden in the case of specific originators in the mapping table result.

Setting bit 3/value 8 of the include_connectioninfo MTA option will cause
additional information to be included in the input probe of the mapping named by
alias_deferred_mapping. Thus if a probe-prefix has also been specified, then the
probe will take the form:

transport-info|application-info|probe-prefix|originator-address

Note that by default the MTA does not honor Deferred-delivery: headers; see the
deferreddestination channel option for a discussion. As a functionally preferable
alternative to the Deferred-delivery: header line approach for retaining/deferring messages,
see also the SMTP SUBMIT FUTURERELEASE extension.

48.4.15 Alias options: alias_delay_notifications
and alias_nodelay_notifications

The alias_delay_notifications and alias_nodelay_notifications alias options
are analogues of the [DELAY_NOTIFICATIONS] and [NODELAY_NOTIFICATIONS] alias file
named parameters. The alias_delay_notifications alias option requests that NOTARY
delay notifications be sent for mailing list postings; the alias_nodelay_notifications
alias option requests that NOTARY delay notifications not be sent for mailing list postings.

For lists defined in LDAP, the analogous settings are controlled via whatever
attribute is named by the ldap_delay_notifications MTA option, by default
mgrpDelayNotifications.

48.4.16 alias_description Option
The alias_description alias option takes a string argument and provides a way to
associate a descriptive term or phrase with an alias. The value is unused otherwise.

48.4.17 Alias options: alias_digest_recurrence
RESTRICTED: Not yet fully implemented.

The alias_digest_recurrence alias option takes an ISO 8601 argument.

48.4.18 Alias options: alias_direct_list and
alias_direct_mapping

RESTRICTED: Not yet fully implemented.

alias_direct_list takes a file specification for a file containing a list of originator
addresses (or a URL returning a list of originator addresses).

48–14 Messaging Server Reference

alias_envelope_from alias
option

alias_direct_mapping takes the name of a mapping table through which to run originator
addresses.

48.4.19 Alias options: alias_envelope_from
The alias_envelope_from alias option takes a required value specifying an address to
replace the message's original envelope From address. The legacy configuration analogue
is the [ENVELOPE_FROM] alias file named parameter. This sets only the envelope From
address, (unlike the alias file error-return-address positional parameter which also sets
an Errors-to: address).

Setting the value to an address of the form user+*@domain has a special meaning. The
asterisk character will be expanded into a representation of the recipient address; thus a
separate copy of the list message is generated for each recipient, with each copy including
the intended recipient address as a subaddress within the return address. If delivery errors
subsequently occur, the subaddress will indicate which was the failing address. In some cases,
when dealing with remote MTAs that generate nonstandard, uninformative delivery error
messages, this can in theory be useful as a way of determining which recipient address(es)
failed, even when the bounce message's inner content is relatively uninformative. And it
may make processing of such bounce messages by an automated program more convenient.
However, the tradeoff is that such per-user-specific return address values require that a
separate message copy be generated and sent for each recipient; for a "large" list, with many
recipients in the same destination domains, this can be a large increase in overhead (a large
decrease in efficiency). And with more prevalent use nowadays of standard format notification
messages, the "need" for this sort of approach, with its extra (potentially large) overhead, is
much less (since the intended recipient information can instead be extracted from the standard
field in the contents of a standard format notification message).

(New in MS 6.3.) Setting the value to the forward slash character, /, has a special meaning. It
tells the MTA to revert to using the original envelope From address that had been present on
the incoming message, yet in all other respects use mailing list semantics. This can be useful
for setting up mailing lists that report all forms of list errors to the original sender.

For groups and lists defined in LDAP, see the mgrpErrorsTo attribute (or more precisely, the
attribute named by the ldap_errors_to MTA option).

48.4.20 Alias options: alias_error_text
The alias_error_text alias option specifies a string to use as the "reason" which will be
returned to the attempted sender if and when an attempted posting fails due to an access
failure, overriding the usual error text that would be returned in such a case. For groups
defined in LDAP, see the mgrpRejectText attribute or mgrpMsgRejectText attribute (or
more precisely, whatever attribute(s) are named by the ldap_reject_text MTA option).

For aliases defined in the alias file or alias database, the analogous setting is the
[ERROR_TEXT] alias file named parameter.

48.4.21 Alias options: alias_expandable and
alias_nonexpandable

The alias_expandable alias option (analogue of the legacy configuration alias file named
parameter [EXPANDABLE]) is used to specify that the associated list can be expanded (and

Aliases 48–15

alias_expiry alias option

hence its contents seen) by various protocols which may attempt such an operation. It does
not mean, or imply, that the membership of the list will be expanded into message headers; for
that, instead see alias_header_expansion.

The alias_nonexpandable alias option (analogue of the legacy configuration alias
file named parameter [NONEXPANDABLE]) specifies that the associated list may not be
expanded.

alias_expandable is the default, unless the expandable_default MTA option has been
set, in which case the default is alias_nonexpandable.

alias_nonexpandable is useful in blocking the expansion of mailing lists via SMTP's
EXPN command. Note that mailing list access controls, e.g., alias_auth_list,
alias_auth_mapping, etc., also affect the expansion of mailing lists via SMTP's EXPN
command; the SMTP server will only permit the EXPN if the SMTP client passes the access
control (e.g., has issued a prior MAIL FROM: command that passes the access control).

48.4.22 Alias options: alias_expiry
The alias_expiry alias option is used to add an Expiry-date: header line. The value should
be a date and time, in ISO 8601 P format. (The MTA will convert the specified value into
the appropriate corresponding RFC 5322 date value needed for the header line.) The MTA's
periodic return job will return messages whose Expiry-date: has passed.

48.4.23 Alias options: alias_filter
The alias_filter alias option is the analogue of the legacy configuration [FILTER] alias file
named parameter. It takes a URL argument specifying the location of a Sieve filter to apply on
attempted message postings. The argument may be any supported form of URL that makes
sense; in particular, besides supporting file:file-spec URLs or simply file specifications
without the leading file:, LDAP URLs, and data:sieve-commands are also supported.
Note that when specifying a file, it must be the full file specification for the filter file to apply.

48.4.24 Alias options: alias_header_addition and
alias_header_trim

The alias_header_trim and alias_header_addition alias options are analogues
of the legacy configuration [HEADER_TRIM] and [HEADER_ADDITION] alias file named
parameters. The alias_header_trim alias option may be used to add headers to or remove
headers from posted messages. The argument must be a full file specification for a header
trimming option file; see Header option files for information on the format of these files.
alias_header_addition is more specialized than alias_header_trim, being used
when there are merely headers to be added. alias_header_addition may be used to
specify a file of headers to be added to posted messages. The argument must be a full file
specification for the file containing headers to be added.

In particular this facility can be used to add the standard mailing list headers defined in RFC
2369. For instance, a site domain.com that has set up a list named listname, that has a list
owner address of listname-owner@domain.com and a list members administrator address of
listname-request@domain.com, and with certain list information and archives available at an
FTP site, might use a header addition file along the lines of the following:

48–16 Messaging Server Reference

https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc2369
https://tools.ietf.org/html/rfc2369

alias_header_* alias expansion
options

List-Help: <ftp://ftp.domain.com/pub/listname-help.txt> (FTP),
 <mailto:listname-owner@domain.com?subject=help> (List Manager)
List-Subscribe:
 <mailto:listname-request@domain.com?subject=subscribe%20listname?body=subscribe%20listname>
List-Unsubscribe:
 <mailto:listname-request@domain.com?subject=unsubscribe%20listname?body=unsubscribe%20listname>
List-Post: <mailto:listname@domain.com>
List-Owner: <mailto:listname-owner@domain.com?Subject=listname>
List-Archive: <ftp://ftp.domain.com/pub/listname/archive/>,
 <mailto:listname-request@domain.com?subject="send%20listname%20archives?body=send%20/pub/listname/archive/*>

48.4.25 Alias options: alias_header_alias and
alias_header_expansion

The alias_header_alias and alias_header_expansion alias options are Unified
Configuration analogues of the [HEADER_ALIAS] and [HEADER_EXPANSION] alias file
named parameters. Because their effect is limited to cases such as messages submitted via the
L channel, they have almost no relevance in modern Messaging Server configuration.

48.4.26 Alias options: alias_header_check
(New in Messaging Server 7.0.5.) The alias_header_check alias option is used in
conjunction with a addrtypescan* channel option. Valid arguments are jettison
or discard. This alias option is an analogue of the LDAP attribute named by the
ldap_check_header MTA option.

48.4.27 Alias options: alias_hold_list,
alias_nohold_list, alias_hold_mapping,
alias_nohold_mapping

The alias_hold_list alias option may be used to specify a list of originator addresses
whose attempts to post to the list should be sidelined as .HELD messages. The argument may
be any supported form of URL that makes sense. The alias_nohold_list alias option may
be used to specify the list of originator addresses whose postings should not be so sidelined,
while all other postings will be sidelined. The value must be a full file specification for a file
of addresses, or an LDAP URL returning a list of addresses. The alias_hold_mapping and
alias_nohold_mapping alias options are used analogously, but via mapping tables rather
than via lists. The value should be the name of an MTA mapping table.

These alias options are analogues of the alias file/alias database named parameters
HOLD_LIST, NOHOLD_LIST, HOLD_MAPPING and NOHOLD_MAPPING.

48.4.28 Alias options: alias_importance,
alias_precedence, alias_priority, and
alias_keep_read

The alias_importance, alias_precedence, alias_priority, and
alias_sensitivity alias options are used to generate respective header lines; the value
specified is inserted on the respective header line. Alias file/alias database analogues exist; see
the [IMPORTANCE], [PRECEDENCE], [PRIORITY], and [SENSITIVITY] alias file named
parameters.

Aliases 48–17

alias_keep_delivery and
alias_keep_read alias options

Note that the more general alias_header_addition alias option -- in legacy configuration,
the alias file/alias database [HEADER_ADDITION] named parameter -- provides an
alternate way to add these and other header lines. Or for aliases defined in LDAP, see the
ldap_add_header MTA option.

48.4.29 Alias options: alias_keep_delivery and
alias_keep_read

The alias_keep_delivery and alias_keep_read alias options are Unified
Configuration analogues of the alias file named parameters [KEEP_DELIVERY] and
[KEEP_READ].

48.4.30 Alias options: alias_list_name
New in Messaging Server 7.4-0.01. RESTRICTED: Reserved for future use.

48.4.31 Alias options: alias_moderator_address,
alias_moderator_list, alias_moderator_mapping,
alias_username_moderator_list

The alias_moderator_* alias options are used to establish a moderated mailing list. All
postings to the list not originating from a moderator are sent to the list's moderator. The
address of the moderator must be specified with the alias_moderator_address alias
option. The moderator address determines where moderator mail is sent when someone other
than the moderator posts. The value of that named parameter is the moderator's address. For
example,

msconfig> show alias:test-list@domain\.com
instance.alias:test-list@domain\.com.alias_entry = <IMTA_TABLE:test.dis
instance.alias:test-list@domain\.com.alias_moderator_address = bob@domain.com

When there may be multiple moderator addresses (for instance, both
robert@mail1.domain.com and bob@domain.com), use alias_moderator_list,
alias_username_moderator_list, or alias_moderator_mapping to specify all
addresses from which postings should be passed directly to the list and not sent to the list's
moderator.

alias_moderator_list specifies either the name of a file containing a list of moderator
addresses, or an LDAP URL returning a list of moderator addresses.

alias_username_moderator_list specifies as its argument a URL that "makes sense":
either the name of a file containing a list of (possibly wildcarded) moderator usernames,
or an LDAP URL returning a list of (possibly wildcarded) moderator usernames; note that
usernames are generally only useful for messages submitted from the L channel or submitted
with SASL authentication via SMTP (SMTP AUTH) since for messages submitted from other
sources the username will simply be that of the account under which the submitting MTA
process is running. Note that for messages submitted via SMTP with authentication (SMTP
AUTH), the username that authenticated will be prefixed with the asterisk, *, character.
For instance, to specify that only the user JDOE is the list moderator, whether submitting
from the L channel or via SMTP (e.g., from a POP or IMAP client that performs SASL SMTP

48–18 Messaging Server Reference

alias_*originator_reply
alias options

authentication), the alias_username_moderator_list file would need to contain the
entries:

JDOE
$*JDOE

where the first entry would match for messages submitted from the L channel and the second
entry would match for messages submitted via SMTP AUTH. Note that as asterisk is normally
a wildcard character, matching of only the exact literal asterisk character is specified by using
the dollar character to quote the asterisk.

alias_moderator_mapping specifies the name of a mapping table used to verify whether
or not an address is a moderator address.

See also the alias_sasl_moderator_list and alias_sasl_moderator_mapping alias
options, which operate similarly but require that an authenticated address be present in the
attempted posting.

If an alias_moderator_list, alias_moderator_mapping,
alias_sasl_moderator_list, or alias_sasl_moderator_mapping
alias option is used, thereby specifying who may post directly to the list, then an
alias_moderator_address alias option should also be present to specify the address to
which to send postings not from any moderator.

The use of the alias_moderator_address alias option alone, without the
alias_moderator_list alias option, is equivalent to using alias_moderator_address
and an alias_moderator_list consisting of just the one moderator address.

Legacy configuration has analogous named parameters [MODERATOR_ADDRESS],
[MODERATOR_LIST], [MODERATOR_MAPPING], and [USERNAME_MODERATOR_LIST], as
well as named parameters [SASL_MODERATOR_LIST] and [SASL_MODERATOR_MAPPING].

For lists defined in LDAP, the configuration of moderation is structured somewhat differently;
see the LDAP attributes named by the ldap_reject_action, ldap_moderator_url, and
ldap_auth_url MTA options.

48.4.32 Alias options: alias_originator_reply,
alias_nooriginator_reply

The alias_originator_reply alias option is used to control whether or not the
originator's address is added to any generated Reply-to: header. The value item should be
the full file path specification for a world readable file, or a resolvable URL, containing the
list of addresses that should never be added. (This is usually the mailing list itself.) The MTA
will match the envelope From address against the addresses in the list; if no match occurs, the
originator's address will be added to any generated Reply-to: header.

alias_nooriginator_reply specifies that any generated Reply-to: header should contain
only explicitly specified addresses. A value is required, but ignored.

If neither alias_originator_reply nor alias_nooriginator_reply is explicitly set,
the MTA's default behavior is effectively equivalent to alias_nooriginator_reply.

In legacy configuration, the analogous alias file named parameters are
NOORIGINATOR_REPLY and ORIGINATOR_REPLY.

Aliases 48–19

alias_received*,
alias_noreceived* alias
options

48.4.33 Alias options: alias_receivedfor,
alias_noreceivedfor, alias_receivedfrom,
alias_noreceivedfrom

The alias_receivedfor, alias_noreceivedfor, alias_receivedfrom, and
alias_noreceivedfrom alias options control features of what appears in the Received:
header constructed when expanding the alias, and override normal channel receivedfor,
noreceivedfor, receivedfrom, or noreceivedfrom channel option settings. The value
specification is currently ignored and should always be NONE.

In legacy configuration, the analogues for these alias options are the alias file
named parameters [RECEIVEDFOR], [NORECEIVEDFOR], [RECEIVEDFROM], and
[NORECEIVEDFROM].

48.4.34 Alias options: alias_nosolicit
The alias_nosolicit alias option sets a solicitation keyword, or a comma-separated list of
solicitation keywords, that will not be allowed on postings to the list. Attempted postings to an
alias address that has such a keyword set will be rejected with SMTP error:

550 5.7.1 Solicitation check failure on SOLICIT=solicitation-keyword: recipient-address

In legacy configuration, the analogous alias file named parameter is [NOSOLICIT].

48.4.35 Alias options: alias_optin
The legacy configuration alias_optin alias option has been replaced in Unified
Configuration by alias_optin1.

48.4.36 Spam/virus filter "opt in" alias options:
alias_optinN (string)

The alias_optinN alias options each respectively set an opt-in value for "opting in" to
spam/virus filter package N, for N in the range 1 to 8. (alias_optin is a synonym for
alias_optin1.)

These alias options are analogues of the legacy configuration alias file named parameters
[OPTINn].

See also the ldap_optinN MTA options for similar functionality for aliases stored in LDAP.

48.4.37 Spam/virus filter "opt out" alias options:
alias_optoutN (string)

The alias_optoutN alias options each respectively specify that the current alias is "opting
out" of the corresponding spam/virus filter package N, for N in the range 1 to 8.

Note that the scope of opt-outs only extends to the immediate expansion values of the alias - if
the alias expands to another alias that alias will not honor the outer level opt-out.

48–20 Messaging Server Reference

alias_password alias option

These alias options are analogues of the legacy configuration alias file named parameters
[OPTOUTn].

See also the ldap_optinN MTA options for similar functionality for aliases stored in LDAP.

48.4.38 Password protection for postings:
alias_password (string)

The alias_password alias option specifies a password, or a comma-separated list of
passwords, that allow posting to the list. An attempted posting to the list must contain one
of these values on an Approved: header line in order for the posting to be allowed. During
mailing list expansion, the password value will be removed from the Approved: header line;
indeed, if that is the only value on the Approved: header line, then the entire header line will
be removed. See Password-protected mailing lists.

In legacy configuration, the analogous alias file named parameter is [PASSWORD].

For aliases/lists defined in LDAP, the analogous setting is the LDAP attribute named by the
ldap_auth_password MTA option.

48.4.39 Disclaimer/text addition alias options:
alias_prefix_text (string), alias_suffix_text
(string)

The alias_prefix_text and alias_suffix_text alias options cause insertion of,
respectively, prefix or suffix text into messages as they undergo list expansion. Prior to
Messaging Server 7.3-11.01, text could only be inserted into initial, TEXT/PLAIN parts; new
in Messaging Server 7.3-11.01, text can be inserted into the first text part within a nested
multipart (excluding multipart/alternative). The value (the text) is specified in UTF-8; this is
then converted to match the charset of the part into which the text is being inserted.

In legacy configuration, the analogous alias file named parameters are [PREFIX_TEXT] and
[SUFFIX_TEXT].

For aliases/lists defined in LDAP, see the ldap_prefix_text and ldap_suffix_text
MTA options.

Or see the Sieve addprefix and addsuffix extensions.

48.4.40 Alias options: alias_presence
RESTRICTED: Not yet implemented.

48.4.41 Alias options: alias_private and
alias_public

The alias_private and alias_public alias options are analogues of the [PRIVATE]
and [PUBLIC] alias file named parameters. The alias_public alias option specifies that
the associated alias is public and hence can appear in any constructed header lines. The
value specification is currently ignored and should always be NONE. alias_public is
the default. The alias_private alias option specifies that the alias is private and should

Aliases 48–21

alias_reprocess alias option

appear as an empty group construct in message headers. The value specification is used as
the name for the group. Neither alias_public nor alias_private have any effect if the
alias_header_expansion alias option is also specified.

Note that these parameters are only valid when headers are originally being constructed, as
for instance for messages submitted via the L channel. These parameters are not relevant for
incoming messages (such as incoming SMTP messages) for which the headers are already
present in one form or another.

48.4.42 Deferred expansion alias option:
alias_reprocess (string)

The alias_reprocess alias option is used to request deferred expansion of the mailing
list, where rather than expanding the mailing list "on line", the message should instead be
enqueued to the reprocess channel; the reprocess channel can then perform the mailing list
processing in a separate step. The value specification is currently ignored and should always
be reprocess.

Use of this alias option defers much of the processing overhead of handling the message
to the later step when the reprocess channel runs, rather than doing the processing as the
message is initially accepted. This deferred processing can be especially helpful in cases such
as incoming SMTP messages addressed to large mailing lists, where "on line" delays could lead
to connection time outs.

Use of this parameter as in:

listname: </pmdf/table/listname.dis, [REPROCESS] reprocess

thus provides essentially identical functionality as defining a mailing list in two stages through
the reprocess channel to obtain deferred expansion (the mailing list addresses aren't even
expanded until the reprocess channel runs) such as:

listname: listname-expand@reprocess
listname-expand: </pmdf/table/listname.dis

In legacy configuration, the analogous alias file named parameter is [REPROCESS].

For aliases/lists defined in LDAP, see the ldap_reprocess MTA option.

48.4.43 SASL-based access alias options:
alias_sasl_auth_list (file or URL),
alias_sasl_auth_mapping (MTA mapping
name), alias_sasl_cant_list (file or URL),
alias_sasl_cant_mapping (MTA mapping name),
alias_sasl_moderator_list (file or URL),
alias_sasl_moderator_mapping (MTA mapping
name)

48–22 Messaging Server Reference

alias_sequence_* alias options

The alias_sasl_* alias options are analogues of the non-SASL similar alias options, but
with the additional requirement that an authenticated address be present in the message
(whether that be a address literally authenticated via SMTP AUTH, or forced via, e.g., an
authrewrite or FROM_ACCESS effect).

In legacy configuration, they have analogues in the alias file named parameters
[SASL_AUTH_LIST], [SASL_AUTH_MAPPING], [SASL_CANT_LIST],
[SASL_CANT_MAPPING], [SASL_MODERATOR_LIST], [SASL_MODERATOR_MAPPING].

48.4.44 Alias options: alias_sequence_prefix
(file-path), alias_sequence_suffix (file-path),
alias_sequence_strip (string)

The alias_sequence_prefix and alias_sequence_suffix alias options request that
a sequence number be prepended or appended to the Subject: lines of messages posted to the
list. They are analogues of the legacy alias file named parameters [SEQUENCE_PREFIX] and
[SEQUENCE_SUFFIX]. The value item gives the full file path specification of a sequence
number file. This file is read, incremented, and updated each time a message is posted to the
list. The number read from the file is prepended, in the case of alias_sequence_prefix,
or appended, in the case of alias_sequence_suffix, to the message's Subject: header line.
This mechanism provides a way of uniquely sequencing each message posted to a list so that
recipients can more easily track postings and determine whether or not they have missed any.

By default, a response to a previously posted message (with a previous sequence number)
retains the previous sequence number as well as adding a new sequence number to the subject
line; the build up of sequence numbers shows the entire "thread" of the message in question.
However, the alias_sequence_strip alias option (analogue of the alias file named
parameter [SEQUENCE_STRIP]) can be used to request that only the highest numbered, i.e.,
most recent, sequence number be retained on the subject line. The value item is currently
ignored and should always be NONE.

Important note: To ensure that sequence numbers are only incremented for successful
postings, an alias_sequence_prefix or alias_sequence_suffix alias option should
always be set as the last alias option; that is, if other alias options are also being used, the
alias_sequence_* options should be set (and appear when shown) at the end of the list of
alias options on an alias entry.

Sequence number files are binary files and must have the proper file attributes and access
permissions in order to function correctly.

48.4.45 Per-recipient message copy alias option:
alias_single (string)

The alias_single alias option, if set, forces a separate message copy per recipient (per list
member). Thus it can be considered a per-list analogue of the single channel option. It takes
string argument, currently ignored, which should be set to the value "NONE".

In legacy configuration, its analogue is the alias file named parameter [SINGLE].

48.4.46 Extra value alias options: alias_spare* (string)

Aliases 48–23

alias_tag alias option

The alias_spareN alias options (N = 1,...,18) are analogous to the attributes named by the
ldap_spare_N MTA options, except with these options the corresponding spare slot is
filled in when the alias is expanded. In legacy configuration, the analogous alias file named
parameters are [SPARE*].

The spare value slots are intended for site-customizable purposes, to be made known to the
MTA (and hence be more easily accessible in MTA LDAP URLs and certain MTA mapping
tables, etc.).

48.4.47 Tag inserted on Subject: header line alias option:
alias_tag (string)

The alias_tag alias option may be used to prefix specified text to the Subject: header of
posted messages. The value should be the string to be added. The string should not contain
the vertical bar, |, character; prior to MS 6.3, the string should not have contained the space
character. For instance,

msconfig> set alias:schedule-list@domain\.com.alias_tag "Schedule posting -- "
msconfig# show alias:schedule-list@domain\.com
instance.alias:schedule-list@domain\.com.alias_entry = "<ldap:///o=usergroup?mail?sub?(isMember=schedule-list)"
instance.alias:schedule-list@domain\.com.alias_auth_list = "<ldap:///o=usergroup?mail?sub?(isMember=schedule-list)"
instance.alias:schedule-list@domain\.com.alias_tag = "Schedule posting -- "

will cause any postings to the list schedule-list to have a Subject: header that begins
"Schedule posting -- " followed by whatever the original subject of the posting might
have been. See the ldap_add_tag MTA option for setting an attribute name to provide
analogous functionality for lists defined in LDAP, and in legacy configuration, see instead the
alias file named parameter [TAG].

48.4.48 To: header line alias option: alias_to (string)
The alias_to alias option specifies what to put on the To: header line of postings to the
mailing list.

In legacy configuration, see the alias file named parameter [TO].

48.4.49 Alias options: alias_username (string)
The alias_username alias option may be used to set the "username" that the MTA will
consider to "own" these mailing list messages. (The legacy configuration alias file named
parameter equivalent is [USERNAME].) The imsimta qm utility will allow that username to
inspect and bounce messages in the queue resulting from expansion of this mailing list. The
value item should be the username of the account to "own" the mailing list postings.

48.5 Alias file
In legacy configuration, especially in older MTA configurations, aliases were stored in the
MTA alias file, normally named aliases and stored in the MTA table (config) directory. In
more modern MTA configurations, most aliases are stored instead in LDAP, with only a few
basic aliases stored elsewhere: either in the aliases file in legacy configuration, or as a set of
values in an alias group in Unified Configuration.

48–24 Messaging Server Reference

Alias file format

Even though in Unified Configuration the old aliases file is not actually used, the alias
settings may be viewed "as if" they were in the aliases file by using the msconfig
command edit aliases:

msconfig> edit aliases

48.5.1 Alias file format
The alias file format is as follows:

alias1: a1,a2,...,am
alias2: b1,b2,...,bm
 . .
 . .
 . .
aliasn: n1,n2,...,nm
 . .
 . .
 . .

where aliasn is translated into the addresses n1, n2, n3, ..., nm. The aliases alias1,
alias2, ..., aliasn are limited to 128 characters each. (In iMS 5.2 and earlier, the limit had
been 64 characters.) Each address a1, a2, etc., may contain up to 256 characters (252 characters
in iMS 5.2 and earlier). There is no limit to the number of addresses that can be specified for
an alias (that is, appear in a single list on the right hand side of an alias definition), although
excessive numbers of addresses may eat up excessive amounts of memory. A physical line
of the alias file may contain at most 1024 characters. To specify a list of addresses containing
more than that number of characters, the line must be continued onto multiple physical lines.
 Long lines may be continued by ending them with a backslash, \. A backslash must follow a
comma. There can be no white space preceding the colon separating the alias name from its
translation value.

An alias expansion address prefixed with a colon character, :, has a special interpretation.
The alias expansion address will be used as normal except when the MTA is generating a
notification message (a Delivery Status Notification such as a bounce message, or a Message
Disposition Notification such as a vacation messages); when generating a notification message
regarding the alias, the unexpanded alias will be used rather than the alias expansion value
(which would normally be used). This mechanism can be useful in cases where an alias
expansion address is an "internal" address that should not be exposed to the outside. It is
essentially an alias-specific analogue of the useintermediate channel option. For instance,
with aliases defined as

adam: :bob@ims-ms-daemon
carl: donald@ims-ms-daemon

messages sent to adam will be redirected to bob@ims-ms-daemon. But if a notification message
needs to be sent back to an original message sender, the notification message will refer to
address adam, rather than to bob@ims-ms-daemon. This contrasts with the case of notification
messages regarding messages sent to carl; in this case, any notification messages will refer to
the donald@ims-ms-daemon address.

The matching process is configurable for aliases containing a subaddress, that is, aliases of a
form such as:

Aliases 48–25

Alias file format

adam+hobbylist: adam-personal-mailbox@domain.com

See the subaddress* channel options for details.

An address (or addresses) on the right hand side of an alias file entry may optionally have
various so-called named parameters associated with it (or them). Such named parameters are
more commonly of interest and used with mailing list definitions, but some (in particular,
[BLOCKLIMIT], [CAPTURE], [JOURNAL], [CONVERSION_TAG], and [FILTER]), can be
of interest for individual aliases as well. Such parameters are specified by listing them at the
beginning of the right hand (translation) side of the alias entry; the parameters then apply to all
addresses on the right hand. Thus an alias entry using named parameters and translating to a
single addresses would have the form:

alias: [p-name-1] p-value-1,...,[p-name-k] p-value-k,address

while an alias entry using named parameters and translating to multiple addresses (hence
an e-mail group, or perhaps mailing list, depending upon which named parameters are set)
would have the form:

alias: [p-name-1] p-value-1,...,[p-name-k] p-value-k,address-1,...,address-j

corresponding to Unified Configuration alias option settings along the lines of:

msconfig> show alias:alias
alias:alias.alias_entry = address-1
alias:alias.alias_entry = address-2
...
alias:alias.alias_entry = address-j
alias:alias.p-name-1 = p-value-1
alias:alias.p-name-2 = p-value-2
...
alias:alias.p-name-k = p-value-k

Alternatively, rather than having an address or (in legacy configuration) a comma separated
list of addresses as the translation of an alias, in the alias file an alias may translate to a mailing
list reference as discussed in Alias file mailing list aliases, or to an LDAP URL reference as
discussed in Alias file LDAP URL alias values.

A typical, minimal alias file will include at least a postmaster alias definition. (See
alias_entry for a discussion of minimal such postmaster alias definition in a modern, Unified
Configuration setup.)

In older versions of the MTA, an alias was normally simply a valid RFC 822 "local-part";
however, in more modern MTA configurations, with the alias_domains MTA option set
to a value of 6, an alias consists of an entire address, including the domain name, rather than
just the local-part. In particular, aliases must follow RFC 822 syntax rules for local-parts (or
addresses, when alias_domains has selected use of addresses); this means that for proper
functioning, with the exception of periods which are specifically allowed in local-parts without
quoting, the presence of any other RFC 822 "specials" character or a space in an alias will
require that the alias be enclosed in double quotes, e.g.,

"John Doe": doe@acme.com

48–26 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822#section-6.1
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822#section-3.3

Alias file format

john.doe: doe@acme.com

Comment lines are allowed in the alias file. A comment line is any line that begins with an
exclamation point, !, in column one.

Duplicate aliases (identical left hand sides) are not allowed in the alias file.

Note that prior to MS 6.1, certain sorts of errors in the format of aliases would not result
in an immediate error message, but rather mail to the bad addresses would just be silently
dropped. For instance, use of an apparently local (and syntacticaly unexceptional) but in
fact non-existant user address as a value (on the right hand side) would not necessarily
result in any error message---not if there was at least one apparently valid value on the right
hand side. (This is in contrast to overt syntactic errors in the alias file format itself, which
have always been report ed at MTA process startup time, or at imsimta cnbuild time if a
compiled configuration is in use. It is also in contrast to delivery problems to addresses that,
at alias expansion time, appear potentially valid; delivery problems are and always have been
reported back to the appropriate notification address, if any. It is also in contrast to the case
where all of the values appear to be invalid.) As of MS 6.1, errors apparent at alias expansion
time in aliases are reported to the other members of the alias. But in any case, when defining
an alias it is a good idea to use imsimta test -rewrite -check_expansions to check
aliases, and see Alias restrictions for further general information on alias operation and the
alias file.

48.5.1.1 Alias file include files

Other files can be included in the primary alias file. A line of the form

<file-spec

directs the MTA to read the file file-spec. The file specification must be a complete file path
specification and the file must have the same protections as the primary alias file; i.e., it must
be world readable.

The contents of the included file are inserted into the alias file at its point of reference. The
same effect can be achieved by replacing the reference to the included file with the file's actual
contents. The format of include files is identical to that of the primary alias file itself. Indeed,
include files may themselves include other files. Up to three levels of include file nesting are
allowed.

If a compiled configuration is being used, then the configuration must be recompiled and
reinstalled before changes to any included file (or the primary alias file itself) will take effect.
Note that this is not the case for mailing list membership files described in Alias file mailing
list aliases.

48.5.1.2 Alias file named parameters

This discussion describes alias file named parameters as set in legacy configuration in the
aliases file. In Unified Configuration, the equivalent settings are alias options.

The named-parameters appearing in an alias file mailing list definition such as

alias: <file-spec, named-parameters, error-return-address, \

Aliases 48–27

Alias file format

 reply-to-address, errors-to-address, \
 warnings-to-address, comments

or

alias: <ldap-url, named-parameters, error-return-address, \
 reply-to-address, errors-to-address, \
 warnings-to-address, comments

or in an individual alias definition (see Alias file format) such as

alias: named-parameters,address-1,...,address-n

are used to specify optional modifiers to the list expansion process. There can be zero or
more named parameters, separated by commas, and they must appear before any positional
parameters (e.g., error-return-address, reply-to-address, etc.). The general syntax of
a named parameter is:

[name] value

Here name is the name of the parameter and value is its corresponding value. The square
brackets are a mandatory part of the syntax: they do not indicate an optional field.

See Alias header addition modifiers for a description of controls on the effect of named
parameters relating to the addition of headers, such as specifying whether a header is to
be added only if not originally present, or added unconditionally, and whether the header
supplements or substitutes for an originally present header.

The available named parameters are:

48.5.1.2.1 AND, OR

AND and OR control whether subsequent access control clauses (e.g., [AUTH_LIST],
[AUTH_MAPPING], etc.) are ANDed or ORed. The default is controlled by the or_clauses
MTA option---and is AND (for backwards compatibility) by default. For groups and lists
defined in LDAP, see also the AND and OR values for the mgrpBroadcasterPolicy attribute
(or more precisely, the attribute named by the ldap_auth_policy MTA option). For a more
detailed discussion, see Mailing list multiple access control interpretation.

In Unified Configuration, see the alias_and and alias_or alias options.

48.5.1.2.2 AUTH_CHANNEL, CANT_CHANNEL

AUTH_CHANNEL is used to specify a source channel or channels that may submit messages
to the mailing list. CANT_CHANNEL is used to specify a source channel or channels that
may not submit messages to the mailing list. The argument should be a (possibly wildcarded)
channel name, or a space-separated list of (possibly wildcarded) channel names.

In Unified Configuration, see the alias_auth_channel and alias_cant_channel alias
options.

48.5.1.2.3 AUTH_LIST, CANT_LIST, USERNAME_AUTH_LIST,
USERNAME_CANT_LIST

48–28 Messaging Server Reference

Alias file format

AUTH_LIST is used to specify a list of addresses that are allowed to post to the mailing
list. The value item must be either the full file path specification for a world readable file
containing the list of addresses allowed to post to the list, or an LDAP URL that returns the
list of addresses allowed to post to the list. The MTA will match the envelope From address
against the addresses in the list; if no match occurs, the attempted posting fails and an error
is returned to the would be posting's originator. USERNAME_AUTH_LIST is analogous
to AUTH_LIST, but for (possibly wildcarded) usernames rather than addresses; note that
usernames are generally only useful for messages submitted from the L channel or submitted
with SASL authentication via SMTP (SMTP AUTH) since for messages submitted from other
sources the username will simply be that of the account under which the submitting MTA
process is running. Note that for messages submitted via SMTP with authentication (SMTP
AUTH), the username that authenticated will be prefixed with the asterisk, *, character.
For instance, to specify that only the user JDOE may submit to a list, whether submitting
from the L channel or via SMTP (e.g., from a POP or IMAP client that performs SASL SMTP
authentication), the USERNAME_AUTH_LIST file would need to contain the entries:

JDOE
$*JDOE

where the first entry would match for messages submitted from the L channel and the second
entry would match for messages submitted via SMTP AUTH. Note that as asterisk is normally
a wildcard character, matching of only the exact literal asterisk character is specified by using
the dollar character to quote the asterisk.

CANT_LIST has the opposite effect as AUTH_LIST: it supplies the full file path specification
of a world readable file containing a list of addresses, or an LDAP URL returning a list of
addresses, specifying which addresses may not post to the list. USERNAME_CANT_LIST is
analogous to CANT_LIST, but for (possibly wildcarded) usernames rather than addresses;
note that usernames are generally only useful for messages submitted from the L channel
or submitted with SASL authentication via SMTP (SMTP AUTH) since for messages
submitted from other sources the username will simply be that of the account under which the
submitting MTA process is running.

One common use of this facility is to restrict a list so that only list members can post. This can
be done by specifying the same file as both the list file and the AUTH_LIST file. For example,
assuming that the list is named test-list and the list file is IMTA_TABLE:test-list.dis, the
alias file entry would be:

test-list: <IMTA_TABLE:test-list.dis, \
 [auth_list] IMTA_TABLE:test-list.dis

For groups and lists defined in LDAP, the closest analogues are the
mgrpAllowedBroadcaster and mgrpDisallowedBroadcaster attributes (more
precisely, the attributes named by the ldap_auth_url and ldap_cant_url MTA
options); and if wishing to compare against authenticated submission addresses, see also the
SMTP_AUTH_REQUIRED value for the mgrpBroadcasterPolicy attribute (or whatever
attribute is named by the ldap_auth_policy MTA option).

In Unified Configuration, see the alias_auth_list, alias_cant_list,
alias_username_auth_list, and alias_username_cant_list alias options.

48.5.1.2.4 AUTH_MAPPING, CANT_MAPPING

Aliases 48–29

Alias file format

AUTH_MAPPING and CANT_MAPPING are similar to AUTH_LIST and CANT_LIST except
that they use mappings rather than explicit files of addresses. The value item associated
with these named parameters is the name of a mapping table to use; the mapping is given the
envelope From address as input.

If AUTH_MAPPING is used at least one mapping entry must match or the posting is rejected.
If an entry does match the resulting string is checked; if it begins with an F, f, N, or n the
posting is rejected. The mailing list will expand normally if the resulting string begins with any
other character.

If CANT_MAPPING is used, the posting is accepted if no entry matches. If an entry does
match the resulting string is checked; if it begins with a T, t, Y, or y the posting is accepted. The
posting is rejected if the resulting string begins with any other character.

The most common use of AUTH_MAPPING is to restrict postings to all users of a given
(usually local) host. For example, if the local host name is ymir.claremont.edu, the following
mailing list definition could be used for the gripes-list:

gripes: <pmdf_table:gripes-list.dis, [auth_mapping] x-gripes

The corresponding mapping file entries would be:

X-GRIPES

 *@ymir.claremont.edu Y

Using a mapping table name beginning X- is recommended, so that this private mapping table
name will not collide with a standard Oracle mapping table name.

In Unified Configuration, see the alias_auth_mapping and alias_cant_mapping alias
options.

48.5.1.2.5 AUTH_USERNAME, CANT_USERNAME

AUTH_USERNAME is used to specify a username or wildcarded username pattern for an
account or accounts allowed to post to the list. Note that this is generally only useful for
senders submitting from the L channel or for senders who used the SMTP AUTH extension
during their message submission; for messages submitted from other sources, the messages
are considered to be submitted under the username of the MTA process that received and
enqueued the message, e.g., the account under which the MTA's SMTP server is running.
Attempted postings from any other sender will be rejected.

CANT_USERNAME may be used to specify a username or wildcarded username pattern for
an account or accounts whose postings should be rejected.

Note that for messages submitted via SMTP with authentication (SMTP AUTH), the username
that authenticated will be prefixed with the asterisk, *, character. Also note that the asterisk
character is normally a wildcard, and must be quoted with the dollar character in order to
be interpreted as a literal asterisk character. For instance, to specify that the only sender who
may post to a list is user JDOE who will be submitted solely via SMTP with SMTP AUTH, you
would use:

48–30 Messaging Server Reference

Alias file format

[AUTH_USERNAME] $*JDOE

Without the dollar sign, specifying just *JDOE would allow postings not only from user JDOE
but also from any users AJDOE, BOBJDOE, etc.

For specifying more than one username (or wildcarded username pattern), see the
USERNAME_AUTH_LIST and USERNAME_CANT_LIST parameters described above. For
groups and lists defined in LDAP, the closest analogues are the mgrpAllowedBroadcaster
and mgrpDisallowedBroadcaster attributes (or more precisely, the attributes named by
the ldap_auth_url and ldap_cant_url MTA options).

In Unified Configuration, see the alias_auth_username and alias_cant_username
alias options.

48.5.1.2.6 BLOCKLIMIT, LINELIMIT

The BLOCKLIMIT and LINELIMIT parameters may be used to limit the size of messages
that may be posted to the list. The value item must be an integer number of blocks for
[BLOCKLIMIT], or an integer number of lines for [LINELIMIT]. The number of bytes
in a block is specified via the block_size MTA option. The default value is 0, meaning
that no limit is imposed on the size of message that may be posted to the list (apart,
that is, from any channel or system wide limits). For user, groups, and lists defined in
LDAP, see mailMsgMaxBlocks attribute (or more precisely, the attribute named by the
ldap_blocklimit MTA option).

In Unified Configuration, see also the alias_blocklimit and alias_linelimit alias
options.

48.5.1.2.7 CAPTURE, JOURNAL

(CAPTURE is new in MS 6.2; JOURNAL is new in Messaging Server 7.2-0.01.) The CAPTURE
named parameter may be used to set an address to which to direct an encapsulated, "captured"
copy of each message posted to the list. The JOURNAL named parameter works similarly, but
generates an envelope "journal" format message. The value item should be the address to
which to send the "captured" message copies. These parameters are exactly analogous to use
of the LDAP attribute named by the ldap_capture MTA option on a group or mailing list
defined via an LDAP entry.

In Unified Configuration, see also the alias_capture and alias_journal alias options.

New in MS 8.0.1, see also the CAPTURE_HEADER and JOURNAL_HEADER named
parameters.

48.5.1.2.8 CAPTURE_HEADER, JOURNAL_HEADER

(CAPTURE_HEADER and JOURNAL_HEADER are new in MS 8.0.1.) The
CAPTURE_HEADER named parameter may be used to set an address to which to direct an
encapsulated, "captured" copy of the message header of each message posted to the list. The
JOURNAL_HEADER named parameter works similarly, but generates an envelope "journal"
format message. The value item should be the address to which to send the "captured"
message copies. These parameters are exactly analogous to use of the LDAP attribute named
by the ldap_capture MTA option on a group or mailing list defined via an LDAP entry,
when the LDAP attribute's value is tagged ;format-report-header or ;format-
journal-header.

Aliases 48–31

Alias file format

In Unified Configuration, see also the alias_capture_header and
alias_journal_header alias options.

48.5.1.2.9 CONVERSION_TAG

The CONVERSION_TAG named parameter may be used to set a tag which conversion file
entries can match upon. The value item should be the string to use as the tag. For instance, if
a list is defined

listname: </pmdf/table/listname.dis, [CONVERSION_TAG] listtag

then conversion file entries could include a tag=listtag; clause to match. For instance, if
for some mailing list it was desired to convert any text/html parts in posted messages to text/
plain, and if a site had an HTML to TEXT converter called htmltotextconvert and had set
up the conversion channel and a CONVERSIONS mapping table to apply to list postings, then a
conversion file entry could be

in-chan=*; out-chan=*; in-type=text; in-subtype=html; tag=listtag;
 out-type=text; out-subtype=plain; parameter-copy-0=*;
 command="IMTA_PROGRAM:htmltotextconvert $INPUT_FILE $OUTPUT_FILE"

For users, groups, and lists defined in LDAP, see the mailConversionTag attribute (or more
precisely, the attribute named by the ldap_conversion_tag MTA option).

In Unified Configuration, see also the alias_conversion_tag alias option.

48.5.1.2.10 CREATION_DATE

New in the 8.0 release.

The CREATION_DATE named parameter may be used to set a creation date for the alias
(intended to be used for RRVS purposes). The creation date value must be in RFC 3339 (Date
and Time on the Internet: Timestamps) format (a profile of ISO 8601 format), along the lines of:

YYYY-MM-DDTHH:MM:SS.ssZ

or

YYYY-MM-DDTHH:MM:SS.ssplus-or-minusHH:MM

where the hundredths of seconds portion is optional, and T and (if used) Z are not case
sensitive. For instance:

2014-02-28T12:13:14.30-07:00

In Unified Configuration, see the alias_creation_date alias option. Or for users
defined in LDAP, the analogous setting is controlled by whatever attribute is named by the
ldap_creation_date MTA option, or at a domain level by whatever attribute is named by
the ldap_domain_attr_creation_date MTA option.

48.5.1.2.11 DEFERRED, DEFERRED_LIST, DEFERRED_MAPPING

In Unified Configuration, see the alias_deferred, alias_deferred_list, and
alias_deferred_mapping alias options.

48–32 Messaging Server Reference

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

Alias file format

The DEFERRED named parameter may be used to add a Deferred-delivery: header line. The
value should be a date and time, in ISO 8601 P format. Note that by default the MTA does
not honor Deferred-delivery: headers; see the deferreddestination channel option for a
discussion.

The DEFERRED_LIST named parameter takes two (space-separated) values, a file specification
for a list of originator addresses (or alternatively, a URL returning a list of addresses) to whose
postings to add a Deferred-delivery: header, and the deferral date/time in ISO 8601 format.

As of the 8.0 release (in prior versions, this feature "existed" but was not working), the
DEFERRED_MAPPING named parameter may be used to run originator addresses through
the specified mapping. DEFERRED_MAPPING takes one or two arguments, with a space
between if the optional second argument is included. The first argument is required and
must contain at a minimum the name of an MTA mapping table; the first argument may
also, optionally, include a vertical bar character followed by a string to use as a prefix in
the mapping table probe, prior to the originator address. The second argument is optional,
consisting of a deferral date/time in ISO 8601 format.

mapping-name[|probe-prefix] ISO-8601-deferral-time

Originator addresses will be run through the specified mapping. If the mapping template
does not begin with an N, n, F, or f, and if it contains a valid date/time specification in ISO
8601 format, then that date/time will be used as a deferral time. The default, if no mapping
entry matches, or if an entry that begins with an N, n, F, or f, is not to add a Deferred-delivery:
header. Note that the intended purpose of a probe-prefix is for convenience in using a
single MTA mapping table for multiple mailing list deferral settings, e.g., by using a probe
prefix consisting of the list name, so that entries in the mapping table may be list specific.
Similarly, a deferral time specified as the second argument permits a default deferral time, that
may then be overridden in the case of specific originators in the mapping table result.

Setting bit 3/value 8 of the include_connectioninfo MTA option will cause additional
information to be included in the DEFERRED_MAPPING input probe. Thus if a probe-
prefix has also been specified, then the probe will take the form:

transport-info|application-info|probe-prefix|originator-address

Note that by default the MTA does not honor Deferred-delivery: headers; see the
deferreddestination channel option for a discussion. As a functionally preferable
alternative to the Deferred-delivery: header line approach for retaining/deferring messages,
see also the SMTP SUBMIT FUTURERELEASE extension.

48.5.1.2.12 DELAY_NOTIFICATIONS, NODELAY_NOTIFICATIONS

The DELAY_NOTIFICATIONS named parameter requests that NOTARY delay notifications
be sent for mailing list postings; the NODELAY_NOTIFICATIONS named parameter requests
that NOTARY delay notifications not be sent for mailing list postings. The value specification
is currently ignored and should always be NONE.

In Unified Configuration, see the alias_delay_notifications alias option. Or for users
defined in LDAP, the analogous settings are controlled by whatever attribute is named by the
ldap_delay_notifications MTA option, by default mgrpDelayNotifications.

48.5.1.2.13 DIGEST_RECURRENCE

RESTRICTED: Not yet fully implemented.

Aliases 48–33

Alias file format

The DIGEST_RECURRENCE parameter takes an ISO 8601 argument.

48.5.1.2.14 DIRECT_LIST, DIRECT_MAPPING

RESTRICTED: Not yet fully implemented.

48.5.1.2.15 ENVELOPE_FROM

This ENVELOPE_FROM parameter takes a required value specifying an address to replace the
message's original envelope From address. This sets only the envelope From address, unlike
the error-return-address positional parameter which also sets an Errors-to: address.

Setting the value to an address of the form user+*@domain has a special meaning. The
asterisk character will be expanded into a representation of the recipient address; thus a
separate copy of the list message is generated for each recipient, with each copy including
the intended recipient address as a subaddress within the return address. If delivery errors
subsequently occur, the subaddress will indicate which was the failing address. In some cases,
when dealing with remote MTAs that generate nonstandard, uninformative delivery error
messages, this can in theory be useful as a way of determining which recipient address(es)
failed, even when the bounce message's inner content is relatively uninformative. And it
may make processing of such bounce messages by an automated program more convenient.
However, the tradeoff is that such per-user-specific return address values require that a
separate message copy be generated and sent for each recipient; for a "large" list, with many
recipients in the same destination domains, this can be a large increase in overhead (a large
decrease in efficiency). And with more prevalent use nowadays of standard format notification
messages, the "need" for this sort of approach, with its extra (potentially large) overhead, is
much less (since the intended recipient information can instead be extracted from the standard
field in the contents of a standard format notification message).

(New in MS 6.3.) Setting the value to the forward slash character, /, has a special meaning. It
tells the MTA to revert to using the original envelope From address that had been present on
the incoming message, yet in all other respects use mailing list semantics. This can be useful
for setting up mailing lists that report all forms of list errors to the original sender.

In Unified Configuration, see the alias_envelope_from alias option. Or for groups and
lists defined in LDAP, see the mgrpErrorsTo attribute (or more precisely, the attribute named
by the ldap_errors_to MTA option).

48.5.1.2.16 ERROR_TEXT (string)

Specify a string to use as the "reason" which will be returned to the attempted sender if and
when an attempted posting fails. For groups defined in LDAP, see the mgrpRejectText
attribute or mgrpMsgRejectText attribute (or more precisely, whatever attribute(s) are
named by the ldap_reject_text MTA option).

In Unified Configuration, see also the alias_error_text alias option.

48.5.1.2.17 EXPANDABLE, NONEXPANDABLE

The EXPANDABLE named parameter is used to specify that the associated list can be
expanded (and hence its contents seen) by various protocols which may attempt such an
operation. It does not mean, or imply, that the contents of the list will be expanded into
message headers. The value specification is currently ignored and should always be NONE.
The NONEXPANDABLE named parameter specifies that the associated list may not be
expanded. Again, the value specified is currently ignored and should always be NONE.

48–34 Messaging Server Reference

Alias file format

EXPANDABLE is the default, unless the expandable_default MTA option has been set, in
which case the default is NONEXPANDABLE.

NONEXPANDABLE is useful in blocking the expansion of mailing lists via SMTP's EXPN
command. Note that mailing list access controls, e.g., AUTH_LIST, AUTH_MAPPING, etc., also
affect the expansion of mailing lists via SMTP's EXPN command; the SMTP server will only
permit the EXPN if the SMTP client passes the access control (e.g., has issued a prior MAIL
FROM: command that passes the access control).

In Unified Configuration, see also the alias_expandable and alias_nonexpandable
alias options.

48.5.1.2.18 EXPIRY

The EXPIRY named parameter is used to add an Expiry-date: header line. The value should be
a date and time, in ISO 8601 P format (as described for the DEFERRED parameter above). (The
MTA will convert the specified value into the appropriate corresponding RFC 2822 date value
needed for the header line.) The MTA's periodic return job will return messages whose Expiry-
date: has passed.

For groups or lists defined in LDAP, see the ldap_add_header MTA option. In Unified
Configuration, see also the alias_expiry alias option.

48.5.1.2.19 FILTER

The FILTER parameter takes a URL argument specifying the location of a Sieve filter to apply
on attempted message postings. The argument may be any supported form of URL that makes
sense; in particular, besides supporting file:file-spec URLs or simply file specifications
without the leading file:, LDAP URLs, and data:sieve-commands are also supported.
Note that when specifying a file, it must be the full file specification for the filter file to apply.

In Unified Configuration, see the alias_filter alias option. Or for users defined in LDAP,
the analogous setting is controlled by whatever attribute is named by the ldap_filter MTA
option, by default mailSieveRuleSource.

48.5.1.2.20 HEADER_ADDITION, HEADER_TRIM

HEADER_TRIM may be used to add headers to or remove headers from posted messages.
The argument must be a full file specification for a header trimming option file; see Header
option files for information on the format of these files. HEADER_ADDITION is more
specialized than HEADER_TRIM, being used when there are merely headers to be added.
HEADER_ADDITION may be used to specify a file of headers to be added to posted
messages. The argument must be a full file specification for the file containing headers to be
added.

In particular, this facility can be used to add the standard mailing list headers defined in
RFC 2369. For instance, a site domain.com that has set up a list named listname, using the
MAILSERV channel to manage subscription and unsubscription requests, and with certain list
information and archives available at an FTP site, might use a header addition file along the
lines of the following:

List-Help: <ftp://ftp.domain.com/pub/listname-help.txt> (FTP),
 <mailto:mailserv@domain.com?body=send%20/pub/listname-help.txt>,
 <mailto:mailserv@domain.com?body=help> (MAILSERV Instructions),
 <mailto:listname-owner@domain.com?subject=help> (List Manager)

Aliases 48–35

https://tools.ietf.org/html/rfc2822
https://tools.ietf.org/html/rfc2369

Alias file format

List-Subscribe:
 <mailto:mailserv@domain.com?body=subscribe%20listname>
List-Unsubscribe:
 <mailto:mailserv@domain.com?body=unsubscribe%20listname>
List-Post: <mailto:listname@domain.com>
List-Owner: <mailto:listname-owner@domain.com?Subject=listname>
List-Archive: <ftp://ftp.domain.com/pub/listname/archive/>,
 <mailto:mailserv@domain.com?body=send%20/pub/listname/archive/*>

In Unified Configuration, see the alias_header_addition and alias_header_trim
MTA options. Or for mailing lists defined in LDAP, see the LDAP attributes mgrpAddHeader
and mgrpRemoveHeader, or more precisely, the LDAP attributes named by the
ldap_add_header and ldap_remove_header MTA options.

48.5.1.2.21 HEADER_ALIAS, HEADER_EXPANSION

The HEADER_ALIAS named parameter forces the use of the original alias in any original
headers constructed using this alias. HEADER_EXPANSION forces the alias to expand into
its component addresses in any constructed header lines. The value specification is currently
ignored and should always be NONE. These named parameters correspond to the expand and
no-expand options for entries in personal alias databases. HEADER_ALIAS is the default for
entries in the system alias file and database. Note that these parameters are only valid when
headers are originally being constructed, as for instance for messages submitted via the L
channel. These parameters are not relevant for incoming messages (such as incoming SMTP
messages) for which the headers are already present in one form or another.

In Unified Configuration, see the alias_header_alias and alias_header_expansion
alias options.

48.5.1.2.22 HEADER_CHECK

(New in 7.0.5) Used in conjunction with a addrtypescan* channel keyword.
Valid arguments are jettison or discard. In Unified Configuration, see the
alias_header_check alias option. This named parameter is also analogous to the LDAP
attribute named by the ldap_check_header MTA option.

48.5.1.2.23 HOLD_LIST, NOHOLD_LIST, HOLD_MAPPING, NOHOLD_MAPPING

The HOLD_LIST named parameter may be used to specify a list of originator addresses whose
attempts to post to the list should be sidelined as .HELD messages. The NOHOLD_LIST
named parameter may be used to specify the list of originator addresses whose postings
should not be so sidelined, while all other postings will be sidelined. The value must be a
full file specification for a file of addresses, or an LDAP URL returning a list of addresses. The
HOLD_MAPPING and NOHOLD_MAPPING named parameters are used analogously, but
via mapping tables rather than via lists. The value should be the name of an MTA mapping
table.

In Unified Configuration, see the alias_hold_list and alias_nohold_list alias
options.

48.5.1.2.24 IMPORTANCE, PRECEDENCE, PRIORITY, SENSITIVITY

The IMPORTANCE, PRECEDENCE, PRIORITY, and SENSITIVITY named parameters are
used to generate respective headers; the value specification is inserted on the respective
header line. In Unified Configuration, see the alias_importance, alias_precedence,
alias_priority, and alias_sensitivity alias options.

48–36 Messaging Server Reference

Alias file format

Note that the more general HEADER_ADDITION -- in Unified Configuration, the
alias_header_addition alias option -- provides an alternate way to add these and other
header lines. Or for aliases defined in LDAP, see the ldap_add_header MTA option.

48.5.1.2.25 KEEP_DELIVERY, KEEP_READ

By default, the MTA strips delivery receipt and read receipt requests from messages posted
to mailing lists. The KEEP_DELIVERY and KEEP_READ named parameters may be used to
override this behavior, causing the MTA to retain any delivery receipt or read receipt requests,
respectively, on messages posted to the list. The value specification is currently ignored and
should always be NONE. Note that passing receipt requests through to mailing lists is quite
dangerous; the default behavior of stripping such requests is strongly recommended.

In Unified Configuration, see the alias_keep_delivery and alias_keep_read alias
options.

48.5.1.2.26 LIST_NAME

New in Messaging Server 7.4-0.01; RESTRICTED.

48.5.1.2.27 MODERATOR_ADDRESS, MODERATOR_LIST,
MODERATOR_MAPPING, USERNAME_MODERATOR_LIST

The MODERATOR_* named parameters are used to establish a moderated mailing list. All
postings to the list not originating from a moderator are sent to the list's moderator. The
address of the moderator must be specified with the MODERATOR_ADDRESS named
parameter. The moderator address determines where moderator mail is sent when someone
other than the moderator posts. The value of that named parameter is the moderator's address.
For example,

test-list: <IMTA_TABLE:test.dis, \
 [MODERATOR_ADDRESS] bob@domain.com

When there may be multiple moderator addresses (for instance, both
robert@mail1.domain.com and bob@domain.com), use MODERATOR_LIST,
USERNAME_MODERATOR_LIST, or MODERATOR_MAPPING to specify all addresses
from which postings should be passed directly to the list and not sent to the list's moderator.
MODERATOR_LIST specifies either the name of a file containing a list of moderator addresses,
or an LDAP URL returning a list of moderator addresses. USERNAME_MODERATOR_LIST
specifies either the name of a file containing a list of (possibly wildcarded) moderator
usernames, or an LDAP URL returning a list of (possibly wildcarded) moderator usernames;
note that usernames are generally only useful for messages submitted from the L channel
or submitted with SASL authentication via SMTP (SMTP AUTH) since for messages
submitted from other sources the username will simply be that of the account under which
the submitting MTA process is running. Note that for messages submitted via SMTP with
authentication (SMTP AUTH), the username that authenticated will be prefixed with the
asterisk, *, character. For instance, to specify that only the user JDOE is the list moderator,
whether submitting from the L channel or via SMTP (e.g., from a POP or IMAP client that
performs SASL SMTP authentication), the USERNAME_MODERATOR_LIST file would need
to contain the entries:

JDOE

Aliases 48–37

Alias file format

$*JDOE

where the first entry would match for messages submitted from the L channel and the second
entry would match for messages submitted via SMTP AUTH. Note that as asterisk is normally
a wildcard character, matching of only the exact literal asterisk character is specified by using
the dollar character to quote the asterisk.

MODERATOR_MAPPING specifies the name of a mapping table used to verify whether or not
an address is a moderator address.

If a MODERATOR_LIST or MODERATOR_MAPPING parameter is used, thereby specifying
who may post directly to the list, then a MODERATOR_ADDRESS parameter should also be
present to specify the address to which to send postings not from any moderator.

The use of the MODERATOR_ADDRESS parameter alone, without the MODERATOR_LIST
parameter, is equivalent to using MODERATOR_ADDRESS and a MODERATOR_LIST
consisting of just the one moderator address.

Unified Configuration has analogous alias options alias_moderator_address,
alias_moderator_list, alias_moderator_mapping, and
alias_username_moderator_list. Or for lists defined in LDAP, see the
mgrpMsgRejectAction and mgrpModerator attributes, or more precisely whatever LDAP
attributes are named by the ldap_reject_action and ldap_moderator_url MTA
options.

48.5.1.2.28 NOSOLICIT (comma-separated list of strings)

New in MS 6.2. Set a solicitation keyword, or a list of solicitation keywords, that will not
be allowed on postings to the list. Attempted postings that have such a keyword set will be
rejected with "Solicitation check failure on SOLICIT=keyword" error text.

In Unified Configuration, see the alias_nosolicit alias option. Or for lists defined in
LDAP, see the ldap_nosolicit MTA option.

48.5.1.2.29 OPTIN, OPTIN1, OPTIN2, OPTIN3, OPTIN4, OPTIN5, OPTIN6, OPTIN7,
OPTIN8

Set optin values for spam filtering.

In Unified Configuration, see the alias_optin* alias options.

For aliases/lists defined in LDAP, see the ldap_optinN and ldap_optoutN MTA options.

48.5.1.2.30 ORIGINATOR_REPLY, NOORIGINATOR_REPLY

ORIGINATOR_REPLY is used to control whether or not the originator's address is added to
any generated Reply-to: header. The value item should be the full file path specification for a
world readable file, or a resolvable URL, containing the list of addresses that should never be
added. (This is usually the mailing list itself.) The MTA will match the envelope From address
against the addresses in the list; if no match occurs, the originator's address will be added to
any generated Reply-to: header.

NOORIGINATOR_REPLY specifies that any generated Reply-to: header should contain only
explicitly specified addresses. The value item is ignored. NOORIGINATOR_REPLY is the
default.

48–38 Messaging Server Reference

Alias file format

In Unified Configuration, see the alias_originator_reply and
alias_nooriginator_reply alias options.

48.5.1.2.31 PASSWORD

Specify a password, or a comma-separated list of passwords, that allow posting to the list. An
attempted posting to the list must contain one of these values on an Approved: header line in
order for the posting to be allowed. During mailing list expansion, the password value will be
removed from the Approved: header line; indeed, if that is the only value on the Approved:
header line, then the entire header line will be removed. See Password-protected mailing lists.

In Unified Configuration, see the alias_password alias option.

For aliases/lists defined in LDAP, see the ldap_auth_password MTA option.

48.5.1.2.32 PREFIX_TEXT, SUFFIX_TEXT

(New in MS 6.0.) Insert prefix or suffix text into messages as they undergo list expansion.
Prior to Messaging Server 7.0 update 3, text could only be inserted into initial, TEXT/PLAIN
parts; new in Messaging Server 7.0 update 3, text can be inserted into the first text part within
a nested multipart (excluding multipart/alternative). The attribute values are given in UTF-8;
this is then converted to match the charset of the part into which the text is being inserted.

In Unified Configuration, see the alias_prefix_text and alias_suffix_text
alias options. Or for lists defined in LDAP, see the mgrpMsgPrefixText and
mgrpMsgSuffixText attributes, or more precisely whatever attributes are named by the
ldap_prefix_text and ldap_suffix_text MTA options. More generally, for adding
prefix or suffix text to any message, not just postings to groups or lists, see the Sieve addprefix
and addsuffix extensions.

48.5.1.2.33 PUBLIC, PRIVATE

The PUBLIC named parameter specifies that the associated alias is public and hence can
appear in any constructed header lines. The value specification is currently ignored and
should always be NONE. The PRIVATE named parameter specifies that the alias is private and
should appear as an empty group construct in message headers. The value specification
is used as the name for the group. Neither PUBLIC nor PRIVATE have any effect if the
HEADER_EXPANSION named parameter is also specified. These named parameters
correspond to the public and private options for entries in personal alias databases. PUBLIC is
the default for entries in the system alias file and database.

Note that these parameters are only valid when headers are originally being constructed, as
for instance for messages submitted via the L channel. These parameters are not relevant for
incoming messages (such as incoming SMTP messages) for which the headers are already
present in one form or another.

In Unified Configuration, see the alias_private and alias_public alias options.

48.5.1.2.34 RECEIVEDFOR, NORECEIVEDFOR, RECEIVEDFROM,
NORECEIVEDFROM

These named parameters control features of what appears in the Received: header constructed
when expanding the alias, and override normal channel receivedfor, noreceivedfor,
receivedfrom, or noreceivedfrom channel option settings. The value specification is
currently ignored and should always be NONE.

Aliases 48–39

Alias file format

In Unified Configuration, see the alias_receivedfor, alias_noreceivedfor,
alias_receivedfrom, and alias_noreceivedfrom alias options.

48.5.1.2.35 REPROCESS

The REPROCESS named parameter is used to request deferred expansion of the mailing
list, where rather than expanding the mailing list "on line", the message should instead be
enqueued to the reprocess channel; the reprocess channel can then perform the mailing list
processing in a separate step. The value specification is currently ignored and should always
be reprocess.

Use of this parameter defers much of the processing overhead of handling the message
to the later step when the reprocess channel runs, rather than doing the processing as the
message is initially accepted. This deferred processing can be especially helpful in cases such
as incoming SMTP messages addressed to large mailing lists, where "on line" delays could lead
to connection time outs.

Use of this parameter as in:

listname: </pmdf/table/listname.dis, [REPROCESS] reprocess

thus provides essentially identical functionality as defining a mailing list in two stages through
the reprocess channel to obtain deferred expansion (the mailing list addresses aren't even
expanded until the reprocess channel runs) such as:

listname: listname-expand@reprocess
listname-expand: </pmdf/table/listname.dis

In Unified Configuration, the analogous alias option is alias_reprocess. Or for aliases
defined in LDAP, see the mailDeferProcessing attribute, or more precisely whatever
LDAP attribute is named by the ldap_reprocess MTA option.

48.5.1.2.36 SASL_AUTH_LIST, SASL_AUTH_MAPPING,
SASL_CANT_LIST, SASL_CANT_MAPPING, SASL_MODERATOR_LIST,
SASL_MODERATOR_MAPPING

These named parameters are analogues of the non-SASL named parameters, but with the
additional requirement that an authenticated address be present in the message (whether that
be a address literally authenticated via SMTP AUTH, or forced via, e.g., an authrewrite or
FROM_ACCESS effect).

In Unified Configuration, see the alias_sasl_* alias options.

48.5.1.2.37 SEQUENCE_PREFIX, SEQUENCE_SUFFIX, SEQUENCE_STRIP

The SEQUENCE_PREFIX and SEQUENCE_SUFFIX named parameters request that a sequence
number be prepended or appended to the Subject: lines of messages posted to the list.
The value item gives the full file path specification of a sequence number file. This file is
read, incremented, and updated each time a message is posted to the list. The number read
from the file is prepended, in the case of SEQUENCE_PREFIX, or appended, in the case of
SEQUENCE_SUFFIX, to the message's Subject: header line. This mechanism provides a way
of uniquely sequencing each message posted to a list so that recipients can more easily track
postings and determine whether or not they have missed any.

48–40 Messaging Server Reference

Alias file format

By default, a response to a previously posted message (with a previous sequence number)
retains the previous sequence number as well as adding a new sequence number to the subject
line; the build up of sequence numbers shows the entire "thread" of the message in question.
However, the SEQUENCE_STRIP named parameter can be used to request that only the
highest numbered, i.e., most recent, sequence number be retained on the subject line. The
value item is currently ignored and should always be NONE.

Important note: To ensure that sequence numbers are only incremented for successful
postings, a SEQUENCE_PREFIX or SEQUENCE_SUFFIX named parameter should always
appear as the last named parameter; that is, if other named parameters are also being used, the
SEQUENCE_* named parameter should appear at the end of the list of named parameters.

Sequence number files are binary files and must have the proper file attributes and access
permissions in order to function correctly.

In Unified Configuration the analogous alias options are alias_sequence_prefix,
alias_sequence_suffix, and alias_sequence_strip.

48.5.1.2.38 SINGLE

Force a separate message copy per recipient (per list member). Thus it can be considered a per-
list analogue of the single channel option.

In Unified Configuration, its analogue is the alias_single alias option.

48.5.1.2.39 SPARE1,...,SPARE18

(New in Messaging Server 7.0 update 2) Analogous to the attributes named by the
ldap_spare_N MTA options. In Unified Configuration, the analogous alias options are
alias_spare*.

48.5.1.2.40 TAG

The TAG named parameter may be used to prefix specified text to the Subject: header of
posted messages. The value item should be the string to be added. The string should not
contain the vertical bar, |, character; prior to MS 6.3, the string should not have contained the
space character. For instance,

schedule-list: <d1:[adam]schedule-list.dis, [TAG] Schedule posting -- , \
 [AUTH_LIST] d1:[adam]schedule-list.dis

will cause any postings to the list schedule-list to have a Subject: header that begins
"Schedule posting -- " followed by whatever the original subject of the posting might
have been. See the ldap_add_tag MTA option for setting an attribute name to provide
analogous functionality for lists defined in LDAP, and in Unified Configuration, see also the
alias_tag alias option.

48.5.1.2.41 TO

The TO named parameter specifies what to put on the To: header line of postings to the
mailing list.

In Unified Configuration, see the alias_to alias option.

Aliases 48–41

Alias file format

48.5.1.2.42 USERNAME

The USERNAME named parameter may be used to set the "username" that the MTA will
consider to "own" these mailing list messages. The imsimta qm utility will allow that
username to inspect and bounce messages in the queue resulting from expansion of this
mailing list. The value item should be the username of the account to "own" the mailing list
postings.

In Unified Configuration, see the alias_username alias option.

48.5.1.3 Alias file mailing list aliases

A mailing list address may be defined in the alias file or alias database by:

• Specifying a list of translation values for an alias, rather than simply a single translation
value for the alias;

• Specifying an envelope From override address -- an [ENVELOPE_FROM] named parameter.
(If no such envelope From override address is specified, then technically an alias with
multiple translation values corresponds to a mail group -- an auto-forwarder forwarding to
multiple recipients -- rather than, strictly speaking, a mail list.)

A mailing list address alias with associated mailing list file file-spec or LDAP URL
ldap-url is specified in the alias file with an entry of, respectively, the general form

alias: <file-spec, optional-parameters

or

alias: <ldap-url, optional-parameters

Similar definitions may also be made in the alias database, (though of course omitting the
colon, as just white space separates the alias from its definition in the alias database).

Mailing lists have many options associated with them; for a full discussion of mailing list
aliases, see Mailing_lists, or for a discussion of the optional named parameter frequently used
on mailing list alias definitions, see Alias file named parameter.

48.5.1.3.1 Alias file LDAP URL alias values

An alias value (that is, the right hand side of an alias definition) may be specified either as an
address directly, e.g., user@domain, or indirectly referencing an LDAP URL---specifically, an
LDAP search URL---that returns one or more addresses. The format is

alias: <ldap-url

Note that this is just a special case of use of an LDAP URL for a mailing list definition, as
mentioned in Alias file mailing list aliases: the LDAP query URL may be such as to return only
one address rather than multiple addresses, and all of the optional mailing list parameters
are omitted. Also note that if desiring to look up all incoming local channel addresses in an
LDAP directory using some consistent addressing and URL format, it is generally simpler to
configure such lookups globally using the alias_urlN options. However, the special case of
looking up just a few individual local channel addresses in an LDAP directory via their own
individual LDAP query URLs is of sufficient interest to warrant further discussion.

48–42 Messaging Server Reference

Alias database

Standard LDAP URLs are used, typically with the host and port omitted; the host and part
are instead typically specified with the ldap_host and ldap_port MTA options. (As of
Messaging Server 7.0u4, the LDAP server host and port may instead be specified in the LDAP
URL itself.) That is, the LDAP URL would typically be specified as

ldap:///dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of the
URL. The dn is required and is a distinguished name specifying the search base. The optional
attributes, scope, and filter portions of the URL further refine what information to
return. For an alias, the desired attributes to specify returning would typically be the
mail attribute (or some similar attribute). The scope may be any of base (the default), one,
or sub. And the desired filter might be to request the return of any object that has the
"objectclass=person" and "cn=John Smith" attribute-value pairs.

For instance, at a site domain.com with an LDAP server running on port 389 of the system
ldap.domain.com, the MTA option file might have the lines

LDAP_HOST=ldap.domain.com
LDAP_PORT=389

set, and an alias file line might appear as:

John.Smith@domain.com: <ldap:///o=domain.com?mail?sub?(&(objectClass=person)(cn=John%20Smith))

The Unified Configuration equivalent would be:

msconfig> show ldap_host
role.mta.ldap_host = ldap.domain.com
msconfig> show ldap_port
role.mta.ldap_port = 389
msconfig> set alias:John\.Smith@domain\.com.alias_entry '<ldap:///o=domain.com?mail?sub?(&(objectClass=person)(cn=John%20Smith)'
msconfig> show alias:John\.Smith@domain\.com
role.alias:John\.Smith@domain\.com.alias_entry = <ldap:///o=domain.com?mail?sub?(&(objectClass=person)(cn=John%20Smith))

Note that certain characters, such as for instance space characters, should be encoded in URLs
according to the URL character encoding rules of RFC 1738.

48.6 Alias database
The MTA's alias database, seldom used nowadays, provided an additional location for storing
large numbers of aliases, supplementing the the alias options (Unified Configuration) or alias
file (legacy configuration). Nowadays, with "Direct LDAP" configuration, the majority of
aliases are normally stored in LDAP.

The use_alias_database MTA option controls whether or not the MTA makes use of the
alias database. The default is 1, so the mere presence of the alias database activates the MTA's
use of it as a source of aliases.

48.6.1 Using another alias source and the alias database

Aliases 48–43

https://tools.ietf.org/html/rfc1738

Using another alias source and the
alias database

The alias database is a supplement to the alias options (Unified Configuration) or alias file
(legacy configuration); it is not a replacement for them. If the alias database exists, the MTA uses
both the usual alias source (the alias options in Unified Configuration, or the alias file in legacy
configuration) and the alias database.

The alias database is consulted once each time the alias options/regular alias file is consulted.
However, the alias database is checked before the alias options/regular alias file is consulted.
In effect, the database acts as a sort of address rewriter that is invoked prior to using the
regular alias source. Although duplicate entries are allowed in the database, it is undefined
as to which of the duplicate entries will be returned when the database is accessed. Database
entries are case insensitive.

The fact that limited recursion is allowed in the alias options/alias file makes the complete
translation mechanism rather complex. For example, suppose that the alias file contains the
entries,

A: C,J
B: D,K
D: G,H
E: I

and the alias database contains the entries,

D: E
C: B
F: D

Now suppose the address A@local-host was presented to the MTA. First A would be looked
up in the alias database --- not found. Then A would be translated into C and J by the alias file.
C would in turn be translated into B by the alias database while J would remain unchanged.
B would then be translated into D and K by the alias file. D would then be translated into E
by the alias database while K would remain unchanged. Finally, E would be translated into I
by the alias file, and since I does not appear in the alias database the process would terminate.
The final result is that A translates into the list I, J, K.

The easiest way to look at the translation process is to simply follow it step-by-step as
illustrated below.

Initial Data Data Data Data
look up base File base File base File base Result
------- ---- ---- ---- ---- ---- ---- ---- ------
 A A C B D E I I I
 K K . . K
 J J J
 B B D E I I . . I
 K K K
 C B D E I I . . I
 K K K
 D E I I I
 E E I I I
 F D G G G

48–44 Messaging Server Reference

Alias database format

 H H H

Such complex use of the aliases facility is not encouraged and is presented for illustrative
purposes only.

Note: In particular, for most normal goals any particular entry should appear in either an alias
option/the alias fileor the alias database, not in both!

48.6.2 Alias database format
In early versions of the MTA, the format of the alias database was an on-disk database, built
using the imsimta crdb utility based upon a flat text file input. Alternatively, new in the 8.0
release, the MTA supports use of memcache for certain database/storage uses, including the
alias database; see the alias_database_url MTA option.

Indeed, the alias database can be considered to have the same format as the optional domain
database file. The allowed format of the flat text input file is normally:

key value

one entry per line, with the key beginning in column one, one or more white space (SP or
TAB) characters, and then the value on the right hand side. The key, that is, the alias, is
limited to 32 characters in length and can translate to a value string containing at most 80
characters unless either a "long" or a "huge" database is used. See the -long_records and -
huge_records switches of the imsimta crdb utility for information on long databases, and
on huge databases.

Length restrictions aside, alias database entries are handled in the same way as alias file
entries and can be used in exactly the same way. Both multiple addresses and mailing list
references are allowed. (Note that in long or huge alias databases, while the translation string
may contain 256 or 1024 characters, respectively, any individual address appearing in the
translation string is limited to at most 256 characters (252 characters in iMS 5.2 and earlier).
The purpose of the longer translation string limit in such databases is to allow room for
multiple comma-separated addresses, or for mailing list definitions that besides an "address",
also contain additional named or positional parameters.)

The comment_chars MTA option controls which characters (by default exclamation point
and semicolon) in column one of a line are considered to indicate a comment line. The left
angle character may be used to read another file into the alias database text input file.

The alias database, like the alias file, must be world readable.

The MTA alias database is created from an input text file (not from the alias file---from a
different input text file) using the imsimta crdb utility. The format of entries in the input file
for crdb should be:

alias1 alias-value1
alias2 alias-value2
 . .
 . .
 . .

Note that unlike the aliases file, the entries in the alias database source text file normally do
not use a colon to separate the alias from its value.

Aliases 48–45

Subaddresses in aliases

Use the commands

imsimta crdb input-file-spec IMTA_DATAROOT:db/aliasesdb-tmp
imsimta renamedb IMTA_DATAROOT:db/aliasesdb-tmp IMTA_DATAROOT:db/aliasesdb

An intermediate, temporary database is used so as to minimize any window of time during
which the database file is in an undefined state as it is being generated or regenerated. (Note
that the "symbolic" name IMTA_ROOT can be used in such a command.)

Alternatively, a source file using colons, (that is, of the same format as the alias file), e.g.,

alias1: alias-value1
alias2: alias-value2
 . .
 . .
 . .

may be used providing that the -strip_colons switch is used when building the database;
e.g., on UNIX:

imsimta crdb -strip_colons input-file-spec IMTA_DATAROOT:db/aliasesdb-tmp
imsimta renamedb IMTA_DATAROOT:db/aliasesdb-tmp IMTA_DATAROOT:db/aliasesdb

48.7 Subaddresses in aliases
As background on the purpose of subaddresses, the MTA interprets a + character in an
address specially: in an address of the form name+subaddress@domain the MTA considers
the portion of the mailbox after the plus character a subaddress. If the MTA tells the Message
Store to "trust" that subaddress as a folder name for delivery purposes (see in particular the
fileinto channel option, and the deliveryflags channel option), then Message Store too
will treat the subaddress specially, delivering straight to that folder.1

When looking up an alias, the use of subaddresses introduces an extra factor. The MTA's "l"
channel, or any channel marked with the aliaslocal channel option, will try looking up
aliases.

Subaddresses in aliases are handled as follows. By default, (that is, with the
subaddressrelaxed channel option explicitly or implicitly on the channel doing the alias
lookup), the MTA first checks for an alias entry including the subaddress; if no such entry is
found, the MTA next checks for an entry with an asterisk, *, in place of the subaddress. Finally,
if there is no prior match, the MTA checks for an entry without any subaddress. For instance,
alias entries

adam+privileged: system
adam: bob+*
carl+special: system
carl+*: david+*
carl: eric

cause the MTA to translate adam+privileged to system, and adam to bob (note the special case
handling whereby the MTA removes the trailing subaddress character, +, from the translation

48–46 Messaging Server Reference

Alias special formats

value bob+* if there is in fact no subaddress), while adam+talklist, adam+general, etc., will be
translated to bob+talklist, bob+general, etc. carl+special will be translated to system and carl to
eric, while carl+talklist, carl+general, etc., will be translated to david+talklist, david+general,
etc.

This handling of subaddresses during alias lookups is configurable; see the subaddress*
channel options for configuration at the channel level, or for aliases stored in LDAP see the
(new in MS 8.0) domain-level control available via the ldap_domain_attr_subaddress
MTA option.

1 Note that the ims-ms channel's support for folder delivery can be disabled via the FILEINTO
ims-ms-channel-specific option.

48.8 Alias special formats
In general, alias "special formats" supported for aliases stored in the alias file are also
supported for aliases stored via an alias group in Unified Configuration. But only some of
the alias "special formats" supported for such aliases (those stored in the alias file) are also
supported for aliases stored in LDAP.

In particular, for all forms of alias:

• an alias whose value begins with a leading colon has a special interpretation in regards to
generation of notification messages;

• subaddress support is available;

• the aliaswild effect (perform a catchall * alias probe if no exact alias is found) is available
(though use for LDAP aliases is strongly discouraged as for the case of LDAP aliases, use
of the supported domain level attribute mailDomainCatchallAddress is recommended
instead).

Furthermore, for aliases stored via an alias group in Unified Configuration:

• the mail_off MTA option feature is supported;

• the post_off MTA option feature is supported;

See the discussion of such special formats for aliases in the alias file for further details.

48.9 Alias header addition modifiers
The action of those alias options (Unified Configuration) or alias file named parameters
(legacy configuration) that can add headers, e.g., alias options such as alias_deferred or
alias_priority, or similarly alias file named parameters [DEFERRED], [PRIORITY], etc.,
can be modified by the special characters shown in Table of alias header addition modifiers, by
appending the special character at the end of the value for the option or parameter.

Table 48.2 Alias header addition modifiers

Character Description
 Insert if not already present; inserts as a

Resent- if already present

Aliases 48–47

Alias recursion and nested list
definitions

* Only insert if not already present
& Insert if not already present; add to old field if

already present
^ Delete any old field present; always insert the

new field
\ Delete old field and don't insert a new one

48.10 Alias recursion and nested list
definitions

Aliases may reference other aliases, in LDAP, in the alias database, in the alias file (legacy
configuration), and in alias named group Unified Configuration option settings. To avoid
possible infinite recursion reference loops, the MTA limits such nested or recursive references
to a default maximum of ten levels (see the max_alias_levels MTA option).

If an alias references itself, either directly or indirectly, an alias loop results. The loop
eventually terminates due to the level restriction, but the termination conditions may not
produce consistent results in all cases.

The special case of an alias directly referencing itself is allowed and specially handled. For
example, the alias file definition

alias-name: alias-name, other-address-1, other-address-2, ...

will expand alias-name into itself plus other-address-1, other-address-2, and so
on. alias-name may in turn get expanded in some other way (the system alias database or
personal alias database) but it will not be expanded further by the alias file.

Note that implicit domain name use (having the MTA itself insert its default domain name
onto "bare" usernames) may affect the "matching" of alias names needed for the MTA's special
code to trigger. In order for a "match" to be assured, either use a "bare" username on both the
left and right hand sides, or use a fully-qualified address on both the left and right hand sides.

48.11 Alias restrictions
There are some important restrictions that should be observed when using aliases, especially
aliases in the alias file or alias database.

48.11.1 General alias restrictions
1. The addresses in the alias file or alias database or stored in LDAP attributes such as mail,
mailAlternateAddress, or mailEquivalentAddress should be formatted as pure
RFC 822 addresses, e.g., user@domain-name. Do not try to use DECnet or other routing
conventions that you can get away with in the rewrite rules table. Not only may such things
fail, they may not produce a visible error (see the next item). Source routes are the only
exotica that are permitted.

2. Certain types of bogus addresses in a group or list alias would not, prior to MS 6.1, generate
a "bad address" return message. Specifically, if, for a given address in the group or list,
the system name was illegal or there was a syntax error in the address specification, then

48–48 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Additional LDAP alias restrictions

the copy of the message to that address might be silently dropped and no one will be the
wiser. In the case of mailing lists defined in the alias file or alias database, if the mailing list
membership file associated with an alias does not exist, then mail to the list itself may be
dropped. However, errors in the mailbox part of the address (e.g., "no such user") would be
handled correctly. As of MS 6.1, there is enhanced handling for such cases. Errors in e-mail
addresses in group definitions (but not errors in LDAP DNs or LDAP URLs, when group
members are referenced via LDAP DN or LDAP URL), but where at least one apparently
valid address is in the group, will be reported to (the rest of) the group; in the list case, the
error will be reported to the list's notification address. Note that errors in LDAP DN or
LDAP URL, when group members are defined/referenced via such, will cause expansion
of the group to abort. However, as of 7.0.5, errors in LDAP DN or LDAP URL during
group access checking (during expansion of the group allowed to post to the group) will
be ignored (and processing of the group access check will continue); previously such errors
halted the expansion process for the access group. System managers should take care to test
each list they set up to insure that all the recipient addresses are correct. The imta test
-rewrite -check_expansions utility provides a way to do such checking of syntactic
correctness of list definitions and list membership addresses. Groups and lists should be
checked periodically and also whenever extensive changes are made.

3. Aliases in the alias file can contain up to 60 characters. Aliases in the database can contain
up to 32 characters in a short database, up to 80 characters in a long database, and up to
256 characters (252 characters in iMS 5.2 and earlier) in a huge database. In the alias file,
the addresses to which aliases translate can contain up to 256 characters (252 characters
in iMS 5.2 and earlier). In the case of a short database, the translation value can contain
up to 80 characters; in the case of a long database the translation value can contain up to
256 characters; in the case of a huge database the translation value can contain up to 1024
characters. In some cases failing to observe length restrictions may lead to addresses being
silently dropped from lists.

4. The LDAP URL template value to which a alias_urlN MTA is set is limited to 256
characters (252 characters in iMS 5.2 and earlier) before substitutions; the substitutions
may insert additional material and the length after such substitutions is limited to 1024
characters. Note that the substitution of "known" attributes when asterisk, *, is specified as
the attribute-to-return is not considered as part of the regular substitution; this substitution
is performed at a later step and the length after this "known" attributes substitution is
limited to 4096 characters.

48.11.2 Additional LDAP alias restrictions
1. For performance reasons, the MTA normally caches the results of LDAP queries. Also, the

LDAP server itself normally does some caching of searches. So changes to an LDAP alias
will not always be "immediately" apparent to already running MTA processes.

48.11.3 Additional alias file (or database) restrictions
1. The MTA reads the alias file only as each program using the MTA initializes itself. This

means that if you are using a permanently resident server (such as the SMTP server) you
should be sure to stop and restart the server each time the alias file or any of the files it
includes is changed -- first recompiling the MTA configuration, if you are using a compiled
configuration (since a compiled configuration includes the alias file). (The imsimta
restart utility provides a simple way to restart any such MTA detached processes.) On
the other hand, mailing list membership files referenced by the alias file are read and reread
as needed, so servers need not be restarted when one of these files is changed.

Aliases 48–49

Address reversal

2. The alias file is always read into memory in its entirety each time the MTA is used. All files
included by the primary alias file are also loaded into memory. (Mailing list membership
files are not loaded into memory.) The use of a huge alias file can eat up lots of memory.
Liberal use of the mailing list membership reference operator, <, to reference long lists
is recommended. Long lists of addresses coded directly into the alias file or any files it
includes should be avoided. Use of an alias database for large numbers of aliases is also
recommended.

48.12 Address reversal
After address rewriting via the MTA's rewrite rules, header From: addresses and other
backwards-pointing addresses and forwards-pointing header addresses normally receive one
additional processing step.1 This additional processing step is referred to as address reversal.
Another term used is address canonicalization, since address reversal is most commonly used to
change possible alternate address forms into a single, canonical form. Address reversal can be
performed via LDAP lookups, and/or via use of a reverse database and/or REVERSE mapping.
Note that an LDAP lookup, if specified via the reverse_url MTA option, is performed prior
to checking the reverse database and/or REVERSE mapping.

Special handling of subaddresses is available during address reversal. And special handling of
what might be termed address "decorations", namely RFC 822 comment strings and personal
names, is also available.

New in 8.0, address reversal can be made sensitive to exactly which header field (e.g., From: vs.
Sender:, etc.) is being processed by setting a special bit in the use_reverse_database MTA
option which will cause inclusion of the header field name in REVERSE mapping table probes.

The primary use of address reversal is to substitute a generic, standardized address for
internal or host-specific addresses. Address reversal is a particularly powerful tool when used
in conjunction with aliases.
1 Address reversal processing can be restricted in various ways. Address reversal can
be restricted to only backwards pointing addresses if bit 2/value 4 in the MTA option
use_reverse_database is cleared. Application of address reversal processing to envelope
From address can be disabled using the reverse_envelope MTA option. The noreverse
channel option can disable address reversal from being performed during enqueues to
particular destination channels. However, in modern MTA configurations using LDAP-based
aliases, a great many functions are critically dependent upon the MTA performing its LDAP
lookup address reversal; before considering any restrictions upon normal address reversal,
consider carefully the discussion of Intended side effects of LDAP address reversal.

48.12.1 LDAP lookups for address reversal
If the reverse_url MTA option has been set, then each address (other than envelope To
addresses) passing through the MTA will be checked against the result of an LDAP query
constructed as specified by the reverse_url option (querying the LDAP server at the port
specified by the ugldaphost and ugldapport options, which may be overridden by the
MTA-specific ldap_host and ldap_port MTA options). If the LDAP query succeeds and
returns a value, that value will be substituted in place of the original address.

For the reverse_url MTA option, standard LDAP URLs as per RFC 2255 must be used,
except with the host and port normally omitted, as the host and port are normally instead
specified via the base or MTA-specific option settings mentioned above. That is, the LDAP
URL is typically specified along the lines of:

48–50 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc2255

LDAP lookups for address reversal

ldap:///dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of the
URL. The dn is required and is a distinguished name specifying the search base; it might
correspond to the organization's top level in the Directory Information Tree, or it might
correspond to a subset of the organization, based upon the domain name in the original
address. The optional attributes, scope, and filter portions of the URL further refine
what information to return. For address reversal, the desired attributes to specify returning
would typically be the mail attribute (or some similar attribute). The scope may be any of
base (the default), one, or sub. And the desired filter would typically be based upon the
mailbox (local portion) of the incoming addresses.

Certain substitution sequences may be used to construct the LDAP search URL; see Table of
LDAP URL substitution sequences in LDAP URL substitution sequences for details.

48.12.1.1 Intended side effects of LDAP address reversal

Doing a reverse_url lookup actually has effects beyond pure address reversal. (And this
is why a reverse_url lookup normally uses the $R substitution for a filter that searches
for a given address as the canonical mail attribute, as well as searching for the attributes
that would actually require address reversal: one wants the reverse_url lookup to find an
entry even for an address that is already in canonical form.) The recommended setting for
the reverse_url MTA option makes use of the LDAP URL $N substitution to specify an
extensive list of attributes to be fetched; so reverse_url lookups also normally make use of
(or at least fetch and cache) the attributes named by the MTA options:

• ldap_primary_address (normally mail),
• ldap_alias_addresses (normally mailAlternateAddress),
• ldap_equivalence_addresses (normally mailEquivalentAddress),
• ldap_personal_name,
• ldap_capture,
• ldap_recipientlimit,
• ldap_recipientlimit,
• ldap_sourceblocklimit,
• ldap_preferred_language (normally preferredLanguage),
• ldap_source_conversion_tag (as of MS 6.2),
• ldap_blocklimit (as of MS 6.3) (normally mailMsgMaxBlocks),
• ldap_source_channel (as of MS 6.3),
• ldap_source_optinN (as of MS 6.3),
• ldap_preferred_country (as of MS 6.3), and
• ldap_spare_N (as of MS 6.3-0.15).

The recommended setting for the reverse_url MTA option also uses the $V substitution
for locating the domain in which the sending user address is located. Because of this implied
lookup of the sending user's domain, the MTA's message processing can then also make use of
per-sending-domain LDAP attributes including those named by the MTA options:

• ldap_domain_attr_report_address (normally mailDomainReportAddress),
• ldap_domain_attr_blocklimit (normally mailDomainMsgMaxBlocks),
• ldap_domain_attr_recipientlimit,
• ldap_domain_attr_recipientcutoff,

Aliases 48–51

Reverse database

• ldap_domain_attr_source_conversion_tag,
• ldap_domain_attr_sourceblocklimit, and
• ldap_domain_attr_source_channel.

Note: In actual operation, the MTA and domain map caching of domain lookup results means
that the domain attributes are often available from a cache, without need for an additional
actual LDAP query at this point. That is, while the reverse_url caused fetching of the
sending user's personal LDAP attributes is relatively likely to involve a query all the way to
the backend LDAP server, the "fetching" of the sending user domain LDAP attributes is often
short-circuited, with the domain attributes cached due to a prior lookup.

So the list of potential side-effects resulting from address reversal, when it is properly
configured to fetch these various per-sending-user and per-sending-domain LDAP attributes,
is quite extensive, including effects on message size limits, message recipient limits, conversion
tags, message capture, spam/virus filter processing opt-in, archiving opt-in, source channel
"switching", and (if a notification message must be generated), notification language
preference, non-return-of-content in notification messages, and per-domain postmaster
address selection, etc.

New in the 8.0 release, bits of the use_reverse_database MTA option can be set to disable
use of either the envelope From (MAIL FROM) address, or the authenticated sender address,
for purposes of source-based message size or recipient limit settings, as well as capture actions.

48.12.2 Reverse database
During the address reversal stage of address processing (which note occurs after rewriting via
the MTA's rewrite rules), first any reverse_url LDAP-based address reversal is performed,
as discussed in LDAP lookups for address reversal. After any such LDAP-based address
reversal, then header From: addresses and other backwards-pointing addresses and forwards-
pointing header addresses may receive yet another address reversal processing step which
makes use of the address reversal database and REVERSE mapping.9

The relevance of the address reversal database is quite limited nowadays, as nowadays the
sorts of changes it used to be used to make are instead performed via LDAP lookups for
address reversal. However, the process of its use will be described below.

When use of the address reversal database has been configured, the MTA uses each address
specification, with any routing address but less any personal name fields, as an index key to
the special database called the reverse database.10

Note that the format of probes to the reverse database (and to the REVERSE mapping table)
can be affected by the use_reverse_database MTA option.

If the address is found in the reverse database, the corresponding right hand side from the
database is substituted for the address.

If the address is not found, then an attempt is made to locate a mapping table named
REVERSE. No substitution is made and rewriting terminates normally if the table does not
exist or no entries from the table match. But if the address does match a REVERSE mapping
entry, then the result of the mapping is tested. The resulting string will replace the address
if the entry specifies a $Y; a $N will discard the result of the mapping. If the mapping entry
specifies $D in addition to $Y, the resulting string will be run through the reversal database
once more, and if a match occurs the template from the database will replace the mapping
result (and hence the address).

48–52 Messaging Server Reference

Reverse database

Note that you do not need to have an address reversal database in order to use a REVERSE
mapping. That is, you can use a REVERSE mapping without having an address reversal
database. And, of course, the reverse is true: you do not need to have a REVERSE mapping to
use an address reversal database. Prior to the implementation of LDAP lookups for address
reversal, this back-and-forth consultation of reverse database, REVERSE mapping, optionally
reverse database again, was intended to allow convenient use and combination of the strengths
of each facility: the reverse database's ability to make changes exactly targeted to a single
address, and the REVERSE mapping's ability to make generic, pattern-based changes to
addresses. Nowadays, typically changes targeted to a single address are made via the LDAP
entry for the user with that address, superceding former uses of the address reversal database,
and even the REVERSE mapping table tends to get used only for special circumstances.

Entries in the address reversal database consist of two e-mail addresses: the address to match
against and the address with which to replace a match. The database is usually created by
preparing a text file and processing it with the imsimta crdb utility.

For example, suppose a site wishes to replace all reverse pointing addresses of the form
user@domain.com with an address of the form first.last@domain.com where
first.last is formed from the first (given) and last (family) names of the owner of the
account user. This will then cause the outside world to only see addresses of the form
first.last@domain.com and never see internal addresses. A text file reverse.txt
containing lines of the form

user1@domain.com first1.last1@domain.com
user2@domain.com first2.last2@domain.com

could then be set up and converted to an address reversal database with the UNIX commands,

imsimta crdb reverse.txt IMTA_DATAROOT:db/reversedb-tmp
imsimta renamedb IMTA_DATAROOT:db/reversedb-tmp IMTA_DATAROOT:db/reversedb

An intermediate, temporary database is used so as to minimize any window of time during
which the database file is in an undefined state as it is being generated or regenerated.

As another example, suppose that the internal addresses at domain.com are actually
of the form user@hostX.domain.com, but, fortunately, the username space is such that
user@hosta.domain.com and user@hostb.domain.com specify the same person for all hosts
at domain.com. Then, rather than have to enter all possible user and host combinations in
the address reversal database, the following, very simple REVERSE mapping may be used in
conjunction with the address reversal database:

REVERSE

 @.domain.com $0@domain.com$Y$D

This mapping maps addresses of the form user@host.domain.com to user@domain.com.
The $D flag causes the address reversal database to then be consulted. The address reversal
database should contain entries of the form shown in the previous example.

Although there is no address reversal database or REVERSE mapping table by default, their
use for address reversal is activated automatically once such an address reversal database
(depending upon the use_reverse_database MTA option value) or REVERSE mapping
exists.

Aliases 48–53

REVERSE mapping table

9 Address reversal processing can be restricted to only backwards pointing addresses if the
third bit, bit 2, in the MTA option use_reverse_database is cleared. Application of this
processing to envelope From address can be disabled using the reverse_envelope MTA
option. The noreverse channel option can disable address reversal from being performed
during enqueues to particular destination channels. However, note that at typical Messaging
Server sites such options should not be used -- address reversal should not be disabled -- as
a wide range of functionality, including functionality that might not at first glance seem to be
address reversal related, depends critically upon normal address reversal processing.
10 Depending upon the setting of the MTA option use_text_databases, the reverse
"database" is either stored and accessed as an on-disk database (the default), or as an in-
memory structure constructed (during configuration compilation or MTA initialization) from
an on-disk flat text file. Or new in MS 8.0, the reverse "database" can be stored in memcache;
see the reverse_database_url MTA option. The on-disk database, if that is what is being
used, used to be located via the (now deleted) imta_reverse_database MTA Tailor
option; nowadays its location is simply IMTA_DATAROOT:db/reversedb. This database
file is built with the imsimta crdb utility from some site-supplied source text file, and
the database itself must be world-readable for proper operation. If an in-memory database
structure is instead being used, then when the MTA configuration is compiled (or at MTA
process initialization time, if a compiled configuration is not in use) the MTA reads the file
IMTA_TABLE:reverse.txt (formerly relocatable via the imta_reverse_data MTA Tailor
option) and compiles it into an in-memory structure. This file should be world-readable for
proper operation. Use of an in-memory "database" is normally recommended (for reasons of
performance and reliability); however, do note that use of this in-memory "database" does
require recompiling and reloading the configuration to get changes to the "database" (changes
to the source text file) incorporated into the active configuration.

48.12.3 REVERSE mapping table
During the address reversal stage of address processing (which note occurs after rewriting via
the MTA's rewrite rules), first any reverse_url LDAP-based address reversal is performed,
as discussed in LDAP lookups for address reversal. After any such LDAP-based address
reversal, then header From: addresses and other backwards-pointing addresses and forwards-
pointing header addresses may receive yet another address reversal processing step which
makes use of the address reversal database and REVERSE mapping table.9

Nowadays, the reverse database is very little used, having mostly been superceded for general
address reversal purposes by the use of LDAP lookups for address reversal; the REVERSE
mapping table is also seldom needed or used for general address reversal purposes nowadays,
but does sometimes get used under special circumstances. Thus while in principle the reverse
database and REVERSE mapping can apply in an alternating fashion -- see the discussion of
the reverse database for details -- this discussion of the REVERSE mapping table will focus on
the REVERSE mapping table alone or as an adjust to LDAP lookups for address reversal. (Note
that you do not need to have an address reversal database in order to use a REVERSE mapping
table. That is, you can use a REVERSE mapping without having an address reversal database.
And, of course, the reverse is true: you do not need to have a REVERSE mapping to use an
address reversal database.)

After the other address reversal mechanisms have applied (LDAP lookups for address reversal
and the reverse database), the MTA checks for whether a REVERSE mapping table exists.
If a REVERSE mapping table does exist, the MTA will probe the mapping table with, by
default, simply the current (as already reversed by other mechanisms) address. Note that
the exact format of probes to the REVERSE mapping table (and reverse database) can be
affected by the use_reverse_database MTA option, which can cause inclusion of channel

48–54 Messaging Server Reference

REVERSE mapping table

names in the probe and as of MS 8.0, even the header field from which the address was
taken. And as of MS 7.0.5, probes to the REVERSE mapping table can also be affected by the
include_conversiontag MTA option.

If the address probe matches a REVERSE mapping entry, the result of the mapping is tested.
The resulting string will replace the address if the entry specifies a $Y; a $N will discard the
result of the mapping. (If the mapping entry specifies $D in addition to $Y, the resulting string
will be run through the reversal database once more, and if a match occurs the template from
the database will replace the mapping result, and hence the address.)

New in MS 7.0u1, the output (template) of the REVERSE mapping is interpreted as a series of
addresses separated by commas. As always, the first address becomes the reversal result if
the entry sets the $Y flag; but new in MS 7.0u1, if the $H flag is also set and the input to the
REVERSE mapping was the MAIL FROM (envelope From) address, then the second address in
the comma-separated list becomes the default postmaster address for this sender.

See Table of REVERSE mapping table flags for a description of additional flags available for
the REVERSE mapping, and Mapping template substitutions and metacharacters for a list of
general mapping table substitution sequences and metacharacters.

Table 48.3 REVERSE mapping table flags

Flags Description
$Y Use output as new address
$N Address remains unchanged
$D Run output through the reversal database
$A Add pattern as reverse database entry
$F Add pattern as forward database entry
$H (New in MS 7.0u1) If the address input to the REVERSE mapping is the

envelope From (MAIL FROM address for SMTP submissions) then use the
second address (out of the list of comma-separated addresses in output) as
the default postmaster address for this sender

$I (New in MS 7.0) Consider address to have matched for this reversing
purpose

$G (New in MS 7.0) Consider address not to have matched for this reversing
purpose

Flag comparisons Description
$:B Match only header (body) addresses
$;B Match only if not a header (body) address
$:C (New in MS 7.0u1) Match only if this probe is attempting to produce a

canonical address for MTA use in comparison operations
$;C (New in MS 7.0u1) Match only if this probe is not attempting to produce a

canonical address for MTA use in comparison operations
$:D (New in 8.0.1.3) Match only if this probe is attempting to produce a

downgrade address for MTA use in EAI downgrade operations
$;D (New in 8.0.1.3) Match only if this probe is not attempting to produce a

downgrade address for MTA use in EAI downgrade operations
$:E Match only envelope addresses

Aliases 48–55

Subaddresses and address reversal

$;E Match only if not an envelope address
$:F Match only forward pointing addresses
$;F Match only if not a forward pointing address
$:M (New in MS 7.0u1) Match only if this probe is attempting to produce

a reversed MAIL FROM address in address validity checks when the
canonical form has not been selected

$:R Match only backwards pointing addresses
$;R Match only if not a backward pointing address
$:I Match only message-ids; see Internal host names in Received: and

Message-Id: header lines for an example
$;I Match only if not a message-id

Note that if you have a compiled configuration, then you must recompile and reload your
configuration in order for changes to the REVERSE mapping table (or indeed changes to any
mapping table) to take effect.
9 Address reversal processing can be restricted to only backwards pointing addresses if the
third bit, bit 2, in the MTA option use_reverse_database is cleared. Application of this
processing to envelope From address can be disabled using the reverse_envelope MTA
option. The noreverse channel option can disable address reversal from being performed
during enqueues to particular destination channels. However, note that at typical Messaging
Server sites such options should not be used -- address reversal should not be disabled -- as
a wide range of functionality, including functionality that might not at first glance seem to be
address reversal related, depends critically upon normal address reversal processing.

48.12.4 Subaddresses and address reversal
New in 7.0.5, the MTA's address reversal logic has been extensively redesigned to improve
the handling of subaddresses. Previously the presence of a subaddress would prevent address
reversal from occurring. (This long-standing behavior was a remnant of the past when if a
user was sophisticated enough to put on a subaddress, one could presume that the user was
sophisticated enough to have already specified the exact address that they wanted to send
from---so altering such an address wouldn't be necessary and indeed would be dubious.
However, nowadays many other behaviors and side-effects are triggered via address reversal
so matching regardless of subaddress is typically desirable, and further the old assumption
that reversal is no longer desired in such cases is no longer as likely.)

As of 7.0.5, the default behavior will be to attempt to match the address with or without
the subaddress. If there's a match, then the subaddress will be transferred to any rewritten
address. This behavior may be explicitly specified by setting the subaddressrelaxed
channel option (the default) on the source channel. subaddresswild, if set, will match
against subaddresses but disables transfer of the subaddress to the rewritten address. Finally,
subaddressexact disables special subaddress handling during the reversal process.

48.12.5 RFC 822 comment strings and personal name
modification

While not strictly an issue of address reversal, a related topic is that of modifying the RFC
822 phrase (more commonly referred to as a "personal name") or RFC 822 comment that
may appear associated with an address in a header line. Phrases appear, possibly quoted

48–56 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822

RFC 822 comment strings and
personal name modification

depending on the contents, before a format address specification (where the address
specification is enclosed in angle brackets); comments are text appearing within parentheses.
For instance, in

"John Q. Doe" <John.Doe@acme.com> (V.P. of Widget Development)

the "John Q. Doe" is an RFC 822 phrase, that is, personal name, and the (V.P. of
Widget Development) is a comment.

The MTA only interprets the contents of header lines when necessary. However, all registered
headers containing addresses must be parsed in order to rewrite and eliminate shortform
addresses and otherwise convert them to legal addresses. During this process personal names
(strings preceding angle-bracket-delimited addresses) and comment strings (strings enclosed
in parentheses) are extracted and may optionally be modified or excluded when the header
line is rebuilt.

In direct LDAP mode, the LDAP attribute named by the ldap_personal_name MTA option
if present, will be used as the personal name in an address. (Note that any eight bit characters
in the value will be assumed to be UTF-8 and be encoded as such.) The MTA will quote,
if appropriate, the personal name value obtained from LDAP, according to RFC 822 rules
for such quoting; implemented as of MS 6.2 for normal messages, or as of MS 6.2p6 when
generating messages such as vacation messages.

There are a number of channel options controlling the MTA's optional removal or
modification of personal names and comment strings. This section will talk in detail about
the personalmap, sourcepersonalmap, commentmap, and sourcecommentmap channel
options used for triggering general, mapping table based modifications to such strings; see
the personal* channel options and the comment* channel options for a complete list of
additional options including channel options appropriate when you simply wish to strip off all
such strings.

When the personalmap keyword is present on a destination channel, then the MTA will run
any personal names appearing associated with addresses in addressing header lines (e.g.,,
To:, Cc:, etc., sorts of header lines) and message id header lines through a PERSONAL_NAMES
mapping table, if such a table exists. This is performed after any address reversal. If no such
table exists, then personalmap is equivalent to personalstrip; see the personalstrip
channel option. The sourcepersonalmap keyword acts analogously for header lines on
incoming messages; that is, it applies to source channels. The probe to the PERSONAL_NAMES
mapping table by default takes the form

personal-name|address

or if (new in MS 6.1) the MTA option use_personal_names=1 is set, then the probe takes
the form

source-channel|destination-channel|personal-name|address

If the probe matches a mapping entry, the result of the mapping is tested. The resulting string
will replace the personal name if the entry specifies a $Y; a $N will discard the result of the
mapping. Note that any eight bit values in the result will be assumed to be in the UTF-8
charset, and encoded as such. As of MS 6.2p3, the MTA will quote the result of the mapping,
if appropriate according to the personal name quoting rules specified in RFC 822. See Table of
PERSONAL_NAMES mapping table flags for a description of additional flags available for the
PERSONAL_NAMES mapping, and Mapping template substitutions and metacharacters for a list
of general mapping table substitution sequences and metacharacters.

Aliases 48–57

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822

RFC 822 comment strings and
personal name modification

Table 48.4 PERSONAL_NAMES mapping table flags

Flags Description
$Y Use output as new personal name
$N Personal name remains unchanged
Flag comparisons Description
$:F Match only forward pointing addresses
$;F Match only if not a forward pointing address
$:R Match only backwards pointing addresses
$;R Match only if not a backwards pointing

address
$:I Match only message-ids
$;I Match only if not a message-id

An example of a PERSONAL_NAMES mapping table, used in conjunction with personalmap
on an appropriate channel, to cause addition of the cn LDAP attribute's value as a personal
name only when no personal name was already present on an address would be:

PERSONAL_NAMES

! If a personal name is already present, use it as-is
!
 %*|* $N
!
! When no personal name is already present, look up the
! domain in the address and determine whether it is one
! of "ours":
!
 |*@* $CBDN|$0@$1|$}$1,_base_dn_{
!
! If the domain was found, we're now probing with
! BDN|address|base-DN-for-users
!
 BDN|*|* \
C]ldap:///$1?cn?sub?(|(mail=$=0_)(mailEquivalentAddress=$=$0$_))[$Y$E

When the commentmap channel option is present on a destination channel, then the MTA will
run any comment strings appearing associated with addresses in addressing header lines (e.g.,,
To:, Cc:, etc., sorts of header lines) and message id header lines through a COMMENT_STRINGS
mapping table, if such a table exists. This is performed after any address reversal. If no such
table exists, then commentmap is equivalent to commentstrip; see the comment* channel
options. The sourcecommentmap channnel option acts analogously for header lines on
incoming messages; that is, it applies to source channels. The probe to the COMMENT_STRINGS
mapping table by default takes the form

comment-string|address

or if (new in MS 6.1) the MTA option use_comment_strings is set, then the probe takes the
form

48–58 Messaging Server Reference

Forwarding mail

source-channel|destination-channel|comment-string|address

If the probe matches a mapping entry, the result of the mapping is tested. The resulting string
(which should include enclosing parentheses) will replace the comment string if the entry
specifies a $Y; a $N will discard the result of the mapping. See Table of COMMENT_STRINGS
mapping flags for a description of additional flags available for the COMMENT_STRINGS
mapping, and Mapping template substitutions and metacharacters for a list of general
mapping table substitution sequences and metacharacters.

Table 48.5 COMMENT_STRINGS mapping table flags

Flags Description
$Y Use output as new comment string
$N Comment string remains unchanged
Flag comparisons Description
$:F Match only forward pointing addresses
$:R Match only backwards pointing addresses
$:I Match only message-ids

When thinking about personal names and comment strings in address header lines, note that
as of 7.5 the MTA supports private modifiers to the Sieve "address" test, ":display" and
":comment", to access the personal name and comment string, respectively.

48.13 Forwarding mail
The term alias often encompasses two separate types of functionality: address routing (which
inherently relates specifically to envelope To addresses), and cosmetic changes to other
instances of addresses (envelope From addresses, and header addresses). The cosmetic
changes of address reversal do not apply per se to envelope To addresses. Rather, envelope
To addresses are continuously rewritten and modified as messages proceed through the mail
system. The entire goal of mail routing is to convert envelope To addresses to increasingly
system and mailbox-specific formats. The canonicalization functions of address reversal are
entirely inappropriate for envelope To addresses.

In addition to the transformations of domain names available via rewrite rules and domain
aliases, which are generally (though not necessarily) applied to all addresses in the domain,
including instances of envelope To addresses, envelope To addresses may also be modified on
a per-user basis via one or more mechanisms of mail forwarding.

The MTA provides several mechanisms for forwarding mail. The method appropriate to a task
at hand depends upon the scope of the forwarding:

• Forwarding mail for selected users. To forward mail for selected users, it is best to use aliases.
You may also use aliases to accept mail for a non-existent user and forward it on to one or
more real users. See Forwarding via user LDAP attributes, and alias options.

• Forwarding mail to a list of users. Aliases are also used to create mailing lists.

• Forwarding mail for selected users in other than the local domain. To forward mail for selected
users in an arbitrary domain (a domain other than the local channel name), the best
approach may depend on how the users are provisioned. For users provisioned via alias
options, use of a rewrite rule matching the domain to the local channel and alias lookups

Aliases 48–59

Forwarding via user LDAP
attributes

that include the domain name and that have a fall-through entry (see the alias_domains
MTA option) may be appropriate. For users provisioned in LDAP, in the general case,
modifying those users' LDAP entries to have appropriate LDAP attributes for forwarding is
most explicit.

• Pattern-matching the users for forwarding. In the special case where a set of users whose
mail is to be forwarded can be detected via simple string pattern matching, and where
the forwarding to be performed requires only a simple string transformation, use of a
domain catchall mapping on an LDAP-provisioned domain may be convenient; see the
ldap_domain_attr_catchall_mapping MTA option.

• Forwarding all mail for a given host to another host. In this case there are several approaches.
The most efficient method requires that you be able to blindly change user@old-
host into user@new-host without any conflict in user names; i.e., not have to
worry that the username "user" on old-host conflicts with a different person on
new-host who has the same username. When this is the case, simple MTA rewrite
rules may be used. The less efficient, but just as effective, approaches involve using
either a FORWARD mapping table, forward database, or alias lookups. Or for domains
provisioned in LDAP, in some cases use of domain-level LDAP attributes may be
appropriate: see the ldap_domain_attr_smarthost MTA option (LDAP attribute
mailRoutingSmartHost) and ldap_domain_attr_routing_hosts MTA option
(LDAP attribute mailRoutingHosts).

• Complicated rule-based forwarding. For performing complicated, rule-based forwarding, use of
a Sieve filter to perform Sieve "redirect" actions allows for great flexibility; such a Sieve
filter may be configured at various levels, including domain-level or user-level.

The MTA's forward database and/or FORWARD mapping table, and domain catchall mapping
tables (see the ldap_domain_attr_catchall_mapping MTA option) may be used for
special sorts of forwarding purposes, such as pattern based forwarding, source-specific
forwarding, or "autoregistration" of addresses. Note that the forward database and FORWARD
mapping table, as well as domain catchall mappings, are intended for use primarily for these
special sorts of address forwarding; most sorts of address forwarding, however, are better
performed using one of the MTA's other forwarding mechanisms.

48.13.1 Forwarding via user LDAP attributes
To forward the mail of a user provisioned in LDAP, the most straightforward approach is
to set the value forward as a value of the user's mailDeliveryOption LDAP attribute,
and then set one or more mailForwardingAddress LDAP attributes on the user entry
with each having a value consisting of an address to which to forward the user's mail.
(Note that the mentioned value "forward"and these mentioned LDAP attributes are
configurable via MTA options: see the delivery_options, ldap_delivery_option, and
ldap_forwarding_address MTA options, respectively.)

Note that forwarding a user's mail, and delivering the mail locally, are not mutually exclusive
options: a user may have multiple values of mailDeliveryOption.

The questions of whether or not forwarded messages should be subject to "carryover"
Sieve scripts and/or "opt in" to spam/virus filter package processing are controllable via the
sieve_user_carryoveroptin_user_carryover MTA options.

48.13.2 FORWARD mapping table

48–60 Messaging Server Reference

FORWARD mapping table

The FORWARD mapping table provides functionality of pattern-based forwarding (analogous
to the way that the REVERSE mapping table provides pattern-based changes to non-routing
addresses), and the FORWARD mapping table also provides a mechanism for source specific
forwarding. If a FORWARD mapping table exists, it is applied to each envelope To address. The
probe of the FORWARD mapping table by default consists simply of the current envelope To
address:

envelope-to

But bits of the use_forward_database MTA option and include_conversiontag
MTA option control inclusion of additional fields in the probe. Bit 4 (value 16) of the
use_forward_database MTA option controls including the source-channel and from-
address in the probe; bit 6 (value 64) of use_forward_database controls including the
current destination-channel in the probe; new in MS 6.3, enabling bit 2 (value 4) of the
include_conversiontag MTA option causes any current conversion tags on the message
to be included in a comma-separated list clause in the probe. With these additional fields
enabled, the probe has the form

source-channel|from-address|destination-channel|tag-list|envelope-to

New in MS 8.0, the include_mtpriority MTA option and include_spares2 MTA option
control, respectively, the inclusion of MT-PRIORITY and expected message size, and LDAP
"spare" attribute values associated with the sender address, in the probe. Also new in MS 8.0
are new bits of the use_forward_database MTA option controlling inclusion of the initial
form and intermediate form of the recipient address, and the authenticated sender address, in
the probe. With all these options enabled as well as the previously discussed options, the probe
has the form:

src-chan|from-addr|dst-chan|auth-sender|tag-list|s1|s2|s3|s4|s5|s6|mtpriority|expected-size|initial-to|inter-to|envelope-to

New in MS 8.0.2.2, LDAP "spare" attribute values associated with the recipient address can
also be included in the probe. These appear after the sender spare attributes and are controlled
by additional bits in the include_spares2 MTA option.

Note that when the from-address is included in the probe, then the MTA options
use_orig_return, and (new in MS 6.3) use_canonical_return, and (new in MS 7.0)
use_auth_return, can be used to select which form of the envelope From address is
included.

If the probe matches a FORWARD mapping table entry pattern, the result of the mapping is
tested. The resulting string will replace the envelope To address if the entry template specifies
a $Y; a $N will discard the result of the mapping. See FORWARD mapping table flags for a list
of additional flags, and see Mapping tables for general background and syntax of mapping
tables. If no entries in the FORWARD mapping table match, or if no FORWARD mapping table
exists, then the MTA's envelope To address processing proceeds to its next stage.

The FORWARD mapping, if present, is consulted before any forward database lookup. If a
FORWARD mapping matches and has the flag $G, then the result of the FORWARD mapping
will be checked against the forward database, if forward database use has been enabled via
the appropriate setting of use_forward_database. (Note that if channel specific forward
database use has been specified, then the source address and source channel will be prefixed to
the result of the FORWARD mapping before looking up in the forward database.) If a matching

Aliases 48–61

FORWARD mapping table

FORWARD mapping entry specifies $D, then the result of the FORWARD mapping (and optional
forward database lookup) will be run through the MTA's address rewriting process again.
 If a matching FORWARD mapping entry specifies $H, then no further FORWARD mapping or
database lookups will be performed during that subsequent address rewriting (that resulting
from the use of $D).

Table 48.6 FORWARD mapping table flags

Flags Description
$Y Use output as new address
$N Address remains unchanged
$D Run output through the rewriting process again
$G Run output through the forward database, if forward database use has

been enabled
$S Set the "trust subaddress as folder" flag, as if a folder name had been

specified in a Sieve " fileinto" action
$/ (New in MS 7.0u2) In an entry with YD also set, treat the forwarding

result as a mailing list with the original envelope From as the reporting
address. This is similar in functionality to the specification of a /
as the value of an mgrpErrorsTo value or a / as the value of a
[ENVELOPE_FROM] named parameter in the alias file or alias database.

$H Disable further forward database or FORWARD mapping lookups at this
alias level.

$I Hold the message as a .HELD file.
$J (New in 8.0.1.3) Disable further forward database or FORWARD mapping

lookups for all inner levels. (Use with caution: Careless use of this option
can prevent proper alias expansion from occurring.)

$K (New in MS 7.0.4.27.5 and MS 7.0.5.29.0) Don't reset the "intermediate"
address before processing the mapping/database result; only takes effect if
$Y and $D are also set. This is useful when performing a final fixup to an
address produced by delivery option processing.

$P (New in MS 7.0.4.27.5 and MS 7.0.5.29.0) Treat the FORWARD mapping
result as having specified additional recipient address(es) in addition to,
rather than replacing, the current recipient address; only takes effect if $Y
and $D are also set.

$V (New in MS 8.0) Do not set the internal "alias match" flag, (normally as of
MS 7.0u2 set by a matching FORWARD entry, so that viaaliasrequired
is satisfied); that is, $V means that viaaliasrequired is not satisfied by
this FORWARD match

Flag comparisons Description
$:E (New in MS 6.3) Incoming connection used ESMTP/EHLO
$;E (New in MS 6.3) Incoming connection did not use ESMTP/EHLO
$:L (New in MS 6.3) Incoming connection used LMTP/LHLO
$;L (New in MS 6.3) Incoming connection did not use LMTP/LHLO
$:F (New in MS 6.3) NOTIFY=FAILURES active for this recipient
$;F (New in MS 6.3) NOTIFY=FAILURES not active for this recipient

48–62 Messaging Server Reference

Forward database

$:S (New in MS 6.3) NOTIFY=SUCCESSES active for this recipient
$;S (New in MS 6.3) NOTIFY=SUCCESSES not active for this recipient
$:D (New in MS 6.3) NOTIFY=DELAYS active for this recipient
$;D (New in MS 6.3) NOTIFY=DELAYS not active for this recipient
$:A (New in MS 6.3) SASL (SMTP AUTH) used to authenticate connection
$;A (New in MS 6.3) SASL (SMTP AUTH) not used
$:T (New in 6.3) SSL/TLS used to secure connection
$;T (New in 6.3) SSL/TLS not used
$:P (New in MS 7.0) Match only if POP-before-SMTP was used
$;P (New in MS 7.0) Match only if POP-before-SMTP was not used
$:R (New in MS 8.0) Match only if the current channel is "internal" (the process

channel, reprocess channel, or conversion channel).
$;R (New in MS 8.0) Match only if the current channel is not "internal".
$:U (New in MS 8.0) Match only if a UTF8 address was used.
$;U (New in MS 8.0) Match only if the address did not use UTF8.
$:V (New in MS 8.0) Match only if the recipient address expanded via an alias.
$;V (New in MS 8.0) Match only if the recipient address did not expand via an

alias.
$:C (New in MS 8.0.1.3) Match only if message is the result of a capture/journal

action.
$;C (New in MS 8.0.1.3) Match only if message is not the result of a capture/

journal action.

See also the ldap_domain_attr_catchall_mapping MTA option which may be used to
specify the name of a domain-level LDAP attribute whose value names an MTA mapping table
that functions, for addresses in the domain which match no specific user entry, similarly to the
FORWARD mapping table. That is, it provides a domain-specific, more restrictive (applying only
to addresses which have no explicit user entry), analogue of the FORWARD mapping table.

48.13.3 Forward database
For cases where address forwardings need to be autoregistered, or other cases of source
specific forwarding, the MTA's forward database is available. Note that use of the forward
database for simple forwarding of messages is generally not appropriate: if a database must
be used, then the alias database is more efficient for straightforward forwarding; or if users
are provisioned in LDAP, then forwarding can be handled via normal LDAP attributes. So
by default, the forward database is not used at all; its use must be explicitly enabled via the
use_forward_database MTA option.

Forward database lookups are performed after address rewriting and after alias expansion
is performed, and after any FORWARD mapping is checked. If a forward database lookup
succeeds, the resulting substituted address is then run through the MTA's address rewriting
process all over again.

The forward database is traditionally an MTA crdb database, created using the imsimta
crdb utility from a source text file. However, nowadays the crdb step is typically omitted

Aliases 48–63

Forward database

by using an MTA so-called "text database": with the relevant bit (bit 2/value 4) of the
use_text_databases MTA option set, then the MTA will compile the source text file
directly into its configuration. Or new in MS 8.0, the forward "database" can be stored in
memcache; seethe forward_database_url MTA option. In either case, the format of the
source text file by default is expected to be:

user1@domain1 changedmailbox1@changeddomain1
user2@domain2 changedmailbox@changeddomain2

But if source specific use of the forward database has been enabled by setting bit 3 of the
use_forward_database MTA option, then the source text file format expected is:

source-channel|source-address|original-address changed-address

For instance, suppose a tcp_snads channel receives messages from a gateway to a SNADS
system that provides (and can use) only shortform hostnames. Then an entry such as

tcp_snads|Bobby@BLUE|12345678@MSMTA user.with.a.long.name@else.where.com

would allow the Bobby@BLUE SNADS user to send to a SNADS address of 12345678@MSMTA
when they wish to send to user.with.a.long.name@else.where.com.

48–64 Messaging Server Reference

Chapter 49 Mailing lists
49.1 Mailing list addresses ... 49–2

49.1.1 Mailing list multiple access control interpretation 49–2
49.1.2 Password-protected mailing lists ... 49–3
49.1.3 Moderated mailing lists .. 49–4

49.2 Mass mailings ... 49–9
49.2.1 Defining membership of large lists .. 49–10
49.2.2 Proper use of lists rather than groups .. 49–16
49.2.3 Restricting posting access to large lists ... 49–20
49.2.4 Performance submitting mass mail messages 49–22

49.3 Special address formats for list members .. 49–22

The MTA has flexible mailing list facilities, and facilities for performing automated processing
of certain (typically mailing list related) messages.

In the MTA, mailing lists are implemented as a special form of MTA alias: controlling mailing
list headers, access to post to mailing lists, setting up moderated mailing lists, etc., are
controlled via the alias that defines the mailing list. Alias features fundamental to mailing list
definitions include:

• Overriding the original envelope From address of each posting with the list "owner"
address,

• A variety of flexible ways to specify the addresses of list members,

And further there are optional alias features that may be of particular interest on mailing list
definitions, including:

• Size limits on posted messages,

• Posting restrictions (who may post to the list address), with many variants including:

• Permission to post restricted to list members,

• Permission to post requires authenticated message submission,

• Permission to post granted to certain source domains,

• Certain users or domains "black-listed" from posting,

• Moderated lists (posting attempts require moderator review and approval),

• List-specific password required to post,

• Deferred expansion (i.e., "offline" expansion) of list membership,

• Application of a list-specific Sieve filter to attempted list postings,

• Addition of list-specific header lines,

• List-specific removal of header lines,

• "Tagging" of the Subject: header line of postings,

• Addition of prefix text or suffix text (e.g., a "disclaimer") to list postings,

Mailing lists 49–1

Mailing list addresses

• List-specific conversion tag, possibly to trigger list-specific conversion operations on list
postings,

• List-specific "opt in" to spam/virus filtering,

See Aliases for background general information on aliases and their various implementation
mechanisms, including Direct LDAP aliases, Unified Configuration alias options, the
MTA alias file, and the (optional) MTA alias database. Details specifically on mailing list
membership definitions, with their many options and variations, are described in Mailing list
addresses.

See Mass mailings for a discussion of topics of particular interest in the case of sending
announcements or emergency communications to very large numbers of users.

49.1 Mailing list addresses
A mailing list address is a special address created through the alias file or alias database, (or
in Unified Configuration created as a set of values in an alias group), or stored as an alias in
a group entry in LDAP ---see the discussion of aliases for general background on aliases, the
alias file, and alias database, and LDAP lookups.

Associated with each mailing list address in the alias file or alias database or specified via a
Unified Configuration alias option is a list of member addresses: that list of member addresses
may be specified in the form of a text file which contains one or more mail addresses, or as an
LDAP URL that returns one or more mail addresses. For a mailing list address stored in LDAP,
the LDAP mail group with that address will have additional LDAP attributes specifying
member addresses in any of a number of ways: attributes whose values specify member
addresses directly, attributes whose values specify other user or group entries in LDAP (which
should themselves be decorated with actual email addresses to use as member addresses),
or attributes whose value is a "dynamic" LDAP URL specifying list member addresses in the
LDAP directory via filter criteria. Note that regardless of whether an LDAP query URL is
specified for an alias in the alias file, alias database, or an alias option, or is specified as the
value of a "membership" attribute on an LDAP group entry, the LDAP query URL may return
multiple addresses either because the LDAP query matches multiple entries containing a
desired attribute(s), or because the LDAP query matches a multivalued attribute of a single
entry.

When a message is received by the MTA for a mailing list address, the message is then passed
on to each address specified in the mailing list file or LDAP URL, or specified in "membership"
attributes of an LDAP mail group. Note that any such membership address may itself be an
alias or another mailing list address.

For mailing lists defined via a group entry in LDAP, see the numerous LDAP attributes
available for group entries as listed in MTA LDAP attribute name options with the MTA
options that name them. And for defining the mailing list membership of mail group LDAP
entries, see in particular the discussion of Defining membership of large lists. For mailing lists
defined in the alias file or alias database, see Alias file mailing list aliases.

49.1.1 Mailing list multiple access control interpretation
Note that when specifying multiple sorts of posting access control parameters on a mailing
list address (or other address), the effect is normally cumulative (a logical AND operation).
For instance, specifying both alias_cant_list and alias_auth_list (in legacy

49–2 Messaging Server Reference

Password-protected mailing lists

configuration, [CANT_LIST] and [AUTH_LIST]) on a list normally means that only those
addresses that are in the alias_auth_list and not in the alias_cant_list may post
to the list. But the interpretation of combining access control settings may be altered via
the or_clauses MTA option; that is, with or_clauses=1, the interpretation defaults to a
logical OR. The interpretation of combining individual access controls on mailing lists can also
be controlled for individual access controls on individual lists by using the alias_and or
alias_or alias options (in legacy configuration [AND] or [OR] alias file named parameters);
the use of such an option causes subsequent access controls (up until another occurrence of
alias_and or alias_or) to be interpreted as specified.

Note also that the alias_auth_list, alias_auth_mapping, alias_cant_list, and
alias_cant_mapping alias options (the [AUTH_LIST], [AUTH_MAPPING], [CANT_LIST],
and [CANT_MAPPING] parameters in legacy configuration) provide a separate sort of
control from alias_moderator_list and alias_moderator_mapping alias options (the
[MODERATOR_LIST] and [MODERATOR_MAPPING] parameters in legacy configuration);
they do different things and may be used effectively in conjunction. The alias_auth_*
and alias_cant_* options control who can post at all; only addresses that make it through
those access filters then get checked for the next question, namely the alias_moderator_*
access filter, which controls whether the sender can post directly vs. whether their attempted
posting is referred to alias_moderator_address ([MODERATOR_ADDRESS] in legacy
configuration).

In the direct LDAP environment, multiple list access controls are again normally essentially
cumulative (a short-circuited logical AND operation) between different types of controls,
although multiple values for a single type of allow control are ORed. (That is, multiple
values of mgrpAllowedBroadcaster are effectively ORed with each other. And
similarly, multiple values of mgrpAllowedDomain are effectively ORed with each other.)
Specifically, the value(s) of the attribute named by the ldap_cant_url MTA option
(by default, mgrpDisallowedBroadcaster) is/are checked first, and if that check
passes (the attempting poster does not match any mgrpDisallowedBroadcaster
value) then next the value of the attribute named by the ldap_auth_url MTA option
(by default, mgrpAllowedBroadcaster) is checked (ORing the possibilities if multiple
mgrpAllowedBroadcaster values are specified; that is, an attempted poster who matches
any of the mgrpAllowedBroadcaster values will be allowed), and if that check passes then
next the value of the attribute named by the ldap_cant_domain MTA option (by default,
mgrpDisallowedDomain) is checked, and if that check passes (the attempting poster does
not match any mgrpDisallowedDomain value) then next the value of the attribute named
by the ldap_auth_domain MTA option (by default, mgrpAllowedDomain) is checked
(ORing the possibilities if multiple mgrpAllowedDomain values are specified; that is, an
attempted poster who matches any of the mgrpAllowedDomain values will be allowed). So
this is essentially a "short-circuited" logical AND of the posting access restriction conditions.
 But the interpretation of combining different types of access control settings may be altered
via the or_clauses MTA option; that is, with or_clauses=1, the interpretation defaults to
a logical OR. Individual mailing lists or groups can override the general setting of the MTA
option or_clauses via a value of "OR" or "AND" as one of the values of the attribute named by
the ldap_auth_policy MTA option (by default, mgrpBroadcasterPolicy). Note that the
configuration choice of combining different types of controls with OR vs. AND does not affect
the interpretation of multiple values of a single type of control: for instance, multiple values
of mgrpDisallowedBroadcaster are always ANDed together (a poster must pass all the
conditions) while multiple values of mgrpAllowedBroadcaster are always ORed together
(a poster may post if their address matches any of the conditions).

49.1.2 Password-protected mailing lists

Mailing lists 49–3

Moderated mailing lists

Mailing lists may be set up to require a password in order to post. For mailing lists defined
via the aliases file or alias database, the password value (or list of values) is specified
via the [PASSWORD] mailing list named parameter; see Alias file named parameters. In
Unified Configuration, the analogous setting is the alias_password alias option. For
mailing lists defined in LDAP, the password value (or list of values) is specified via the
mgrpAuthPassword attribute (or more precisely, whatever attribute is specified by the
ldap_auth_password MTA option).

In order for a message to be posted to the list, the MTA will then require that the message
include, on an Approved: header line, one of the authorizing passwords. During the mailing
list expansion process, the MTA will remove that password value from the Approved: header
line, and indeed remove the entire Approved: header line if that was the only value present.
(In the case of multiple values, all passwords for a list will be removed. So in the case of nested
lists, make sure that the list password sets for the different lists are disjoint.) So note that the
Approved: header line value that allowed the message to be posted will not be exposed in the
actual posted message. Members of the list will not see the password. The group of users who
can post (who know and use the password) can be a subset, or even a completely separate
group of users.

Note that since a single mailing list can have multiple allowed passwords, it is possible to
assign a separate password to each allowed poster.

Since mailing lists may be nested (one mailing list may be subscribed as a member of another
mailing list), and since mailing list may have its own password(s), an Approved: header line
may contain multiple, comma-separated values.

Password-protected mailing lists automatically get deferred expansion of membership.

49.1.3 Moderated mailing lists
A moderated mailing list---a list where certain moderators are allowed to post messages, but
attempted postings by others are routed to a moderator or moderators instead of being posted
directly---requires three basic settings for moderation (in addition to the mgrpErrorsTo
setting that makes it a true list, rather than a group). These are, for a list defined in LDAP:

1. The moderator(s) allowed to post directly must be among the mgrpAllowedBroadcaster
values.

2. The mgrpMsgRejectAction must be set to toModerator, to cause messages that initially
fail an access check to get routed to the moderator(s) (who may or may not resend the
message to the list, at their pleasure) rather than being outright rejected.

3. The address(es) to which to re-route not-yet-approved direct posting attempts must be
specified, by setting mgrpModerator.

(For concreteness, the above description refers to the LDAP attribute names that the MTA
consults by default; but more precisely, the LDAP attributes that must be used are whatever
attributes are named by the ldap_errors_to, ldap_auth_url, ldap_reject_action,
and ldap_moderator_url MTA options.)

For a list defined via alias options instead of in LDAP, the required basic moderation settings,
beyond the basic list setting of alias_envelope_from, are:

1. A moderator address, (which may be an alias/group/list address itself), must be set via
the alias_moderator_address alias option; this is the address to which will be sent

49–4 Messaging Server Reference

Moderated mailing lists

all attempted postings not coming from a moderator address. This is analogous to the
mgrpModerator LDAP setting.

2. Optionally, additional addresses may be established as allowed direct posters (additional
originator addresses to be handled as if they were moderators, for purposes of
allowing postings) using the alias_moderator_list alias option (where in this
specific case the use is rather similar to that of the ldap_auth_url LDAP setting),
or any of the alias_moderator_mapping, alias_username_moderator_list,
alias_sasl_moderator_list, or alias_sasl_moderator_mapping alias options.
But, unlike the LDAP case, in the absence of any settings specifying additional accepted
moderator From: addresses, the basic alias_moderator_address address will be used
not only as the moderator address to which to send unmoderated postings, but also be
recognized as a valid moderator From: address from which to accept direct postings.

Once these settings are made, a list can be considered moderated. Note that while a common
case is that there is only one moderator and only that one moderator can post, other cases
may be just as useful. In particular, allowing specially known and privileged classes of non-
moderators as additional mgrpAllowedBroadcaster posters can be useful; or combining
(ORing) various posting access conditions via mgrpBroadcasterPolicy so that moderation
applies only to attempted postings that fail other conditions (such as use of SMTP AUTH to
authenticate, inclusion of a list password, etc.) can allow for moderation of messages meriting
higher scrutiny, while permitting more trusted senders to post directly.

For instance, it can be useful to set up a mailing list where postings from members of the list
are not moderated, but attempted postings by non-members of the list go to the moderator for
human review. To set up a mailing list where members are allowed to post directly, but where
attempted postings by non-members must be approved by the list moderator, include in the
list entry attributes such as:

mgrpErrorsTo: moderator-user@domain.com
mgrpAllowedBroadcaster: mailto:list-members@domain.com
mgrpAllowedBroadcaster: mailto:moderator-user@domain.com
mgrpMsgRejectAction: TOMODERATOR
mgrpModerator: mailto:moderator-user+listname@domain.com
mailDeferProcessing: AFTER_AUTH

Note that in the above example, the new in MS 6.3p1 AFTER_AUTH value is used for
mailDeferProcessing. In earlier versions, the less desirable no value would need to be
used instead.

A similar example would be a mailing list where messages containing the list password
are posted directly, while message lacking that password are directed to the moderator for
inspection. By setting the mgrpAllowedBroadcaster to be the moderator, and setting
mgrpBroadcasterPolicy to PASSWORD_REQUIRED,OR, the effect is that postings from the
moderator will be allowed even without the normal password, while attempted postings from
any other senders will only be directly posted if they contain the password.

mgrpErrorsTo: moderator-user@domain.com
mgrpBroadcasterPolicy: PASSWORD_REQUIRED,OR
mgrpAllowedBroadcaster: mailto:moderator-user@domain.com
mgrpAuthPassword: secret-password
mgrpModerator: mailto:moderator-user+listname@domain.com

Mailing lists 49–5

Moderated mailing lists

mgrpMsgRejectAction: toModerator

When the moderator receives a message addressed to moderator-user+listname@domain.com,
the moderator would either reject messages he/she does not approve, or resend the message
to the list. In this example, due to the mgrpBroadcasterPolicy setting including OR, the
moderator is not required to add the header line that other senders would need to include:

Approved: secret-password

That is, by setting the mgrpAllowedBroadcaster to be the moderator, and setting
mgrpBroadcasterPolicy to PASSWORD_REQUIRED,OR, the effect is that postings from the
moderator will be allowed even without the normal password, while attempted postings from
any other senders will only be directly posted if they contain the password.

Many additional mailing list behaviors are best achieved by setting up one form or another
of moderated list. This is true even for certain behaviors that may not immediately seem like
cases of a moderated mailing list. An example: setting up a mailing list where postings directly
to the list are permitted without moderation, but where replies to prior list postings -- attempts
to continue a posting thread -- are disallowed can be achieved via a moderated list setup.
Indeed in general, cases where it is desired to perform more elaborate checks or processing
on messages before they are allowed to be posted to the list are often cases where appropriate
moderation of the list may be helpful.

 For instance, consider the case of a mailing list that disallows replies to prior list postings.
Replies to prior list postings will be detected via a Sieve filter that looks for common "reply"
prefix strings on the Subject: header line. The mailing list can be set up to include attributes:

mgrpErrorsTo: <hogwarts-moderator-user>@domain.com
mgrpModerator: mailto:<hogwarts-moderator-user>+hogwarts@domain.com
mailDeferProcessing: AFTER_AUTH

Then for the <hogwarts-moderator-user>@domain.com user, set up a Sieve filter that
looks for messages addressed to the user with the subaddress hogwarts (use the Sieve
subaddress extension) and then either does a 'reject' or a 'redirect :resetmailfrom
"hogwarts@domain.com";', as appropriate. E.g.:

require ["reject","envelope","subaddress"];
if envelope :detail "to" "hogwarts" {
 if allof (header :contains ["To","Cc","Bcc"] "hogwarts@domain.com",
 header :matches "Subject" ["Re*:*", "RE*:*"]) {
 reject "Replies not allowed!"; }
 else { redirect :resetmailfrom "hogwarts@domain.com"; }
}
...whatever other filter stuff this user wants...

Another example where a technically moderated list, without involving actual human
moderation, may be of interest would be the case of rejected attempted postings that include
non-text parts. With a mailing list definition that includes:

mail: listname@domain.com

49–6 Messaging Server Reference

Moderated mailing lists

mgrpErrorsTo: listname-owner@domain.com
mgrpModerator: mailto:list-moderator+listname@domain.com
mailDeferProcessing: AFTER_AUTH

then the moderator user or pseudo-user (since possibly no human being corresponds
to this entry, which might exist for the sole purpose of having this Sieve script), list-
moderator@domain.com, might use a Sieve filter along the lines of:

require ["mime","reject","subaddress","envelope"];
if envelope :detail "to" "listname" {
 if header :mime :anychild :type "Content-type"
 ["application","audio", "image","video"]
 reject "Non-text may not be posted to this list";
 else { redirect :resetmailfrom "listname@domain.com"; }
}
...whatever other filtering this user wants...

An example that does involve an actual human moderator would be for a list that does not
impose controls on the identity of posters, but where the attempted posts are scanned for
suspicion of spam content, and then are potentially either rejected or human moderated
at different levels of spam suspicion, while scanned non-spam messages get automatically
posted.

mail: listname@domain.com
mgrpErrorsTo: listname-owner@domain.com
mgrpModerator: mailto:listname-owner+listname@domain.com
mgrpAllowedBroadcaster: mailto:listname-owner@domain.com
mgrpMsgRejectAction: toModerator

Then the listname-owner@domain.com "user":

mail: username@domain.com
mailEquivalentAddress: listname-owner@domain.com

should have a Sieve filter including:

require ["fileinto","reject","subaddress","spamtest","relational"];
if envelope :detail "to" "listname" {
 if spamtest :value "ge" :comparator "i;ascii-numeric" "10" {
 if spamtest :value "ge" :comparator "i;ascii-numeric" "20"
 { reject "Content appears to be spam"; }
 else
 { fileinto "listname-spam"; }
 } else { redirect "listname@domain.com"; }
}

Or another example of a list involving human moderator of some attempted postings
would be where it is desired that rather than a list having an absolute limit on the size of
postings (where note an absolute limit could be achieved simply by setting the desired
mgrpMsgMaxSize on the list), that a moderator be able to selectively approve the
posting of messages that would otherwise be considered "too large". Note that a size

Mailing lists 49–7

Moderated mailing lists

limit such as mgrpMsgMaxSize can not be simply ORed with access checks such as
mgrpAllowedBroadcaster, so this goal will require a special moderation setup.

mail: listname@domain.com
mgrpErrorsTo: listname-owner@domain.com
mgrpModerator: mailto:listname-owner+listname@domain.com
mgrpAllowedBroadcaster: mailto:listname-owner@domain.com
mgrpMsgRejectAction: toModerator

Then the listname-owner@domain.com "user":

mail: username@domain.com
mailEquivalentAddress: listname-owner@domain.com

could have a Sieve filter including:

require ["reject","subaddress","fileinto","notify"];
if envelope :detail "to" "listname" {
 if size :under 10K {
 redirect :resetmailfrom "listname@domain.com"; }
 elsif size :under 50K {
 fileinto "listname-large";
 notify :method "email" :options
 "listname-owner@domain.com"
 "Message filed to listname-large needs to be checked"
 "";
 }
 else { reject "Message too large to post"; }
}

which would automatically post to the list any small messages, automatically reject any
extremely large messages, but notify the moderator of any new medium size message posting
attempt and file that message into a listname-large folder for the moderator to inspect and
approve or bounce, at their leisure.

Returning to yet another case of "automated moderator" processing, consider an example
where it is desired to respond with an automatic message to list postings, using the Sieve
"vacation" action. With a list entry along the lines of:

mail: listname@domain.com
mgrpErrorsTo: listname-owner@domain.com
mgrpModerator: mailto:moderator-pseudo-user+listname@domain.com
mgrpAllowedBroadcaster: mailto:moderator-pseudo-user@domain.com
mgrpMsgRejectAction: toModerator
mailDeferProcessing: AFTER_AUTH

Then the LDAP entry for moderator-pseudo-user@domain.com:

mail: moderator-pseudo-user@domain.com

can have a Sieve script attached along the lines of:

49–8 Messaging Server Reference

Mass mailings

require ["subaddress","vacation"];
if envelope :detail "to" "listname" {
 vacation :addresses "listname@domain.com"
 :from "listname@domain.com"
 :subject "Welcome to listname!"
 "Thank you for your interest in listname.
You will receive a personal response soon.";
 redirect :resetmailfrom "listname@domain.com";
 }

49.2 Mass mailings
The term mass mailing may be used to refer to cases of sending a certain message to all users
hosted at a site, or to all users in some domain, or to all users in some organization unit, or to
all members (including "external" members) of some "large" mailing list, etc.---any case where
the number of recipients is relatively "large". The purpose of the message might be one of great
urgency (such as an emergency communication), or it might be of general interest but low
urgency (such as routine announcements).

Since the MTA supports LDAP filter based (so-called "dynamic") group and list definitions,
it is straightforward to define a list or group to consist of all users meeting some criteria (any
criteria that may be specified in an LDAP URL filter). See in particular the MTA's support of
memberURL and mgrpDeliverTo attributes (or more precisely, those attributes named by
the ldap_group_url1 and ldap_group_url2 MTA options) in LDAP group entries. Or
for MTA alias file defined groups and lists, see the LDAP URL membership syntax discussed
in Alias file LDAP URL alias values. And more complex lists can be constructed, including
criteria-based sets of locally-hosted members along with external members listed by address,
or lists with "nested" definitions of sub-lists, or "overlapping" definitions/membership.

Groups and mailing lists are most often defined to make use of actual e-mail addresses:
either directly as a list of e-mail addresses, or by defining the membership to be
users who each have a canonical e-mail address. However, the MTA, via its new in
MS 6.3 ldap_url_result_mapping MTA option (and whatever LDAP attribute
ldap_url_result_mapping names), also supports defining groups and mailing lists for
which e-mail addresses are constructed from other LDAP attributes that do not themselves
contain proper e-mail addresses.

Furthermore, as of MS 6.3 and its new process_substitutions MTA option, it is possible
to define "meta-groups" and "meta-lists": where a single meta-list definition provides what
amounts to an entire collection of definitions of different lists.

As of 7.0.5 and its new GROUP_AUTH mapping table, it is possible to use alternate LDAP
attributes and values for group/list authorization checks. In particular, this can be useful when
dealing with group/list information stored in an LDAP directory using a non-Oracle schema.

Now any time that a group or list with "large" membership of e-mail recipients is defined, and
any time that a message is to be sent to an especially "large" number of recipients, there are
some issues worth considering; these issues will each be discussed in greater detail in sections
below.

• Defining the actual list membership; see Defining_membership_of_large_lists.

• Sensible error handling; see Proper use of lists rather than groups.

Mailing lists 49–9

Defining membership of large lists

• Restrictions on senders; see Restricting posting access to large lists.

• Performance in submitting the message; see Performance submitting mass mail messages.

• Impact of this message (and possibly its multiple copies requiring processing) on other
message processing; see Addresses per message copy.

• The appropriate choice of processing priority for the message. This may vary from "urgent"
for messages that are time-critical, to "non-urgent" for messages that while of general interest
are not time-critical and might be more efficiently processed during "off hours". (Note that
"importance" is a separate measurement than "processing priority": messages can be time-
critical but not very important, as for instance a message that a party is about to start in the
coffee room, or important without being time-critical, as for instance a message that system
down-time is scheduled for two weeks away.)

• The timing of attempting delivery of the message: for some messages, it may be desirable
to delay even attempting to deliver the message until some pre-determined time. See SMTP
SUBMIT FUTURERELEASE support.

• Efficient storage of the messages; see Addresses per message copy.

49.2.1 Defining membership of large lists
Note: This discussion will focus on lists primarily defined in LDAP, as that is the typical mode
of defining lists nowadays. However, the MTA does also support lists defined instead in an
aliases file entry, or in Unified Configuration via alias options, rather than in an LDAP entry;
see those topics for details.

The membership of a list may be defined by simply listing the e-mail addresses of the
members, or (for lists defined in LDAP) by listing the DNs (location in the LDAP directory
tree) of the members.

For instance, for a list defined in LDAP, the memberURL attribute or mgrpDeliverTo attribute
(more precisely, the attributes named by the ldap_group_url2 and ldap_group_url1
MTA options, respectively) are available, e.g.:

memberURL: ldap:///o=usergroup??sub?(uid=abc123)
memberURL: ldap:///o=usergroup??sub?(cn=Adam Brown)
memberURL: mailto:Betty.Charles@domain.com
memberURL: mailto:John.Doe@external-domain.com

Note that an LDAP based list definition can obtain a list of actual addresses from a separate,
on-disk file (accessible from the MTA performing the list expansion) by using a file: URL;
e.g.:

memberURL: file:///IMTA_TABLE:list-members.txt

where the IMTA_TABLE:list-members.txt file itself consists of a list of e-mail addresses,
one address per line, e.g.,

Betty.Charles@domain.com

49–10 Messaging Server Reference

Defining membership of large lists

John.Doe@external-domain.com

Or, when it is more convenient to describe a list in LDAP via the locations of the member
entries rather than via their e-mail addresses, the members may be described via the
uniqueMember attribute (more precisely, the attribute named by the ldap_group_dn
MTA option). For each member defined via uniqueMember, the MTA will use the value
of that member's mail attribute (more precisely, the value of the attribute named by the
ldap_primary_address MTA option) as the e-mail address for that member of the list. (The
group_dn_template MTA option controls which attributes for the user the MTA fetches,
and hence which/whether additional addresses for the user can match for purposes such as
comparisons with posting restrictions. See Indirect or alternate criteria for list membership for
a discussion of more complex membership definitions using variants of DN semantics.)

But for "large" lists especially, it is often more convenient to instead define the list membership
in terms of some criteria by which to locate the relevant users in LDAP; for instance, a list of all
users in LDAP might have membership defined as:

memberURL: ldap:///o=usergroup??sub?(&(objectClass=inetMailUser)
 (objectClass=inetOrgPerson))

Or a list of all the users in the domain domain.com might have membership defined as:

memberURL: ldap:///dc=domain,dc=com,o=internet??sub?
 (&(objectClass=inetMailUser)(objectClass=inetOrgPerson))

When defining list membership via a memberURL or mgrpDeliverTo attribute (or
more precisely, whatever attributes to which the MTA options ldap_group_url1 and
ldap_group_url2 are set), unless use of some other attribute is explicitly selected, the MTA
assumes that the value of the mail attribute (ldap_primary_address MTA option) should
be used as the e-mail address for the list member; note how in the above example no attribute
is explicitly requested (and therefore the default use of the mail value is assumed). If it is
desired to use some other attribute that does itself contain an e-mail address, that may be
selected by explicitly selecting that attribute. For instance, suppose that a no longer canonical,
acquired domain name is still in use in certain users' mailEquivalentAddress values; a list
intended for sending to those users, at their "old" addresses, could have membership defined
as:

memberURL: ldap:///o=usergroup?mailEquivalentAddress?sub?
 (&(objectClass=inetMailUser)
 (objectClass=inetOrgPerson)
 (mailEquivalentAddress=*@acquired-domain))

There is one additional factor to consider when defining list membership. Definitions
that reference member e-mail addresses, e.g., mgrpRFC822MailMember (see the
ldap_group_rfc822 MTA option), allow better error reporting in cases of definition errors
(such as syntax errors), than definitions that reference LDAP DNs or LDAP URLs. Syntax
errors in e-mail address members will be reported to the list owner. However, syntax errors in
an LDAP DN or LDAP URL used to define members, e.g., syntax errors in a uniqueMembers
or memberURL attribute, will cause the list membership expansion to abort at that point.

Mailing lists 49–11

Defining membership of large lists

So it is especially important to check list definition, e.g., via imsimta test -rewrite -
check_expansions, when defining lists that make use of LDAP DN or LDAP URL criteria
for membership.

49.2.1.1 Indirect or alternate criteria for list membership

As discussed in Defining membership of large lists, the MTA's normal interpretation of the
uniqueMember LDAP attribute (more precisely, the attribute named by the ldap_group_dn
MTA option) involves expanding the value of the uniqueMember attribute via the URL
template set by the group_dn_template MTA option, which by default is

ldap:///$A??sub?(mail=*)

(meaning that the $A substitution inserts the uniqueMember value), so that by default,
uniqueMember values are interpreted as specifying a DN location in the DIT: all e-mail
addresses under that location are considered to have been specified (be members).

This sort of indirect, additional-step, expansion of an LDAP attribute value turns out to be
potentially useful for alternate approaches for membership definition. In order not to interfere
with the "normal" handling of uniqueMember DN values for list membership, in Messaging
Server 7.0.5 the MTA option ldap_group_dn2 and the mapping table GROUP_TEMPLATES
were introduced. ldap_group_dn2 can be used to specify the name of an LDAP attribute
which will then be processed similarly to the ldap_group_dn (uniqueMember) attribute---in
particular, by default values of the LDAP attribute named by ldap_group_dn2 are expanded
via the group_dn_template URL template just like ldap_group_dn values. But the
real usefulness of ldap_group_dn2 tends to be when its use is combined with use of the
GROUP_TEMPLATES mapping table.

The GROUP_TEMPLATES mapping table provides a way to specify different URL expansion
templates for differently named LDAP attributes (such as different templates for the attribute
named by ldap_group_dn vs. the attributes named by ldap_group_dn2), or even for
different values of such LDAP attributes. When a GROUP_TEMPLATES mapping table
exists, it will be probed each time a group has an LDAP attribute named by either of the
ldap_group_dn or ldap_group_dn2 MTA options. The probe form is:

object-classes|attribute-name|attribute-value

where object-classes is a plus-separated list of the object classes associated with the
current LDAP entry, (see the ldap_group_object_classes MTA option), attribute-
name is the name of the group "DN" attribute being expanded (i.e., the LDAP attribute name
specified for either ldap_group_dn or ldap_group_dn2), and attribute-value is that
attribute's current value.

If the mapping sets the $Y output flag, then the mapping output string will be used as the
template for this attribute's expansion in place of using the value of group_dn_template as
the template. If the mapping sets the $N output flag, then the attribute will be silently ignored.

So now that the facilities have been explained, how could they actually be used? Well, one sort
of usage might be where groups/lists are defined not so much by the group/list entry pointing
to (that is, listing) the members, but rather where each user entry specifies the groups/lists of
which the user is a member, referring to some group/list ID. For instance, suppose group/list
entries have an LDAP attribute listID whose value is some string unique to that group/list.
Then suppose further that user entries mark which groups/lists the user belongs to by having

49–12 Messaging Server Reference

Defining membership of large lists

a memberOf attribute that contains a valid listID value. Defining group/list membership in
this new way, while still allowing "traditional" uniqueMember membership definitions, can be
achieved by configuring the MTA with an option:

msconfig> set mta.ldap_groupdn listID

and mapping table:

GROUP_TEMPLATES

! Normal use of ldap_group_dn attribute uniqueMember
 |uniqueMember| $Yldap:///$$A?mail?sub?(mail=*)
! Find users who have a memberOf attribute set to the value of the group's
! listID attribute
 |listID| $Yldap:///$$B??sub?(memberOf=$$A)

where here note $B is the substitution sequence meaning to substitute in the base of the user/
group portion of the DIT (the ldap_user_root MTA option's value), and where the $A
"Address" substitution means, in this context, the value of the currently used LDAP attribute
(so the value of, respectively, the uniqueMember or listID attribute in the respective
mapping table entries matching those attribute names). Then to make use of this type of
group/list definition, provision groups and users in the directory along the lines of:

group1-entry
listID: group123

...

group2-entry
listID: groupXYZ

...

user1-entry
memberOf: group123
memberOf: groupXYZ
...

49.2.1.1.1 Constructing list member addresses

Discussions of Defining membership of large lists and Indirect or alternate criteria for list
membership have touched on potentially complex list membership criteria, as dynamic
definitions may make use of complex LDAP search filters. However, in those discussions,
the list addresses and member addresses themselves were not especially complex; the topic
of complexity in address forms is the topic of this discussion. Via the MTA's support for
manipulating the results of LDAP URL lookups, it is possible to define list membership in
ways that "construct" e-mail addresses from non e-mail address attribute values, or that obtain
e-mail addresses from "external" LDAP sources. And it is also possible to define "meta-lists"
where the list "address" itself is "dynamic".

A list of SMS users, adding a domain name to an SMS ID value

Mailing lists 49–13

Defining membership of large lists

For instance, let us assume a setting of

msconfig> set mta.ldap_url_result_mapping mgrpURLResultMapping

or in legacy configuration, in the MTA option file:

LDAP_URL_RESULT_MAPPING=mgrpURLResultMapping

Also assume that the MTA has an SMS channel configured with the domain sms.domain.com
associated with it for some SMSC (that is, SMS service provider), and that each user who has
an account with that SMS service provider has an smsID attribute containing their SMS ID,
and that an MTA mapping table has been configured:

X-SMSID-TO-ADDRESS

 | "$1"@sms.domain.com$Y

Then a group sms-all@domain.com for the purpose of directing an SMS message to each such
user could be defined via a group entry in LDAP that includes attributes:

mail: sms-all@domain.com
mgrpDeliverTo: ldap:///o=usergroup?smsID?sub
mgrpUrlResultMapping: X-SMSID-TO-ADDRESS

Adding different domain names to SMS IDs

At a site where users have various different SMS service providers, suppose with the domain
for each service provider being stored in a SMSdomain attribute, then separate sub-lists for
the different SMS service providers could be set up, with then a combined list for all the SMS
users. Assuming also the following mapping table:

X-SMSID-DOMAIN-TO-ADDRESS

 (SMSdomain=)|* "$2"@$1$Y

as well as for each SMS service provider a group definition such as:

mail: sms1@domain.com
memberURL: ldap:///o=usergroup?smsID?sub?(SMSdomain=sms1-domain)
mgrpUrlResultMapping: X-SMSID-DOMAIN-TO-ADDRESS

Then a list of all SMS users could be defined via:

mail: sms-all@domain.com
mgrpErrorsTo: sms-errors@domain.com
memberURL: mailto:sms1@domain.com

49–14 Messaging Server Reference

Defining membership of large lists

memberURL: mailto:sms2@domain.com
...

49.2.1.1.1.1 Meta-group list definitions

In addition to manipulating LDAP attribute values to construct list member addresses as
discussed in Constructing list member addresses, the MTA also supports manipulating
address forms to effectively create dynamic list names, via so called meta-lists.

A meta-list for per-department SMS users

As of MS 6.3 and its new process_substitutions MTA option, it is
possible to define "meta-groups" and "meta-lists": to, for instance, pre-
define via a single meta-list definition what amounts to an entire collection
of different lists. For instance, with process_substitutions=4 and
ldap_url_result_mapping=mgrpURLResultMapping set,

msconfig> set mta.ldap_url_result_mapping mgrpURLResultMapping
msconfig# set mta.process_substitutions 4

then defining a list with attributes including

mail: sms@domain.com
mgrpErrorsTo: sms-errors@domain.com
memberURL: ldap:///o=usergroup?smsID?sub?(department=$S)
mgrpUrlResultMapping: X-SMSID-TO-ADDRESS

would make it possible to send an SMS message to every member of a given department
who has an SMS account by sending to an address of the form sms+department-
value@domain.com.

Members stored in an external LDAP directory

Another potential use of ldap_url_result_mapping to "construct" e-mail addresses
would be where the member addresses are stored in an external LDAP directory, rather than
in the usual user/group LDAP directory, with membership being defined in the external
LDAP directory in an indirect fashion, via an isMember attribute. For instance, if the external
directory stores the list definition along the lines of:

listName: extlist
listID: 1234abcd
listMemberRoot: dn-of-root-of-members

and then stores members of the list along the lines of:

mail: external-user1@domain.com
isMember: 1234abcd

then in the regular user/group LDAP directory define the list as:

mail: extlist@domain.com

Mailing lists 49–15

Proper use of lists rather than
groups

mgrpErrorsTo: extlist-owner@domain.com
memberURL: extldap:///listname-search-base?listID?sub?(listName=extlist)
mgrpURLResultMapping: X-EXTLDAP-LISTS

with a mapping table

X-EXTLDAP-LISTS

 extldap:///*?listID?sub?*|* $CROOT|$]extldap:///$0?listMemberRoot?sub?$1[|$2
!
! Probe is now:
! ROOT|listMemberRoot|listID
!
 ROOT|*|* C]extldap:///$0?mail?sub?(isMember=$1)[EY

49.2.1.1.2 GROUP_TEMPLATES mapping table

The GROUP_TEMPLATES mapping table provides a way to support multiple ways of defining
group membership: it extends the group_dn_template MTA option approach, allowing
use of different "DN expansion templates" to combine with the values coming from the LDAP
attributes named by the ldap_group_dn and ldap_group_dn2 MTA options.

The LDAP attributes named by the ldap_group_dn and ldap_group_dn2 MTA options
are typically used to specify DNs, which are then expanded to find user entries using the
URL template specified via the group_dn_template MTA option. By setting a different
sort of value for the group_dn_template MTA option, a different sort of DN expansion
approach could be used -- but it would then apply to all values of the LDAP attributes named
by both ldap_group_dn and ldap_group_dn2. The GROUP_TEMPLATES mapping table, in
contrast, can select alternate expansion approaches based on LDAP attribute name and value,
thereby allowing support for multiple, different ways of expanding DNs to determine group
membership.

When a GROUP_TEMPLATES mapping table exists, it will be probed each time a group has an
LDAP attribute named by the ldap_group_dn or ldap_group_dn2 MTA option to expand.
The probe form is:

object-classes|attribute-name|attribute-value

where object-classes is a plus-separated list of the object classes associated with
the current LDAP entry, attribute-name is the name of the group "DN" attribute
being expanded (i.e., the LDAP attribute name specified for either ldap_group_dn or
ldap_group_dn2), and attribute-value is that attribute's current value.

If the mapping sets the $Y output flag, then the mapping output string will be used as the
template for this attribute's expansion in place of using the value of group_dn_template as
the template. If the mapping sets the $N output flag, then the attribute will be silently ignored.

49.2.2 Proper use of lists rather than groups
The fundamental difference between an e-mail group vs. a true mailing list is in how
notification messages are defined to be handled: in particular, whether the original envelope
From address (the error report address) is retained (a group) or overridden with a list owner
address (a true mailing list). In the case of groups and mailing lists defined in LDAP, the

49–16 Messaging Server Reference

Proper use of lists rather than
groups

distinction is whether an mgrpErrorsTo attribute has been set; in the case of groups and
mailing lists defined via alias options in Unified Configuration, the distinction is whether the
alias_envelope_from alias option has been set; in the case of groups and mailing lists
defined via the alias file, the distinction is whether the [ENVELOPE_FROM] named parameter
or alternatively the error-return-address positional parameter has been set.

For almost all cases, true mailing lists should be used. Groups, on the other hand, should be
reserved for those rare cases where:

• The group membership is (very!) small: on the order of a handful of members.

• The group membership is quite cohesive in terms of roles and relationships: examples
would be multiple mailboxes for the same actual person, members of a (small!) family,
emergency sysadmin contacts, etc.

• The group membership is quite static (unchanging).

Regrettably, (mis)use of simple groups when mailing lists would be more appropriate is
wide spread---and survives simply because sending messages to a group is so easy and until
something goes wrong the difference is not apparent. Of course, once something does go wrong,
it's precisely the suboptimal handling of the notifications that becomes a problem for the
(misused) groups.

Many (probably most) sites do not have this distinction clear at all; they think of a group
(abstractly a set of users) as essentially synonymous with the use of that group as (the
membership of) a mailing list. And it's routine to plaster a mail attribute onto every "group",
at which point one can send messages to the group, making it a pseudo-mailing list. But just
plastering a mail attribute onto a group does not make a group a mailing list, and in fact it
is perhaps unfortunate that this is so "easy" as it lets sites make these sorts of conceptual and
operational mistakes so easily. (There are two possible mistakes: the more common is to use a
mail-attribute-decorated group sans mgrpErrorsTo as an autoforwarder in cases where it is
not appropriate; but simple addition of mgrpErrorsTo to a mail-attribute-decorated group
thereby turning it into a true list may be another, though lesser, sort of mistake, especially
when groups are nested, if one would prefer to still have the group available as a pure set of
users, suitable as membership for some superset groups or lists). Except for certain special
cases where it really does make sense to have a mail address for the group function as an
autoforwarder, groups should not be used directly as a pseudo-list. When no nesting is
needed, a group can be turned into a list definition by adding mgrpErrorsTo. Or most
generally, for best overall practice, the definitions should be separate to correspond to the
conceptual distinction: there is a group defining a related set of users, and then there is a
separate list entry in LDAP that has that group as its membership.

So, for almost every case of an LDAP group entry to which messages will be addressed, correct
definition should use an entry that includes an mgrpErrorsTo attribute (more precisely,
whatever attribute is pointed to by the ldap_errors_to MTA option), pointing to some
"responsible" or "list owner" address, so that the group is also in e-mail terms, a true mailing
list.

To expand upon the differences and options in notification handling:

• With a plain group definition, as of MS 6.1 syntax errors or other "immediately apparent"
errors (such as over quota status for local users) in the member address definitions will be
reported to the entire rest of the group membership, whereas with a mailing list definition such
syntax errors/immediately apparent errors are reported only to the "responsible list owner"
address: the mgrpErrorsTo address.

Mailing lists 49–17

Proper use of lists rather than
groups

Note that in neither case is informing the original sender typically appropriate: the
maintenance of the correctness/usability of the addresses in a group or list definition is not
the business of the original message sender, but rather best handled by either the (close and
cohesive) "fellow members" of the group in the case of a (properly used) group, or by the
"responsible list owner" in the case of a true mailing list. The original message sender, in
contrast, could well be some remote correspondent with no ability to "fix" the "bad" address
definition, and in the case of (properly used) groups, where the membership of the group
is quite cohesive and overlapping in intended roles so that as long as someone in the group
got the message it can be considered successfully received, a bounce message back that an
address was "bad" may be misleading and unnecessarily worrisome to the original sender.
Note that such cases of immediately apparent as invalid addresses (but where at least one
address in the group appears initially valid) would not get reported to the original message
sender even prior to MS 6.1; instead such cases were silently ignored prior to MS 6.1. Note
also that a case where all address definitions in a group are bad does, of course, get reported
back to the original sender: in that case the sender's message was not received at all, and the
entire group address was bad. The case discussed above is where at least some of the group
addresses appeared initially valid.

• In the case of initially apparently valid addresses that suffer delivery problems, for a plain
group such delivery problems are reported back to the original sender, whereas for a true
mailing list the delivery problems are reported back to the "responsible list owner" address.
With only a little thought, it should become clear why with any sort of large list, or any list
where membership is at all subject to change (membership "turn over"), informing merely
the list owner (who may want to consider removing chronically "bad" addresses from the list
membership) is desirable, and why "informing" the original sender is likely to be perceived
as "pestering" the original sender with irritating, useless, and irrelevant (to them) bounce
messages. Furthermore, exposing who is on the list, but suffering delivery problems, to
arbitrary original senders may be considered an undesirable exposure of information in
some cases. (Keep in mind that some mailing lists and groups are configured so that being
allowed to post to the list or group does not imply ability to see the list membership.) So
notifying only the "responsible list owner" about delivery problems to list members is a
true advantage that mailing lists have over groups. Now due to the widespread (mis)use
of groups for mailing list purposes, users may have gotten accustomed, when posting to
what is actually a group (but being misused as a mailing list), to receiving notifications of
delivery problems to the individual group members. In such cases, the proper course is,
almost always, to switch to a mailing list and educate the users on what to expect with a true
mailing list, rather than continue to (mis)use a group.

• For the rare cases where mailing list semantics are appropriate in general, but where it
truly makes sense to notify the original message sender of delivery problems to mailing
list members, new in MS 6.3 (but not working until the fix for CR # 6530591), setting
mgrpErrorsTo: /, that is, setting to the forward slash character, has a special meaning. It
tells the MTA to revert to using the original envelope From address that had been present on
the incoming message, yet in all other respects use mailing list semantics. This can be useful
for setting up mailing lists that report all forms of list errors to the original sender. Note
that this feature should not be used merely to avoid having to educate users about a change
from group to mailing list semantics, as this is more than a "cosmetic" feature but rather has
significant semantic impliciations; use of this feature should be reserved for cases where its
semantic implications are truly understood and desired.

See the discussion of the mgrpErrorsTo attribute (or more precisely, the attribute named by
the ldap_errors_to MTA option) for some additional discussion and special syntaces for
this attribute's value.

49–18 Messaging Server Reference

Proper use of lists rather than
groups

Another difference between groups vs. true mailing lists is in the area of passing through
of NOTARY flags on the message "copies" to the various recipients; here too mailing list
behavior tends to be distinctly more desirable, as the group behavior (as required by Internet
standards!) is optimized for the case of multiple mailboxes (aliases) for a single person.

49.2.2.1 Nested groups and nested mailing lists

For many purposes, a useful thing to do is to "nest" group definitions: have groups defined
that contain other subgroups as members, or which are themselves contained in bigger groups.

When wishing to use such sets of users as mailing lists, however, usually a separate list
definition should be made for each such desired list, defining each list's membership to be
an appropriate group (or groups): for instance, using the memberURL attribute. For instance,
schematically:

mail: list1@domain.com
mgrpErrorsTo: list1-owner@domain.com
memberURL: url-for-group2
memberURL: url-for-group3

where group2 and group3 are separately defined as groups with their own members, not
as mailing lists (in particular, no mgrpErrorsTo attribute). Indeed, it may be desirable to
define group2 and group3 so that they do not even have a mail attribute of their own (are not
addressable as a pseudo-list). But if it is desired to also have the sets of users in group2 and
group3 be accessible for e-mail postings, then use additional, separate list definitions, that in
turn reference the group2 and group3 definitions for their membership, along the lines of:

mail: list2@domain.com
mgrpErrorsTo: list2-owner@domain.com
memberURL: url-for-group2

mail: list3@domain.com
mgrpErrorsTo: list3-owner@domain.com
memberURL: url-for-group3

where note that these are indeed new list definitions, that make use of separate and distinct
group definitions for the membership.

That is, when nesting of groups (or so-called nesting of mailing lists) is neither used nor
desired, then converting existing group definitions to true mailing lists definitions by simply
adding an mgrpErrorsTo attribute (and any other desired mailing list attributes) is perfectly
fine. However, if nesting of groups (or mailing lists) is desired, then simply converting the
group definitions to list definitions is not optimal. Instead, this is the case where the more
general approach of having group definitions (possibly not even including a mail attribute
for the group) and then separate list definitions that use the groups for membership, offers
significant advantages, including:

• By having the list membership defined as combining multiple groups, or nesting groups, the
LDAP search criteria on the membership uses a search filter that includes all the appropriate
groups, so that duplicate elimination of members, from within all the groups and all the
nested levels of groups, will happen when the MTA is initially expanding the membership
of the list, rather than expanding to separate sub-lists that then do their own membership

Mailing lists 49–19

Restricting posting access to large
lists

expansion operation limited to their own membership. That is, this approach allows better
elimination of duplicate addresses---a list member who is a member of multiple subgroups
defining the list will get one message copy.1

• By not using nested lists, list-specific modifications to messages, such as additions of List-*:
header lines, setting of the error return address (the list "owner" address), etc., will be
performed once, consistently for the entire list membership, rather than having nested levels
of changes occurring at each stage of nesting, causing changes to be cumulative or override
each other.

1 A separate issue is the so-called "duplicate" message copy -- which is not truly an exact
duplicate -- that a recipient will receive if the original message was addressed directly to them,
e.g., on the To: or Cc: header line, as well as being addressed to the list of which the recipient
is also a member. A message copy resulting from a posting to a list is fundamentally different
from the copy addressed directly to the recipient: even though the message content may
be superficially "the same" (though even that is not necessarily the case, if list-specific text
addition, or spam/virus cleaning, or document conversion, or character set translation, or
other modifying operations have occurred), the notification address will be different for a true
mailing list copy. Other differences, such as in NOTARY flags, or in Received: header lines,
etc., also typically exist between mailing list copies and "direct" copies. Any difference that
requires different handling by MTAs handling the message means that a different copy must
be created at that point, and once a message has bifurcated in such a way, further divergence
is possible and even likely: separate copies will be delivered and they are only superficially
"duplicates". So keep in mind that even if the copies do not seem "significantly" different to the
recipient, some difference existed at some point in time. Furthermore, sophisticated users may
themselves wish to perform different handling of different types of incoming messages; for
instance, some users will subscribe to mailing lists using subaddresses, thereby allowing for
more convenient Sieve filtering of their incoming list messages.

49.2.3 Restricting posting access to large lists
Especially with a relatively "large" mailing list, it is usually wise to enforce at least some
restrictions on who is allowed to post (send) to the list, so that the list is not used as an
easy mechanism by which to spam the members. The MTA supports a variety of forms and
mechanisms for such restrictions. For "large" mailing lists, more secure forms of restriction
such as password-protected list access, or posting restricted to explicitly listed senders who are
required to authenticate (use SMTP AUTH) themselves when submitting, may be especially
appropriate. (Note that setting such posting access controls also limits who is allowed to view
the membership of the list via the SMTP EXPN command---which may be beneficial in limiting
address harvesting by spambots.)

With large mailing lists, setting

mailDeferProcessing: AFTER_AUTH

(which setting is only available and valid in MS 6.3p1 and later) is especially desirable. This
setting causes immediate checks of any access controls, but deferred expansion of the list
membership. This then allows immediate rejection of messages that do not meet posting
criteria, while deferring the (possibly time consuming) list membership expansion until later,
off-line, when the reprocess channel runs.

For instance, to permit postings only when the sender authenticated (using their account
password) as either mailadmin1@domain.com or mailadmin2@domain.com:

49–20 Messaging Server Reference

Restricting posting access to large
lists

mgrpBroadcasterPolicy: SMTP_AUTH_REQUIRED
mgrpAllowedBroadcaster: mailadmin1@domain.com
mgrpAllowedBroadcaster: mailadmin2@domain.com

Or to permit postings only when the sender provided a secret password on an Approved:
header line (which same header line the MTA will automatically remove from the message
distributed to list members):

mgrpBroadcasterPolicy: PASSWORD_REQUIRED
mgrpAuthPassword: secret-password

For many lists, an appropriate, less stringent restriction is to limit postings to members of the
lists. The check on posters may be based simply on the attempting poster's e-mail address; for
instance:

mgrpAllowedBroadcaster: mailto:list-address

or may further require that a poster in fact authenticated as a list member:

mgrpBroadcasterPolicy: SMTP_AUTH_REQUIRED
mgrpAllowedBroadcaster: mailto:list-address

Note that requiring SMTP AUTH use for postings usually also implicitly requires that
all members of the list be "local" members (have a local account/be able to authenticate).
(Though by trusting passed-along authentication from other systems, or by combining sub-
list definitions appropriately, it is possible to achieve an effect whereby "local" users must
authenticate to post, while still allowing postings from external users who are not capable of
authenticating against your user directory.)

Or yet another routinely useful sort of list posting restriction is to allow direct postings only
by members of the list, while redirecting any attempted postings by non-members to a list
moderator; for instance:

mail: list-y@domain.com
mgrpMsgRejectAction: toModerator
mgrpAllowedBroadcaster: mailto:list-y@domain.com
mgrpModerator: mailto:list-y-owner@domain.com
mgrpErrorsTo: list-y-owner@domain.com

For additional flexibility in posting access controls, see the GROUP_AUTH mapping table.

49.2.3.1 GROUP_AUTH mapping table

The MTA's group/list access control mechanisms allow for a wide variety of access and
permission models. However, exploiting this flexibility often depends on being able to define
what attributes and values appear in LDAP group entries. If the entries being processed cannot
be modified, as for instance in the case of an externally controlled LDAP directory, it becomes
necessary for the MTA to adopt a more flexible processing model in order to support different
attribute syntaxes.

Mailing lists 49–21

Performance submitting mass mail
messages

New in 7.0.5, the GROUP_AUTH mapping table and four new MTA options
ldap_auth_mappingN (N=1-4) have been added to facilitate such processing. The MTA
options are used to specify the names of up to four additional LDAP attributes to be fetched
during alias expansion processing. When the GROUP_AUTH mapping is defined and at least
one of the four attributes ldap_auth_mappingN is defined and appears on a group, then
the GROUP_AUTH mapping is probed during group authorization checks (before any other
authorization checks are done). The probe format is:

envelope-from|group-address|auth1|auth2|auth3|auth4

Here the authN fields are simply whatever values are associated with the
ldap_auth_mappingN named LDAP attributes for this group. If multiple attributes or
multiple attribute values appear, they will all be present in the probe field, separated by
commas.

The GROUP_AUTH mapping can produce any of four possible outputs:

• $Y indicates that the authorization check has passed.

• $T indicates that the mapping result is a URL, which is then checked in the same fashion as
an ldap_auth_url would be.

• $N indicates that authorization has failed.

• $F indicates that the mapping result is a URL, which is then checked in the same fashion as
an ldap_cant_url would be.

49.2.4 Performance submitting mass mail messages
Deferred processing of the expansion of the list membership, with or without deferred
processing of list posting access controls, and setting of relevant bits of the ldap_use_async
MTA option, tends to be especially important to consider for truly large lists.

For controlling and enabling the deferred processing of expansion of membership and/or
access controls, see especially the per-list mailDeferProcessing LDAP attribute (more
precisely, the LDAP attribute named by the ldap_reprocess MTA option), as well as the
default set via the defer_group_processing MTA option. For large lists, it is usually
desirable to set either the (new in MS 6.3p1) value of -1 for defer_group_processing,
or equivalently the per-list setting of AFTER_AUTH for the mailDeferProcessing
attribute; this allows inline processing of access controls, while deferring membership
expansion. Alternatively, when the access control itself consists of a very large list, it
may be desirable to defer the access control processing as well, as selected via a value of
defer_group_processing=1 or the per-list setting of Yes for the mailDeferProcessing
attribute.

49.3 Special address formats for list members
There are a few special address formats that may be worth considering using for list members,
or that users may wish to use if subscribing themselves to a mailing list.

For one thing, it may be worth considering subscribing using a subaddress, to aid in
convenient processing, e.g., by a Sieve filter, of the mailing list postings when they are
received. Such Sieve filter processing might include automatically filing mailing list postings

49–22 Messaging Server Reference

Special address formats for list
members

into a special folder based on the subaddress present on the recipient address, or specialized
processing if one is the list moderator; see examples in Moderated mailing lists.

On a list member address, for MTA mailing lists defined via alias options, the alias file or alias
database, a comment string containing the special string (by default "NOPOST") defined by
the post_off MTA option disables the ability for the list member to post: the list member
can receive list messages, but may not post. Using this comment string on every list member
would be one way (though not necessarily the simplest way -- see Restricting posting access to
large lists) to set up a broadcast-only (no posting) mailing list.

On a list member address, for MTA mailing lists defined via alias options, the alias file or alias
database, a comment string containing the special string (by default "NOMAIL") defined by the
mail_off MTA option disables the ability for the list member to receive list postings: the list
member might be able to make list postings (depending upon any relevant mailing list access
controls), but will not receive list postings. In particular, a list moderator may wish to use this
feature -- the list moderator will see the list messages initially during the moderation phase,
and may not wish to receive the messages again when the actual posting goes through.

For aliases defined via user LDAP entries, note that as of MS 7.0.5 a mailDeliveryOption
(or whatever LDAP attribute is named by the ldap_delivery_option MTA option) value
of nomail is considered valid, but will not receive any messages (messages are discarded).
This is not suitable for the normal moderator use mentioned above as such a user entry
receives no mail, but it is suitable for unmonitored mailboxes, when it is not intended that
the mailbox should ever receive any messages. And it may be suitable for cases where mail
forwarding or application of a user Sieve filter is desired (but normal receipt of messages is not
desired).

(New in MS 8.0.1.) On a list member address, a comment string containing the special string
(by default "ALTERNATE-RECIPIENT") defined by the alternate_recipient MTA option
will cause the address specified in that comment string to be used as an alternate delivery
address, for messages which cannot be delivered to this primary list member address.

Mailing lists 49–23

49–24

Chapter 50 Mapping tables
50.1 Mapping table format ... 50–2

50.1.1 Mapping table format in legacy configuration 50–2
50.1.2 Mapping table format in Unified Configuration 50–3
50.1.3 Mapping entry patterns .. 50–4
50.1.4 Mapping entry templates .. 50–8

50.2 The mapping group .. 50–21
50.3 Mapping operation ... 50–22
50.4 Handling large numbers of mapping table entries .. 50–22

50.4.1 General database .. 50–24
50.5 When mapping table changes take effect .. 50–25
50.6 Pre-defined mapping tables ... 50–25
50.7 Testing mapping tables ... 50–27

50.7.1 Testing address access mapping tables ... 50–27
50.8 Callout routines .. 50–28

50.8.1 check_memcache.so callout ... 50–29
50.8.2 check_metermaid callouts ... 50–32
50.8.3 dns_verify callouts ... 50–33
50.8.4 smartsend callouts .. 50–38

Many components of the MTA employ table lookup oriented information. One particular type
of table is used more often in the MTA than any other. Generally speaking, this sort of table
is used to transform (i.e., map) an input string into an output string. Such tables, referred to
as mapping tables, are usually presented as two columns, the first or left-hand column giving
the possible input strings and the second or right-hand column giving the resulting output
string for the input it is associated with. Indeed, most of the MTA crdb databases can be
considered instances of just this sort of mapping table. MTA crdb database files, however, do
not provide wildcard lookup facilities, owing to inherent inefficiencies in having to scan the
entire database for wildcard matches.

For more flexible, pattern-based mappings, the MTA also supports its own mapping tables.
In legacy configuration mode, such MTA mapping tables are stored in the MTA mapping file;
in Unified Configuration, MTA mapping tables are mapping XML elements and they may be
referenced from within the msconfig utility as

mapping:mapping-name

where such a mapping table named mapping-name consists of an ordered list of rules.
Full wildcard facilities are provided, and multi-step and iterative mapping methods can be
accommodated as well. This approach is more compute-intensive than using a database,
especially when the number of entries is large. However, the attendant gain in flexibility may
actually serve to eliminate the need for most of the entries in an equivalent database, and this
may actually result in lower overhead overall.

A fairly complete list of the mapping table names always recognized by the MTA is available
under Pre-defined mapping tables. Some of the most commonly used mapping tables are the
access mapping tables used to control who can send and receive e-mail. Sites may also define
arbitrary mapping tables.

You can test general mapping table processing with the imsimta test -mapping utility.
(Note that the imsimta test -mapping utility tests only the general-to-all-mapping-

Mapping tables 50–1

Mapping table format

tables functionality. It is not specific for testing of the functional meaning of specific mapping
tables, such as access controls due to address-based *_ACCESS mapping tables, or address
changes due to the REVERSE mapping table. Instead, the imsimta test -rewrite utility is
typically more useful for such functional or semantic testing.)

50.1 Mapping table format
Mapping tables in legacy configuration were stored in the MTA mappings file; see Mapping
table format in legacy configuration for further discussion.

In Unified Configuration, mapping tables are stored as part of the Unified Configuration. They
may be viewed and modified in an editor "as if" they were still in the old mappings file format,
or they may be viewed and modified as Unified Configuration rules; see Mapping table format
in Unified Configuration for further discussion.

50.1.1 Mapping table format in legacy configuration

The mapping file consists of a series of separate tables. Each table begins with its name. Names
always have an alphabetic character in the first column. The table name is followed by the
the entries in the table. Entries consist of zero or more indented lines. Each entry line consists
of two columns separated by one or more spaces or tabs. Prior to 7.0.5, any spaces within an
entry must be quoted with the dollar sign, $; in 7.0.5 or later unquoted spaces and tabs are
allowed in the second column.

A backslash, \, at the end of a line acts as a continuation character, causing the following line
to be read and appended to the current line. A literal backslash may be placed at the end of a
line by preceding it with a dollar sign, $\.

For clarity, it is recommended, but not required, that a blank line appear after each mapping
table name and between each mapping table. Blank lines may also appear between successive
mapping table entries but not after a continuation line, as it will terminate the continuation.

Trailing spaces and tabs are stripped from all lines, so lines containing nothing but spaces or
tabs are considered "blank".

Comments are introduced by an exclamation mark, !, appearing in the first column.

Pictorially, the format that results looks like this:

TABLE-1-NAME

 pattern1-1 template1-1
 pattern1-2 template1-2
 pattern1-3 template1-3
 . .
 . .
 . .
 pattern1-n template1-n

TABLE-2-NAME

 pattern2-1 template2-1

50–2 Messaging Server Reference

Mapping table format in Unified
Configuration

 pattern2-2 template2-2
 pattern2-3 template2-3
 . .
 . .
 . .
 pattern2-n template2-n

 .
 .
 .

TABLE-m-NAME

 .
 .
 .

In this example an application using the mapping table TABLE-2-NAME would map the string
pattern2-2 into whatever is specified by template2-2.

A mapping table name may be up to 128 characters long. Each pattern and each template can
contain up to 256 characters before substitutions; the result of applying substitutions must
be no more than 1024 characters each. As of MS 6.3p1 , the template (right hand side) limit
has been increased to 1024 characters, and the overall length of each line in the mapping table
has been increased to 4096 characters. (Prior to MS 6.0, the mapping table name was limited
to 64 characters while the pattern and template were each individually limited to at most 252
characters.) There is no limit to the number of entries that can appear in a mapping (although
excessive numbers of entries may eat up huge amounts of CPU and can consume excessive
amounts of memory).

When the MTA probes a mapping table, the overall probe length is also limited to 1024
characters.

The order in which mappings appear in the mappings file is not significant.

Duplicate mapping table names are not allowed in the mapping file.

50.1.1.1 Including other files in the mapping file

Other files may be included in the mapping file. This is done with a line of the form:

<file-spec

This will effectively substitute the contents of the file file-spec into the mapping file at the
point where the include appears. The file specification should specify a full file path (device,
directory, etc.). All files included in this fashion must be world readable. Comments are also
allowed in such included mapping files. Includes can be nested up to three levels deep.
Include files are loaded at the same time the mapping file is loaded --- they are not loaded on
demand, so there is no performance or memory savings involved in using include files.

50.1.2 Mapping table format in Unified Configuration

Mapping tables 50–3

Mapping entry patterns

In Unified Configuration, mapping tables may be editted from within msconfig using a
command such as

msconfig> edit mappings mapping-name

which will present the mapping table in the familiar tabular form of legacy configuration.

Alternatively, the XML mapping elements may also be referenced from within msconfig as
an ordered list of rule settings grouped in a mapping, e.g.,

mapping:ORIG_SEND_ACCESS.rule = tcp_local|*|tcp_local|* ND30|Relaying not allowed
mapping:ORIG_SEND_ACCESS.rule = tcp_*|*|native|* $N
mapping:ORIG_SEND_ACCESS.rule = tcp_*|*|hold|* $N
mapping:ORIG_SEND_ACCESS.rule = tcp_*|*|pipe|* $N
mapping:ORIG_SEND_ACCESS.rule = tcp_*|*|ims-ms|* $N
mapping:ORIG_SEND_ACCESS.rule = tcp_local|*|tcp_intranet|@*:*.* ND30|Explicit routing not allowed
mapping:ORIG_SEND_ACCESS.rule = tcp_local|*|tcp_intranet|*$%*@* ND30|Explicit routing not allowed
mapping:ORIG_SEND_ACCESS.rule = tcp_local|*|tcp_intranet|*.*!*@* ND30|Explicit routing not allowed
mapping:ORIG_SEND_ACCESS.rule = tcp_local|*|tcp_intranet|"*@*"@* ND30|Explicit routing not allowed

50.1.3 Mapping entry patterns
Mapping patterns can contain wildcard characters. In particular, the usual so-callled "glob
style" wildcard characters are allowed: an asterisk, *, will match zero or more characters and
each percent sign, %, will match a single character. Asterisks, percent signs, spaces, and tabs
can be quoted by preceding them with a dollar sign, $. Quoting an asterisk or percent sign
robs it of any special meaning. Spaces and tabs must be quoted to prevent them from ending
prematurely a pattern or template. Literal dollar sign characters should be doubled, $$, the
first dollar sign quoting the second one. Additional wildcards available in patterns are listed in
the table shown below.

Table 50.1 Mapping pattern wildcards

Wildcard Description
% Match exactly one character
* Match zero or more characters, with maximal or "greedy" left-to-

right matching
Back match Description
$n* Match the nth wildcard or glob
Modifiers Description
$_ ‡ Use minimal or "lazy" left-to-right matching for the following

wildcard or glob
$@ ‡ Turn off "saving" for the following wildcard or glob
$^ ‡ Turn on "saving" for the following wildcard or glob; this is the

default
Glob wildcard Description
$A or $A% Match one alphabetic character, A-Z or a-z
$A* Match zero or more alphabetic characters, A-Z or a-z
$B or $B% Match one binary digit (0 or 1)

50–4 Messaging Server Reference

Mapping entry patterns

$B* Match zero or more binary digits (0 or 1)
$C or $C% (New in 7.0) Match one ASCII control character (other than

horizontal TAB)
$C* (New in 7.0) Match zero or more ASCII control characters (other

than horizontal TAB)
$D or $D% Match one decimal digit 0--9
$D* Match zero or more decimal digits 0--9
$H or $H% Match one hexadecimal digit 0-9 or A-F
$H* Match zero or more hexadecimal digits 0-9 or A-F
$O or $O% Match one octal digit 0-7
$O* Match zero or more octal digits 0-7
$S or $S% Match one symbol set character, i.e., 0-9, A-Z, a-z, _, $
$S* Match zero or more symbol set characters, i.e., 0-9, A-Z, a-z, _, $
$T or $T% Match one tab or vertical tab or space character
$T* Match zero or more tab or vertical tab or space characters
$X or $X% A synonym for $H%
$X* A synonym for $H*
$[c] or $[c]% Match character c
$[c]* Match zero or more occurrences of character c
$[c1c2...cn] Match exactly one occurrence of character c1, c2, or cn

$[c1c2...cn]% Match exactly one occurrence of character c1, c2, or cn

$[c1c2...cn]* Match zero or more occurrences of any characters c1, c2, or cn

$[c1-cn] Match any one character in the range c1 to cn

$[c1-cn]% Match any one character in the range c1 to cn

$[c1-cn]* Match zero or more occurrences of characters in the range c1 to cn

$<IPv4> Match an IPv4 address, ignoring bits
$(IPv4) Match an IPv4 address, keeping prefix bits
${IPv6} Match an IPv6 address

(‡) When combined with a back match or glob wildcard, only one dollar sign character is used
for both; for instance, $@0* is a non-saved back match of the first (0th) wildcard, and similarly,
$@A is a non-saved alphabetic character glob wildcard.

Within globs, i.e., within a $[...] construct, the backslash character, \, is the quote character.
To represent a literal hyphen, -, or right bracket,], within a glob the hyphen or right bracket
must be quoted with a backslash.

All other characters in a pattern just represent and match themselves. In particular, single and
double quote characters as well as parentheses have no special meaning in either mapping
patterns or templates; they are just ordinary characters. This makes it easy to write entries that
correspond to illegal addresses or partial addresses.

Note that to specify multiple modifiers, or to specify modifiers and a back match, or to specify
modifiers and a glob, the syntax uses just one dollar character. For instance, to back match

Mapping tables 50–5

Mapping entry patterns

the initial wild card, without saving the back match itself, one would use $@0*, not $@$0*.
Similarly, to match a decimal digit without saving the matched digit, one would use $@D, not
$@$D.

Note that the imsimta test -match utility may be used to test mapping patterns and
specifically to test wildcard behavior in patterns.

50.1.3.1 Back matching with $n*

In some mapping tables, it is particularly useful to be able to compare whether two portions
(fields) of the mapping table input are identical. The "back match" wildcards are provided for
this purpose. Back matches of $0* through $9* are available. For instance, a $0* wild card
looks for (matches on) the same characters already matched in the very first wildcard or glob
in an entry, while a $1* wildcard looks for the same characters already matched in the second
wildcard or glob in an entry, etc.

50.1.3.2 The $_ modifier: minimal vs. maximal matching

Asterisk, *, wildcards maximize what they match working from left to right across the input
string. For instance, when the input string "a/b/c" is compared to the pattern */*, the left
asterisk will match "a/b" and the right asterisk will match "c".

The $_ modifier causes wildcard matching to be minimized, where the least possible match is
considered the match, working from left to right across the input string. For instance, when the
input string "a/b/c" is compared to the pattern $_*/$_*, the left $_* will match "a" and the
right $_* will match "b/c".

50.1.3.3 Controlling saving of wildcard or globs with $@ and $^

By default, the MTA keeps track of (saves) which character(s) are considered to have matched
a wildcard or glob in a mapping table pattern for the duration of that mapping table entry
(line). These retained character(s) can then be substituted back into the mapping table entry
template via the $0 through $9 template substitutions. (That is, the character(s) matched in
the left hand side (pattern) of a mapping table entry can be substituted back into the right
hand side (template) of a mapping table entry, if desired.) But the MTA can only retain ten
such matches. This restriction on the number of "saved" matches can always be dealt with by
using multiple, iterative mapping table entries to achieve a desired effect (each entry doing
only some matching/restoring, before leaving additional work to be done by a later entry).
However, in many cases, where there is a desire to enforce a great deal of matching structure
(more than ten wildcards or globs) but no need to reuse hence "save" the matched value(s), it is
simpler to just "turn off" the saving via the $@ modifier.

The $^ modifier (the default behavior) turns on "saving". The $@ modifier turns off saving.
Note that such modifiers, when combined with a pattern wildcard glob or backmatch that
already includes a dollar sign, $, in a syntax $w, are then indicated simply by including the
modifier letter (but not the dollar sign) "within" the wildcard or back match syntax, as $mw,
where m is the modifier character, and w is the wildcard or back match -- only one dollar sign
character is used. For example, the syntax to match without saving any number of binary
digits is $@B*, not $@$B*.

For instance, if it is desired to match fifteen of any sort of character:

 %%%%%%%%%%$@%$@%$@%$@%$@% $Y

50–6 Messaging Server Reference

Mapping entry patterns

matches and saves the first ten characters, and then matches without saving another five
characters (though in fact in this example since none of the matched characters are actually
substituted back into the template result, one could just as well have not bothered to save any
of the matched characters -- that is, used the $@ modifier on all of the % character matches).

Or if it is desired to match eight alphabetic characters followed by a period followed by eight
decimal digits, and retain only the first four alphabetic characters and the first four decimal
digits, that could be done as:

 AAAA$@A$@A$@A$@A.DDDD$@D$@D$@D$@D Y0$1$2$3.$4$5$6$7

where here only the first four alphabetic characters and first four decimal digits are saved (and
then substituted back into the template).

50.1.3.4 IP matching

With IPv4 "prefix bits" matching, an IP address or subnet is specified, optionally followed by a
slash and the number of bits from the prefix that are significant when comparing for a match.
For instance,

$(123.45.67.0/24)

will match anything in the 123.45.67.0 class C subnet.

With IPv4 "ignore bits" matching, an IP address or subnet is specified, optionally followed by a
slash and the number of bits to ignore when checking for a match. For instance,

$<123.45.67.0/8>

will match anything in the 123.45.67.0 subnet. Or another example is that

$<123.45.67.4/2>

will match anything in the range 123.45.67.4--123.45.67.7.

IPv6 matching matches an IPv6 address or subnet. The syntax is:

${xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx/n}

where each xxxx can consist of one to four hexadecimal digits (digits in the range 0 to F)
and where n is an integer in the range 0 to 128 specifying the number of prefix bits that
must match. In particular, each additional 16 bits of prefix matching requires that another 4
hexadecimal digit "chunk" of the IPv6 address must match. For instance,

${12AF:0:0:0:0:0:0:0/16}

means to match any IPv6 address where the first sixteen bits correspond to the hexadecimal
value 12AF, regardless of what the remaining 112 bits in the address may be.

For IPv6 ${} matching, chunks may be omitted using the :: marker. For instance,
${12AF:0:0:0:0:0:0:0/16}, ${12AF::/16}, and ${12AF::0/16} are all equivalent. In
particular, a commonly used example is that to match the local host, one may use

Mapping tables 50–7

Mapping entry templates

${::1}

meaning to match 0:0:0:0:0:0:0:1.

See the INTERNAL_IP mapping table for examples of IP address matching.

50.1.4 Mapping entry templates
If the comparison of the pattern in a given mapping entry fails, no action is taken; the scan
proceeds to the next entry. If the comparison succeeds, the right hand side of the entry is used
as a template to produce an output string. The template effectively causes the replacement of
the input string with the output string that is constructed from the instructions given by the
template.

Almost all characters in the template simply produce themselves in the output. The one
exception is a dollar sign.

A dollar sign followed by a dollar sign, space, or tab produces a dollar sign, space, or tab in
the output string. Note that all these characters must be quoted in order to be inserted into the
output string.

 A dollar sign followed by a digit n calls for a substitution; a dollar sign followed by an
alphabetic character is referred to as a "metacharacter". Metacharacters themselves will not
appear in the output string produced by a template. See the table below for a list of the special
substitution and standard processing metacharacters. Any other metacharacters are reserved
for mapping-specific applications.

Note that any of the metacharacters $C, $E, $L, or $R, when present in the template of a
matching pattern, will influence the mapping process, controlling whether it terminates or
continues. That is, it is possible to set up iterative mapping table entries, where the output of
one entry becomes the input of another entry. If the template of a matching pattern does not
contain any of the metacharacters $C, $E, $L, or $R, then $E (immediate termination of the
mapping process) is assumed.

The number of iterative passes through a mapping table is limited to prevent infinite loops. A
counter is incremented each time a pass is restarted with a pattern that is the same length or
longer than the previous pass. If the string has a shorter length than previously, the counter
is reset to zero. A request to again iterate a mapping is not honored after the counter has
exceeded 10.

Table 50.2 Mapping template substitutions and metacharacters

Substitution sequence Substitutes
$n nth wildcarded field as counted from left to right starting from 0.

n must be a single digit
$'n' nth wildcarded field as counted from left to right starting from 0.

n can contain multiple digits
$%...% (New in MS 6.2.) Substitute in a load average value.
$#...# Sequence number substitution.
$+n#...# Hash substitution.
$&...& (New in MS 6.2.) Character value substitution.

50–8 Messaging Server Reference

Mapping entry templates

$]...[LDAP search URL lookup; substitute in result (first value, if
multiple values returned).

$]$]...[LDAP search URL lookup requiring that only one value be
returned; substitute in result.

$]$]$]...[LDAP search URL lookup that concatenates multiple returned
values separated by CRLFs.

$.text. (New in MS 6.3.) Result to use in the case of temporary failures
from LDAP lookups, domain attribute lookups, and routine
callouts.

$}...{ LDAP domain map attribute lookup; substitute in attribute
value.

${...} General database substitution.
$|...| Apply specified mapping table to supplied string.
$+n|...| Apply specified mapping table to supplied string with one or

more prefixes specified by the bit-encoded value n.
$`...' Evaluate expression; substitute in result.
$[...] Invoke site-supplied routine; substitute in result.
Metacharacter Description
$C Continue the mapping process starting with the next table entry;

use the output string of this entry as the new input string for the
mapping process.

$+1C (New in MS 8.1.0.6.) End processing of the current template
now (unlike $C) and continue processing with the next mapping
entry.

$E End the mapping process now; use the output string from this
entry as the final result of the mapping process.

$+1E (New in MS 6.3.) End the mapping process now and (unlike $E)
do not even interpret the rest of the template; use the output
string from this entry (sans interpretation of the rest of the
template) as the final result of the mapping process.

$L Continue the mapping process starting with the next table entry;
use the output string of this entry as the new input string; after
all entries in the table are exhausted make one additional pass
starting with the first table entry. A subsequent match may
override this condition with a $C, $E, or $R metacharacter.

$R Continue the mapping process starting with the first entry of
the mapping table; use the output string of this entry as the new
input string for the mapping process.

$+1R New in MS 8.0.2.2. Continue the mapping process by repeating
the current entry of the mapping table; use the output string of
this entry as the new input string for the mapping process.

$?x? Mapping entry succeeds x percent of the time.
$?a,b,c...? Select a random value from a list of values. New in MS 8.0.2.3
$\ Force subsequent text to lowercase.
$^ Force subsequent text to uppercase.

Mapping tables 50–9

Mapping entry templates

$_ Leave subsequent text in its original case (and without LDAP
URL style quoting).

$= Force subsequent material to be properly quoted (encoded)
according to LDAP URL syntax rules.

$:x Match only if the specified flag is set.
$;x Match only if the specified flag is clear.

50.1.4.1 Wildcard field substitutions, $n, $'n'

A dollar sign followed by a single digit n or one or more digits enclosed in single quotes n...
is replaced with the material that matched the nth wildcard in the pattern. The wildcards are
numbered starting with 0. For example, the entry

 PSI$%*::* $1@$0.psi.network.org

would match the input string PSI%A::B and produce the resultant output string
b@a.psi.network.org. The input string PSI%1234::USER would also match producing
USER@1234.psi.network.org as the output string. The input string PSIABC::DEF would not
match the pattern in this entry and no action would be taken; i.e., no output string would
result from this entry.

50.1.4.2 Controlling text case, $\, $^, $_

$\ forces subsequent text to lowercase, $^ forces subsequent text to uppercase, and $_ causes
subsequent text to retain its original case (and turns off LDAP URL quoting if it had been
previously turned on via the $= metacharacter. For instance, these metacharacters may be
useful when using mappings to transform addresses for which case is significant.

50.1.4.3 Processing control, $C, $+1C, $L, $R, $+1R, $E, $+1E

The $C, $L, $R, and $E metacharacters influence the mapping process, controlling whether
and when the mapping process terminates. $C causes the mapping process to continue with
the next entry, using the output string of the current entry as the new input string for the
mapping process. $L causes the mapping process to continue with the next entry, using the
output string of the current entry as the new input string for the mapping process, and, if no
matching entry is found, making one additional pass through the table starting with the first
table entry; a subsequent matching entry with a $C, $E, or $R metacharacter overrides this
condition. $R causes the mapping process to continue from the first entry of the table, using
the output string of the current entry as the new input string for the mapping process. $E
causes the mapping process to terminate; the output string of this entry is the final output. $E
is the default.

New in MS 6.3 is the $+1E metacharacter. It acts like $E, except that unlike $E it inhibits
(stops) interpretation of the rest of the template.

New in MS 8.1.0.6, the $+1C metacharacter sequence works like $C except processing of the
current template is aborted and the remainder of the template is ignored. Note that this is
likely to only be useful in conjunction with temporary failure handling and $..

New in MS 8.0.2.2, the $+1R metacharacter sequence provides a variant of $R: Rather than
restarting the entire mapping from the first entry, it repeats the current entry with updated
output from the current operation.

50–10 Messaging Server Reference

Mapping entry templates

The $+1R is useful in constructing mappings that perform multiple replacements of all
occurrences of one string with another where some of the strings overlap. A single operation
of this sort can be done with $R; for example, replacing all percent signs with at-signs can be
done with:

PERCENT_TO_AT

 % R0@$1
 * 0Y

But when multiple replacements are involved restarting the mapping from the beginning is
inefficient. And if the strings being replaced overlap restarting from the beginning won't work
because the earlier, completed operations will see the later replacements and get confused. For
this to work repeating the same entry until it no longer matches is required.

For example, the following mapping performs the quoting necessary for a string being inserted
into an LDAP DN:

DN_QUOTE

 ** $+1R$0~$1
 ~ $+1R$0\5c$1
 #* $C\23$0
 " $+1R$0\22$1
 + $+1R$0\2b$1
 , $+1R$0\2c$1
 ; $+1R$0\3b$1
 < $+1R$0\3c$1
 > $+1R$0\3e$1
 * 0Y

Note that if $R was used that the inital entry would damage the later replacement operations.

Mapping table templates are scanned left to right. So to set a $C, $L, or $R flag for entries that
may "succeed" or "fail", e.g., general database substitutions, or random value controlled entries,
put the $C, $L, or $R metacharacter to the left of the part of the entry that may succeed or fail;
otherwise, if the remainder of the entry fails, the flag will not be seen.

50.1.4.4 Check for special flags

Some mapping probes have special flags set. $:x causes an entry to match only if the flag
x is set. $;x causes an entry to match only if the flag x is clear. See specific mapping table
descriptions for any special flags that may apply for that table.

When the intention is that an entry should succeed and terminate if the flag check succeeds,
but that the mapping process should continue if the flag check fails, then the entry should use
the $C metacharacter to the left of the flag check and use the $E metacharacter to the right of
the flag check.

50.1.4.5 Entry randomly succeeds or fails, $?x?

A $?x? sequence in a mapping table entry causes the entry to "succeed" x percent of the
time; the rest of the time, the entry "fails" and the output of the mapping entry's input is taken

Mapping tables 50–11

Mapping entry templates

unchanged as the output. (Note that, depending upon the mapping, the effect of the entry
"failing" is not necessarily the same as the entry not matching in the first place.) The argument
between the ?'s, x, should consist of a real number specifying the success percentage.

For instance, suppose that a system with IP address 123.45.6.78 is sending your site just a little
too much e-mail and you'd like to slow it down; if you're using the MTA's SMTP server on port
25, you can use a PORT_ACCESS mapping table in the following way. Suppose you'd like to
allow through only 25 percent of its connection attempts and temporarily reject the other 75
percent of its connection attempts. The following PORT_ACCESS mapping table uses $?25?
to cause the entry with the $Y (accept the connection) to succeed only 25 percent of the time;
the other 75 percent of the time, when this entry fails, the initial $C on that entry causes the
MTA to continue the mapping from the next entry, which causes the connection attempt to
be rejected with a temporary SMTP error (in this example, 452 4.4.0) and the text message
"Try again later".

PORT_ACCESS

 TCP|*|25|123.45.6.78|* C?25?$Y
 TCP|*|25|123.45.6.78|* $N452$ 4.4.0$ Try$ again$ later

Another example would be randomly issuing a temporary failure message for a certain
percentage of SMTP messages from a particular envelope From address; for instance, suppose
the goal is to issue a temporary failure message with extended SMTP code 4.5.9 to eighty
percent of the messages that busybee@some.where attempts to send to your local channel
users. Then a SEND_ACCESS mapping table could be used, e.g.,

SEND_ACCESS

 tcp_*|busybee@some.where|l|* C?20?$Y
 tcp_*|busybee@some.where|l|* NX4.5.9|Try$ again$ later

50.1.4.6 Load average substitutions, #%...%

At the present time load average substitutions are not implemented.

50.1.4.7 Select random entry from list, $?a,b,c...?

As of MS 8.0.2.3, a $?a,b,c,...? sequence consisting of two or more comma-separated
string values in a mapping table entry causes one of the string values to be selected at random
and retained in the output.

50.1.4.8 Sequence number substitutions, $#...#

A $#...# substitution increments the value stored in an MTA sequence file and substitutes
that value into the template. This can be used to generate unique, increasing strings in cases
where it is desirable to have a uniquifier in the mapping table output; for instance, when using
a mapping table to generate file names.

Permitted syntax is any one of:

50–12 Messaging Server Reference

Mapping entry templates

$#seq-file-spec#

or

$#seq-file-spec|radix#

or

$#seq-file-spec|radix|width#

or (new in MS 6.1)

$#seq-file-spec|radix|width|modulus#

where the optional seq-file-spec argument is a full file specification for an (already
existing) MTA sequence file, and where the optional radix, width, and modulus arguments
specify the radix (base) in which to output the sequence value, the number of digits to output,
and the modulus, respectively. The seq-file-spec argument may be omitted, in which
case the MTA will use its own temporary sequence file (that will be created and used for the
duration of this image). The default radix is 10. Radices in the range -36 to 36 are also allowed;
for instance, base 36 gives values expressed with digits 0,...,9,A,...,Z. By default, the sequence
value is printed in its natural width, but if the specified width calls for a greater number of
digits, then the output will be padded with 0's on the left to obtain the desired number of
digits. Note that if a width is explicitly specified, then the radix must be explicitly specified
also. If a modulus is specified, then the value inserted is the sequence number retrieved from
the file mod the modulus; the default (and the only behavior available prior to MS 6.1) is not to
perform any modulus operation.

As noted above, when specifying an explicit sequence file in a mapping, that file must already
exist. To create a proper sequence file, on UNIX use the command:

% touch seq-file-spec

or

% cat >seq-file-spec

A sequence number file accessed via a mapping table must be world readable in
order to operate properly. (In particular, the noprivuser user id, as specified in the
restricted.cnf file,is used to access the file.)

50.1.4.9 Hash substitutions, $+n#...#

(New in 7.4-18.01.)

A $+n#...# substitution, n > 0, computes a hash of a specified string and inserts the hash
result into the mapping result. The value n selects the type of hash to compute.

Permitted syntax is any one of:

Mapping tables 50–13

Mapping entry templates

$+n#string#

or

$+n#string|radix#

or

$+n#string|radix|width#

$+n#string|radix|width|modulus#

where the string argument is the string to be hashed, and where the optional radix, width,
and modulus arguments specify the radix (base) in which to output the hash value, the
number of digits to output, and the modulus, respectively. The default radix is 10. Radices in
the range -36 to 36 are also allowed; for instance, base 36 gives values expressed with digits
0,...,9,A,...,Z. By default, the sequence value is printed in its natural width, but if the specified
width calls for a greater number of digits, then the output will be padded with 0's on the left
to obtain the desired number of digits. Note that if a width is explicitly specified, then the
radix must be explicitly specified also. If a modulus is specified, then the value inserted is the
sequence number retrieved from the file mod the modulus; the default is not to perform any
modulus operation on the hash value.

As noted above, the value of n selects the hash operation to perform. Currently the only
supported value for n is 1, which employs the following hash function (32 bit integers are
assumed):

int hashvalue(char *string, int length)
{
 unsigned int hash;
 int i, j;
 unsigned int *uptr;

 uptr = (unsigned int *)string;
 hash = length;
 j = length >> 2;
 for (i = 0; i < j; i++)
 {
 hash ^= *uptr++;
 hash = (hash << 9) | (hash >> 23);
 }
 for (i = j << 2; i < length; i++)
 {
 hash ^= string[i];
 hash = (hash << 13) | (hash >> 19);
 }
 return ((hash * 0x71279461U) >> 2);
}

50.1.4.10 Character value substitutions, $&...&

50–14 Messaging Server Reference

Mapping entry templates

(New in MS 6.2.) The MTA can generate UTF-8 strings from Unicode character values using
the $&...& substitution sequence. Multiple Unicode character values may be specified, by
separating them with the comma character. For instance, substitution sequence of the form:

$&A0A0,20,A1A1&

will produce a UTF-8 string containing the characters at position A0A0, 20, and A1A1.

50.1.4.11 LDAP query URL substitutions, $]...[, $]$]...[, $]$]$]...[, $=

A substitution of the form $]ldap-url[, $]$]ldap-url[, or $]$]$]ldap-url[is
handled specially. ldap-url is interpreted as an LDAP query URL and the result of the LDAP
query is substituted. The difference between the three forms is that in the case of a multi-
valued result, $]ldap-url[uses the "first" returned value (note that the LDAP protocol
leaves the order of values returned as unspecified and implementation-dependent -- thus
you must not make any assumptions about which value might be returned "first"), whereas
a multi-valued response is an error (the lookup is considered to have failed) for $]$]ldap-
url[, and (new in 8.0) the $]$]$]ldap-url[form concatenates all the results together,
separated by CRLFs.

Standard LDAP URLs as per RFC 2255 are used, with the host and port typically omitted.
(In versions prior to 7.4-18.01, the host and port had to be omitted; as of version 7.4-18.01,
specifying the LDAP host and port in the URL is permissable.) If the host and port are omitted,
they are assumed from the values of the ldap_host and ldap_port MTA options (or the
ugldaphost and ugldapport base options, if the MTA options are not set, corresponding to
the legacy configutil parameters local.ugldaphost and local.ugldapport). That is,
the LDAP URL should be specified as:

ldap:///dn[?attributes[?scope?filter]]

or

ldap://host[:port]/dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of the
URL. The dn is required and is a distinguished name specifying the search base. The optional
attributes, scope, and filter portions of the URL further refine what information to
return. That is, attributes specifies the attribute or attributes to be returned from LDAP
directory entries matching this LDAP query. The scope may be any of base (the default),
one, or sub. filter describes the characteristics of matching entries.

As of Messaging Server 7.2-7.02, so-called external LDAP (extldap:) URLs are also supported.
(As of the Messaging Server 7.0u4 support for explicit host and port specification directly in
the LDAP URL, this functionality is somewhat redundant. But it may still be useful when a
particular external directory, and perhaps one with different authentication credentials needed
for access, is used.) That is, if a URL is specified as

extldap:///dn[?attributes[?scope?filter]]

then an LDAP lookup will be performed against the alternate LDAP directory configured (via
the LDAP external directory lookup MTA options) as the "external LDAP" directory.

Mapping tables 50–15

https://tools.ietf.org/html/rfc2255

Mapping entry templates

Note that LDAP URLs have special character quoting (encoding) requirements. (See RFC 1738,
Section 2.2, "URL Character Encoding Issues", and RFC 2254, Section 4, "String Search Filter
Definition". Note that the quoting rules in RFC 1960, Section 3, "String Search Filter Definition",
have been superceded by those of RFC 2254.) The $= metacharacter forces subsequent material
to be properly quoted (encoded) for LDAP URL usage; that is, any of the characters

$ & + , : ; = ?

will be converted to the percent character, "%", followed by the hexadecimal representation of
their location in US-ASCII, any of the characters

() *

will be converted to %5C" followed by the hexadecimal representation of their location in
US-ASCII (the encoded form of the backslash character followed by the hexadecimal for the
particular character), while the backslash character itself

\

will be converted to %5C5C".

The $_ metacharacter disables such LDAP quoting.

So note that when using a $]...[LDAP URL callout, one should normally use the $= and
$_ metacharacters around and substituted material that might contain special characters, and
manually encode any fixed special characters in the material in the callout, or use just the $=
and $_ metacharacters around the entire interior of the LDAP URL body, e.g.,

$]ldap:///$=...$_[

The overall length of the LDAP URL (after any substitutions are performed) is limited to 252
characters in iMS 5.2, limited to 256 characters in MS 6.0 through MS 6.2, and limited to 1024
characters as of MS 6.3. Note also that the length of the original template in which such an
LDAP URL appears is limited: to 252 characters in iMS 5.2 and earlier, or to 256 characters as
of MS 6.0 and later; but substitutions in the template, and in particular substitutions used to
construct the LDAP URL, may increase the LDAP URL length.

50.1.4.12 LDAP domain map attribute substitutions, $}...{

(New in MS 6.1p1/MS 6.2.) A substitution of the form $}domain-name,attribute{ is
handled specially. domain-name is looked up in the directory as a domain, with domain
map processing of the domain-name to build a proper LDAP query URL being automatically
performed by the MTA. (In particular, in Schema 1 mode, the domain-name is looked up
in the DC portion of the directory; while in Schema 2 mode, the domain-name is looked
up using the Schema 2 domain filter.) Note that this argument domain-name truly is a
domain name. If the domain domain-name exists and has the specified attribute, then
the attribute's initial value is substituted into the mapping result; if either the attribute or the
domain does not exist, then the mapping entry fails.

The following special syntaxes are also supported:

50–16 Messaging Server Reference

https://tools.ietf.org/html/rfc1738#section-2.2
https://tools.ietf.org/html/rfc1738#section-2.2
https://tools.ietf.org/html/rfc2254#section-4
https://tools.ietf.org/html/rfc2254#section-4
https://tools.ietf.org/html/rfc1960
https://tools.ietf.org/html/rfc2254

Mapping entry templates

Table 50.3 Domain map mapping template special syntaxes

Syntax Interpretation and effect
$}domain,_base_dn_{ Return the base DN for the user/group entries

belonging to this domain
$}domain,_domain_dn_{ Return the DN of the domain entry itself
$}domain,_domain_name_{ Return the name of the domain (as opposed to an

alias)
$}domain,_canonical_name_{ Return the canonical name associated with the

domain

(New in 8.0.) A substitution of the form $}user-identifier,attribute{ is handled
specially. user-identifier is looked up in the directory as a user name.

The following attributes can be specified:

Table 50.4 User identifier mapping template attributes

Syntax Interpretation and effect
$}user-identifier,#canonical_user#{ Return the canonical form of user

identifier
$}user-identifier,#canonical_domain#{ Return the canonical domain the user is

associated with
$}user-identifier,#user_dn#{ Return the DN of the user's entry in the

directory

(New in MS 8.0.2) A substitution of the form $}host,query{ is handled specially. host is
treated as the name of a deployment map host.

The following queries can be specified:

Table 50.5 Deployment map mapping queries

Syntax Interpretation and effect
$}host,/role/{ return role of the specified host; fail if host does not exist in

the deployment map
$}host,/online/{ succeeds if the specified host exists and is online
$}host,/offline/{ succeeds if the specified host is offline or does not exist
$}user-identifier,/<n>/{ <n> must be an unsigned number - return the <n>th property

value for the host; fail if host or specified property does not
exist

$}user-identifier,/<p>/{ <p> must be a string not matching any previous sort of query
- succeeds if the specified host has properity <p> associated
with it, fails otherwise. <p> may contain glob-style wildcards.
On success the value of the first retained wildcard will be
returned if it exists.

50.1.4.13 General database substitutions, ${...}

Mapping tables 50–17

Mapping entry templates

A substitution of the form ${text} is handled specially. The text part is used as a key
to access the MTA's general database. If text is found in the database, the corresponding
template from the database is substituted. If text does not match an entry in the database, the
input string is used unchanged as the output string.

Depending upon the setting of the use_text_databases MTA option, the general
"database" is either stored and accessed as an on-disk database (the default), or as an in-
memory structure constructed (during configuration compilation or MTA initialization)
from an on-disk flat text file. Or new in MS 8.0, the general "database" can instead be stored
in memcache; see the general_database_url MTA option. The on-disk database, if
that is what is being used, is IMTA_DATAROOT:db/generaldb (which formerly could be
redirected via the now-deleted imta_general_database MTA Tailor option), which must
be generated using the imsimta crdb utility from some site-supplied source text file. If an
in-memory database structure is instead being used, then when the MTA configuration is
compiled (or at MTA process initialization time, if a compiled configuration is not in use) the
MTA reads the file IMTA_TABLE:general.txt (which formerly could be redirected via
the now-deleted imta_general_data MTA Tailor file option), and compiles it into an in-
memory structure. Use of an in-memory "database" is normally recommended (for reasons
of performance and reliability); however, do note that use of this in-memory "database" does
require recompiling the configuration to get changes to the "database" (changes to the source
text file) incorporated into the compiled configuration.

Note that when wishing to use processing control metacharacters such as $C, $R, or $L
in a mapping table entry that does a general database substitution, the processing control
metacharacter should be placed to the left of the general database substitution in the mapping
table template; otherwise the "failure" of a general database substitution will mean that the
processing control metacharacter will not be seen.

In some cases it may be useful to test to see if a given entry exists in the general database
without substituting the corresponding template value from the database entry. This can be
accomplished by creating a secondary mapping of the form:

GENERAL_EXISTS

 * E{$0}$C
 * $Y

A mapping table substitution callout, described in the following section, with the general
database key as the probe, will now succeed if and only if the corresponding entry is in the
database, but will not return the corresponding template from the database entry.

50.1.4.14 Mapping table substitutions, $|...|

A substitution of the form $|mapping;argument| is handled specially. The MTA looks for
an auxiliary mapping table named mapping in the mapping file, and uses argument as the
input (probe) to that named auxiliary mapping table. The named auxiliary mapping table must
exist and must set the $Y flag in its output if it is successful; if the named auxiliary mapping
table does not exist or doesn't set the $Y flag, then that auxiliary mapping table substitution
fails and the original mapping entry is considered to fail: the original input string will be used
as the output string.

A substitution of the form $+n|mapping;argument|, where n is a non-zero bit-encoded
value works in same way, except that one or more |-separated prefixes are added to the
auxiliary mapping probe. The available prefixes are:

50–18 Messaging Server Reference

Mapping entry templates

Table 50.6 Auxiliary mapping probe prefixes

Bit Value Prefix
0 1 Transport information in the usual "TCP|server-address|server-

port|client-address|client-port" format.
1 2 Application information.
2 4 Source channel (blank if no source channel is currently active).
3 8 Destination channel (blank if no destination channel is currently active).
4 16 Authenticated sender address (blank if no authenticated sender is currently

active).

If multiple bits are enabled the corresponding prefixes are added in numerical order with the
least significant bit on the left.

Note that prefixes required an enqueue context; they will be ignored in mapping calls where
such a context is not available.

Note that when wishing to use processing control metacharacters such as $C, $R, or $L
in a mapping table entry that does a mapping table substitution, the processing control
metacharacter should be placed to the left of the mapping table substitution in the mapping
table template; otherwise the "failure" of a mapping table substitution will mean that the
processing control metacharacter will not be seen.

Mapping table substitutions have similarities to both subroutine calls and nesting of regular
expressions using parentheses. The following recipient rate limit example illustrates the
subroutine call aspect of mapping table substitutions by using a separate mapping table to
remove any subaddress from an address so that subaddresses can't be used to avoid the limit.

A Metermaid throttle table with the following settings is used to implement a limit of 10
occurrence of a given recipient every 5 minutes:

msconfig> show metermaid.local_table:reclim
role.metermaid.local_table:reclim.data_type = string
role.metermaid.local_table:reclim.max_entries = 100000
role.metermaid.local_table:reclim.quota = 10
role.metermaid.local_table:reclim.quota_time = 300
role.metermaid.local_table:reclim.table_type = throttle

The following mapping removes any subaddress that's present in an address:

REMOVE_SUBADDRESS

 "$[a-z0-9.#$&'*\-/=?^_`{}\~]*+$_*"@* Y0@$2
 "$_*+$_*"@* $Y"$0"@$2
 $_*+$_*@* Y0@$2
 * Y0

And finally, the following callout rule added at the end of the ORIG_SEND_ACCESS mapping
implements the limit:

Mapping tables 50–19

Mapping entry templates

tcp_*|*|*|* C;R$[IMTA_LIB:check_metermaid.so,throttle,reclim,$|REMOVE_SUBADDRESS;$3|]$X4.2.3|$NRate$ too$ high$E

Note the "$;R" (new in MS 8.0) prevents this rule from being applied to enqueues from
"internal" channels (process channel, reprocess channel, conversions channel, etc.).

50.1.4.15 Expression substitutions, $`..'

In addition to basic arithmetic operations and tests listed in Operators in Order of Precedence,
see Symbol table functions for a list of additional functions available for use in expressions.
Note that mapping tables operate on strings; string arguments must be converted to integers
(see for instance the integer function) before performing integer arithmetic on them,
and conversely any arithmetic intermediate results must be converted back to strings (see
for instance the string function) before being substituted back into mapping table entry
templates.

Expression arithmetic can be used to manipulate IP addresses, which are a common
component of many mapping probes. For example, the following mapping takes an IP address
as input performs a general database lookup on successive subnets derived from the input
address up to /8:

SUBNET_LOOKUP

 $D*.$D*.$D*.$D* C{$0.$1.$2.$3/32}YE
 $D*.$D*.$D*.$D* C{$0.$1.$2.$`$3>>1<<1'/31}$Y$E
 $D*.$D*.$D*.$D* C{$0.$1.$2.$`$3>>2<<2'/30}$Y$E
 $D*.$D*.$D*.$D* C{$0.$1.$2.$`$3>>3<<3'/29}$Y$E
 $D*.$D*.$D*.$D* C{$0.$1.$2.$`$3>>4<<4'/28}$Y$E
 $D*.$D*.$D*.$D* C{$0.$1.$2.$`$3>>5<<5'/27}$Y$E
 $D*.$D*.$D*.$D* C{$0.$1.$2.$`$3>>6<<6'/26}$Y$E
 $D*.$D*.$D*.$D* C{$0.$1.$2.$`$3>>7<<7'/25}$Y$E
 $D*.$D*.$D*.$D* C{$0.$1.$2/24}$Y$E
 $D*.$D*.$D*.$D* C{$0.$1.$`$2>>1<<1'/23}YE
 $D*.$D*.$D*.$D* C{$0.$1.$`$2>>2<<2'/22}YE
 $D*.$D*.$D*.$D* C{$0.$1.$`$2>>3<<3'/21}YE
 $D*.$D*.$D*.$D* C{$0.$1.$`$2>>4<<4'/20}YE
 $D*.$D*.$D*.$D* C{$0.$1.$`$2>>5<<5'/19}YE
 $D*.$D*.$D*.$D* C{$0.$1.$`$2>>6<<6'/18}YE
 $D*.$D*.$D*.$D* C{$0.$1.$`$2>>7<<7'/17}YE
 $D*.$D*.$D*.$D* C{$0.$1/16}YE
 $D*.$D*.$D*.$D* C{$0.$`$1>>1<<1'/15}$Y$E
 $D*.$D*.$D*.$D* C{$0.$`$1>>2<<2'/14}$Y$E
 $D*.$D*.$D*.$D* C{$0.$`$1>>3<<3'/13}$Y$E
 $D*.$D*.$D*.$D* C{$0.$`$1>>4<<4'/12}$Y$E
 $D*.$D*.$D*.$D* C{$0.$`$1>>5<<5'/11}$Y$E
 $D*.$D*.$D*.$D* C{$0.$`$1>>6<<6'/10}$Y$E
 $D*.$D*.$D*.$D* C{$0.$`$1>>7<<7'/9}$Y$E
 $D*.$D*.$D*.$D* C{$0/8}$Y$E

50.1.4.16 Mapping routine callout substitutions, $[...]

A substitution of the form $[image,routine,argument] is handled specially. The
image,routine,argument part is used to find and call an Oracle-supplied or customer-
supplied routine. At run-time on UNIX, the MTA uses dlopen and dlsym to dynamically

50–20 Messaging Server Reference

The mapping group

load and call the routine routine from the shared library image. The routine routine is
then called as a function with the following argument list:

status = routine (argument, arglength, result, reslength);

The argument and result arguments are 256 byte long character string buffers in MS versions
prior to 8.1.0.1. As of 8.1.0.2, the size has been increased to 1024 bytes. On UNIX systems
argument and result are passed as a pointer to a character string, (e.g., in C, as char*.)
arglength and reslength are signed, 32 bit integers passed by reference. On input, argument
contains the argument string from the mapping table template, and arglength the length
of that string. On return, the resultant string should be placed in result and its length in
reslength. This resultant string will then replace the "$[image,routine,argument]"
in the mapping table template. The routine routine should return 0 if the mapping table
substitution should fail and -1 if the mapping table substitution should succeed. The special
value 1112064044 may be returned to indicate a temporary failure.

Note that when wishing to use processing control metacharacters such as $C, $R, or $L in
a mapping table entry that does a site-supplied routine substitution, the processing control
metacharacter should be placed to the left of the site-supplied routine substitution in the
mapping table template; otherwise the "failure" of a mapping table substitution will mean that
the processing control metacharacter will not be seen.

The site-supplied routine callout mechanism allows the MTA's mapping process to be
extended in all sorts of complex ways. For example, in a PORT_ACCESS or SEND_ACCESS
mapping table, a call to some type of load monitoring service could be performed and the
result used to decide whether or not to accept a connection or message.

See the dns_verify callouts, the check_memcache.so callout, and check_metermaid
callout for examples of Oracle-provided such callout routines.

50.1.4.17 Temporary failure handling, $.text., $..

(New in MS 6.3.) The $.text. sequence can be used in a mapping entry to establish a
string text which will be processed as the mapping entry result in the event of a temporary
failure from an LDAP lookup, domain attribute lookup, or callout routine. By default these
temporary failures cause the current mapping entry to fail, which is is problematic in cases
where different actions need to be taken depending on, say, whether the LDAP lookup failed
versus the directory server being unavailable or misconfigured.

Once a failure string has been set using this construct, it will remain set until current mapping
processing is completed. $.. can be used to return to the default state where no temporary
failure string is set and temporary failures cause mapping entry failure. Note that all
LDAP and domain attribute errors other than failure to match an entry in the directory are
considered to be temporary errors; in general it isn't possible to distinguish between errors
caused by incorrect LDAP URLs and errors caused by directory server configuration problems.
In contrast, callout routines have a unique return value (1112064044) used to indicate that a
temporary failure has occurred.

50.2 The mapping group
In Unified Configuration, the mapping group is not an option itself, but rather a grouping of
mapping table entries defining a particular named mapping table. For instance:

Mapping tables 50–21

Mapping operation

msconfig> set mapping:X-TEST.rule A $Y
msconfig# set mapping:X-TEST.rule B $Y
msconfig# set mapping:X-TEST.rule * $N
msconfig# show mapping:X-TEST
role.mapping:X-TEST.rule = A $Y
role.mapping:X-TEST.rule = B $Y
role.mapping:X-TEST.rule = * $N
msconfig# quit

This defines (but does not write -- does not save) a mapping table named X-TEST that returns
a Y flag to an input probe of A or B, and returns a N flag to any other input probe. The legacy
configuration (mappings file) equivalent would be:

X-TEST

 A $Y
 B $Y
 * $N

50.3 Mapping operation
All MTA mapping tables are applied in a consistent way. What changes from one mapping to
the next is the source of the input strings, and the use of the mapping output strings.

That is, a mapping operation always starts off with an input string and an MTA mapping table.
The entries in the mapping table are scanned one at a time from first to last (top to bottom) in
the order in which they appear in the table. The left hand side of each entry is used as pattern,
and the input string is compared in a case-blind fashion with that pattern. If the comparison
of the pattern in a given entry fails, no action is taken; the scan proceeds to the next entry. If
the comparison succeeds, (that is, the input probe string "matched" the entry pattern), then the
right hand side of the entry is used as a template to produce an output string. The template
effectively causes the replacement of the input string with the output string that is constructed
from the instructions given by the template.

50.4 Handling large numbers of mapping table
entries

 Sites that use very large numbers of entries in mapping tables should consider organizing
their mapping tables to have a few generic wildcarded entries that call out to the general
database for the specific lookups. It is much more efficient to have a few mapping table entries
calling out to the general database for specific lookups than to have huge numbers of entries
directly in the mapping table. (As a rule of thumb, certainly by the time a mapping table
has reached about one hundred entries, it is worthwhile to consider whether the number of
individual entries could be reduced by consolidating into more general entries that call out to
the general database to check specific data.)

One case in particular is that some sites like to have per user controls on who can send and
receive Internet e-mail. Such controls are conveniently implemented using a recipient access
mapping table such as ORIG_SEND_ACCESS. For such uses, efficiency and performance can be

50–22 Messaging Server Reference

Handling large numbers of
mapping table entries

greatly improved by storing the bulk of the specific information (e.g., specific addresses) in the
general database with mapping table entries structured to call out appropriately to the general
database.

 For instance, consider a mapping table:

ORIG_SEND_ACCESS

! Users allowed to send to Internet
!
 |adam@domain.com||tcp_local $Y
 |betty@domain.com||tcp_local $Y
! ...etc...
!
! Users not allowed to send to Internet
!
 |norman@domain.com||tcp_local $NInternet$ access$ not$ permitted
 |opal@domain.com||tcp_local $NInternet$ access$ not$ permitted
! ...etc...
!
! Users allowed to receive from the Internet
!
 tcp_*|*|*|adam@domain.com $Y
 tcp_*|*|*|betty@domain.com $Y
! ...etc...
!
! Users not allowed to receive from the Internet
!
 tcp_*|*|*|norman@domain.com $NInternet$ e-mail$ not$ accepted
 tcp_*|*|*|opal@domain.com $NInternet$ e-mail$ not$ accepted
! ...etc...

 Rather than using such a mapping table with each user individually entered into the table,
a more efficient setup (much more efficient if hundreds or thousands of user entries are
involved) would be as follows. Use general database entries of, say:

SEND|adam@domain.com $Y
SEND|betty@domain.com $Y
! ...etc...
SEND|norman@domain.com $NInternet$ access$ not$ permitted
SEND|opal@domain.com $NInternet$ access$ not$ permitted
! ...etc...
RECV|adam@domain.com $Y
RECV|betty@domain.com $Y
! ...etc...
RECV|norman@domain.com $NInternet$ e-mail$ not$ accepted
RECV|opal@domain.com $NInternet$ e-mail$ not$ accepted

with an ORIG_SEND_ACCESS mapping table of:

Mapping tables 50–23

General database

ORIG_SEND_ACCESS

! Check if may send to Internet
!
 ||*|tcp_local C{SEND|$1}$E
!
! Check if may receive from Internet
!
 tcp_*|*|*|* C{RECV|$3}$E

 Here the use of the arbitrary strings SEND| and RECV| in the general database left hand sides
(and hence in the general database probes generated by the mapping table) provides a way to
distinguish between the two sorts of probes being made. The wrapping of the general database
probes with the $C and $E metacharacters, as shown, is typical of mapping table callouts
to the general database; see the General database substitutions topic, under Mapping entry
templates for an additional discussion. For a discussion of the general database itself -- where
it is located and how to build it---see General database.

The above example showed a case of simple mapping table probes getting checked against
general database entries. Mapping tables with much more complex probes can also benefit
from use of the general database.

50.4.1 General database
The MTA's general database is available for site-specific uses. When a site could benefit from
a database lookup from a rewrite rule, from a mapping table, or from a Sieve filter (see the
EXTLISTS extension), the general database provides a simple, MTA-accessible place to store
such site-specific data. (Note that the MTA also supports LDAP, memcache, and MeterMaid,
and Redis lookups, which could all be considered forms of "database" lookup. But what is
meant here is more specifically an on-disk or in-memory, basic, key-value "database".)

In early versions of the MTA, the format of the general database was an on-disk database,
built using the imsimta crdb utility based upon a flat text file input. As of MS 6.0, the
option -- now preferred -- was introduced for storing the "database" directly in MTA process
memory; use of such an "in memory database" is enabled via the use_text_databases
MTA option. When enabled, such an "in memory database" is constructed from a flat text input
file at the time of a cnbuild command being issued, or at process startup time (if no compiled
configuration is used). The allowed format of the flat text input file is very similar whether an
old crdb database is constructed, or whether a use_text_databases "in memory" database
is constructed:

key value

one entry per line, with the key beginning in column one, one or more white space (SP or
TAB) characters, and then the value on the right hand side.

When using a text, "in memory" general database (bit 0/value 1 of use_text_databases is
set), each left hand side (key) may have a maximum of 128 characters, while each right hand
side (value) may have a maximum of 1024 characters. If a key or value contains any space or
tab character, such character must be backslash quoted, e.g.:

left\ hand\ side right-hand-side

50–24 Messaging Server Reference

When mapping table changes take
effect

Any TAB character found will be converted to a space for storage in the in-memory general
database.

The comment_chars MTA option controls which characters (by default exclamation point
and semicolon) in column one of a line are considered to indicate a comment line. The left
angle character may be used to read another file into the general database text input file.

Note: The MTA options general_data_size and string_pool_size_3 limit the overall
size of the general database; these MTA options do not normally need to be manually adjusted.

For a crdb "on disk" database, the left hand side (the key) cannot contain spaces or tabs unless
the -quoted switch is used; the maximum length of the key and value depend upon whether
the -long_records switch is used.

50.4.1.1 Database case sensitivity option (general_case)

New in MS 8.1.0.1. The general_case MTA option controls whether or not general database
lookups are case sensitive. Setting the option to 1 makes the lookups case sensitive. The default
is 0, in which case the lookups are case-insensitive.

50.5 When mapping table changes take effect
Changes to an MTA mapping table in general do not take effect until at a minimum the MTA
configuration is reloaded; and if a compiled MTA configuration is in use, then the MTA
configuration must be recompiled prior to the reload. Performing a restart of processes rather
than a reload of the MTA configuration into already running processes is an alternative,
though restarts of the Job Controller should be avoided (due to their disruptive effect on
throughput) unless necessary.

50.6 Pre-defined mapping tables
The MTA has a number of pre-defined mapping tables. These include both mapping tables
whose use (and names) are "hard-coded" in the MTA code for particular sorts of uses, as well
as mapping tables which, while not "hard-coded", are included and referenced as part of a
standard distribution. Such mapping tables include:

• AUTH_ACCESS mapping table
• AUTH_DEACCESS mapping table
• AUTH_REWRITE mapping table
• BURL_ACCESS mapping table
• CHARSET-CONVERSION mapping table
• COMMENT_STRINGS mapping table
• CONVERSIONS mapping table
• DEQUEUE_ACCESS mapping table
• DKIM_SIGN_DOMAINS mapping table
• DISPOSITION_LANGUAGE mapping table
• ETRN_ACCESS mapping table
• EXTERNAL_TO_INTERNAL mapping table
• FORWARD mapping table
• FROM_ACCESS mapping table
• GROUP_AUTH mapping table

Mapping tables 50–25

Pre-defined mapping tables

• GROUP_TEMPLATES mapping table
• INTERNAL_IP mapping table
• IP_ACCESS mapping table
• LOG_ACTION mapping table
• MAC-TO-MIME-CONTENT-TYPES mapping table
• MAIL_ACCESS mapping table
• MESSAGE-SAVE-COPY mapping table
• MILTER_ACTIONS mapping table
• MILTER_MACROS mapping table
• MTA_STARTUP and MTA_SHUTDOWN mapping tables
• MX_ACCESS mapping table
• NOTIFICATION_LANGUAGE mapping table
• ORIG_MAIL_ACCESS mapping table
• ORIG_SEND_ACCESS mapping table
• PERSONAL_NAMES mapping table
• PORT_ACCESS mapping table
• REVERSE mapping table
• SEND_ACCESS mapping table
• SASL_ACCESS mapping table
• SIEVE_EXTLISTS mapping table
• SMTP_ACTIONS mapping table
• SPF_LOCAL mapping table
• TLS_ACCESS mapping table

 Note that to avoid conflicts with these, or to-be-defined-in-future, Oracle-provided mapping
tables, it is recommended that all site-supplied mapping tables be given names beginning with
X-, e.g., X-whatever.

In addition to the pre-defined mapping tables listed above, the MTA has various alias options,
alias file named parameters, and LDAP attributes (or rather in many cases, MTA options for
selecting the name of an LDAP attribute) used to store mapping table names, and a facility for
defining Sieve tests via mapping tables with a specific form of name; mapping tables named
via such an alias file parameter or LDAP attribute or special Sieve test name syntax are used in
the appropriate way by the MTA. Look for discussions of such mapping table use under topics
including:

• alias_auth_mapping
• alias_cant_mapping
• alias_deferred_mapping
• alias_direct_mapping
• alias_hold_mapping
• alias_nohold_mapping
• alias_moderator_mapping
• alias_sasl_auth_mapping
• alias_sasl_cant_mapping
• alias_sasl_moderator_mapping
• The alias file named parameters [AUTH_MAPPING], [CANT_MAPPING], [HOLD_MAPPING],
[NOHOLD_MAPPING], [MODERATOR_MAPPING], [SASL_AUTH_MAPPING],
[SASL_CANT_MAPPING], and [SASL_MODERATOR_MAPPING]

• ldap_url_result_mapping
• ldap_domain_attr_catchall_mapping
• FILTER_test mapping tables

50–26 Messaging Server Reference

Testing mapping tables

• The USERNAME_MAPPING SpamAssassin option discussed in SpamAssassin
spamfilterN_config_file.

50.7 Testing mapping tables
Mapping tables are a very general MTA facility, routinely used for a wide variety of purposes,
in a wide variety of contexts, and with a wide variety of potential inputs and outputs. Besides
all of the MTA's own standard, pre-defined mapping tables, sites may also incorporate their
own, private mapping tables, for their own site-specific purposes. There is thus a "low-level" of
basic mapping table output given a specific input which is a general aspect of mapping table
behavior true for all mapping tables, and in contrast there is the "high-level" interpretation of
mapping output which is performed by specific MTA components.

 The MTA has two general, low-level command line test utilities, the test -match utility
and the test -mapping utility, that can be used on any mapping table to test, respectively,
the basic pattern matching and the low-level operation (the output-string and flags returned
given some input-string) of mapping tables. But note that these utilities, and in particular
the test -mapping utility, do not provide any interpretation of the meaning or effect of a
particular mapping table output-string, nor do they do any "validity check" on the input-
string(s) supplied for testing. (And it is frequently the case that when a mapping table is not
having the effect that you desire, that the real "problem" is that the input the MTA is feeding
into the mapping table is not the input that you had anticipated.)

So when you wish to test for the meaning or effect of a mapping table, when you want to see
what a mapping tables does in real-world operation, these above-named utilities will not be
useful. Instead, these utilities' intended purpose is for testing basic syntax of mapping tables,
and they are best used primarily to answer syntax questions that arise when using fairly
complex mapping tables. The test -match utility is useful when testing complex matching
patterns, such as patterns that use "globs" or "IP subnet matching". The test -mapping
utility is useful when testing mapping tables that contain complex recursive or iterative
entries, or that include callouts to routines.

 In contrast, the effects of commonly-used addressing and access mapping tables such as
the FORWARD mapping table, the REVERSE mapping table, the FROM_ACCESS mapping
table, or any of the recipient access mapping tables (SEND_ACCESS, ORIG_SEND_ACCESS,
MAIL_ACCESS, ORIG_MAIL_ACCESS) can be conveniently tested using the test -rewrite
utility. Note that when doing such testing, the utility's -source_channel and -from
switches, and in the case of the FROM_ACCESS, MAIL_ACCESS, and ORIG_MAIL_ACCESS
mapping tables also the -applicationinfo and -transportinfo switches, tend to be
useful (indeed necessary) for proper testing.

(Aside: The test -rewrite utility can also be used to test posting access controls for mailing
lists.)

50.7.1 Testing address access mapping tables
The imsimta test -rewrite utility can be useful in testing address access
control mappings. Note that typically at least some of the utility's switches -from,
-source_channel, -destination_channel, -applicationinfo, -transportinfo,
and (new 6.2) -sender should be specified, in order to set relevant fields of the access
mapping table probe and thus achieve meaningful testing. If an access control mapping
table makes use of flag tests, then in order to properly test it, see also the imsimta
test -rewrite utility's (new in 6.3) switches -[no]esmtpused, -[no]lmtpused,

Mapping tables 50–27

Callout routines

-[no]proxyused, -[no]saslused, -[no]tlsused. For instance, an ORIG_SEND_ACCESS
mapping table of

ORIG_SEND_ACCESS

 tcp_local|friendly@somewhere.com|l|AdamUser@acme.com $Y
 tcp_local|unwelcome@elsewhere.com|l|AdamUser@acme.com NGo away!

can be probed as follows:

imsimta test -rewrite -from="friendly@somewhere.com" \
 -source=tcp_local -destination=l AdamUser@acme.com
...
Submitted address list:
 ims-ms
 adam58@ims-ms-daemon (orig AdamUser@acme.com, inter AdamUser@acme.com, host
 ims-ms-daemon) *NOTIFY-FAILURES* *NOTIFY-DELAYS*

Submitted notifications list:

imsimta test -rewrite -from="unwelcome@elsewhere.com" \
 -source=tcp_local -destination=l AdamUser@acme.com...
Submitted address list:
Address list error -- Go away!: AdamUser@acme.com

Submitted notifications list:

If the -debug switch is also specified, then in addition to showing the effect of access control
mapping table application, the output will also show the actual mapping table probe(s)
constructed. For instance:

imsimta test -rewrite -from="friendly@somewhere.com" \
 -source=tcp_local -destination=ims-ms AdamUser@acme.com -debug...
*** Debug output from submitting an envelope address:
...
12:27:18.86: - orig_send_access mapping check: tcp_local|friendly@somewhere.com|l|AdamUser@acme.com
12:27:18.86: - passed.
12:27:18.86: - send_access mapping check: tcp_local|friendly@somewhere.com|ims-ms|adam58@ims-ms-daemon
12:27:18.86: - passed.
...
Submitted address list:
 ims-ms
 adam58@ims-ms-daemon (orig AdamUser@acme.com, inter AdamUser@acme.com, host
 ims-ms-daemon) *NOTIFY-FAILURES* *NOTIFY-DELAYS*

Submitted notifications list:

50.8 Callout routines
The MTA's support for calling out to routines from mapping tables or rewrite rules is intended
to allow sites to provide and use their own, site-written, routines. However, the MTA does
ship with a few Oracle-provided routines as well.

See also the mm_check_reputation routine, discussed in Spamfilter early verdicts.

50–28 Messaging Server Reference

check_memcache.so callout

50.8.1 check_memcache.so callout
New in 8.0, the check_memcache.so mapping callout can be used to access memcache from
mapping tables or rewrite rules. The callout is similar to the check_metermaid.so callout,
and provides a number of routines that can be called.

The general parameter format for all routines is:

[flags],[host[:port][;host[:port]...]],key[,value/lockout/quota][,timeout/test/quota_time]
(0) (1) (2) (3) (4) (5) (6) (7)

The first four arguments common to all routines are:

flags (bit-encoded integer) The flags parameter provides a number of flags that
affect the entire option. The default is 0 if no value is
specified. The bits and their meanings are shown in the
check_memcache.so flags parameter bit values below.

host (string) Host name of memcached server to use. The value specified
by the memcache_host MTA option will be used if
no host is provided here. If a semicolon-separated list
of host:port pairs is specified one will be chosen by
applying a hash function to the key. This provides the
means to distribute key-value pairs across multiple
memcache servers. Note that the algorithm used is the same
as for the memcache Sieve extension.

port (integer 0-65535) The memcached server port. The value specified by the
memcache_port MTA option will be used if no port is
provided here.

key (string) The key associated with the entry being accessed.

Table 50.7 check_memcache.so flags parameter bit values

Bit(s) Value(s) Meaning
 0-2 0-7 Debug level. Higher levels produce more debug output.
3 8 If set, causes all permanent failures to return as successful.
4 16 If set, causes an empty string to be returned regardless of what

the callout did or didn't do.
5 32 Sets the penalize flag for throttle operations.
6 64 If set, hashes the provided key prior to use. This can be useful in

meeting encrypted at rest requirements. The hash function used
is controlled by the memcache_hash_algorithm MTA option.

7 128 If set, normalizes the provided key to lower case
8 256 If set, don't add entry if it is missing. This flag applies to the

ADJUST, ADJUST_AND_TEST, and THROTTLE routines.
9 512 If set, treat the entry (which must exist) as a throttle entry. This

flag applies to the ADJUST and ADJUST_AND_TEST routines and
must be used in order for these routines to handle throttle data.

Mapping tables 50–29

check_memcache.so callout

Additional parameters are consumed by specific routines:

value (string or unsigned
integer)

The value to be added, stored, replaced, etc.

timeout (unsigned integer) Amount of time that the server should retain the entry,
specified as an integer number of seconds. The default is 0,
which means the entry should be retained indefinitely.

test An unsigned integer preceeded by a single character
indicating the type of test to perform. Possible test types
are: (1) <i - Callout succeeds if the result is less than i, (2)
>i - Callout succeeds if the result is greater than i, and (3)
=i - Callout succeeds if the result is equal to i.

quota_time, quota (unsigned
integers)

Throttle parameters. quota_time specifies the specifies the
duration of the period over which counts are recorded, and
quota specifies the maximum number of counts to permit
during the period.

The available routines and their specific parameter formats are:

add,flags,[host:[port]],key,value,timeoout

Adds an entry with the specified key, value and timeout. This routine will fail if an entry
with the specified key is already present. An empty string is always returned.

adjust,flags,[host:[port]],key,value[,timeout]

Adjust the entry with the specified key by the amount specified by value. The entry must
contain an unsigned decimal string and value must be an optionally signed integer. The
specified entry will be created (with a value of 0) prior to adjustment if it doesn't already exist.
The adjusted value is retured as an unsigned decimal string. The timeout value is only used
if the entry has to be created.

adjust_and_test,flags,[host:[port]],key,value,test[,timeout]

Adjust the entry with the specified key as adjust would, then test the result with the
specified test. An empty string is always returned.

append,flags,[host:[port]],key,value

Append the specified value to the entry with the specified key. This routine will fail if an
entry with the specified key is not already present. An empty string is already returned.

fetch,flags,[host:[port]],key

Return the value of the entry with the specified key. The callout fails if no entry with the
specified key is present.

50–30 Messaging Server Reference

check_memcache.so callout

prepend,flags,[host:[port]],key,value

Prepend the specified value to the entry with the specified key. This routine will fail if an
entry with the specified key is not already present. An empty string is already returned.

remove,flags,[host:[port]],key[,lockout]

Remove the entry with the specified key. The lockout, if present, is an unsigned integer
specifying the amount of time to "lock" the key - during that time attempts to add an entry
with that key will fail. A lockout value of 0 is the default and causes no lockout to occur. This
routine will fail if an entry with the specified key is not already present. An empty string is
already returned.

replace,flags,[host:[port]],key,value,timeout

Update value and timeout of the entry with the specified key. This routine will fail if an entry
with the specified key is not already present. An empty string is always returned.

store,flags,[host:[port]],key,value,timeout

Creates a new entry or updates an existing entry with the specified key, value, and timeout.

test,flags,[host:[port]],key,test

Tests the value of the entry with the specified key.

throttle,flags,[host:[port]],key,quota,quota_time

Implements the MeterMaid throttle capability. See the MeterMaid documentation for details
of throttle semantics. Note that since there is no server-side awareness of entry semantics, the
quota and quota_time parameters must be specified in every throttle call in case the entry
needs to be created. If the entry already exists, the parameter values will be checked against
the corresponding values store in the entry. The call will fail if this check fails.

This callout has also been enhanced to work with the mapping table $. facility in order to be
able to handle temporary errors in a sensible fashion.

An example of using memcached to implement a simple rate limit on a given authenticated
sender to 10 messages every 5 minutes would be to add the following to the end of the
FROM_ACCESS mapping:

FROM_ACCESS

 TCP|*|SMTP*|MAIL|tcp_*|*|* C;R$[IMTA_LIB:check_memcache.so,throttle,0,memcache.example.com:22122,sendlim-$4,10,300]$X4.2.3|$NRate$ too$ high$E

This would limit users to 10 messages every 5 minutes (300 seconds). Here
"memcache.example.com:22122" would be replaced with name and port of an actual
memcached server.

A more flexible mechanism would allow the limit to be specified on a per-user basis along
with a default. This could be accomplished by defining an LDAP attribute for the purpose, say

Mapping tables 50–31

check_metermaid callouts

senderRateLimit, and making it available to the FROM_ACCESS mapping via the sixth spare
LDAP slot:

 msconfig> set ldap_spare_6 senderRateLimit
 msconfig# set include_spares1 32

The follow additions to the FROM_ACCESS mapping would then be needed:

FROM_ACCESS

 TCP|*|SMTP*|MAIL|tcp_*|*|*| C;R$[IMTA_LIB:check_memcache.so,throttle,0,memcache.example.com:22122,sendlim-$4,10,300]$X4.2.3|$NRate$ too$ high$E
 TCP|*|SMTP*|MAIL|tcp_*|*|*|* C;R$[IMTA_LIB:check_memcache.so,throttle,0,memcache.example.com:22122,sendlim-$4,$5,300]$X4.2.3|$NRate$ too$ high$E

50.8.2 check_metermaid callouts
The check_metermaid.so mapping callout can be used to access MeterMaid from mapping
tables or rewrite rules. A number of entry points are provided.

adjust,table,key,adjustment

(New in MS 7.0u2) Similar to store, but adjustment is treated as a delta value. It can be
specified as integer, +integer, or -integer. If the key doesn't currently exist, it is presumed to
be 0 and the value is set to whatever the adjustment is. Succeeds by default, fails if an error
occurs.

adjust_and_test,table,key,adjustment,test-expr

(New in MS 7.0u2) This combines the adjustment with a test. The return value is the same as
test.

fetch,table,key

(New in MS 7.0u2) Returns a string from that key's value. Fails if an error occurs or the key is
not currently set.

greylisting,table,key

query,table,key

remove,table,key

(New in MS 7.0u2) Removes the key/value pair specified by the key from the table. Return
success by default, and fail if an error occurs.

store,table,key,value

(New in MS 7.0u2) Sets the value for the specified key in that table. Returns success if
completed successfully, and fails if not.

50–32 Messaging Server Reference

dns_verify callouts

test,table,key,test-expr

(New in MS 7.0u2) test-expr is a simple expression that gives the test to be done. It consists
of an operator and a value. The operator can be one of =, >, >=, <, or <=. The value should be
an integer.

This returns success if the test-expr returns true, and fails if it's false or an error occurs.
(This flexibility permits control of whether the default should be to pass, or to fail.)

throttle,table,key

Apply throttling.

New in MS 8.0, check_metermaid.so supports use of multiple MeterMaid servers, and also
supports SSL for communication.

An example of using Metermaid to implement a simple rate limit on a given authenticated
sender to 10 messages every 5 minutes implemented using a FROM_ACCESS mapping would
be:

msconfig> show metermaid.local_table:sendlim
role.metermaid.local_table:sendlim.data_type = string
role.metermaid.local_table:sendlim.max_entries = 100000
role.metermaid.local_table:sendlim.quota = 10
role.metermaid.local_table:sendlim.quota_time = 300
role.metermaid.local_table:sendlim.table_type = throttle

And finally, the following callout rule added at the end of the FROM_ACCESS mapping
implements the limit:

FROM_ACCESS

 TCP|*|SMTP*|MAIL|tcp_*|*|* C;R$[IMTA_LIB:check_metermaid.so,throttle,sendlim,$4]$X4.2.3|$NRate$ too$ high$E

Note the "$;R" (new in MS 8.0) prevents this rule from being applied to enqueues from
"internal" channels (process channel, reprocess channel, conversions channel, etc.). Also note
that the rule can be added to an existing

50.8.3 dns_verify callouts
The dns_verify.so library provides a collection of mapping callouts that can be used
to validate and/or resolve domains names or IP addresses via the DNS or local host tables.
(Exactly what sources are used, and in what order, is controlled at the operating system level,
usually by settings in /etc/resolv.conf.) Three basic types of operations are provided:

• DNS A/AAAA record and host table lookups for domain names.
• DNS PTR record and host table lookups for IP addresses.
• TXT record lookups for checking IP addresses against blacklists.

For example, dns_verify.so can be used to verify that an entry in DNS or host tables exists
for the domain used in the SMTP MAIL FROM: command, or to look up an IP address in

Mapping tables 50–33

dns_verify callouts

a blacklist supplied by such services as MAPS and ORBS. The message can be rejected or
accepted based on the presence or absence of a corresponding DNS record.

IMPORTANT NOTE: Performing DNS existence checks may result in the rejection of some
valid messages. For instance, this could include mail from legitimate sites that simply have not
yet registered their domain name, or during periods of bad information in DNS.

The dns_verify.so library has several routines that can be called:

• dns_verify
• dns_verify_ptr (new in 7.0.5.34)
• dns_verify_domain
• dns_verify_domain_port
• dns_verify_domain_warn
• dns_verify_ipv4 (new in 8.0.1.2)
• dns_verify_ipv6 (new in 8.0.1.2)
• dns_get_first_mx (new in 8.0.2.2)

These routines are each described in the sections below.

Note that your mapping tables with dns_verify.so callouts can be tested by using the
imsimta test -mapping utility.

50.8.3.1 The dns_verify routine

The dns_verify routine does a name lookup in the local host tables and an A/AAAA lookup
in the DNS. One possible use for this is to check to make sure the domain from the SMTP
MAIL FROM: command actually exists. Any mapping table action can be taken if the lookup
succeeds, fails, or returns an error.

The dns_verify routine's argument is four strings separated by "|", as follows:

domainname[|success[|failure[|unknown]]]

domainname The name to look up in the DNS and local host tables.

success (optional) If specified, it is the mapping table string to return if domainname
is found. If not specified, the default is "$Y".

failure (optional) If specified, it is the mapping table string to return if domainname
is not found. If not specified, the default is "$N".

unknown (optional) If specified, it is the mapping table string to return if there was
a temporary DNS failure during the lookup operation. If not
specified, and the success string was specified, that string is used.
If neither are specified, the default is "$Y".

Note that in the mapping table any $'s you wish to return need to be doubled. For example, to
specify "$Y", you need to put in "$$Y".

An alternate separator can be used instead of "|". To specify an alternate separator, insert it as
the first character of the routine's argument. For example, to specify "+" as the separator, use
the following syntax:

50–34 Messaging Server Reference

dns_verify callouts

+domainname+success+failure+unknown

The success, failure, and unknown strings can contain the following format characters:

Table 50.8 dns_verify callout substitutions

String Value
%a If successful, the %a substitutes the IP address

returned by the lookup operation. An empty string
is returned if the domain name exists but doesn't
have an associated IP address.

%e If the lookup is not successful, %e substitutes the
error message associated with the lookup.

%n If successful, %n substitutes the primary name for
domainname. An empty string is returned if the
domain name exists but doesn't have an associated
IP address.

The following example shows a simple SEND_ACCESS mapping table entry to verify that the
sender's hostname exists in the DNS or local host tables:

SEND_ACCESS

 tcp_|*@*|*|* \
C[IMTA_LIB:dns_verify,dns_verify,$3|$$Y|$$NInvalid$ host:$ $$3$-$ %e]$E

The following example shows a PORT_ACCESS mapping table entry that performs a check
against a hypothetical DNS blacklist dnsbl.example.net

PORT_ACCESS

 TCP|*|25|*.*.*.*|* \
C[IMTA_LIB:dns_verify,dns_verify,\
$4.$3.$2.$1.dnsbl.example.net|$$N500$ IP$ blacklisted|$$Y

50.8.3.2 The dns_verify_ipv4 routine

The dns_verify_ipv4 routine is identical to dns_verify, except that it restricts its results
to IPv4 addresses.

50.8.3.3 The dns_verify_ipv6 routine

The dns_verify_ipv4 routine is identical to dns_verify, except that it restricts its results
to IPv6 addresses.

50.8.3.4 The dns_verify_ptr routine

The dns_verify_ptr routine does an IPv4/IPv6 address lookup in the DNS and/or host
tables. Any mapping table action can be taken if the lookup succeeds, fails, or returns an error.

The dns_verify routine's argument is four strings separated by "|", as follows:

Mapping tables 50–35

dns_verify callouts

ip-address[|success[|failure[|unknown]]]

ip-address The IPv4/IPv6 address to be looked up, without any enclosing
brackets or prefixes.

success (optional) If specified, it is the mapping table string to return if ip-address
is found. If not specified, the default is "$Y".

failure (optional) If specified, it is the mapping table string to return if ip-address
is not found. If not specified, the default is "$N".

unknown (optional) If specified, it is the mapping table string to return if there was
a temporary DNS failure during the lookup operation. If not
specified, and the success string was specified, that string is used.
If neither are specified, the default is "$Y".

The dns_verify_ptr routine supports the same alternate delimiter and substitution strings
as the dns_verify routine described above.

50.8.3.5 The dns_verify_domain and dns_verify_domain_port
routines

The dns_verify_domain and dns_verify_domain_port routines are used to perform
queries for DNS entries with well-defined blacklist semantics and return pre-defined success,
failure, and unknown messages. The same operation can be performed using the dns_verify
routine, but with more complicated setup.

The dns_verify_domain_port routine is designed for use in the PORT_ACCESS mapping
table. The dns_verify_domain routine is used in the MAIL_ACCESS, SEND_ACCESS, and
similar mapping tables.

The dns_verify_domain and dns_verify_domain_port routines perform the same type
of action as the dns_verify_domain Dispatcher option. Using the routine allows you more
control over which connections trigger the DNS lookups.

The dns_verify_domain and dns_verify_domain_port routines' argument is three
strings separated by ",", as follows:

ip-address,domainname[,text-string]

ip-address The IP address that you want to check against the blackhole
list

domainname The name of the blackhole list to check against, e.g.,
blackholes.mail-abuse.org

text-string (optional) If specified, it is the text to return if no TXT record is
available. If not specified, the default is "No Error Text
Available".

The dns_verify_domain and dns_verify_domain_port routines check the given
list for the IP address. For example, if ip-address is 127.0.0.2, and domainname is
bl.spamcop.net, either of dns_verify_domain or dns_verify_domain_port looks up
the following name: 2.0.0.127.bl.spamcop.net. They first look up the TXT record for
that name, and if it is not available, they look up the A record.

50–36 Messaging Server Reference

dns_verify callouts

The following examples illustrate the use of these routines.

MAIL_ACCESS

 TCP|*|25|*|*|*|*|tcp_local|*|*|* \
C[IMTA_LIB:dns_verify,dns_verify_domain,$1,bl.spamcop.net]$E

PORT_ACCESS

 TCP|*|25|*|* \
C[IMTA_LIB:dns_verify,dns_verify_domain_port,$1,bl.spamcop.net]$E

The approximate equivalent of the previous MAIL_ACCESS example using the dns_verify
routine would be something like:

MAIL_ACCESS

 TCP|*|25|*.*.*.*|*|*|*|tcp_local|*|*|* \
C[IMTA_LIB:dns_verify,dns_verify,+$4.$3.$2.$1.bl.spamcop.net+\
$$N$$X5.7.1|Blocked$ -$ see$ http://spamcop.net/bl.shtml?$$1.$$2.$$3.$$4+$$Y]$E

50.8.3.6 dns_verify_domain_warn

The dns_verify_domain_warn routine performs the same DNS lookup as the
dns_verify_domain and dns_verify_domain_port routines, but instead of rejecting
the message if the DNS entry exists, it adds a new header line to the message. The
dns_verify_domain_warn routine can be used in any of the sender or recipient access
mapping tables.

The dns_verify_domain_warn routine's argument is four strings separated by ",", as
follows:

ip-address,domainname[,text-string[,header]]

The ip-address, domainname, and text-string arguments are the same as for
dns_verify_domain and dns_verify_domain_port. header is optional. If specified,
it is a string containing the header name, and other optional text, to include before the TXT
record string or text-string value. The header name must be one that the MTA recognizes.
The default is "X-Dispatcher: ".

The following example shows an ORIG_MAIL_ACCESS mapping table entry to query
spamcop.net:

ORIG_MAIL_ACCESS

 TCP|*|25|*|*|*|*|*|*|*|* \
C[IMTA_LIB:dns_verify,dns_verify_domain_warn,$1,\
bl.spamcop.net,spamcop.net:$ entry$ found$ for$ $$1,\
X-Dispatcher:$ SPAMfilter$ (spamcop.net):$]$E

For a source IP address of 127.0.0.2, this example would return

Mapping tables 50–37

smartsend callouts

YAX-Dispatcher: SPAMfilter (spamcop.net): Blocked - see http://spamcop.net/bl.shtml?127.0.0.2

This is then added as a header to the message. One way to act on this is to create a system-
wide, channel, or user Sieve filter containing a Sieve action along the lines of:

if header :contains "X-Dispatcher" "SPAMfilter" { discard; }

50.8.3.7 dns_get_first_mx

New in MS 8.0.2.2. The dns_get_first_mx routine performs an MX record lookup on
the specified domain. Unlike the other DNS routines described in this section, the routine
argument consists solely of the domain to look up. The routine succeeds if the lookup is
successful and returns the "first" MX record using the same algorithm the MTA uses to
determine record order. An empty string is returned if the lookup succeeds but no MX records
are found.

The routine fails if the specified domain cannot be found in the DNS. A temporary failure
condition is returned if the DNS operation fails with a temporary error.

One possible use of this routine is to determine if a given domain is serviced by a particular
collection of servers - which can then be used to implement a limited form of MX rollup. For
example, a mapping that will determine if a given domain is handled by Office 365 servers
could (at preent) be coded as:

OUTLOOK_MX

 * E[IMTA_LIB:dns_verify,dns_get_first_mx,$0]$C
 *.protection.outlook.com $Y

This mapping could in turn be called from either a rewrite rule or a FORWARD to route
messages to a special channel configured to deliver to an appropriate set of MXes regardless of
destination domain.

50.8.4 smartsend callouts
The smartsend.so library provides a collection of mapping callouts that can be used in to
optimize the delivery of opt-in bulk email.

smartsend makes use of a site-provided database that provides information about senders,
deployment hosts, recipient domains, and available source IPs. The MTA's general database
facility is used for this purpose, although note that this can easily be configured to perform
queries using the memcache or Redis protocols.

Many smartsend options also require a cache server. smartsend talks to this server using
either the memcache or Redis protocols. A per-host instance of memcached is sufficient for
this purpose, although a few functions require deployment of a caching server available
across multiple hosts. If the memcache protocol is employed the host and port specified by
the memcache_host and memcache_port channel options respectively, with fallback to the
corresponding MTA options, will be used.

When used to support multiple independent message sources, it is expected that the first
conversion tag associated with each message will be used as a "virtual MTA" identifier. Note

50–38 Messaging Server Reference

smartsend callouts

that the callouts consume the conversion tag if it is present; they do not provide the means to
set it.

The following sections describe the database format as well as the various callouts smartsend
provides. It is important to understand that most of the callouts are expected to be configured
as a group since they work together to provide a single coherent service. Most of the callouts
are designed not to have any effect, i.e., return a failure condition, when they have nothing to
do, so they may be combined with other uses of the corresponding mapping.

While the following sections provide details as to how to configure the smartsend callouts, this
may be done automatically in a unified configuration by using the provided smartsend recipe:

msconfig
msconfig> run smartsend.rcp [debug-level]

An optional debug level may be specifed; if none is specified a level of 0 (debugging disabled)
is assumed. The recipe may be re-run with a different debug level; if this is done the debug
level will be updated in the various callouts.

Although it's included as part of the smartsend plugin, the MX rollup capability is an
essentially separate facility. Accordingly, a separate recipe is provided to configure it:

msconfig
msconfig> run rollup.rcp [debug-level [rollup-domain-suffix [rollup-channel]]]

An optional debug level, rollup domain suffix, and the channel used to handle rollups may be
specified. These default to "0", ".rollup", and "tcp_rollup", respectively.

The script will create the rollup channel if it does not already exist, using the tcp_local channel
as a model.

50.8.4.1 Database entry formats

Database entries make use of several common pieces of syntax, the first of which is a
parameter list. Parameter lists are represented using a simplified variant of MIME content-type
parameter syntax. The ABNF (RFC 2234) syntax for a smartsend parameter list is:

 parameter-list = parameter-name-value [";" parameter-name-value]
 parameter-name-value = *WSP parameter-name *WSP "=" *WSP parameter-value *WSP
 parameter-name = (ALPHA / DIGIT / "-" / "_")1*
 parameter-value = <any CHAR excluding ";">

Note that the allowable characters in a parameter-value is often further constrained by the
context in which the parameter-list appears. In particular, vertical bars ("|"), commas (","), and
whitespace are all used in some "outer" contexts as delimiters.

Examples of parameter lists include:

 maxmx=5
 maxmessagerateperdomain=30/1200;maxmessagesperconnection=20
 dkimidentity-1=example.net;dkimselector-1=brisbane

Mapping tables 50–39

https://tools.ietf.org/html/rfc2234

smartsend callouts

 debug=3

A parameterized list of IP addresses (IP list for short) is also used by several types of database
entries. The following definition makes use of the IPv4address and IPv6address productions
specified in RFC 5954:

 parameterized-ip-list = [global-parameter-list "|"] ip-and-parameters ["," ip-and-parameters]
 global-parameter-list = [parameter-list]
 ip-and-parameters = ["-"] (IPv4address / IPv6address) ["#" (IPv4address / IPv6address)] [";" ip-parameter-list]
 ip-parameter-list = [parameter-list]

Note that IP address parameters allow the two address form supported by the
interfaceaddress channel option.

Parameterized IP lists are allowed to be up to 4096 characters in length.

Examples of parameterized IP lists would include:

 1.1.1,1,2.2.2.2,-3.3.3.3,4.4.4.4
 10.59.230.40;banner_host=mauve.example.com,10.59.230.169;banner_host=plum.example.com
 66.218.59.24#10.59.230.40;banner_host=mauve.example.com
 maxconnectionrateperdomain=2/300|10.59.230.40,10.59.230.169
 maxmessagesperconnection=30|10.59.230.40;maxmessagsperconnection=10,10.59.230.169,10.59.230.170

A parameterized list of MTA names (MTA list for short) is also used by several types of
database entries. The following definition makes use of the Domain productions specified in
RFC 5321:

 parameterized-mta-list = [global-parameter-list "|"] mta-and-parameters ["," mta-and-parameters]
 global-parameter-list = [parameter-list]
 mta-and-parameters = ["-"] Domain [";" mta-parameter-list]
 mta-parameter-list = [parameter-list]

Parameterized MTA lists are allowed to be up to 4096 characters in length.

Examples of parameterized MTA lists would include:

 host1.example.com,host2.example.com,host2.example.com
 host1.example.org;received_domain=host1.example.org,host2.example.org;received_domain=host2.example.org,
 id_domain=example.edu|host1.example.edu,host2.example.edu

50.8.4.2 auth_access callout

The auth_access callout is intended to be called from the AUTH_ACCESS mapping. It
provides the ability to:

• set various limits and operating parameters based on the message's destination domain

• select a client IP address from a group of available IP addresses for each message in a round-
robin fashion

• impose additional limits and opeational settings on a per-IP basis.

The AUTH_ACCESS mapping should be set up as follows:

AUTH_ACCESS

50–40 Messaging Server Reference

https://tools.ietf.org/html/rfc5954
https://tools.ietf.org/html/rfc5321

smartsend callouts

 * C[IMTA_LIB:smartsend.so,auth_access,<pflags>|$0]$E

Here <pflags> should be replaced with an unsigned integer flag value. The lowest three bits
enable increasing levels of debug output, with "0" resulting in no output. Bit 3 (value 8), if set,
enables routing-only mode, which is described below.

Note that the callout receives the entire mapping probe. It is designed to process the entire
probe and automatically adjusts its behavior to match the variations in probe format caused by
setting various MTA options.

Additionally, bit 0, value 1, of the include_retries MTA option should be set, and
if conversion tags are to be used to select IP address groups, bit 11, value 2048, of the
include_conversiontag MTA option should also be set. Note that the list of conversion
tags is interpreted as follows:

<virtual-MTA>,<sender-OCID>,<tenant-OCID>,<compartment-OCID>

The callout normally operates as follows:

1. Parse the mapping probe into its components. The callout will fail if the input string cannot
be parsed.

2. Construct a key of the form domain_<domain>, where <domain> is the lower cased
destination domain for the message, ad look up the key in the general database. The value
of any entry found is expected to be a parameter list.

3. If <tenant-OCID> conversion tag is present construct a key of the form
ociddomain_<tenant-OCIDA>_<domain>, where <tenant-OCIDA> and <domain> are
the lower cased tenant OCID and destination domain for the message, respectively, and
look up the key in the general database. The value of any entry found is expected to be a
parameter list.

4. If <sender-OCID> conversion tag is present construct a key of the form
ociddomain_<sender-OCIDA>_<domain>, where <sender-OCIDA> and <domain> are
the lower cased sender OCID and destination domain for the message, respectively, and
look up the key in the general database. The value of any entry found is expected to be a
parameter list.

5. Construct a key of the form ips_<mtaid>_<virtual-MTA>, where <mtaid> is the MTA id
and <virtual-MTA> is the first conversion tag associated with the current message. Both the
id and conversion tag are converted to lower case.

If no MTA id has been specified the official host name on the local channel is used instead.
The preceding "_" is omitted if the specified MTA id is blank.

If there are no conversion tags associated with the message use a key of the form
ips_<mtaid>_<channel>, where <channel> is the channel where the message is queued.

6. Look up the key in the general database. The value of any entry found is expected to be an
IP list.

7. If an IP list entry is found select an IP from the list at a random starting point, and
proceeding around the list in a strict round-robin fashion on subsequent dequeue attempts.

Mapping tables 50–41

smartsend callouts

8. If an EXTERNAL_TO_INTERNAL mapping exists, apply it to any IP address selected from
the IP list that just specifies an IP address (as opposed to an external#internal address pair).
The entry will be skipped if the mapping doesn't produce a result and set $Y. The result
can be either just the internal address, which will be become the internal IP address for
the entry, or an external#internal pair, which will replace the IP address information in the
entry.

9. Impose any limits and set any operational parameters specified by the various parameter
lists attached to the destination domain, the IP list as a whole, and the chosen IP.

10.Limit checks may cause the selected IP addresses to be become ineligible for use. If this
happens try the next IP address on the list. If all of the addresses are rejected the message
dequeue attempt will fail with a temporary error, causing the MTA to try again later.

11.If no IP list entry is found and a conversion tag is present construct a third key of the form
mta_<conversiontag> and look it up in the general database. Again, the conversion tag
is converted to lower case.

12.If an MTA entry is found it is expected to consist of a comma or whitespace-separated list
of MTA names that are able to process messages with the specified conversion tag. The list
is checked to see if the current MTA is listed. If it isn't an MTA that is on the list is chosen at
random and the message destination is set to that MTA.

13.If the current MTA is on the list or no MTA list is present the dequeue operation proceeds
normally.

If bit 3 (value 8) of <pflags> is set, the plugin operates in routing-only mode:

1. Parse the mapping probe into its components. The callout will fail if the input string cannot
be parsed or if no conversion tag is present

2. Construct a key of the form mta_<virtual-MTA> and look it up in the general database.
The conversion tag is converted to lwoer case.

3. If an MTA entry is found it is expected to consist of a comma or whitespace-separated list
of MTA names that are able to process messages with the specified conversion tag. The list
is checked to see if the current MTA is listed. If it isn't an MTA that is on the list is chosen at
random and the message destination is set to that MTA.

4. If the current MTA is on the list or no MTA list is present the dequeue operation proceeds
normally.

Note that the addition of an IP address to a IP list entry when a message is being retried
unavoidably results in the disruption of the strict round-robin schedule. However, a special
mechanism is provided to remove an address from the rotation without causing any
disruption: Placing a minus sign "-" in front of an IP address on the list will cause that address
to be skipped. A count of the number of IP address skips is maintained in order to preserve the
strict round-robin usage. Note that this does NOT work if the IP address is simply removed
from the entry.

Also note that the log_smartsend MTA option may be used to include additional
information about smartsend callout actions in transaction log records.

The following sections describe the parameters available for use in auth_access database
entries. Note that while all parameters are available in all contexts, it may not make sense to,

50–42 Messaging Server Reference

smartsend callouts

say, specify the banner host on the basis of the destination domain or to control the use of TLS
on a per-IP basis.

50.8.4.2.1 backoff - Retry frequency for messages

 The backoff parameter implements the same functionality as the backoff channel option
on smartsend domain entries. The syntax is identical to that of the backoff channel option in
unified configuration.

50.8.4.2.2 banner_host - Override banner host

The banner_host parameter specifies the host name to use in the EHLO/HELO command
that is issued once a connection is established. This overrides BANNER_HOST TCP/IP-channel-
specific option for this connection.

50.8.4.2.3 chunking - Control use of SMTP CHUNKING

 New in MS 8.1.0.1. The chunking parameter provides the ability to control the use of the
SMTP CHUNKING extension by the SMTP client. Possible values are:

• "disable", which disables the use of chunking, as if nochunkingserver had been specified
on the channel, and

• "optional", which allows the use of chunking if the channel is set to allows it.

50.8.4.2.4 debug - Enable smartsend/channel debugging

 New in MS 8.1.0.1. The debug parameter provides the ability to enable debugging on a per-
IP-list basis. A single integer argument is required. Positive values enable corresponding levels
of smartsend debugging; master_debug is also enabled for the duration of processing the
current message.

50.8.4.2.5 ipbackoff - Retry frequency for messages in IP backoff mode

 The ipbackoff parameter implements the same functionality as the ipbackoff channel
option on smartsend domain entries. The syntax is identical to that of the ipbackoff channel
option in unified configuration.

50.8.4.2.6 ipbackofftimeout - Timeout for IP backoff entries

 The ipbackofftimeout parameter implements the same functionality as the
ipbackofftimeout channel option on smartsend domain entries. As with the channel
option, the syntax is an integer value in seconds.

50.8.4.2.7 log_headers - Header fields to log in transaction record

The log_headers parameter is used to specify one or more additional header fields to log as
part of the transaction log entry. The parameter value is a comma-separated list of header field
names. Unlike header option file based logging, any field name may be specified, recognized
or not. Note that the log_header MTA option must also be set appropriately.

50.8.4.2.8 maxconnectionrateperdomain - Maximum connection rate to a
domain

 The maxconnectionrateperdomain parameter provides the means to limit the rate at
which connections are made to a destination domain. The value of this parameter is one or two

Mapping tables 50–43

smartsend callouts

space-separated rate limit lists. The first limit list value specifies the rate limits to use when the
IP address is operating normally; the second specifies the limits to use when operating in IP
backoff mode. If the IP backoff value is omitted it defaults to the first value.

The syntax of rate limit lists is described in the section on message rate limits below.

50.8.4.2.9 maxconnectionsperdomain - Maximum connection to a domain

 The maxconnectionsperdomain parameter implements limits on the number of
simultaneous connections that can be opened from a single source IP to a destination domain.
The value of this parameter is one or two space-separated connection limit lists. The first
connection limit list value specifies the limits to use when the IP address is operating normally;
the second specifies the limits to use when operating in IP backoff mode. If the IP backoff
value is omitted it defaults to the first value.

As of MS 8.1, four types of per-domain connection limits are provided:

Table 50.9 Per-domain connection limits

Additional
Qualification

Code Probe Description

Source IP I maxconnectionsperdomain_<IP>_<domain> Per source IP per
domain limit

Host H maxconnectionsperdomain_<host>_<domain> Per server host
per domain limit

Tag T maxconnectionsperdomain_<tag>_<domain> Per conversion
tag per domain
limit

 N maxconnectionsperdomain_<domain> Per domain limit

Any or all of these limits may be engaged simultaneously. If multiple limits are used all limits
must be satisfied for the connection attempt to proceed.

A connection limit list is specified as one or more limit codes followed by the limit itself,
written as an unsigned integer. The "I" code may be omitted from a per-IP limit if it appears
first - this is the only supported format in MS 8.0.2.3. Formally, the syntax is:

 connection-limit-list = (ip-limit-value *limits) / 1*limits
 limits = ip-limit / host-limit / tag-limit / limit
 ip-limit = "I" ip-limit-value
 ip-limit-value = 1*DIGIT
 host-limit = "H" host-limit-value
 host-limit-value = 1*DIGIT
 tag-limit = "T" tag-limit-value
 tag-limit-value = 1*DIGIT
 limit = "N" limit-value
 limit-value = 1*DIGIT

For example, a connection limit list value of "I4N10" specifies a 4 connection per-IP-per-
domain limit and a 4 connection per-domain limit. A value of "10" specifies a 10 connection
per-IP-per-domain limit.

50–44 Messaging Server Reference

smartsend callouts

Note that the identically named maxconnectionsperdomain channel option can be used to
set connection limits on a per channel basis.

50.8.4.2.10 maxmessagerateperdomain - Maximum message rate to a domain

 The maxmessagerateperdomain parameter provides the means to limit the rate at which
messages are delivered to a destination domain. The value of this parameter is one or two
space-separated rate limit lists. The first limit list value specifies the rate limits to use when the
IP address is operating normally; the second specifies the limits to use when operating in IP
backoff mode. If the IP backoff value is omitted it defaults to the first value.

As of MS 8.1, four types of per-domain rate limits are provided:

Table 50.10 Per-domain message rate limits

Additional
Qualification

Code Probe Description

Source IP I maxmessagerateperdomain_<IP>_<domain> Per source IP per
domain limit

Host H maxmessagerateperdomain_<host>_<domain> Per server host
per domain limit

Tag T maxmessagerateperdomain_<tag>_<domain> Per conversion
tag per domain
limit

 N maxmessagerateperdomain_<domain> Per domain limit

Any or all of these limits may be engaged simultaneously. If multiple limits are used all limits
must be satisfied before a delivery attempt will be made.

A rate limit list is specified as one or more limit codes followed by the limit itself, written as
an unsigned vulgar fraction or integer. The "I" code may be omitted from a per-IP limit if it
appears first - this is the only supported format in MS 8.0.2.3. The numerator of the vulgar
fraction specifies the number of messages to allow and the denominator specifies the time
window in seconds. If a single integer is specified it is treated as a numerator with a default
denominator of 3600 (one hour).

Formally, the syntax is:

 rate-limit-list = (ip-limit-value *limits) / 1*limits
 limits = ip-limit / host-limit / tag-limit / limit
 ip-limit = "I" ip-limit-value
 ip-limit-value = 1*DIGIT
 host-limit = "H" host-limit-value
 host-limit-value = 1*DIGIT
 tag-limit = "T" tag-limit-value
 tag-limit-value = 1*DIGIT
 limit = "N" limit-value
 limit-value = 1*DIGIT ["/" 1*DIGIT]

For example, a rate limit list value of "I100N100000/86400" specifies a 100 messages per hour
per-IP-per-domain limit and a 100,000 per day per-domain limit. A value of "50" specifies a 50
messages per hour per-IP-per-domain limit. A value of "0" indicates that no rate limit is set.

Mapping tables 50–45

smartsend callouts

Note that the identically named maxmessagerateperdomain channel option can be used to
set rate limits on a per channel basis.

50.8.4.2.11 maxmessagesperconnection - Maximum messages per connection

The maxmessagesperconnection parameter limits the number of messages that can be
transferred by a single connection. It overrides the ATTEMPT_TRANSACTIONS_PER_SESSION
TCP/IP-channel-specific option for this connection.

50.8.4.2.12 max_mx_records - Maximum MX attempts

The max_mx_records parameter limits the number of MX records to consider when
attempting to connect. It overrides MAX_MX_RECORDS TCP/IP-channel-specific option for this
connection.

50.8.4.2.13 override_host - Override destination host

The override_host parameter specifies the host name to use as the destination for
connections, overriding any host name that appears in any destination address.

50.8.4.2.14 status - Force hold, return of messages

 The status parameter provides the means to return or hold messages. Possible values are
"active", which causes deliveries to proceed normally, "hold", which suspends deliveries, and
"return", which causes messages to be returned with no further delviery attempts.

50.8.4.2.15 tls - Control use of TLS

 New in MS 8.1.0.1. The tls parameter provides the ability to control the use of the SMTP
CHUNKING extension by the SMTP client. Possible values are:

• "disable"- disables the use of TLS, as if notlsserver had been specified on the channel,

• "optional", which allows the use of tLS if the channel is set to allows it, and

• "require", which requires the use of TLS, as if musttlsserver had been specified on the
channel,

50.8.4.3 auth_deaccess callout

The auth_deaccess callout is intended to be called from the AUTH_DEACCESS mapping. It
pairs with the auth_access callout described in the previous section to decrement counters
associated with some of the limits auth_access implements. At present this is the only
functionality provided by this callout.

The AUTH_DEACCESS mapping should be set up as follows:

AUTH_DEACCESS

 * C[IMTA_LIB:smartsend.so,auth_deaccess,<pflags>|$0]$E

Here <pflags> should be replaced with an unsigned integer flag value. Currently only the
lowest three bits of this bit-encoded value have any meaning -- they enable increasing levels of
debug output, with "0" resulting in no output.

50–46 Messaging Server Reference

smartsend callouts

Note that the callout receives the entire mapping probe. It is designed to process the entire
probe and adjusts its behavior to match the variations in probe format caused by setting
various MTA options.

50.8.4.4 conversions callout

The conversions callout is intended to be called from the CONVERSIONS mapping to
provide a database-driven means of configuring multiple DKIM signing keys.

The CONVERSIONS mapping should be set up as follows:

CONVERSIONS

 * C[IMTA_LIB:smartsend.so,conversions,pflags=<pflags>;$0]$E

IMPORTANT NOTE: The format of the mapping probe is NOT the same as for the previously
AUTH_ACCESS or AUTH_DEACCESS mapping probes. Here <pflags> should be replaced
with an unsigned integer flag value. The lowest three bits of this bit-encoded value enable
increasing levels of debug output, with "0" resulting in no output.

Note that the callout receives the entire mapping probe. It is designed to process the entire
probe and adjusts its behavior to match the variations in probe format caused by setting
various MTA options.

Additionally, bit 0, value 1, of the include_domain MTA option should be set, and if
conversion tags are to be used to select DKIM keys using "dkim_" lookups. bit 1, value 2, of
the include_conversiontag MTA option should also be set. IMPORTANT NOTE: "dkim_"
lookups should be disabled if "ocid_" lookups in the AUTH_REWRITE mapping are enabled
for DKIM use. In this case bit 4 (value 16) of pflags should be set to disable such lookups.

The callout operates as follows:

1. Parse the mapping probe into its components. The callout will fail if the input string cannot
be parsed.

2. Construct a key of the form domain_<domain>, where <domain> is the lower cased
destination domain (DOMAIN value in the CONVERSIONS mapping probe) for the
message.

3. Look up the key in the general database. The value of any entry found is expected to be a
parameter list.

4. If bit 4 (value 16) of the pflags value is clear, construct a second key of the form
dkim_<conversiontag>, where <conversiontag> is the first conversion tag (TAG value
in the CONVERSIONS mapping probe) associated with the current message and converted
to lower case. If there are no conversion tags associated with the message use a key of the
form ips_<channel>, where <channel> is the destination channel (OUT-CHAN value in
the CONVERSIONS mapping probe) for the message.

5. Look up the key in the general database. The value of any entry found is expected to be
another parameter list.

6. Use the combined parameter lists to select appropriate DKIM keys to use to sign the
message, and generate a mapping result that will cause this to happen.

Mapping tables 50–47

smartsend callouts

7. If bit 3 (value 8) of the pflags value is set and a conversion tag is present, construct a key
of the form mta_<conversiontag> and look up the corresponding entry in the general
database. If an entry is found it is expected to consist of a list of the MTAs capable of
handling this conversion tag value. If an entry is found and the current MTA is not on the
list the is forced into the tcp_intranet channel queue so it can be routed to the correct MTA.

50.8.4.4.1 dkimidentity-N, dkimselector-N - DKIM parameters

The actual DKIM parameters correspond exactly to the DKIM template keywords
(dkimidentity-N and dkimselector-N) used in the CONVERSIONS mapping table and have
the same semantics as the destinationdkimidentityN channel option. Note, however,
that the parameter separator is a semicolon while the CONVERSIONS template keyword
separator is a comma.

50.8.4.5 ip_backoff callout

New in MS 8.1. The ip_backoff callout is used to activate or deactivate IP backoff mode
for a specified IP address and destination domain. Unlike other smartsend callouts, the
ip_backoff callout is not associated with any specific mapping. Rather, it is designed to be
used as part of site-specific checks that determine when IP backoff mode needs to be in effect.

A call to the ip_backoff callout should appear as follows:

 $[IMTA_LIB:smartsend.so,ip_backoff,pflags=<pflags>|<channel>|<ip>|<domain>|<value>|<timeout>|]

The arguments are:

<pflags> Unsigned integer flag value. Currently only the lowest three bits of this bit-
encoded value have any meaning -- they enable increasing levels of debug
output, with "0" resulting in no output.

<channel> Channel associated with the IP address.

<ip> IP address for which IP backoff is to be enabled or disabled.

<domain> Destination domain for which backoff is to be enabled or disabled.

<valuet> The backoff entry's value. At the present time the entry value is ignored and this
field should be left blank - but see the special value and their semantics below.

<timeout> Timeout, in seconds, for the bckoff entry. A value of 0 causes the timeout
specified by the ipbackofftimeout channel option to be used. If no timeout
value has been specified a default value of 3600 (one hour) is used. The timeout
argument can be omitted, in which case it's value defaults to 0.

The callout succeeds even if the entry cannot be set.

The special value "?" causes a lookup to be performed on the backoff entry instead of a set. The
callout fails if the entry is not present. If the entry is present the callout succeeds and returns
the entry's value.

The specil value "-" causes the specified backoff entry to be deleted. The callout always
succeeds.

50–48 Messaging Server Reference

smartsend callouts

The ip_backoff callout operates by creating and deleting entries in memcache or Redis. The
entry's name is of the form "ip_backoff_<ip>" and at present the value is the string "mode=1".

50.8.4.6 auth_rewrite callout

The auth_rewrite callout is intended to be called from the AUTH_REWRITE mapping.
It provides the ability to confirm that a conversion tag appearing in a header field has a
corresponding IP list or MTA entry, the ability to activate DKIM signing, and can be used to
override the received_domain and id_domain settings for the current message.

The confirmation functionality is useful in preventing messages from being routed to the
wrong MTA during configuration updates. The ability to override domain settings can be used
to obfuscate local host information.

If DKIM support and obfuscation support is not enabled the callout succeeds if the
confirmation attempt fails, so that the mapping template itself determines the appropriate
action to be taken. If, on the other hand, DKIM or obfuscation support is enabled, the callout
succeeds when it needs to return a result and fails otherwise, in which case the plugin
necessarily provides all results.

Note that this callout is only needed in specific circumstances and therefore is not configured
by the smartsend.rcp recipe.

The AUTH_REWRITE mapping should be set up approximately as follows if bit 4 (value 16) of
pflags is clear:

AUTH_REWRITE

 * C[IMTA_LIB:smartsend.so,auth_rewrite,<pflags>|$0]$ENX4.7.0|Unknown$ tag

Note that the template in this example causes a temporary failure to be returned should
confirmation fail.

The callout should be configured as follows if either bit 4 (value 16, DKIM) or bit 5 (value 32,
domain obfuscation) are set:

AUTH_REWRITE

 * C[IMTA_LIB:smartsend.so,auth_rewrite,<pflags>|$0]$E

Note that the template in this example simply returns the callout result if the callout succeeds.

Here <pflags> should be replaced with an unsigned integer flag value. The lowest three
bits enable increasing levels of debug output, with "0" resulting in no output. Bit 3 (value
8), controls the type of lookup that is performed for confirmation and domain obfuscation
information. A lookup for "ips_" entries is performed if the bit is clear; a lookup for "mta_"
entries is performed if the bit is set. If bit 5 (value 32) is set the result may contain override
values for received_domain and/or id_domain.

Bit 4 (value 16) or bit 5 (value 32), if set, cause a lookup to be performed on a key of the form
ocid_<sender-OCID>, where <sender-OCID> is the sender OCID (see below) If this lookup

Mapping tables 50–49

smartsend callouts

fails an additional query is done for ocid_<tenant-OCID>, where <tenantr-OCID> is the
tenant OCID. The result is interpreted as a parameter list and can contain DKIM parameters
(bit 4 set) and override values for received_domain and/or id_domain (bit 5 set).

Additionally, the authrewrite channel option should be set to 16 on all appropriate source
channels (or on the defaults channel if the mapping is to be applied to all message flows). The
header where the virtual MTA (first conversion tag) is located may be specified as the first
value of the authrewrite_extra_headers MTA option. The header field containing the
tenant and sender OCIDs may be specified as the second value if DKIM processing is enabled.
At present the only supported syntax for this header field is a JSON string of the form:

{"tenantId":"<tenant-OCID>","senderId":"<sender-OCID>","compartmentId":"<compartment-OCID>"}

The tenantId and senderId OCIDs must be present. The compartmentId is optional; if it is not
supplied its value defaults to that of the tenantId. Note that the parameters may appear in any
order. Any additional parameters will be silently ignored.

Alternately, bit 13, value 8192 of the include_conversiontag MTA option, can be set to
cause conversion tag information to be included in the probe if it is available. The conversion
tag list is interpreted as follows:

<virtual-MTA>,<sender-OCID>,<tenant-OCID>,<compartment-OCID>

The compartment-OCID will be omitted if it has the same value as the tenant-OCID, which is
the case when it specifies the root compartment for the tenancy.

50.8.4.7 send_access callout

The send_access callout is intended to be called from either the SEND_ACCESS or
ORIG_SEND_ACCESS mapping. It provides the ability to confirm that a conversion tag
transferred using the XCONVTAG extension has a corresponding IP list or MTA entry. This
functionality is useful in preventing messages from being routed to the wrong MTA during
configuration updates. The callout succeeds if the confirmation attempt fails, so that the
mapping template itself determines the appropriate action to be taken.

Note that this callout is only needed in specific circumstances and therefore is not configured
by the smartsend.rcp recipe.

The SEND_ACCESS mapping should be set up approximately as follows:

SEND_ACCESS

 * C[IMTA_LIB:smartsend.so,send_access,<pflags>|$0]$ENX4.7.0|Unknown$ tag

Note that the template in this example causes a temporary failure to be returned when
confirmation fails.

Here <pflags> should be replaced with an unsigned integer flag value. The lowest three bits
enable increasing levels of debug output, with "0" resulting in no output. Bit 3 (value 8),
controls the type of lookup that is performed. A lookup for "ips_" entries is performed if the
bit is clear; a lookup for "mta_" entries is performed if the bit is set. (The latter is appropriate
for an intermediate routing MTA.) Finally, bit 4 (value 16) should be set if this callout is placed

50–50 Messaging Server Reference

smartsend callouts

in the ORIG_SEND_ACCESS mapping (as opposed to its normal location in the SEND_ACCESS
mapping).

Additionally, bit 4, value 16, of the include_conversiontag MTA option should also be
set so that the conversion tag is included in the SEND_ACCESS mapping probe. Bit 3, value 8
should be set if the callout is done from the ORIG_SEND_ACCESS mapping.

50.8.4.8 forward callout

The forward callout is used in conjunction with the mx_access callout (described below) to
implement a general purpose MX rollup facility that's superior to what was provided by the
dns_get_first_mx mapping callout. With this approach rollups are specified in the general
database, which in turn can be linked to either memcache or Redis.

The first step in configuring this functionality is to select a domain suffice to identify all of
the rollups that will be defined. ".rollup" is used in other products for this purpose, but any
domain can be used as long as it isn't a valid top-level domain (TLD) or internal domain.

Once the domain has been selected a rewrite rule needs to be added to route rollups to the
proper tcp_ that will process rolled up messages. Assuming that ".rollup" is the rollup domain
suffix, the tcp_local channel is to be used, and the channel has the usual official host name of
"tcp_local-daemon", the rule would be:

.rollup $U%$H$D@tcp_local-daemon

The forward callout should be now added to the FORWARD mapping table as follows:

FORWARD

 |.rollup $E
 * C[IMTA_LIB:smartsend.so,forward,<pflags>|$0]$E

Of course ".rollup" should be replaced with whatever domain is to be used to identify rollups.

The mx_access callout must also be set up, as described below, and the entries need to be
added to the general database to create specific MX rollups.

The forward callout performs the following actions:

• Perform an MX record lookup on the routing domain part of the envelope recipient address.
No action is taken if the lookup fails or no records are found.

• Construct a list of MX records with the lowest precedence (highest priority).

• For each MX host on the list, construct a probe of the form rolluphost_<mxhost> and
look it up in the general database. The MX host name is forced to lower case as part of
constructing the probe. The values of these entries are expected to either be of the form:

mxhost1,mxhost2,mxhost3,...,mxhostN;rollupname

or:

Mapping tables 50–51

smartsend callouts

[mxhost-ip-1],[mxhost-ip-2],[mxhost-ip-3],[mxhost-ip-N];rollupname

Here "mxhost1...mxhostN" are the names of all the MX hosts included in the rollup, mxhost-
ip-1...mxhost-ip-N are the IP addresses of all the MX hosts included in the rollup, and
"rollupname" is the domain name associated with the rollup. In the case of a host name list,
the list should be exactly the same as the list specified in the corresponding "rollupmx_"
entry used by the MX_ACCESS mapping, and he domain name must end with the rollup
domain suffix.

• If the initial lookup for a given host fails it is repeated with the first element of the host name
replaced by a "*". If this fails a lookup is attempted with the first two elements replaced with
a "*".

• If a match is found the corresponding entry value is checked to make sure all of the MXes it
specified are also on the MX list for the destination domain. If they are a result is returned
that adds the rollup name to the address as a source route. If not the process continues with
the next host.

50.8.4.8.1 Setting up an MX rollup

A rollup consists of two sets of general database entries, one set to match the various MX hosts
to the rollup and another to specify the MX hosts for the rollup. This sounds more complex
than it actually is because the MX hosts in the first set have to match the set in the second.

For example, let's suppose that a large service provider, example.net, is known to provide
service for many different domain, but all of the domains share the MX hosts mx1.example.net,
mx2.example.net, and mx3.example.net. An appropriate set of database entries for this service
provider would be:

rolluphost_mx1.example.net mx1.example.net,mx2.example.net,mx3.example.net;example.net.rollup
rolluphost_mx2.example.net mx1.example.net,mx2.example.net,mx3.example.net;example.net.rollup
rolluphost_mx3.example.net mx1.example.net,mx2.example.net,mx3.example.net;example.net.rollup

rollupmx_example.net.rollup mx1.example.net,mx2.example.net,mx3.example.net

If this seems highly duplicative, that's because it is: Denormalization is required to turn a
bidirectional mapping into a set of entries in a name/value store.

In this case a wildcard could be used to lower the number of entries:

rolluphost_*.example.net mx1.example.net,mx2.example.net,mx3.example.net;example.net.rollup

rollupmx_example.net.rollup mx1.example.net,mx2.example.net,mx3.example.net

When wildcards are used it may be necessary to specify the matching list as a serious of IP
addresses known to be associated with the service instead of a series of host names:

rolluphost_*.example.net [ip1],[ip2],[ip3];example.net.rollup

rollupmx_example.net.rollup mx1.example.net,mx2.example.net,mx3.example.net

50.8.4.9 mx_access callout

The mx_access callout is used in conjunction with the forward callout (described above) to
implement a general purpose MX rollup facility.

50–52 Messaging Server Reference

smartsend callouts

Once the steps for setting up the forward callout have been done, the mx_access callout
should be added to the MX_ACCESS mapping table as follows:

MX_ACCESS

 |.rollup C[IMTA_LIB:smartsend.so,mx_access,<pflags>|$0.rollup]$E

The ".rollup" that appears on both sides of the mapping should be replaced with whatever
domain is to be used to identify rollups.

The mx_access callout constructs a probe of the form rollupmx_<domaint>, where
"domain" is the destination domain, and looks it up in the general database. If a match is found
the value of the entry is expected to be of the form:

mxhost1,mxhost2,mxhost3,mxhostN

This value is then returned as the result, which then becomes the MX list for the domain.

50.8.4.10 mta_startup and mta_shutdown callouts

The mta_startup and mta_shutdown callouts are intended to be called from the
MTA_STARTUP and MTA_SHUTDOWNmapping. These callouts should be set up as follows:

MTA_STARTUP

 * C[IMTA_LIB:smartsend.so,mta_startup,<pflags>|$0]$E

MTA_SHUTDOWN

 * C[IMTA_LIB:smartsend.so,mta_shutdown,<pflags>|$0]$E

Here <pflags> should be replaced with an unsigned integer flag value. The lowest three bits
enable increasing levels of debug output, with "0" resulting in no output. Only one additional
bit is defined for both mappings: Bit 3, value 8, should be set as part of configuring open
connection aggregation with the log_action callout described below.

Currently the callout always fails, so it can be safely inserted before any other actions in the
mapping.

At present no other functionality is provided by these callouts, so they are not configured as
part of the smartsend,rcp recipe.

50.8.4.11 log_action callout

The log_action callout is intended to be called from the LOG_ACTION mapping. It provides
the ability to store counter information about MTA activity using a combination of Redis sets
and sorted sets. This provides the ability to determine things like the most active domains, the
domain generating the most temporary failures, and so on. Currently the callout always fails,
so it can be safely inserted before any other actions in the mapping.

Note that this callout is only needed in specific circumstances and therefore is not configured
by the smartsend.rcp recipe.

Mapping tables 50–53

smartsend callouts

As part of setting up the callout, bits 1 and 4, values 2 and 16, respectively, of the
log_conversion_tag MTA option should also be set if conversion tags are used so that the
tags are included in the LOG_ACTION mapping probe. The LOG_ACTION mapping should be
set up as follows:

LOG_ACTION

 * C[IMTA_LIB:smartsend.so,log_action,<pflags>|$0]

Here <pflags> should be replaced with an unsigned integer flag value. The lowest three bits
enable increasing levels of debug output, with "0" resulting in no output. The next three bits
enable different sets of counters as described in the following sections.

50.8.4.11.1 Open SMTP Connection Aggregation (bit 3, value 8)

First, host + process pairs are tracked used the Redis set smtp_host_pid. (Note that this part
of the counters is actually done by the mta_startup and mta_shutdown callouts decribed
above.) Entries in this set have names of the form <omta-host>_<omta-pid>_<omta-
type>. Here <omta-type> is the type of process, e.g. "smtp_client", "smtp_server", etc. All
processes that engage in enqueue and dequeue operations will add entries for themselves
when they initialize and remove them when they terminate.

Second, three per-process sorted sets are also maintained:

• smtp_domain_<omta-host>_<pid> <domain> <numeric-value>

• smtp_vmta_<omta-host>_<pid> <vmta> <numeric-value>

• smtp_ip_<omta-host>_<pid> <vmta>_<ip> <numeric-value>

The <numeric-value> is incremented each time a connection is opened and decremented
each time one is closed.

Note that these sorted sets contain no useful information and have no pointer references
when the associated MTA process terminate and are therefore deleted by the mta_shutdown
callout.

Third, three global connection tracking sorted sets are maintained:

• smtp_domain_<genid> <domain> <numeric-value>

• smtp_vmta_<genid> <vmta> <numeric-value>

• smtp_ip_<genid> <vmta>_<ip> <numeric-value>

The <genid> is obtained from the Redis entry smtp_genid. If no such entry exists one is
created with value "0".

Note that once entries in the global connection tracking sorted sets are created they will never
be deleted; some external cleanup mechanism must be provided.

50.8.4.11.2 Queue Count Aggregations in Redis (bit 4, value 16)

First, hosts are tracked in the Redis set queue_host. Each entry is consists of a host name
<host>. Note that no facility is provided to remove entries from this set. (Note that this
addition is actually done by the mta_startup callout described above.)

50–54 Messaging Server Reference

smartsend callouts

Second, current queue message counts are tracked in a sorted set per host by two axes:

• queue_domain_<host> <domain>_<channel> <numeric-value>

• queue_vmta_<host> <vmta>_<channel> <numeric-value>

Here <channel> is the name of the MTA channel queue.

Third, two global queue counts are maintained:

• queue_domain_<genid> <domain>_<channel> <numeric-value>

• queue_vmta_<genid> <vmta>_<channel> <numeric-value>

The <genid> is obtained from the Redis entry queue_genid. If no such entry exists one is
created with value "0".

Note that once entries in any of these sorted sets are created they will never be deleted; some
external cleanup mechanism must be provided.

50.8.4.11.3 Success/Error Count Aggregations in Redis (bit 5, value 32)

These counters provide information about SMTP operation success/failure rates in a series of
buckets, each represented by a sorted set:

• <success|tempfail|permfail>_domain_<MM><00|30> <domain> <numeric-
value>

• <success|tempfail|permfail>_vmta_<MM><00|30> <vmta> <numeric-value>

• <success|tempfail|permfail>_ip_<MM><00|30> <ip> <numeric-value>

Here <MM> is the minute part of the current time. This has the effect of creating one bucker per
minute.

Again, no mechanism exists for resetting the bucket contents, deleting entries from these
buckets, or deleting the buckets themselves.

50.8.4.12 dequeue_access callout

The dequeue_access callout is intended to be called from the DEQUEUE_ACCESS mapping.
It provides the ability to record overall message latency in the smartsend log field and to send
this information in JSON format to a separate latency server for further processing.

Note that this callout is only needed in specific circumstances and therefore is not configured
by the smartsend.rcp recipe.

As part of setting up the callout, bit 12, value 4096, of the include_conversiontag MTA
option should also be set. (Latency computations depend on conversion tag information.) Bit
0 (value 1) of the log_smartsend MTA option should also be set in order for the latency
information to be logged. The DEQUEUE_ACCESS mapping should then be set up as follows:

DEQUEUE_ACCESS

 * C[IMTA_LIB:smartsend.so,dequeue_access,<pflags>|$0]

Mapping tables 50–55

smartsend callouts

Here <pflags> should be replaced with an unsigned integer flag value. The lowest three bits
enable increasing levels of debug output, with "0" resulting in no output.

Bit 3, value 8 of <pflags> enables writing of the calculated latency in the smartsend log field.
Assuming that the time the message was received appears in the fifth conversion tag entry,
expressed as an integer UTC time since the epoch in milliseconds (date +%s%3N on Linux),
the elapsed time up to this delivery attempt will be computed and stored in the smartsend log
field with the prefix "latency=".

Bit 4, value 16, enables writing of the calculated latency to the latency server.

50.8.4.13 MTA identity option: id (string)

The id MTA option specifies a name for a group of MTAs that share network connections.
At present this name is only used by the smartsend facility in looking up IP address list
information.

The official host name on the local channel is used if this option is not specified.

50.8.4.14 smartsend options: smartsend_use_redis (0 or 1)

The smartsend_use_redis smartsend option selects the backend database protocol
used by the smartsend plugin. A value of 1 selects redis; a value of 0 selects memcache.
The default if the option is not specified is to use redis if either the redis.hostlist or
redis.servicename option is set, memcache otherwise.

50.8.4.15 Timeout for IP backoff entries (ipbackofftimeout)

An entry is made in memcache or Redis when IP backoff mode engages. This option sets the
timeout value for the entry. The value is expressed in seconds, with a default value of 3600 (one
hour).

50–56 Messaging Server Reference

Chapter 51 Message conversions
51.1 Conversion channel .. 51–1

51.1.1 CONVERSIONS mapping table: Selecting message traffic for conversion
processing ... 51–2
51.1.2 Conversion channel definition ... 51–6
51.1.3 Conversion control ... 51–7

51.2 Conversion tags .. 51–16
51.3 Character set conversion and message reformatting .. 51–17

51.3.1 CHARSET-CONVERSION mapping table .. 51–17
51.3.2 Message reformatting ... 51–22
51.3.3 Relabelling MIME header lines ... 51–27
51.3.4 Service conversions .. 51–28

51.4 Interactions between conversions and character set conversions 51–30

There are two broad categories of message conversions in the MTA, controlled by two
corresponding mapping tables and the MTA conversions. In Unified Configuration, the
mappings are stored under the mapping MTA option group, and the MTA conversion entries
are stored under the conversions MTA option; in legacy configuration, the MTA mapping
tables are stored in the mappings file, and the MTA conversion entries are stored in the
conversions file.

The first category of message conversion is that of character set, formatting, and labelling
conversions performed internally by the MTA. The application of such conversions is
controlled by the CHARSET-CONVERSION mapping table. CHARSET-CONVERSION effects are
discussed in Character set conversion and message reformatting.

The second category of message conversion is that of conversion of message attachments using
external, third-party programs and site-supplied procedures, such as document converters.
The application of such conversions is controlled by the CONVERSIONS mapping table, and
messages requiring such conversions are thereby routed through the MTA's conversion
channel; the conversion channel executes the site-specified external conversion procedures.

Note that the MTA conversions entries (stored in the conversions file in legacy
configuration), are used to specify the details of CONVERSIONS mapping table triggered
external conversions and to specify the details of some internal CHARSET-CONVERSION
mapping table triggered conversions.

The imsimta test -translation utility can perform character set conversions for
testing or scripting purposes; the imsimta test -mime utility can perform certain message
conversions, for testing purposes.

Note that certain basic choices regarding the fundamental handling of attachments/MIME
parts can be configured for arbitrary channels via setting of channel options, potentially not
requiring any of the more complex conversion channel or message reformatting facilities
discussed here; for these basic choices, see the Attachments and MIME processing channel
options.

51.1 Conversion channel
The conversion channel performs arbitrary body-part-by-body-part conversions on messages
flowing through the MTA. Any subset of MTA message traffic can be selected for conversion

Message conversions 51–1

CONVERSIONS mapping table:
Selecting message traffic for
conversion processing

and any set of programs or command procedures can be used to perform conversion
processing. (The MTA's native conversion facilities are fairly limited, so the ability to call
external converters is crucial.) A special "database" (stored as the conversions MTA option
in Unified Configuration, or in the conversions file in legacy configuration) is consulted to
choose an appropriate conversion for each body part.

For instance, third party document converters or virus scanning software may be hooked in
for automatic execution via the conversion channel. Or sites may develop their own custom
applications to hook in via the conversion channel.

Because the conversion channel is intended for "intermediate" processing of messages, the
MTA has a special sort of routing available for it, whereby messages are routed without
affecting the recipient address(es); see the CONVERSIONS mapping table. This special sort of
routing used to route messages through the conversion channel without modification to the
actual addresses can also be used for other purposes: to route through third party channel
programs, or to route out to third party spam/virus SMTP hosts (that will then relay messages
back to the MTA). See the discussion of alternate channel routing via the CONVERSIONS
mapping.

51.1.1 CONVERSIONS mapping table
Although conversion processing is done using a regular MTA channel program, under normal
circumstances this channel is never specified directly either in an address or in an MTA rewrite
rule. Instead, the MTA controls routing to the conversion channel via the CONVERSIONS
mapping table.

In legacy configuration, the CONVERSIONS mapping table (like all mapping tables),
was stored in the mappings file. In Unified Configuration, the CONVERSIONS mapping
table is stored as the settings under either a role.mapping:CONVERSIONS option or a
instance.mapping:CONVERSIONS option. In Unified Configuration, most often creation or
modification of such a CONVERSIONS mapping table is performed using the edit command
of the msconfig utility, to edit any or all mapping tables in a format like the legacy mappings
file; e.g.:

msconfig> edit mappings

Or from within msconfig the CONVERSIONS mapping table can be created line-by-line:

msconfig> set mapping:CONVERSIONS.rule "IN-CHAN=tcp_local;OUT-CHAN=ims-ms;CONVERT" Yes
msconfig# set mapping:CONVERSIONS.rule "IN-CHAN=ims-ms;OUT-CHAN=tcp_local;CONVERT" Yes
msconfig# set mapping:CONVERSIONS.rule * No

Note that CONVERSIONS mapping rules often include a special character such as the equal
sign, =, in either or both of the pattern (left hand side of the rule) or template (right hand
side of the rule), thus often require quoting of pattern and/or template when being set at the
msconfig command line.

As the MTA processes each message it probes the CONVERSIONS mapping (if one is present)
with a string of the default form

IN-CHAN=source-channel;OUT-CHAN=destination-channel;CONVERT

where source-channel is the source channel from which the message is coming and
destination-channel is the destination channel to which the message is heading. New

51–2 Messaging Server Reference

CONVERSIONS mapping table:
Selecting message traffic for

conversion processing

in MS 6.3, setting bit 1 (value 2) of the include_conversiontag MTA option will cause the
probe to instead have the form

IN-CHAN=source-channel;OUT-CHAN=destination-channel;TAG=tag-list;CONVERT

where tag-list is a comma-separated list of any conversion tags present on the message.
Note that multiple conversion tags may be present; multiple tags will be included as a comma-
separated list. The total, combined length of such tags (that is, the length of the list, including
the commas) is limited to 256 characters. (As with all mapping tables, the overall probe length
is limited to 1024 characters.)

New in the 8.0 release, setting bit 6 (value 64) of the include_mtpriority MTA option will
cause an additional, compound field to be appended to the CONVERSIONS mapping table
probe, immediately after any "TAG=" clause.

New in the 8.0.2.3 release, setting bit 0 (value 1) of the include_domain MTA option will
casue an additiona field to be appended to the CONVERSIONS mapping table probe containing
the destination domain for the current set of recipients, immediately after any "MTPRIORITY="
and "BLOCKS=" clauses.

If the probe matches the pattern (left hand side) of a CONVERSIONS mapping table entry, then
the resulting string (right hand side of the mapping entry) should be a comma-separated list of
keywords. Usually either just the keyword "Yes" or "No" is specified. If "Yes" is produced, the
MTA will divert the message from its regular destination to the conversion channel. (By also
specifying Channel=channel-name, the message can be diverted to some alternate channel
rather than to the regular conversion channel.) If the message has a conversion tag set, note
that the "T" flag will be set, and this can be tested for (when a match on the pattern, i.e., left
hand side, occurred) using a $:T test in the template (right hand side) output string. If either
"No" is produced or no match is found, the message will be queued to the regular destination
channel.

Some less commonly used, additional template keywords, similar to those available for the
CHARSET-CONVERSION mapping table, are also available as shown below.

Table 51.1 Additional CONVERSIONS mapping keywords

Keyword Action
Always Force conversion even when the "conversion" channel is the

same as the source channel; while not desirable when the actual
conversion channel (or any other "intermediate channel") is being
used, "Always" can be useful when an "alternate conversion
channel", specified via a "Channel=channel-name" clause, is used
to select some other sort of channel, such as a tcp_* channel

Appledouble Convert other MacMIME formats to Appledouble format
Applesingle Convert other MacMIME formats to Applesingle format
 BASE64 Switch MIME encodings to BASE64
Binhex Convert other MacMIME formats, or parts including Macintosh

type and Mac creator information, to Binhex format
Block Extract just the data fork from MacMIME format parts
Bottom "Flatten" any message/rfc822 body part (forwarded message) into

a message content part and a header part

Message conversions 51–3

CONVERSIONS mapping table:
Selecting message traffic for
conversion processing

Channel=channel-name Route through the alternate channel channel-name rather than the
regular conversion channel

Delete "Flatten" any message/rfc822 body part (forwarded message) into
a message content part, deleting the forwarded headers

 dkimidentity-N=identity New in MS 8.0.2.3. Activate DKIM signing in slot N using
using the specified identity. See the description of the
destinationdkimidentityN channel option for additional
information on the value's semantics. N can range from 0 to 3.
This template keyword also clears the corresponding selector
value, which can subsequently be set with the dkimselector-N
template keyword.

dkimselector-N=selector New in MS 8.0.2.3. Specifies the selector list for DKIM slot N.
See the description of the destinationdselectorN channel
option for additional information on the value's semantics. N can
range from 0 to 3. This template keyword must be specified after
the corresponding dkimidentity-N template keyword.

Level Remove redundant multipart levels from message
Macbinary Convert other MacMIME formats, or parts including Macintosh

type and Macintosh creator information, to Macbinary format
No Disable conversion
Pathworks Convert message to Pathworks Mail format
Preprocess (New in MS 6.3) Perform any configured charset conversion

before routing to the conversion channel
 QUOTED-PRINTABLE Switch MIME encodings to QUOTED-PRINTABLE
Record,Text Line wrap text/plain parts at 80 characters
Record,Text=n Line wrap text/plain parts at n characters
RFC1154 Convert message to RFC 1154 format
Thurman Convert some non-standard "attachments" to MIME format
Top "Flatten" any message/rfc822 body part (forwarded message) into

a header part and a message content part
 UUENCODE Switch MIME encodings to X-UUENCODE
Yes Enable conversion

For example, suppose messages coming in from the Internet and destined to the Message Store
via either an ims-ms or tcp_lmtpcs* channel require conversion processing. The following
mapping would then be appropriate:

CONVERSIONS

 IN-CHAN=tcp_local;OUT-CHAN=ims-ms;CONVERT Yes
 IN-CHAN=tcp_local;OUT-CHAN=tcp_lmtpcs*;CONVERT Yes
 IN-CHAN=*;OUT-CHAN=*;CONVERT No

In Unified Configuration, msconfig's edit command could show the CONVERSIONS
mapping as above. Alternatively,

51–4 Messaging Server Reference

https://tools.ietf.org/html/rfc1154

CONVERSIONS mapping table:
Selecting message traffic for

conversion processing

msconfig> show mapping:CONVERSIONS.*
role.mapping:CONVERSIONS.rule = IN-CHAN=tcp_local;OUT-CHAN=ims-ms;CONVERT Yes
role.mapping:CONVERSIONS.rule = IN-CHAN=tcp_local;OUT-CHAN=tcp_lmtpcs*;CONVERT Yes
role.mapping:CONVERSIONS.rule = IN-CHAN=*;OUT-CHAN=*;CONVERT No

51.1.1.1 Alternate channel routing via the CONVERSIONS mapping
One of the CONVERSIONS mapping table template keyword clauses is Channel=channel-
name, causing routing (if the CONVERSIONS mapping table pattern matched the probe)
through the specified channel-name without any change to the message's recipient
addresses; see the CONVERSIONS mapping table. This CONVERSIONS mapping table facility
to cause routing via some alternate channel (without alteration of a message's recipient
addresses) turns out to be extremely useful for a number of scenarios. Originally conceived as
a convenience for hooking in third-party or site-developed message processing channels, e.g.,

CONVERSIONS

 IN-CHAN=tcp_local;OUT-CHAN=ims-ms;CONVERT \
Yes,Channel=third-party-processing-channel

alternate conversion channel configuration also functions perfectly well to route messages out
via SMTP to some third-party spam/virus filtering SMTP box (presumably itself configured to
send processed messages back to the MTA to further delivery). For instance, if the MTA has
been configured with a special tcp_* channel for sending to, and receiving from, a third-party
spam/virus filtering SMTP host, with rewrite rule:

! Rewrite rule to recognize source IP of virus scanner box and "switch"
! messages coming from it to be considered to come in tcp_virusscanner channel
!
[IP-address-of-virusscanner] ER$U%$H@TCP-VIRUSSCANNER-DAEMON

and channel definition:

! Channel for sending to virus scanner box.
! Set with "allowswitchchannel" so that it can also be considered the source
! channel for messages coming back in from virus scanner box.
!
tcp_virusscanner smtp daemon host-name-of-virusscanner \
 allowswitchchannel ...additional-keywords...
TCP-VIRUSSCANNER-DAEMON

then a corresponding CONVERSIONS mapping table on a front end MTA might be along the
lines of:

CONVERSIONS

 IN-CHAN=tcp_local;OUT-CHAN=tcp_intranet;CONVERT Yes,Channel=tcp_virusscanner

to cause all messages coming directly in from the Internet, destined for an internal host, to get
a "side hop" through the virus scanner box. (Note that for users hosted-on-this-MTA, recipients
on ims-ms or tcp_lmtpcs channel, the "side hop" routing should be configured via the
aliasdetourhost channel option as the timing of its effect has better implications for local-
to-this-host users; but "alternate conversion channel" routing is generally used in conjunction
with aliasdetourhost in order to handle the cases of messages to remote users.)

Message conversions 51–5

Conversion channel definition

Such "alternate conversion channel" routing has also found an important application in
causing special routing of notification messages; see notification message routing.

51.1.1.2 Mapping table MTA options: include_domain (bitmask)

New in MS 8.0.2.3. This option selectively enables the inclusion of destination domain
information in various mapping table probes. When enabled, the destination domain will be
included in the probe in a table-specific way.

This option takes a bit-encoded integer value. The currently defined bits are shown in the
following table:

Table 51.2 include_domain MTA option bit values

Bit Value Usage
 0 1 CONVERSIONS : include in "DOMAIN=value" format after the block count

51.1.2 Conversion channel definition
A conversion channel must be present in the MTA's configuration in order for conversions
to be performed. In Unified Configuration, a conversion channel is configured automatically,
while in legacy configuration the post-installation configuration step normally caused an
appropriate conversion channel definition to be included in the MTA configuration file. The
channel definition should have the general form:

conversion
CONVERSION-DAEMON

or as displayed in Unified Configuration:

msconfig> show channel:conversion.*
role.channel.conversion.official_host_name = conversion-daemon

As of MS 8.0, use of the receivedstate channel option is recommended:

conversion receivedstate "content"
CONVERSION-DAEMON

or in Unified Configuration:

msconfig> set channel:conversion.receivedstate content

Rewrite rules can be added if desired to make it possible to queue mail explicitly to the
conversion channel. Something like

conversion $U%conversion.localhostname@conversion-daemon
conversion.localhostname $U%conversion.localhostname@conversion-daemon

where localhostname is the name of this MTA system, will provide the necessary
functionality. Note that in Unified Configuration, such rewrite rules would typically

51–6 Messaging Server Reference

Conversion control

be automatically generated, and make use of the $D and &/IMTA_HOST/ and &/
IMTA_DEFAULTDOMAIN/ substitutions, to appear as:

msconfig> show rewrite.rule * *conversion*
role.rewrite.rule = conversion $U%conversion.domain.com@conversion-daemon
role.rewrite.rule = conversion.&/IMTA_HOST/ $U%conversion.domain.com@conversion-daemon

Once such rewrite rules are present, then addresses of the form

user%host@conversion.localhostname

will be routed through the conversion channel regardless of what the CONVERSIONS mapping
table says.

51.1.3 Conversion control
The actual conversions performed by the conversion channel are controlled by rules
specified in the MTA conversions file (legacy configuration) or conversions MTA
option (Unified Configuration). As of MS 7.0, the conversions file is (symbolically)
IMTA_TABLE:conversions, i.e., CONFIGROOT/conversions. (In prior versions, the
conversions file was located via the IMTA tailor file option imta_conversion_file,
normally pointing to IMTA_TABLE:conversions.)

Note: Even in Unified Configuration, it is most convenient to think of the conversions
option as a file, accessed and modified via the command

msconfig> EDIT CONVERSIONS

so from here on, references will be simply to "the conversions file", even for a Unified
Configuration.

The MTA conversions file is a text file containing entries in a format that is modelled after
MIME Content-type: parameters (see RFC 2045). Each entry consists of one or more lines
grouped together; each line contains one or more "name=value;" parameter clauses. Quoting
rules conform to MIME conventions for Content-type: header line parameters. Every line
except the last must end with a semicolon. Entries are terminated by either a line that does
not end in a semicolon, one or more blank lines, or both. For example, the following entry
specifies that application/x-ddif parts in messages sent out to the Internet should be converted
to PostScript:

out-chan=l; in-type=application; in-subtype=x-ddif;
 out-type=application; out-subtype=postscript; parameter-copy-0=*;
 command="ddifps $INPUT_FILE $OUTPUT_FILE"

51.1.3.1 Conversion entry scanning and application

The conversion channel processes each message routed through it, part by part. The header of
each part is read and its Content-type: and other header information is extracted. (Note that
composite media types, that is, MULTIPART/* or MESSAGE/* "parts", are not made available
per se to the conversion channel, though any component discrete body parts within such
composite types are made available to the conversion channel for potential processing.)

The entries in the conversion file are then scanned in order from first to last; any IN-*
parameters present and the OUT-CHAN parameter, if present, are checked. If all of these

Message conversions 51–7

https://tools.ietf.org/html/rfc2045

Conversion control

parameters match the corresponding information for the body part being processed, then
the conversion specified by the remainder of the entry is performed. Note that an entry must
include an IN-TYPE clause in order to match. More specifically, the matching checks:

• if specified IN-CHAN and OUT-CHAN parameters match the channels1 through which the
message is passing;

• and if the specified PART-NUMBER matches the structured part number2 of the message part;

• and if the (required!) IN-TYPE parameter, as well as all specified IN-PARAMETER-NAME,
IN-PARAMETER-VALUE, and IN-SUBTYPE parameters, match the Content-type: of the
message part;

• and if all specified IN-DISPOSITION, IN-DPARAMETER-NAME, and IN-DPARAMETER-
VALUE parameters match the Content-disposition of the message part;

• and if the IN-DESCRIPTION matches the Content-description of the message part;

• and if specified IN-SUBJECT, IN-MESSAGE-CONTEXT, IN-A1-TYPE, and IN-A1-FORMAT
values match those of the headers of the immediately enclosing message (message/rfc822
part);

• and (as of MS 7.0.5) if the IN-ENCODING matches the Content-transfer-encoding of the
message part.

Only if all specified parameters match is the entry considered to match. Scanning terminates
once a matching entry has been found or all entries have been exhausted. If no entry matches,
no conversion is performed.

If the matching entry specifies DELETE=1, then the message part is deleted. Otherwise, the
command specified by the COMMAND parameter is executed.

Once an entry with a COMMAND parameter has been selected, the body part is extracted to a file.
The converter execution environment is prepared as specified by the PARAMETER-SYMBOL-
n parameters and DPARAMETER-SYMBOL-n parameters. Finally, a subprocess is created to
run the command specified by the COMMAND parameter. The command should perform the
necessary conversion operation, reading the file specified by the environment variable (UNIX)
and producing the file specified by the environment variable (UNIX).

The command may optionally set options in the OUTPUT_OPTIONS file to pass information
back to the conversion channel.

Conversion operations are terminated and no conversion is performed if the forked command
returns an error.

If the command succeeds, the resulting output file is read as specified by the OUT-MODE
parameter and a new body part containing the converted material is constructed according
to the OUT-ENCODING, OUT-PARAMETER-NAME-n, OUT-PARAMETER-VALUE-n, OUT-
SUBTYPE, OUT-TYPE, OUT-DESCRIPTION, OUT-DISPOSITION, OUT-DPARAMETER-VALUE-
n parameters.

This process is repeated for each part of the message until all parts have been processed.

See Conversion entry parameters for a complete list of the parameters available to conversion
entries.
1 The source channel and destination channel are normally the original source channel and
original destination channel prior to the CONVERSIONS mapping table applying and forcing

51–8 Messaging Server Reference

Conversion control

a "hop" through the conversion channel: that is, the conversion channel itself is not normally
the IN-CHAN or OUT-CHAN. However, see the original_channel_probe MTA option, and
explicit routing of an address through the conversion channel for exceptions.
2 The structured part number is the message part number as it would appear in PMDF MAIL.
That is, a multipart message has outer "level" parts counted starting from 1, and with a part, if
it is a multipart itself, the subparts count starting from 1, and so on for additional "levels". So
a multipart with no additional sublevels may have part numbers 1, 2, 3, etc., while a multipart
whose second part is itself a multipart, might have part numbers 1, 2.1, 2.2, etc., 3, etc..

51.1.3.2 Conversion entry parameters
The rule parameters currently provided are shown listed by functional groups in Available
conversion parameters.

Parameters not listed in this table (below) are ignored.

Table 51.3 Available conversion parameters, grouped by functionality
Parameter Meaning

Command parameters
CALL Routine to call. The argument takes the form

image|routine|argument.
COMMAND Command to execute to perform conversion. This parameter (or a CALL or

DELETE parameter) is normally required; if no command is specified, the
entry is ignored during conversion channel processing.1

DELETE 0 or 1. If this flag is set, the message part will be deleted. (If this is the only
part in a message, then a single empty text part will be substituted.)

RELABEL 0 or 1. This flag causes an entry to be ignored during conversion channel
processing. However, if this flag is 1, then MIME header relabelling is
performed during character set conversion.3

SERVICE-CALL Routine to call to perform service conversion. The argument takes the form
image|routine|argument. Note that this flag causes an entry to be
ignored during conversion channel processing; SERVICE-CALL entries are
instead performed during character set conversion processing.2

SERVICE-
COMMAND

The command to execute to perform service conversion. This parameter
(or SERVICE-CALL) is required in order to perform a service conversion;
if no command (or call) is specified, the entry is ignored for that phase
of processing. Note that this flag causes an entry to be ignored during
conversion channel processing; SERVICE-COMMAND entries are instead
performed during character set conversion processing.2

Matching parameters
ATTACHMENT-
NUMBER

Sequential number of the part, starting at number 0 for the first part of the
message. Compare with PART-NUMBER, which is the MIME structured
number for the part.

IN-A1-FORMAT Input A1-Format: value from the enclosing message/rfc822 part.
IN-A1-TYPE Input A1-Type: value from the enclosing message/rfc822 part.
IN-CHAN Input channel to match for conversion (wildcards allowed). The

conversion specified by this entry will only be performed if the message is
coming from the specified channel.

Message conversions 51–9

Conversion control

IN-CHANNEL Synonym for IN-CHAN.
IN-
DESCRIPTION

Input MIME Content-description: value.

IN-
DISPOSITION

Input MIME Content-disposition.

IN-
DPARAMETER-
DEFAULT-n

Input MIME Content-disposition parameter value default if parameter
is not present. This value is used as a default for the IN-DPARAMETER-
VALUE-n test when no such parameter is specified in the body part.

IN-
DPARAMETER-
NAME-n

Input MIME Content-disposition parameter name whose value is to be
checked; n = 0, 1, 2,

IN-
DPARAMETER-
VALUE-n

Input MIME Content-disposition parameter value that must match
corresponding IN-DPARAMETER-NAME (wildcards allowed). The
conversion specified by this entry is only performed if this field matches
the corresponding parameter in the body part's Content-disposition:
parameter list.

IN-ENCODING (New in MS 7.0.5) Input Content-transfer-encoding: value.
IN-LANGUAGE Input Content-language: value.
IN-MESSAGE-
CONTEXT

Input Message-context: value.

IN-PARAMETER-
DEFAULT-n

Input MIME Content-type parameter value default if parameter is not
present. This value is used as a default for the IN-PARAMETER-VALUE-n
test when no such parameter is specified in the body part.

IN-PARAMETER-
NAME-n

Input MIME Content-type parameter name whose value is to be checked;
n = 0, 1, 2,

IN-PARAMETER-
VALUE-n

Input MIME Content-type parameter value that must match
corresponding IN-PARAMETER-NAME (wildcards allowed). The
conversion specified by this entry is only performed if this field matches
the corresponding parameter in the body part's Content-type: parameter
list.

IN-SUBJECT Input Subject from enclosing message/rfc822 part.
IN-SUBTYPE Input MIME subtype to match for conversion (wildcards allowed). The

conversion specified by this entry is only performed if this field matches
the MIME subtype of the body part.

IN-TYPE Input MIME type to match for conversion (wildcards allowed). The
conversion specified by this entry is only performed if this field matches
the MIME type of the body part.

OUT-CHAN Output channel to match for conversion (wildcards allowed). The
conversion specified by this entry will only be performed if the message is
destined for the specified channel.

OUT-CHANNEL Synonym for OUT-CHAN.
PART-NUMBER Dotted integers, e.g., a.b.c... The part number of the MIME body part.
TAG Input conversion tag must match; such conversion tags might have been

set in various ways, including via a mailing list [CONVERSION_TAG]
named parameter, or via an alias_conversion_tag alias option, or in
direct LDAP mode set via a user's own mailConversionTag attribute

51–10 Messaging Server Reference

Conversion control

or via the user's domain's mailDomainConversionTag attribute, or via
Sieve filter conversion tag actions.

Conversion script environment parameters
DPARAMETER-
SYMBOL-n

Content-disposition parameters to convert to environment variables
if present; n = 0, 1, 2, Takes as argument the name of the MIME
parameter to convert, as matched by an IN-DPARAMETER-NAME-m clause.
Each DPARAMETER-SYMBOL-n is extracted from the Content-disposition:
parameter list and placed in an environment variable of the same name
prior to executing the converter.

MESSAGE-
HEADER-FILE

0, 1, or 2. If set to 1, the original headers of the immediately enclosing
message part are written to the file represented by the MESSAGE_HEADERS
symbol. If set to 2, the original headers of the message as a whole (the
outermost message headers) are written to MESSAGE_HEADERS. As of
MS 6.1, in the MESSAGE-HEADER-FILE=2 case, besides the original
headers, the envelope information will also be written, in the form of an X-
Envelope-from: header line and an X-Envelope-to: header line.

ORIGINAL-
HEADER-FILE

0 or 1. If set to 1, the original headers of the enclosing part are written to
the file represented by the INPUT_HEADERS symbol.

PARAMETER-
SYMBOL-n

Content-type parameters to convert to environment variables if present;
n = 0, 1, 2, Takes as argument the name of the MIME parameter
to convert, as matched by an IN-PARAMETER-NAME-m clause. Each
PARAMETER-SYMBOL-n is extracted from the Content-type: parameter
list and placed in an environment variable of the same name prior to
executing the converter.

Override/output parameters
DPARAMETER-
COPY-n

A list of the Content-disposition: parameters to copy from the input
body part's Content-disposition: parameter list to the output body part's
Content-disposition: parameter list; n = 0, 1, 2, Takes as argument
the name of the MIME parameter to copy, as matched by an IN-
DPARAMETER-NAME-m clause. Wildcards may be used in the argument.
In particular, an argument of * means to copy all the original Content-
disposition: parameters.

OUT-A1-FORMAT Output A1-Format.
OUT-A1-TYPE Output A1-Type.
OUT-
DESCRIPTION

Output MIME Content-description if it is different than the input MIME
Content-description.

OUT-
DISPOSITION

Output MIME Content-disposition if it is different than the input MIME
Content-disposition.

OUT-
DPARAMETER-
NAME-n

Output MIME Content-disposition parameter name; n = 0, 1, 2,

OUT-
DPARAMETER-
VALUE-n

Output MIME Content-disposition parameter value corresponding to
OUT-DPARAMETER-NAME-n.

OUT-MODE Mode in which to read the converted file. This should be one of: BLOCK,
RECORD, RECORD-ATTRIBUTE, TEXT.

OUT-ENCODING Encoding to apply to the converted file.

Message conversions 51–11

Conversion control

OUT-LANGUAGE Output Content-language: value.
OUT-MESSAGE-
CONTEXT

(New in 6.0) Set the output Message-context: value

OUT-
PARAMETER-
NAME-n

Output MIME Content-type parameter name; n = 0, 1, 2,

OUT-
PARAMETER-
VALUE-n

Output MIME Content-type parameter value corresponding to OUT-
PARAMETER-NAME-n.

OUT-SUBTYPE Output MIME type if it is different than the input MIME type.
OUT-TYPE Output MIME type if it is different than the input type
OVERRIDE-
HEADER-FILE

0 or 1. If set, then MIME headers are read from the OUTPUT_HEADERS
symbol, overriding the original MIME headers in the enclosing part.

OVERRIDE-
OPTION-FILE

0 or 1. If set, then the conversion channel reads options from the
OUTPUT_OPTIONS symbol.

PARAMETER-
COPY-n

A list of the Content-type: parameters to copy from the input body part's
Content-type: parameter list to the output body part's Content-type:
parameter list; n = 0, 1, 2, Takes as argument the name of the MIME
parameter to copy, as matched by an IN-PARAMETER-NAME-m clause.
Wildcards may be used in the argument. In particular, an argument of *
means to copy all the original Content-type: parameters.

1 Except see the RELABEL, SERVICE-CALL, and SERVICE-COMMAND parameters, which
cause entries to be ignored during conversion channel processing, but do affect character set
conversion.

2 See Service conversions for more information on character set conversion and using the
SERVICE-COMMAND parameter.

3 See Relabelling MIME header lines for more information on character set conversion and
using the RELABEL parameter.

51.1.3.3 Conversion entry parameter value wildcard matching

The values of conversion entry parameter values may be specified as literal strings, or using
wildcards as in MTA mapping table entry patterns.

For instance,

in-dparameter-name-0=filename; in-dparameter-value-0=*.wpc;

would match any Content-disposition: header filename parameter that has a .wpc extension.
Or

in-dparameter-name-0=filename; in-dparameter-value-0=*.wp$[cd56]%;

would match any Content-disposition: header filename parameter that has a .wpc, .wpd,
.wp5, or .wp6 extension.

51–12 Messaging Server Reference

Conversion control

51.1.3.4 Conversion predefined symbols and environment variables

Symbols in conversion file entries shows symbols available for use within conversion file
entries; that is, symbol substitutions available directly in the conversion file. (In constrast,
Environment variables for use by conversion channel shell procedures below shows
environment variables available for use within a conversion shell script procedure.)

Table 51.4 Symbols in conversion file entries

Symbol Description
A1-FORMAT
A1-FUNCTION
A1-TYPE
DESCRIPTION The content description of the input message part.
DISPOSITION The content disposition of the input message part.
LANGUAGE The language tag from the Content-language: header

line of the input message part.
SERVICE
SUBJECT The Subject: of the enclosing message/rfc822 part.
TAG The conversion tag(s) of the input message.

Symbols may be substituted into a conversion entry by enclosing the symbol name in single
quotes.

To obtain a literal single quote in a conversion entry, quote it with the backslash character, \'.
To obtain a literal backslash in a conversion entry, use two backslashes, \\.

Environment variables for use by conversion channel shell procedures shows the basic set of
environment variables (UNIX) available for use by the conversion command.

Table 51.5 Environment variables for use by conversion channel shell
procedures

Environment variable Description
ATTACHMENT_NUMBER The sequential number of the part, starting at number 0 for the first

part of the message. Compare with PART_NUMBER, which is the
MIME structured number for the part.

CONVERSION_TAG The conversion tag(s) of the input message (only defined if the
message has one or more conversion tags set).

INPUT_CHANNEL The source channel.
INPUT_ENCODING The encoding originally present on the body part.
INPUT_FILE The name of the file containing the original body part. The

converter should read this file.
INPUT_HEADERS The name of the file containing the original headers for the

enclosing part. The converter should read this file.
INPUT_DESCRIPTION The content description of the input message part.

Message conversions 51–13

Conversion control

INPUT_DISPOSITION The content disposition of the input message part.
INPUT_LANGUAGE The content language of the input message part.
INPUT_TYPE The content type of the input message part.
INPUT_SUBTYPE The content subtype of the input message part.
MESSAGE_HEADERS The name of the file containing the original headers for an enclosing

message. The converter should read this file.
OUTPUT_CHANNEL The destination channel.
OUTPUT_FILE The name of the file where the converter should store its output.

The converter should create and write this file.
OUTPUT_HEADERS The name of the file where the converter should store MIME

headers for an enclosing part. The converter should create and
write this file. Note that the file should have a format of header line,
header line,..., blank line; be sure to include the final blank line.

OUTPUT_OPTIONS The name of the file from which the converter should read options
(such as status values on UNIX).

PART_NUMBER The MIME structured number for the part. Compare with
ATTACHMENT_NUMBER, which is the sequential number of the part.

PART_SIZE The size, in bytes, of the part.
content-disposition
parameters

content-type parameters

Additional environment variables (UNIX or NT) containing Content-type: parameter
information or Content-disposition: parameter information can be created as they are needed
using the PARAMETER-SYMBOL-n and DPARAMETER-SYMBOL-n facilities, respectively; see
Available conversion parameters, grouped by functionality.

Override options for passing information back to the conversion channel shows additional
"override" options available (on UNIX) for use by the conversion channel. The converter
procedure may use these to pass information back to the conversion channel. To set these
options on UNIX, set OVERRIDE-OPTION-FILE=1 in the desired conversion entry and then
have the converter procedure set the desired options in the OUTPUT_OPTIONS file.

Table 51.6 Override options for passing information back to the conversion
channel

Override option Description
OUTPUT_TYPE The content type of the output message part.
OUTPUT_SUBTYPE The content subtype of the output message part.
OUTPUT_DESCRIPTION The content description of the output message part.
OUTPUT_DIAGNOSTIC Text to include in the error text returned to the message sender if a

message is forcibly bounced (via PMDF__FORCERETURN) by the
conversion channel.

OUTPUT_DISPOSITION The content disposition of the output message part.
OUTPUT_ENCODING The content transfer encoding to use on the output message part.
OUTPUT_LANGUAGE The content language of the output message part.

51–14 Messaging Server Reference

Conversion control

OUTPUT_MODE The mode with which the conversion channel should write the
output message part, hence the mode with which recipients should
read the output message part.

STATUS The MTA exit status for the converter.

51.1.3.5 Conversion entry mapping table callouts

The value for a conversion parameter may be obtained by calling out to a mapping table. The
syntax for calling out to a mapping table is

"'mapping-table-name:mapping-input'"

For instance, with a mapping table

X-ATT-NAMES

 postscript PS.PS$Y
 wordperfect5.1 WPC.WPC$Y
 msword DOC.DOC$Y

then on UNIX, a conversion entry such as the following results in substituting generic file
names in place of specific file names on attachments.

out-chan=tcp_local; in-type=application; in-subtype=*;
 in-parameter-name-0=name; in-parameter-value-0=/*/*;
 out-type=application; out-subtype='INPUT-SUBTYPE';
 out-parameter-name-0=name;
 out-parameter-value-0="'X-ATT-NAMES:\\'INPUT_SUBTYPE\\''";
 command="cp $INPUT_FILE $OUTPUT_FILE"

51.1.3.6 Conversion script header access

When performing conversions on a message part, the conversion channel has general read
access (and modification access limited to specific MIME header lines) to the headers in an
enclosing part, an enclosing message/rfc822 part, or to the outermost message headers if there
is no enclosing message/rfc822 part. (For more general modifications of message header lines,
beyond the attachment labelling modifications available to the conversion channel, see instead
the Sieve editheader extension.)

For instance, the IN-A1-TYPE and IN-A1-FORMAT parameters can be used to check the A1-
Type: and A1-Format: headers of an enclosing part, and the OUT-A1-TYPE and OUT-A1-
FORMAT parameters can be used to set those enclosing headers. Or decisions about interior
message part processing can be made based upon the message's outermost headers.

More generally, if an entry is selected that has ORIGINAL-HEADER-FILE=1, then the headers
of that part are written to the file represented by the INPUT_HEADERS symbol. If an entry is
selected that has MESSAGE-HEADER-FILE=1, then all the original headers of the enclosing
message/rfc822 part are written to the file represented by the MESSAGE_HEADERS symbol. Or
if an entry is selected that has MESSAGE-HEADER-FILE=2, then all the original headers of the
outermost message are written to the file represented by the MESSAGE_HEADERS symbol.

Message conversions 51–15

Conversion tags

If OVERRIDE-HEADER-FILE=1, then the conversion channel will read and use as the MIME
headers on that enclosing part the contents of the file represented by the OUTPUT_HEADERS
symbol. Currently, the supported MIME headers that may be set in this fashion include
Content-type:, Content-disposition:, Content-transfer-encoding:, Content-mode:, Content-id:,
Content-description:, Content-language:, Content-annotation:, and Content-comments:.

51.1.3.7 Conversion script exit statuses

The exit status returned by a conversion script (returned via the STATUS option in the
OUTPUT_OPTIONS file on UNIX) can be used to tell the conversion channel to take one of
a variety of actions. The conversion status values are defined in the file SERVERROOT/
include/pmdf_err.h; see that file for the definitive numeric values of the status codes.
Available status names, numeric values (as of this writing---but see the pmdf_err.h file for
definitive values), and their meaning, are shown in Conversion exit status.

Table 51.7 Conversion exit statuses

Name Value Effect
PMDF__FORCERETURN 0x0A9C857A Force return (bounce) of original message
PMDF__FORCERETURN+1 0x0A9C857B Force return (bounce) of message, including only a sample

(lines_to_return MTA option) of the original message,
or a sample (lines_to_return) of whatever contents you
specify in OUTPUT_FILE

PMDF__FORCEPOST 0x0A9C8612 Force message to be redirected to the postmaster (instead of
going to the original recipient(s))

PMDF__FORCEASIS 0x0A9C8632 Force message to continue on unchanged
PMDF__FORCEDELETE 0x0A9C8662 Force deletion of this part (the currently being processed

part) of the message
PMDF__FORCEHOLD 0xA9C86AA Force message to be sidelined as a .HELD message file
PMDF__FORCEDISCARD 0x0A9C86B3 Force discard of entire message
PMDF__FORCEJETTISON 0x0A9C86E3 Force message to be jettisoned (non-overridable discard)

51.2 Conversion tags
The MTA has a private mechanism of conversion tags. Conversion tags may be set and used in
a variety of ways and for a variety of purposes; besides the original use for triggering user-
specific automatic documention conversion, another common use is for causing or influencing
special routing of messages.

Note that conversion tags are stored in a private-to-the-MTA field in the message envelope;
they are not visible in received messages. (However, message conversion tags present on
messages transitting the MTA will be included in MTA message transaction log entries if the
log_conversion_tag MTA option is enabled.)

Conversion tags may be added via channel options, (sourceconversiontag,
destinationconversiontag, deliveryflags), via LDAP attributes
(ldap_source_conversion_tag, ldap_conversion_tag,
ldap_domain_attr_source_conversion_tag,
ldap_domain_attr_conversion_tag), via an alias option (alias_conversion_tag)
or [CONVERSION_TAG] alias file named parameter, via recipient access mapping tables

51–16 Messaging Server Reference

Character set conversion and
message reformatting

or the FROM_ACCESS mapping table, or via the Sieve conversiontag extensions. Conversion
tags present on a message may influence certain mapping table operations (CONVERSIONS
mapping table, CHARSET-CONVERSION mapping table, MESSAGE-SAVE-COPY mapping table
when selected via message_save_copy_flags, as well as various address mapping tables
as controlled by the include_conversiontag MTA option), and control matching and
hence application of specific conversions entries. Complex effects due to, and manipulations
of, conversion tags are also possible via Sieve conversiontag extensions.

51.3 Character set conversion and message
reformatting

One very basic mapping table in the MTA is the character set conversion table. The name of
this table is CHARSET-CONVERSION. It is used to specify what sorts of channel-to-channel
character set conversions and message reformattings should be performed.

On many systems there is no need to do character set conversions or message reformatting and
therefore this table is not needed. Situations arise, however, where character conversions must
be done. For example, sites with enclaves of local users accustomed to using older charsets
such as ISO-2022-JP (for Japanese) or KOI8-R (for Russian) may wish to convert messages
outbound to the Internet into the general UTF-8 charset, to increase interoperability with
remote Internet correspondents.

51.3.1 CHARSET-CONVERSION mapping table
The CHARSET-CONVERSION mapping table specifies what sorts of channel-to-channel
character set conversions and message reformatting should be done. As suggested by the
mapping name, character set conversion is its primary purpose.

The CHARSET-CONVERSION mapping can also be used to alter the format of messages.
Facilities are provided to convert a number of non-MIME formats into MIME. Changes to
MIME encodings and structure are also possible. These options are used when messages
are being relayed to systems that only support MIME or some subset of MIME. And finally,
conversion from MIME into non-MIME formats is provided in a small number of cases.

As of MS 8.0.2.1, enabling charset conversions also checks for and attempts to mitigate the
various so-called MailSploit attacks. More specifically, if charset conversions are enabled for a
given destination, the MTA will:

1. Check the content of and remove unnecessary encoded-words during submission. In
particular, encoded-words consisting of nothing but an atom or domain will be decoded.
Note that this happens only when using SUBMIT, which should always be before DKIM or
similar protection mechanisms are applied.

2. Remove control characters other than those needed for MIME-compatible charsets. This
includes, but is not limited to NUL, CR and LF.

3. Remove any empty encoded-words that result from (2).

4. Recognize and process encoded-words outside the contexts where they normally appear.
(This behavior is appropriate for an MTA seeking to mitigate attacks that may depend on
broken clients that recognize encoded-words outside the contexts where they normally
occur.)

Message conversions 51–17

http://www.mailsploit.com

CHARSET-CONVERSION
mapping table

Note that the removal of NULs and similar CTLs is justified from a standards perspective
since RFC 2047 requires that encoded words represent printable material in a MIME text/US-
ASCII compatible charset. As such, this material should not be present in standards-compliant
encoded-words.

The MTA will probe the CHARSET-CONVERSION mapping table in two different ways. The
first probe is used to determine whether or not the MTA should reformat (or at least process)
the message and if so, what formatting options should be used. (If no reformatting is specified,
then the MTA does not bother to check for specific character set conversions.) The input string
for this first probe has (by default) the general form:

IN-CHAN=in-channel;OUT-CHAN=out-channel;CONVERT

Here in-channel is the name of the source channel (where the message comes from) and
out-channel is the name of the destination channel (where the message is going). New in
MS 6.3, setting bit 0 (value 1) of the include_conversiontag MTA option will cause this
first probe to instead have the form

IN-CHAN=in-channel;OUT-CHAN=out-channel;TAG=tag-list;CONVERT

where tag-list is a comma-separated list of any conversion tags present on the message.

If the probe matches the pattern (left hand side) of a CHARSET-CONVERSION mapping table
entry, then the resulting string (right hand side of the mapping entry) should be a comma-
separated list of keywords. The following keywords are provided:

Table 51.8 CHARSET-CONVERSION mapping keywords

Keyword Action
Always Enable conversion
Appledouble Convert other MacMIME formats to Appledouble format
Applesingle Convert other MacMIME formats to Applesingle format
BASE64 Switch MIME encodings to BASE64
Binhex Convert other MacMIME formats, or parts including Macintosh type

and Mac creator information, to Binhex format
Block Extract just the data fork from MacMIME format parts
Bottom "Flatten" any message/rfc822 body part (forwarded message) into a

message content part and a header part
Delete "Flatten" any message/rfc822 body part (forwarded message) into a

message content part, deleting the forwarded headers
Level Remove redundant multipart levels from message
Macbinary Convert other MacMIME formats, or parts including Macintosh type

and Macintosh creator information, to Macbinary format
No Disable conversion
Pathworks Convert message to Pathworks Mail format
QUOTED-PRINTABLE Switch MIME encodings to QUOTED-PRINTABLE
Record,Text Line wrap text/plain parts at 80 characters

51–18 Messaging Server Reference

CHARSET-CONVERSION
mapping table

Record,Text=n Line wrap text/plain parts at n characters
RFC1154 Convert message to RFC 1154 format
Thurman Convert some non-standard "attachments" to MIME format
Top "Flatten" any message/rfc822 body part (forwarded message) into a

header part and a message content part
UUENCODE Switch MIME encodings to X-UUENCODE
Yes Enable conversion

If a match is found, the MTA will perform any requested message reformatting, discussed
further in Message reformatting, and for text parts, also check whether charset conversion is
desired, as discussed further in Character set conversion. A No is assumed if no match occurs.

If the message has a conversion tag set, note that the "T" flag will be set, and this can be tested
for (when a match on the pattern, i.e., left hand side, occurred) using a $:T test in the template
(right hand side) output string. Such tests are more commonly used in the CONVERSIONS
mapping table, but under less common conditions may potentially be useful here in the
CHARSET-CONVERSION mapping table.

51.3.1.1 Character set conversion

If the MTA's initial probe of the CHARSET-CONVERSION mapping table (to determine whether
or not any character set conversion or message reformatting need be performed) finds that
the message is to be reformatted, it will proceed to check each part of the message. Any text
parts are found and their character set parameters are used to generate the second probe. Only
when the MTA has checked and found that conversions may be needed does it ever perform
the second probe. The input string in this second case looks like this:

IN-CHAN=in-channel;OUT-CHAN=out-channel;IN-CHARSET=in-char-set

The in-channel and out-channel are the same as before, and the in-char-set is
the name of the character set associated with the particular part in question. (Note that the
include_conversiontag MTA option, regardless of setting, has no effect on the form of
this second probe of the CHARSET-CONVERSION mapping table.) If no match occurs for this
second probe, no character set conversion is performed (although message reformatting, e.g.,
changes to MIME structure, may be performed in accordance with the keyword matched on
the first probe). If a match does occur it should typically produce a string of the form:

OUT-CHARSET=out-char-set

Here the out-char-set specifies the name of the character set to which the in-char-set
should be converted. Note that both of these character sets must be defined in the character
set definition table, charsets.txt, located in the MTA table directory. No conversion will
be done if the character sets are not properly defined in this file. This is not usually a problem
since this file defines several hundred character sets; most of the character sets in use today
are defined in this file. See the description of the imsimta chbuild utility for further
information on the charsets.txt file.

If all the conditions are met, the MTA will proceed to build the character set mapping and do
the conversion. The converted message part will be relabelled with the name of the character

Message conversions 51–19

https://tools.ietf.org/html/rfc1154

CHARSET-CONVERSION
mapping table

set to which it was converted. Encoded-words in message headers (text encoded according to
the rules of RFC 2047) will also have the specified charset conversion applied.

In addition, the following other types of output request are supported.

When working on text parts of messages, one may also specify an encoding in which the MTA
should output that part:

OUT-ENCODING=encoding-name

Here encoding-name must be the name of an encoding supported by the MTA, namely one
of (as of this writing):

• NONE,
• 8BIT,
• 7BIT,
• ATOB,
• BASE32,
• BASE64,
• BASE85,
• BINARY,
• BINARY-8BIT,
• BINHEX,
• BTOA,
• COMPRESSED-BASE64,
• COMPRESSED-BINARY,
• COMPRESSED-UUCODE,
• COMPRESSED-UUDECODE,
• COMPRESSED-UUENCODE,
• DEFLATE-BASE64,
• DEFLATE-BINARY,
• DEFLATE-UUCODE,
• DEFLATE-UUDECODE,
• DEFLATE-UUENCODE,
• HEXADECIMAL,
• OLD-BASE64,
• PATHWORDS,
• QUOTED-PRINTABLE,
• UUCODE,
• UUDECODE,
• UUENCODE,
• X-ATOB,
• X-BASE32,
• X-BASE85,
• X-BINHEX,
• X-BTOA,
• X-C-DATA,
• X-COMPRESSED-UUCODE,
• X-COMPRESSED-UUDECODE,
• X-COMPRESSED-UUENCODE,
• X-DEFLATE-UUCODE,
• X-DEFLATE-UUDECODE,
• X-DEFLATE-UUENCODE,

51–20 Messaging Server Reference

https://tools.ietf.org/html/rfc2047

CHARSET-CONVERSION
mapping table

• X-HEXADECIMAL,
• X-OLD-BASE64,
• X-PATHWORKS,
• X-UUCODE,
• X-UUDECODE,
• X-UUENCODE.

Both an output charset and an output encoding may be specified, by separating the clauses
with a comma.

For encoded-words in message header lines (material encoded using the RFC 2047 encoding
rules), the OUT-ENCODING must be one of QUOTED-PRINTABLE, HEXADECIMAL, X-
HEXADECIMAL, or BASE64; attempting to set any other output encoding will result in the
"unknown" encoding being used.

There are also several additional options that can be applied for conversion of the charset in
message headers. Specifying

OUT-CHARSET=out-charset,RELABEL-ONLY=1

in the template (right hand side) of a mapping entry means that the MTA will simply use the
specified charset name out-charset wherever the in-charset name had appeared. That
is, this is intended to be used in cases where the original charset label was wrong, and it is
desired to simply override the original labelling with correct labelling (but no actual charset
conversion need be performed).

Specifying

IN-CHARSET=*

in the template (right hand side) of a mapping entry requests that the MTA attempt to sniff
the data to attempt to determine what character set was truly used. Currently, the only useful
such determination that can be made by the MTA is between US-ASCII, EUC-JP, SHIFT-JIS,
and ISO-2022-JP.

Specifying

OUT-LANGUAGE=lang-tag

in the template (right hand side) of a mapping entry tells the MTA to set the specified language
tag as the value of the Content-language: header line. Specifying

OUT-LANGUAGE=*lang-tag

tells the MTA to insert the specified language tag with the charset name inside encoded-words
on header lines, if no explicit language tag was already present in the encoded-words.

51.3.1.1.1 Converting ISO-2022-JP to UTF-8 and back

Suppose that ISO-2022-JP is used locally, but that a site wishes to convert to UTF-8 for use
on the Internet. In particular, suppose at this site the channel used to send to the Internet
is tcp_local, tcp_lmtpcs* channels are used to deliver to local users, and local users'
submitted messages are submitted via tcp_submit and tcp_auth.

Message conversions 51–21

https://tools.ietf.org/html/rfc2047

Message reformatting

Example of Converting ISO-2022-JP to and from UTF-8

CHARSET-CONVERSION

! Entries selecting message traffic eligible for charset conversion
!
 IN-CHAN=tcp_submit;OUT-CHAN=tcp_local;CONVERT Yes
 IN-CHAN=tcp_auth;OUT-CHAN=tcp_local;CONVERT Yes
 IN-CHAN=tcp_local;OUT-CHAN=tcp_lmtpcs*;CONVERT Yes
!
! Disable charset conversion for all other message traffic
!
 IN-CHAN=*;OUT-CHAN=*;CONVERT No
!
! Details of which charset to convert to which other charset
!
 IN-CHAN=tcp_submit;OUT-CHAN=tcp_local;IN-CHARSET=ISO-2022-JP \
 OUT-CHARSET=UTF-8
 IN-CHAN=tcp_auth;OUT-CHAN=tcp_local;IN-CHARSET=ISO-2022-JP \
 OUT-CHARSET=UTF-8
 IN-CHAN=tcp_local;OUT-CHAN=tcp_lmtpcs*;IN-CHARSET=UTF-8 \
 OUT-CHARSET=ISO-2022-JP

51.3.2 Message reformatting
As mentioned in the discussion of the CHARSET-CONVERSION mapping table, that mapping
can also be used to effect the conversion of attachments between MIME and several
proprietary mail formats.

Examples of some of the other sorts of message reformatting which can be affected with the
CHARSET-CONVERSION mapping are described in Non-MIME binary attachment conversion,
Relabelling_MIME_header_lines, and MacMIME format conversions.

51.3.2.1 Non-MIME binary attachment conversion

Mail in certain non-standard (non-MIME) formats, e.g., mail in certain proprietary Sun formats
or mail from the Microsoft® Mail (MSMAIL) SMTP gateway, is automatically converted
into MIME format if CHARSET-CONVERSION is enabled for any of the channels involved in
handling the message. If you have a tcp_local channel, then it is normally the incoming
channel for messages from a Microsoft Mail SMTP gateway, and the following will enable the
conversion of messages delivered to your local users:

CHARSET-CONVERSION

 IN-CHAN=tcp_local;OUT-CHAN=ims-ms;CONVERT Yes
 IN-CHAN=tcp_local;OUT-CHAN=tcp_lmtpcs*;CONVERT Yes

You may also wish to add entries for channels to other local mail systems. For instance, an
entry for the tcp_intranet channel:

CHARSET-CONVERSION

 IN-CHAN=tcp_local;OUT-CHAN=ims-ms;CONVERT Yes

51–22 Messaging Server Reference

Message reformatting

 IN-CHAN=tcp_local;OUT-CHAN=tcp_lmtpcs*;CONVERT Yes
 IN-CHAN=tcp_local;OUT-CHAN=tcp_intranet;CONVERT Yes

Alternatively, to cover every channel you can simply specify OUT-CHAN=*. However, this
may bring about an increase in message processing overhead as all messages coming in the
tcp_local channel will now be scrutinized instead of just those bound to specific channels.
(More importantly, such undiscriminated conversions may place your system in the dubious
and frowned upon position of converting messages --- not necessarily your own site's --- which
are merely passing through your system, a situation in which you should merely be acting as
a transport and not necessarily altering anything beyond the message envelope and related
transport information.)

To convert MIME into the format Microsoft Mail SMTP gateway understands, use a separate
channel in your MTA configuration for the Microsoft Mail SMTP gateway, e.g., tcp_msmail,
and use the following CHARSET-CONVERSION mapping table entry:

CHARSET-CONVERSION

 IN-CHAN=*;OUT-CHAN=tcp_msmail;CONVERT RFC1154

51.3.2.2 MacMIME format conversions

Macintosh files have two parts, a resource fork which contains Macintosh specific information,
and a data fork which contains data usable on other platforms. This introduces an additional
complexity when transporting Macintosh files, as there are four different formats in common
use for transporting the Macintosh file parts. (See RFC 1740 (MacMIME) and RFC 1741
(Binhex).) Three of the formats, Applesingle, Binhex, and Macbinary, consist of the Macintosh
resource fork and Macintosh data fork encoded together in one piece. The fourth format,
Appledouble, is a multipart format with the resource fork and data fork in separate parts.
Appledouble is hence the format most likely to be useful on non-Macintosh platforms, as in
this case the resource fork part may be ignored and the data fork part is available for use by
non-Macintosh applications. But the other formats may be useful when sending specifically to
Macintoshes.

The MTA can convert between these various Macintosh formats. The CHARSET-CONVERSION
keywords Appledouble, Applesingle, Binhex, or Macbinary tell the MTA to convert
other MacMIME structured parts to a MIME structure of multipart/appledouble,
application/applefile, application/mac-binhex40, or application/
macbinary, respectively. Further the Binhex or Macbinary keywords also request
conversion to the specified format of non-MacMIME format parts that do nevertheless contain
X-MAC-TYPE and X-MAC-CREATOR parameters on the MIME Content-type: header line.
The CHARSET-CONVERSION keyword Block tells the MTA to extract just the data fork from
MacMIME format parts, discarding the resource fork; (since this loses information, use of
Appledouble instead is generally preferable).

For instance, the following CHARSET-CONVERSION table would tell the MTA to convert to
Appledouble format when delivering to the Message Store via either an ims-ms channel or a
tcp_lmtpcs* channel:

CHARSET-CONVERSION

 IN-CHAN=*;OUT-CHAN=ims-ms;CONVERT Appledouble

Message conversions 51–23

https://tools.ietf.org/html/rfc1740
https://tools.ietf.org/html/rfc1741
https://tools.ietf.org/html/rfc1741

Message reformatting

 IN-CHAN=*;OUT-CHAN=tcp_lmtpcs*;CONVERT Appledouble

The conversion to Appledouble format would only be applied to parts already in one of the
MacMIME formats.

When doing conversion to Appledouble or Block format, the MAC-TO-MIME-CONTENT-
TYPES mapping table may be used to indicate what specific MIME label to put on the data
fork of the Appledouble part, or the Block part, depending on what the Macintosh creator and
Macintosh type information in the original Macintosh file were.

51.3.2.2.1 MAC-TO-MIME-CONTENT-TYPES mapping table

When doing conversion to Appledouble or Block format, the MAC-TO-MIME-CONTENT-
TYPES mapping table may be used to indicate what specific MIME label to put on the data
fork of the Appledouble part, or the Block part, respectively, depending on what the Macintosh
creator and Macintosh type information in the original Macintosh file were. Probes for this
table have the form

format|type|creator|filename

where format is one of SINGLE, BINHEX or MACBINARY, where type and creator are the
Macintosh type and Macintosh creator information in hex, respectively, and where filename
is the file name. For instance, to convert to Appledouble when sending to the ims-ms channel
and when doing so to use specific MIME labels for any MS Word or PostScript documents
converted from MACBINARY or BINHEX parts, appropriate tables might be:

CHARSET-CONVERSION

 IN-CHAN=*;OUT-CHAN=ims-ms;CONVERT Appledouble

MAC-TO-MIME-CONTENT-TYPES

! PostScript
 MACBINARY|45505346|76677264|* APPLICATION/POSTSCRIPT$Y
 BINHEX|45505346|76677264|* APPLICATION/POSTSCRIPT$Y
! Microsoft Word
 MACBINARY|5744424E|4D535744|* APPLICATION/MSWORD$Y
 BINHEX|5744424E|4D535744|* APPLICATION/MSWORD$Y

Note that the template (right hand side) of the mapping entry must have the $Y flag set in
order for the specified labelling to be performed.

Sample entries for additional types of attachments may be found listed in Sample MacMIME
entries.

If you wish to convert non-MacMIME format parts to Binhex or Macbinary format, such parts
need to have X-MAC-TYPE and X-MAC-CREATOR MIME Content-type: parameter values
provided. Note that MIME relabelling can be used to force such parameters onto parts that
would not otherwise have them; see Relabelling MIME header lines for a discussion of MIME
relabelling.

51.3.2.2.1.1 Sample MacMIME entries

51–24 Messaging Server Reference

Message reformatting

A sample MAC-TO-MIME-CONTENT-TYPES mapping table is shown.

MAC-TO-MIME-CONTENT-TYPES

!
! format|type|creator|filename type/subtype
!
! Sun Sound
 MACBINARY|554c4157|5343504c|* AUDIO/BASIC$Y
 BINHEX|554c4157|5343504c|* AUDIO/BASIC$Y
! Untyped Binary Data, Output File (.out file)
 MACBINARY|42494e41|68446d70|* APPLICATION/OCTET-STREAM$Y
 BINHEX|42494e41|68446d70|* APPLICATION/OCTET-STREAM$Y
! Computer Graphics Meta
 MACBINARY|43474d6d|474b4f4e|* IMAGE/CGM$Y
 BINHEX|43474d6d|474b4f4e|* IMAGE/CGM$Y
! Microsoft Word Document, Mac Microsoft Word Document
 MACBINARY|5744424e|4d535744|* APPLICATION/MSWORD$Y
 BINHEX|5744424e|4d535744|* APPLICATION/MSWORD$Y
! Microsoft Word for Windows Template
 MACBINARY|7344424e|4d535744|* APPLICATION/MSWORD$Y
 BINHEX|7344424e|4d535744|* APPLICATION/MSWORD$Y
! Postscript
 MACBINARY|45505346|76677264|* APPLICATION/POSTSCRIPT$Y
 BINHEX|45505346|76677264|* APPLICATION/POSTSCRIPT$Y
! GIF Picture
 MACBINARY|47494666|4a414445|* IMAGE/GIF$Y
 BINHEX|47494666|4a414445|* IMAGE/GIF$Y
! HP GL/2
 MACBINARY|4850474c|474b4f4e|* APPLICATION/VND.HP-HPGL$Y
 BINHEX|4850474c|474b4f4e|* APPLICATION/VND.HP-HPGL$Y
! HyperText
 MACBINARY|54455854|556d8136|* TEXT/HTML$Y
 BINHEX|54455854|556d8136|* TEXT/HTML$Y
! IEF image
 MACBINARY|49454620|474b4f4e|* IMAGE/IEF$Y
 BINHEX|49454620|474b4f4e|* IMAGE/IEF$Y
! JFax TIFF
 MACBINARY|54494646|4a464158|* IMAGE/TIFF$Y
 BINHEX|54494646|4a464158|* IMAGE/TIFF$Y
! JPEG Picture
 MACBINARY|4a504547|4a414445|* IMAGE/JPEG$Y
 BINHEX|4a504547|4a414445|* IMAGE/JPEG$Y
! MPEG-1 IPB videostream
 MACBINARY|4d315620|6d4d5047|* VIDEO/MPEG$Y
 BINHEX|4d315620|6d4d5047|* VIDEO/MPEG$Y
! MPEG-2 IPB videostream
 MACBINARY|4d504732|4d504732|* VIDEO/MPEG$Y
 BINHEX|4d504732|4d504732|* VIDEO/MPEG$Y
! FrameMaker MIF
 MACBINARY|54455854|4672616d|* APPLICATION/VND.FRAMEMAKER$Y

Message conversions 51–25

Message reformatting

 BINHEX|54455854|4672616d|* APPLICATION/VND.FRAMEMAKER$Y
! QuickTime Movie
 MACBINARY|4d6f6f56|74747874|* VIDEO/QUICKTIME$Y
 BINHEX|4d6f6f56|74747874|* VIDEO/QUICKTIME$Y
! MPEG Movie of some sort
 MACBINARY|4d504547|6d4d5047|* VIDEO/MPEG$Y
 BINHEX|4d504547|6d4d5047|* VIDEO/MPEG$Y
! MacWrite Document
 MACBINARY|4d573244|4d574949|* APPLICATION/MACWRITEII$Y
 BINHEX|4d573244|4d574949|* APPLICATION/MACWRITEII$Y
! ODA Document
 MACBINARY|4f444946|4f444120|* APPLICATION/ODA$Y
 BINHEX|4f444946|4f444120|* APPLICATION/ODA$Y
! Portable Document Format
 MACBINARY|50444620|4341524f|* APPLICATION/PDF$Y
 BINHEX|50444620|4341524f|* APPLICATION/PDF$Y
! Portable Network Graphic
 MACBINARY|504e4766|474b4f4e|* IMAGE/PNG$Y
 BINHEX|504e4766|474b4f4e|* IMAGE/PNG$Y
! PowerPoint Presentation
 MACBINARY|534c4433|50505433|* APPLICATION/VND.MS-POWERPOINT$Y
 BINHEX|534c4433|50505433|* APPLICATION/VND.MS-POWERPOINT$Y
! PostScript
 MACBINARY|54455854|76677264|* APPLICATION/POSTSCRIPT$Y
 BINHEX|54455854|76677264|* APPLICATION/POSTSCRIPT$Y
! Rich Text Format
 MACBINARY|54455854|4d535744|* APPLICATION/RTF$Y
 BINHEX|54455854|4d535744|* APPLICATION/RTF$Y
! TIFF Picture
 MACBINARY|54494646|4a565752|* IMAGE/TIFF$Y
 BINHEX|54494646|4a565752|* IMAGE/TIFF$Y
! Tab Separated Values
 MACBINARY|54455854|5843454c|* TEXT/TAB-SEPARATED-VALUES$Y
 BINHEX|54455854|5843454c|* TEXT/TAB-SEPARATED-VALUES$Y
! Mu-Law Sound
 MACBINARY|554c4157|5343504c|* AUDIO/BASIC$Y
 BINHEX|554c4157|5343504c|* AUDIO/BASIC$Y
! WordPerfect PC 5.1 Doc, WordPerfect PC 5.x Doc
 MACBINARY|2e575035|57504332|* APPLICATION/WORDPERFECT5.1$Y
 BINHEX|2e575035|57504332|* APPLICATION/WORDPERFECT5.1$Y
! Lotus Spreadsheet r2.1 (.wk1 file), Lotus Spreadsheet r1.x (.wks file)
 MACBINARY|584c424e|5843454c|* APPLICATION/VND.LOTUS-1-2-3$Y
 BINHEX|584c424e|5843454c|* APPLICATION/VND.LOTUS-1-2-3$Y
! WordPerfect PC 4.2 Doc
 MACBINARY|2e575034|57504332|* APPLICATION/WORDPERFECT5.1$Y
 BINHEX|2e575034|57504332|* APPLICATION/WORDPERFECT5.1$Y
! WordPerfect PC 6.x Doc
 MACBINARY|2e575036|57504332|* APPLICATION/WORDPERFECT5.1$Y
 BINHEX|2e575036|57504332|* APPLICATION/WORDPERFECT5.1$Y
! WordPerfect Graphic
 MACBINARY|57504766|474b4f4e|* APPLICATION/WORDPERFECT5.1$Y
 BINHEX|57504766|474b4f4e|* APPLICATION/WORDPERFECT5.1$Y
! WordPerfect Mac

51–26 Messaging Server Reference

Relabelling MIME header lines

 MACBINARY|57504431|57504332|* APPLICATION/WORDPERFECT5.1$Y
 BINHEX|57504431|57504332|* APPLICATION/WORDPERFECT5.1$Y
! Excel Spreadsheet
 MACBINARY|584c5320|5843454c|* APPLICATION/VND.MS-EXCEL$Y
 BINHEX|584c5320|5843454c|* APPLICATION/VND.MS-EXCEL$Y
! Excel Chart (.xlc file)
 MACBINARY|584c4320|5843454c|* APPLICATION/VND.MS-EXCEL$Y
 BINHEX|584c4320|5843454c|* APPLICATION/VND.MS-EXCEL$Y
! Excel Macro (.xlm file)
 MACBINARY|584c4d20|5843454c|* APPLICATION/VND.MS-EXCEL$Y
 BINHEX|584c4d20|5843454c|* APPLICATION/VND.MS-EXCEL$Y
! Excel Workspace (.xlw file)
 MACBINARY|584c5720|5843454c|* APPLICATION/VND.MS-EXCEL$Y
 BINHEX|584c5720|5843454c|* APPLICATION/VND.MS-EXCEL$Y
! AppleSingle file
 MACBINARY|42494e41|54494752|* APPLICATION/APPLEFILE$Y
 BINHEX|42494e41|54494752|* APPLICATION/APPLEFILE$Y
! MacBinary
 MACBINARY|42494e41|4d423250|* APPLICATION/MACBINARY$Y
 BINHEX|42494e41|4d423250|* APPLICATION/MACBINARY$Y
! Gnu ZIP Archive, Gnu ZIPed Tape ARchive
 MACBINARY|477a6970|477a6970|* APPLICATION/ZIP$Y
 BINHEX|477a6970|477a6970|* APPLICATION/ZIP$Y
! BinHex
! Make sure to check the file name -- regular text type parts and UUencoded
! blobs also use these Mac-type and Mac-creator values
 MACBINARY|54455854|522a6368|*.hqx APPLICATION/MAC-BINHEX40$Y
 BINHEX|54455854|522a6368|*.hqx APPLICATION/MAC-BINHEX40$Y
! BinHexed StuffIt Archive
! Make sure to check the file name -- regular text type parts and UUencoded
! blobs also use these Mac-type and Mac-creator values
 MACBINARY|54455854|522a6368|*.sithqx APPLICATION/MAC-BINHEX40$Y
 BINHEX|54455854|522a6368|*.sithqx APPLICATION/MAC-BINHEX40$Y
! PGP Key File
 MACBINARY|504b6579|4d504750|* APPLICATION/PGP-KEYS$Y
 BINHEX|504b6579|4d504750|* APPLICATION/PGP-KEYS$Y
! PC ZIP Archive
 MACBINARY|5a495020|5a495020|* APPLICATION/ZIP$Y
 BINHEX|5a495020|5a495020|* APPLICATION/ZIP$Y

51.3.3 Relabelling MIME header lines
Some user agents or gateways may emit messages with MIME header lines which are less
informative than they might be, but which nevertheless contain enough information to
construct more precise MIME header lines. Although the best solution is to properly configure
such user agents or gateways, if they are not under your control, you can instead ask the MTA
to try to reconstruct more useful MIME header lines.

If the first probe of the CHARSET-CONVERSION mapping table yields a "Yes" or
"Always" keyword, then the MTA will check for the existence of any conversions entries.
(In Unified Configuration, the MTA checks for the existence of any conversions
entries; in legacy configuration, the MTA checks for the existence of a conversions file,
IMTA_TABLE:conversions.) If any conversions entries exist, then the MTA will look for an

Message conversions 51–27

Service conversions

entry with RELABEL=1 and if it finds such an entry, the MTA will then perform any MIME
relabellings specified in the entry. (See Conversion control for additional details on conversions
entries.)

New in 7.0.5, in addition to MIME relabellings, RELABEL=1 can also perform encoding
changes (OUT-ENCODING clauses will be applied); formerly, OUT-ENCODING had no effect
in RELABEL=1 entries.

For instance, the combination of a CHARSET-CONVERSION mapping table of:

msconfig> show mapping:CHARSET-CONVERSION
role.mapping:CHARSET-CONVERSION.rule = IN-CHAN=tcp_*;OUT-CHAN=ims-ms;CONVERT Yes

and conversions entries (use msconfig's edit conversions command to create such
entries from within msconfig) of:

out-chan=ims-ms; in-type=application; in-subtype=octet-stream;
 in-parameter-name-0=name; in-parameter-value-0=*.ps;
 out-type=application; out-subtype=postscript;
 parameter-copy-0=*; relabel=1

out-chan=ims-ms; in-type=application; in-subtype=octet-stream;
 in-disposition=attachment;
 in-dparameter-name-0=filename; in-dparameter-value-0=*.ps;
 out-type=application; out-subtype=postscript;
 out-disposition=attachment; dparameter-copy-0=*; relabel=1

out-chan=ims-ms; in-type=application; in-subtype=octet-stream;
 in-parameter-name-0=name; in-parameter-value-0=*.msw;
 out-type=application; out-subtype=msword;
 parameter-copy-0=*; relabel=1

out-chan=ims-ms; in-type=application; in-subtype=octet-stream;
 in-disposition=attachment;
 in-dparameter-name-0=filename; in-dparameter-value-0=*.msw;
 out-type=application; out-subtype=msword;
 out-disposition=attachment; dparameter-copy-0=*; relabel=1

will result in messages that arrive on a tcp_* channel and are routed to the ims-ms channel,
and that arrive originally with MIME labelling of application/octet-stream but have a filename
parameter with the extension (ps) or (msw), being relabelled as application/postscript or
application/msword, respectively. (Note that this more precise labelling is what the original
user agent or gateway should have performed itself.)

51.3.4 Service conversions
The MTA's conversion service facility may be used to process, with site-supplied procedures,
message content so as to produce a new form of the message. Unlike either the sorts of
CHARSET-CONVERSION operations discussed elsewhere or the conversion channel, which
operate on the content of individual MIME message parts, conversion services operate on

51–28 Messaging Server Reference

Service conversions

entire MIME entities (MIME headers plus content). (But note that service conversions do
not give access to the outermost, non-MIME header lines.) Also, unlike other CHARSET-
CONVERSION operations or conversion channel operations, conversion services are expected
to do their own MIME disassembly, decoding, re-encoding, and reassembly.

Service conversions may be triggered using the serviceconversion channel option. But
more typically, like other CHARSET-CONVERSION operations, conversion services are enabled
through the CHARSET-CONVERSION mapping table. If the first probe of the CHARSET-
CONVERSION mapping table yields a "Yes" or "Always" keyword, then the MTA will check for
the presence of conversions options (in Unified Configuration) or the MTA conversions file
(in legacy configuration).6 If a conversions file exists, then the MTA will look in it for an entry
specifying a SERVICE-COMMAND or SERVICE-CALL, and if it finds such an entry, execute it.
The conversions file entries should have the form

in-chan=channel-pattern;
 in-type=type-pattern; in-subtype=subtype-pattern;
 service-command=command

or

in-chan=channel-pattern;
 in-type=type-pattern; in-subtype=subtype-pattern;
 service-call=image|routine|argument

Of key interest is (in service-command entries) the command string. This is the command
which should be executed to perform a service conversion (e.g., invoke a document converter).
The command must process an input file containing the message text to be serviced and
produce as output a file containing the new message text. The command must exit with a 0 if
successful and a non-zero value otherwise.

For instance, the combination of a CHARSET-CONVERSION table such as

CHARSET-CONVERSION

 IN-CHAN=bsout_*;OUT-CHAN=*;CONVERT Yes

and a conversions file entry of

in-chan=bsout_*; in-type=*; in-subtype=*;
 service-command="/pmdf/bin/compress.sh compress $INPUT_FILE $OUTPUT_FILE"

will result in all messages coming from a BSOUT channel being compressed.

Environment variables (UNIX) are used to pass the names of the input and output files as
well as the name of a file containing some message envelope information. The names of these
environment variables are:

Message conversions 51–29

Interactions between conversions
and character set conversions

Table 51.9 Conversion command callout environment variables on UNIX
systems

Variable Usage
INPUT_FILE Name of the input file to process
OUTPUT_FILE Name of the output file to produce
INFO_FILE Name of the file containing envelope recipient

addresses

The INFO_FILE in particular contains the envelope From address, the list of the message's
envelope recipient addresses, and (as of Chipotle) if present in the original message envelope
the authenticated sender; this information is recorded in the form of pseudo-header lines, e.g.,

X-Author-info: authenticated-sender
X-Envelope-from: envelope-from
X-Envelope-to: recipient-list

The values of these three environment variables, INPUT_FILE, OUTPUT_FILE, and
INFO_FILE, may be substituted into the command line by using standard command line
substitution: i.e., preceding the variable's name with a dollar character on UNIX. For example,
when INPUT_FILE and OUTPUT_FILE have the values a.in and a.out, then the following
entry on UNIX

in-chan=bsout_*; in-type=*; in-subtype=*;
 service-command="/pmdf/bin/convert.sh $INPUT_FILE $OUTPUT_FILE"

executes the command

/pmdf/bin/convert.sh a.in a.out

Note: Prior to Messaging Server 7.0, the conversions file was located via the
IMTA_CONVERSION_FILE MTA Tailor file option, so usually IMTA_TABLE:conversions.
As of Messaging Server 7.0, the conversions file is located at config-root/conversions.

51.4 Interactions between conversions and
character set conversions

Character set conversions come into play at two points during message enqueue processing:
during header processing, and during message body processing. (By header processing here
we mean any actual conversions of the character set in the message header, e.g., character set
translation of personal names in addresses, not the MIME relabelling or other sorts of header
line transformations that can also be configured via a CHARSET-CONVERSION mapping table.)

After the message header processing character set conversion check and before any message
body character set conversion check, the MTA consults the CONVERSIONS mapping table
(if present). If a message is to be routed to the conversion channel due to a match in the
CONVERSIONS mapping table, then normally character set conversion for the message

51–30 Messaging Server Reference

Interactions between conversions
and character set conversions

body during this enqueue is disabled; it is expected instead that any relevant character set
conversion of the message body will be incorporated into the conversion channel's conversion
script processing of the message body parts. (The imsimta test -translation utility
may come in useful in conversion scripts for such purposes.) Alternatively, new in MS 6.3,
the "Preprocess" keyword may be used in channel routing entries in the CONVERSIONS
mapping table to specify that character set conversion of the message body (including
RELABEL operations) should be performed during the enqueue to the conversion channel
(or alternate conversion channel) rather than being disabled as normal at that stage. Or yet
another alternative: character set conversion of the message body for messages coming from
the conversion channel may be configured, to convert the character set in the message body
after the conversion channel has performed its operations; for such configuration, note that the
CHARSET-CONVERSION probe will not normally show the conversion channel as the source
channel, but rather show the "original" source channel as the source channel.

Message conversions 51–31

51–32

Chapter 52 MTA options
52.1 MTA option naming in Unified Configuration .. 52–8
52.2 Legacy configuration MTA option file .. 52–9

52.2.1 Option value syntax in legacy configuration .. 52–10
52.3 Getting option changes to take effect on the MTA ... 52–11
52.4 MTA options listed alphabetically .. 52–12
52.5 MTA options listed by functional group ... 52–26
52.6 enable Option Under mta ... 52–58
52.7 Alias and address MTA options ... 52–58

52.7.1 alias_case MTA option .. 52–59
52.7.2 alias_domains MTA option .. 52–60
52.7.3 alias_magic MTA option .. 52–61
52.7.4 alternate_recipient MTA option ... 52–61
52.7.5 alternate_recipient_mode Option .. 52–61
52.7.6 delimiter_char MTA option .. 52–62
52.7.7 exproute_forward MTA option .. 52–62
52.7.8 idn_config_file Option .. 52–62
52.7.9 improute_forward MTA option .. 52–62
52.7.10 local_format_restrictions MTA option 52–62
52.7.11 max_alias_levels MTA option ... 52–63
52.7.12 missing_recipient_group_text MTA option 52–63
52.7.13 missing_recipient_policy MTA option 52–63
52.7.14 name_table_name MTA option ... 52–64
52.7.15 reverse_envelope MTA option ... 52–64
52.7.16 subaddress_char MTA option ... 52–65
52.7.17 token_char MTA option ... 52–65
52.7.18 use_alias_database MTA option ... 52–65
52.7.19 use_domain_database MTA option ... 52–65
52.7.20 use_forward_database MTA option ... 52–66
52.7.21 use_personal_aliases MTA option ... 52–67
52.7.22 use_reverse_database MTA option ... 52–67
52.7.23 user_case MTA option ... 52–69

52.8 Autoresponse periodicity MTA options .. 52–69
52.8.1 autoreply_timeout_default MTA option 52–70
52.8.2 notify_maximum_timeout MTA option ... 52–70
52.8.3 notify_minimum_timeout MTA option ... 52–71
52.8.4 notify_timeout_default MTA option ... 52–71
52.8.5 vacation_cleanup MTA option .. 52–71
52.8.6 vacation_hash_algorithm MTA option ... 52–71
52.8.7 vacation_maximum_timeout MTA option 52–71
52.8.8 vacation_minimum_timeout MTA option 52–72
52.8.9 vacation_template MTA option .. 52–72

52.9 BURL MTA options .. 52–73
52.9.1 imap_password MTA option .. 52–73
52.9.2 imap_username MTA option .. 52–73

52.10 Configutil override MTA options ... 52–73
52.11 Conversions MTA options ... 52–74

52.11.1 conversions MTA option ... 52–74
52.12 Counters MTA options .. 52–75

52.12.1 circuitcheck_completed_bins MTA option 52–75
52.12.2 enable_delay_timers MTA option ... 52–75

MTA options 52–1

52.12.3 log_delay_bins MTA option ... 52–75
52.12.4 log_frustration_limit MTA option ... 52–75
52.12.5 log_size_bins MTA option ... 52–76
52.12.6 log_sndopr MTA option ... 52–76
52.12.7 log_statistics MTA option ... 52–76

52.13 Database MTA options .. 52–76
52.14 Debug MTA options .. 52–77

52.14.1 ap_debug MTA option ... 52–77
52.14.2 cache_debug MTA option ... 52–77
52.14.3 config_debug MTA option ... 52–78
52.14.4 debug_flush MTA option ... 52–78
52.14.5 dequeue_debug MTA option ... 52–78
52.14.6 filter_debug MTA option ... 52–78
52.14.7 log_debug MTA option ... 52–78
52.14.8 mm_debug MTA option ... 52–78
52.14.9 os_debug MTA option ... 52–79
52.14.10 post_debug MTA option ... 52–79
52.14.11 return_debug MTA option ... 52–80
52.14.12 return_verify MTA option ... 52–80
52.14.13 symbiont_debug Option ... 52–80
52.14.14 tracking_debug MTA option ... 52–80

52.15 Direct LDAP MTA options .. 52–80
52.15.1 LDAP bind and connect MTA options .. 52–81
52.15.2 Direct LDAP domain lookup MTA options ... 52–83
52.15.3 Direct LDAP usergroup lookup MTA options 52–89
52.15.4 Direct LDAP schema MTA options .. 52–93
52.15.5 Direct LDAP attribute interpretation MTA options 52–96
52.15.6 Direct LDAP attribute name MTA options .. 52–108
52.15.7 Direct LDAP attributes returned upon authentication MTA options 52–161
52.15.8 LDAP lookup cache MTA options .. 52–161

52.16 Directory location MTA options ... 52–164
52.16.1 tmpdir MTA option ... 52–164
52.16.2 langdir MTA option ... 52–164

52.17 DKIM MTA options .. 52–164
52.17.1 dkim_ignore_domains MTA option ... 52–164
52.17.2 dkim_preserve_domains MTA option ... 52–165
52.17.3 dkim_remove_domains MTA option ... 52–165

52.18 DNS lookup MTA options ... 52–165
52.18.1 blocked_mail_from_ips MTA option ... 52–165
52.18.2 return_envelope MTA option ... 52–165

52.19 Error text and error interpretation MTA options ... 52–166
52.19.1 access_errors MTA option ... 52–166
52.19.2 error_text MTA options ... 52–167
52.19.3 use_permanent_error MTA option ... 52–178
52.19.4 use_temporary_error MTA option ... 52–179

52.20 External filtering context MTA options ... 52–180
52.20.1 scan_schannel MTA option ... 52–180
52.20.2 scan_originator MTA option ... 52–180
52.20.3 scan_recipient MTA option ... 52–180

52.21 File format MTA options ... 52–181
52.21.1 buffer_size MTA option ... 52–181
52.21.2 cache_magic MTA option ... 52–181
52.21.3 cbt MTA option ... 52–181

52–2 Messaging Server Reference

52.21.4 comment_chars MTA option ... 52–181
52.21.5 debug_flush MTA option ... 52–182
52.21.6 dequeue_map MTA option ... 52–182
52.21.7 fdirectory MTA option ... 52–182
52.21.8 fsync MTA option ... 52–182
52.21.9 log_alq MTA option ... 52–183
52.21.10 log_deq MTA option ... 52–183
52.21.11 max_internal_blocks MTA option ... 52–183
52.21.12 mm_mbc MTA option ... 52–183
52.21.13 mm_mbf MTA option ... 52–183
52.21.14 notary_quote MTA option ... 52–184
52.21.15 osync MTA option ... 52–184
52.21.16 projectid Option Under mta .. 52–184
52.21.17 queue_cache_mode MTA option ... 52–184
52.21.18 queue_cache_mode_3_files MTA option 52–184
52.21.19 use_text_databases MTA option ... 52–184

52.22 Internal size MTA options ... 52–185
52.22.1 alias_hash_size MTA option ... 52–186
52.22.2 alias_member_size MTA option ... 52–186
52.22.3 channel_table_size MTA option ... 52–187
52.22.4 chunk_cache_limit MTA option ... 52–187
52.22.5 circuitcheck_paths_size MTA option 52–187
52.22.6 conversion_size MTA option ... 52–187
52.22.7 describe_cache_limit MTA option ... 52–187
52.22.8 domain_hash_size MTA option ... 52–188
52.22.9 file_member_size MTA option ... 52–188
52.22.10 forward_data_size MTA option ... 52–188
52.22.11 fruits_size MTA option ... 52–188
52.22.12 general_data_size MTA option ... 52–188
52.22.13 host_hash_size MTA option ... 52–189
52.22.14 ldap_attr_name_hash_size MTA option 52–189
52.22.15 ldap_object_class_hash_size MTA option 52–189
52.22.16 map_names_size MTA option ... 52–190
52.22.17 options_hash_size MTA option ... 52–190
52.22.18 personal_conversion_size MTA option 52–190
52.22.19 reverse_data_size MTA option ... 52–190
52.22.20 string_pool_size_N MTA options .. 52–191
52.22.21 wild_pool_size MTA option ... 52–191

52.23 Latency server MTA options .. 52–191
52.23.1 latency_host MTA option ... 52–191
52.23.2 latency_port MTA options ... 52–192
52.23.3 latency_expire MTA option ... 52–192
52.23.4 latency_timeout MTA option ... 52–192
52.23.5 latency_max_failures MTA option ... 52–192

52.24 LDAP external directory lookup MTA options .. 52–192
52.24.1 ldap_ext_host MTA option ... 52–193
52.24.2 ldap_ext_max_connections MTA option 52–193
52.24.3 ldap_ext_password MTA option ... 52–193
52.24.4 ldap_ext_port MTA option ... 52–193
52.24.5 ldap_ext_username MTA option ... 52–193

52.25 LDAP PAB MTA options ... 52–193
52.25.1 ldap_pab_host MTA option ... 52–194
52.25.2 ldap_pab_max_connections MTA option 52–194

MTA options 52–3

52.25.3 ldap_pab_password MTA option ... 52–194
52.25.4 ldap_pab_port MTA option ... 52–194
52.25.5 ldap_pab_username MTA option ... 52–194

52.26 Mailing list MTA options ... 52–194
52.26.1 alternate_recipient MTA option ... 52–195
52.26.2 alternate_recipient_mode Option ... 52–195
52.26.3 defer_group_processing MTA option ... 52–195
52.26.4 digest_on MTA option ... 52–196
52.26.5 expandable_default MTA option ... 52–196
52.26.6 mail_off MTA option ... 52–196
52.26.7 or_clauses MTA option ... 52–197
52.26.8 post_off MTA option ... 52–197

52.27 MAILSERV MTA options ... 52–197
52.27.1 MAILSERV moderator MTA options .. 52–197
52.27.2 MAILSERV LDAP schema MTA options .. 52–198
52.27.3 MAILSERV user LDAP attribute name MTA options 52–198
52.27.4 MAILSERV list subscription LDAP attribute name MTA options 52–198
52.27.5 MAILSERV list LDAP attribute name MTA options 52–199

52.28 Mapping table MTA options .. 52–199
52.28.1 Access mapping table MTA options ... 52–199
52.28.2 Miscellaneous mapping table MTA options .. 52–208

52.29 Memcache MTA options .. 52–214
52.29.1 memcache_host MTA/channel options ... 52–214
52.29.2 memcache_port MTA/channel options ... 52–215
52.29.3 memcache_expire MTA option ... 52–215
52.29.4 memcache_timeout MTA option ... 52–215
52.29.5 memcache_hash_algorithm MTA option 52–215
52.29.6 alias_database_url MTA option ... 52–215
52.29.7 domain_database_url MTA option ... 52–215
52.29.8 forward_database_url MTA option ... 52–216
52.29.9 general_database_url MTA option ... 52–216
52.29.10 reverse_database_url MTA option ... 52–216

52.30 Message archival and hashing MTA options ... 52–216
52.30.1 journal_format MTA option ... 52–216
52.30.2 capture_domain_replace MTA option ... 52–217
52.30.3 message_hash_algorithm MTA option ... 52–217
52.30.4 message_hash_fields MTA option ... 52–218
52.30.5 unique_id_template MTA option ... 52–218

52.31 Message size MTA options .. 52–218
52.31.1 block_limit MTA option ... 52–218
52.31.2 block_size MTA option ... 52–219
52.31.3 bounce_block_limit MTA option ... 52–220
52.31.4 content_return_block_limit MTA option 52–220
52.31.5 header_limit MTA option ... 52–220
52.31.6 line_limit MTA option ... 52–221
52.31.7 local_quota_checks MTA option ... 52–221
52.31.8 max_header_block_use, max_header_line_use MTA options 52–221
52.31.9 max_header_blocks MTA option ... 52–221
52.31.10 max_header_lines MTA option ... 52–222
52.31.11 max_mime_levels, max_mime_parts MTA options 52–222
52.31.12 *_block_limit priority limit MTA options 52–222

52.32 Message tracking MTA options .. 52–223
52.32.1 tracking_hash_algorithm MTA option 52–224

52–4 Messaging Server Reference

52.32.2 tracking_mode MTA option ... 52–224
52.32.3 tracking_retries, tracking_retry_delay MTA options 52–224

52.33 MeterMaid MTA options ... 52–224
52.33.1 metermaid_backoff MTA option ... 52–224
52.33.2 metermaid_expire MTA option ... 52–225
52.33.3 metermaid_host MTA option ... 52–225
52.33.4 metermaid_port MTA option ... 52–225
52.33.5 metermaid_secret MTA option ... 52–225
52.33.6 metermaid_timeout MTA option ... 52–225

52.34 MLS MTA options ... 52–226
52.34.1 mls Option .. 52–226

52.35 MTQP MTA options .. 52–226
52.35.1 mtqp_port MTA option ... 52–226
52.35.2 mtqp_timeout MTA option ... 52–226
52.35.3 mtqp_expire MTA option ... 52–226

52.36 Notification message MTA options ... 52–226
52.36.1 bounce_block_limit MTA option ... 52–227
52.36.2 content_return_block_limit MTA option 52–227
52.36.3 history_to_return MTA option ... 52–227
52.36.4 lines_to_return MTA option ... 52–227
52.36.5 notary_decode MTA option ... 52–228
52.36.6 notary_quote MTA option ... 52–228
52.36.7 return_address MTA option ... 52–228
52.36.8 return_delivery_history MTA option 52–229
52.36.9 return_envelope MTA option ... 52–229
52.36.10 return_personal MTA option ... 52–230
52.36.11 return_units MTA option ... 52–230
52.36.12 use_precedence MTA option ... 52–231
52.36.13 use_warnings_to MTA option ... 52–231

52.37 Password and TLS MTA options .. 52–231
52.37.1 plaintextmincipher Option Under mta .. 52–231
52.37.2 smtpproxypassword Option ... 52–231
52.37.3 sslnicknames Option Under mta ... 52–232

52.38 Processing priority MTA options .. 52–232
52.38.1 mtpriority_policy MTA option ... 52–232
52.38.2 *_block_limit priority limit MTA options 52–233

52.39 Received header line MTA options ... 52–234
52.39.1 held_sndopr MTA option ... 52–234
52.39.2 id_domain MTA option ... 52–235
52.39.3 max_local_received_lines MTA option 52–235
52.39.4 max_mr_received_lines MTA option ... 52–235
52.39.5 max_received_lines MTA option ... 52–235
52.39.6 max_total_received_lines MTA option 52–235
52.39.7 max_x400_received_lines MTA option 52–236
52.39.8 received_domain MTA option ... 52–236
52.39.9 received_version MTA option ... 52–236

52.40 Redis MTA options ... 52–236
52.40.1 hostlist Option Under redis_client .. 52–237
52.40.2 port Option Under redis_client .. 52–237
52.40.3 authpassword Option Under redis_client .. 52–237
52.40.4 hostlist Option Under sentinel_client .. 52–237
52.40.5 port Option Under sentinel_client .. 52–237
52.40.6 authpassword Option Under sentinel_client 52–237

MTA options 52–5

52.40.7 hostlist Option Under redis .. 52–237
52.40.8 port Option Under redis .. 52–237
52.40.9 authpassword Option Under redis .. 52–238
52.40.10 hostlist Option Under sentinel .. 52–238
52.40.11 port Option Under sentinel .. 52–238
52.40.12 authpassword Option Under sentinel .. 52–238

52.41 Sieve filter MTA options .. 52–238
52.41.1 systemfilter MTA option ... 52–238
52.41.2 Sieve filter interpretation MTA options .. 52–239
52.41.3 Sieve filter limit MTA options .. 52–242
52.41.4 Sieve filter caching MTA options ... 52–244
52.41.5 Sieve language extension MTA options .. 52–245
52.41.6 Sieve filter duplicate extension MTA options 52–247
52.41.7 Sieve filter error text MTA options ... 52–248
52.41.8 Sieve filter log and debug MTA options ... 52–248

52.42 Spamfilter MTA options .. 52–250
52.42.1 optin_user_carryover MTA option ... 52–251
52.42.2 spamfilterN_library MTA options ... 52–251
52.42.3 spamfilterN_config_file MTA options 52–252
52.42.4 spamfilterN_name MTA options ... 52–253
52.42.5 spamfilterN_null_optin MTA options .. 52–253
52.42.6 spamfilterN_*_M action and verdict MTA options 52–253
52.42.7 spamfilterN_final MTA options ... 52–255
52.42.8 spamfilterN_includeheaders MTA options 52–256
52.42.9 spamfilterN_null_action MTA options 52–256
52.42.10 spamfilterN_optional MTA options .. 52–256
52.42.11 spamfilterN_received MTA options .. 52–257
52.42.12 spamfilterN_returnpath MTA options 52–258
52.42.13 spamfilterN_string_action MTA options 52–258

52.43 SPF MTA options .. 52–259
52.43.1 spf_smtp_status_fail MTA option ... 52–259
52.43.2 spf_smtp_status_fail_all MTA option 52–259
52.43.3 spf_smtp_status_permerror MTA option 52–260
52.43.4 spf_smtp_status_softfail MTA option 52–261
52.43.5 spf_smtp_status_softfail_all MTA option 52–261
52.43.6 spf_smtp_status_temperror MTA option 52–261
52.43.7 spf_max_dns_queries MTA option ... 52–263
52.43.8 spf_max_recursion MTA option ... 52–263
52.43.9 spf_max_time MTA option ... 52–263

52.44 SRS MTA options .. 52–263
52.44.1 srs_domain, srs_hash_algorithm, srs_maxage, srs_secrets MTA
Options ... 52–265
52.44.2 token_char MTA option ... 52–265

52.45 Syslog MTA options .. 52–266
52.45.1 held_sndopr MTA option ... 52–266
52.45.2 log_connections_syslog MTA option ... 52–266
52.45.3 log_messages_syslog MTA option ... 52–267
52.45.4 log_sndopr MTA option ... 52–269
52.45.5 log_syslog_prefix MTA option ... 52–269
52.45.6 sndopr_prefix MTA option ... 52–269
52.45.7 sndopr_priority MTA option ... 52–269
52.45.8 spamfilterN_optional MTA options ... 52–270

52.46 Transaction logging MTA options .. 52–271

52–6 Messaging Server Reference

52.46.1 log_alternate_recipient MTA option 52–272
52.46.2 log_auth MTA option ... 52–272
52.46.3 log_callout_delays MTA option ... 52–273
52.46.4 log_connection MTA option ... 52–275
52.46.5 log_conversion_tag MTA option ... 52–276
52.46.6 log_deliver_by MTA option ... 52–277
52.46.7 log_diagnostics MTA option ... 52–277
52.46.8 log_dkim MTA option ... 52–277
52.46.9 log_envelope_id MTA option ... 52–278
52.46.10 log_filename MTA option ... 52–278
52.46.11 log_filter MTA option ... 52–278
52.46.12 log_format MTA option ... 52–279
52.46.13 log_from MTA option ... 52–285
52.46.14 log_futurerelease MTA option ... 52–285
52.46.15 log_header MTA option ... 52–286
52.46.16 log_header_options MTA option ... 52–287
52.46.17 log_headers_maxchars MTA option ... 52–287
52.46.18 log_imap_flags MTA option ... 52–287
52.46.19 log_delivery_flags MTA option ... 52–287
52.46.20 log_intermediate MTA option ... 52–288
52.46.21 log_local MTA option ... 52–288
52.46.22 log_isc_status MTA option ... 52–288
52.46.23 log_mailbox_uid MTA option ... 52–289
52.46.24 log_message_id MTA option ... 52–290
52.46.25 log_mtpriority MTA option ... 52–291
52.46.26 log_node MTA option ... 52–291
52.46.27 log_notary MTA option ... 52–291
52.46.28 log_priority MTA option ... 52–292
52.46.29 log_process MTA option ... 52–292
52.46.30 log_queue_time MTA option ... 52–293
52.46.31 log_reason MTA option ... 52–294
52.46.32 log_remote_mta MTA option ... 52–294
52.46.33 log_sensitivity MTA option ... 52–295
52.46.34 log_smartsend MTA option ... 52–295
52.46.35 log_times MTA option ... 52–295
52.46.36 log_tracking MTA option ... 52–296
52.46.37 log_transactionlog MTA option ... 52–296
52.46.38 log_uid MTA option ... 52–297
52.46.39 log_use_xtext MTA option ... 52–297
52.46.40 log_username MTA option ... 52–298
52.46.41 log_8bit_encode MTA option ... 52–299
52.46.42 separate_connection_log MTA option 52–299
52.46.43 return_split_period MTA option ... 52–300
52.46.44 return_cleanup_period MTA option ... 52–300

52.47 OpenVMS user agent MTA options .. 52–300
52.47.1 delivery_receipt_off Option ... 52–300
52.47.2 delivery_receipt_on Option ... 52–300
52.47.3 dis_nesting MTA option ... 52–301
52.47.4 form_names MTA option ... 52–301
52.47.5 mail_delivery_filename Option ... 52–301
52.47.6 missing_address Option ... 52–301
52.47.7 multinet_mm_exclusive Option ... 52–301
52.47.8 read_receipt_off MTA option ... 52–301

MTA options 52–7

MTA option naming in Unified
Configuration

52.47.9 read_receipt_on MTA option ... 52–302
52.47.10 safe_tcl_mode MTA option ... 52–302
52.47.11 use_mail_delivery Option ... 52–302
52.47.12 vms_mail_exclusive Option ... 52–302

A subset of the overall Messaging Server configuration options are the MTA options.

The mta.enable option enables startup of the MTA upon start-msg startup.

The MTA uses options to provide a means of overriding the default values of various
parameters that apply to the MTA as a whole. Various MTA channels also have their own
channel-level options. The general MTA options have the same format as MTA channel options
but are otherwise distinct --- they apply to the MTA as a whole rather than being restricted in
application to any specific channel.

 In older versions of the MTA, such options were stored in the so-called MTA option file,
normally named option.dat. So the MTA options are also sometimes referred to as
"option.dat options".

A variety of configuration options are controlled by MTA options. In particular, some MTA
options establish sizes of the various internal, in-memory tables into which the remainder of
the configuration --- the channel definitions, mapping tables, conversion entries, etc. --- are
read.

Additional discussions of MTA options include:

• Legacy configuration MTA option file
• Getting option changes to take effect on the MTA
• Option value syntax in legacy configuration
• MTA options, listed alphabetically
• MTA options, listed by functional group

See also the umask Message Store option, which affects more than only Message Store files.

In contrast to MTA options, which typically modify fundamental aspects of overall MTA
operation, another important category of option modifying MTA operation more specificially
at the channel level is that of channel options. Note that MTA options and channel options are
mostly distinct, as they mostly modify qualitatively different aspects of operation; however,
there are some cases where an MTA option establishes a general default for all channels, which
a channel option may then override on a per-channel basis.

52.1 MTA option naming in Unified
Configuration

In the Unified Configuration, MTA configuration including MTA options (meaning here
MTA-as-a-whole options, as opposed to channel-specific options) are set in the config.xml
Messaging Server unified configuration file where they are XML elements. However, under
normal circumstances, the Messaging Server unified configuration file config.xml is not---
indeed should not be--- inspected or editted manually by the MTA administrator. Instead,
normally the MTA's msconfig utility is used to examine the MTA configuration and make
configuration changes.

The msconfig utility presents a command line interface for viewing and editting MTA
settings corresponding to the underlying XML constructs from config.xml; it is the

52–8 Messaging Server Reference

Legacy configuration MTA option
file

recommended interface for examining the MTA configuration and making MTA configuration
changes. The msconfig utility represents MTA options in the general form:

instance-or-role.mta.option-name

That is, in the msconfig representation, MTA options are either of the form:

instance.mta.option-name

or

role.mta.option-name

However, the instance. and role. prefixes are usually omitted, since the msconfig
utility is typically used in modes in which the appropriate instance or role is determined
automatically by the utility, with the instance or role scope then set appropriately
automatically by the utility. That is, usual usage in msconfig is to refer simply to:

mta.option-name

Furthermore the mta. prefix is often unnecessary. If the MTA option name is unambiguous
(does not collide with any option name for any other component of Messaging Server), then
the MTA scope (mta. prefix) will also be automatically supplied by the msconfig utility, so
that often simply referring to:

option-name

will suffice. However, especially in any scripting that may be reused later, it may be best to
include the mta. prefix to avoid the potential for future option additions to result in a name
ambiguity.

Thus in typical use, MTA options (under the appropriate instance or role) would typically be
shown, set, or unset using the msconfig commands, respectively,

msconfig> show mta.option-name
msconfig> set mta.option-name
msconfig> unset mta.option-name

The msconfig utility will translate between this simple mta.option-name representation
and the (more complex form of the) underlying XML elements stored in config.xml.

See the msconfig utility for more details.

52.2 Legacy configuration MTA option file
The MTA legacy configuration option file is the file CONFIGROOT/option.dat.

Each time an MTA program begins running in legacy configuration mode, the MTA option
file is read and loaded into memory. This overhead may be avoided by compiling your
MTA configuration, in which case the contents of the option file will be incorporated into
the compiled configuration. The disadvantage to this, however, is that it means that the

MTA options 52–9

Option value syntax in legacy
configuration

configuration must be recompiled and reinstalled whenever a change is made to the option
file. See Compiling the MTA configuration for details on compiling your configuration.

The MTA option file is line-oriented, where each line contains the setting for one option. An
option setting has the form:

option=value

where note white space is significant, and white space should not be present before the equal
sign. (Indeed, for string values, even trailing white space is significant and -- normally --
preserved as it is meaningful and desired for some options, though as of Messaging Server 7.0,
the MTA will attempt some "clean up" of certain option values, such as those for setting file
names, and such "clean up" can potentially include removal of extraneous tailing spaces from
the option value setting.)

value may be either a string, an integer, a floating point value, or a comma-separated list of
one such type of value, depending on the option's requirements. For further details on value
syntax, see Option value syntax in legacy configuration.

Long lines may be continued by ending them with a backslash, \.

Comments are allowed. Any line that begins in column one with an exclamation point,
semicolon, or shart character, "!", ";", or "#", is considered to be a comment and is ignored (even
if the preceding line ended with a backslash, which would normally mean that the line was a
continuation). For the MTA option file, the interpretation of the characters "!", ";", and "#" as
indicating a comment line is hard-coded; in particular, it is not affected by any setting of the
comment_chars MTA option (though that option does affect the interpretation of other MTA
configuration files, including other "option files").

Whereas white space on an option setting line is significant, note that blank lines are permitted
and ignored in any option file.

Note: This same format is used for various additional MTA "option files", in addition to
"the" MTA option file. That is, some spam/virus filter package option files, and in legacy
configuration the Dispatcher option file, Job Controller option file, channel option files, etc., all
use this same sort of format.

52.2.1 Option value syntax in legacy configuration
Option values are typically one of string, integer, or (less commonly) floating point, or in
some cases comma-separated lists of one of the above types of values, or in other cases space-
separated lists of one of the above types of values. Furthermore, some option values are further
constrained, as for instance an integer in a particular range, or a string that corresponds to an
LDAP attribute name or to a channel name; and some option values have additional semantics
as for instance a bit-encoded integer, or a boolean integer. The type of value valid for an option
depends upon the option's requirements; the exact type required will be described for each
option. The discussion below will touch on general syntax issues.

The length of the string specifying the option value (the length of the material to the right
of the equal sign) is limited to 1024 characters; (prior to MS 6.2p8/6.3, the limit had been
256 characters). For options where the value involves substitution expansions (such as URL
values using URL substitution sequences), the limit after such expansion is (and has been) 1024
characters.

 If an option accepts an integer value, a base may be specified using notation of the form b%v,
where b is the base expressed in base 10 and v is the actual value expressed in base b.

52–10 Messaging Server Reference

Getting option changes to take
effect on the MTA

 Bit-encoded integer values are used for a number of options. A bit-encoded integer value may
be written as any integer would be; however, it has additional semantics. In a bit-encoded
integer value, each bit of the integer controls a different feature; thus a bit-encoded integer
value expresses a whole set of enable/disable choices. The least significant bit is conventionally
referred to a "bit 0". The integer value of each set bit is then two raised to the bit position
power; for instance, setting bit 0 means adding 1 to the value, setting bit 1 means adding 2 to
the value, setting bit 2 means adding 4 to the value, etc.

 Boolean values may be specified either as a number, 0 (false) or 1 (true), or as a string "false" or
"true".

 Floating point values may be written either in usual decimal notation, for instance, 3.1416,
or may be written using the common scientific exponential notation, for instance, 1.045E2
meaning 104.5. The exponent indicator may be any of the characters E, e, F, or f.

For string values, note that spaces are significant in values, including trailing spaces, as for
certain options values with trailing spaces are meaningful. (However, as of Messaging Server
7.0, the MTA will attempt some "clean up" of certain option values, such as those for setting
file names, or for reading options from the Dispatcher or Job Controller configuration files --
where such "clean up" can potentially include removal of extraneous trailing spaces from the
option value setting.)

52.3 Getting option changes to take effect on
the MTA

Options, both MTA options and channel options, are part of the core MTA configuration.
When an MTA process starts up, one of its first tasks is to get initialized with a complete
view of the current "live" core MTA configuration. When a compiled configuration is in use
(exists), then the current "live" core MTA configuration is the most recently compiled version
of the MTA configuration; any options with values updated subsequent to the most recent
compilation are not "live" (will not have an effect). When a compiled configuration is not in
use, then any changes to option values are immediately "live" (though this does not mean that
they will take immediate effect; see below).

Now since many MTA processes are long-running, and since they normally initialize with the
MTA configuration information upon first starting up, even "live" configuration changes are
not seen immediately by already running MTA processes. To update already running MTA
processes with new configuration information, the reload utility (or one of the utilities that
subsumes it) must be used. Note that since most MTA processes do automatically "cycle"
--- that is, time out and expire to be replaced with new processes --- changes to the "live"
configuration generally will get seen eventually, if not immediately, even if the reload
utility is not used. (In particular, MTA server processes, such as SMTP server processes, and
channel delivery job processes, do expire and get replaced regularly, if not immediately;
such channel processes are usually the processes that need to "see" changes to configuration
options. However, the two main control processes for the MTA, namely the Dispatcher and Job
Controller, run indefinitely and do not automatically expire, so for option changes affecting
them, waiting will not suffice and a reload will be required.)

So in particular, when a compiled configuration is being used, then options are part of the
compiled configuration. And in order to get changes to options to take effect, you must:
(1) re-compile the configuration (using the cnbuild utility or a utility that subsumes it),
and furthermore for already running, long-running processes you must also (2) reload the
configuration (using the reload utility or a utility that subsumes it).

MTA options 52–11

MTA options listed alphabetically

52.4 MTA options listed alphabetically
Table of MTA options, listed alphabetically, shown below, lists the available options in
alphabetic order. A brief description of each option is included, though more details can
be found in the discussions of the individual options. See also MTA options, listed by
functionality, which lists the options grouped together by function, and which furthermore
includes links to subsections with general information about the groups of options.

Table 52.1 MTA options, listed alphabetically

Option Usage
access_auth (New in 8.0) Control whether FROM_ACCESS

mapping table probes include the SMTP MAIL
FROM AUTH parameter's value and/or the
canonical username produced by authentication

access_counts Control whether recipient access mapping table
probes include a recipient count field

access_errors Control the information issued in certain error
messages

access_orcpt Control whether recipient access mapping table
probes include an ORCPT field

alias_case Control the case sensitivity of aliases; support for
this option is RESTRICTED: set it only if instructed
to do so by Oracle engineering

alias_domains Control the format of alias file (and hence Unified
Configuration alias options) and alias database
lookups

alias_entry_cache_negative Whether to cache negative results (i.e., failures) of
alias lookups (alias_urlN lookups)

alias_entry_cache_size Number of alias lookup (alias_urlN) results to
keep cached

alias_entry_cache_timeout How long to cache alias lookup (alias_urlN)
results

alias_magic Control the order in which alias lookups are
performed; support for this option is RESTRICTED

alias_url0 URL for doing alias lookups
alias_url1 URL for doing alias lookups
alias_url2 URL for doing alias lookups
alias_url3 URL for doing alias lookups
alias_hash_size Set the number of aliases allowed in the alias file
alias_member_size Set the number of alias expansions allowed: in the

alias file (legacy configuration), or via alias option
(Unified Configuration)

aliasdetourhost_null_optin (New in MS 6.2p4) Specify a value for the attribute
named by the ldap_detourhost_optin
MTA option (and new in MS 7.0.5,

52–12 Messaging Server Reference

MTA options listed alphabetically

also the attribute named by the
ldap_domain_attr_detourhostoptin) that
means that the attribute should be ignored; the
purpose is to allow a way of "turning off" message
detouring (where the detouring is typically for
purposes of spam/virus filtering) for sites and users
whose provisioning facilities find it easier to set an
attribute value rather than to remove an attribute
entirely

allow_unquoted_addrs_violate_rfc2798 Look up addresses in LDAP with quotes stripped
from the local part

alternate_recipient (New in MS 8.0.1) Specify the comment string used
to add an alternate recipient for an address.

alternate_recipient_mode (New in MS 8.0.1) Control handling of multiple
alternate recipients.

ap_debug Internal MTA debugging option: enable debugging
of low level address parsing; support for this
option is RESTRICTED

autoreply_timeout_default Specify a default duration between successive
vacation responses to the same sender

averages_cache_size (New in MS 6.2) Size of the cache of load average
values

averages_cache_timeout (New in MS 6.2) Timeout for the cache of load
average values

block_limit Limit the size of messages allowed through the
MTA

block_size Set the size of MTA "blocks"
blocked_mail_from_ips Specify IP address literals whose A records should

be ignored for purposes of the lookups done due to
the mailfromdnsverify channel keyword (new
in 6.1-0.01 release)

bounce_block_limit Limit the amount of original message content
included in bounce messages

brightmail_* Synonyms for the corresponding spamfilter_*
options; see the spamfilter_* options for
definitions

buffer_size Set the buffer size used when writing message files;
default is 8192

cache_debug Output direct LDAP lookup caching statistics
cache_magic OBSOLETE: Control the sorting (for processing

purposes) of old message files
channel_table_size Set the number of channels allowed in the MTA

configuration
circuitcheck_completed_bins Specify the bins for the message circuit check

message counters

MTA options 52–13

MTA options listed alphabetically

circuitcheck_paths_size Number of circuit check paths (entries) to allow in
the circuit check configuration file

comment_chars Set the "comment" character(s) in MTA
configuration files

content_return_block_limit Force NOTARY non-return of content flag for
messages over the specified size

conversion_size Set the number of entries allowed in the conversion
file (legacy configuration) or conversions MTA
option (Unified Configuration)

conversions (Unified Configuration only) Conversion entries;
replaces legacy configuration conversions file

defer_group_processing Set a default for whether direct LDAP group (list)
expansion is deferred to the reprocess channel

delimiter_char (New in 7.0) RESTRICTED. Specify the delimiter
character (normally the vertical bar character)

delivery_options Specify interpretation of mailDeliveryOption
values

dequeue_debug Enable debugging of message dequeue operations
dequeue_map RESTRICTED. Map files into memory when

dequeuing
describe_cache_limit Control size of message part description cache for

message body processing purposes
digest_on Specify the comment string that enables mailing

list digests (in preference to regular mailing list
postings); usage is RESTRICTED

dirsync_hack In dirsync mode, enable "hack" of falling back
to trying to do an LDAP lookup and adding
the LDAP result to the alias database; usage is
DELETED

domain_failure Rewrite template to apply when an LDAP lookup
encounters an LDAP error

domain_hash_size Set the number of rewrite rules allowed
domain_match_cache_size Number of domain lookup ($V rewrite template)

results to keep cached
domain_match_cache_timeout How long to cache domain lookup ($V rewrite

template) results
domain_match_url URL for an extra, special lookup for domains, e.g.,

URL for looking up vanity domains
domain_uplevel Control whether to search "upwards" in the DC

tree for domain names, and whether to use a
"canonical" domain name when searching for user
entries

duplicate_tracking_url (New in 8.0) Template for location of per-user
duplicate message tracking files

enable Enable operation of the MTA

52–14 Messaging Server Reference

MTA options listed alphabetically

enable_sieve_regex Control whether Sieve filters may use the regex
extension (the :regex match-type)

error_text_* Specify alternate error text for any of various error
conditions; see Table of error text options

expandable_default Set the default for mailing lists to
[NONEXPANDABLE], i.e., disable use of SMTP
EXPN

exproute_forward Control whether the exproute channel option
affects forward pointing headers

file_member_size Maximum number of configuration files used by
the MTA

filter_cache_size New in 6.2. Specify the size of the per-process cache
of tokenized Sieve filters

filter_cache_timeout New in 6.2. Specify the retention time for entries in
the per-process cache of tokenized Sieve filters

filter_debug New in 6.2. Control whether detailed (stack state)
debugging of Sieve evaluation is output.

filter_discard Control whether messages discarded by a Sieve
filter are immediately deleted, or instead routed to
the filter_discard channel for delayed deletion

filter_jettison New in 6.1-0.01. Control whether messages
jettisoned by a Sieve filter are immediately deleted,
or instead routed to the filter_discard channel for
delayed deletion

forward_data_size Hash size for the forward (database) text file
fruits_size Number of fruits allowed in the fruit validation

table
fsync Do an fsync upon file close
general_case Controls the case sensitivity of general database

lookups
general_data_size Hash size for the general (database) text file
group_dn_template Template used when looking up a uniqueMember

of a group
header_limit Sets a maximum size for the primary (outermost)

message header
held_sndopr Send operator or syslog messages when messages

are HELD
history_to_return Control the amount of delivery attempt history

included in bounced messages
host_hash_size Set the number of channel host names
id_domain Set the domain name used in constructing message

IDs
idn_config_file (New in 8.0.1) Specify the location of optional

IDNKIT configuration file

MTA options 52–15

MTA options listed alphabetically

improute_forward Control the effect of the improute channel option
on forward pointing headers

include_connectioninfo New in 6.2. Include transport and application
connection information in mapping table probes

include_conversiontag New in MS 6.3. Include the conversion tag value(s)
in mapping table probes

ldap_* Specify an alternate attribute name for any of
various per-user attributes; see Direct LDAP
attribute name MTA options

ldap_attr_domain1_schema2 Specify an alternate attribute name for the attribute
used to store the "primary" domain in Schema 2

ldap_attr_domain2_schema2 Specify an alternate attribute name for the attribute
used to store the "secondary" domain in Schema 2

ldap_attr_domain_search_filter Attribute in the configuration template area, (see
the ldap_global_config_templates MTA
option) that is used to store the domain search filter
template

ldap_attr_name_hash_size Internal hash size for the list of LDAP attributes
relevant to the MTA

ldap_default_attr For LDAP URLs that are supposed to return a
single result, specify a single attribute to request
if no attribute was specified in the original LDAP
query string

ldap_default_domain The default domain name; overrides the
service.defaultdomain configutil parameter
(legacy configuration) or defaultdomain base
option (Unified Configuration)

ldap_domain_attr_* Specify an alternate attribute name for any of
various per-domain attributes; see Direct LDAP
attribute name MTA options

ldap_domain_filter_schema1 When schema 1 is in use, specify the filter used to
find domains in the DIT

ldap_domain_filter_schema2 When schema 2 is in use, specify the filter used to
find domains in the DIT

ldap_domain_known_attributes Control whether the MTA fetches all domain
attributes vs. fetches only "known" domain
attributes

ldap_domain_root The base DN for the domain portion of the DIT;
overrides the service.dcroot configutil
parameter (legacy configuration) or dcroot base
option (Unified Configuration)

ldap_domain_timeout New in 6.1-0.01. Specify the retention time for
entries in the domain map cache

ldap_global_config_templates Schema 2 support: specify the DN where global
configuration templates can be found

ldap_group_object_classes The object classes required for a group

52–16 Messaging Server Reference

MTA options listed alphabetically

ldap_host Host to which to connect for LDAP queries;
overrides the local.ugldaphost configutil
parameter (legacy configuration) or ugldaphost
base option (Unified Configuration)

ldap_host_alias_list Local host aliases; overrides (for MTA purposes)
the local.imta.hostnamealiases
configutil parameter (legacy configuration) or
ldap_host_alias_list base option (Unified
Configuration)

ldap_local_host The local host name (official host name for the
"l" channel); overrides (for MTA purposes) the
local.hostname configutil parameter (legacy
configuration) or hostname base option (Unified
Configuration)

ldap_mail_aliases The attributes in which aliases are stored; overrides
the local.imta.mailaliases configutil
parameter

ldap_mail_reverses The attributes used for the filter generated by the
$Q LDAP substitution sequence; normally used
during reverse_url lookups, hence normally
the attributes compared against an address to be
"reversed"

ldap_max_connections The maximum number of simultaneous LDAP
connections to allow

ldap_object_class_hash_size Internal hash size for the list of object classes
relevant to the MTA

ldap_pab_host New in 7.0. Usage: RESTRICTED. The host for
PAB LDAP queries; overrides (for MTA purposes)
the local.service.pab.ldaphost configutil
parameter (legacy configuration) or ldaphost
PAB option (Unified Configuration)

ldap_pab_password New in 7.0. Usage: RESTRICTED. The password for
PAB LDAP queries; overrides (for MTA purposes)
the local.service.pab.ldappasswd configutil
parameter (legacy configuration) or ldappasswd
PAB option (Unified Configuration)

ldap_pab_port New in 7.0. Usage: RESTRICTED. The port for
PAB LDAP queries; overrides (for MTA purposes)
the local.service.pab.ldapport configutil
parameter (legacy configuration) or ldapport
PAB option (Unified Configuration)

ldap_pab_username New in 7.0. Usage: RESTRICTED. The
username (bind credentials) for PAB LDAP
queries; overrides (for MTA purposes) the
local.service.pab.ldapbinddn configutil
parameter (legacy configuration) or ldapbinddn
PAB option (Unified Configuration)

ldap_password The password to use when binding for LDAP
queries; overrides (for MTA purposes) the

MTA options 52–17

MTA options listed alphabetically

local.ugldapbindcred configutil parameter
(legacy configuration) or ugldapbindcred base
option (Unified Configuration)

ldap_port Port to which to connect for LDAP
queries; overrides (for MTA purposes) the
local.ugldapport configutil parameter (legacy
configuration) or ugldapport base option
(Unified Configuration)

ldap_schemalevel The schema level in use; overrides (for MTA
purposes) the ldap_schemalevel base option

ldap_schematag The tag (name) of the schema in use; overrides the
local.imta.schematag configutil parameter

ldap_timeout Timeout value for LDAP queries
ldap_uid_invalid_chars Characters that are not allowed in a uid or

permanent identifier

ldap_use_async Control use of asynchronous (vs. synchronous)
LDAP lookups

ldap_user_object_classes The object classes required for a user
ldap_user_root The base DN for the user and group portion

of the DIT; overrides (for MTA purposes) the
local.ugldapbasedn configutil parameter
(legacy configuration) or ugldapbasedn base
option (Unified Configuration)

ldap_username The DN under which to bind for LDAP
queries; overrides (for MTA purposes) the
local.ugldapbinddn configutil parameter
(legacy configuration) or ugldapbinddn base
option (Unified Configuration)

line_limit Limit the size of messages allowed through the
MTA

lines_to_return Lines included when returning samples of message
content (as in warning messages)

log_alq (OpenVMS only.) Specify the default allocation
quantity for the MTA message transaction log file

log_auth (New in 7.0.5.) Include SMTP MAIL FROM's
AUTH parameter in MTA message transaction log
entries.

log_callout_delays (New in 8.0) Include timers showing the time
for responses from external components in MTA
message transaction log entries

log_connection Generate connection log entries, and/or include
connection information in message transaction log
entries. (New in 6.2, optionally log SMTP AUTH
attempts.)

log_connections_syslog Send connection log entries to syslog (UNIX) or
event log (NT)

52–18 Messaging Server Reference

MTA options listed alphabetically

log_conversion_tag (New in 7.0.5.) Include conversion tag(s) field in
MTA message transaction log entries.

log_delay_bins Specify the bins for delivery delay range counters
log_delivery_flags (New in 7.0.5.) Include delivery flags field in MTA

message transaction log entries.
log_diagnostics (New in MS 7.0u1) Include diagnostics in MTA

message transaction log entries
log_dkim (New in 8.1.0.6) Include information about DKIM

signing operations in message transaction log
entries

log_envelope_id New in 6.1-0.01. Include envelope ids in MTA
message transaction log entries.

log_filename Include message file names in MTA message
transaction log entries

log_filter Include Sieve filter actions applying to the message
in MTA message transaction log entries.

log_format Control the format of the MTA transaction log
file(s)

log_from (New in 8.1.0.2) Include the address found in the
From: header field in message transaction log
entries

log_futurerelease (New in) Include value of FUTURERELEASE
SMTP extension in MTA message transaction log
entries

log_header Include message headers in MTA message
transaction log entries

log_imap_flags (New in 7.0.5.) Include any IMAP flags set by the
MTA in MTA message transaction log entries

log_intermediate New in 6.2. Include "intermediate" and/or
"original" (RCPT TO: command line) forms of
destination address in MTA message transaction
log entries

log_isc_status (New in MS 8.0.2) Include Indexed Search
Converter status information in LMTP server MTA
message transaction log entries

log_local Include the local domain name on "bare user name"
addresses in MTA message transaction log entries

log_mailbox_uid Include the IMAP UID and UIDVALIDITY of
messages delivered by the ims-ms channel to the
Message Store in MTA message transaction log
entries

log_message_id Include message IDs in MTA message transaction
log entries

log_messages_syslog Send MTA message transaction log file entries to
syslog

MTA options 52–19

MTA options listed alphabetically

log_mtpriority (New in MS 8.0) Include message MT-PRIORITY in
MTA message transaction log entries

log_node OpenVMS only. Include the node name for an
enqueueing process in MTA message transaction
log entries

log_notary Include a NOTARY (delivery receipt) flags
indicator in MTA message transaction log entries

log_priority Include message priority in MTA message
transaction log entries

log_process Include enqueuing process ID in MTA message
transation log entries

log_queue_time (New in MS 6.3) Include "time in queue" in
MTA message transaction log entries; this also
causes inclusion of "time to open or fail to open a
connection" in MTA connection log entries

log_reason Include the reason for a message rejection in MTA
message transaction log entries

log_remota_mta (New in MS 8.0.2.3) Include remote MTA name in
MTA message transaction log entries

log_sensitivity Include message's sensitivity value in MTA
message transaction log entries

log_size_bins Specify the bins for message size range counters
log_smartsend (New in 8.1.0.1) Include additional information

about smartsend plugin actions in MTA message
transaction log entries

log_sndopr Send a syslog message if the MTA's logging
facilities encounter a difficulty

log_syslog_prefix (New in MS 8.0.2.3.) Specifices the prefix used on
MTA message transaction log file entries sent to
syslog

log_times (New in 8.0) Include deferred delivery time in MTA
message transaction log entries

log_tracking (New in 8.0) Include message tracking ID in MTA
message transaction log entries

log_transactionlog (New in 8.0) Include string argument from any
Sieve "transactionlog" actions in MTA message
transaction log entries

log_uid (New in 8.0) Include recipient UID in MTA message
transaction log entries

log_use_xtext (New in MS 8.0) Controls xtext encoding of
addresses in MTA message transaction log entries

log_username Include user identity information in MTA message
transation log entries

log_8bit_encode Controls how non-ASCII characters are written in
XMl format MTA transaction log file(s)

52–20 Messaging Server Reference

MTA options listed alphabetically

logfile logfile options set at the MTA level
(mta.logfile.option-name in Unified
Configuration) affect the MTA's logging of
insertion of messages into the Message Store; that
is, affect logging of message insertions performed
by ims-ms and tcp_lmtpss_* channels

mail_off Specify the comment string that disables mail
delivery for list addresses

map_names_size Set the number of mapping tables
mapping_paranoia (New in 7.0) Control handling of vertical bar

characters in probes of mapping tables such as
FROM_ACCESS, recipient access mapping tables
and AUTH_REWRITE

max_addheaders Maximum number of Sieve "addheader" actions
that can be performed

max_alias_levels Set the level of alias nesting allowed
max_duplicates (New in 8.0) Maximum "duplicate" tests

performed in a Sieve filter
max_fileintos Maximum number of Sieve "fileinto" actions

that may be performed by a Sieve script
max_header_block_user Fine tune message fragmentation
max_header_line_user Fine tune message fragmentation
max_internal_blocks Specify size of messages beyond which to buffer to

temporary files
max_local_received_lines Occurrences of the local host name in Received:

header lines after which a message will be HELD
max_mime_levels Degree to look inside MIME messages during

processing
max_mime_parts Number of parts to look at when processing MIME

messages
max_mr_received_lines Number of MR-Received: header lines after which a

message will be HELD
max_received_lines Number of Received: header lines after which a

message will be HELD
max_redirects Maximum number of Sieve "redirect" actions

(i.e., forwards) that may be used in a Sieve filter
max_total_received_lines Number of Received:, MR-Received: or X400-

Received: header lines after which a message will
be HELD

max_urls Maximum number of URLs that may be active
(nesting of references)

max_vacations Maximum number of vacation actions that may
appear in a Sieve filter

max_variables Maximum number of variables that may be used in
a Sieve script

MTA options 52–21

MTA options listed alphabetically

max_x400_received_lines Number of X400-Received: header lines after which
a message will be HELD

memcache_expire (New in 8.0) Time to hold idle memcached
connections open

memcache_hash_algorithm (New in 8.1.0.3) Hash function to apply to
memcache keys

memcache_host (New in 8.0) Host name of memcached server
memcache_port (New in 8.0) memcached service port
message_hash_algorithm (New in MS 6.3-0.15) Algorithm to use for

generating message hashes for message archiving
message_hash_fields (New in MS 6.3) Header fields to include when

generating message hashes
message_save_copy_flags (New in MS 6.3) Control the format of MESSAGE-

SAVE-COPY mapping table probes
missing_recipient_group_text Phrase to use when generating an empty group

construct
missing_recipient_policy Legalize messages that lack any recipient headers
name_table_name OpenVMS only: Name of a logical name table

storing aliases
normal_block_limit Maximum size of message to treat as being of

normal or higher priority
non_urgent_block_limit Maximum size of message to treat as being of non-

urgent priority
notary_decode Control whether encoded-words in the original

message header are decoded when performing a %H
substitution during the MTA's generation of DSNs
and MDNs

notary_quote Specify the character that marks substitution
sequences in return_*.txt files and
disposition_*.txt files

notify_maximum_timeout (New in MS 7.0.5) Specify the maximum timeout
permitted between successive Sieve notify or
enotify actions

notify_minimum_timeout (New in MS 7.0.5) Specify the minimum timeout
permitted between successive Sieve notify or
enotify actions

notify_timeout_default (New in MS 7.0.5) Specify the default timeout
permitted between successive Sieve notify or
enotify actions

optin_user_carryover New in 6.2. Specify whether user spam/virus filter
"opt-in" is considered to "carry over" for forwarded
recipients

options_hash_size Hash size for the internal table of MTA options
(option.dat options)

52–22 Messaging Server Reference

MTA options listed alphabetically

or_clauses Set default for whether to AND or OR multiple
posting access control settings on mailing lists

plaintextmincipher (New in MS 7.4-18.01; only settable at the
MTA level in Unified Configuration) Disable
PLAINTEXT SMTP AUTH unless SSL or TLS is
active

post_off Specify the comment string that disables posting
for list addresses

projectid (New in MS 7.3-11.01) Numeric id the MTA uses
when obtaining shared memory segments

queue_cache_mode Tells the MTA where queue cache information is
being stored

received_domain Specify the domain name (identifying the system
itself) to use in constructing Received: header lines

received_version Specify the IMTA version string to use in
constructing Received: header lines; use is NOT
RECOMMENDED

return_address Set the return address for the local postmaster
return_debug Enable debugging of MTA periodic return_job

operations
return_delivery_history Control whether delivery attempt history is

included in returned messages
return_envelope Control use of empty return address in notification

messages, and validity checks on envelope From
address

return_personal Set the personal name for the postmaster
return_units Control the assumed units for the notices

channel option, thereby controlling the interval at
which certain notification messages are generated

reverse_address_cache_size Number of LDAP address reversal (reverse_url)
results to keep cached

reverse_address_cache_timeout How long to cache LDAP address reversal lookup
(reverse_url) results

reverse_data_size Internal hash size for the reverse (database) text file
reverse_envelope RESTRICTED: Control application of address

reversal to envelope addresses
reverse_url URL for doing address reversal
route_to_routing_host Forcibly route non-local hosts to the first value of

mailRoutingHosts

separate_connection_log Write connection transaction log entries to a
separate file than message transaction log entries

sieve_body_needed Specifies whether or not to retain decoded MIME
body information when initial message analysis is
performed.

MTA options 52–23

MTA options listed alphabetically

sieve_mime_needed Specifies whether or not to retain inner MIME
structure and header information when initial
message analysis is performed.

sieve_redirect_add_resent (New in MS 6.3p1) Default for whether Sieve filter
"redirect" actions cause addition of Resent-*:
header lines

sieve_user_carryover Specify whether user Sieve filters "carry over" for
forwarded recipients

smtpproxypassword (New in MS 7.0.5) Password the MMP uses to
authenticate for SMTP; (supercedes the older TCP/
IP-channel-specific option PROXY_PASSWORD)

sndopr_prefix (New in MS 8.0.2.3.) Set the prefix attached to
syslog notices.

sndopr_priority Set the syslog level (facility and priority) the MTA
uses when generating syslog notices

spamfilterN_action_M URL that resolves to a Sieve filter, specifying
the action to take when Spam/virus filter
package N returns the corresponding
spamfilterN_verdict_M verdict

spamfilterN_config_file Location of the Spam/virus filter package
configuration file

spamfilterN_final Control whether the MTA passes the "intermediate"
vs. "final" address form to the spam/virus filter
package

spamfilterN_library Location of the Spam/virus filter package client
shared library

spamfilterN_name (New in MS 7.0.5) Specify a symbolic name for the
Nth spam/virus filter package.

spamfilterN_null_action URL that resolves to a Sieve filter, specifying the
action to take in the case of a null verdict from
Spam/virus filter package

spamfilterN_null_optin New in 6.1-0.01. Specify a value for the attribute
named by the ldap_domain_attr_optinN MTA
options, the ldap_optinN MTA options, or the
(new in MS 8.0.1.3) ldap_optoutN MTA options
that means that the attribute should be ignored; the
purpose is to provide a way for these attributes to
be used by provisioning facilities that find it easier
to set an attribute value rather than to remove an
attribute entirely

spamfilterN_string_action URL that resolves to a Sieve filter, specifying the
action to take in the case of verdicts from Spam/
virus filter package that do not have an explicit
corresponding action

spamfilterN_verdict_M A Spam/virus filter package verdict string

52–24 Messaging Server Reference

MTA options listed alphabetically

sslnicknames (New in MS 7.4-18.01; only settable at the MTA
level in Unified Configuration) SSL/TLS server
certificate nicknames the MTA will offer

string_pool_size_0 Set the number of strings allowed for miscellaneous
MTA configuration use

string_pool_size_1 Set the number of strings allowed for MTA
mapping table use

string_pool_size_2 Set the number of strings allowed for MTA alias use
string_pool_size_3 Set the number of strings allowed for MTA general

(database) text file use
string_pool_size_4 Set the number of strings allowed for MTA

personal conversion use
subaddress_char Specify the character used in addresses to separate

the username (mailbox) from the subaddress or
foldername

token_char Specify token character in local-part of addresses
for SRS purposes

tracking_debug (New in 8.0) Enable debugging of message tracking
tracking_hash_algorithm (New in 8.1.0.3) Select the hash algorithm the

MTA uses to generate hashes of tracking and recall
secrets. The default is SHA-1.

tracking_mode (New in 8.0) Enable message tracking data storage
tracking_retries (New in 8.0) Number of tracking update retry

attempts
tracking_retry_delay (New in 8.0) Time delay between tracking update

retry attempts
unique_id_template (New in MS 6.3) Specify a template used to convert

an address into a unique identifier; typically used
in conjunction with archiving facilities

urgent_block_limit Maximum size of message to treat as being of
urgent priority

use_alias_database Control use of the alias database
use_comment_strings Control the format of COMMENT_STRINGS mapping

table probes
use_domain_database Control use of the domain database
use_forward_database Control use of the forward database
use_personal_aliases Control use of personal alias databases
use_personal_names Control the format of PERSONAL_NAMES mapping

table probes
use_permanent_error Control whether certain error conditions are

considered to be permanent errors, or temporary
errors

use_reverse_database Control use and format of the reverse mapping
table and reverse database

MTA options 52–25

MTA options listed by functional
group

use_temporary_error (New in 8.0.1) Control whether certain error
conditions are considered to be temporary errors,
or permanent errors

use_text_databases Control whether the general database, the reverse
database, and the forward database are on-disk
databases, or in-memory structures

url_result_cache_case New in MS 8.1.0.2. Controls whether URLs are
treated in a case-sensitive fashion.

url_result_cache_size Number of rewrite rule and mapping table LDAP
URL lookups ($]...[lookups) to keep cached

url_result_cache_timeout How long to cache rewrite rule and mapping table
LDAP URL lookups

user_case Lower case postmaster; other usernames with
localbehavior channel option

vacation_cleanup Average number of times between cleanups of the
per-user per-response vacation files

vacation_cleanup (New in MS 8.1.0.3) Specifies the hash algorithm to
use for creating vacation entry names

vacation_maximum_timeout (New in MS 7.0.5) Specify a maximum value
permitted for Sieve " vacation" periodicity
arguments

vacation_minimum_timeout (New in MS 7.0.5) Specify a minimum value
permitted for Sieve " vacation" periodicity
arguments

vacation_template URL specifying where per-user per-response
vacation information is stored

wild_pool_size Set the total number of wildcards allowed in
mappings' patterns

52.5 MTA options listed by functional group
Table of MTA options, listed by functional group, shown below, lists the available MTA
options, grouped by functionality. A brief description of each option is included, though more
details can be found in the discussions of each individual MTA option, and in the discussions
of functional groups of MTA options. See also Table of MTA options, listed alphabetically,
which lists the MTA options alphabetically.

Options that fall into more than one category (as is frequently the case) are listed under each of
the groups, except for the LDAP attribute name (schema) options which, due to their extensive
number, are listed only in the LDAP attribute name (schema) options section of the table.

Table 52.2 MTA options, listed by functionality

Option Usage
enable Enable operation of the MTA

Alias and address MTA options
alias_case RESTRICTED: Control the case sensitivity of aliases

52–26 Messaging Server Reference

MTA options listed by functional
group

alias_domains Control the format of alias file, alias option, and alias
database probes

alias_magic RESTRICTED: Control the order in which alias
lookups are performed

alternate_recipient (New in MS 8.0.1) Specify the comment string used to
add an alternate recipient for an address.

alternate_recipient_mode (New in MS 8.0.1) Control handling of multiple
alternate recipients.

ap_debug Internal MTA debugging option: enable debugging of
low level address parsing; support for this option is
RESTRICTED

delimiter_char (New in MS 7.0) RESTRICTED: ASCII position of
delimiter character

exproute_forward Control whether the exproute channel option
affects forward pointing headers

idn_config_file (New in MS 8.0.2) Specify the location of an optional
IDNKIT configuration file

improute_forward Control the effect of the improute channel option on
forward pointing headers

local_format_restrictions Restrict use of the vertical bar (pipe) character, |, in
local mailboxes (usernames), and restrict delivery to
local files (use of the +filename syntax)

max_alias_levels Set the level of alias nesting allowed
missing_recipient_group_text Phrase to use when generating an empty group

construct
missing_recipient_policy Legalize messages that lack any recipient headers
name_table_name OpenVMS only: Name of a logical name table storing

aliases
reverse_envelope Control application of address reversal to envelope

addresses
subaddress_char Specify the character used in addresses to separate

the username (mailbox) from the subaddress or
foldername

token_char Specify token character in local-part of address for
SRS purposes

use_alias_database Control use of the alias database
use_domain_database Control use of the domain database
use_forward_database Control use of the forward database
use_personal_aliases Control use of personal alias databases
use_reverse_database Control use and format of the REVERSE mapping

table and reverse database
user_case Lower case postmaster; other usernames with

localbehavior channel option
Autoresponse periodicity MTA options

MTA options 52–27

MTA options listed by functional
group

autoreply_timeout_default Specify a default duration between successive
vacation responses to the same sender

notify_maximum_timeout (New in MS 7.0.5) Specify the maximum timeout
permitted between successive Sieve notify or
enotify actions

notify_minimum_timeout (New in MS 7.0.5) Specify the minimum timeout
permitted between successive Sieve notify or
enotify actions

notify_timeout_default (New in MS 7.0.5) Specify the default timeout
permitted between successive Sieve notify or
enotify actions

vacation_cleanup Average number of times between cleanups of the
per-user per-response vacation files

vacation_cleanup (New in MS 8.1.0.3) Specifies the hash algorithm to
use for creating vacation entry names

vacation_maximum_timeout (New in MS 7.0.5) Specify a maximum value
permitted for Sieve " vacation" periodicity
arguments

vacation_minimum_timeout (New in MS 7.0.5) Specify a minimum value
permitted for Sieve " vacation" periodicity
arguments

vacation_template URL specifying where per-user per-response vacation
information is stored

BURL MTA options
imap_password (New in 7.0.) Set the password for the MTA to use

when connecting to the IMAP server (for BURL
purposes)

imap_username (New in 7.0.) Set the username for the MTA to use
when connecting to the IMAP server (for BURL
purposes)

configutil override MTA options +
ldap_base_dn DELETED for MS 7.0u4; see instead

ldap_user_root

ldap_default_domain The domain name to recognize and interpret as
the default domain name; overrides (for MTA
purposes) the defaultdomain base option (legacy
configuration service.defaultdomain configutil
parameter)

ldap_domain_root The base DN for the domain portion of the
DIT; overrides the dcroot base option (legacy
configuration) service.dcroot configutil
parameter)

ldap_host Host to which to connect for LDAP queries; overrides
the ugldaphost base option (legacy configuration
local.ugldaphost configutil parameter)

52–28 Messaging Server Reference

MTA options listed by functional
group

ldap_host_alias_list Local host aliases; overrides (for MTA purposes)
the ldap_host_alias_list base option (legacy
configuration local.imta.hostnamealiases
configutil parameter)

ldap_local_host The local host name (official host name for the
"l" channel); overrides (for MTA purposes) the
hostname base option (legacy configuration
local.hostname configutil parameter)

ldap_mail_aliases The attributes in which aliases are stored;
overrides the legacy configuration
local.imta.mailaliases configutil parameter

ldap_pab_host (New in MS 7.0) The host for PAB LDAP
queries; overrides (for MTA purposes) the
ldaphost PAB option (legacy configuration
local.service.pab.ldaphost configutil
parameter)

ldap_pab_max_connections (New in MS 7.0u1) Limit on the maximum number of
connections that will be made

ldap_pab_password (New in MS 7.0) The password for PAB LDAP
queries; overrides (for MTA purposes) the
ldappasswd PAB option (legacy configuration
local.service.pab.ldappasswd configutil
parameter)

ldap_pab_port (New in MS 7.0) The port for PAB LDAP queries;
overrides the ldapport PAB option (legacy
configuration local.service.pab.ldapport
configutil parameter). If neither this MTA option nor
the PAB option (configutil parameter) is set, then this
defaults to the ldap_port value.

ldap_pab_username (New in MS 7.0) The username (bind credentials) for
PAB LDAP queries; overrides (for MTA purposes)
the ldapbinddn PAB option (legacy configuration
local.service.pab.ldapbinddn configutil
parameter)

ldap_password The password to use when binding for LDAP
queries; overrides (for MTA purposes) the
ugldapbindcred base option (legacy configuration
local.ugldapbindcred configutil parameter)

ldap_port Port to which to connect for LDAP queries; overrides
(for MTA purposes) the ugldapport base option
(legacy configuration local.ugldapport configutil
parameter)

ldap_schematag The tag (name) of the schema in use; overrides
(for MTA purposes) the legacy configuration
local.imta.schematag configutil parameter

ldap_username The DN under which to bind for LDAP
queries; overrides (for MTA purposes) the

MTA options 52–29

MTA options listed by functional
group

ugldapbinddn base option (legacy configuration
local.ugldapbinddn configutil parameter)

ldap_user_root The base DN for the user and group portion
of the DIT; overrides (for MTA purposes) the
ugldapbasedn base option (legacy configuration
local.ugldapbasedn configutil parameter)

Conversions MTA options
conversion_size Set the number of entries allowed in the conversion

file (legacy configuration) or conversions MTA
option (Unified Configuration)

conversions (Unified Configuration only) Conversion entries;
replaces legacy configuration conversions file

include_conversiontag (New in MS 6.3) Include the conversion tag value(s)
in mapping table probes

log_conversion_tag (New in MS 7.0.5) Include conversion tag(s) field in
MTA message transaction log entries.

original_channel_probe RESTRICTED: Determine the "input" channel for
CONVERSIONS mapping table probes performed by
the conversion channel and certain other, special,
channels

personal_conversion_size RESTRICTED: Maximum personal conversion entries
string_pool_size_0 Set the number of miscellaneous strings (in particular

including strings in conversions entries) allowed in
the MTA configuration

string_pool_size_4 Set the number of strings allowed for MTA personal
conversion use

Counters MTA options
circuitcheck_completed_bins Specify the bins for the message circuit check

message counters
enable_delay_timers (New in MS 8.0) Enable timers measuring the total

time the MTA spends waiting for responses from
external components

log_delay_bins Specify the bins for delivery delay range counters
log_frustration_limit How many times a process will tolerate failure to be

able to update the MTA counters before giving up on
updating counters

log_size_bins Specify the bins for message size range counters
log_sndopr Send an operator or syslog message if the MTA's

logging facilities encounter a difficulty
log_statistics RESTRICTED: Normal vs. "string" counters creation.

Database MTA options
alias_case RESTRICTED: Control the case sensitivity of aliases
alias_database_url (New in MS 8.0) memcache: URL for storing alias

database data

52–30 Messaging Server Reference

MTA options listed by functional
group

alias_domains Control the format of alias file, alias option, and alias
database probes

alias_magic RESTRICTED: Control the order in which alias
lookups are performed

domain_database_url (New in MS 8.0) memcache: URL for storing domain
database data

forward_data_size Hash size for the forward (database) text file
forward_database_url (New in MS 8.0) memcache: URL for storing forward

database data
general_case Controls the case sensitivity of general database

lookups
general_data_size Hash size for the general (database) text file
general_database_url (New in MS 8.0) memcache: URL for storing general

database data
queue_cache_mode Tells the MTA where queue cache information is

being stored
queue_cache_mode_3_files (New in MS 7.4) RESTRICTED
reverse_data_size Internal hash size for the reverse (database) text file
reverse_database_url (New in MS 8.0) memcache: URL for storing reverse

database data
use_alias_database Control use of the alias database
use_domain_database Control use of the domain database
use_forward_database Control use of the forward database
use_personal_aliases Control use of personal alias databases
use_reverse_database Control use and format of the REVERSE mapping

table and reverse database
use_text_databases Control whether the general database, the reverse

database, and the forward database are on-disk
databases, or in-memory structures

vacation_template URL specifying where per-user per-response vacation
information is stored

Debug MTA options
ap_debug RESTRICTED: Internal MTA debugging option;

enable debugging of low level address parsing
cache_debug Output direct LDAP lookup caching statistics
config_debug RESTRICTED: (New in MS 8.0.1) Enable debugging

of MTA configuration loading
debug_flush (New in MS 7.1) Flush certain debug output to disk.
dequeue_debug Enable debugging of message dequeue operations
filter_debug (New in MS 6.2) Control whether detailed (stack

state) debugging of Sieve filter evaluation is output
log_debug RESTRICTED: Enable debugging of MTA logging

operations

MTA options 52–31

MTA options listed by functional
group

mm_debug Internal MTA debugging option; enable debugging of
message enqueue (MM) operation

os_debug RESTRICTED: Internal MTA debugging option;
enable debugging of low level OS interface routines,
e.g., file operations

return_debug Enable debugging of MTA periodic return job
operations

return_verify (New in MS 7.0.5, replacing former
imta_return_verify MTA Tailor option) Enable
shell script logging within the MTA return job

tracking_debug RESTRICTED: (New in MS 8.0) Enable debugging of
the message tracking subsystem

LDAP bind and connect MTA options
ldap_base_dn DELETED for MS 7.0u4; see instead the

ldap_user_root MTA option
ldap_host Host to which to connect for LDAP queries; overrides

(for MTA purposes) the local.ugldaphost
configutil parameter (legacy configuration) or
ugldaphost base option (Unified Configuration)

ldap_max_connections The maximum number of simultaneous LDAP
connections to allow

ldap_password The password to use when binding for LDAP
queries; overrides (for MTA purposes) the
local.ugldapbindcred configutil parameter
(legacy configuration) or ugldapbindcred base
option (Unified Configuration)

ldap_port Port to which to connect for LDAP queries; overrides
(for MTA purposes) the local.ugldapport
configutil parameter (legacy configuration) or
ugldapport base option (Unified Configuration)

ldap_timeout Timeout value for LDAP queries
ldap_use_async Control use of asynchronous (vs. synchronous) LDAP

lookups
ldap_username The DN under which to bind for LDAP

queries; overrides (for MTA purposes) the
local.ugldapbinddn configutil parameter (legacy
configuration) or ugldapbinddn base option
(Unified Configuration)

max_urls Maximum number of URLs that may be active
(nesting of references)

Direct LDAP domain lookup MTA options
domain_failure Rewrite template to apply when an LDAP domain

lookup encounters an LDAP error
domain_match_cache_size Number of domain lookup ($V rewrite template)

results to keep cached

52–32 Messaging Server Reference

MTA options listed by functional
group

domain_match_cache_timeout How long to cache domain lookup ($V rewrite
template) results

domain_match_url URL for an extra, special lookup for domains, e.g.,
URL for looking up vanity domains

domain_uplevel Control whether to search "upwards" in the DC tree
for domain names, and whether to use a "canonical"
domain name when searching for user entries

ldap_attr_domain1_schema2 Specify an alternate attribute name for the attribute
used to store the "primary" domain in Schema 2

ldap_attr_domain2_schema2 Specify an alternate attribute name for the attribute
used to store the "secondary" domain in Schema 2

ldap_attr_domain_search_filter Attribute in the configuration template area, (see the
ldap_global_config_templates MTA option)
that is used to store the domain search filter template

ldap_basedn_filter_schema1 (New in MS 6.3) When schema 1 is in use, specify
the filter used to identify domains when performing
baseDN searches

ldap_basedn_filter_schema2 (New in MS 6.3) When schema 2 is in use, specify
additional filter elements used to identify domains
when performing baseDN searches

ldap_default_domain The domain name to recognize and interpret as
the default domain name; overrides (for MTA
purposes) the defaultdomain base option (legacy
configuration service.defaultdomain configutil
parameter)

ldap_domain_filter_schema1 When schema 1 is in use, specify the filter used to
find domains in the DIT

ldap_domain_filter_schema2 When schema 2 is in use, specify the filter used to
find domains in the DIT

ldap_domain_known_attributes Control whether the MTA fetches all domain
attributes vs. fetches only "known" domain attributes

ldap_domain_root The base DN for the domain portion of the DIT;
overrides (for MTA purposes) the dcroot base
option (legacy configuration) service.dcroot
configutil parameter)

ldap_domain_timeout New in MS 6.1-0.01. Specify the retention time for
entries in the domain map cache

ldap_host_alias_list Local host aliases; overrides (for MTA purposes)
the local.imta.hostnamealiases
configutil parameter (legacy configuration) or
ldap_host_alias_list base option (Unified
Configuration)

ldap_local_host The local host name (official host name for the
"l" channel); overrides (for MTA purposes) the
local.hostname configutil parameter (legacy
configuration) or hostname base option (Unified
Configuration)

MTA options 52–33

MTA options listed by functional
group

Direct LDAP usergroup lookup MTA options
alias_entry_cache_negative Whether to cache negative results (i.e., failures) of

alias lookups (alias_urlN lookups)
alias_entry_cache_size Number of alias lookup (alias_urlN) results to

keep cached
alias_entry_cache_timeout How long to cache alias lookup (alias_urlN)

results
alias_url0 URL for doing alias lookups
alias_url1 URL for doing alias lookups
alias_url2 URL for doing alias lookups
alias_url3 URL for doing alias lookups
allow_unquoted_addrs_violate_rfc2798 Look up addresses in LDAP with quotes stripped

from the local part
aliasdetourhost_null_optin (New in MS 6.2p4) Specify a value for the attribute

named by the ldap_detourhost_optin MTA
option (and new in MS 8.0, also the attribute named
by the ldap_domain_attr_detourhostoptin)
that means that the attribute should be ignored; the
purpose is to allow a way of "turning off" message
detouring (where the detouring is typically for
purposes of spam/virus filtering) for sites and users
whose provisioning facilities find it easier to set an
attribute value rather than to remove an attribute
entirely

defer_group_processing Set a default for whether direct LDAP group (list)
expansion is deferred to the reprocess channel

group_dn_template LDAP URL template used for fetching attributes once
a user specified via a uniqueMember attribute has
been located

ldap_default_attr For URLs that are supposed to return a single result,
specify a single attribute to request if no attribute was
specified in the original LDAP query string

ldap_filter_reference (New in MS 6.2.) If parental controls are enabled
for a user (see the ldap_parental_controls
MTA option), then the attribute named by this
ldap_filter_reference MTA option specifies
the DN of the entry that contains the actual head
of household filter (typically, that is, the DN of the
head of household user). (The attribute within that
user entry containing the filter is specified by the
ldap_hoh_filter MTA option, which defaults
to mailSieveRuleSource. The lookup requests
both the filter, contained in the attribute named
by the ldap_hoh_filter MTA option, and the
owner, contained in the attribute named by the
ldap_hoh_owner MTA option, which defaults to
mail.)

52–34 Messaging Server Reference

MTA options listed by functional
group

ldap_group_object_classes The object classes required for a group
ldap_hoh_filter (New in MS 6.2.) Specify an attribute to request when

performing a head of household filter lookup.
ldap_hoh_owner (New in MS 6.2.) Attribute in which to find the owner

of the HOH Sieve
ldap_mail_aliases The attributes in which aliases are stored;

overrides the legacy configuration
local.imta.mailaliases configutil parameter

ldap_mail_reverses The attributes used for the filter generated by the $Q
LDAP substitution sequence; normally used during
reverse_url lookups, hence normally the attributes
compared against an address to be "reversed"

ldap_parental_controls (New in MS 6.2) Specifies the name of a user or group
LDAP attribute whose value can request "head of
household" (a.k.a "parental controls") Sieve filtering
be applied to this user's (or group's) messages. Any
of the values Yes, 1, or true is considered to be
requesting parental controls.

ldap_uid_invalid_chars Characters that are not allowed in a uid or
permanent identifier

ldap_user_object_classes The object classes required for a user
ldap_user_root The base DN for the user and group portion

of the DIT; overrides (for MTA purposes) the
ugldapbasedn base option (legacy configuration
local.ugldapbasedn configutil parameter)

max_alias_levels Set the level of alias nesting allowed
max_urls Maximum number of URLs that may be active

(nesting of references)
reverse_address_cache_size Number of LDAP address reversal (reverse_url)

results to keep cached
reverse_address_cache_timeout How long to cache LDAP address reversal lookup

(reverse_url) results
reverse_url URL for doing address reversal

Direct LDAP schema MTA options
ldap_attr_domain_search_filter Attribute in the global configuration template area

(see the ldap_global_config_templates MTA
option) that is used to store the domain search filter
template; for instance, one attribute that might be
used for such a purpose (hence to which this option
might be set) would be inetDomainSearchFilter.

ldap_basedn_filter_schema1 (New in MS 6.3) When schema 1 is in use, specify
the filter used to identify domains when performing
baseDN searches

ldap_basedn_filter_schema2 (New in MS 6.3) When schema 2 is in use, specify
additional filter elements used to identify domains
when performing baseDN searches

MTA options 52–35

MTA options listed by functional
group

ldap_domain_filter_schema1 When schema 1 is in use, specify the filter used to
find domains in the DIT

ldap_domain_filter_schema2 When schema 2 is in use, specify the filter used to
find domains in the DIT

ldap_domain_known_attributes Control whether the MTA fetches all domain
attributes vs. fetches only "known" domain attributes

ldap_domain_root The base DN for the domain portion of the DIT;
overrides (for MTA purposes) the dcroot base
option (legacy configuration) service.dcroot
configutil parameter)

ldap_global_config_templates Schema 2 support: specify the DN where global
configuration templates can be found

group_dn_template LDAP URL template used for fetching attributes once
a user specified via a uniqueMember attribute has
been located

ldap_group_object_classes The object classes required for a group
ldap_schemalevel The schema level in use; overrides (for MTA

purposes) the ldap_schemalevel base option
ldap_schematag The tag (name) of the schema in use; overrides the

local.imta.schematag configutil parameter
ldap_user_object_classes The object classes required for a user
ldap_user_root The base DN for the user and group portion

of the DIT; overrides (for MTA purposes) the
ugldapbasedn base option (legacy configuration
local.ugldapbasedn configutil parameter)

Direct LDAP attribute interpretation MTA options
aliasdetourhost_null_optin (New in MS 6.2p4) Specify a value for the attribute

named by the ldap_detourhost_optin MTA
option (and new in MS 8.0, also the attribute named
by the ldap_domain_attr_detourhostoptin)
that means that the attribute should be ignored; the
purpose is to allow a way of "turning off" message
detouring (where the detouring is typically for
purposes of spam/virus filtering) for sites and users
whose provisioning facilities find it easier to set an
attribute value rather than to remove an attribute
entirely

allow_unquoted_addrs_violate_rfc2798 Look up addresses in LDAP with quotes stripped
from the local part

capture_format_default (New in MS 7.0u4) Specify the default "capture"
format resulting from ldap_capture

delivery_options Specify interpretation of mailDeliveryOption
values

group_dn_template LDAP URL template used for fetching attributes once
a user specified via a uniqueMember attribute has
been located

52–36 Messaging Server Reference

MTA options listed by functional
group

ldap_default_domain The domain name to recognize and interpret as
the default domain name; overrides (for MTA
purposes) the defaultdomain base option (legacy
configuration service.defaultdomain configutil
parameter)

ldap_hoh_filter (New in MS 6.2.) Specify an attribute to request when
performing a head of household filter lookup.

ldap_hoh_owner (New in MS 6.2.) Attribute in which to find the owner
of the HOH Sieve

ldap_host_alias_list Local host aliases; overrides (for MTA purposes)
the local.imta.hostnamealiases
configutil parameter (legacy configuration) or
ldap_host_alias_list base option (Unified
Configuration)

ldap_local_host The local host name (official host name for the
"l" channel); overrides (for MTA purposes) the
local.hostname configutil parameter (legacy
configuration) or hostname base option (Unified
Configuration)

ldap_uid_invalid_chars Characters that are not allowed in a uid or
permanent identifier

optin_user_carryover (New in MS 6.2.) Specify whether user spam/
virus filter "optin" is considered to "carry over" for
forwarded recipients

process_substitutions (New in MS 6.3) Process substitution characters in the
URL values of various LDAP attributes

route_to_routing_host Forcibly route non-local hosts to the first value of
mailRoutingHosts

sieve_user_carryover Specify whether user Sieve filters "carry over" for
forwarded recipients

spare_N_separator (New in MS 7.0u2) Specify the handling of
multiple values of the ldap_spare_N attribute for
corresponding N.

vacation_maximum_timeout (New in MS 7.0.5) Specify a maximum value
permitted for Sieve "vacation" periodicity
arguments

vacation_minimum_timeout (New in 7.0.5) Specify a minimum value permitted
for Sieve "vacation" periodicity arguments

Direct LDAP attribute name MTA options
ldap_* Specify an alternate attribute name for any of various

per-user attributes; see MTA LDAP attribute name
options

ldap_attr_domain_* Specify an alternate attribute name for any of a few
fundamental defining attributes of domains; see MTA
LDAP attribute name options

MTA options 52–37

MTA options listed by functional
group

ldap_domain_attr_* Specify an alternate attribute name for any of various
per-domain attributes; see MTA LDAP attribute name
options

Direct LDAP attributes returned upon authentication MTA options
ldap_auth_attr_hold_for (New in MS 8.0) Specify the name of an attribute that

stores authenticated hold time
ldap_auth_attr_mail_host (New in MS 8.0) Specify an alternate attribute name

for the attribute used to store the mailHost for BURL
purposes

ldap_auth_attr_recall_secret (New in MS 8.0) Specify the name of an attribute used
to store the user's recall secret

ldap_auth_attr_sender (New in MS 8.0) Specify an alternate attribute name
for the attribute used to store the user's canonical
address

ldap_auth_attr_submit_channel (New in MS 8.0) Specify an alternate attribute name
for the attribute used to store the authenticated
submission source channel name override

LDAP and URL lookup caching and timeout options
alias_entry_cache_negative Whether to cache negative results (i.e., failures) of

alias lookups (alias_urlN lookups)
alias_entry_cache_size Number of alias lookup (alias_urlN) results to

keep cached
alias_entry_cache_timeout How long to cache alias lookup (alias_urlN)

results
cache_debug Output direct LDAP lookup caching statistics
domain_match_cache_size Number of domain lookup ($V rewrite template)

results to keep cached
domain_match_cache_timeout How long to cache domain lookup ($V rewrite

template) results
filter_cache_size (New in MS 6.2.) Specify the size of the per-process

cache of tokenized Sieve filters
filter_cache_timeout (New in MS 6.2.) Specify the retention time for entries

in the per-process cache of tokenized Sieve filters
ldap_domain_timeout New in MS 6.1-0.01. Specify the retention time for

entries in the domain map cache
ldap_timeout Timeout value for LDAP queries
ldap_use_async Control use of asynchronous (vs. synchronous) LDAP

lookups
reverse_address_cache_size Number of LDAP address reversal (reverse_url)

results to keep cached
reverse_address_cache_timeout How long to cache LDAP address reversal lookup

(reverse_url) results
url_result_cache_case New in MS 8.1.0.2. Controls whether URLs are

treated in a case-sensitive fashion.

52–38 Messaging Server Reference

MTA options listed by functional
group

url_result_cache_size Number of rewrite rule LDAP URL lookups and
mapping table LDAP URL lookups ($]...[lookups)
to keep cached

url_result_cache_timeout How long to cache results of rewrite rule LDAP URL
lookups and mapping table LDAP URL lookups
($]...[lookups)

Directory location MTA options
langdir (New in MS 7.0) Specify the location of the default set

of language-specific files
tmpdir (New in MS 7.0) Specify the location of the directory

for storing temporary files
DKIM MTA options

dkim_ignore_domains (New in MS 7.0.5) Domains to ignore in DKIM-
Signature: fields

dkim_preserve_domains (New in MS 7.0.5) Domains in DKIM-Signature: fields
that trigger passthrough mode

dkim_remove_domains (New in MS 7.0.5) Domains in DKIM-Signature: fields
triggering removal of the header

DNS lookup MTA options
blocked_mail_from_ips (New in MS 6.1) Specify IP address literals whose

A records should be ignored for purposes of the
lookups done due to the mailfromdnsverify
channel option

return_envelope Control use of empty return address in notification
messages, and validity checks on envelope From
address

Error text and error interpretation MTA options
access_errors Control the information issued in certain error

messages
error_text_* Specify alternate error text for any of various error

conditions; see error_text_* MTA options
missing_recipient_group_text Phrase to use when generating an empty group

construct
spamfilterN_optional What to do if a spam/virus filter package is not

responding: temporarily reject message vs. allow to
pass unfiltered, plus whether to send syslog notice

use_permanent_error Control whether certain error conditions are
considered to be permanent errors, or temporary
errors

use_temporary_error (New in MS 8.0) Control whether certain error
conditions are considered to be temporary errors, or
permanent errors

External filtering context MTA options
scan_channel (New in MS 7.0.5) Channel to consider as source

channel when initializing the MTA for spam/virus

MTA options 52–39

MTA options listed by functional
group

filter package checks performed by non-channel
applications and utilities such as imexpire

scan_originator (New in MS 7.0.5) Address to consider as the MAIL
FROM/envelope From address when initializing the
MTA for spam/virus filter package checks performed
by non-channel applications and utilities such as
imexpire

scan_recipient (New in MS 7.0.5) Address to consider as the RCPT
TO/envelope To address when initializing the MTA
for spam/virus filter package checks performed
by non-channel applications and utilities such as
imexpire

File format MTA options
buffer_size Set the buffer size used when writing files; default is

8192
cache_magic Obsolete PMDF option, controlling message file

sorting
cbt Obsolete PMDF option, to control the use of

"contiguous best try" filesystem storage
comment_chars Set the "comment" character(s) in MTA configuration

files
debug_flush (New in MS 7.1) Flush certain debug output to disk.
dequeue_map RESTRICTED. Map files into memory when

dequeuing
fdirectory OpenVMS only.
file_member_size Maximum number of configuration files used by the

MTA
fsync Do an fsync upon file close
log_alq (OpenVMS only) Specify the default allocation

quantity for the MTA message transaction log file
log_deq (OpenVMS only) Specify the default extend quantity

for the MTA message transaction log file
max_internal_blocks Specify size of messages beyond which to buffer to

temporary files
mm_mbc (OpenVMS only) Set the RMS RAB MBC field; default

is 4
mm_mbf (OpenVMS only) Set the RMS RAB MBF field; default

is 16
notary_quote Specify the character that marks substitution

sequences in return_*.txt files and
disposition_*.txt files

os_debug RESTRICTED: Internal MTA debugging option;
enable debugging of low level OS interface routines,
e.g., file operations

52–40 Messaging Server Reference

MTA options listed by functional
group

osync (New in MS 7.0.5) Specify whether or not to set the
O_SYNC flag when creating message queue files on
disk.

projectid (New in MS 7.3-11.01) Numeric id MTA uses when
obtaining shared memory segments

queue_cache_mode RESTRICTED: Tells the MTA where queue cache
information is being stored

queue_cache_mode_3_files (New in MS 7.4) RESTRICTED
use_text_databases Control whether the general database, the reverse

database, and the forward database are on-disk
databases, or in-memory structures

Internal size MTA options
alias_hash_size Set the number of aliases allowed: in the alias file

(legacy configuration), or via alias option (Unified
Configuration)

alias_member_size Set the number of alias expansions allowed: in the
alias file (legacy configuration), or via alias option
(Unified Configuration)

channel_table_size Set the number of channels allowed in the MTA
configuration

chunk_cache_limit Specify the size of the cache of message body chunks
circuitcheck_paths_size Number of circuit check paths (entries) to allow in the

circuit check configuration file
conversion_size Set the number of entries allowed in the conversion

file (legacy configuration) or conversions MTA
option (Unified Configuration)

describe_cache_limit Control size of message part description cache for
message body processing purposes

domain_hash_size Set the number of rewrite rules allowed
file_member_size Maximum number of configuration files used by the

MTA
forward_data_size Hash size for the forward (database) text file
fruits_size Number of fruits allowed in the fruit validation table
general_data_size Hash size for the general (database) text file
host_hash_size Set the number of channel host names
ldap_attr_name_hash_size Internal hash size for the list of LDAP attributes

relevant to the MTA
ldap_object_class_hash_size Internal hash size for the list of object classes relevant

to the MTA
map_names_size Set the number of mapping tables
options_hash_size Hash size for the internal table of MTA options

(option.dat options in legacy configuration;
mta.option-name options in Unified Configuration)

personal_conversion_size RESTRICTED: Maximum personal conversion entries

MTA options 52–41

MTA options listed by functional
group

reverse_data_size Internal hash size for the reverse (database) text file
string_pool_size_0 Set the number of strings allowed for miscellaneous

MTA configuration use
string_pool_size_1 Set the number of strings allowed for MTA mapping

table use
string_pool_size_2 Set the number of strings allowed for MTA alias use
string_pool_size_3 Set the number of strings allowed for MTA general

(database) text file use
string_pool_size_4 Set the number of strings allowed for MTA personal

conversion use
wild_pool_size Set the total number of wildcards allowed in

mapping table patterns
LDAP external directory lookup MTA options

ldap_ext_host (New in MS 7.0u2) The host for LDAP EXT queries
ldap_ext_max_connections (New in MS 7.0u2) Limit on the maximum number of

LDAP EXT connections
ldap_ext_password (New in MS 7.0u2) The password for LDAP EXT

queries
ldap_ext_port (New in MS 7.0u2) The port for LDAP EXT queries
ldap_ext_username (New in MS 7.0u2) The username (bind credentials)

for LDAP EXT queries
LDAP PAB lookup MTA options

ldap_pab_host (New in MS 7.0) The host for PAB LDAP
queries; overrides (for MTA purposes) the
ldaphost PAB option (Unified Configuration)
or local.service.pab.ldaphost configutil
parameter (legacy configuration)

ldap_pab_max_connections (New in MS 7.0u1) Limit on the maximum number of
connections that will be made

ldap_pab_password (New in MS 7.0) The password for PAB LDAP
queries; overrides (for MTA purposes) the
ldappasswd PAB option (Unified Configuration)
or local.service.pab.ldappasswd configutil
parameter (legacy configuration)

ldap_pab_port (New in MS 7.0) The port for PAB LDAP queries;
overrides the local.service.pab.ldapport
configutil parameter. If neither this option nor
the configutil parameter is set, this defaults to the
ldap_port value.

ldap_pab_username (New in MS 7.0) The username (bind credentials) for
PAB LDAP queries; overrides (for MTA purposes)
the ldapbinddn PAB option (Unified Configuration)
or local.service.pab.ldapbinddn configutil
parameter (legacy configuration)

Mailing list and group MTA options

52–42 Messaging Server Reference

MTA options listed by functional
group

alternate_recipient (New in MS 8.0.1) Specify the comment string used to
add an alternate recipient for an address.

alternate_recipient_mode (New in MS 8.0.1) Control handling of multiple
alternate recipients.

defer_group_processing Set a default for whether direct LDAP group (list)
expansion is deferred to the reprocess channel

digest_on RESTRICTED. Specify the comment string that
enables mailing list digests (in preference to regular
mailing list postings)

expandable_default Set the default for mailing lists to
[NONEXPANDABLE] or in direct LDAP
terms, to expandable: none or equivalently
mgmanMemberVisibility: none; i.e., disable use
of SMTP EXPN

mail_off Specify the comment string that disables mail
delivery for list addresses

or_clauses Set default for whether to AND or OR multiple
posting access control settings on mailing lists

post_off Specify the comment string that disables list postings
for a list address

MAILSERV MTA options
ldap_mlsub_* RESTRICTED: Names of LDAP attributes for

MAILSERV user list subscription entries
ldap_mluser_* RESTRICTED: Names of LDAP attributes for

MAILSERV users
mailserv_* RESTRICTED: MAILSERV admin user settings

Access mapping table MTA options
access_auth (New in MS 8.0) Control whether certain

FROM_ACCESS mapping table probes include the
SMTP MAIL FROM AUTH parameter's value

access_counts (New in MS 6.3.) Control whether certain *_ACCESS
mapping table probes include recipient count fields

access_errors Control the information issued in certain error
messages

access_orcpt Control whether certain *_ACCESS mapping table
probes include an ORCPT field

include_connectioninfo (New in MS 6.2) Include transport and application
connection information in various (mailing list
related) mapping table probes

include_conversiontag (New in MS 6.3) Include the conversion tag value(s)
in mapping table probes

include_domain (New in MS 8.0.2.3) Include the destination domain in
various mapping table probes

include_mtpriority (New in MS 8.0) Include the value of a message's MT-
PRIORITY in various mapping table probes

MTA options 52–43

MTA options listed by functional
group

include_spares1 (New in MS 7u2, renamed from include_spares
in 8.0.2.2) Include the values of the LDAP attributes
named by the ldap_spare_N MTA options in
FROM_ACCESS and/or recipient address access
mapping table probes

mapping_paranoia (New in MS 7.0) Control handling of vertical
bar characters in various mapping table probes,
especially *_ACCESS mapping table probes

use_auth_return (New in MS 7.0) Control use of authenticated sender
address in place of the envelope From address in
various address matching contexts

use_canonical_return (New in MS 6.3) Control address reversal of envelope
From address for purposes of address matching in
various contexts

use_ip_access (New in MS 7.0) Control format of probes to the
IP_ACCESS mapping table

Miscellaneous mapping table MTA options
averages_cache_size RESTRICTED: New in MS 6.2 but not yet fully

implemented. Control caching of the load average
data accessed from mapping table callouts.

averages_cache_timeout RESTRICTED: New in MS 6.2 but not yet fully
implemented. Control caching of the load average
data accessed from mapping table callouts.

include_conversiontag (New in MS 6.3) Include the conversion tag value(s)
in mapping table probes

include_domain (New in MS 8.0.2.3) Include the destination domain in
various mapping table probes

include_mtpriority (New in MS 8.0) Include the value of a message's MT-
PRIORITY in various mapping table probes

include_spares2 (New in MS 8.0) Include the values of the LDAP
attributes named by the ldap_spare_N MTA
options in FORWARD mapping table probes

message_save_copy_flags (New in MS 6.3) Control the format of MESSAGE-
SAVE-COPY mapping table probes

original_channel_probe RESTRICTED: Determine the "input" channel for
CONVERSIONS mapping table probes performed by
the conversion channel and certain other, special,
channels

use_comment_strings Control the format of COMMENT_STRINGS mapping
table probes

use_personal_names Control the format of PERSONAL_NAMES mapping
table probes

url_result_cache_case New in MS 8.1.0.2. Controls whether URLs are
treated in a case-sensitive fashion.

52–44 Messaging Server Reference

MTA options listed by functional
group

url_result_cache_size Number of rewrite rule LDAP URL lookups and
mapping table LDAP URL lookups ($]...[lookups)
to keep cached

url_result_cache_timeout How long to cache results of rewrite rule LDAP URL
lookups and mapping table LDAP URL lookups
($]...[lookups)

Memcache MTA options
alias_database_url (New in MS 8.0) memcache: URL for storing alias

database data
domain_database_url (New in MS 8.0) memcache: URL for storing domain

database data
enable_sieve_memcache (New in MS 8.0) Control whether Sieve filters may

use the private memcache extension
enable_sieve_redis (New in MS 8.0.2.3) Control whether Sieve filters may

use the private redis extension
forward_database_url (New in MS 8.0) memcache: URL for storing forward

database data
general_case Controls the case sensitivity of general database

lookups
general_database_url (New in MS 8.0) memcache: URL for storing general

database data
reverse_database_url (New in MS 8.0) memcache: URL for storing reverse

database data
memcache_expire (New in MS 8.0) Time to hold idle memcached

connections open
memcache_hash_algorithm (New in 8.1.0.3) Hash function to apply to memcache

keys
memcache_host (New in MS 8.0) Host name of memcached server
memcache_port (New in MS 8.0) Memcached service port

Message archival and hashing MTA options
journal_format (New in MS 7.0.5) Specify whether capture message

copies generated in "journal" format are generated in
2003 vs. 2007 "journal" style

message_hash_algorithm (New in MS 6.3) Algorithm to use for generating
message hashes for message archiving

message_hash_fields (New in MS 6.3) Header fields to include when
generating a message hash

unique_id_template (New in MS 6.3) Specify a template used to convert
an address into a unique identifier, typically used in
conjunction with archiving facilities

Message size MTA options
block_limit Limit the size of messages allowed through the MTA
block_size Set the size of MTA "blocks"

MTA options 52–45

MTA options listed by functional
group

bounce_block_limit Limit the amount of original message content
included in bounce messages

content_return_block_limit Force NOTARY non-return of content flag for
messages over the specified size

error_text_block_over Specify error text returned in some cases of exceeding
a destination channel blocklimit

error_text_line_over Specify error text returned in some cases of exceeding
a destination channel linelimit

error_text_list_block_over Specify error text returned in some cases of exceeding
a list's [BLOCKLIMIT] or mgrpMsgMaxSize value

error_text_list_line_over Specify error text returned in some cases of exceeding
a list's [LINELIMIT] value

error_text_user_block_over Specify error text returned in some cases of
exceeding a user's mailMsgMaxBlocks value or the
[BLOCKLIMIT] value for an alias

error_text_user_line_over Specify error text returned in some cases of exceeding
a user's [LINELIMIT] value

header_limit Sets a maximum size for the primary (outermost)
message header

line_limit Limit the size of messages allowed through the MTA
max_header_block_use Fine tune message fragmentation
max_header_blocks Truncate message header after the specified number

of MTA blocks
max_header_line_use Fine tune message fragmentation
max_header_lines Truncate message header after the specified number

of lines
max_mime_levels Degree to look inside MIME messages during

processing
max_mime_parts Number of parts to look at when processing MIME

messages
normal_block_limit Maximum size of message to treat as being of normal

or higher priority
non_urgent_block_limit Maximum size of message to treat as being of non-

urgent priority
second_class_block_limit Maximum size of message to treat as being of second

class priority
urgent_block_limit Maximum size of message to treat as being of urgent

priority
Message Store insertion logging MTA options

logfile logfile options set at the MTA level
(mta.logfile.option-name in Unified
Configuration) affect the MTA's logging of insertion
of messages into the Message Store; that is, affect
logging of message insertions performed by ims-ms
and tcp_lmtpss_* channels

52–46 Messaging Server Reference

MTA options listed by functional
group

Message tracking MTA options
log_times (New in MS 8.0) Include requested deferral time in

MTA message transaction log entries
log_tracking (New in MS 8.0) Include tracking ID in MTA message

transaction log entries
tracking_hash_algorithm (New in 8.1.0.3) Select the hash algorithm the MTA

uses to generate hashes of tracking and recall secrets.
The default is SHA-1.

tracking_mode (New in MS 8.0) Enable/disable the MTA's tracking
support

tracking_debug (New in MS 8.0) Level of debug output regarding
tracking

tracking_retries (New in MS 8.0) How many times the MTA will
reattempt a tracking update

tracking_retry_delay (New in MS 8.0) The time to wait between tracking
update reattempts

MeterMaid MTA options
enable_sieve_metermaid (New in MS 8.0) Control whether Sieve filters may

use the private metermaid extension
metermaid_backoff (New in MS 7.2)
metermaid_expire (New in MS 7.2)
metermaid_host (New in MS 7.2)
metermaid_port (New in MS 7.2)
metermaid_secret (New in MS 7.2)
metermaid_timeout (New in MS 7.2)

MLS MTA options
error_text_mls_access_failure (New in MS 7.0) RESTRICTED: Not yet used
ldap_mlsrange (New in MS 7.0) RESTRICTED: Not yet used
mls (New in MS 7.0) RESTRICTED: Not yet fully

implemented
MTQP MTA options

mtqp_expire (New in MS 8.0) Specify the MTQP expiration, in
seconds

mtqp_port (New in MS 8.0) Specify the MTQP port
mtqp_timeout (New in MS 8.0) Specify the MTQP timeout, in

seconds
Notification message MTA options

bounce_block_limit Limit the amount of original message content
included in bounce messages

content_return_block_limit Force NOTARY non-return of content flag for
messages over the specified size

MTA options 52–47

MTA options listed by functional
group

history_to_return Control the amount of delivery attempt history
included in bounced messages

ldap_domain_attr_report_address Name of domain level LDAP attribute whose value
specifies a domain-specific postmaster address

lines_to_return Lines included when returning samples of message
content (as in warning messages)

notary_decode Control whether encoded-words in the original
message header are decoded when performing a %H
substitution during the MTA's generation of DSNs
and MDNs

notary_quote Specify the character that marks substitution
sequences in return_*.txt files and
disposition_*.txt files

return_address Set the return address for the local postmaster
return_debug Enable debugging of MTA periodic return job

operations
return_delivery_history Control whether delivery attempt history is included

in returned messages
return_envelope Control use of empty return address in notification

messages, and validity checks on envelope From
address

return_personal Set the personal name for the postmaster
return_units Control the assumed units for the notices channel

option, thereby controlling the interval at which
certain notification messages are generated

return_verify (New in MS 7.0.5, replacing former
imta_return_verify MTA Tailor option) Enable
shell script logging within the MTA return job

use_precedence Control whether delayed delivery notification
messages are sent for list and bulk precedence
messages

use_warnings_to DELETED as of MS 7.0.5: Whether to send DSNs to
Warnings-to: address

Password and TLS MTA options
plaintextmincipher (New in MS 7.4-18.01; available as an MTA level

option in Unified Configuration only) Disable
PLAINTEXT SMTP AUTH unless SSL or TLS is active

smtpproxypassword (New in MS 7.0.5) Replaces the former TCP/IP
channel option file option PROXY_PASSWORD

sslnicknames (New in MS 7.4-18.01; available as an MTA level
option in Unified Configuration only) SSL/TLS server
certificate nicknames the MTA will offer

Processing priority MTA options
defer_group_processing Set a default for whether direct LDAP group (list)

expansion is deferred to the reprocess channel

52–48 Messaging Server Reference

MTA options listed by functional
group

log_mtpriority (New in MS 8.0) Include message MT-PRIORITY in
MTA message transaction log entries

log_priority Include message priority in MTA message transaction
log entries

mtpriority_policy (New in MS 8.0) MT-PRIORITY policy name to
announce in SMTP EHLO response

normal_block_limit Maximum size of message to treat as being of normal
or higher priority

non_urgent_block_limit Maximum size of message to treat as being of non-
urgent priority

second_class_block_limit Maximum size of message to treat as being of second
class priority

urgent_block_limit Maximum size of message to treat as being of urgent
priority

use_precedence Control whether delayed delivery notification
messages are sent for list and bulk precedence
messages

Received header line MTA options
held_sndopr Send operator or syslog messages when messages are

HELD
id_domain Set the domain name used in constructing message

IDs
max_local_received_lines Occurrences of the local host name in Received:

headers after which a message will be HELD
max_mr_received_lines Number of MR-Received: headers after which a

message will be HELD
max_received_lines Number of Received: headers after which a message

will be HELD
max_total_received_lines Number of Received:, MR-Received: or X400-

Received: headers after which a message will be
HELD

max_x400_received_lines Number of X400-Received: headers after which a
message will be HELD

received_domain Specify the domain name (identifying the system
itself) to use in constructing Received: headers

received_version Specify the IMTA version string to use in
constructing Received: header lines; use is NOT
RECOMMENDED

Sieve filter MTA options
systemfilter System Sieve filter, applied to all messages at each

enqueue
sieve_body_needed Specifies whether or not to retain decoded MIME

body information when initial message analysis is
performed.

MTA options 52–49

MTA options listed by functional
group

sieve_mime_needed Specifies whether or not to retain inner MIME
structure and header information when initial
message analysis is performed.

Sieve filter interpretation MTA options
decode_encoded_words RESTRICTED: Decode encoded words during Sieve

processing
defer_header_addition (New in MS 7.0.5.30.0) Control whether Sieve filters

see any headers added prior to Sieve processing
filter_discard Control whether messages discarded by a Sieve filter

are immediately deleted, or instead routed to the
filter_discard channel for delayed deletion

filter_jettison New in MS 6.1. Control whether messages jettisoned
by a Sieve filter are immediately deleted, or instead
routed to the filter_discard channel for delayed
deletion

notify_ignore_errors (New in MS 7.0.5) Control whether to abort or ignore
invalid recipient in Sieve notify action

sieve_received (New in MS 8.0) Make synthesized Received: header
line visible for Sieve filter evaluation

sieve_redirect_add_resent (New in MS 6.3p1) System default for whether Sieve
"redirect" actions cause addition of Resent-*
header lines

sieve_user_carryover Specify whether user Sieve filters "carry over" for
(direct LDAP mailDeliveryOption: forward)
forwarded recipients

Sieve filter limit MTA options
max_addheaders Maximum number of Sieve "addheader" actions that

can be performed
max_duplicates (New in MS 8.0) Maximum "duplicate" tests

performed in a Sieve filter
max_fileintos Maximum number of "fileinto" actions that may

be performed by a Sieve filter
max_notifys (New in MS 6.2) Maximum number of Sieve "notify"

actions that may be applied in a Sieve filter
max_redirect_addresses (New in MS 7.0u1) Maximum number of addresses

which will be used from a Sieve external list used in
a redirect; i.e., maximum addresses that will be used
from a redirect :list Sieve action

max_redirects Maximum number of Sieve "redirect" actions (i.e.,
forwards) that may be performed in a Sieve filter

max_sieve_list_size Maximum number of elements allowed in a Sieve
string-list structure

max_sieve_list_size (New in MS 8.1) Maximum number of iterations
allowed in a Sieve :matches operation

52–50 Messaging Server Reference

MTA options listed by functional
group

max_sieve_string_size (New in MS 7.0u3) Maximum size allowed for any
string in a Sieve script

max_vacations Maximum number of vacation actions that may
appear in a Sieve filter

max_variables (New in MS 6.2) Maximum number of variables that
may be used in a Sieve script

Sieve filter caching MTA options
filter_cache_size (New in MS 6.2) Specify the size of the per-process

cache of tokenized Sieve filters
filter_cache_timeout (New in MS 6.2) Specify the retention time for entries

in the per-process cache of tokenized Sieve filters
Sieve language extension MTA options

enable_sieve_body Control whether Sieve filters may use the body
extension

enable_sieve_ereject (New in MS 7.0u2) Control whether Sieve filters may
use the ereject extension

enable_sieve_memcache (New in MS 8.0) Control whether Sieve filters may
use the private memcache extension

enable_sieve_metermaid (New in MS 8.0) Control whether Sieve filters may
use the private metermaid extension

enable_sieve_redis (New in MS 8.0.2.3) Control whether Sieve filters may
use the private redis extension

enable_sieve_regex Control whether Sieve filters may use the regex
extension (the :regex match-type)

strict_require Control whether or not to strictly enforce certain rules
regarding the syntax of use of "require" in Sieve
filters

Sieve filter duplicate extension MTA options
duplicate_maximum_timeout (New in MS 8.0) Maximum period in seconds for

Sieve duplicate test storage timeout
duplicate_minimum_timeout (New in MS 8.0) Minimum period in seconds for

Sieve duplicate test storage timeout
duplicate_timeout_default (New in) Default period in seconds for Sieve

duplicate test storage timeout
duplicate_tracking_url (New in) Template for locating per-user duplicate

message information
max_duplicates (New in MS 8.0) Maximum "duplicate" tests

performed in a Sieve filter
Sieve filter error text MTA options

error_text_sieve_access Specify the error text used when reporting on an
error accessing a user's Sieve filter file (for Sieve
filters stored on disk)

error_text_sieve_syntax Specify the error text used when reporting on a
syntax error in a user Sieve filter

MTA options 52–51

MTA options listed by functional
group

error_text_source_sieve_access Specify the error text used when reporting on an
error accessing a source channel Sieve filter file (for
Sieve filters stored on disk)

error_text_source_sieve_syntax (New in MS 6.3) Specify the error text used when
reporting on a syntax error in a source channel Sieve
filter

error_text_source_sieve_authorization (New in MS 6.3) Specify the error text used when
reporting on a general error encounted attempting to
use a source channel Sieve filter

Sieve filter log and debug MTA options
filter_debug (New in MS 6.2) Control whether detailed (stack

state) debugging of Sieve filter evaluation is output
log_dkim (New in 8.1.0.6) Include information about DKIM

signing operations in message transaction log entries
log_filter Include applicable Sieve filter actions in MTA

message transaction log entries
log_from (New in 8.1.0.2) Include the address found in the

From: header field in message transaction log entries
log_smartsend (New in 8.1.0.1) Include additional information

about smartsend plugin actions in MTA message
transaction log entries

log_transactionlog (New in MS 8.0) Include Sieve "transactionlog"
action strings in MTA message transaction log entries

Spamfilter MTA options
access_errors Control the information issued in certain error

messages
brightmail_* Aliases for corresponding spamfilter_* MTA

options; see the spamfilter_* options for
definitions

scan_channel (New in MS 7.0.5) Channel to consider as source
channel when initializing the MTA for spam/virus
filter package checks performed by non-channel
applications and utilities such as imexpire

scan_originator (New in MS 7.0.5) Address to consider as the MAIL
FROM/envelope From address when initializing the
MTA for spam/virus filter package checks performed
by non-channel applications and utilities such as
imexpire

scan_recipient (New in MS 7.0.5) Address to consider as the RCPT
TO/envelope To address when initializing the MTA
for spam/virus filter package checks performed
by non-channel applications and utilities such as
imexpire

error_text_spamfilterN_error Specify default error text to return in cases of spam/
virus filter package problems

52–52 Messaging Server Reference

MTA options listed by functional
group

ldap_domain_attr_optinN Name of domain-level LDAP attribute selecting opt-
in to spam/virus filter package N processing

ldap_optinN Name of user-level LDAP attribute selecting opt-in to
spam/virus filter package N processing

ldap_source_optinN Name of user-level LDAP attribute selecting source
opt-in to spam/virus filter package N processing

ldap_optoutN Name of user-level LDAP attribute used to opt-out of
spam/virus filter package N processing

optin_user_carryover (New in MS 6.2.) Specify whether user spam/virus
filter "opt-in" is considered to "carry over" for
forwarded recipients

spamfilter_* As of MS 6.3, obsoleted in favor of the new-in-MS-6.3
spamfilter1_* options with which they are
(became in MS 6.3) synonymous

spamfilterN_action_M (Values for N of 1--4 are new in MS 6.2; values of 5--8
are new in MS 6.3.) URL that resolves to a Sieve filter,
specifying the action to take when the Nth spam/
virus filter package returns the corresponding Mth
verdict, that is, the action to take corresponding to the
spamfilterN_verdict_M verdict

spamfilterN_config_file (Values for N of 1--4 are new in MS 6.2; values of 5--8
are new in MS 6.3.) Location of the configuration file
for the Nth spam/virus filter package

spamfilterN_final (Values for N of 1--4 are new in MS 6.2; values of 5--8
are new in MS 6.3.) Control whether the MTA passes
the "intermediate" vs. "final" address form to the Nth
spam/virus filter package

spamfilterN_includeheaders (New in MS 7.0.5) Specify whether or not to pass to
the Nth (N in the range 1--8) spam/virus filter package
any header lines added via the $A flag in an address
*_ACCESS mapping table

spamfilterN_library (Values for N of 1--4 are new in MS 6.2; values of
5--8 are new in MS 6.3.) Location of the client shared
library for the Nth spam/virus filter package

spamfilterN_name (New in MS 7.0.5) Specify a symbolic name for the
Nth spam/virus filter package.

spamfilterN_null_action URL that resolves to a Sieve filter, specifying the
action(s) to take in the case of a null verdict from the
Nth spam/virus filter package

spamfilterN_null_optin (Values for N of 1-4 are new in MS 6.2; values of 5--8
are new in MS 6.3.) Specify a value for the attribute
named by the ldap_domain_attr_optinN
MTA options, the ldap_optinN MTA options, the
(new in MS 8.0.1.3) ldap_optoutN MTA options,
or the (new in MS 6.3) ldap_source_optinN
MTA options that means that the attribute should
be ignored; the purpose is to allow use of these
attributes by provisioning facilities that find it easier

MTA options 52–53

MTA options listed by functional
group

to set an attribute value rather than to remove an
attribute entirely

spamfilterN_optional What to do if a spam/virus filter package is not
responding: temporarily reject message vs. allow to
pass unfiltered, plus whether to send syslog notice

spamfilterN_received (New in MS 6.2) Specify whether or not to generate
a pseudo-Received: header line to pass to the spam/
virus filter package.

spamfilterN_returnpath (New in MS 7.0 update 1) Control whether or not to
add a Return-path: header line to the message passed
to the spam/virus filter package

spamfilterN_string_action (Values for N of 1--4 are new in MS 6.2; values of 5--8
are new in MS 6.3.) URL that resolves to a Sieve filter,
specifying the action(s) to take in the case of verdicts
from the Nth spam/virus filter package that do not
have an explicit corresponding action

spamfilterN_verdict_M (Values for N of 1--4 are new in MS 6.2; values of
5--8 are new in MS 6.3.) For the Nth spam/virus filter
package, its Mth verdict string

SPF MTA options
error_text_spf_* (New in MS 6.3, but not taking effect until MS 8.0) Set

the text for any of several SPF-related errors
spf_max_dns_queries (New in MS 6.3-0.15) Maximum DNS queries per SPF

check
spf_max_recursion (New in MS 6.3-0.15) Maximum recursion during SPF

checks
spf_max_time (New in MS 6.3-0.15) Maximum time (seconds)

permitted for performing an SPF check
spf_smtp_status_fail (New in MS 6.3-0.15) How to interpret an SPF domain

verification failure
spf_smtp_status_fail_all (New in MS 6.3-0.15) How to interpret an SPF

subdomain verification failure
spf_smtp_status_permerror (New in MS 6.3-0.15) Interpretation of DNS

permanent errors on SPF attempts
spf_smtp_status_softfail (New in MS 6.3-0.15) How to interpret an SPF "soft"

domain verification failure
spf_smtp_status_softfail_all (New in MS 6.3-0.15) How to interpret an SPF

subdomain "soft" verification failure
spf_smtp_status_temperror (New in MS 6.3-0.15) How to interpret DNS

temporary errors during SPF lookups
SRS MTA options

error_text_srs_* (New in MS 7.0u2) Set the text for any of several SRS-
related errors

srs_domain (New in 6.3p1) Domain to use in SRS addresses.

52–54 Messaging Server Reference

MTA options listed by functional
group

srs_hash_algoritm (New in 8.1.0.3) Hash algorithm to use when building
SRS addresses.

srs_maxage (New in 6.3p1) Number of days before an SRS
address times out

srs_secrets (New in 6.3p1) Secret keys used for encoding and
decoding SRS addresses

token_char Specify token character in local-part of address for
SRS purposes

Syslog MTA options
held_sndopr Send operator or syslog messages when messages are

HELD
log_connections_syslog Send MTA connection transaction log entries to

syslog (UNIX)
log_messages_syslog Send MTA message transaction log file entries to

syslog
log_sndopr Send an operator or syslog message if the MTA's

logging facilities encounter a difficulty
log_syslog_prefix (New in MS 8.0.2.3.) Specifices the prefix used on

MTA message transaction log file entries sent to
syslog

sndopr_prefix (New in MS 8.0.2.3.) Set the prefix attached to syslog
notices.

sndopr_priority Set the priority of operator broadcast or the syslog
level of syslog messages

spamfilterN_optional What to do if a spam/virus filter package is not
responding: temporarily reject message vs. allow to
pass unfiltered, plus whether to send syslog notice

Transaction logging MTA options
log_alq (OpenVMS only) Specify the default allocation

quantity for the MTA transaction log file(s)
log_auth (New in MS 7.0.5) Include SMTP MAIL FROM's

AUTH parameter in MTA message transaction log
entries

log_callout_delays (New in MS 8.0) Include timers showing the time for
responses from external components in MTA message
transaction log entries

log_connection Include connection information in MTA transaction
log entries

log_connections_syslog Send MTA connection transaction log file entries to
syslog (UNIX) in addition to, or instead of to, MTA
connection transaction log file

log_conversion_tag (New in MS 7.0.5) Include conversion tag(s) field in
MTA message transaction log entries

log_debug RESTRICTED: Enable debugging of MTA logging
operations

MTA options 52–55

MTA options listed by functional
group

log_deq (OpenVMS only) Specify the default extend quantity
for the MTA transaction log file(s)

log_delivery_flags (New in MS 7.0.5) Include delivery flags field in MTA
message transaction log entries

log_diagnostics (New in MS 7.0u1) Include diagnostics in MTA
message transaction log entries

log_dkim (New in 8.1.0.6) Include information about DKIM
signing operations in message transaction log entries

log_envelope_id (New in MS 6.1) Include envelope id in MTA message
transaction log entries

log_filename Include message file names in MTA message
transaction log entries

log_filter Include applicable Sieve filter actions in MTA
message transaction log entries

log_format Control the format of the MTA transaction log file(s)
log_from (New in 8.1.0.2) Include the address found in the

From: header field in message transaction log entries
log_futurerelease (New in) Include value of FUTURERELEASE SMTP

extension in MTA message transaction log entries
log_header Include message headers in MTA message transaction

log entries
log_imap_flags (New in MS 7.0.5) Include any IMAP flags set by the

MTA in MTA message transaction log entries
log_intermediate (New in MS 6.2) Include the "intermediate" address

and/or "original" (RCPT TO: command line) forms of
destination address in MTA message transaction log
entries

log_isc_status (New in MS 8.0.2) Include Indexed Search Converter
status information in LMTP server MTA message
transaction log entries

log_local Include the local domain name on "bare user name"
addresses in MTA message transaction log entries

log_mailbox_uid (New in MS 7.0.5) Include the IMAP UID and
UIDVALIDITY of messages delivered by ims-
ms channel to the Message Store in MTA message
transaction log entries

log_message_id Include message IDs in MTA message transaction log
entries

log_messages_syslog Send MTA message transaction log file entries to
syslog in addition to, or instead of to, MTA message
transaction log file

log_mtpriority (New in MS 8.0) Include message MT-PRIORITY in
MTA message transaction log entries

52–56 Messaging Server Reference

MTA options listed by functional
group

log_node (OpenVMS only prior to MS 6.3) Include the node
name on which process runs in MTA message
transaction log entries

log_notary Include a NOTARY (delivery receipt) flags indicator
in MTA message transaction log entries

log_priority Include message priority in MTA message transaction
log entries

log_process Include process ID in MTA message transaction log
entries

log_queue_time (New in MS 6.3) Include "time in queue" in
MTA message transaction log entries; this also
causes inclusion of "time to open or fail to open a
connection" in MTA connection log entries

log_reason (New in MS 6.3) Include reason for message rejection
in MTA message transaction log entries

log_remota_mta (New in MS 8.0.2.3) Include remote MTA name in
MTA message transaction log entries

log_sensitivity Include message's sensitivity value in MTA message
transaction log entries

log_smartsend (New in 8.1.0.1) Include additional information
about smartsend plugin actions in MTA message
transaction log entries

log_sndopr Send an operator or syslog message if the MTA's
logging facilities encounter a difficulty

log_syslog_prefix (New in MS 8.0.2.3.) Specifices the prefix used on
MTA message transaction log file entries sent to
syslog

log_times (New in MS 8.0) Include requested deferral time in
MTA message transaction log entries

log_tracking (New in 8.0) Include message tracking ID in MTA
message transaction log entries

log_transactionlog (New in MS 8.0) Include Sieve "transactionlog"
action strings in MTA message transaction log entries

log_uid (New in MS 8.0) Include recipient UIDs in MTA
message transaction log entries

log_use_xtext (New in MS 8.0) Controls xtext encoding of addresses
in MTA message transaction log entries

log_username Include the username for an enqueuing process in
MTA transaction log entries

log_8bit_encode Controls how non-ASCII characters are written in
XMl format MTA transaction log file(s)

return_cleanup_period Run site's cleanup script every Nth run of
return_job

return_split_period Start new mail.log_current file every Nth run of
return_job

MTA options 52–57

enable Option Under mta

separate_connection_log Write connection transaction log entries to a separate
file than message transaction log entries

OpenVMS user agent MTA options
delivery_receipt_off (OpenVMS only) Comment string that disables

delivery receipt request
delivery_receipt_on (OpenVMS only) Comment string that enables

delivery receipt request
dis_nesting (OpenVMS only) Nesting allowed for VMS MAIL

@DIS lists
form_names (OpenVMS only) List of the names of pop-up form

images
mail_delivery_filename (OpenVMS only) Set MAIL.DELIVERY filename
missing_address (OpenVMS only) Address to insert of VMS MAIL

From: if empty
multinet_mm_exclusive (OpenVMS only) VMS MAIL vs. Multinet MM

mailbox
read_receipt_off (OpenVMS only) Comment string that disables read

receipt request
read_receipt_on (OpenVMS only) Comment string that enables read

receipt request
safe_tcl_mode (OpenVMS only) Control handling of Safe-Tcl

message parts
use_mail_delivery (OpenVMS only) Enable MAIL.DELIVERY processing
vms_mail_exclusive (OpenVMS only) VMS MAIL vs. Multinet MM

mailbox

+ Note that the MTA's SMTP AUTH user authentication lookups are done using general
authentication library code, also used for IMAP, POP, or mshttpd user logins (authentication).
The authentication library code generally does not make use of the MTA-specific options,
but rather is controlled by Auth options (or in legacy configuration, configutil parameters).
However, for a few specific cases of MTA options affecting authentication library operation,
see the Direct LDAP attributes returned upon authentication MTA options.

52.6 enable Option Under mta
The enable MTA option, mta.enable (Unified Configuration) or local.imta.enable
(legacy configuration), provides a default setting for the dispatcher.enable option and the
job_controller.enable option. The mta.enable option is deprecated in favor of the two
more explicit enable options.

The default if this option is not explicitly set is 0, but initial configuration may set this option
to enable the MTA, as appropriate.

52.7 Alias and address MTA options
This discussion will focus on those MTA options that affect and modify certain fundamental
aspects of MTA alias and address handling, and in particular those MTA options

52–58 Messaging Server Reference

alias_case MTA option

affecting MTA alias file or alias database handling. See also the use_auth_return,
use_canonial_return, and use_orig_return MTA options, which among other things
can affect the form of envelope From address used in recipient-address-based *_ACCESS
mapping table probes and in mailing list named parameter [*_MAPPING] mapping table
probes.

For options relating more specifically to mail group or mail list handling, (as note that groups
and lists are merely special forms of alias), see also Mailing list and group MTA options.

And for the (many, many) options relating more specifically to aliases stored in LDAP -- the so-
called "Direct LDAP" MTA options -- see also Direct LDAP MTA options.

The ap_debug MTA option enables low-level debugging (typically meaningful only to Oracle
support) relating to the parsing of aliases and addresses; (the mm_debug MTA option enables
somewhat higher-level debugging of address handling, which also is typically meaningful
only to Oracle support.)

52.7.1 Alias and address case sensitivity option
(alias_case)

Use of settings other than those recommended by Oracle is RESTRICTED.

The alias_case option controls whether aliases (alias names) in the alias database or
alias file, or in Unified Configuration alias options, are case sensitive. (It does not affect
alias lookups in LDAP, that is, alias_urlN lookups: since the schema defines the mail,
mailAlternateAddress, and mailEquivalentAddress LDAP attributes as case-
insensitive, LDAP searches for these attributes are performed case-insensitively.) (Note that
the MTA always preserves the case of the alias translation value, that is, the right hand side;
the point of the alias_case option is to control whether the alias on the left hand side is
case sensitive for matching purposes.) Note that even if aliases are case sensitive in general,
postmaster aliases are always case insensitive. The default value is 0, meaning that aliases are
not case sensitive. Bits 0 through 2 (values 0 through 7) control handling of alias file lookups
(corresponding in Unified Configuration to alias options); higher bits control the handling of
alias database lookups.

Table 52.3 alias_case MTA option values

Value Usage
Lower bits (alias file and alias options)

0 Case insensitive alias file aliases
1 Case sensitive alias file aliases
2 Alias file aliases are first searched for case-sensitively, but if not found, perform a

case-sensitive search
3 Alias file aliases are first searched for case-sensitively, but if not found, perform a

case-sensitive search
Higher bits (alias database)

8 Case insensitive alias database aliases
9 Case sensitive alias database aliases and new in MS 8.0, case insensitive

comparisons for memcache storage of the alias database (alias_database_url)

MTA options 52–59

alias_domains MTA option

10 Alias database aliases are first searched for case-sensitively, but if not found,
perform a case-sensitive search and new in MS 8.0, case insensitive comparisons for
memcache storage of the alias database (alias_database_url)

11 Alias database aliases are first searched for case-sensitively, but if not found,
perform a case-sensitive search and new in MS 8.0, case insensitive comparisons for
memcache storage of the alias database (alias_database_url)

Bit 0 is the least significant bit.

52.7.2 Domains in alias lookups (alias_domains)
The alias_domains MTA option takes a bit encoded integer argument controlling the format
of alias file (and hence in Unified Configuration alias option) and alias database lookups. (This
option does not affect alias_urlN lookups.)

As of Messaging Server 7.0-3.01, the default value of alias_domains is 6, meaning that
alias file and alias database lookups probe first with the entire address, then probe with a
wildcarded localpart plus domain, and finally addresses matching the local channel probe
with solely the localpart; previously, the default value had been 1, meaning that alias file and
alias database lookups would probe with only the localpart (mailbox portion) of the address.
Note that for addresses matching the local channel, the a localpart-only probe is made even
if bit 0 (value 1) is not set. Setting bit 1 (value 2) causes a probe to be made using the entire
address (including the domain name). Setting bit 2 (value 4) when bit 1 (value 2) is also set
causes an additional, fall-through wildcard * probe -- effectively a "domain catchall address"
probe -- to be made. Indeed, if the address included a subaddress, setting bit 2 (value 4) causes
two wildcard * probes to be made, first *+*@domain-name and then *@domain-name.
(For wildcarding solely the subaddress, not the localpart, see the subaddresswild channel
option.) If all bits are set, i.e., alias_domains=7, then the order of the probes is to first probe
with the entire address (the most specific check), next probe with a wildcard * localpart plus
the domain name, and finally probe with just the localpart.

Table 52.4 alias_domains MTA option bit values

Bit Value Usage
0 1 Look up localpart. Clearing this bit disables the lookup of

unadorned localparts for channels other than the local channel; for the
local channel, localparts are always looked up.

1 2 Look up localpart@domainname.
2 4 If performing entire address probes (that is, if bit 1 is also set) and

if no exact match was found, try lookups with the * character for
the username; more precisely, an *+*@domainname (if the address
included a subaddress), and an *@domainname lookup.

Bit 0 is the least significant bit.

 Note that by default only addresses rewritten to the local channel are checked against the alias
file and alias database. However, via use of the aliaslocal channel option, it is possible to
cause addresses matching other channels to be checked against the alias file and alias database
for aliases, at which point alias_domains can affect aliasing of addresses rewriting to those
other channels. Note that the effect of bit 2 (value 4), that is, the probes with the * character as
the localpart, can be controlled on a per-channel basis via the aliaswild channel option.

52–60 Messaging Server Reference

alias_magic MTA option

52.7.3 Alias lookup control: alias_magic (integer)
The alias_magic MTA option controls the ordering of alias lookups. It takes a decimal-
encoded integer argument, where each decimal digit represents a type of alias lookup, and
the ordering of the digits controls the ordering of the lookups. The ones' place controls the
first thing looked up; the tens' place controls the second thing looked up; the hundreds' place
controls the third thing looked up; etc. A value of 1 means personal aliases; a value of 2 means
logical aliases; a value of 3 means the alias database; a value of 4 means the alias file; a value of
6 means the alias_url0 LDAP lookup; a value of 7 means the alias_url1 LDAP lookup; a
value of 8 means the alias_url2 LDAP lookup; a value of 9 means the alias_url3 LDAP
lookup.

Prior to 7.0U3 the default value for this option was 98764321; in 7.0U3 and later the default has
been changed to the recommended operating value of 8764 for direct LDAP mode. Note that
that does not enable alias_url3 lookups (value 9) or alias database lookups (value 3). An
alternate, sensible value for direct LDAP plus alias database lookups would be

alias_magic=987643

The alias_magic MTA option can be overriden for specific channels via the aliasmagic
channel option.

Caution: Support for this option is RESTRICTED. As the alias_magic option affects MTA
operation at a very fundamental level, in particular its fundamental means of doing alias
lookups, which can have wide-ranging, both obvious and subtle effects, setting this option to
other than a Oracle-engineering-recommended value is not supported.

52.7.4 Alias and address MTA options:
alternate_recipient (string)

(New in MS 8.0.1.) The alternate_recipient MTA option specifies the comment string,
including the surrounding parentheses, that is used to specify an alternate recipient address
as part of a mailing list address entry. The default value for this string is (ALTERNATE-
RECIPIENT).

For example, assuming the default value of this option, an entry of the form:

listmember@domain.com (alternate-recipient listalternate@domain.com)

would associated the alternate address listalternate@domain.com with the mailing list
address listmember@domain.com.

52.7.5 alternate_recipient_mode Option
The alternate_recipient_mode MTA option controls the order in which additional
alternate recipients are added to an existing alternate recipient list. Possible values are:

0 old recipients follow new recipient

1 new recipient follows old recipient

2 new recipient replaces any old recipients

MTA options 52–61

delimiter_char MTA option

3 new recipient is silently dropped if any old recipients are present

The default is 0, which is consistent with military messaging requirements.

52.7.6 Alias and address MTA options: delimiter_char
(1-127)

RESTRICTED.

(New in 7.0.) The delimiter_char MTA option controls what character represents a
delimiter. The value of this option is an integer corresponding to the ASCII character value in
decimal. The default is 124, corresponding to the vertical bar or "pipe" character, |.

52.7.7 Alias and address MTA options:
exproute_forward (0 or 1)

The exproute_forward MTA option controls the application of the exproute channel
option to forward-pointing (To:, Cc:, and Bcc: lines) addresses in the message header. A
value of 1 is the default and specifies that exproute should affect forward-pointing header
addresses. A value of 0 disables the action of the exproute channel option on forward-
pointing addresses.

52.7.8 idn_config_file Option
(New in MS 8.0.2.) The idn_config_file MTA option specifies the location of an optional
IDNKIT configuration file. Note that this file should not be necessary in normal usage. The
option has no default value.

52.7.9 Alias and address MTA options:
improute_forward (0 or 1)

The improute_forward MTA option controls the application of the improute channel
option to forward-pointing (To:, Cc:, and Bcc: lines) addresses in the message header. A
value of 1 is the default and specifies that improute should affect forward-pointing header
addresses. A value of 0 disables the action of the improute channel option on forward-
pointing addresses.

52.7.10 Alias and address MTA options:
local_format_restrictions (bitmask)

The local_format_restrictions MTA option affects whether the pipe character (vertical
bar) may appear in local (L) channel addresses. It also affects whether filename delivery
format, +filename@local-channel-domain-name, is permitted. Note that authenticated
submissions bypass such restrictions.

In a configuration with viaaliasrequired set on the local (L) channel, such as in
normal Messaging Server MTA configuration, this option is not really relevant: the
viaaliasrequired effect takes precedence in requiring that every local-part correspond
to an actual user -- unless the pipe character or a leading plus character were to occur in a
user's e-mail address, these syntaxes would inherently not correspond to actual user e-mail

52–62 Messaging Server Reference

max_alias_levels MTA option

addressses and hence not be permitted. But in a different sort of configuration, such as an
old PMDF configuration, this option controls whether the special syntaxes are allowed in
addresses matching the local (L) channel. The default value is 1, meaning that (in the absence
of viaaliasrequired), pipe characters are disallowed but filename delivery is allowed.

Table 52.5 local_format_restrictions MTA option bit values

Bit Value Usage
0 1 Disallow pipes in local addresses
2 4 Disallow files in local addresses

Bit 0 is the least significant bit.

The error, if such a condition is violated (and with viaaliasrequired not set), will be:

5.1.3 invalid material in localpart of address: address

and as an SMTP error:

553 5.1.3 invalid material in localpart of address: address

52.7.11 Alias and address MTA options:
max_alias_levels (integer)

The max_alias_levels MTA option controls the degree of indirection allowed in aliases,
that is, how deeply aliases may be nested, with one alias referring to another alias, etc. This
applies to direct LDAP alias lookups, as well as to traditional (legacy configuration) alias
database and alias file lookups. The default value is 10. See Alias recursion and nested list
definitions for some additional discussion.

52.7.12 Alias and address MTA options:
missing_recipient_group_text (string)

The missing_recipient_group_text MTA option specifies the phrase to
use when generating an empty group construct; that is, the phrase used when
missing_recipient_policy=4 (MTA-wide) or missingrecipientpolicy=4 (channel
level) is being applied. The default phrase, if this option is not set, is "Recipients not
specified".

52.7.13 Alias and address MTA options:
missing_recipient_policy (0-6)

RFC 822 (Internet) messages are required to contain a recipient header: a To:, Cc:, or Bcc:
header. A message without any such header is illegal according to RFC 822. Nevertheless,
some broken user agents and mailers (e.g., many older versions of sendmail) will emit such
illegal (per RFC 822) messages. Note that RFC 5322, the update to RFC 822, relaxes the RFC
822 requirement and allows submitted messages to be lacking in any recipient header line.
However, unless it is certain that all the MTAs and MUAs that may ever handle a message
in fact conform to RFC 5322 (rather than the older RFC 822), it is unwise to emit a message

MTA options 52–63

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc822

name_table_name MTA option

lacking all recipient header lines, since the behavior of an RFC 822-compliant MTA or mail
user agent may be undesirable when encountering a message that is, from its point of view,
illegal---results may include rejection of such a message, potentially undesired exposure of
recipient information such as recipients intended as Bcc: recipients, etc.

The missing_recipient_policy MTA option takes an integer value specifying what
approach to use for such messages; the default value, if the option is not explicitly present,
is 0. The meaning of this default value of 0 has changed: prior to MS 6.2, it was equivalent
to 2, meaning that envelope To addresses are placed in a To: header line. As of MS 6.2, it is
equivalent to 1, meaning to pass such messages through unchanged, in accordance with what
RFC 5322 now recommends.

Table 52.6 missing_recipient_policy option values

Value Action
0 Default; in MS 6.0 and 6.1 this corresponded to a value of 2, namely place

envelope To recipients in a To: header line; as of 6.2, this corresponds to a value
of 1, namely pass the message through unchanged, in accordance with what
RFC 5322 now recommends.

1 Pass the illegal-per-RFC 822 (though legal per RFC 5322) message through
unchanged.

2 Place envelope To recipients in a To: header line.
3 Place all envelope To recipients in a single Bcc: header line.
4 Generate an empty group construct (i.e., ;) To: header line. The phrase used in

the group construct is controlled by the missing_recipient_group_text
MTA option, so for instance " To: Recipients not specified: ;".

5 Generate a blank Bcc: header line.
6 Reject the message. The SMTP error issued with such a rejection will be: "554

5.6.0 Error writing message - message is missing required
recipient header fields" (Note that the acceptalladdresses
channel option, if used, modifies the timing and form of the rejection.)

Note that the missingrecipientpolicy channel option can be used to set per-channel
controls for this sort of behavior; such per-channel controls override the setting of the MTA
option missing_recipient_policy.

52.7.14 Alias and address MTA options:
name_table_name (string; OpenVMS only)

OpenVMS only.

The name_table_name MTA option specifies the name of a logical name table to be searched
for address aliases by the MTA. This table name may itself be a logical name (in the process or
system directory) which specifies one or more tables to search. This option has no default; if it
is not specified logical name tables are not searched for aliases.

52.7.15 Alias and address MTA options:
reverse_envelope (0 or 1)

RESTRICTED.

52–64 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc5322

subaddress_char MTA option

The reverse_envelope option controls whether or not the MTA applies address reversal
to envelope From addresses as well as header addresses. This option will have no effect
unless address reversal is being performed. That is, in order for reverse_envelope
to have any effect, a reverse_url must be set, a REVERSE mapping must exist, or
use_reverse_database must be set to a value causing use of the reverse database.

The default for reverse_envelope is 1, which means that the MTA will attempt to apply
any address reversal to envelope From addresses. A value of 0 will disable address reversal
from applying to envelope From addresses; that is, disable the reverse_url MTA option
setting, the address reversal database, and the REVERSE mapping from affecting envelope
From addresses.

Note that at typical Oracle Messaging Server sites, reverse_envelope=0should not be set
as disabling reverse_url lookups on envelope From addresses will disable other intended
functionality; see Intended side effects of LDAP address reversal.

52.7.16 Alias and address MTA options:
subaddress_char (list of integers)

The subaddress_char MTA option specifies the ASCII representation of the character to use
as the subaddress indicator in the mailbox portion of an address. The default is to use the plus
character, +, which has ASCII representation 43.

Note that internally the ims-ms channel always expects to see a plus character, +, and is
normally always passed the plus character due to the delivery_options MTA option,
regardless of what character is used "externally" as the subaddress separator character.

52.7.17 SRS MTA options: token_char (integer position
of ASCII character)

RESTRICTED.

The token_char MTA option controls what character represents a token in the local-part
of addresses. This is relevant for SRS address handling. The value of this option is an integer
corresponding to the ASCII character value in decimal. The default is 61, corresponding to the
equal sign, =.

52.7.18 Alias and address MTA options:
use_alias_database (0 or 1)

The use_alias_database MTA option controls whether or not the MTA makes use of the
alias database as a source of system aliases for local addresses. The default is 1, which means
that the MTA will check the database if it exists. A value of 0 will disable this use of the alias
database.

52.7.19 Alias and address MTA options:
use_domain_database (0 or 1)

The use_domain_database MTA option controls whether or not the MTA makes use of the
domain database as a source of rewrite rules. In Messaging Server 7.2 and earlier, the default

MTA options 52–65

use_forward_database MTA
option

was 1, which means that the MTA would check the database if it existed; as of Messaging
Server 7.3, the default is 0, which disables consultation of the domain database.

52.7.20 Alias and address MTA options:
use_forward_database (bitmask)

The use_forward_database MTA option controls whether or not the MTA makes use of
the forward database, and also controls the exact format of probes of the forward database and
FORWARD mapping table. The value is a decimal integer representing a bit-encoded integer, the
interpretation of which is given in the table below.

Table 52.7 use_forward_database MTA option bits

Bit Value Usage
0 1 When set, the forward database is used.
3 8 When set, channel-level granularity is used with the forward database

entries. Forward database entries' left hand sides must have the form (note
the vertical bars, |)

source-channel|from-address|to-address

Note that source-specific forwarding is very seldom appropriate, and in
those rare cases where it is appropriate, the forward database is seldom
the most suitable choice for achieving it.

4 16 When set, channel-level granularity is used with the FORWARD or any
domain catchall mapping. The mapping entries' patterns (left hand sides)
must have the form (note the vertical bars, |)

source-channel|from-address|to-address

Note that source-specific forwarding is very seldom appropriate, and in
those rare cases where it is appropriate, the FORWARD mapping is seldom
the most suitable choice for achieving it.

5 32 When set, modifies the effect of bit 3 (source-specific forward database
probes) by also including the destination channel in the probe.

6 64 When set, modifies the effect of bit 4 (source-specific FORWARD or domain
catchall mapping probes) by also including the destination channel in the
probe.

 7 128 (New in 8.0) When set, includes the initial address presented for alias
processing in the FORWARD mapping probe. This address appears
immediately before the intermediate address included by bit 8 below.

 8 256 (New in 8.0) When set, include the current intermediate address in the
FORWARD mapping probe. This address appears immediately before the
final recipient address.

 9 512 (New in 8.0) When set, include the authenticated sender address address
in the FORWARD or any domain catchall mapping probe. This address
appears immediately after the destination channel and before conversion
tags.

Bit 0 is the least significant bit.

52–66 Messaging Server Reference

use_personal_aliases MTA
option

The default value for use_forward_database is 0, which means that the MTA will not
use the forward database at all. Note that a FORWARD mapping table, if present, is always
consulted.

52.7.21 Alias and address MTA options:
use_personal_aliases (0 or 1)

The use_personal_aliases MTA option controls whether or not the MTA makes use
of personal alias databases as a source of aliases for local addresses. The default is 1, which
means that the MTA will check such databases, if they exist. A value of 0 will disable personal
aliases and make them unavailable to all users.

52.7.22 Alias and address MTA options:
use_reverse_database (bitmask)

The use_reverse_database MTA option controls whether or not the MTA makes use of the
address reversal database and REVERSE mapping table as a source of substitution addresses.
(Note that it cannot disable use of any reverse_url setting, although its bit 2, value 4, does
affect the scope of reverse_url application.) Its value is a decimal integer representing a bit-
encoded integer, the interpretation of which is given in the table below.

Table 52.8 use_reverse_database MTA option bits

Bit Value Usage
0 1 When set, reverse database based address reversal is applied to addresses after

they have been rewritten by the MTA address rewriting process; (this does
not affect reverse_url or REVERSE mapping table based address reversal
subsequent to address rewriting, which is controlled merely by the existence of a
reverse_url setting or existence of a REVERSE mapping table, respectively).+

1 2 When set, reverse database and/or REVERSE mapping based address reversal
is applied before addresses have had MTA address rewriting applied to them;
(this does not affect reverse_url based address reversal, which always occurs
after rewriting has been applied; for the REVERSE mapping, setting this bit causes
an additional consultation of the REVERSE mapping prior to address rewriting,
in addition to the subsequent to rewriting consultation which will always be
performed).+

2 4 When set, address reversal, including the reverse_url option setting if
applicable, will be applied to all (except envelope To) addresses, including forward-
pointing header addresses, not just to backward-pointing addresses.

3 8 When set, channel-level granularity is used with the REVERSE mapping. REVERSE
mapping table (pattern) entries must have the form (note the vertical bars, |)

source-channel|destination-channel|address

4 16 When set, channel-level granularity is used with address reversal database entries.
Reversal database entries' left hand sides must have the form (note the vertical bars,
|)

source-channel|destination-channel|address

5 32 Apply REVERSE mapping even if a reverse database entry has already matched.

MTA options 52–67

use_reverse_database MTA
option

6 64 Apply address reversal to message ids; see Internal host names in Received: and
Message-Id: header lines for an example.

7 128 When set, this modifies the effect of bit 4 (channel-level granularity of address
reversal database entries); when this bit is also set, the address reversal database
entries take the form (note the vertical bars, |)

destination-channel|address

8 256 When set, this modifies the effect of bit 3 (channel-level granularity of REVERSE
mapping table entries); when this bit is also set, the REVERSE mapping table entries
take the form (note the vertical bars, |)

destination-channel|address

10 1024 During subsequent-to-rewriting address reversal, (that is, that reversal due to
having bit 0 (value 1) set), this disables the normal initial reverse database lookup,
though a database lookup can still be caused by a $D in the REVERSE mapping
table

11 2048 During prior-to-rewriting address reversal, (that is, that reversal due to having bit
1 (value 2) set), this disables the normal initial reverse database lookup, though a
database lookup can still be caused by a $D in the REVERSE mapping table

12 4096 (New in 8.0.) When set, include the name of the header field the address
being processed came from in the mapping probe, delimited by vertical bars,
immediately after source channel, destination channel, and conversion tag
information. A trailing colon is always included in the field name. A blank name
appears when envelope addresses are being processed.

13 8192 (New in 8.0.) When set, do not impose source block and recipient limits and
capture actions based on the envelope from (MAIL FROM) address. For
background discussion, see Intended side effects of LDAP address reversal.

14 16384 (New in 8.0.) When set, do not impose source block and recipient limits and
capture actions based on the authenticated sender address. For background
discussion, see Intended side effects of LDAP address reversal.

+In initial iMS 5.2 and earlier versions, the 0th and 1st bits of use_reverse_database not
only controlled when, but also whether a REVERSE mapping table would be consulted at all for
address rewriting; now if a REVERSE mapping table exists, it definitely will be consulted for
address reversal (at least) subsequent to address rewriting; (depending upon bit 1, it may also
be consulted prior to address rewriting). So this is a change from iMS 5.2 and earlier versions.

Bit 0 is the least significant bit.

The default value for use_reverse_database is 5, which means that in addition to
consulting any reverse_url setting to reverse envelope From addresses and both backwards
and forwards pointing header addresses after they have passed through the normal address
rewriting process, the MTA will also consult any reverse database or REVERSE mapping
to reverse Envelope From addresses and both backwards and forwards pointing header
addresses after they have passed through the normal address rewriting process. Simple
address strings are presented to both the REVERSE mapping and the reverse database. Note
that a value of 0 disables the use of the address reversal completely. (Note that the default of 5
represents a change from early versions of PMDF in which this option had a default value of 1
(reverse only backwards pointing addresses).)

Note that as of 8.0.1.3, the usereversedatabase source channel option can be used to
override the setting of use_reverse_database on a channel by channel basis.

52–68 Messaging Server Reference

user_case MTA option

52.7.23 Alias and address MTA options: user_case (0 or
1)

The user_case MTA option causes some effects of forcing user names to lower case (on
certain "local" sorts of channels), affects the forcing-to-lowercase of variants of "postmaster",
and can influence the sorting of addresses. The default is 1, which has the general meaning
that case sensitive user names are permitted, except that any "postmaster" variants are forced
to lower case. If set to 0, and if the localbehavior channel option is set either explicitly on
a channel (or implicitly forced as with the l channel), then general user names matching that
channel will be forced to lower case.

The user_case MTA option also potentially, depending upon other conditions, may affect the
sorting of addresses.

52.8 Autoresponse periodicity MTA options
The MTA has several options affecting its memory/tracking of previous vacation (autoreply)
messages, and as of 7.0.5 its Sieve notify autoresponses, and hence its limiting of successive
such messages: in other words, options controlling the periodicity of autoresponses.

For each user, the MTA maintains an autoresponse information file, the purpose of which is
to record for which prior messages a vacation message has already been sent, (or as of 7.0.5, a
Sieve notify action was performed), used to avoid sending additional identical autoresponse
messages "too soon". The per-user, autoresponse information files are flat text files, one per
local user. The files are located and named via a configurable template, specified by the
vacation_template MTA option. In a user's autoresponse file, the MTA records the most
recent time at which the user sent back what would be the "same" vacation message to the
"same" original sender (same recipient of potential same vacation message). And as of 7.0.5,
the MTA similarly records in the autoresponse file the most recent time the user had a Sieve
notify action performed in response to the "same" message sender.

An explicit vacation action in a Sieve script may specify the timeout (period between
sending back another "identical" vacation message to the same sender) via the standard
:days parameter, or the MTA's extension :hours or :seconds parameters. Or a user's
mailAutoReply* LDAP attribute values (which the MTA uses to construct on-the-fly a Sieve
vacation action) may specify such a timeout via the value of the LDAP attribute named by
the ldap_autoreply_timeout MTA option (default mailAutoReplyTimeout); if the user
does not have their own mailAutoReplyTimeout set, then the domain value, if specified via
the LDAP attribute named by the ldap_domain_attr_autoreply_timeout MTA option,
will be used; or if neither the user nor the domain has such a value set, then the system wide
default specified via the autoreply_timeout_default MTA option will be used.

Any such timeout settings must be greater than or equal to the minimum allowed by the
vacation_minimum_timeout MTA option; values less than that will be silently (no error)
adjusted upwards to the vacation_minimum_timeout value. Similarly, as of the 8.0 release,
values greater than the value of the vacation_maximum_timeout MTA option will be
silently adjusted downwards to that option's value.

When the MTA is deciding whether or not to generate a vacation message back to some
original sender due to existence of either an explicit vacation action in a Sieve applying for
the original message recipient, or mailAutoReply* LDAP attributes (more precisely, LDAP
attributes named by ldap_autoreply_* MTA options) of the original message recipient,

MTA options 52–69

autoreply_timeout_default
MTA option

the MTA looks in the autoresponse suppression file corresponding to the original message
recipient, looking up with a key based on the original message sender and the substance of
the original message recipient's vacation message to find the time (if any) of the last such
vacation response. If the time is "too soon", no vacation message will be generated. Here
"too soon" is as defined above: set either via an explicit vacation action timeout parameter,
or mailAutoReplyTimeout if a vacation action is being generated for a user due to
mailAutoReply* attribute use, as defaulted by domain and system defaults, and constrained
by the system minimum permissible value.

A user's notify Sieve action may specify an explicit timeout via use of a :days,
:hours, or :seconds parameter. Any such value must be at least the value of the
notify_minimum_timeout MTA option and no greater than the value of the
notify_maximum_timeout MTA option, or it will be silently (with no error) adjusted
to conform to the permitted range. If no explicit timeout is specified, then the value of the
notify_timeout_default MTA option is used.

Maintenance (clean up) of the per-user autoresponse files is performed automatically by the
MTA, on a lazy (only when a file is already being opened), randomized (not performed every
time) basis. In particular, the vacation_cleanup MTA option controls the probabilistic
frequency of clean up of expired old entries from any such file.

For options relating to other aspects of vacation messages, see also the max_vacations
MTA option and all the rest of the MTA options naming various LDAP attributes
that specify aspects of vacation messages, ldap_start_date, ldap_end_date,
ldap_autoreply_mode, ldap_autoreply_subject, ldap_autoreply_text,
ldap_autoreply_text_internal, ldap_autoreply_addresses, as well as the already
mentioned ldap_autoreply_timeout, and ldap_domain_attr_autoreply_timeout.

52.8.1 Autoresponse periodicity MTA options:
autoreply_timeout_default (non-negative integer)

The autoreply_timeout_default MTA option specifies the default duration, in hours,
for successive vacation (autoreply) responses to any given sender. This system-wide value
specifies a default both for vacation actions specified explicitly in Sieve filters, and for
implicit "vacation" effects resulting from LDAP mailAutoReply* attributes.

This sytem-wide default may be overridden in explicit "vacation" actions in Sieve filters
by specifying a desired timeout via a ":days", ":hours", or ":seconds" parameter. Or for
implicit "vacation" actions generated due to LDAP mailAutoReply* attributes, this sytem-
wide default may be overridden on a per-domain basis via the domain attribute named by the
ldap_domain_attr_autoreply_timeout MTA option, or on a per-user basis via the user
attribute (normally mailAutoReplyTimeOut) named by the ldap_autoreply_timeout
MTA option. The default for this option is 168 (i.e., 7*24), meaning that vacation messages
would only be sent back to a given sender once a week (no matter how many messages the
sender sends).

52.8.2 Autoresponse periodicity MTA options:
notify_maximum_timeout (integer)

(New in 7.0.5.) The notify_maximum_timeout MTA option establishes a maximum value,
in seconds, for the Sieve "notify" action's ":days", ":hours", and ":seconds" parameters.

52–70 Messaging Server Reference

notify_minimum_timeout
MTA option

(":days" and ":hours" values are converted into seconds for the comparison.) Values higher
than the maximum are silently adjusted down to the maximum; no error occurs. The default
value for notify_maximum_timeout is the maximum allowed integer, 2**31-1.

52.8.3 Autoresponse periodicity MTA options:
notify_minimum_timeout (integer)

(New in 7.0.5.) The notify_minimum_timeout MTA option establishes a minimum value,
in seconds, for the Sieve "notify" action's ":days", ":hours", and ":seconds" parameters.
(":days" and ":hours" values are converted into seconds for the comparison.) Values lower
than the minimum are silently adjusted up to the minimum; no error occurs. The default value
for notify_minimum_timeout is 0.

52.8.4 Autoresponse periodicity MTA options:
notify_timeout_default (non-negative integer)

The notify_timeout_default MTA option specifies the default timeout, in seconds, for
suppression of duplicate notifications to a given recipient. It defaults to one hour for the old
form of notify actions and to two minutes for the new form.

52.8.5 Autoresponse periodicity MTA options:
vacation_cleanup (non-negative integer)

The vacation_cleanup MTA option sets a modulus for the frequency at which per-user
per-response vacation files are "cleaned up", (that is, scanned and expired entries removed).
Each time one of the per-user per-response vacation files is opened (those files specified via
the vacation_template MTA option), the value of the current time in seconds modulo the
vacation_cleanup value is computed. If the result is zero, then the file is scanned and all
expired entries are removed. The default value for the option is 200, which means that there is
a 1 in 200 chance that a cleanup pass will be performed.

52.8.6 Autoresponse periodicity MTA options:
vacation_hash_algorithm (hash algorithm name)

The vacation_hash_algorithm MTA option controls what hash algorithm the MTA uses
to generate the names for vacation database entries. The value should be a hash algorithm
supported by the MTA, one of MD2, MD4, MD5, SHA1, SHA256, SHA512, MD128, or MD160.
The default if this option is not specified is to use MD4 for hashing the autoreply attributes
and MD5 to rehash the name if it is too long. Note that the setting of this option must be the
same across a deployment for successful coordination of vacation responses across hosts.

52.8.7 Autoresponse periodicity MTA options:
vacation_maximum_timeout (integer)

(New in 7.0.5.) The vacation_maximum_timeout MTA option establishes a maximum
value, in seconds, for the Sieve "vacation", ":days", ":hours", and ":seconds" parameters.
(":days" and ":hours" values are converted into seconds for the comparison.) Values higher

MTA options 52–71

vacation_minimum_timeout
MTA option

than the maximum are silently adjusted down to the maximum; no error occurs. The default
value for vacation_maximum_timeout is the maximum allowed integer, 2**31-1.

Since the value of the mailAutoReplyTimeOut LDAP attribute (or more precisely the value
of whatever LDAP attribute is named by the ldap_autoreply_timeout MTA option) is
converted into such a Sieve "vacation" parameter, the vacation_maximum_timeout MTA
option value can affect the interpretation of any mailAutoReplyTimeout values also.

52.8.8 Autoresponse periodicity MTA options:
vacation_minimum_timeout (integer)

(New in 7.0.5.) The vacation_minimum_timeout MTA option establishes a minimum
value, in seconds, for the Sieve "vacation", ":days", ":hours", and ":seconds" parameters.
(":days" and ":hours" values are converted into seconds for the comparison.) Values lower
than the minimum are silently adjusted up to the minimum; no error occurs. The default value
for vacation_minimum_timeout is 0.

Since the value of the mailAutoReplyTimeOut LDAP attribute (or more precisely the value
of whatever LDAP attribute is named by the ldap_autoreply_timeout MTA option) is
converted into such a Sieve "vacation" parameter, the vacation_minimum_timeout MTA
option value can affect the interpretation of any mailAutoReplyTimeout values also.

52.8.9 Autoresponse periodicity MTA options:
vacation_template (file or memcache URL)

The vacation_template MTA option specifies a template for the name and location of the
per-user autoresponse information memcache entries or files. These can be flat text files, one
per local user. The value should be a memcache: URL or a file URL (file:path-template).

Various substitution sequences may be used in constructing the file path template; see
the MTA's LDAP URL substitution sequences. Note that the $nA and $U substitution
metacharacters are likely to prove particularly useful in constructing effective
vacation_template settings.

This option must be set to a sensible value in order to support user "vacation" Sieve script
actions (and LDAP mailAutoReply* attributes). Prior to Messaging Server 7.4-0.01, there
was no default value. As of Messaging Server 7.4-0.01, the default value is:

file:///DATAROOT/vacation/$3I/$1U/$2U/$U.vac

The machinery used to read and write these flat text files is designed in such a way that it
should be able to operate correctly over NFS. This allows multiple MTAs to share a single
set of files on a common filesystem. Note that when intending to use NFS to share vacation
response files among multiple systems, it is important to define the same MTA user account --
same user name and uid (see the user option in restricted.cnf) -- on each system so as
to avoid permission problems.

As of the 8.0 release, memcache is also supported as a back end for vacation timeout
information. This is accomplished by specifying a memcache: URL. A typical setting would
be:

52–72 Messaging Server Reference

BURL MTA options

memcache:///$U@$2I

in which case the memcache server is specified by the memcache_host and memcache_port
MTA options. These options can be overidden by specifying the host and port in the URL, e.g.,

memcache://host:port/$U@$2I

The content of the URL after the host and port specifies the key used to store information in
memcache. The $U substitution provides the necessary information for the key, but a prefix
or suffix can also be included if there is a need to distinguish the keys from other information
stored in the memcache instance.

As of MS 8.1.0.1, Redis URLs are also supported. These have the same semantics as memcache
URLs, so a sensible setting would be:

redis:///$U@$2I

52.9 BURL MTA options
The BURL extension to SMTP SUBMIT is defined in RFC 4468 (Message Submission BURL
Extension). The MTA's SMTP SUBMIT server can support this extension, if configured to do
so.

Configuration of BURL support involves setting the two MTA options imap_username and
imap_password, as well as configuring the BURL_ACCESS mapping table. The BURL MTA
options imap_username and imap_password specify the credentials for the MTA to use
when it connects to the IMAP server as the "submit" user, so of course these credentials (these
MTA option settings) must match those configured for the IMAP server's "submit" user as
configured via the submituser IMAP option.

52.9.1 BURL MTA options: imap_password (string)
In order to perform an IMAP BURL operation, the SMTP SUBMIT server has to have the
ability to log in to the IMAP server as the submit user. The imap_password MTA option
specifies the password to use for such operations (and of course must match the password
value set for the submituser account). This option has no default.

52.9.2 BURL MTA options: imap_username (string)
In order to perform an IMAP BURL operation, the SMTP SUBMIT server has to have the
ability to log in to the IMAP server as the submit user. The imap_username MTA option
specifies the submit user; if not set, it defaults to the setting of the imap.submituser option
(corresponding to the old configutil parameter service.imap.submituser).

52.10 Configutil override MTA options
Historically, the MTA has had a number of options available to override (specifically for MTA
purposes) various general Messaging Server settings formerly set via configutil. In Unified

MTA options 52–73

https://tools.ietf.org/html/rfc4468
https://tools.ietf.org/html/rfc4468

Conversions MTA options

Configuration, such former configutil options typically are now base level options --
and MTA-specific overrides via MTA options typically still exist. (A convenient concordance
of many such base, configutil, and MTA options may be found in Basic configuration
settings relevant to alias LDAP lookups.)

See in particular the options:

• ldap_default_domain

• ldap_domain_root

• ldap_host

• ldap_host_alias_list

• ldap_local_host

• ldap_mail_aliases

• ldap_pab_host

• ldap_pab_max_connections

• ldap_pab_password

• ldap_pab_port

• ldap_pab_username

• ldap_password

• ldap_port

• ldap_schematag

• ldap_username

• ldap_user_root

• projectid

52.11 Conversions MTA options
The MTA has a number of options relating to conversion operations. The most fundamental
of these in Unified Configuration is conversions, which replaces the legacy configuration
conversions file, being where conversions entries are stored. Additional options relating to
conversion operations include:

• conversion_size, personal_conversion_size, string_pool_size_0, and
string_pool_size_4, which respectively control the maximum number of conversion
entries, the maximum number of personal conversion entries, and limits the total characters
in conversions entries and in personal conversions entries.

• include_conversiontag and original_channel_probe, which affect what
information is used in certain mapping table probes; and

• log_conversion_tag, which controls whether or not message conversion tags are
included in MTA message transaction log entries.

52.11.1 conversions Option
The conversions MTA option stores all conversion entries. It corresponds to the legacy
configuration conversions file.

The conversions MTA option would typically be set or modified by using the edit
command of msconfig, e.g.:

52–74 Messaging Server Reference

Counters MTA options

msconfig> edit conversions

52.12 Counters MTA options
The MTA has a number of options relating to its counters.

The circuitcheck_completed_bins MTA option relates to MTA circuit check counter
binning. The log_delay_bins and log_size_bins MTA options relate to MTA counters
binning. See also the sndopr_priority MTA option, which controls the syslog facility and
severity of, among other things, syslog notices generated if and when the MTA encounters
trouble with its association counters.

The log_debug MTA option enables low-level debugging (typically only meaningful to
Oracle support) regarding the MTA's transaction logging and the incrementing of MTA
channel counters.

52.12.1 Counters MTA options:
circuitcheck_completed_bins (comma-separated
list of up to eight integers)

The circuitcheck_completed_bins MTA option specifies the bin divisions, in seconds,
for MTA circuit check counters. It takes as argument a list of up to eight integer values. The
default values are 120, 300, 900, 1800, 3600, 7200, 14400, and 28800; i.e., two minutes, five
minutes, fifteen minutes, thirty minutes, one hour, two hours, four hours, and eight hours,
respectively.

52.12.2 Counters MTA options: enable_delay_timers
(0 or 1)

The MTA can optionally maintain timers to measure delays caused by various external
processes. Setting the enable_delay_timers MTA option to a value of 1 enables these
timers. A value of 0 (the default) disables them.

Timings are done on a per-message basis, if enabled. For details on what timers are available,
see the log_callout_delays MTA option which discusses the details of the timers, as well
as the format in which they may optionally be logged.

52.12.3 Counters MTA options: log_delay_bins
(comma-separated list of up to five integers)

The log_delay_bins MTA option specifies the bin divisions for the MTA counters tracking
numbers of messages delivered in the specified number of seconds. The default values are 60,
600, 6000, 60000, 600000.

52.12.4 Counters MTA options:
log_frustration_limit (integer)

MTA options 52–75

log_size_bins MTA option

When attempting a counter update operation (whether an attempt to update channel counters
or association counters), the MTA will try ten times before giving up on that particular update
operation. Each MTA process keeps track of how many such update "frustrations" have
occurred, that is, how many times the process has had to give up on updating the counters,
and if that value exceeds the log_frustation_limit value, which by default is 100, then
that process will no longer even attempt counter update operations.

52.12.5 Counters MTA options: log_size_bins
(comma-separated list of up to five integers)

The log_size_bins MTA option specifies the bin divisions for the MTA counters tracking
numbers of messages of the specified number of (MTA) blocks (the size of an MTA block
having been defined via the block_size MTA option). The default values are 2, 10, 50, 100,
500.

52.12.6 Syslog MTA options: log_sndopr (bitmask)
The log_sndopr MTA option controls the production of syslog messages (UNIX) by the MTA
message transaction and connection logging facility. If this feature is enabled by specifying a
value of 1, the logging facility will produce a message if it encounters any difficulty writing
to its log file. A value of 0 (the default) turns off these messages. New in MS 8.0, the option
takes a bit-encoded value, with bit 0 (value 1) and bit 1 (value 2) having meaning: bit 0 enables
syslog notices regarding trouble writing transaction log entries; bit 1 enables syslog notices
regarding trouble creating or updating channel counters.

The sndopr_priority option controls the syslog level (facility and severity) of the syslog
messages generated.

52.12.7 Counters MTA options: log_statistics (0, 1,
or 2)

Usage: RESTRICTED. (In PMDF V5.1 and earlier, log_statistics=0 told PMDF
not to generate and maintain its counters; but as of PMDF V5.2 and for all versions of
the Messaging Server MTA, log_statistics=0 has no effect and is equivalent to
log_statistics=1.) log_statistics=1 is the default and means to create counters
normally. log_statistics=2 causes "strict" creation of counters; the MTA aborts if the
counters cannot be created.

52.13 Database MTA options
The MTA has a number of options relating to its use of databases. These include:

• alias_magic controlling the order of consulting various sources (including databases) for
aliases;

• forward_data_size, general_data_size, and reverse_data_size controlling the
internal size the MTA allots for its "in-memory" versions of the forward database, general
database, and reverse database, when use of such "in-memory" databases has been selected
via use_text_databases;

52–76 Messaging Server Reference

Debug MTA options

• name_table_name (OpenVMS only) which specifies a local name table used to store
aliases;

• queue_cache_mode which specifies use of an "in-memory" queue cache database by the
Job Controller;

• use_alias_database, use_domain_database, use_forward_database,
use_personal_aliases, and use_reverse_database which, among other effects,
control the use and format of various databases; and

• vacation_template specifies the location of the "database" of per-user vacation response
data;

• (new in Messaging Server 8.0) alias_database_url, domain_database_url,
forward_database_url, general_database_url, and reverse_database_url,
which can specify either Memcache (new in MS 8.0.2.3) Redis URLs for storing MTA
database data;

• general controlling the case sensitivity of general database lookups.

See also the Direct LDAP MTA options, the Autoresponse periodicity MTA options, and the
MeterMaid MTA options.

52.14 Debug MTA options
Debugging of various general MTA facilities and components may be enabled via several
options. Note the distinction between debugging (verbose output especially focused on
problem detection) vs.transaction logging (recording of processing) vs. event logging (call-out
logging of events of particular interest).

These MTA-wide facility debug options enable certain sorts of (generally MTA low level)
debugging irrespective of what MTA component is operating. For component specific
debugging, including "higher level" debugging of that component's specific operation, see also
component level debugging such as the channel level master_debug and slave_debug
channel options, or the debug Job Controller option or debug Dispatcher option.

For a quick view of whether/what debugging you may have enabled, try:

msconfig> show *debug*

52.14.1 Debug MTA options: ap_debug (integer)
RESTRICTED. The ap_debug MTA option enables internal MTA debugging; it is intended for
use by Oracle and is not intended to be used by end sites. Specifically, it enables debugging
of the AP routines (low level address parsing routines). Higher settings of ap_debug cause
more verbose output. The precise debug output can be expected to vary between and during
releases.

When enqueuing messages, in order for ap_debug values greater than 0 to take effect, both
the master_debug and slave_debug channel options must be set on the source channel
except for the L channel where just master_debug or slave_debug is sufficient.

52.14.2 Debug MTA options: cache_debug (0 or 1)

MTA options 52–77

config_debug MTA option

The cache_debug MTA option controls debugging regarding the direct LDAP caching of
lookup results (domains, aliases, address reversals). The default is 0, meaning that such debug
output is disabled. Setting this option to 1 enables the debug output; the information is output
just before the MTA component exits. (So for instance, imsimta test -rewrite will output
information regarding what it cached at the end of its other, normal output---since imsimta
test -rewrite most often is used to test just one or a couple of addresses, there is not often
much it had to cache. An SMTP server process will output to its log file information regarding
what it cached just before it shuts down at the end of its lifetime -- since SMTP server processes
typically last for some time, there may be quite a bit of caching that occurred.)

52.14.3 Debug MTA options: config_debug (integer)
RESTRICTED. The config_debug MTA option enables internal MTA debugging; it is
intended for use by Oracle and is not intended to be used by end sites.

52.14.4 Debug MTA options: debug_flush (0 or 1)
As of Messaging Server 7.1, a.k.a. Messaging Server 7.0-3.01, the debug_flush MTA option
causes certain debug output to get immediately flushed to disk. This is applicable for many
MTA components, including typical channel debug output, but it is especially relevant and
noticeable for long-running components such as the SMTP server, and Job Controller. The
flush-to-disk-log-file of the debug output may incur a bit of a performance penalty, but tends
to be more convenient for debugging purposes. The default is that such debug flushing is not
enabled (debug_flush = 0).

As of 7.0.5, the debug_flush MTA option can also cause flushing of Dispatcher debug
output.

52.14.5 Debug MTA options: dequeue_debug (0 or 1)
The dequeue_debug MTA option specifies whether or not debugging output from the MTA's
dequeue facility QU is produced; (note that master channel programs, since they are generally
dequeue oriented, usually use QU routines). If enabled with a value of 1, this output will be
produced on all channels that use the QU routines. The default value of 0 disables this output.

52.14.6 Debug MTA options: filter_debug (0 or 1)
New in Messaging Server 6.2. Control whether the stack state information part of Sieve filter
debugging is put in debug logs. (Note that this is quite "low level" debugging, not likely to be
of interest unless requested by Oracle support.)

For debugging of Sieve filters, see also the imsimta test -expression utility and the
mm_debug MTA option along with the Sieve debug action.

52.14.7 Debug MTA options: log_debug (0 or 1)
RESTRICTED: The log_debug MTA option may be used to enable internal debugging of
MTA logging activity, including MTA transaction logging and incrementing of the MTA
channel counters; it is intended for use by Oracle, and is not intended to be used by end sites.

52.14.8 Debug MTA options: mm_debug (integer)

52–78 Messaging Server Reference

os_debug MTA option

RESTRICTED: The mm_debug MTA option enables internal enqueue debugging; it is intended
for use by Oracle, and is not intended to be used by end sites. In particular, it is not intended
for, and is not supported for use for, logging purposes. Specifically, it enables debugging
of the MM routines (enqueue routines handling address rewriting, mappings, conversions,
etc.). Note that generally at least one of master_debug or slave_debug must be set on a
channel in order for mm_debug settings to take effect; the OpenVMS L channel is an exception
and requires setting both master_debug and slave_debug. (In PMDF V5.1 and earlier,
all channels required setting both master_debug and slave_debug for mm_debug to take
effect.)

Higher settings of mm_debug cause more verbose output. For instance, currently a value of
1 or more includes some message file access debugging and some alias file/database access
debugging and some overview of header processing and debugging of access mapping table
checks and debugging of address/subaddress variant lookups, and some commenting about
spam/virus filter package verdicts, and some debugging of SPF lookups checked at MAIL
FROM or RCPT TO stages; a value of 2 or more includes debugging of conversion probes
and debugging of Sieve filter access and some debugging of URL lookups (LDAP and file)
and debugging of auto-registration and debugging of mailing list keyword processing and
debugging of constructing address/subaddress variants and debugging of domainMap/
domain-match-cache usage and debugging of whether TLS use is attempted, and further
information regarding spam/virus filter package access and errors; a value of 3 or more
includes debugging of mapping table use, and further debugging of the actual attribute
lookups for LDAP URL lookups and domain lookups (including domain caching info), and (as
of MS 6.2) debugging regarding the reason when a message for multiple recipients is "split up"
into different copies, and (as of MS 6.3) debugging regarding SRS/MUL decoding; a value of
4 or more includes some file reading debug especially on OpenVMS; a value of 5 causes very
verbose output, including actual contents of the incoming message body, and details regarding
spam/virus filter package opt in or opt out; in particular, a value of 8 or more includes some
debugging of creating message files and writing out lines of message files and reading in
message lines.

The precise debug output resulting from mm_debug can be expected to vary between and
during releases.

52.14.9 Debug MTA options: os_debug (0 or 1)
RESTRICTED. The os_debug MTA option enables internal MTA debugging; it is intended for
use by Oracle and is not intended to be used by end sites. Specifically, it enables debugging of
the OS routines (low level operating system interface routines), including some file handling
and date/time operation routines. The precise debug output can be expected to vary between
and during releases.

The dequeue_debug MTA option must be enabled also, in order for os_debug=1 to take
effect when dequeueing messages. When enqueuing messages, in order for os_debug=1
to take effect, both master_debug and slave_debug must be on the channel. (The
PORT_ACCESS mapping table $U flag may be used to selectively enable slave_debug on
incoming connections.)

As of Messaging Server 7.0.5, enabling os_debug will cause the MTA to pay attention
to a debugkeys Base option value of lpool, (local.debugkeys lpool in legacy
configuration), and thus generate lpool debug output.

52.14.10 Debug MTA options: post_debug (0 or 1)

MTA options 52–79

return_debug MTA option

DEPRECATED.

Formerly, for PMDF prior to the enhanced Job Controller, the post_debug MTA option
specified whether or not debugging output was produced by PMDF's periodic delivery job.
(No such periodic delivery job exists for the Messaging Server MTA; instead, the Job Controller
handles scheduling and initiating delivery re-try jobs as appropriate.)

52.14.11 Debug MTA options: return_debug (0 or 1)
The return_debug MTA option enables or disables debugging output in the nightly message
bouncer job (the return_job). A value of 0 disables this output (the default) while a value
of 1 enables it. Debugging output, if enabled, in iMS 5.2 will appear in the Job Controller's
log file, usually a job_controller.log-* file, and in MS 6.1p1 and later will appear in the
IMTA_LOG:return-uniquestring.log log file.

52.14.12 Debug MTA options: return_verify (0 or 1)
The return_verify MTA option was introduced in MS 7.0.5, in place of the former MTA
Tailor option imta_return_verify. When the return_verify MTA option is set to 1,
shell script logging, -x, will be enabled within the return_job shell script.

52.14.13 symbiont_debug Option
DEPRECATED.

Formerly, the symbiont_debug MTA option could be used to enable debugging of the PMDF
Process Symbiont.

52.14.14 Debug MTA options: tracking_debug (0-10)
RESTRICTED: The tracking_debug MTA option is used to enable debug output from the
MTA's tracking subsystem. The default value of 0 disables debug output; positive values
enable it. The larger the value, the more output is produced.

52.15 Direct LDAP MTA options
In modern configurations, provisioning of mail domains, and provisioning of users, mail
groups, and mail lists -- aliases from the MTA's point of view -- is typically done in LDAP. This
is sometimes referred to as "Direct LDAP" provisioning or "Direct LDAP" aliases, in contrast to
the older style of having MTA rewrite rules keep track of "local" domains, and storing aliases
for users in those domains in the MTA alias file or MTA alias database and the MTA reverse
database.

There are many MTA options for controlling the many aspects of so-called "Direct LDAP"
domain and alias lookups, that range from those controlling the basics of connnecting to
LDAP, to basics of the LDAP schema and DIT layout, to tweaking the interpretation of
LDAP attributes, to specifying the names of the LDAP attributes of interest (re-vectoring
LDAP attribute names to allow use of any semantically-compatible schema), including some
attributes fetched upon successful authentication, to details of looking up domains in LDAP,
then in such domains details of looking up users in LDAP, and finally caching LDAP lookup
results.

52–80 Messaging Server Reference

LDAP bind and connect MTA
options

52.15.1 LDAP bind and connect MTA options
MTA options exist to control the basics of its LDAP bind operations and LDAP connections:
the credentials used to bind, the timeout on connection attempts, the maximum number of
simultaneous connections, etc. Besides these MTA options controlling the MTA's "normal"
LDAP connections (those LDAP connections used for lookups in the domain and user/group
portions of the DIT, as well as general LDAP URL lookups sites have explicitly configured in
MTA rewrite rules or mapping tables), the MTA is also capable of performing PAB (Personal
Addressbook) specific LDAP lookups (see the LDAP PAB MTA options) as well as LDAP
connections to some alternate, "external" LDAP directory (see the LDAP external directory
lookup MTA options).

52.15.1.1 LDAP bind and connect MTA options: ldap_host (host)

The ldap_host MTA option specifies the default host to which to connect when making
LDAP queries. This option, if set, overrides for MTA purposes the ugldaphost base-level
option (in legacy configuration, the local.ugldaphost configutil parameter).

Prior to Messaging Server 7.0u4, the MTA's LDAP queries -- that is, ldap: URL uses in MTA
rewrite rules, mapping tables, alias translations value, etc. -- in fact did not allow specifying a
host in the URL itself and instead required that a default LDAP host had to have been specified
via ldap_host or ugldaphost.

52.15.1.2 LDAP bind and connect MTA options:
ldap_max_connections (non-negative integer)

The ldap_max_connections MTA option takes a non-negative integer argument specifying
the maximum number of simultaneous LDAP connections that the MTA can use. The default is
1024.

52.15.1.3 LDAP bind and connect MTA options: ldap_password
(string)

The ldap_password MTA option specifies the password to use when binding for LDAP
queries. If set, this option overrides the local.ugldapbindcred configutil parameter in
legacy configuration; in Unified Configuration, the equivalent option is ugldapbindcred.

52.15.1.4 LDAP bind and connect MTA options: ldap_port (integer)

The ldap_port MTA option specifies the port to which to connect when making
LDAP queries. If set, this option overrides the ugldapport base option (formerly the
local.ugldapport configutil parameter).

Prior to Messaging Server 7.0u4, the MTA's LDAP queries -- that is, ldap: URL uses in MTA
rewrite rules, mapping tables, alias translations value, etc. -- in fact did not allow specifying a
port in the URL itself and instead required that a default LDAP port had to have been specified
via ldap_port or ugldapport.

52.15.1.5 LDAP bind and connect MTA options: ldap_timeout
(integer)

MTA options 52–81

LDAP bind and connect MTA
options

The ldap_timeout MTA option controls how long to wait (in hundredths of seconds) before
timing out on an LDAP query. The default value is 180000. Note that some underlying or
shared code may have its own, separately controlled LDAP timeout settings. In particular,
some code may instead use the general ldapsearchtimeout base option (formerly the
local.ldapsearchtimeout configutil parameter setting), whilst other code uses the
ADMLDAP_TIMEOUT environment variable setting (and defaults to 60 seconds if that variable is
not set).

52.15.1.6 LDAP bind and connect MTA options: ldap_use_async
(bitmask)

The ldap_use_async MTA option controls the use of asynchronous (as opposed to
synchronous) LDAP lookups. Asynchronous lookups avoid the need to store an entire large
LDAP result in memory, which seems to cause performance problems in some cases. This
option takes a bit-encoded value. Each bit, if set, enables the use of asynchronous LDAP
lookups in conjunction with a specific use of LDAP within the MTA. The following bits are
defined:

Table 52.9 ldap_use_async MTA option bits

Bit Value Usage
0 1 ldap_group_url1 (mgrpDeliverTo) URLs
1 2 ldap_group_url2 (memberURL) URLs
2 4 ldap_group_dn (uniqueMember) DNs and as of Messaging Server

7.0.5, also ldap_group_dn2 DNs
3 8 [AUTH_LIST], [MODERATOR_LIST], [SASL_AUTH_LIST],

[SASL_MODERATOR_LIST] list named parameter URLs (legacy
configuration), or in Unified Configuration, alias_auth_list,
alias_moderator_list, alias_sasl_auth_list,
alias_sasl_moderator_list, alias option URLs

4 16 [CANT_LIST], [SASL_CANT_LIST] list named parameter
URLs (legacy configuration), or in Unified Configuration,
alias_cant_list, alias_sasl_cant_list alias option URLs

5 32 [ORIGINATOR_REPLY] list named parameter URLs
(legacy configuration), or in Unified Configuration,
alias_originator_reply alias option URLs

6 64 [DEFERRED_LIST], [DIRECT_LIST], [HOLD_LIST],
[NOHOLD_LIST] list named parameter URLs (legacy configuration),
or in Unified Configuration, alias_deferred_list,
alias_direct_list, alias_hold_list, alias_nohold_list
alias option URLs

7 128 [USERNAME_AUTH_LIST], [USERNAME_MODERATOR_LIST],
[USERNAME_CANT_LIST] list named parameter
URLs (legacy configuration), or in Unified
Configuration, alias_username_auth_list,
alias_username_moderator_list,
alias_username_cant_list alias option URLs

8 256 alias file list URLs

52–82 Messaging Server Reference

Direct LDAP domain lookup MTA
options

9 512 alias database list URLs
10 1024 ldap_cant_url (mgrpDisallowedBroadcaster) outer level

URLs
11 2048 ldap_cant_url inner level URLs
12 4096 ldap_auth_url (mgrpAllowedBroadcaster) outer level URLs
13 8192 ldap_auth_url inner level URLs
14 16384 ldap_moderator_url (mgrpModerator) URLs
15 32768 ldap_jettison_url (mgrpJettisonBroadcasters) URLs (new

in 7.4-0.01)
16 65536 ldap_auth_mappingN generated outer URLs (new in 7.5-31)
17 131072 ldap_auth_mappingN generated inner URLs (new in 7.5-31)

Bit 0 is the least significant bit.

The default value of the ldap_use_async MTA option is 0, which means that asynchronous
LDAP lookups are disabled by default in the MTA.

52.15.1.7 LDAP bind and connect MTA options: ldap_username
(ldap-dn)

The ldap_username MTA option specifies the DN under which to bind for LDAP queries.
This option, if set, overrides for MTA purposes the base-level ugldapbinddn option (in
legacy configuration, the local.ugldapbinddn configutil parameter).

52.15.1.8 LDAP bind and connect MTA options: max_urls (integer)

The max_urls MTA option specifies the maximum number of URLs that may be active when
reiteratively performing URL lookups; that is, this is the maximum degree of nesting of URL
references. The default value as of MS 8.0 is 1024; previously, the default was 128.

52.15.2 Direct LDAP domain lookup MTA options
A number of MTA options relate to domain lookups in LDAP.

• domain_failure is a rewrite template to handle cases of LDAP errors during the MTA's
fundamental domain LDAP lookup while rewriting.

• domain_match_url is available to support the STRONGLY DISCOURAGED use of so-
called "vanity domains".

• domain_uplevel is important for domain aliasing, and in particular for implicit aliasing as
in the case of supporting arbitrary subdomains of some upper domain name.

• ldap_domain_known_attributes may have performance implications with some LDAP
servers. Proper setting is also important in cases of site MTA configuration with reliance
upon use of additional, site-specific LDAP attributes from domain entries.

• Affecting interpretation of the results of domain lookups are ldap_default_domain,
ldap_host_alias_list, and ldap_local_host.

MTA options 52–83

Direct LDAP domain lookup MTA
options

• Controlling caching and timeouts of domain lookups are
domain_match_cache_timeout, domain_match_cache_size, and
ldap_domain_timeout.

• Schema options include ldap_domain_filter_schema1,
ldap_domain_filter_schema2 and ldap_domain_root.

• Options to rename which LDAP attributes are used/recognized in domain entries
are discussed under Direct LDAP attribute name MTA options; see especially the
ldap_domain_attr_* MTA options.

52.15.2.1 Domain lookup failures (domain_failure)

The domain_failure MTA option specifies what rewriting to apply when a rewrite rule $V
LDAP lookup encounters an LDAP error. The default is

reprocess-daemon$Mtcp_local$1M$1~-error$4000000?Temporary lookup failure

This means that if the rewrite rule $V LDAP lookup encounters a (presumably temporary)
LDAP error such as the LDAP server failing to allow connections, or an LDAP query timing
out without a response, then the MTA will either:

• (a) for attempted submissions via tcp_local (attempted submisssions from the Internet)
or from channels "internal" to the MTA (such as reprocess or conversion channels), reject
the submission attempt with a temporary error (4yz error) so that the message remains
where it was (on the external, Internet host, or on the internal channel) which can re-attempt
submisssion later, or

• (b) for all other messages (in particular, messages submitted by "internal" user e-mail
clients or "internal" hosts via channels such as tcp_intranet, tcp_auth, tcp_submit,
etc., accept the message but divert it to the reprocess channel, so that the user's message
submission is completed, leaving it up to the MTA (via the reprocess channel) to later go to
the work of re-trying the LDAP lookup.

In case (a), for attempted submissions from the Internet, one typically does not want to accept
a message that one cannot process at the moment (and for which, in particular, one cannot
even validate that the domain is one one wants to accept). Accepting such messages merely
clutters one's own queues which at best cannot be processed immediately, and which at worst
may need to be rejected (once domain validiation can be performed) as invalid domains.
Instead, sites usually prefer to refuse such messages with a temporary rejection (so that the
remote host knows to continue with additional submission attempts later). And in case (a),
for attempted submissions from "internal" channels, the messages might as well stay in their
current "internal" channel and await additional lookup attempts from there. In contrast, in
case (b), for attempted submissions from one's own, "internal" user e-mail clients, user e-
mail clients cannot usually handle making an automated resubmission attempt "later". So it is
friendlier to one's own users to go ahead and accept the messages, even if the messages will
end up needing to be rejected later.

In more detail, the $M and $1M rewrite rule control sequences are used here to do a
preliminary check whether the tcp_local or any "internal" channels are doing the rewriting
(attempting to enqueue). Then the $1~ rewrite rule control sequence is used to override that
initial channel match success or failure with a forced success, while truncating the rewrite rule
at this point if the initial channel match failed.

52–84 Messaging Server Reference

Direct LDAP domain lookup MTA
options

So the effect is that when the tcp_local or an "internal" channel is attempting to enqueue, a
rewrite rule template of the form

$U%$H@reprocess-daemon-error$4000000?Temporary lookup failure

is used. Because (normally) there is no channel with official host name reprocess-daemon-
error, this rewrite rule template has the effect of forcing a channel match failure, so the $?
rewrite rule control sequence comes into play, specifying that a "4.0.0 Temporary lookup
failure" error be returned for the address. The MTA does not enqueue the message; the
message remains where it was (and the remote host or internal channel can re-attempt
submission later).

But if any channel other than tcp_local or an "internal" channel (in particular, if a channel
such as tcp_intranet, tcp_auth, or tcp_submit) is attempting to enqueue, a rewrite rule
template of the form

$U%$H@reprocess-daemon

is used. Thus in this case (messages being submitted from channels such as tcp_intranet,
tcp_auth, or tcp_submit), the rewrite rule succeeds in directing the message to the
reprocess channel; the MTA accepts the message and routes it to the reprocess channel for
further processing (in particular, for further attempts to do the domain lookup in LDAP). The
reprocess channel will then continue to try to process the message (in particular, reattempt
the rewrite rule $V LDAP lookup) until either the LDAP lookup is completed and then the
message can be processed further, or the message eventually times out (time out as controlled
by the final value of the notices channel option applying to the reprocess channel) causing
the message to be returned to the original sender. Accepting the message onto the MTA, for
the MTA to later re-try the domain lookup typically makes sense in the case of messages
submitted from one's own users.

52.15.2.2 Direct LDAP domain lookup URL (domain_match_url)

The domain_match_url option may be used to specify an additional, special lookup to
perform when looking for domains during a $V rewrite rule template LDAP lookup; (that is, a
lookup in addition to the regular lookup for normal domains triggered by $V). This additional
lookup will be performed only if the check for a normal, hosted domain fails. The main use
of this option is to enable use of vanity domains, vanity domain being disabled by default. To
enable the use of vanity domains, in Schema 1 mode set

domain_match_url=ldap:///$B?msgVanityDomain?sub?(msgVanityDomain=$D)

Note that use of vanity domains is NOT RECOMMENDED!

52.15.2.3 Subdomain handling in domain lookups
(domain_uplevel)

The domain_uplevel MTA option affects how domain names are searched for and used in
direct LDAP mode. The option takes a bit-encoded integer argument, where each bit controls a
particular aspect of domain name searching/usage; see below. The default value is 0.

MTA options 52–85

Direct LDAP domain lookup MTA
options

Table 52.10 domain_uplevel option bit values

Bit Value Usage
0 1 When set, domain map searches, such as the $V search in the typical

configuration's $* rewrite rule, iterate with successive initial portions of
the domain name stripped off until a match is found (or the domain name
is exhausted). That is, with this bit set then a domain entry in the DC tree
implicitly causes all subdomains of that domain to also "match" for purposes of
domain lookups.

 1 2 When set, searches on user addresses also look for the user address with the
original domain name replaced by the domain name found during the domain
map process (the "canonical" domain name). In particular, this can be useful
either when bit 0 (value 1) is set (subdomains implicitly present due to the
presence of a domain in the DC tree), or when aliased domains are in use.

2 4 Controls whether the domain name found during the domain map
process (the "canonical" domain name) is compared with the configutil
parameter service.defaultdomain (which can be overridden by the
ldap_default_domain MTA option) when deciding whether an entry is in a
hosted domain.

3 8 New in 6.1-0.01. Check the "canonical" form of the address, that is, the
address with the domain part replaced by the canonical domain, against any
mailEquivalentAddress attributes, and disable address reversal if any
match occurs. This bit and bit 5 (value 32) are useful in preventing unwanted
address rewriting when canonical domains are in use.

4 16 New in 6.3-0.15. For address reversal purposes, do not reverse unless the
address (original or possibly the original with domain replaced by the
"canonical" domain) matches a mailAlternateAddress value. In particular,
this allows mail domain aliases to effectively cause all users to implicitly have a
mailEquivalentAddress value using the domain alias as the domain name.

5 32 New in 6.2-0.04. Check the "canonical" form the address, that is, the address
with the domain part replaced by the canonical domain, against the mail
attribute, and disable address reversal if it matches.

Bit 0 is the least significant bit.

See also the ldap_domain_attr_uplevel MTA option for specifying the name of a domain-
level LDAP attribute which allows some domain-level override of the MTA-wide setting of
domain_uplevel.

52.15.2.4 Direct LDAP attribute name MTA options:
ldap_attr_domain1_schema2 (LDAP attribute name)

The ldap_attr_domain1_schema2 MTA option may be used to override, for MTA domain
lookup purposes, the Domain Map library code's default use of the sunPreferredDomain
LDAP attribute as the name of the Schema 2 mode domain level LDAP attribute which
specifies the domain name within the domain entry. If this MTA option is not set (the default),
then the Domain Map's default of sunPreferredDomain is used, as normal.

52.15.2.5 Direct LDAP attribute name MTA options:
ldap_attr_domain2_schema2 (LDAP attribute name)

52–86 Messaging Server Reference

Direct LDAP domain lookup MTA
options

The ldap_attr_domain2_schema2 MTA option may be used to override, for MTA domain
lookup purposes, the Domain Map library code's default use of the associatedDomain
LDAP attribute as the name of the Schema 2 mode domain level LDAP attribute which
specifies any secondary domain names (aliases for the canonical domain name) within the
domain entry. If this MTA option is not set (the default), then the Domain Map's default of
associatedDomain is used, as normal.

52.15.2.6 Direct LDAP attribute name MTA options:
ldap_attr_domain_search_filter (LDAP attribute name)

The ldap_attr_domain_search_filter MTA option specifies the name
of the LDAP attribute in the global configuration template area (see the
ldap_global_config_templates MTA option) that is used to store the domain search
filter template. For instance, one attribute that might be used for such a purpose (hence to
which this option might be set) would be inetDomainSearchFilter.

52.15.2.7 Direct LDAP schema MTA options:
ldap_basedn_filter_schema1 (LDAP URL filter),
ldap_basedn_filter_schema2 (LDAP URL filter elements)

(New in MS 6.3-0.15.) The ldap_basedn_filter_schema1 MTA option specifies
the filter used to identify schema 1 domains when performing baseDN searches.
The ldap_basedn_filter_schema2 MTA option specifies additional filter
elements used to identify schema 2 domains when performing baseDN searches.
The default is that neither the ldap_basedn_filter_schema1 MTA option nor
ldap_basedn_filter_schema2 MTA option is set. When these options are not set, then
the values of ldap_domain_filter_schema1 and ldap_domain_filter_schema2,
respectively, are used if those options are set. But if none of these options are set, then the
default for ldap_basedn_filter_schema1 is "(objectclass=inetDomain)", while the
default for ldap_basedn_filter_schema2 is the empty string.

52.15.2.8 Direct LDAP attribute interpretation options:
ldap_default_domain (string)

The ldap_default_domain MTA option specifies the domain name that is recognized
and interpreted as the default domain by the MTA. In legacy configuration, this option, if set,
overrides the configutil parameter service.defaultdomain. In Unified Configuration,
this option, if set, overrides (for MTA purposes) the base level defaultdomain option -- but
it would be more normal/preferable to only set defaultdomain so that all components of
Messaging Server have a consistent choice of default domain.

In particular, in delivery_options substitutions, the canonical domain name for the
domain in which a user is located is compared against the ldap_default_domain
value. If they match, then substitutions such as $I will not insert a domain name; that is,
ldap_default_domain is the domain name for which (in typical configurations) usernames
will be left "bare" when constructing a mailbox.

The ldap_default_domain also specifies the domain name that preferentially will be
returned for Sieve environment "domain" tests; if it is not set, then the MTA falls back to the
received_domain if set, or otherwise the official hostname of the L channel.

MTA options 52–87

Direct LDAP domain lookup MTA
options

52.15.2.9 Direct LDAP schema MTA options:
ldap_domain_filter_schema1 (LDAP URL filter),
ldap_domain_filter_schema2 (LDAP URL filter)

The default is that neither the ldap_domain_filter_schema1 nor
ldap_domain_filter_schema2 option is set, neither at the MTA level nor at the base
level. When these options are not set, then internal defaults in the domain map code are used,
equivalent to:

ldap_domain_filter_schema1=(|(objectclass=inetDomain)(objectclass=inetdomainalias))
ldap_domain_filter_schema2=(objectclass=sunManagedOrganization)

52.15.2.10 ldap_domain_known_attributes Option

The ldap_domain_known_attributes MTA (and base) option controls whether the MTA's
domain lookup LDAP queries request all domain attributes, vs. building and requesting a list
of "known" domain attributes. The default of 0 means to request all domain attributes; setting
this option to 1 causes the MTA to request its hard-coded list of "known" domain attributes.

It has been claimed that the ldap_domain_known_attributes setting can have a
performance impact in some LDAP server environments.

The "known" attribute list consists of all attributes specified in the various
ldap_domain_attr_* and similar MTA options, as well as any attributes specified in any
LDAP domain map attribute substitutions. This should cover all the cases where the MTA
requests domain attributes via its internal domain lookup facilities. However, in the unlikely
event that other calls are made to the domain map facility, a site that has added additional
domain attributes may be forced to use the default setting of 0 so that LDAP domain queries
will return those additional, custom LDAP attribute values.

52.15.2.11 Direct LDAP schema MTA options: ldap_domain_root
(DN)

The ldap_domain_root MTA option specifies, for MTA purposes, the base DN for the
domain portion of the DIT. This option, if set, overrides (for MTA purposes) the base option
dcroot (or in legacy configuration, the configutil parameter service.dcroot). If neither the
MTA option nor the dcroot base option (in legacy configuration, the configutil parameter)
has been explicitly set, then the default is o=internet.

52.15.2.12 LDAP lookup cache MTA options:
ldap_domain_timeout (integer)

The ldap_domain_timeout option (available at both base and MTA levels) controls the
retention time (in seconds) for entries in the domain map cache. The default is -900; as the
value used is the absolute value of the ldap_domain_timeout setting, this corresponds to
15 minutes. If setting ldap_domain_timeout explicitly, set it to a positive value so that the
MTA can detect that it has indeed been intentionally set.

52.15.2.13 ldap_host_alias_list Option Under mta

52–88 Messaging Server Reference

Direct LDAP usergroup lookup
MTA options

The ldap_host_alias_list MTA option specifies local host aliases for LDAP lookup result
interpretation purposes. Specifying this option at MTA level overrides, for MTA purposes, the
base.ldap_host_alias_list base option (local.imta.hostnamealiases configutil
parameter in legacy configuration), thereby allowing the MTA to recognize a different set of
such aliases than the Message Store recognizes. Neither the base nor MTA level option has a
default value; if the base level option is set, it is used by the MTA unless the MTA level option
has been explicitly set in which case the MTA uses the MTA level option's value.

The ldap_host_alias_list value takes a comma-separated list of up to 40 host aliases;
each host alias may be at most 256 characters long; the total length of the entire list is limited to
1024 characters. (In iMS 5.2, the limits were smaller: at most 20 host aliases and each host alias
at most 252 characters long.) New in Messaging Server 7.0.5.36, the MTA supports wild-carded
host name values.

The ldap_host_alias_list value(s) are used by the MTA when deciding whether a
domain's mailRoutingHosts value(s) or a user's mailHost value is "local" (this MTA itself).
That is, once an LDAP lookup of a domain or user occurs, this option's value(s) affect the
interpretation of the result of the LDAP lookup.

An important use of the ldap_host_alias_list is in email configurations spanning
multiple data centers, with routing via SMTP between data centers and delivery LMTP within
each data center. In such a setup the mailbox delivery_options MTA option clause is set
for LMTP but is left as mailhost-dependent, rather than as in a typical configuration being
marked with "#" to be mailhost-independent. Then all the LMTP hosts for the local data center
are listed in the ldap_host_alias_list MTA option value on each MTA. Note that as the
number of stores becomes large it's preferable to use a naming convention for stores along
with a wildcard ldap_host_alias_list value, to avoid configuration churn as stores are
added or deleted.

52.15.2.14 Direct LDAP attribute interpretation MTA options:
ldap_local_host (string)

The ldap_local_host MTA option specifies the local hostname (official host name for
the "l" channel) for LDAP lookup result interpretation purposes. If not set, it defaults to
the value of the hostname Base option. If set, this option overrides the hostname Base
option (in legacy configuration, the local.hostname configutil parameter). Normally
ldap_local_host and channel:l.official_host_name should be set to match: the
distinction is that the ldap_local_host value affects interpretation by the MTA of LDAP
lookup results (as well as during initial installation/configuration controlling what hostname
is generated for the "l" channel official_host_name and combined with standard channel
prefixes to generate an appropriate official_host_name value for the other standard
channels), whereas channel:l.official_host_name controls MTA address interpretation
and processing in other contexts such as rewrite rules and SMTP server hostname defaults. But
since initial installation/configuration normally sets the channel:l.official_host_name
based on the hostname Base option value, they normally indeed "match".

Note that the &/IMTA_HOST/ substitution value comes from ldap_local_host (which if
not set explicitly, defaults to the value of the hostname Base option, or local.hostname in
legacy configuration).

52.15.3 Direct LDAP usergroup lookup MTA options

MTA options 52–89

Direct LDAP usergroup lookup
MTA options

There are a number of MTA options relating to direct LDAP alias lookups (including user
lookups, group lookups, and mailing list lookups) and address reversal lookups.

• The alias_urlN, and reverse_url MTA options are the major options for defining the
direct LDAP alias and reverse lookups, while the (not usually modified) alias_magic can
potentially affect the timing of when -- or even whether -- such direct LDAP lookups are
performed.

• Additional options further refining/modifying the alias and reverse lookups include
the allow_unquoted_addrs_violate_rfc2798, ldap_default_attr,
ldap_mail_aliases, ldap_mail_reverses, max_alias_levels, and max_urls
MTA options.

• The alias_entry_cache_* and reverse_address_cache_* MTA options control the
caching of alias and address reversal lookup results; for further discussion see the discussion
of LDAP lookup cache MTA options.

• The defer_group_processing MTA option affects the timing of the MTA's alias
expansion of group and list entries, which has implications on operation of such aliases.

• The ldap_user_root, ldap_user_object_classes, and
ldap_group_object_classes MTA options set the basic location in the DIT and
objectClasses for the user/group entries in the DIT; see also Direct LDAP attribute name
MTA options for the LDAP attributes expected/recognized in user and group entries.

• The delivery_options, group_dn_template, ldap_uid_invalid_chars, and
aliasdetourhost_null_optin MTA options affect the interpretation (and validity of
values) of certain LDAP attributes found during alias lookups; see Direct LDAP attribute
interpretation MTA options for further discussion.

• The ldap_filter_reference, ldap_hoh_filter, and ldap_hoh_owner MTA options
relate to "head of household controls" or "parental controls" applicability to users or aliases;
further discussion of "head of household" Sieve filters can be found in Head of household
Sieve filters.

52.15.3.1 Alias and address reversal MTA options: alias_urlN
(URL)

The alias_urlN MTA options each specify a URL to query for alias lookups. If more than
one of these options is set, then the URLs lookups specified are performed in the order
specified by the alias_magic MTA option. The options are normally checked in numeric
order, so alias_url0, if specified, will be the first URL queried. Note that with the usual
value of alias_magic (8764), the alias_url3 option is not used.

Such alias lookups will be performed any time an envelope To address matches the local ("l")
channel, or any channel marked with the aliaslocal channel option.

The URL (that is, the alias_urlN option value) must be specified using standard LDAP URL
syntax as per RFC 4516, with the following exception and special interpretations:

• The LDAP server and port are typically omitted, being instead specified via the ldap_host
and ldap_port MTA options; (or if the MTA options are not explicitly set, the MTA
will use more general options: in legacy configuration, the configutil parameters

52–90 Messaging Server Reference

https://tools.ietf.org/html/rfc4516

Direct LDAP usergroup lookup
MTA options

local.ugldaphost and local.ugldapport, or in Unified Configuration the
ugldaphost and ugldapport base options). (Indeed, prior to Messaging Server 7.4-18.01,
the host and port had to be omitted; but as of Messaging Server 7.4-18.01, specifying the host
and port in the URL itself is supported.)

• The MTA makes a distinction between a completely omitted attributes field, which as per
RFC 2255 means to request the return of all attributes, and an attributes field consisting
of the asterisk character, *, which the MTA instead interprets as meaning to request the
return of all known-to-the-MTA attributes, that is, all the attributes listed in Table of MTA
LDAP attribute name options. This distinction is available since for some directory setups,
there may be a noticeable performance difference in LDAP directory response to one type
of query (all attributes requested) vs. the other type of query (specific, though large, list of
attributes requested).

• Various substitution sequences of the form "$n" are available. A literal dollar sign must be
represented by "$$".

The LDAP URL, before any substitutions, is limited to 256 characters in length (252 in iMS
5.2 and earlier); the substitutions may insert additional material and the length after such
substitutions is limited to 1024 characters. Note that the substitution of known attributes
when asterisk, *, is specified as the attribute to return, is not considered as part of the regular
substitution; this substitution is performed at a later step and the length after this "known"
attributes substitution is limited to 4096 characters.

alias_url0, if set, is normally looked up first (unless the alias_magic value has been
changed). Next alias_url1, if set, etc. It is permissible to have "gaps" in the alias_urlN
list; for instance, it is permissible to set alias_url0 and alias_url2 without setting
alias_url1.

Since alias_url0 is normally looked up first, in a typical direct LDAP configuration it is
used to perform the "main" user/group lookup, with alias_url1 optionally being used by
those sites that need to do an additional, secondary lookup. In particular, alias_url1 is
typically used by those sites that need to support vanity domains, or it could be used by sites
that do not support vanity domains but that need to support "old-style" catch-all addresses,
(that is, sites that use the deprecated approach of defining a catch-all address by means of a
user mailAlternateAddress attribute with a wildcard, rather than using the preferred
approach of defining a domain level mailDomainCatchallAddress attribute).

As of 7.0.5, the default value for alias_url0 is ldap:///$V?*?sub?$R. Previously, there
was no default and alias_url0 had to be set explicitly. The other alias_urlN MTA options
have no default value.

52.15.3.2 Direct LDAP usergroup lookup MTA options:
ldap_default_attr (attribute name)

Some sites upgrading from previous software may be accustomed to using LDAP query
URLs that do not specify an attribute to return (which for LDAP query URLs literally means
to return all attributes) in places where all that they really wanted was the return of a single
attribute. If the MTA sees an LDAP URL that does not specify which attribute(s) to return used
in a place where the MTA knows that only a single attribute is desired, then the MTA will
normally change the LDAP URL by forcibly inserting mail in the (omitted) attributes field of
the LDAP URL.

MTA options 52–91

https://tools.ietf.org/html/rfc2255

Direct LDAP usergroup lookup
MTA options

The ldap_default_attr MTA option may be used to tell the MTA some other attribute to
forcibly insert into the LDAP query URLs (some other attribute to request) in such cases where
the attributes field was incorrectly omitted from the original LDAP query URL.

52.15.3.3 Direct LDAP usergroup lookup MTA options:
ldap_mail_aliases (comma-separated list of attribute names)

The ldap_mail_aliases MTA option specifies in what attributes address aliases are stored.
Hence in particular, this option controls what attributes are used to construct the filter that a
$R LDAP substitution sequence inserts, (note that the $R substitution sequence is typically
used in the settings of both the alias_url0 and reverse_url MTA options), as well as the
attributes requested when doing an LDAP-based mailing list access check on an address. Up to
ten comma or (in 7.0.4 or laster) space-separated attribute names may be specified.

In unifified configurations the local.imta.mailaliases configutil parameter is equivalent
to ldap_mail_aliases; in legacy configurations the two are separate parameters and the
ldap_mail_aliases MTA option, if specified, overrides the local.imta.mailaliases
configutil option.

Of neither option is explicitly set then default values are used based upon
the schema tag; (see the ldap_schematag MTA option). For a schema
tag value of ims50, the default for the ldap_mail_aliases option is
"mail,mailAlternateAddress,mailEquivalentAddress". For a schema tag value of
nms41, the default for this option is "mail,mailAlternateAddress". For a schema tag
value of sims40, the default for this option is "mail,rfc822mailalias".

52.15.3.4 Direct LDAP usergroup lookup MTA options:
ldap_mail_reverses (comma-separated list of attribute names)

The ldap_mail_reverses MTA option specifies what attributes are used to build the filter
referenced by the $Q LDAP substitution sequence. (In iMS 5.2p2, the reverse_url MTA
option, used for address reversal, typically made use of the $Q substitution sequence. However
nowadays, reverse_url typically instead makes use of the $R substitution sequence with
attribute list therefore determined via the ldap_mail_aliases MTA option. So nowadays
$Q, and hence ldap_mail_reverses, are of lesser interest.)

The default, if this option is not explicitly set, depends upon the schema tag. For a schema
tag value of ims50 or nms41, the default for the ldap_mail_reverses option is
"mail,mailAlternateAddress". For a schema tag value of sims40, the default for this
option is "mail,rfc822MailAlias".

See also the ldap_mail_aliases and ldap_equivalence_addresses MTA options.

Normally, ldap_mail_reverses should be set to include, in addition to the canonical mail
attribute, all attributes set for ldap_mail_aliases, but should not include the attribute(s)
set for ldap_equivalence_addresses. In particular, if ldap_mail_aliases is changed
to a non-default value, one would normally want to change ldap_mail_reverses in a
corresponding fashion.

52.15.3.5 Direct LDAP schema MTA options: ldap_user_root (DN)

The ldap_user_root MTA option specifies the base DN for the user and group portion of
the DIT for purposes of MTA LDAP URL lookups. (In particular, $B substitutions in LDAP

52–92 Messaging Server Reference

Direct LDAP schema MTA options

URL lookups use this value.) This option, if set, overrides the base option ugldapbasedn
(or in legacy configuration, the configutil parameter local.ugldapbasedn). If neither the
MTA option nor the base option (in legacy configuration, the configutil parameter) has been
explicitly set, then the default is o=isp.

52.15.3.6 Direct LDAP usergroup lookup MTA options:
reverse_url (URL)

The reverse_url MTA option specifies the URL to query for address reversal and associated
side-effects. Standard LDAP URL syntax as per RFC 2255 is used, except that the LDAP server
and port may be omitted (in which case they are specified by the ldap_host and ldap_port
MTA options -- or in legacy configuration, alternatively specified via the configutil parameters
local.ugldaphost and local.ugldapport). Also, certain substitution sequences are
available. The length, before substitution, is limited to 256 characters; (the limit was 252
characters in iMS 5.2 and earlier); the length resulting from the substitutions is limited to 1024
characters.

For typical MTA configurations, the usual value to which to set the reverse_url MTA
option is "ldap:///$V?$N?sub?$R". Indeed, as of 7.0.5, this is the default; (previously there
was no default and a value had to be set explicitly).

Note that the $R substitution sequence, which is the filter for the LDAP query, uses the
attributes named by the ldap_mail_aliases MTA option, (or if that option is not set in
legacy configutation, the attributes named by the local.imta.mailaliases configutil
parameter).

The reason that reverse_url normally is set to use a filter that searches on the
canonical mail attribute, as well as the "subject to reversal" attributes such as
mailAlternateAddress, is that reverse_url lookups actually do more than pure address
reversal: reverse_url lookups also result in setting other possibly desired information for
messages, including for instance use of attributes named by the ldap_personal_name,
ldap_capture, and ldap_domain_attr_report_address MTA options. Therefore, the
canonical mail attribute is included in the search filter (included in ldap_mail_aliases
which controls what is included in the filter referred to via the $R substitution sequence) so
that lookups will succeed, and find desired information, even for those users whose addresses
are already in canonical form.

52.15.4 Direct LDAP schema MTA options
A number of MTA options relate to overall schema choice, and layout of the LDAP Directory
Information Tree. In addition to these general, semantically significant such options, there
are also options to "rename" the LDAP attributes normally used in the schema, see the Direct
LDAP attribute name MTA options, as well as options controlling and altering the MTA's
interpretation of LDAP attributes, see the Direct LDAP attribute interpretation MTA options.

52.15.4.1 Direct LDAP attribute name MTA options:
ldap_attr_domain_search_filter (LDAP attribute name)

The ldap_attr_domain_search_filter MTA option specifies the name
of the LDAP attribute in the global configuration template area (see the
ldap_global_config_templates MTA option) that is used to store the domain search
filter template. For instance, one attribute that might be used for such a purpose (hence to
which this option might be set) would be inetDomainSearchFilter.

MTA options 52–93

https://tools.ietf.org/html/rfc2255

Direct LDAP schema MTA options

52.15.4.2 Direct LDAP schema MTA options:
ldap_basedn_filter_schema1 (LDAP URL filter),
ldap_basedn_filter_schema2 (LDAP URL filter elements)

(New in MS 6.3-0.15.) The ldap_basedn_filter_schema1 MTA option specifies
the filter used to identify schema 1 domains when performing baseDN searches.
The ldap_basedn_filter_schema2 MTA option specifies additional filter
elements used to identify schema 2 domains when performing baseDN searches.
The default is that neither the ldap_basedn_filter_schema1 MTA option nor
ldap_basedn_filter_schema2 MTA option is set. When these options are not set, then
the values of ldap_domain_filter_schema1 and ldap_domain_filter_schema2,
respectively, are used if those options are set. But if none of these options are set, then the
default for ldap_basedn_filter_schema1 is "(objectclass=inetDomain)", while the
default for ldap_basedn_filter_schema2 is the empty string.

52.15.4.3 Direct LDAP schema MTA options:
ldap_domain_filter_schema1 (LDAP URL filter),
ldap_domain_filter_schema2 (LDAP URL filter)

The default is that neither the ldap_domain_filter_schema1 nor
ldap_domain_filter_schema2 option is set, neither at the MTA level nor at the base
level. When these options are not set, then internal defaults in the domain map code are used,
equivalent to:

ldap_domain_filter_schema1=(|(objectclass=inetDomain)(objectclass=inetdomainalias))
ldap_domain_filter_schema2=(objectclass=sunManagedOrganization)

52.15.4.4 Direct LDAP schema MTA options: ldap_domain_root
(DN)

The ldap_domain_root MTA option specifies, for MTA purposes, the base DN for the
domain portion of the DIT. This option, if set, overrides (for MTA purposes) the base option
dcroot (or in legacy configuration, the configutil parameter service.dcroot). If neither the
MTA option nor the dcroot base option (in legacy configuration, the configutil parameter)
has been explicitly set, then the default is o=internet.

52.15.4.5 Direct LDAP schema MTA options:
ldap_global_config_templates (DN)

The ldap_global_config_templates MTA option specifies the base DN where global
configuration templates can be found. It has no default. Note that this option should never
be used under normal circumstances; if it is used to specify an unusual search scheme, it may
result in domain inconsistencies and other problems.

52.15.4.6 Direct LDAP schema MTA options:
ldap_group_object_classes (list of plus-separated list of
objectclass names)

52–94 Messaging Server Reference

Direct LDAP schema MTA options

The ldap_group_object_classes MTA option specifies the object classes required
to be present in a group entry. The default depends upon the schema tag (see the
ldap_schematag MTA option). For a schema tag value of ims50, the default for the
ldap_group_object_classes option is inetLocalMailRecipient+inetmailgroup.
For a schema tag value of nms41, the default for this option is mailGroup. For a schema tag
value of sims40, the default for this option is inetMailRouting+inetmailgroup.

52.15.4.7 LDAP bind and connect options: ldap_schemalevel (1 or
2)

The ldap_schemalevel base option specifies the schema level in use. This option is also
available at MTA level. Supported values are 1 or 2. If this option is not set, schema level 1 is
assumed to be in use.

52.15.4.8 Direct LDAP schema MTA options: ldap_schematag (list
of schema tags)

The ldap_schematag MTA option specifies the tag(s) for the schema in use. Valid values
are nms41, sims40, or ims50, or a comma-separated list of these values. If specified, this
option overrides the value of the local.imta.schematag configutil parameter in legacy
configuration; the two options are equivalent in unified configuration. If neither this option
nor the local.imta.schematag configutil parameter is specified, then the default value
assumed is ims50.

For purposes of authentication (e.g., user IMAP or POP logins, or SMTP AUTH
authentication), there is no corresponding option or configutil parameter setting an
overall schema tag (hence automatically causing appropriate use of an alternate schema).
Instead, see the searchfilter auth option (corresponding to the legacy configuration
sasl.default.ldap.searchfilter configutil parameter), which has default value

(&(uid=%U)(objectclass=inetmailuser))

hence includes an implicit schema assumption. If using a non-default schema, that auth option
(configutil parameter in legacy configuration) may need to be changed to cause user lookups
(for authentication purposes) to look for objectclass(es) used in the other schema (e.g., the NMS
4.1 schema).

52.15.4.9 Direct LDAP schema MTA options:
ldap_user_object_classes (list of plus-separated list of
objectclass names)

The ldap_user_object_classes MTA option specifies the object classes required to be
present in a user entry.

 The default depends upon the schema tag (see the ldap_schematag MTA option). For a
schema tag value of ims50, the default for the ldap_user_object_classes option is
inetLocalMailRecipient+inetmailuser. For a schema tag value of nms41, the default
for this option is mailRecipient+nsMessagingServerUser. For a schema tag value of
sims40, the default for this option is inetMailRouting+inetmailuser.

MTA options 52–95

Direct LDAP attribute
interpretation MTA options

Note that the $K LDAP URL substitution sequence uses these object classes. For instance,
when ldap_user_object_classes=inetLocalMailRecipient+inetMailUser, then
$K results in substituting

(|(&(objectClass=inetLocalMailRecipient)(objectClass=inetMailUser)))

Or if ldap_user_object_classes is set to

inetLocalMailRecipient+inetMailUser,inetMailRouting+inetMailUser

then $K results in

(|(&(objectClass=inetLocalMailRecipient)(objectClass=inetMailUser))
 (&(objectClass=inetMailRouting)(objectClass=inetMailUser)))

For purposes of authentication (e.g., user IMAP or POP logins, or SMTP AUTH
authentication), the definition of valid user objectClass(es) is implicit in the
setting of the searchfilter auth option (or in legacy configuration, the
sasl.default.ldap.searchfilter configutil parameter), which has default value

(&(uid=%U)(objectclass=inetmailuser))

hence implicitly includes a schema assumption, and in particular an assumption about
what are valid user objectClass(es). If using a non-default schema, this configutil parameter
may need to be changed to cause user lookups (for authentication purposes) to look for
objectclass(es) used in the other schema (e.g., the NMS 4.1 schema).

52.15.4.10 Direct LDAP schema MTA options: ldap_user_root
(DN)

The ldap_user_root MTA option specifies the base DN for the user and group portion of
the DIT for purposes of MTA LDAP URL lookups. (In particular, $B substitutions in LDAP
URL lookups use this value.) This option, if set, overrides the base option ugldapbasedn
(or in legacy configuration, the configutil parameter local.ugldapbasedn). If neither the
MTA option nor the base option (in legacy configuration, the configutil parameter) has been
explicitly set, then the default is o=isp.

52.15.5 Direct LDAP attribute interpretation MTA options
Some MTA options control or alter the MTA's interpretation of various LDAP attributes, or
specify validity restrictions on LDAP attribute values.

52.15.5.1 User/group LDAP attribute validity and interpretation
options: aliasdetourhost_null_optin (string)

(New in MS 6.2p4.) Normally, the simple presence of a detour optin attribute (the attribute
named by the ldap_detourhost_optin MTA option in a user entry, or new in 7.0.5,

52–96 Messaging Server Reference

Direct LDAP attribute
interpretation MTA options

the attribute named by the ldap_domain_attr_detourhostoptin MTA option
in a domain entry) suffices to cause message detour for messages coming in a channel
marked aliasoptindetourhost; the value of the attribute is irrelevant. However, some
directory maintenance and provisioning tools cannot easily delete or omit an attribute;
instead, they always provide the attribute but assume that some "off" or "null" value for
the attribute is available. The aliasdetourhost_null_optin option allows for better
interaction with such directory tools. It specifies what value the detour optin attribute
(that attribute named by the ldap_detourhost_optin MTA option, or new in 7.0.5 the
ldap_domain_attr_detourhostoptin MTA option) must have in order to be ignored
(for the MTA to act as if the attribute was not present at all in the user or domain entry). The
default value for this option is the empty string, when means that by default a present but
empty detour optin attribute is ignored.

Note that message detouring of the aliasoptindetourhost type is typically a detour
to some third-party host or channel performing spam/virus filtering. Thus the value of
aliasdetourhost_null_optin typically means what value to be considered as the "this
user hasn't asked to do spam/virus filtering" value. But note that, for instance, use of such a
null value in a user entry does not necessarily disable the detouring (the spam/virus filtering);
a user who is not opted-in personally may still be detoured due to a domain level setting, or a
channel level (aliasdetourhost channel option) setting.

52.15.5.2 Direct LDAP usergroup lookup MTA options:
allow_unquoted_addrs_violate_rfc2798 (0 or 1)

The default for the allow_unquoted_addrs_violate_rfc2798 MTA option is 0. If set
to 1, then when searching for an address match the MTA also includes in the search filter
a version of the address with quotes stripped off the localpart (portion to the left of the @
character) of the address.

52.15.5.3 Direct LDAP attribute interpretation MTA options:
capture_format_default (0 or 1)

(New in 7.4-18.01.) The capture_format_default MTA option controls whether
ldap_capture based message "capture" defaults to generating regular, report style
messages (the original message encapsulated in a form of DSN), vs. other possible forms,
such as envelope "journal" style messages. The default is 0, meaning to generate report
(DSN encapsulated) messages as the "capture" copies. A value of 1 means to generate pure,
unadorned (no additional strucute or header lines) messages as the "capture" copies. A value
of 2 means to generate Microsoft® Exchange "journal" format messages as the "capture" copies.
New in 8.0 are the values 4 and 5 which mean, respectively, to generate a DSN format message
containing only the message header or an Microsoft Exchange "journal" format message
containing only the message header, as the "capture" copy.

This option can be overridden on a per-capture-target-address basis by using
the appropriate LDAP tag on the "capture" attribute (see ldap_capture and
ldap_domain_attr_capture), where ;format-report selects the DSN encapsulated
format, and ;format-journal selects the envelope "journal" format. New in 8.0, is support
for the LDAP tags ;format-message, ;format-report-header, and ;format-
journal-header.

52.15.5.4 Direct LDAP attribute interpretation MTA options:
delivery_options (list of strings)

MTA options 52–97

Direct LDAP attribute
interpretation MTA options

The delivery_options MTA option controls the effect of possible values of the
LDAP attribute named by the ldap_delivery_option MTA option, (by default, the
mailDeliveryOption attribute). It takes a list of up to twenty strings. Each such string
specifies the effect of a particular supported value for the mailDeliveryOption attribute.
The syntax for an individual string (among the list of strings) is:

ModifierValue=Effect

where Modifier consists of one or more of the optional modifier letters listed in the
table Modifier letters for delivery_options, where Value is a supported value for the
mailDeliveryOption attribute, and where Effect describes the intended effect of the
corresponding mailDeliveryOption value. Note that if neither * nor & is present, then the
delivery option entry is taken to apply to both users and groups.

Table 52.11 Modifier letters for delivery_options

Modifier letter Meaning
* Entry applies to users
& Entry applies to groups
@ Expansion of this user or group should be deferred, by forcing to the

reprocess channel
^ Inclusive time limit processing - Check for LDAP attributes specifying

vacation start and end time; only apply this entry if the current time is
after any specified start time and before any specified end time.

% (New in 7.0.5) Exclusive time limit processing - Check for LDAP attributes
specifying vacation start and end time; only apply this entry if the current
time is before any specified start time or after any specified end time.

Entry is mailhost-independent; if all of a user or group's delivery options
are mailhost-independent, then the MTA can act on the entry immediately
rather than having to forward the message to the mailhost.

/ Force addresses produced by this delivery option to be sidelined in .HELD
message files.

! Use internal autoreply mode -- that is, generate a Sieve "vacation"
scriptlet (rather than using the obsolete autoreply channel).

For instance, mailbox normally has the modifier * meaning that it applies (only) to users,
whereas members normally has the modifier & meaning that it applies (only) to groups.

And while autoreply normally has the modifier * meaning that it applies (only) to users
(and so normally mailing list and group entries cannot use autoreply/vacation functionality),
if it is desired to allow mailing list and groups to generate their own autoreply/vacation
messages, then removing the * modifier from the autoreply clause will allow this---
from the MTA point of view. (Note that the Sun schema as distributed normally does not
expect/permit mailAutoReply* attributes to be set on mailing list or group entries. So for
purposes of placating the Directory Server side, you will likely also need to either extend
the schema, or disable schema checking.) As mentioned above, each Value should be a
supported value for the mailDeliveryOption LDAP attribute (more precisely, the attribute
named by the ldap_delivery_option MTA option). And each such supported value for
mailDeliveryOption must have exactly one corresponding string in delivery_options
describing its intended effect.

52–98 Messaging Server Reference

Direct LDAP attribute
interpretation MTA options

Each Effect specifies what happens to an original address that has a specified
mailDeliveryOption value. For instance, a mailDeliveryOption value of mailbox
(which is intended to mean delivery to the message store) is implemented by forcing the
address local-part onto the ims-ms or tcp_lmtpcs channel (Message Store delivery
channels); a mailDeliveryOption value of native is implemented by routing the address
local-part to the legacy native channel (the UNIX native mailbox delivery channel). The
Effect definition may make use of LDAP URL substitution sequences. In addition, an
Effect of merely * means to simply substitute back in the original address specified; an
Effect of ** means to substitute the value of the mailForwardingAddress attribute (more
precisely, the attribute named by the ldap_forwarding_address MTA option).

The current default for this option is (note that line breaks below are present merely for
typographic reasons---the actual default value should be considered to appear all on one line):

mailbox=$M%$\$2I$_+$2S@ims-ms-daemon,&members=,
*native=$M@native-daemon,/hold=@hold-daemon:$1L+$2S@$D,
*unix=$M@native-daemon,&file=+$F@native-daemon,
&@members_offline=*,program=$M%$P@pipe-daemon,
#forward=**,*^!autoreply=$M+$D@bitbucket,
#*&nomail=$M+$D@bitbucket

This value first appeared in 8.0.1. The previous value, established in 7.0.5, differed in that it
failed to preserve subaddresses in held messages:

mailbox=$M%$\$2I$_+$2S@ims-ms-daemon,&members=,
*native=$M@native-daemon,/hold=@hold-daemon:$A,
*unix=$M@native-daemon,&file=+$F@native-daemon,
&@members_offline=*,program=$M%$P@pipe-daemon,
#forward=**,*^!autoreply=$M+$D@bitbucket,
#*&nomail=$M+$D@bitbucket

Note the addition of the new-in-7.0.5 "nomail" clause. Setting a user to have the "nomail"
delivery option causes the address to act as a valid recipient but silently delete all messages;
this setting is useful for setting up an LDAP entry for a valid-but-unmonitored e-mail address.
Formerly, prior to 7.0.5, the default had been:

mailbox=$M%$\$2I$_+$2S@ims-ms-daemon,&members=,
*native=$M@native-daemon,/hold=@hold-daemon:$A,
*unix=$M@native-daemon,&file=+$F@native-daemon,
&@members_offline=*,program=$M%$P@pipe-daemon,
#forward=**,*^!autoreply=$M+$D@bitbucket

On a system doing LMTP delivery (via LMTP client channels), this option would normally be
set to (on a MS 6.1 or later system):

#*mailbox=@$X.LMTP:$M%$\$2I$_+$2S@lmtpcs-daemon,
&members=*,
*native=$M@native-daemon,
/hold=@hold-daemon:$1L+$2S@$D,

MTA options 52–99

Direct LDAP attribute
interpretation MTA options

*unix=$M@native-daemon,
&file=+$F@native-daemon,
&@members_offline=*,
program=$M%$P@pipe-daemon,
#forward=**,
*^!autoreply=$M+$D@bitbucket,
#*&nomail=$M+$D@bitbucket

where that assumes the use of rewrite rules along the lines of

.LMTP EF$U%$H.LMTP@lmtpcs-daemon

.LMTP BF$U%$H@$H@lmtpcs-daemon

and an outbound tcp_* channel, (typically but not necessarily named tcp_lmtpcs),
corresponding to the lmtpcs-daemon; official channel host name, and where the channel is
marked with the multigate channel option.

For another example of an alternate setting of delivery_options, see Additional ims-ms
channels.

Since up to twenty comma-separated strings may be specified for this option, note that up to
twenty different possible delivery option values can be supported.

Note that the value clauses in the first two positions have special meaning as far as being
the default delivery approaches for users and groups, respectively, which is why those
first two value clauses are normally set to define mailbox and members. (That is, in the
case of a user who has no mailDeliveryOption value specified in their LDAP entry, the
first value clause of delivery_options---normally mailbox---will be assumed: a user
with no mailDeliveryOption set gets messages delivered to their mailbox. Similarly, a
group that has no mailDeliveryOption value specified will get the treatment specified
by the second value clause of delivery_options -- normally member: a group with no
mailDeliveryOption set gets messages delivered to the members of the group.) Thus if
defining additional, site-specific mailbox delivery option values, be sure to add the custom
values later in the list of option values.

Also note that when setting this option in the legacy configuration MTA option file
option.dat, if using the backslash continuation line character to continue to additional
lines, be aware of a potential confusion with "comment characters". Any line that begins in
column one with one of the MTA option file's comment characters (!, ;, #) will be interpreted
as a comment regardless of whether the line above ended with a backslash. This issue can be
worked around using the fact that the MTA ignores leading spaces after the comma separating
individual strings within delivery_options; so you can use a definition such as

DELIVERY_OPTIONS=\
mailbox=$M%$\$2I$_+$2S@ims-ms-daemon,&members=,\
*native=$M@native-daemon,hold=$M?$I@hold-daemon,\
*unix=$M@native-daemon,&file=+$F@native-daemon,\
&@members_offline=*,program=$M%$P@pipe-daemon,\
 #forward=**,^*!autoreply=$M+$D@bitbucket

where note the critical initial space on the line that does the forward value definition.

52–100 Messaging Server Reference

Direct LDAP attribute
interpretation MTA options

New in 7.0-0.04, there is some "sanity checking" on individual clauses within
delivery_options, with an MM initialization error issued ("Invalid delivery option
clause: clause") if such a check fails. Previously, certain sorts of problems in clauses would
instead cause the clause to be silently ignored, with no warning or error.

In particular, prior to 7.0-0.04 the overall length limit for a clause was 81 characters, with at
most 40 characters allowed left of the equals sign and at most 40 characters allowed right of
the equals sign. As of 7.0-0.04, the overall length limit for each clause is 256 characters (though
exceeding this limit will merely cause silent truncation rather than an error), with at most 40
characters not including leading modifier characters to the left of the equals sign (that is, at most
40 characters in the actual "name" in the clause), and whatever remains of the 256 characters
allowed on the right of the equals sign. Furthermore, as of 7.0-0.04, omission of an equals sign
in a supposed clause will result in an MM initialization error.

52.15.5.5 Direct LDAP attribute interpretation MTA options:
group_dn_template (URL template)

The group_dn_template MTA option affects the interpretation of the uniqueMember
attribute (more specifically, the interpretation of the attribute named by the ldap_group_dn
and as of 7.0.5, the ldap_group_dn2, MTA options). As of 7.4-18.01 , the default is:

ldap:///$A??sub?(mail=*)

The default (as of MS 6.3, but prior to 7.4-18.01) was:

ldap:///$A??sub?mail=*

And prior to MS 6.3, the default had been:

ldap:///$A?mail?sub?mail=*

Note that these earlier defaults prior to Messaging Server 7.4-18.01 were actually in error
(violated LDAP search filter syntax), as they omitted the enclosing parentheses that ought to
be present on the filter.

The change in the default for MS 6.3 (of no longer specifically requesting only the
mail attribute to be returned) was to allow taking advantage, even in the case of an
mgrpAllowedBroadcaster attribute set to a DN, of an enhancement (also implemented
in MS 6.3) whereby list expansion in the context of the mgrpAllowedBroadcaster LDAP
attribute now includes all the attributes used to store email addresses (normally mail,
mailAlternateAddress, and mailEquivalentAddress), thereby allowing recognition
of allowed broadcaster aliases. (Previously only mail attributes were returned, making it
impossible to send to lists restricted to their own members using alternate addresses (aliases).)

52.15.5.6 Archive message format control: journal_format
(bitmask)

The journal_format MTA option controls the format of Microsoft® Exchange journaling
messages generated by the MTA. This is a bit-encoded option. Currently assigned bits are:

MTA options 52–101

Direct LDAP attribute
interpretation MTA options

Table 52.12 journal_format MTA option bit values

Bit Value Description
0 1 If set, generate the basic 2007 journal format

instead of the 2003 format.
1 2 If set, set the From:/To:/Subject: of the journal

message to be the same as the message
being journaled. Note that setting this may
cause looping problems for setups that use
header checks to determine what messages to
archive.

2 4 If set, generate a X-MS-Exchange-
Organization-Journal-Report: header field
rather than a X-MS-Journal-Report: field.

3 8 If set, include expanded/forwarded address
information in the report (if such information
is available -- see the addrtypescan channel
option). Note that bit 0 must also be set for
this to work.

The default value for this option is 0. This option is intended to facilitate interoperating with
Microsoft Exchange itself, in particular, so that MTA-generated journal messages can be
imported into Microsoft Exchange.

52.15.5.7 Direct LDAP attribute interpretation options:
ldap_default_domain (string)

The ldap_default_domain MTA option specifies the domain name that is recognized
and interpreted as the default domain by the MTA. In legacy configuration, this option, if set,
overrides the configutil parameter service.defaultdomain. In Unified Configuration,
this option, if set, overrides (for MTA purposes) the base level defaultdomain option -- but
it would be more normal/preferable to only set defaultdomain so that all components of
Messaging Server have a consistent choice of default domain.

In particular, in delivery_options substitutions, the canonical domain name for the
domain in which a user is located is compared against the ldap_default_domain
value. If they match, then substitutions such as $I will not insert a domain name; that is,
ldap_default_domain is the domain name for which (in typical configurations) usernames
will be left "bare" when constructing a mailbox.

The ldap_default_domain also specifies the domain name that preferentially will be
returned for Sieve environment "domain" tests; if it is not set, then the MTA falls back to the
received_domain if set, or otherwise the official hostname of the L channel.

52.15.5.8 Head of household LDAP attribute MTA options:
ldap_hoh_filter (LDAP attribute name), ldap_hoh_owner (LDAP
attribute name)

The ldap_hoh_filter and ldap_hoh_owner MTA options specify the names of the LDAP
attributes used to store the critical Head of Household data in users who are themselves a

52–102 Messaging Server Reference

Direct LDAP attribute
interpretation MTA options

Head of Household. These options default to, respectively, mailSieveRuleSource and
mail. That is, ldap_hoh_filter specifies the name of the LDAP attribute in which a Head
of Household user stores the Sieve filter used for Head of Household purposes (which may
or may not be a different Sieve filter than the user's own, personal Sieve filter; the default
mailSieveRuleSource value causes the Head of Household Sieve filter to be the same as
the user's personal Sieve filter, but sites that wish a distinction may set ldap_hoh_filter to
point to a different, site-specific LDAP attribute). Since proper evaluation of (and especially
error reporting regarding) a Sieve filter requires an "owner" e-mail address associated with
that Sieve filter, the ldap_hoh_owner MTA option specifies what LDAP attribute in the Head
of Household user's entry will be the address associated with the Sieve; again, the default
value of mail means that the Head of Household user's own, personal e-mail address will
be used, but sites that wish a distinction may set ldap_hoh_owner to some different, site-
specific LDAP attribute.

These MTA options specify the names of the LDAP attributes to return when a user entry has
parental controls/head of household controls set on it (see the ldap_parental_controls
MTA option) so that a lookup of the user's "parent" (see the ldap_filter_reference MTA
option) is performed: in the "parent" entry, the attributes specified by ldap_hoh_filter and
ldap_hoh_owner are found and their values returned.

52.15.5.9 ldap_host_alias_list Option Under mta

The ldap_host_alias_list MTA option specifies local host aliases for LDAP lookup result
interpretation purposes. Specifying this option at MTA level overrides, for MTA purposes, the
base.ldap_host_alias_list base option (local.imta.hostnamealiases configutil
parameter in legacy configuration), thereby allowing the MTA to recognize a different set of
such aliases than the Message Store recognizes. Neither the base nor MTA level option has a
default value; if the base level option is set, it is used by the MTA unless the MTA level option
has been explicitly set in which case the MTA uses the MTA level option's value.

The ldap_host_alias_list value takes a comma-separated list of up to 40 host aliases;
each host alias may be at most 256 characters long; the total length of the entire list is limited to
1024 characters. (In iMS 5.2, the limits were smaller: at most 20 host aliases and each host alias
at most 252 characters long.) New in Messaging Server 7.0.5.36, the MTA supports wild-carded
host name values.

The ldap_host_alias_list value(s) are used by the MTA when deciding whether a
domain's mailRoutingHosts value(s) or a user's mailHost value is "local" (this MTA itself).
That is, once an LDAP lookup of a domain or user occurs, this option's value(s) affect the
interpretation of the result of the LDAP lookup.

An important use of the ldap_host_alias_list is in email configurations spanning
multiple data centers, with routing via SMTP between data centers and delivery LMTP within
each data center. In such a setup the mailbox delivery_options MTA option clause is set
for LMTP but is left as mailhost-dependent, rather than as in a typical configuration being
marked with "#" to be mailhost-independent. Then all the LMTP hosts for the local data center
are listed in the ldap_host_alias_list MTA option value on each MTA. Note that as the
number of stores becomes large it's preferable to use a naming convention for stores along
with a wildcard ldap_host_alias_list value, to avoid configuration churn as stores are
added or deleted.

52.15.5.10 Direct LDAP attribute interpretation MTA options:
ldap_local_host (string)

MTA options 52–103

Direct LDAP attribute
interpretation MTA options

The ldap_local_host MTA option specifies the local hostname (official host name for
the "l" channel) for LDAP lookup result interpretation purposes. If not set, it defaults to
the value of the hostname Base option. If set, this option overrides the hostname Base
option (in legacy configuration, the local.hostname configutil parameter). Normally
ldap_local_host and channel:l.official_host_name should be set to match: the
distinction is that the ldap_local_host value affects interpretation by the MTA of LDAP
lookup results (as well as during initial installation/configuration controlling what hostname
is generated for the "l" channel official_host_name and combined with standard channel
prefixes to generate an appropriate official_host_name value for the other standard
channels), whereas channel:l.official_host_name controls MTA address interpretation
and processing in other contexts such as rewrite rules and SMTP server hostname defaults. But
since initial installation/configuration normally sets the channel:l.official_host_name
based on the hostname Base option value, they normally indeed "match".

Note that the &/IMTA_HOST/ substitution value comes from ldap_local_host (which if
not set explicitly, defaults to the value of the hostname Base option, or local.hostname in
legacy configuration).

52.15.5.11 Direct LDAP attribute interpretation MTA options:
ldap_uid_invalid_chars (list of integers)

This option specifies the ASCII positions of those characters which are not allowed to appear
in a uid or permanent identifier. (The MTA unconditionally disallows all characters below
position 32, so this option specifies the list of additional characters to disallow.) The default is

32,33,34,35,36,37,38,40,41,42,43,44,47,58,49,60,61,62,63,65,91,92,93,96,123,125,126

which corresponds to the characters

$ ~=#*+%!@,{}()/\<>;:"`[]&?

(space character and dollar character have been swapped for readability). Furthermore, note
that the Message Store code further enforces a restriction that the leading character of the
uid may not be a hyphen, -. (This is to avoid ambiguity with IMAP ACL syntax.) Prior to
Messaging Server 7.0.5, The MTA does not enforce this restriction, however.

Note that the uid (synonym for userID) LDAP attribute was defined in RFC 1274, The
COSINE and Internet X.500 Schema, as a caseIgnoreString of length at most 256
characters. As of Messaging Server 7.0-0.04, the MTA checks that the uid value (more
precisely, the value of the attribute named by the ldap_uid MTA option) is no more 128
octets, and a longer value will result in the user entry being considered invalid. (This check is
performed because various lower layer libraries have hard buffer limits that preclude longer
uids.) In general, because with Messaging Server the uid is used not only for logging in (a
"computer system login name" is how RFC 1274 discussed userid), but also, in hashed form,
to specify part of the file path for where user messages are stored, then Messaging Server
needs additional restrictions on the uid so that the file path constructed using the uid is good
and safe.

52.15.5.12 Spamfilter MTA options: optin_user_carryover
(bitmask)

52–104 Messaging Server Reference

https://tools.ietf.org/html/rfc1274
https://tools.ietf.org/html/rfc1274

Direct LDAP attribute
interpretation MTA options

New in MS 6.2. The optin_user_carryover MTA option controls whether user spam/
virus filter "opt in" requests will "carry over" when doing forwarding. That is, if the original
recipient has opted-in but has then forwarded their e-mail to some other recipient, does that
other recipient get the "opt in" effect?

Bit 0 (value 1): setting this bit means that "opt in" effect is disabled for all forwarded-to
address(es). Bit 1 (value 2) controls the behavior for domain "opt in"; setting the bit disables
the "opt in" effect for the forwarded-to address(es). Bit 2 (value 4) means that user "opt in"
overrides any previous user/domain "opt in" setting. Bit 3 (value 8) controls the behavior
for aliases (typically lists) marked with the alias_optin alias option or named parameter
[OPTIN]; setting the bit disables the "opt in" effect for the forwarded-to address(es). The
default is 0. Note that this option applies globally to all spam/virus filter packages; it does not
come in numbered variants to apply only to one spam/virus filter package or another.

52.15.5.13 Direct LDAP attribute interpretation MTA options:
process_substitutions (bit-encoded integer)

New in MS 6.3. The process_substitutions MTA option controls whether to process
substitution sequences in the URL values of various LDAP attributes. See Table of LDAP URL
substitution sequences for a list of substitution sequences (though only some such substitution
sequences make sense and are available in the contexts discussed below). The default is 0,
meaning that all such substitutions are disabled by default.

Table 52.13 process_substitutions MTA option bits

Bit Value Usage
0 1 If set, enables substitutions in mgrpDisallowedBroadcaster

(ldap_cant_url)
1 2 If set, enables substitutions in mgrpAllowedBroadcaster

(ldap_auth_url)
2 4 If set, enables substitutions in mgrpModerator

(ldap_moderator_url)
3 8 If set, enables substitutions in mgrpDeliverTo

(ldap_group_url1)
4 16 If set, enables substitutions in memberURL (ldap_group_url2)
5 32 (New in Messaging Server 7.0) If set, enables subaddress $S

substitution in mgrpErrorsTo (ldap_errors_to)
6 64 (New in Messaging Server 7.0u3) If set, enables substitutions in

mgrpJettisonBroadcasters (ldap_jettison_url)

Bit 0 is the least significant bit.

Note that the information source for substitution values varies depending on whether
the attribute in question is used for authorization checks, or for actual list expansion. For
authorization attributes, the whole address ($A), domain ($D), host ($H), and local-part ($L)
are all derived from the authenticated sender address. In the case of list expansion attributes,
all of these substitution values are derived from the envelope recipient address that specified
the list. In both cases, however, the subaddress substitution ($S) is derived from the current
envelope recipient address.

MTA options 52–105

Direct LDAP attribute
interpretation MTA options

In particular, the ability to access subaddress information in list expansion URLs makes it
possible and convenient to define a "meta-group"; that is, a single group entry that in effect
creates an entire collection of different groups. For example, a group with attributes including:

mail: group@domain.com
mgrpDeliverTo: ldap:///o=usergroup?mail?sub?(department=$S)

would make it possible to send mail to every member of a given department with an address
of the form

group+department@domain.com

Note that creation and use of such a "meta-group" does not require the use of subaddresses
(though subaddresses are often a convenient syntax for such a purpose). Other mechanisms,
such as other forms of "special" addresses transformed via a FORWARD mapping table or
ldap_url_result_mapping attribute's value mapping table, could be used instead to
provide "meta-group" functionality. Note that process_substitutions effects, if any, occur
after the ldap_url_result_mapping table, if any, has been applied.

52.15.5.14 Direct LDAP attribute interpretation MTA options:
route_to_routing_host (-1, 0 or 1)

When a domain entry includes the attribute named by the
ldap_domain_attr_routing_hosts MTA option, (by default, the mailRoutingHosts
attribute), this attribute's values are compared against the MTA's own local host name and host
aliases ldap_local_host and ldap_host_alias_list values) to determine whether the
domain is "owned" (or "local") to this particular MTA. "Local" addresses are of course further
processed by the MTA.

The route_to_routing_host MTA option controls what the MTA does with addresses
determined in this way to be non-local; that is, what the MTA does with addresses which,
while having a local (known) domain in the directory, are marked as having some other
authoritative mail host. When the route_to_routing_host MTA option is set to 0 (the
default), such addresses are handled as specified by whatever rewrite rules apply to the
address. (This was the only behavior available with iMS 5.2.) When this option is instead set
to 1, then such addresses are instead routed to the first host listed in the mailRoutingHosts
attribute.

New in 8.0.1.1, a setting of -1, in addition to disabling routing of addresses with nonlocal
mailhosts to the mail routing host, acceptance of addresses without a user entry and routing
them to the mailRoutingSmartHost defined for the corresponding domain is also disabled.
The smart host for the domain will continue to be used for addresses that match user entries
that fail to specify a mailhost.

52.15.5.15 Sieve filter MTA options: sieve_user_carryover (0 or
1)

New in MS 6.0-0.01. The default is 0. If set to 1, user Sieve filters don't "carry over" when doing
mailDeliveryOption: forward. This option is only relevant for direct LDAP forwarding

52–106 Messaging Server Reference

Direct LDAP attribute
interpretation MTA options

(forwarding via mailDeliveryOption and mailForwardingAddress); it does not have
any effect on other forms of forwarding.

52.15.5.16 Handling of multiple spare LDAP attributes:
spare_N_separator (bit-encoded integer)

The spare_N_separator MTA options, where N is between 1 and 18, control how multiple
user entry LDAP attributes that end up being mapping into a single spare LDAP attribute slot
are handled. These options accept a nonnegative integer value. The lower 8 bits of this value
are intrpreted as follows:

Table 52.14 spare_N_separator MTA option values

Value Meaning
3 Multiple attribute values are not allowed - the user entry is considered

invalid and ignored if multiples are present.
2 Use language tag information to decide which of the multiple attributes to

use.
1 Multiple attributes are not allowed - the user entry is considered invalid if

multiples are present.
0 Pick one of the values at random and use it.
32-255 Concatenate multiple attribute values together, using the character

corresponding to the spare_N_separator value as the separator.

The remaining bits of the option are used as bit flags. Currently only bit 8 (value 256) is
defined: If set, it causes the attribute name and an equals sign to be prepended to the stored
value.

These options first became available in the Messaging Server 7.2-7.02 release. The default
values for spare_N_separator are chosen to remain backwards compatible with
spare attribute behavior in earlier releases, which was hardwired for a given spare slot.
spare_1_separator and spare_2_separator default to 1, spare_3_separator
defaults to 0, and spare_4_separator, spare_5_separator, and spare_6_separator
default to 2. All of the remaining options up to spare_18_separator default to 0.

52.15.5.17 Autoresponse periodicity MTA options:
vacation_minimum_timeout (integer)

(New in 7.0.5.) The vacation_minimum_timeout MTA option establishes a minimum
value, in seconds, for the Sieve "vacation", ":days", ":hours", and ":seconds" parameters.
(":days" and ":hours" values are converted into seconds for the comparison.) Values lower
than the minimum are silently adjusted up to the minimum; no error occurs. The default value
for vacation_minimum_timeout is 0.

Since the value of the mailAutoReplyTimeOut LDAP attribute (or more precisely the value
of whatever LDAP attribute is named by the ldap_autoreply_timeout MTA option) is
converted into such a Sieve "vacation" parameter, the vacation_minimum_timeout MTA
option value can affect the interpretation of any mailAutoReplyTimeout values also.

52.15.5.18 Autoresponse periodicity MTA options:
vacation_maximum_timeout (integer)

MTA options 52–107

Direct LDAP attribute name MTA
options

(New in 7.0.5.) The vacation_maximum_timeout MTA option establishes a maximum
value, in seconds, for the Sieve "vacation", ":days", ":hours", and ":seconds" parameters.
(":days" and ":hours" values are converted into seconds for the comparison.) Values higher
than the maximum are silently adjusted down to the maximum; no error occurs. The default
value for vacation_maximum_timeout is the maximum allowed integer, 2**31-1.

Since the value of the mailAutoReplyTimeOut LDAP attribute (or more precisely the value
of whatever LDAP attribute is named by the ldap_autoreply_timeout MTA option) is
converted into such a Sieve "vacation" parameter, the vacation_maximum_timeout MTA
option value can affect the interpretation of any mailAutoReplyTimeout values also.

52.15.5.19 Direct LDAP MTA options: prefix_text_attr (HTML
attribute list)

New in 8.0.1.3. A better-looking result may be produced by associating prefix text inserted into
text/html message parts with a particular set of HTML attributes. The prefix_text_attr
MTA option may be used to do this. If specified, the option causes any prefix material that is
inserted into text/html parts to be enclosed in a <div attrs"> element, where "attrs" is the
value of the option.

The default for this option is the empty string, which suppresses the insertion of any
additional elements.

52.15.5.20 Direct LDAP MTA options: suffix_text_attr (HTML
attribute list)

New in 8.0.1.3. A better-looking result may be produced by associating suffix text inserted into
text/html message parts with a particular set of HTML attributes. The suffix_text_attr
MTA option may be used to do this. If specified, the option causes any suffix material that is
inserted into text/html parts to be enclosed in a <div attrs"> element, where "attrs" is the
value of the option.

The default for this option is the empty string, which suppresses the insertion of any
additional elements.

52.15.6 Direct LDAP attribute name MTA options

By default, the MTA assumes a particular sort of LDAP schema; that is, the MTA assumes
that certain named attributes (with certain sorts of meanings) are available and used in the
LDAP directory to store the user and domain information. However, the exact attribute
names that the MTA looks for (recognizes) are configurable via the various ldap_*,
ldap_attr_domain*, and ldap_domain_attr_* MTA options, listed below. Thus a
different (though semantically compatible) schema may be used by setting the ldap_*,
ldap_attr_domain*, and ldap_domain_attr_* MTA options to tell the MTA what
named attributes to use (recognize).

Note that many of the attributes used (and hence the attribute name which the MTA by
default expects to see used) are standardized; see for instance RFC 2798 (Definition of the
inetOrgPerson LDAP Object Class). Other attributes are specific to the Sun schema; see the Sun
Schema Reference Guide.

52–108 Messaging Server Reference

https://tools.ietf.org/html/rfc2798
https://tools.ietf.org/html/rfc2798

Direct LDAP attribute name MTA
options

Note that prior to MS 6.3-0.15, each LDAP attribute could be used for only one (from the
MTA's point of view) purpose. In particular, prior to MS 6.3-0.15, the MTA would not permit
setting two of its LDAP attribute name options to the same underlying LDAP attribute. If a site
wanted to use the "same" LDAP attribute for multiple purposes in the MTA, that previously
would have to be achieved by creating a second LDAP attribute (named differently), and
having its value be duplicated in LDAP. New in MS 6.3-0.15, this restriction has been relaxed,
so that two MTA purposes (options) can use the same underlying LDAP attribute; for instance,
one can now set, say, ldap_optin1 and ldap_optin2 to both point to (use/name) the same
underlying LDAP attribute, e.g., mailAntiUBEService.

Note that throughout this discussion and other MTA discussions, for convenience often
LDAP attributes will be referred to merely by name. But in general, any such MTA reference
to a specific attribute name really ought to be a reference to the attribute named by the
corresponding MTA option. For instance, any use by the MTA of the mailConversionTag
attribute is really a use of the attribute named by the ldap_conversion_tag MTA option.

However, the general authentication libraries in Messaging Server (sometimes referred to as
SASL libraries, or HULA) used for authentication (both by the MTA when performing SMTP
AUTH authentication, or by the Message Store when performing login to a user mailbox) do
not permit the same degree of "renaming" of attributes. As the authentication infrastructure
uses LDAP simple bind for traditional password authentication, if the LDAP directory itself
is configured to look at an attribute other than the usual userPassword for LDAP simple
bind, that should just work. However, in order to support CRAM-MD5/APOP, then the
userPassword attribute must be used and it must contain the clear-text password. The
authentication infrastructure also has hard dependence on various user attributes including
uid, inetUserStatus, mailUserStatus, and mailAllowedServiceAccess (among
others). (Note that the MMP and its proxy servers can be configured to use a different LDAP
attribute in place of mailAllowedServiceAccess via their tcpaccessattr option; the
IMAP, POP, and MSHTTP servers, however, always use mailAllowedServiceAccess.)

And of particular relevance when configuring and considering MTA operation, another
attribute which is not renameable (prior to the 8.0 release) via an MTA option is the
mailSMTPSubmitChannel user attribute. (This is because the MTA itself makes no
explicit use of this attribute. Instead, authentication library code explicitly fetches
the mailSMTPSubmitChannel attribute's value, and then uses that value to tell the
MTA what source channel to set.) But as of 8.0, some renaming/specification of the
attributes returned with successful authentication is possible; in particular, see the
ldap_auth_attr_submit_channel MTA option which specifies the name of the
LDAP attribute whose value the authentication library should fetch (in place of the default
mailSMTPSubmitChannel attribute's value). Also new in 8.0, the authentication library
may be directed to fetch back values of LDAP attributes other than the default mail and
mailHost via the ldap_auth_attr_sender and ldap_auth_attr_mail_host MTA
options, respectively. See Direct LDAP attributes returned upon authentication MTA options.

The schema sets restrictions (via an ACI) on which attributes even in his or her "own" entry an
end user is allowed to modify. Reassigning the MTA's interpretation of LDAP attributes via
MTA options does not, itself, affect such LDAP schema restrictions; so when reassigning end-
user-modifiable LDAP attributes, be sure to also update your schema ACIs correspondingly.

Technical note: In the table below, the user/group attributes are listed in roughly the order
in which they are processed by the MTA (though there have been some changes in various
versions, and there are some subtleties not captured in the order shown). While this order does
not matter for most purposes, on occasion it can be helpful to consider this order as an aid to
understanding certain interactions and precedence between attributes.

MTA options 52–109

Direct LDAP attribute name MTA
options

Table 52.15 MTA LDAP attribute name options
Option Default attribute name(s) Valid Meaning and notes

Per-user/group attributes

ldap_objectclass objectClass UGD

ldap_user_status inetUserStatus U Prior to Messaging Server 7.0, the supported values were a strict subset
of the supported mailUserStatus values, and in particular the
only supported values were active, inactive, or deleted. As of
Messaging Server 7.0, for the convenience of sites that may wish to
"switch" the use (in effect switch the priority order in which checking
occurs) of inetUserStatus and mailUserStatus, the full set
of values supported for mailUserStatus are also supported for
inetUserStatus. This is not intended to encourage general, direct
use of such additional values for inetUserStatus, but rather, as
mentioned, is intended so that the priority (order of checking) of these
two status settings for users can be reordered by setting them "switched":

ldap_user_status=mailUserStatus
ldap_user_mail_status=inetUserStatus

ldap_user_mail_status mailUserStatus U Valid values are active, inactive, disabled, deleted, overquota,
hold, removed (new in MS 6.0), defer (new in MS 6.3), defer-submit
(new in MS 6.3), deliver (new in 7.3-11.01), and deliver-disabled
(new in 8.0.1.3/8.0.2.1). A status of removed is equivalent to deleted
from the MTA's point of view; it exists as a distinct status for the benefit
of the commcli user purging operation. The statuses defer and defer-
submit tell the MTA to accept all messages to the user but defer them
to the reprocess channel for later delivery (re)attempts; or in the case of
defer-submit accept and defer to the reprocess channel those messages
coming in a submit channel while giving inactive behavior, hence
normally temporary errors, for attempted submissions on any other
channels. A status of deliver is treated by the MTA as active active
for purposes of message delivery but which other components will treat
as inactive (giving the effect that messages can be delivered, but the
user can not login); any other value is treated as inactive. Finally, a
status of deliver-disabled is treated by the MTA as disabled by as
active by other components.

ldap_group_status G Prior to Messaging Server 7.0, the supported values were a strict
subset of the values supported for inetMailGroupStatus; in
particular, the supported values were active, inactive, and
deleted. New in Messaging Server 7.0, all the values supported for
inetMailGroupStatus are supported for this attribute as well, for
the convenience of sites that wish to "switch" the priority (order) in
which they are checked by "switching" which attributes the MTA options
ldap_group_status and ldap_group_mail_status point to.

ldap_group_mail_status inetMailGroupStatus G Supported values are active, deleted, removed, disabled, hold,
inactive, ew in Messaging Server 7.0 defer anddefer-submit, and
new in MS 8.0.1.3/8.0.2.1 deliver-disabled.

ldap_permid uid UG As of Messaging Server 8.0.2, the attribute specified by the ldap_permid
option is used for construction of user and group identifiers rather than
the attribute specified by the ldap_uid option, assuming they differ. The
MTA checks that there is only one such attribute and value and that the
value is no more than 128 octets long.

ldap_uid uid UG As of MS 6.2, the MTA checks that there is only one such attribute; as of
MS 6.3, the MTA also checks that there is only one value set for the one
attribute. As of 7.0, the MTA checks that the UID value is no more than
128 octets; a longer value will result in the user entry being considered
invalid. (This check is performed because various lower layer libraries
have hard buffer limits that preclude longer UIDs.)

ldap_mlsrange UG (New in Messaging Server 7.0?) RESTRICTED

ldap_capture UG Specify an attribute used to trigger automatic capturing of user e-mail
messages. The value of the attribute should be the address to which the
"captured" messages should be sent. Typically, this attribute is set up so
that it is not even visible, let alone modifiable, by the users themselves.
When a user has this attribute specified on their entry, both messages
sent to them, as well as from them, will also have a "capture" copy (an
encapsulated copy with an entirely new message envelope) sent to the
specified address. New in 7.0.5, the capture_format_default MTA
option controls whether message copies generated due to use of the
LDAP attribute named by ldap_capture default to being in DSN
encapsulated format, or to being in envelope "journal" format. Also new
in 7.4-18.01, values of the LDAP attribute may be tagged to explicitly
specify the format on a per-target-address basis: the tag ;format-
report selects the usual DSN encapsulated format, whereas the tag
;format-journal selects the envelope "journal" format.

ldap_recipientlimit UG Specify an attribute used to store a sending-user-specific maximum
number of envelope recipients (additional recipients are rejected),
analogous to the recipientlimit channel option. New behavior in
MS 6.3 is that a per-user setting such as this will override more general
settings, rather than (as previously) the minimum of all applicable limits
being applied; thus new in MS 6.3, a particular user can be allowed to

52–110 Messaging Server Reference

Direct LDAP attribute name MTA
options

send large messages as an exception to more general, smaller limits, by
setting a large value for this attribute while general small limits remain in
effect.

ldap_recipientcutoff UG Specify an attribute used to store a sending-user-specific maximum
number of envelope recipients (messages with more recipients are
rejected entirely), analogous to the recipientcutoff channel keyword.
New behavior in MS 6.3 is that a per-user setting such as this will
override more general settings, rather than (as previously) the minimum
of all applicable limits being applied; thus new in MS 63, a particular user
can be allowed to send messages to a large number of recipients as an
exception to more general, smaller limits, by setting a large value for this
attribute while general small limits remain in effect.

ldap_sourceblocklimit UG Specify an attribute used to store a sending-user-specific maximum
message size, analogous to the sourceblocklimit channel option.
New behavior in MS 6.3 is that a per-user setting such as this will
override more general settings, rather than (as previously) the minimum
of all applicable limits being applied; thus new in MS 6.3, a particular user
can be allowed to send large messages as an exception to more general,
smaller limits, by setting a large value for this attribute while general
small limits remain in effect.

ldap_source_channel UG (New in 6.3) Specify a source channel to which to "switch" (if
userswitchchannel is set on the current source channel)

ldap_source_optinN UG (New in 6.3) Sending user analogue of ldap_optinN option

ldap_preferred_language preferredLanguage+ UG The MTA's typical NOTIFICATION_LANGUAGE mapping table and
DISPOSITION_LANGUAGE mapping table checks the value of this
attribute when deciding in what language to send back notification
messages. Also, as of MS 6.3, the MTA has the ability to chose between
multiple LDAP attribute values with different language tags and
determine the correct value to use. The language tags in effect are
compared against the preferred language information associated
with the envelope From address. In MS 6.3, the only attributes
receiving this treatment are ldap_autoreply_subject (normally
mailAutoReplySubject), ldap_autoreply_text (normally
mailAutoReplyText), ldap_autoreply_text_internal
(normally mailAutoReplyTextInternal), ldap_spare_4 and
ldap_spare_5. As of Messaging Server 7.0-3.01, the attribute named by
(new in that version) ldap_spare_6 also received such treatment; as of
Messaging Server 7.2-7.01, any of the ldap_spare_N named attributes
may optionally, depending upon the setting of the corresponding
spare_N_separator MTA option, receive preferredLanguage
treatment; and as of Messaging Server 7.3-11.01, the attribute named by
ldap_add_tag also receives preferredLanguage treatment.

ldap_preferred_country UG (New in MS 6.3-0.15)

ldap_nosolicit UG New in 6.2. Specifies solicitation strings used by the SMTP NO-
SOLICITING extension that this user doesn't want to receive.

ldap_routing_address mailRoutingAddress UG Used to specify an address to which to route, overriding (as of MS 6.0) the
usual mailHost check and mailDeliveryOption interpretation.

ldap_delivery_option mailDeliveryOption+ UG See the MTA option delivery_options for a discussion of the
interpretation of possible values for this attribute.

ldap_personal_name UG Specify an attribute used to store a user's personal name. If this option
is set, then the value of the specified attribute (if present in a user entry)
will be inserted by the MTA as a personal name wherever the user's
address appears in message headers (overriding any originally present
personal name for the user that might have been present), including
when generating vacation messages on behalf of the user. Note that (as of
6.2p3 for normal messages, or as of 6.2p6 for generated messages such as
vacation messages) the MTA will quote the value obtained from LDAP, if
required according to the quoting rules for personal names (technically
"phrases") given in RFC 5322.

ldap_source_conversion_tag UG New in MS 6.2. Specify an attribute whose value will be applied as a
conversion tag for messages coming from this user.

ldap_sender_sieve UG (New in MS 8.0.1)

ldap_primary_address mail UG

ldap_alias_addresses varies with the schema tag;
mailAlternateAddress
for ims50 or nms41;
rfc822mailalias for sims40

UG Attributes whose values (addresses) are accepted as equivalent to (aliases
for) the canonical mail address on incoming messages; see also the
ldap_mail_reverses MTA option which controls just which attributes
(addresses) are normally converted to the canonical mail address during
reverse_url application via the $Q substitution sequence.

ldap_equivalence_addresses mailEquivalentAddress UG Addresses accepted as equivalent to the canonical mail address for
incoming messages; such equivalent addresses are also allowed to
appear on outgoing messages (are not converted during reverse_url
application). Multiple, comma-separated attribute names are permitted.
Note that when setting this option to a non-default value, it is also
usually appropriate/necessary to modify the ldap_mail_aliases
MTA option correspondingly (to include the attribute(s) named by
ldap_equivalence_addresses).

ldap_optin UG An alias for ldap_optin1. The presence in a user entry of the attribute
named by this option normally (but see the spamfilterN_null_optin
MTA options) causes messages addressed to this user to be "opted-in"

MTA options 52–111

https://tools.ietf.org/html/rfc5322

Direct LDAP attribute name MTA
options

for virus/spam filter package processing (by virus/spam filter package
1), with the opt-in value specified by the value of the attribute. The Sun
Schema Reference Manual recommends using the mailAntiUBEService
attribute.

ldap_optinN UG (New in MS 6.2.) The presence in a user entry of the attribute named by
this option normally (but see the spamfilterN_null_optin MTA
option) causes messages addressed to this user to be "opted-in" for virus/
spam filter package processing (by virus/spam filter package # N), with
the opt-in value specified by the value of the attribute. The value of N can
range from 1 to 8. Note that the Sun Schema Reference Manual recommends
using the mailAntiUBEService attribute for optin use.

ldap_optoutN UG (New in MS 8.0.1.3.) The presence in a user entry of the attribute named
by this option normally (but see the spamfilterN_null_optin MTA
option) causes messages addressed to this user to be "opted-out" of virus/
spam filter package processing (by virus/spam filter package # N). The
value of N can range from 1 to 8.

ldap_presence UG RESTRICTED: Not yet used.

ldap_autosecretary UG RESTRICTED: Not yet used.

ldap_alternate_recipient UG (New in MS 8.0.1) Specify an attribute whose value contains alternate
recipient address(es) to whom to send the message if it cannot be
delivered to this primary recipient.

ldap_start_date vacationStartDate+ UG The value for this attribute should have the format YYYYMMDDHHMMSSZ,
which note is in the GMT timezone. The value for this attribute should
have the format YYYYMMDDHHMMSSZ, which note is in the GMT timezone.
An autoreply will only be generated if the current time is after the time
specified by this attribute and inclusive limit processing is in effect, or
before the specified limit if exclusive time limit processing is in effect. No
start date limit is enforced if this attribute is missing.

ldap_end_date vacationEndDate+ UG The value for this attribute should have the format YYYYMMDDHHMMSSZ,
which note is in the GMT timezone. An autoreply will only be generated
if the current time is before the time specified by this attribute and
inclusive limit processing is in effect, or after the specified limit if
exclusive time limit processing is in effect. No end date limit is enforced if
this attribute is missing.

ldap_conversion_tag mailConversionTag UG

ldap_detourhost_optin UG Opt-in to "detour" routing, as specified by the aliasoptindetourhost
source channel option

ldap_blocklimit mailMsgMaxBlocks UG The maximum size, in MTA blocks (see the block_size MTA option),
of message that may be sent to a user. New in MS 6.3, this attribute will
also (for messages that have no return-of-content policy flag already)
cause messages sent from this user that are larger than the specified size
to automatically get the non-return-of-content NOTARY flag set, to make
it more likely that the user will be able to receive any bounce notifications
about such message.

ldap_mailhost mailHost UG Normally, only the host specified by this attribute may interpret (act on)
a user's delivery options; however, in the case where all such delivery
options are "host-independent", as on an MTA that delivers via LMTP
to "back end" message store systems, or when a user entry only contains
some particular delivery options that happen to be host-independent,
then processing can continue even on other hosts. This attribute is
optional for groups and mailing lists. If present for a group or mailing list,
it specifies that that host and only that host can expand the group or list; if
absent, any host can expand the group or list.

For a user for whom a mailHost is required (such as a user
with mailbox delivery option set, when mailbox delivery is
host-dependent per delivery_options, with no domain level
ldap_domain_attr_default_mailhost attribute value set), absence
of a mailHost attribute will cause a temporary alias expansion error:
4.0.0 temporary error returned by alias expansion:
address

(or whatever text is configured via the error_text_alias_temp MTA
option), the same sort of error that would occur if an LDAP problem had
occurred during the lookup of the user entry (after an LDAP lookup of
the domain had already succeeded).

ldap_disk_quota mailQuota U Subsequent to the initial release of MS 6.2, support was added for
mailQuota values specified in units other than bytes; that is, suffix
characters K (kilobytes), M (megabytes), and G (gigabytes) are supported

ldap_message_quota mailMsgQuota U

ldap_program_info mailProgramDeliveryInfo+ UG

ldap_delivery_file mailDeliveryFileURL,
mailDeliveryFile

UG

ldap_spare_1 UGD Specify an attribute that may be then be accessed in LDAP URL lookups
via a $E1 substitution.

ldap_spare_2 UGD Specify an attribute that may be then be accessed in LDAP URL lookups
via a $E2 substitution.

52–112 Messaging Server Reference

Direct LDAP attribute name MTA
options

ldap_spare_3 UGD Specify an attribute that may be then be accessed in LDAP URL lookups
via a $E3 substitution.

ldap_spare_4 UGD Specify an attribute that may be then be accessed in LDAP URL lookups
via a $E4 substitution as well as in Sieve extlists callouts. Note that
new in MS 6.3, the MTA supports the use of multiple, language-tagged
values, for this attribute. When multiple, language-tagged values are
present, the MTA will preferentially use the value tagged as being in the
language preference expressed in a header line such as Accept-Language:,
or in the absence of such header lines will use the preference noted in
the envelope From user's ldap_preferred_language (normally
preferredLanguage) attribute's value.

ldap_spare_5 UGD Specify an attribute that may be then be accessed in LDAP URL lookups
via a $E5 substitution, as well as in Sieve extlists callouts. As of MS
6.3, the MTA supports the use of multiple, language-tagged values, for
this attribute. When multiple, language-tagged values are present, the
MTA will preferentially use the value tagged as being in the language
preference expressed in a header line such as Accept-Language:, or in
the absence of such header lines will use the value tagged as being in the
language of the envelope From user's ldap_preferred_language
(normally preferredLanguage) attribute's value.

ldap_spare_6 UGD (New in 7.0-3.01) Specify an attribute that may be then be accessed in
LDAP URL lookups via a $E6 substitution, as well as in Sieve extlists
callouts. The MTA supports the use of multiple, language-tagged values,
for this attribute. When multiple, language-tagged values are present,
the MTA will preferentially use the value tagged as being in the language
preference expressed in a header line such as Accept-Language:, or
in the absence of such header lines the MTA's next choice will be the
value tagged as being in the language of the envelope From user's
ldap_preferred_language (normally preferredLanguage)
attribute's value.

ldap_autoreply_mode mailAutoReplyMode+ UG+++ Supported values for this attribute are echo and reply. These modes
will appear in a Sieve script as nonstandard :echo and :reply
arguments to the vacation action. echo will produce a "processed"
message disposition notification (MDN) that contains the original
message as returned content. reply will produce a pure reply containing
only the reply text. An illegal value won't manifest as any argument to
the vacation action and this will produce an MDN containing only the
headers of the original message.

ldap_autoreply_subject mailAutoReplySubject+ UG+++ This attribute is used to specify the contents of the subject field to use
in the vacation (autoreply) response. The value in the attribute must
be a UTF-8 string. This value gets passed as the :subject argument
to the vacation action. As of MS 6.2p2, the special strings $SUBJECT
and $FROM are supported for use in this attribute's value, causing
substitution of the original message's Subject: field value or From:
field value, respectively, into the generated string. New in MS 8.0.2.2,
substitutions from the vacationStartDate and vacationEndDate are also
also available. These substitutions take the form $<attribute><part>
where $<attribute> is "B" for the start (beginning) date or "E" for the
end date, and <part> is one of the date parts defined in RFC 5260 section
4.2.

Note that new in MS 6.3, the MTA supports the use of multiple, language-
tagged values, for this attribute. When multiple, language-tagged values
are present, the MTA will preferentially use the value tagged as being
in the language preference expressed in a header line such as Accept-
Language:, or in the absence of such header lines the MTA's next choice
will be the value tagged as being in the language of the envelope From
user's ldap_preferred_language (normally preferredLanguage)
attribute's value.

ldap_autoreply_text mailAutoReplyText+ UG+++ This attribute is used to store the vacation (autoreply) text (the "reason"
string) returned to all senders except users in the recipient's domain.
If the recipient's LDAP entry does not have a value specified for this
attribute, then external users receive no vacation message. As of MS
6.2p2, the special strings $SUBJECT and $FROM are supported for use
in this attribute's value, causing substitution of the original message's
Subject: field value or From: field value, respectively, into the generated
string. New in MS 8.0.2.2, substitutions from the vacationStartDate and
vacationEndDate are also also available. These substitutions take the
form $<attribute><part> where $<attribute> is "B" for the start
(beginning) date or "E" for the end date, and <part> is one of the date
parts defined in RFC 5260 section 4.2.

Note that new in MS 6.3, the MTA supports the use of multiple, language-
tagged values, for this attribute;. When multiple, language-tagged values
are present, the MTA will preferentially use the value tagged as being
in the language preference expressed in a header line such as Accept-
Language:, or in the absence of such header lines the MTA's next choice
will be the value tagged as being in the language of the envelope From
user's ldap_preferred_language (normally preferredLanguage)
attribute's value.

ldap_autoreply_text_internal mailAutoReplyTextInternal+ UG+++ This attribute is used to store the vacation (autoreply) text (the "reason"
string) returned to all senders in the recipient's own domain. If the
recipient's LDAP entry does not have a value specified for this attribute,
then internal users receive the external vacation text, stored in the

MTA options 52–113

https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260

Direct LDAP attribute name MTA
options

ldap_autoreply_text MTA option. As of MS 6.2p2, the special strings
$SUBJECT and $FROM are supported for use in this attribute's value,
causing substitution of the original message's Subject: field value or From:
field value, respectively, into the generated string. New in MS 8.0.2.2,
substitutions from the vacationStartDate and vacationEndDate are also
also available. These substitutions take the form $<attribute><part>
where $<attribute> is "B" for the start (beginning) date or "E" for the
end date, and <part> is one of the date parts defined in RFC 5260 section
4.2.

Note that new in MS 6.3, the MTA supports the use of multiple, language-
tagged values, for this attribute. When multiple, language-tagged values
are present, the MTA will preferentially use the value tagged as being
in the language preference expressed in a header line such as Accept-
Language:, or in the absence of such header lines the MTA's next choice
will be the value tagged as being in the language of the envelope From
user's ldap_preferred_language (normally preferredLanguage)
attribute's value.

ldap_autoreply_addresses UG+++ (New in 6.2p5.) This attribute takes multiple values specifying additional
addresses to recognize as "one's own" for purposes of whether to generate
a vacation message. That is, it is an analogue of the :addresses
argument for the Sieve vacation action.

ldap_autoreply_timeout mailAutoReplyTimeOut+ UG+++ This attribute stores the duration, in hours, for successive vacation
(autoreply) responses to any given mail sender. Used only when
mailAutoReplyMode=reply. If the attribute's value is 0, then a
response is sent back every time a message is received. This value will
be converted to the nonstandard :hours argument to the vacation
action. If this attribute doesn't appear on a user entry, then a default
timeout will be obtained from the user's domain (from the attribute
named by the ldap_domain_attr_autoreply_timeout MTA
option) if the domain has its own timeout, or otherwise from the
autoreply_timeout_default MTA option.

ldap_filter mailSieveRuleSource+ UG This attribute stores a per-user Sieve filter.

ldap_parental_controls UG (New in 6.2.) Specifies the name of a user or group LDAP attribute whose
value can request "head of household" (a.k.a "parental controls") Sieve
filtering be applied to this user's (or group's) messages. Any of the values
Yes, 1, or true is considered to be requesting parental controls.

ldap_filter_reference UG (New in 6.2.) If parental controls are enabled for a user (see the
ldap_parental_controls MTA option), then the attribute named
by this ldap_filter_reference MTA option specifies the DN of the
entry that contains the actual head of household filter (typically, that
is, the DN of the head of household user). (The attribute within that
user entry containing the filter is specified by the ldap_hoh_filter
MTA option, which defaults to mailSieveRuleSource. The lookup
requests both the filter, contained in the attribute named by the
ldap_hoh_filter MTA option, and the owner, contained in the
attribute named by the ldap_hoh_owner MTA option, which defaults to
mail.)

ldap_forwarding_address mailForwardingAddress+ UG Address(es) used in the expansion of named delivery options with the
special value "*" (normally the name "forward" is associated with this
value).

ldap_list_id mgrpUniqueId G (New in 7.3-11.01) Single valued attribute specifing a unique identifier
for the group. This identifier is used to implement MAILSERV group
membership; it provides the identifier on one side of the linkage between
groups and entries in the mluser tree. If this attribute is present, and and
the ldap_mluser_basedn MTA option is set, various virtual attributes
are to the group automatically; the specifics vary depending on list policy
settings.

ldap_reprocess mailDeferProcessing UG This attribute allows per-group or per-list override of the
defer_group_processing MTA option. Valid values are "Yes", "No",
or (new in MS 6.3p1) "AFTER_AUTH". "AFTER_AUTH" causes LDAP
attribute based access checks, such as mgrpAllowedBroadcaster,
etc., to get performed "in-line", while deferring membership expansion
(as well as a second check of the LDAP attribute access checks) to the
reprocess channel. New in Messaging Server 7.0u3, a channel name
(e.g., "process_special" or some similar, special, reprocess_* or
process_* channel variant value) may be specified, and in this case the
group or list expansion will be deferred to the specified channel.

ldap_jettison_domain mgrpJettisonDomain G (New in 7.3-11.01) Messages from these domains are silently discarded.
Glob-style wildcards may be used. Multiple attributes and multiple
values are allowed.

ldap_jettison_url mgrpJettisonBroadcasters G (New in 7.3-11.01) URL identifying mail addresses whose messages
should be jettisoned if sent to this group. Multiple attributes and multiple
values are allowed; mailto: URLs are acceptable. Each URL is expanded
into a list of addresses and each address is checked against the current
envelope from address. A match marks the message to be jettisoned
and bypasses all other group checks and expansion. Substitution
processing will be performed on this URL if bit 6 (value 64) of the
process_substitutions MTA option is set.

ldap_reject_action mgrpMsgRejectAction G (New in 6.0) Single valued attribute that controls what happens if
any of the subsequent access checks fail. Only one value is defined:
"TOMODERATOR", which if set instructs the MTA to redirect any access

52–114 Messaging Server Reference

https://tools.ietf.org/html/rfc5260

Direct LDAP attribute name MTA
options

failures to the moderator specified by the mgrpModerator attribute.
The default (and any other value of this attribute) causes an error to be
reported and the message rejected.

ldap_reject_text mgrpRejectText,
mgrpMsgRejectText

G The name of the attribute used to store a value specifying the error text
to use when an attempted posting to the group/list encounters an access
failure. Because the error text may appear in SMTP responses, it must
conform to SMTP response limitations. In particular, it may consist
merely of a single line of text limited to the US-ASCII charset. (If the value
contains eight bit characters, the entire value will be ignored. If the value
contains more than a single line of text, only the first line of text will be
used.)

ldap_auth_policy mgrpBroadcasterPolicy G Specifies level of authentication needed to send to the group. Possible
tokens are "SMTP_AUTH_REQUIRED" or "AUTH_REQ", both of which
mean that the SMTP AUTH command must be used to identify the
sender in order to send to the group and any address produced by
authentication will be used in subsequent authentication checks,
"SMTP_AUTH_USED" or "AUTH_USED", both of which force the use of
any authenticated address in authorization checks but does not actually
require authentication, "PASSWORD_REQUIRED", "PASSWD_REQUIRED",
or "PASSWD_REQ", all of which mean the password to the list specified
by the mgrpAuthPassword attribute (see below) must appear in
an Approved: header field in the message, "OR", which changes the
or_clauses MTA option setting to 1 for this list, "AND", which
changes the or_clauses MTA option setting to 0 for this list, and
"NO_REQUIREMENTS", which is basically a no-op. "OR" and "AND" are new
in 6.1. This attribute is limited to a single value prior to 6.1; in 6.1 multiple
values are allowed and each value can consist of a comma-separated list
of tokens.

If SMTP AUTH is called for it also implies that any subsequent
authorization checks will be done against the email address provided by
the SASL layer rather than the MAIL FROM address.

New in 7.3-11.01 are five new tokens for this attribute which
specify list behavior for mailserv-maintained lists. The tokens are:
"LIST_OPEN", "LIST_MEMBERS", "LIST_MODERATE_NONMEMBERS",
"LIST_MODERATE_MEMBERS", and "LIST_MODERATE".

Also new in 7.3-11.01, multiple attributes can now be mapping to this
attribute slot.

ldap_cant_url mgrpDisallowedBroadcaster G URLs identifying mail addresses not allowed to send mail to this
group. Can be multivalued. Each URL is expanded into a list of
addresses and each address is checked against the current envelope from
address. A match means access checking has failed and all subsequent
checks are bypassed. The expansion that is performed is similar to
an SMTP EXPN with all access control checks disabled. Substitution
processing will be performed on this URL if bit 0 (value 1) of the
process_substitutions MTA option is set in 6.3 or later.

ldap_auth_url mgrpAllowedBroadcaster G URL identifying mail addresses allowed to send mail to this group.
Can be multivalued. Each URL is expanded into a list of addresses and
each address is checked against the current envelope from address. A
match failure with the or_clauses MTA option set to 0 (the default)
means access checking has failed and all subsequent tests are bypassed.
A match failure with the or_clauses MTA option set to 1 sets a "failure
pending" flag; some other allowed access check must succeed in order
for access checking to succeed. As of MS 6.0 a match also disables
subsequent domain access checks. The expansion that is performed
is similar to an SMTP EXPN with all access control checks disabled.
Substitution processing will be performed on this URL If bit 1 (value 2) of
the process_substitutions MTA option is set in MS 6.3 or later.

New in MS 6.3, this now checks for address aliases (e.g.,
mailAlternateAddress and mailEquivalentAddress) as well as
for the canonical address (normally the mail attribute value).

ldap_cant_domain mgrpDisallowedDomain G Domains not allowed to submit messages to this group. A match means
access checking has failed and all subsequent checks are bypassed.
In MS 6.0 this check is bypassed if the submitter has already matched
an ldap_auth_url. Can be multivalued and as of MS 6.2 glob-style
wildcards are allowed.

ldap_auth_domain mgrpAllowedDomain G Domains allowed to submit messages to this group. A match failure with
the or_clauses MTA option set to 0 (the default) means access checking
has failed and all subsequent tests are bypassed. A match failure with
the or_clauses MTA option set to 1 sets a "failure pending" flag; some
other access check must succeed in order for access checking to succeed.
In MS 6.0 this check is bypassed if the submitter has already matched an
ldap_auth_url. As of MS 6.2, the value of the attribute supports use
of the asterisk character, *, as a wildcard. For instance, *.domain.com
means to allow all subdomains of domain.com, though not domain.com
itself; to allow domain.com and all its subdomains, use two values for the
attribute, domain.com and *.domain.com.

ldap_maximum_message_size mgrpMsgMaxSize G Maximum message size in bytes that can be sent to the group. This
attribute is obsolete but still supported for backwards compatibility; the
new mailMsgMaxBlocks attribute should be used instead.

ldap_auth_password mgrpAuthPassword G Specifies a password needed to post to the group.

MTA options 52–115

Direct LDAP attribute name MTA
options

In iMS 5.2 the value of this attribute was saved if the
mgrpbroadcasterpolicy attribute was set to require a password
(see above) and checked against the Approved: field once the header is
available. The Approved: field was removed from the header once the
checkis complete. But this did not allow for routing to the moderator in
the event of a password check failure.

In the M 6.0 release and later the presence of a mgrpauthpassword
attribute forces a reprocessing pass. As the message is enqueued to the
reprocessing channel the password is taken from the header and placed
in the envelope. Then while reprocessing the password is taken from the
envelope and checked against this attribute. Additionally, only passwords
that actually are used are removed from the header field.

The or_clauses MTA option acts on this attribute in the same way it
acts on the other access check attributes.

ldap_moderator_url mgrpModerator G The list of URLs given by this attribute to be expanded into a series of
addresses. The interpretation of this address list depends on the setting
of the group's mgrpMsgRejectAction LDAP attribute (more precisely,
the LDAP attribute named by the ldap_reject_action MTA option).
If mgrpMsgRejectActionis set to "TOMODERATOR", then this attribute
specifies the moderator address(es) the message is to be sent to should
any of the access checks fail. If mgrpMsgRejectAction is missing or
has any other value the address list is compared with the envelope From
address. Processing continues if there is a match. If there isn't a match,
the message is again sent to all of the addresses specified by this attribute.
Expansion of this attribute is implemented by making the value of this
attribute the list of URLs for the group. Any list of RFC 822 addresses or
DNs associated with the group is cleared, and the delivery options for the
group are set to "members". Finally, subsequent group attributes listed in
this table are ignored. Substitution processing will be performed on this
URL If bit 2 (value 4) of the process_substitutions MTA option is
set in 6.3 or later.

ldap_group_last_access_time G (New in 8.0) Specify the name of an LDAP attribute used to keep track of
the last access time for email groups defined in LDAP. If this attribute is
present in a group's LDAP entry, then the MTA will update the attribute
each time the group is successfully accessed for purposes of sending
mail or expanding a mailing list. RFC 3339 format (a profile of ISO 8601
format) is used, e.g., "2013-09-29T17:38:52Z".

In order to prevent excessive LDAP writes, the attribute is read prior to
writing and a write is only done if the current time exceeds the stored
time by at least 30 minutes. (A write is also done if the attribute does not
contain a valid RFC 3339 time, making it possible to set the initial value to
something like "<never accessed>".)

ldap_group_url1 mgrpDeliverTo G List of URLs which, when expanded, provides a list of mailing list
member addresses. Substitution processing will be performed on this
URL If bit 3 (value 8) of the process_substitutions MTA option
is set in 6.3 or later. See also the ldap_url_result_mapping MTA
option; with it, a mapping table can be used to manipulate the value(s) of
the ldap_group_url1 attribute.

ldap_group_url2 memberURL G Another list of URLs which, when expanded, provides another list of
mailing list member addresses. Substitution processing will be performed
on this URL If bit 4 (value 16) of the process_substitutions MTA
option is set in 6.3 or later. See also the ldap_url_result_mapping
MTA option; with it, a mapping table can be used to manipulate the
value(s) of the ldap_group_url2 attribute.

ldap_group_dn uniqueMember G List DNs or other identifiers for group members. Normally DNs are
specified but other sorts of identifiers may be used depending on the URL
template that is chosen. DNs may specify an entire subtree. These values
are expanded by embedding them in an LDAP URL. The exact template
to use is specified by the group_dn_template MTA option. The default
value for this option is "ldap:///$A?mail?sub?(mail=*)"; $A
specifies the point where the uniqueMember DN is inserted.

As of 7.0.5, if a GROUP_TEMPLATES mapping table exists, it is used as
a source for the template. The mapping probe is of the form "attribute-
name|attribute-value". If the mapping sets $Y, then the mapping result
is used as the template instead of the group_dn_template MTA option
value.

Multiple values are supported but only one attribute of this type is
allowed on any given group.

As of 7.0.5 any mapping specified by the attribute named by the
ldap_url_result_mapping MTA option will also be applied to the
results produced by these attributes.

ldap_group_dn2 G (New in 7.0.5.) Like ldap_group_dn, a list of DNs or other identifiers
for group members. This second slot with the same semantics was added
so that a single group can be defined using multiple attribute values with
different sematics.

ldap_group_rfc822 mgrpRFC822MailMember,
rfc822MailMember

G Mail addresses of members of this list. Multiple values are allowed.
rfc822MailMember is also supported for backwards compatibility with
NMS, but only one of these attributes can be used in any given group.

52–116 Messaging Server Reference

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

Direct LDAP attribute name MTA
options

ldap_url_result_mapping G (New in MS 6.3.) The name of the attribute used to store the name of
a mapping table to be applied to the values returned from the LDAP
attributes named by the ldap_group_url1, ldap_group_url2, and
as of 7.0.5, the ldap_group_dn and ldap_group_dn2 MTA options.
That is, ldap_url_result_mapping specifies the name of an LDAP
attribute whose value is the name of a mapping to apply to the results of
expanding these attribute values. The mapping probe will be of the form:

LDAP-URL|LDAP-result

where LDAP-URL is the (literal string) value of the expansion attribute,
and LDAP-result is the value returned from LDAP for that LDAP-URL
query. If the mapping returns with $Y set, then the mapping result string
will replace the LDAP result for alias processing purposes. If the mapping
returns with $N set, then the result will be skipped.

This mechanism can be used to define groups based on attributes that
don't contain proper email address.

ldap_errors_to mgrpErrorsTo G Used to set an envelope From address which will override the original
message's envelope From address; that is, this address is a mailing
list. Setting a value for this attribute implies mailing list, rather than
group, semantics: in particular, this has implications for notification
messages regarding the list definition (e.g., syntactic errors in list member
addresses, or syntactic errors in a list-specific Sieve filter) or regarding
delivery of messages to list members, and for the handling of delivery
receipt requests. Typically, the value will be some normal address. But
two (three, as of 7.0-0.04) special syntaxes are also supported.

Setting the value to an address of the form user+*@domain has a special
meaning. The asterisk character will be expanded into a representation of
the recipient address; thus a separate copy of the list message is generated
for each recipient, with each copy including the intended recipient
address as a subaddress within the return address. If delivery errors
subsequently occur, the subaddress will indicate which was the failing
address. In some cases, when dealing with remote MTAs that generate
nonstandard, uninformative delivery error messages, this can in theory
be useful as a way of determining which recipient address(es) failed, even
when the bounce message's inner content is relatively uninformative.
And it may make processing of such bounce messages by an automated
program more convenient. However, the tradeoff is that such per-user-
specific return address values require that a separate message copy
be generated and sent for each recipient; for a "large" list, with many
recipients in the same destination domains, this can be a large increase
in overhead (a large decrease in efficiency). And with more prevalent
use nowadays of standard format notification messages, the "need" for
this sort of approach, with its extra (potentially large) overhead, is much
less (since the intended recipient information can instead be extracted
from the standard field in the contents of a standard format notification
message).

(New in MS 6.3, but not working until fix for 12194452 [Sun 6530591].)
Setting the value to the forward slash character, /, has a special meaning.
It tells the MTA to revert to using the original envelope From: address
that had been present on the incoming message, yet in all other respects
use mailing list semantics. This can be useful for setting up mailing lists
that report all forms of list errors to the original sender.

New in MS 6.3, the process_substitutions MTA option can enable
use of the $S (recipient's subaddress) substitution in the value. This
would tend to be of interest when defining a "meta-list".

ldap_delay_notifications mgrpDelayNotifications G (New in 7.0u3.) Should NOTIFY=DELAY be set on list messages?
Supported values are yes and no, with the obvious meanings.

ldap_add_header mgrpAddHeader G Specify header fields to add to messages posted to the list. Such header
fields might include, for instance, the List-*: header fields suggested in
RFC 2369 (URLs for Mail List Commands through Message Headers).

ldap_remove_header mgrpRemoveHeader G Specify header fields to remove from messages posted to the list. Only the
field name should be specified.

ldap_add_tag No default; mgrpListTag
recommended

G Prefix text to insert on the Subject: header line of messages to this
recipient/list, analogous to the alias_tag alias option, the [TAG]
named mailing list parameter, or the effect of the Sieve addtag action. As
of MS 6.3, the vertical bar, |, character should not be used in the tag text;
in previous versions, the space character should not have been used in tag
text, as such use would interfere with the MTA's internal mechanisms for
checking whether a tag was already present.

ldap_prefix_text mgrpMsgPrefixText G Insert prefix text into messages as they undergo group expansion. Prior
to Messaging Server 7.0 update 3, text could only be inserted into initial,
TEXT/PLAIN parts; new in Messaging Server 7.0 update 3, text can be
inserted into the first text part within a nested multipart (excluding
multipart/alternative). The attribute values are given in UTF-8; this is then
converted to match the charset of the part that the text is inserted into.

ldap_suffix_text mgrpMsgSuffixText G Insert suffix text into messages as they undergo group expansion. Prior
to Messaging Server 7.0 update 3, text could only be inserted into initial,
TEXT/PLAIN parts; new in Messaging Server 7.0 update 3, text can be
inserted into the first text part within a nested multipart (excluding

MTA options 52–117

https://tools.ietf.org/html/rfc2369

Direct LDAP attribute name MTA
options

multipart/alternative). The attribute values are given in UTF-8; this is then
converted to match the charset of the part that the text is inserted into.

ldap_expandable mgmanMemberVisibility,
expandable

UG Specify the attribute(s) used to define who (in addition to the group
or list owner) may view the membership of a group or list; in MTA
terms, who will get the group or list expanded in response to the
SMTP EXPN command. Supported values for such an attribute or
attributes are anyone, all or synonymously true (which means
that only authenticated users -- hence users who have an account
and provide their password---will be able to expand the group or
list), and none; unrecognized values are interpreted as none. Note
that group or list access controls (e.g., use of attributes such as
mgrpAllowedBroadcaster, etc., or an mgrpBroadcasterPolicy
setting of "SMTP_AUTH_REQUIRED"), also impose restrictions on who is
allowed to view list membership. All applicable conditions must be met
in order for group or list membership to be viewed (expanded).

MAILSERV attributes (new in 7.4-18.01)

ldap_list_name mgrpListName G Name associated with the list for administrative purposes. The value
must be a UTF-8 string.

ldap_list_description mgrpDescription G Textual description of the list. UTF-8 string. Multivalued and supports
language-tagged attribute values.

ldap_list_advertised mgrpAdvertised G Whether or not to advertise the list in the MAILSERV GUI. Possible
values are yes or no.

ldap_list_public_roster mgrpPublicRoster G Should the membership list be visible to anyone, or merely to members,
or to admins_only.

ldap_list_subscribe_policy mgrpSubscribePolicy G Policy for handling list subscription requests. Possible values are:

• "immediate" - honor subscription requests immediately

• "confirm" - send confirmation e-mail

• "to_moderator" - require moderator approval

• "both" - require both confirmation and moderator approval.

ldap_list_unsubscribe_policy mgrpUnsubscribePolicy G Controls list unsubscribe policy. Same possible settings as for
ldap_list_subscribe_policy.

ldap_list_trust_new_members mgrpTrustNewMembers G

Head of household control support attributes

ldap_hoh_filter mailSieveRuleSource (New in MS 6.2.) Specify an attribute to request when performing a head
of household filter lookup.

ldap_hoh_owner mail (New in MS 6.2.) Attribute in which to find the owner of the HOH Sieve.

 Schema 2 support attributes

ldap_attr_domain1_schema2 sunPreferredDomain++ D Attribute used to store the primary domain in Schema 2.

ldap_attr_domain2_schema2 associatedDomain++ D Attribute used to store any secondary domains in Schema 2.

ldap_attr_domain_search_filter Attribute in the global configuration template area (see the
ldap_global_config_templates MTA option) that is used to store
the domain search filter template.

 Per-domain attributes

ldap_domain_attr_basedn inetDomainBaseDn D Domain entry attribute used to store the baseDN of domain entries.

ldap_domain_attr_alias aliasedObjectName D Schema 1 attribute used in domain alias entries to specfify the DN of the
actual domain entry.

ldap_domain_attr_uplevel D (New in MS 6.3) Specify a domain level attribute used to store a domain-
specific uplevel value which overrides the value of the domain_uplevel
MTA option for this particular domain. Currently only bits 0 and 2
(values 1 and 4) have meaning for the named attribute's value; the other
bits of the domain_uplevel MTA option remain in effect. Note that
this domain level attribute is only consulted if the domain is first found.
Thus setting bit 0 (value 1) has no effect unless bit 0 (value 1) of the
domain_uplevel MTA option is set. However, with bit 0 (value 1) of
domain_uplevel is set, then clearing bit 0 in the domain level attribute
can disable domain uplevel matching for subdomains of this particular
domain while domain uplevel matching is still possible for other domains.

ldap_domain_attr_canonical inetCanonicalDomainName D Specifies the canonical domain name for domains whose member entries
overlap.

ldap_domain_attr_uid_separator domainUidSeparator D The UID separator default for users in the domain.

ldap_domain_attr_subaddress D (New in 8.0) Specify the name of an LDAP attribute that controls use of
subaddresses in lookups of addresses in this domain.

ldap_domain_attr_routing_hosts mailRoutingHosts D Specify the hosts that are responsible for performing routing for this
domain. If this MTA is one such host, then the user address will be
looked up and attributes processed. Otherwise, the address will be routed
onwards: by default, just routing based on rewriting the address, but
if the MTA option route_to_routing_host is set to 1 then the first
mailRoutingHosts value will be inserted into the address as a source
route (hence the rewriting routing will depend upon that host name).
Note that delivery options can be marked as mail host independent,

52–118 Messaging Server Reference

Direct LDAP attribute name MTA
options

thereby meaning that processing should occur regardless of whether this
MTA is one of the mailRoutingHosts; see the delivery_options
MTA option.

ldap_domain_attr_smarthost mailRoutingSmartHost D If a user address is not found in the directory, then route onwards,
inserting the mailRoutingSmartHost value into the address as a
source route.

ldap_domain_attr_status inetDomainStatus D The attribute containing the domain's overall status.

ldap_domain_attr_mail_status mailDomainStatus D The attribute containing the domain's mail service status. Valid values
for this attribute are: active, inactive, deleted, hold, disabled,
overquota, and (new in MS 6.0) unused and removed; other values are
interpreted as inactive. Note that the imquotacheck utility is what
updates mailDomainStatus to set it to overquota.

ldap_domain_attr_blocklimit mailDomainMsgMaxBlocks D Set a domain limit for how large of message users in the domain
may receive. New in MS 6.3, this attribute is also checked during
reverse_url lookups, and will be used (for messages that have no
return-of-content policy already set) to decide whether the NOTARY non-
return-of-content flag should be set.

ldap_domain_attr_conversion_tag mailDomainConversionTag D New in MS 6.1. Specify a per-domain attribute whose value will be
applied as conversion tags for messages sent to users or groups associated
with this domain.

ldap_domain_attr_source_conversion_tag D New in MS 6.2. Specify a per-domain attribute whose value will be
applied as conversion tags for messages coming from users associated
with this domain.

ldap_domain_attr_optin D A deprecated synonym for ldap_domain_attr_optin1

ldap_domain_attr_optinN D Specifies the names of attributes used to opt in to spam filtering at the
domain level. Messages sent or received from addresses associated
with the domain will be opted in to the spam filter associated with the
specified slot. Currently the slot value must be between 1 and 8.

ldap_domain_attr_nosolicit D New in MS 6.2.

ldap_domain_attr_autoreply_timeout D Name of an attribute that specifies a default autoreply timeout for users
associated with this domain.

ldap_domain_attr_default_mailhost No default; but the Admin SDK has
a preferredMailHost attribute,
used in provisioning, that would be
one possibly appropriate attribute to
also use for this purpose

D (New in MS 6.3) Specify a default mailHost to take effect for all users in
this domain who do not have their own explicit mailHost set.

ldap_domain_attr_disk_quota D

ldap_domain_attr_message_quota D

ldap_domain_attr_filter mailDomainSieveRuleSource D Attribute used to specify domain-level Sieve filters.

ldap_domain_attr_sender_sieve mailDomainSenderSieve D (New in MS 8.0.1)

ldap_domain_attr_report_address mailDomainReportAddress D The domain's postmaster address. This value is used as the header From:
address in DSNs reporting problems associated with recipient addresses
in the domain. It is also used (in certain cases) when reporting problems
to users within the domain regarding errors associated with nonlocal
addresses. If this attribute is not set, then in those cases the reporting
address will default to postmaster@domain. Note that regardless of
whether or not this attribute is set, there are a number of cases where the
overall host's postmaster address will be used, rather than any domain-
specific postmaster address.

ldap_domain_attr_catchall_address mailDomainCatchallAddress D Specifies the name of an attribute whose value is a "catch all" address for
the domain: an address to which to route any messages to addresses "in"
this domain but with an unrecognized local-part.

ldap_domain_attr_catchall_mapping No default;
mailDomainCatchallMapping
recommended

D (New in MS 6.3.) Specify the name of an attribute used to specify
the name of a mapping table which will be consulted when an
address associated with the domain fails to match any particular user
entry. The format of the mapping table probe is the same as that of
the FORWARD mapping table, and is affected by any setting of the
use_forward_database MTA option in the same way as the FORWARD
mapping table probe is affected. If the mapping sets the $Y metacharacter,
then the resulting string will replace the address being processed.

ldap_domain_attr_sourceblocklimit D Specify a per-domain attribute, analogous to the per-user
ldap_sourceblocklimit. New behavior in MS 6.3 is that a per-
domain setting such as this will override more general settings, rather
than (as previously) the minimum of all applicable limits being applied;
thus new in MS 6.3, a particular domain can be allowed to send large
messages as an exception to more general, smaller limits, by setting a
large value for this attribute while general small limits remain in effect.

ldap_domain_attr_source_channel D (New in MS 6.3) Specify a source channel to which to "switch" (if
userswitchchannel is specified on the current source channel)

ldap_domain_attr_recipientlimit D Specify a per-domain attribute, analogous to the per-user
ldap_recipientlimit and the recipientlimit channel option.
New behavior in MS 6.3 is that a per-domain setting such as this will
override more general settings, rather than (as previously) the minimum
of all applicable limits being applied; thus new in MS 6.3, a particular
domain can be allowed to send messages to many recipients as an

MTA options 52–119

Direct LDAP attribute name MTA
options

exception to more general, smaller limits, by setting a large value for this
attribute while general small limits remain in effect.

ldap_domain_attr_recipientcutoff D Specify a per-domain attribute, analogous to the per-user
ldap_recipientcutoff and the recipientcutoff channel option.
New behavior in MS 6.3 is that a per-domain setting such as this will
override more general settings, rather than (as previously) the minimum
of all applicable limits being applied; thus new in MS 6.3, a particular
domain can be allowed to send messages to many recipients as an
exception to more general, smaller limits, by setting a large value for this
attribute while general small limits remain in effect.

ldap_domain_attr_detourhostoptin D (New in 7.0.5) Specify a per-domain attribute, analogous to the per-user
ldap_detourhost_optin. If this attribute has the special value (if any)
specified by the aliasdetourhost_null_optin MTA option, that will
be considered equivalent to the domain attribute being absent.

+ User-modifiable LDAP attribute.

++ Domain map code has the specified default, not the MTA proper

+++ While the MTA in principle allows this attribute on group/mailing list entries, the typical
configuration of the delivery_options MTA option disables this support; plus, the Sun
schema does not, as distributed, allow this attribute on group/mailing list entries. See the
delivery_options MTA option for some discussion regarding enabling use of this attribute
on group/mailing list entries.

52.15.6.1 Access controls on LDAP attributes

The schema sets restrictions (via an ACI) on which attributes even in his or her "own" entry an
end user is allowed to modify. Reassigning the MTA's interpretation of LDAP attributes via
MTA options does not, itself, affect such LDAP schema restrictions; so when reassigning end-
user-modifiable LDAP attributes, be sure to also update your schema ACIs correspondingly.
Also, when adding new attributes to the schema (and then making them known to the MTA
via MTA options), consider in each case whether or not the new attribute should be end-user-
modifiable (and in some cases consider whether the new attribute should even be end-user-
visible), and when appropriate set an ACI to achieve the proper effect.

52.15.6.2 Direct LDAP attribute name MTA options:
ldap_objectclass (LDAP attribute name)

The default for the ldap_objectclass MTA option is objectClass. This LDAP attribute is
valid on user, group, and domain entries.

52.15.6.3 Direct LDAP attribute name MTA options:
ldap_user_status (LDAP attribute name)

The ldap_user_status MTA option specifies the name of a user LDAP attribute,
by default inetUserStatus, used to store user general status. (Contrast with the
ldap_user_mail_status MTA option which names an LDAP attribute, by default
mailUserStatus, used to store specifically a user's mail status. Also consider the
analogous domain LDAP attribute, by default inetDomainStatus, named by the
ldap_domain_attr_status MTA option.)

Prior to Messaging Server 7.0, the supported values for the LDAP attribute named by the
ldap_user_status MTA option, by default inetUserStatus, were a strict subset of
the supported mailUserStatus values, and in particular the only supported values were
active, inactive, or deleted. As of Messaging Server 7.0, for the convenience of sites
that may wish to "switch" the use (in effect switch the priority order in which checking
occurs) of inetUserStatus and mailUserStatus, the full set of values supported

52–120 Messaging Server Reference

Direct LDAP attribute name MTA
options

for mailUserStatus are also supported for inetUserStatus. This is not intended to
encourage general, direct use of such additional values for inetUserStatus, but rather, as
mentioned, is intended so that the priority (order of checking) of these two status settings for
users can be reordered by setting them "switched":

msconfig> set ldap_user_status mailUserStatus
msconfig# set ldap_user_mail_status inetUserStatus

or in legacy configuration mode:

ldap_user_status=mailUserStatus
ldap_user_mail_status=inetUserStatus

52.15.6.4 Direct LDAP attribute name MTA options:
ldap_user_mail_status (LDAP attribute name)

The ldap_user_mail_status MTA option specifies the name of a user LDAP attribute,
by default mailUserStatus, used to store the user's status for mail purposes. (Contrast
with the ldap_user_status MTA option which names an LDAP attribute, by default
inetUserStatus, used to store the user's general status for services in addition to mail.
And consider also the ldap_domain_attr_mail_status MTA option which names an
analogous domain LDAP attribute.)

For the LDAP attribute named by ldap_user_mail_status, valid values are active,
inactive, disabled, deleted, overquota, hold, removed (new in MS 6.0), defer (new
in MS 6.3), defer-submit (new in MS 6.3), deliver (new in 7.3-11.01), and deliver-
disabled (new in 8.0.1.3/8.0.2.1).

A status of removed is equivalent to deleted from the MTA's point of view; it exists as a
distinct status for the benefit of the commcli user purging operation.

The statuses defer and defer-submit tell the MTA to accept all messages to the user but
defer them to the reprocess channel for later delivery (re)attempts; or in the case of defer-
submit accept and defer to the reprocess channel those messages coming in a submit
channel while giving inactive behavior, hence normally temporary errors, for attempted
submissions on any other channels.

A status of deliver is treated by the MTA as active active for purposes of message delivery
but which other components will treat as inactive (giving the effect that messages can be
delivered, but the user can not login); any other value is treated as inactive.

(Note that the acceptalladdresses channel option, if used, modifies the timing and
form of recipient rejections due to errors such as "overquota" or "disabled" status. New
in MS 8.0.1.1.0, the accepttemporaryfailures channel option, if used, modifies the
timing and form of recipient deferrals due to temporary errors such as "inactive" status.
Note also that the use_temporary_error and use_permanent_error MTA options,
and usetemporaryerror and usepermanenterror channel options, can alter the
interpretation of whether such status errors are considered temporary vs. permanent errors.)

52.15.6.5 Direct LDAP attribute name MTA options:
ldap_group_status (LDAP attribute name)

MTA options 52–121

Direct LDAP attribute name MTA
options

The ldap_group_status MTA option specifies the name of a group LDAP attribute
intended to store general group status. There is no default; (there is no such LDAP attribute
pre-defined in the schema). See also the more-specific-to-email ldap_group_mail_status
MTA option, normally corresponding to the inetMailGroupStatus LDAP attribute.
And see the ldap_domain_attr_status MTA option, normally corresponding to the
inetDomainStatus domain LDAP attribute, which sets a domain level status.

If an LDAP attribute is defined (and added to the schema) and the MTA configured
to use it via the ldap_group_status MTA option, note that prior to Messaging
Server 7.0-0.04, the MTA's supported values were a strict subset of the values
supported for inetMailGroupStatus (more precisely, the attribute named by
ldap_group_mail_status); in particular, the supported values were active,
inactive, and deleted. New in Messaging Server 7.0-0.04, all the values supported for
inetMailGroupStatus are supported for this attribute as well, for the convenience of sites
that wish to "switch" the priority (order) in which they are checked by "switching" which
attributes the MTA options ldap_group_status and ldap_group_mail_status point to.

52.15.6.6 Direct LDAP attribute name MTA options:
ldap_group_mail_status (LDAP attribute name)

The ldap_group_mail_status MTA option specifies the name of a group LDAP attribute
storing the group's status for e-mail purposes. The default is inetMailGroupStatus. (See
also the ldap_group_status MTA option for defining a more general, not specific to e-mail,
group status LDAP attribute. And see the ldap_domain_attr_mail_status MTA option,
normally corresponding to the mailDomainStatus domain LDAP attribute, which sets a
domain level mail status.)

In the LDAP attribute named by ldap_group_mail_status, the MTA supports values
of active, deleted, removed, disabled, hold, inactive, (new in Messaging Server
7.0-0.04) defer and defer-submit, and (new in MS 8.0.1.3/8.0.2.1) deliver-disabled.

(Note that the acceptalladdresses channel option, if used, modifies the timing and form
of recipient rejections due to "disabled" status.)

52.15.6.7 Direct LDAP attribute name Base options: ldap_permid
(LDAP attribute name)

The ldap_permid base option names a user or group LDAP attribute that contains a
permanent identifier for the user. The value of such an attribute will be used preferentially as
the identifier for the user or group which is used for such purposes as:

• The unique name (or domain-qualified unique name) for the user in the message store. This
includes delivery by ims_master or LMTP, as well as mailbox autocreation by popd, imapd
or other store tools.

• The canonical user name for authentication purposes.

• The identifier associated with store access connections when using the imsconnutil tool.

• The identifier used when storing (but not when displaying or accessing) IMAP ACLs or
shared folder user names.

• May be part of the DN of the user's entry in the LDAP directory.

52–122 Messaging Server Reference

Direct LDAP attribute name MTA
options

The use of the permanent identifier in constructing the user's unique mailbox name in the
message store means that attempting to change a user's permanent identifier tends to be quite
problematic (a change breaks access to the user's old mailbox). So make every attempt to avoid
changing the value of this attribute, value; use some other LDAP attribute for values subject to
change (such as the user's legal name, display name or login name) and leave the permanent
identifier as an arbitrary, immutable identifier.

The attribute specified by the ldap_permid option must be indexed in LDAP as it is used for
canoncial user identity searches in LDAP.

In most cases, the value of the attribute named by the ldap_uid MTA option will be used as
the user or group permanent identifier if the attribute named by ldap_permid is not present
in the user or group entry. However, for canoncial identity search operations, such as those
necessary for Cassandra store account auto-creation, the attribute named by ldap_permid
must be set for the correct LDAP entry to be found so autocreation can proceed.

52.15.6.8 ldap_extid Option

The ldap_extid base option names a user LDAP attribute which contains an external display
identifier for the user for use with the Cassandra Message Store. The external display identifier
must be unique within the user's domain. IMAP shared folders and Access Control Lists
(ACLs) are internally stored using the identifier from the ldap_permid attribute, but when
shared folder owner names or ACLs are changed or sent over IMAP, the external display
identifier is used. If the external display identifier does not contain '@', then the domain name
will be added for domains other than the default domain.

The Cassandra Message Store caches a copy of the value of this attribute in the 'userid' column
of the user table in the ms_mbox meta data keyspace. To refresh the stored value, TBD.

The default value for the ldap_extid base option is the value of the ldap_uid MTA option
and that option defaults to 'uid'.

52.15.6.9 Direct LDAP attribute name MTA options: ldap_uid
(LDAP attribute name)

The ldap_uid MTA option names a user or group LDAP attribute which will be used as
the user or group identifier if no permanent identifier (specified by the ldap_permid option)
is present in the user or group entry. This option also impacts the default login identity for
authentication purposes.

Note that although the MTA option ldap_uid exists to rename/redirect the attribute used
for some MTA, Store and authentication purposes, other components of Messaging Server such
as some MTA and Message store utilties (including improgram, imquotacheck, and
mboxutil) hard-code use of the 'uid' attribute and may not work correctly with an alternate
attribute name.

Although this option is documented to permit a list of LDAP attribute names, that facility did
not work prior to Messaging Server 8.0.2 and as of MS 8.0.2, only the first attribute name in the
list will be honored for certain operations (including MTA and store authentication).

Regarding the use of the LDAP attribute named by ldap_uid, normally uid, and its
valid values: As of MS 6.2, the MTA checks that there is only one such attribute; as of MS
6.3-0.15, the MTA also checks that there is only one value set for the one attribute. As of
7.0-0.04, the MTA checks that the uid value is no more than 128 octets; a longer value

MTA options 52–123

Direct LDAP attribute name MTA
options

will result in the user entry being considered invalid. (This check is performed because
various lower layer libraries have hard buffer limits that preclude longer uids.) See also the
ldap_uid_invalid_chars MTA option which enforces restrictions (some required by other
components such as the Message Store) on what characters are permitted in a uid value. See
also the ldap_domain_attr_uid_separator MTA option which names a domain level
LDAP attribute specifying, for addresses in that domain, what character separates the UID
from the domain name.

52.15.6.10 Direct LDAP attribute name MTA options:
ldap_mlsrange (LDAP attribute name)

RESTRICTED: Not yet used.

52.15.6.11 Direct LDAP attribute name MTA options: ldap_capture
(LDAP attribute name)

The ldap_capture MTA option specifies the names of one or more user or group LDAP
attributes that will be used to trigger automatic "capturing" of user or group e-mail messages.
There is no default; (no pre-defined LDAP attribute for this purpose). Typically, the LDAP
attribute defined for this purpose, and named by ldap_capture, should be set up with an
ACI so that it is not even visible, let alone modifiable, by the users themselves.

As of the 8.0.1 release, the attribute mailCaptureAddress has been added to the Messaging
Server schema for use with this attribute. However, it is still not the default.

Note that the LDAP attribute(s) specified by the ldap_domain_attr_capture MTA option
have similar semantics except the attribute(s) are placed in the domain rather than in the user
or group entry.

The value(s) of the LDAP attribute named by ldap_capture should be the address(es) to
which the "captured" message copies should be sent. When a user has this attribute specified
on their LDAP entry, both messages sent to them, as well as from them, will also have a
"capture" copy (normally an encapsulated copy with an entirely new message envelope) sent
to the specified address.

New in Messaging Server 7.4-18.01, the capture_format_default MTA option
controls whether message copies generated due to use of the LDAP attribute named by
ldap_capture default to being in DSN encapsulated format, or to being in another format
such as envelope "journal" format. Also new in Messaging Server 7.4-18.01, values of the LDAP
attribute may be tagged to explicitly specify the format on a per-target-address basis: for
instance, the tag ;format-report selects the usual DSN encapsulated format, whereas the
tag ;format-journal selects the envelope "journal" format. New in the 8.0 release are the
attribute tags ;format-message, ;format-report-header, and ;format-journal-
header, which can be used to specify header-only capture addresses.

52.15.6.12 Direct LDAP attribute name MTA options:
ldap_recipientlimit (LDAP attribute name)

The ldap_recipientlimit MTA option specifies the name of a user or group LDAP
attribute that will be used to store a sending-user-specific maximum number of envelope
recipients per message submission (additional recipients are rejected), analogous to the
recipientlimit channel option. There is no default; (no pre-defined LDAP attribute for this
purpose).

52–124 Messaging Server Reference

Direct LDAP attribute name MTA
options

New behavior in MS 6.3-0.15 is that a per-user setting such as this will override more general
settings such as a channel recipientlimit, rather than (as previously) the minimum of all
applicable limits being applied; thus new in MS 6.3-0.15, a particular user can be allowed to
send messages to a large number of recipients as an exception to more general, smaller limits,
by setting a large value for this attribute while general small limits remain in effect. (But a
TCP/IP-channel-specific option setting of ALLOW_RECIPIENTS_PER_TRANSACTION can not
be overridden!)

See also the ldap_recipientcutoff MTA option for a similar but slightly different effect.
And see the ldap_domain_attr_recipientlimit MTA option for similar effect at the
domain, rather than user, level.

52.15.6.13 Direct LDAP attribute name MTA options:
ldap_recipientcutoff (LDAP attribute name)

The ldap_recipientcutoff MTA option specifies the name of a user or group LDAP
attribute that will be used to store a sending-user-specific maximum number of envelope
recipients per message submission (messages with more recipients are rejected entirely),
analogous to the recipientcutoff channel option. There is no default; (no pre-defined
LDAP attribute for this purpose).

New behavior in MS 6.3-0.15 is that a per-user setting such as this will override more general
settings, rather than (as previously) the minimum of all applicable limits being applied; thus
new in MS 6.3-0.15, a particular user can be allowed to send messages to a large number of
recipients as an exception to more general, smaller limits, by setting a large value for this
attribute while general small limits remain in effect.

See also the ldap_recipientlimit MTA option for a similar but slightly different effect.
And see the ldap_domain_attr_recipientcutoff MTA option for a similar effect at the
domain, rather than user, level.

52.15.6.14 Direct LDAP attribute name MTA options:
ldap_sourceblocklimit (LDAP attribute name)

The ldap_sourceblocklimit MTA option specifies the name of a user or group LDAP
attribute used to store a sending-user-specific maximum message size, analogous to
the sourceblocklimit channel option. There is no default, (no pre-defined LDAP
attribute for this purpose); if desiring to have the exact same sending limit as receiving limit,
then the ldap_sourceblocklimit MTA option could be set to the same value as the
ldap_blocklimit MTA option, which by default is mailMsgMaxBlocks.

New behavior in MS 6.3-0.15 is that a per-user setting such as the value of the LDAP attribute
named by ldap_sourceblocklimit will override more general settings, rather than (as
previously) the minimum of all applicable limits being applied; thus new in MS 6.3-0.15, a
particular user can be allowed to send large messages as an exception to more general, smaller
limits, by setting a large value for this attribute while general small limits remain in effect.

(Note also that the acceptalladdresses channel option, if used, may modify the timing
and form of rejections due to exceeding message size constraints.)

52.15.6.15 Direct LDAP attribute name MTA options:
ldap_source_channel (LDAP attribute name)

MTA options 52–125

Direct LDAP attribute name MTA
options

(New in MS 6.3-0.15) The ldap_source_channel MTA option specifies the name of a
user or group LDAP attribute which will be used to store the source channel for messages
submitted by this user. There is no default; (no pre-defined LDAP attribute for this purpose).

The value of the LDAP attribute named by ldap_source_channel sets a source channel to
which to "switch" for messages submitted by the user, if userswitchchannel is set on the
current source channel. If the user LDAP attribute is present, it will override any domain-level
setting made via the LDAP attribute named by the ldap_domain_attr_source_channel
MTA option.

52.15.6.16 Direct LDAP attribute name MTA options:
ldap_source_optinN for N=1--8 (LDAP attribute name)

(New in MS 6.3-0.15) The ldap_source_optinN MTA options specify, respectively, the
names of user/group LDAP attributes used to select "opt in" to spam/virus filter package N,
N=1--8. These MTA options have no default (no pre-defined LDAP attribute for the purpose).
If it is desired to have "opt in" for the messages a user sends, just the same as for the messages
a user receives, then both ldap_source_optinN and ldap_optinN could be set to the same
LDAP attribute.

The LDAP attributes named by ldap_source_optinN are the sending user analogues of
ldap_optinN. In particular, the presence in a user entry of the LDAP attribute named by
ldap_source_optinN normally (but see the spamfilterN_null_optin MTA options)
causes messages sent from that user to be "opted-in" for spam/virus filtering via the spam/virus
filter package N, with the "opt-in" value specified by the value of the LDAP attribute.

52.15.6.17 Direct LDAP attribute name MTA options:
ldap_preferred_language (LDAP attribute name)

The ldap_preferred_language MTA option specifies the name of a user or group LDAP
attribute, by default preferredLanguage, used to store the user's language preference.

The schema sets an ACI on the default attribute, preferredLanguage, to allow user
modification.

The MTA's typical NOTIFICATION_LANGUAGE mapping table and DISPOSITION_LANGUAGE
mapping table check the value of this attribute (for the sender of the original message)
when deciding in what language to send back notification messages. Also, as of
MS 6.3-0.15, the MTA has the ability to chose between multiple LDAP attribute
values with different language tags and determine the preferred value to use. The
language tags in effect are compared against the preferred language information
associated with the envelope From address. In MS 6.3-0.15, the only attributes
receiving this treatment are those named by ldap_autoreply_subject (normally
mailAutoReplySubject), ldap_autoreply_text (normally mailAutoReplyText),
ldap_autoreply_text_internal (normally mailAutoReplyTextInternal),
ldap_autoreply_addresses, ldap_prefix_text, ldap_suffix_text,
ldap_spare_4, and ldap_spare_5. As of Messaging Server 7.0-3.01, the attribute
named by (new in that version) ldap_spare_6 also receives such treatment. As of
Messaging Server 7.2-7.02, any of the ldap_spare_N named attributes may optionally,
depending upon the setting of the corresponding spare_N_separator MTA option, receive
preferredLanguage treatment; the default for the spare_N_separator MTA options
is such that the ldap_spare_4, ldap_spare_5, ldap_spare_6 named attributes receive

52–126 Messaging Server Reference

Direct LDAP attribute name MTA
options

preferredLanguage treatment. As of Messaging Server 7.3-11.01, the attribute named by
ldap_add_tag also receives such treatment.

52.15.6.18 Direct LDAP attribute name MTA options:
ldap_preferred_country (LDAP attribute name)

The ldap_preferred_language MTA option specifies the name of a user or group LDAP
attribute used to store a country preference; there is no default.

52.15.6.19 Direct LDAP attribute name MTA options:
ldap_nosolicit (LDAP attribute name)

The ldap_nosolicit MTA option specifies the name of a user or group level LDAP attribute
intended for users or groups to specify what classes of e-mail solicitations they wish to reject.
See RFC 3865 (NO-SOLICITING SMTP Extension) for a discussion of the SMTP extension
utilized.

The ldap_nosolicit MTA option has no default: there is no LDAP attribute already in
the schema for this purpose. If adding some LDAP attribute to the schema for this purpose,
consider establishing it with an ACI allowing users to modify their own attribute's value
themselves.

Note that the MTA expects the value of whatever attribute is named by ldap_solicit to
consist of a comma-separated list of strings.

52.15.6.20 Direct LDAP attribute name MTA options:
ldap_routing_address (LDAP attribute name)

The ldap_routing_address MTA option specifies the name of a user or group LDAP
attribute, by default mailRoutingAddress, used to specify an address to which to route,
overriding (as of MS 6.0) the usual mailHost and mailDeliveryOption interpretation.

52.15.6.21 Direct LDAP attribute name MTA options:
ldap_delivery_option (LDAP attribute name)

The ldap_delivery_option MTA option specifies the name of a user or group LDAP
attribute, by default mailDeliveryOption, used to specify the delivery choices of the user
or group. See the delivery_options MTA option for discussion of the MTA's interpretation
of the values stored in this named attribute. In particular, note that the MTA (with normal
delivery_options configuration) interprets absence of this attribute on a user entry as
meaning to perform delivery to the user mailbox, and interprets absence of this attribute on
a group entry as meaning to perform delivery to the group members. (This provides sensible
and useful behavior for user or group entries lacking any explicit mailDeliveryOption
value. However, note that this behavior also has implications when updating a user or group
entry: in particular, if deleting the one and only mailDeliveryOption setting from a user
or group, consider what delivery behavior you may wish to explicitly set in its place, as in
the absence of any explicit setting you will get normal delivery; explicitly setting a value of
nomail, or setting the user status or group status to a value such as inactive or disabled
can be done if you truly desire no delivery effect.)

The schema sets an ACI on the default attribute, mailDeliveryOption, to allow user
modification.

MTA options 52–127

https://tools.ietf.org/html/rfc3865

Direct LDAP attribute name MTA
options

52.15.6.22 Direct LDAP attribute name MTA options:
ldap_personal_name (LDAP attribute name)

The ldap_personal_name MTA option specifies the name of a user or group LDAP attribute
used to specify a user's (or group's) choice of personal name. This option has no default; some
sites might choose to set it to cn.

If the ldap_personal_name MTA option is set, then the value of the specified attribute (if
present in a user entry) will be inserted by the MTA as a personal name wherever the user's
address appears in message headers (overriding any originally present personal name for the
user that might have been present), including when generating vacation messages on behalf
of the user. Note that (as of 6.2p3 for normal messages, or as of 6.2p6 for generated messages
such as vacation messages) the MTA will quote the value obtained from LDAP, if required
according to the quoting rules for personal names (technically "phrases") given in RFC 822.

For messages submitted through MSHTTP (messages submitted from web clients), see also the
fullfromheader MSHTTP option.

52.15.6.23 Direct LDAP attribute name MTA options:
ldap_source_conversion_tag (LDAP attribute name)

The ldap_source_conversion_tag MTA option specifies the name of a user or group
LDAP attribute which may be used to specify a conversion tag to add to messages sent
from that user or group. The option has no default; sites that wish to use exactly the same
conversion tag(s) for messages from as well as to a user might set it to mailConversionTag,
while sites wishing to distinguish directionality in conversion tags will wish to use a distinct
LDAP attribute.

Note that there is a domain level analogue,
ldap_domain_attr_source_conversion_tag.

52.15.6.24 Direct LDAP attribute name MTA options:
ldap_sender_sieve (LDAP attribute name(s))

New in MS 8.0.1. The ldap_sender_sieve MTA option specifies the name of an LDAP
attribute -- or a list of such names -- used to store a specific-to-that-ser Sieve filter that is
applied to messages sent by that authenticated user.

This option has no default value.

52.15.6.25 Direct LDAP attribute name MTA options:
ldap_primary_address (LDAP attribute name)

The ldap_primary_address MTA option specifies the name of the user or group LDAP
attribute which contains the primary email address for that user or group, by default the mail
attribute.

Compare with the MTA options that specify the names of LDAP attributes which store email
aliases, ldap_alias_addresses which by default names the mailAlternateAddress
attribute (or in the sims40 schema, names the rfc822mailalias attribute), and
ldap_equivalence_addresses which by default names the mailEquivalentAddress.

52–128 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Direct LDAP attribute name MTA
options

52.15.6.26 Direct LDAP attribute name options:
ldap_alias_addresses (list of LDAP attribute names)

The ldap_alias_addresses MTA option specifies the name(s) of the user or group LDAP
attribute(s) in which e-mail aliases will be stored. That is, this MTA option names LDAP
attributes whose values (addresses) are accepted as equivalent to (aliases for) the canonical
mail address on incoming messages; see also the ldap_mail_reverses MTA option which
controls just which attributes (addresses) are normally converted to the canonical mail address
during reverse_url application via the $Q substitution sequence. Use a comma-separated
list if specifying more than one LDAP attribute name.

The default for ldap_alias_addresses depends upon the schema tag in effect, as set
via the ldap_schematag MTA option. Normally, with ldap_schematag=ims50 set
(or with ldap_schematag=nms41 set), the default for ldap_alias_addresses is
mailAlternateAddress. But if ldap_schematag=sims40 is set, then the default is
instead ldap_alias_addresses=rfc822mailalias.

The aliases stored in a ldap_alias_addresses LDAP attribute are subject to
address reversal (canonicalization back to the value of the LDAP attribute named by
ldap_primary_address, normally the mail attribute) by the MTA. In contrast, for an alias
intended to be emitted as well as recognized, see the ldap_equivalence_addresses MTA
option, normally naming the mailEquivalentAddress LDAP attribute.

52.15.6.27 Direct LDAP attribute name options:
ldap_equivalence_addresses (list of LDAP attribute names)

The ldap_equivalence_addresses MTA option specifies the name(s) of the user or group
LDAP attribute(s) in which e-mail aliases will be stored. That is, this MTA option names the
LDAP attributes containing addresses accepted as equivalent to the canonical mail address
for incoming messages; such equivalent addresses are also allowed to appear on outgoing
messages (are not converted during reverse_url application). (In contrast, for aliases that
will be accepted but canonicalized, see the ldap_alias_addresses MTA option.) Use a
comma-separated list if specifying more than one LDAP attribute name.

Note that when setting the ldap_equivalence_addresses MTA option
to a non-default value, it is also usually appropriate/necessary to modify the
ldap_mail_aliases MTA option correspondingly (to include those attribute(s) named by
ldap_equivalence_addresses).

52.15.6.28 Direct LDAP attribute name options: ldap_optinN (list of
LDAP attribute names)

The ldap_optinN, N=1,...,8, MTA options may be used to name user or group LDAP
attributes whose presence in an entry normally (but see the spamfilterN_null_optin
MTA options) causes messages addressed to that user or group to be "opted-in" for spam/virus
filter package processing (by spam/virus filter package N), with the opt-in value specified by
the value of the attribute.

See also the ldap_source_optinN MTA options, which serve an analogous purpose for
messages coming from a user or group.

 These MTA options have no default, though the Schema Reference Manual (back in the days
where it was assumed that at most one spam/virus filter package would be used) suggested

MTA options 52–129

Direct LDAP attribute name MTA
options

using an LDAP attribute named mailAntiUBEService. The mailAntiUBEService
attribute is defined in the schema. If you will be using multiple spam/virus filter packages and
wish to have distinct attributes for the different spam/virus filter packages, you may define
new attributes modelled on mailAntiUBEService, perhaps using suggestive attribute
names corresponding to their function, e.g., milterOptin, etc..

For aliases defined via an alias option, the analogous option is alias_optinN; or for aliases
defined in the alias file, the analogous setting is the Alias file named parameter [OPTINn].

52.15.6.29 Direct LDAP attribute name options: ldap_optoutN (list
of LDAP attribute names)

The ldap_optoutN, N=1,...,8, MTA options may be used to name user or group LDAP
attributes whose presence in an entry normally (but see the spamfilterN_null_optin
MTA options) causes messages addressed to that user or group to be "opted-out" of spam/virus
filter package processing (by spam/virus filter package N).

Note that the scope of opt-outs only extends to the immediate expansion values of the LDAP
entry - if the entry expands to another alias that alias will not honor the outer level opt-out.

These MTA options have no default.

For aliases defined via an alias option, the analogous option is alias_optinN; or for aliases
defined in the alias file, the analogous setting is the Alias file named parameter [OPTOUTn].

52.15.6.30 Direct LDAP attribute name MTA options:
ldap_presence (LDAP attribute name)

RESTRICTED: Not yet used.

52.15.6.31 Direct LDAP attribute name MTA options:
ldap_autosecretary (LDAP attribute name)

RESTRICTED: Not yet used.

52.15.6.32 Direct LDAP attribute name MTA options:
ldap_alternate_recipient (list of LDAP attribute names)

(New in MS 8.0.1.) The ldap_alternate_recipient MTA option specifies the name(s) of
one or more user-level LDAP attributes whose value(s) are alternate recipient addresses to
whom to send messages that cannot be delivered to this primary recipient.

Compare with the alias option alias_alternate_recipient.

52.15.6.33 Direct LDAP attribute name MTA options:
ldap_start_date (LDAP attribute name)

The ldap_start_date MTA option specifies the name of a user (or group) LDAP attribute,
by default vacationStartDate, used to specify the start of the date/time range for which
to apply autoreply (vacation) processing. (The MTA in principle allows this attribute on
group/mailing list entries as well as on user entries, but the typical configuration of the
delivery_options MTA option disables interpreting the attribute's value in the case of
groups. Futhermore, the Sun schema does not, as distributed, allow this attribute on group/

52–130 Messaging Server Reference

Direct LDAP attribute name MTA
options

mailing list entries. See the delivery_options MTA option for some discussion regarding
enabling use of this attribute on group/mailing list entries.)

The value stored in the named attribute should have the format YYYYMMDDHHMMSSZ, which
note is in the GMT timezone. An autoreply will only be generated if the current time is after
the time specified by this attribute and inclusive limit processing is in effect, or before the
specified limit if exclusive time limit processing is in effect. No start date limit is enforced if
this attribute is missing.

The schema sets an ACI on the default attribute, vacationStartDate, to allow user
modification.

52.15.6.34 Direct LDAP attribute name MTA options:
ldap_end_date (LDAP attribute name)

The ldap_end_date MTA option specifies the name of a user (or group) LDAP attribute, by
default vacationEndDate, used to specify the end of the date/time range for which to apply
autoreply (vacation) processing. (The MTA in principle allows this attribute on group/mailing
list entries as well as on user entries, but the typical configuration of the delivery_options
MTA option disables interpreting the attribute's value in the case of groups. Futhermore, the
Sun schema does not, as distributed, allow this attribute on group/mailing list entries. See the
delivery_options MTA option for some discussion regarding enabling use of this attribute
on group/mailing list entries.)

The value stored in the named attribute should have the format YYYYMMDDHHMMSSZ, which
note is in the GMT timezone. An autoreply will only be generated if the current time is before
the time specified by this attribute and inclusive limit processing is in effect, or after the
specified limit if exclusive time limit processing is in effect.

The schema sets an ACI on the default attribute, vacationEndDate, to allow user
modification.

52.15.6.35 Direct LDAP attribute name MTA options:
ldap_conversion_tag (LDAP attribute name)

The ldap_conversion_tag MTA option specifies the name of a user or group LDAP
attribute, by default mailConversionTag, which may be used to specify a conversion tag to
add to messages addressed to that user or group.

Compare with ldap_source_conversion_tag which may be used to specify a conversion
tag to add to messages sent from, instead of to, a user or group. Note that there is also a domain
level analogue, ldap_domain_attr_conversion_tag.

52.15.6.36 Direct LDAP attribute name MTA options:
ldap_detourhost_optin (LDAP attribute name)

The ldap_detourhost_optin MTA option specifies the name of a user or group LDAP
attribute which may be used to specify "opt-in" to "detour" routing, as specified by the
aliasoptindetourhost channel option. Normally the presence of the specified attribute
on a user or group entry causes "opt in", however, see the aliasdetourhost_null_optin
MTA option.

Note that there is a domain level analogue, ldap_domain_attr_detourhostoptin.

MTA options 52–131

Direct LDAP attribute name MTA
options

52.15.6.37 Direct LDAP attribute name MTA options:
ldap_blocklimit (LDAP attribute name)

The ldap_blocklimit MTA option specifies the name of a user or group LDAP attribute, by
default mailMsgMaxBlocks, which may be used to specify the maximum size, in MTA blocks
(see the block_size MTA option), of messages that may be sent to the user or group.

New in MS 6.3, this attribute will also (for messages that have no return-of-content policy
flag already) cause messages sent from this user that are larger than the specified size to
automatically get the non-return-of-content NOTARY flag set, to make it more likely that the
user will be able to receive any bounce notifications about such message.

Compare with the alias option alias_blocklimit, with the domain-level
ldap_domain_attr_blocklimit MTA option, and with the similar limit on messages a
user may send controlled via the ldap_sourceblocklimit.

(Note that the acceptalladdresses channel option, if used, may modify the timing and
form of rejections due to exceeding message size constraints.)

52.15.6.38 Direct LDAP attribute name MTA options:
ldap_mailhost (list of LDAP attribute names)

The ldap_mailhost MTA option specifies the names of user (or group) LDAP
attributes, by default mailHost. used to specify the mail host of the user (or
group). When a user (or group) has no explicitly specified mailHost, see also the
ldap_domain_attr_default_mailhost MTA option which if set, specifies a domain level
LDAP attribute for the MTA to use as a default mailHost for users without their own explicit
value set.

Normally, only the host specified by mailHost attribute may interpret (act on) a user's
delivery options; however, in the case where all such delivery options are "host-independent",
as on an MTA that delivers via LMTP to "back end" message store systems, or when a user
entry only contains some particular delivery options that happen to be host-independent,
then processing can continue even on other hosts. This attribute is optional for groups and
mailing lists. If present for a group or mailing list, it specifies that that host and only that
host can expand the group or list; if absent, any host can expand the group or list. For a
user for whom a mailHost is required (such as a user with mailbox delivery option set,
when mailbox delivery is host-dependent per delivery_options, with no domain level
ldap_domain_attr_default_mailhost attribute value set), absence of a mailHost
attribute will cause a temporary alias expansion error:

452 4.0.0 temporary error returned by alias expansion: address

(or whatever text is configured via the error_text_alias_temp MTA option), the same
sort of error that would occur if an LDAP problem had occurred during the lookup of the user
entry (after an LDAP lookup of the domain had already succeeded).

For some further discussion of the use of mailHost, see the Overview of Direct LDAP
discussion.

For the MMP, see the analogous mailhostattrs option; for authentication results, see the
similar ldap_auth_attr_mail_host option.

52–132 Messaging Server Reference

Direct LDAP attribute name MTA
options

52.15.6.39 Direct LDAP attribute name MTA options:
ldap_disk_quota (LDAP attribute name)

The ldap_disk_quota MTA option names the user LDAP attribute used to set user disk
quota, by default the mailQuota LDAP attribute. See also the ldap_message_quota MTA
option, which names an LDAP attribute storing a per-message quota (size limit).

By default, the value stored in the LDAP attribute named by ldap_disk_quota is assumed
to have units of bytes. Suffix characters on the value allow units of other than bytes: K
(kilobytes), M (megabytes), or G (gigabytes) are supported.

52.15.6.40 Direct LDAP attribute name MTA options:
ldap_message_quota (LDAP attribute name)

The ldap_message_quota MTA option names the user LDAP attribute, by default
mailMsgQuota, used to set a user per-message quota (size limit). See also the
ldap_disk_quota MTA option, which names an LDAP attribute storing user disk quota.

52.15.6.41 Direct LDAP attribute name MTA options:
ldap_program_info (LDAP attribute name)

The ldap_program_info MTA option specifies the name of a user or group LDAP attribute,
by default mailProgramDeliveryInfo, whose value specifies the program which the
pipe channel will run to effect delivery for a mailDeliveryOption value of program.
(A mailDeliveryOption value of program causes routing to the pipe channel per the
program clause of the delivery_options MTA option's value; then the pipe channel
interprets the value of mailProgramDeliveryInfo to determine how to perform the actual
delivery.)

The schema sets an ACI on the default attribute, mailProgramDeliveryInfo, to allow user
modification.

52.15.6.42 Direct LDAP attribute name MTA options:
ldap_delivery_file (LDAP attribute name list)

The ldap_delivery_file MTA option specifies the name of user or group LDAP attributes,
by default mailDeliveryFileURL and mailDeliveryFile, whose values specify a file to
which to "deliver" messages. (This might, for instance, be a list posting archive file.)

52.15.6.43 Direct LDAP attribute name MTA options: ldap_spare_N
(LDAP attribute name)

The ldap_spare_N, N=1,...,18, MTA options may be used to name LDAP attributes
intended for site-customizable purposes, to be made known to the MTA (and hence be more
easily accessible in MTA LDAP URLs and certain MTA mapping tables, etc.). ldap_spare_6
was new in Messaging Server 7.0-3.01; ldap_spare_N for N=7,...,18 were new in
Messaging Server 7.2-7.02.

When a ldap_spare_N option has been set to the name of an LDAP attribute, then the value
of the named attribute may be substituted in MTA LDAP URLs via the $NE substitution
sequence.

MTA options 52–133

Direct LDAP attribute name MTA
options

For N=1,...,6, the value of the named attribute may optionally (see the include_spares1
MTA option) be included in various recipient access mapping table probes and FROM_ACCESS
mapping table probes. And as of 8.0, such named LDAP attribute values may also be included
(see the include_spares2 MTA option) in FORWARD mapping table probes.

ldap_spare_4, ldap_spare_5, and ldap_spare_6 will be included in SIEVE_EXTLISTS
mapping table probes. And as of MS 6.3, the MTA supports the use of multiple, language-
tagged values for these (ldap_spare_4, ldap_spare_5, and ldap_spare_6) attributes.
When multiple, language-tagged values are present, the MTA will preferentially use
the value tagged as being in the language preference expressed in a header line such as
Accept-Language:, or in the absence of such header lines will use the value tagged as being
in the language of the envelope From user's ldap_preferred_language (normally
preferredLanguage) attribute's value.

See the respective spare_N_separator MTA options for configuration of whether a
ldap_spare_N LDAP attribute is allowed to have multiple values and if so, how to handle
the multiple values.

For aliases defined in the alias file (legacy configuration), or via alias options (Unified
Configuration), see the [SPARE*] alias file named parameters or alias_spare* alias options,
respectively.

52.15.6.44 Direct LDAP attribute name MTA options:
ldap_autoreply_mode (LDAP attribute name)

The ldap_autoreply_mode MTA option specifies the name of the user (or group) LDAP
attribute which will store what "type" of autoreply/vacation message the user or group wishes
to emit. The default LDAP attribute for this purpose is mailAutoReplyMode. (The MTA
in principle allows this attribute on group/mailing list entries as well as on user entries,
but the typical configuration of the delivery_options MTA option disables support for
interpreting the attribute's value in the case of groups. Futhermore, the Sun schema does not,
as distributed, allow this attribute on group/mailing list entries. See the delivery_options
MTA option for some discussion regarding enabling use of this attribute on group/mailing list
entries.)

The schema sets an ACI on the default attribute, mailAutoReplyMode, to allow user
modification.

Supported values for the value of the LDAP attribute named by ldap_autoreply_mode,
e.g., mailAutoReplyMode, are echo and reply. These modes will appear in the Sieve script
(constructed by the MTA on the fly, based on these LDAP values) as nonstandard :echo
and :reply arguments to the vacation action. echo will produce a "processed" message
disposition notification (MDN) that contains the original message as returned content. reply
will produce a pure reply containing only the reply text. An illegal value won't manifest as any
argument to the vacation action and this will produce an MDN containing only the headers of
the original message.

52.15.6.45 Direct LDAP attribute name MTA options:
ldap_autoreply_subject (LDAP attribute name)

The ldap_autoreply_subject MTA option specifies the name of the user (or group)
LDAP attribute which will store the text to put on the Subject: header line of any autoreply/
vacation message generated on behalf of the user. The default LDAP attribute for this purpose

52–134 Messaging Server Reference

Direct LDAP attribute name MTA
options

is mailAutoReplySubject. (The MTA in principle allows this attribute on group/mailing
list entries as well as on user entries, but the typical configuration of the delivery_options
MTA option disables this support in the case of groups. Futhermore, the Sun schema does not,
as distributed, allow this attribute on group/mailing list entries. See the delivery_options
MTA option for some discussion regarding enabling use of this attribute on group/mailing list
entries.)

The schema sets an ACI on the default attribute, mailAutoReplySubject, to allow user
modification.

In whatever attribute is named by ldap_autoreply_subject, the value in the attribute
must be a UTF-8 string. This value gets passed as the :subject argument to the vacation
action.

As of MS 6.2-2.01, the special strings $SUBJECT and $FROM are supported for use in this
attribute's value, causing substitution of the original message's Subject: field value or From:
field value, respectively, into the generated string.

New in MS 8.0.2.2, substitutions from the vacationStartDate and vacationEndDate are also also
available. These substitutions take the form $<attribute><part> where $<attribute>
is "B" for the start (beginning) date or "E" for the end date, and <part> is one of the date parts
defined in RFC 5260 section 4.2. So for example, the string $EDATE" would substitute in the
end date in YYYY-MM-DD format. These substitution strings are treated as regular text if the
corresponding attribute is not defined or is set to an invalid value.

Note that new in MS 6.3-0.15, the MTA supports the use of multiple, language-tagged
values, for this attribute. When multiple, language-tagged values are present, the MTA
will preferentially use the value tagged as being in the language preference expressed in
a header line such as Accept-Language:, or in the absence of such header lines the MTA's
next choice will be the value tagged as being in the language of the envelope From user's
ldap_preferred_language (normally preferredLanguage) attribute's value.

Prior to 7.0.5, the length of the value of mailAutoReplySubject was limited to 256
characters (though the maximum length of a :subject parameter in a Sieve vacation action
has always been 1024 characters). As of 7.0.5, the length limit for mailAutoReplySubject
has been raised so that at least 900 characters can be specified.

52.15.6.46 Direct LDAP attribute name MTA options:
ldap_autoreply_text (LDAP attribute name)

The ldap_autoreply_text MTA option specifies the name of the user (or group) LDAP
attribute which will store the vacation/autoreply text (the "reason" string) returned to
all senders except users in the recipient's own domain. The default LDAP attribute for
this purpose is mailAutoReplyText. (The MTA in principle allows this attribute on
group/mailing list entries as well as on user entries, but the typical configuration of the
delivery_options MTA option disables this support in the case of groups. Futhermore, the
Sun schema does not, as distributed, allow this attribute on group/mailing list entries. See the
delivery_options MTA option for some discussion regarding enabling use of this attribute
on group/mailing list entries.) If the recipient's LDAP entry does not have a value specified
for the attribute named by ldap_autoreply_text (normally the mailAutoReplyText
attribute), then note that "external" senders will receive no vacation message. Note that when
generating an autoreply/vacation message back to a fellow "internal" user, the value of the
attribute named by the ldap_autoreply_text_internal MTA option will be used instead
of the value of the attribute named by the ldap_autoreply_text MTA option.

MTA options 52–135

https://tools.ietf.org/html/rfc5260

Direct LDAP attribute name MTA
options

The schema sets an ACI on the default attribute, mailAutoReplyText, to allow user
modification.

As of MS 6.2-2.01, the special strings $SUBJECT and $FROM are supported for use in this
attribute's value, causing substitution of the original message's Subject: field value or From:
field value, respectively, into the generated body text string.

New in MS 8.0.2.2, substitutions from the vacationStartDate and vacationEndDate are also also
available. These substitutions take the form $<attribute><part> where $<attribute>
is "B" for the start (beginning) date or "E" for the end date, and <part> is one of the date parts
defined in RFC 5260 section 4.2. So for example, the string $EDATE" would substitute in the
end date in YYYY-MM-DD format. These substitution strings are treated as regular text if the
corresponding attribute is not defined or is set to an invalid value.

Note that new in MS 6.3-0.15, the MTA supports the use of multiple, language-tagged
values, for this attribute;. When multiple, language-tagged values are present, the MTA
will preferentially use the value tagged as being in the language preference expressed in
a header line such as Accept-Language:, or in the absence of such header lines the MTA's
next choice will be the value tagged as being in the language of the envelope From user's
ldap_preferred_language (normally preferredLanguage) attribute's value.)

52.15.6.47 Direct LDAP attribute name MTA options:
ldap_autoreply_text_internal (LDAP attribute name)

d

The ldap_autoreply_text_internal MTA option specifies the name of the user (or
group) LDAP attribute which will store the vacation/autoreply text (the "reason" string)
returned to all senders in the recipient's own domain. (The MTA in principle allows this
attribute on group/mailing list entries as well as on user entries, but the typical configuration
of the delivery_options MTA option disables this support in the case of groups.
Futhermore, the Sun schema does not, as distributed, allow this attribute on group/mailing list
entries. See the delivery_options MTA option for some discussion regarding enabling use
of this attribute on group/mailing list entries.) If the recipient's LDAP entry does not have a
value specified for this attribute, then internal users receive the external vacation text, stored in
the ldap_autoreply_text MTA option.

The schema sets an ACI on the default attribute, mailAutoReplyTextInternal, to allow
user modification.

As of MS 6.2-2.01, the special strings $SUBJECT and $FROM are supported for use in this
attribute's value, causing substitution of the original message's Subject: field value or From:
field value, respectively, into the generated body text string.

New in MS 8.0.2.2, substitutions from the vacationStartDate and vacationEndDate are also also
available. These substitutions take the form $<attribute><part> where $<attribute>
is "B" for the start (beginning) date or "E" for the end date, and <part> is one of the date parts
defined in RFC 5260 section 4.2. So for example, the string $EDATE" would substitute in the
end date in YYYY-MM-DD format. These substitution strings are treated as regular text if the
corresponding attribute is not defined or is set to an invalid value.

Note that new in MS 6.3-0.15, the MTA supports the use of multiple, language-tagged
values, for this attribute;. When multiple, language-tagged values are present, the MTA
will preferentially use the value tagged as being in the language preference expressed in
a header line such as Accept-Language:, or in the absence of such header lines the MTA's

52–136 Messaging Server Reference

https://tools.ietf.org/html/rfc5260
https://tools.ietf.org/html/rfc5260

Direct LDAP attribute name MTA
options

next choice will be the value tagged as being in the language of the envelope From user's
ldap_preferred_language (normally preferredLanguage) attribute's value.)

52.15.6.48 Direct LDAP attribute name MTA options:
ldap_autoreply_addresses (LDAP attribute name)

The ldap_autoreply_addresses MTA option specifies the name of an LDAP attribute
in which to store additional, recognized-for-vacation-message-purposes, versions of the
recipient's address; there is no default (no pre-defined LDAP attribute for this purpose). (The
MTA in principle allows this attribute on group/mailing list entries as well as on user entries,
but the typical configuration of the delivery_options MTA option disables this support in
the case of groups. Futhermore, the Sun schema does not, as distributed, define an attribute
for this purpose. See the delivery_options MTA option for some discussion regarding
enabling use of this attribute on group/mailing list entries.) If adding such an LDAP attribute
to the schema, this is an attribute to consider making user self-modifiable (have an ACI set on
it allowing user modification).

The attribute named by the ldap_autoreply_addresses MTA option takes multiple
values specifying additional addresses to recognize as "one's own" for purposes of whether to
generate a vacation message. That is, it is an analogue of the :addresses argument for the
Sieve vacation action. As of MS 6.3-0.15, the MTA supports use of language-tagged values
for the attribute named by ldap_autoreply_addresses.

52.15.6.49 Direct LDAP attribute name MTA options:
ldap_autoreply_timeout (LDAP attribute name)

The ldap_autoreply_timeout MTA option specifies the name of the user (or group) LDAP
attribute which will store the duration (the "timeout") between successive vacation/autoreply
responses to any given sender. (The MTA in principle allows this attribute on group/mailing
list entries as well as on user entries, but the typical configuration of the delivery_options
MTA option disables this support in the case of groups. Futhermore, the Sun schema does not,
as distributed, allow this attribute on group/mailing list entries. See the delivery_options
MTA option for some discussion regarding enabling use of this attribute on group/mailing list
entries.)

The schema sets an ACI on the default attribute, mailAutoReplyTimeOut, to allow user
modification.

The value in the attribute named by ldap_autoreply_timeout should be represented in
units of hours. If the attribute's value is 0, then a response is sent back every time a message
is received. The attribute's value will be converted to the nonstandard argument to the
vacation action. (Note that the standard Sieve vacation action is defined to only support
the :days argument for this purpose and doesn't allow a value of 0; so this support for shorter
intervals between responses is an extension in the MTA's Sieve support.)

If the attribute named by ldap_autoreply_timeout is not present in a user entry, then
a default timeout will be obtained from the user's domain (from the attribute named by the
ldap_domain_attr_autoreply_timeout MTA option) if the domain has its own timeout,
or otherwise from the autoreply_timeout_default MTA option.

52.15.6.50 Direct LDAP attribute name MTA options: ldap_filter
(LDAP attribute name)

MTA options 52–137

Direct LDAP attribute name MTA
options

The ldap_filter MTA option specifies the name of the LDAP attribute which will store the
Sieve filter of the user or group.

The schema sets an ACI on the default attribute, mailSieveRuleSource, to allow user
modification.

52.15.6.51 Direct LDAP attribute name MTA options:
ldap_parental_controls (LDAP attribute name)

The ldap_parental_controls MTA option names a user or group LDAP attribute to use
to select whether or not a user will have "parental controls" (or "head-of-household controls")
applied. There is no default; (no pre-defined LDAP attribute for this purpose). Note that when
adding an attribute for this purpose, this typically should not be an attribute modifiable by
the user himself; instead, it should typically instead be modifiable by the "parent" ("head-of-
household") user.

For the LDAP attribute named by ldap_parental_controls, any of the values Yes, 1,
or true is considered to be requesting parental controls. If such a value is present enabling
parental controls, then the LDAP attribute named by the ldap_filter_reference MTA
option will be consulted to determine who (what DN in the directory) is the "parent" of ("head-
of-household" for) this user.

52.15.6.52 Direct LDAP attribute name MTA options:
ldap_filter_reference (LDAP attribute name)

The ldap_filter_reference MTA option specifies the name of a user or group LDAP
attribute to be used to locate the "parent" of ("head-of-household" for) the current user or
group entry. There is no default; (no pre-defined LDAP attribute for this purpose). Note that
when adding an attribute for this purpose, this typically should not be an attribute modifiable
by the user himself; instead, it should typically instead be modifiable by the "parent" ("head-of-
household") user.

If parental controls are enabled for a user (see the ldap_parental_controls MTA option),
then the attribute named by this ldap_filter_reference MTA option specifies the DN of
the entry that contains the actual parent/head of household Sieve filter (typically, that is, the
DN of the head of household user). (The LDAP attribute within that head of household user
entry containing the Sieve filter is specified by the ldap_hoh_filter MTA option, which
defaults to mailSieveRuleSource. The lookup requests both the Sieve filter, contained in
the attribute named by the ldap_hoh_filter MTA option, and the owner, contained in the
LDAP attribute named by the ldap_hoh_owner MTA option, which defaults to mail.)

52.15.6.53 Direct LDAP attribute name MTA options:
ldap_forwarding_address (LDAP attribute name)

The ldap_forwarding_address MTA option specifies the name of a user or group
LDAP attribute which will store a forwarding address for the user or group, to be
used if mailDeliveryOption attribute (or whatever attribute is named by the
ldap_delivery_option MTA option) has a value of forward.

The schema sets an ACI on the default attribute, mailForwardingAddress, to allow user
modification.

52–138 Messaging Server Reference

Direct LDAP attribute name MTA
options

52.15.6.54 Direct LDAP attribute name MTA option:
ldap_reprocess (LDAP attribute name)

The ldap_reprocess MTA option specifies the name of a user or group LDAP attribute
which will control whether alias expansion of the entry is deferred to the reprocess channel
vs. being performed immediately (in-line). The default is mailDeferProcessing.
The value of the attribute overrides the MTA's general default controlled by the
defer_group_processing MTA option.

Valid values for the LDAP attribute named by ldap_reprocess include: "Yes", "No", or
(new in MS 6.3p1) "AFTER_AUTH". "AFTER_AUTH" causes LDAP attributed based access
checks, such as mgrpAllowedBroadcaster, etc.., to get performed "in-line", while deferring
membership expansion (as well as a second check of the LDAP attribute based access checks)
to the reprocess channel. New in Messaging Server 7.0u3, it is also valid to specify as the
attribute's value a channel name (e.g., "process_special" or the name of some similar,
special, reprocess_* or process_* channel variant), and in this case the group or list
expansion will be deferred to the specified channel.

For several examples of use of the attribute named by ldap_reprocess, see the discussion of
Moderated mailing lists.

For aliases defined in Unified Configuration via alias options, see alias_reprocess. Or for
aliases defined in legacy configuration in the alias file, see the [REPROCESS] alias file named
parameter.

52.15.6.55 Direct LDAP attribute name MTA option:
ldap_jettison_domain (LDAP attribute name list)

(New in Messaging Server 7.3-11.01.) The ldap_jettison_domain MTA option specifies the
name of an LDAP attribute, by default mgrpJettisonDomain, whose value(s) name domains
from which to silently discard all messages. Glob-style wildcards may be used in the value(s).
Multiple attributes and multiple values are allowed.

52.15.6.56 Direct LDAP attribute name MTA option:
ldap_jettison_url (LDAP attribute name list)

(New in Messaging Server 7.3-11.01.) The ldap_jettison_url MTA option specifies the
name of an LDAP attribute, by default mgrpJettisonBroadcasters, whose value(s)
specify a URL identifying mail addresses whose messages should be jettisoned if sent to this
group. Multiple attributes and multiple values are allowed; mailto: URLs are acceptable.
Each URL is expanded into a list of addresses and each address is checked against the current
envelope From address. A match marks the message to be jettisoned and bypasses all other
group checks and expansion. Substitution processing will be performed on this URL If bit 6
(value 64) of the process_substitutions MTA option is set.

52.15.6.57 Direct LDAP attribute name MTA options: ldap_list_id
(LDAP attribute name)

RESTRICTED.

The ldap_list_id MTA option specifies the name of a group LDAP attribute, by default
mgrpUniqueId, used to store a unique identifier for the group/list.

MTA options 52–139

Direct LDAP attribute name MTA
options

The presence of the LDAP attribute named by ldap_list_id on group or list entries in
LDAP is optional for groups/lists in general, but is required for groups to be managed by the
MTA's MAILSERV. The attribute's presence and value provides the linkage between mluser
entries and the group definition in the user/group tree.

52.15.6.58 Direct LDAP attribute name MTA options:
ldap_reject_action (LDAP attribute name)

The ldap_reject_action MTA option specifies the name of a group LDAP attribute, by
default mgrpMsgRejectAction, whose value will control what to do when a message "fails"
a posting check.

For whatever LDAP attribute is named by ldap_reject_action, the MTA supports values
for the attribute of reply and toModerator, meaning, respectively, to issue a message
rejection, or to redirect the message to the group/list moderator address. Note that for a value
of reply (meaning that the attempted post will be rejected), the value of a mgrpRejectText
or mgrpMsgRejectText LDAP attribute (or more precisely, the value of whatever attributes
are named by the ldap_reject_text MTA option) may be used to control the error text to
send back to the attempting poster.

52.15.6.59 Direct LDAP attribute name MTA options:
ldap_reject_text (LDAP attribute name list)

The ldap_reject_text MTA option specifies the names of group LDAP attributes, by
default mgrpRejectText, mgrpMsgRejectText, whose value will control what error text
to use when rejecting an attempted posting to a list due to the attempted posting failing an
access check. Because the error text may appear in SMTP responses, it must conform to SMTP
response limitations. In particular, it may consist merely of a single line of text limited to the
US-ASCII charset. (If the value contains eight bit characters, the entire value will be ignored. If
the value contains more than a single line of text, only the first line of text will be used.)

52.15.6.60 Direct LDAP attribute name MTA options:
ldap_auth_policy (LDAP attribute name)

The ldap_auth_policy MTA option specifies the name of a group LDAP attribute, by
default mgrpBroadcasterPolicy. The LDAP attribute named by ldap_auth_policy
may contain multiple, comma-separated keywords. Supported keywords in the
value include SMTP_AUTH_REQUIRED and AUTH_REQ (require SMTP AUTH use to
post), PASSWORD_REQUIRED and PASSWD_REQUIRED and PASSWD_REQ (require a
password to post), and OR and AND (affect combination of multiple access controls), and
NO_REQUIREMENTS. New in Messaging Server 7.0u4 are the keywords LIST_OPEN,
LIST_MEMBERS, LIST_MODERATE_NONMEMBERS, LIST_MODERATE_MEMBERS,
LIST_MODERATE, supported only for lists with a mgrpUniqueId (normally MAILSERV lists).

52.15.6.61 Direct LDAP attribute name MTA options:
ldap_cant_url (LDAP attribute name)

The ldap_cant_url MTA option names the group LDAP attribute, by default
mgrpDisallowedBroadcaster, whose value specifies via an MTA URL a list of (envelope
From) addresses not allowed to post to the group or list. Note that depending on the setting of
the process_substitutions MTA option, certain substitution sequences may be used in
the URL.

52–140 Messaging Server Reference

Direct LDAP attribute name MTA
options

Note that the use_auth_return, use_canonical_return, and use_orig_return MTA
options select which form of a message's envelope From address is compared in making the
access determination.

52.15.6.62 Direct LDAP attribute name MTA options:
ldap_auth_url (LDAP attribute name)

The ldap_auth_url MTA option names the group LDAP attribute, by default
mgrpAllowedBroadcaster, whose value specifies via an MTA URL a list of (envelope
From) addresses allowed to post to the group or list. Note that depending on the setting of the
process_substitutions MTA option, certain substitution sequences may be used in the
URL.

As of MS 6.3, when a URL is expanded to get back a list of those sending addresses allowed to
post, the MTA will request (for local users) aliases as well as canonical addresses; this means
that lists where only members are allowed to post do allow local members to post using their
defined aliases.

Note that the use_auth_return, use_canonical_return, and use_orig_return MTA
options select which form of a message's envelope From address is compared in making the
access determination.

52.15.6.63 Direct LDAP attribute name MTA options:
ldap_cant_domain (LDAP attribute name)

The ldap_cant_domain MTA option names the group LDAP attribute, by default
mgrpDisallowedDomain, whose values specify domains not allowed to post to the group or
list.

Note that the use_auth_return, use_canonical_return, and use_orig_return MTA
options select which form of a message's envelope From address is compared in making the
access determination.

52.15.6.64 Direct LDAP attribute name MTA options:
ldap_auth_domain (LDAP attribute name)

The ldap_auth_domain MTA option names the group LDAP attribute, by default
mgrpAllowedDomain, whose values specify domains allowed to post to the group or list. As
of MS 6.2, the value of the attribute supports use of the asterisk character, *, as a wildcard. For
instance, a value of *.domain.com means to allow all subdomains of domain.com, though
not domain.com itself; to allow domain.com and all its subdomains, use two values for the
attribute, domain.com and *.domain.com.

Note that the use_auth_return, use_canonical_return, and use_orig_return MTA
options select which form of a message's envelope From address is compared in making the
access determination.

52.15.6.65 Direct LDAP attribute name MTA options:
ldap_maximum_message_size (LDAP attribute name)

The ldap_maximum_message_size MTA option specifies the name of a group LDAP
attribute, by default mgrpMsgMaxSize, whose value sets an upper limit, in units of MTA

MTA options 52–141

Direct LDAP attribute name MTA
options

blocks (block_size), on how large of message may be posted to the group or list. (Compare
with the user LDAP attribute mailMsgMaxBlocks.)

(Note that the acceptalladdresses channel option, if used, may modify the timing and
form of rejections due to exceeding message size constraints.)

52.15.6.66 Direct LDAP attribute name MTA options:
ldap_maximum_messages_per_day (LDAP attribute name)

RESTRICTED: Not yet fully implemented.

52.15.6.67 Direct LDAP attribute name MTA options:
ldap_auth_password (LDAP attribute name list)

The ldap_auth_password MTA option specifies the name of a group level LDAP attribute,
by default mgrpAuthPassword, used to store a password needed to post to the group.

In iMS 5.2 the value of this attribute was saved if the mgrpBroadcasterPolicy attribute was
set to require a password, and the value was then checked against the Approved: field once the
header became available. The Approved: field was removed from the header once the check
was complete. But this did not allow for routing to the moderator in the event of a password
check failure.

In the MS 6.0 release and later, the presence of a mgrpAuthPassword attribute forces a
reprocessing pass. As the message is enqueued to the reprocessing channel, the password is
taken from the header and placed in the envelope. Then while reprocessing, the password is
taken from the envelope and checked against this attribute. Additionally, only passwords that
actually are used are removed from the header field.

Note that the or_clauses MTA option acts on the mgrpAuthPassword attribute in the same
way it acts on the other access check attributes.

52.15.6.68 Direct LDAP attribute name MTA options:
ldap_moderator_url (LDAP attribute name list)

The ldap_moderator_url MTA option specifies the name of a group level LDAP attribute,
by default mgrpModerator, that stores a list of URLs to be expanded into a series of
addresses. The interpretation of this address list depends on the value of the LDAP attribute
named (by default, mgrpMsgRejectAction) by the ldap_reject_action MTA option.

If the LDAP attribute named by ldap_reject_action has its value set to "TOMODERATOR",
then the LDAP attribute named by ldap_moderator_url specifies the moderator
address(es) the message is to be sent to should any of the access checks fail. If the LDAP
attribute named by ldap_reject_action is missing or has any other value, then the
ldap_moderator_url attribute's expanded address list is compared with the envelope
From address. (Setting particular bits in any of the MTA options use_auth_return,
use_canonical_return, or use_orig_return can control which "form" or version
of the envelope From address is compared.) Processing continues if there is a match. If
there isn't a match, then the message is again sent to all of the addresses specified by the
ldap_moderator_url attribute's value(s).

Expansion of the ldap_moderator_url attribute's values is implemented by making the
values of this attribute the list of URLs for the group; that is, any list of member RFC 822
addresses or DNs previously determined for the group is (temporarily) cleared, and the

52–142 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Direct LDAP attribute name MTA
options

delivery options for the group (the ldap_moderator_url expanded values) are set to
"members". Any additional, subsequent group LDAP attributes (as listed in Table of MTA
LDAP attribute name options) will be ignored at this stage of processing.

Note that as of MS 6.3, substitution processing will be performed on the URL value(s)
of the LDAP attribute named by ldap_moderator_url if bit 2 (value 4) of the
process_substitutions MTA option is set.

52.15.6.69 Direct LDAP attribute name MTA options:
ldap_group_last_access_time (LDAP attribute name)

(New in 8.0.) The ldap_group_last_access_time MTA option specifies the name
of an LDAP attribute used to keep track of the last access time for email groups defined
in LDAP. If this attribute is present in a group's LDAP entry, then the MTA will update
the attribute each time the group is successfully accessed for purposes of sending mail or
expanding a mailing list. RFC 3339 format, an Internet profile of ISO 8601 format, is used, e.g.,
"2013-09-29T17:38:52Z".

In order to prevent excessive LDAP writes, the LDAP attribute named by the
ldap_group_last_access_time MTA option is read prior to writing and a write is only
done if the current time exceeds the stored time by at least 30 minutes. (A write is also done if
the attribute does not contain a valid RFC 3339 time, making it possible to set the initial value
to something like "<never accessed>".)

52.15.6.70 Direct LDAP attribute name MTA options:
ldap_group_url1 (LDAP attribute name)

The ldap_group_url1 MTA option names an LDAP attribute which may be placed on a
group entry in LDAP as one way of identifying members of the group. The default LDAP
attribute name is mgrpDeliverTo; its value should be a URL identifying the members of the
group. See also the ldap_group_url2 MTA option which names another LDAP attribute (by
default memberURL) of analogous purpose.

See also the ldap_url_result_mapping MTA option; with it, a mapping table can be used
to manipulate the value(s) and results of expanding the value(s) of the attributes named by
ldap_group_url1 and ldap_group_url2.

52.15.6.71 Direct LDAP attribute name MTA options:
ldap_group_url2 (LDAP attribute name)

The ldap_group_url2 MTA option names an LDAP attribute which may be placed on a
group entry in LDAP as one way of identifying members of the group. The default LDAP
attribute name is memberURL; its value should be a URL identifying the members of the
group. See also the ldap_group_url1 MTA option which names another LDAP attribute (by
default mgrpDeliverTo) of analogous purpose.

See also the ldap_url_result_mapping MTA option; with it, a mapping table can be used
to manipulate the value(s) and results of expanding the value(s) of the attributes named by
ldap_group_url1 and ldap_group_url2.

52.15.6.72 Direct LDAP attribute name MTA options:
ldap_group_dn (LDAP attribute name)

MTA options 52–143

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3339

Direct LDAP attribute name MTA
options

The ldap_group_dn MTA option names an LDAP attribute which may be placed on a group
entry in LDAP as one way of identifying members of the group. The default LDAP attribute
name is uniqueMember.

Typically, and in default use, the value in the LDAP attribute named by ldap_group_dn
is a DN (Distinguished Name), so that the members of the group are being identified via
their position (DN) in the DIT. Note that such a DN may specify an entire subtree of the
DIT. Specifically, in basic use the value of the LDAP attribute named by ldap_group_dn is
substituted into the URL template defined by the group_dn_template MTA option, whose
default value is:

ldap:///$A?mail?sub?(mail=*)

where the uniqueMember (or whatever LDAP attribute named by ldap_group_dn) value is
substituted in place of the $A.

However, the exact use/interpretation of the LDAP attribute named by ldap_group_dn
is controlled not only by the group_dn_template MTA option, but optionally
may be further modified via the GROUP_TEMPLATES mapping table, as well as any
special mapping table specified for that group via the group LDAP attribute named
by the ldap_url_result_mapping MTA option. As of Messaging Server 7.0.5, if a
GROUP_TEMPLATES mapping table exists, then it is used to determine what template (what
alternative to group_dn_template) to apply to the value of the LDAP attribute named by
ldap_group_dn. The GROUP_TEMPLATES mapping probe is of the form

object-classes|attribute-name|attribute-value

If the mapping sets the $Y output flag, then the mapping result is used as the template instead
of the group_dn_template MTA option's value.

Multiple values of the LDAP attribute named by ldap_group_dn are allowed on a group
entry, e.g., multiple uniqueMember values are allowed, but only one attribute name may be
specified as ldap_group_dn. To use another named LDAP attribute (perhaps in a slightly
different way) use ldap_group_dn2.

As of Messaging Server 7.0.5 any mapping specified by the ldap_url_result_mapping
MTA option will also be applied to the results produced by the ldap_group_dn and
ldap_group_dn2 attributes.

52.15.6.73 ldap_group_dn2 Option

The ldap_group_dn2 MTA option names an LDAP attribute in which to store a list of DNs,
or other identifiers, for group members.

The ldap_group_dn2 MTA option names an LDAP attribute which may be placed on a
group entry in LDAP as a way of identifying members of the group. The ldap_group_dn2
MTA option has no default. The purpose of the ldap_group_dn2 MTA option, and whatever
LDAP attribute it names, is primarily to allow alternate approaches to identifying group
members, beyond the identification-via-DN typically achieved via the uniqueMember LDAP
attribute (more precisely, whatever LDAP attribute is named by the ldap_group_dn MTA
option) being expanded via the URL template specified via the group_dn_template MTA
option.

52–144 Messaging Server Reference

Direct LDAP attribute name MTA
options

While the LDAP attribute named by ldap_group_dn2 may be used to store a DN (like
the default use of the LDAP attribute named by ldap_group_dn), more typically it
would be used to store some other means of identifying members of a group, with the
GROUP_TEMPLATES mapping table then being configured to make "appropriate" use of the
value of the LDAP attribute named by ldap_group_dn2. For instance, if

ldap_group_dn2=listID

and a GROUP_TEMPLATES mapping table is configured as

GROUP_TEMPLATES

! Normal use of ldap_group_dn attribute uniqueMember
 |uniqueMember| $Yldap:///$A?mail?sub?(mail=*)
! Find users who have a memberOf attribute set to the value of the group's
! memberID attribute
 |listID| $Yldap:///baseDN-of-users??sub?(memberOf=$$A)

then "traditional" groups with membership defined via values of the uniqueMember LDAP
attribute will continue to work as always, while also allowing groups to have membership
defined as "all users who have a memberOf attribute value matching the group's listID
attribute value".

Multiple values of the LDAP attribute named by ldap_group_dn2 are allowed on a group
entry, e.g., continuing the example above multiple memberID values would be allowed, but
only one attribute name may be specified as ldap_group_dn2. Allowing the capability
to have two differently named LDAP attributes, potentially expanded via different URL
templates, is the reason why ldap_group_dn2 exists in addition to ldap_group_dn.

As of Messaging Server 7.0.5 any mapping specified by the ldap_url_result_mapping
MTA option will also be applied to the results produced by the ldap_group_dn and
ldap_group_dn2 attributes.

52.15.6.74 Direct LDAP attribute name MTA options:
ldap_group_rfc822 (LDAP attribute name list)

The ldap_group_rfc822 MTA option specifies the name of one or more group LDAP
attributes, by default mgrpRFC822MailMember and RFC822MailMember, whose value(s)
will be RFC 822 email addresses of members of the group.

52.15.6.75 Direct LDAP attribute name MTA options:
ldap_url_result_mapping (LDAP attribute name)

The ldap_url_result_mapping MTA option names an LDAP attribute which may be
placed on a group entry in LDAP for purposes of manipulating the results of lookups of
the mgrpDeliverTo and memberURL attributes (or more precisely, the attributes named
by the ldap_group_url1 and ldap_group_url2 MTA options), and as of Messaging
Server 7.0-5, also uniqueMember (the attributes named by the ldap_group_dn and
ldap_group_dn2 MTA options). Currently there is no default value (default attribute) for
ldap_url_result_mapping; to use this feature, you must choose a (new) attribute and add
it to the schema (or disable schema checking).

MTA options 52–145

https://tools.ietf.org/html/rfc822

Direct LDAP attribute name MTA
options

This attribute's value should name an MTA mapping table to be applied to any resulted
returned by expanding either a mgrpDeliverTo or a memberURL attribute, or as of
Messaging Server 7.0-5 also a uniqueMember attribute as well as any custom attribute named
by ldap_group_dn2. The mapping probe will be of the form:

LDAP-URL|LDAP-result

where LDAP-URL is the (literal string) value of the mgrpDeliverTo, memberURL, or
uniqueMember attribute itself (or custom attribute named by ldap_group_dn2), and LDAP-
result is the value returned from LDAP for that LDAP-URL query. If the mapping returns
with $Y set, then the mapping result string will replace the LDAP result for alias processing
purposes. If the mapping returns with $N set, then the result will be skipped.

In particular, this mechanism can be used to define groups based on attributes that don't
contain proper email addresses.

52.15.6.76 Direct LDAP attribute name MTA options:
ldap_errors_to (LDAP attribute name)

The ldap_errors_to MTA option specifies the name of a group LDAP attribute used to
specify an override Envelope From address. Presence of the specified attribute on a group
entry is thecritical distinction between whether a group entry is merely a group -- an e-mail
auto-forwarder (equivalent to having lots of aliases) -- vs. whether the entry defines a true
mailing list. In particular, the presence of such an attribute on a group LDAP entry has
implications for notification messages regarding the list definition (e.g., syntactic errors in list
member addresses, or syntactic errors in a list-specific Sieve filter) or regarding delivery of
messages to list members, as well as for the handling of delivery receipt requests.

Typically, the value stored in the specified LDAP attribute will be some normal email address.
But two (three, as of MS 6.3) special syntaxes are also supported.

Setting the value stored in the specified LDAP attribute to an address of the form user
+*@domain has a special meaning. The asterisk character will be expanded into a
representation of the recipient address; thus a separate copy of the list message is generated
for each recipient, with each copy including the intended recipient address as a subaddress
within the return address. If delivery errors subsequently occur, the subaddress will indicate
which was the failing address. In some cases, when dealing with remote MTAs that generate
nonstandard, uninformative delivery error messages, this can in theory be useful as a way
of determining which recipient address(es) failed, even when the bounce message's inner
content is relatively uninformative. And it may make processing of such bounce messages by
an automated program more convenient. However, the tradeoff is that such per-user-specific
return address values require that a separate message copy be generated and sent for each
recipient; for a "large" list, with many recipients in the same destination domains, this can
be a large increase in overhead (a large decrease in efficiency). And with more prevalent use
nowadays of standard format notification messages, the "need" for this sort of approach, with
its extra (potentially large) overhead, is much less (since the intended recipient information can
instead be extracted from the standard field in the contents of a standard format notification
message).

(New in MS 6.3, but not working until fix for CR # 6530591.) Setting the value stored in the
specified LDAP attribute to the forward slash character, /, has a special meaning. It tells the
MTA to revert to using the original envelope From address that had been present on the
incoming message, yet in all other respects use mailing list semantics. This can be useful for
setting up mailing lists that report all forms of list errors to the original sender.

52–146 Messaging Server Reference

Direct LDAP attribute name MTA
options

New in MS 6.3, the process_substitutions MTA option can enable use of the $S
(recipient's subaddress) substitution in the value. This would tend to be of interest when
defining a "meta-list".

For users defined via alias options, see instead the alias_envelope_from alias option; or
in legacy configuration alias file or alias database definitions, see the [ERRORS_TO] alias file
named parameter.

52.15.6.77 Direct LDAP attribute name MTA options:
ldap_delay_notifications (LDAP attribute name)

The ldap_delay_notifications MTA option specifies the name of a group LDAP
attribute, by default mgrpDelayNotifications, whose value controls whether
NOTIFY=DELAY should be set on list messages. In the specified LDAP attribute, the MTA
supports values of yes and no.

52.15.6.78 Direct LDAP attribute name MTA options:
ldap_digest_interval (LDAP attribute name)

RESTRICTED. Not yet fully implemented.

52.15.6.79 Direct LDAP attribute name MTA options:
ldap_add_header (LDAP attribute name)

The ldap_add_header MTA option specifies the name of the group LDAP attribute, by
default mgrpAddHeader, which contains header lines to add to messagtes posted to the list.
 Such header lines might include, for instance, the List-*: header lines suggested in RFC 2369
(URLs for Mail List Commands through Message Headers).

See also the ldap_remove_header MTA option, for removing header lines from postings to
the group or list.

For groups or lists defined via alias file or alias database (legacy configuration) or alias options
(Unified Configuration), see instead the [HEADER_ADDITION] alias file named parameter or
alias_header_addition alias option, respectively.

Use of mgrpAddHeader (or whatever LDAP attribute is named by ldap_add_header) is
a very simple approach when unconditional additional of certain header lines is desired.
For more complex requirements, consider setting a Sieve filter on the group or list (see the
ldap_filter MTA option) that makes use of the Sieve editheader extension.

52.15.6.80 Direct LDAP attribute name MTA options:
ldap_remove_header (LDAP attribute name)

The ldap_remove_header MTA option specifies the name of a group LDAP attribute, by
default mgrpRemoveHeader, whose value specifies header lines to remove from postings to
the group or list.

See also the ldap_add_header MTA option, for adding header lines to postings to the group
or list.

For groups or lists defined via alias file or alias database (legacy configuration) or alias options
(Unified Configuration), see instead the [HEADER_TRIM] alias file named parameter or
alias_header_trim alias option, respectively.

MTA options 52–147

https://tools.ietf.org/html/rfc2369
https://tools.ietf.org/html/rfc2369

Direct LDAP attribute name MTA
options

Use of mgrpRemoveHeader (or whatever LDAP attribute is named by
ldap_remove_header) is a very simple approach when unconditional removal of certain
header lines is desired. For more complex requirements, consider setting a Sieve filter on
the group or list (see the ldap_filter MTA option) that makes use of the Sieve editheader
extension.

52.15.6.81 Direct LDAP attribute name MTA options: ldap_add_tag
(LDAP attribute name)

The ldap_add_tag MTA option specifies the name of a group LDAP attribute used to specify
prefix text to insert on the Subject: header line of messages to this recipient/list, analogous to
the alias_tag alias option, the [TAG] named mailing list parameter, or the effect of the Sieve
addtag action.

As of MS 6.3, the vertical bar, |, character should not be used in the tag text; in previous
versions, the space character should not have been used in tag text, as such use would
interfere with the MTA's internal mechanisms for checking whether a tag was already
present. As of Messaging Server 7.3, the MTA supports language-tagged values for the
attribute named by ldap_add_tag, and will select amongst such according to the user's
preferredLanguage value (more precisely, the value of the LDAP attribute named by the
ldap_preferred_langauge MTA option).

52.15.6.82 Direct LDAP attribute name MTA options:
ldap_prefix_text (LDAP attribute name)

The ldap_prefix_text MTA option specifies the name of a group LDAP attribute, by
default mgrpMsgPrefixText, to be used to store text to be inserted into messages posted to
the group or list.

This prefix text from the LDAP attribute named by ldap_prefix_text (by default the
mgrpMsgPrefixText attribute) is inserted into messages as they undergo group expansion.
Prior to Messaging Server 7.0-3.01, text could only be inserted into initial, TEXT/PLAIN parts;
new in Messaging Server 7.0-3.01, text can be inserted into the first text part within a nested
multipart (excluding multipart/alternative). The attribute values are stored in LDAP in UTF-8;
this is then converted by the MTA to match the charset of the part that the text is inserted into.

Support for HTML prefix text, insertion of text into text/html parts, and processing multiple
parts in multipart/alternative was added in MS 8.0. As of MS 8.0.1.3 control over the HTML
attribuates on the inserted text is also possible; see the prefix_text_attr MTA option for
details.

For users defined via alias options, see instead the alias_prefix_text alias option; or in
legacy configuration alias file or alias database definitions, see the [PREFIX_TEXT] alias file
named parameter. Also see the addprefix Sieve action.

52.15.6.83 Direct LDAP attribute name MTA options:
ldap_suffix_text (LDAP attribute name)

The ldap_suffix_text MTA option specifies the name of a group LDAP attribute, by
default mgrpMsgSuffixText, to be used to store text to be inserted into messages posted to
the group or list.

52–148 Messaging Server Reference

Direct LDAP attribute name MTA
options

This suffix text from the LDAP attribute named by mgrpMsgSuffixText is inserted into
messages as they undergo group expansion. Prior to Messaging Server 7.0-3.01, text could
only be inserted into initial, TEXT/PLAIN parts; new in Messaging Server 7.0-3.01, text can be
inserted into the first text part within a nested multipart (excluding multipart/alternative). The
attribute values are stored in LDAP in UTF-8; this is then converted by the MTA to match the
charset of the part that the text is inserted into.

Support for HTML suffix text, insertion of text into text/html parts, and processing multiple
parts in multipart/alternative was added in MS 8.0. As of MS 8.0.1.3 control over the HTML
attributes on the inserted text is also possible; see the suffix_text_attr MTA option for
details.

For users defined via alias options, see instead the alias_suffix_text alias option; or in
legacy configuration alias file or alias database definitions, see the [SUFFIX_TEXT] alias file
named parameter. Also see the addsuffix Sieve action.

52.15.6.84 Direct LDAP attribute name MTA options:
ldap_expandable (LDAP attribute name)

The ldap_expandable MTA option specifies the names of user and group LDAP attributes,
by default mgmanMemberVisibility and expandable, used to define who (in addition
to the group or list owner) may view the membership or a group or list; in the context of the
MTA, this means who will get the group or list expanded in response to the SMTP EXPN
command.

Supported values for the attribute(s) named by the ldap_expandable MTA option are:

• anyone (which means that the group or list has no specific-to-itself restrictions and all
SMTP EXPN commands are performed, unless restricted by general channel or MTA
configuration restrictions: see for instance the expndisable channel option),

• all or synonymously true, (which means that only authenticated users -- hence users who
have an account and provide their password---will be able to expand the group or list),

• and none.

Unrecognized values are interpreted as none.

Note that group or list access controls (e.g., use of attributes such as
mgrpAllowedBroadcaster, etc., or an mgrpBroadcasterPolicy setting of
SMTP_AUTH_REQUIRED), also impose restrictions on who is allowed to view list membership.
All applicable conditions must be met in order for group or list membership to be viewed
(expanded)!

52.15.6.85 Direct LDAP attribute name MTA options:
ldap_auth_mapping1 (LDAP attribute name),
ldap_auth_mapping2 (LDAP attribute name),
ldap_auth_mapping3 (LDAP attribute name),
ldap_auth_mapping4 (LDAP attribute name)

New in Messaging Server 7.0.5.

MTA options 52–149

Direct LDAP attribute name MTA
options

The ldap_auth_mappingN MTA options may be used to specify the names of group
attributes to include in GROUP_AUTH mapping table probes. These MTA options have no
default.

52.15.6.86 Direct LDAP attribute name MTA options:
ldap_check_header (LDAP attribute name)

New in Messaging Server 7.0.5.

The ldap_check_header MTA option is used to specify the name of a group attribute used
to determine whether or not the message header should be checked for duplication of list
recipient addresses. The option does not have a default value.

If the specified attribute has a value of "jettison", the list copy for the recipient specified in
the header will jettisoned. If the value is "discard", the system will behave as if the system
Sieve had performed a discard on the list copy for that recipient.

The same capability is also available to aliases defined in the alias file or database via the
(also new in Messaging Server 7.0.5) [HEADER_CHECK] named parameter, or in Unified
Configuration via the alias_header_check alias option.

This capability depends on address typing being enabled - either the addrtypescan or
addrtypescanbccdefault channel option needs to be set on the source channel.

Although this capability has the potential to reduce unwanted message duplicates, *extreme*
care should be exercised when it is used. Headers fields are trivially forged, making it possible
to send a message that claims to have been sent to someone when in fact it has not. This could
potentially be used to suppress the list copy for a given recipient.

52.15.6.87 Head of household LDAP attribute MTA options:
ldap_hoh_filter (LDAP attribute name), ldap_hoh_owner (LDAP
attribute name)

The ldap_hoh_filter and ldap_hoh_owner MTA options specify the names of the LDAP
attributes used to store the critical Head of Household data in users who are themselves a
Head of Household. These options default to, respectively, mailSieveRuleSource and
mail. That is, ldap_hoh_filter specifies the name of the LDAP attribute in which a Head
of Household user stores the Sieve filter used for Head of Household purposes (which may
or may not be a different Sieve filter than the user's own, personal Sieve filter; the default
mailSieveRuleSource value causes the Head of Household Sieve filter to be the same as
the user's personal Sieve filter, but sites that wish a distinction may set ldap_hoh_filter to
point to a different, site-specific LDAP attribute). Since proper evaluation of (and especially
error reporting regarding) a Sieve filter requires an "owner" e-mail address associated with
that Sieve filter, the ldap_hoh_owner MTA option specifies what LDAP attribute in the Head
of Household user's entry will be the address associated with the Sieve; again, the default
value of mail means that the Head of Household user's own, personal e-mail address will
be used, but sites that wish a distinction may set ldap_hoh_owner to some different, site-
specific LDAP attribute.

These MTA options specify the names of the LDAP attributes to return when a user entry has
parental controls/head of household controls set on it (see the ldap_parental_controls
MTA option) so that a lookup of the user's "parent" (see the ldap_filter_reference MTA
option) is performed: in the "parent" entry, the attributes specified by ldap_hoh_filter and
ldap_hoh_owner are found and their values returned.

52–150 Messaging Server Reference

Direct LDAP attribute name MTA
options

52.15.6.88 Direct LDAP attribute name MTA options:
ldap_attr_domain1_schema2 (LDAP attribute name)

The ldap_attr_domain1_schema2 MTA option may be used to override, for MTA domain
lookup purposes, the Domain Map library code's default use of the sunPreferredDomain
LDAP attribute as the name of the Schema 2 mode domain level LDAP attribute which
specifies the domain name within the domain entry. If this MTA option is not set (the default),
then the Domain Map's default of sunPreferredDomain is used, as normal.

52.15.6.89 Direct LDAP attribute name MTA options:
ldap_attr_domain2_schema2 (LDAP attribute name)

The ldap_attr_domain2_schema2 MTA option may be used to override, for MTA domain
lookup purposes, the Domain Map library code's default use of the associatedDomain
LDAP attribute as the name of the Schema 2 mode domain level LDAP attribute which
specifies any secondary domain names (aliases for the canonical domain name) within the
domain entry. If this MTA option is not set (the default), then the Domain Map's default of
associatedDomain is used, as normal.

52.15.6.90 Direct LDAP attribute name MTA options:
ldap_attr_domain_search_filter (LDAP attribute name)

The ldap_attr_domain_search_filter MTA option specifies the name
of the LDAP attribute in the global configuration template area (see the
ldap_global_config_templates MTA option) that is used to store the domain search
filter template. For instance, one attribute that might be used for such a purpose (hence to
which this option might be set) would be inetDomainSearchFilter.

52.15.6.91 Direct LDAP attribute name MTA options:
ldap_domain_attr_basedn (LDAP attribute name)

The ldap_domain_attr_basedn MTA (and base) option names the domain LDAP attribute,
by default inetDomainBaseDn, used to store the base DN for the domain's users and groups.

The presence in a domain entry of the attribute named by ldap_domain_attr_basedn is
not always obligatory with Schema 2, as with Schema 2 in the domain attribute's absence user
and group entries will be assumed to reside directly under the domain entry.

Note that the mapping table domain map attribute substitution $}domain,_base_dn_{
returns either the value of the LDAP attribute named by the ldap_domain_attr_basedn
MTA option (so normally the value of the inetDomainBaseDN LDAP attribute), or if no
such LDAP attribute is set as can be the case in Schema 2 mode, returns a constructed DN
corresponding to the DN for the domain entry.

52.15.6.92 Direct LDAP attribute name MTA options:
ldap_domain_attr_alias (LDAP attribute name)

The ldap_domain_attr_alias MTA (and base) option specifies the name of an LDAP
attribute (by default aliasedObjectName) used to identify domain alias entries in the
directory. The attribute is present only on a domain alias entry, not on the canonical domain
entry; it contains the DN of the entry for which it is an alias. It is used only in Schema 1 or in
Schema 2 compatibility mode (with a DC Tree), not in Schema 2 native mode (no DC Tree).

MTA options 52–151

Direct LDAP attribute name MTA
options

52.15.6.93 Direct LDAP attribute name MTA options:
ldap_domain_attr_uplevel (LDAP attribute name)

The ldap_domain_attr_uplevel MTA option specifies the name of a domain-level LDAP
attribute used to store a domain-specific analogue of the domain_uplevel MTA option
that overrides that MTA option for this specific domain. That is, the attribute named by this
option stores a bitmask value controlling certain aspects of domain name searching and usage.
Currently only bits 0 and 2 (values 1 and 4) are used from this value; the other bits of the
general domain_uplevel MTA option remain in effect.

Note that the attribute named by the ldap_domain_attr_uplevel MTA option is only
consulted if the domain is looked up. This means that setting bit 0 of this value to 1 for a
domain won't make subdomains of the domain match unless bit 0 of domain_uplevel is also
set. As such, the way to get subdomain matching for some domains but not others is to set bit 0
of domain_uplevel (thus enabling subdomain matches for all domains), and then clear bit 0
of the ldap_domain_attr_uplevel attribute for the domains where you don't want uplevel
matching to occur.

52.15.6.94 ldap_domain_attr_mailserv Option

The ldap_domain_attr_mailserv MTA option specifies the name of a domain level
LDAP attribute. It has no default, but the recommended LDAP attribute name to use is
inetDomainMailserv.

52.15.6.95 Direct LDAP attribute name MTA options:
ldap_domain_attr_canonical (LDAP attribute name)

The ldap_domain_attr_canonical MTA option names the domain LDAP attribute, by
default inetCanonicalDomainName, used to store the canonical domain name.

In Schema 1 mode, any domain alias entry needs such an attribute pointing back to the
"real" (canonical) domain name. And in either Schema, any cases of multiple actual (non-alias)
domain entries with "overlapping" users require use of such an attribute.

Note that the mapping table domain map attribute substitution
$}domain,_canonical_name_{ returns either the value of the LDAP attribute named
by the ldap_domain_attr_canonical MTA option (so normally the value of the
inetCanonicalDomainName LDAP attribute), or if no such LDAP attribute is set, returns
the domain name.

52.15.6.96 Direct LDAP attribute name MTA options:
ldap_domain_attr_uid_separator (LDAP attribute name)

The ldap_domain_attr_uid_separator MTA (and base) option names the domain LDAP
attribute, by default domainUidSeparator, used to store what the separator character is
between UIDs and domains for addresses in this domain. This option is used both by the MTA,
and by the authentication code; the authentication code looks first for the option to be set at
base level, but if not set there, the authentication code will use the MTA level option setting.

52.15.6.97 Direct LDAP attribute name MTA options:
ldap_domain_attr_subaddress (LDAP attribute name)

52–152 Messaging Server Reference

Direct LDAP attribute name MTA
options

The ldap_domain_attr_subaddress MTA option specifies the name of the attribute
that controls whether or not the domain supports subaddressing. Subaddress handling will
be disabled if the specified attribute has a value of "No", "0", or "false". This option has no
default.

52.15.6.98 Direct LDAP attribute name MTA options:
ldap_domain_attr_routing_hosts (LDAP attribute name)

The ldap_domain_attr_routing_hosts MTA option names the domain LDAP attribute,
by default mailRoutingHosts, used to specify the hosts that are responsible for performing
routing for this domain. If this MTA is one such host, then the user address will be looked
up and attributes processed. Otherwise, the address will be routed onwards: by default, just
routing based on rewriting the address, but if the MTA option route_to_routing_host=1
is set, then the first mailRoutingHosts value will be inserted into the address as a source
route (hence the rewriting routing will depend upon that host name).

Note that delivery options can be marked as mail host independent, thereby meaning that
processing should occur regardless of whether this MTA is one of the mailRoutingHosts;
see the delivery_options MTA option.

52.15.6.99 Direct LDAP attribute name MTA options:
ldap_domain_attr_smarthost (LDAP attribute name)

The ldap_domain_attr_smarthost MTA option names the domain LDAP attribute, by
default mailRoutingSmartHost, used for routing of addresses in the domain but without
a directory entry. That is, if a user address is not found in the directory, then route onwards,
inserting the mailRoutingSmartHost value into the address as a source route.

Since the value of the mailRoutingSmartHost attribute (or whatever attribute is named by
ldap_domain_attr_smarthost) will be used as a source route, note that that means that
the actual routing of the address will depend on how the MTA has been configured to route
such an address. In particular, best practice is to specify a FQDN (Fully Qualified Domain
Name) as the value, since comprehensive configuration for proper routing of such domain
names is part of normal MTA configuration. Use of less recommended substitutes, such as
short-form hostnames or IP literal addresses, will only yield desired results if the MTA has
been explicitly configured to route such substitute names appropriately.

52.15.6.100 Direct LDAP attribute name MTA options:
ldap_domain_attr_status (LDAP attribute name)

The ldap_domain_attr_status MTA (and base) option names the domain LDAP
attribute, by default inetDomainStatus, whose value specifies the current status of
the domain. (The analogous user level attribute is inetUserStatus or whatever user
LDAP attribute is named by the ldap_user_status MTA option; an analogous group
attribute can be defined via the ldap_group_status MTA option. Compare also with
the ldap_domain_attr_mail_status MTA option naming the domain LDAP attribute
specifying the current mail status of the domain.) Valid values for the attribute named by
the ldap_domain_attr_status option are active, inactive, or deleted. If no such
attribute is present, or is present but with no value, a value of active is assumed.

52.15.6.101 Direct LDAP attribute name MTA options:
ldap_domain_attr_mail_status (LDAP attribute name)

MTA options 52–153

Direct LDAP attribute name MTA
options

The ldap_domain_attr_mail_status MTA (and base) option names the domain
LDAP attribute, by default mailDomainStatus, whose value specifies the current
mail status of the domain. (The analogous user level attribute is mailUserStatus or
whatever user LDAP attribute is named by the ldap_user_mail_status MTA option;
the analogous group attribute is inetMailGroupStatus or whatever group LDAP
attribute is named by the ldap_group_mail_status MTA option. Compare also with the
ldap_domain_attr_status MTA option naming the domain LDAP attribute specifying
the current general status of the domain.) Valid values for the attribute named by the
ldap_domain_attr_mail_status option are: active, inactive, deleted, hold,
disabled, overquota, and (new in MS 6.0) unused and removed and (new in 8.0)
nonlocal; other values are interpreted as inactive. Note that the imquotacheck utility is
what updates mailDomainStatus to set it to overquota.

(Note that the acceptalladdresses channel option, if used, modifies the timing and form
of the rejection.)

52.15.6.102 Direct LDAP attribute name MTA options:
ldap_domain_attr_blocklimit (LDAP attribute name(s))

The ldap_domain_attr_blocklimit MTA option specifies the name of an LDAP attribute
-- or a list of such names -- used to store a size limit on messages to users in the domain. The
default LDAP attribute name is mailDomainMsgMaxBlocks.

The effect of the attribute named by ldap_domain_attr_blocklimit is a
destination (recipient) analogue of the effect of whatever attribute is named by
ldap_domain_attr_sourceblocklimit MTA option, which limits the size
of message that may be sent by users in the domain. The attribute named by
ldap_domain_attr_blocklimit may also be considered as the domain-level analogue
of the user-level mailMsgMaxBlocks attribute (or whatever attribute is named by the
ldap_blocklimit MTA option) and group mgrpMsgMaxSize attribute (or whatever
attribute is named by the ldap_maximum_message_size MTA option).

New in MS 6.3, this attribute is also checked during reverse_url lookups, and will be
used (for messages that have no return-of-content policy already set) to decide whether the
NOTARY non-return-of-content flag should be set.

A new effect in MS 6.3-0.15 is that a per-domain setting such as this will override more general
settings (and a per-user setting will override even a per-domain setting), rather than (as
previously) the minimum of all applicable limits being applied. Thus new in MS 6.3-0.15, users
in a particular domain maybe allowed to send large messages as an exception to more general,
smaller limits, by setting a large value for this domain attribute while a general smaller limit
(such as that set via the blocklimit channel option) remains in effect.

(Note that the acceptalladdresses channel option, if used, may modify the timing and
form of rejections due to exceeding message size constraints.)

52.15.6.103 Direct LDAP attribute name MTA options:
ldap_domain_attr_conversion_tag (LDAP attribute name(s))

The ldap_domain_attr_conversion_tag MTA option specifies the name of a domain
LDAP attribute, by default mailDomainConversionTag; the value stored in the specified
attribute will be applied as conversion tags for messages sent to users or groups associated
with this domain.

52–154 Messaging Server Reference

Direct LDAP attribute name MTA
options

52.15.6.104 Direct LDAP attribute name MTA options:
ldap_domain_attr_source_conversion_tag (LDAP attribute
name(s))

The ldap_domain_attr_source_conversion_tag MTA option specifies the name of
a domain LDAP attribute; there is no default. The value stored in the specified attribute will
be applied as conversion tags for messages sent from users or groups associated with this
domain.

52.15.6.105 Direct LDAP attribute name MTA options:
ldap_domain_attr_optinN (LDAP attribute name list)

For values of N=1--8 (N=1--4 new in MS 6.2, N=5--8 new in MS 6.3-0.15), the
ldap_domain_attr_optinN MTA option names a domain LDAP attribute used to store
the fact and specific "opt-in" value string that recipients in the domain are "opted-in" to
filtering performed by spam/virus filter package package N. ldap_domain_attr_optin is a
synonym for ldap_domain_attr_optin1.

The ldap_optinN MTA options provide analogous per-user (rather than per-domain) opt-in
capability.

52.15.6.106 Direct LDAP attribute name MTA options:
ldap_domain_attr_presence (LDAP attribute name)

RESTRICTED. Not yet used.

52.15.6.107 Direct LDAP attribute name MTA options:
ldap_domain_attr_autosecretary (LDAP attribute name)

RESTRICTED. Not yet used.

52.15.6.108 Direct LDAP attribute name MTA options:
ldap_domain_attr_nosolicit (LDAP attribute name)

The ldap_domain_attr_nosolicit MTA option specifies the name of a domain-level
LDAP attribute used to store solicitation labels to block for recipients in the domain. The
attribute named is thus a domain-level analogue of the user-level attribute named by the
ldap_nosolicit MTA option; and supplements any channel-level solicitation blocking
configured via destinationnosolicit and sourcenosolicit channel options.

See RFC 3865 (No Soliciting SMTP Extension) for background on the NO-SOLICITING SMTP
extension.

52.15.6.109 Direct LDAP attribute name MTA options:
ldap_domain_attr_autoreply_timeout (LDAP attribute name)

The ldap_domain_attr_autoreply_timeout MTA option specifies the name of an
LDAP attribute which is a domain-level analogue of the user-level LDAP attribute named
by the ldap_autoreply_timeout MTA option. That is, the LDAP attribute named by

MTA options 52–155

https://tools.ietf.org/html/rfc3865

Direct LDAP attribute name MTA
options

ldap_domain_attr_autoreply_timeout stores the duration, in hours, for successive
vacation (autoreply) responses to any given mail sender, to be used for vacation messages
generated on behalf of users in this domain who do not have their own, user-level, specific
timeout set (no ldap_autoreply_timeout attribute set).

ldap_domain_attr_autoreply_timeout attribute's value will not be used only when
a user has mailAutoReplyMode=echo. If the attribute's value is 0, then a response is sent
back every time a message is received. This value will be converted to the nonstandard
":hours" argument to the "vacation" action. If neither this domain-level attribute
is set, nor the user-level attribute is set, then the timeout used will be that set via the
autoreply_timeout_default MTA option.

52.15.6.110 Direct LDAP attribute name MTA options:
ldap_domain_attr_default_mailhost (LDAP attribute name)

RESTRICTED: Not supported by the MMP.

The ldap_domain_attr_default_mailhost MTA option specifies the name for a domain
LDAP attribute, (no default but the preferredMailHost LDAP attribute formerly used
in provisioning would be one possibly appropriate attribute to also use for this purpose),
used to store a default mail host to be used if a user or group entry in the domain has no
explicit mailHost value (more precisely, no value for the LDAP attribute named by the
ldap_mailhost MTA option).

52.15.6.111 Direct LDAP attribute name MTA options:
ldap_domain_attr_disk_quota (LDAP attribute name(s))

RESTRICTED. Not yet fully implemented.

52.15.6.112 Direct LDAP attribute name MTA options:
ldap_domain_attr_message_quota (LDAP attribute name(s))

RESTRICTED. Not yet fully implemented.

See the user level LDAP attribute named by the ldap_message_quota MTA option. Also see
the Message Store option defaultmessagequota.

52.15.6.113 Direct LDAP attribute name MTA options:
ldap_domain_attr_filter (LDAP attribute name(s))

The ldap_domain_attr_filter MTA option specifies the name of an LDAP attribute (by
default mailDomainSieveRuleSource) -- or a list of such names -- used to store a specific-
to-that-domain Sieve filter.

In operational terms, such a domain Sieve filter is applied to any recipients in that domain;
it is added to any personal Sieve filter for the recipient and applied at the same time as the
recipient user's personal Sieve filter.

52.15.6.114 Direct LDAP attribute name MTA options:
ldap_domain_attr_sender_sieve (LDAP attribute name(s))

52–156 Messaging Server Reference

Direct LDAP attribute name MTA
options

New in MS 8.0.1. The ldap_domain_attr_sender_sieve MTA option specifies the name
of an LDAP attribute (by default mailDomainSenderSieve) -- or a list of such names -- used
to store a specific-to-that-domain Sieve filter that is applied to messages sent by authenticated
users associated with that domain.

52.15.6.115 Direct LDAP attribute name MTA options:
ldap_domain_attr_capture (LDAP attribute name(s))

New in the 8.0 release. The ldap_domain_attr_capture MTA option specifies the name of
a domain LDAP attribute that will be used to trigger automatic "capturing" of user or group
e-mail messages for all users and groups in the domain. There is no default - no pre-defined
LDAP attribute for this purpose. Typically, the LDAP attribute defined for this purpose, and
named by ldap_domain_attr_capture, should be set up with an ACI so that it is not even
visible, let alone modifiable, by users.

The value(s) of the LDAP attribute named by ldap_domain_attr_capture should be
the address(es) to which the "captured" message copies are supposed to be sent. When a
domain has this attribute specified, then both messages sent to users in the domain, as well as
messages from users in the domain, will also have a "capture" copy (normally an encapsulated
copy with an entirely new message envelope) sent to the specified address.

Note that the LDAP attribute(s) specified by the ldap_capture MTA option have similar
semantics except the attribute(s) are placed in the user or group entry instead of at the domain
level.

The capture_format_default MTA option controls whether message copies generated
due to use of the LDAP attribute named by ldap_domain_attr_capture are generated in
DSN encapsulated format, vs. another formats such as envelope "journal" format.

52.15.6.116 Direct LDAP attribute name MTA options:
ldap_domain_attr_report_address (LDAP attribute name(s))

The ldap_domain_attr_report_address MTA option specifies the name of an LDAP
attribute (by default mailDomainReportAddress) -- or a list of such names -- used to store
the address of the domain postmaster.

The domain postmaster, if set, is used as the header From: address in DSNs reporting
problems associated with recipient addresses in the domain. It is also used (in certain cases)
when reporting problems to users within the domain regarding errors associated with non-
local addresses. If this attribute is not set, then in those certain cases the reporting address
will default to postmaster@domain. (This is the specific domain name, as opposed to the
default or host domain.) But note that regardless of whether or not this attribute is set, there
are a number of other cases where the overall host's postmaster address will be used, rather
than any domain-specific postmaster address.

52.15.6.117 Direct LDAP attribute name MTA options:
ldap_domain_attr_catchall_address (LDAP attribute name(s))

The ldap_domain_attr_catchall_address MTA option specifies the name of an LDAP
attribute (by default mailDomainCatchallAddress) -- or a list of such names -- used
to store a "catch all" address for the domain: an address to which to route any messages
to recipients apparently in the domain but with an unrecognized local-part (unknown-
user@domain-name).

MTA options 52–157

Direct LDAP attribute name MTA
options

52.15.6.118 Direct LDAP attribute name MTA options:
ldap_domain_attr_catchall_mapping (LDAP attribute name(s))

The ldap_domain_attr_catchall_mapping MTA option specifies the name of an LDAP
attribute (by default mailDomainCatchallMapping) -- or a list of such names -- used to
store the name of an MTA mapping table.

A mapping table named in such an attribute will be consulted when an address associated
with the domain fails to match any particular user entry. The format of the mapping table
probe is the same as that of the FORWARD mapping table, and is affected by any setting of the
use_forward_database MTA option in the same way as the FORWARD mapping table probe
is affected. The effect of the mapping is that if the mapping sets the $Y metacharacter, then the
resulting string will replace the address being processed. (The other output flags supported by
the FORWARD mapping table are not supported by a domain catchall mapping.)

Flag comparisons supported by the FORWARD mapping table are, in general, also supported in
a domain catchall mapping. This includes more recently added flag comparisons, including:
New in Messaging Server 7.0-0.04, the use/non-use of POP-before-SMTP can be checked in
a domain catchall mapping by checking for presence or absence of the $P input flag; that is,
by checking for $:P or $;P respectively. New in MS 8.0, support for $:R or $;R, and $:U or
$;U tests. (However, the FORWARD mapping table's $:V or $;V flag test is not supported in a
domain catchall mapping.)

52.15.6.119 Direct LDAP attribute name MTA options:
ldap_domain_attr_sourceblocklimit (LDAP attribute name(s))

The ldap_domain_attr_sourceblocklimit MTA option specifies the name of an LDAP
attribute -- or a list of such names -- used to store a size limit on messages sent by users in the
domain.

The effect of the attribute named by ldap_domain_attr_sourceblocklimit is a
source (sending) analogue of the effect of the mailDomainMsgMaxBlocks attribute (or
whatever attribute is named by ldap_domain_attr_blocklimit), which limits the
size of message that may be received by users in the domain. The attribute named by
ldap_domain_attr_sourceblocklimit may also be considered as the domain-level
analogue of the user-level attribute named by ldap_sourceblocklimit.

A new effect in MS 6.3-0.15 is that a per-domain setting such as this will override more general
settings (and a per-user setting will override even a per-domain setting), rather than (as
previously) the minimum of all applicable limits being applied. Thus new in MS 6.3-0.15, users
in a particular domain maybe allowed to send large messages as an exception to more general,
smaller limits, by setting a large value for this domain attribute while a general smaller limit
(such as that set via the sourceblocklimit channel option) remains in effect.

(Note that the acceptalladdresses channel option, if used, may modify the timing and
form of rejections due to exceeding message size constraints.)

52.15.6.120 Direct LDAP attribute name MTA options:
ldap_domain_attr_source_channel (LDAP attribute name)

The ldap_domain_attr_source_channel MTA option specifies the name of an LDAP
attribute used, when the userswitchchannel channel option is in effect, to store the name
of an MTA channel to consider as the source channel for messages submitted from users in

52–158 Messaging Server Reference

Direct LDAP attribute name MTA
options

this domain. See also the ldap_source_channel MTA option which names an analogous
user-level LDAP attribute. If both a user-level and domain-level attribute are set, the user-level
value overrides the domain-level value.

52.15.6.121 Direct LDAP attribute name MTA options:
ldap_domain_attr_prefix_text (LDAP attribute name(s))

The ldap_domain_attr_prefix_text MTA option specifies the name of a domain
LDAP attribute which in turn is used to specify text to insert at the top of messages.
The default LDAP attribute used for this purpose if this option is not specified is
mailDomainPrefixText.

Any text specified by the attribute will be inserted into messages submitted by any
authenticated user associated with the domain. Either plain text or HTML can be used. A
maximum of 4096 octets from the attribute value will be processed.

HTML values are indicated in a prefix addition by enclosing the addition in <html></html>
tags. (These tags are removed from the addition.)

Prefix additions to text/html parts are placed immediately after the <body> tag.

Plain text additions to text/html are preceded by
<pre> and followed by </pre>
. HTML
additions to text/plain parts have all HTML tags removed and all entities are converted to
corresponding characters. Character set conversions are performed as needed; the attribute
value must be specified in UTF-8.

52.15.6.122 Direct LDAP attribute name MTA options:
ldap_domain_attr_suffix_text (LDAP attribute name(s))

The ldap_domain_attr_suffix_text MTA option specifies the name of a domain
LDAP attribute which in turn is used to specify text to insert at the bottom of messages.
The default LDAP attribute used for this purpose if this option is not specified is
mailDomainSuffixText.

Any text specified by the attribute will be inserted into messages submitted by any
authenticated user associated with the domain. Either plain text or HTML can be used. A
maximum of 4096 octets from the attribute value will be processed.

HTML values are indicated in a suffix addition by enclosing the addition in <html></html>
tags. (These tags are removed from the addition.)

Suffix additions to text/html parts are placed immediately before the </body> tag.

Plain text additions to text/html are preceded by
<pre> and followed by </pre>
. HTML
additions to text/plain parts have all HTML tags removed and all entities are converted to
corresponding characters. Character set conversions are performed as needed; the attribute
value must be specified in UTF-8.

52.15.6.123 Direct LDAP attribute name MTA options:
ldap_domain_attr_recipientlimit (LDAP attribute name)

The ldap_domain_attr_recipientlimit MTA option specifies the name of a
per-domain LDAP attribute, analogous to the per-user ldap_recipientlimit

MTA options 52–159

Direct LDAP attribute name MTA
options

MTA option, the recipientlimit channel option, and the per-SMTP-server
ALLOW_RECIPIENTS_PER_TRANSACTION TCP/IP-channel-specific option.

Compare with the ldap_domain_attr_recipientcutoff MTA option which specifies the
name of a per-domain LDAP attribute for controlling a related, but not identifical, effect.

New behavior in MS 6.3 is that a per-domain setting such as this will override more general
settings, rather than (as previously) the minimum of all applicable limits being applied; thus
new in MS 6.3, a particular domain can be allowed to send messages to many recipients as
an exception to more general, smaller limits, by setting a large value for this attribute while
general small limits remain in effect.

52.15.6.124 Direct LDAP attribute name MTA options:
ldap_domain_attr_recipientcutoff (LDAP attribute name)

The ldap_domain_attr_recipientcutoff MTA option specifies the name of a
per-domain LDAP attribute, analogous to the per-user LDAP attribute named by the
ldap_recipientcutoff MTA option, the recipientcutoff channel option, and the per-
SMTP-server REJECT_RECIPIENTS_PER_TRANSACTION TCP/IP-channel-specific option.

Compare with the ldap_domain_attr_recipientlimit MTA option which specifies the
name of a per-domain LDAP attribute for controlling a related, but not identifical, effect.

New behavior in MS 6.3 is that a per-domain setting such as this will override more general
settings, rather than (as previously) the minimum of all applicable limits being applied; thus
new in MS 6.3, a particular domain can be allowed to send messages to many recipients as
an exception to more general, smaller limits, by setting a large value for this attribute while
general small limits remain in effect.

52.15.6.125 Direct LDAP attribute name MTA options:
ldap_domain_attr_detourhostoptin (LDAP attribute name)

(New in Messaging Server 7.0.5.) The ldap_domain_attr_detourhostoptin MTA option
specifies the name of a per-domain LDAP attribute, analogous to the per-user LDAP attribute
named by the ldap_detourhost_optin MTA option. If this LDAP attribute named by
ldap_domain_attr_detourhostoptin has the special value (if any) specified by the
aliasdetourhost_null_optin MTA option, that will be considered equivalent to the
domain attribute being absent.

52.15.6.126 Direct LDAP attribute name MTA options:
ldap_creation_date (LDAP attribute name)

(New in 8.0.) The ldap_creation_date MTA option specifies the name of a user or group
LDAP attribute used to store the account creation date for the user or group. The actual date
value stored in such an attribute must be in RFC 3339 format (a superset of the format used for
vacation start and end times).

52.15.6.127 Direct LDAP attribute name MTA options:
ldap_domain_attr_creation_date (LDAP attribute name)

(New in 8.0.) The ldap_domain_attr_creation_date MTA option specifies the name
of a domain LDAP attribute used to store the creation date for that domain. The actual date

52–160 Messaging Server Reference

Direct LDAP attributes returned
upon authentication MTA options

value stored in such an attribute must be in RFC 3339 format (a superset of the format used for
vacation start and end times).

52.15.7 Direct LDAP attributes returned upon
authentication MTA options

By default, the MTA and the authentication library assume a particular sort of LDAP schema.
However, as of the 8.0 release the exact attribute names that the authentication library returns
(for the MTA to use) are configurable via various ldap_auth_attr_* MTA options.

52.15.7.1 LDAP attributes returned upon authentication MTA
options: ldap_auth_attr_mail_host (LDAP attribute name)

The ldap_auth_attr_mail_host MTA option specifies the name of an LDAP attribute
whose value should be returned, upon successful authentication, as the "mail host" for the
user. The default such LDAP attribute, if this option is not specified, is mailHost.

52.15.7.2 LDAP attributes returned upon authentication MTA
options: ldap_auth_attr_sender (LDAP attribute name)

(New in 8.0.) The ldap_auth_attr_sender MTA option specifies the name of the
LDAP attribute whose value should be returned (upon successful authentication) as the
"authenticated sender". The default such LDAP attribute, if this option is not set, is the mail
attribute.

52.15.7.3 LDAP attributes returned upon authentication MTA
options: ldap_auth_attr_submit_channel (LDAP attribute name)

(New in 8.0.) The ldap_auth_attr_submit_channel MTA option specifies the name
of an LDAP attribute whose value should be returned, upon successful authentication,
as the desired source channel name (the source channel to which to "switch" when
saslswitchchannel channel option is set). The default LDAP attribute name, if this option
is not set, is mailSMTPSubmitChannel.

52.15.7.4 LDAP attributes returned upon authentication MTA
options: ldap_auth_attr_recall_secret (LDAP attribute name)

The ldap_auth_attr_recall_secret MTA option specifies the name of the LDAP
attribute where a user's general recall secret is stored. This option has no default.

See the trackinggenerate channel option for further discussion of the purpose and use of
the value stored in the specified LDAP attribute.

52.15.7.5 LDAP attributes returned upon authentication MTA
options: ldap_auth_attr_hold_for (LDAP attribute name)

(New in MS 8.0)

52.15.8 LDAP lookup cache MTA options

MTA options 52–161

LDAP lookup cache MTA options

There are a number of MTA options controlling the caching of LDAP and URL lookup results.
See also the ldap_timeout MTA option, controlling how long the MTA waits for a response
from LDAP before timing out a query attempt.

See also the Sieve filter caching MTA options, which control caching of parsed Sieve filters
regardless of source (so including but not limited to Sieve filters fetched from LDAP).

Note that the MTA has no specific-to-itself setting for caching of authentication (SMTP AUTH)
results from LDAP; that is instead controlled by the general (base level) settings for the
authcachesize and authcachettl options (in legacy configuration, the configutil
parameters service.authcachesize and service.authcachettl).

The MMP has its own cache of of the results of searching for users in LDAP; see the
ldapcachesize and ldapcachettl options.

The cache_debug MTA option enables low-level debugging regarding the MTA's caching of
LDAP lookup results.

52.15.8.1 LDAP and URL lookup cache options:
alias_entry_cache_negative (0 or 1),
alias_entry_cache_size (integer),
alias_entry_cache_timeout (integer)

The alias_entry_cache_* MTA options control some performance tuning relevant
when operating in direct LDAP mode, in particular when alias_urlN options are
being used. When alias_urlN lookups are performed, the results can be cached;
that is, an in memory cache is maintained of the results of "recent" such lookups. The
alias_entry_cache_size option, which defaults to 1000, controls how many results are
cached. The alias_entry_cache_timeout option, which defaults to 600, controls how
long in seconds to maintain cache results. The alias_entry_cache_negative option,
which takes a boolean argument and defaults to 0 (false), controls whether or not negative
results (that is, failures to find an alias) are cached.

There is a trade-off between performance on the one hand, vs. memory usage and speed with
which changes to the LDAP entries take effect on the other hand.

52.15.8.2 Domain match cache control
(domain_match_cache_size, domain_match_cache_timeout)

As of MS 6.0, the domain_match_cache_size MTA option (as well as the
domain_match_cache_timeout MTA option) is mostly irrelevant, since as of MS 6.0 there
is an underlying domain map cache of domains. That is, the underlying domain lookup code
used by the MTA as well as other Messaging Server components now maintains a (large) cache
of lookup results; see the ldap_domain_timeout MTA option for a discussion of the timeout
on the underlying domain lookup cache entries. The MTA's own private-to-the-MTA cache
has thus become mostly redundant -- it's a cache in front of a cache (though its entries are
smaller in the case of negative matches, so potentially if one was especially concerned about
optimizing the case of caching of large numbers of negative matches, the MTA's private cache
might be slightly useful).

The domain_match_cache_* options control some performance tuning formerly (in iMS 5.2)
relevant when operating in direct LDAP mode, in particular when a rewrite rule with a $V in
the template is being used. When such $V domain map lookups are performed, the results can

52–162 Messaging Server Reference

LDAP lookup cache MTA options

be cached by the MTA (apart and in addition to the caching done by the underlying domain
map LDAP lookup code); that is, an in memory cache is maintained by the MTA of the results
of "recent" such lookups. The domain_match_cache_size MTA option, which defaults
to 100000, controls how many results are cached. The domain_match_cache_timeout
MTA option, which defaults to 600, specifies how long in seconds to maintain cache results.
But note that all that's being cached here by the MTA is whether or not the domain is "local",
(that is, in the DIT). The actual values of attributes, such as domainStatus, is cached in the
underlying domain map code; see the ldap_domain_timeout MTA option for a discussion
of the timeout for that underlying cache.

There is a trade-off between performance on the one hand, vs. memory usage and speed with
which changes to the LDAP entries take effect on the other hand.

52.15.8.3 LDAP lookup cache MTA options: ldap_domain_timeout
(integer)

The ldap_domain_timeout option (available at both base and MTA levels) controls the
retention time (in seconds) for entries in the domain map cache. The default is -900; as the
value used is the absolute value of the ldap_domain_timeout setting, this corresponds to
15 minutes. If setting ldap_domain_timeout explicitly, set it to a positive value so that the
MTA can detect that it has indeed been intentionally set.

52.15.8.4 LDAP lookup cache MTA options:
reverse_address_cache_size (integer) and
reverse_address_cache_timeout (integer)

The reverse_address_cache_* MTA options control some performance tuning relevant
when operating in direct LDAP mode, in particular when the reverse_url MTA option is
set. When such reverse_url address reversal LDAP lookups are performed, the results can
be cached; that is, an in-memory cache is maintained of the results of "recent" such lookups.
The reverse_address_cache_size option, which defaults to 100000, controls how many
results are cached. The reverse_address_cache_timeout option, which defaults to
600, specifies how long in seconds to maintain cache results. There is a trade-off between
performance on the one hand, vs. memory usage and speed with which changes to the LDAP
entries take effect on the other hand.

52.15.8.5 URL result case sensitivity option
(url_result_cache_case)

New in MS 8.1.0.2. The url_result_cache_case MTA option controls whether or not
the URL result cache entry names are case sensitive. Setting the option to 1 makes them case
sensitive. The default is 0, in which case the entry names are case-insensitive.

This option needs to be set to 1 if case-sensitive LDAP attributes are being used. Note that this
may have an adverse effect on cache efficiency.

52.15.8.6 LDAP lookup cache MTA options:
url_result_cache_size (integer) and
url_result_cache_timeout (integer)

LDAP lookups done from callouts in rewrite rules or mapping tables may be cached; that is to
say, $]...[lookups may be cached. The url_result_cache_size MTA option controls

MTA options 52–163

Directory location MTA options

the size of this cache; the default is 10000. The url_result_cache_timeout MTA option
controls the timeout, in seconds, for entries in this cache; the default is 600.

52.16 Directory location MTA options
As of Messaging Server 7.0-0.04, many formerly configurable (via MTA Tailor option) MTA
directory locations are now hard-coded. But tmpdir (replacing the former imta_tmp MTA
Tailor option) and langdir (replacing the former imta_lang MTA Tailor option) are
still configurable; (note that in legacy configuration, these two options are MTA option file
options).

52.16.1 Directory location MTA options: tmpdir
(directory path)

The tmpdir MTA option (prior to MS 7.0, this MTA option was instead called imta_tmp and
located in the MTA Tailor file, whereas tmpdir in legacy configuration is an MTA option file
option.dat option) specifies the temporary file directory; it defaults to /tmp/ (trailing slash
included).

On Linux, this option should instead be set to /dev/shm/.

52.16.2 Directory location MTA options: langdir (dir-
path or list of dir-paths)

The langdir MTA option specifies the directory containing localized MTA return and
disposition templates. (Prior to MS 7.0, this was called imta_lang, and located in the MTA
Tailor file.)

52.17 DKIM MTA options
New in Messaging Server 7.0.5 are several MTA and channel options that affect message
handing based on the presence of certain DKIM signatures. See also the dkim* and
destinationdkim* channel options, which perform a similar function on a per-channel
basis.

52.17.1 DKIM MTA options: dkim_ignore_domains (list
of domain names)

(New in Messaging Server 7.0.5.) The dkim_ignore_domains MTA option modifies
the effect of the dkimpreserve, destinationdkimpreserve, dkimremove, and
destinationdkimremove channel options. dkim_ignore_domains specifies a
list of domain names which will be ignored in DKIM-Signature: header lines, both for
DKIM signature preservation purposes (that is, ignored when either the dkimpreserve
or destinationdkimpreserve channel options is specified), as well as for
DKIM signature removal purposes (that is, ignored when either the dkimremove or
destinationdkimremove channel option is specified). A domain name listed in
dkim_ignore_domains will be, for the MTA's DKIM handling purposes, invisible on DKIM-
Signature: header lines---such a domain will trigger neither passthrough mode to preserve
DKIM signatures, nor DKIM signature removal.

52–164 Messaging Server Reference

dkim_preserve_domains MTA
option

52.17.2 DKIM MTA options: dkim_preserve_domains
(list of domain names)

(New in Messaging Server 7.0.5.) The dkim_preserve_domains MTA option modifies the
effect of the dkimpreserve and destinationdkimpreserve channel options. When such
a channel option is being applied, after first checking each domain on a DKIM-Signature:
header line against dkim_ignore_domains for domain names to ignore, next the MTA
will check the list of domain names specified by dkim_preserve_domains and if a match
is found, passthrough mode will be triggered (further general message processing is
terminated). Note that once such a match on the dkim_preserve_domains list is found,
the MTA need not, and does not, bother to scan further in the message or list for additional
matches.

52.17.3 DKIM MTA options: dkim_remove_domains (list
of domain names)

(New in Messaging Server 7.0.5.) The dkim_remove_domains MTA option modifies the
effect of the dkimremove and destinationdkimremove channel options. When such a
channel option is being applied, after first checking each domain on a DKIM-Signature: header
line against dkim_ignore_domains for domain names to ignore, next the MTA will check
the list of domain names specified by dkim_remove_domains and if a match is found, then
the corresponding DKIM-Signature: field is removed from the message.

52.18 DNS lookup MTA options
In addition to the blocked_mail_from_ips and return_envelope MTA options with
some DNS lookup effects, see also TCP/IP channels for additional, but channel-specific, DNS-
related options. And see SPF MTA options for DNS SPF lookup MTA options.

52.18.1 MAIL FROM domain blocking by IP address
(blocked_mail_from_ips)

The introduction of DNS wildcard entries in the COM and ORG top level domains
which occurred in September 2003 had severely limited the effectiveness of the
mailfromdnsverify channel option. As of the 6.1-0.01 release of the MTA, the
mailfromdnsverify channel option code was modified to address this. When the DNS
returns one or more A records (which would normally be considered a "success" and the
message would be allowed in), their values are compared against the domain literals specified
by the blocked_mail_from_ips MTA option. If a match is found, then the domain is
considered to be invalid. Thus in order to restore useful behavior to the mailfromdnsverify
channel option, the current correct setting of this option is:

blocked_mail_from_ips=[64.94.110.11]

52.18.2 Notification message MTA options:
return_envelope (bitmask)

MTA options 52–165

Error text and error interpretation
MTA options

The return_envelope MTA option takes a bitmask value.

Bit 0 (value = 1) controls whether or not return notifications generated by the MTA are written
with a blank envelope address vs. with the address of the local postmaster. Setting the bit
forces the use of the local postmaster address, while clearing the bit forces the use of a blank
address. Note that the use of a blank address is mandated by RFC 1123. However, some
systems do not handle blank envelope From addresses properly and may require the use of
this option.

Bit 1 (value = 2) controls whether or not the MTA replaces all blank envelope addresses with
the address of the local postmaster. Again, this is used to accomodate incompliant systems that
don't conform to RFC 821, RFC 822, or RFC 1123.

Bit 2 (value = 4) controls whether or not the MTA checks that any (non-empty) envelope From
address matches (rewrites to) an MTA channel.

Setting bit 3 (value = 8) is the global (for all channels) equivalent of setting the
mailfromdnsverify channel option: it controls whether or not the MTA checks that the
domain in the envelope From address resolves in the DNS. That is, setting the bit causes the
MTA to require that a DNS entry can be found corresponding to the domain in the envelope
From address; but the type of DNS entry does not matter.

Setting bit 4 (value = 16) causes the MTA to enforce that if the envelope From address claims a
local domain name, the envelope From address must correspond to a user address (user alias).

New in 8.0, bit 6 (value = 64) modifies the effect of setting bit 3 (value = 8) on domain validity
checks. With both these bits set, if the domain in the MAIL FROM address corresponds to a
null MX domain, that address will be rejected as invalid. That is, setting bit 6 causes the bit 3
domain check to also implement support for draft-delany-nullmx-01.txt.

Note also that the returnenvelope channel option can be used to impose these sorts of
control on a per-channel basis.

52.19 Error text and error interpretation MTA
options

The MTA has a number of options affecting error interpretation, and allowing setting
(customizing) of error text.

Regarding errors connecting to a spam/virus filter package, see also the
spamfilterN_optional MTA options.

52.19.1 Error text and error interpretation MTA options:
access_errors (0 or 1)

As of MS 6.2, if access_errors is set to 0 (the default), then when a recipient address
encounters a recipient address *_ACCESS mapping table access failure (that does not supply
explicit rejection text of its own), the MTA will report it as if the error were an "unknown host"
error. That is, the text of the error_text_unknown_host MTA option will be used, so by
default the error will be reported as an "unknown host or domain" error, corresponding to the
SMTP error:

52–166 Messaging Server Reference

https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1123

error_text MTA options

550 5.7.1 unknown host or domain: recipient-address

This is the same error that would be reported if the address were simply illegal. Although
confusing, this usage nevertheless provides an important element of security in circumstances
where information about access restrictions should not be revealed. Setting access_errors
to 1 will override this default and provide a more descriptive default error text, as specified by
the error_text_access_failure MTA option, defaulting to 5.7.1 you are not allowed to
use this address, corresponding to the SMTP error:

550 5.7.1 you are not allowed to use this address: recipient-address

But in any case, the setting of access_errors merely controls the default error text
issued for recipient address *_ACCESS mapping table rejections; entries that perform
rejections may override such default rejection text by supplying their own explicit rejection
text. Prior to MS 6.2, this access_errors option did not affect the default text used
for recipient address *_ACCESS mapping table $N rejections, which was instead the
error_text_permanent_failure text, normally "unknown host or domain".

This option also controls the default error text issued when a spam/virus filter package rejects
a recipient address with an other-than-temporary rejection.

This option also, in versions prior to 7.0-0.04, affected the now obsolete-and-removed feature
whereby MTA provided facilities to restrict access to channels on the basis of group ids on
UNIX (the analogue of rightslist identifiers in PMDF for OpenVMS). That is, in versions prior
to 7.0-0.04, the error text issued in cases of address rejections due to access failures due to non-
matching group id would also be affected by this option. Indeed, prior to MS 6.2, this (control
of the error text due to group id mismatch) was the only purpose and only effect of this option.

52.19.2 error_text MTA options
The error_text_* options specify error text describing various error conditions; see the
Table of error_text_* MTA options for details. Not all of the error responses potentially
emitted by the MTA are configurable. In general, only error conditions that can be considered
more or less local, or more or less proprietary to the MTA, such as invalid address conditions,
user status problems such as a user being disabled or over-quota, attempts to exceed local
message size limits, Sieve filter syntax errors, etc., are configurable. As a rule of thumb,
error conditions that arise solely in the case of a message addressed to a "local" user have
configurable error text, on the presumption that customized explanations may be useful and
are likely to be comprehensible to someone who corresponds with a "local" user.

However, error conditions that are more fundamental to the SMTP protocol, that more
naturally arise when the MTA is performing a function of pure SMTP relaying, generally do
not have configurable error text; in such cases where an error response may well be going back
to some remote user who has no connection (not even as a correspondent) with "local" users,
the MTA always emits its own standard, technically precise, error response.

Keep in mind that all the error_text_* error text may potentially be emitted as SMTP error
response text. Thus the values of all these options must conform to the requirements of SMTP
error response text. In particular, they are constrained to be in the US-ASCII character set: the
MTA will convert any eight bit characters in such option values into the dollar character, $.
Also, SMTP responses are limited by the SMTP line length limit (998 characters, not including
the final CRLF, and not including the leading numeric error code and extended error code).

MTA options 52–167

error_text MTA options

Table 52.16 error_text_* MTA options

Option SMTP
code

Extended
code

Default string
used when

option is not set

Meaning and notes

error_text_unknown_host 550 or
450*

5.1.2 unknown host or
domain

Specifies the error text issued when, for instance,
the domain in an address does not rewrite to any
channel. (In particular, prior to Messaging Server
7.0.5, assuming that no "catch-all" or "." rewrite
rule had been specified, an attempt to submit a
message addressed to a top-level Internet domain
not specified in the internet.rules file would
result in this error. As of Messaging Server 7.0.5,
the internet.rules file was modified to consist
of solely a "." rule which consults the set of top
level domain names from the tlds.txt file -- so
in Messaging Server 7.0.5 or later, an out-of-date
tlds.txt file or an attempt to submit a message
to a top-level Internet domain not specified in the
tlds.txt file will result in this error.)

error_text_unknown_user 550 or
450*

5.1.1 unknown or illegal
user

This error will be returned in cases such as illegal
characters (or no characters) in a uid found
during an alias_urlN lookup, or for users set to
"native" (UNIX mailbox) delivery who do not have
a UNIX account.

error_text_unknown_alias 550 or
450*

5.1.1 unknown or illegal
alias

This error will be returned if an address that
matches (rewrites to) a channel marked with
the viaaliasrequired channel option is not
found as an alias. In particular, this is normally
the error that will be returned in the case of non-
existent "user" addresses in a domain hosted on
a Messaging Server system, unless a domain is
configured with special handling for "non-existent
user" addresses such as a "catch-all" address or a
mailRoutingSmartHost.

error_text_access_failure 550 5.7.1 you are not
allowed to use this
address

This error text is not normally used unless the
access_errors MTA option has been set. In that
case, this error will be returned when an address
cannot be submitted due to a group identifier on the
destination channel, or due to *_ACCESS mapping
table rejections.

error_text_alias_locked 452 4.2.0 list is currently
reserved and
locked

This error is returned if an attempt to look up an
alias in the alias file finds the alias file locked,
or if an attempt to access a list file (such as an
[AUTH_LIST] file) finds the list file locked.

error_text_alias_auth 530 or
550++

5.7.1 you are not
allowed to use this
list

This error is returned when, for instance, a list
posting authorization check fails. (See also the
discussion of access errors in the discussions
of the ldap_reject_text MTA option and
alias_error_text alias option.)

error_text_alias_fileerror 452 or
550+

4.5.0 error opening file/
URL referenced by
alias

This error is returned when a file or URL
referenced by an alias cannot be opened; (that
is, it exists but cannot be opened---compare with
error_text_alias_fileexist).

error_text_alias_fileexist 452 or
550+

4.5.0 nonexistant file
referenced by alias

This error is returned when a file referenced by an
alias does not exist.

error_text_alias_temp 452 4.0.0 temporary error
returned by alias
expansion

This error is returned in cases, for instance, of
temporary LDAP errors attempting to lookup an
alias, such as the LDAP server not responding.
It is also returned if a user entry that requires a
mailHost attribute (not all user entries do) is
lacking the attribute.

error_text_send_remote_error 550 5.6.1 no protocol to
SEND/SAML

This error is returned in cases of an attempt to
submit a message for direct broadcast (SEND) or for

52–168 Messaging Server Reference

error_text MTA options

direct broadcast and e-mail (SAML) to a "local" user
address that includes explicit routing characters (@,
%, or !).

error_text_send_unknown_error 550 5.5.5 do not know how
to SEND/SAML

This error will be returned if attempting to send to a
destination (channel) that does not support SEND/
SAML functionality.

error_text_block_over 550 5.2.3 channel limit
of %d kilobytes
on message size
exceeded

 This error will be returned (in the case of SMTP
attempted submissions, at the RCPT TO stage
of the SMTP dialogue) if a message exceeds the
intended destination channel's blocklimit
channel keyword setting and the sending e-mail
client used the SIZE SMTP extension on the MAIL
FROM command to inform the MTA "up front"
of the message size. As of 7.0.5, a %d, if present,
will be replaced with the actual limit value. (Prior
to 7.0.5, the default text was "channel limit on
message size exceeded".) This default error text,
or any configured error text, will be suffixed with
a colon and the recipient address being rejected.
Note that this error text is not used for cases of
exceeding a channel sourceblocklimit option
setting, or the block_limit MTA option setting.
First off, in those cases the MTA can potentially
advertise its size limit to a sending client before
a message is ever even submitted, so potentially
the MTA never actually rejects the message itself;
instead potentially a client that supports the
SMTP SIZE extension refrains from even trying to
send the message (and generates some message
back to the original sender itself). If a message is
submitted to the MTA despite the MTA's possibly
advertised size limit, then in cases of exceeding a
sourceblocklimit or block_limit when the
client has used the SIZE extension, then the error
text "Message exceeds local size limit." is used, or if
the client does not use the SIZE extension (or puts a
falsely small value in SIZE) so that the MTA has to
reject the message after all the DATA has been sent
and the MTA has computed the message size itself,
the error_text_message_too_large message
is used instead.

error_text_line_over 550 5.2.3 channel limit of %d
lines on message
length exceeded

This error will be returned if a message exceeds
the intended destination channel's linelimit
channel option setting, and that fact is apparent
when the recipient address(es) are being processed.
As of 7.0.5, a %d, if present, will be replaced with
the actual limit value. (Prior to 7.0.5, the default text
was "channel limit on message length exceeded".)
However, message line length is not normally
apparent at recipient address processing time, but
rather only apparent after the message body is
processed; therefore this error text is not normally
used. Note also that this error text is not used
for cases of exceeding the line_limit MTA
option setting. Thus normally the following non-
configurable text is used: "a message x lines long
exceeds the line limit of y lines computed for this
transaction".

error_text_list_block_over 550 5.2.3 list limit of %d
kilobytes on
message size
exceeded

This error is returned if a message exceeds a list's
configured size limit (in MTA blocks---see the
block_size MTA option), configured via the
[BLOCKLIMIT] named mailing list parameter
for a list defined in the alias file or alias database,
or via the alias_blocklimit alias option
(Unified Configuration), or configured via the
user/group-level mgrpMsgMaxSize attribute
(more precisely, the attribute named by the
ldap_maximum_message_size MTA option)
or domain-level mailDomainMsgMaxBlocks

MTA options 52–169

error_text MTA options

attribute (more precisely, the attribute named by the
ldap_domain_attr_blocklimit MTA option)
for groups and lists defined in LDAP. As of 7.0.5, a
%d, if present, will be replaced with the actual limit
value. (Prior to 7.0.5, the default text was "list limit
on message size exceeded".)

error_text_list_line_over 550 5.2.3 list limit of %d
lines on message
length exceeded

This error is returned if a message exceeds a
list's configured line limit, configured via the
[LINELIMIT] named mailing list parameter for
a list defined in the alias file or alias database, or
via the alias_linelimit alias option (Unified
Configuration), and that fact is apparent when
recipient address(es) are being processed. But since
message line length is not normally known that
early during message processing. As of 7.0.5, a %d,
if present, will be replaced with the actual limit
value. (Prior to 7.0.5, the default text was "list limit
on message length exceeded".)

error_text_user_block_over 550 5.2.3 user limit of %d
kilobytes on
message size
exceeded

This error is returned if a message exceeds the
maximum message size (in MTA blocks---see
the block_size MTA option) that a user may
receive, as configured via the [BLOCKLIMIT]
named parameter for aliases in the alias file or
alias database, or via the alias_blocklimit
alias option (Unified Configuration), or via
the user-level mailMsgMaxBlocks attribute
(more precisely, the attribute named by the
ldap_blocklimit MTA option) or domain-
level mailDomainMsgMaxBlocks attribute
(more precisely, the attribute named by the
ldap_domain_attr_blocklimit MTA option)
for users defined in LDAP. As of 7.0.5, a %d, if
present, will be replaced with the actual limit value.
(Prior to 7.0.5, the default text was "user limit on
message size exceeded".)

error_text_user_line_over 550 5.2.3 user limit of %d
lines on message
length exceeded

This error is returned if a message exceeds a
user's configured line limit, configured via the
[LINELIMIT] named parameter for an alias
defined in the alias file or alias database, or via
the alias_linelimit alias option in Unified
Configuration, and that fact is apparent when
recipient address(es) are being processed. But since
message line length is not normally known that
early during message processing, instead normally
the non-configurable general error text "a message x
lines long exceeds the line limit of y lines computed
for this transaction" is used. As of 7.0.5, a %d, if
present, will be replaced with the actual limit value.
(Prior to 7.0.5, the default text was "user limit on
message length exceeded".)

error_text_message_too_large 550 5.3.4 a message size
of %d kilobytes
exceeds the
size limit of %d
kilobytes computed
for this transaction

New in 7.0.5 - this error message was hard coded
in previous releases. This error will be returned (in
the case of SMTP attempted submissions, at the end
of the data transfer stage of the SMTP dialogue)
if a message exceeds computed size limit for the
transaction. The first %d, if present, will be replaced
with the estimated message size and the second
with the computed limit, both in units of MTA
blocks.

error_text_message_too_long 550 5.3.4 a message %d lines
long exceeds the
line limit of %d
lines computed for
this transaction

New in 7.0.5 - this error message was hard coded
in previous releases. This error will be returned (in
the case of SMTP attempted submissions, at the end
of the data transfer stage of the SMTP dialogue)
if a message exceeds computed line limit for the
transaction. The first %d, if present, will be replaced
with the estimated number of message lines and the
second with the computed limit.

52–170 Messaging Server Reference

error_text MTA options

error_text_insufficient_disk 452 4.3.4 message exceeds
disk space
available at this
time

New in 7.0.5 - this error message was hard coded
in previous releases. This error will be returned (in
the case of SMTP attempted submissions, at the end
of the data transfer stage of the SMTP dialogue) if
the storage requirements for the message exceed the
amount of disk space available.

error_text_wrong_account 550 5.7.17 account
information on file
is older than actual
user account

This error is returned if an RRVS check on the
account fails; see checkrrvs.

error_text_wrong_domain 550 5.7.18 domain owner has
changed

This error is returned if an RRVS check on the
domain fails; see checkrrvs.

error_text_recipient_over 452 or
550+

4.2.3 too many recipients
specified

This error is returned if a message exceeds
any configured limit on recipients, that is,
exceeding a channel recipientlimit keyword
setting, a FROM_ACCESS mapping table $S
recipient limit, a domain recipient limit (see
the ldap_domain_attr_recipientlimit
MTA option), or a user recipient limit (see the
ldap_recipientlimit MTA option).

error_text_sieve_access 452 4.7.1 sieve filter access
error

This error is returned when the MTA cannot open a
recipient user Sieve filter file.

error_text_sieve_syntax 452 4.7.1 sieve filter syntax
error

This error is returned when there is a syntax error
in (or trouble in reading) a recipient user Sieve filter
file.

error_text_disabled_user 550 or
450*

5.2.1 user disabled;
cannot receive new
mail

This error is returned when the MTA detects that
a user's personal status (inetUserStatus or
mailUserStatus) or the user's domain status
(mailDomainStatus) is disabled during alias
expansion.

error_text_disabled_alias 550 or
450*

5.2.1 alias disabled;
cannot receive new
mail

error_text_over_quota 451 or
550+

4.2.2 user over quota;
cannot receive new
mail

This the error returned, for instance by the
SMTP server, when the MTA detects that either
a user's personal status (inetUserStatus
or mailUserStatus) or their domain status
(mailDomainStatus) is overquota during alias
expansion. But note that once a message is in a
final delivery channel (ims-ms or tcp_lmtpc*)
well past alias expansion processing, then the
handling of messages to overquota users, and
the error message returned, is controlled by the
Message Store's configuration of overquota message
handling, including the Message Store's grace
period configuration, and the Message Store uses
the IMAP over quota text as its error text in reports
on overquota messages.

error_text_temporary_failure 452 unknown host or
domain

Note that this error text for certain generic
temporary failures defaults to the same error
text used also in cases of clear-cut "bad" domain
names, error_text_unknown_host, as
well as in cases of generic permanent failures,
error_text_permanent_failure.

error_text_permanent_failure 550 or
530++

 unknown host or
domain

Note that this error text for generic permanent
failures defaults to the same error text used
also in cases of clear-cut "bad" domain names,
error_text_unknown_host, as well
as in cases of generic temporary failures,
error_text_temporary_failure.

error_text_illegal_8bit 553 5.1.3 illegal 8bit
characters in
address

Incorrect eight bit data present in an address.

MTA options 52–171

error_text MTA options

error_text_illegal_8bit_from 553 5.1.3 illegal 8bit
characters in return
address

Incorrect eight bit data present in the return
address.

error_text_disallowed_8bit 553 5.1.0 8bit characters
in address not
allowed in this
context

Eight bit data present in an address when eight bit
is not allowed.

error_text_disallowed_8bit_from 553 5.1.0 8bit characters in
return address not
allowed in this
context

Eight bit data present in the return address when
eight bit is not allowed.

error_text_receipt_it 250 2.0.0 message accepted
for list expansion
processing

This option specifies the text used (by default
"message accepted for list expansion
processing") by the MTA when generating a
delivery receipt (a notification message) to let
a sender know that their message has gotten to
the point of being expanded to a list. Note that
the NOTARY specification (RFC 3461) explicitly
requires that delivery receipt requests to mailing
lists be responded to at the list expansion step; see
Section 5.2.7.1 of RFC 3461 (which updates Section
6.2.7.1 of RFC 1891).

error_text_inactive_user 452 or
550+

4.2.1 mailbox
temporarily
disabled

error_text_inactive_group 452 or
550+

4.2.1 group temporarily
disabled

This error is returned when the MTA
detects that a group's status (the value of the
inetMailGroupStatus attribute, or more
precisely, the values of whatever LDAP attributes
are named by the ldap_group_status or
ldap_group_mail_status MTA options) or
the group's domain status (mailDomainStatus,
or more precisely the attribute named by the
ldap_domain_attr_mail_status MTA option)
is inactive during alias expansion.

error_text_disabled_group 550 5.2.1 group disabled;
cannot receive new
mail

This error is returned when the MTA
detects that a group's status (the value of the
inetMailGroupStatus attribute, or more
precisely, the values of whatever LDAP attributes
are named by the ldap_group_status or
ldap_group_mail_status MTA options) or
the group's domain status (mailDomainStatus,
or more precisely the attribute named by the
ldap_domain_attr_mail_status MTA option)
is disabled during alias expansion.

error_text_deleted_user 550 5.1.6 recipient no longer
on server

This error will be returned when a user has
an inetUserStatus or mailUserStatus
attribute, (more precisely, an attribute
named by the ldap_user_status or
ldap_user_mail_status MTA options) with
value of "deleted" or "removed"

error_text_deleted_group 550 5.1.6 group no longer on
server

This error will be returned when a group
has an inetMailGroupStatus attribute
with value of "deleted" or "removed";
or more precisely, if either of the attributes
named by the ldap_group_status or
ldap_group_mail_status MTA options has
such a value

error_text_duplicate_addrs 553 5.1.4 duplicate/
ambiguous
directory match

The recipient address has matched multiple entries
in the directory; this typically indicates that a
mistake was made while provisioning users and
domains in the directory.

error_text_spamfilter_error 451 4.7.1 filtering/scanning
error

As of MS 6.3, a synonym for the new-in-6.3
error_text_spamfilter1_error MTA

52–172 Messaging Server Reference

https://tools.ietf.org/html/rfc3461
https://tools.ietf.org/html/rfc3461
https://tools.ietf.org/html/rfc1891

error_text MTA options

option; as of MS 6.3, obsolete and used only if
error_text_spamfilter1_error is not set.

error_text_spamfilterN_error 451 4.7.1 filtering/scannning
error

New in MS 6.3. The default error text to use when
there is a problem attempting to use the Nth spam/
virus filter package, if no more specific error text
regarding the exact spam/virus filter package
problem is available; N can have values in the range
1--8. As of 7.0.5.37, any value specified for this
option unconditionally overrides any error text
returned by the filter package.

error_text_brightmail_error 451 4.7.1 filtering/scanning
error

This obsolete option is used only if the
error_text_spamfilter1_error MTA option
is not set

error_text_still_held 452 4.2.1 cannot reenqueue
while still held

Default error text to use when there is an attempt to
reenqueue to a recipient whose status is "hold"; for
instance, an attempt to release a message from the
hold channel when a recipient still has a personal or
domain status of "hold"

error_text_empty_alias 550 5.2.4 alias failed to
expand to any
valid addresses

New in MS 6.1.

error_text_nosolicit 550 or
530++

5.7.1 solicitations of
this type are not
allowed

New in MS 6.2. Default solicitation violation
rejection text, if no more specific rejection text is
available.

error_text_srs_syntax 553 5.1.3 Syntax error in
SRS/MUL address

The error text returned when the MTA's attempt to
SRS/MUL decode an address encounters a syntax
error in the SRS/MUL encoding.

error_text_srs_timeout 550 5.7.1 SRS/MUL address
has timed out

Error text returned when the MTA attempts to
decode an SRS/MUL encoded address whose
timestamp has expired.

error_text_srs_badhash 550 5.7.1 SRS/MUL address
has a bad hash
value

Error text returned when the MTA's attempt to
decode an SRS/MUL encoded address finds an
invalid hash value.

error_text_spf_temperror_4 451 4.7.24 temporary error
in SPF verification
of MAIL FROM
domain

(New in MS 6.3, but not taking effect until
Messaging Server 8.0) If the MTA option
spf_smtp_status_temperror is set to 4, then
this is error text to use when a temporary DNS
error occurs attempting an SPF lookup on the
domain from the MAIL FROM at either the MAIL
FROM or RCPT TO stage; the domain name (inside
parentheses) will be suffixed to the specified error
text

error_text_spf_temperror_5 550 4.7.24 temporary error
in SPF verification
of MAIL FROM
domain

(New in MS 6.3 but not taking effect until
Messaging Server 8.0) If the MTA option
spf_smtp_status_temperror is set to 5, then
this is error text to use when a temporary DNS
error occurs attempting an SPF lookup on the
domain from the MAIL FROM at either the MAIL
FROM or RCPT TO stage; the domain name (inside
parentheses) will be suffixed to the specified error
text.

error_text_spf_permerror_4 451 5.7.24 permanent error
in SPF verification
of MAIL FROM
domain

(New in MS 6.3 but not taking effect until
Messaging Server 8.0) If the MTA option
spf_smtp_status_permerror is set to 4, then
this is error text to use when a permanent DNS
error occurs attempting an SPF lookup on the
domain from the MAIL FROM at either the MAIL
FROM or RCPT TO stage; the domain name (inside
parentheses) will be suffixed to the specified error
text.

error_text_spf_permerror_5 550 5.7.24 permanent error
in SPF verification
of MAIL FROM
domain

(New in MS 6.3, but not taking effect until
Messaging Server 8.0) If the MTA option
spf_smtp_status_permerror is set to 5, then
this is error text to use when a permanent DNS
error occurs attempting an SPF lookup on the

MTA options 52–173

error_text MTA options

domain from the MAIL FROM at either the MAIL
FROM or RCPT TO stage; the domain name (inside
parentheses) will be suffixed to the specified error
text.

error_text_spf_fail_4 451 5.7.23 SPF verification
of MAIL FROM
domain failed

(New in MS 6.3, but not taking effect until
Messaging Server 8.0) If the MTA option
spf_smtp_status_fail is set to 4, then this
is the error text to use when an SPF lookup on
the domain from the MAIL FROM at either the
MAIL FROM or RCPT TO stage determines that
the domain has failed to verify; the domain name
(inside parentheses) will be suffixed to the specified
error text. If additional explanation text is available,
then it will also be suffixed (with a colon) after the
domain name.

So, for instance, the entire error could appear
as: 451 5.7.23 SPF verification of
MAIL FROM domain failed (domain):
explanation

or: 451 5.7.23 error_text_spf_fail_4
(domain): explanation

error_text_spf_fail_5 550 5.7.23 SPF verification
of MAIL FROM
domain failed

(New in MS 6.3, but not taking effect until
Messaging Server 8.0) If the MTA option
spf_smtp_status_fail=5 is set, then this
is the error text to use when an SPF lookup on
the domain from the MAIL FROM at either the
MAIL FROM or RCPT TO stage determines that
the domain has failed to verify; the domain name
(inside parentheses) will be suffixed to the specified
error text. If additional explanation text is available,
then it will also be suffixed (with a colon) to the
error text.

So, for instance, the entire error could appear
as: 550 5.7.23 SPF verification
of MAIL FROM domain failed
(domain): explanation or: 550 5.7.23
error_text_spf_fail_5 (domain):
explanation

error_text_spf_softfail_4 451 4.7.23 SPF verification
of MAIL FROM
domain soft failed
(domain)

(New in MS 6.3, but not taking effect until
Messaging Server 8.0) This is the error text to use
when an SPF lookup of the MAIL FROM domain,
performed at MAIL FROM time (configured
via use of spfmailfrom) or RCPT TO time
(configured via use of spfrcptto), determines
that the domain has a "soft" verification failure and
the MTA is configured to treat such verification
failures as temporary errors: either an SPF SoftFail
was returned for the specific domain name and
spf_smtp_status_softfail=4 is set, or
an SPF SoftFail "all" was returned for domain
names including the specific domain name and
spf_smtp_status_softfail_all=4 is set. The
domain name (inside parentheses) will be suffixed
to the specified error text. Note that for SPF lookups
performed at EHLO/HELO (spfhelo) time, the
error_text_spf_ehlo_softfail_4 text is
used instead.

error_text_spf_softfail_5 550 4.7.23 SPF verification
of MAIL FROM
domain soft failed

(New in MS 6.3, but not taking effect until
Messaging Server 8.0) This is the error text to use
when an SPF lookup of the MAIL FROM domain,
performed at MAIL FROM time (configured
via use of spfmailfrom) or at RCPT TO time
(configured via use of spfrcptto), determines
that the domain has a "soft" verification failure and
the MTA is configured to treat such verification
failures as permanent errors: either an SPF SoftFail

52–174 Messaging Server Reference

error_text MTA options

was returned for the specific domain name and
spf_smtp_status_softfail=5 is set, or
an SPF SoftFail "all" was returned for domain
names including the specific domain name and
spf_smtp_status_softfail_all=5 is set. The
domain name (inside parentheses) will be suffixed
to the specified error text. Note that for SPF lookups
performed at EHLO/HELO (spfhelo) time, the
error_text_spf_ehlo_softfail_5 text is
used instead.

error_text_spf_ehlo_temperror_4 451 4.7.24 temporary error
in SPF verification
of EHLO/HELO
domain

(New in 8.0) If the MTA option
spf_smtp_status_temperror is set to 4, then
this is error text to use when a temporary DNS error
occurs attempting an SPF lookup on the domain
from the EHLO/HELO command.

error_text_spf_helo_temperror_5 550 4.7.24 temporary error
in SPF verification
of EHLO/HELO
domain

(New in 8,0) If the MTA option
spf_smtp_status_temperror is set to 5, then
this is error text to use when a temporary DNS error
occurs attempting an SPF lookup on the domain
from the EHLO/HELO command.

error_text_spf_helo_permerror_4 451 5.7.24 permanent error
in SPF verification
of EHLO/HELO
domain

(New in 8,0) If the MTA option
spf_smtp_status_permerror is set to 4, then
this is error text to use when a permanent DNS
error occurs attempting an SPF lookup on the
domain from the EHLO/HELO command

error_text_spf_ehlo_permerror_5 550 5.7.24 permanent error
in SPF verification
of EHLO/HELO
domain

(New in 8.0) If the MTA option
spf_smtp_status_permerror is set to 5, then
this is error text to use when a permanent DNS
error occurs attempting an SPF lookup on the
domain from the EHLO/HELO command.

error_text_spf_ehlo_fail_4 451 5.7.23 SPF verification
of EHLO/HELO
domain failed

(New in 8.0) If the MTA option
spf_smtp_status_fail is set to 4, then this
is the error text to use when an SPF lookup of
the domain from the EHLO/HELO command
determines that the domain has failed to verify. If
additional explanation text is available, then it will
be suffixed (with a colon) to the error text.

So, for instance, the entire error could appear
(at the EHLO/HELO command stage) as: 451
5.7.23 SPF verification of EHLO/
HELO domain failed: explanation or: 451
5.7.23 error_text_spf_ehlo_fail_4:
explanation

error_text_spf_ehlo_fail_5 550 5.7.23 SPF verification
of EHLO/HELO
domain failed

(New in 8.0) If the MTA option
spf_smtp_status_fail=5 is set, then this is
the error text to use when an SPF lookup of the
EHLO/HELO domain determines that the domain
has failed to verify. If additional explanation text is
available, then it will be suffixed (with a colon) to
the error text.

So, for instance, the entire error could appear as:
550 5.7.23 SPF verification of EHLO/
HELO domain failed: explanation or: 550
5.7.23 error_text_spf_ehlo_fail_5:
explanation

error_text_spf_ehlo_softfail_4 451 4.7.23 SPF verification
of EHLO/HELO
domain soft failed

(New in 8.0) This is the error text to use when an
SPF lookup of the EHLO/HELO domain name
(configured via use of spfhelo), determines that
the domain has a "soft" verification failure and
the MTA is configured to treat such verification
failures as temporary errors: either an SPF SoftFail
was returned for the specific domain name and
spf_smtp_status_softfail=4 is set, or
an SPF SoftFail "all" was returned for domain
names including the specific domain name and
spf_smtp_status_softfail_all=4 is set. If

MTA options 52–175

error_text MTA options

additional explanation text is available, then it will
be suffixed (with a colon) to the error text.

error_text_spf_ehlo_softfail_5 550 4.7.23 SPF verification
of MAIL FROM
domain soft failed

(New in 8.0) This is the error text to use when
an SPF lookup of the MAIL FROM domain,
performed at RCPT TO time (configured via use
of spfrcptto), determines that the domain
has a "soft" verification failure and the MTA is
configured to treat such verification failures as
permanent errors: either an SPF SoftFail was
returned for the specific domain name and
spf_smtp_status_softfail=5 is set, or
an SPF SoftFail "all" was returned for domain
names including the specific domain name and
spf_smtp_status_softfail_all=5 is set. If
additional explanation text is available, then it will
be suffixed (with a colon) to the error text.

error_text_mailfromdnsverify 550 or
450

5.1.8 or
4.1.8

invalid/host-not-
in-DNS return
address not
allowed

(New in MS 6.3) The 450 4.1.8 error is returned for
all cases of DNS verification lookup "failures" other
than HOST_NOT_FOUND; hence DNS lookup
difficulties such as DNS server failure to respond
will result in this error. Normally, the 550 5.1.8 error
is returned when a DNS verification lookup returns
a definitive HOST_NOT_FOUND error. However,
if bit 5/value 32 of the returnenvelope channel
option is set, then HOST_NOT_FOUND will also
result in a temporary 450 4.1.8 error rather than the
permanent 550 5.1.8 rejection.

error_text_null_mx 521 or
550**

5.1.10 or
5.7.26**

host/domain does
not accept mail

(New in 8.0) This error is returned when the
domain associated with a recipient address resolves
to a so-called "null MX". This error message is also
returned when bit 3 (value 8) and bit 6 (value 64)
of the returnenvelope channel option or the
return_envelope MTA option are set and a
domain with a "null MX" appears in the envelope
sender (MAIL FROM) address.

error_text_invalid_return_address 550 5.1.7 invalid/unroutable
return address not
allowed

(New in MS 6.3) The 550 5.1.7 error is returned if bit
2 (value 4) of the returnenvelope channel option
is set and rewriting of the MAIL FROM failed to
match any channel.

error_text_unknown_return_address 550 5.1.8 invalid/no-such-
user return address

(New in MS 6.3) The 550 5.1.8 error is returned if
bit 4 (value 16) of the returnenvelope channel
option is set and the MAIL FROM address is local
but could not be resolved to any known user.

error_text_accepted_return_
address

250 2.5.0 return address
invalid/unroutable
but accepted
anyway

(New in MS 6.3) This is not, properly speaking, an
error - this message is returned when an invalid
MAIL FROM address is given but accepted by the
MTA anyway.

error_text_source_sieve_access 450 4.3.0 source channel
sieve filter access
error

(New in MS 6.3) This error is returned when the
MTA cannot open a source channel Sieve filter file.

error_text_source_sieve_syntax 450 4.3.0 source channel
sieve filter syntax
error:

(New in MS 6.3) This error is returned when there
is a syntax error in (or trouble in reading) a source
channel Sieve filter.

error_text_source_sieve_
authorization

450 4.3.0 source channel
sieve filter
authorization error

(New in MS 6.3) Currently unused.

error_text_transaction_limit_
exceeded

450 4.5.3 number of
transactions
exceeds allowed
maximum

(New in MS 6.3) Error returned at MAIL FROM
when the channel transactionlimit option,
specifying the maximum number of transactions
allowed in the session, is exceeded.

error_text_insufficient_queue_
space

450 4.3.1 insufficient free
queue space
available

(New in MS 6.3) Issued in response to a MAIL
FROM: command if the free disk space available
to the MTA in the MTA's queue area dips below 10
MTA blocks

52–176 Messaging Server Reference

error_text MTA options

error_text_temporary_write_error 451 4.4.5 error writing
message temporary
file

(New in MS 6.3) The SMTP server prefixes this
error text with the message: 451 4.4.5 Error
writing message temporaries -

An internal channel such as the reprocess channel
would record this error text in its delivery history,
and in its "Q" record.

error_text_smtp_lines_too_long 554 5.6.0 lines longer than
SMTP allows
encountered;
message rejected

(New in MS 6.3) Issued when
rejectsmtplonglines is in effect, and a line
longer than 998 characters (not including the SMTP
CRLF line terminator) is seen in the message data.

error_text_unnegotiated_eightbit 554 5.6.0 message contains
unnegotiated 8bit

(New in MS 6.3) Issued when a source TCP/IP
channel has eightstrict or utf8strict set,
and the incoming message contains unnegotiated
eight bit data.

error_text_mls_access_failure 550 5.7.1 security access
check failure

(New in 7.0) This restricted option is currently
unused.

error_text_spare_error Obsolete (does not exist) as of MS 6.2.

error_text_spare1_error (New in MS 6.2) This option provides a spare slot
so a new settable error message can be added to an
existing release. Use of this option is restricted.

error_text_spare2_error (New in MS 6.2) This option provides a spare slot
so a new settable error message can be added to an
existing release. Use of this option is restricted.

+ Whether the error code used is a temporary 4yz (the default) or a permanent 5yz error code
is controlled by the use_permanent_error MTA option.

++ In place of the usual 550 error code, the 530 error code is used when the problem relates to
security: as for instance failure to properly authenticate (successfully use SMTP AUTH) when
authentication is required.

+++ Errors at MAIL FROM: stage use 450; errors at RCPT TO: stage use 452.

* (Added in 8.0.) Whether the error code used is a permanent 5yz (the default) or a temporary
4yz error code is controlled by the use_temporary_error MTA option.

** (Added in 8.0) Error regarding null MX for a recipient uses 521 5.1.10; error regarding null
MX for a sender uses 550 5.7.26.

Also note that errors authenticating (errors attempting SMTP AUTH use) are a
separate category of error type, returning hard-coded error text. (So for instance the
error_text_disabled_user option discussed above is relevant to attempts by the MTA
to verify that the user is a currently valid recipient; for instance, that error could be returned
as an SMTP rejection of that user's address as an envelope recipient address. But an attempt
by that same disabled user to submit a message using SMTP AUTH to authenticate would
fail authentication and result in a different error, discussed in the table MTA AUTH errors.)
 Note that for security reasons, a number of different underlying error conditions cause
the same error text to be returned in the SMTP rejection, while more specific details can be
provided in the message-id field of MTA connection transaction logging if the MTA option
log_message_id is enabled.

Table 52.17 MTA AUTH errors
SASL error or code SMTP

code
Extended code Basic SMTP error text+ log_message_id

text in "U" record
Notes

 HULA_BADPARAM or
HULA_NOMEM

450 4.3.0 SASL initialization failed; server
unavailable

 LDAP server unavailable/unresponsive
for authentication; proxy authentication
not properly configured or trouble
performing it; server running out of
memory; etc.

MTA options 52–177

use_permanent_error MTA
option

 SASL_UNAVAIL 454 4.7.0 Authentication server unavailable Authentication server
unavailable

LDAP server unavailable/unresponsive
for authentication.

 503 5.7.0 AUTH command already issued SMTP AUTH already successfully
performed.

 533 5.7.1 AUTH command is not enabled No maysaslserver or
mustsaslserver enabled on channel.

 501 5.7.0 Cannot decode BASE64 Cannot decode BASE64 Argument right of = fails to BASE64
decode; or, argument on new line fails
to BASE64 decode.

 503 5.7.1 Mail transaction already in
progress

 SMTP AUTH not permitted now that
message submission has begun.

 501 5.7.0 AUTH operation aborted by client Client aborted AUTH
operation

 SASL_OK 235 2.7.0 mechanism authentication
successful

authentication successful++

 SASL_NOMECH 504 5.5.4 Unrecognized authentication type Unrecognized authentication
type

 SASL_BADPROT 501 5.5.0 Invalid input Invalid input

 SASL_NOUSER 535 5.7.8 Bad username or password No such user

 SASL_PWLOCK 534 5.7.8 Bad username or password Password/account is locked (New in MS 8.0.2)

 SASL_WEAKPASS 534 5.7.9 Password is too weak Password is too weak (New in MS 8.0)

 SASL_TOOWEAK 535 5.7.8 Bad username or password Authentication mechanism is
too weak

 SASL_BADAUTH 535 5.7.8 Bad username or password Bad password

 SASL_NOAUTHZ 535 5.7.8 Authorization failure Authorization failure

 SASL_ENCRYPT 538 5.7.11 Encryption needed to use
mechanism

Encryption needed for
mechanism

 SASL_EXPIRED 524 5.7.11 Password expired, has to be reset Password expired; has to be
reset

 SASL_DISABLED with
mailUserStatus: inactive

525 5.7.13 Account disabled Account disabled (inactive)

 SASL_DISABLED with
mailUserStatus: hold

525 5.7.13 Account disabled Account disabled (hold)

 SASL_UNAVAIL 454 4.7.0 Authentication server unavailable Authentication server
unavailable

 SASL_TRYAGAIN 454 4.7.0 Try again later Try again later

 SASL_TRANS 422 4.7.12 Try changing your password Transition password needed

 Default for other errors 500 5.7.0 Unknown authentication error Unknown AUTH errors
<sasl-errno> <sasl-aux-errno>

+ Additional detail error text potentially may be suffixed within parentheses for error cases
other than a client abort of the AUTH attempt, or successful authentication.

++ New in 7.3-11.01 version; previously, the log_message_id field was the empty string for
this success case

52.19.3 Error text and error interpretation MTA options:
use_permanent_error (bitmask)

The use_permanent_error MTA option controls whether certain error conditions normally
considered to be temporary are instead interpreted as permanent errors; that is, this option
controls whether certain error conditions result in immediately bouncing (returning) messages
instead of retaining them for further delivery retries. The option takes a bit encoded integer
argument, with the individual bits each controlling an individual error condition. The default
is 0.

Table 52.18 use_permanent_error MTA option bits

Bit Value Usage

52–178 Messaging Server Reference

use_temporary_error MTA
option

 0 1 If set, causes a permanent rather than a temporary error to be returned
for the error_text_inactive_user case; that is, if set, then in
the case of users with an "inactive" status, the (permanent) error
"550 4.2.1 mailbox temporarily disabled" is issued rather
than the (temporary) error "450 4.2.1 mailbox temporarily
disabled". Note that the actual text issued in the error (by default
"mailbox temporarily disabled") may be customized using the
error_text_inactive_user MTA option.

 1 2 If set, causes a permanent rather than a temporary error to be returned for
the error_text_inactive_group case.

 2 4 If set, causes a permanent rather than a temporary error to be returned for
errors corresponding to the error_text_over_quota case.

 3 8 If set, causes a permanent rather than a temporary error to
be returned for the error_text_alias_fileerror and
error_text_alias_fileexist cases.

 4 16 If set, causes a permanent rather than a temporary error to be returned for
the error_text_recipient_over case.

The usepermanenterror channel option may be used on a per-source-channel basis to
override the MTA level mta.use_permanent_error setting.

Prior to the 8.0.1.2 release the MTA converts the "defer" mailUserStatus value to "inactive"
internally when performing a reprocessing operation. This means that use of the
rehostuser utility, which makes use of "defer", in conjunction with setting bit 0 (value 1) of
use_permanent_error can cause messages received during a rehostuser operation to be
returned as undeliverable.

This issue has been addressed in 8.0.1.2 and later by having the MTA convert "defer" status to
"hold" status instead.

IMPORTANT NOTE: More generally, various parts of Messaging Server, other
Communications Suite components, and even external provisioning utilities assume that
"inactive" status is used to indicate transient rather than permanent problems. As such, setting
bit 0 (value 1) of use_permanent_error to cause a permanent error status to be returned is
NOT RECOMMENDED.

52.19.4 Error text and error interpretation MTA options:
use_temporary_error (bitmask)

(New in MS 8.0) The use_temporary_error MTA option controls whether certain error
conditions normally considered to be permanent are instead interpreted as temporary errors;
that is, this option controls whether certain error conditions result retaining messages for
further delivery retries instead of immediately bouncing (returning) them. The option takes
a bit encoded integer argument, with the individual bits each controlling an individual error
condition. The default is 0.

Table 52.19 use_temporary_error MTA option bits

Bit Value Usage
 0 1 If set, causes a temporary rather than a permanent error to be returned for

the error_text_disabled_user case.

MTA options 52–179

External filtering context MTA
options

 1 2 If set, causes a temporary rather than a permanent error to be returned for
the error_text_disabled_alias case.

 2 4 If set, causes a temporary rather than a permanent error to be returned for
errors corresponding to the error_text_unknown_alias case.

 3 8 If set, causes a temporary rather than a permanent error to be returned for
the error_text_unknown_host case.

 4 16 If set, causes a temporary rather than a permanent error to be returned for
the error_text_unknown_user case.

The usetemporaryerror channel option may be used to override the MTA level
mta.use_temporary_error on a per-source-channel basis.

52.20 External filtering context MTA options
The scan_* MTA options set context for filtering performed by external-to-the-MTA
components, such as when imexpire makes use of Sieve rules or spam/virus filter packages
to perform message expiration.

For MTA options relating to the MTA's own Sieve filter use or Spam/virus filter package
integration, see respectively the Sieve filter MTA options and Spamfilter MTA options.

52.20.1 External filtering context MTA options:
scan_channel (MTA channel name)

New in 7.0.5. The MTA's spam/virus filter package integration facility can be used in non-MTA
(in particular, in non-channel) contexts, such as by applications or utilities such as imexpire,
where certain fields inherently available for message processing in the MTA context are not
necessarily naturally available. The scan_channel MTA option specifies the default source
channel for such scanning operations. The default is the l (lowercase "L") channel.

52.20.2 External filtering context MTA options:
scan_originator (address)

New in 7.0.5. The MTA's spam/virus filter package integration facility can be used in non-MTA
(in particular, in non-channel) contexts, such as by applications or utilities such as imexpire,
where certain fields inherently available for message processing in the MTA context are not
necessarily naturally available. The scan_originator MTA option specifies the MAIL
FROM address that's used for such scanning operations. (There is no envelope in this situation,
but the MTA requires one, so a minimal pseudo envelope has to be constructed.) The default is
the empty string.

52.20.3 External filtering context MTA options:
scan_recipient (address)

New in 7.0.5. The MTA's spam/virus filter package integration facility can be used in non-MTA
(in particular, in non-channel) contexts, such as by applications or utilities such as imexpire,
where certain fields inherently available for message processing in the MTA context are not
necessarily naturally available. The scan_recipient MTA option specifies the RCPT TO
address that's used for such scanning operations. (There is no envelope in this situation and

52–180 Messaging Server Reference

File format MTA options

thus no recipient, but the MTA requires one, so a pseudo recipient must be claimed.) The
default is "postmaster".

52.21 File format MTA options
There are a number of MTA options affecting the format of various MTA files, or the handling
of message files or log files. In particular, some of these MTA options can have performance
implications.

See also the file_member_size MTA option, which sets a limit for the number of
configuration files the MTA may use.

See also the os_debug MTA option which enables some low-level debugging of MTA file
handling.

52.21.1 MTA enqueue buffering (buffer_size)
The buffer_size MTA option sets the buffer size (for PMDF in blocks, as defined via the
block_size MTA option; for the Messaging Server MTA, buffer_size is literally the
number of bytes) used when writing message files to the MTA's queues (as well as when
writing temporary files when max_internal_blocks has been exceeded). The default value
is 8192. The minimum allowed value is 512; the maximum allowed value is 512*512=262144.

Note that this MTA option is completely different from the BUFFER_SIZE TCP/IP-channel-
specific option (which is instead more closely analogous to the max_internal_blocks MTA
option).

52.21.2 File format MTA options: cache_magic (integer)
The OBSOLETE cache_magic MTA option was used in PMDF versions to control the order
of sorting (for processing purposes) of old message files on disk. The default was 87654321.

This option is OBSOLETE and has no effect in modern MTA versions.

52.21.3 File format MTA options: cbt (0 or 1; OpenVMS
only)

The OBSOLETE cbt MTA option was used in PMDF versions on OpenVMS to control the use
of "contiguous best try" filesystem storage. Setting the option to 1 sets the corresponding bit in
the file attributes block, or FAB.

This option is OBSOLETE and has no effect in modern MTA versions.

52.21.4 File format and file handling options
(comment_chars)

The comment_chars MTA option controls what characters are taken to signal a comment
when they appear in the first column of various MTA input files. The value of this option takes
the form of a list of ASCII character values in decimal. In Unified Configuration, such a list is
space separated:

MTA options 52–181

debug_flush MTA option

msconfig> show -default mta.comment_chars
mta.comment_chars: 33 59

In legacy configuration, the default was the list {33, 59}. With either representation, this
specifies exclamation points and semicolons as comment introduction characters.

As of 7.0.5, note that the comment_chars MTA option only truly controls which character(s)
in addition to semicolon (ASCII value 59) represent comment introduction characters, since
regardless of whether or not it is explicitly set (or shows up in the value of comment_chars),
the semicolon will always be treated as being set in comment_chars.

Note that the comment_chars option does not apply when reading the legacy configuration
MTA option file itself as this file is read before comment_chars has even been seen. For this
file, the following comment characters are "hard-coded": "!", ";", and "#".

52.21.5 Debug MTA options: debug_flush (0 or 1)
As of Messaging Server 7.1, a.k.a. Messaging Server 7.0-3.01, the debug_flush MTA option
causes certain debug output to get immediately flushed to disk. This is applicable for many
MTA components, including typical channel debug output, but it is especially relevant and
noticeable for long-running components such as the SMTP server, and Job Controller. The
flush-to-disk-log-file of the debug output may incur a bit of a performance penalty, but tends
to be more convenient for debugging purposes. The default is that such debug flushing is not
enabled (debug_flush = 0).

As of 7.0.5, the debug_flush MTA option can also cause flushing of Dispatcher debug
output.

52.21.6 File reading during dequeue (dequeue_map)
The dequeue_map option controls whether files are mapping into memory when dequeuing.
The default is 1 (true), meaning that files are so mapped. Disabling this, by setting this option
to 0 (false), can be expected to have a detrimental effect on performance (and will likely cause
the ims-ms channel to abort and core).

Caution: Use of this option is RESTRICTED.

52.21.7 File format MTA options: fdirectory (0 or 1;
OpenVMS only)

The fdirectory option is only available on OpenVMS.

52.21.8 File format MTA options: fsync (0 or 1)
RESTRICTED.

The fsync MTA option may be used to cause the MTA to use the fsync function (UNIX) to
flush disk output when closing a message file. If such flushing is not performed explicitly by
the MTA, it is left up to the O/S to perform on its own timetable; potentially, if a system crashes
at just the wrong moment, messages not yet synched to disk could be lost. The tradeoff,
however, is that performing explicit flushing for every message incurs a performance penalty.
fsync=1, meaning that flushes are performed explicitly by the MTA, is the default, ensuring
message safety at the expense of a performance hit.

52–182 Messaging Server Reference

log_alq MTA option

For the Message Store, somewhat analogous is the former store option diskflushinterval
(default 15), and even more so the newer *synclevel store options such as
messagesynclevel (not advisable to set, other than in the special case of restoring from
backup, per the iMS 5.3 Migration Guide).

52.21.9 File format MTA options: log_alq (integer)
OpenVMS only.

The log_alq MTA option specifies the default allocation quantity (in OpenVMS blocks) for
the MTA message transaction log file, mail.log_current. The default value is 2000, or twice
the log_deq value if log_deq has been explicitly set. On a busy system that is updating that
log file frequently, increasing this value may provide increased efficiency.

52.21.10 File format MTA options: log_deq (integer)
OpenVMS only.

The log_deq option specifies the default extend quantity (in OpenVMS blocks) for the MTA
message transaction log file, mail.log_current. The default value is 1000. On a busy
system that is updating that log file frequently, increasing this value may provide increased
efficiency.

52.21.11 File format MTA options:
max_internal_blocks (integer)

The max_internal_blocks MTA option specifies how large (in MTA blocks---see the
block_size MTA option) an incoming message the MTA will buffer entirely in memory;
messages larger than this size will be written to temporary files (in the area specified by the
tmpdir MTA option -- or the imta_tmp MTA Tailor file option, in legacy configuration).
(Prior to MS 6.0, the area such files were written to was controlled by the now obsolete
imta_scratch MTA Tailor file option.) The default is 30.

For systems with lots of memory, increasing this value may provide a performance
improvement.

Note that max_internal_blocks does not affect incoming LMTP messages; that is, it does
not affect the LMTP server's handling of incoming messages. As of circa 6.2p5/6.3, the LMTP
server will buffer in memory up to a default of 1,000,000 bytes (in MS 6.2p5 this number is
hard-coded and not configurable) or the value set for the LMTP server BUFFER_SIZE TCP/IP-
channel-specific option of an incoming message, and after that will buffer to a temporary file
(in the tmpdir or imta_tmp directory). Prior to this change, the LMTP server did not do in-
memory buffering and instead always buffered to temporary files (in imta_tmp).

52.21.12 File format MTA options: mm_mbc (0-255)
OpenVMS only.

The mm_mbc MTA option sets the RMS RAB MBC field (the RMS disk block size) used when
writing message files.

52.21.13 File format MTA options: mm_mbf (0-255)

MTA options 52–183

notary_quote MTA option

OpenVMS only.

The mm_mbf MTA option sets the RMS RAB MBF field (the RMS multibuffer count) used when
writing message files.

52.21.14 Notification message MTA options:
notary_quote (1-127)

The notary_quote MTA option specifies the ASCII representation of the character that
marks substitution sequences in return_*.txt files and disposition_*.txt files. It
defaults to 25 (the ASCII position of the percent character) so substitutions are %R, %u, etc., as
listed in return_*.txt file substitution sequences.

52.21.15 File format MTA options: osync (0 or 1)
RESTRICTED.

The osync MTA option controls whether MTA message queue file creation sets the O_SYNC
flag. If set to 1, the O_SYNC flag is set when creating message queue file entries on disk. The
default is 0. Setting O_SYNC may provide an increase in performance on ZFS file systems, but
will degrade performance considerably on UFS.

52.21.16 projectid Option Under mta
The projectid MTA option overrides, for MTA use, the projectid base option. Thus the
projectid MTA option specifies the numeric identifier the MTA uses when obtaining shared
memory segments. This identifier is used in ftok() calls to generate a shared memory segment
key. By default, the MTA uses the value of the projectid base option. If the projectid base
option is not set, then the MTA defaults to using a value of 7; (in MS 7.4, if the projectid
base option was not set, the MTA defaulted to using a value of 1). Only the lowest eight bits of
the value are significant.

52.21.17 File format MTA options: queue_cache_mode
(integer)

RESTRICTED: The value 2 (the default) must be used for the Messaging Server MTA.

The queue_cache_mode MTA option tells the MTA the type of cache of message queue files
to use. In particular, a value of 2, the default, means that the Job Controller is maintaining (in-
memory) queue cache information. This option must not be set to any other value.

52.21.18 File format MTA options:
queue_cache_mode_3_files (list of file paths)

RESTRICTED. Only relevant when the queue_cache_mode MTA option is set to a value of 3
(which is not currently supported).

52.21.19 File format MTA options: use_text_databases
(bitmask)

52–184 Messaging Server Reference

Internal size MTA options

The use_text_databases MTA option controls whether the reverse "database", the general
"database", and the forward "database" are truly on-disk databases, or whether they are
instead stored as in-memory structures. As of MS 8.0.2.3, the bits in the option default to 1
if the corresponding URL option is not set and 0 otherwise. The default value was 8 prior to
MS 8.0.2.3. The default is 0 in versions of Messaging Server prior to 8.0.2.3. Setting a bit of
use_text_databases, so that an in-memory structure is used, makes moot any setting of
the corresponding, new in MS 8.0, *_database_url MTA option: the in-memory structure
will be used in preference to consulting memcache.

If bit 0 (value 1) is set, then the IMTA_TABLE:general.txt file (configroot/
general.txt) is read when the MTA configuration is initialized or reloaded, and the
information from that file is stored in memory replacing all uses of the general database.

If bit 1 (value 2) is set, then the IMTA_TABLE:reverse.txt file (configroot/
reverse.txt) is read when the MTA configuration is initialized or reloaded, and the
information from that file is stored in memory replacing all uses of the reverse database.

If bit 2 (value 4) is set, then the IMTA_TABLE:forward.txt file (configroot/
forward.txt) is read when the MTA configuration is initialized or reloaded, and the
information from that file is stored in memory replacing all uses of the forward database.

In particular, note that enabling use of such in-memory "databases" means that changes to the
"database" (changes to the underlying text file source) require recompiling the configuration,
or reloading the configuration, in order to get the change seen in a compiled configuration;
see the cnbuild utility and the reload utility. As of MS 6.3P1, text databases support including
other files via the < character, and comment lines (indicated by the presence of any of the
comment_chars characters in column one).

52.22 Internal size MTA options
The MTA has a number of options that control internal MTA table sizes. These options do
not normally need to be adjusted manually. Although they provide "starting points" (and
maximums) for the sizes of various internal memory tables, the MTA will resize its internal
tables as necessary when running. In particular, use of the imsimta cnbuild command will
cause resizing to accomodate the current configuration size (and then all subsequently started
processes will use the compiled configuration sizes). If a compiled configuration has not been
created, then each process when it initially starts will need to do the resizing itself. Thus the
penalty for not having "good" values set for these options is merely a little initial overhead---
either overhead only for the imsimta cnbuild command when a compiled configuration
is used, or overhead for each starting process when a compiled configuration is not used. In
other words, the relevance of these options is limited mostly to "fine-tuning" memory usage,
and providing a modest performance benefit for the imsimta cnbuild command (or for all
starting processes if a compiled configuration is not in use).

For those who do wish to ensure that these options are set to values matching the MTA's real
memory needs, using the imsimta cnbuild utility, that is, using a command such as the
UNIX command

imsimta cnbuild -noimage_file -maximum -option_file

is usually the best approach (letting the MTA tell you what values it needs, rather than trying
to guess values and manually set them yourself). The above command will output MTA

MTA options 52–185

alias_hash_size MTA option

options (stored in the MTA option file in an legacy configuration) with sizes adequate for the
current configuration, plus some growth room. (Note that the above shown command does
not actually compile the configuration using these sizes; that would require an additional
imsimta cnbuild command. Rather, the above command determines appropriate sizing,
and outputs corresponding MTA option values; such values could then be used in any
subsequent MTA process invocation and in particular, in a subsequent imsimta cnbuild
command.)

Since the MTA will resize its internal table sizes as needed, errors about exceeding table sizes
are normally seen only if the MTA's more-or-less "hard" limits on resizing are reached. (The
limits are established by the maximum.dat file and/or "hard" limits in the code.) And since
the MTA's "hard" limits are very generous, exceeding the limits is usually an indication of
either a configuration error of a type that has confused the MTA about the intended meaning
of certain configuration inputs (for instance, an extraneous blank line in the rewrite rules,
causing the MTA to attempt to interpret all remaining material as channel definitions), or
configuration choices involving poor use of MTA facilities that would be better handled in
an alternate manner (such as attempting to hard code many thousands of mapping table
entries, rather than using a few general entries that do general database callouts for the specific
fields). In particular, reaching the limits specified in the normal maximum.dat file is usually
an indication of poor configuration choices; you should contact Oracle if you believe you wish
to exceed those limits, as you may be better served by alternate configuration tactics.

Note: Historically, the default values, maximum size achievable through automatic resizing,
and "hard" limits for these options have been prone to change (particularly increase) during
and especially between releases, to a rather greater extent than for most other options. So
although a diligent attempt has been made to provide correct numbers as of press time, the on-
going quest to improve performance and scalability may mean that these documented values
become out-of-date.

52.22.1 Internal size MTA options: alias_hash_size
(1-1000000)

The alias_hash_size MTA option sets the size of the alias hash table. This in turn is an
upper limit on the number of aliases that can be defined in the alias file, or equivalently the
number of named alias groups in Unified Configuration. The default is 256; the maximum
that the MTA will allow with normal, automatic resizing is 15,000 (controlled from the
maximum.dat file); the "hard" maximum value allowed is 1,000,000. Attempts to set this
option higher than 1,000,000 will result in an mm_init error, "ALIAS_HASH_SIZE exceeds
maximum". Attempts to specify more aliases in the alias file than allowed by this option's
maximum (normally the automatic, resize maximum, unless a higher maximum has been
explicited configured for this option) will result in an mm_init error, "no room in table for
alias ...".

52.22.2 Internal size MTA options: alias_member_size
(0-40000)

The alias_member_size MTA option controls the size of the index table that contains the
list of alias translation value pointers. The total number of addresses on the right hand sides of
all the alias definitions in the alias file, or addresses on the right hand sides of all named alias
groups in Unified Configuration, cannot exceed this value. The default is 320; the maximum
allowed with normal, automatic resizing is 30,000 (controlled from the maximum.dat file); the

52–186 Messaging Server Reference

channel_table_size MTA
option

"hard" maximum allowed is 40,000. Attempts to set this option higher than 40,000 will result
in an mm_init error, "ALIAS_MEMBER_SIZE exceeds maximum". Attempts to specify more
alias translation values than allowed by the maximum for this option (normally, the automatic,
resizing maximum, unless a higher maximum has been explicitly configured) will result in an
mm_init error, "no room in alias member table for alias ...".

52.22.3 Internal size MTA options:
channel_table_size (1-8192)

The channel_table_size MTA option controls the size of the channel table. The total
number of channels in the configuration file, or the total number of named channel groups
in Unified Configuration, cannot exceed this value. The default is 256; the maximum
that the MTA will allow with normal, automatic resizing is 2500 (controlled from the
maximum.dat file); the "hard" maximum (only achievable via explicit manual configuration)
is 8,192. Attempts to set this option higher than 8,192 will result in an mm_init error,
"CHANNEL_TABLE_SIZE exceeds maximum". Attempts to define more channels in the
MTA configuration than allowed by this option's maximum (normally the automatic, resize
maximum, unless a higher maximum has been explicitly configured) will result in an mm_init
error, "no room in channel table for ...".

52.22.4 Internal size MTA options: chunk_cache_limit
(non-negative integer)

The chunk_cache_limit MTA option specifies the size of the cache of message body chunk
storage buffers. This can affect the efficiency of processing large or multipart message bodies.
The default is to allow up to 1024 buffers in the cache.

52.22.5 Internal size MTA options:
circuitcheck_paths_size (0-256)

The circuitcheck_paths_size MTA option controls the size of the circuit check paths
table, and thus the total number of circuit check configuration file entries. The default is 10; the
maximum allowed with normal, automatic resizing is 128 (controlled from the maximum.dat
file); the "hard" maximum is 256. Attempts to set this option higher than 256 will result in
using the value 256 (with no error message).

52.22.6 Internal size MTA options: conversion_size
(1-2000)

The conversion_size MTA option controls the size of the conversion entry table, and
thus the total number of conversion file entries (or entries in the conversions option in
Unified Configuration) cannot exceed this number. The default is 32; the maximum allowed
with normal, automatic resizing is 500 (controlled from the maximum.dat file); the "hard"
maximum is 2,000. Attempts to set this option higher than 2,000 will result in using the value
2,000 (with no error message).

52.22.7 File format and file handling
(describe_cache_limit)

MTA options 52–187

domain_hash_size MTA option

The describe_cache_limit MTA option specifies the size of the cache of message part
descriptions. This can affect the efficiency of processing large or multipart message bodies. The
default is 256.

52.22.8 Internal size MTA options: domain_hash_size
(1-1000000)

The domain_hash_size MTA option controls the size of the domain rewrite rules hash table.
Each rewrite rule in the configuration file, or set in Unified Configuration, consumes one slot
in this hash table, thus the number of rewrite rules cannot exceed this option's value. The
default is 512; the maximum allowed with normal, automatic resizing is 16,384 (controlled
from the maximum.dat file); the "hard" maximum number of rewrite rules allowed is
1,000,000. Attempts to set this option higher than 1,000,000 will result in an mm_init error,
"DOMAIN_HASH_SIZE exceeds maximum". Attempts to specify more rewrite rules than
allowed by this option's maximum (normally the automatic, resizing maximum, unless a
higher maximum has been explicitly configured) will result in an mm_init error, "no room in
rewrite rule table for ...".

52.22.9 Internal size MTA options: file_member_size
(1-8192)

The file_member_size MTA option sets a limit for the number of configuration files the
MTA may use. The default is 32; the "hard" maximum is 8,192. Attempts to set this option
higher than 8,192 will result in an mm_init error, "FILE_MEMBER_SIZE exceeds maximum".
Attempts to use more configuration files than allowed by this option's maximum (normally the
automatic, resizing maximum, unless a higher maximum has been explicitly configured) will
result in an mm_init error, "no room in file member table for file string ...".

52.22.10 Internal size MTA options:
forward_data_size (1-1000000)

The forward_data_size MTA option sets the internal hash size for the forward (database)
text file entries. The default is 64; the "hard" maximum is 1,000,000. Attempts to set this
option higher than 1,000,000 will result in an mm_init error, "FORWARD_DATA_SIZE exceeds
maximum". Attempts to specify more forward database entries than allowed by this option's
maximum will result in an mm_init error, "no room in table for forward data ...".

52.22.11 Internal size MTA options: fruits_size
(1-20000)

The fruits_size MTA option controls the total number of fruits allowed in the fruit
validation table. The default is 110; the maximum value allowed is 20,000.

52.22.12 Internal size MTA options:
general_data_size (1-2000000)

The general_data_size MTA option controls the internal hash size for the general
(database) text file entries. The default is 256; the "hard" as of 8.0, the maximum is 5,000,000;

52–188 Messaging Server Reference

host_hash_size MTA option

the maximum changed from 1,000,000 in MS 6.2 to 2,000,000 for MS 6.3. Attempts to set
this option higher than its hard maximum (1,000,000 or 2,000,000 or 5,000,000, depending
upon version) will result in an mm_init error, "GENERAL_DATA_SIZE exceeds maximum".
Attempts to specify more entries in the general database than this option's maximum will
result in an mm_init error, "no room in table for general data ...".

52.22.13 Internal size MTA options: host_hash_size
(1-1000000)

The host_hash_size MTA option controls the size of the channel hosts hash table. Each
channel host specified on a channel definition in the MTA configuration file (both official hosts
and aliases) consumes one slot in this hash table, so the total number of channel hosts cannot
exceed the value specified. The default is 512; the maximum allowed with normal, automatic
resizing is 16384 (controlled from the maximum.dat file); the "hard" maximum value allowed
is 1,000,000. Attempts to set this option higher than 1,000,000 will result in an mm_init error,
"HOST_HASH_SIZE exceeds maximum".

Attempts to specify more rewrite rules than allowed by this option's maximum (normally
the automatic resizing maximum, unless a higher maximum has been explicitly configured)
will result in an mm_init error, "no room in channel host table for ...". In particular, note the
following. In its literal meaning, the "no room in channel host table for ..." error indicates that
your configuration's current MTA internal table sizes are not large enough for the number of
host names listed in your channel definitions. However, note that an extraneous blank line in
the rewrite rules (upper portion) of your MTA configuration file causes the MTA to interpret
the remainder of the configuration file as channel definitions; with just one such extraneous
blank line, the MTA sees just one extra channel but with a lot of (all the rest of the rewrite
rules as) host names on that channel. So check the line of the file that the error is complaining
about: if it is not truly intended as a host name on a channel definition but rather is a line in
the rewrite rules section of your configuration file, then check for an extraneous blank line
somewhere above it.

52.22.14 Internal size MTA options:
ldap_attr_name_hash_size (1-1000000)

The ldap_attr_name_hash_size MTA option specifies the size of the internal table of
LDAP attribute names. The default is 64; the maximum value allowed is 1,000,000. Attempts
to set this option's value higher than the maximum of 1,000,000 will result in an mm_init
error, "LDAP_ATTR_NAME_HASH_SIZE exceeds maximum". Attempts to use more LDAP
attributes than this option's maximum will result in an mm_init error, "Unable to expand
LDAP attribute name hash table". If a system does not have enough memory to allocate the
space required by this option's value, then an mm_init error will result, "Unable to allocate
LDAP attribute name hash array.".

52.22.15 Internal size MTA options:
ldap_object_class_hash_size (1-1000000)

The ldap_object_class_hash_size MTA option controls the size of the internal table of
LDAP object classes known to the MTA. The default is 64; the maximum is 1,000,000. Attempts
to set this option to more than its maximum value of 1,000,000 will result in an mm_init error,
"LDAP_OBJECT_CLASS_HASH_SIZE exceeds maximum". Attempts to specify more LDAP

MTA options 52–189

map_names_size MTA option

object classes than are permitted by this option's maximum will result in an mm_init error,
"Unable to expand LDAP object class hash table". If a system has insufficient memory to
allocate the space required by this option's value, then an mm_init error will result, "Unable to
allocate LDAP object class hash array.".

52.22.16 Internal size MTA options: map_names_size
(1-1000000)

The map_names_size option specifies the size of the mapping table name table, and thus the
total number of mapping tables cannot exceed this number. The default is 32; the maximum
allowed with normal, automatic resizing is 5000 (controlled from the maximum.dat file);
the "hard" maximum is 1,000,000. Attempts to set this option higher than its maximum of
1,000,000 will result in an mm_init error, "MAP_NAMES_SIZE exceeds maximum".

Attempts to specify more mapping tables than allowed by this option's maximum (normally
the automatic resizing maximum, unless a higher maximum has been explicitly configured)
will result in an mm_init error, "no room in table for mapping named ...". In
particular, note the following. In its literal meaning, the "no room in table for mapping
named ..." error indicates that your configuration's current MTA internal table sizes are not
large enough for your current number of mapping tables. However, also note that formatting
errors in the MTA mapping file can cause the MTA to think that you have more mapping
tables than you really have; for instance, check that mapping table entries are all properly
indented.

52.22.17 Internal size MTA options:
options_hash_size (1-1000000)

The options_hash_size MTA option sets the internal hash size for MTA options (Unified
Configuration mta.option-name options or legacy configuration option.dat options).
The default is 512; the maximum is 1,000,000. Attempts to set this option to more than
its maximum 1,000,000 will result in an mm_init error, "OPTIONS_HASH_SIZE exceeds
maximum".

52.22.18 Internal size MTA options:
personal_conversion_size(1-2000)

RESTRICTED. The "personal" conversions feature is not expected to be used nowadays.

The personal_conversion_size MTA option sets the number of "personal" conversion
entries each login user is permitted to have in their personal conversions file. The default is 32;
the maximum to which this option may be set is 2000.

52.22.19 Internal size MTA options:
reverse_data_size (1-1000000)

The reverse_data_size MTA option controls the internal hash size for the reverse
(database) text file entries. The default is 256; the maximum is 1,000,000. Attempts to set
this option's value to higher than its maximum of 1,000,000 will result in an mm_init error,
"REVERSE_DATA_SIZE exceeds maximum". Attempts to specify more entries in the reverse

52–190 Messaging Server Reference

string_pool_size_N MTA
options

(database) text file than this option's maximum will result in an mm_init error, "no room in
table for reverse data ...".

52.22.20 Internal size MTA options:
string_pool_size_n (1-5000000)

The string_pool_size_N MTA options, string_pool_size_0,...
string_pool_size_4, were introduced in MS 6.0; (formerly, the single option
string_pool_size controlled the total number of strings available to the MTA for general
configuration use). The string_pool_size_N options control the number of character slots
allocated to the string pools used to hold rewrite rule templates, alias list members, mapping
entries, etc. A fatal error will occur if the total number of characters consumed by these parts
of the configuration files exceed these limits. The default for each of these options is 32,000;
the maximum allowed value for each of these options is 50,000,000 as of MS 6.3; (10,000,000 in
MS 6.2 and earlier). Attempts to set any of these options' values higher than their respective
maximums (of 10,000,000 each in earlier versions, or 50,000,000 each as of MS 6.3) will result
in the maximum value (of 10,000,000, or 50,000,000 as of MS 6.3) being used, with no error
message.

string_pool_size_0 controls the string pool size for miscellaneous strings, including
rewrite rule templates, MTA option values, channel option values, and strings in MTA
conversions entries. string_pool_size_1 controls the string pool size for mapping tables.
string_pool_size_2 controls the string pool size for aliases. string_pool_size_3
controls the string pool size for the templates (right hand sides) of database text files, including
the general (database) text file, the reverse (database) text file, and the forward (database) text
file. string_pool_size_4 controls the string pool size for personal conversions.

52.22.21 Internal size MTA options: wild_pool_size
(1-20000)

The wild_pool_size MTA option controls the total number of patterns that may appear
throughout mapping tables. A fatal error will occur if the total number of mapping patterns
exceeds this limit. The default is 8,000; the maximum allowed with normal, automatic resizing
is 100,000 (controlled from the maximum.dat file); the "hard" maximum allowed value is
200,000. Attempts to set this option's value higher than its maximum of 200,000 will result in a
value of 200,000 being used, with no error message.

52.23 Latency server MTA options
New in the 8.1.0.6 release, as part of the smartsend facility the MTA supports sending
information about message latency to a separate server in JSON format. latency_* MTA
options control the MTA's connections to this server.

At present there are two fields in each JSON object: "ts" is a timestamp expressed in in
milliseconds since the UNIX epoch, and "la" is the message processing latency in milliseconds.
For example:

 {"ts":1589476358903,"la":95109}

52.23.1 Latency server options: latency_host (host)

MTA options 52–191

latency_port MTA options

New in MS 8.1.0.6. The latency_host MTA option specifies the host name (or IP address)
of the host providing a server that accepts message latency information from the MTA. The
default is 127.0.0.1 since the usual configuration is to have a co-resident latency server.

52.23.2 Latency server options: latency_port (port)
New in MS 8.1.0.6. The latency_port MTA option specifies the port number for the server
that accepts message latency information from the MTA. If not specified, it defaults to 7072,
the usual port for latency servers.

52.23.3 Latency server options: latency_expire
(integer)

New in MS 8.1.0.6. The latency_expire MTA option specifies the amount of time, in
seconds, that a connection to a latency server can remain idle and still be eligible for reuse.

52.23.4 Latency server options: latency_timeout
(integer)

New in MS 8.1.0.6. The latency_timeout MTA option specifies the amount of time, in
seconds, to wait on a connection to a latency server.

52.23.5 Latency server options:
latency_max_failures (integer)

New in MS 8.1.0.6. The latency_max_failures MTA option specifies the number of
attempts the MTA will make to connect to the latency server before disabling latency server
support. Note that this is a per-process limit and only counts failures attempts 5 or more
seconds apart.

52.24 LDAP external directory lookup MTA
options

There are options controlling the LDAP fundamentals of any extldap:url lookups the MTA
any be configured to perform. Such lookups, hence such options, were added for Messaging
Server 7.2-7.02.

While the feature, new in Messaging Server 7.4-18.01, to allow explicit host and port
specifications in LDAP URLs configured for MTA use means that these options might not all
seem quite as necessary -- in operation since an external LDAP directory will likely require
different bind credentials than an internal LDAP directory, as well as potentially other
different settings, it is generally still useful to specifically configure using extldap: lookups
instead of ldap: lookups.

Example uses for LDAP external directory lookups -- LDAP lookups directed against some
LDAP directory other than the one used for regular user/group data -- would be cases where
Sieve external lists are stored in some external LDAP directory, or for cases of looking up some
data in mapping tables from an LDAP directory other than the usual LDAP directory.

52–192 Messaging Server Reference

ldap_ext_host MTA option

52.24.1 LDAP external directory lookup MTA options:
ldap_ext_host (host-name)

The ldap_ext_host MTA option takes a host name argument, and specifies the host to
which to connect when making external LDAP (extldap:) queries. There is no default; this
option must be explicitly set in order to successfully perform extldap: queries.

52.24.2 LDAP external directory lookup MTA options:
ldap_ext_max_connections (non-negative integer)

The ldap_ext_max_connections MTA option takes a non-negative integer argument
specifying the maximum number of simultaneous connections to permit to the external LDAP
server. The default is 1024.

52.24.3 LDAP external directory lookup MTA options:
ldap_ext_password (string)

The ldap_ext_password MTA option takes a string argument as the password used to
authenticate for LDAP external directory (extldap:) queries. There is no default.

52.24.4 LDAP external directory lookup MTA options:
ldap_ext_port (port)

The ldap_ext_port MTA option takes a non-negative integer argument specifying the port
for the LDAP external directory. If not set, this defaults to the value of the ldap_port MTA
option (which itself defaults to 389, the standard LDAP server port number).

52.24.5 LDAP external directory lookup MTA options:
ldap_ext_username (DN)

The ldap_ext_username MTA option takes a DN specifying the username (bind credentials)
for LDAP external directory (extldap:) queries. There is no default value: if no DN is
specified, then authentication will not be used.

52.25 LDAP PAB MTA options
There are MTA options controlling the LDAP fundamentals of any personal addressbook
(PAB) lookups the MTA may be configured to perform; that is, options affecting the MTA's
handling of pabldap:url lookups. Such lookups, hence such options, were added for
Messaging Server 7.0-0.04, though not all the functionality was fully fleshed out for that
version.

Note that in order for the MTA to successfully perform any such PAB lookups, typically it is
necessary to add an ACI to the PAB to allow the MTA read access. Such an ACI might be along
the lines of:

MTA options 52–193

ldap_pab_host MTA option

dn: o=piServerDb
changetype: modify
add: aci
aci: (targer="ldap:///o=piServerDb")
 (targetattr="*")
 (version 3.0; acl "PAB Administrator read rights"; allow (read,search)
 groupdn="ldap:///cn=Messaging End User Administrator Group, ou=groups, o=isp";)

52.25.1 LDAP PAB MTA options: ldap_pab_host
(hostname)

(New in 7.0-0.04) The ldap_pab_host MTA option specifies the host for the MTA's
PAB LDAP queries; overrides for MTA PAB lookup purposes the ldaphostPAB option
(local.service.pab.ldaphost configutil parameter in legacy configuration).

52.25.2 LDAP PAB MTA options:
ldap_pab_max_connections (integer)

(New in Messaging Server 7.0u1) The ldap_pab_max_connections MTA option specifies
a limit on the maximum number of connections that will be made by the MTA to the PAB
Directory Server. The default is 1024.

52.25.3 LDAP PAB MTA options: ldap_pab_password
(string)

(New in 7.0-0.04) The ldap_pab_password MTA option specifies the password for the
MTA's PAB LDAP queries; overrides for MTA PAB lookup purposes the ldappasswdPAB
option (local.service.pab.ldappasswd configutil parameter in legacy configuration).

52.25.4 LDAP PAB MTA options: ldap_pab_port
(integer)

(New in 7.0-0.04) The ldap_pab_port MTA option specifies the port for the MTA's
PAB LDAP queries; overrides for MTA PAB lookup purposes the ldapportPAB option
(local.service.pab.ldapport configutil parameter in legacy configuration).

52.25.5 LDAP PAB MTA options: ldap_pab_username
(dn)

(New in 7.0-0.04) The ldap_pab_username MTA option specifies the username (bind
credentials) for the MTA's PAB LDAP queries; overrides for MTA PAB lookup purposes the
ldapbinddnPAB option (local.service.pab.ldapbinddn configutil parameter in legacy
configuration).

52.26 Mailing list MTA options
The MTA has a number of options relating specifically to mailing lists and groups.

52–194 Messaging Server Reference

alternate_recipient MTA
option

As mailing lists and groups are merely a special form of alias, see also the general MTA
options relating to aliases. And for mailing lists or groups defined in LDAP, see also the Direct
LDAP MTA options, and specifically the Direct LDAP usergroup lookup MTA options.

52.26.1 Alias and address MTA options:
alternate_recipient (string)

(New in MS 8.0.1.) The alternate_recipient MTA option specifies the comment string,
including the surrounding parentheses, that is used to specify an alternate recipient address
as part of a mailing list address entry. The default value for this string is (ALTERNATE-
RECIPIENT).

For example, assuming the default value of this option, an entry of the form:

listmember@domain.com (alternate-recipient listalternate@domain.com)

would associated the alternate address listalternate@domain.com with the mailing list
address listmember@domain.com.

52.26.2 alternate_recipient_mode Option
The alternate_recipient_mode MTA option controls the order in which additional
alternate recipients are added to an existing alternate recipient list. Possible values are:

0 old recipients follow new recipient

1 new recipient follows old recipient

2 new recipient replaces any old recipients

3 new recipient is silently dropped if any old recipients are present

The default is 0, which is consistent with military messaging requirements.

52.26.3 Mailing list controls
(defer_group_processing)

The defer_group_processing MTA mailing list option sets a default for whether direct
LDAP group (list) expansion is performed "in-line", or whether it is deferred (performed via
the reprocess channel). The default is 1 (true); that is, by default group expansion is deferred to
the reprocess channel.

 Note that when an address is deferred, the usual incoming recipient access mapping
table (specifically, ORIG_SEND_ACCESS, SEND_ACCESS, ORIG_MAIL_ACCESS, and
MAIL_ACCESS) checks are not performed; such checks don't take place until the reprocess
channel runs and expands the address. Also, the originator address checking (via attributes
such as mgrpAllowedBroadcaster, etc.) is deferred. (If the [dis]allowed broadcasters are a large
dynamic group themselves, deferring this expansion is very desirable so that that lookup
doesn't slow down the SMTP dialogue.) The reprocess channel when it runs will then perform
all the normal access checks as if it were the original channel. In particular, the original
transport and application fields (used in ORIG_MAIL_ACCESS and MAIL_ACCESS mapping
tables) are available to the reprocess channel, and hence checks such as dns_verify callouts
can still be performed at this later time.

MTA options 52–195

digest_on MTA option

 If defer_group_processing=0 is set, so that the default is that groups are expanded
"in-line" (for instance, during an SMTP dialogue), then deferred expansion may still be
set for particular groups either by setting the mailDeferProcessing attribute (or more
precisely whatever attribute is named by the ldap_reprocess MTA option) to Yes,
or (deprecated) by setting the (multi-valued) mailDeliveryOption attribute (or more
precisely, whatever attribute is named by the ldap_delivery_option MTA option) to have
a value members_offline.

52.26.4 Mailing list and group MTA options: digest_on
(string)

The digest_on MTA mailing list option specifies the comment string that enables mailing list
digests (in preference to regular mailing list postings). The default is "(DIGEST)".

Caution: Usage of this option is RESTRICTED. It has not yet been fully implemented. Do not
use this option unless and until instructed to do so by Oracle.

See also: Mailing lists.

52.26.5 Mailing list and group MTA options:
expandable_default (0 or 1)

The expandable_default MTA option establishes a default for whether lists are
expandable; in particular, it establishes a default for whether the EXPN SMTP command may
be used to expand lists (display list membership).

The default value for this option is 1, meaning that by default lists are expandable. Note
that this default may be overridden on a per list basis. For aliases in Unified Configuration,
the alias_expandable and alias_nonexpandable alias options override whatever
default is set via the expandable_default MTA option For lists defined in the aliases file
or alias database, the [EXPANDABLE] or [NONEXPANDABLE] named parameters override
whatever default is set via the expandable_default MTA option. For lists defined purely
in LDAP, the mgmanMemberVisibility and expandable attributes (more precisely,
those attributes named by the ldap_expandable MTA option) override the default set via
expandable_default. See also the expn* channel options.

Also note that for mailing lists with posting access controls, such posting access controls affect
when expansion via the SMTP EXPN command is allowed; the SMTP server will only permit
an EXPN if the SMTP client passes the posting access control (e.g., has issued a prior MAIL
FROM: command that passes the access control). Note also that the TCP/IP-channel-specific
option DISABLE_EXPAND may be used to disable the EXPN SMTP command entirely for those
incoming TCP/IP channels corresponding to that default TCP/IP channel's SMTP server; see
TCPIP-channel-specific options.

52.26.6 Mailing list and group MTA options: mail_off
(string)

The mail_off MTA option specifies the comment string, including the surrounding
parentheses, that disables mail delivery for list addresses specified in the alias file or alias
database, or set via an alias setting in Unified Configuration. The default value for this string
is (NOMAIL).

52–196 Messaging Server Reference

or_clauses MTA option

52.26.7 Mailing list and group MTA options: or_clauses
(0 or 1)

The or_clauses MTA option sets the default for whether multiple mailing list access
control settings (e.g., alias_auth_list, alias_cant_list, etc., or [AUTH_LIST],
[CANT_LIST], etc. in legacy configuration) are ANDed (the default, or_clauses=0) or
ORed (or_clauses=1). See Mailing list multiple access control interpretation for additional
discussion.

This general MTA option setting can be overridden on a per list or group basis via the alias
options alias_or or alias_and (in legacy configuration, the mailing list named parameters
[OR] or [AND]), or in direct LDAP mode via use of an "OR" or "AND" value as one of the
values of the LDAP attribute named by the ldap_auth_policy MTA option (by default,
mgrpBroadcasterPolicy).

52.26.8 Mailing list and group MTA options: post_off
(string)

The post_off MTA option specifies the comment string, including the surrounding
parentheses, that disables mail posting for list addresses specified in the alias file or alias
database, or set via an alias setting in Unified Configuration. The default is (NOPOST).

52.27 MAILSERV MTA options
RESTRICTED. MAILSERV is not yet fully implemented.

52.27.1 MAILSERV moderator MTA options
RESTRICTED. MAILSERV is not yet fully implemented.

When using MAILSERV, a special MAILSERV moderator user must be set up, that will handle
certain MAILSERV functions. MTA options exist to specify this moderator user.

52.27.1.1 MAILSERV moderator user MTA options:
mailserv_moderator_mail (RFC 822 address)

RESTRICTED. Not yet fully implemented.

The mailserv_moderator_mail MTA option specifies the e-mail address of the MAILSERV
"user": the account whose Message Store mailbox is used by MAILSERV for list moderation
functions.

52.27.1.2 MAILSERV moderator user MTA options:
mailserv_moderator_uid (uid)

RESTRICTED. Not yet fully implemented.

The mailserv_moderator_uid MTA option specifies the uid of the MAILSERV "user": the
account whose Message Store mailbox is used by MAILSERV for list moderation functions.

MTA options 52–197

MAILSERV LDAP schema MTA
options

Note that the value must be a valid uid value; in particular, only a subset of ASCII characters
are permitted; see the ldap_uid_invalid_chars MTA option.

52.27.1.3 MAILSERV moderator MTA options: mailserv_secret
(string)

RESTRICTED. Not yet fully implemented.

The mailserv_secret MTA option is used internally to generate passwords used internally
for lists managed by MAILSERV. It has no default.

52.27.2 MAILSERV LDAP schema MTA options
RESTRICTED. MAILSERV is not yet fully implemented.

There are a couple of MTA options specifying basics of the LDAP schema for MAILSERV.

52.27.3 MAILSERV user LDAP attribute name MTA
options

RESTRICTED. MAILSERV is not yet fully implemented.

By default, the MTA assumes a particular sort of LDAP schema will be used with MAILSERV;
in particular, the MTA assumes that certain named attributes (with certain sorts of
meanings) are available and used in the LDAP directory to store MAILSERV user data, and
MAILSERV list subscription data. However, the exact attribute names that the MTA looks
for (recognizes) are configurable via the various ldap_mluser_* and ldap_mlsub_*
MTA options. Thus a different (though semantically compatible) schema may be used
by setting the ldap_mluser_* and ldap_mlsub_* MTA options to tell the MTA what
named attributes to use (recognize). In addition to the MTA options listed here, see also
the ldap_mluser_object_class MTA option which specifies the object class(es) for
MAILSERV users.

Note that throughout MAILSERV discussions, for convenience often LDAP attributes will be
referred to merely by name. But in general, any such MAILSERV reference to a specific LDAP
attribute name really ought to be a reference to the attribute named by the corresponding MTA
option. For instance, any use by MAILSERV of the mail LDAP attribute is really a use of the
attribute named by the ldap_mluser_mail MTA option.

52.27.4 MAILSERV list subscription LDAP attribute name
MTA options

RESTRICTED. MAILSERV is not yet fully implemented.

By default, the MTA assumes a particular sort of LDAP schema will be used with MAILSERV;
in particular, the MTA assumes that certain named attributes (with certain sorts of
meanings) are available and used in the LDAP directory to store MAILSERV user data, and
MAILSERV list subscription data. However, the exact attribute names that the MTA looks
for (recognizes) are configurable via the various ldap_mluser_* and ldap_mlsub_*
MTA options. Thus a different (though semantically compatible) schema may be used
by setting the ldap_mluser_* and ldap_mlsub_* MTA options to tell the MTA what

52–198 Messaging Server Reference

MAILSERV list LDAP attribute
name MTA options

named attributes to use (recognize). In addition to the MTA options listed here, see also the
ldap_mlsub_object_class MTA option which specifies the object class for MAILSERV list
subscriptions.

Note that throughout MAILSERV discussions, for convenience often LDAP attributes will be
referred to merely by name. But in general, any such MAILSERV reference to a specific LDAP
attribute name really ought to be a reference to the attribute named by the corresponding MTA
option. For instance, any use by MAILSERV of the mlsubListIdentifier LDAP attribute is
really a use of the attribute named by the ldap_mlsub_list_id MTA option.

52.27.5 MAILSERV list LDAP attribute name MTA options
RESTRICTED. MAILSERV is not yet fully implemented.

By default, the MTA assumes a particular sort of LDAP schema will be used with MAILSERV;
in particular, the MTA assumes that certain named attributes (with certain sorts of meanings)
are available and used in the LDAP directory to store mailing list data. However, the exact
attribute names that the MTA looks for (recognizes) on list entries managed by MAILSERV
are configurable via the various ldap_list_* MTA options. Thus a different (though
semantically compatible) schema may be used by setting the ldap_list_* MTA options to
tell the MTA what named attributes to use (recognize).

Note that throughout MAILSERV discussions, for convenience often LDAP attributes will be
referred to merely by name. But in general, any such MAILSERV reference to a specific LDAP
attribute name really ought to be a reference to the attribute named by the corresponding MTA
option. For instance, any use by MAILSERV of the mgrpListName LDAP attribute is really a
use of the attribute named by the ldap_list_name MTA option.

52.28 Mapping table MTA options
A number of MTA options affect the syntax or operation of MTA mapping tables. For such
options affecting in particular the access mapping tables, see Access mapping table MTA
options; for options affecting MTA mapping table syntax in general, or the use of other (non-
access) MTA mapping tables, see Miscellaneous mapping table MTA options.

52.28.1 Access mapping table MTA options
This discussion will focus on those MTA options that specifically or primarily affect the
*_ACCESS mapping tables as well as mailing list access mapping tables. In particular, many
of these options alter the format of *_ACCESS mapping table probes by causing inclusion of
additional fields, thus additional information, in the *_ACCESS mapping table probes. The
use_auth_return, use_canonical_return, and use_orig_return options can, among other things,
affect the form of envelope From address used in recipient-address-based *_ACCESS mapping
table probes and in mailing list named parameter [*_MAPPING] mapping table probes. See
also the access_errors MTA option for control of the default error text resulting from recipient
address *_ACCESS mapping table rejections. And see also Miscellaneous mapping table
MTA options for a discussion of additional options with more miscellaneous (less specifically
focused on access mapping table) effects.

52.28.1.1 Access mapping table MTA options: access_auth
(bitmask)

MTA options 52–199

Access mapping table MTA
options

(New in MS 8.0) The access_auth MTA option is used to cause inclusion of additional
authentication information in mapping probes. This is a bit-encoded field; currently two bits
are defined. If bit 0 (value 1) is set, the value of the SMTP MAIL FROM command's AUTH
parameter is included in the FROM_ACCESS mapping probe immediately following the
authenticated sender address. If bit 1 (value 2) is set, the canonical username result produced
by authentication is included in the FROM_ACCESS mapping probe immediately following the
SMTP AUTH parameter. The default value for this option is 0.

52.28.1.2 Access mapping table MTA options: access_counts
(bitmask)

(New in MS 6.3.) The access_counts MTA option provides a way to get at various
types of recipient count information in the various recipient-based *_ACCESS mappings.
access_counts is bit-encoded in the same way as access_orcpt is, and if set, enables the
addition of a set of counts after the (optional) access_orcpt field and before the (optional)
include_conversiontag field in the access mapping probe string. Currently the format of
the count addition is:

RCPT-TO-count/total-recipient-count/expansion-count/

Note the trailing slash. It is expected that additional counter information will be added to
this field in the future; all mappings making use of this information should be coded to
ignore anything following the (current) last slash or they may break without warning. The
total-recipient-count is the count of valid recipients resulting from previous RCPT TO
commands (not including the RCPT TO command corresponding to this probe).

New in 8.0.1.2 is expansion-count, a count of the number of actual recipient addresses
produced by the current RCPT TO command, including the current one.

Table 52.20 access_counts MTA option bit values

Bit Value Usage
0 1 If set, include recipient counts in each [ORIG_]SEND_ACCESS and

[ORIG_]MAIL_ACCESS mapping table probe
1 2 If set, include recipient counts in each ORIG_SEND_ACCESS probe
2 4 If set, include recipient counts in each SEND_ACCESS probe
3 8 If set, include recipient counts in each ORIG_MAIL_ACCESS probe
4 16 If set, include recipient counts in each MAIL_ACCESS probe

Bit 0 is the least significant bit.

52.28.1.3 Access mapping table MTA options: access_orcpt
(bitmask)

The access_orcpt option's default value is 0. Setting access_orcpt to 1 adds an
additional vertical bar delimited field to the probe value passed to the recipient access
mapping tables (that is, the SEND_ACCESS, ORIG_SEND_ACCESS, MAIL_ACCESS, and
ORIG_MAIL_ACCESS mapping tables) that contains the original recipient (ORCPT) address
(or if the message doesn't have an ORCPT address, then the original unmodified RCPT TO:
address is used instead). A new feature added for MS 6.3 are separate bits to separately control

52–200 Messaging Server Reference

Access mapping table MTA
options

inclusion of the ORCPT value in these various mapping table probes. Note that such values
take the form of an address type string, followed by a semicolon, followed by the address. For
instance, rfc822;user@domain.com.

Table 52.21 access_orcpt MTA option bit values

Bit Value Usage
0 1 If set, include ORCPT value in each [ORIG_]SEND_ACCESS and

[ORIG_]MAIL_ACCESS mapping table probe
1 2 (New in 6.3) If set, include ORCPT value in each ORIG_SEND_ACCESS probe
2 4 (New in 6.3) If set, include ORCPT value in each SEND_ACCESS probe
3 8 (New in 6.3) If set, include ORCPT value in each ORIG_MAIL_ACCESS probe
4 16 (New in 6.3) If set, include ORCPT value in each MAIL_ACCESS probe

Bit 0 is the least significant bit.

52.28.1.4 Access mapping table MTA options:
include_connectioninfo (bitmask)

(New in MS 6.2.) This option selectively enables the inclusion of the transport and application
connection information in various mapping table probes that otherwise would not include
this material. The relevant mapping tables correspond to certain alias options in Unified
Configuration, or in legacy configuration to certain named (that is, nonpositional) alias
parameters in the alias file, most often used on mailing lists defined via the alias file. If
included, the connection information appears at the beginning of the mapping probe in the
same format used in the FROM_ACCESS, MAIL_ACCESS, and ORIG_MAIL_ACCESS mappings.
The option takes a bit-encoded value that defaults to 0. The following bits are defined:

Table 52.22 include_connectioninfo MTA option bit values

Bit Value Usage
0 1 AUTH_MAPPING or alias_auth_mapping
1 2 MODERATOR_MAPPING or alias_moderator_mapping
2 4 CANT_MAPPING or alias_cant_mapping
3 8 DEFERRED_MAPPING or alias_deferred_mapping
4 16 DIRECT_MAPPING or alias_direct_mapping
5 32 HOLD_MAPPING or alias_hold_mapping
6 64 NOHOLD_MAPPING or alias_nohold_mapping
7 128 SASL_AUTH_MAPPING or alias_sasl_auth_mapping
8 256 SASL_MODERATOR_MAPPING or alias_sasl_moderator_mapping
9 512 SASL_CANT_MAPPING or alias_sasl_cant_mapping

Bit 0 is the least significant bit.

52.28.1.5 Access mapping table MTA options:
include_conversiontag (bitmask)

MTA options 52–201

Access mapping table MTA
options

New in MS 6.3. This option selectively enables the inclusion of conversion tag information in
various mapping table probes. When enabled, the current set of conversion tags will appear
in the relevant mapping table probe as a comma separated list. The option takes a bit-encoded
integer value. The following bits are defined:

Table 52.23 include_conversiontag MTA option bit values

Bit Value Usage
 0 1 CHARSET-CONVERSION : include as a ;TAG=comma-separated-

values field before ;CONVERT
 1 2 CONVERSIONS : include as a ;TAG=comma-separated-values field

before ;CONVERT
 2 4 FORWARD : include just after any authenticated sender and to any

ldap_spare_* fields (with a vertical bar, |, delimiter)
 3 8 ORIG_SEND_ACCESS : include as a final (barring any ldap_spare_*

fields) field; that is, include after the optional access count field and prior to
any ldap_spare_* fields (with a vertical bar, |, delimiter)

 4 16 SEND_ACCESS : include as a final (barring any ldap_spare_* fields)
field; that is, include as a field after the optional access count field and prior
to any ldap_spare_* fields (with a vertical bar, |, delimiter)

 5 32 ORIG_MAIL_ACCESS : include as a final (barring any ldap_spare_*
fields) field; that is, include as a field after the optional access count field and
prior to any ldap_spare_* fields (with a vertical bar, |, delimiter)

 6 64 MAIL_ACCESS : include as a final (barring any ldap_spare_* fields) field;
that is, include as a field after the optional access count field and prior to any
ldap_spare_* fields (with a vertical bar, |, delimiter)

 7 128 FROM_ACCESS : (New in 7.0-3.01? post MS 6.3) include as a final (barring
any ldap_spare_* fields) field; that is, include as a field after the optional
access count field and prior to any ldap_spare_* fields (with a vertical
bar, |, delimiter)

 8 256 REVERSE : (New in 7.0.5) include as a field after any source or destination
channel fields, but before the actual address in the probe (with a vertical
bar, |, delimiter). Note that only the "final" REVERSE mapping table probe,
used to (possibly) modify addresses as a message is being enqueued,
includes the conversion tags; earlier probes, such as for (possibly)
modifying the envelope From for *_ACCESS mapping table probe
purposes, or for (possibly) setting an "override" postmaster address
do not include conversion tags regardless of the setting of this bit of
include_conversiontag.

 9 512 PERSONAL_NAMES : (New in 8.0) include as a field after any source or
destination channel fields, but before any addresses in the probe (with a
vertical bar, |, delimiter).

10 1024 Domain catchall mappings: (New in 8.0) include as a field after any
authenticated sender address, but before any MT-PRIORITY and recipient
address in the probe (with a vertical bar, |, delimiter).

11 2048 AUTH_ACCESS mapping: (New in 8.0.2.2) include as a field after the
username, but before the destination system in the probe (with a vertical bar,
|, delimiter).

52–202 Messaging Server Reference

Access mapping table MTA
options

12 4096 DEQUEUE_ACCESS mapping: (New in 8.0.2.3) include as a field after the
auth-sender, but before the priority in the probe (with a vertical bar, |,
delimiter).

13 8192 AUTH_REWRITE mapping: (New in 8.1.0.1) include as a field after the auth-
param, but before any extra header fields in the probe (with a vertical bar, |,
delimiter).

14 16384 (New in 8.1.0.1) Include the global conversion tag list as an X-Tags: field in
the first section of the second part of any DSNs that are generated. Note that
this may expose internal information and is only intended for use when all
DSNs are processed internally.

15 32768 (New in 8.1.0.1) Include the global conversion tag list in any
SMTP_ACTIONS mapping probe.

16 65536 (New in 8.1.0.1) Include the global conversion tag list in any MX_ACCESS
mapping probe.

Bit 0 is the least significant bit.

The default is 0, meaning that conversion tag values are not included in any mapping table
probes.

52.28.1.6 Mapping table MTA options: include_mtpriority
(bitmask)

(New in 8.0.) The current MT-PRIORITY value (an integer in the range -9 to 9) and the current
message size estimate may be includeed in various mapping probes. This is all controlled by
the include_mtpriority MTA option. When these values are included in a probe they
appear as separate fields. This option is bit-encoded, with the bits defined as follows:

Table 52.24 include_mtpriority MTA option values

Bit Value Meaning
 0 1 Include MT-PRIORITY and size estimate in FROM_ACCESS probes

immediately after any include_spares1 values
 1 2 Include MT-PRIORITY and message size estimate in FORWARD probes

immediately after any conversion tag field (resulting from setting the
include_conversiontag MTA option)

 2 4 Include MT-PRIORITY and message size estimate in ORIG_SEND_ACCESS
probes immediately after any include_spares1 values

 3 8 Include MT-PRIORITY and message size estimate in SEND_ACCESS probes
immediately after any include_spares1 values

 4 16 Include MT-PRIORITY and message size estimate in ORIG_MAIL_ACCESS
probes immediately after any include_spares1 values

 5 32 Include MT-PRIORITY and message size estimate in MAIL_ACCESS probes
immediately after any include_spares1 values

 6 64 Append the MT-PRIORITY and message size estimate values in the form
";MT-PRIORITY=<value>;BLOCKS=<value>" to the CONVERSIONS
mapping probe immediately after any "TAG=" clause.

 7 128 Append the MT-PRIORITY and message size estimate values in the form
";MT-PRIORITY=<value>;BLOCKS=<value>" to any domain catchall

MTA options 52–203

Access mapping table MTA
options

mapping probe immediately after any conversion tag clause and before the
recipient address.

Bit 0 is the least significant bit.

The default is 0, meaning that no MT-PRIORITY or message size estimates are includes in the
various mapping table probes. With the exception of the CONVERSIONS mapping, the MT-
PRIORITY and message size estimate are added in that order, delimited by vertical bars.

The message size estimate is the size of the queued message entry for internal channels; it's
the value given by the SMTP SIZE extension for incoming SMTP channels. The size is given
in MTA blocks and will be 0 if no size information is available. Note that message sizes can
change as a result of channel processing, encoding, decoding, and conversion operations.

52.28.1.7 Access mapping table MTA options: include_retries
(bitmask)

New in MS 8.0.2.3. This option selectively enables the inclusion of message retry count
information in various mapping table probes. When enabled, the number of previous retry
attempts as well as a "skip count" will be included as a field in the probe, separated by a
comma. A -1 will appear if the retry count or skip count, respectively, cannot be determined.

The skip count is an integer value encoded as part of the queue entry filename that is intended
for use in keeping track of round-robin positioning in IP address lists.

FORWARD COMPATIBILITY NOTE: Additional comma-separated values may be added to
this field in the future. Implementations should be aware of this and take appropriate steps to
handle the field valye properly.

This option takes a bit-encoded integer value. The currently defined bits are shown in the
following table:

Table 52.25 include_retries MTA option bit values
Bit Value Usage
 0 1 AUTH_ACCESS : include after the filename and before the queue time
 1 2 DEQUEUE_ACCESS : include after the filename and before the queue time
 2 4 MESSAGE-SAVE-COPY : include after the filename

52.28.1.8 Access mapping table MTA options: include_spares1
(bitmask)

(New in Messaging Server 7u2, renamed from include_spares to include_spares1 in
MS 8.0.2.2.) LDAP attribute values associated with originator or recipient address processing
may be included in FROM_ACCESS or the various recipient address access mapping probes,
respectively. This is all controlled by the include_spares1 MTA option. This option is bit-
encoded, with the bits defined as follows:

Table 52.26 include_spares1 MTA option values
Bit Value Meaning
0 1 Include sender ldap_spare_1 attribute in FROM_ACCESS probes
1 2 Include sender ldap_spare_2 attribute in FROM_ACCESS probes

52–204 Messaging Server Reference

Access mapping table MTA
options

2 4 Include sender ldap_spare_3 attribute in FROM_ACCESS probes
3 8 Include sender ldap_spare_4 attribute in FROM_ACCESS probes
4 16 Include sender ldap_spare_5 attribute in FROM_ACCESS probes
5 32 Include sender ldap_spare_6 attribute in FROM_ACCESS probes
6 64 Include recipient ldap_spare_1 attribute in ORIG_SEND_ACCESS probes
7 128 Include recipient ldap_spare_2 attribute in ORIG_SEND_ACCESS probes
8 256 Include recipient ldap_spare_3 attribute in ORIG_SEND_ACCESS probes
9 512 Include recipient ldap_spare_4 attribute in ORIG_SEND_ACCESS probes
10 1024 Include recipient ldap_spare_5" attribute in ORIG_SEND_ACCESS probes
11 2048 Include recipient ldap_spare_6 attribute in ORIG_SEND_ACCESS probes
12 4096 Include recipient ldap_spare_1 attribute in SEND_ACCESS probes
13 8192 Include recipient ldap_spare_2 attribute in SEND_ACCESS probes
14 16384 Include recipient ldap_spare_3 attribute in SEND_ACCESS probes
15 32768 Include recipient ldap_spare_4 attribute in SEND_ACCESS probes
16 65536 Include recipient ldap_spare_5 attribute in SEND_ACCESS probes
17 131072 Include recipient ldap_spare_6 attribute in SEND_ACCESS probes
18 262144 Include recipient ldap_spare_1 attribute in ORIG_MAIL_ACCESS probes
19 524288 Include recipient ldap_spare_2 attribute in ORIG_MAIL_ACCESS probes
20 1048576 Include recipient ldap_spare_3 attribute in ORIG_MAIL_ACCESS probes
21 2097152 Include recipient ldap_spare_4 attribute in ORIG_MAIL_ACCESS probes
22 4194304 Include recipient ldap_spare_5 attribute in ORIG_MAIL_ACCESS probes
23 8388608 Include recipient ldap_spare_6 attribute in ORIG_MAIL_ACCESS probes
24 16777216 Include recipient ldap_spare_1 attribute in MAIL_ACCESS probes
25 33554432 Include recipient ldap_spare_2 attribute in MAIL_ACCESS probes
26 67108864 Include recipient ldap_spare_3 attribute in MAIL_ACCESS probes
27 134217728 Include recipient ldap_spare_4 attribute in MAIL_ACCESS probes
28 268435456 Include recipient ldap_spare_5 attribute in MAIL_ACCESS probes
29 536870912 Include recipient ldap_spare_6 attribute in MAIL_ACCESS probes

Bit 0 is the least significant bit.

The default is 0, meaning that no LDAP spare attribute values are included in the *_ACCESS
mapping table probes. If inclusion of any spare attribute values is enabled, those spare
attribute values are suffixed to the probe after the optional (see include_conversiontag)
conversion tag value(s). Any spare attribute values enabled are suffixed in order (first a
vertical bar and ldap_spare_1 if enabled, then a vertical bar and ldap_spare_2 if enabled,
etc.).

Note that spare attribute slots can be assigned to point to attributes already used for other
purposes by the MTA. That is, via this mechanism, the *_ACCESS mapping tables can in fact
be sensitive to the value of any attribute available to the MTA during the relevant mapping
table probe: just about any recipient or sender attribute likely to be of interest could be made
available to the mapping probe.

MTA options 52–205

Access mapping table MTA
options

52.28.1.9 Miscellaneous mapping table MTA options:
include_spares (bitmask)

Replaced in 8.0.2.2 by the include_spares1 MTA option.

52.28.1.10 Access mapping table MTA options: mapping_paranoia
(integer)

(New in Messaging Server 7.0) Since access-check mappings such as the recipient address
*_ACCESS mappings, the FROM_ACCESS mapping, the AUTH_REWRITE mapping, the
BURL_ACCESS mapping, the SIEVE_EXTLISTS mapping, and new in Messaging Server
7.3-11.01 the MILTER_MACROS mapping table, and new in 7.0.5 the GROUP_AUTH mapping
table and AUTH_ACCESS mapping table, use vertical bars as delimiters, issues can arise when
externally provided material such as envelope From or To addresses themselves contain
vertical bars. The mapping_paranoia MTA option is intended to provide various tools to
handle such issues.

Giving the mapping_paranoia MTA option a nonnegative value will cause any vertical
bars in the externally supplied portions of various mapping input strings to be replaced in the
mapping probe with the character whose ASCII value is given by this option. (Attempting to
set mapping_paranoia to a positive value greater than 127 will result in the value 124, the
default, being used.) That is, the "regular", field-separating, vertical bars will still be present,
but a vertical bar within an external field (such as within an address) will be replaced by the
specified character. A negative value will cause the vertical bar to simply be dropped entirely
from the probe. The default value for this option is 124, the ASCII value for vertical bar, which
causes vertical bars to be left untouched.

Note that many mapping tables where mappings_paranoia is relevant also have a feature
for testing whether a vertical bar was originally present in externally supplied probe fields;
use of mapping_paranoia to replace the original vertical bar characters does not affect such
testing: the test flag is set based on the original presence of a vertical bar character, regardless
of whether it is later replaced due to mapping_paranoia.

52.28.1.11 Access mapping table MTA options: use_ip_access
(bitmask)

(New in Messaging Server 7.0.) If bit 0 (value 1) of the use_ip_access MTA option is set,
then a delivery attempt count field will be suffixed to the end of the IP_ACCESS mapping
table probes. The default is 0.

52.28.1.12 Return address type used in checks MTA options:
use_auth_return, use_canonical_return, use_orig_return

The MTA maintains three different forms of the envelope From address: the original from
the MAIL FROM SMTP command (or its equivalent in other protocols), one that has had
address reversal applied, and one that has been fully canonicalized, which includes mapping
of mailEquivalentAddress attribute matches to the corresponding mail attribute value.
Additionally, there may be an address produced as a result of an authentication operation that
has similar semantics.

There are many places where the MTA performs comparisons against or constructs mapping
probes containing the "return" address. But since there are multiple "return" addresses, there
needs to be a way to select the one that is used. This is controlled by the use_auth_return,

52–206 Messaging Server Reference

Access mapping table MTA
options

use_canonical_return, and use_orig_return MTA options. Each of these options
accepts a bit-encoded integer argument, with each bit controlling a particular place where a
"return" address is used.

If the bit in use_auth_return is set and an authenticated address is available, it
is used and the corresponding bits in the other options become no-ops. If the bit
in use_canonical_return is set (and the one in use_auth_return is clear),
then the canonicalized envelope From address is used and the corresponding bit in
use_orig_return becomes a no-op. if the bit in use_orig_return is set (and the ones
in the other two options are clear) then the original envelope from address is used. Finally, if
none of the bits are set, the envelope From address that has had address reversal applied is
used.

The use_auth_return MTA option was added in 7.0; use_canonical_return is first
available in 6.3.

The uses of the return address the various bits control are described in the following table:

Table 52.27 use_auth_return MTA option bits

Bit Value Usage
0 1 ORIG_SEND_ACCESS mapping table probes
1 2 SEND_ACCESS mapping table probes
2 4 ORIG_MAIL_ACCESS mapping table probes
3 8 MAIL_ACCESS mapping table probes
4 16 Mailing list [AUTH_LIST], [MODERATOR_LIST],

[SASL_AUTH_LIST], and [SASL_MODERATOR_LIST]
checks, and in Unified Configuration alias_auth_list,
alias_moderator_list, alias_sasl_auth_list,
alias_sasl_moderator_list alias option checks

5 32 Mailing list [CANT_LIST] and [SASL_CANT_LIST] checks,
and in Unified Configuration, alias_cant_list and
alias_sasl_cant_list alias option checks

6 64 Mailing list [AUTH_MAPPING], [MODERATOR_MAPPING],
[SASL_AUTH_MAPPING], and [SASL_MODERATOR_MAPPING]
checks, and in Unified Configuration, alias_auth_mapping,
alias_moderator_mapping, alias_sasl_auth_mapping, and
alias_sasl_moderator_mapping alias option checks

7 128 Mailing list [CANT_MAPPING] and [SASL_CANT_MAPPING]
checks, and in Unified Configuration, alias_cant_mapping and
alias_sasl_cant_mapping alias option checks

8 256 Mailing list [ORIGINATOR_REPLY] comparisons, and in Unified
Configuration, alias_originator_reply alias option
comparisons

9 512 Mailing list [DEFERRED_LIST], [DIRECT_LIST], [HOLD_LIST],
and [NOHOLD_LIST] checks, and in Unified Configuration,
alias_deferred_list, alias_direct_list,
alias_hold_list, and alias_nohold_list alias option checks

10 1024 Mailing list [DEFERRED_MAPPING], [DIRECT_MAPPING],
[HOLD_MAPPING], and [NOHOLD_MAPPING] checks,

MTA options 52–207

Miscellaneous mapping table MTA
options

and in Unified Configuration, alias_deferred_mapping,
alias_direct_mapping, alias_hold_mapping, and
alias_nohold_mapping alias option checks

11 2048 Mailing list checks for whether the sender is the list moderator
12 4096 Mailing list ldap_auth_domain LDAP attribute (e.g.,

mgrpAllowedDomain) checks
13 8192 Mailing list ldap_cant_domain LDAP attribute (e.g.,

mgrpDisallowedDomain) checks
14 16384 Mailing list ldap_auth_url LDAP attribute (e.g.,

mgrpAllowedBroadcaster) checks
15 32768 Mailing list ldap_cant_url LDAP attribute (e.g.,

mgrpDisallowedBroadcaster) checks
16 65536 OBSOLETE. In iMS 5.0 and 5.1 this controlled mailing list

ldap_moderator_rfc822 comparisons; since as of iMS 5.2 there is
no longer any such MTA option nor need for such an attribute (since
the ldap_moderator_url attribute value can, in fact, specify a
mailto: URL pointing to an RFC 822 address), this bit no longer has
any meaning.

17 131072 Mailing list ldap_moderator_url LDAP attribute (e.g.,
mgrpModerator) comparisons

18 262144 Source-specific FORWARD mapping table probes
19 524288 Source-specific forward database probes
20 1048576 (New in 6.3) Source-specific domain catchall mappings
21 2097152 (New in 7.2-7.02) FROM_ACCESS mapping

The default for use_auth_return and use_canonical_return is 0. The default for
use_orig_return is 0 prior to 7.2-7.02; in 7.2-7.02 and later it is 2097152, which preserves
the existing default of using the original envelope From access in the FROM_ACCESS mapping.
Also note that setting bit 21 in use_auth_return makes no sense as the authenticated sender
address is available as a separate field in the probe.

52.28.2 Miscellaneous mapping table MTA options
This discussion lists MTA options affecting miscellaneous mapping tables. See also Access
mapping table MTA options which lists those MTA options primarily affecting *_ACCESS
and mailing list access mapping tables. See also the string_pool_size_1 option. And if
performing explicit LDAP callouts in mapping tables, see also the url_result_cache_*
MTA options controlling the per-process caching of results of such LDAP lookups.

52.28.2.1 averages_cache_size Option

Not currently implemented. The MeterMaid facility provides an alternate, more general,
facility.

52.28.2.2 averages_cache_timeout Option

Not currently implemented. The MeterMaid facility provides an alternate, more general,
facility.

52–208 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Miscellaneous mapping table MTA
options

52.28.2.3 Miscellaneous mapping table MTA options:
include_spares2 (bitmask)

(New in 8.0.) LDAP attribute values associated with originator or recipient address processing
may be included in FORWARD mapping probes. This is controlled by the include_spares2
MTA option. This option is bit-encoded, with the bits defined as follows:

Table 52.28 include_spares2 MTA option values
Bit Value Meaning
0 1 Include sender ldap_spare_1 attribute in FORWARD probes
1 2 Include sender ldap_spare_2 attribute in FORWARD probes
2 4 Include sender ldap_spare_3 attribute in FORWARD probes
3 8 Include sender ldap_spare_4 attribute in FORWARD probes
4 16 Include sender ldap_spare_5 attribute in FORWARD probes
5 32 Include sender ldap_spare_6 attribute in FORWARD probes
6 64 (New in MS 8.0.2.2) Include recipient ldap_spare_1 attribute in

FORWARD probes
7 128 (New in MS 8.0.2.2) Include recipient ldap_spare_2 attribute in

FORWARD probes
8 256 (New in MS 8.0.2.2) Include recipient ldap_spare_3 attribute in

FORWARD probes
9 512 (New in MS 8.0.2.2) Include recipient ldap_spare_4 attribute in

FORWARD probes
10 1024 (New in MS 8.0.2.2) Include recipient ldap_spare_5 attribute in

FORWARD probes
11 2048 (New in MS 8.0.2.2) Include recipient ldap_spare_6 attribute in

FORWARD probes

Bit 0 is the least significant bit.

The default is 0, meaning that no LDAP spare attribute values are included in FORWARD
mapping probes. If inclusion of any spare attribute values is enabled, those spare attribute
values are suffixed to the probe after the optional (see include_conversiontag) conversion
tag value(s). Any spare attribute values enabled are suffixed in order (first a vertical bar and
ldap_spare_1 if enabled, then a vertical bar and ldap_spare_2 if enabled, etc.).

Note that spare attribute slots can be assigned to point to attributes already used for other
purposes by the MTA. That is, via this mechanism, the FORWARD mapping table can in fact
be sensitive to the value of any attribute available to the MTA during the relevant mapping
table probe: just about any recipient or sender attribute likely to be of interest could be made
available to the mapping probe.

For a similar feature of adding LDAP attribute values to FROM_ACCESS or recipient address-
based access mapping tables, see the include_spares1 MTA option.

52.28.2.4 Internal size MTA options: map_names_size (1-1000000)
The map_names_size option specifies the size of the mapping table name table, and thus the
total number of mapping tables cannot exceed this number. The default is 32; the maximum

MTA options 52–209

Miscellaneous mapping table MTA
options

allowed with normal, automatic resizing is 5000 (controlled from the maximum.dat file);
the "hard" maximum is 1,000,000. Attempts to set this option higher than its maximum of
1,000,000 will result in an mm_init error, "MAP_NAMES_SIZE exceeds maximum".

Attempts to specify more mapping tables than allowed by this option's maximum (normally
the automatic resizing maximum, unless a higher maximum has been explicitly configured)
will result in an mm_init error, "no room in table for mapping named ...". In
particular, note the following. In its literal meaning, the "no room in table for mapping
named ..." error indicates that your configuration's current MTA internal table sizes are not
large enough for your current number of mapping tables. However, also note that formatting
errors in the MTA mapping file can cause the MTA to think that you have more mapping
tables than you really have; for instance, check that mapping table entries are all properly
indented.

52.28.2.5 Miscellaneous mapping table MTA options:
message_save_copy_flags (bitmask)

(New in MS 6.3) The message_save_copy_flags MTA option controls whether certain
additional, optional fields are included in MESSAGE-SAVE-COPY mapping table probes. The
option takes a bit-encoded integer value. The following bits are defined:

Table 52.29 message_save_copy_flags option bit values

Bit Value Usage
0 1 Include transport and application information fields as the first and

second, respectively, fields of the mapping table probe
1 2 Include the source channel as an additional field in the mapping table

probe, between the application information field and conversion tag
field (if those fields are enabled)

 2 4 Include conversion tag(s) as an additional field in the mapping table
probe, immediately after the source channel field

 3 8 Include the MT-PRIORITY value for this message (an integer
between -9 and 9) in the mapping table probe, immediately after the
conversion tag field (if the field is enabled).

4 16 (New in 8.0.1.3) Include the transaction log action code value for the
first recipient in the mapping table probe, immediately after the MT-
PRIORITY field (if the field is enabled). This single character will
normally be a "D" when delivery was successful.

5 32 (New in 8.0.2.1) Include the destination host for the first recipient in
the mapping table probe, immediately after the transaction action
code value (if the field is enabled).

Bit 0 is the least significant bit.

The default is 0.

52.28.2.6 Miscellaneous mapping table MTA options:
original_channel_probe (0 or 1)

RESTRICTED.

52–210 Messaging Server Reference

Miscellaneous mapping table MTA
options

The original_channel_probe MTA option controls whether things like CONVERSIONS
mapping table probes, when performed by the conversion channel and any additional
conversion_* channels, or the process channel or hold channel, use the original channel
as the input channel name, or use the current source channel as the input channel name. For
instance, this distinction can make a difference when applying both conversion and character
set conversions to the same message. Conversions happen before character set conversion. So
this option affects which channel name should appear in the IN-CHAN=channel-name clause
of the CHARSET-CONVERSION mapping probe, the original channel, or the current source
channel (which will be the conversion channel at that point). The default is 0, meaning to use
the current input channel name.

52.28.2.7 Miscellaneous mapping table MTA options:
use_comment_strings (bitmask)

(New in MS 6.1.) The use_comment_strings MTA option takes a bit encoded integer
argument. If bit 0 (value 1) of this option is set, then the familiar

source-channel|destination-channel|

prefix will be included in COMMENT_STRINGS mapping table probes. See the commentmap
and sourcecommentmap channel options, and RFC 822 comments strings and personal name
modification for more discussion of the COMMENT_STRINGS mapping table.

52.28.2.8 Alias and address MTA options: use_forward_database
(bitmask)

The use_forward_database MTA option controls whether or not the MTA makes use of
the forward database, and also controls the exact format of probes of the forward database and
FORWARD mapping table. The value is a decimal integer representing a bit-encoded integer, the
interpretation of which is given in the table below.

Table 52.30 use_forward_database MTA option bits

Bit Value Usage
0 1 When set, the forward database is used.
3 8 When set, channel-level granularity is used with the forward database

entries. Forward database entries' left hand sides must have the form (note
the vertical bars, |)

source-channel|from-address|to-address

Note that source-specific forwarding is very seldom appropriate, and in
those rare cases where it is appropriate, the forward database is seldom
the most suitable choice for achieving it.

4 16 When set, channel-level granularity is used with the FORWARD or any
domain catchall mapping. The mapping entries' patterns (left hand sides)
must have the form (note the vertical bars, |)

source-channel|from-address|to-address

Note that source-specific forwarding is very seldom appropriate, and in
those rare cases where it is appropriate, the FORWARD mapping is seldom
the most suitable choice for achieving it.

MTA options 52–211

https://tools.ietf.org/html/rfc822

Miscellaneous mapping table MTA
options

5 32 When set, modifies the effect of bit 3 (source-specific forward database
probes) by also including the destination channel in the probe.

6 64 When set, modifies the effect of bit 4 (source-specific FORWARD or domain
catchall mapping probes) by also including the destination channel in the
probe.

 7 128 (New in 8.0) When set, includes the initial address presented for alias
processing in the FORWARD mapping probe. This address appears
immediately before the intermediate address included by bit 8 below.

 8 256 (New in 8.0) When set, include the current intermediate address in the
FORWARD mapping probe. This address appears immediately before the
final recipient address.

 9 512 (New in 8.0) When set, include the authenticated sender address address
in the FORWARD or any domain catchall mapping probe. This address
appears immediately after the destination channel and before conversion
tags.

Bit 0 is the least significant bit.

The default value for use_forward_database is 0, which means that the MTA will not
use the forward database at all. Note that a FORWARD mapping table, if present, is always
consulted.

52.28.2.9 Alias and address MTA options: use_reverse_database
(bitmask)

The use_reverse_database MTA option controls whether or not the MTA makes use of the
address reversal database and REVERSE mapping table as a source of substitution addresses.
(Note that it cannot disable use of any reverse_url setting, although its bit 2, value 4, does
affect the scope of reverse_url application.) Its value is a decimal integer representing a bit-
encoded integer, the interpretation of which is given in the table below.

Table 52.31 use_reverse_database MTA option bits

Bit Value Usage
0 1 When set, reverse database based address reversal is applied to addresses after

they have been rewritten by the MTA address rewriting process; (this does
not affect reverse_url or REVERSE mapping table based address reversal
subsequent to address rewriting, which is controlled merely by the existence of a
reverse_url setting or existence of a REVERSE mapping table, respectively).+

1 2 When set, reverse database and/or REVERSE mapping based address reversal
is applied before addresses have had MTA address rewriting applied to them;
(this does not affect reverse_url based address reversal, which always occurs
after rewriting has been applied; for the REVERSE mapping, setting this bit causes
an additional consultation of the REVERSE mapping prior to address rewriting,
in addition to the subsequent to rewriting consultation which will always be
performed).+

2 4 When set, address reversal, including the reverse_url option setting if
applicable, will be applied to all (except envelope To) addresses, including forward-
pointing header addresses, not just to backward-pointing addresses.

52–212 Messaging Server Reference

Miscellaneous mapping table MTA
options

3 8 When set, channel-level granularity is used with the REVERSE mapping. REVERSE
mapping table (pattern) entries must have the form (note the vertical bars, |)

source-channel|destination-channel|address

4 16 When set, channel-level granularity is used with address reversal database entries.
Reversal database entries' left hand sides must have the form (note the vertical bars,
|)

source-channel|destination-channel|address

5 32 Apply REVERSE mapping even if a reverse database entry has already matched.
6 64 Apply address reversal to message ids; see Internal host names in Received: and

Message-Id: header lines for an example.
7 128 When set, this modifies the effect of bit 4 (channel-level granularity of address

reversal database entries); when this bit is also set, the address reversal database
entries take the form (note the vertical bars, |)

destination-channel|address

8 256 When set, this modifies the effect of bit 3 (channel-level granularity of REVERSE
mapping table entries); when this bit is also set, the REVERSE mapping table entries
take the form (note the vertical bars, |)

destination-channel|address

10 1024 During subsequent-to-rewriting address reversal, (that is, that reversal due to
having bit 0 (value 1) set), this disables the normal initial reverse database lookup,
though a database lookup can still be caused by a $D in the REVERSE mapping
table

11 2048 During prior-to-rewriting address reversal, (that is, that reversal due to having bit
1 (value 2) set), this disables the normal initial reverse database lookup, though a
database lookup can still be caused by a $D in the REVERSE mapping table

12 4096 (New in 8.0.) When set, include the name of the header field the address
being processed came from in the mapping probe, delimited by vertical bars,
immediately after source channel, destination channel, and conversion tag
information. A trailing colon is always included in the field name. A blank name
appears when envelope addresses are being processed.

13 8192 (New in 8.0.) When set, do not impose source block and recipient limits and
capture actions based on the envelope from (MAIL FROM) address. For
background discussion, see Intended side effects of LDAP address reversal.

14 16384 (New in 8.0.) When set, do not impose source block and recipient limits and
capture actions based on the authenticated sender address. For background
discussion, see Intended side effects of LDAP address reversal.

+In initial iMS 5.2 and earlier versions, the 0th and 1st bits of use_reverse_database not
only controlled when, but also whether a REVERSE mapping table would be consulted at all for
address rewriting; now if a REVERSE mapping table exists, it definitely will be consulted for
address reversal (at least) subsequent to address rewriting; (depending upon bit 1, it may also
be consulted prior to address rewriting). So this is a change from iMS 5.2 and earlier versions.

Bit 0 is the least significant bit.

MTA options 52–213

Memcache MTA options

The default value for use_reverse_database is 5, which means that in addition to
consulting any reverse_url setting to reverse envelope From addresses and both backwards
and forwards pointing header addresses after they have passed through the normal address
rewriting process, the MTA will also consult any reverse database or REVERSE mapping
to reverse Envelope From addresses and both backwards and forwards pointing header
addresses after they have passed through the normal address rewriting process. Simple
address strings are presented to both the REVERSE mapping and the reverse database. Note
that a value of 0 disables the use of the address reversal completely. (Note that the default of 5
represents a change from early versions of PMDF in which this option had a default value of 1
(reverse only backwards pointing addresses).)

Note that as of 8.0.1.3, the usereversedatabase source channel option can be used to
override the setting of use_reverse_database on a channel by channel basis.

52.28.2.10 Miscellaneous mapping table MTA options:
use_personal_names (bitmask)

(New in MS 6.1.) The use_personal_names MTA option takes a bit encoded integer
argument. If bit 0 (value 1) of this option is set, then the familiar

source-channel|destination-channel|

prefix will be included in PERSONAL_NAMES mapping table probes. See the personalmap
and sourcepersonalmap channel options, and RFC 822 comments strings and personal
name modification for more discussion of the PERSONAL_NAMES mapping table.

Setting bit 1 (value 2) causes the inclusion of the name of the header field the address being
processed came from in the mapping probe, immediately after source channel, destination
channel, and conversion flag information. A trailing colon is always included in the field
name.

If bit 2 (value 4) is set any personal name generated during address reverse will not be used
by default. Instead the revised name will be added to the PERSONAL_NAMES mapping probe
immediately following the original personal name associated with the address. If the mapping
wishes to use the revised name all it needs to do is return that name and set $Y.

52.29 Memcache MTA options
New in the 8.0 release, the MTA supports use of memcache for certain database/storage
uses. memcache_* MTA options control the MTA's connections to memcache. The
*_database_url MTA options, when set to memcache: URL values, configure use of
Memcache to store MTA databases. See also the enable_sieve_memcache MTA option,
which enables Sieve filter use of a memcache operator in Sieve scripts.

52.29.1 Memcache MTA/channel options:
memcache_host (host)

The memcache_host MTA/channel option specifies the host name (or IP address) of the host
providing a server supporting the memcache protocol. (The server software is often, but not
always, memcached.) There is no default.

52–214 Messaging Server Reference

https://tools.ietf.org/html/rfc822

memcache_port MTA/channel
options

Use of the memcache_host channel option is only supported in cases where a channel-
specific memcache server makes sense semantically. Currently the only channels that support
this usage are those associated with the MTA-STS server.

52.29.2 Memcache MTA/channel options:
memcache_port (port)

The memcache_port MTA/channel option specifies the port number for the server providing
support for the memcache protocol. If not specified, it defaults to 11211, the usual port for
memcache servers.

Use of the memcache_port channel option is only supported in cases where a channel-
specific memcache server makes sense semantically. Currently the only channels that support
this usage are those associated with the MTA-STS server.

52.29.3 Memcache MTA options: memcache_expire
(integer)

The memcache_expire MTA option specifies the amount of time, in seconds, that a
connection to a memcache server can remain idle and still be eligible for reuse.

52.29.4 Memcache MTA options: memcache_timeout
(integer)

The memcache_timeout MTA option specifies the amount of time, in seconds, to wait for a
connection to a memcache server.

52.29.5 Hashing memcache keys:
memcache_hash_algorithm (hash algorithm name)

New in MS 8.1.0.3. The memcache_hash_algorithm MTA option controls what hash
algorithm the MTA uses to optionally hash memcache keys. The value should be a hash
algorithm supported by the MTA, one of MD2, MD4, MD5, SHA1, SHA256, SHA512, MD128,
or MD160. SHA1 is the default. Note that the setting of this option must be the same across a
deployment for successful coordination of memcache access.

52.29.6 Memcache/Redis MTA options:
alias_database_url (memcache:/redis: URL)

The value of the alias_database_url MTA option should be a either a memcache: URL or
(as of MS 8.1) a redis: URL for storing alias database data.

52.29.7 Memcache/Redis MTA options:
domain_database_url (memcache:/redis: URL)

The value of the domain_database_url MTA option should be either a memcache: URL or
(as of MS 8.1) a redis: URL for storing domain database data (that is, supplementary rewrite
rules).

MTA options 52–215

forward_database_url MTA
option

52.29.8 Memcache/Redis MTA options:
forward_database_url (memcache:/redis: URL)

The value of the forward_database_url MTA option should be either a memcache: or (as
of MS 8.1) a redis:URL for storing forward database data. Note that forward_database_url
will only be consulted if bit 2 (value 4) of the use_text_databases MTA option is clear
(not set); setting use_text_databases to a value subsuming 4 causes any setting of
forward_database_url to be ignored.

52.29.9 Memcache/Redis MTA options:
general_database_url (memcache:/redis: URL)

The value of the general_database_url MTA option should be either a fully specified
memcache: or (as of MS 8.1) a fully specified redis:URL for storing general database data. For
example, the URL "memcache://memcache.exmaple.com/" specifies that memcache protocol
should be used to connect to memcache.exmaple.com on the default memcache port. Note that
in the case of Redis the host to connect to is always given by the redis.hostlist option, so the
URL is always "redis:///".

Note that the general_database_url option will only be consulted if bit 0 (value 1) of the
use_text_databases MTA option is clear (not set); setting use_text_databases to a
value subsuming 1 causes any setting of general_database_url to be ignored.

52.29.10 Memcache/Redis MTA options:
reverse_database_url (memcache:/redis: URL)

The value of the reverse_database_url MTA option should be either a memcache: or (as
of MS 8.1) a redis:URL for storing reverse database data. Note that reverse_database_url
will only be consulted if bit 1 (value 2) of the use_text_databases MTA option is clear
(not set); setting use_text_databases to a value subsuming 2 causes any setting of
reverse_database_url to be ignored.

52.30 Message archival and hashing MTA
options

The MTA options discussed in this section relate to the envelope "journal" format captured
messages that the MTA can optionally generate, as well as to the message hashes optionally
generated by the MTA in order to facilitate integration with alternative message archiving
software -- with regards to which, see also the Message Store archive options and Archiving
messages. The journal_format MTA option would be used when "journal" style message
capture is in use (due to Sieve "capture :journal actions, or due to LDAP attribute based
message capture with optional "journal" format configured). The message hashing options
would be used in conjunction with the message hash channel options.

52.30.1 Archive message format control:
journal_format (bitmask)

52–216 Messaging Server Reference

capture_domain_replace
MTA option

The journal_format MTA option controls the format of Microsoft® Exchange journaling
messages generated by the MTA. This is a bit-encoded option. Currently assigned bits are:

Table 52.32 journal_format MTA option bit values

Bit Value Description
0 1 If set, generate the basic 2007 journal format

instead of the 2003 format.
1 2 If set, set the From:/To:/Subject: of the journal

message to be the same as the message
being journaled. Note that setting this may
cause looping problems for setups that use
header checks to determine what messages to
archive.

2 4 If set, generate a X-MS-Exchange-
Organization-Journal-Report: header field
rather than a X-MS-Journal-Report: field.

3 8 If set, include expanded/forwarded address
information in the report (if such information
is available -- see the addrtypescan channel
option). Note that bit 0 must also be set for
this to work.

The default value for this option is 0. This option is intended to facilitate interoperating with
Microsoft Exchange itself, in particular, so that MTA-generated journal messages can be
imported into Microsoft Exchange.

52.30.2 Direct LDAP MTA options:
capture_domain_replace (0-2)

Normally the effects of domain-level capture LDAP attributes (as specified by the
ldap_domain_attr_capture MTA option) and user-level capture LDAP attributies (as
specified by the ldap_capture MTA option) are cumulative, that is, message copies are sent
to all such capture/journal recipients.

The new-in 8.0.1.3 capture_domain_replace MTA option changes this behavior. If set
to a positive value N, it will change the behavior of the first N attributes so that domain-level
capture addresses are replaced rather than being combined with user-level attributes.

The default value of 0 disables replacement.

Note that the special attribute value "*" can be used as a "null" capture address. This makes it
possible to disable domain-level capture on a per-user basis.

52.30.3 Message archiving and hashing options:
message_hash_algorithm (hash algorithm name)

The message_hash_algorithm MTA option controls what hash algorithm the MTA uses
to generate a hash over the message. The value should be a hash algorithm supported by the
MTA, one of MD2, MD4, MD5, SHA1, SHA256, SHA512, MD128, or MD160. The default is
MD5.

MTA options 52–217

message_hash_fields MTA
option

52.30.4 Message archiving and hashing MTA options:
message_hash_fields (list of header names)

This option takes either a comma-separated list or space-separated list of up to thirty-two
known (to the MTA) header field names, each with or without a trailing colon (and intervening
spaces are okay too). The default is:

Message-id:,From:,To:,Cc:,Bcc:,Resent-message-id:,Resent-From:,Resent-To:,
Resent-Cc:,Resent-Bcc:,Subject:,Content-id:,Content-type:,Content-description:

(The Content-type: and Content-description: here are those from the top or outer MIME level
of the message.)

See Message identifier generation for a discussion of use of this option in the content of
message archiving.

52.30.5 Message archiving and hashing MTA options:
unique_id_template (string)

The unique_id_template MTA option specifies a template used to convert an address for a
"local" user into a unique identifier. The template's substitution vocabulary is the same as that
for delivery options; (see the delivery_options MTA option, and especially the permitted
LDAP URL substitution sequences). The resulting unique identifier is intended for use by
message archiving tools. So for instance a site could set

unique_id_template=$M@$D

to use each user's uid@domain as that user's unique identifier.

52.31 Message size MTA options
The MTA has a number of options relating to message size, such as limits on the size of
messages allowed in by the MTA, message size affecting message processing priority, limits on
the extent to which the MTA looks into (processes) messages of complex MIME structure, and
fine tuning of message fragmentation. There are also MTA options relating specifically to the
size of notification messages. And there are MTA options controlling the error text returned
when messages are "too large" in one sense or another.

See also the maxprocchars channel option.

52.31.1 Message size MTA options: block_limit
(integer)

The block_limit MTA option places an absolute limit on the size, in MTA blocks, of any
message which may be sent by or received with the MTA. Any message exceeding this size
will be rejected. By default, the MTA imposes essentially no size limits; (more precisely,
the default is the maximum allowed integer, 2**31-1). Note also that the blocklimit and

52–218 Messaging Server Reference

block_size MTA option

sourceblocklimit channel options can be used to impose limits on a per-channel basis. The
size in bytes of an MTA block is specified with the block_size MTA option.

The line_limit MTA option allows for a similar limit, expressed in terms of lines in a
message.

Note that domain LDAP attributes can be used to impose per-domain
limits; see the ldap_domain_attr_blocklimit MTA option (normally
specifying the use of the mailDomainMsgMaxBlocks LDAP attribute) and
ldap_domain_attr_sourceblocklimit MTA option. Or user LDAP attributes
can be used to impose per-user limits; see the ldap_maximum_message_size MTA
option (normally specifying the use of the mgrpMsgMaxSize LDAP attribute) and the
ldap_sourceblocklimit MTA option.

Or for aliases stored outside of LDAP, the alias_blocklimit alias option (or
[BLOCKLIMIT] alias file named parameter in legacy configuration) can be used to impose
limits on a per-alias basis.

(Note also that the acceptalladdresses channel option, if used, may modify the timing
and form of rejections due to exceeding message size constraints.)

52.31.2 Message size MTA options: block_size (integer
> 0)

The MTA measures message size in units of MTA "blocks". For instance, the MTA
message transaction log file (resulting from placing the logging option on a channel)
records message sizes in terms of blocks. MTA blocks are also the unit of measurement
for various message size limit and message size based effects, as specified via channel
options including blocklimit, sourceblocklimit, alternateblocklimit,
holdlimit, nonurgentblocklimit, normalblocklimit, urgentblocklimit, and
maxblocks, and via MTA options including block_limit, bounce_block_limit,
content_return_block_limit, header_limit, log_size_bins,
non_urgent_block_limit, normal_block_limit, urgent_block_limit,
max_header_block_use, and max_internal_blocks, and via LDAP attributes
named by MTA options including mailMsgMaxBlocks (ldap_blocklimit),
ldap_sourceblocklimit, mgrpMsgMaxSize (ldap_maximum_message_size),
mailDomainMsgMaxBlocks (ldap_domain_attr_blocklimit), and
ldap_domain_attr_sourceblocklimit, and the alias option alias_blocklimit.
Normally an MTA block is equivalent to 1024 octets. This option can be used to modify this
sense of what a block is.

NOTE: The MTA stores message sizes internally as an integer number of blocks. If the size of
a block in bytes is set to a very small value it is possible for a very large message to cause an
integer overflow. A message size of greater than 2**31 blocks would be needed, but this value
is not inconceivable if the block size is small enough.

Given the extensive list (above) of values measured in units of "blocks", it may be useful here
to also list values that are not measured in "blocks". In particular, measurements that do not
use the block_size, but which instead are always measured in units of bytes, include the
conversion channel environment variable PART_SIZE, the Content-length: MIME header line
value, the SMTP protocol extension SIZE value (see RFC 1870), and the user-level mailQuota
LDAP attribute (more properly from the MTA's point of view, the attribute pointed to by the
ldap_disk_quota MTA option) and the domain-level mailDomainDiskQuota LDAP
attribute (which note is not used by the MTA proper). Furthermore, the user-level mailQuota

MTA options 52–219

https://tools.ietf.org/html/rfc1870

bounce_block_limit MTA
option

LDAP attribute (more properly from the MTA's point of view, the attribute pointed to by the
ldap_disk_quota MTA option) and the Sieve filter size test's value are also normally
interpreted as bytes, (though Sieve size values can optionally use a K, M, or G unit indicator
to indicator measuring in units of 2**10, 2**20, or 2**30, and similarly the mailQuota
attribute's value can use K, M, or G unit indicators).

52.31.3 Notification message and return job options
(bounce_block_limit)

The bounce_block_limit MTA option may be used to force bounces of messages over the
specified size (number of blocks, as defined via the block_size MTA option) to return only
the message headers, rather than the full message content. This overrides any NOTARY (RFC
1891) setting originally present on original messages.

By default, there is essentially no limit; (more precisely, the default is the maximum allowed
integer, 2**31-1).

52.31.4 Notification message MTA options:
content_return_block_limit (non-negative integer)

The content_return_block_limit MTA option may be used to force on the NOTARY
(RFC 1891) non-return of content flag for messages over the specified size (in units of MTA
blocks); if such a message is subsequently bounced by a system that supports NOTARY,
then the original message contents will not be included in the bounce message. By default,
this option is not set and hence entire original messages of arbitrary size potentially may
be included in bounce messages; however, even when this option is not set, the MTA will
automatically truncate original message content when generating a notification message if a
message size limit (e.g., the blocklimit channel option) has been imposed on the relevant
destination channel.

This option only applies to messages that do not have their own explicit NOTARY (RFC 1891)
setting controlling return of content; when NOTARY has been used, it takes precedence over
this option.

52.31.5 Message size MTA options: header_limit
(integer)

The header_limit option sets a limit, in MTA blocks (see the block_size MTA option), on
how big a message's primary (outermost) header can be. Headers over the specified size will
be (silently) truncated. The default is 2000 blocks.

Source channels may have their own, more restrictive, headerlimit set; each channel will
minimize its own setting with this general, MTA-wide header_limit setting.

Compare with the max_header_blocks and max_header_lines MTA options, which
instead of silent truncation in the form of deletion of the header lines, cause silent "truncation"
by forcing the excess header material into the message body. And see also the maxprocchars
channel option, limiting how much of the header the MTA will process. And for yet
more approaches to header limits and header truncation, see the maxheaderaddrs and
maxheaderchars channel options, and the MAXCHARS, MAXIMUM, and MAXLINES header
trimming options.

52–220 Messaging Server Reference

https://tools.ietf.org/html/rfc1891
https://tools.ietf.org/html/rfc1891
https://tools.ietf.org/html/rfc1891
https://tools.ietf.org/html/rfc1891

line_limit MTA option

52.31.6 Message size MTA options: line_limit
(integer)

The line_limit MTA option places an absolute limit on the overall number of lines in any
message which may be sent or received by the MTA. Any message exceeding this limit will
be rejected. By default, the MTA imposes essentially no line count limits; (more precisely, the
default limit is the maximum allowed integer, 2**31-1).

Note that the linelimit channel option can be used to impose line limits on a per-channel
basis. The alias_linelimit alias option (or [LINELIMIT] alias file named parameter in
legacy configuration) may be used to impose line limits on a per-alias basis. Analogously,
the block_limit MTA option may be used to set a limit based on number of blocks in a
message.

(Note that the acceptalladdresses channel option, if used, may modify the timing and
form of rejections due to exceeding message size constraints.)

52.31.7 Message size MTA options:
local_quota_checks (integer)

RESTRICTED: The local_quota_checks MTA option is not fully implemented.

52.31.8 Message fragmentation size limit MTA options:
max_header_block_use (real number strictlybetween
0 and 1), max_header_line_use (real number strictly
between 0 and 1)

52.31.8.1 max_header_block_use

The max_header_block_use MTA option controls what fraction of the available message
blocks can be used by message headers. The default is 0.5.

This MTA option is used to fine-tune the message fragmentation effect of the maxblocks
channel option.

52.31.8.2 max_header_line_use

The max_header_line_use MTA option controls what fraction of the available message
lines can be used by message headers. The default is 0.5.

This MTA option is used to fine-tune the message fragmentation effect of the maxlines
channel option.

52.31.9 Message size MTA options:
max_header_blocks (integer)

The max_header_blocks MTA option causes truncation of the original, incoming message
header after the specified number of blocks (by forcing additional, supposedly header
material, into the message body). The default is no limit, but see also the max_header_lines

MTA options 52–221

max_header_lines MTA option

and header_limit MTA options. The max_header_blocks, max_header_lines, and
header_limit MTA options provide some protection against denial-of-service attacks in the
form of messages with extravagantly large/long headers.

See also the maxprocchars channel option, limiting how much of the header the MTA will
process.

52.31.10 Message size MTA options:
max_header_lines (integer)

The max_header_lines MTA option causes truncatation a of message's original, incoming
message header after the specified number of lines (by forcing additional, supposedly
header material, into the message body). The default is 10,000. The max_header_blocks,
header_limit, and max_header_lines MTA options provide some protection against
denial-of-service attacks in the form of messages with extravagantly large/long headers.

See also the maxprocchars channel option, limiting how much of the header the MTA will
process.

52.31.11 Maximum message levels/parts to process MTA
options: max_mime_levels (integer), max_mime_parts
(integer)

52.31.11.1 max_mime_levels

Specify the maximum depth to which the MTA should process MIME messages. The default is
100, meaning that the MTA will process up to one hundred levels of message nesting. Higher
values may require additional amounts of memory and, for the Dispatcher, additional per-
thread storage space. If max_mime_levels>0, then levels of nesting higher than specified
will not be processed. As of 8.0, if max_mime_levels<0, then in addition such messages will
be sidelined as .HELD files. See the held_sndopr MTA option for discussion of optionally
logging (to syslog) when such events occur.

52.31.11.2 max_mime_parts

Specify the maximum number of MIME parts which the MTA should process in a MIME
message. The default value is the maximum allowed integer, 2147483647: essentially no limit
is imposed. If max_mime_parts>0, then message parts greater than specified will not be
processed. As of 8.0, if max_mime_parts<0, then in addition such messages will be sidelined
as .HELD files. See the held_sndopr MTA option for discussion of optionally logging (to
syslog) when such events occur.

52.31.12 Size effects of message priority
MTA options: non_urgent_block_limit
(integer), normal_block_limit (integer),
second_class_block_limit (integer),
urgent_block_limit (integer)

52–222 Messaging Server Reference

Message tracking MTA options

Note that as of the 8.0 release, these size-based priority override MTA option effects are
nullified if the MT-PRIORITY SMTP extension has been used to set an explicit priority value.

52.31.12.1 non_urgent_block_limit

The non_urgent_block_limit MTA option may be used to instruct the MTA to
downgrade the priority of messages based on size: messages above the specified size will
be downgraded to lower than non-urgent priority, meaning that they will not be processed
immediately and will wait for processing until the next periodic delivery run. The value is
interpreted in terms of MTA blocks, as specified by the block_size MTA option. Note also
that the nonurgentblocklimit channel option may be used to impose such downgrade
thresholds on a per-channel basis.

52.31.12.2 normal_block_limit

The normal_block_limit MTA option may be used to instruct the MTA to downgrade
the priority of messages based on size: messages above the specified size will be downgraded
to non-urgent priority. The Job Controller automatically pays attention to message effective
processing priority when scheduling delivery attempts. The value is interpreted in
terms of MTA blocks, as specified by the block_size MTA option. Note also that the
normalblocklimit channel option may be used to impose such downgrade thresholds on a
per-channel basis.

52.31.12.3 second_class_block_limit

The second_class_block_limit MTA option may be used to instruct the MTA to
downgrade the priority of messages based on size: messages above the specified size will
be downgraded to third class priority. The value is interpreted in terms of MTA blocks, as
specified by the block_size MTA option. Note also that the secondclassblocklimit
channel option may be used to impose such downgrade thresholds on a per-channel basis.

52.31.12.4 urgent_block_limit

The urgent_block_limit MTA option may be used to instruct the MTA to downgrade
the priority of messages based on size: messages above the specified size will be downgraded
to normal priority. The Job Controller automatically pays attention to message effective
processing priority when scheduling delivery attempts. The value is interpreted in
terms of MTA blocks, as specified by the block_size MTA option. Note also that the
urgentblocklimit channel option may be used to impose such downgrade thresholds on a
per-channel basis.

52.32 Message tracking MTA options
New in 8.0 is support for Message Tracking. There are several MTA options relating to
Message Tracking.

The log_tracking MTA option enables inclusion of tracking/recall information in MTA
message transaction log entries.

The tracking_debug MTA option enables low-level debugging (typically only meaningful
to Oracle support) regarding the MTA's message tracking operation.

MTA options 52–223

tracking_hash_algorithm
MTA option

The ldap_auth_attr_recall_secret MTA option specifies the name of the LDAP
attributes where a user's general recall secret is stored.

52.32.1 Tracking hash function usage:
tracking_hash_algorithm (hash algorithm name)

The tracking_hash_algorithm MTA option controls what hash algorithm the MTA uses
to generate hashes of tracking and recall secrets for use with the MTQP protocol. The value
should be a hash algorithm supported by the MTA, one of MD2, MD4, MD5, SHA1, SHA256,
SHA512, MD128, or MD160. The default if this option is not specified is SHA1, as required by
the MTQP protocol standard.

Important note: As of this writing (February 2020) there is no practical preimage attack on
SHA-1, which is what would be required to attack its usage in MQTP. (All known practical
attacks are collision attacks, which generate a collision for a known preimage.) As such, the
only justification for switching to SHA-2 hash function is to meet compliance requirements,
and the benefits of meeting such requirements in the absence of any technical justification
must be carefully weighed against the costs of standards incompliance and being incompatible
with other MTQP implementations.

52.32.2 Tracking Information Storage (tracking_mode)
The tracking_mode MTA option controls how message tracking information is stored
by the MTA. The default value of 0 disables storage of tracking information, while setting
tracking_mode to 1 enables storage using a memcached server shared across the
deployment. The use of other values is currently restricted.

52.32.3 Tracking Update Retry Control
(tracking_retries, tracking_retry_delay)

Tracking information updates can fail because of simultaneous access attempts to the
underlying database. If this happens the update can be retried. The tracking_retries MTA
option specifies how many times to retry the update. The default is 5 retries.

The tracking_retry_delay MTA option specifies the amount of time to delay between
retry attempts in units of centiseconds. The default is 10 centiseconds.

52.33 MeterMaid MTA options
MTA options for setting general MeterMaid configuration parameters were introduced
in Messaging Server 7.2-7.02; previously (from MS 6.3-0.15 onwards), only configutil
parameters had been available for such settings.

The general MeterMaid configuration metermaid_* MTA options exist to control
fundamentals of MeterMaid operation such as the host and port on which MeterMaid is
running, etc. See also the enable_sieve_metermaid MTA option which permits Sieve filters
to use a "metermaid" operator directly.

52.33.1 MeterMaid MTA options: metermaid_backoff
(integer)

52–224 Messaging Server Reference

metermaid_expire MTA option

The metermaid_backoff MTA option specifies the frequency, in seconds, with which the
MTA connects to MeterMaid; for MTA purposes, this MTA option if set will override the
legacy configuration metermaid.mtaclient.connectfrequency configutil parameter, or
its Unified Configuration equivalent, the connectfrequency MeterMaid MTA client option.
If neither the MTA option, nor the (legacy configuration) configutil parameter or (Unified
Configuration) MeterMaid MTA client option is set, then the default is 15.

52.33.2 MeterMaid MTA options: metermaid_expire
(integer)

The metermaid_expire MTA option specifies the idle time, in seconds, that the MTA
permits for a connection to MeterMaid; after this time period, the MTA will expire the
connection.

52.33.3 MeterMaid MTA options: metermaid_host
(hostname)

The metermaid_host MTA option specifies the MeterMaid host for the Sieve
metermaid operator. This MTA option if set will override the legacy configuration
metermaid.config.serverhost configutil parameter, or its Unified Configuration
equivalent, the server_host MeterMaid client option. There is no default.

52.33.4 MeterMaid MTA options: metermaid_port (port)
The metermaid_port MTA option specifies the MeterMaid port for the Sieve
metermaid operator. This MTA option is set overrides the legacy configuration
metermaid.config.port configutil parameter, or its Unified Configuration equivalent, the
port MeterMaid option. If neither the MeterMaid option nor configutil parameter/MeterMaid
option is set, then the default is 63837.

52.33.5 MeterMaid MTA options: metermaid_secret
(string)

The metermaid_secret MTA option specifies the secret string or strings used to verify
MeterMaid communications; for the Sieve metermaid operator, this MTA option if set
overrides the legacy configuration metermaid.config.secret configutil parameter, or its
Unified Configuration equivalent, the secret MeterMaid option. There is no default.

This option can either contain a single secret or a series of host-secret pairs. In the latter case,
the general format is:

host1:secret1,host2:secret2,...,hostN:secretN

The secret to use is selected by comparing the current Metermaid host with each host pattern
on the list until a match is found. Glob-style wildcards can be used in the host patterns.

52.33.6 MeterMaid MTA options: metermaid_timeout
(integer)

MTA options 52–225

MLS MTA options

The metermaid_timeout MTA option specifies the timeout, in seconds, for receiving data
from MeterMaid; for MTA purposes, this MTA option if set overrides the legacy configuration
metermaid.mtaclient.readwait configutil parameter, or its Unified Configuration
equivalent, the timeout MeterMaid MTA client option. If neither the MTA option nor the
configutil parameter/MeterMaid MTA client option is set, then the default is 10.

52.34 MLS MTA options
RESTRICTED. Not yet fully implemented.

A couple of MTA options affect MLS (Multi Level Security) processing by the MTA.
The main one is mls; see also the ldap_mlsrange MTA option which specifies
the name of the user-level LDAP attribute that stores a user's MLS range, and the
error_text_mls_access_failure MTA option, which controls the exact error text
returned when an MLS access failure occurs.

See also the mlslabel and mlsrange channel options.

52.34.1 mls Option
RESTRICTED. Not yet fully implemented.

52.35 MTQP MTA options
New in the 8.0 release is MTQP (Message Tracking and Query Protocol) support.

52.35.1 MTQP MTA options: mtqp_port (port)
New in MS 8.0.

52.35.2 MTQP MTA options: mtqp_timeout (integer)
New in MS 8.0.

52.35.3 MTQP MTA options: mtqp_expire (integer)
New in MS 8.0.

52.36 Notification message MTA options
The MTA has a number of options relating to notification messages: the timing of their
generation, the size of notification messages, the content of notification messages, the
postmaster address visible in notification messages, etc.

For hosted-domain-specific postmaster addresses, see the
ldap_domain_attr_report_address MTA option.

For the channel-specific timing of generation of notification messages, see especially the
notices channel option, as well as the backoff channel option.

For detailed discussion of the format of notification messages, see the general discussion under
Notification messages.

52–226 Messaging Server Reference

bounce_block_limit MTA
option

The return_split_period and return_cleanup_period MTA options control the
frequency at which the MTA performs certain tasks related to the MTA return_job. The
return_debug and return_verify MTA options enable, respectively, low-level debugging
and shell script logging regarding the MTA's return_job.

52.36.1 Notification message and return job options
(bounce_block_limit)

The bounce_block_limit MTA option may be used to force bounces of messages over the
specified size (number of blocks, as defined via the block_size MTA option) to return only
the message headers, rather than the full message content. This overrides any NOTARY (RFC
1891) setting originally present on original messages.

By default, there is essentially no limit; (more precisely, the default is the maximum allowed
integer, 2**31-1).

52.36.2 Notification message MTA options:
content_return_block_limit (non-negative integer)

The content_return_block_limit MTA option may be used to force on the NOTARY
(RFC 1891) non-return of content flag for messages over the specified size (in units of MTA
blocks); if such a message is subsequently bounced by a system that supports NOTARY,
then the original message contents will not be included in the bounce message. By default,
this option is not set and hence entire original messages of arbitrary size potentially may
be included in bounce messages; however, even when this option is not set, the MTA will
automatically truncate original message content when generating a notification message if a
message size limit (e.g., the blocklimit channel option) has been imposed on the relevant
destination channel.

This option only applies to messages that do not have their own explicit NOTARY (RFC 1891)
setting controlling return of content; when NOTARY has been used, it takes precedence over
this option.

52.36.3 Notification message MTA options:
history_to_return (1-200)

The history_to_return MTA option controls exactly how many delivery attempt history
records are included in returned messages, when return_delivery_history is set to
enable such inclusion. The delivery history provides some indication of how many delivery
attempts were made and in some cases indicates the reason the delivery attempts failed. The
default value for this option is 20.

52.36.4 Notification message MTA options:
lines_to_return (integer)

The lines_to_return MTA option controls how many lines of message content the MTA
includes when generating a notification message for which it is appropriate to return only a
sample of the contents. The default is 20. Note that this option is irrelevant when generating
a NOTARY bounce message, where either the full content or merely headers are included,
according to the choice specified during the initial submission of the message. So in practice,

MTA options 52–227

https://tools.ietf.org/html/rfc1891
https://tools.ietf.org/html/rfc1891
https://tools.ietf.org/html/rfc1891
https://tools.ietf.org/html/rfc1891

notary_decode MTA option

this option is mostly only relevant to the warning messages the MTA's return_job sends
about messages awaiting further delivery retries in the MTA's message queue area.

Note that setting lines_to_return=0 will cause the warning messages generated by the
MTA regarding not-yet-delivered messages to contain only message headers (none of the body
of the original message).

52.36.5 Notification message MTA options:
notary_decode (-1, 0, or 1)

When the MTA is generating a DSN or MDN and using a %H substitution sequence to
insert original message headers into that DSN or MDN, this option controls whether
encoded-words (i.e., material in character sets other than US-ASCII) present in the
original message header being inserted due to %H are left alone, decoded if already in the
character set specified in the return_prefix.txt file or disposition_prefix.txt
file being used, or forcibly converted to the return_prefix.txt character set or
disposition_prefix.txt character set and then decoded. (Note that the character set
specified in the return_prefix.txt file is the character set used for the first, human
readable portion of the DSN; the character set specified in the disposition_prefix.txt
file is the character set used for the first, human readable portion of the MDN.)

The default value is 0, meaning that encoded-words that match the character set specified in
the return_prefix.txt file or disposition_prefix.txt file will be decoded; encoded-
words in other character sets will be left in literal encoded form. A value of 1 causes encoded-
words present in the original message header to be first converted to the character set specified
in the return_prefix.txt or disposition_prefix.txt file and then decoded; that
is, assuming that the character sets are all compatible, all material will be converted and
decoded and no encoded-words will be left. A value of -1 disables decoding (and conversion)
unconditionally; the original message headers are substituted literally, including the encoded-
words in their literal (MIME encoded) form.

Caution should be exercised in setting this option to a value of 1, as information loss can
occur, with resultant confusion, when a rich character set such as UTF-8 is converted to a more
limited character set (a character set lacking many characters present in the original character
set) such as ISO-8859-1 or US-ASCII.

52.36.6 Notification message MTA options:
notary_quote (1-127)

The notary_quote MTA option specifies the ASCII representation of the character that
marks substitution sequences in return_*.txt files and disposition_*.txt files. It
defaults to 25 (the ASCII position of the percent character) so substitutions are %R, %u, etc., as
listed in return_*.txt file substitution sequences.

52.36.7 Notification message MTA options:
return_address (address)

The return_address option sets the return address for the local Postmaster. By default,
the local Postmaster's address is postmaster@localhost, where the localhost
corresponds to the msconfig setting of channel:l.official_host_name (which itself
typically references the instance.base.hostname setting via a macro substitution). The

52–228 Messaging Server Reference

return_delivery_history
MTA option

return_address MTA option provides a way to override this default with the address of
your choice.

Care should be taken in the selection of this postmaster address, as an illegal selection may
cause rapid message looping and pile-ups of huge numbers of spurious error messages. See
the returnaddress channel option for discussion of overriding this address on a per-channel
level, or the ldap_domain_attr_report_address MTA option specifying a domain-level
LDAP attribute which can be used to override this address on a per-domain basis. See also the
return_personal MTA option, which sets the Postmaster's personal name (as opposed to
their actual mailbox address).

52.36.8 Notification message MTA options:
return_delivery_history (0 or 1)

The return_delivery_history MTA option controls whether or not a history of delivery
attempts is included in returned messages. The delivery history provides some indication of
how many delivery attempts were made and in some cases indicates the reason the delivery
attempts failed. A value of 1 enables the inclusion of this information and is the default. A
value of 0 disables return of delivery history information. The history_to_return MTA
option controls how much history information is actually returned.

52.36.9 Notification message MTA options:
return_envelope (bitmask)

The return_envelope MTA option takes a bitmask value.

Bit 0 (value = 1) controls whether or not return notifications generated by the MTA are written
with a blank envelope address vs. with the address of the local postmaster. Setting the bit
forces the use of the local postmaster address, while clearing the bit forces the use of a blank
address. Note that the use of a blank address is mandated by RFC 1123. However, some
systems do not handle blank envelope From addresses properly and may require the use of
this option.

Bit 1 (value = 2) controls whether or not the MTA replaces all blank envelope addresses with
the address of the local postmaster. Again, this is used to accomodate incompliant systems that
don't conform to RFC 821, RFC 822, or RFC 1123.

Bit 2 (value = 4) controls whether or not the MTA checks that any (non-empty) envelope From
address matches (rewrites to) an MTA channel.

Setting bit 3 (value = 8) is the global (for all channels) equivalent of setting the
mailfromdnsverify channel option: it controls whether or not the MTA checks that the
domain in the envelope From address resolves in the DNS. That is, setting the bit causes the
MTA to require that a DNS entry can be found corresponding to the domain in the envelope
From address; but the type of DNS entry does not matter.

Setting bit 4 (value = 16) causes the MTA to enforce that if the envelope From address claims a
local domain name, the envelope From address must correspond to a user address (user alias).

New in 8.0, bit 6 (value = 64) modifies the effect of setting bit 3 (value = 8) on domain validity
checks. With both these bits set, if the domain in the MAIL FROM address corresponds to a
null MX domain, that address will be rejected as invalid. That is, setting bit 6 causes the bit 3
domain check to also implement support for draft-delany-nullmx-01.txt.

MTA options 52–229

https://tools.ietf.org/html/rfc1123
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1123

return_personal MTA option

Note also that the returnenvelope channel option can be used to impose these sorts of
control on a per-channel basis.

52.36.10 Notification message MTA options:
return_personal (RFC 2047 encoded string)

The return_personal option specifies the personal name to use when the MTA generates
postmaster messages, e.g., bounce messages. By default, the MTA uses the string "Internet
Mail Delivery". The global return_personal value can be overridden on a per-
channel basis via the returnpersonal channel option, which itself in turn can be
overridden on a language-specific basis, via a language-specific return_option.opt file
RETURN_PERSONAL option setting.

52.36.11 Notification message MTA options:
return_units (0 or 1)

The time unit used by the message return system is controlled with the return_units MTA
option; that is, this option controls the interpretation of the values specified for the notices
channel option. A value of 0 selects units of days; a value of 1 selects units of hours. By default,
units of days are used.

On UNIX systems, the scheduling of the execution of the message return_job
is controlled by the Scheduler. In particular, with a Unified Configuration it is the
schedule.task:return_job.crontab option that controls how frequently the
return_job runs: this defaults to:

30 0 * * * lib/return_job

The argument is in UNIX crontab format,

minutes hour day-of-month month-of-year day-of-week script

so the default is to run the return_job every day at 30 minutes after midnight.

In legacy configuration mode (so in versions prior to 7.0.5), the scheduling of the return_job
was controlled via the configutil parameter local.schedule.return_job, which had a
default of

30 0 * * * SERVERROOT/lib/return_job

with the same sort of UNIX crontab format argument.

Note: Prior to MS 6.0, the scheduling of the execution of the message return job was
controlled by the Job Controller configuration, an approach that is now deprecated. With
that approach, the scheduling was controlled by the Job Controller's time option in the
[periodic_job=return] section of the job_controller.cnf file. For instance, to have
the return job run hourly at thirty minutes past the hour, it would be set

[periodic_job=return]
command=IMTA_EXE:return.sh
time=00:30/1:00

52–230 Messaging Server Reference

use_precedence MTA option

Note that if you choose to set the return_units MTA option to a value of 1, then you will
likely also need (or want) to adjust other options such as those controlling MTA transaction log
file rollover.

52.36.12 Notification message MTA options:
use_precedence (0 or 1)

The use_precedence MTA option controls whether or not the MTA makes use of the
information contained in Precedence: header lines when deciding whether to send a delayed
delivery notification message. With use_precedence set to 1, the default, such warning
messages are not sent for messages with precedence "bulk" or "list". To instead have the
MTA return_job ignore the Precedence: header line, set use_precedence to 0.

52.36.13 Notification message MTA options:
use_warnings_to (0 or 1)

DELETED. With the advent of standardized notification handling, this option was deprecated
and is now deleted.

The use_warnings_to MTA option controls whether or not the MTA makes use of the
information contained in Warnings-to: header lines when returning messages. Setting this
option to 1 directs the MTA to make use of these header lines. The default is 0, which disables
use of this header line. Note that this default represents a changes from the default in early
versions of PMDF.

52.37 Password and TLS MTA options
There are a few options affecting the MTA's overall handling of authentication, and TLS.

For channel-level configuration, see also TLS and SASL channel options.

And for general Messaging Server configuration of authentication, SSL/TLS use, and certificate
handling, see the Auth options, various base.auth*, base.ssl*, and base.tls* options
(and for LDAP connections, the ugldapusessl and ldaprequiretls base options), the
Base certmap options, and the sectoken options.

52.37.1 plaintextmincipher Option Under mta
If the plaintextmincipher MTA option is > 0, then disable use of plaintext passwords
unless a security layer (SSL or TLS) is activated. This forces users to enable SSL or TLS on their
client to login, which prevents exposure of their passwords on the network. This option in the
mta group presently also applies to the MTQP and ManageSieve servers.

52.37.2 smtpproxypassword Option
The submit proxy and this option have been removed from the Messaging Server 8.1 (tezpur)
release.

The smtpproxypassword option specifies the password the MMP uses to authorize
source channel changes on the SMTP relay servers. This option is available under mta,

MTA options 52–231

sslnicknames Option Under
mta

submitproxy, and vdomain. To use this functionality, that is, to use the MMP's SMTP
SUBMIT Proxy, the option must be set under mta on the MTA back end, and must be set for
the MMP's SMTP SUBMIT Proxy (thus under either submitproxy if being set in general, or
under vdomain if it is only to be applied for a particular virtual domain) on a front end MMP
system, and these values must match between front and back ends! The option has no default.

If the mta.smtpproxypassword option is not set, client attempts to use the XPEHLO
command will receive an error (issued by the MTA SMTP server):

503 5.5.0 Proxy support is not enabled.

If mta.smtpproxypassword is set but its value does not match the MMP's value, client
attempts to use the XPEHLO command will receive an error (issued by the MTA's SMTP
server):

535 5.7.8 SMTP proxy authentication check failed.

Note that the legacy configuration equivalent of the Unified Configuration
mta.smtpproxypassword option was the PROXY_PASSWORD TCP/IP-channel-specific
option (which in legacy configuration, was set in the SMTP server's TCP/IP channel option
file). (The MTA option smtpproxypassword was introduced in MS 7.0u5.) And the legacy
configuration equivalent of the Unified Configuration submitproxy.smtpproxypassword
option (as well as the vdomain.smtpproxypassword option) was set as
SmtpProxyPassword in the SmtpProxyAService.cfg file.

52.37.3 sslnicknames Option Under mta
The sslnicknames MTA option specifies a list of SSL/TLS server certificate nicknames
(only one per certificate type) for MTA to offer clients if TLS is enabled. Overrides for the
MTA the base level sslnicknames option (corresponding to the legacy configuration
encryption.rsa.nssslpersonalityssl configutil parameter). This option in the
mta group presently also applies to the MTQP and ManageSieve servers.

52.38 Processing priority MTA options
A few general MTA options affect message processing priority.

See also the log_mtpriority and log_priority MTA option which control, respectively,
whether MTPRIORITY and effective processing priority are included in MTA message
transaction log file entries. See also the use_precedence MTA option which controls
whether Precedence: header lines affect generation of delivery delay notifications. See also
the defer_group_processing MTA option which influences whether group expansion is
performed "in-line" or "off-line" (by the Reprocess channel).

For additional influences on processing priority, see also the holdlimit channel option, and
Job Controller priority-based processing, and the Sieve setpriority and setmtpriority
extensions.

52.38.1 Message Transfer Priority Policy:
mtpriority_policy (string)

52–232 Messaging Server Reference

*_block_limit priority limit
MTA options

New in 8.0. The mtpriority_policy MTA option is used to specify a policy name for the
handling of message transfer priorities the MTA has been configured to support. This name is
announced in the SMTP EHLO response on any channel where the MT-PRIORITY extension is
enabled. The default is that this option is not set, which means that no policy is announced.

Note that the MTA's Priority Assignment Policy is as follows: MT-PRIORITY values of -9,..,-4
are mapped to "non-urgent" priority; MT-PRIORITY values of -3,..,3 are mapped to "normal"
priority; MT-PRIORITY values of 4,..,9 are mapped to "urgent" priority. An explicit MT-
PRIORITY value specified on a submitted message will override the MTA's older priority (e.g.,
Priority: header line based) handling, as well as any of the MTA's older size-based priority
override adjustments (e.g., non_urgent_block_limit, etc.). (However, a Sieve filter
setmtpriority action can override even an explicit MT-PRIORITY value.) Messages that
come in without an explicitly specified MT-PRIORITY are subject to the MTA's older priority
handling, and for MT-PRIORITY purposes (such as mapping table probes including MT-
PRIORITY value) will be considered to have an MT-PRIORITY value of 0.

Note that the MTA's Priority Assignment Policy, described above, is essentially that of the
"MIXER" Priority Assignment Policy defined in Appendix B of RFC 6710 -- this is a natural
mapping for the MTA as its older Priority: header support was similarly based on RFC 2156
(MIXER: Mapping between X.400 and RFC 822/MIME).

52.38.2 Size effects of message priority
MTA options: non_urgent_block_limit
(integer), normal_block_limit (integer),
second_class_block_limit (integer),
urgent_block_limit (integer)

Note that as of the 8.0 release, these size-based priority override MTA option effects are
nullified if the MT-PRIORITY SMTP extension has been used to set an explicit priority value.

52.38.2.1 non_urgent_block_limit

The non_urgent_block_limit MTA option may be used to instruct the MTA to
downgrade the priority of messages based on size: messages above the specified size will
be downgraded to lower than non-urgent priority, meaning that they will not be processed
immediately and will wait for processing until the next periodic delivery run. The value is
interpreted in terms of MTA blocks, as specified by the block_size MTA option. Note also
that the nonurgentblocklimit channel option may be used to impose such downgrade
thresholds on a per-channel basis.

52.38.2.2 normal_block_limit

The normal_block_limit MTA option may be used to instruct the MTA to downgrade
the priority of messages based on size: messages above the specified size will be downgraded
to non-urgent priority. The Job Controller automatically pays attention to message effective
processing priority when scheduling delivery attempts. The value is interpreted in
terms of MTA blocks, as specified by the block_size MTA option. Note also that the
normalblocklimit channel option may be used to impose such downgrade thresholds on a
per-channel basis.

MTA options 52–233

https://tools.ietf.org/html/rfc6710
https://tools.ietf.org/html/rfc2156
https://tools.ietf.org/html/rfc2156

Received header line MTA options

52.38.2.3 second_class_block_limit

The second_class_block_limit MTA option may be used to instruct the MTA to
downgrade the priority of messages based on size: messages above the specified size will
be downgraded to third class priority. The value is interpreted in terms of MTA blocks, as
specified by the block_size MTA option. Note also that the secondclassblocklimit
channel option may be used to impose such downgrade thresholds on a per-channel basis.

52.38.2.4 urgent_block_limit

The urgent_block_limit MTA option may be used to instruct the MTA to downgrade
the priority of messages based on size: messages above the specified size will be downgraded
to normal priority. The Job Controller automatically pays attention to message effective
processing priority when scheduling delivery attempts. The value is interpreted in
terms of MTA blocks, as specified by the block_size MTA option. Note also that the
urgentblocklimit channel option may be used to impose such downgrade thresholds on a
per-channel basis.

52.39 Received header line MTA options
The MTA has a number of options related to Received: header lines and message-ids, and
relating to the MTA's facility to sideline as .HELD files those messages that appear to be
looping.

52.39.1 Syslog MTA options: held_sndopr (0 or 1)
The held_sndopr MTA option controls the production of syslog messages (on UNIX) when
a message is forced into a held state due to certain suspicion thresholds. (Note that there are
other potential causes of messages becoming .HELD, which are not covered by held_sndopr
-- cases corresponding to explicit MTA administrator action such as execution of a imsimta
qclean command, or cases where the held state can be logged as part of normal logging,
such as execution of a Sieve filter hold action, either in an explicit Sieve filter or as a Sieve
scriptlet executed due to a spam/virus filter package verdict, or application of an address-
based *_ACCESS mapping table $H flag where syslog message generation can be performed
via $< flag, or routing to the hold channel due to a user status or domain status of hold.
held_sndopr is meant to warn of cases that might otherwise be easier to miss noticing,
especially for unanticipated incoming problem messages.)

Suspicious cases where held_sendopr causes a syslog message include:

• A message may be forced into a held state because it has too many Received: header lines
(see the various max_*received_lines MTA options for additional information):

HELDMSG, Header count exceeded; message has been marked .HELD automatically.

• Or a message may be forced into a held state because it has too many recipients (see the
holdlimit channel option for more details):

HELDMSG, Max recipient count exceeded; message has been marked .HELD automatically.

• Or a message may be forced into a held state because it has too many MIME parts or levels
(see the max_mime_levels and max_mime_parts MTA options):

52–234 Messaging Server Reference

id_domain MTA option

HELDMSG, Max MIME part/level limit exceeded; message has been marked .HELD automatically.

A value of 1 for held_sndopr instructs the MTA to issue such messages when such cases
occur. A value of 0 (the default) turns off these messages. The syslog messages will be issued
using the configured sndopr_priority facility and severity.

52.39.2 Message-id: domain name MTA option:
id_domain (string)

The id_domain MTA option specifies the domain name to use when constructing message
IDs. If this option is not explicitly set (which is the default), then the official host name of the
local channel is used.

52.39.3 Received header line MTA options:
max_local_received_lines (integer)

As the MTA processes a message, it scans any Received: header lines attached to the message
looking for references to the official local host name. (Any Received: line that the MTA inserts
will contain this name). If the number of Received: lines containing this name exceeds the
max_local_received_lines value, the message is entered into the MTA destination
channel queue area in a held state. This check blocks certain kinds of message forwarding
loops. The message must be manually moved from the held state for processing to continue.
The default for max_local_received_lines is 10.

52.39.4 Received header line MTA options:
max_mr_received_lines (integer)

As the MTA processes a message, it counts the number of MR-Received: header lines in the
message's header. (MR-Received: header lines are added to messages processed by a PMDF-
MR gateway.) If the number of MR-Received: lines exceeds the max_mr_received_lines
value, the message is entered into the MTA destination channel queue area in a held
state. This check blocks certain kinds of message forwarding loops. The message must
be manually moved from the held state for processing to continue. The default for
max_mr_received_lines is 20.

52.39.5 Received header line MTA options:
max_received_lines (integer)

As the MTA processes a message, it counts the number of Received: header lines in the
message's header. If the number of Received: lines exceeds the max_received_lines value,
the message is entered into the MTA destination channel queue area in a held state. This check
blocks certain kinds of message forwarding loops. The message must be manually moved from
the held state for processing to continue. The default for max_received_lines is 50.

52.39.6 Received header line MTA options:
max_total_received_lines (integer)

MTA options 52–235

max_x400_received_lines
MTA option

As the MTA processes a message, it counts the number of Received:, MR-Received:, X400-
Received: header lines in the message's header. If the number of all such header lines exceeds
the max_total_received_lines value, the message is entered into the MTA destination
channel queue area in a held state. This check blocks certain kinds of message forwarding
loops. The message must be manually moved from the held state for processing to continue.
The default for max_total_received_lines is 100.

52.39.7 Received header line MTA options:
max_x400_received_lines (integer)

As the MTA processes a message, it counts the number of X400-Received: header lines in the
message's header. (X400-Received: header lines are added to messages processed by a PMDF-
X400, PMDF-MB400, or other X.400-to-Internet e-mail gateway.) If the number of Received:
lines exceeds the max_x400_received_lines value, the message is entered into the MTA
destination channel queue area in a held state. This check blocks certain kinds of message
forwarding loops. The message must be manually moved from the held state for processing to
continue. The default for max_x400_received_lines is 50.

52.39.8 Received header line MTA options:
received_domain (string)

The received_domain MTA option sets the domain name for the SMTP server to use when
constructing Received: header lines (and Date-Warning: header lines). By default, the offical
host name of the local channel is used, channel:l.official_host_name. Note that
this MTA option does not apply to the Received: header lines generated by other channels;
in particular, it does not apply to Received: header lines resulting from a pass through an
intermediate channel (such as a process, reprocess, or conversion channel). In such cases, the
channel official host name---suffixed with the official host name for the local channel, in the
case of short form names---will be used.

If there is no ldap_default_domain set, then received_domain is also the value
that a Sieve environment "domain" will return. (If neither ldap_default_domain nor
received_domain is set, then the MTA falls back to the L channel's official host name.)

52.39.9 Received header line MTA options:
received_version (string)

RESTRICTED: Use of this option is not recommended.

The received_version MTA option sets the MTA version string to use when the MTA
constructs Received: header lines. By default, if this option is not set, an internally constructed
string is used that incorporates correct, current MTA version data.

Thus this option is the complement of the (also not recommended)
custom_version_string TCP/IP channel option.

52.40 Redis MTA options
New in the 8.0.2.3 release, the MTA supports use of the Redis protocol for certain database/
storage uses. redis.* options control the MTA's connections to Redis. The *_database_url

52–236 Messaging Server Reference

hostlist Option Under
redis_client

MTA options, when set to redis: URL values, configure use of Redis to store MTA databases.
See also the enable_sieve_redis MTA option, which enables Sieve filter use of a redis
operator in Sieve scripts.

New in the 8.1.0.1 release, support has been added for Redis Sentinel. The
redis.servicename option must be specified in addition to configuring Redise Sentinel to
enable Sentinel support; when this is done the redis.hostlist and port options should not
be specified.

52.40.1 hostlist Option Under redis_client
The hostlist redis option specifies a space separated list of Redis server hosts. The host
format is host[:port]. If port is not specified, the port number is determined based on the
setting of the redis.port option.

52.40.2 port Option Under redis_client
The portredis option specifies the Redis server default port. If the port is not specified in
redis.hostlist, the port defaults to this value.

52.40.3 authpassword Option Under redis_client
The authpassword Redis option sets the password that will be used for authentication when
communicating with Redis servers.

52.40.4 hostlist Option Under sentinel_client
The hostlist sentinel option specifies a space separated list of Redis Sentinel server
hosts. The host format is host[:port]. If port is not specified, the port number is determined
based on the setting of the sentinel.port option.

52.40.5 port Option Under sentinel_client
The portsentinel option specifies Redis Sentinel server default port. If the port is not
specified in sentinel.hostlist, the port number defaults to this value.

52.40.6 authpassword Option Under sentinel_client
The authpassword Redis Sentinel option sets the password that will be used for
authentication when communicating with Redis Sentinel servers.

52.40.7 hostlist Option Under redis
The hostlist redis option specifies a space separated list of Redis server hosts. The host
format is host[:port]. If port is not specified, the port number is determined based on the
setting of the redis.port option.

52.40.8 port Option Under redis
The portredis option specifies the Redis server default port. If the port is not specified in
redis.hostlist, the port defaults to this value.

MTA options 52–237

authpassword Option Under
redis

52.40.9 authpassword Option Under redis
The authpassword Redis option sets the password that will be used for authentication when
communicating with Redis servers.

52.40.10 hostlist Option Under sentinel
The hostlist sentinel option specifies a space separated list of Redis Sentinel server
hosts. The host format is host[:port]. If port is not specified, the port number is determined
based on the setting of the sentinel.port option.

52.40.11 port Option Under sentinel
The portsentinel option specifies Redis Sentinel server default port. If the port is not
specified in sentinel.hostlist, the port number defaults to this value.

52.40.12 authpassword Option Under sentinel
The authpassword Redis Sentinel option sets the password that will be used for
authentication when communicating with Redis Sentinel servers.

52.41 Sieve filter MTA options
A number of MTA options affect the interpretation of Sieve filters and Sieve filter actions,
enable or disable optional Sieve extensions or impose limits on Sieve features or structures,
control the availability and operation of the Sieve duplicate extension, or affect the period
between repeating autoresponse messages, tune caching of parsed Sieve filters, enable or
disable Sieve filter result logging, modify error text issued in cases of Sieve filter access or
processing errors, or enable Sieve filter processing debugging.

For Sieve filter processing by external (external-to-the-MTA) components such as imexpire,
whether using Sieve rules for normally scheduled message expiration (see the expiresieve
Message Store option), or subsequent-to-delivery spam/virus filtering using imexpire, see
also the External filtering context MTA options.

52.41.1 systemfilter Option
The systemfilter MTA option takes a Sieve filter as its value, referred to as the MTA system
Sieve filter. (In legacy configuration, this Sieve was stored in the IMTA_TABLE:imta.filter
file.) Normally, this Sieve filter will be applied to every message processed by the MTA, at
every enqueue; but see the disabledestinationfilter and disablesourcefilter
channel options which can disable application of selected Sieve filters on a per-channel basis.

Because the MTA system Sieve filter, like channel filters, is controlled by the MTA
administrator rather than by users, certain Sieve features are available to it not normally
available to users.

Note that because the MTA system Sieve filter is applied so frequently (normally to every
message, at every enqueue), it is particularly important that it be a well-written, efficient Sieve
filter.

52–238 Messaging Server Reference

Sieve filter interpretation MTA
options

Note that a summary of the Sieve actions performed upon a message, whether from the
systemfilter MTA system Sieve filter or any other Sieve applying to a message, may be
recorded in the MTA message transaction log file by enabling the log_filter MTA option.
This is truly a summary of what was performed; it will not show actions that were superceded
or considered but not performed.

Since the MTA system filter typically consists of more than one line of text, its value cannot
be easily set using the msconfig set command. The edit filter command can be used for
manual editing of the system filter and the recipe language set_option function should be
used for automating filter updates.

52.41.2 Sieve filter interpretation MTA options
The MTA has several options that modify the "meaning" or "effect" (that is, the interpretation)
of Sieve filters:

• decode_encoded_words -- Decode encoded words during Sieve processing

• defer_header_addition -- (New in Messaging Server 7.0.5.31.0) Defer addition of
headers upon redirect action

• filter_discard -- Delete discarded messages immediately vs. delayed

• filter_jettison -- Delete jettisoned messages immediately vs. delayed

• notify_ignore_errors -- Whether Sieve notify action invalid recipients cause an abort
with an error, or are silently ignored

• sieve_received -- Sieve filters can see (an approximation of) the Received: header line
that the MTA is about to add

• sieve_redirect_add_resent -- Whether Sieve redirect actions add Resent-* header
lines

• sieve_user_carryover -- Whether user Sieve filters carry over when forwarding

52.41.2.1 Sieve filter interpretation MTA options:
decode_encoded_words (integer)

RESTRICTED.

Control some decoding of encoded words during Sieve processing. The default value is 7.

52.41.2.2 Sieve filter interpretation MTA options:
defer_header_addition (0 or 1)

The defer_header_addition MTA option controls whether Sieve filters see headers added
to messages prior to Sieve processing. This includes, but is not limited to, headers added by
list expansion processing. In older versions, such added headers would not be visible to Sieve
filters. This option was added for Messaging Server 7.0u5p31 with a default of 0, meaning
that added headers are seen by Sieve filters; setting the option to 1 restores the older behavior
(where such added headers are not visible to Sieve filters on redirected messages).

MTA options 52–239

Sieve filter interpretation MTA
options

Prior to the 8.0 release, Sieve "redirect" used deferred reprocessing and thus any headers
added to a redirected message were affected by this option. As of 8.0 Sieve "redirect"
queues to the process channel and this option no longer has any effect on header visibility in
redirected messages.

52.41.2.3 Sieve filter interpretation MTA options: filter_discard
(1 or 2)

The filter_discard MTA option controls whether Sieve filter "discard" actions cause
such discarded messages to go to the bitbucket channel ((i.e., be immediately discarded), or
cause such messages to go to the filter_discard channel (which will leave them around
for a short period before discarding them). The default is 1, meaning that messages discarded
by a Sieve filter are immediately discarded. Setting this option to 2 causes discarded messages
to instead be routed to the filter_discard channel.

52.41.2.4 Sieve filter interpretation MTA options: filter_jettison
(1 or 2)

New in MS 6.1-0.01. The filter_jettison MTA option controls whether Sieve filter
"jettison" actions cause such discarded messages to go to the bitbucket channel (i.e.,
be immediately deleted), or cause such messages to go to the filter_discard channel
(which will leave them around for a short period before deleting them). If this option is not
explicitly set, it defaults to the value of the filter_discard MTA option. Since the default
is filter_discard=1, then the default for jettisoned messages is also that such messages
are immediately discarded. Setting filter_jettison=2 (or if filter_jettison is not
set at all, setting filter_discard=2) causes jettisoned messages to instead be routed to the
filter_discard channel.

52.41.2.5 Sieve filter interpretation MTA options:
notify_ignore_errors (0 or 1)

The notify_ignore_errors MTA option specifies whether specifying an invalid
notification recipient address in a Sieve "notify" action will cause Sieve filter evaluation to
abort with an error (0) or cause the notify action to be silently ignored (1). 0 is the default.

52.41.2.6 Sieve access to local Received: field sieve_received

Sieve scripts are necessarily evaluated after messages are received but before messages are
enqueued to specific recipients. The MTA tries to include as much information in Received:
fields as possible, which means deferring Received: field generation until the actual enqueue
operation is performed. This means that Sieve scripts are not able to "see" the outermost
Received: field that appears on the message.

Although most of the information in the outermost Received: field is available through other
means, not all of it is, and even if it is available it may not be convenient to access it through
other mechanisms. So the MTA normally adds reasonable approximation to the final Received:
field to the message header prior to Sieve script evaluation. This addition is controlled by
the sieve_received MTA option. A value of 1 (the default) enables the addition of this
Received: field while a value of 0 disables it.

52.41.2.7 Sieve filter interpretation MTA options:
sieve_redirect_add_resent (0 or 1)

52–240 Messaging Server Reference

Sieve filter interpretation MTA
options

New in 6.3P1. The sieve_redirect_add_resent MTA option sets the MTA system default
for whether Sieve "redirect" actions cause addition of Resent-* header lines. The default
for this option is 1, meaning to add Resent-Date:, Resent-To:, and Resent-From: header lines
when performing a "redirect". This MTA system default may be overridden on a per-action
basis using the ":resent" and ":noresent" arguments to "redirect". That is, setting
sieve_redirect_add_resent=1 causes these fields to be generated unless ":noresent"
is used; whereas setting sieve_redirect_add_resent=0 causes the fields to be generated
only if ":resent" is used.

52.41.2.8 Sieve filter MTA options: reject_disables_capture
(0-2)

As of Messaging Server 8.0.1.2, if reject_disables_capture is set to 0 (the default), then
capture and journal actions will be honored even when a message has been rejected at the
sieve level by all recipients. Note that this will prevent promotion of the reject action(s) to an
SMTP-level error, causing DSNs to be sent.

Setting this option to 1 will cause capture and journal actions to be canceled in this case,
allowing promotion of the error to an SMTP-level response.

As of 8.0.1.3, setting this option to 2 will cause cancellation of any capture and journal actions
associated with a rejected recipient address. Each recipient address is considered separately
in determining whether or not to cancel these actions. Note that this only applies to capture
and journal actions triggered by LDAP attributes; sieve capture and journal actions are not
cancelled.

52.41.2.9 Sieve filter MTA options: discard_disables_capture
(0-2)

As of Messaging Server 8.0.1.3, if discard_disables_capture is set to 0 (the default), then
capture and journal actions will be honored for recipients for whom the message has been
discaded and thus never actually received the mail.

Setting this option to 1 will cause capture and journal associated with such recipients to be
canceled.

52.41.2.10 Sieve filter MTA options: sieve_user_carryover (0 or
1)

New in MS 6.0-0.01. The default is 0. If set to 1, user Sieve filters don't "carry over" when doing
mailDeliveryOption: forward. This option is only relevant for direct LDAP forwarding
(forwarding via mailDeliveryOption and mailForwardingAddress); it does not have
any effect on other forms of forwarding.

52.41.2.11 Sieve filter MTA options: sieve_mime_needed (0 or 1)

MIME message analysis is only performed when necessary and only retains necessary
information. However, the serial nature of MTA operations means that subsequent operations
may require additional information, forcing the MTA to analyze the message multiple times.

The sieve_mime_needed MTA option controls whether or not MIME structure and header
information is retained on the first message analysis pass, even if the information is not needed

MTA options 52–241

Sieve filter limit MTA options

immediately. A setting of 1 causes the information to be retained, 0 causes it to be discarded.
The default is 1.

Saving this information may avoid having to perform another analysis pass. On the other
hand, saving the information consumes memory and is wasteful when the information is not
likely to be needed.

52.41.2.12 Sieve filter MTA options: sieve_body_needed (0 or 1)

MIME message analysis is only performed when necessary and only retains necessary
information. However, the serial nature of MTA operations means that subsequent operations
may require additional information, forcing the MTA to analyze the message multiple times.

The sieve_body_needed MTA option controls whether or not MIME body content
information is retained on the first message analysis pass, even if the information is not needed
immediately. Note that this information is only used by Sieve body tests. A setting of 1 causes
the information to be retained, 0 causes it to be discarded. The default is 0.

Saving this information may avoid having to perform another analysis pass. On the other
hand, saving the information consumes considerable memory and is wasteful when no sieve
body tests are being performed.

52.41.3 Sieve filter limit MTA options
The MTA has configurable limits on how many of various Sieve actions can be applied in a
Sieve filter, and on the size of certain Sieve constructs.

52.41.3.1 Sieve filter limit MTA options: max_addheaders (integer
>= 0)

The max_addheaders MTA option sets the maximum number of Sieve "addheader" actions
that can be performed in a single Sieve script. The default is 10. As of the 8.0 release, this limit
only applies to user-level Sieves.

52.41.3.2 Sieve filter limit MTA options: max_duplicates (integer
>= 0)

The max_duplicates MTA option specifies the maximum number of Sieve "duplicate"
tests that may be performed by a Sieve script. The default is 2.

52.41.3.3 Sieve filter limit MTA options: max_fileintos (integer >=
0)

The max_fileintos MTA option specifies the maximum number of Sieve "fileinto"
actions that may be performed by a Sieve script. The default is 10. As of the 8.0 release, this
limit only applies to user-level Sieves.

52.41.3.4 Sieve filter limit MTA options: max_notifys (integer >= 0)

The max_notifys MTA option specifies the maximum number of "notify" actions that may
be performed by a Sieve script. The default is 0, meaning that "notify" actions cannot be
used.

52–242 Messaging Server Reference

Sieve filter limit MTA options

New in 7.0.5, max_notifys is checked when processing Sieve "require" and "ihave"
clauses; if such a clause is being applied on "notify", the clause will fail if max_notifys=0 is
set.

52.41.3.5 Sieve filter limit MTA options: max_redirect_addresses
(non-negative integer)

The max_redirect_addresses MTA option specifies how many addresses to read in
from an external list used in a Sieve"redirect" action; additional addresses will be ignored,
without an error. (See Sieve external lists for a discussion of external list use in "redirect"
actions.) The default for max_redirect_addresses is 128.

52.41.3.6 Sieve filter limit MTA options: max_redirects (integer >=
0)

The max_redirects MTA option specifies the maximum number of "redirect" actions
that may be performed by a Sieve script; i.e., the maximum number of (Sieve script caused)
forwards that may be performed. The default is 32. As of the 8.0 release, this limit only applies
to user-level Sieves.

52.41.3.7 Sieve filter limit MTA options: max_sieve_list_size (0 <
integer <= 16,384)

The max_sieve_list_size MTA option specifies the maximum number of elements
that may appear in a Sieve string-list structure (that is, strings listed within square brackets,
[*(string)]) inside a Sieve script.

The default is 64; allowed values are integers greater than 0 and less than or equal to 16384; (in
MS 7.0.5 and earlier, the upper limit was 10000).

If a Sieve filter attempts to use more elements in a string list than this option allows, Sieve
filtering will be aborted (the message being processed will be delivered normally though
without Sieve filtering being applied), and the MTA will also generate a notification message
to the Sieve owner -- the postmaster for system Sieve filters (systemfilter and channel
filters), as well as for Sieve filters specified on groups or lists in the aliases file or via alias
options, or the user whose Sieve has the error for a user's own Sieve filter. The notification
message will be constructed using the return_error.txt file, and will include as reason/
status text "Error in sieve filter: List too large".

52.41.3.8 Sieve filter limit MTA options:
max_sieve_match_iterations (0 < integer <= 2147483647)

The max_sieve_match_iterations MTA option specifies the maximum number of
iterations the internal code handling the :matches construct will attempt.

The default is 1,000,000,000; allowed values are integers greater than 0 and less than or equal to
2147483647.

If a :matches operation attempts to perform more than the allowed number of iterations, Sieve
filtering will be aborted (the message being processed will be delivered normally though
without Sieve filtering being applied), and the MTA will also generate a notification message
to the Sieve owner -- the postmaster for system Sieve filters (systemfilter and channel

MTA options 52–243

Sieve filter caching MTA options

filters), as well as for Sieve filters specified on groups or lists in the aliases file or via alias
options, or the user whose Sieve has the error for a user's own Sieve filter. The notification
message will be constructed using the return_error.txt file, and will include as reason/
status text "Error in sieve filter: Too many iterations in :matches".

52.41.3.9 Sieve filter limit MTA options: max_sieve_string_size
(0 < integer <= 10,000,000)

The max_sieve_string_size MTA option specifies the maximum number of characters
that may appear in a Sieve string. This includes both string constants, variables, and internally
computed string values. The default is 65536; allowed values are integers greater than 0 and
less than or equal to 10,000,000.

If a Sieve filter attempts to use more characters in a string than this option allows, Sieve
filtering will be aborted (the message being processed will be delivered normally though
without Sieve filtering being applied), and the MTA will also generate a notification message
to the Sieve owner -- the postmaster for system Sieve filters (systemfilter and channel
filters), as well as for Sieve filters specified on groups or lists in the aliases file or via alias
options, or the user whose Sieve has the error for a user's own Sieve filter. The notification
message will be constructed using the return_error.txt file.

Note that prior to the 8.0 release if a Sieve script enables variables, then Sieve Strings are
further limited, with hard-coded truncation (with no error message) being performed at 8192
characters. As of 8.0, the max_sieve_string_size option's value is used as intended, even
when variables are enabled.

52.41.3.10 Sieve filter limit MTA options: max_vacations (integer
>= 0)

The max_vacations MTA option specifies the maximum number of Sieve "vacation"
actions that may be performed by a Sieve script. The default is 2.

Exceeding the allowed number of vacation actions will result in an error "Too many
vacations specified" during Sieve filter evaluation.

New in 7.0.5, max_vacationsis checked when processing Sieve "require" and
"ihave" clauses; if such a clause is being applied on "vacation", the clause will fail if
max_vacations=0 is set.

52.41.3.11 Sieve filter limit MTA options: max_variables (integer
>= 0)

The max_variables MTA option specifies the maximum number of variables that may be
used in a Sieve script. The default is 128.

Attempting to use more variables than allowed will result in an error during Sieve evaluation,
"No room in table for variable: variable-name".

52.41.4 Sieve filter caching MTA options
At the intersection between Sieve filter processing and MTA caching of fetched data, are a
couple of MTA options.

52–244 Messaging Server Reference

Sieve language extension MTA
options

52.41.4.1 LDAP lookup cache MTA options: filter_cache_size
(integer) and filter_cache_timeout (integer)

The MTA maintains a per-process cache of tokenized (i.e., parsed but not yet evaluated)
Sieve filters. This cache applies both to Sieve filters fetched from LDAP (e.g., from
mailSieveRuleSource and mailDomainSieveRulesource LDAP attributes, or
more precisely from whatever LDAP attributes are named by the ldap_filter and
ldap_domain_attr_filter\ MTA options), and to Sieve filters directly configured into the
MTA such as channel filters. The filter_cache_size MTA option specifies the size of this
cache; the default is 500. The filter_cache_timeout option specifies the retention time, in
seconds, for entries in this cache; the default is 600.

52.41.5 Sieve language extension MTA options
Normally, Sieve extensions are enabled in individual Sieve scripts via use of the standard Sieve
require action; and for convenience in combining Sieve scripts, the MTA by default is lenient
in permitting use of multiple require clauses (but see the strict_require MTA option).
However, for a few special cases of potentially computationally "expensive" actions, the MTA
permits the mail system administrator to restrict enabling these extensions. Also see the Sieve
filter limit MTA options, as setting the maximum allowed number of some types of action to
0 effectively disables use of that action. And see the Sieve filter interpretation MTA options
which can modify how certain Sieve operations are interpreted or performed.

52.41.5.1 Sieve language extension MTA options:
enable_sieve_body (0-2)

(New in Messaging Server 7.0u2) This option controls whether Sieve filters may use the body
extension. The default value is 0, meaning that body is not available. A value of 1 allows body
to be used in any Sieve script. A value of 2 allows body to be used in system-level Sieves only.

52.41.5.2 Sieve language extension MTA options:
enable_sieve_ereject (0-2)

(New in 7.2-7.02.) The Sieve "ereject" extension defined in RFC 5429 is designed to be used
to reject spam. Because of this it is only supposed to be available on ingress MTAs capable of
returning an SMTP level error directly to a remote systems in other administrative domains.
Ereject is not supposed to be available on internal MTAs incapable of sending a direct SMTP
response because it's use on such systems can produce blowback spam.

The enable_sieve_ereject option provides the means to disable "ereject" on internal
systems. A value of 1, the default, enables the use of "ereject" in all scripts. A value of 0
disables it; when enable_sieve_ereject=0 is set, a Sieve script statement of 'require
"ereject";' will be ignored.

52.41.5.3 Sieve language extension MTA options:
enable_sieve_memcache (0-2)

New in the 8.0 release. The enable_sieve_memcache MTA option controls whether
Sieve filters may use the memcache operator to access and manipulate stored data using the
memcache protocol. A value of 0 disables the use of memcache in all Sieve scripts. The default

MTA options 52–245

https://tools.ietf.org/html/rfc5429

Sieve language extension MTA
options

value is 1, meaning that memcache may be used in any Sieve script. A value of 2 allows
memcache to be used in system-level Sieves only.

When enable_sieve_memcache is set to 0, then any attempt to use memcache will result in
a Sieve error "Memcache access has been disabled".

When enable_sieve_memcache is set to 2, then user-level attempts to use memcache will
result in a Sieve error "Memcache only allowed in system-level sieves".

52.41.5.4 Sieve language extension MTA options:
enable_sieve_metermaid (0-2)

New in the 8.0 release. The enable_sieve_metermaid MTA option controls whether Sieve
filters may use the metermaid operator to access and manipulate data stored in MeterMaid. A
value of 0 disables the use of the metermaid operator in all Sieve scripts. The default value is
1, meaning that metermaid may be used in any Sieve script. A value of 2 allows metermaid
to be used in system-level Sieves only.

When enable_sieve_metermaid is set to 0, then any attempt to use metermaid will result
in a Sieve error "MeterMaid access has been disabled".

When enable_sieve_metermaid is set to 2, then user-level attempts to use metermaid
will result in a Sieve error "MeterMaid only allowed in system-level sieves".

52.41.5.5 Sieve language extension MTA options:
enable_sieve_redis (0-2)

New in the 8.0.2.3 release. The enable_sieve_redis MTA option controls whether Sieve
filters may use the redis operator to access and manipulate stored data using the redis
protocol. A value of 0 disables the use of redis in all Sieve scripts. The default value is 1,
meaning that redis may be used in any Sieve script. A value of 2 allows redis to be used in
system-level Sieves only.

When enable_sieve_redis is set to 0, then any attempt to use redis will result in a Sieve
error "Redis access has been disabled".

When enable_sieve_redis is set to 2, then user-level attempts to use redis will result in a
Sieve error "Redis only allowed in system-level sieves".

52.41.5.6 Sieve language extension MTA options:
enable_sieve_regex (0-2)

The enable_sieve_regex MTA option controls whether Sieve filters may use the Sieve
regex extension (the ":regex" match-type). A value of 0 disables the use of regex in all Sieve
scripts. The default value is 1, meaning that regex may be used in any Sieve script. As of the 7
Update 2 release, a value of 2 allows regex to be used in system-level Sieves only.

When enable_sieve_regex is set to 2, then user-level attempts to use :regex will result in
a Sieve error ":regex only allowed in system-level sieves".

52.41.5.7 Sieve language extension MTA options: strict_require
(0 or 1)

52–246 Messaging Server Reference

Sieve filter duplicate extension
MTA options

The strict_require MTA option controls whether or not the MTA enforces "strict" syntax
rules on the location of any require clauses in Sieve filter scripts. The default is 0 (false),
meaning that require clauses may appear anywhere in the Sieve script, not only at the very
top of the Sieve script.

52.41.6 Sieve filter duplicate extension MTA options
As of 8.0, the MTA supports the Sieve duplicate extension specified in RFC 7352.

Several MTA options relate to this support. In particular, the duplicate_tracking_url
MTA option specifies where duplicate tracking information should be stored. At present, the
value must be a memcache: URL of the form:

memcache://host:port/key-prefix

If the host isn't specified, it defaults to the value of the memcache_host MTA option. It is an
error for memcache_host not to be set in this case. If the port isn't specified, it defaults to the
value of the memcache_port MTA option; if that option in turn isn't specified, the default
is 11211, the usual port for memcache servers. key-prefix, if specified, is prepended to the
keys the duplicate extension sends to the memcache server.

Note that duplicate tests are performed during Sieve evaluation but no memcache updates are
performed. It is only after the message has been successfully processed that updates are done.

Also note that duplicate information is implicitly qualified by the owner of the Sieve. In the
case of system-level Sieves, this will be the applicable postmaster address, so system-level
Sieves operate in shared namespace(s). Note that the :handle argument can be used to force
system-level Sieves to operate in their own namespace.

52.41.6.1 Duplicate test storage timeout minimum:
duplicate_minimum_timeout (integer)

(New in 8.0.) The duplicate_minimum_timeout MTA option establishes a minimum
value, in seconds, for the Sieve "duplicate" ":seconds" parameter that controls how long
test information is retained. Values lower than the minimum are silently adjusted up to the
minimum; no error occurs. The default value for duplicate_minimum_timeout is 0.

52.41.6.2 Duplicate test storage timeout maximum:
duplicate_maximum_timeout (integer)

(New in 8.0.) The duplicate_maximum_timeout MTA option establishes a maximum
value, in seconds, for the Sieve "duplicate" ":seconds" parameter that controls how long
test information is retained. Values higher than the maximum are silently adjusted down to the
maximum; no error occurs. The default value for duplicate_maximum_timeout is 604800
seconds (7 days).

52.41.6.3 Duplicate test storage timeout default:
duplicate_timeout_default (non-negative integer)

MTA options 52–247

https://tools.ietf.org/html/rfc7352

Sieve filter error text MTA options

The duplicate_timeout_default MTA option specifies the default timeout, in seconds,
for storage of information provided to the Sieve "duplicate" test. The default is 604800
seconds (seven days).

52.41.6.4 Sieve duplicate detection: duplicate_tracking_url
(memcache URL)

The duplicate_tracking_url MTA option specifies where duplicate tracking information
produced by the Sieve duplicate extension should be stored. At present the value must be a
memcache: URL of the form:

memcache://host:port/key-prefix

If the host isn't specified, it defaults to the value of the memcache_host MTA option. It is an
error for memcache_host not to be set in this case.

If the port isn't specified it defaults to the value of the memcache_port MTA option; if that
option in turn isn't specified the default is 11211, the usual port for memcache servers.

key-prefix, if specified, is prepended to the keys the duplicate extension sends to the
memcache server.

52.41.6.5 Sieve filter limit MTA options: max_duplicates (integer
>= 0)

The max_duplicates MTA option specifies the maximum number of Sieve "duplicate"
tests that may be performed by a Sieve script. The default is 2.

52.41.7 Sieve filter error text MTA options
A few of the error_text_* MTA options discussed in error_text MTA options relate
specifically to Sieve filter error messages; see the error_text_sieve_access,
error_text_sieve_syntax, error_text_source_sieve_access,
error_text_source_sieve_syntax, and error_text_sieve_authorization MTA
options.

52.41.8 Sieve filter log and debug MTA options
A few MTA options relate to logging of Sieve filter applied actions, and debugging of MTA
Sieve filter processing.

For debugging of Sieve filters, see also the mm_debug MTA option, the test -expression
utility, and the Sieve debug action.

52.41.8.1 Debug MTA options: filter_debug (0 or 1)

New in Messaging Server 6.2. Control whether the stack state information part of Sieve filter
debugging is put in debug logs. (Note that this is quite "low level" debugging, not likely to be
of interest unless requested by Oracle support.)

52–248 Messaging Server Reference

Sieve filter log and debug MTA
options

For debugging of Sieve filters, see also the imsimta test -expression utility and the
mm_debug MTA option along with the Sieve debug action.

52.41.8.2 Transaction logging MTA options: log_filter (0-7)

The log_filter option controls whether or not any mailbox filter actions (Sieve filter
actions) applicable to the message are logged in enqueue "E" records or included in
LOG_ACTION mapping probes. Bit 0 (value 1), if set, causes filter information to appear in
log entries. New in 7.0-3.01, bit 1 (value 2), if set, causes filter information to be included in
LOG_ACTION mapping probes. This information appears after the optional "intermediate"
and "original" forms of the destination address (see the log_intermediate MTA option),
before the SMTP diagnostic field (which itself only appears for SMTP messages). In XML or
JSON format (log_format set to 4 or 5, respectively), Sieve filter action(s) logging, if enabled,
appears as the fl attribute. The filter action(s) will be enclosed within single quote characters.

Normally the fl attribute only appears in XML or JSON format logs if there is an AUTH
parameter value to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to
appear unconditionally.

As of MS 6.3p1, enabling XML or JSON format (log_format set to 4 or 5) causes the default
for log_filter to be 1 (Sieve filter action logging enabled); with any other format, the
default is 0, (Sieve filter actions are not logged), as in previous versions. With log_filter set
to 1, one might see, for instance

'fileinto "SPAM"'

or

'redirect "user@domain.com"'

As of 8.0, a "warn" clause may also be present; see the discussion in Sieve warn extension.

Note that the case of a "reject" action is special, due to the inherent nature of the "reject"
action. In this case, what occurs is the enqueue of a new message (a Message Disposition
Notification) by the original enqueuing channel to the process channel, and that new message
has an implicit keep occurring. As there is no enqueue of the rejected message, the "reject"
does not show up in the filter action field of any transaction log record.

As of MS 8.0, the maximum size of the log_filter field (the maximum length of the string
recording what Sieve actions were applied) has been increased from 256 to 1024 characters.

52.41.8.3 Transaction logging MTA options: log_transactionlog
(0-3)

(New in MS 8.0.) The log_transactionlog MTA option controls whether Sieve
transactionlog action strings are included in MTA message transaction log records. The
option defaults to 0, meaning that such Sieve actions are not logged. Setting bit 0 (value 1)
causes the transactionlog string to be logged at the very end of enqueue ("E") records. The
XML/JSON attribute name in XML/JSON format logs (log_format set to 4 or 5, respectively)
is "tl". Setting bit 1 (value 2) causes the transactionlog string to be included in the
LOG_ACTION mapping table probe, again at the very end.

MTA options 52–249

Spamfilter MTA options

Normally the tl attribute only appears in XML or JSON format logs if there is transaction log
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

For instance, with MTA message transaction logging enabled (the logging channel option set
for all channels) and with log_transactionlog also set:

msconfig> show logging
role.channel:defaults.logging
msconfig> set log_transactionlog 1

then an MTA system filter (see for instance the msconfig command edit filter)
including:

require "variables";
if header :matches "subject" "*" {transactionlog "${0}";}

will cause MTA message transaction log records to include the contents of the Subject:
header line. (Note that merely logging the Subject: header line of messages passing through
the MTA could instead be achieved via use of log_header or logheader. But the Sieve
script approach allows more fine-tuning, as a Sieve script can be coded with complex logic
dependent upon other message details, such as message sender or recipient, presence of
specific strings in the header, etc.)

52.42 Spamfilter MTA options
The MTA has a number of options affecting Brightmail, ClamAV, Cloudmark, ICAP, Milter (as
of MS 6.3), SpamAssassin, Symantec SAVSE or similar virus/spam filtering plug-in facilities.
These options are also used to integrate with AXS:One archiving. Most of these options affect
the operation of the spam/virus filter package or archive package itself; however, there are
also options that affect which user(s) and domains(s) get such filtering or archiving applied,
such as the ldap_optinN, ldap_source_optinN, and ldap_domain_attr_optinN MTA
options.

For each virus/spam filtering package used, typically at a minimum a pair of options
spamfilterN_library and spamfilterN_config_file must be specified, telling
the MTA the location of a library of callable routines for that virus/spam filter package and
providing the location of a configuration file containing some configuration information
specific to that virus/spam filter package. Additional spamfilter* MTA options may be
used to further fine-tune the MTA's utilization of the virus/spam filter package.

Prior to MS 6.2, the MTA supported use of one spam/virus filter package callout (of the site's
choice). In MS 6.2, use of up to four spam/virus filter packages callouts was supported (via
spamfilter1_* through spamfilter4_* options). New in MS 6.3, up to eight spam/
virus filter package callouts are supported (via spamfilter1_* through spamfilter8_*
options).

The spam/virus filter packages get called asynchronously, being passed the original1 (not
yet processed by the MTA) message; thus multiple spam/filter packages may be working
on the same message in parallel. The spam/filter packages report their verdicts back to the
MTA on their own timelines, as they respectively finish their work. The verdicts from the

52–250 Messaging Server Reference

optin_user_carryover MTA
option

spam/virus filter packages are converted by the MTA into Sieve scriptlets, per the MTA's
spamfilterN_verdict_M, spamfilterN_action_M option pairs as well as the default
cases controlled via the spamfilterN_null_action and spamfilterN_string_action
MTA options. The MTA then evaluates these Sieve scriptlets in order from spam/filter package
1 to spam/filter package 8; this in particular means that higher numbered, "later" spam/filter
packages can see the results, such as added headers, from lower numbered, "earlier" spam/
filter packages and potentially override them, if desired, although in regards to combining/
weighting/overriding the verdicts-and-effects of multiple spam/virus filter packages, a
flexible and perhaps more straightforward approach is to convert the spam/virus filter
package verdicts into various added header lines via configuration of the above mentioned
spamfilter*_action MTA options and then have the MTA's systemfilter see, consider,
and make decisions based upon all the results (all the added header lines).

For spam/virus filter package invocation by external (external-to-the-MTA) components such
as imexpire, see also the External filtering context MTA options.

See also the access_errors MTA option which affects the error text used when a spam/virus
filter package rejects a recipient address, and the error_text_spamfilterN_error MTA
options.

1 Regarding the passing of the "original" (as received) message to the spam/virus
filter packages, a few modifications are configurable via the spamfilterN_final,
spamfilterN_includeheaders, spamfilterN_received, and
spamfilterN_returnpath MTA options.

52.42.1 Spamfilter MTA options:
optin_user_carryover (bitmask)

New in MS 6.2. The optin_user_carryover MTA option controls whether user spam/
virus filter "opt in" requests will "carry over" when doing forwarding. That is, if the original
recipient has opted-in but has then forwarded their e-mail to some other recipient, does that
other recipient get the "opt in" effect?

Bit 0 (value 1): setting this bit means that "opt in" effect is disabled for all forwarded-to
address(es). Bit 1 (value 2) controls the behavior for domain "opt in"; setting the bit disables
the "opt in" effect for the forwarded-to address(es). Bit 2 (value 4) means that user "opt in"
overrides any previous user/domain "opt in" setting. Bit 3 (value 8) controls the behavior
for aliases (typically lists) marked with the alias_optin alias option or named parameter
[OPTIN]; setting the bit disables the "opt in" effect for the forwarded-to address(es). The
default is 0. Note that this option applies globally to all spam/virus filter packages; it does not
come in numbered variants to apply only to one spam/virus filter package or another.

52.42.2 Spamfilter MTA options: spamfilterN_library
(filepath)

The spamfilterN_library MTA options specify where a spam/virus filter package library
image is located. The default is to set no library.

For instance, when using Brightmail, one of these options would be set to point to the path to
the libbmiclient.so library image, e.g.,

MTA options 52–251

spamfilterN_config_file
MTA options

msconfig> set mta.spamfilter1_library /opt/mailwall/lib/libbmiclient.so

Or for instance, when using SpamAssassin, one of these options would be set to point to the
path to the libspamass.so library image, e.g.,

msconfig> set mta.spamfilter2_library SERVERROOT/lib/libspamass.so

or if using an MTA "logical name" for the directory specification:

msconfig> set mta.spamfilter2_library IMTA_TABLE:libspamass.so

Or for instance, when using a Milter, one of these options would be set to point to the path
to the libmilter.so library image (or if making use of Oracle's per-recipient modification
Milter extension the new-in-MS-7.0.5.33 libmilters.so library image), e.g.,

msconfig> set mta.spamfilter3_library SERVERROOT/lib/libmilter.so

Or for instance, when using ICAP, one of these options would be set to point to the path to the
libicap.so library image, e.g.,

msconfig> set mta.spamfilter4_library SERVERROOT/lib/libicap.so

Or for instance, when using the file-drop message archiving plug-in, one of these options
would be set to point to the path to the libarch.so library image, e.g.,

msconfig> set mta.spamfilter5_library SERVERROOT/lib/libarch.so

52.42.3 Spamfilter MTA options:
spamfilterN_config_file (filepath)

The spamfilterN_config_file MTA options are used specify the location of the
configuration file for a spam/virus filter package. The value of this option is passed to the
spam/virus filter package for it to use to locate its configuration file; thus note that MTA
special symbolic names (e.g., IMTA_TABLE) should not be used; and whether the spam/virus
filter package prefers absolute file paths (including full directory path), or prefers a bare
filename (presumably located in some fixed/default directory) can vary with the specific spam/
virus filter package in use.

This option is specifying the location of a configuration file for the spam/virus filter plug-in
itself; the MTA passes this option value (the location of this configuration file) to the spam/
virus filter package and it is then up to the spam/virus filter package to open and read that
specified configuration file. Thus in particular the actual options available and supported
within the specified file are dependent upon which spam/virus filter package is accessing its
(own) configuration file. For details on what options may be specified within a spam/virus
filter package's own configuration file, see, respectively:

52–252 Messaging Server Reference

spamfilterN_name MTA
options

• Brightmail spamfilterN_config_file
• ClamAV spamfilterN_config_file
• ICAP spamfilterN_config_file
• Milter spamfilterN_config_file
• SpamAssassin spamfilterN_config_file
• Archive spamfilterN_config_file
• Sieve spamfilterN_config_file

52.42.4 Spamfilter MTA options: spamfilterN_name
(string)

The spamfilterN_name MTA options are new in 7.0.5.

If spamfilterN_library has been specified, but spamfilterN_name has not been
explicitly set, then the string N will be used as the name.

Note that error messages referencing a spamfilter will show this name; that is, error messages
that by default include text such as "[slot N name N]" with a name set will instead include
text of the form "[slot N name spamfilterN_name]".

52.42.5 Spamfilter MTA options:
spamfilterN_null_optin (string)

Normally, the simple presence of a spam filter opt-in attribute (the attribute named by the
ldap_optinN MTA option or the attribute named by the ldap_source_optinN MTA
option in a user entry, or the attribute named by the ldap_domain_attr_optinN MTA
option in a domain entry) turns on filtering; all the value determines is what sort of filtering
will be done. This isn't compatible with some directory maintenance and provisioning tools
that cannot easily delete an attribute, that always provide the attribute but assume some
sort of "off" or "null" value for the attribute is available that doesn't enable filtering. The
spamfilterN_null_optin MTA options allow for better interaction with such directory
tools. A spamfilterN_null_optin MTA option specifies what value a spam filter optin
attribute must have to be ignored (by spam/virus filter package N). The default value for these
options is the empty string, which means that by default a present but empty opt-in attribute is
ignored.

52.42.6 Spamfilter MTA options:
spamfilterN_action_M (URL)
spamfilterN_verdict_M (string)

Each pair of options spamfilterN_verdict_M and spamfilterN_action_M for
particular values of N and M specifies the action that the MTA should take upon receiving the
corresponding (M) verdict from the virus/spam filter package number N. N can range between
1 and 4 as of MS 6.2 and range between 1 and 8 as of MS 6.3; that is, up to four (as of MS 6.2)
or eight (as of MS 6.3) virus/spam filter packages may be in use simultaneously. M can range
between 0 and 7; that is, up to eight such pairs may be specified per virus/spam filter package.

In legacy configuration, the spamfilter_action_M and spamfilter_verdict_M
MTA options were synonyms, respectively, for spamfilter1_action_M and

MTA options 52–253

spamfilterN_*_M action and
verdict MTA options

spamfilter1_verdict_M MTA options; Unified Configuration does not support those old
aliases other than for upgrade purposes.

Each spamfilterN_verdict_M MTA option specifies a possible verdict string from
a virus/spam filter package such as Brightmail, with N corresponding to the N in
spamfilterN_library and spamfilterN_config_file; that is, N specifies the
(arbitrary) "number" identifying the particular virus/spam filter package. New in MS 6.2p1, the
verdict MTA option value may contain wildcards and glob matches; the MTA will do
pattern matching on the verdict string returned by a spam/virus filter package. See the table
of Mapping pattern wildcards for the sorts of wildcards and globs that may be used in the
verdict MTA option settings; (note that "saving" of wildcards or globs is disabled in
this context, so in particular one may use more than ten wildcards or globs in such a value).
New in MS 6.3, the length of string argument to each such option has been increased to 1024
characters (where previously the limit was 256 characters).

For each such option (verdict), a corresponding spamfilterN_action_M MTA option
should also be set, specifying what action to take when the corresponding verdict is returned.
The value of a spamfilterN_action_M MTA option should be a URL that resolves to a
Sieve filter (where the Sieve filter specifies the action to take). The URLs can use MTA URL
substitution sequences, as in Table of LDAP URL substitution sequences, though most such
substitutions have no meaning or are irrelevant in this particular context, and in a few cases
the meanings are different in this context. In particular:

Table 52.33 spamfilterN_action_M MTA option values

Substitution sequence Description
$U The verdict name string
$A The address that this verdict is associated with
$M (New in MS 6.0) The detailed verdict string (if the spam/virus

filter package provided one - not all do)

In MS 6.2, N can range between 1 and 4; that is, up to four virus/spam filter packages may be
in use simultaneously. As of MS 6.3, N can range between 1 and 8; that is, up to eight virus/
spam filter packages may be in use simultaneously. M can range between 0 and 9; that is, up to
ten such pairs may be specified per virus/spam filter package.

For instance, if the spam/virus filter package configured in the MTA as package 1 might return
as its "verdict" a string of either the form

spam...arbitrary-text...X-HEADER: SPAM...more-text...

or

spam...arbitrary-text...discard...more-text...

then one might configure MTA options as follows in legacy configuration:

SPAMFILTER1_VERDICT_1=spam*X-Header: SPAM*
SPAMFILTER1_ACTION_1=data:, addheader "X-Header" "SPAM";
SPAMFILTER1_VERDICT_2=spam*discard*
SPAMFILTER1_ACTION_2=data:, discard;

52–254 Messaging Server Reference

spamfilterN_final MTA
options

or in Unified Configuration:

msconfig> set mta.spamfilter1_verdict_1 "spam*X-Header: SPAM*"
msconfig# set mta.spamfilter1_action_1 'data:, addheader "X-Header" "SPAM";'
msconfig# set mta.spamfilter1_verdict_2 spam*discard*
msconfig# set mta.spamfilter1_action_2" "data:, discard;"
msconfig# show spamfilter1*
role.mta.spamfilter1_action_1 = data:, addheader "X-Header" "SPAM";
role.mta.spamfilter1_verdict_1 = spam*X-Header: SPAM*
role.mta.spamfilter1_verdict_2 = spam*discard*
role.mta.spamfilter1_action_2 = data:, discard;

Note The special value "data:,$M" for a spamfilterN_action_M MTA option has some
special, short-circuited handling, in that it causes the verdict to be used literally as a Sieve
scriptlet itself, omitting the usual URL expansion processing. For "short" verdicts, this is a
difference that makes no difference, but it avoids the length limitations imposed during URL
expansion that could potentially become relevant for longer verdicts---such as those that milter
likes to return. Note that other uses of $M in a setting still result in substitution of the original
verdict string but with normal URL expansion (thus subject to length limits); it is only the
special, literal setting "data:,$M" that gets the special, short-circuited handling.

Note: Brightmail has a concept of a "default" verdict, intended to mean merely "deliver
normally". Brightmail is typically configured so that a Brightmail "clear of any virus or spam"
result is set to a Brightmail "destination" (a "verdict" in the MTA's terminology) of "inbox", with
"inbox" also being set to be the "default destination". In older Brightmail configuration, this
Brightmail configuration of "default destination" would be something like:

blSWCClientDestinationdefault: inbox

The MTA has support for Brightmail's default destination concept, implemented by the
MTA checking whether a verdict that it has received from Brightmail is Brightmail's default
destination and if so, the MTA forcibly performs a plain "keep" Sieve action (forces delivery
to the Inbox) and does not apply any spamfilterN_verdict/spamfilterN_action
processing. Thus to achieve some other result for Brightmail clear messages, that is, to get
spamfilterN_verdict/spamfilterN_action processing to occur for "clear" messages
(such as perhaps, adding a header line saying that the message was cleared by Brightmail as
well as delivering to the Inbox), Brightmail must be configured differently: either configure
Brightmail so that "inbox" is not Brightmail's "default destination", or configure Brightmail to
return some destination (some verdict, in MTA terminology) of other than "inbox". Either way,
the MTA must see a non-default (in Brightmail's opinion) destination/verdict in order for it to
apply "normal" spamfilterN_verdict/spamfilterN_action processing.

In addition to the explicitly-specified-verdict/corresponding-action pairs discussed above,
there are also two additional types of MTA option that specify the behavior of the MTA
when other verdicts are returned: the spamfilterN_null_action options controlling
behavior when a so-called "null" verdict is returned, and the spamfilterN_string_action
options controlling behavior when an unrecognized verdict (a verdict without a matching
spamfilterNverdict_M value) is returned.

52.42.7 Spamfilter MTA options: spamfilterN_final
(bitmask)

MTA options 52–255

spamfilterN_includeheaders
MTA options

Some filtering libraries have the ability to perform a set of actions based on recipient
addresses. What sort of recipient address is passed to the filtering library depends on the
setting of the respective spamfilterN_final (N=1-8) MTA option. The default value of 0
results in a so-called intermediate address being passed to the filtering library. This address is
suitable for use in delivery status notifications and for directory lookups of local users. If bit
0 (value 1) of spamfilterN_final is set, however, the final form of the recipient address
is passed. This form may not be suitable for presentation, but is more appropriate for use in
subsequent forwarding operations. The spamfilterN_final MTA options are only available
in MS 6.0 and later; iMS 5.2 behaves as if the option had the default value of 0.

In MS 6.2 and later, bit 1 (value 2) of spamfilterN_final controls whether or not source
routes are stripped from the address that's passed to the filtering interface. Setting the bit
enables source route stripping.

In 7.3-11.01 and later bit 2 (value 4) of spamfilterN_final, if set, causes the "initial"
address to be passed to the spam filter. This is the address that was initially passed to the alias
expansion process. Bit 1 can be used to strip source routes from such addresses if desired.

52.42.8 Spamfilter MTA options:
spamfilterN_includeheaders (0 or 1)

(New in 7.0.5) Each spamfilterN_includeheaders MTA option specifies whether or
not any header lines added to a message due to a $A flag in either a FROM_ACCESS mapping
table or a recipient address *_ACCESS mapping table will be passed over to the respective
Nth spam/virus filter package as part of the regular message header. A value of 1 causes such
header lines to be passed over; a value of 0, the default, disables this capability.

52.42.9 Spamfilter MTA options:
spamfilterN_null_action (URL)

The spamfilterN_null_action MTA options specify, respectively, the Sieve action to take
when a "null" verdict is returned by the Nth spam/virus filter package. The default value for
these options is:

data:,discard;

meaning that a null verdict is interpreted as a request to discard the message.

52.42.10 Spamfilter MTA options:
spamfilterN_optional (-2, -1, 0, 1, 2, 3, 4)

The spamfilterN_optional MTA options control the MTA's reaction when spam/virus
filter package N does not respond.

By default (spamfilter*_optional=0), when use of a spam/virus filter package such as
Brightmail is configured, a failure to initially connect to the spam/virus filter package, or a
failure to get a response from the spam/virus filter package once the filter package has begun
processing the envelope addresses or the message itself, will normally result in a temporary

52–256 Messaging Server Reference

spamfilterN_received MTA
options

error of "4.7.1 filtering/scanning error". (The exact SMTP errors are "452 4.3.0
filtering/scanning error" if the package cannot even be contacted initially, "450
4.7.1 filtering/scanning error" if the package error occurs attempting to process the
MAIL FROM: (envelope From:) argument; "452 4.7.1 filtering/scanning error"
if the package error occurs attempting to process a RCPT TO: (envelope To:) argument, or
"451 4.7.1 filtering/scanning error" if the package error occurs attempting to
process the DATA (the message itself). Alternate text in this error message may be configured
via the correspondingly numbered error_text_spamfilterN_error MTA options.)
Note that for an incoming SMTP message, such a temporary error means that the message is
(temporarily) rejected with that error, while for a message that is already on the system and
being processed by a reprocess/process/conversion sort of channel, such a temporary error
means that the message is reenqueued to the reprocess channel (for the reprocess channel
to subsequently reattempt the virus/spam filter package processing).

But when spamfilter*_optional=1 is set, the MTA's message processing will continue
even if the spam/virus filter package cannot be accessed or does not complete its processing;
that is, messages will be passed through without spam/virus filter package scanning
(omitting spam/virus filter package scanning) if the spam/virus filter package scanning is not
functioning.

New in MS 6.2 is support for values -2 and 2. Setting a value of 2 is similar to the effect of 1,
except that a syslog notice will be generated in case of spam/virus filter package errors. A
value of -1 is (currently) equivalent in effect to a value of 0. A value of -2 is similar to a value
of 0, except that a syslog notice will be generated in case of spam/virus filter package errors.
(See the sndopr_priority MTA option for control of the facility and priority of such syslog
notices.)

New in MS 6.3 is support for values 3 and 4. A value of 3 tells the MTA that in case of a virus/
spam filter package failure during attempted processing of an incoming message, to accept
the message and queue it to the reprocess channel (for subsequent reattempted processing
through the virus/spam filter package by the reprocess channel). A value of 4 does the same
thing, but also logs the virus/spam filter temporary failure to syslog.

For most site's purposes, either a setting of -2 (meaning to temporarily reject the message,
and generate a syslog notice logging the trouble occurrence), or (new in MS 6.3) a setting of 4
(meaning to defer the message to the reprocess channel, and generate a syslog notice logging
the trouble occurrence) will be desirable.

52.42.11 Spamfilter MTA options:
spamfilterN_received (0-7)

Some spam/virus filter packages operate best if provided with the "current" Received: header
line -- the sort that the MTA will be generating for actual prefixing of the message, but
subsequent to the spam/virus filter package scanning. A spamfilterN_received MTA
option controls whether the MTA generates a most recent Received: header line to pass to the
Nth spam/virus filter package. This is a bit-encoded value, but any nonzero value specifies
that the MTA does pass a pseudo-Received: header line to the spam/virus filter package. Note
that this pseudo-Received: header line is not necessarily exactly what the MTA will truly end
up inserting, but it does contain the same routing information (in particular client source
IP address) which tends to be the item of especial interest to spam/virus filter packages.
SpamAssassin in particular tends to operate better when provided with such a Received:
header line. Bit 1 (value 0) in the option is used to cause the header to be generated without
any additional options. New in Messaging Server 7.0.5 is support for the bit 1 (value 2), which

MTA options 52–257

spamfilterN_returnpath
MTA options

means to pass the spam/virus filter package a synthesized Received: header line that includes
an additional clause:

(envelope-sender mail-from-address)

Some SpamAssassin configurations use such a clause in the Received: header line as the source
of MAIL FROM addresses instead of using the standards-compliant Return-path: field.

As of the 8.0.1 release, bit 2 (value 4) is used to specify that the header not be generated during
reprocessing operations. (This is useful since the enqueue to the reprocess channel already
added a Received: header field.)

52.42.12 Spamfilter MTA options:
spamfilterN_returnpath (0 or 1)

The spamfilterN_returnpath (N=1-8) MTA options control whether or not a synthesized
Return-path: field is prepended to the message passed to the associated spam filter. (Return-
path: fields are normally only added during final delivery; however, some spam filters may
only be able to process envelope From address information if it is provided in a Return-path:
field.) A nonzero value causes the field to be inserted. The default value is 0.

These options are new in 7.0-3.01 and aren't available in previous versions, which never insert
the field.

52.42.13 Spamfilter MTA options:
spamfilterN_string_action (URL)

The spamfilterN_string_action MTA options specify the default Sieve filter actions
to apply whenever the correspondingly numbered spam/virus filter plugin returns a verdict
string that does not have an explicit corresponding action set. That is, specify the Sieve filter
actions to apply whenever a verdict string is returned by plugin N that does not have a
spamfilterN_verdict_M match for any M.

The default for the spamfilterN_string_action MTA options is:

data:, require "fileinto"; fileinto "$U";

Prior to MS 6.2p8, the (unexpanded) string specified as the value for such an option was
limited to 256 characters (with truncation occurring if it was longer); as of MS 6.2p8, the limit
is 1024 characters. The length of the string after any expansions are performed has been 1024
characters since at least MS 6.1.

When using a Milter, the spamfilterN_string_action option must be set to:

data:,$M

So for instance:

52–258 Messaging Server Reference

SPF MTA options

msconfig> show spamfilter3_*
role.mta.spamfilter3_config_file = /opt/sun/comms/messaging64/config/miltertest.dat
role.mta.spamfilter3_library = /opt/sun/comms/messaging64/lib/libmilter.so
msconfig> set spamfilter3_string_action "data:,$M"

This setting is using the $M substitution (see the discussion of such substitutions in the
discussion of the spamfilterN_action_M MTA options) which means to use the detailed
verdict string provided by the milter.

52.43 SPF MTA options
A number of MTA options exist affecting SPF lookups. Note that SPF lookups are enabled via
channel options such as spfhelo; the MTA options affect the interpretation of SPF results and
errors. See also the SPF_LOCAL mapping table, which may be used to avoid performing actual
DNS lookups for selected (typically local) domains. See also the SRS MTA options, as many
sites using SPF will also want to enable SRS address encoding.

Sender Policy Framework, or SPF, formerly referred to as Sender Permitted From, is a
mechanism that attempts to prevent email forgery. It works by looking up special TXT records
associated with the domain in the MAIL FROM (envelope from) address. This operation
(which can actually involve several DNS lookups) eventually produces a list of IP addresses
that are authorized to send mail from the domain. The IP address of the SMTP client is
checked against this list and if it isn't found the message may be considered to be fraudulent.
MTA support for SPF was implemented in MS 6.3-0.15.

See also the error_text_spf_* MTA options which configure the error text issued in cases
of SPF errors.

52.43.1 SPF MTA options: spf_smtp_status_fail (2, 4,
or 5)

The spf_smtp_status_fail MTA option controls whether SPF Fail results are ignored
(considered as successes), interpreted as temporary failures, or (the default) interpreted as
permanent failures, with values of 2, 4, or (the default) 5, respectively, controlling this. (To
emphasize, this option is controlling the interpretation of SPF lookups that succeeded in
finding a relevant SPF record in the DNS and where the SPF record specified an explicit
Fail for the exact domain name being checked; for interpretation of SPF lookups that
succeed in finding an explicit Fail all SPF record applying to subdomains including the
domain name being checked, see instead the spf_smtp_status_fail_all MTA option;
and for interpretation of DNS-level errors in the SPF lookup attempt, see instead the
spf_smtp_status_permerror MTA option.)

52.43.2 SPF MTA options: spf_smtp_status_fail_all
(2, 4, or 5)

The spf_smtp_status_fail_all MTA option controls whether SPF Fail "all" results
are ignored (considered as successes), interpreted as temporary failures, or (the default)
interpreted as permanent failures, with values of 2, 4, or (the default) 5, respectively,
controlling this. (To emphasize, this option is controlling the interpretation of SPF lookups
that succeeded in finding a relevant SPF record in the DNS and where the SPF record
specified an explicit Fail for all subdomains of some domain name where the domain name

MTA options 52–259

spf_smtp_status_permerror
MTA option

being checked matched; for interpretation of SPF lookups that find a relevant SPF record
for the exact domain name being checked, see instead the spf_smtp_status_fail MTA
option; and for interpretation of DNS-level errors in the SPF lookup attempt, see instead the
spf_smtp_status_permerror MTA option.)

52.43.3 SPF MTA options:
spf_smtp_status_permerror (2, 4, or 5)

The spf_smtp_status_permerror MTA option controls whether DNS permanent errors
attempting SPF lookups are ignored (considered as successes), interpreted as temporary
failures, or (the default) interpreted as permanent failures, with values of 2, 4, or (the default)
5, respectively, controlling this. (To emphasize, this option is controlling the interpretation
of DNS level errors in the attempted SPF lookups, not the interpretation of "failed to
verify" results from an SPF lookup; for that, instead see the spf_smtp_status_fail and
spf_smtp_status_fail_all MTA options.) The default value is 5, meaning that such DNS
level errors are considered to correspond to permanent SPF failures and result in rejection of
the message.

The point in the SMTP dialogue at which the SPF lookup is attempted, hence at which the DNS
error is encountered, will influence what error is returned; see the spfhelo, spfmailfrom,
and spfrcptto channel options. So with spfhelo set on an incoming channel, if the
SPF lookup of the domain specified on the client's HELO or EHLO command encounters a
permanent DNS error, then with spf_smtp_status_permerror=5 set, the SMTP server
would issue a permanent rejection:

500 5.5.2 Permanent error in SPF verification of HELO domain

whereas with spf_smtp_status_permerror=4 set, the SMTP server would instead issue a
temporary rejection:

451 4.4.3 Permanent error in SPF verification of HELO domain

At the MAIL FROM: and RCPT TO: stages of the SMTP dialogue, the error
text also is configurable via the error_text_spf_permerror_5 and
error_text_spf_permerror_4 MTA options. So with spfmailfrom or spfrcptto set
on an incoming channel, if the SPF lookup of the domain from the MAIL FROM: command
encounters a permanent DNS error, then with spf_smtp_status_permerror=5 set the
SMTP server would issue a permanent rejection (default text):

550 5.5.0 permanent error in SPF verification of MAIL FROM domain (domain-name)

or using whatever text is configured via the error_text_spf_permerror_5 MTA option:

550 5.5.0 error_text_spf_permerror_5

whereas with spf_smtp_status_permerror=4 set, such an error would result in merely a
temporary rejection at the MAIL FROM: stage (spfmailfrom) such as (default text):

52–260 Messaging Server Reference

spf_smtp_status_softfail
MTA option

450 4.5.1 permanent error in SPF verification of MAIL FROM domain (domain-name)

or at the RCPT TO: stage (spfrcptto) such as:

452 4.5.1 permanent error in SPF verification of MAIL FROM domain (domain-name)

or using whatever error text is explicitly configured via the error_text_spf_permerror_4
MTA option, hence at the MAIL FROM: stage:

450 4.5.1 error_text_spf_permerror_4

or at the RCPT TO: stage:

452 4.5.1 error_text_spf_permerror_4

52.43.4 SPF MTA options: spf_smtp_status_softfail
(2, 4, or 5)

The spf_smtp_status_softfail MTA option controls whether SPF SoftFail results
are ignored (considered as successes), interpreted as temporary failures, or interpreted
as permanent failures, with values of 2 (the default), 4, or 5, respectively, controlling
this. (To emphasize, this option is controlling the interpretation of SPF lookups that
succeeded in finding a relevant SPF record in the DNS and where the SPF record specified
an explicit SoftFail for the exact domain name being checked. For the case of a SoftFail
"all" SPF record that matched the domain name in a more wildcarded way, see instead the
spf_smtp_status_softfail_all MTA option. Or for the interpretation of DNS-level
temporary errors in the SPF lookup attempt, see instead the spf_smtp_status_temperror
MTA option.)

52.43.5 SPF MTA options:
spf_smtp_status_softfail_all (2, 4, or 5)

The spf_smtp_status_softfail_all MTA option controls whether SPF SoftFail "all"
results are ignored (considered as successes), interpreted as temporary failures, or interpreted
as permanent failures, with values of 2 (the default), 4, or 5, respectively, controlling this.
(To emphasize, this option is controlling the interpretation of SPF lookups that succeeded
in finding a relevant SPF record in the DNS and where the SPF record specified an explicit
SoftFail all subdomains of some domain name where the domain name being checked
matched; for interpretation of SPF lookups that find a relevant SPF record for the exact domain
name being checked, see instead the spf_smtp_status_softfail MTA option. And
for interpretation of DNS-level temporary errors in the SPF lookup attempt, see instead the
spf_smtp_status_temperror MTA option.)

52.43.6 SPF MTA options:
spf_smtp_status_temperror (2, 4, or 5)

The spf_smtp_status_temperror MTA option controls whether DNS temporary errors
attempting SPF lookups are ignored (considered as successes), interpreted as temporary

MTA options 52–261

spf_smtp_status_temperror
MTA option

failures (the default), or interpreted as permanent failures, with values of 2, 4 (the default), or
5, respectively, controlling this. (To emphasize, this option is controlling the interpretation of
DNS level temporary errors during the attempted SPF lookups, not the interpretation of "soft
failure" results from an SPF lookup; for that, instead see the spf_smtp_status_softfail
and spf_smtp_status_softfail_all MTA options.)

The default value is 4, meaning that such DNS level temporary errors are considered to
correspond to temporary SPF failures and result in temporary rejections (deferrals) of the
message. The point in the SMTP dialogue at which the SPF lookup is attempted, hence at
which the DNS error is encountered, will influence what error is returned. See the spfhelo,
spfmailfrom, and spfrcptto channel options. So with spfhelo set on an incoming
channel, if the SPF lookup of the domain specified on the client's HELO or EHLO command
encounters a temporary DNS error, then with spf_smtp_status_temperror=5 set the
SMTP server would issue a permanent rejection:

500 5.5.2 Temporary error in SPF verification of HELO domain

whereas with spf_smtp_status_temperror=4 set (the default), the SMTP server would
instead issue a temporary rejection:

451 4.4.3 Temporary error in SPF verification of HELO domain

At the MAIL FROM: and RCPT TO: stages of the SMTP dialogue, the error
text also is configurable via the error_text_spf_temperror_5 and
error_text_spf_temperror_4 MTA options. So with spfmailfrom or spfrcptto
set on an incoming channel, if the SPF lookup of the domain in the MAIL FROM: command
encounters a temporary DNS error, then with spf_smtp_status_temperror=5 set the
SMTP server would issue a permanent rejection (default text):

550 5.5.0 temporary error in SPF verification of MAIL FROM domain (domain)

or using whatever text is configured via the error_text_spf_temperror_5 MTA option:

550 5.5.0 error_text_spf_temperror_5

whereas with spf_smtp_status_temperror=4 set (that is, the default) such an error
would result in merely a temporary rejection at the MAIL FROM: stage (spfmailfrom) such
as (default text):

450 4.5.1 temporary error in SPF verification of MAIL FROM domain (domain)

or at the RCPT TO: stage (spfrcptto) such as:

452 4.5.1 temporary error in SPF verification of MAIL FROM domain (domain)

or using whatever error text is explicitly configured via the error_text_spf_temperror_4
MTA option, hence at the MAIL FROM: stage:

52–262 Messaging Server Reference

spf_max_dns_queries MTA
option

450 4.5.1 error_text_spf_temperror_4

or at the RCPT TO: stage:

452 4.5.1 error_text_spf_temperror_4

52.43.7 SPF MTA options: spf_max_dns_queries
(integer)

The spf_max_dns_queries MTA option specifies the maximum number of DNS queries per
SPF check. The default is 10, which accords with the requirement in Section 10.1 of RFC 4408
(SPF). (Setting this option to a value above 10 thus violates the RFC 4408 requirement.)

52.43.8 SPF MTA options: spf_max_recursion (integer)
The spf_max_recursion MTA option's default is 10.

52.43.9 SPF MTA options: spf_max_time (integer)
The spf_max_time MTA option specifies the maximum amount of time, in seconds,
permitted when performing an SPF check. If an SPF check does not complete in this amount
of time, an SPF TempError will be returned. The default is 45. (RFC 4408 (SPF) in Section 10.1
recommends allowing at least 20 seconds.)

52.44 SRS MTA options
The MTA has a number of options relating to SRS (Sender Rewriting Scheme). SRS is a
mechanism that can solve certain forwarding problems inherent in SPF (Sender Policy
Framework, formerly referred to as Sender Permitted From). For a discussion of SPF itself, see
SPF MTA options and the spf* channel options.

SPF presents serious problems for sites that provide mail forwarding services such as
universities (for their alumni) or professional organizations (for their members). A forwarder
ends up sending out mail from essentially arbitrary senders, which of course can include
senders who have implemented SPF policies and which of course don't list the IP addresses of
the forwarding system or systems as being permitted to use addresses from their domain.

The Sender Rewriting Scheme, or SRS, provides a solution to this problem. SRS works by
encapsulating the original sender's address inside a new address using the forwarder's own
domain. Only the forwarder's own domain is exposed for purposes of SPF checks. When the
address is used, it routes the mail (usually a notification) to the forwarder, which removes the
address encapsulation and sends the message on to the real destination.

Of course address encapsulation isn't exactly new. Source routes were defined in RFC 822
and provide exactly this sort of functionality, as does percent hack routing and bang paths.
However, these mechanisms are all problematic on today's Internet since allowing their use
effectively turns one's system into an open relay.

SRS deals with this problem by adding a keyed hash and a timestamp to the encapsulation
format. The address is only valid for some period of time, after which it cannot be used. The
hash prevents modification of either the timestamp or the encapsulated address.

MTA options 52–263

https://tools.ietf.org/html/rfc4408
https://tools.ietf.org/html/rfc4408
https://tools.ietf.org/html/rfc4408
https://tools.ietf.org/html/rfc4408
https://tools.ietf.org/html/rfc822

SRS MTA options

SRS also provides a mechanism for handling multi-hop forwarding without undue growth in
address length. For this to work certain aspects of SRS address formatting have to be done in
the same way across all systems implementing SRS.

SRS support is new in MS 6.3P1. SRS address decoding is enabled by setting the srs_domain
and srs_secrets MTA options; setting the srs_maxage MTA option is optional as it has a
reasonable default value. See the discussions of the specific options for more details.

Note: Every system that handles email for the selected SRS domain must be configured for SRS
processing and must have all three SRS options set identically.

Enabling SRS address encoding must be more precisely configured. In particular, it should
only be done to envelope From addresses that you know are associated with forwarding
activity. In addition to requiring that the SRS domain be configured via srs_domain and that
the decoding keys be set via the srs_secrets MTA option already mentioned, additional
configuration is required via the *srs channel options, controlling exactly which addresses,
on exactly which messages, have SRS encoding applied.

Prior to the 8.0 release, note that SRS decoding of addresses, as for notification messages
routing back through the SRS MTA, could run afoul of the MTA's normal "relay blocking"
configuration. In particular, for a "typical" configuration where all three *srs channel options
are set on the tcp_local channel, this would be an issue. See SRS and Relay Blocking for a
work around approach.

The basic steps to set up SRS are as follows:

1. The srs_domain MTA option must be set to the domain to use in SRS addresses. Email
sent to this domain must always be routed to a system capable SRS operations for the
domain. SRS processing is handled as an overlay on top of normal address processing so
nothing pervents a site from using their primary domain as the SRS domain.

2. The srs_secrets MTA option must be set to contain at least one SRS secret.

3. The srs_maxage can optionally be set to the number of days before an generated SRS
address times out and becomes unusable. The default if the option isn't specified is 14 days.

4. Configured SRS usage on the appropriate mail flows. (See below.)

Note that every system that handles email for the selected SRS domain must be configured for
SRS processing and must have all three SRS options set identically.

Setting the three options described above is sufficient to enable SRS address decoding.
Encoding is another matter - it should only be done to envelope from addresses yoy know
are associated with forwarding activity. SRS encoding is controlled by six channel keywords:
addresssrs, noaddresssrs, destinationsrs, nodestinationsrs, sourcesrs, and
nosourcesrs.

Three conditions have to be met for SRS encoding to occur:

1. The current source channel has to be marked with sourcesrs. (nosourcesrs is the
default).

2. The current destination channel has to be marked with destinationsrs
(nodestinationsrs is the default).

3. The current address, when rewritten, has to match a channel marked addresssrs
(noaddresssrs is the default).

52–264 Messaging Server Reference

srs_domain,
srs_hash_algorithm,

srs_maxage, srs_secrets
MTA Options

Encoding only occurs when all of these conditions are true. About the simplest setup is a pure
forwarding one where all messages enter and exit on the tcp_local channel and all nonlocal
addresses need SRS handling. In such a setup the tcp_local would be marked with the three
keywords sourcesrs, destinationsrs, and addresssrs.

See also the error_text_srs_* MTA options, which control the exact error text issued when
SRS errors occur.

52.44.1 Sender Rewriting Scheme (SRS) controls
(srs_domain, srs_hash_algorithmsrs_maxage,
srs_secrets)

52.44.1.1 srs_domain (domain-name)

(New in MS 6.3P1.) The srs_domain MTA option must be set to the domain to use in SRS
addresses. Email sent to this domain must always be routed to a system capable of SRS
operations for the domain. SRS processing is handled as an overlay on top of normal address
processing so nothing prevents a site from using their primary domain as the SRS domain.

52.44.1.2 srs_maxage (integer)

(New in MS 6.3P1.) The srs_maxage MTA option optionally specifies the number of days
before an SRS address times out. The default if the option isn't specified is 14 days.

52.44.1.3 srs_secrets (comma-separated list of strings)

(New in MS 6.3P1.) The srs_secrets MTA option takes as argument a comma separated
list of secret keys used to encode and decode SRS addresses. The first key on the list is used
unconditionally for encoding. For decoding, each key is tried in order to generate a different
hash value. The decoding operation proceeds if any of the hashes match. The ability to use
multiple keys makes it possible to change secrets without service disruption: Add a second
key, wait for all previously issued addresses to time out, and then remove the first key.

52.44.1.4 srs_hash_algorithm (hash-algorithm)

New in MS 8.1.0.3. The srs_hash_algorithm MTA option controls what hash algorithm
the MTA uses to generate the hash included in SRS addresses. The value should be a hash
algorithm supported by the MTA, one of MD2, MD4, MD5, SHA1, SHA256, SHA512, MD128,
or MD160. SHA1 is the default. Note that the setting of this option must be the same across a
deployment for successful coordination of SRS addresses.

52.44.2 SRS MTA options: token_char (integer position
of ASCII character)

RESTRICTED.

The token_char MTA option controls what character represents a token in the local-part
of addresses. This is relevant for SRS address handling. The value of this option is an integer
corresponding to the ASCII character value in decimal. The default is 61, corresponding to the
equal sign, =.

MTA options 52–265

Syslog MTA options

52.45 Syslog MTA options
The MTA has a number of options relating to generating syslog notices when certain events
occur---forms of event notices. The MTA can also optionally be configured to direct its normal
transaction logging to syslog. For options relating specifically to the format of transaction
logging, see Transaction logging MTA options.

52.45.1 Syslog MTA options: held_sndopr (0 or 1)
The held_sndopr MTA option controls the production of syslog messages (on UNIX) when
a message is forced into a held state due to certain suspicion thresholds. (Note that there are
other potential causes of messages becoming .HELD, which are not covered by held_sndopr
-- cases corresponding to explicit MTA administrator action such as execution of a imsimta
qclean command, or cases where the held state can be logged as part of normal logging,
such as execution of a Sieve filter hold action, either in an explicit Sieve filter or as a Sieve
scriptlet executed due to a spam/virus filter package verdict, or application of an address-
based *_ACCESS mapping table $H flag where syslog message generation can be performed
via $< flag, or routing to the hold channel due to a user status or domain status of hold.
held_sndopr is meant to warn of cases that might otherwise be easier to miss noticing,
especially for unanticipated incoming problem messages.)

Suspicious cases where held_sendopr causes a syslog message include:

• A message may be forced into a held state because it has too many Received: header lines
(see the various max_*received_lines MTA options for additional information):

HELDMSG, Header count exceeded; message has been marked .HELD automatically.

• Or a message may be forced into a held state because it has too many recipients (see the
holdlimit channel option for more details):

HELDMSG, Max recipient count exceeded; message has been marked .HELD automatically.

• Or a message may be forced into a held state because it has too many MIME parts or levels
(see the max_mime_levels and max_mime_parts MTA options):

HELDMSG, Max MIME part/level limit exceeded; message has been marked .HELD automatically.

A value of 1 for held_sndopr instructs the MTA to issue such messages when such cases
occur. A value of 0 (the default) turns off these messages. The syslog messages will be issued
using the configured sndopr_priority facility and severity.

52.45.2 Syslog MTA options: log_connections_syslog
(integer)

The log_connections_syslog MTA option causes sending MTA connection transaction
log file entries to syslog (UNIX). 0 is the default and means no syslog logging is performed.
Setting the option to a non-zero value causes syslog logging. The absolute value sets the

52–266 Messaging Server Reference

log_messages_syslog MTA
option

syslog facility/severity mask. Negative values disable the generation of the regular MTA
connection transaction log file entries (which would otherwise be written to mail.log* or to
connection.log*, if separate_connection_log is enabled).

Note that in MS 6.2 and earlier, the length of the MTA output line sent to syslog is limited to
256 characters. For MS 6.3 and later, the limit is 4096 characters.

The log_messages_syslog MTA option operates analogously for MTA message transaction
log entries.

52.45.3 Syslog MTA options: log_messages_syslog
(integer)

The log_messages_syslog MTA option enables sending MTA message transaction log file
entries to syslog (UNIX). 0 is the default and means no syslog logging is performed; setting
the option to a non-zero value causes MTA message transaction log file entries to be written to
syslog. The absolute value of any non-zero value sets the syslog priority and facility mask. The
relation is as follows:

value = facility * 8 + priority

The syslog priority levels and their normal meanings are:

Table 52.34 syslog priority values and their meanings

Value Severity syslog Keyword Description Action
0 Emergency emergency Urgent action

required
System is unusable.

1 Alert alert Immediate action
required

Should be corrected
immediately, therefore notify
staff who can fix the problem.

2 Critical crit Critical conditions Should be corrected
immediately, but indicates
failure in a secondary system.

3 Error err (error) Error conditions Non-urgent failures,
these should be relayed to
developers or admins; each
item must be resolved within
a given time.

4 Warning warning (warn) Warning conditions Warning messages, not an
error, but indication that an
error will occur if action is not
taken.

5 Notice notice Normal but
significant
condition

Events that are unusual but
not error conditions - might
be summarized in an email
to developers or admins to
spot potential problems - no
immediate action required.

MTA options 52–267

log_messages_syslog MTA
option

6 Informational info Informational
messages

Normal operational messages
- may be harvested for
reporting, measuring
throughput, etc. - no action
required.

7 Debug debug Debug-level
messages

Info useful to developers for
debugging the application,
not useful during operations.

The predefined syslog facility codes include:

Table 52.35 syslog facility codes and their meanings

Value Facility
0 kernel messages
1 user-level messages
2 mail system
3 system daemons
4 security/authorization messages
5 messages generated internally by syslogd
6 line printer subsystem
7 network news subsystem
8 UUCP subsystem
9 clock daemon
10 security/authorization messages
11 FTP daemon
12 NTP subsystem
13 log audit
14 log alert
15 clock daemon
16 local use 0 (local0)
17 local use 1 (local1)
18 local use 2 (local2)
19 local use 3 (local3)
20 local use 4 (local4)
21 local use 5 (local5)
22 local use 6 (local6)
23 local use 7 (local7)

For example, if informational level logging is desired under the mail facility, the value would
be 2*8+6=22.

See RFC 5424 (The Syslog Protocol) for additional information about syslog semantics and the
syslog protocol.

52–268 Messaging Server Reference

https://tools.ietf.org/html/rfc5424

log_sndopr MTA option

Negative values will disable the generation of the regular mail.log entries; positive values
mean that the syslog entries are generated in addition to the regular mail.log* entries.

The log_connections_syslog MTA option operates analogously for MTA connection
transaction log entries.

Prior to Messaging Server 7.5, positive values of log_messages_syslog would not
affect header logging (would not cause the entries due to enabling log_header to be
copied to syslog). (The log_header entries, if enabled, would only be sent to syslog
if the generation of regular mail.log* entries were disabled via negative values of
log_messages_syslog.) As of Messaging Server 7.0.5, enabling log_messages_syslog
normally also applies to any entries due to setting log_header. But setting bit 16 (value
65536) of log_messages_syslog will disable the sending of the header entries to syslog,
thus restoring the older behavior (of not including the header lines) if desired. That is, the
lowest 16 bits of log_messages_syslog specify the priority and facility mask as always,
while bit 16 (value 65536) will, if set, suppress header logging to syslog.

Note that in MS 6.2 and earlier, the length of the MTA output line sent to syslog was limited to
256 characters. For MS 6.3 and later, the limit is 4096 characters.

Note that in MS 6.2, but not in MS 6.3 and later, it was necessary to have the configututil
parameter logfile.imta.syslogfacility (corresponding to the Unified
Configuration mta.logfile.syslogfacility option) set (e.g., to mail) to have the
log_messages_syslog MTA option take effect.

52.45.4 Syslog MTA options: log_sndopr (bitmask)
The log_sndopr MTA option controls the production of syslog messages (UNIX) by the MTA
message transaction and connection logging facility. If this feature is enabled by specifying a
value of 1, the logging facility will produce a message if it encounters any difficulty writing
to its log file. A value of 0 (the default) turns off these messages. New in MS 8.0, the option
takes a bit-encoded value, with bit 0 (value 1) and bit 1 (value 2) having meaning: bit 0 enables
syslog notices regarding trouble writing transaction log entries; bit 1 enables syslog notices
regarding trouble creating or updating channel counters.

The sndopr_priority option controls the syslog level (facility and severity) of the syslog
messages generated.

52.45.5 Syslog MTA options: log_syslog_prefix
(bitmask)

New in MS 8.0.2.3. The log_syslog_prefix controls what prefix, if any, is attached to
syslog messages generated by the log_connections_syslog and log_messages_syslog
MTA options. The default is not to apply a prefix. Note that this behavior differs from previous
releases, where the prefix was hard-coded to be "IMTA-W-".

52.45.6 Syslog MTA options: sndopr_prefix (string)
New in MS 8.0.2.3. The sndopr_prefix MTA option sets the prefix attached to MTA
messages send to syslog. The default prefix is "IMTA-W-".

52.45.7 Syslog MTA options: sndopr_priority (0-127)

MTA options 52–269

spamfilterN_optional MTA
options

The sndopr_priority MTA option sets the syslog level (facility and severity) of syslog
messages generated by the MTA under certain circumstances, including most cases where the
MTA would generate a syslog message for an "event notice" type purpose. In particular, MTA
syslog messages affected by sndopr_priority include:

• problems creating or deleting message files

• problems creating temporary files while buffering incoming SMTP messages

• (new in 8.0) MESSAGE-SAVE-COPY mapping table problems renaming or copying a message
file

• an empty or otherwise invalid format message file is found in the MTA disk queue area

• problems updating MTA message or association counters

• problems executing the imsimta reload utility

• if log_sndopr is set, problems writing to the MTA transaction log files

• if held_sndopr is set, certain cases of sidelining of messages as .HELD files

• if spamfilterN_optional if set to -2 or 2, and trouble occurs getting a result back from
the Nth spam/virus filter package

• notices configured in the LOG_ACTION mapping table or various access mapping tables that
happen to support generating syslog notices via the $< and $> flags

The default is 5 (that is, LOG_NOTICE on UNIX). (If the facility has not been explicitly
specified in a sndopr_priority setting, as is the case with a value of 5, then the system's
default facility is used: usually but not always LOG_USER.)

Note that sndopr_priority does not affect the optional copying of MTA transaction
entries to syslog, which would more typically be serving a normal logging purpose rather
than an "event notice" type warning purpose; the syslog level of MTA transaction entries
are instead separately controlled by the exact values of log_messages_syslog or
log_connections_syslog, as relevant.

52.45.8 Spamfilter MTA options:
spamfilterN_optional (-2, -1, 0, 1, 2, 3, 4)

The spamfilterN_optional MTA options control the MTA's reaction when spam/virus
filter package N does not respond.

By default (spamfilter*_optional=0), when use of a spam/virus filter package such as
Brightmail is configured, a failure to initially connect to the spam/virus filter package, or a
failure to get a response from the spam/virus filter package once the filter package has begun
processing the envelope addresses or the message itself, will normally result in a temporary
error of "4.7.1 filtering/scanning error". (The exact SMTP errors are "452 4.3.0
filtering/scanning error" if the package cannot even be contacted initially, "450
4.7.1 filtering/scanning error" if the package error occurs attempting to process the
MAIL FROM: (envelope From:) argument; "452 4.7.1 filtering/scanning error"

52–270 Messaging Server Reference

Transaction logging MTA options

if the package error occurs attempting to process a RCPT TO: (envelope To:) argument, or
"451 4.7.1 filtering/scanning error" if the package error occurs attempting to
process the DATA (the message itself). Alternate text in this error message may be configured
via the correspondingly numbered error_text_spamfilterN_error MTA options.)
Note that for an incoming SMTP message, such a temporary error means that the message is
(temporarily) rejected with that error, while for a message that is already on the system and
being processed by a reprocess/process/conversion sort of channel, such a temporary error
means that the message is reenqueued to the reprocess channel (for the reprocess channel
to subsequently reattempt the virus/spam filter package processing).

But when spamfilter*_optional=1 is set, the MTA's message processing will continue
even if the spam/virus filter package cannot be accessed or does not complete its processing;
that is, messages will be passed through without spam/virus filter package scanning
(omitting spam/virus filter package scanning) if the spam/virus filter package scanning is not
functioning.

New in MS 6.2 is support for values -2 and 2. Setting a value of 2 is similar to the effect of 1,
except that a syslog notice will be generated in case of spam/virus filter package errors. A
value of -1 is (currently) equivalent in effect to a value of 0. A value of -2 is similar to a value
of 0, except that a syslog notice will be generated in case of spam/virus filter package errors.
(See the sndopr_priority MTA option for control of the facility and priority of such syslog
notices.)

New in MS 6.3 is support for values 3 and 4. A value of 3 tells the MTA that in case of a virus/
spam filter package failure during attempted processing of an incoming message, to accept
the message and queue it to the reprocess channel (for subsequent reattempted processing
through the virus/spam filter package by the reprocess channel). A value of 4 does the same
thing, but also logs the virus/spam filter temporary failure to syslog.

For most site's purposes, either a setting of -2 (meaning to temporarily reject the message,
and generate a syslog notice logging the trouble occurrence), or (new in MS 6.3) a setting of 4
(meaning to defer the message to the reprocess channel, and generate a syslog notice logging
the trouble occurrence) will be desirable.

52.46 Transaction logging MTA options
The MTA has a number of options affecting MTA transaction logging (and thus to some extent
MTA monitoring). In particular, there are a number of MTA options that affect the format and
information recorded to the MTA message transaction log file and MTA connection transaction
log file, and the information included in LOG_ACTION mapping table probes.

Additional MTA options relating in somewhat different ways to MTA logging may be found
elsewhere:

• Various logfile options may be set at the MTA level (mta.logfile.option-name in
Unified Configuration) to control logging of insertions into the Message Store performed by
ims-ms channels and LMTP servers;

• TCP/IP-channel-specific options: among these options are several specifically relating to
MTA transaction logging including MAX_B_ENTRIES, MAX_J_ENTRIES, MAX_H_ENTRIES,
LOG_BANNER, and LOG_TRANSPORTINFO, plus a discussion of the TCP/IP channel level
version of the LOG_CONNECTION option (which overrides on a per-channel basis the
general, MTA-level mta.log_connection MTA option);

MTA options 52–271

log_alternate_recipient
MTA option

• File format MTA options: the log_alq and log_deq MTA options on OpenVMS affect the
efficiency of MTA transaction log file handling;

• Syslog MTA options: these options affect syslog messages the MTA can generate
as a form of event notice, including such a syslog message in case of a difficulty
performing MTA logging (log_sndopr), certain cases of sidelining a message as
.HELD (held_sndopr), problems with spam/virus filter package responsiveness
(spamfilterN_optional), or even redirection or duplication of MTA transaction log
entries to syslog (log_messages_syslog and log_connections_syslog);

• Counters MTA options: these options affect the MTA counters, which are intended for
purposes of monitoring the trend and health of the e-mail system, rather than for precise
message tracking;

• Debug MTA options: the log_debug MTA option to cause debugging of MTA transaction
logging and channel counters update operations.

See also MTA transaction logging for additional discussion of MTA log management and
transaction log format.

The (new in MS 6.3-0.15) XML format for MTA message transaction and MTA connection
transaction logging is much more tolerant of extensions; plus it is a new format in any case. In
the past, as new logging options were added, the default was that such options were disabled,
so that upgrades would not unilaterally change the MTA's transaction logging format and
thereby "break" existing transaction log parsers used by sites. However, with XML format
which is a new format, and where parsers should to be written to ignore non-understood
attributes, this is not a concern. Therefore, as of MS 6.3P1, whenever XML format is enabled
(log_format=4), many of the optional logging options default to being enabled, rather
than defaulting to being disabled (as with any format other than XML format). Such options
include log_filename, log_filter, log_message_id, log_notary, log_priority,
log_process, log_queue_time, log_reason, and log_username. As of the 7.0.5 release,
this also includes log_auth, log_delivery_flags, and log_imap_flags.

52.46.1 Transaction logging MTA options:
log_alternate_recipient (0-3)

(New in MS 8.0.1.) The log_alternate_recipient MTA option controls whether or
not any alternate recipient is included in MTA message transaction log entries and/or
LOG_ACTION mapping table probes. Setting bit 0 (value 1) causes the alternate recipient ABY
and ARCPT values to be logged immediately after the SMTP DELIVERBY value is logged,
before the intermediate address. "ab" and "al" attributes are used in the XML log format. If
bit 1 (value 2) is set in the log_alternate_recipient MTA option, then this information
appears as a pair of values in the LOG_ACTION mapping table probe immediately after the
DELIVERBY, before the intermediate address.

52.46.2 Transaction logging MTA options: log_auth
(0-7)

The log_auth MTA option has the same basic semantics as log_username, except that if
set log_auth will cause logging of the value of the SMTP MAIL FROM's AUTH parameter
on enqueue, assuming one was specified and retained. (Note that this is the AUTH parameter
from the MAIL FROM command, whjich potentially differs from whatever might be the

52–272 Messaging Server Reference

log_callout_delays MTA
option

authenticated identity specified via an SMTP AUTH command.) On dequeue the AUTH
parameter is only logged if it is passed on to the remote SMTP server. The SMTP AUTH
parameter field resulting from setting log_auth appears immediately after the username
field in the old style MTA message transaction log format. An "au" attribute is used in XML or
JSON format (log_format set to 4 or 5, respectively).

Normally the au attribute only appears in XML or JSON format logs if there is an AUTH
parameter value to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to
appear unconditionally.

Enabling XML or JSON format transaction logging, log_format set to 4 or 5, causes the
default for log_auth to be 1 (SMTP AUTH parameter field logged); with any other format,
the default is 0 (SMTP AUTH parameter field not logged). If bit 1 (value 2) is set in the
log_auth MTA option, then the SMTP AUTH parameter field appears in the LOG_ACTION
mapping table probe immediately after the username field.

52.46.3 Transaction logging MTA options:
log_callout_delays (0-3)

The MTA can optionally use timers to measure the total time the MTA spends waiting for
various external components to return a response. The log_callout_delays MTA option
controls the logging of this timer information. Bit 0 (value 1), if set, causes the callout logging
information to be logged immediately after delivery flags in "E" (enqueue) log records. The
XML attribute name in XML format logs is "cd". Bit 1 (value 1), if set, causes callout logging
information to be included in the LOG_ACTION mapping probe, again immediately after
delivery flags. In both cases the information is formatted as described below.

Timings are done on a per-message basis.

The following callout timers have been implemented:

• Time spent waiting for spam filters 1-8. (S1 - S8)

• Time spent waiting for mapping routine callouts. (MC)

• Time spent in the following specific mappings waiting for routine callouts:

• PORT_ACCESS (PA)

• FROM_ACCESS (FA)

• ORIG_SEND_ACCESS (OSA)

• SEND_ACCESS (SA)

• ORIG_MAIL_ACCESS (OMA)

• MAIL_ACCESS (MA)

• AUTH_REWRITE (AW)

• REVERSE (RV)

• All Sieve mappings (S)

MTA options 52–273

log_callout_delays MTA
option

• Rewrite rule routine callouts. (RR)

• Time spent creating an SMTP transaction for the MTA to process; (note that this necessarily
includes MTA processing time). (STT)

• Time spent writing the message file(s) to the MTA queue area. (QW)

• Time used by the Indexed Search Converter (ISC) when operating as part of the LMTP
server. (RD)

• Time spent creating an LMTP transaction for the store to process; (note that this necessarily
includes MTA processing time). (STT)

• Time spent writing the message file(s) to the store. (QW)

When logging this information, it is formatted in the order and with delimiters as follows (note
that the field names are specified in the preceding list):

 S1,S2,S3,S4,S5,S6,S7,S8:MC,PA,FA,OSA,SA,OMA,MA,AW,RV,S:RR:STT,QW,RD

Each value appears an an integer time in centiseconds followed by a semicolon and an integer
use count:

T;U

Any value consisting of a zero-time;zero-use-count pair will be omitted entirely. Use counts of
1 are also omitted. Finally, zero elements of the comma-separated sublists may be truncated
from the right.

In the specific case of spam filter wait timers, an outright spam filter failure is indicated by
presence of an "F" suffix followed by an integer code which indicates the phase where the
failure occurred. The code values are:

Table 52.36 Spamfilter phase failure codes

Code Failure Spamfilter routine Milter command
1 SYSTEM_FAILURE bmiInitSystem n/a
2 MESSAGE_FAILURE bmiInitMessage (milter connect)
3 CONNECT_FAILURE bmiProcessConnection SMFIC_CONNECT/

SMFIC_HELO
4 MAILFROM_FAILURE bmiProcessFROM SMFIC_MAIL
5 AUTHADDR_FAILURE bmiProcessAUTH n/a
6 RCPTTO_FAILURE bmiAccumulateTO/

bmiRejectTO
SMFIC_RCPT

7 ENDRCPTTO_FAILURE bmiEndTO SMFIC_DATA
8 HEADER_FAILURE bmiAccumulateHeaders SMFIC_HEADER
9 ENDHEADER_FAILURE bmiEndHeaders SMFIC_EOH
10 BODY_FAILURE bmiAccumulateBody SMFIC_BODY
11 ENDBODY_FAILURE bmiEndBody SMFIC_BODYEOB

command

52–274 Messaging Server Reference

log_connection MTA option

12 SUBMIT_FAILURE bmiEndMessage SMFIC_BODYEOB
response

13 UNKNOWN_FAILURE n/a n/a

Parsers should be aware that additional, colon-delimited elements may be added to the list as
a whole, comma-separated elements may be added to sublists, and even semicolon-separated
elements may be added to individual timer values.

Some samples of the timers field in XML format:

cd="1410,,,15:::123,25"
cd="1243,,,21:::127,33"
cd="172:1855;5,,107,248,400,500,600::4836,14"
cd=":::1222,11"

52.46.4 Transaction logging MTA options:
log_connection (0-1023)

The log_connection MTA option controls whether or not connection information, e.g., the
domain name of the SMTP client sending the message, is saved in the mail.log file (or the
connection.log file if separate_connection_log is set to 1). This value is a decimal
integer representing a bit-encoded integer, the interpretation of which is given in the table
below.

Table 52.37 log_connection MTA option bit values

Bit Value Usage
0 1 When set, connection information is included in E, D and R log records. In

XML-compatible format (log_format is 4), this information appears in the
ss attribute within en elements.

1 2 When set, connection open/close/fail records are logged by message enqueue
and dequeue agents such as the SMTP and X.400 clients and servers. This
bit also enables use of the $T flag (for causing logging) in PORT_ACCESS
rejection entries. In XML-compatible format (log_format set to 4), this
information is logged in co elements.

2 4 When set, I records are logged recording ETRN events.
3 8 When set, include transport information in E, D and R log records for SMTP

messages even if other connection information logging is not enabled. In
XML-compatible format (log_format is 4), this is the tr attribute.

4 16 When set, C entries may include site-supplied text from a PORT_ACCESS
mapping table entry; the text is added to the application information
field. (Prior to Messaging Server 7.0, when SMTP server processes began
unconditionally probing PORT_ACCESS, this bit had a meaningful side-effect
of causing SMTP server processes to always query PORT_ACCESS regardless
of channel *sasl* option setting; prior to Messaging Server 7.0, SMTP server
processes only queried PORT_ACCESS when the relevant channel was marked
maysasl, maysaslserver, mustsasl, or mustsaslserver -- or when this
bit was set.)

MTA options 52–275

log_conversion_tag MTA
option

5 32 When set, include transport information:

 TCP|MTA-IP|MTA-port|remote-IP|remote-port

in message log enqueue entries (E* entries): . This information appears after
the SMTP delivery-status/diagnostic information. In XML-compatible format
(log_format set to 4), this is the tr attribute.

6 64 When set, include application information in message log enqueue entries
(E* entries). (For instance, that the SMTP protocol is in use.) This information
appears after the optional (see bit 5) transport information. In XML-
compatible format (log_format set to 4), this is the ap attribute.

 7 128 (New in 6.2.) When set, write "U" records for SMTP AUTH attempts
(successes and failures). The SASL error will be recorded in the message-
id field of the connection record (immediately after the optional---see bit
6---application information); the username used in the authentication will
be recorded in the username field of the connection record (which is the
following field of the record); the actual SMTP response sent back to the client
will be recorded in the diagnostic (final) field of the connection record.

8 256 (New in 7.0-3.01.) Include source system field in LOG_ACTION mapping table
probes.

9 512 (New in 7.0-3.01.) Include both application field and transport field in
LOG_ACTION mapping table probes.

Thus for instance setting log_connection to 3 will result both in additional sorts of log file
entries---entries showing when an SMTP connection is opened or closed---and also additional
information in regular log file entries showing the name of the system connecting (or being
connected to), or the channel hostname of the enqueuing channel when the enqueuing channel
is not an SMTP channel. (This is a change from PMDF V5.1 and earlier, where the value was
simply 0 or 1, with 1 enabling all the then-available connection logging.) TCP/IP channels have
a channel-specific option that can override this setting for particular channels.

52.46.5 Logging Conversion Tags:
log_conversion_tag (bitmask)

New in 7.0.5. The log_conversion_tag MTA option causes a field recording any
conversion tags to be included in MTA message transaction log file entries (both "E" and "D")
and/or LOG_ACTION mapping table probes.

Bit 0 (value 1) enables including the field in MTA message transaction log file entries; bit 1
(value 2) enables including the field in LOG_ACTION mapping table probes. If enabled, this
field appears after the "time in queue" field (log_queue_time option) and before the IMAP
flags field (log_imap_flags option). The XML or JSON format tag for this field is "tg". The
default is 0 (even in XML or JSON format logging operation).

Normally the tg attribute only appears in XML or JSON format logs if there is conversion tag
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

As of MS 8.0.2.3, bit 3 (value 8) will cause the first conversion tag associated with each message
recipient, if present, to be treated as an additional "virtual channel" by the MTA counter

52–276 Messaging Server Reference

log_deliver_by MTA option

subsystem. This "channel" will then appear in counter output along with all the other channels.
Note that no attempt is made to distinguish these virtual channels from normal channels; use
of unique names must be dealt with by appropriate configuration.

As of MS 8.1.0.3, bit 4 (value 16) will cause the conversion tags associated with the current
message being dequeued to be logged in the extra field of any connection log records.

52.46.6 Transaction logging MTA options:
log_deliver_by (0-3)

(New in MS 8.0.1.) The log_deliver_by MTA option controls whether or not any SMTP
DELIVERBY value (see RFC 2852) is included in MTA message transaction log entries and/or
LOG_ACTION mapping table probes. Setting bit 0 (value 1) causes the DELIVERBY time value,
expressed as an offset in seconds from the current time, a semicolon, the DELIVERBY mode,
and (if trace information is present) the trace value, to be logged immediately after the priority
is logged, before the alternate recipient. A "db" attribute is used in the XML log format. If
bit 1 (value 2) is set in the log_deliver_by MTA option, then this information appears in
the LOG_ACTION mapping table probe immediately after the priority, before the alternate
recipient.

52.46.7 Transaction logging MTA options:
log_diagnostics (0-3)

(New in 7.0-3.01.) Bit 0 (value 1), if set in log_diagnostics, causes diagnostics information
to appear in certain log entries. Bit 1 (value 2), if set, causes diagnostics information to be
included in LOG_ACTION mapping probes. For instance, in the case of "B" records (bad
commands received by the SMTP server), the diagnostic field will show the SMTP server
error response. In the case of connection close "C" records, the diagnostic file will show the
reason why the connection was closed, e.g., reaching some session disconnect limit. In the
case of authentication "U" entries (which note are generated as connection transaction entries,
rather than message transaction entries), the result of an authentication attempt is shown in
the diagnostic field. Appears just after the reason field (see the log_reason MTA option)
and before the time-in-queue field (see the log_queue_time MTA option). In XML or JSON
format (log_format set to 4 or 5, respectively), diagnostic information, if enabled, appears as
the di attribute.

Normally the di attribute only appears in XML or JSON format logs if there is diagnostic
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

This option defaults to 1 in order to maintain compatibility with previous releases, where
diagnostics information was always logged.

52.46.8 Transaction logging MTA options: log_dkim
(0-7)

(New in MS 8.1.0.6.) The log_dkim MTA option controls whether or not the results of any
DKIM signing operations are included in transaction log entries and mapping probles. A value
of 0 means no DKIM information is extracted. Setting bit 0 (value 1) causes DKIM results to be
logged just prior to any smartsend string. The results value consists of a comma-separated list

MTA options 52–277

https://tools.ietf.org/html/rfc2852

log_envelope_id MTA option

of entries, one for each active DKIM signing slot. Each entry in turn consists of the slot number
and a status string separated by a colon. Status strings beginning with a question mark are
error messages, other strings consist of the DKIM identity and selector that were used.

The default for this option is 0 in all log formats except flat JSON (log_format value 6), where it
is 1.

The XML/JSON attribute name in XML/JSON format logs (log_format set to 4 or 5-6,
respectively) is "fm". Setting bit 1 (value 2) causes from address to be included in the
LOG_ACTION mapping table probe, again just prior to the smartsend string.

Normally the dk attribute only appears in XML or JSON format logs if there is DKIM activity
to log. However, setting bit 2 (value 4) will cause the attribute to appear unconditionally.

52.46.9 Transaction logging MTA options:
log_envelope_id (0-7)

(New in MS 6.1.) The log_envelope_id MTA option controls whether or not the envelope
ID (ENVID parameter of the MAIL FROM ESMTP command) is included in mail.log
records and LOG_ACTION mapping probes. This information may be useful when tracking a
message across multiple systems. The default is 0, meaning that the field is not logged. Setting
bit 0 (value 1) causes the envelope ID to be logged, immediately after the message filename
field and immediately before the message-id field. In XML or JSON format (log_format set
to 4 or 5, respectively), envelope ID logging, if enabled, appears as the ei attribute. New in
7.0-3.01, bit 1 (value 2), if set, causes the information to be included in LOG_ACTION mapping
probes.

Normally the ei attribute only appears in XML or JSON format logs if there is envelope id
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

52.46.10 Transaction logging MTA options:
log_filename (0-7)

The log_filename MTA option controls whether or not the names of the files in which
messages are stored are saved in the mail.log file or included in LOG_ACTION mapping
probes. Setting bit 0 (value 1) enables file name logging. When file name logging is enabled,
the file name will appear as the first field after the final form envelope To: address. In XML or
JSON format (log_format set to 4 or 5, respectively), file name logging, if enabled, appears
as the fi attribute. As of MS 6.3p1, enabling XML or JSON format (log_format set to 4 or
5) causes the default for log_filename to be 1 (filename logging enabled); with any other
format, the default is 0 (file name logging disabled), as in earlier versions. New in 7.0-3.01, bit 1
(value 2), if set, causes filename information to be included in LOG_ACTION mapping probes.

Normally the fi attribute only appears in XML or JSON format logs if there is filename
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

52.46.11 Transaction logging MTA options: log_filter
(0-7)

52–278 Messaging Server Reference

log_format MTA option

The log_filter option controls whether or not any mailbox filter actions (Sieve filter
actions) applicable to the message are logged in enqueue "E" records or included in
LOG_ACTION mapping probes. Bit 0 (value 1), if set, causes filter information to appear in
log entries. New in 7.0-3.01, bit 1 (value 2), if set, causes filter information to be included in
LOG_ACTION mapping probes. This information appears after the optional "intermediate"
and "original" forms of the destination address (see the log_intermediate MTA option),
before the SMTP diagnostic field (which itself only appears for SMTP messages). In XML or
JSON format (log_format set to 4 or 5, respectively), Sieve filter action(s) logging, if enabled,
appears as the fl attribute. The filter action(s) will be enclosed within single quote characters.

Normally the fl attribute only appears in XML or JSON format logs if there is an AUTH
parameter value to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to
appear unconditionally.

As of MS 6.3p1, enabling XML or JSON format (log_format set to 4 or 5) causes the default
for log_filter to be 1 (Sieve filter action logging enabled); with any other format, the
default is 0, (Sieve filter actions are not logged), as in previous versions. With log_filter set
to 1, one might see, for instance

'fileinto "SPAM"'

or

'redirect "user@domain.com"'

As of 8.0, a "warn" clause may also be present; see the discussion in Sieve warn extension.

Note that the case of a "reject" action is special, due to the inherent nature of the "reject"
action. In this case, what occurs is the enqueue of a new message (a Message Disposition
Notification) by the original enqueuing channel to the process channel, and that new message
has an implicit keep occurring. As there is no enqueue of the rejected message, the "reject"
does not show up in the filter action field of any transaction log record.

As of MS 8.0, the maximum size of the log_filter field (the maximum length of the string
recording what Sieve actions were applied) has been increased from 256 to 1024 characters.

52.46.12 Transaction logging MTA options: log_format
(1-6)

The log_format option controls formatting options for the MTA message transaction log
file, mail.log, (as well as the MTA connection transaction log file, connection.log, if
separate_connection_log=1 has been set so that connection entries are being recorded
separately rather than in mail.log).

A value of 1 (the default) is the standard format. A value of 2 requests non-null formatting:
empty address fields are converted to the string "<>". A value of 3 requests counted formatting:
all variable length fields are preceded by "N:", where "N" is a count of the number of characters
in the field. That is, log_format set to 3 causes length-count tagging of the following fields:
The envelope-from address, the original-recipient address, the current-recipient address, the
filename, the envelope-message-id, the message-id, the username, the connection information,
the intermediate address(es), the Sieve filter action(s), the rejection reason text, the SMTP

MTA options 52–279

log_format MTA option

diagnostic, the transport information, the application information. A value of 4 (new in MS 6.3)
requests XML-compatible format.

A value of 5 (new in MS 8.0.2.3) requests JSON-compatiable format. And finally, a value of 6
(new in MS 8.1.0.2) specifies "flat" JSON format.

As of MS 6.3p1, note that setting log_format to a value greater than 3 (XML or JSON
format) also changes the defaults for a number of other log_* options. In general, it enables
much of the useful (but in other formats disabled by default) optional logging options,
including: log_filename, log_filter, log_message_id, log_notary, log_priority,
log_process, log_queue_time, log_reason, log_username, and (new options in 7.0.5)
log_auth, log_delivery_flags, and log_imap_flags.

In the (new in MS 6.3) XML-compatible format (log_format set to 4), each message log entry
appears as a single XML element containing multiple attributes and no subelements. Three
elements are currently defined: en for message transaction (e.g., enqueue/dequeue entries), co
for connection transaction entries, and he for header entries (the optional additional records in
the message transaction log file resulting from setting log_header to 1).

In the (new in MS 8.0.2.3) JSON-compatible format (log_format set to 5), each message
log entry appears as a single JSON object containing multiple name-value pairs. All values
are strings or integers; at present there are no arrays or nested objects. The first name-value
pair always has a name of "ty" and its value specifies the object type. Three object types are
currently defined: "en" for message transaction (e.g., enqueue/dequeue entries), "co" for
connection transaction entries, and "he" for header entries (the optional additional records in
the message transaction log file resulting from setting log_header to 1).

The (new in MS 8.1.0.2) value of 6 also creates a JSON-compatible format, but one which
attempts to avoid both JSON structure and structured field content, as well as making the
format compatible for consumption by Lumberjack. Specifically, the following changes are
made:

• The ts timestamp attribute is encoded as integer number of milliseconds since the epoch.

• The tl transactionlog attribute is renamed to msg and is included in every log entry.

• The tg conversion tag attribute is broken up into as many as 10 separate tag attributes t0,
t1, t2, ..., each containing a separate tag. The eleventh and subsequent tags, if they exist, are
not logged.

• The he array of header field values is broken up into as many as 10 separate header
attributes h0, h1, h2, ..., each containing a separate header field value. The eleventh and
subsequent header fields, if they exist, are not logged.

• The so attribute contains the envelope from address. The domain from this address is
broken out and appears in an additional sd attribute.

• The various protocol modifiers to the ac action attribute are moved to a separate sp
attribute.

• When the tr transport information attribute contains TCP address information it is replaced
by li and ri attributes containing the local and remote IP addresses, respectively. Port
information is not logged.

• The ap application information attribute is replaced by a po attribute containing the
protocol and, if SSL/TLS is being used, a cs attribute containing the TLS/SSL information
string. Other parts of the application information string are not logged.

52–280 Messaging Server Reference

log_format MTA option

Note that the maximum length of MTA transaction record, both for message transaction
records and connection transaction records and regardless of format, is 4096 characters.

52.46.12.1 Transaction entries

Message transaction (en) elements/objects can have the following attributes (in XML) or name-
value pairs (in JSON):

• ts - time stamp (always present) Note: The format changes from ISO 8601 format to a UNIX
epoch value in milliseconds if log_format is set to 6

• no - node name (present if log_node is 1)

• pi - process id (present if log_process is 1)

• sc - source channel (always present)

• dc - destination channel (field always present, though it will be empty for types of entries
other than an enqueue "E" entry)

• ac - entry type or action (always present)

• sp - protocol modifier values from action field (Separated out from the action field if
log_format is set to 6)

• sz - message size, reported in units of MTA blocks (field always present, though potentially
empty for types of entries such as J or V entries)

• so - source address (always present)

• sd - domain from source address (present if log_format is set to 6)

• od - original destination address (field always present, though potentially empty for types of
entries such as J entries)

• de - destination address (field always present, though potentially empty)

• rf - recipient flags (present if bit 0/value 1 of log_notary is set)

• fi - filename (present if bit 0/value 1 of log_filename is set)

• ei - envelope ID (present if bit 0/value 1 of log_envelope_id is set)

• mt - (new in 8.0) message tracking id and timeout, in the format tracking-id:timeout
(present if bit 0/value 1 of log_tracking is set and the message has a tracking ID and/or
timeout)

• dd - (new in 8.0) deferred delivery time (present if bit 0/value 1 of log_timesis set and the
message has a deferred delivery time request)

• ex - (new in 8.0) expiry time (present if bit 2/value 4 of log_times is set and the message
has an expiry time)

• mi - message ID and optionally the message IDs of related messages, separated by commas
(present if bit 0/value 1 of log_message_id is set)

MTA options 52–281

log_format MTA option

• us - username (present if bit 0/value 1 of log_username is set and a username is available)

• as - (new in 8.0) Authenticated user's primary mail address, i.e., normally the value of the
user's mail attribute (present if bit 2/value 4 of log_username is set and a primary address
is available)

• au - (new in 7.0.5) SMTP AUTH parameter (present if bit 0/value 1 of log_auth is set and
an AUTH parameter was present)

• ss - source system (present if bit 0/value 1 of log_connection is set and source system
information is available)

• se - sensitivity (present if bit 0/value 1 of log_sensitivity is set)

• mp - (new in 8.0) MT-PRIORITY (present if bit 0/value 1 of log_mtpriority is set)

• pr - priority (present if bit 0/value 1 of log_priority is set)

• in - intermediate address (present if bit 0/value 1 of log_intermediate is set and
intermediate address information is available)

• ia - initial (RCPT TO) address (present if bit 1/value 2 of log_intermediate is set and
initial address information is available)

• ui - (new in 8.0) recipient UID (present if bit 0/value 1 of log_uid is set and a recipient UID
is available; in particular, will never be present in dequeue "D" records)

• mu - (new in 7.0.5) IMAP UID and UIDVALIDITY for messages delivered via an ims-ms
channel (present if bit 0/value 1 of log_mailbox_uid is set and UID and/or UIDVALIDITY
data is available)

• fr - SMTP extension FUTURERELEASE value (present if bit 0/value 1 of
log_futurerelease is set and future release value is present)

• fl - Sieve filter actions applied (present if bit 0/value 1 of log_filter is set and Sieve filter
information is available; in particular, will never be present in dequeue "D" records since
there is no Sieve filtering performed (hence no filter information) at that point)

• re - reason (present if bit 0/value 1 of log_reason is set and a reason string is available)

• di - diagnostic (present if bit 0/value 1 of log_diagnostics is set (the default) and
diagnostic information is available)

• tr - transport information (present if bit 5/value 32 of log_connection is set, transport
information is available, and log_format is not set to 6)

• li - local IP address (present if bit 5/value 32 of log_connection is set, transport
information is available, and log_format is set to 6)

• ri - remote IP address (present if bit 5/value 32 of log_connection is set, transport
information is available, and log_format is set to 6)

• ap - application information (present if bit 6/value 64 of log_connection is set,
application information is available, and log_format is not set to 6)

• po - application protocol (present if bit 6/value 64 of log_connection is set, application
information is available, and log_format is set to 6)

52–282 Messaging Server Reference

log_format MTA option

• po - SSL/TLS information string (present if bit 6/value 64 of log_connection is set,
application information is available, SSL/TLS is being used, and log_format is set to 6)

• qt - time in queue (present if bit 0/value 1 of log_queue_time is set)

• tg - (new in 7.0.5) conversion tags (present if bit 0/value 1 of log_conversion_tag is set
and any conversion tags are present) Note: This changes from a single tg attribute to per-tag
t0, t1, ... attributes if log_format is set to 6

• if - (new in 7.0.5) IMAP flags (present if bit 0/value 1 of log_imap_flags is set and any
IMAP flags are present)

• df - (new in 7.0.5) delivery flags (present if bit 0/value 1 of log_delivery_flags is set)

• cd - (new in 8.0) time spent waiting on external service callouts (present if bit 0/value 1 of
log_callout_delays is set)

• sm - smartsend information(present if bit 0/value 1 of log_smartsend is set and smartsend
information is available)

• dk - (new in 8.1.0.6) DKIM signing information (present if bit 0/value 1 of log_dkim is set
and DKIM signing was enabled)

• fm - (new in 8.1.0.2) Address from header From: field (present if bit 0/value 1 of log_from
is set and a parsable From: field address is present)

• tl - (new in 8.0) String produced by "transactionlog" Sieve actions Note: The attribute
name changes from tl to msg if log_format is set to 6

• he - (new in 8.1.0.1) Selected header fields (present if bit 2/value 4 of log_header is set and
any of the selected headers are present) Note: This changes from a single he attribute to per-
field h0, h1, ... attributes if log_format is set to 6

Here are two sample en entries in XML format showing various different fields being logged
(wrapped for printing clarity; the actual log file entries always appear in reality on a single
line):

<en ts="2004-12-08T00:40:26.70" pi="0d3730.10.43" sc="tcp_local"
dc="l" ac="E" sz="12" so="info-E8944AE8D033CB92C2241E@whittlesong.com"
od="rfc822;ned+2Bcharsets@mauve.sun.com"
de="ned+charsets@mauve.sun.com" rf="22"
fi="/path/ZZ01LI4XPX0DTM00IKA8.00" ei="01LI4XPQR2EU00IKA8@mauve.sun.com"
mi="<11a3b401c4dd01$7c1c1ee0$1906fad0@elara>" us=""
ss="elara.whittlesong.com ([208.250.6.25])"
in="ned+charsets@mauve.sun.com" ia="ietf-charsets@innosoft.com"
fl="spamfilter1:rvLiXh158xWdQKa9iJ0d7Q==, addheader, keep"/>

<en ts="2016-08-30T06:28:59.93" pi="28e3d.4.233" sc="tcp_local"
dc="process" ac="E" sz="5" so="" od="rfc822;user+2Berrors@example.com"
de="user+errors@example.com" rf="276" ei="01QWOCSBWTPO003L8D@example.com"
mi="<01QWOCSEZD@example.com>,<1658a875@example.net>"
ss="TCP-DAEMON.example.com" se="-1" tr="" ap="" qt="0" df="0"
cd=",,,47,,20:83;24,,,,,,::406,17"/>

MTA options 52–283

log_format MTA option

And here is a sample field in JSON format (also wrapped for clarity):

{"ty":"en","ts":"2018-10-16T07:14:35.35","pi":"547a.3.3","sc":"tcp_intranet",
"dc":"tcp_local","ac":"E","sz":1,"so":"sender@example.com",
"od":"rfc822;recip@example.net","de":"recip@example.net","rf":20,
"fi":"/opt/sun/comms/messaging64/data/queue/tcp_local/003/ZZk0W5l0MfgU0.00",
"mi":"<0PGP00G053JVOQ00@multke.example.org>","us":"mailsrv",
"ss":"[127.0.0.1] ([127.0.0.1])","pr":3,"in":"recip@example.net","qt":0,
"df":68,"cd":":0,,,0,,,::1567,0"}

52.46.12.2 Connection entries

Connection transaction (co) entries can have the following attributes/name-value pairs:

• ts - time stamp (always present; also appears in en entries)

• no - node name (present if log_node is 1; also appears in en entries)

• pi - process id (present if log_process is 1; also appears in en entries)

• sc - source channel (always present; also appears in en entries)

• dr - direction (always present; specific to connection entries): a "+" for inbound connections,
or a "-" for outbound connections

• ac - entry type or action (always present; also appears in en entries)

• tr - transport information (always present; may also appear in en entries when bit 5 of
log_connection is set);

• ap - application information (always present; may also appear in en entries when bit 6 of
log_connection is set)

• mi - the name presented on the ETRN command line (present only if bit 0/value 1 of
log_message_id is set, and ETRN was used with an argument; note that setting bit 0/
value 1 of log_message_id also causes the logging of message ID information, if available,
in message transaction (en) log records)

• us - username (present only if bit 0/value 1 of log_username is set and username
information is available; also appears in en entries)

• ex - (new in 8.0) in "U" records, additional authentication information such as the
authentication mechanism (present only if bit 4/value 16 of log_username is set and
such extra information is available) (new in MS 8.1.0.3) in connection open/close records,
conversion tags associated with the current message being dequeued (present only if bit 4
(value 16) is set and there are conversion tags to log)

• di - diagnostic (present only if bit 0/value 1 of log_diagnostic is set and diagnostic
information is available; also appears in en entries)

• ct - time to connect/fail to connect/connection was open (present only if bit 0/value 1 of
log_queue_time is set; specific to connection entries)

Here is a sample co entry in XML format (wrapped purely for printing clarity; in reality, such
entries always appear on a single line):

52–284 Messaging Server Reference

log_from MTA option

<co ts="2004-12-08T00:38:28.41" pi="1074b3.61.281" sc="tcp_local" dr="+"
ac="O" tr="TCP|209.55.107.55|25|209.55.107.104|33469" ap="SMTP"/>

And here is a similar entry in JSON format: (also wrapped for clarity):

{"ty":"co","ts":"2018-10-16T07:14:09.27","pi":"547a.3.0","sc":"tcp_local",
"dr":"+","ac":"O","tr":"TCP|127.0.0.1|25|127.0.0.1|48023","ap":"SMTP"}

52.46.12.3 Header entries

Header (he) entries have the following attributes/name-value pairs:

• ts - time stamp (always present; also used in en entries)

• no - node name (present if log_node is 1; also used in en entries)

• pi - process id (present if log_process is 1; also used in en entries)

• va - header line value (always present)

Here is a sample he entry in XML:

<he ts="2004-12-08T00:38:31.41" pi="1074b3.61.281" va="Subject: foo"/>

And one in JSON:

{"ty":"he","ts":"2018-10-16T07:14:35.35","pi":"547a.3.3",
 "va":"Subject: This is a test"}

52.46.13 Transaction logging MTA options: log_from
(0-7)

(New in MS 8.1.0.2.) The log_from MTA option controls whether or not the address in the
header From: field is extracted and used in transaction log entries and mapping probles. A
value of 0 means the From: field is not extracted. Setting bit 0 (value 1) causes from address to
be logged just prior to any DKIM string. The XML/JSON attribute name in XML/JSON format
logs (log_format set to 4 or 5-6, respectively) is "fm". Setting bit 1 (value 2) causes from
address to be included in the LOG_ACTION mapping table probe, again just prior to the DKIM
string.

The default for this option is 0 in all log formats except flat JSON (log_format value 6), where it
is 1.

Normally the fm attribute only appears in XML or JSON format logs if there is a from address
to log. However, setting bit 2 (value 4) will cause the attribute to appear unconditionally.

52.46.14 Transaction logging MTA options:
log_futurerelease (0-3)

MTA options 52–285

log_header MTA option

(New in 8.0.) The log_futurerelease MTA option controls whether or not any SMTP
FUTURERELEASE value is included in MTA message transaction log entries and/or
LOG_ACTION mapping table probes. Setting bit 0 (value 1) causes the future release value,
expressed as an offset in seconds from the current time, to be logged immediately after the
mailbox UID is logged, before the Sieve filter information. A "fr" attribute is used in the
XML log format. If bit 1 (value 2) is set in the log_futurerelease MTA option, then this
information appears in the LOG_ACTION mapping table probe immediately after the mailbox
UID, before the Sieve filter information.

52.46.15 Transaction logging MTA options: log_header
(0-7)

The log_header MTA option controls whether the MTA writes message headers to
the message transaction log file, mail.log. Or, as of MS 6.0, see also the channel option
logheader, which may be used to enable this facility on a per-channel basis, as well as to
override log_header on a per-channel basis.

Originally, the permitted values for log_header were merely 0 or 1. As of at least MS 6.1, the
option takes a bit-encoded integer value instead, with the lowest two bits defined as a group.
A value of 1 for these bits enables message header logging for both enqueue and dequeue
directions; a value of 2 enables message header logging for message enqueues, without
enabling logging for message dequeues. A value of 0, the default, disables message header
logging. As of MS 8.0.2, a value of 3 for the lowest two bits is also supported, which enables
header logging during dequeues but not enqueues.

As of MS 8.1.0.1, bit 2, value 4, is also defined. If set it causes header logging to be included in
the transaction log entry itself. A value of 0 logs header information in separate records.

Note that only outermost message headers are available for logging purposes; the "inner"
headers on inner MIME parts, if any, are not available. The specific headers written to the log
file are controlled by a site-supplied log_header.opt file in legacy configuration or unified
configuration prior to MS 8.1.0.1. As of MS 8.1.0.1, the log_header_options MTA option
should be used to control which headers are written. The format of this file/option is that of
other MTA header option files. For instance, a log_header.opt file containing

To: MAXIMUM=1
From: MAXIMUM=1
Defaults: MAXIMUM=-1

would result in writing the first To: and the first From: header per message to the log file.

When header field logging is enabled and log_format is 1, 2, or 3, the header fields are
logged in the format:

dd-mmm-yyyy hh:mm:ss.ss > header-line

or up to two additional fields may be present (if log_node is 1 and log_process is 1 -- the
header line logging makes no display of any other fields):

dd-mmm-yyyy hh:mm:ss.ss node process-field > header-line

with one such line per header line to be logged. In XML-compatible format (log_format set
to 4), the header fields are he elements.

52–286 Messaging Server Reference

log_header_options MTA
option

When enabling log_header, consider also enabling log_process, as it is helpful for
correlating header entries with corresponding regular message entries.

If the goal is to record subsets of information from one or more header lines, rather than
necessarily logging full header lines, see as an alternative to log_header the (both new-in-
MS-8.0) log_transactionlog MTA option and Sieve "transactionlog" action.

52.46.16 log_header_options Option
The log_header_options MTA option contains the entire header options file controlling
the logging of header fields. It corresponds to the legacy configuration log_header.opt file.

The log_header_options MTA option would typically be set or modified by using the
edit command of msconfig, e.g.:

msconfig> edit log_header_options

52.46.17 log_headers_maxchars Option
New in MS 8.1.0.1, the log_headers_maxchars MTA options places a limit on the size of
the header lines included in primary transaction log entries as a result of the actions of the
AUTH_REWRITE or AUTH_ACCESS mapping. THe default is 200 bytes.

52.46.18 Logging IMAP flags: log_imap_flags
(bitmask)

New in 7.0.5. The log_imap_flags MTA option causes a field recording IMAP flags
(those set by the MTA) to be included in MTA message transaction log file entries and/or
LOG_ACTION mapping table probes.

Bit 0 (value 1) enables including the field in MTA message transaction log file entries; bit 1
(value 2) enables including the field in LOG_ACTION mapping table probes. If enabled, this
field appears after the conversion tag field (log_conversion_tag option). The XML format
tag for this field is "if". The default in non-XML format logging is 0; the default when XML
format (log_format=4) is enabled is 1.

52.46.19 Transaction logging MTA options:
log_delivery_flags (bitmask)

New in 7.0.5. The log_delivery_flags MTA option causes a field recording delivery flag
bits (recorded as an integer) in MTA message transaction log file entries and/or LOG_ACTION
mapping table probes. Bit 0 (value 1) enables including the field in MTA message transaction
log file entries; bit 1 (value 2) enables including the field in LOG_ACTION mapping table
probes.

If enabled, this field appears after the IMAP flags field (log_imap_flags MTA option). The
XML format tag for this field is "df". The default in non-XML format logging is 0; the default
when XML format (log_format=4) is enabled is 1.

Bits 0 (value 1) and 1 (value 2) of the logged field roughly correspond to those in the
deliveryflags channel option. The other bits in this value are intentionally undocumented.

MTA options 52–287

log_intermediate MTA option

52.46.20 Transaction logging MTA options:
log_intermediate (0-63)

(New in MS 6.2.) The log_intermediate MTA option controls the inclusion of the
"intermediate" form of the destination address, and the inclusion of the "original" (RCPT TO)
form of the destination address, in MTA message transaction log (mail.log) records. The
option takes a bit-encoded integer value.

Table 52.38 log_intermediate MTA option bit values

Bit Value Usage
0 1 When set, the "intermediate" address form is logged, after the optional (see the

log_priority MTA option) priority field. In XML or JSON format (log_format
set to 4 or 5, respectively), the intermediate address is the in attribute.

1 2 When set, the "original" (RCPT TO) address form is logged. This information
appears after the optional (see bit 0) "intermediate" address form and before the
optional (see the log_filter MTA option) Sieve filter field. In XML or JSON
format (log_format set to 4 or 5, respectively), the initial address is the ia
attribute.

2 4 When set, the "intermediate" address form is included in LOG_ACTION mapping
probes.

3 8 When set, the "original" (RCPT TO) address form is included in LOG_ACTION
mapping probes.

3 8 New in 8.0.2.3. When set, the in attributes appears in XML and JSON logs
unconditionally, even when there is no intermediate address information to log.

3 8 New in 8.0.2.3. When set, the ia attributes appears in XML and JSON logs
unconditionally, even when there is no initial address information to log.

52.46.21 Transaction logging MTA options: log_local
(0 or 1)

The log_local MTA option controls whether or not the domain name for the local host is
appended to logged addresses that don't already contain a domain name. A value of 1 enables
this feature, which is useful when logs from multiple systems are concatenated and processed.
A value of 0, the default, disables this feature.

52.46.22 Logging Indexed Search Converter status:
log_isc_status (bitmask)

New in MS 8.0.2. The log_isc_status MTA option causes a field recording information sent
to or reported by the Indexed Search Converter (ISC) to be included in log file entries (both "S"
and "J" entries on LMTP server systems, "E" entries on front end systems) and/or LOG_ACTION
mapping table probes.

Bit 0 (value 1) enables including the field in MTA message transaction log file entries; bit 1
(value 2) enables including the field in LOG_ACTION mapping table probes. If enabled, this
field appears after the "diagnostics" field (log_diagnostics option) and before the transport

52–288 Messaging Server Reference

log_mailbox_uid MTA option

information filed (log_transportinfo option). The XML format tag for this field is "is". The
default is 1 in XML and JSON format logs and 0 in other formats.

Normally the is attribute only appears in XML or JSON format logs if there is ISC status
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

The content of the "is" field differs depending on the type of system performing the logging.
On LMTP server systems the field will begin with an indication of whether or not immediate
conversion was requested - "IMMEDIATE" if it was, "DEFERRED" if it wasn't. This will be
optionally followed by any status information returned by the converter.

On all other types of systems the "is" will contain when the indexing operaton is supposed
to be performed if a preference was selected by the system doing the logging. A value of
"DEFERRED" is recorded if deferred indexing was requested. A value of "IMMEDIATE-r-t,
where r is the retry limit and t is the timeout, is recorded when immediate indexing is
requested.

52.46.23 Transaction logging MTA options:
log_mailbox_uid (0-3)

Messages delivered to an IMAP store are tagged with a UID and the folder's UIDVALIDITY
value upon insertion. The log_mailbox_uid MTA option provides the means to log this
type of information, which can be useful when there is a need to correlate a message in the
store with MTA actions. Prior to MS 8.0 the field consisted of these two values delimited by a
colon. in MS 8.0 and later release two additional fields have been added: One for the message
digest and another for the name of the folder the message is actually delivered to. Note that
the message digest is only included when one is calculated for other reasons.

The log_mailbox_uid MTA option defaults to 0. Setting bit 0 (value 1) logs the UID and
UIDVALIDITY of messages delivered by the ims-ms channel to the store. The UID and
UIDVALIDITY appears immediately after the LDAP uid. A "mu" attribute is used in the
XML or JSON log format (log_format set to 4 or 5, respectively). If bit 1 (value 2) is set in
the log_uid MTA option, then the uid appears in the LOG_ACTION mapping table probe
immediately after the LDAP uid.

Normally the mu attribute only appears in XML or JSON format logs if there is mailbox uid
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

It's a simple matter to log this information in the case of ims-ms channel. But in the case of
LMTP things are not so simple - the information naturally exists in the LMTP server but not
the client. An LMTP extension is needed to pass the information to the client for logging
purposes.

Consequently, as of MS 8.0.1.2, the LMTP client and server have been enhanced to support a
new UID extension. This extension, if present, provides a single UID parameter on the MAIL
FROM command that accepts the values "NO" or "RET". If the latter is specified the final LMTP
responses to DATA/BDAT will include the UID, UIDVALIDITY, digest value (if available),
and optionally the folder if different from INBOX, separated by colons and enclosed in angle
brackets. For example:

MTA options 52–289

log_message_id MTA option

S: 220 multke.mrochek.com -- Server LMTP (Oracle Communications Messaging Server 8.0.1.2 64bit (built Sep 19 2015))
C: LHLO multke.mrochek.com
S: 250-multke.mrochek.com
S: 250-8BITMIME
S: 250-UID
S: 250-PIPELINING
S: 250-CHUNKING
S: 250-XDFLG
S: 250-XQUOTA
S: 250-XAFLG
S: 250-ENHANCEDSTATUSCODES
S: 250-HELP
S: 250 SIZE 0
C: MAIL FROM:<> UID=RET
S: 250 2.5.0 Address Ok.
C: RCPT TO:<test1+folder@ims-ms-daemon> XDFLGS=5
S: 250 2.1.5 test1@ims-ms-daemon OK.
C: RCPT TO:<test2@ims-ms-daemon>
S: 250 2.1.5 test2@ims-ms-daemon OK.
C: DATA
S: 354 Enter mail, end with a single ".".
C: Subject: Test message
C:
C: This is a test.
C: .
S: 250 2.5.0 <1445028362:2::folder> Delivery to user OK
S: 250 2.5.0 <1440097745:2:> Delivery to user OK

This extension is enabled by default and cannot be disabled. The LMTP client will use if it
present to obtain UID information to use in conjunction with the log_mailbox_uid MTA
option as well as the recall facility.

Additionally, as of MS 8.0.1.2 the log_mailbox_uid MTA option now enables logging of
UID information in the S records logged by the LMTP server. Note that this logging does not
depend on use of the LMTP extension.

Compatibility note: Additional information will be added to this field in the future. When that
happens it will appear as additional colon-separated values. Any code written to process this
field needs to take this into account.

52.46.24 Transaction logging MTA options:
log_message_id (0-7)

The log_message_id MTA option primarily controls whether or not message IDs are saved
in the mail.log file or included in LOG_ACTION mapping probes. Bit 0 (value 1), if set,
enables message ID logging in MTA transaction logging. When message ID logging is enabled,
the message ID will be logged after the final form envelope To address entry---and after the
message file name, if log_filename is also enabled. In XML or JSON format (log_format
set to 4 or 5, respectively), message ID logging, if enabled, appears as the mi attribute. As of
MS 6.3p1, enabling XML or JSON format (log_format set to 4 or 5) causes the default for
log_message_id to be 1 (message ID logging enabled); with any other format, the default is
0 (message ID logging disabled), as in previous versions.

Multiple message IDs can appear, separated by commas. When mutiple IDs are present, the
first is the ID of the message being logged and subsequent IDs are the IDs of related messages,
e.g., when a DSN or MDN is generated and enqueued by the MTA, the second message ID will
be that of the message the DSN or MDN is in regards to.

Normally the mi attribute only appears in XML or JSON format logs if there is message id
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

52–290 Messaging Server Reference

log_mtpriority MTA option

Note that the log_message_id option's transaction log field is also used in authentication "U"
records to record the SASL error, and in SMTP ETRN "I" records to record the host name from
the client ETRN command.

New in 7.0-3.01, bit 1 (value 2), if set, causes message ID information to be included in
LOG_ACTION mapping probes.

52.46.25 Logging message transfer priorities:
log_mtpriority (bitmask)

New in 8.0. The Message Transfer Priority SMTP extension MT-PRIORITY, defined in RFC
6710, provides the means to associate a message transfer priority with a given message.
Logging of these priority values, ranging from -9 to 9, with a default value of 0, is controlled by
the log_mtpriority MTA option.

Note that there is a Priority: header-based priority mechanism and associated logging option
log_priority. These are separate mechanisms. An explicit MT-PRIORITY overrides the
older Priority: header handling.

The log_mtpriority option defaults to 0. Setting bit 0 (value 1) enables logging of the
message transfer priority associated with each transaction. The message transfer priority
appears immediately after the message sensitivity and before the header-based priority in each
log entry. A "mp" element is used in the new XML log format (log_format=4). If bit 1 (value
2) is set in the log_mtpriority MTA option, then the message transfer priority appears in
the LOG_ACTION mapping table probe, again immediately after the sensitivity field and before
the header-based priority field.

52.46.26 Transaction logging MTA options: log_node (0
or 1; OpenVMS only until MS 6.3)

The log_node MTA option controls whether or not the node associated with the process
generating an entry is saved in the mail.log file (and connection.log file, if a separate
connection log file is used). This may be useful information when the MTA is running in a
multi-node cluster.

A value of 1 enables node name logging. When the node name is logged, it will appear as
the first field following the date and time stamps in log entries. In XML-compatible format
(log_format set to 4), node logging, if enabled, appears as the no attribute. A value of 0 (the
default) disables node name logging. (Note that on UNIX and Windows, prior to MS 6.3, the
node name was always considered to be null, so on UNIX and Windows, attempting to set
log_node to 1 merely resulted in an empty node field; i.e., an extra space after the time stamp
in formats other than XML format. As of MS 6.3, if log_node is 1, then the MTA on UNIX will
log the result of a gethostname call when that call found a value, or the "L" channel official
host name, otherwise.)

52.46.27 Transaction logging MTA options: log_notary
(0-3)

The log_notary MTA option controls whether the MTA includes an indicator of NOTARY
(delivery receipt) flags in the mail.log file entries or in LOG_ACTION mapping probes.

MTA options 52–291

https://tools.ietf.org/html/rfc6710
https://tools.ietf.org/html/rfc6710

log_priority MTA option

Bit 0/value 1, if set, enables NOTARY flag logging. As of MS 6.3P1, enabling XML format
(log_format set to 4) causes the default for log_notary to be 1; with any other format, the
default is 0, as in previous versions. The NOTARY flags will be logged as a bit encoded integer
after the current form of the envelope To: address. In XML-compatible format (log_format
set to 4), notification flag logging, if enabled, appears in the rf attribute.

Table 52.39 log_notary MTA option bit value

Bit Value Usage
0 1 Use header-style delivery receipt requests, corresponding to the use of the

reportheader channel option or reportboth channel option.
1 2 Suppress header-style delivery receipt requests.
2 4 NDN failure notification requested: Generate an NDN if the message fails delivery,

i.e., NOTARY parameter NOTIFY=FAILURE.
3 8 DSN delivery receipt requested: Send a DSN (delivery receipt) if message delivery

succeeds, i.e., NOTARY parameter NOTIFY=SUCCESS.
4 16 DSN delay warning requested: Send a "delivery of your message has been delayed"

DSN if message delivery is delayed, i.e., NOTARY parameter NOTIFY=DELAY.
5 32 Internal flag keeping track of notification handling for mailing lists.
6 64 Suppress all notifications, i.e., NOTARY parameter NOTIFY=NEVER.
7 128 Generate a delay DSN if the first delivery attempt fails.
8 256 NOTARY was used; set whenever any NOTIFY parameter was used during

envelope From submission.

New in 7.0-3.01, bit 1 (value 2), if set, causes NOTARY information to be included in
LOG_ACTION mapping probes.

52.46.28 Transaction logging MTA options:
log_priority (0-3)

The log_priority MTA option controls whether or not the effective processing priority for
the message is included in the mail.log file entries or LOG_ACTION mapping probes. Bit 0/
value 1, if set, enables priority logging. As of MS 6.3P1, enabling XML format (log_format
set to 4) causes the default for log_priority to be 1; with any other format, the default is
0, as in previous versions. If logging is enabled, the priority will be logged after the message
sensitivity value, before the transport information. In XML-compatible format (log_format
set to 4), priority logging, if enabled, appears as the pr attribute.

New in 7.0-3.01, bit 1 (value 2), if set, causes priority information to be included in
LOG_ACTION mapping probes.

As of 8.0, the MTA also supports the SMTP MT-PRIORITY extension, which provides a
different, non-header-based, priority facility. The logging of MT-PRIORITY is controlled
separately, via the log_mtpriority MTA option.

52.46.29 Transaction logging MTA options:
log_process (0 or 1)

52–292 Messaging Server Reference

log_queue_time MTA option

The log_process MTA option controls whether or not the ID of the process is saved in the
mail.log file (and the connection.log file, if a separate connection log is used).

A value of 1 enables process ID logging. A value of 0 disables it. As of MS 6.3p1, enabling XML
format (log_format set to 4) causes the default for log_process to be 1; with any other
format, the default is 0, as in previous versions.

The process ID will be logged after the date and time stamps in log entries---and after the
node name, if log_node is also enabled. In XML-compatible format (log_format set to
4), process ID logging, if enabled, appears is the pi attribute. The process ID field itself will
consist of the process ID in a hexadecimal representation followed by a period, next in the case
of a multithreaded channel the thread ID followed by a period, followed by a (per process)
sequence number that uniquely identifies the logging operation as a whole. That is, in the case
of a single threaded channel

process-id.sequence

or in the case of a multithreaded channel

process-id.thread-id.sequence

Note in particular that via the process id and thread id, TCP/IP channel message enqueue/
dequeue (E/D) records may be correlated with SMTP connection open/close (O/C) records. The
sequence number provides the ability to identify all the entries associated with the processing
a a specific queue entry.

log_process is one of the most useful MTA logging options for correlating between multiple
transaction records relating to the same message, observing the timing between entries, etc.

52.46.30 Transaction logging MTA options:
log_queue_time (0-3)

(New in MS 6.3.) The log_queue_time MTA option controls whether "time in queue"
information, measured in seconds, is included in MTA message transaction log records or
LOG_ACTION mapping probes.

Bit 0/value 1, if set, enables such logging; having the bit clear disables such logging. As of MS
6.3P1, enabling XML format (log_format set to 4) causes the default for log_queue_time
to be 1; with any other format, the default is 0, as in previous versions.

If logging is enabled, then the time that the message has been in this channel queue (the
current system time minus the creation time at which this message file was generated as
stored in the envelope information in the message file) will be logged after the optional
log_connection bit 6 (value 64) application information. (In versions prior to 7.0.5, this
made queue time the very last field logged. But some optional new fields added in 7.0.5 can
appear after queue time.) Note that the final ordering is: log_filter field, log_reason
field, log_diagnostics diagnostic field, log_remote_mta remote-MTA field, transport
field (log_connection bit 5/value 32), application field (log_connection bit 6/value 64),
queue time field. (Note that queue time is not a counted-length field; log_format set to 3 has
no effect upon this field.) When log_format is set to 4 so that XML format is output, queue
time logging, if enabled, appears in the qt attribute.

As of 6.3P1, setting bit 0/value 1 of log_queue_time also enables logging of connection
time information in "O" (time to open conection), "Y" (time spent before open failure), and

MTA options 52–293

log_reason MTA option

"C" (time connection was open) connection log records. If XML format logging is enabled this
information appears in the ct attribute.

New in 7.0, the queue time field also contains meaningful (though slightly different in
meaning) information on LMTP server back end hosts: there it represents how long the
message transaction took (the time from start of the message transaction until message
deposit into the store and acknowledgement back to the LMTP client). Also new in 7.0,
setting log_queue_time to 1 will cause inclusion of a final field in MTA connection log O
and Y records showing the time it took to open the connection, or fail to open a connection,
respectively. (This is the time that it took from just before the MTA begins attempting any
appropriate DNS lookups, until writing its connection log entry.)

New in 7.0-3.01, bit 1 (value 2), if set, causes queue time and/or connection time information to
be included in LOG_ACTION mapping probes for both transaction and connection log records.

52.46.31 Transaction logging MTA options: log_reason
(0-3)

(New in MS 6.3.) The log_reason MTA option controls whether message rejection reason
text is included in MTA message transaction log entries and LOG_ACTION mapping probes
that correspond to a message rejection ("R" or "K" records).

Setting bit 0/value 1 enables such logging; clearing the bit disables such logging. As of MS
6.3P1, enabling XML format (log_format set to 4) causes the default for log_reason to be 1;
with any other format, the default is 0, as in previous versions.

If logging is enabled, the reason text string will be logged just after the filter field
(log_filter set to 1) and just before the SMTP delivery status (log_diagnostics SMTP
diagnostic) field. In XML or JSON format (log_format set to 4 or 5, respectively), the reason
logging, if enabled, appears as the re attribute.

Normally the re attribute only appears in XML or JSON format logs if there is reason
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

New in 7.0-3.01, bit 1 (value 2), if set, causes reason information to be included in LOG_ACTION
mapping probes.

52.46.32 Transaction logging MTA options:
log_remote_mta (0-3)

(New in MS 8.0.2.3.) The log_remote_mta MTA option controls whether the remote MTA
name is included in MTA message transaction log entries as a separate field and LOG_ACTION
mapping probes that correspond to an operation involving a remote SMTP or LMTP server.

Setting bit 0/value 1 enables the generation of the remote MTA and also disables the inclusion
of this information in the diagnostics field; clearing the bit disables the use of a separate field.
The default is 0.

If logging is enabled, the remote MTA name will be logged just after the SMTP delivery status
(log_diagnostics SMTP diagnostic) field and just before the ISC status field. In XML or
JSON format (log_format set to 4 or 5, respectively), the reason logging, if enabled, appears
as the rm attribute.

52–294 Messaging Server Reference

log_sensitivity MTA option

Normally the rm attribute only appears in XML or JSON format logs if there is remote MTA
information to log. Setting bit 2 (value 4) will cause the attribute to appear unconditionally.

Bit 1 (value 2), if set, causes remote MTA information to be included in LOG_ACTION mapping
probes.

52.46.33 Transaction logging MTA options:
log_sensitivity (0-3)

The log_sensitivity MTA option controls whether message Sensitivity: header values are
included in MTA message transaction log entries or LOG_ACTION mapping probes.

Bit 0/value 1, if set, enables such logging; clearing the bit disables such logging. If logging is
enabled, the sensitivity value will be logged in an integer representation after the connection
information, before the priority field. In XML-compatible format (log_format set to 4),
sensitivity logging, if enabled, appears in the se attribute. The values are (with "Normal" being
the default, intended for less sensitive material, and "Company-Confidential" corresponding to
the most sensitive material):

Table 52.40 log_sensitivity MTA option values

Value Meaning
0 Normal
1 Personal
2 Private
3 Company-Confidential

New in 7.0-3.01, bit 1 (value 2), if set, causes sensitivity information to be included in
LOG_ACTION mapping probes.

52.46.34 Transaction logging MTA options:
log_smartsend (0-7)

(New in MS 8.1.0.1.) The log_smartsend MTA option controls whether information about
the actions of smartsend callouts are included in MTA message transaction log records.
The option defaults to 0, meaning that this information isnot logged. Setting bit 0 (value 1)
causes smartsend information to be logged just prior to any header from string. The XML/
JSON attribute name in XML/JSON format logs (log_format set to 4 or 5, respectively) is
"sm". Setting bit 1 (value 2) causes smartsend information to be included in the LOG_ACTION
mapping table probe, again just prior to the header from string.

Normally the sm attribute only appears in XML or JSON format logs if there is transaction
log information to log. However, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

As of MS 8.1.0.6 the DEQUEUE_ACCESS mapping and the AUTH_ACCESS mapping provide the
means to append strings to the smartsend log value.

52.46.35 Transaction logging MTA options: log_times
(0-63)

MTA options 52–295

log_tracking MTA option

The log_times MTA option controls whether deferred delivery time request values -- and
optionally message expiry time values -- are included in MTA message transaction log entries
or LOG_ACTION mapping probes.

Bit 0 (value 1), if set, enables logging any deferred delivery request time, as for instance
requested via the FUTURERELEASE SMTP extension or Deferred-delivery: header line.
Clearing bit 0 disables such logging. In XML or JSON format (log_format set to 4 or 5,
respectively), the deferred delivery time logging, if enabled, appears in the dd attribute. Bit 1
(value 2), if set, causes a deferred delivery request time field to be included in LOG_ACTION
mapping probes.

Normally the dd attribute only appears in XML or JSON format logs if there is deferred
delivery time information to log. As of MS 8.0.2.3, setting bit 4 (value 16) will cause the
attribute to appear unconditionally.

Bit 2 (value 4), if set, enables logging any message expiry time. In XML or JSON format
(log_format set to 4 or 5, respectively), the message expiry logging, if enabled, appears
in the ex attribute. Setting bit 3 (value 8) causes a message expiry field to be included in
LOG_ACTION mapping probes.

Normally the dd attribute only appears in XML or JSON format logs if there is expiry date
information to log. As of MS 8.0.2.3, setting bit 5 (value 32) will cause the attribute to appear
unconditionally.

If enabled, the deferred delivery time and message expiry time fields appear immediately after
the tracking ID field and immediately prior to the message ID field.

52.46.36 Log Tracking Information (log_tracking)
The log_tracking MTA option controls logging of message tracking/recall information. Bit 0
(value 0), if set, includes the tracking id and the current tracking in transaction log entries. The
two appear as a single field; the id appears first and is separated from the timeout value by a
colon. Tracking information appears immediately after the envelope id and before the deferred
delivery time. An "mt" attribute is used in XML or JSON format (log_format set to 4 or 5,
respectively).

Normally the mt attribute only appears in XML or JSON format logs if there is tracking
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

If bit 1 (value 2) is set in the log_tracking MTA option, then the tracking id and timeout,
again separated by a colon, appear in the LOG_ACTION mapping table probe, again
immediately after the envelope id and before the deferred delivery time.

52.46.37 Transaction logging MTA options:
log_transactionlog (0-3)

(New in MS 8.0.) The log_transactionlog MTA option controls whether Sieve
transactionlog action strings are included in MTA message transaction log records. The
option defaults to 0, meaning that such Sieve actions are not logged. Setting bit 0 (value 1)
causes the transactionlog string to be logged at the very end of enqueue ("E") records. The
XML/JSON attribute name in XML/JSON format logs (log_format set to 4 or 5, respectively)

52–296 Messaging Server Reference

log_uid MTA option

is "tl". Setting bit 1 (value 2) causes the transactionlog string to be included in the
LOG_ACTION mapping table probe, again at the very end.

Normally the tl attribute only appears in XML or JSON format logs if there is transaction log
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

For instance, with MTA message transaction logging enabled (the logging channel option set
for all channels) and with log_transactionlog also set:

msconfig> show logging
role.channel:defaults.logging
msconfig> set log_transactionlog 1

then an MTA system filter (see for instance the msconfig command edit filter)
including:

require "variables";
if header :matches "subject" "*" {transactionlog "${0}";}

will cause MTA message transaction log records to include the contents of the Subject:
header line. (Note that merely logging the Subject: header line of messages passing through
the MTA could instead be achieved via use of log_header or logheader. But the Sieve
script approach allows more fine-tuning, as a Sieve script can be coded with complex logic
dependent upon other message details, such as message sender or recipient, presence of
specific strings in the header, etc.)

52.46.38 Transaction logging MTA options: log_uid
(0-7)

Certain alias operations, particularly alias expansion of user addresses, involve looking up
LDAP entries with uid attributes. When such entries are encountered, the uid is carried
through the uid expansion process and, in the case of delivering to the Message Store, the
uid is typically incorporated into the resulting address. The log_uid MTA option provides
the means to log such uids. This can be useful when there is a need to identify the last LDAP
entry involved in the alias expansion. Note that uids are only logged on message enqueue
operations; there is no uid available to log on message dequeues.

The log_uid MTA option defaults to 0. Setting bit 0 (value 1) logs any available uid. The
uid appears immediately after the initial recipient address. A "ui" attribute is used in the
XML or JSON log format (log_format set to 4 or 5, respectively). If bit 1 (value 2) is set in
the log_uid MTA option, then the uid appears in the LOG_ACTION mapping table probe
immediately after the initial destination address field.

Normally the ui attribute only appears in XML or JSON format logs if there is uid
information to log. As of MS 8.0.2.3, setting bit 2 (value 4) will cause the attribute to appear
unconditionally.

52.46.39 Transaction logging MTA options:
log_use_xtext (bitmask)

MTA options 52–297

log_username MTA option

The log_use_xtext MTA option controls the use of xtext encoding of addresses in MTA
transaction log file entries and LOG_ACTION mapping probes.

52.46.40 Transaction logging MTA options:
log_username (0-511)

The log_username MTA option is a bit-encoded value which controls whether or not user
information associated with a process that enqueues mail is saved in the mail.log file (and
optional connection.log file) or included in LOG_ACTION mapping probes.

Note that messages submitted via SMTP with authentication (SMTP AUTH) will be considered
to be owned by the username that authenticated, prefixed with the asterisk, *, character. (Note
also that messages enqueued to the filter_discard channel always get the enqueueing
username set to literally FILTER_DISCARD; this is for access control purposes.)

The bits in the log_username option are described in the following table:

Table 52.41 log_username option bit values

Bit Value Usage
0 1 Enables authenticated username logging in transaction log entries.

(Username logging in connection log "U" records is always enabled.)
In the MTA message transaction log entries the username will be
logged after the final form envelope To address field - and after
the message ID, if log_message_id is enabled also, before the
connection information, if bit 0/value 1 of log_connection is
enabled also. In the MTA connection transaction log entries, the
username will be logged after the application information (and after
the optional field present if log_message_id is enabled). In XML-
compatible format (log_format set to 4), the username appears in
the us attribute.

1 2 (New in 7.0-3.01) Causes username information to be included in
LOG_ACTION mapping probes.

 2 4 (New in MS 8.0) Enables inclusion of the primary mail address
associated with the authenticated username in the transaction log.
This information appears immediately after the username and under
the XML attribute "as".

3 8 (New in MS 8.0) Enables inclusion of the primary mail address
associated with the authenticated username in LOG_ACTION mapping
table probes. This address appears immediately after the username in
the mapping table probe.

4 16 (New in MS 8.0) Causes additional information associated with an
authentication operation to be logged (currently just the name of the
authentication mechanism), XML tag "ex"; additional information
may be added in the future) to be included in connection log "U"
records;

5 32 (New in MS 8.0) Causes the same additional information described
under the the previous bit to be included in LOG_ACTION mapping
table probes immediately after the authenticated username.

52–298 Messaging Server Reference

log_8bit_encode MTA option

6 64 (New in MS 8.0.2.1) Causes the administrator's username, in the case
of administrative proxy authentication to be logged in "U" connection
log records immediately after the additional authentication
information field and using the XML tag "ua".

7 128 (New in MS 8.0.2.1) Causes the administrator's username, in the case
of administrative proxy authentication to be included in LOG_ACTION
mapping table associated with "U" connection log records. The field
appears immediately after the additional authentication information
field.

8 256 (New in MS 8.0.2.3) Include the "us" attribute in XML or JSON format
transaction entries, regardless of whether or not there's user name
information to log.

9 512 (New in MS 8.0.2.3) Include the "as" attribute in XML or JSON format
transaction entries, regardless of whether or not there's user name
information to log.

Bit 0 is the least significant bit.

As of MS 6.3p1, enabling XML or JSON format (log_format set to 4 or 5, respectively) causes
the default for log_username to be 1; with any other format, the default is 0, as was always
the case in previous versions.

52.46.41 Transaction logging MTA options:
log_8bit_encode 0 or 1)

The log_8bit_encode MTA option controls how non-ASCII material is written to XML
format MTA transaction log files. A value of 0 causes such material to be written as-is. Any
nonzero value will cause all valid UTF-8 characters to be written as XML numeric character
references.

How non-ASCII octets that does not begin a valid UTF-8 sequence is controlled by specific
values of the log_8bit_encode MTA option. Currently defined values are:

1. Write the octet as a XML numeric character reference. Note that this is tantamount to
interpreting the octet as a character in the ISO-8859-1 charset.

2. Write the octet as an XML entity reference of the form &raw-xx, where xx is the lower-case
hexadecimal representation of the octet.

3. Write out a space in place of the octet.

Note that this setting only applies to XML format logs (log_format = 4); non-ASCII
characters are always written as-is when other formats are used.

52.46.42 Transaction logging MTA options:
separate_connection_log (0 or 1)

The separate_connection_log MTA option controls whether the connection log
information generated by setting log_connection to 1 is stored in the usual MTA message
transaction logging files, mail.log*, or stored separately in connection.log* files. A
separate_connection_log value of 0, the default, causes connection transaction logging

MTA options 52–299

return_split_period MTA
option

to be stored in the regular message transaction log files; a value of 1 causes the connection
transaction logging to be stored separately.

52.46.43 Transaction logging MTA options:
return_split_period (integer)

The return_split_period MTA option affects the frequency of MTA transaction log file
roll over. The MTA will start new mail.log_current and connection.log_current
files every return_split_period runs of the return_job. That is, if
return_split_period has the value N, then new log files will be started on every Nth run of
the return_job.

For normal operation, a value of 1 is recommended for this option. That causes new log
files to be started every time the return_job is run. If, however, the return_job is
being run hourly via the schedule.task:return_job.crontab option, then changing
return_split_period to the value 24 is recommended. That causes new log files to only be
started once per day despite the return_job running once per hour.

52.46.44 Transaction logging MTA options:
return_cleanup_period (integer)

Sites may supply a cleanup script, DATAROOT/site-programs/bin/daily_cleanup,
which will then be run every time the return_job runs. Such a script might, for instance,
move or rename MTA transaction log files. To only run this site-supplied script on every Nth
run of the return job, set the value of the return_cleanup_period MTA option to N.

52.47 OpenVMS user agent MTA options
A number of long-standing MTA options exist that, relevant only on OpenVMS, affect
the MTA's interaction with OpenVMS user agents such as VMS MAIL, PMDF MAIL, and
DECwindows MAIL. These MTA options are not relevant on other platforms.

52.47.1 delivery_receipt_off Option
OpenVMS only.

This option is used to specify a special RFC 822 comment string used in IN% addresses in VMS
MAIL to disable any requests for a delivery receipt. The default if this option is not specified is:

(NO-DELIVERY-RECEIPT)

The enclosing parentheses are required and must be specified in the option value.

52.47.2 delivery_receipt_on Option
OpenVMS only.

This option is used to specify a special RFC 822 comment string used in IN% addresses in VMS
MAIL to request a delivery receipt. The default if this option is not specified is:

52–300 Messaging Server Reference

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822

dis_nesting MTA option

(DELIVERY-RECEIPT)

The enclosing parentheses are required and must be specified in the option value.

52.47.3 OpenVMS user agent MTA options:
dis_nesting (non-negative integer)

OpenVMS only.

The dis_nesting MTA option controls how many nesting levels the MTA allows in the
expansion of VMS MAIL distribution lists. A value of 0 disables the ability to use VMS MAIL
distribution lists. Currently this option only affects the PMDF MAIL utility. The default value
for this option is 20.

52.47.4 OpenVMS user agent MTA options: form_names
(string; OpenVMS only)

OpenVMS only.

The form_names option specifies the names of pop-up form images. Multiple values should
be separated with commas but not with spaces. The default is "FAX-FORM,PH-FORM,X500-
FORM".

52.47.5 mail_delivery_filename Option
OpenVMS only.

52.47.6 missing_address Option
OpenVMS only.

52.47.7 multinet_mm_exclusive Option
OpenVMS only.

52.47.8 OpenVMS user agent MTA options:
read_receipt_off (string)

OpenVMS only.

The read_receipt_offMTA option is used to specify a special RFC 822 comment string
used in IN% addresses in VMS MAIL to disable any requests for a read receipt. The default if
this option is not specified is:

(NO-READ-RECEIPT)

The enclosing parentheses are required and must be specified in the option value.

MTA options 52–301

https://tools.ietf.org/html/rfc822

read_receipt_on MTA option

52.47.9 OpenVMS user agent MTA options:
read_receipt_on (string)

OpenVMS only.

The read_receipt_on MTA option is used to specify a special RFC 822 comment string
used in IN% addresses in VMS MAIL to request a read receipt. The default if this option is not
specified is:

(READ-RECEIPT)

The enclosing parentheses are required and must be specified in the option value.

52.47.10 OpenVMS user agent MTA options:
safe_tcl_mode (bitmask)

OpenVMS only.

The safe_tcl_mode MTA option takes a bitmask argument. The lowest bit, when set,
allows components of PMDF to interpret message parts of type application/safe-tcl upon
user confirmation. (At present, PMDF MAIL is the only component of PMDF which supports
Safe-Tcl.) The second lowest bit, when set, puts PMDF's Safe-Tcl interpreter into a very
paranoid mode in which it will not allow information from sensitive message header lines to
be disclosed to Safe-Tcl scripts.

The default value for this option is 3 which allows Safe-Tcl scripts to be executed upon user
confirmation, but does so in "paranoid" mode.

52.47.11 use_mail_delivery Option
OpenVMS only.

52.47.12 vms_mail_exclusive Option
OpenVMS only.

52–302 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Chapter 53 MTA Tailor options
53.1 Directory location MTA Tailor options ... 53–2

53.1.1 imta_root MTA Tailor option ... 53–2
53.1.2 imta_lib MTA Tailor option ... 53–3
53.1.3 imta_bin MTA Tailor option ... 53–3
53.1.4 imta_table MTA Tailor option ... 53–3
53.1.5 imta_dl MTA Tailor option ... 53–3
53.1.6 imta_log MTA Tailor option ... 53–3
53.1.7 imta_tmp Option .. 53–4
53.1.8 imta_db_tmp Option .. 53–4
53.1.9 imta_queue Option .. 53–4
53.1.10 imta_help Option .. 53–4
53.1.11 imta_lang Option .. 53–4
53.1.12 imta_program MTA Tailor option ... 53–5

53.2 File name MTA Tailor options ... 53–5
53.2.1 imta_option_file MTA Tailor option ... 53–5
53.2.2 imta_system_filter_file MTA Tailor option 53–5
53.2.3 imta_config_file MTA Tailor option ... 53–5
53.2.4 imta_xml_config_file MTA Tailor option 53–6
53.2.5 imta_command_data MTA Tailor option ... 53–6
53.2.6 imta_config_data MTA Tailor option ... 53–6
53.2.7 imta_charset_data MTA Tailor option ... 53–6
53.2.8 imta_alias_file MTA Tailor option ... 53–6
53.2.9 imta_primary_log MTA Tailor option ... 53–7
53.2.10 imta_secondary_log MTA Tailor option 53–7
53.2.11 imta_tertiary_log MTA Tailor option ... 53–7
53.2.12 imta_primary_connection_log Option 53–7
53.2.13 imta_secondary_connection_log Option 53–7
53.2.14 imta_tertiary_connection_log Option 53–7
53.2.15 imta_name_content_file Option ... 53–8
53.2.16 imta_forward_data Option ... 53–8
53.2.17 imta_reverse_data Option ... 53–8
53.2.18 imta_general_data Option ... 53–8
53.2.19 imta_alias_database Option ... 53–8
53.2.20 imta_reverse_database Option ... 53–8
53.2.21 imta_forward_database Option ... 53–9
53.2.22 imta_general_database Option ... 53–9
53.2.23 imta_domain_database Option ... 53–9
53.2.24 imta_ssr_database Option ... 53–9
53.2.25 imta_dn_to_id_database Option ... 53–9
53.2.26 imta_user_profile_database Option ... 53–9
53.2.27 imta_charset_option_file Option ... 53–9
53.2.28 imta_mapping_file Option ... 53–9
53.2.29 imta_conversion_file Option ... 53–10
53.2.30 imta_hold Option .. 53–10
53.2.31 imta_jbc_config_file Option ... 53–10
53.2.32 imta_dispatcher_config Option ... 53–10
53.2.33 imta_libutil Option .. 53–10
53.2.34 imta_libmap Option .. 53–10
53.2.35 imta_security_config_file Option ... 53–10

53.3 User MTA Tailor options ... 53–11

MTA Tailor options 53–1

Directory location MTA Tailor
options

53.3.1 imta_user MTA Tailor option ... 53–11
53.3.2 imta_user_username MTA Tailor option ... 53–11
53.3.3 imta_world_group MTA Tailor option ... 53–11

53.4 Scheduling MTA Tailor options ... 53–11
53.4.1 imta_version_limit Option .. 53–11
53.4.2 imta_version_limit_period Option .. 53–12
53.4.3 imta_return_period Option .. 53–12
53.4.4 imta_return_synch_period Option .. 53–12
53.4.5 imta_return_split_period Option .. 53–12
53.4.6 imta_return_cleanup_period Option .. 53–12
53.4.7 imta_verify_return Option .. 53–12
53.4.8 imta_synch_cache_period Option .. 53–12

In legacy configuration, various MTA installation and operational parameters would be set in
the MTA Tailor file (imta_tailor) of option settings. But with Unified Configuration, the
MTA Tailor file is obsolete and no longer used.

Old MTA Tailor options that specified locations of MTA directories or names of MTA
configuration files have typically been replaced by rationalized, consistent locations based off
the installation main location and located via the SERVERROOT environment variable.

The SERVERROOT value in turn is used to construct the DATAROOT value (either
/var/SERVERROOT or SERVERROOT/data) and CONFIGROOT value (either /
var/SERVERROOT/config or SERVERROOT/config).

New in 8.0, the recipe language has a "get_path" function that takes as argument "server",
"data", or "config", and returns a file path to the current server instance; e.g.:

msconfig> exec get_path "server"
> "/opt/sun/comms/messaging64"
msconfig> exec get_path "config"
> "/opt/sun/comms/messaging64/config"
msconfig> exec get_path "data"
> "/opt/sun/comms/messaging64/data"

As of Messaging Server 7.0.5, MTA Tailor options that determined the username and group of
the MTA user and unprivileged user have been moved to the file restricted.cnf.

MTA Tailor options controlling some aspects of scheduling of MTA tasks have either been
incorporated into values in Scheduler tasks, or replaced by various mta.option-name
Unified Configuration options.

53.1 Directory location MTA Tailor options
As of Messaging Server 7.0-0.04, many formerly configurable (via MTA Tailor option) MTA
directory locations are now hard-coded. tmpdir (formerly called imta_tmp) and langdir
(formerly called imta_lang) are still configurable.

53.1.1 MTA Tailor options: imta_root (directory path)
DELETED. Root of the MTA installation is now determined via the SERVERROOT
environment variable.

53–2 Messaging Server Reference

imta_lib MTA Tailor option

Note that for MTA purposes, a special symbolic name IMTA_ROOT is still available for use in
certain contexts (such as when the MTA is interpreting msconfig option values, or file path
specifications).

53.1.2 MTA Tailor options: imta_lib (MTA directory
path)

DELETED.

The directory containing MTA run-time libraries is no longer configurable and instead is now
determined via the SERVERROOT, namely SERVERROOT/lib/.

Note that for MTA purposes, a special symbolic name IMTA_LIB is still available for use in
certain contexts, such as when specifying the location of an Oracle-supplied shared library
being used in a mapping callout or rewrite rule callout.

53.1.3 MTA Tailor options: imta_bin (MTA directory
path)

DELETED.

The directory containing MTA executable binaries is no longer configurable, instead now
being determined via the SERVERROOT, namely SERVERROOT/lib/.

Note that the special symbol name IMTA_BIN is still available for use in some MTA contexts.

53.1.4 MTA Tailor options: imta_table (MTA directory
path)

DELETED.

The location of the MTA configuration directory is now determined using the CONFIGROOT.
Note that with Unified Configuration, many fewer files comprise the MTA configuration than
formerly, with legacy configuration, so this CONFIGROOT/ directory contains fewer files.

Note that the special symbol name IMTA_TABLE is still available for use in some MTA
contexts.

53.1.5 MTA Tailor options: imta_dl (MTA directory path)
DELETED.

Obsolete directory used by iMS 5.x for directory synchronization. No longer used.

53.1.6 MTA Tailor options: imta_log (MTA directory
path)

DELETED.

MTA Tailor options 53–3

imta_tmp Option

Formerly, the imta_log MTA Tailor option specified the directory where the MTA log files
are stored. This location is now determined from the SERVERROOT environment variable, as
SERVERROOT/log/. Sites may change it through the use of a symbolic link.

53.1.7 imta_tmp Option
The legacy configuration imta_tmp MTA Tailor option has been replaced in Unified
Configuration by tmpdir.

(Note that in MS 7.0, the imta_tmp MTA Tailor option was replaced by the tmpdir option in
the MTA option file.)

53.1.8 imta_db_tmp Option
The former imta_db_tmp MTA Tailor option used to be used to specify the MTA database
temporary file location. The subdirectory name stopped being configurable as of Messaging
Server 7.0-0.04 when the former IMTA_DB_TMP MTA Tailor option (available in MS 6.x
versions, and typically set during installation of such versions to /tmp/.mtadb/) was
removed, and instead as of Messaging Server 7.0 the MTA began using a hard-coded
subdirectory of .imtadb underneath the (still-configurable) imta_tmp location. In Unified
Configuration, the legacy configuration MTA Tailor option imta_tmp has been replaced by
the tmpdir MTA (or base) option.

In other words: In MS 6.x, the MTA database temp file directory was fully configurable via
the former IMTA_DB_TMP MTA Tailor option, and was typically set via that option to /
tmp/.mtadb/. As of Messaging Server 7.0, the MTA database temp file directory was hard-
coded as the .imtadb subdirectory underneath imta_tmp -- so typically /tmp/.imtadb/.
As of Unified Configuration, imta_tmp has been replaced by the tmpdir MTA (or base)
option, so the MTA database temp file directory location is tmpdir-value/.imtadb/.

53.1.9 imta_queue Option
The obsolete imta_queue MTA Tailor option located the directory for the MTA's store-
and-forward message queues. This directory is now determined from the SERVERROOT
environment variable. Sites may change it using either a symbolic link or using it as a file
system mount point.

Note that for MTA purposes, a special symbolic name IMTA_QUEUE is still available for use in
certain contexts (such as when the MTA is interpreting msconfig option values, or file path
specification input to MTA command line utilities).

53.1.10 imta_help Option
Formerly, the location of the MTA help files was controllable by an MTA Tailor option,
imta_help. That Tailor option (indeed, the Tailor file as a whole) is now obsolete; in
particular, the location of MTA help files is no longer configurable.

53.1.11 imta_lang Option
The legacy configuration imta_lang MTA Tailor option has been replaced in Unified
Configuration by the langdir MTA option, mta.langdir.

53–4 Messaging Server Reference

imta_program MTA Tailor
option

53.1.12 MTA Tailor options: imta_program (MTA
directory path)

DELETED.

Formerly, the imta_program MTA Tailor option specified the location of the directory
containing site-supplied executables for the pipe channel. This directory location is no
longer configurable, and is now always located as DATAROOT/site-programs/. If location
customization is desired, use symbolic links.

Note that the special symbol name IMTA_PROGRAM is still available for use in some MTA
contexts.

53.2 File name MTA Tailor options
A number of MTA Tailor file options existed in legacy configuration to specify the name (and
location) of various MTA configuration files. Such Tailor options are, by and large, obsolete
as of Unified Configuration, when "rationalized", consistent names and locations are used
unconditionally.

53.2.1 MTA Tailor options: imta_option_file (MTA file
path)

DELETED.

Location of the (legacy configuration mode) option.dat file. No longer configurable; when
legacy configuration is used, the option.dat file is located as CONFIGROOT/option.dat.

With a Unified Configuration, the option.dat file is obsolete and no longer used; instead
MTA options are stored in the Unified Configuration file, config.xml, and inspected or
modified using the msconfig utility. Generally, the options formerly stored in option.dat
correspond to mta.option-name options in Unified Configuration -- though with occasional
exceptions for options instead at base level or which have been consolidated with other,
general, Messaging Server options.

53.2.2 MTA Tailor options: imta_system_filter_file
(MTA file path)

DELETED.

Location of the MTA-wide Sieve filter file. No longer configurable, it is now located in legacy
configuration as CONFIGROOT/imta.filter; in Unified Configuration, see instead the
systemfilter MTA option.

53.2.3 MTA Tailor options: imta_config_file (MTA file
path)

DELETED.

MTA Tailor options 53–5

imta_xml_config_file MTA
Tailor option

Name and location of the primary MTA configuration file, imta.cnf. The name and location
of this file are no longer configurable.

In legacy configuration mode, it is CONFIGROOT/imta.cnf. But in Unified Configuration, the
contents of the legacy imta.cnf file have been incorporated into the Unified Configuration
file config.xml file, located at CONFIGROOT/config.xml.

53.2.4 MTA Tailor options: imta_xml_config_file
(MTA file path)

DELETED.

The location of the Unified Configuration file, config.xml, is automatically determined
using the SERVERROOT environment variable, namely CONFIGROOT/config.xml

53.2.5 MTA Tailor options: imta_command_data (MTA
file path)

DELETED.

The location and name of compiled command line data built by the clbuild from the
pmdf.cld file. This location and name are no longer configurable, instead being located via
the SERVERROOT environment variable, namely CONFIGROOT/advanced/command_data.

53.2.6 MTA Tailor options: imta_config_data (MTA file
path)

DELETED.

The location and name of the compiled configuration built by the cnbuild utility. The
location and name are no longer configurable, instead being located via the SERVERROOT
environment variable, namely CONFIGROOT/advanced/config_data.

53.2.7 MTA Tailor options: imta_charset_data (MTA
file path)

DELETED.

The location and name of compiled character set data built by the chbuild utility. This
information is no longer configurable, instead being located via the SERVERROOT
environment variable, namely CONFIGROOT/advanced/charset_data.

53.2.8 MTA Tailor options: imta_alias_file (MTA file
path)

DELETED.

Name and location of the MTA alias file. In legacy configuration, the name and location
became no longer configurable as of Messaging Server 7.0, being instead located via the
CONFIGROOT value, namely CONFIGROOT/aliases

53–6 Messaging Server Reference

imta_primary_log MTA Tailor
option

In Unified Configuration, the MTA alias file is obsolete and instead the contents of the MTA
alias file have been incorporated into the Unified Configuration file, config.xml, as alias
settings.

53.2.9 MTA Tailor options: imta_primary_log (MTA file
path)

DELETED.

In legacy configuration, the MTA Tailor option imta_primary_log specified the name
and location of today's MTA message transaction log file. This is no longer configurable,
and instead located via the SERVERROOT environment variable as DATAROOT/log/
mail.log_current.

53.2.10 MTA Tailor options: imta_secondary_log (MTA
file path)

DELETED.

Name and location of yesterday's MTA message transaction log file. No longer configurable,
and instead located via the SERVERROOT environment variable as DATAROOT/log/
mail.log_yesterday.

53.2.11 MTA Tailor options: imta_tertiary_log (MTA
file path)

DELETED.

Name and location of the MTA's cumulative message transaction log file. No longer
configurable, and instead located via the SERVERROOT environment variable as DATAROOT/
log/mail.log.

53.2.12 imta_primary_connection_log Option
DELETED.

Name and location of today's MTA connection transaction log file. No longer configurable,
and instead located via the SERVERROOT environment variable as DATAROOT/log/
connection.log_current.

53.2.13 imta_secondary_connection_log Option
DELETED.

Name and location of yesterday's MTA connection transaction log file. No longer configurable,
and instead located via the SERVERROOT environment variable as DATAROOT/log/
connection.log_yesterday.

53.2.14 imta_tertiary_connection_log Option

MTA Tailor options 53–7

imta_name_content_file
Option

Name and location of the MTA's cumulative connection transaction log file. No longer
configurable, and instead located via the SERVERROOT environment variable as DATAROOT/
log/connection.log.

53.2.15 imta_name_content_file Option
Table of conversion channel part reading defaults by media type and file extensions. The name
and location of this file is no longer configurable, and instead located via the SERVERROOT
environment variable as SERVERROOT/lib/name_content.dat.

53.2.16 imta_forward_data Option
The DELETED imta_forward_data MTA Tailor option had been used to specify the
name and location of the forward address translation text database file which replaces the
deprecated crdb form of forward database. The name and location of this file is no longer
configurable; the text form source file is now unconditionally IMTA_TABLE:forward.txt
(where note that IMTA_ROOT is a special symbolic name interpreted by the MTA).

53.2.17 imta_reverse_data Option
The DELETED imta_reverse_database MTA Tailor option had been used to specify
the name and location of the reverse address translation text database file which replaces the
deprecated crdb form of the reverse database. The name and location of this file are no longer
configurable; the text form source file is now unconditionally IMTA_TABLE:reverse.txt
(where note that IMTA_ROOT is a special symbolic name interpreted by the MTA).

53.2.18 imta_general_data Option
DELETED: Location no longer configurable. (The imta_general_data MTA Tailor option
had been used to specify the location and name of the text file source for the MTA general
database, used when the use_text_database MTA option specifies use of such "text" form,
replacing the deprecated crdb form of the general database.) The text form source file is
now unconditionally IMTA_TABLE:general.txt (where note that IMTA_ROOT is a special
symbolic name interpreted by the MTA).

53.2.19 imta_alias_database Option
DELETED: Location no longer configurable. (The imta_alias_database MTA Tailor
option had been used to specify the location and name of the deprecated crdb form of MTA
alias database.)

Various ways of storing aliases are supported, not necessarily in a "database".

53.2.20 imta_reverse_database Option
DELETED: Location no longer configurable. (The imta_reverse_database MTA Tailor
option had been used to specify the location and name of the deprecated crdb form of MTA
reverse database.)

For continued use of a so-called "reverse database" in modern configurations, see the
use_text_databases MTA option.

53–8 Messaging Server Reference

imta_forward_database
Option

53.2.21 imta_forward_database Option
DELETED: Location no longer configurable. (The imta_forward_database MTA Tailor
option had been used to specify the location and name of the deprecated crdb form of MTA
forward database.)

For continued use of a so-called "forward database" in modern configurations, see the
use_text_databases MTA option.

53.2.22 imta_general_database Option
DELETED: Location no longer configurable. (The imta_general_database MTA Tailor
option had been used to specify the location and name of the deprecated crdb form of MTA
general database.)

For continued use of a so-called "general database" in modern configurations, see the
use_text_databases MTA option.

53.2.23 imta_domain_database Option
DELETED: Location no longer configurable. (The imta_domain_database MTA Tailor
option had been used to specify the location and name of the deprecated domain database.)

53.2.24 imta_ssr_database Option
DELETED: Location no longer configurable. (The imta_ssr_database MTA Tailor option
had been used to specify the location and name of the deprecated Server Side Rules database --
the database accessed when evaluating no longer supported ssr: URLs.)

53.2.25 imta_dn_to_id_database Option
DELETED: the imta_dn_to_id_database MTA Tailor option had specified the name and
location of the legacy dirsync DN to ID database.

53.2.26 imta_user_profile_database Option
DELETED: Location no longer configurable. (The imta_user_profile_database MTA
Tailor option had been used to specify the location and name of the deprecated profile
database -- a database optionally used by pipe channels.)

53.2.27 imta_charset_option_file Option
DELETED: Location no longer configurable. (The imta_charset_option_file MTA Tailor
option had been used to specify the name and location of chbuild's charset options file. This
name and location are no longer configurable.)

53.2.28 imta_mapping_file Option
DELETED: This location is not longer configurable. (The imta_mapping_file MTA Tailor
option had been used to specify the name and location of the file containing MTA mapping
tables.)

MTA Tailor options 53–9

imta_conversion_file Option

In legacy configuration, the mappings file is now always CONFIGROOT/mappings. In
Unified Configuration, the content of the mappings file has been incorporated into the XML
configuration file, config.xml, as named mapping groups.

53.2.29 imta_conversion_file Option
DELETED: This location is no longer configurable. (The imta_conversion_file MTA
Tailor option had been used to specify the name and location of the conversions file storing
message conversion commands. This name and location are no longer configurable; in Unified
Configuration, see instead the conversions MTA option.)

53.2.30 imta_hold Option
Formerly, the name and location of the file storing the list of stopped MTA channels (see the qm
utility's stop command) was controllable by an MTA Tailor option, imta_hold. That Tailor
option (indeed, the Tailor file as a whole) is now obsolete; in particular, the name and location
of the file listing stopped MTA channels is no longer configurable.

53.2.31 imta_jbc_config_file Option
Formerly, the location of the Job Controller's configuration file was controlled by an MTA
Tailor option, imta_jbc_config_file. That Tailor option (indeed, the Tailor file as a whole)
is now obsolete, as the contents of the Job Controller configuration file have been incorporated
into the XML configuration file; see instead Job Controller options.

53.2.32 imta_dispatcher_config Option
Formerly, the location of the Dispatcher's configuration file was controlled by an MTA Tailor
option, imta_dispatcher_config. That Tailor option (indeed, the Tailor file as a whole) is
now obsolete, as the contents of the Dispatcher configuration file have been incorporated into
the XML configuration file; see instead Dispatcher options.

53.2.33 imta_libutil Option
Formerly, the name and location of the imtautil shared library was controllable by an MTA
Tailor option, imta_libutil. That Tailor option (indeed, the Tailor file as a whole) is now
obsolete; in particular, the name and location of the imtautil shared library is no longer
configurable.

53.2.34 imta_libmap Option
Formerly, the name and location of the imtamap shared library was controllable by an MTA
Tailor option, imta_libmap. That Tailor option (indeed, the Tailor file as a whole) is now
obsolete; in particular, the name and location of the imtamap shared library is no longer
configurable.

53.2.35 imta_security_config_file Option
Formerly, the name and location of the MTA security configuration file was controllable by
an MTA Tailor option, imta_security_config_file. That MTA Tailor option has been
deleted; the contents of the MTA security configuration file have been incorporated into the
XML configuration file instead.

53–10 Messaging Server Reference

User MTA Tailor options

53.3 User MTA Tailor options
As of Messaging Server 7.0.5, the former imta_user, imta_user_username, and
imta_world_group MTA Tailor options have been moved to the restricted.cnf file
under the names user, noprivuser, and group, respectively.

53.3.1 Tailor file options: imta_user (string)
DELETED as of MS 7.0.5.

In earlier versions, the (now deleted) imta_user MTA Tailor option specified the user name
for MTA operations. As of MS 7.0.5, it was moved to the restricted.cnf file as the "user"
option (which also subsumes the former Message Store serveruid option).

53.3.2 Tailor file options: imta_user_username (string)
DELETED.

User name for untrusted operations such as MTA sequence number file access, or untrusted
pipe channel operations. Moved to the restricted.cnf file as the "noprivuser" option.

53.3.3 Tailor file options: imta_world_group (string)
DELETED.

Prior to MS 7.0.5, the imta_world_group MTA Tailor file option specified the group
name for messaging server operations. As of MS 7.0.5, it has instead been moved to the
restricted.cnf file as the "group" option.

53.4 Scheduling MTA Tailor options
Various former MTA Tailor options relating to scheduling of MTA operations have been
moved (sometimes renamed) or obsoleted as of Messaging Server 7.0.5.

The former imta_version_limit, imta_version_limit_period,
imta_return_period, imta_return_synch_period, and imta_synch_cache_period
MTA Tailor options are obsolete. The effects they were used to achieve should instead
nowadays be configured via the appropriate settings on relevant Scheduler tasks, in particular,
settings on the purge and return_job tasks, and by using the synch_time Job Controller
option.

The former imta_return_split_period has become mta.return_split_period;
imta_verify_return has become (note the change in name!) mta.return_verify;
imta_return_split_period has become mta.return_split_period;
imta_return_cleanup_period has become mta.return_cleanup_period.

53.4.1 imta_version_limit Option
The imta_version_limit option is obsolete as of Messaging Server 7.0.5. (Formerly
controlled the number of MTA log file versions retained when imsimta purge was run
periodically.) In Unified Configuration, see instead the schedule.task:purge.crontab
option.

MTA Tailor options 53–11

imta_version_limit_period
Option

53.4.2 imta_version_limit_period Option
Obsolete option. In Unified Configuration, see instead the schedule.task:purge.crontab
option.

53.4.3 imta_return_period Option
Obsolete option. In Unified Configuration, see instead the
schedule.task:return_job.crontab option.

53.4.4 imta_return_synch_period Option
Obsolete option. See the synch_time Job Controller option instead.

53.4.5 imta_return_split_period Option
The legacy configuration imta_return_split_period MTA Tailor option has
been replaced in Unified Configuration by the return_split_period MTA option,
mta.return_split_period.

53.4.6 imta_return_cleanup_period Option
The legacy configuration imta_return_cleanup_period MTA Tailor option has
been replaced in Unified Configuration by return_cleanup_period MTA option,
mta.return_cleanup_period.

53.4.7 imta_verify_return Option
The legacy configuration imta_verify_return MTA Tailor option has been replaced in
Unified Configuration by the return_verify MTA option, mta.return_verify.

53.4.8 imta_synch_cache_period Option
Obsolete option. See the synch_time Job Controller option instead.

53–12 Messaging Server Reference

Chapter 54 Dispatcher
54.1 Dispatcher operation ... 54–2

54.1.1 Creation and expiration of Dispatcher Worker Processes 54–2
54.2 Dispatcher options .. 54–3

54.2.1 enable Option Under dispatcher ... 54–3
54.2.2 enable Option Under service .. 54–3
54.2.3 backlog Option Under service .. 54–3
54.2.4 debug Option Under dispatcher ... 54–3
54.2.5 dns_verify_domain Dispatcher option .. 54–4
54.2.6 historical_time Dispatcher option .. 54–5
54.2.7 image Dispatcher option .. 54–6
54.2.8 interface_address Dispatcher or Job Controller option 54–6
54.2.9 listenaddr Dispatcher (global) option .. 54–6
54.2.10 listenaddr Dispatcher (service) option ... 54–6
54.2.11 logfilename Option .. 54–7
54.2.12 max_conns Dispatcher option (non-negative integer) 54–7
54.2.13 Dispatcher service options: max_conns (non-negative integer) 54–7
54.2.14 min_conns Dispatcher option .. 54–8
54.2.15 max_handoffs Dispatcher option .. 54–8
54.2.16 max_idle_time Option .. 54–8
54.2.17 max_life_conns Option Under dispatcher 54–9
54.2.18 max_life_time Option Under dispatcher .. 54–9
54.2.19 max_procs Dispatcher option .. 54–9
54.2.20 max_shutdown Option .. 54–9
54.2.21 min_procs Dispatcher option .. 54–10
54.2.22 parameter Dispatcher option .. 54–10
54.2.23 port Option Under dispatcher .. 54–10
54.2.24 Service group ... 54–10
54.2.25 stacksize Option .. 54–11
54.2.26 ssl_ports Dispatcher option .. 54–11
54.2.27 tcp_ports Option Under service ... 54–11
54.2.28 tls_min_bits Dispatcher service option ... 54–12
54.2.29 tls_bits_reject_msg Dispatcher service option 54–12
54.2.30 user Option Under dispatcher .. 54–12
54.2.31 user Option Under service ... 54–12
54.2.32 use_nslog Option Under dispatcher .. 54–12
54.2.33 loglevel Option Under mta ... 54–12
54.2.34 Old Dispatcher options ... 54–13

54.3 Dispatcher debugging and log files .. 54–13

The Dispatcher is one of the two major, "control" processes of the MTA (the other major such
process being the Job Controller).

The MTA's Dispatcher is a multithreaded connection dispatching agent that permits multiple
multithreaded server processes to share responsibility for a given service. When using the
MTA's service Dispatcher, it is possible in particular to have several multithreaded SMTP
server processes and several SMTP SUBMIT server processes running concurrently. In addition
to having multiple server processes for a single service, each server process may have one or
more active connections.

Dispatcher 54–1

Dispatcher operation

54.1 Dispatcher operation
The Dispatcher works by acting as a central receiver for the TCP ports listed in its
configuration. For each defined service, the Dispatcher may create one or more Worker
Processes that will actually handle the connections after they've been established.

The Dispatcher can selectively accept or reject incoming connections to the services it manages.
See the PORT_ACCESS mapping table.

In general, when the Dispatcher receives a connection for a defined TCP port, it checks its
pool of available Worker Processes and chooses the best candidate for the new connection. If
no suitable candidate is available and the configuration permits it, the Dispatcher may create
a new Worker Process to handle this and subsequent connections. The Dispatcher may also
proactively create a new Worker Process in expectation of future incoming connections. There
are several configuration options which may be used to tune the Dispatcher's control of its
various services, and in particular, to control the number of Worker Processes and the number
of connections each Worker Process handles; see Creation and expiration of Dispatcher
Worker Processes and Dispatcher options.

54.1.1 Creation and expiration of Dispatcher Worker
Processes

There are automatic housekeeping facilities within the Dispatcher to control the creation
of new and expiration of old or idle Worker Processes. The basic options that control the
Dispatcher's behavior in this respect are min_procs and max_procs. min_procs provides
a guaranteed level of service by having a number of Worker Processes ready and waiting
for incoming connections. max_procs, on the other hand, sets an upper limit on how many
Worker Processes may be concurrently active for the given service.

Since it is possible that a currently running Worker Process might not be able to accept any
connections either because it is already handling the maximum number of connections of
which it is capable or because the process has been scheduled for termination, the Dispatcher
may create additional processes to assist with future connections.

The min_conns and max_conns options provide a mechanism to help you distribute the
connections among your Worker Processes. min_conns specifies the number of connections
that flags a Worker Process as "busy enough" while max_conns specifies the "busiest" that a
Worker Process can be.

In general, the Dispatcher will create a new Worker Process when the current number of
Worker Processes is less than min_procs or when all existing Worker Processes are "busy
enough" (the number of currently active connections each has is at least min_conns).

The max_life_conns, max_life_time, and max_idle_time Dispatcher options all affect
when the Dispatcher will expire "old" or idle Worker Processes.

Note that if a Worker Process is killed unexpectedly, e.g., by the UNIX kill command, the
Dispatcher will still create new Worker Processes as new connections come in. Only shutting
down the specific Dispatcher service, disabling the specific Dispatcher service followed by
restarting the Dispatcher, or shutting down the Dispatcher itself, will stop the Dispatcher's
creation of new, as-needed, Worker Processes, (up to the Dispatcher's configured maximum
number of such processes). (See the shutdown utility, or after disabling a service the restart
utility, for how to shut down a service entirely.)

54–2 Messaging Server Reference

Dispatcher options

54.2 Dispatcher options
The Dispatcher has a number of options, settable either at the Dispatcher top level (hence
affecting overall Dispatcher operation or becoming a default for Dispatcher services), or
settable under specific Dispatcher services (hence applying only to that service). E.g.,

msconfig> set dispatcher.debug 7
msconfig# set dispatcher.min_procs 2
msconfig# set dispatcher.service:SMTP.min_procs 3

In legacy configuration mode, Dispatcher options are set in the dispatcher.cnf file.

Generally, the Dispatcher must be restarted in order for its option changes to take effect.

When the dispatcher.use_nslog option has been enabled, see also the logfile options set
as dispatcher.logfile.*.

In addition to the substantial number of Dispatcher options relevant to modern configurations,
the Dispatcher also has a very large number of older options of only historical interest
nowadays (such as those for setting various OpenVMS process quotas), listed under Old
Dispatcher options.

54.2.1 enable Option Under dispatcher
The enable Dispatcher option is used to enable the dispatcher daemon.
This defaults to the value of the mta.enable (Unified Configuration) or
local.imta.enable (legacy configuration) option. When the Dispatcher is
enabled, the default for schedule.task:purge.enable (Unified Configuration) or
local.schedule.purge.enable (legacy configuration) is 1.

54.2.2 enable Option Under service
(New in 7.0.5) The enable Dispatcher service option controls whether the service is
enabled. It defaults to 1, but may be set to 0 to disable a service.

54.2.3 backlog Option Under service
The backlog Dispatcher service option controls the depth of the TCP backlog queue for
the socket. The default value for each Dispatcher service is max_conns*max_procs for that
service (with a minimum value of 128). Prior to the 7.0.5 release, the minimum value was 5.

54.2.4 debug Option Under dispatcher
The debug Dispatcher option (available under dispatcher and service) enables debug
output from the Dispatcher. It may be set either directly at the dispatcher level, or may
be enabled or disabled more selectively for a specific Dispatcher service by setting it under a
named service.

The IMTA_DISPATCHER_DEBUG environment variable can also be used to control dispatcher
debugging.

Dispatcher 54–3

dns_verify_domain Dispatcher
option

Table 54.1 Dispatcher Debug Bit Mask Values

Bit Value Description
0-31 -1 Extremely verbose output
0 1 Startup, initialization, shutdown message
1 2 Thread increment/decrement messages
2 4 Configuration loading messages
3 8 Process creation messages
4 16 Process activity messages
5 32 PORT_ACCESS mapping, connection

messages
6 64 Process calculation messages
7 128 Process shutdown messages
8 256 Socket listen, cookie messages
9 512 Dispatcher internal I/O messages
10 1024 Dispatcher internal read messages
11 2048 Currently unused
12 4096 Process management messages
13 8192 Process handoff messages
14 16384 Dispatcher message processing messages
15 32768 Currently unused
16 65536 Successful connection message
17 131072 Connection accept, TLS messages
18 262144 Currently unused
19 524288 Commands
20 1048576 Statistics messages
21 2097152 Currently unused
22 4194304 Currently unused
23 8388608 Currently unused
24 16777216 Connection rejection message (subset of bits 4

and 5)

54.2.5 dns_verify_domain Option
Various groups maintain information about spam sources or open relay sites and some
sites like to check incoming IP connections against the lists maintained by such groups. The
dns_verify_domain Dispatcher service option specifies the host name or IP address of
source against which to check incoming connections.

Note that an alternative to use of the dns_verify_domain Dispatcher service option
is use of a dns_verify routine callout from a mapping table such as PORT_ACCESS. The
dns_verify_domain Dispatcher service option is simple to set -- but use of dns_verify

54–4 Messaging Server Reference

historical_time Dispatcher
option

callouts (which come in several flavors) from a mapping table allows for more precise control
of checks.

Note that PORT_ACCESS mapping table probes (which may optionally be configured
to perform their own DNS verification checks using a dns_verify routine callout) are
made before any dns_verify_domain Dispatcher service option lookups are consulted.
If a PORT_ACCESS probe rejects a connection, then the dns_verify_domain Dispatcher
service option lookup does not need to be (and is not) performed. And as of MS 6.0, an
explicit match in the PORT_ACCESS mapping table that accepts a connection will cause any
dns_verify_domain lookups to be omitted for that connection; thus the PORT_ACCESS
mapping table can be used to "white list" source IP addresses (such as internal IP addresses)
which should not receive the DNS verification lookup.

In legacy configuration, up to five dns_verify_domain options are permitted for each
service. In Unified Configuration, the dns_verify_domain Dispatcher service option
takes a host-list of up to five hosts. (Note that SMTP is typically the only service for which such
checks make sense.) For example, in Unified Configuration:

msconfig> set dispatcher.service:SMTP.dns_verify_domain "rbl.maps.vis.com dul.maps.vis.com"

Or analogously in legacy configuration:

 [SERVICE=SMTP]
 PORT=25
 DNS_VERIFY_DOMAIN=rbl.maps.vix.com
 DNS_VERIFY_DOMAIN=dul.maps.vix.com

If this option is enabled on a well-known port (25, 110, or 143), then a standard message such
as the one below will be sent before the connection is closed:

500 5.7.1 access_control: host 192.168.51.32 found on DNS list and rejected

If you wish the MTA to log such rejections, you may set the 24th bit (starting at bit 0) of the
Dispatcher debugging debug option, in Unified Configuration:

msconfig> set dispatcher.debug 16777216

or in legacy configuration debug=16%1000000, to cause logging of the rejections to the
dispatcher.log file; see Dispatcher debugging and log files. Such dispatcher.log
entries will take the form:

access_control: host a.b.c.d found on DNS list and rejected

54.2.6 historical_time Option
The historical_time Dispatcher option controls how long (in seconds) expired
connections (those that have been closed) and processes (those that have exited) remain
listed for statistical purposes. Note that the setting of this option affects the amount of virtual

Dispatcher 54–5

image Dispatcher option

memory that the Dispatcher requires. This option is available both directly at dispatcher
level, or may be set under named Dispatcher services to override for that service the general
Dispatcher value.

Prior to 7.0.5, the default value had been 120 (2 minutes) but initial configuration set this value
to 0 (no history retained). As of 7.0.5, the default value is 0.

54.2.7 image Option
The image Dispatcher service option specifies the binary executable file that will be run by
Worker Processes when such processes are created by the Dispatcher. Note that the specified
executable file should be one designed to be controlled by the Dispatcher. Service names
beginning with "SMTP", "LMTP" or "MSADMIN" have default paths built-in as of the 7.0.5
release.

54.2.8 interface_address Option
The legacy option interface_address (Job Controller option and Dispatcher option) is an
alias for the job_controller.listenaddr and dispatcher.listenaddr options in
Unified Configuration.

54.2.9 listenaddr Option Under dispatcher
The listenaddr Dispatcher option (formerly INTERFACE_ADDRESS in legacy
configuration) can be used to specify the IPv4 address interface to which the Dispatcher
service should bind. By default, the Dispatcher binds to all IP addresses. But for systems
having multiple network interfaces each with its own IP address, it may be useful to bind
different services to the different interfaces. listenaddr may be set either directly under
dispatcher as dispatcher.listenaddr, in which case it sets the global default for
all services, or may be set under a specific service, dispatcher.service:service-
name.listenaddr, in which case it is setting the interface address to which that particular
service should bind.

Note that if listenaddr is specified for a service, then that is the only interface IP address
to which that Dispatcher service will bind. Only one such explicit interface IP address may
be specified for a particular service (though other similar Dispatcher services may be defined
for other interface IP addresses). Note that the interfaceaddress channel option provides the
complementary capability for specifying which interface address a TCP/IP channel uses for
outgoing connections and messages.

The allowed values for this option include an IPv4 address in dotted decimal form (e.g.,
127.0.0.1), or a short form or fully-qualified DNS host name which will be resolved to an IPv4
address by obtaining the DNS A record for the name. To explicitly specify the default value
of binding to all available interfaces, the string "INADDR_ANY" may be used. To bind to the
loopback device, 127.0.0.1, the string "localhost" may be specified.

54.2.10 listenaddr Option Under service
The listenaddr Dispatcher service option (formerly INTERFACE_ADDRESS in legacy
configuration) can be used to specify the IPv4 address interface to which the Dispatcher
service should bind. By default, the Dispatcher binds to all IP addresses. But for systems
having multiple network interfaces each with its own IP address, it may be useful to bind

54–6 Messaging Server Reference

logfilename Option

different services to the different interfaces. listenaddr may be set either directly under
dispatcher as dispatcher.listenaddr, in which case it sets the global default for
all services, or may be set under a specific service, dispatcher.service:service-
name.listenaddr, in which case it is setting the interface address to which that particular
service should bind.

Note that if listenaddr is specified for a service, then that is the only interface IP address
to which that Dispatcher service will bind. Only one such explicit interface IP address may
be specified for a particular service (though other similar Dispatcher services may be defined
for other interface IP addresses). Note that the interfaceaddress channel option provides the
complementary capability for specifying which interface address a TCP/IP channel uses for
outgoing connections and messages.

The allowed values for this option include an IPv4 address in dotted decimal form (e.g.,
127.0.0.1), or a short form or fully-qualified DNS host name which will be resolved to an IPv4
address by obtaining the DNS A record for the name. To explicitly specify the default value
of binding to all available interfaces, the string "INADDR_ANY" may be used. To bind to the
loopback device, 127.0.0.1, the string "localhost" may be specified.

54.2.11 logfilename Option
Specifying the logfilename option for a named service causes the Dispatcher to
direct output for corresponding Worker Processes to the specified file. The log file may
include the system's name by including the %s token. (The value may also make use
of special symbolic names known to the MTA, such as IMTA_LOG.) The default log
file name is the service name with a ".log" suffix, except for "SMTP_SUBMIT" which
defaults to "IMTA_LOG:tcp_submit_server.log" and "SMTP" which defaults to
"IMTA_LOG:tcp_smtp_server.log".

54.2.12 max_conns Option Under dispatcher
The max_conns Dispatcher option specifies the maximum number of concurrent
connections handled by a single server process (Worker Process). When the maximum
number of concurrent sessions is reached, the server process stops listening for new
connections. When all currently open connections are closed, the process will exit. Setting
dispatcher.max_conns sets a global default, which may be overridden for specific
services by setting max_conns under that service, e.g., dispatcher.service:service-
name.max_conns.

Prior to Messaging Server 7.0.5, the default value was 10, but initial configuration set the
option explicitly to 50. As of 7.0.5, the default value is now 50. In Messaging Server 7.2 and
earlier, the maximum possible value for this option was unconditionally 50, with attempts to
set a value higher than 50 resulting in the value of 50 being used. As of Messaging Server 7.3,
the maximum of 50 is only enforced on 32 bit platforms; 64 bit platforms allow any value.

Setting max_conns to higher values allows more connections, but at the potential cost of
decreased performance for each individual connection. If it is set to 1, then for every incoming
client connection, only one server process will be used. When the client shuts down, the server
process will also exit. Note that the max_conns value times the max_procs value controls the
maximum number of simultaneous connections that can be accepted.

54.2.13 max_conns Option Under service

Dispatcher 54–7

min_conns Dispatcher option

The max_conns Dispatcher service option, dispatcher.service:service-
name.max_conns, specifies the maximum number of concurrent connections handled by
a single server process (Worker Process) for this service. When the maximum number of
concurrent sessions is reached, the server process stops listening for new connections. When
all currently open connections are closed, the process will exit.

Such a per-service setting overrides any global Dispatcher setting
(dispatcher.max_conns).

The default value for this option is 50. In Messaging Server 7.0.2 and earlier as well as legacy
32 bit platforms, the maximum possible value for this option was unconditionally 50, with
attempts to set a value higher than 50 resulting in the value of 50 being used.

In principle, for services running under the Dispatcher where the server image is not
multithreaded, this option must be set to 1. However, the main Dispatcher services of interest,
including the MTA's SMTP server and LMTP server, are multi-threaded and therefore capable
of handling multiple clients. For such multithreaded servers, the choice of setting for this
option is mainly a performance issue relating to the number of processes and the size of the
process virtual address space. Setting max_conns to higher values allows more connections,
but at the potential cost of decreased performance for each individual connection. If it is set
to 1, then for every incoming client connection, only one server process will be used. When
the client shuts down, the server process will also exit. Note that the max_conns value times
the max_procs value controls the maximum number of simultaneous connections that can be
accepted.

54.2.14 min_conns Option
The Dispatcher attempts to distribute connections evenly across its pool of currently
available Worker Processes. The Dispatcher uses the min_conns value to determine the
minimum number of connections that each Worker Process must have before there will be any
consideration of adding new Worker Processes to the pool. Prior to 7.0.5, the default value was
3 while initial configuration set this to 30. As of 7.0.5, the default value is 30.

min_conns may be set either under dispatcher (to establish a general default for
Dispatcher services), or under a specific named service (to apply only to that named
service).

54.2.15 max_handoffs Option
The max_handoffs Dispatcher option (available under dispatcher and service) specifies
the maximum number of concurrent asynchronous handoffs in progress that the Dispatcher
will allow for newly established TCP/IP connections to a service port. The option may be set
either directly at the dispatcher level to establish a default value for all Dispatcher servioces,
or may be set for specific named services. The default value is 5.

54.2.16 max_idle_time Option
When a Worker Process has had no active connections for the period of the
max_idle_time Dispatcher option, the process will be eligible for being shut down.
max_idle_time may be set either directly under dispatcher, to set a default for all
Dispatcher servies, or may be set for a particular service under the Dispatcher, e.g.,

54–8 Messaging Server Reference

max_life_conns Option Under
dispatcher

dispatcher.service:SMTP.max_idle_time. Note that the max_idle_time option is
only effective if there are more than the value of min_procs Worker Processes currently in the
Dispatcher's pool for this service.

Prior to 7.0.5, the default value had been 0 while initial configuration set this to 600. As of
7.0.5, the default value is 600 seconds (10 minutes).

54.2.17 max_life_conns Option Under dispatcher
As part of the Dispatcher's ability to perform Worker Process housekeeping, the
max_life_conns Dispatcher option (available under dispatcher and service) requests
that Worker Processes only be kept around for the specified number of connections. After a
Worker Process has handled the specified number of connections, it is subject to being shut
down. For instance, when specified in an SMTP service section, this is the number of total
connections an SMTP server process is able to accept before being retired so a new SMTP
server process can take its place. This is different from the max_conns Dispatcher option,
which limits the number of concurrent connections.

The default value has been 300, while initial configuration set the option value to 10000. As
of 7.0.5, the default value is 10000.

54.2.18 max_life_time Option Under dispatcher
When the Dispatcher creates a server Worker Process, a countdown timer is set to the number
of seconds specified by the max_life_time Dispatcher option. When this countdown time
has expired, the Worker Process is subject to being shut down. The max_life_time option
may be set either directly under dispatcher, as a default for services, or may be set at the
named service level to affect solely that named service. The Dispatcher's default is 1 day
(86400).

54.2.19 max_procs Option
The max_procs Dispatcher option (available under dispatcher and service) controls
the maximum number of Worker Processes that will be created for a service. Thus this value
times max_conns specifies the maximum number of simultaneous connections that can be
handled. The max_procs option may be set either directly under dispatcher, as a default
for all services, or may be set for a named service to affect solely that named service. Prior
to 7.0.5, the default value was 5 while initial configuration set this to 10. As of 7.0.5, the default
value is 10.

54.2.20 max_shutdown Option
The max_shutdown Dispatcher option (available under dispatcher and service)
specifies a maximum number of processes that may be shutting down. In order to provide
a minimum availability for the service, the Dispatcher will not shut down Worker Processes
that might otherwise be eligible to be shut down if shutting them down would result in
having more than max_shutdown Worker Processes for the service in the shutting down
state. This means that processes that may be eligible to be shut down may continue running
until a shutdown "slot" is available. Having this option set to about half of the value of the
max_procs option is usually appropriate. The max_shutdown option may be set either
directly under dispatcher, as a default for all services, or may be set for a named service
to affect solely that named service. As of 7.0.5, the default value is 5.

Dispatcher 54–9

min_procs Dispatcher option

54.2.21 min_procs Option
The min_procs Dispatcher option (available under dispatcher and service) determines
the minimum number of Worker Processes that will be created by the Dispatcher for the
current service. The min_procs option may be set either directly under dispatcher, as
a default for all services, or may be set for a named service to affect solely that named
service. Upon startup, the Dispatcher will create this many detached processes to start its
pool. When an old such process expires, the Dispatcher will ensure that there are at least this
many available processes (by creating a new process, if necessary) in the pool for this service.

As of 7.0.5, the default is 1; in prior versions, the default had been 0.

54.2.22 parameter Option
The interpretation and allowed values for the parameter Dispatcher service option
are service specific. In the case of an SMTP service, the parameter option may be set to
CHANNEL=channelname, to associate a default TCP/IP channel with the port for that SMTP
service. (Note that the presence of the equal sign within the value means that when using
msconfig, the value will need to be quoted.) For example, the SMTP_SUBMIT service sets
parameter to "CHANNEL=tcp_submit" so that incoming mail submissions are handled on
that channel.

msconfig> show service:SMTP_SUBMIT.parameter
role.dispatcher.service:SMTP_SUBMIT.parameter = CHANNEL=tcp_submit

Note that using parameter to set a channel name can be useful if you wish to run SMTP
servers on multiple ports---perhaps because your internal POP and IMAP clients have been
configured to use a port such as the submission port 587 rather than port 25, thus separating
their message traffic from incoming SMTP messages from external SMTP hosts---and if you
wish to associate different TCP/IP channels with the different port numbers.

54.2.23 port Option Under dispatcher
In Unified Configuration, the tcp_ports Dispatcher service option is the preferred name
for the Dispatcher PORT option used in legacy configuration.

54.2.24 Service group
Besides a few options affecting Dispatcher operation as a whole, or set directly at the
dispatcher level to establish defaults for Dispatcher services lacking their own specific
settings, the primary way that Dispatcher options are set is within named service groups, to
define specific Dispatcher services. Each such named service has associated ports (established
via the tcp_ports and/or ssl_ports options); the Dispatcher listens for TCP connections
on those ports, and then hands off the connections to Worker Processes for the named service,
where the Worker Process will then execute the image specified for that service.

For instance, at its most basic, in principle the SMTP service could be defined as:

msconfig> set dispatcher.service:SMTP.tcp_ports 25
msconfig# set dispatcher.service:SMTP.image IMTA_BIN:tcp_smtp_server
msconfig# set dispatcher.service:SMTP.enable 1

54–10 Messaging Server Reference

stacksize Option

More typically, however, additional options, such as a logfilename and perhaps
parameter as well as various options tuning performance would be set also; while since the
enable Dispatcher service option defaults to 1, and as of MS 7.0.5 the named SMTP service
defaults to the image shown, in reality neither of those options needs to be explicitly set.

Within a named Dispatcher service group, besides the port tcp_ports and/or ssl_ports)
and image option settings establishing the correspondence between port(s) and service, many
other Dispatcher option settings are available to specify and further control operation of that
service: thresholds at which to create new or additional server processes, age at which to
expire "old" server processes, etc.

Thus in particular note that in MTA terminology and operation, a Dispatcher service such as
the SMTP service encompasses potentially multiple (transient) SMTP server processes: the SMTP
server processes come and go, created and expired as needed by the Dispatcher, within the
parameters established in the Dispatcher's SMTP service definition.

Note that special symbolic names known to the MTA -- such as IMTA_BIN and IMTA_LOG --
are supported (and convenient) for values of service group options.

54.2.25 stacksize Option
The stacksize Dispatcher service option specifies a minimum per-thread stack size.
Various components may have their own minimum values; the larger of an explicitly specified
stacksize option value and the component's own internal minimum will be used. The
default value is 2048000 as of the 7.0.5 release.

54.2.26 ssl_ports Option Under service
The ssl_ports Dispatcher service option specifies the TCP port(s) on which the
Dispatcher will listen for incoming TLS connections for the current service. Connections made
to this port or these ports will automatically (without use of commands such as STARTTLS in
the case of SMTP) negotiate TLS use and be transferred to one of the Worker Processes created
for this service. The SMTP client analogue of this option is the (new in 7.0.5) SSL_CLIENT
TCP/IP-channel-specific option.

Note that channels for servers using ssl_ports need to set maytlsserver or
musttlsserver to properly initialize as an SSL server.

See also the tcp_ports Dispatcher service option.

54.2.27 tcp_ports Option Under service
The tcp_ports Dispatcher service option (which is the new, Unified Configuration name
for the legacy configuration PORT Dispatcher option) specifies the TCP port(s) on which the
Dispatcher will listen for incoming connections for the current service. Connections made
to this port or these ports will be transferred to one of the Worker Processes created for this
service.

For instance, in a typical configuration:

msconfig> show dispatcher.service:SMTP.tcp_ports
role.dispatcher.service:SMTP.tcp_ports = 25

Dispatcher 54–11

tls_min_bits Dispatcher service
option

msconfig> show dispatcher.service:SMTP_SUBMIT.tcp_ports
role.dispatcher.service:SMTP_SUBMIT.tcp_ports = 587

meaning that the Dispatcher runs the SMTP service on port 25, and the SMTP SUBMIT service
on port 587.

See also the ssl_ports Dispatcher service option.

54.2.28 tls_min_bits Option
The tls_min_bits Dispatcher service option specifies the minimum number of bits
of encryption strength that must be in use in order for the connection to be permitted.
Connections that are established with fewer bits of encryption, including no encryption, will
be sent the error text defined by tls_bits_reject_msg, and then closed.

54.2.29 tls_bits_reject_msg Option
The tls_bits_reject_msg Dispatcher service option specifies some optional error text to
send before the connection is closed when a connection fails to meet the minimum encryption
strength required by tls_min_bits.

54.2.30 user Option Under dispatcher
The user Dispatcher option used to specify the Unix user id to run the Dispatcher worker
processes as. This option is now ignored.

54.2.31 user Option Under service
The user Dispatcher service option used to specify the Unix user id to run the Dispatcher
worker processes as. This option is now ignored.

54.2.32 use_nslog Option Under dispatcher
The use_nslog Dispatcher option may be set to 1 to enable use of nslog() for Dispatcher
debug log files. The default is 0. When use_nslog has been enabled, see also the logfile
options that may be set as dispatcher.logfile.*. Note that the loglevel option is
not supported for the Dispatcher as its debug level is controlled instead by use of the debug
Dispatcher option, dispatcher.debug.

54.2.33 loglevel Option Under mta
The mta.logfile.loglevel option is ignored by the Dispatcher and Job Controller unless
the dispatcher.use_nslog and job_controller.use_nslog options are set for them,
respectively.

Note that this MTA-wide setting of mta.logfile.loglevel (by default affecting both
ims-ms channels and the LMTP server) can be overridden for the LMTP server via a
tcp_lmtp_server.loglevel setting.

Also note that the mta.loglevel option is defined and can be set to the same set of values,
but as of MS 8.0.1.2 it is a no-op. It's behavior in previous version is erratic - in some cases it
works and mta.logfile.loglevel does not, in other cases the value is ignored.

54–12 Messaging Server Reference

Old Dispatcher options

54.2.34 Old Dispatcher options
Many Dispatcher options are no longer relevant for the modern MTA. See older printed
documentation for details on these Dispatcher options.

Such historical Dispatcher options include:

• astlm
• biolm
• bytlm
• cpulm
• diolm
• enqlm
• fillm
• group
• jtquota
• pgflquota
• prcmlm
• tqelm
• wsdefault
• wsextent
• wsquota
• trace_total_buffer_size
• trace_per_conn_buffer_size
• enable_rbl
• ident
• vms_group
• ucx_hold
• process_priority
• needs_dcl
• set_network
• new_features
• wp_timeout
• unix_domain
• unix_domain_dir

54.3 Dispatcher debugging and log files
Dispatcher error and debugging output (if enabled) are by default written to the file
dispatcher.log in the MTA log directory. (But see the use_nslog Dispatcher option if you
prefer to direct Dispatcher error and debugging output to an nslog file.)

Debugging output may be enabled using the debug Dispatcher option in Unified
Configuration (or the option DEBUG in the Dispatcher configuration file in legacy
configuration), or on a per-process level, via the PMDF_DISPATCHER_DEBUG environment
variable (UNIX). (In legacy configuration, when enabling the DEBUG option in the Dispatcher
configuration file, note that it may be set either globally, or (by setting it within specific
SERVICE sections) only for one or more services; in particular, to enable debugging for the
Dispatcher but not for its worker processes (such as SMTP server processes), it may be set
within a [SERVICE=DISPATCHER] section.)

Note that as of MS 7.0.5, enabling the MTA option debug_flush will cause Dispatcher
debugging to get flushed to disk immediately.

Dispatcher 54–13

Dispatcher debugging and log files

The format of records in the Dispatcher log file is:

hh.mm.ss.ss (four-digit-thread-id): debug-message

Physical lines in the Dispatcher log file are limited to 79 characters. If a record has to be
continued to a second line (due to the debug-message getting "too long"), then the rest of the
debug-message will be indented with white space for the time-stamp and four-digit-
thread-id fields, to line up with the initial part of debug-message.

Note that the Dispatcher itself always has thread-id number 1; that is, records for the main
Dispatcher process itself begin

hh.mm.ss.ss (1):

The debug Dispatcher option (DEBUG option in dispatcher.cnf in legacy configuration)
or PMDF_DISPATCHER_DEBUG environment variable (UNIX) defines a 32-bit debug mask in
hexadecimal. Enabling all debugging is done by setting the option to -1, or by defining the
environment variable system-wide to the value FFFFFFFF. The actual meaning of each bit is
described in Dispatcher debugging bits.

Table 54.2 Dispatcher debugging bits

Bit Hexadecimal
value

Decimal value Usage

0 x00001 1 Basic Dispatcher main module debugging
1 x00002 2 Extra Dispatcher main module debugging
2 x00004 4 Dispatcher option (Unified Configuration) or

configuration file (legacy configuration) logging
3 x00008 8 Basic Dispatcher miscellaneous debugging
4 x00010 16 Basic service debugging
5 x00020 32 Extra service debugging, including PORT_ACCESS

mapping table probes
6 x00040 64 Process related service debugging
7 x00080 128 Shutdown queue debugging
8 x00100 256 Basic Dispatcher and process communication debugging
9 x00200 512 Extra Dispatcher and process communication debugging
10 x00400 1024 Packet level communication debugging
11 x00800 2048 Not used
12 x01000 4096 Basic Worker Process debugging
13 x02000 8192 Extra Worker Process debugging
14 x04000 16384 Additional Worker Process debugging, particularly

connection handoffs
15 x08000 32768 Not used
16 x10000 65536 Basic Worker Process to Dispatcher I/O debugging
 17 x20000 131072 Extra Worker Process to Dispatcher I/O debugging,

including some TLS initialization debugging

54–14 Messaging Server Reference

Dispatcher debugging and log files

20 x100000 1048576 Basic statistics debugging
21 x200000 2097152 Extra statistics debugging
24 x1000000 16777216 Log PORT_ACCESS, dns_verify_domain, and

enable_rbl denials to the dispatcher.log file

Dispatcher 54–15

54–16

Chapter 55 Job Controller
55.1 Job Controller operation .. 55–2

55.1.1 Job Controller operation under stress .. 55–3
55.1.2 Job Controller priority-based processing .. 55–5

55.2 Job Controller default configuration ... 55–6
55.3 Job Controller options ... 55–10

55.3.1 enable Option Under job controller ... 55–10
55.3.2 debug Option Under job controller ... 55–10
55.3.3 listenaddr Job Controller option ... 55–10
55.3.4 job_limit job_pool option ... 55–11
55.3.5 master_command channel_class option 55–11
55.3.6 max_cache_messages Option .. 55–12
55.3.7 max_life_askwork Option .. 55–13
55.3.8 max_life_conns Option Use With max_life_conns Under job controller55–13
55.3.9 max_life_time Option Under job controller 55–13
55.3.10 notice_time Option .. 55–13
55.3.11 port Option Under job controller ... 55–14
55.3.12 rebuild_parallel_channels Option ... 55–14
55.3.13 secret Option Under job controller ... 55–14
55.3.14 slave_command channel_class option 55–14
55.3.15 stressblackout Option ... 55–15
55.3.16 stresstime Option .. 55–15
55.3.17 stressfactor Option .. 55–15
55.3.18 unstressfactor Option ... 55–15
55.3.19 stressjobs Option .. 55–15
55.3.20 unstressjobs Option .. 55–15
55.3.21 synch_time Option .. 55–16
55.3.22 tcp_ports Option Under job controller ... 55–16
55.3.23 nonurgent_delivery, normal_delivery, urgent_delivery Job
Controller options .. 55–16
55.3.24 use_nslog Option Under job controller ... 55–17
55.3.25 loglevel Option Under mta ... 55–17
55.3.26 job_pool .. 55–17
55.3.27 channel_class .. 55–18

55.4 Checking that the Job Controller is running .. 55–18

The Job Controller is one of the two major, "control" processes of the MTA (the other major
such process being the Dispatcher).

The Job Controller has two main responsibilities: (1) maintaining an in-memory "queue cache
database" containing information about what message files are on disk awaiting delivery; and
(2) scheduling and executing channel jobs to perform message processing (attempt message
delivery). (The Job Controller is capable also of running additional, non-channel, periodically
scheduled jobs. But that capability is not normally used in modern versions of the MTA.)

In contrast to the Dispatcher, which is responsible for accepting incoming TCP/IP connections
and creating and managing server processes, the Job Controller is responsible for creating
and managing MTA channel jobs (in particular SMTP client outbound processes and Message
Store delivery channel processes) to attempt message delivery. Notable examples are that the
Dispatcher oversees SMTP server processes for accepting messages incoming to the MTA,
whereas the Job Controller oversees Message Store delivery channels and SMTP channel client

Job Controller 55–1

Job Controller operation

processes for delivering outbound messages. (Though note that there can be exceptions to
the overly simplistic "inbound equals Dispatcher, delivery equals Job Controller" separation,
as in the case of channels that "pull" messages as well as deliver messages, or in the case of
delivery channels that also enqueue new messages such as notification messages.) The topic
Job Controller operation will go further into Job Controller operation.

As the Job Controller is so fundamental to MTA operation, in normal operation is should
always be present; see the topic Checking that the Job Controller is running. Indeed, normally
the Watcher and msprobe are configured to monitor and perform automatic checks on the
Job Controller, with the Watcher restarting the Job Controller if it appears to be absent or
malfunctioning.

Furthermore, as operational advice, note that other than in cases of drastic configuration
changes to the MTA or to site deployment, when a Job Controller restart often is necessary in
order for changes to take effect, normally the Job Controller should be left running, without
gratuitous restarting, as shutting down the delivery "half" of the MTA even briefly tends to
be disruptive to optimal performance of outbound message delivery. (In particular, message
delivery problems or delivery throughput concerns are not good reasons to restart the
Job Controller! Message delivery problems should be attacked at the channel level where
the delivery problem actually occurs, not at the Job Controller level; and overall delivery
throughput generally suffers a temporary dip when the Job Controller must be restarted.)
Certain operationally interesting Job Controller options can instead have values adjusted "on
the fly" (without requiring a Job Controller restart) using the imsimta cache -change
utility.

55.1 Job Controller operation
The Job Controller does not process or deliver messages itself, but rather keeps track of
message files, and creates and manages channel jobs to process those messages.

Upon receipt of an incoming message from any source, the MTA channel that is handling
the receipt of the message determines the destination, enqueues the message, and sends a
request to the Job Controller to execute the next channel. The Job Controller will then initiate
a channel job, if one is needed (that is, if there is not such a channel job already running, or
if there are not "enough" jobs for that channel). Channel jobs, in turn, ask for and receive
from the Job Controller the name of which message they should process next. When there are
multiple messages to process, a channel process may end up running for "awhile", in a cycle
of asking the Job Controller for a message and then processing (delivering) it, and then asking
for another, etc.. And if the number of messages eligible for immediate delivery attempts
is sufficiently "high", the Job Controller will initiate more than one channel job to work in
parallel, each delivering a subset of the messages.

Internally, the Job Controller maintains a data structure of a set of queues of messages awaiting
delivery attempts. This data structure is referred to as the queue cache database. New messages
are inserted into this data structure sorted onto queues according to their destination channel,
in some cases also sorted by their destination domain name, and further sorted according
to message processing priority. Additional queues are maintained (one for each destination
channel) of those messages that have already had at least one unsuccessful delivery attempt,
and which are waiting for another delivery attempt.

The Job Controller configuration establishes processing pools; each such pool has a limit
(job_limit) on how many processes may execute in it simultaneously (and a pool may
optionally be configured with restrictions on times of day or days of the week in which it
may execute processes). Each channel is constrained (via the pool channel option) to run in

55–2 Messaging Server Reference

Job Controller operation under
stress

one such pool, and may optionally be further constrained on how many processes it may run
simultaneously within the pool (maxjobs). Multiple channels may be configured to run in the
same pool, if it is desired for those channels to share (contend for) the same pool of process
slots.

The Job Controller tracks how many processes each channel has running (and in the case
of multithreaded channels specifically written to operate with the Job Controller by letting
the Job Controller initiate delivery threads, the Job Controller tracks how many threads are
running). When there are "enough" messages eligible for an immediate delivery attempt, the
Job Controller will initiate a new delivery thread, or whole new delivery process, as needed (if
the configured limits on such jobs have not yet been reached).

The Job Controller will also "cycle" channel jobs, aging out (expiring) sufficiently old channel
jobs and then creating new channel jobs (as needed) to take their place. Thus channel jobs,
even for busy channels, have a limited life-span. That this is a built-in aspect of the Job
Controller both increases robustness in the face of unexpected problems, and ensures that
updates to the MTA configuration, and changes to user and domain data in LDAP, will
propagate through to affect channel jobs automatically, with bounded delay.

As part of the Job Controller's housekeeping and self-maintenance of its internal message
queueing data structures, the Job Controller will periodically do a disk scan of the MTA queue
area, to detect any message files omitted from its in-memory queues and reconcile its in-
memory lists with what is physically present on disk.

So to summarize: the Job Controller's primary responsibilities are to maintain internal queues
of which messages need delivery attempts and when, to initiate channel jobs to attempt those
deliveries as needed, and to hand over to channel jobs the name of which message the job
should attempt to process next.

55.1.1 Job Controller operation under stress
The Job Controller has several self-managing features that work together to aid in managing
work load in general, and in particular to continue to operate successfully even under
exceptionally heavy load. Beyond the Job Controller's general queueing strategy and creation
(and expiration) of Worker Process threads discussed under Job Controller operation, the Job
Controller's max_cache_messages and stress* options particularly relate to operation
under load.

Under typical circumstances, the Job Controller keeps track in memory of all the active
messages (non-.HELD message files) in the MTA queues. However, to limit its maximum
memory requirement, the Job Controller has a configurable limit, max_cache_messages, on
how many messages to track in memory. When the Job Controller's max_cache_messages
capacity is exceeded, the Job Controller will not bother to retain in memory information about
additional messages. But in such a case, the affected (excess) message files themselves had
already been safely deposited in the MTA's store and forward message queues, where they
will be detected later (at which time normal message processing will resume). At such times
of "excess" messages, any enqueuing channel requests to the Job Controller for immediate
insertion of messages into the Job Controller's "queue cache database" list of messages due for
processing are ignored; but it is merely the immediate message processing that is suspended at
such times for the affected messages. The Job Controller will detect any such "excess" message
files later, during one of its housekeeping operations, and then begin delivery attempts for
such messages. So max_cache_messages is a limit on how many messages will get normal/
optimal processing (as in more-or-less immediate processing, in a "first in, first out" order); but
messages that exceed max_cache_messages will be processed also, eventually.

Job Controller 55–3

Job Controller operation under
stress

New in Messaging Server 7.0 is a "stress" feature in the Job Controller, whereby the Job
Controller can be informed that channels are "stressed" and then in response temporarily
reduce delivery jobs on that channel to give the destination some respite. This is primarily
relevant for Message Store delivery channels. Besides accepting new messages, the Message
Store is also responsible for responding to end user e-mail client message access requests. So
when the Message Store is extraordinarily busy, temporarily reducing the rate of new message
deliveries to the Message Store may allow the Message Store to instead focus its resources on
maintaining responsiveness to end users; that is, slowing down insertion of new messages
into the Message Store may free up the Message Store to respond more quickly to e-mail client
access to existing mailboxes and messages.

Message Store delivery channels (ims-ms or tcp_lmtpcs* channels) will automatically
inform the Job Controller of stress, when the Message Store detects that it is stressed. In the
case of ims-ms channels, when an ims-ms channel job is about to shut down, it will query
the Message Store as to whether the store is stressed, and if it is then that ims-ms channel job
will inform the Job Controller. In the case of LMTP delivery, after each successful delivery into
the Message Store the LMTP server will query as to whether the store is stressed and if so, the
LMTP server will report that back to the LMTP client via a special

250 2.3.99 Delivery OK but store under stress

success status; the MTA's LMTP client recognizes that special status and will then inform the
MTA Job Controller of the back end Message Store stress.

An MTA administrator may also, using the new imsimta qm stress command, manually
direct the Job Controller to consider any arbitrary channel to be "stressed".

When the Job Controller is informed that a channel is under "stress", it checks to see if it has
already been told this recently: the Job Controller ignores "stress" alerts that are received
within stressblackout seconds of a previous stress alert for the same channel. But
if the stress alert is "new" information, then the Job Controller will multiply the effective
threaddepth parameter for the channel by stressfactor, and subtract stressjobs
from the effective job limit for the channel. (In the absence of stress, the effective job limit
would be simply the minimum of the channel's maxjobs and the job_limit for the pool in
which that channel runs.1) In addition, the Job Controller will ask all current master program
processes for the channel to exit, and will, if the message queue for that channel is not empty,
start an appropriate number of new processes: that is, any old processes are shut down and an
appropriate, reduced number of new processes are started in their place.

But the Job Controller's cut back on jobs for "stressed" channels is intended to be temporary,
on the presumption/hope that such a channel should/may "recover" after a time and be able
to return to normal processing levels. The Job Controller attempts to gradually return to
the originally configured settings, at step times and step sizes controlled by stresstime
and unstressfactor and unstressjobs, as follows, (assuming that no further "stress"
alerts or manual imsimta qm stress changes are received to further modify the settings and
schedule). Automatically, stresstime seconds after the last stress change (or alternately
upon receipt of an imsimta qm unstress command), the Job Controller divides the
effective threaddepth by unstressfactor (never allowing the effective threaddepth to
drop below the original configured threaddepth), and adds unstressjobs to the effective
job limit (never allowing the effective job limit to rise above the original configured limit). A
"stress change" is either an increase in stress or a decrease in stress.
1 The effective threaddepth never goes over 134,217,727, and the effective job limit never
goes below 1.

55–4 Messaging Server Reference

Job Controller priority-based
processing

55.1.2 Job Controller priority-based processing
New in 8.0, the MTA supports the MT-PRIORITY SMTP extension defined in RFC 6710
(SMTP Extension for Message Transfer Priorities). An explicit MT-PRIORITY value overrides
any of the older Priority: header line base priority settings, or the MTA's old size-based
priority adjustment effects. See the discussion of the mtpriority_policy MTA option for
a description of how MT-PRIORITY values are mapped to the older Priority: values. So a
message with an explicit MT-PRIORITY value will get priority handling based on the mapping
of that MT-PRIORITY value to the older Priority: value. Only a Sieve filter setmtpriority
action can override a message's explicitly specified MT-PRIORITY value.

The standardized Priority: header field, defined in RFC 2156 (MIXER: Mapping between
X.400 and RFC 822/MIME), is respected by the MTA. Note that this MTA message processing
priority, as indicated in a Priority: value, affects MTA processing priority: that is, it affects
when the MTA processes that message especially in contention with other messages of
differing priority, and potentially how long the MTA continues to reattempt delivery of
messages experiencing temporary delivery failures. Note that this Priority: effect is completely
different from the sort of user e-mail client display feature requested via a Precedence: or
Importance: header field (though users sometimes confuse and conflate these different sorts
of effects). Keep in mind that time-criticality (processing priority) is not necessarily the same
thing as importance: a relatively insignificant message may be time-critical due to time-
limited relevance, or conversely a message of significant importance may concern an event far
removed in time.

Priority: is an MTA-level feature, not typically appropriate for arbitrary users to set themselves
(though specially privileged users such as administrators may desire and be entitled to access
to priority adjustment). Priority handling may come at a "cost", whether that cost is simply
additional work by the MTA, additional charges to the user, or an effect that delivery attempts
abort sooner (thus causing messages to potentially be less likely to get through, being bounced
sooner rather than getting additional delivery attempts if the message can't be delivered
"quickly"). Importance: or Precedence: on the other hand, are user-level features, appropriate
for users to set on the messages they send to request special handling by recipients or special
display features when recipients' e-mail clients display the messages.

By default Priority: values are honored and make a "difference" in the MTA's message
handling, affecting handling by the Job Controller, though that "difference" is generally small
and hardly noticeable.

The Job Controller sorts messages, by priority, into separate internal processing queues. With
just default configuration, the Job Controller will preferentially process "urgent" messages
before "normal" messages before "non-urgent" messages among those messages all eligible
for delivery at the same time. However, under normal circumstances there are so many
messages flowing through the MTA so quickly, with so many messages being handled in
parallel, that this sort of difference in handling based on priority tends to be pretty much
moot. Unless there's a big enough backlog of newly submitted messages that the usually fairly
"immediate" delivery attempts are a bit delayed, the Job Controller's automatic sorting of
messages by priority doesn't much matter; instead, with no backlog, each freshly submitted
message can get an essentially "immediate" delivery attempt, regardless of the message's
priority.

When it comes to delivery retries on messages that didn't get through on first attempt, there
the default MTA configuration (with only the backoff channel option set) is to retry urgent
messages at shorter periods than normal messages, and retry nonurgent messages at longer
periods. This may be precisely controlled further via the prioritybackoff channel option

Job Controller 55–5

https://tools.ietf.org/html/rfc6710
https://tools.ietf.org/html/rfc6710
https://tools.ietf.org/html/rfc2156
https://tools.ietf.org/html/rfc2156

Job Controller default
configuration

settings. So by default, priority does have an (in principle) noticeable effect on the delivery
retries scheduled by the Job Controller -- but once you're in the regime of having to retry to
deliver, the messages are by definition "delayed", and the exact length of retry interval may
matter little compared to the time scale of whatever is causing the delivery attempts to fail. So
again, this is a difference, but perhaps not a difference that "matters" much.

As for how long messages are retained if they continue to fail to be deliverable, there the MTA
default (the default handling by the return_job) is that priority doesn't have an effect --
though you can change that via the prioritynotices channel option settings. But note that
even if your own MTA hasn't been configured to make a distinction, other MTAs that your
messages pass through in principle might care and bounce "urgent" messages sooner if they
fail delivery---this is one of the potential "costs" of higher priority processing mentioned above.

Now, if you choose to configure different Job Controller delivery execution windows,
you can potentially have very different handling of different priorities of messages, even
for freshly submitted new messages. With that (non-default) configuration, then you
could see very noticeably different handling of different priorities of messages. See the
nonurgent_delivery, normal_delivery, and urgent_delivery Job Controller
options.

In particular, one type of use of priority delivery execution windows is to defer the
processing of "non-urgent" messages to "off hours"; e.g., in legacy configuration set in the
job_controller.cnf file:

! Add to a pool definition to postpone delivery attempts of non-urgent
! messages to the hours between 11:00 PM and 4:00 AM any day, or any time
! Sunday.
!
NONURGENT_DELIVERY=23:00 - 04:00, Sun 00:00 - 23:59

Or in Unified Configuration, set via:

msconfig> set option job_controller.job_pool:SMTP_POOL.nonurgent_delivery "23:00 - 04:00, Sun 00:00 - 23:59"

When priority "matters", note that the MTA has ways of overriding the priority specified
on a Priority: header line. The priority that the MTA actually uses is the effective priority---
normally what is specified on a Priority: header line, unless overridden in some way. The
priorityblocklimit channel options, for instance, and the new in Messaging Server
7.4-0.01 system Sieve action setpriority can be used to override the original processing
priority, setting a new effective processing priority. As of the 8.0 release, an explicitly specified
MT-PRIORITY value on a message will override any Priority: header based setting, or MTA
size-based priority adjustment. Only the Sieve filter setmtpriority action can override an
explicitly specified MT-PRIORITY value.

55.2 Job Controller default configuration
The MTA is distributed with an initial Job Controller configuration that is a suitable starting
point for most sites. The default configuration defines three pools: (1) one named DEFAULT
with a job limit of ten, to be used for miscellaneous channels, (2) one named IMS_POOL with a
job limit of two, to be used for running ims-ms channel jobs, and (3) one named SMTP_POOL
with a job limit of ten, to be used for outbound TCP/IP SMTP/LMTP channel jobs.

The following figure shows a default configuration in Unified Configuration.

55–6 Messaging Server Reference

Job Controller default
configuration

Sample Job Controller option settings in Unified Configuration

msconfig> show job_controller
role.job_controller.tcp_ports = 27442 (3)
role.job_controller.job_pool:DEFAULT.job_limit = 10 (5),(6)
role.job_controller.job_pool:IMS_POOL.job_limit = 2
role.job_controller.job_pool:SMTP_POOL.job_limit = 10
role.job_controller.channel_class:bitbucket.master_command = IMTA_BIN:bitbucket (7)
role.job_controller.channel_class:bsmtp*.master_command = IMTA_BIN:bsout_master (8)
role.job_controller.channel_class:bsmtp*.slave_command = IMTA_BIN:bsin_master (8)
role.job_controller.channel_class:conversion*.master_command = IMTA_BIN:conversion
role.job_controller.channel_class:defragment.master_command = IMTA_BIN:defragment
role.job_controller.channel_class:filter_discard (novalue) (11)
role.job_controller.channel_class:hold.master_command = IMTA_BIN:reprocess
role.job_controller.channel_class:ims-ms*.master_command = IMTA_BIN:ims_master (9)
role.job_controller.channel_class:ims-ms*.max_life_askwork = 20000 (9)
role.job_controller.channel_class:ims-ms*.max_life_time = 14400 (9)
role.job_controller.channel_class:native.master_command = IMTA_BIN:l_master
role.job_controller.channel_class:pipe*.master_command = IMTA_BIN:pipe_master
role.job_controller.channel_class:process*.master_command = IMTA_BIN:reprocess
role.job_controller.channel_class:reprocess*.master_command = IMTA_BIN:reprocess
role.job_controller.channel_class:sms*.master_command = IMTA_BIN:sms_master
role.job_controller.channel_class:tcp_*.master_command = IMTA_BIN:smtp_client (10)
role.job_controller.channel_class:uucp_*.master_command = IMTA_BIN:uucp_master
role.job_controller.channel_class:uucp_*.slave_command = IMTA_BIN:uucp_slave
instance.job_controller.secret (suppressed) (1)

In legacy configuration, the Job Controller configuration is stored in a file,
job_controller.cnf. And in legacy configuration, this Job Controller configuration file is
required. If it is not present or its contents are incorrect the Job Controller will not start.

There is no need to modify the Job Controller configuration settings (the Job Controller
configuration file in legacy configuration), unless you choose to add pools, modify pool
parameters, modify global Job Controller settings (such as debugging), or add processing
information for locally developed channels.

In legacy configuration, if you do wish to make such modifications, you should not alter the
Job Controller configuration file itself (since it will be replaced when you upgrade the MTA
and in legacy configuration you will lose your modifications), but rather should create a
job_controller.site file in the MTA table directory containing your own definitions. The
Job Controller configuration file will read in this site supplied file, if it exists.

A sample Job Controller configuration file is shown below.

!
! Global defaults
!
SECRET=abc123 (1)
SLAVE_COMMAND=NULL (2)
TCP_PORT=27442 (3)
!
! Site specific pools and channnels are read
! indirectly if this include file exists.
!
<IMTA_TABLE:job_controller.site (4)

Job Controller 55–7

Job Controller default
configuration

!
! Pool definitions
!
[POOL=DEFAULT] (5)
JOB_LIMIT=10 (6)
!
[POOL=IMS_POOL]
JOB_LIMIT=2
!
[POOL=SMTP_POOL]
JOB_LIMIT=10
!
! Channel definitions
!
[CHANNEL=bitbucket] (7)
MASTER_COMMAND=IMTA_BIN:bitbucket
!
[CHANNEL=bsmtp*] (8)
MASTER_COMMAND=IMTA_BIN:bsout_master
SLAVE_COMMAND=IMTA_BIN:bsin_master
!
[CHANNEL=conversion*]
MASTER_COMMAND=IMTA_BIN:conversion
!
[CHANNEL=defragment]
MASTER_COMMAND=IMTA_BIN:defragment
!
[CHANNEL=ims-ms*] (9)
MAX_LIFE_AGE=14400
MAX_LIFE_CONNS=20000
MASTER_COMMAND=IMTA_BIN:ims_master
!
[CHANNEL=native]
MASTER_COMMAND=IMTA_BIN:l_master
!
[CHANNEL=pipe*]
MASTER_COMMAND=IMTA_BIN:pipe_master
!
[CHANNEL=process*]
MASTER_COMMAND=IMTA_BIN:reprocess
!
[CHANNEL=sms*]
MASTER_COMMAND=IMTA_BIN:sms_master
!
[CHANNEL=tcp_*] (10)
MASTER_COMMAND=IMTA_BIN:smtp_client
!
[CHANNEL=reprocess*]
MASTER_COMMAND=IMTA_BIN:reprocess
!
[CHANNEL=uucp_*]
MASTER_COMMAND=IMTA_BIN:uucp_master
SLAVE_COMMAND=IMTA_BIN:uucp_slave

55–8 Messaging Server Reference

Job Controller default
configuration

!
[CHANNEL=hold]
MASTER_COMMAND=IMTA_BIN:reprocess
!
[CHANNEL=filter_discard] (11)

The key items in the above examples are:

1. This global option sets a "secret" used on this host by the Job Controller to verify its internal
communications.

2. Set a default SLAVE_COMMAND for subsequent [CHANNEL] sections.

3. This global option defines the TCP port number on which the Job Controller listens for
requests.

4. Attempt to include the optional, site-supplied job_controller.site file (in which
sites may place their site-specific customizations, so as to retain such customizations after
upgrading).

5. This [POOL] section defines a queue named "DEFAULT". This pool will be used by all
channels which do not specify a pool name using the pool channel option.

6. Set the JOB_LIMIT for this pool to 10.

7. This [CHANNEL] section applies to a channel named bitbucket. The only definition
required in this section is the MASTER_COMMAND which the Job Controller issues to run
this channel. (Note that the bitbucket channel normally never needs to run, so normally
this image is never executed, since in normal use messages supposedly "enqueued" to the
bitbucket channel are instead merely deleted---however, a bitbucket channel image
does exist to delete messages, and if a message does exist in the bitbucket channel queue,
perhaps due to being manually placed there by the MTA administrator, then this channel
image can "process" it ---that is, delete it.) Since no wildcard appears in the channel name,
the channel name must match exactly.

8. This [CHANNEL] section applies to any channel whose name begins with bsmtp_*. For
this channel, both a MASTER_COMMAND and a SLAVE_COMMAND are necessary. Since
this channel name includes a wildcard, it will match any channel whose name begins with
"bsmtp_".

9. This [CHANNEL] section applies to any channel whose name begins with ims-ms*.
For this channel, used to deliver to the Messaging Server Message Store, it is a good
idea to set the max_life_time (formerly MAX_LIFE_AGE) and max_life_askwork
(formerly MAX_LIFE_CONNS) Job Controller (channel class) options to let the channel jobs
"persist" (rather than being "recycled" in favor of a new channel job) for relatively extended
periods.

10.This [CHANNEL] section applies to any channel whose name begins with tcp_*; this
includes SMTP over TCP/IP and LMTP over TCP/IP channels. This section only defines
(the Job Controller only knows/cares about) a MASTER_COMMAND defining the SMTP/
LMTP client "half" of any such channel; the slave "half" of any such channel (SMTP servers
or LMTP servers) is handled by the Dispatcher.

11.This [CHANNEL] section applies to the filter_discard channel. The absence of any
MASTER_COMMAND in this section is intentional.

Job Controller 55–9

Job Controller options

55.3 Job Controller options
A number of options affect Job Controller operation.

In Unified Configuration, Job Controller options are set using the msconfig utility. The option
names are set and inspected under job_controller for options affecting overall/global
Job Controller operation, or under job_controller.job_pool:pool-name for options
affecting a specific, named pool, or under job_controller.channel_class:channel-
name-prefix for options affecting a certain channel or type of channel; e.g.,

msconfig> show job_controller.tcp_ports
role.job_controller.tcp_ports = 27442
msconfig> show job_pool:DEFAULT.*
role.job_controller.job_pool:DEFAULT.job_limit = 10
msconfig> show channel_class:tcp*
role.job_controller.channel_class:tcp_*.master_command = IMTA_BIN:smtp_client

In legacy configuration mode, Job Controller options are set in the job_controller.cnf
file.

Generally, the Job Controller must be restarted in order for its option changes to take effect.
But as restarting the Job Controller is undesirable, tends to degrade performance, and should
be avoided in operation except when truly necessary, the imsimta cache -change utility
provides a means to change the effective values for certain, especially operationally relevant,
Job Controller options "on the fly", without requiring a Job Controller restart.

When the job_controller.use_nslog option has been enabled, see also the logfile
options set as job_controller.logfile.*.

55.3.1 enable Option Under job controller
The enable Job Controller option is used to enable the Job Controller daemon.
This defaults to the value of the mta.enable (Unified Configuration) or
local.imta.enable (legacy configuration) option. When the job_controller is
enabled, the default for schedule.task:purge.enable (Unified Configuration)
or local.schedule.purge.enable (legacy configuration) is 1. In addition, the
default for schedule.task:return_job.enable (Unified Configuration) or
local.schedule.return_job.enable (legacy configuration) is also 1 in this case.

55.3.2 debug Option Under job controller
The debug Job Controller option sets a bit mask for various types of debugging. When
debugging is enabled, it is written to the Job Controller log file. That file is located in the MTA
log directory, SERVERROOT/log/, and named job_controller.log-uniqueid where
uniqueid is a unique string disambiguifying the file name. (Note that the imsimta purge
utility understand the uniqueids and can be used to purge back older log files.)

55.3.3 listenaddr Option Under job controller
The listenaddr Job Controller option (formerly INTERFACE_ADDRESS in legacy
configuration) can be used to specify the IPv4 address interface to which the Job Controller

55–10 Messaging Server Reference

job_limit job_pool option

should bind for listening for its own communications; (see the tcp_ports Job Controller
option in Unified Configuration, which replaced the legacy configuration TCP_PORT
Job Controller option). By default, the Job Controller binds to the tcp_ports (legacy
configuration TCP_PORT) on all IP addresses. But for systems having multiple network
interfaces each with its own IP address, it may be useful to listen only on a particular interface.
Note that if listenaddr is specified, then that is the only interface IP address to which the
Job Controller will bind for its internal use.

Note that the interfaceaddress channel option provides a capability for specifying which
interface address a TCP/IP channel uses for outgoing connections and messages; this is quite
separate from the Job Controller's internal use of interface address(es). Also note that the
Dispatcher has its own setting for listenaddr, controlling which IP address a particular
Dispatcher service listens on.

55.3.4 job_limit Option
The job_limit Job Controller job_pool option relates to pool configuration, rather than
channel configuration: it is set either for a specific Job Controller job_pool, or if set directly
under job_controller it becomes the default for all pools which don't explicitly specify
a job_limit. The option's (unsigned integer) value specifies the maximum number of
jobs that a pool can execute in parallel. Execution of a request will use a UNIX process, so
this corresponds to the maximum number of UNIX processes you allow a pool to use. The
job_limit applies to each pool individually; the maximum total number of jobs is the sum of
the job_limit parameters for all pools.

Note that multithreaded processes, e.g., the TCP/IP client program (tcp_smtp_client) and
the Message Store delivery channel program (ims-ms_master), may run multiple threads
within a single process, hence in that sense multiple "delivery jobs" within a process. The
discussion of jobs here refers to job processes.

Setting job_limit to 0 effectively stops a pool: it can't process any requests.

See Job Controller default configuration for examples of job_limit values.

Channel configuration normally specifies a pool for each channel to run in via the channel
pool option (or in legacy configuration via the pool keyword on each channel defined in the
MTA configuration file, imta.cnf). By having different channels run in different pools, they
can be kept from competing with each other. By grouping "related" channels to run in the same
pool, they can share (compete) for resources (processing slots) amongst each other, while not
being allowed to compete for processing slots with those channel(s) running in other pools.
Use of the maxjobs keyword on a channel can limit how much of the job_limit of the pool
that the channel runs in the channel is allowed to use; this is normally only of interest when
multiple channels are running in the same pool, being used to limit how much of the pool's
job_limit a particular channel is allowed to use.

In legacy configuration, job_limit is set either within a [POOL] section, or globally at the
top of the job_controller.cnf file. If set outside of a section, it will be used as the default
by any [POOL] section which doesn't specify job_limit. This option is ignored inside of a
[CHANNEL] section.

Note that the imsimta cache -change utility may be used to change a channel's effective
job_limit "on the fly".

55.3.5 master_command Option

Job Controller 55–11

max_cache_messages Option

The master_command Job Controller channel_class option relates to channel
configuration, rather than pool configuration: it is set for a specific channel or type of channel
under a job_controller.channel_class:channel-name-prefix. The option's value
specifies the full path to the command to be executed by the UNIX process created by the Job
Controller in order to run the channel and dequeue messages outbound on that channel. This
option is not available for a job_pool.

Prior to Messaging Server 7.0.5, there were no defaults in the MTA code for master_command
value(s); however, MTA initial configuration created a job_controller.cnf file which
set an appropriate master_command value for each type of normally installed channel. As
of Messaging Server 7.0.5, each normally installed channel class has an appropriate default
master_command value. (These defaults are different for each sort of channel class.)

Note that in legacy configuration, the master_command option is specified inside
[CHANNEL=...] sections of the Job Controller configuration file, or if specified at the top
in the global section becomes a default for all channels which don't explicitly specify a
master_command. This option is ignored inside of a [POOL] section.

55.3.6 max_cache_messages Option
The max_cache_messages option is available only as a global Job Controller option,
job_controller.max_cache_messages.

The Job Controller keeps information about messages in an in-memory structure (the "queue
cache database"). This is essentially a cached-in-memory index to the message files currently
on disk. In the event that a large backlog of messages builds up on disk, the Job Controller
may need to limit the size of this in-memory structure so as not to allow memory usage
to grow excessively. If the number of messages in the backlog exceeds the Job Controller's
currently computed maximum messages value (see below -- the Job Controller uses the
specified max_cache_messages value as a starting point, but during operation may adjust
that value up or down according to circumstances), then information about subsequent
messages is not kept in the in-memory queue cache database. Mail messages are not lost
because they are always written to disk, (and the disk queue area will get scanned by the
Job Controller eventually, and remaining messages will then be detected and processed)
but such messages are not considered for delivery until the number of messages known
by the Job Controller drops to half this number. At this point, the Job Controller scans the
queue directory mimicking an imsimta cache -sync command. The initial default for
max_cache_messages is 100,000. But the Job Controller, while running, may adjust this size
either up or down, depending on circumstances.

To manually adjust the effective max_cache_messages size "on the fly" (without having to
restart the Job Controller to get a change to the max_cache_messages option to take effect),
you may use the imsimta cache -change utility:

imsimta cache -change global -max_messages=value

Note that exceeding the current maximum messages value means that subsequent messages
can be expected to be processed "out-of-order". max_cache_messages is not truly a
performance-related option -- increasing it will not improve message throughput nor will
decreasing it (unless decreased to an absurdly low number) have much effect on message
processing speed. Rather, its purpose is to place a limit on the Job Controller's memory usage,
and its operational effect is to limit on how many messages the Job Controller will attempt to
schedule in "first in, first out" order. The Job Controller's scheduling is normally roughly "first

55–12 Messaging Server Reference

max_life_askwork Option

in, first out", as modified by message processing priority, response speed of destination being
delivered to, and effects of "bunching up" messages to the "same" host onto the same process
and even process thread. But once the current maximum messages value is exceeded, the Job
Controller is only attempting "first in, first out" scheduling on the messages it has in its in-
memory queue cache database; the remaining messages don't get a shot at being processed
until later (once the Job Controller initiated channel jobs have managed to deliver a lot of
the original backlog of message). And scanned messages picked up via a disk scan (whether
manually executed imsimta cache -sync or the Job Controller's automatic rescans such as
due to dropping sufficiently below the current maximum messages value), are all considered
to be of lower processing priority than newly submitted, normal priority messages.

In legacy configuration mode, maxmessages was a deprecated synonym for
max_cache_messages; that old maxmessages name is not a synonym in Unified
Configuration, where it refers instead to a different option for the Message Store.

55.3.7 max_life_askwork Option
The max_life_askwork Job Controller option (available both at global job_controller
level to set a default for all channel_classes, or at channel_class level to specify
the limit for that specific type of channel) imposes another limit on channel master job life
expectancy, in addition to the limit set for each channel type by the max_life_time Job
Controller option setting. The max_life_askwork option sets a limit on the number of times
a channel master job can ask the Job Controller if there are any messages for the job to process.
If this option is not specified for a channel, then the global default value is used. If no default
value is specified, 300 is used.

55.3.8 max_life_conns Option Use With
max_life_conns Under job controller

For the Job Controller, the legacy configuration max_life_conns option has been renamed
to max_life_askwork. (The preferred name max_life_askwork is supported in legacy
configuration as of MS 7.0.5.)

55.3.9 max_life_time Option Under job controller
The max_life_time Job Controller option (available both at global job_controller
level to set a default for all channel_classes, or at channel_class level to specify the
limit for that specific type of channel) requests that Job Controller channel master jobs only
be kept around for the specified number of seconds. (See also the max_life_askwork
Job Controller option which imposes another limit on channel master job persistence.)
When the Job Controller creates a channel master job process, a countdown timer is set
to the specified number of seconds. When the countdown time has expired, the channel
job is subject to being shut down. The max_life_time option may be set either directly
under the job_controller group, as a default for all channel types, or may be set at the
channel_class level to affect solely that type of channel. The Job Controller's default is 4
hours (14400).

The Job Controller's max_life_time option had the synonyms max_life_age and
max_age, which are now deprecated.

55.3.10 notice_time Option

Job Controller 55–13

port Option Under job controller

RESTRICTED: This option affects Job Controller internal processing, intended for future use.

The Job Controller occasionally performs some housekeeping intended for future use
in generating notification messages; (for current operation, see instead the notices
channel option). The notice_time option controls when the Job Controller performs such
housekeeping. It is of the form HH:MM/hh:mm, or /hh:mm. hh:mm is the interval in hours and
minutes between operations, and HH:MM is a notional clock time at which the operation starts.
If HH:MM is not specified, the first scan will be hh:mm after the Job Controller starts. If HH:MM is
specified, the first scan will be the first time that HH:MM + n * hh:mm is greater than the Job
Controller start time. The default is /00:30.

55.3.11 port Option Under job controller
The port Job Controller option specifies the TCP port that the Job Controller uses for inter-
process communication.

55.3.12 rebuild_parallel_channels Option
On startup the Job Controller scans the queues for messages left over from a
previous invocation. It reads from several channel queues at the same time to
somewhat "balanced" (across queues) its initial message delivery attempts. The
rebuild_parallel_channels Job Controller option limits the number of channel queues
to be scanned simultaneously. The default is 12.

Note that an imsimta cache -change -global -parallel_rebuild=n command
may be used to change the parallelism "on the fly".

55.3.13 secret Option Under job controller
The secret Job Controller option specifies a string secret used on this host by the Job
Controller to verify its internal communications.

Note that the Job Controller secret option's value is normally set to a randomly generated
string during initial configuration. It is safe to change this value; however, do note that the
value normally is (and should be) set as an instance option, rather than a role option, using
a different value on each host (a different value set for each instance).

55.3.14 slave_command Option
The slave_command Job Controller channel_class option relates to channel
configuration, rather than pool configuration; it is set either for a specific channel or type
of channel under a job_controller.channel_class:channel-name-prefix. The
option's value specifies the full path to the command to be executed by the UNIX process
created by the Job Controller in order to run the channel and poll for any messages inbound on
the channel. Note that many MTA channels do not have a slave_command.

msconfig> set role.job_controller.channel_class:bsmtp*.slave_command "IMTA_BIN:bsin_master"

Prior to Messaging Server 7.0.5, the default value of slave_command for all channel classes
was the special value NULL. As of Messaging Server 7.0.5, the bsmtp channel class has a

55–14 Messaging Server Reference

stressblackout Option

default value for slave_command (see above), while all other normally installed channels
have as default the special value NULL.

Note that in legacy configuration, the slave_command option is specified inside
[CHANNEL=...] sections of the Job Controller configuration file, or if specified at the top
in the global section becomes a default for all channels which don't explicitly specify a
slave_command. If a channel does not have a slave_command (has no sensible slave
direction), the reserved value NULL should be specified. This option is not available under
job_pool (or in legacy configuration, is ignored inside of a [POOL] section).

55.3.15 stressblackout Option
The Job Controller ignores repeated indications from channels saying they are stressed for a
short time after a stressed indicator is received. The stressblackout Job Controller option
specifies for how long (in seconds) to ignore repeated such indications. The default is 60
seconds, i.e., one minute.

55.3.16 stresstime Option
The stresstime Job Controller option specifies for how long, in seconds, a channel remains
at an elevated stress level after a stress notification is received before the stress level starts
being lowered. The default is 120 seconds, i.e., two minutes.

Note that the stress level actually lowered when a new job controller job is initiated. As of
the 8.0.2 release, the stress level is also lowered when unstresscount messages have been
processed by the channel and stresstime time has elapsed without any indication of stress.
unstresscount defaults to 10000.

55.3.17 stressfactor Option
When a channel's stress level is raised, the threaddepth for the channel is multiplied by
the stressfactor Job Controller option value to obtain a temporarily increased effective
threaddepth, thereby reducing the Job Controller's aggressiveness in spawning new threads
and jobs for the channel. The default is 5.

55.3.18 unstressfactor Option
When a channel's stress level is lowered, the effective threaddepth for the channel is divided
by the unstressfactor Job Controller option value, thereby increasing the Job Controller's
aggressiveness in spawning new threads and jobs for the channel. If not explicitly set, the
stressfactor value is taken as the default.

55.3.19 stressjobs Option
When a channel's stress level is raised, the effective job limit for the channel is decreased by the
stressjobs Job Controller option value. The default is 2.

55.3.20 unstressjobs Option
When a channel's stress level is lowered, the effective job limit for the channel is increased
by the unstressjobs Job Controller option value. The default is the same value set for
stressjobs.

Job Controller 55–15

synch_time Option

55.3.21 synch_time Option
The Job Controller occasionally scans the channel queue directories for message files it does
not know about, to insert corresponding entries into its in-memory queue cache database The
synch_time option controls when. The value is of the form HH:MM/hh:mm, or /hh:mm.
hh:mm is the interval in hours and minutes between scans, and HH:MM is a notional clock
time at which this starts. If HH:MM is not specified, the fist scan will be hh:mm after the Job
Controller starts. if HH:MM is specified, the first scan will be the first time the HH:MM + n *
hh:mm is greater than the Job Controller start time. The default is /04:00.

This automatic disk scan is akin to performing a manual imsimta cache -sync operation.

55.3.22 tcp_ports Option Under job controller
The tcp_ports Job Controller option, job_controller.tcp_ports, specifies the TCP
port on which the Job Controller should listen for request packets; that is, it is the port on
which the Job Controller listens for its internal protocol communications. You generally do not
want to change this option unless the default conflicts with another TCP application on your
system. This is a global Job Controller option, set directly under job_controller; it is not
available under channel_class or job_pool groups. The default is 27442.

55.3.23 Job Controller job pool options:
nonurgent_delivery (execution-window string),
normal_delivery (execution-window-string),
urgent_delivery (execution-window-string)

The nonurgent_delivery, normal_delivery, and urgent_delivery Job Controller
job_pool options each set an "execution window" for messages of the respective effective
processing priority. The default is that all messages are eligible for processing at all times.

An execution window consists of up to five, comma-separated time windows. Each time
window is either a daily window (a window of time allowed every day) of the form:

hh:mm - hh:mm

or a weekly window (a window of time allowed per week) of either of the forms

ddd hh:mm - ddd hh:mm

or (with the ending day assumed to be the same as the beginning day)

ddd hh:mm - hh:mm

For instance, a time window

18:00 - 22:00

means between 6:00 PM and 10:00 PM each day.

20:00 - 06:30

55–16 Messaging Server Reference

use_nslog Option Under job
controller

means between 8:00 PM and 6:30 AM each night.

Sat 06:15 - 15:30

means each Saturday between 6:15 AM and 3:30 PM.

Wed 12:00 - Fri 00:00

means between noon Wednesday and midnight Thursday/Friday (the midnight dividing
Thursday from Friday). And thus an execution window specifying that processing is allowed
any night or all day on weekends could be

22:00 - 05:30, Sat 00:00 - Sun 23:59

Note that the MTA can be configured to modify messages' effective processing priority
based on certain criteria such as message size, see the *blocklimit channel options,
or via the MTA's non-standard Sieve extension "setpriority". As of the 8.0 release, an
explicitly specified MT-PRIORITY value for a message will override the older Priority: header
value or the MTA's size-based effective processing priority adjustments, and in particular
take precedence for Job Controller delivery execution window purposes. Only the MTA's
non-standard Sieve extension "setmtpriority" can override an explicitly specified MT-
PRIORITY value.

55.3.24 use_nslog Option Under job controller
The use_nslog Job Controller option may be set to 1 to enable use of nslog() for Job
Controller debug log files. The default is 0. When use_nslog has been enabled, see also the
logfile options that may be set as job_controller.logfile.*. Note that the loglevel
option is not supported for the Job Controller as its debug level is controlled instead by use of
the debug Job Controller option, job_controller.debug.

55.3.25 loglevel Option Under mta
The mta.logfile.loglevel option is ignored by the Dispatcher and Job Controller unless
the dispatcher.use_nslog and job_controller.use_nslog options are set for them,
respectively.

Note that this MTA-wide setting of mta.logfile.loglevel (by default affecting both
ims-ms channels and the LMTP server) can be overridden for the LMTP server via a
tcp_lmtp_server.loglevel setting.

Also note that the mta.loglevel option is defined and can be set to the same set of values,
but as of MS 8.0.1.2 it is a no-op. It's behavior in previous version is erratic - in some cases it
works and mta.logfile.loglevel does not, in other cases the value is ignored.

55.3.26 job_pool
The job_pool group (under job_controller) is not a Job Controller option itself, but
rather a grouping of Job Controller options defining a particular named Job Controller
processing pool. For instance:

Job Controller 55–17

channel_class

msconfig> set job_controller.job_pool:OFFHOURS_POOL.job_limit 3
msconfig# set job_pool:OFFHOURS_POOL.normal_delivery "14:00 - 12:00, Sat 00:00 - Sun 23:59"
msconfig# set job_pool:OFFHOURS_POOL.nonurgent_delivery "17:00 - 9:00, Sat 00:00 - Sun 23:59"

This defines a pool named OFFHOURS_POOL which: allows at most three simultaneous jobs,
limits delivery attempts of "normal" priority messages to occur outside the hours of noon until
2:00 PM on weekdays, and limits delivery attempts of "non-urgent" priority messages to occur
outside business hours Monday through Friday. That is, if any channels are assigned via the
pool channel option to run in this new OFFHOURS_POOL Job Controller pool, any messages
enqueued to such channels will get delivery attempts only at times as follows: "urgent" priority
messages can get delivery attempts at any time, as usual; "normal" priority messages will not
get delivery attempts around lunch time on weekdays, but can get delivery attempts at any
other times; "non-urgent" priority messages can only get delivery attempts outside business
hours, i.e., on weekends, or after 5:00 PM or before 9:00 AM on weekdays.

See Job Controller operation for further discussion of how the Job Controller utilizes such
processing pools, see Job Controller default configuration for several examples of processing
pool definition, and see the pool channel option for further details on how each channel is
assigned to some such processing pool.

The other type of grouping of Job Controller options is under the channel_class group,
used to set parameters on Job Controller channel job initiation and execution.

55.3.27 channel_class
The channel_class group (under job_controller) is not a Job Controller option itself,
but rather a grouping of Job Controller options defining a particular named Job Controller
channel, or class of channels having a certain name pattern. For instance:

msconfig> show channel_class:ims-ms*
role.job_controller.channel_class:ims-ms*.master_command = IMTA_BIN:ims_master
role.job_controller.channel_class:ims-ms*.max_life_askwork = 20000
role.job_controller.channel_class:ims-ms*.max_life_time = 14400

This defines the class of channels whose names begin ims-ms. Such channels have a master
program (named ims_master), and have max_life_askwork and max_life_time
options set to force delivery jobs for such channels to "time out" after certain work and time
limits, so that a new, fresh delivery job will be created (as necessary) by the Job Controller.

See Job Controller operation for further discussion of how the Job Controller tracks messages
and initiates channel jobs that run channel programs, see Job Controller default configuration
for several examples of channel definitions, see Available channels for a list of the normal
channels supplied with the MTA, and see the imsimta cache -change utility for how to
inform an already running Job Controller process of a new channel_class "on the fly".

The other type of grouping of Job Controller options is under the job_pool group, used to set
parameters on Job Controller processing pools.

55.4 Checking that the Job Controller is
running

55–18 Messaging Server Reference

Checking that the Job Controller is
running

You may check that the Job Controller is running with the command imsimta process. You
should see output similar to that shown below, perhaps with additional jobs present if your
system is currently processing messages.

imsimta process
 USER PID S VSZ RSS STIME TIME COMMAND
 mailsrv 12435 S 32936 9672 13:54:01 0:00 /opt/SUNWmsgsr/lib/job_controller
 mailsrv 12433 S 32480 8936 13:54:01 0:00 /opt/SUNWmsgsr/lib/dispatcher

Normally, the Watcher is configured to check periodically that the Job Controller is running
(and start a new Job Controller, if there is none present).

The Job Controller log file, job_controller.log-uniqueid, may be inspected to check
for any Job Controller error messages. Note that, unless Job Controller debugging has been
enabled, the Job Controller only writes to its log file if it encounters an error condition; that
is, the Job Controller log file will be empty under normal, no-errors, no-debugging-enabled,
conditions.

Job Controller 55–19

55–20

Chapter 56 Compiling the MTA
configuration

When using a compiled configuration, whenever you make a change to the MTA
configuration, such as to mappings, rewrite rules, channels, aliases, conversions, dispatcher
configuration (8.0 or later), job controller configuration (8.0 or later), or channel-specific
options (8.0 or later), you must recompile your configuration for the changes to take effect.
Compilation reads the entire configuration and writes it out as a single binary file.

Whenever a component of the MTA (such as a channel program) must read the configuration
file, it first checks to see if a compiled configuration file exists. If it does, the image is loaded
instead of reading the various configuration files.

The command to compile the MTA configuration is:

imsimta cnbuild

Prior to MS 7.0.5, two MTA Tailor options were relevant for imsimta cnbuild:
imta_config_data specified the default output image file, and imta_option_file
specified an option file adjusting configuration internal table sizes. As of MS 7.0.5, these MTA
Tailor options have been deleted, and hard-coded file paths are used instead, config-root/
advanced/config_data and server-root/lib/option_config.dat, where server-root is
the install directory or the value of the SERVERROOT environment variable.

Compiled configurations have a static part and a dynamic reloadable part. If the dynamic
part is changed, and you run the imsimta reload command, all running MTA processes
will reload the dynamic data. The dynamic parts are presently the mapping tables and text
databases. Everything else is static.

Using a compiled configuration makes it easy to test configuration changes because the
configuration files themselves do not "go live" until they are compiled. Most MTA test utilities
provide a -noimage switch which tells them to ignore the compiled configuration and instead
read the configuration from the original files. This lets you test things to make sure they are
working before affecting the running system.

If you make changes to your mappings or reverse, forward, or general text databases, then
after recompiling issue the command imsimta reload to get the changes to take effect. Note
that a compiled configuration is a prerequisite to using imsimta reload.

Note that imsimta reload also reloads authentication, SSL/TLS, and as of Messaging Server
8.0.2, affinity group options. This is done even if the MTA's configuration is not compiled.

If you make changes to other parts of the configuration you must restart the components
whose configuration was changed. Some of the dependencies are:

imsimta restart smtp Changes to mappings, aliases, channels, rewrite rules,
channel-specific options for SMTP channels, or text
databases.

imsimta restart dispatcher Changes to the dispatcher configuration, mappings, aliases,
channels, rewrite rules, channel-specific options for SMTP
channels, text databases

Compiling the MTA
configuration 56–1

imsimta restart job_controller Changing the job controller configuration, adding or
deleting channels, or changing the values of any of the
channel options pool, maxjobs, master, slave, single,
single_sys, or multiple. Note that adding or changing
a threaddepth channel option value can be dealt with
instead by using the imsimta cache -change -
thread_depth=... command. You must also restart
the job controller if you want changes to master channel
jobs to take effect immediately (rather than waiting for the
controller to time-out existing channel jobs).

Try to avoid restarting the Job Controller, especially at times when large numbers of messages
are in the queues, unless one of the preceding conditions necessitates a restart.

The following changes for compiled MTA configurations were introduced in Messaging Server
8.0:

• The dispatcher configuration, job controller configuration, and channel-specific options are
now part of the compiled configuration.

• The configure command no longer generates a compiled configuration by default, for
both legacy and Unified Configuration.

• Unified Configuration provides the -xmlfile=xml-config-file switch in various test
utilities like imsimta test -rewrite. When combined with the -noimage, this allows
testing of configuration files in non-default locations.

• The imsimta version command now shows if a compiled configuration is used or not.

56–2 Messaging Server Reference

Chapter 57 Mail filtering and access
control

57.1 Access mapping tables .. 57–2
57.1.1 PORT_ACCESS mapping table .. 57–3
57.1.2 INTERNAL_IP mapping table ... 57–6
57.1.3 Recipient access mapping tables .. 57–7
57.1.4 FROM_ACCESS mapping table ... 57–15
57.1.5 When access mapping table controls are applied 57–17

57.2 Defending against denial of service attacks .. 57–19

A common goal is to outright reject messages from (or to) certain users at the system level, or
to limit the number of throttle the rate at which messages are accepted, or to institute more
complex restrictions of message traffic between certain users, or to allow users to set up filters
on their own incoming messages (including rejecting messages based on contents of the
message headers). The MTA has a number of facilities in such areas, including:

• system level mapping tables such as SEND_ACCESS, FROM_ACCESS, and MAIL_ACCESS
that permit both simple and sophisticated restrictions of message traffic based on source and
destination and envelope From and To addresses---see Access mapping tables;

• the PORT_ACCESS mapping table that permits restriction of SMTP and LMTP connection
attempts based on source IP address; if using the MMP as an SMTP proxy, see also the
MMP's access filters;

• user level (and system level) message filtering using Sieve filters, including sophisticated
filtering based on message headers---see Sieve filters.

• the general MeterMaid facility that can be used to count or track numbers of messages
(or other "events" of interest) across processes and either perform "throttling" itself, or be
queried from system level mapping tables or Sieve filters that then make access decisions
based upon the MeterMaid counts.

Use of the PORT_ACCESS mapping table for connections to the MTA Dispatcher (e.g.,
connections to the SMTP server) or TCP wrappers for client connections to the Message
Store servers is a very efficient approach when rejection decisions can be taken based purely
upon source IP address. Use of mapping tables such as SEND_ACCESS, MAIL_ACCESS,
FROM_ACCESS, etc., is an efficient approach when "envelope level" controls are desired---
see Access mapping tables. When users wish to implement their own personalized controls,
or when message header and body content-based filtering is desired, the more general mail
filtering approach using Sieve is likely appropriate---see Sieve filters.

The MTA also uses mapping tables to check other sorts of access, including:

• Deciding which IP addresses are "internal": INTERNAL_IP

• Permitting use of specific SMTP commands:
• ETRN commands: ETRN_ACCESS
• BURL commands: BURL_ACCESS
• STARTTLS commands: TLS_ACCESS

• Controlling mailing list posting access:

• GROUP_AUTH

Mail filtering and access
control 57–1

Access mapping tables

• Many alias options (or in legacy configuration, alias file named parameters) that
name site-specific mapping tables, including alias options alias_auth_mapping,
alias_cant_mapping, alias_hold_mapping, alias_nohold_mapping,
alias_moderator_mapping, alias_sasl_auth_mapping,
alias_sasl_cant_mapping, and alias_sasl_moderator_mapping

• Controlling outbound SMTP connections and authentication:
• AUTH_ACCESS
• AUTH_DEACCESS
• MX_ACCESS
• IP_ACCESS

57.1 Access mapping tables
There are several MTA mapping tables that may be used to control who may or may not
connect to the SMTP/SMTP SUBMIT/LMTP servers, what destination hosts and IP addresses
may be sent to, what connections may use certain SMTP commands, who may send mail, who
may receive mail, or control who may post to mailing lists. For general information on the
format and usage of MTA mapping tables, see Mapping table format.

 The PORT_ACCESS mapping table is used by the Dispatcher to control blocking of
connections from particular IP addresses or IP address ranges, and to control use of different
authentication mechanisms for different sorts of connections. The PORT_ACCESS mapping
table in particular is relevant for certain techniques falling under the general category of see
defending against denial of service attacks. Although the PORT_ACCESS mapping table does
not have access to message address information and hence does not permit the fine level
granularity of, for instance, the ORIG_MAIL_ACCESS mapping table, and although it only
applies to incoming SMTP/SMTP SUBMIT/LMTP over TCP/IP messages, note that for what it
does do it is a very efficient approach (more efficient than using one of the later, address-based
access mapping tables) since it rejects a disallowed host's connection attempt at the TCP level,
before the channel dialogue (the SMTP/SMTP SUBMIT/LMTP transaction) has even begun.

 The FROM_ACCESS mapping table is probed at the point of attempted message submission
where the envelope From address has been provided; in SMTP terms, at the stage of the MAIL
FROM: command. In particular, this is after the PORT_ACCESS probe (that decides whether to
allow an SMTP/SMTP SUBMIT/LMTP connection) but before the recipient address mapping
tables probes (that decide whether to allow particular recipient addresses). Another feature
of the FROM_ACCESS mapping table is that it also has access to the authenticated sender
information (SMTP AUTH information in particular).

The four recipient access mapping tables, ORIG_SEND_ACCESS, SEND_ACCESS,
ORIG_MAIL_ACCESS, and MAIL_ACCESS, can make use of envelope address information (as
well as, in some cases, all the IP information available to the PORT_ACCESS mapping table).
The nature of these mapping tables is very general, and allows per channel granularity, that is,
channel-specific controls.

 Of the recipient access control mapping tables applied at the SMTP RCPT TO command
stage, the MAIL_ACCESS and ORIG_MAIL_ACCESS mapping tables are the most general,
having available not only the address and channel information available to SEND_ACCESS
and ORIG_SEND_ACCESS, but also any information that would be available via the
PORT_ACCESS mapping table, including IP address and port number information. But when
IP address information is not relevant to the desired controls, then use of SEND_ACCESS or
ORIG_SEND_ACCESS may be simpler. And for some purposes, combining use of two or more

57–2 Messaging Server Reference

PORT_ACCESS mapping table

of these tables may be convenient; see When access mapping table controls are applied for a
discussion of the timing and ordering of when access mapping table controls are applied.

The AUTH_REWRITE mapping table is checked after the SMTP DATA is received, so that it has
access not only to SMTP envelope fields but also to the header fields in the message itself. Thus
while it is not usually the primary tool for checking sender access, as its check occurs later
and thus is less efficient for outright blocking certain undesired senders, it can be very useful
for enforcing site policy requirements regarding use of proper (perhaps authenticated) From:
addresses, by rejecting messages that do not conform to policy.

57.1.1 PORT_ACCESS mapping table
The MTA Dispatcher is able to selectively accept or reject incoming connections to the services
it manages such as SMTP, SMTP SUBMIT, or LMTP, based on IP address and port number. At
Dispatcher startup time, the Dispatcher will look for a mapping table named PORT_ACCESS.
If the mapping was present when the Dispatcher was started, then Dispatcher operation will
include checking the mapping for each incoming connection. For each incoming connection
the Dispatcher will format connection transport information in the form:

 TCP|server-address|server-port|client-address|client-port

and try to match against all PORT_ACCESS mapping entries. If the result of the mapping
contains $N or $F, the connection will be immediately closed. Any other result of the mapping
indicates that the connection is to be accepted. $N or $F may optionally be followed by a
rejection message. If present, the message will be sent back down the connection just prior to
closure.

As of MS 8.0.1.3, tildes (~) may be used as delimiters between multiplie lines in order to create
a multiline response. Also note that a CRLF terminator will be appended to the string before it
is sent back down the connection.

If no entry matched, then and only then will any dns_verify_domain lookups, as specified
via a Dispatcher option (in particular in legacy configuration mode, in the Dispatcher
configuration file), be performed, and the result of such a lookup is another way a connection
may be refused. In particular, note that either an explicit rejection in PORT_ACCESS, or (as MS
6.0) a match without a rejection hence an "accept" effect will prevent dns_verify_domain
lookups from occurring; this allows PORT_ACCESS to do initial filtering on connections, either
"black listing" or "white listing" them, with dns_verify_domain taking effect only on any
other source IP addresses.

The flag $< followed by an optional string causes the MTA to send the string to syslog (UNIX)
if the mapping probe matches; the flag $> followed by an optional string causes the MTA to
send the string to syslog (UNIX) if access is rejected.

If bit 1 (value 2) of the log_connection MTA option is set and the $N flag is set so that the
connection is rejected, then also specifying the $T flag will cause a "T" entry to be written to
the MTA connection log. Note that running processes do not notice the periodic "roll-over"
of the mail.log_current file into the mail.log_yesterday file, and the creation of
a new mail.log_current file; such changes are normally noticed merely because new
processes come into existence and see the "new" file. But in the case of the Dispatcher, which
is normally a very long running process (normally not restarted except at times of certain
configuration changes), this means that the Dispatcher, which is writing the "T" records,
will continue writing to the "old" log file. For instance, after a mail.log_current file has
been renamed to mail.log_yesterday, the Dispatcher will keep writing its "T" records

Mail filtering and access
control 57–3

PORT_ACCESS mapping table

to the file it "knew" about, now named mail.log_yesterday; it will not know to start
writing to mail.log_current unless and until the Dispatcher is restarted. (As of MS 6.2, the
Dispatcher periodically (namely once an hour) forces a close and re-open of the connection log
file.) So, if you are using "T" records, you may wish to restart your Dispatcher daily (at the time
of log file rollover)---especially if you are running a version prior to MS 6.2.

The PORT_ACCESS mapping table, in addition to its normal use by the Dispatcher, is also
optionally probed again by the SMTP server and LMTP server for the purpose of determining
the appropriate SASL rule set (when SMTP AUTH has been used during message submission);
as of 7.0, the SMTP server probe of the PORT_ACCESS mapping table is unconditional (always
performed). (However, the LMTP server probe of PORT_ACCESS is still conditional.) Or
enabling bit 4 of the log_connection MTA option also causes the SMTP server and LMTP
server to probe the PORT_ACCESS mapping table; in this case site-supplied text may be
provided in the PORT_ACCESS entry to include in the SMTP server's and LMTP server's
application-info field---a field which is used in certain types of log entries (such as "C"
connection log entries entries). To specify such text, include two vertical bar characters in the
right hand side of the entry, followed by the desired text. New in MS 6.3-0.15, such SMTP
server probes of PORT_ACCESS will respect the $N (in the case of SMTP AUTH usage), $>,
and $< flags, whereas in prior versions the SMTP server probe results were only relevant for
setting the SASL ruleset and the optional logging text; as of the fix for 12208860 (Sun 6590888)
(MS 6.3-5.02), $N rejections will be respected in all cases. Thus new in MS 6.3-0.15 for the
special case of SMTP AUTH use, and true in general subsequently, the SMTP server probes
of PORT_ACCESS can be used to achieve connection rejections (in this case performed by the
SMTP server processes, rather than by the main Dispatcher process); for "simple" rejections it is
more efficient to perform such rejections from the main Dispatcher process, but for potentially
complex or "slow" rejections (such as rejections determined by the results of DNS verification
lookups), deferring the rejection until the individual SMTP server process stage can avoid
"bottlenecking" the main Dispatcher process waiting for a result of a probe. (LMTP server
probes of PORT_ACCESS remain, as previously, relevant only for setting the SASL ruleset and
the optional logging text.)

Table 57.1 PORT_ACCESS mapping flags

Flag Description
$U (New in 6.3-0.15) Enable channel debugging. As of 7.3-11.01, this

includes consulting the mm_debug and os_debug MTA options
and enabling any debugging they specify. This is only supported for
SMTP server probes of the PORT_ACCESS mapping table; it is not
supported for Dispatcher probes of the PORT_ACCESS mapping table.

$G (New in MS 7.0u5 for SMTP server; new in MS 8.1 for LMTP server)
Enable TRACE_LEVEL=2 channel debug output. Only supported for
SMTP or LMTP server probes; not supported for Dispatcher probes.

$V (New in MS 7.0) Enable the MTA's private SMTP extensions XADR,
XCIR, XGEN, and XSTA, overriding any SMTP server DISABLE_*
TCP/IP-channel-specific options. Only supported for SMTP server
probes; not supported for LMTP server or Dispatcher probes.

$/ (New in 7.0-0.04) Set the "fast disconnect" flag for sessions that have
not yet succeeded in starting a transaction; for such sessions, any
subsequent disconnect is done with SO_LINGER enabled and a
timeout of 0, which may clear slots quicker on intermediate firewalls
and proxies. Only supported for SMTP server and Dispatcher probes;
not supported for LMTP probes.

57–4 Messaging Server Reference

PORT_ACCESS mapping table

$V (New in 7.0-0.04) Enable the MTA's private SMTP extensions XADR,
XCIR, XGEN, and XSTA, overriding any SMTP server DISABLE_*
TCP/IP-channel-specific options. This is only supported for SMTP
server probes of the PORT_ACCESS mapping table; it is not supported
for Dispatcher probes of the PORT_ACCESS mapping table.

$Y Allow access.
$T If bit 1 of the log_connection MTA option is set, and if a

connection is rejected ($N is also specified), then write a connection
log file "T" record, including any of the optional text specified
with $N. This is only supported for Dispatcher probes of the
PORT_ACCESS mapping table; it is not supported for SMTP server or
LMTP server probes of the PORT_ACCESS table.

 Flags with arguments, in argument reading order1

$Astring (New in Messaging Server 7.4-18.01; for LMTP server, new in MS
8.0.1.) Set the HULA debug flags specified by the argument string;
comma-separated flags can be "perf", "connect", "authserv", and
"hula"; see the AUTH_DEBUG TCP/IP-channel-specific option. This
is only supported for SMTP server and LMTP server probes of the
PORT_ACCESS mapping table; it is not supported for Dispatcher
probes of the PORT_ACCESS mapping table.

$<string Send string to syslog (UNIX) if probe matches.
$>string Send string to syslog (UNIX) if access is rejected.
$Nstring Reject access with the optional error text string.
$Fstring Synonym for $Nstring, i.e., reject access with the optional error text

string.
$Ddelay (New in 6.3-0.15) Delay the banner flush by the specified number

of centiseconds, overriding the BANNER_PURGE_DELAY value. This
is only supported for SMTP server probes of the PORT_ACCESS
mapping table; not supported for LMTP server or Dispatcher probes
of the PORT_ACCESS mapping table.

$Schannel-name (New in Messaging Server 7.0-0.04) Set the specified channel as
the source channel for this SMTP session. This is only supported
for SMTP server probes of the PORT_ACCESS mapping table;
not supported for LMTP server or Dispatcher probes of the
PORT_ACCESS mapping table.

Additional non-
flagged fields

Description

TLS-certificate-
nicknames

(New in Messaging Server 7.0-0.04) Comma-separated list of TLS
certificate nicknames (which must appear subsequent to a vertical
bar character). This is only supported for SMTP server probes of the
PORT_ACCESS mapping table; not supported for LMTP server or
Dispatcher probes of the PORT_ACCESS mapping table.

text If bit 4 of the log_connection MTA option is set, then the optional
text text (which must appear subsequent to two vertical bar
characters) may be included in the connection log "C" entry tm. This
is only supported for SMTP server and LMTP server probes of the
PORT_ACCESS mapping table; it is not supported for Dispatcher
probes of the PORT_ACCESS mapping table.

Mail filtering and access
control 57–5

INTERNAL_IP mapping table

Flag comparisons Description
$:A Match only when the probe is performed by the Dispatcher
$;A Match only when the Dispatcher is not performing the probe
$:S Match only when the probe is performed by an SMTP server or LMTP

server
$;S Match only when neither an SMTP server nor an LMTP server is

performing the probe

1 To use multiple flags with arguments, or the non-flagged fields, separate the arguments with
the vertical bar character, |, placing the arguments in the order listed in this table.

Note that prior to MS 6.3-0.15, Dispatcher probes of the PORT_ACCESS mapping table could
not make use of LDAP callouts ($]...[callouts).

The following example PORT_ACCESS mapping will only accept SMTP connections (to port
25, the normal SMTP port) from a single network, except for a particular host singled out for
rejection without explanatory text:

PORT_ACCESS

 TCP|*|25|192.123.10.70|* $N500
 TCP|*|25|192.123.10.*|* $Y
 TCP|*|25|*|* $N500$ Bzzzzzzzzt$ thank$ you$ for$ playing.

Note that you will need to restart the Dispatche - or as of MS 6.3-0.15 use the imsimta
reload utility to reload the changed mappings file into running processes such as the
Dispatcher - after making any changes to the PORT_ACCESS mapping table so that the
Dispatcher will see the changes. (Note that this requires a compiled MTA configuration and
you'll first need to recompile before reloading.)

The PORT_ACCESS mapping table is specifically intended for performing IP number based
rejections; for more general control at the email address level, the e-mail address access
mappings such as SEND_ACCESS or MAIL_ACCESS may be more appropriate.

57.1.1.1 Initial PORT_ACCESS mapping table
Initial configuration will generate a basic PORT_ACCESS mapping table that makes use of a
subsidiary INTERNAL_IP mapping table to recognize "internal" vs. "external" IP sources:

PORT_ACCESS

 ||*|*|* C|INTERNAL_IP;$3|$Y$E
 * $YEXTERNAL

57.1.2 INTERNAL_IP mapping table
Modern MTA configurations typically make use of an INTERNAL_IP mapping table as a
convenient, single location for storing a site's list of "internal" IP addresses. MTA components
that need to check whether or not a source IP address is "internal" then can make use of the
INTERNAL_IP mapping table for this determination, rather than each component having its
own separate list. So while knowledge and use of the INTERNAL_IP mapping table is not
hard-coded into the MTA, it is a common configuration feature.

57–6 Messaging Server Reference

Recipient access mapping tables

Typical component users of an INTERNAL_IP mapping table include: the PORT_ACCESS
mapping table (to determine SASL ruleset), and a backwards-pointing IP literal rewrite rule
(for the purpose of switchchannel "switching" to the tcp_intranet channel).

A typical INTERNAL_IP mapping table might appear something like the following, shown
from within msconfig:

msconfig> show mapping:INTERNAL_IP.*
role.mapping:INTERNAL_IP.rule = host's-public-IP-address $Y
role.mapping:INTERNAL_IP.rule = $<192.168.0.0/16> $Y
role.mapping:INTERNAL_IP.rule = ${::1} $Y
role.mapping:INTERNAL_IP.rule = 127.0.0.1 $Y
role.mapping:INTERNAL_IP.rule = * $N

or in legacy configuration:

INTERNAL_IP

 host's-public-IP-address $Y
 $<192.168.0.0/16> $Y
 ${::1} $Y
 127.0.0.1 $Y
 * $N

This sample INTERNAL_IP mapping table's rules explicitly match the host's public IP address,
use a subnet match to match private IP addresses, and match IPv6 and IPv4 forms of loopback
address. A final, fall-through wildcard $N rule ensures that any IP addresses not listed/
matched earlier in the INTERNAL_IP table will fail the mapping check (not be considered
"internal").

57.1.3 Recipient access mapping tables
 The ORIG_SEND_ACCESS, SEND_ACCESS, ORIG_MAIL_ACCESS, and MAIL_ACCESS
mapping tables may be used to control who may or may not send mail, receive mail, or
both. The access checks have available a message's envelope from address and envelope to
addresses, and knowledge of what channel the message came in, and what channel it would
attempt to go out; in additional, the ORIG_MAIL_ACCESS and MAIL_ACCESS mapping tables
also have access to all the information available to the PORT_ACCESS mapping table. Note that
when the envelope To addresses are irrelevant and only the envelope From address matters,
then use of the FROM_ACCESS mapping table, described in FROM_ACCESS mapping table, may
be more convenient and efficient.

 If an ORIG_SEND_ACCESS or SEND_ACCESS mapping table exists, then by default
for each recipient of every message passing through the MTA, the MTA will probe the
ORIG_SEND_ACCESS and/or SEND_ACCESS mapping tables with a probe string of the form
(note the use of the vertical bar character, |)

src-channel|from-address|dst-channel|to-address

where src-channel is the channel originating the message (i.e., enqueueing/submitting the
message); from-address is the address of the message's originator; dst-channel is the
channel to which the message will be enqueued/submitted; and to-address is the address
to which the message is addressed. Use of an asterisk in any of these fields causes that field

Mail filtering and access
control 57–7

Recipient access mapping tables

to match any channel or address, as appropriate; see Mapping table format for additional
matching characters and sequences.

Note that the addresses here are envelope addresses, that is, envelope From address and
envelope To address. The from-address used is by default the so-called mapped return
address: the envelope From address after simple address reversal has been applied to it (but
not including, for instance, destination-specific address reversal). However, the MTA options
use_orig_return, and (new in MS 6.3) use_canonical_return, and (new in MS
7.0) use_auth_return, can be used to probe with a different form of the envelope From
address. In the case of SEND_ACCESS, the envelope To address is checked after rewriting,
alias expansion, etc., have been performed; in the case of ORIG_SEND_ACCESS the originally
specified envelope to address is checked after rewriting, but before alias expansion.

The MTA options access_orcpt, access_counts, include_conversiontag, and
include_spares1 (which in 8.0.2.2 replaced the previous include_spares MTA option)
can cause inclusion of additional fields in the probes. If the relevant bits of all these options are
set (the options take bit-encoded integer arguments with distinct bits controlling the inclusion
of the fields in the distinct mapping tables), then the format of probes with all optional fields
enabled becomes

src-chan|from-addr|dst-chan|to-addr|orcpt|access-counts|list-of-tags|s1|s2|s3|s4|s5|s6

The optional orcpt field is the SMTP ORCPT field; that is, it will contain the address type
(typically "rfc822") followed by a semicolon, followed by the "original" to address, e.g.,
"rfc822;user@domain.com". The optional access-counts field contains a count of which
recipient address (RCPT TO) this probe is for, followed by a forward slash, following by a
count of the number of valid recipient addresses resulting from previous recipient address
submissions (addresses resulting from previous RCPT TO commands), followed by a forward
slash, potentially followed by additional counts expected to be added in future versions; so
note that good practice is to always use an asterisk here, so that future additions will not cause
old entries to stop working. The optional list-of-tags field contains a comma-separated
list of conversion tags already present on this message. (Note that conversion tags apply to
entire message copies, different recipient conversion tags causing message copy "split up".
But these recipient address probes occur before final recipient determination and hence before
application of recipient conversion tags occurs.) The optional s* fields contain the values of
the LDAP attributes named by the ldap_spare_* MTA options.

 The MAIL_ACCESS mapping table is a superset of the SEND_ACCESS and PORT_ACCESS
mapping tables; that is, it combines both the channel and address information of
SEND_ACCESS, with the IP address and port number information of PORT_ACCESS. (See
PORT_ACCESS mapping table for discussion of the PORT_ACCESS mapping table.) Similarly,
the ORIG_MAIL_ACCESS mapping table is a superset of the ORIG_SEND_ACCESS and
PORT_ACCESS mapping tables. The format for the default probe string for MAIL_ACCESS is

port_access-probe-info|app-info|submit-type|send_access-probe-info

and similarly the format for the default probe string for ORIG_MAIL_ACCESS is

port_access-probe-info|app-info|submit-type|orig_send_access-probe-info

 Here port_access-probe-info consists of all the information usually included in
a PORT_ACCESS mapping table probe (see PORT_ACCESS mapping table) in the case of
incoming SMTP messages (including originally-incoming-SMTP messages that have been
deferred to the reprocess channel), or will be blank otherwise, and app-info will usually
be SMTP/claimed-HELO-name in the case of messages submitted via SMTP or SMTP/
TLS-crypto-info/claimed-HELO-name in the case of messages submitted via SMTP

57–8 Messaging Server Reference

Recipient access mapping tables

over TLS (including the case of originally-incoming-SMTP messages that have been deferred
to the reprocess channel), and blank otherwise. submit-type may be one of MAIL, SEND,
SAML, or SOML, corresponding to how the message was submitted into the MTA. Normally the
value is MAIL, meaning it was submitted as a message; SEND, SAML, or SOML can occur in the
case of broadcast requests (or combined broadcast/message requests) submitted to the SMTP
server. And for the MAIL_ACCESS mapping table, send_access-probe-info consists of
all the information usually included in a SEND_ACCESS mapping table probe (including,
if the MTA options access_orcpt, access_counts, include_conversiontag, and/
or include_spares1 are enabled, their respective additional fields). Similarly for the
ORIG_MAIL_ACCESS mapping, orig_send_access-probe-info consists of all the
information usually included in an ORIG_SEND_ACCESS mapping table probe (including,
if the MTA options access_orcpt, access_counts, include_conversiontag, and/or
include_spares1 are enabled, their respective additional fields). (See above for additional
discussion of SEND_ACCESS and ORIG_SEND_ACCESS probes, as well as the access_orcpt,
access_counts, include_conversiontag, include_spares1 MTA options.)

New in MS 7.0, the MTA option mapping_paranoia can cause vertical bars present within
a field to be replaced by a different character, thereby ensuring that the only vertical bar
characters in a probe are the field delimiter occurrences.

Now, if the probe string matches a pattern (i.e., the left hand side of an entry in the table), then
the resulting output of the mapping is checked. If the output contains the flags $Y or $y, then
the enqueue for that particular recipient (envelope To) address is permitted.

 If the mapping output contains any of the flags $N, $n, $F, or $f, then the enqueue to that
particular address is rejected. In the case of a rejection, optional rejection text may be supplied
in the mapping output. This string will be included in the rejection error the MTA issues.+
(Unless an at-sign character, @, is part of the explicit rejection text, the MTA will append a
colon and the recipient address to the end of the explicitly specified rejection text.) The specific
enhanced status code, which in turn determines whether the error is temporary or permanent,
can be specified through the use of $X; see the access mapping flags table below for details.

If no string is output (other than the $N, $n, $F, or $f flag), then some default rejection text
will be used. As of 6.2, the exact default text depends upon the value of the access_errors
option; by default, if that option is 0, then the full SMTP error, including text, is:

550 5.7.1 unknown host or domain: recipient-address

This default rejection text is rather intentionally misleading for reasons of security, as under
some circumstances it may be desirable to avoid revealing the real reason for a rejection. When
no such security concerns apply, it is often more user-friendly to take the option of specifing
some explanatory rejection text, either your own choice of text, or set access_errors=1. If
access_errors is 1, then the full SMTP error, including text, is: but if that option is 1, then
the text is:

550 5.7.1 you are not allowed to use this address

Technical note: When the MTA generates a probe, it may also set various input flags specific
to certain probe conditions: e.g., the A input flag is set if SMTP AUTH has been used. Though
these input flags are not part of the string part of the probe, they may be detected (tested) in a
mapping entry via flag comparison tests in the entry template (right hand side). See the "Input
flag comparisons" section of Address access mapping table flags for a full list. Input flags are
separate from output flags: even in an iterative mapping, a flag set as output on one line will

Mail filtering and access
control 57–9

Recipient access mapping tables

not become an input flag for possible subsequent probes, as it is the original input flags which
are the input flags for all the probes. Sophisticated uses of the *_ACCESS mapping tables may
make use of such input flag tests to more precisely specify under which circumstances to apply
mapping effects.

See Address access mapping table flags for descriptions of additional flags. Note that input
flags (set by the MTA prior to probing) are the only flags that may be tested using the input
flag comparisons. Output flags, those set in the template (right hand side) of a mapping entry,
are separate and not subject to such testing.

Table 57.2 Address access mapping table flags1

Output flag Description
$/ (New in MS 7.0) Set the "fast disconnect" flag for sessions that

have not yet succeeded in starting a transaction; for such sessions,
any subsequent disconnect is done with SO_LINGER enabled
and a timeout of 0, which may clear slots quicker on intermediate
firewalls and proxies.3

$! Disable (Sieve requested) vacation messages regarding this
message3

$* (New in MS 7.0 for FROM_ACCESS; new in MS 7.0u2 for the other
address *_ACCESS mappings) If used with $N, force disconnect
of the SMTP session.

$+L (New in MS 7.0.5) If used with $M in FROM_ACCESS, cause the
captured message copy to be in journal format

$B Redirect the message to the bitbucket
$H Hold the message as a .HELD file
$J (New in MS 7.0u4) If used with $M, cause generation of envelope

"journal" format rather than the default DSN encapsulated format
for the "capture" message copy 5

$O Forces single-copy-per-recipient message copy "split up", as if
the single channel option were set on the relevant destination
channel(s).

$P Force to enqueue to the reprocess channel. (For instance, this might
be useful as part of $.text. handling when attempting an LDAP
lookup that encountered an LDAP directory temporary problem;
that is, in case of an LDAP lookup problem, defer to the reprocess
channel.)

$V Force Sieve filter discard behavior for all recipients of this message
copy.

$v (New in MS 7.0u3) Force Sieve filter discard behavior for solely
this recipient5. For FROM_ACCESS, $v remains equivalent to $V as
meaning force Sieve filter discard for all recipients.

$Y Allow access.
$Z Force Sieve filter jettison behavior (non-overridable discard) for all

recipients of this message copy.
$z (New in MS 7.0u3) Force Sieve filter jettison behavior (non-

overridable discard) for solely this recipient5. For FROM_ACCESS,

57–10 Messaging Server Reference

Recipient access mapping tables

$z remains synonymous with $Z as meaning force Sieve filter
jettison for all recipients.

Output flags with arguments, in argument reading order2

$Un Enable channel (slave) debugging; if the optional n argument is
specified, it also sets the specified value for enqueue debugging.

$~channel-name (New in MS 7.0, as well as MS 6.3p1) Change source channel to
channel-name -- this may be of especial interest for the case of
incoming notification messages (incoming messages with empty
envelope From). Note that when this feature is used and it actually
changes the source channel, then the FROM_ACCESS check process
is restarted; also, $~ can only be applied once.3

$Jaddress Replace original envelope From address with specified address3

$Kaddress Replace original Sender: address with specified address3 (Note
that while $K sets the MTA's internal value for the sender, hence
will affect various access checks, whether or not a new Sender:
header line should be added to the message displaying the newly
specified sender address is controlled by the authrewrite
channel option; that is, use of $K does not, on its own, cause
addition of a Sender: header line showing the new sender address.)

$Iuser|identifier Check specified user for specified groupid (UNIX) and if not in the
group, reject access (effectively sets the $N output flag).

$<string Send string to syslog (UNIX) if probe matches; see also the
sndopr_priority MTA options4

$>string Send string to syslog (UNIX) if access is rejected; see also the
sndopr_priority MTA option4

$Ddelay Delay response for an interval of delay hundredths of seconds; a
positive value causes the delay to be imposed on each command
in the transaction; a negative value causes the delay to be imposed
only on the address handover (SMTP MAIL FROM: command
for the FROM_ACCESS table; SMTP RCPT TO: command for the
recipient address access mapping tables).

$Tprobe-tag Prefix subsequent address *_ACCESS mapping table probes with
the tag probe-tag. New in MS 7.0.5, the last such tag set may
optionally be prepended to the AUTH_REWRITE mapping table
probe.

$Aheader Add the header line header to the message; (see the
spamfilter*_includeheaders MTA options if it is desired
to have this added header line be visible to spam/virus filter
packages).

$Gconv-tag (New in MS 6.0) Add the conversion tag (or comma-separated
tags) conv-tag to the message.

$Maddress Capture a copy of the message, sending the captured and
encapsulated copy to address. By default, this captured copy is
DSN-encapsulated -- but see the no-argument, non-FROM_ACCESS
 $J output flag above.

$Sx
$Sx,y
$Sx,y,z

FROM_ACCESS6: Set an effective blocklimit, and optionally
recipientlimit, and optionally recipientcutoff for the transaction.
Prior to MS 6.3, these values were minimized with whatever

Mail filtering and access
control 57–11

Recipient access mapping tables

other such limits were already in effect; as of MS 6.3 these values
override any global MTA option or source-based such limits that
may already be effect (but destination-based limits will still be
applied, later).3

$,x (New in 6.1) Set a spam level value x (between -10000 and 10000).
If the message already had a spam level, this is a "spamadjust"
effect (adds or subtracts the specified amount x from the prior
spam level). Note that such a spam level/spamadjust effect applies
to all recipients (even for the recipient-specific mapping tables such
as SEND_ACCESS) in order for tests to see if one of the recipients is
a "honeypot" address.

$Qlanguage
$Qlanguage|country

(New in MS 6.3) Set a preferred language and optionally a
preferred country3

$(postmaster-addressFROM_ACCESS6: (New in MS 6.3) Set an override postmaster
address3

$)postmaster-address(New in MS 6.3) Set an override postmaster address if none was
previously set3

$+Ename|value (New in MS 7.0u2) Set the Sieve environment item name to value
$+Rn|string (New in MS 7.0u2) FROM_ACCESS6: Opt-in to spam/virus

filtering.7n specifies which spam/virus filter package; string is
the opt-in string to pass to that spam/virus filter package.3 The
string may be blank but the preceding vertical bar may not be
omitted.

$+Rn1,s1,n2,s2,... (New in MS 8.0.2.3) FROM_ACCESS6: Opt-in to spam/virus
filtering.7n1, n2 ... specifies the spam/virus filter packagew; s1,
s2, ... specify the opt-in strings to pass to the associated spam/virus
filter package.3 The opt-in strings may be blank but the commas
may not be omitted.

$+^n1,n2,... (New in MS 8.0.1.3) FROM_ACCESS: Disable selected filters,
overriding any source channel optins. The argument is a comma-
separated list of integer values n1, n2, n3 ... specifying which spam
filters to disable.

$+&n1,s1,n2,s2... (New in MS 8.0.2.2) FROM_ACCESS: Load sender spare attribute
with specified value The argument is a comma-separated list of
integer-string value pairs n1, s1, n2, s2 ... specifying the index of the
attribute to load and the value to load into it.

$Wn (New in MS 8.0) FROM_ACCESS: Set the MT-PRIORITY level to n.
$Xerror-code Issue the specified error-code extended SMTP error code if

rejecting the message; if the first digit of the extended SMTP error
code x.y.z is a 4, then the rejection will be issued as a temporary
rejection, 452 4.y.z, instead of the usual 550 5.y.z sort of
permanent rejection

$Nstring Reject access with the optional error text string
$Fstring Synonym for $Nstring, i.e., reject access with the optional error

text string
$(file-spec [ORIG_][SEND|MAIL]_ACCESS6: If rejecting a message to a

mailing list (or other envelope-From-overridden sort of message)
with other than a 4xx (temporary) error, override the usual

57–12 Messaging Server Reference

Recipient access mapping tables

error_text_* error text option values with values from the
file file-spec; the values should be specified one per line in
the file, in the order of the error_text_* options as shown in
error_text_* MTA options.5

$Surl [ORIG_][SEND|MAIL]_ACCESS6: Apply the Sieve filter obtained
from resolving url5

$+Rn|string (New in 7.0u2) [ORIG_][SEND|MAIL]_ACCESS6: Opt-in to spam
filtering.7 Only applied if neither $N nor $F is set. n is which
spam/virus filter package; string is the opt-in string to pass to
that spam/virus filter package.5 The string may be blank but the
preceding vertical bar may not be omitted.

$+Rn1,s1,n2,s2,... (New in MS 8.0.2.3) [ORIG_][SEND|MAIL]_ACCESS6: Opt-in to
spam filtering.7 Only applied if neither $N nor $F is set. n1, n2, ...
specify which the spam/virus filter packages to activate; s1, s2, ...
specify the the opt-in strings to pass to the associated spam/virus
filter package.5 The opt-in strings may be blank but the commas
may not be omitted.

$+^n1,n2... (New in MS 8.0.1.3) [ORIG_][SEND|MAIL]_ACCESS6: Disable
selected filters, overriding any active optins. The argument is a
comma-separated list of integer values n1, n2 ... specifying which
spam filters to disable. Note that this effect only extends to the
current level of alias expansion - optins at inner levels will be
honored.

Input flag comparisons Description
$:| (New in MS 7.0) Match only if external material (e.g., an envelope

address) in the probe contained a vertical bar
$;| (New in MS 7.0) Match only if no vertical bars were present in any

external material in the probe
$:A Match only if SMTP AUTH (authenticated submission) has been

used
$;A Match only if SMTP AUTH (authenticated submission) has not

been used
$:D Match only if DELAY delivery receipts have been requested (e.g.,

NOTIFY=DELAY)5

$;D Match only if DELAY delivery receipts have not been requested5

$:E (New in MS 6.3) Match only if ESMTP has been used
$;E (New in MS 6.3) Match only if ESMTP has not been used
$:F Match only if FAILURE delivery receipts have been requested (e.g.,

NOTIFY=FAILURE)5

$;F Match only if FAILURE delivery receipts have not been requested5

$:L (New in MS 6.3) Match only if LMTP has been used
$;L (New in MS 6.3) Match only if LMTP has not been used
$:P (New in MS 7.0) Match only if POP-before-SMTP was used
$;P (New in MS 7.0) Match only if POP-before-SMTP was not used

Mail filtering and access
control 57–13

Recipient access mapping tables

$:R (New in MS 8.0) Match if the current, enqueueing channel is an
"internal" channel such as the reprocess channel

$;R (New in MS 8.0) Match if the current, enqueueing channel is
something other than an "internal" channel

$:S Match only if SUCCESS delivery receipts have been requested (e.g.,
NOTIFY=SUCCESS)5

$;S Match only if SUCCESS delivery receipts have not been requested5

$:T Match only if TLS has been used
$;T Match only if TLS has not been used
$:V (New in MS 7.0u1) Match only if recipient address expanded via an

alias5

$;V (New in MS 7.0u1) Match only if recipient address did not expand
via an alias5

$:C (New in MS 8.0.1.3) Match only if message is the result of a
capture/journal action.

$;C (New in MS 8.0.1.3) Match only if message is not the result of a
capture/journal action.

1 These flags are relevant for the SEND_ACCESS, ORIG_SEND_ACCESS, MAIL_ACCESS,
ORIG_MAIL_ACCESS, and FROM_ACCESS mapping table, except where footnotes indicate
special restrictions. Note that the PORT_ACCESS mapping table supports a somewhat different
set of flags.
2 To use multiple flags with arguments, separate the arguments with the vertical bar character,
|, placing the arguments in the order listed in this table.
3 Available for the FROM_ACCESS mapping table only.
4 It is a good idea to use the $D flag when dealing with problem senders, to prevent a denial
of service attack. In particular, it is a good idea to use $D in any $> entry or $< entry rejecting
access.
5 Not available for the FROM_ACCESS mapping table.
6 This output flag has a different meaning and/or occurs in a different position, relative to
other output flags, for FROM_ACCESS vs. the other address *_ACCESS mapping tables. See the
rest of this table for the other occurrence of this flag, describing its operation for the other type
of mapping table.
7 Only one $+R and corresponding value can be used in a single mapping result.

+ Note that it is up to whatever is attempting to send the message whether the MTA rejection
error text is actually presented to the user who attempted to send the message. In particular,
in the case when SEND_ACCESS is used to reject an incoming SMTP message, the MTA merely
issues an SMTP rejection code including the optional rejection text; it is up to the sending
SMTP client to use that information to construct a bounce message to send back to the original
sender.

An example of an important use of the ORIG_SEND_ACCESS mapping table is discussed in
Blocking SMTP relaying.

57.1.3.1 Initial SEND_ACCESS mapping table

57–14 Messaging Server Reference

FROM_ACCESS mapping table

Initial configuration will generate a basic SEND_ACCESS mapping table to immediately issue
errors in cases of attempts to submit messages to certain invalid domain names:

SEND_ACCESS

 tcp_*|*|*|*@[127.*] $X5.1.2|$NBad$ destination$ system
 tcp_*|*|*|*@localhost.* $X5.1.2|$NBad$ destination$ system
 tcp_*|*|*|*@example.com $X5.1.2|$NBad$ destination$ system
 tcp_*|*|*|*@example.net $X5.1.2|$NBad$ destination$ system
 tcp_*|*|*|*@example.org $X5.1.2|$NBad$ destination$ system
 tcp_*|*|*|*@*.test $X5.1.2|$NBad$ destination$ system
 tcp_*|*|*|*@*.example $X5.1.2|$NBad$ destination$ system
 tcp_*|*|*|*@*.invalid $X5.1.2|$NBad$ destination$ system
 tcp_*|*|*|*@*.localhost $X5.1.2|$NBad$ destination$ system

57.1.4 FROM_ACCESS mapping table
The FROM_ACCESS mapping table may be used to control who can send mail, or to override
purported From: addresses with authenticated addresses, or both.

The input probe string to the FROM_ACCESS mapping table is similar to that for a
MAIL_ACCESS mapping table, minus the destination channel and address, and with the
addition of authenticated sender information, if available. Thus if a FROM_ACCESS mapping
table exists, then for each attempted message submission the MTA will probe the table with a
probe string of the form (note the use of the vertical bar character, |)

port_access-probe-info|app-info|submit-type|src-channel|from-address|auth-from

Here port_access-probe-info consists of all the information usually included in a
PORT_ACCESS mapping table probe in the case of incoming SMTP messages (including
originally-incoming-SMTP messages that have been deferred to the reprocess channel),
or will be blank otherwise, and app-info will usually be SMTP/claimed-HELO-name in
the case of messages submitted via SMTP, or SMTP/TLS-crypto-info/claimed-HELO-
name in the case of messages submitted via SMTP over TLS (including the case of originally-
incoming-SMTP messages that have been deferred to the reprocess channel), and blank
otherwise. submit-type may be one of MAIL, SEND, SAML, or SOML, corresponding to
how the message was submitted into the MTA. Normally the value is MAIL, meaning it was
submitted as a message; SEND, SAML, or SOML can occur in the case of broadcast requests
(or combined broadcast/message requests) submitted to the SMTP server. src-channel
is the channel originating the message (i.e., queueing the message); from-address is the
address of the message's purported originator (that is, the envelope From address); note
that as of Messaging Server 7.0u2, the MTA options use_orig_return , and (new in 6.3)
use_canonical_return, and (new in Messaging Server 7.0) use_auth_return , can
be used to probe with a different form of the envelope From address. auth-from is the
authenticated originator address, if such information is available (e.g., from an SMTP AUTH
command, in which case it is the user's mail attribute value which is returned from the SASL
library code and substituted in this field of the probe), or blank if no authenticated information
is available.

The include_conversiontag and include_spares1 (renamed from include_spares
as of MS 8.0.2.2) and access_auth MTA options can cause inclusion of additional fields in
the FROM_ACCESS probes. If the relevant bits of these options are set, then the format of the
probes with all optional fields enabled becomes

Mail filtering and access
control 57–15

FROM_ACCESS mapping table

port_access-probe|app-info|submit-type|src-chan|from-addr|auth-from|source-auth|username|list-of-tags|s1|s2|s3|s4|s5|s6

 The source-auth field contains the value of the SMTP MAIL FROM command's AUTH
parameter; the username field contains the canonical username result produced by
authentication. The optional list-of-tags field contains a comma-separated list of
conversion tags already present on this message. (Note that conversion tags apply to entire
message copies, different recipient conversion tags causing message copy "split up". But
these recipient address probes occur before final recipient determination and hence before
application of recipient conversion tags occurs.) The optional s* fields contain the values of
the LDAP attributes named by the ldap_spare_* MTA options.

Now, if the probe string matches a pattern (i.e., the left hand side of an entry in the table), then
the resulting output of the mapping is checked. If the output contains the flags $Y or $y, then
the enqueue from that particular From: address is permitted. If the mapping output contains
any of the flags $N, $n, $F, or $f, then the enqueue from that particular address is rejected.
In the case of a rejection, optional rejection text may be supplied in the mapping output. This
string will be included in the rejection error the MTA issues.1 If no string is output (other than
the $N, $n, $F, or $f flag), then default rejection text will be used,

550 5.7.1 Initial access check failure

See Address access mapping table flags for descriptions of additional flags.

As of MS 6.2p4, the initial configuration of the MTA generates a minimal FROM_ACCESS
mapping table that disables generation of vacation messages back to typical list "owner"
addresses.

This configuration can easily be extended to block submission entirely based on various
criteria. For example, suppose that in addition to not being allowed to receive mail, is is also
desirable to prevent over quota users from sending mail. The following settings would expose
the mailUserStatus attribute in the sixth spare slot:

 msconfig> set ldap_spare_6 mailUserStatus
 msconfig# set include_spares1 32

And the following addition at the end of the FROM_ACCESS mapping would check the
attributes value:

FROM_ACCESS

 TCP|*|SMTP*|MAIL|tcp_*|*|*|overquota $X4.2.3|$NOver$ quota$ users$ cannot$ send$ mail

Besides determining whether to allow a message to be submitted based on the originator,
FROM_ACCESS can also be used to alter the envelope From address via the $J flag, or to set
a different "sender" address via the $K flag. Although the envelope From and sender address
are not always seen in message headers, they can be quite significant for various functional
operations (such as access checks). And depending upon other configuration, they may
potentially end up visible in header lines (envelope From in the Return-path: header line
added during final delivery, and sender address in a Sender: header line if added due to use of
the authrewrite channel option). For instance, this mapping table can be used to cause the
original envelope From address to simply be replaced by the authenticated address, when an
authenticated address is present:

57–16 Messaging Server Reference

When access mapping table
controls are applied

FROM_ACCESS

 |SMTP|*|tcp_local|*| $Y
 |SMTP|*|tcp_local|*|* YJ$4

1Note that it is up to whatever is attempting to send the message whether the MTA rejection
error text is actually presented to the user who attempted to send the message. In particular, in
the case when FROM_ACCESS is used to reject an incoming SMTP message at the MAIL FROM:
stage of the SMTP dialogue, the MTA merely issues an SMTP rejection code including the
optional rejection text; it is up to the sending SMTP client to use that information to construct a
bounce message to send back to the original sender.

57.1.4.1 Initial FROM_ACCESS mapping table

Initial configuration of the MTA normally generates a basic FROM_ACCESS mapping table that
uses the $! flag to disable generation of vacation messages back to envelope From addresses
that typically correspond to list owner addresses.

msconfig> show mapping:FROM_ACCESS.*
role.mapping:FROM_ACCESS.rule = *|SMTP*|*|*|MAILER-DAEMON@*|* $!$Y
role.mapping:FROM_ACCESS.rule = *|SMTP*|*|*|LISTSERVE*@|* $!$Y
role.mapping:FROM_ACCESS.rule = *|SMTP*|*|*|majordomo@*|* $!$Y
role.mapping:FROM_ACCESS.rule = *|SMTP*|*|*|*-request@*|* $!$Y
role.mapping:FROM_ACCESS.rule = *|SMTP*|*|*|*-owner@*|* $!$Y
role.mapping:FROM_ACCESS.rule = *|SMTP*|*|*|owner-*@*|* $!$Y

This corresponds to legacy configuration of:

FROM_ACCESS

! Entries to block certain submissions normally would be inserted here,
! above the intended-to-be-final entries that while permitting submission,
! merely disable any potential "vacation" effect.
!
! The following entries disable Sieve "vacation" action on lists sorts
! of addresses, as recommended by the Sieve "vacation" extension draft.
!
 |SMTP|*|*|MAILER-DAEMON@*|* $!$Y
 |SMTP|*|*|LISTSERVE*@|* $!$Y
 |SMTP|*|*|majordomo@*|* $!$Y
 |SMTP|*|*|*-request@*|* $!$Y
 |SMTP|*|*|*-owner@*|* $!$Y
 |SMTP|*|*|owner-*@*|* $!$Y

57.1.5 When access mapping table controls are applied
 The MTA checks access control mapping tables as early as possible. Exactly when this
happens depends upon the e-mail protocol in use---when the information that must be
checked becomes available.

Mail filtering and access
control 57–17

When access mapping table
controls are applied

For incoming SMTP messages, the Dispatcher consults the PORT_ACCESS mapping table to
decide whether or not to accept the SMTP connection -- before even accepting a connection. In
the case of an accepted SMTP connection handed over to an SMTP server process thread, then
(as of Messaging Server 7.0) each SMTP server process thread makes its own additional probe
of PORT_ACCESS after the hand off of a connection from the Dispatcher, prior to issuing the
server's SMTP banner line. (If the "client" is the MMP and it sends an XPEHLO command, that
resets the effective source IP address and so the SMTP server process thread will then do yet
another PORT_ACCESS probe.) There are trade-offs in performance between the Dispatcher
check and the server process check of PORT_ACCESS; see the PORT_ACCESS mapping table
discussion for additional details.

Continuing with the (incoming) SMTP protocol, where addresses are presented in the initial
part of the attempted message handover, well before the message data itself would be
handed over, note that a FROM_ACCESS rejection will occur in response to the MAIL FROM:
command, before the sending side ever gets to send the recipient information let alone the
message data, while a recipient access mapping table (ORIG_SEND_ACCESS, SEND_ACCESS,
ORIG_MAIL_ACCESS, or MAIL_ACCESS) sort of rejection will occur in response to the RCPT
TO: command, before the sending side ever gets to send the message data. Thus if an SMTP
message is rejected due to such a *_ACCESS mapping table rejection, the MTA never even
accepts or sees the message data, thereby minimizing the overhead of performing such
rejections.

In contrast, note that an AUTH_REWRITE mapping table which (as of MS 6.2) may reject
messages, or a Sieve script "refuse" message rejection, since they in principle may make
use of information from the message as a whole (message header lines and body content),
cannot be applied until after the message data has been received by the MTA. In particular, in
the case of an SMTP message, these forms of rejection cannot occur until after the end of the
DATA phase of processing, thus they involve more overhead (both network traffic, and MTA
processing overhead) than rejections performed via a *_ACCESS mapping table.

So the order in which access mapping tables are checked for incoming messages is:

• PORT_ACCESS (by Dispatcher),

• PORT_ACCESS (by SMTP server as of Messaging Server 7.0),

• TLS_ACCESS (by SMTP server after successful STARTTLS negotiation), or ETRN_ACCESS
(by SMTP server when an ETRN command is received),

• SASL_ACCESS (after SMTP AUTH),

• FROM_ACCESS (after SMTP MAIL FROM),

• ORIG_SEND_ACCESS, SEND_ACCESS, ORIG_MAIL_ACCESS, and MAIL_ACCESS (after
SMTP RCPT TO, after the MTA's address rewriting and alias processing has been applied,
all four are checked in the order listed),

• BURL_ACCESS (by SMTP SUBMIT server when a BURL command is received instead of
regular message DATA),

• AUTH_REWRITE (after SMTP DATA).

In the list above, failing a check at one stage normally aborts message acceptance and
processing and hence no further checks need be performed. But as regards the recipient
address based mapping tables ORIG_SEND_ACCESS, SEND_ACCESS, ORIG_MAIL_ACCESS,
and MAIL_ACCESS, note that they are all checked at the same stage of processing (which is

57–18 Messaging Server Reference

Defending against denial of service
attacks

after address rewriting and alias processing); if multiple of these recipient address access
control mapping tables exist, then the MTA will check them all (and any side-effects they
cause will take place) in the order just listed (which is a point to keep in mind when using such
mapping tables to obtain side-effects such as addition of header lines, logging to syslog, etc.).

The MTA is designed to do most processing upon message enqueue. So outgoing SMTP
messages receive relatively little processing. However, there are a few possible access checks
for outgoing SMTP messages. See the AUTH_ACCESS, IP_ACCESS, and TLS_ACCESS mapping
tables.

57.2 Defending against denial of service
attacks

A denial of service attack is where an attacker tries (intentionally or inadvertently) to
overwhelm your system by flooding you with e-mail.

The MTA is designed to continue operating even when impacted by an attempted denial
of service attack. The design of the Dispatcher includes limits, which are configurable, on
how many simultaneous inbound connections to accept, how many processes to generate to
handle inbound connections, and how to aportion such inbound connections to those Worker
Processes. Similarly, the Job Controller has various self-managing features; see the discussion
of Job Controller operation under stress. However, sites subject to malicious attacks, or sites
that communicate with particularly ill-behaved correspondents, may want to take further
explicit steps for protection.

In some cases, adding a simple static mapping entry to unconditionally reject messages from
the problem address or site is a sufficient defense, particularly if you know ahead of time
(or can quickly detect) that the attack is occurring; see Access mapping tables and Client
access to Message Store servers. In other cases, however, you may either wish to automate
dynamic detection of message volume upswings sufficient to be considered an attack. Or
you may not wish to reject all messages from the problem address or site and instead wish
merely to "turn down the volume", i.e., slow down the flow to a level more easily managed by
your users or system. For instance, you may be under a practical or legal mandate to accept
certain messages, or good messages may be mixed in with the bad message flow; in such a
case turning down the volume to a manageable level allows the good messages a chance to get
into your system while preventing the bad messages from overloading your resources.

The PORT_ACCESS and SEND_ACCESS mapping tables ---as well as related mapping tables
discussed in Access mapping tables---can be used in more sophisticated ways than simple
unconditional entries to achieve such goals, and can indeed be hooked into dynamic, heuristic
routines to decide "Yea" or "Nay" on accepting messages, such as MeterMaid, or dns_verify
routines, or calling out to PureMessage IP Blocker via the pmxbl routine, or calling out to
a third-party anti-spam/anti-virus package that supports so-called "early verdicts" via the
mm_check_reputation routine, or callouts to site-provided routines.

First, on the most simple level, the PORT_ACCESS, SEND_ACCESS or related mapping tables
can take a random argument, effectively having the MTA "flip a coin" each time it needs to
decide whether to accept a connection or message, respectively, or in the case of SEND_ACCESS
and related mapping tables whether to sideline a message; see the $? substitution (under
Mapping tables) for details.

For more sophisticated needs, the PORT_ACCESS, SEND_ACCESS, or related mapping tables
can call out to facilities such as MeterMaid, or the dns_verify routines, or call out to site-

Mail filtering and access
control 57–19

Defending against denial of service
attacks

supplied shareable image routines; see Site-supplied routine substitutions (under Mapping
tables) for details. Such routines can, if you wish, use PMDF API calls to access MTA counters
information; this can allow for heuristic decisions based on recent message load, comparing
MTA counters levels at one sampled time with MTA counters levels when checked a little
later; e.g., "lots of messages came in to the tcp_local channel in the last few minutes, so let us
reject additional connection attempts for the moment" or whatever decision basis you decide to
implement.

As of Messaging Server 7.0u2, use of a LOG_ACTION mapping table calling out to MeterMaid
may be an even better approach for making dynamic decisions.

If you have a site approach for monitoring syslog notices, note that the
log_messages_syslog and log_connections_syslog MTA options can be enabled to
cause message and connection entries, respectively, to also be sent to syslog.

As of the 8.0 release, the Sieve "memcache" operator and Sieve "metermaid" operator are
available to query and update memcache or MeterMaid, respectively, from within a Sieve
script. Sieve script powerful logic can thereby allow for especially flexible or "targetted"
updates of memcache or MeterMaid tables, if desired, when such tables are to be queried for
connection blocking or throttling type purposes.

The heuristics for making dynamic decisions about accepting or rejecting messages tend to be
very site specific, and involve a variety of critical issues. Note also that sites may wish to keep
the details of their own heuristic algorithms secure. Sites interested in implementing their own
denial of service prevention techniques may wish to obtain specialized consulting assistance.

Particularly when implementing dynamic rejection mechanisms, the following TCP/IP-
channel-specific options may be of interest:

• ALLOW_TRANSACTIONS_PER_SESSION, ALLOW_RECIPIENTS_PER_TRANSACTION,
and TRANSACTION_LIMIT_RCPT_TO. The ALLOW_TRANSACTIONS_PER_SESSION
option can be used to limit the number of messages accepted during a particular
connection. After refusing a number of connection attempts from a particular site, once
you do let them connect, they are liable to have a backlog of messages for your site
which they will try to deliver during that connection. If you are attempting to "slow
down" how much mail you accept from that site, you likely will want to use this option
to say, in effect, "enough for now" after some point in the connection. Similarly, the
ALLOW_RECIPIENTS_PER_TRANSACTION option can be used to limit the number of
recipients allowed for a particular message submission (additional recipients during
that submission attempt being rejected with a temporary error, so that they may be tried
again later); this can be useful in slowing down the number of recipients handed over
during a single message transaction. Thus both these options may be useful protecting
against a denial of service attack in the form of a rapid flood of messages blanketing large
numbers of your users. The TRANSACTION_LIMIT_RCPT_TO option modifies the effect of
ALLOW_RECIPIENTS_PER_TRANSACTION, in that it controls at which SMTP command
(RCPT TO: or MAIL FROM:) the "extra" recipient addresses are rejected.

• REJECT_RECIPIENTS_PER_TRANSACTION. The
REJECT_RECIPIENTS_PER_TRANSACTION option can be considered a more
aggressive version of ALLOW_RECIPIENTS_PER_TRANSACTION; whereas
ALLOW_RECIPIENTS_PER_TRANSACTION allows up to the specified number of recipients
to be accepted (while additional recipients get a temporary rejection) thereby merely
"slowing down" the incoming messages, REJECT_RECIPIENTS_PER_TRANSACTION
causes the MTA to issue a temporary rejection (after the DATA command) for
all recipients of a message if too many recipients are attempted. That is, with

57–20 Messaging Server Reference

Defending against denial of service
attacks

REJECT_RECIPIENTS_PER_TRANSACTION, a message will not be allowed in at all until
the sending side decreases the number of recipients it is trying to submit during a single
transaction. So for a sufficiently flexible sender, REJECT_RECIPIENTS_PER_TRANSACTION
is simply a somewhat more forceful way of slowing down the message flow. But for a sender
that is not so flexible about retrying sending a message with fewer recipients per transaction,
REJECT_RECIPENTS_PER_TRANSACTION may result in the message not getting through at
all.

• ALLOW_REJECTIONS_BEFORE_DEFERRAL. The ALLOW_REJECTIONS_BEFORE_DEFERRAL
option causes the MTA, after the specified number of recipients have failed (been
determined to be invalid addresses), to reject (with a temporary error) all further recipients
in that transaction, good or bad. That is, this option penalizes message submissions that
include a lot of bad recipient addresses (on the theory that such message submissions may
be cases of dictionary-based or automatically-generated lists of recipients).

• SIZE_DELAY_THRESHHOLDS, SIZE_DELAY_AMOUNTS,
RECIPIENT_DELAY_THRESHHOLDS, RECIPIENT_DELAY_AMOUNTS,
TRANSACTION_DELAY_THRESHHOLDS, TRANSACTION_DELAY_AMOUNTS. These options
are specifically available to progressively "slow down" the acceptance of incoming messages
once specified threshholds have been exceeded.

The above items focus on MTA features. However, many sites will also have a spam/virus
filter package that may be capable of maintaining heuristic data concerning connections; if
such a spam/virus filter package has useful such abilities and is configured to report or make
available relevant such data to the MTA, as for instance via a mm_check_reputation routine
call from the PORT_ACCESS mapping table, that can be yet another useful tool in the arsenal
for defending against denial of service attacks.

Mail filtering and access
control 57–21

57–22

Chapter 58 Spam and virus filtering
58.1 Brightmail spamfilterN_config_file .. 58–2
58.2 ClamAV spamfilterN_config_file .. 58–4
58.3 ICAP spamfilterN_config_file .. 58–5
58.4 Milter spamfilterN_config_file ... 58–6
58.5 SpamAssassin spamfilterN_config_file ... 58–8
58.6 Archive spamfilterN_config_file .. 58–10
58.7 Sieve spamfilterN_config_file .. 58–11
58.8 Spamfilter early verdicts ... 58–12
58.9 Milter implementation .. 58–12

58.9.1 MILTER_ACTIONS mapping table .. 58–16
58.9.2 MILTER_MACROS mapping table .. 58–17
58.9.3 Milter single recipient extension .. 58–17
58.9.4 Milter errors ... 58–19

58.10 Milter operation .. 58–19
58.11 imexpire invoking spamfilter packages ... 58–21

The MTA supports calling out to up to eight spam/virus filter packages while processing
incoming messages. The configuration of how the MTA should locate and communicate with
such spam/virus filter packages is controlled via spamfilter MTA options; the configuration
of which routes of messages traffic receive which spam/virus filtering may be controlled via
spamfilter channel options; in addition to, or instead of, channel-level control, the MTA also
supports per address (either sender or receiver) opt-in to spam/virus filtering via various user-
level or domain-level LDAP attributes, and via alias_optinN alias options.

When use of multiple spam/virus filter package "slots" is configured, the MTA calls all the
configured spam/virus filter packages as messages are being received (enqueued). Thus the
spam/virus filter package processing of messages is essentially in parallel with each other (and
with the MTA's own inherent processing). The MTA then uses (applies) the spam/virus filter
package results -- their respective verdicts -- in the order of the configured spam/virus filter
package "slots": spamfilter1*, before spamfilter2*, before spamfilter3*, etc.

Generally, spam/virus filter package verdicts regarding specific messages are interpreted by
the MTA as requesting correspondingly configured Sieve filter actions. Via the interaction of
various types and levels of Sieve filters in the MTA's Sieve hierarchy, complex logic weighting
or comparing verdicts from multiple spam/virus filter packages can be achieved. The Sieve
spamtest and virustest extensions can be particularly useful in the context of consulting
multiple spam/virus filter packages.

With those spam/virus filter packages that support connection-based "early verdicts", the MTA
can also make use of such information as a special application of its general Mail filtering and
access control functionality. See also the topics of Defending against denial of service attacks
and Triggering effects from transaction logging with LOG_ACTION.

Note that many spam/virus filter packages do not themselves support returning different
verdicts for different recipients of a single message. However, Brightmail does; and as of
Messaging Server 7.0.5.33, Oracle's milter implementation supports a single recipient extension
to effect different milter actions for different recipients. Furthermore, note that even with
a spam/virus filter package that does not itself support returning different verdicts for
different recipients, different per-recipient eventual effects can be achieved (at the cost of
some additional configuration complexity) in a couple of ways. One way to achieve different

Spam and virus filtering 58–1

Brightmail spamfilterN_config_file

effects for different users even with a spam/virus filter package that does not support per-
recipient verdicts is to have the spam/virus filter package result "mark up" a message in
one way or another (e.g., by adding a header line, or setting a spam level) and then make
use of the MTA's Sieve hierarchy to take individualized actions in user-level Sieve filters.
Another way to achieve individualized effects even with a spam/virus filter package that
has no such inbuilt support is to assign different MTA spamfilter "slots" (that is, different
N in the spamfilterN_* MTA options) to different configurations of a single spam/virus
filter package, and then "opt in" users to the appropriate "package" configurations, either at
the domain level or at the individual user level; see the ldap_domain_attr_optinN and
ldap_optinN MTA options.

Integrating spam/virus filter package use as a "call-out" via spamfilter MTA options is
generally much preferable in functionality to use of an "in front" or "on the side" separate,
dedicated spam/virus filter SMTP host, or even site or third-party written filtering MTA
channel, for reasons including:

• the call-out approach permits "up front" address validation by the MTA, thus avoiding
wasting time on invalid (perhaps dictionary attack generated) recipient addresses;

• the call-out approach preserves SMTP responsibility and full SMTP features (e.g., message
size limits, message notification handling requests, message authentication data, etc.) for
incoming messages with the MTA whose primary function that is;

• the call-out approach tends to maximize performance and throughput of messages; in
particular, it avoids the overhead of additional full transfers of the messages and avoids
SMTP performance bottlenecks or message buildups on third-party SMTP implementations;

• the call-out approach permits the use of multiple spam/virus filter packages "in parallel",
which for sites that like to use (or compare) different spam/virus packages has benefits
including:

1. higher throughput due to the parallelization of the MTA calling all the spam/virus filter
packages in parallel while messages are being enqueued,

2. convenient comparison of and swapping between different spam/virus filter packages at
site convenience,

3. the potential for complex combining and weighting of verdicts from different spam/virus
filter packages,

4. provisioning of user use of email spam/virus services that is integrated with the
provisioning of user email addresses, routing, and other email services.

However, the MTA does also support hooking in site or third-party written MTA channels via
the alternate conversion channel approach.

The Message Store's imexpire utility also supports operating in a mode where it calls out
to spam/virus filter packages "as if" it were an MTA channel, applying a subset of Sieve filter
actions corresponding to the spam/virus filter package verdicts again "as if" it were an MTA
channel. This feature thus permits post-delivery scanning of messages for spam/virus, and
removal from the Message Store of such messages determined (post-delivery) to be spam or
virus-contaminated.

58.1 Brightmail spamfilterN_config_file

58–2 Messaging Server Reference

Brightmail spamfilterN_config_file

When using Brightmail (and running it on a separate, remote system), a
spamfilterN_config_file MTA option might be set as

msconfig> set mta.spamfilter1_config_file /opt/mailwail/config.remote

For Brightmail, the file that this option names may contain an extensive list of option settings.
Listed below in Some Brightmail configuration file options are some especially relevant valid
options, but for a full list of valid options, consult Brightmail documentation. Brightmail
configuration file option names are not case-sensitive. However, the values (right hand sides)
are potentially case-sensitive. The Brightmail configuration file uses LDIF format; in particular,
options are specified as

option-name: option-value

Table 58.1 Some Brightmail configuration file options

Option name Meaning Typical setting for MTA use

blSWPrecedence A message may receive multiple forms of processing
hence multiple verdicts; for instance, receive verdicts
of both spam and virus. This option specifies the
order in which verdicts are processed for messages
with multiple verdicts. Verdicts should be separated
with the hyphen character, -. A verdict appearing
first (left-most) in the hyphen-separated list will
be processed before a verdict appearing next (to
the right), etc.. Supported verdicts are virus and
spam. Brightmail recommends that virus verdicts be
processed first.

blSWPrecedence: virus-spam

blSWClientDestinationDefault This option specifies how to handle messages that
have no verdict (for instance, that are not gray or virus
and hence do not require additional filtering). Usually
such messages should simply be delivered normally,
that is, to the user's usual inbox. The value inbox has
this meaning, and hence is usually the recommended
setting.

blSWClientDestinationDefault: inbox

blSWLocalDomain Occurrences of this option specify which domain(s)
are considered local, hence which domains get the
handling specified by blSWClientDestinationLocal
options (as opposed to handling specified by
blSWClientDestinationForeign options).

blSWLocalDomain:
 your-domain-1.com
blSWLocalDomain:
 your-domain-2.com
...
blSWLocalDomain:
 your-domain-n.com

 blSWClientDestinationLocal This option specifies verdict-name|destination-data
pairs for recipients in a local domain (a domain
specified by a blSWLocalDomain option).
(blSWClientDestinationForeign options
control the handling for recipients in any other
domains). That is, a setting of this option controls
what verdict string (destination-data) is passed to
the MTA corresponding to a particular Brightmail
verdict. The MTA is normally configured (via a
spamfilterN_null_action=data,discard;
MTA option setting) to consider a null destination-data
value to be a request to discard the message. And since
the MTA's default action, given a non-null verdict
(non-null destination-data), is to file to a folder of the
same name as the verdict (destination-data), due to the
default:

The default settings are:

blSWClientDestinationLocal:
 spam|junkmail
blSWClientDestinationLocal:
 virus|

which by default has the effect that messages
that Brightmail considers to be virus will be
discarded while messages that Brightmail
considers to be spam will be filed to a
recipient's "junkmail" folder.

Spam and virus filtering 58–3

ClamAV spamfilterN_config_file

spamfilterN_string_action=data:,require "fileinto"; fileinto "$U";

This typically but not necessarily amounts to verdict-
name|folder-name pairs, with a null (empty) folder-
name meaning to discard the message. But more
precisely, it truly consists of Brightmail-verdict-
name|MTA-verdict-string pairs, where the MTA-
verdict-string can be specified in an MTA option
of the form spamfilterN_verdict_M=MTA-
verdict-string to correspond to an action
specified in a spamfilterN_action_m option,
and with a null MTA-verdict-string being handled
in accordance with the MTA's corresponding
spamfilterN_null_action option. Supported
verdict-name values include spam and virus.

blSWClientDestinationForeign Analogous in syntax and meaning to
blSWClientDestinationLocal settings above,
but applying to recipients who are not in one of the
blSWLocalDomain domains.

blSWClientOptin This option specifies the handling of opt-in decisions
by the Brightmail Client, and for use with the MTA
must be set to TRUE.

blSWClientOptin: TRUE

 blswcServerAddress This option specifies the IP address(es) and port(s)
of one or more Brightmail servers. The syntax is
ip:port[,ip:port,...]

blswcServerAddress: ip:port

or

blswcServerAddress:
 ip-1:port-1,
 ip-2:port-2,...,
 ip-n:port-n

 blCommonDebugFilename This option specifies the location of Brightmail's
own debug log file. It can be set to any of syslog
or syslog|syslog-facility (the default when
logging to syslog if the facility is not set is mail),
stderr, or a path-to-filename.

blswcCommonDebugFileName:
 /opt/mailwall/logs/common_log

 blCommonDebugLevel This option enables Brightmail's own debugging. The
value is a comma-separated list of pairs of values. The
first subvalue in each pair is either a positive integer
(specifying a section of Brightmail code - use reserved
for Brightmail) or the keyword ALL, meaning that
all Brightmail code is debugged. The second value in
each pair is an integer between 0 and 7, specifying the
severity of the error as defined in syslog.

Brightmail recommends that for problem situations,
this option be set to ALL,6. And Brightmail
recommends that after solving the difficulty, that the
option be set back to ALL,4.

 blCommonDebugLevel: ALL,4

 blswcDebugFileName
blswcDebugFileName:
 /opt/mailwall/logs/bmclient_log

 blswcDebugLevel

 blswsDebugFileName
blswsDebugFileName:
 /opt/mailwall/logs/bmserver_log

 blswsDebugLevel

Material in this table is taken from the Brightmail Solution Suite 4.0 for iPlanet Messaging Server
manual. While presented again here for convenience, that manual should be considered the
definitive source for Brightmail documentation.

58.2 ClamAV spamfilterN_config_file

58–4 Messaging Server Reference

ICAP spamfilterN_config_file

When using ClamAV, a spamfilterN_config_file MTA option might be set as

msconfig> set mta.spamfilter3_config_file IMTA_TABLE:clamav.dat

With ClamAV, the file that a spamfilterN_config_file MTA option names may contain
the following options:

• DEBUG (integer; default is 0).

• USE_INSTREAM (0 or 1; default is 0). New in Messaging Server 7.0u3. The default 0 selects
that ClamAV "STREAM" request is sent; setting 1 selects that ClamAV "INSTREAM" request
is sent.

• MESSAGE_BUFFER_SIZE (integer; default is 1048576).

• HOST (hostname or IP address). A value must be specified for this option; (its presence is
required).

• PORT (integer). A value must be specified for this option; (its presence is required).

• SOCKS_HOST (string).

• SOCKS_PORT (integer; default is 1080).

• SOCKS_USERNAME (string).

• SOCKS_PASSWORD (string).

• TIMEOUT (integer; default is 3600).

• MODE (integer; default is 0).

• FIELD (string; default is "Virus-Test").

• VERDICT (string).

58.3 ICAP spamfilterN_config_file
When using ICAP, a spamfilterN_config_file MTA option might be set as

msconfig> set mta.spamfilter4_config_file IMTA_TABLE:icap.dat

With ICAP, the file that a spamfilterN_config_file MTA option names may contain the
following options:

• DEBUG (integer; default 0)

• TIMEOUT (integer; default 3600)

• SOCKS_HOST (string)

• SOCKS_PORT (integer; default 1800)

• SOCKS_USERNAME (string)

• HOST (string or IP address); this option is required (a value must be set)

Spam and virus filtering 58–5

Milter spamfilterN_config_file

• PORT (integer; default 1344)

• MODE (integer; default 0)

• FIELD (string; default "Virus-Test")

• VERDICT (string)

58.4 Milter spamfilterN_config_file
When using Milter, a spamfilterN_config_file MTA option might be set as

msconfig> set mta.spamfilter4_config_file IMTA_TABLE:milter.dat

With milter (supported as of MS 6.3), the file that a spamfilterN_config_file MTA
option names may contain the following options:

• CONNECT_TIMEOUT (integer). (New in 8.0) This option provides a separate timeout for
the initial milter connection separate from the timeout waiting for milter responses. If this
option is not set, it defaults to the value set for the TIMEOUT option. A non-positive setting
for CONNECT_TIMEOUT, whether explicitly set or inherited from TIMEOUT, will result in
using a CONNECT_TIMEOUT value of 60.

• CONTEXT_EDITS (integer; default is 1). (New in 8.0.1) The milter interface expresses
header modification actions in terms of offsets, e.g., "delete the third occurrence of the
Authentication-results: header field" or "replace the value of the first occurrence of the
DKIM-Signature: field with ...". For the most part these actions have obvious analogues in
Sieve using the index extension. However, when multiple milters acting in parallel modify
the same header field it's possible for the changes to overlap and produce anomalous results.
This can be ameliorated by converting offsets into references to the header field's value,
something the Sieve editheader extension also supports. The CONTEXT_EDITS option
controls whether or not milter header modification actions are translated from offsets
into value references. A non-zero value (the default) enables this translation; a zero value
disables it.

• DEBUG (integer; default is 0). Non-zero values enable increasingly higher levels of debug
output: a value of 1 enables basic debugging; a value of 2 enables, for instance, hex dumps
of the milter responses; a value of 3 is also meaningful, enabling output of the octets of the
milter responseand as of the 8.0 release, additional other debug output such as debugging of
use of the MILTER_MACROS mapping table.

• DEFER_MESSAGE_TRANSFER (integer; default is 0). (New in MS 8.0.1) Normally
messages are transferred to the milter server as they are presented to the MTA.
Setting DEFER_MESSAGE_TRANSFER to a non-zero value defers the transfer until
after the preceding spamfilter plugin has completed its actions, at which point
the message header and body are transferred to the milter server from the MTA's
internal storage areas. Normally this option is used in conjunction with setting the
IMMEDIATE_HEADER_MODIFICATIONS option on a previous milter spamfilter plugin,
which results in the modifications made by the previous milter being visible to the current
milter.

• HOST (hostname or IP address). Specify a host running a Milter server. A value must be
specified for this option; (its presence is required).

58–6 Messaging Server Reference

Milter spamfilterN_config_file

• DATA_IN_BODYEOB (0 or 1; default is 0). (New in 8.0.2, and for libmilters.so new in a
patch to MS 7.0.5) When set to 0 (the default), message body material is not sent as part of
the milter BODYEOB (body end of body) command. Setting this option to 1 allows message
body material to be sent with the BODYEOB command, which while legal per the milter
specifications and more efficient, may cause trouble with milters such as Proofpoint's milter.

• IGNORE_BAD_CERT (0 or 1; default is 0). (New in 8.0.1.3.) Setting this option to 1 disables
SSL/TLS certificate checking. This option is only meaningful if the USE_SSL option is set to
1.

• IMMEDIATE_HEADER_MODIFICATIONS (integer, default 0). (New in MS 8.0.1) By default
the milter interface converts milter header modification actions to Sieve actions. Setting
this option to a non-zero value will cause the plugin to modify the MTA's internal copy of
the message header directly; no Sieve actions will be generated. IMPORTANT NOTE: This
option should ONLY be used with plugins enabled on the basis of the source channel; use
with plugins enabled via destination channels will cause inconsistent results. Additionally,
the 8.0.1 release of this capability implements different semantics for multiple deletes with
different indices than would be obtained otherwise. These semantics have been brought in
line with normal milter operation as of MS 8.0.2.2.

• MAX_PREPEND_INDEX (integer; default is 1) (New in 8.0) Specifies the smallest index value
that can be passed to SMFI_INSHEADER by the milter server and cause the resulting header
field to be inserted at the top of the header block rather than the bottom.

• PER_RECIPIENT_ACTIONS (0 or 1; default is 0). (New in 7.0.5.33) Setting this option to
1 enables availability of Oracle's milter extension SMFIF_SPECRCPT for per-recipient
modification actions.

• PRESERVE_BREAKS (0 or 1; default is 1) (New in Messaging Server 7.0.5) Preserve line
breaks (line folding) in header lines during processing.

• PORT (integer). Specify the port on which the Milter server is listening. A value must be
specified for this option; (its presence is required).

• QUARANTINE_ACTION (string; default is "hold;"). (New in 8.0.1.) This option specifies the
Sieve action to use when a milter quarantine message modifier (SMFIF_QUARANTINE)
is engaged. For example: QUARANTINE_ACTION=require "fileinto";
fileinto "spam"; Milter quarantine actions always have an associated "reason"
string. A $R can be used to substitute this string into the Sieve action. For example:
QUARANTINE_ACTION=require "reject"; reject "Message rejected,
reason: $R"; A literal dollar sign in the Sieve action string must be doubled, e.g., $$.
The default action that is performed if QUARANTINE_ACTION is not set is "hold;".

• REPROCESS_CONNECT_TIMEOUT (integer). (New in 8.0.2.3) This option's value
is used instead of the CONNECT_TIMEOUT value when a message is undergoing
reprocessing. This allows a longer timeout to be used in the case where there's no
protocol session and thus no need for quick completion. If this option is not set, it
defaults to the value set for the REPROCESS_TIMEOUT option. A non-positive setting for
REPROCESS_CONNECT_TIMEOUT, whether explicitly set or inherited from TIMEOUT, will
result in using a REPROCES_CONNECT_TIMEOUT value of 60.

• REPROCESS_TIMEOUT (integer). (New in 8.0.2.3) This option's value is used instead of the
TIMEOUT value when a message is undergoing reprocessing. This allows a longer timeout to
be used in the case where there's no protocol session and thus no need for quick completion.
If this option is not set, it defaults to the value set for the TIMEOUT option. A non-positive

Spam and virus filtering 58–7

SpamAssassin
spamfilterN_config_file

setting for REPROCESS_TIMEOUT, whether explicitly set or inherited from TIMEOUT, will
result in using a REPROCES_TIMEOUT value of 240.

• RESETDEBUG (integer; default is 0). Setting RESETDEBUG enables milter debugging
conditionally: only if channel debugging enabled. (Such channel debugging might be
enabled via slave_debug on the channel, or via the $U flag in a FROM_ACCESS and
recipient *_ACCESS mapping table.)

• TIMEOUT (integer; default is 3600). Attempting to set a non-positive value will result in a
value of 120 being used.

• SESSION_INACTIVITY_TIMEOUT (integer; default is 180). (New in 8.0) Time in session that
a session is allowed to remain idle and still be a candidate for reuse.

• SESSION_TIME (integer; default is 3600). (New in 8.0) Maximum time, in seconds, that a
single session can be used.

• TRANSACTIONS_PER_SESSION (integer; default is 100). (New in 8.0) Number of
transactions allowed in a single session.

• TCP_NODELAY (0 or 1; default 0). (New in 8.0.1.3.) Setting this option to 1 causes the
NODELAY flag to be set at the TCP level on all milter connections. Note that the behavior
of the milter protocol is highly dependent on what options are negotiated: One milter may
require many round trips per message while another may only need one. As such, it isn't
clear that there's an optimal setting for the NODELAY flag.

• USE_JETTISON (0 or 1; default is 0). (New in Messaging Server 7.0 update 2.) If this option
is set to 1, then the Sieve "jettison" action will be used instead of "discard" if the milter
calls for the message to be discarded. The default value of 0 causes "discard" to be used.

• USE_QUIT_NC (0 or 1; default is 0). (New in 8.0) Setting this option to 1 enables use of the
QUIT_NC milter command so that sessions can be reused. This should only be set when the
version of libmilter is recent enough to support the feature (Sendmail 8.14 or later).

• USE_SSL (0 or 1; default is 0). (New in 8.0.1.3.) Setting this option to 1 enables use of SSL/
TLS on the milter connection. Note that libmilter.so does not provide support for SSL/TLS
so a proxy/tunnel server such as stunnel must be placed in front of most milters before this
option can be used.

As of 8.0, support for milter connections via Socks has been removed, so the SOCKS_HOST,
SOCKS_PORT, SOCKS_USERNAME, and SOCKS_PASSWORD milter options are no longer
supported.

Some complex modifications of the milter spam filter plugin's behavior may be achieved using
the MILTER_MACROS mapping table.

Note that when using a Milter, the only relevant spamfilterN_*_action
options are spamfilterN_null_action (which has a proper default value)
and spamfilterN_string_action; the spamfilterN_action_M and
spamfilterN_verdict_M MTA options used with other sorts of spam/virus filter
packages are not relevant with a Milter. And it is essential with Milter to also explicitly set the
spamfilterN_string_action MTA option (to its special-for-Milters value of data:,$M)
as the default value for spamfilterN_string_action is not appropriate for Milter use.

58.5 SpamAssassin spamfilterN_config_file

58–8 Messaging Server Reference

SpamAssassin
spamfilterN_config_file

When using SpamAssassin, a spamfilterN_config_file MTA option might be set as

msconfig> set mta.spamfilter1_config_file IMTA_TABLE:spamassassin.dat

With SpamAssassin (supported as of MS 6.1), the file that this option names may contain the
following options:

• DEBUG (0 or 1 up through MS 6.2; in MS 6.3, value is an integer and currently values of 0, 1,
or 2 have meaning), default 0.

• MESSAGE_BUFFER_SIZE (integer), default 100000. New in MS 6.2. Specifies the maximum
message size; larger messages will be truncated.

• HOST (hostname or IP address). A value must be specified for this option (its presence is
required).

• PORT (integer), default 783.

• USE_CHECK (integer), default 1. If set to 1, use the spamd CHECK command rather than
SYMBOLS command

• (New in 8.0) CONNECT_TIMEOUT (integer), defaults to the TIMEOUT option's value if
TIMEOUT is greater than 0; if TIMEOUT is 0, then CONNECT_TIMEOUT defaults to 120.
Attempting to set CONNECT_TIMEOUT to a non-positive value will result in a value of 60
being used. This option specifies the time, in seconds, that the MTA will wait to connect to
SpamAssassin.

• (New in 6.2p5 and 6.3.) TIMEOUT (integer), default 3600 (seconds). This option controls
how long the MTA will wait for a response from SpamAssassin. (Prior to MS 6.3 the
timeout was hard-coded as 3600 seconds.) Note that the timeout for an initial connection to
SpamAssassin is not controlled by this option, but rather is a setting for the TCP stack; this
option instead controls the timeout for the MTA in getting back responses after the initial
connection is established.

• SOCKS_HOST

• SOCKS_PORT (integer), default 1080.

• SOCKS_USERNAME

• SOCKS_PASSWORD

• MODE default 0. (Values 0, 1, 2, and (new in MS 6.2p1) 3 are supported.)

• FIELD default "Spam-Test".

• VERDICT

• USE_CHECK (0 or 1), default 1.

• USERNAME

• (New in MS 6.3p1.) USERNAME_MAPPING. This option is used to specify the name of a
mapping table to probe with address information as the plugin receives recipient addresses
from the MTA, to potentially override the USERNAME option's value. The probe format is:

Spam and virus filtering 58–9

Archive spamfilterN_config_file

current-username|current-recipient-address|current-optin-string

• Both the current-optin-string and the preceeding vertical bar are omitted if no optin
value was specified. If the mapping sets the $Y flag, then the output string is taken to be
the updated username (overriding the USERNAME SpamAssassin option value) to pass to
spamd.

For instance, with SpamAssassin configured as spam/virus filter package number 2, and
SpamAssassin option file settings that include

 MODE=2
 FIELD=

and a setting that does an "addheader" action, such as

msconfig> set spamfilter2_string_action 'data:,addheader "Spam-test: $U";'
msconfig# show spamfilter2_string_action
role.mta.spamfilter2_string_action = data:,addheader "Spam-test: $U";

or in legacy configuration:

SPAMFILTER2_STRING_ACTION1=data:,addheader "Spam-test: $U"

could result in the addition of header lines such as:

Spam-test: False ; 0.1 / 4.5 ; FORGED_RCVD_HELO
Spam-test: True ; 12.9 / 4.5 ; RCVD_HELO_IP_MISMATCH,RCVD_IN_BL_SPAMCOP_NET,
 RCVD_IN_XBL,RCVD_NUMERIC_HELO,URIBL_OB_SURBL,URIBL_SC_SURBL,URIBL_WS_SURBL

58.6 Archive spamfilterN_config_file
As of MS 6.3, the MTA supports archiving as a plug-in, similar to spam/virus filter package
plug-ins. When using AXS:one, it.com, or Microsoft® Exchange Journal archiving, a
spamfilterN_config_file MTA option might be set as

msconfig> set mta.spamfilter7_config_file IMTA_TABLE:archive.dat

With AXS:One, it.com or Microsoft Exchange Journal format use, the following options are
available; see MTA configuration for AXS:One archiving for further discussion.

• DEBUG (integer; default 0)

• RESETDEBUG (integer; default 0). (New in 8.0.) Enables or disables debug output on a per-
transaction basis. If RESETDEBUG is nonzero, then channel debugging controls archiving
debugging: If channel debugging is enabled, then the RESETDEBUG value becomes the
debug level for the archiver; if channel debugging is disabled, then archiving debugging is
disabled.

• STYLE (1-3; required). (Value 2 new in Messaging Server 7.0u1, value 3 new in 8.0.1.) The
default value, 1, specifies AXS:One archiving. A value of 2 specifies it.com archiving and a
value of 3 specified Microsoft Exchange Journal format archiving.

58–10 Messaging Server Reference

Sieve spamfilterN_config_file

• DIRECTORY (string; no default). This option is required for AXS:One and it.com archives
and is not used for Microsoft Exchange Journal format archiving. It specifies the directory
where archive files are supposed to be written. In the case of it.com archives, strftime
substitutions can be used to insert date and time information into the directory name.

• DESTINATION (string; no default; Microsoft Exchange Journal format only). If set, this
option specifies the address where Exchange Journal format archive messages are to be sent.
If the option is not set archive messages are sent to the various capture attributes associated
with the message's authorized sender, envelope from, and envelope recipient addresses.

• SOURCE_CHANNEL (channel name; no default; required for Microsoft Exchange Journal
format only). The SOURCE_CHANNEL option specifies the name of the channel used to
submit Microsoft Exchange Journal format messages. It is recommended that a separate
channel be created for this purpose so that such submissions are clearly identifiable in the
logs.

• MODE (integer; default 8%660). Sets the file creation mode used on all archive files that
are created for AXS:One or it.com archives. Note that mode values can be written in the
customary octal form by prefixing the value with "8%".

• SUBDIRS (integer; default 0). Specify how many subdirectories to use for AXS:One or it.com
archives. Only values between 0 and 1000 will be used; attempting to set a value outside that
range will result in 0 (no subdirectories) being used.

• REVERSE (0 or 1; default 1; AXS:One only).

• USEHEADERRECIPIENTS (0 or 1; default 0; AXS:One only). (New in MS 7.0.5).

• TRUSTEXISTINGHASH (0 or 1; default 0; AXS:One only).

• IDSUFFIX (string; default ""; AXS:One only). This option specifies a suffix to all MessageID
fields generated in the AXS:One format. The default is the empty string. This option should
be set to "-0100MD500" when running in operational mode and to "-0000MD500" when
running in compliance mode.

• POSTEDDATEMODE (integer; default 100; AXS:One only). (New in Messaging Server
7.0u4). A value of 0 means to use the date/time from the Date: header field. The default value
of 100 means to use an appropriate time, depending upon whether this is compliance vs.
operational archiving: for compliance mode, use the start time of the archiving operation,
whereas for operational mode, use the message's internal date. Any other value for
POSTEDDATEMODE means to use a Received: header date/time.

58.7 Sieve spamfilterN_config_file
As of MS 8.0.2, the MTA provides a simple spamfilter plugin, libsieve.so, that can be used to
execute a fixed Sieve script at a particular point in the spam filter evaluation/interpretation
process. The primary purpose of this plugin is for testing, but it can be used in production
environments to execute a "fixup" script between two other spam filters.

The configuration file for this plugin consists of zero or more options, zero or more blank lines,
and then the actual Sieve script. The following options are available:

• DEBUG (integer; default 0)

• RESETDEBUG (integer; default 0). Enables or disables debug output on a per-transaction
basis. If RESETDEBUG is nonzero, then channel debugging controls archiving debugging:

Spam and virus filtering 58–11

Spamfilter early verdicts

If channel debugging is enabled, then the RESETDEBUG value becomes the debug level for
the Sieve plugin; if channel debugging is disabled, then debugging is disabled.

58.8 Spamfilter early verdicts
Most spam/virus filter plugins base their decisions on message content. (SpamAssassin in
particular acts solely based upon the message content it receives---though it attempts to make
some assumptions about the message envelope based on material in the message itself.)
However, as of Messaging Server 7.0 the MTA supports allowing spam/virus filters packages
to return a so-called "early verdict", based upon the source IP address alone (as for instance
in cases where the incoming connection is from a source IP that the spam/virus filter package
considers to be a known spam source). Currently only the Brightmail and milter plugins
are capable of returning such an early verdict. Early verdicts must be explicitly enabled in
Brightmail; in milter, an early verdict corresponds to a message reject action taken at the
SMFIC_CONNECT phase.

If the spam filter plugin is activated based on the source channel or the envelope from
address, any early verdict checks are done at the start (MAIL FROM) of the SMTP transaction.
However, if the spam filter plugin is activated based on destination channel or the recipient
address, the check won't happen until that recipient address is communicated (RCPT TO). But
in either case the rejection only occurs after the SMTP connection has been accepted by the
Dispatcher and passed to the SMTP server.

In some cases it is preferable to have such checks done from the Dispatcher so that the
connection itself can be refused. A mapping callout routine, mm_check_reputation, is
therefore provided so this can be done from the PORT_ACCESS mapping. The callout accepts
two arguments separated by a vertical bar: (1) the slot number of the spam filter plugin to use,
and (2) the IP address to check. The callout succeeds if an early verdict is returned.

An example of directly using Brightmail's "early verdict string" (without any additional MTA
text, as would normally be added) is:

PORT_ACCESS

 ||*|* $:A$[IMTA_LIB:libimta.so,mm_check_reputation,1|$1]$N

The $:A is used in this example to make sure this check is only done from the Dispatcher, and
not the SMTP server. (In contrast, $:S would be used to ensure that the check would be done
only from the SMTP server and not from the Dispatcher.)

58.9 Milter implementation
The milter interface negotiates supports for various capabilities and actions. A given milter
has the option of requiring a capability or action, optionally using a capability or action, or
ignoring it entirely. This section documents what capabilities and actions are supported by
Messaging Server as well as when support was first introduced.

The status of support for milter capabilities is:

Table 58.2 Milter capabilities

Capability Description Support Added

58–12 Messaging Server Reference

Milter implementation

SMFIP_NOCONNECT Skip SMFIC_CONNECT 6.3
SMFIP_NOHELO Skip SMFIC_HELO 6.3
SMFIP_NOMAIL Skip SMFIC_MAIL 6.3
SMFIP_NORCPT Skip SMFIC_RCPT 6.3
SMFIP_NOBODY Skip SMFIC_BODY 6.3
SMFIP_NOHDRS Skip SMFIC_HEADER 6.3
SMFIP_NOEOH Skip SMFIC_EOH 6.3
SMFIP_NR_HDR Skip SMFIC_HEADER responses 7u4
SMFIP_NOUNKNOWN Skip unknown commands 8.0
SMFIP_NODATA Skip SMFIC_DATA 8.0
SMFIP_SKIP MTA understands SMFIS_SKIP 7u4
SMFIP_RCPT_REJ MTA should also send rejected RCPTs 8.0
SMFIP_NR_CONN No reply for connect 8.0
SMFIP_NR_HELO No reply for HELO 8.0
SMFIP_NR_MAIL No reply for MAIL 8.0
SMFIP_NR_RCPT No reply for RCPT 8.0
SMFIP_NR_DATA No reply for DATA 8.0
SMFIP_NR_UNKN No reply for UNKN 8.0
SMFIP_NR_EOH No reply for end of header 8.0
SMFIP_NR_BODY No reply for body chunk 8.0
SMFIP_HDR_LEADSPC Header value leading space 8.0

The status of support for milter actions is:

Table 58.3 Milter actions

Action Description Support Added
SMFIF_ADDHDRS Add headers 6.3
SMFIF_CHGBODY Change body chunks 6.3
SMFIF_ADDRCPT Add recipients 6.3
SMFIF_DELRCPT Remove recipients 6.3
SMFIF_CHGHDRS Change or delete headers 6.3
SMFIF_QUARANTINE Quarantine message 6.3
SMFIF_CHGFROM Filter may change from 8.0
SMFIF_ADDRCPT_PAR Add recipients including args unsupported
SMFIF_SETSYMLIST Can send set of wanted macros unsupported
SMFIF_SPECRCPT Support per-recipient modification

actions
7.0.5.33

The macros provided by the milter interface are:

Spam and virus filtering 58–13

Milter implementation

Table 58.4 Available milter macros

Name Protocol Phase Content
${auth_authen} MAIL FROM Authenticated sender address.
${auth_author} MAIL FROM The value of the AUTH parameter to MAIL

FROM. Added in 8.0.
${client_addr} CONNECT The IP address of the SMTP client, expressed as

a dotted quad value. Only set when SMTP over
TCP is being used.

${destination_channel} RCPT TO MTA destination channel for the current
recipient.

$i MAIL FROM Queue id for the current message. The MTA
generates a unique id for each session; this id is
what appears in the $i macro.

$j CONNECT Text placed in the "by" clause of Received:
header fields. This is controlled by the
received_domain MTA option. If the option
is not set, the official host on the local channel is
used instead.

${mail_addr} MAIL FROM The MAIL FROM address for the current
transaction.

${mail_host} MAIL FROM The host part of the MAIL FROM address for
the current transaction.

${optin} RCPT TO Spamfilter optin value for the current RCPT TO
adress.

${rcpt_addr} RCPT TO Current RCPT TO address.
${rcpt_host} RCPT TO The host part of the current RCPT TO address.
${rcpt_mailer} RCPT TO Set to "local" for valid recipient addresses,

"error" for invalid addresses. New in 8.0.
${source_channel} MAIL FROM MTA source channel.

The MTA's milter macros support can be extended/modified using the MILTER_MACROS
mapping table.

The smfi_insheader modification action associated with the SMFIF_ADDHDRS action flag
specifies an index into the header where the field is to be inserted. Such semantics are not
provided by Sieve; indeed, the smfi_insheader documentation itself notes that indices are
not reliable. Prior to the 8.0 release, smfi_insheader was implemented by using a plain Sieve
"addheader" for an index of 0 and "addheader :last" for a nonzero index. However,
some milters, notably OpenDKIM, have been observed using an index value of 1 in an attempt
to insert a field above the Received: field added by sendmail. Accordingly, a new milter
spamfilter option, MAX_PREPEND_INDEX, has been added to deal with this and similar
situations. MAX_PREPEND_INDEX specifies the smallest index value that can be passed to
smfi_insheader by the milter server and cause the resulting header field to be inserted at the
top of the header block rather than the bottom. The default value is 1.

The libmilter provided by sendmail 8.14 now supports milter session reuse for multiple SMTP
sessions or transactions. Unfortunately this support does not appear to be negotiated, making

58–14 Messaging Server Reference

Milter implementation

it necessary to have an option to enable it in addition to various options to control its use.
Accordingly, several new options have been added to the milter spamfilter option file:

• USE_QUIT_NC (boolean, default 0) - Enable use of the QUIT_NC milter command so
sessions can be reused. This should only be set when the version of libmilter is recent
enough to support the feature. (Sendmail 8.14 or later.)

• SESSION_INACTIVITY_TIMEOUT (integer, default 180) - Time in session a session is
allowed to remain idle and still be a candidate for reuse.

• TRANSACTIONS_PER_SESSION (integer, default 100) - Number of transactions allowed in a
single session.

• SESSION_TIME (integer, default 3600) - Maximum time, in seconds, that a single session can
be used.

As of the 8.0 release, proper remote port information is transferred through the smfi_connect
callback.

Finally, support for milter connections via Socks has been removed, so the SOCKS_HOST,
SOCKS_PORT, SOCKS_USERNAME, and SOCKS_PASSWORD milter options are no longer
supported in 8.0 and later versions.

Most spam/virus filter packages return package-specific so-called "verdict strings", which the
MTA is configured to interpret as desired (Sieve actions), with the correspondence controlled
via pairs of MTA options spamfilterN_verdict_M and spamfilterN_action_M.
However, milter normally returns an actual Sieve scriptlet, which should be used
verbatim. So the usual pairs of verdict/action MTA options are not used in the MTA's
configuration for milter integration; instead, only the spamfilterN_null_action
and spamfilterN_string_action MTA options are relevant for the MTA's milter
configuration.

The default value for spamfilterN_null_action, namely data:,discard;, is proper
for use with milter, as if milter returns no verdict then the meaning is that the message should
be discarded. To have milter's Sieve scriptlets used when milter does return a verdict, the
spamfilterN_string_action option must be set to exactly:

data:,$M

So for instance:

msconfig> show spamfilter3_*
role.mta.spamfilter3_config_file = /opt/sun/comms/messaging64/config/miltertest.dat
role.mta.spamfilter3_library = /opt/sun/comms/messaging64/lib/libmilter.so
msconfig> show -default spamfilter3_null_action
role.mta.spamfilter3: data:,discard
msconfig> set spamfilter3_string_action "data:,$M"

This setting of spamfilter3_string_action above is using the $M substitution (see the
discussion of such substitutions in the discussion of the spamfilter1_action_0 MTA
option) which means to use the detailed verdict string provided by the milter directly as a
Sieve scriptlet (and triggers special handling to allow proper handling of extra "long" returned
verdicts, such as a milter-returned entire Sieve scriptlet).

Spam and virus filtering 58–15

MILTER_ACTIONS mapping table

58.9.1 MILTER_ACTIONS mapping table
As of MS 8.0.2, the MILTER_ACTIONS can be used to augment or modify the behavior various
milter actions. The basic probe format for this mapping is:

tag|number|action

which may then be followed by zero or more additional arguments depending on the action.
The basic arguments are:

tag A tag value which is passed between successive calls to the MILTER_ACTION
mapping. The tag value is initially empty.

number The number of the spam filter slot of the milter issuing the action.

action The milter action that invoked the mapping.

At present the following milter actions call the MILTER_ACTIONS mapping:

Table 58.5 MILTER_ACTIONS mapping actions and arguments

Action Additional Argument #1
ACCEPT
DISCARD
REJECT
TEMPFAIL
REPLYCODE Milter supplied error message
INSHEADER Header index, Header name,

Header value
ADDHEADER Header name, Header value

ADDHEADER and INSHEADER support was added in MS 8.0.2.3.

The mapping result consists of metacharacters as well as a series of result strings separated
by vertical bars. These strings are consumed by the various metacharacters in the order given
below.

$A Force the action action to ACCEPT.

$T Set the milter tag to the specified string.

$+^ Disable processing of subsequent spam filters. The specified
string consists of a comma-separated list of spam filter
index numbers. The specified filters with index values
greater than the current filter are shut down and any results
they have produced are discarded.

$M (REJECT, TEMPFAIL, and
REPLYCODE actions)

Override the error message with the specified string.

$M (ADDHEADER action) Override header name and/or value. One or two arguments
may be supplied separated by a vertical bar. If a single
argument is specified it replaces the header value. If two

58–16 Messaging Server Reference

MILTER_MACROS mapping table

arguments are specified the first replaces the header name
and the second the header value. If the name is left blank it
remain unchanged.

$M (INSHEADER action) Override header index, name and/or value. One to three
arguments may be supplied separated by vertical bars. If
a single argument is specified it replaces the header value.
If two arguments are specified the first replaces the header
name and the second the header value. If three arguments
are specified the first specifies a new index, the second a
new header name, and the third a new header value. If the
name is left blank it remain unchanged.

58.9.2 MILTER_MACROS mapping table
Support for the MILTER_MACROS mapping table was added for Messaging Server 7.3-11.01.
MILTER_MACROS is called by the milter spam filter plugin each time a macro is passed to the
milter server. The probe format is:

spamfilter-index|command|macro-name|macro-value

Here spamfilter-index is an integer between 1 and 8 specifying the spam filter slot this
milter is in, command is the command this macro precedes, so one of:

• CONNECT

• MAIL

• RCPT

The macro-name is simply the name of the macro being defined and macro-value is its
value. Note that the mapping_paranoia MTA option, if set, will cause any vertical bar
characters that would have been in the macro-value field to be replaced by the specified
character.

When the mapping returns, if $N or $F are set then the macro is dropped and never sent to the
milter server. (This is also the behavior if $Y or $T is set, but with no additional string returned
by the mapping template.)

If none of $N, $F, $Y or $T is set, then the original macro name and value are used, as if the
MILTER_MACROS mapping table had not applied.

If, however, $Y or $T is set and a string is returned also, then the mapping's string result is
processed as a series of macro name/value pairs, each name or value separated by vertical bars.
Finally, if $| is set in the mapping template in addition to $Y or $T, then only a single name-
value pair is read from the result and the second and subsequent vertical bars are treated as
part of the value.

Note that if either the original macro-value, or a replacement macro value returned as a
string along with $Y or $T, includes a vertical bar character, |, then regardless of whether
mapping_paranoia is used, the vertical bar test flag will be set (so that a mapping template
may check for the original presence of a vertical bar in the macro name via a $:| vs. $;| test).

58.9.3 Milter single recipient extension

Spam and virus filtering 58–17

Milter single recipient extension

New in 7.0.5.33. Oracle has implemented a milter extension for per-recipient modification
actions. This extension can be implemented in libmilter with the following changes:

• Add the following constant and routine declaration to include/libmilter/mfapi.h:

/* Oracle extension for recipient-specific modification actions */
#define SMFIF_SPECRCPT 0x1000000 // Recipient-specific modification actions

/*
** Specify a recipient for whom subsequent modification actions
** apply. Modification actions specified prior to this point will
** no longer apply to this recipient.
**
** SMFICTX *ctx; Opaque context structure
** char *rcpt; Null terminated list of null terminated envelope
** recipient addresses subsequent actions apply to. These should
** be in exactly the form passed to xxfi_envrcpt or the address
** may not be selected for subsequent modification actions.
*/

LIBMILTER_API int smfi_specrcpt __P((SMFICTX *, char *));

• Add the following constant to include/libmilter/mfdef.h:

/* Oracle extension for recipient-specific modification actions */
#define SMFIR_SPECRCPT 'v' /* Per-recipient modification actions */

• Add the following routine to libmilter/smfi.c:

/*
** SMFI_SPECRCPT -- Recipient-specific result (Oracle extension)
**
** Parameters:
** ctx -- Opaque context structure
** rcpt -- null terminated list of null terminated
** recipient addresses
**
** Returns:
** MI_SUCCESS/MI_FAILURE
*/

int
smfi_specrcpt(ctx, rcpt)
 SMFICTX *ctx;
 char *rcpt;
{
 size_t len, l;
 struct timeval timeout;
 char *ptr;

 if (rcpt == NULL || *rcpt == '\0')
 return MI_FAILURE;
 if (!mi_sendok(ctx, SMFIF_SPECRCPT))
 return MI_FAILURE;
 timeout.tv_sec = ctx->ctx_timeout;
 timeout.tv_usec = 0;
 len = 0;
 ptr = rcpt;
 do
 {
 len += (l = strlen(ptr) + 1);

58–18 Messaging Server Reference

Milter errors

 ptr += l;
 } while (*ptr != '\0');
 return mi_wr_cmd(ctx->ctx_sd, &timeout, SMFIR_SPECRCPT, rcpt, len);
}

In terms of the milter protocol, this extension consists of a single additional milter response:

**

'v' SMFIR_SPECRCPT Specify recipient subsequent modification actions
 apply to.

char rcpt[][] List of NUL terminated recipients

The semantics are straightforward: SMFIR_SPECRCPT specifies a list of message recipients,
and subsequent modification actions (SMFIR_ADDHEADER, SMFIR_INSHEADER,
SMFIR_CHGHEADER, and SMFIR_QUARANTINE). The modification actions
SMFIR_ADDRCPT and SMFIR_DELRCPT may be specified subsequent to an
SMFIR_SPECRCPT, but are by nature not recipient-specific. SMFIR_REPLBODY is
too expensive to implement on a per-recipient basis; its behavior subsequent to a
SMFIR_SPECRCPT is undefined.

Because it's possible this extension may conflict with someone else's private extension, it
must be explicitly enabled by setting the PER_RECIPIENT_ACTIONS option to 1 in the milter
plugin options file.

Since extensive code changes were required to implement this extension, it has not been
incorporated into the normal libmilter.so library. A new libmilters.so library
containing the extension has been provided instead.

58.9.4 Milter errors
A number of milter error conditions can get reported to the MTA, which in turn will generate
an SMTP error during the SMTP transaction.

58.10 Milter operation
Milter is implemented as a client-server protocol, with Messaging Server in client role and any
of a wide variety of software packages in the server role. Most, but not all, milter servers are
written on top of the libmilter library that is provided as part of sendmail.

Unfortunately, the milter protocol provides no authentication, privacy, or integrity protection
facilities. As such, it is essential that milter protocol connections be restricted to protected
networks, and under no circumstances should they be operated over the open Internet.

The libmilter library is multithreaded and supports a limited amount of threading
configuration. Even so, multiple milter servers are often required in large configurations. The
Messaging Server milter client does not provide any load balancing capabilities beyond those
provided by the DNS (i.e., multiple A/AAAA records), so the use of a load balancer may be
required in large, high performance milter configurations.

The milter protocol allows for interaction at every stage of the SMTP protocol. The following
diagram illustrates the relationship between a typical SMTP/SUBMIT dialogue and milter
protocol commands:

Spam and virus filtering 58–19

Milter operation

Note that this simplified diagram omits:

• Negotiation of SMTP transport security,

• SUBMIT authentication,

• optional milter macro commands (Macros can precede CONNECT, HELO, MAIL, and
RCPT),

• multiple message transfers in the same SMTP/milter session (not used by the MS MTA),

58–20 Messaging Server Reference

imexpire invoking spamfilter
packages

• use of the QUIT_NC command to process multiple connections in the same milter session,

• interactions between multiple milters operating in parallel,

• due to the ability to activate milters based on source or destination channel, milter connect
may be deferred to as late as the RCPT TO step in the SMTP diaglogue, and

• if enabled, unknown commands sent by the SMTP will cause the MTA to send UNKNOWN
milter commands to the milter server independent of protocol state, and

• PROGRESS responses may be sent by the milter server at any time. These are ignored by the
MTA.

The milter Accept/Reject actions are:

• SMFIR_ACCEPT - Accept message unconditionally. No further milter commands or
responses will be exchanged.

• SMFIR_CONTINUE - Accept command and continue processing

• SMFIR_DISCARD - Tells the MTA to discard the message. No further milter commands or
responses will be exchanged.

• SMFIR_REJECT - In response to a RCPT command, indicates that the recipient should
be rejected with a permanent error. In any other context this indicates that the entire
message should be rejected with a permanent error and that no further milter commands or
responses will be exchanged.

• SMFIR_TEMPFAIL - In response to a RCPT command, indicates that the recipient should be
rejected with a temporary error. In any other context this indicates that the entire message
should be rejected with a temporary error and that no further milter commands or responses
will be exchanged.

• SMFIR_REPLYCODE - In response to a RCPT command, indicates that the recipient should
be rejected with the specified error. In any other context this indicates that the entire
message should be rejected with the specified error and that no further milter commands or
responses will be exchanged.

58.11 imexpire invoking spamfilter packages
New in Messaging Server 7.0.5, the imexpire utility has a new channel attribute to specify
the name of an MTA channel. When this attribute is used, any source channel spam/virus
filter package configured on that channel will be applied to each message that is scanned by
imexpire, and any spamadjust, spamtest, virusset, virustest, or added headers
will then be visible to the Sieve expression used to expire messages. (Of course, use of Sieve
expressions to expire messages must also be enabled via the expiresieve Message Store
option.)

The MTA options scan_channel, scan_originator, and scan_recipient may be
used to establish context (Sieve values) for non-channel evaluations of Sieve filters, such as
imexpire invocations of spam/virus filter packages, though note that scan_channel is not
needed for imexpire's spamfilter package invocation case (since in such a case imexpire's
channel attribute is used to set the MTA channel).

For example, suppose that MTA channel invokes SpamAssassin, which is then configured to
perform a spamadjust to communicate its results. In this scenario, an expression of the form

Spam and virus filtering 58–21

imexpire invoking spamfilter
packages

require ["comparator-i;ascii-numeric", "relational", "spamtest"];
spamtest :value "ge" :comparator "i;ascii-numeric" "5";

should expire any message that received a spam score of 5 or more.

The new-in-7.0.5 rescanhours attribute is also especially relevant when using imexpire
to perform post-delivery spam/virus filtering. rescanhours tells imexpire to rescan those
messages that have not been scanned for the specified number of hours.

See the Scheduler's expire task for configuration of automatic scheduling of executions of
imexpire.

58–22 Messaging Server Reference

Chapter 59 MeterMaid
59.1 metermaid options .. 59–2

59.1.1 enable Option Under metermaid ... 59–2
59.1.2 async Option .. 59–2
59.1.3 backlog Option Under metermaid ... 59–3
59.1.4 listenaddr Option Under metermaid ... 59–3
59.1.5 local_table .. 59–3
59.1.6 maxthreads Option Under metermaid ... 59–5
59.1.7 port Option Under metermaid ... 59–5
59.1.8 secret Option Under metermaid ... 59–5
59.1.9 sslcachesize Option Under metermaid ... 59–5
59.1.10 sslusessl Option Under metermaid ... 59–5

59.2 metermaid_client options .. 59–5
59.2.1 debug Option Under metermaid_client ... 59–5
59.2.2 connectfrequency Option Under metermaid_client 59–6
59.2.3 connecttimeout Option Under metermaid_client 59–6
59.2.4 max_conns Option Under metermaid_client 59–6
59.2.5 server_host Option Under metermaid_client 59–6
59.2.6 server_port Option Under metermaid_client 59–6
59.2.7 sslusessl Option Under metermaid_client 59–6
59.2.8 timeout Option Under metermaid_client ... 59–6
59.2.9 remote_server ... 59–7
59.2.10 remote_table ... 59–7

MeterMaid is a facility that comprises a server, which maintains "tables" of data, and a client
side (in particular, the MTA's callouts to MeterMaid via mapping table MeterMaid routine
callouts, metermaid: URLs encoded into MTA configuration, and (new in Messaging Server
7.2) Sieve "metermaid" tests or actions). The MeterMaid server maintains its data in-memory;
this offers high performance, but note that it does imply that the MeterMaid data is not
preserved across MeterMaid (or Messaging Server as a whole) restarts. As multiple processes
can communicate with the MeterMaid server over protocol, MeterMaid permits across-process
tracking of data. MeterMaid is thus particularly suited for configuring "throttle" effects.

MeterMaid requires configuration of itself -- the MeterMaid server, and some basics of
MeterMaid client operation -- configured in Unified Configuration via MeterMaid options
and MeterMaid client options, or in legacy configuration via configutil parameters. Once
MeterMaid's own operation is established, then configuring the MTA on how to find/
communicate with MeterMaid is configured via MeterMaid MTA options. And then any
specific MeterMaid uses may be configured into the MTA via mapping table routine callouts,
metermaid: URLs in appropriate MTA configuration options, or use of Sieve "metermaid"
tests or actions.

For a number of examples of MeterMaid use in the form of MTA mapping table callouts to
MeterMaid routines, see the discussion of Triggering effects from transaction logging with
LOG_ACTION.

To find all options potentially relevant to MeterMaid, try doing

msconfig> apropos metermaid

MeterMaid 59–1

metermaid options

Note that there are the options relevant for the MeterMaid server, settable under the
metermaid group, and there are options relevant for any MeterMaid clients, settable under
metermaid_client group; respectively, these correspond to the legacy configuration
metermaid.* and metermaid.mtaclient.* configutil parameters. Some options are
settable either generally for a named metermaid or metermaid_client group, or settable
specifically for a named table under a local_table or remote_table group. (Note that
a named remote_table group may only be set under metermaid_client; a named
local_table group may only be set under metermaid.)

Then there are also a number of MTA options that override, for MTA purposes, some of the
normal metermaid or metermaid_client options. There are also the viametermaid and
metermaidtable IMAP options (under the pwexpirealert group), to specify whether to
use MeterMaid, and what MeterMaid table to use, for password expiration alerts.

See also the logfile options, as they are settable under metermaid.

59.1 metermaid options
A MeterMaid server is configured via options under the metermaid group. (Named
metermaid groups may be used if desired, but usually are not needed, with options relating
to general operation of this MeterMaid server being set directly under metermaid.) Then
specific MeterMaid tables maintained by this MeterMaid server are configured under named
local_table groups under metermaid (metermaid.table.* configutil parameters
in legacy configuration). For instance, on a host running a MeterMaid server with default
values for most operational settings, and with one table defined, (bad_password_attempts,
perhaps similar to the example Syslog notices after SMTP AUTH attempts with bad password
discussed under Triggering effects from transaction logging with LOG_ACTION), one might
see:

msconfig> show metermaid.*
role.metermaid.enable = 1
role.metermaid.local_table:bad_password_attempts.data_type = string
role.metermaid.local_table:bad_password_attempts.max_entries = 1000
role.metermaid.local_table:bad_password_attempts.quota = 2
role.metermaid.local_table:bad_password_attempts.quota_time = 3600
role.metermaid.secret (suppressed)

(Note that use of MeterMaid tables by MeterMaid clients, possibly clients on other hosts,
would be configured via settings under metermaid_client on the client host, and
especially, settings under a named metermaid_client.remote_table group, or in legacy
configuration, metermaid.mtaclient.* configutil parameters on the client host.)

logfile options may also be set under metermaid.

59.1.1 enable Option Under metermaid
The enable MeterMaid option enables the MeterMaid service on start-msg startup.

59.1.2 async Option
The async MeterMaid option sets whether MeterMaid should use asynchronous thread
scheduling (default) or the new, experimental linear thread scheduling.

59–2 Messaging Server Reference

backlog Option Under
metermaid

59.1.3 backlog Option Under metermaid
The backlog MeterMaid option specifies the number of connections to permit to be
established in the TCP listen queue.

59.1.4 listenaddr Option Under metermaid
The listenaddr metermaid option specifies the IPv4 address on which MeterMaid
should listen. If unset specifically for MeterMaid, MeterMaid defaults to the base value of
listenaddr (service.listenaddr in legacy configuration).

The allowed values for this option include an IPv4 address in dotted decimal form (e.g.,
127.0.0.1), or a short form or fully-qualified DNS host name which will be resolved to an IPv4
address by obtaining the DNS A record for the name. To explicitly specify the default value
of binding to all available interfaces, the string "INADDR_ANY" may be used. To bind to the
loopback device, 127.0.0.1, the string "localhost" may be specified.

59.1.5 local_table
Under a MeterMaid named local_table group, there are a number of options that may be
set. E.g.,

msconfig> show -default metermaid.local_table:table-name.quota
role.metermaid.local_table:table-name.quota: 100

59.1.5.1 data_type Option

The data_type MeterMaid local_table option specifies the type of data to be stored in
this table: one of ipv4, ipv6, or string.

59.1.5.2 block_time Option

The block_time MeterMaid local_table option specifies an initial period for greylisting
during which requests will be blocked. It takes an argument in either the standard ISO 8601
P format, specifying the duration of the period, or a plain integer argument which will be
interpreted as a number of seconds for the period.

59.1.5.3 resubmit_time Option

The resubmit_time MeterMaid local_table option specifies the period for greylisting
during which a request must be received again in order to be permitted in the future. It takes
an argument in either the standard ISO 8601 P format, specifying the duration of the period, or
a plain integer argument which will be interpreted as a number of seconds for the period.

59.1.5.4 inactivity_time Option

The inactivity_time MeterMaid local_table option specifies a period for greylisting
during which a resubmitted entry will remain 'known' to MeterMaid. It takes an argument in
either the standard ISO 8601 P format, specifying the duration of the period, or a plain integer
argument which will be interpreted as a number of seconds for the period.

MeterMaid 59–3

local_table

59.1.5.5 max_entries Option

The max_entries MeterMaid local_table option specifies the maximum number of
entries to maintain in this table.

59.1.5.6 table_options Option

The table_options MeterMaid local_table option specifies a space-separated list of
options for this table. The currently available options are nocase and penalize.

nocase When working with data, all comparisons are done using a case-insensitive
comparison function. (This option is valid only for string data.)

penalize After quota_time seconds, the throttle will normally reset the connection
count to 0, but if the penalize option is enabled, the throttle will decrement the
connection count by quota (but not so the value ends up less than 0) so that
additional connection attempts will penalize future quota_time periods. For
example, if quota were 5 with a quota_time of 60, and the system received
12 connection attempts during the first minute, the first 5 connections would be
accepted and the remaining 7 would be declined. After 60 seconds has passed, the
number of connections counted against the particular address would be reduced
to 7, still keeping it above quota and declining connection attempts. Assuming
no additional connection attempts were made, after another 60 second period,
the number of connections would be further reduced down to 2, and MeterMaid
would permit connection attempts again.

59.1.5.7 quota Option

The quota MeterMaid local_table option specifies the number of connections to permit
per quota_time time period.

59.1.5.8 quota_time Option

The quota_time MeterMaid local_table option specifies the period of time to allow
quota number of connections. It takes an argument in either the standard ISO 8601 P format,
specifying the duration of the period, or a plain integer argument which will be interpreted as
a number of seconds for the period.

59.1.5.9 storage Option

The storage MeterMaid local_table option specifies the method of data storage for this
table: one of hash or splay.

59.1.5.10 table_type Option

The table_type MeterMaid local_table option specifies the type of table; valid selections
include throttle, simple, or greylisting.

59.1.5.11 value_type Option

When using a "simple" table, the value_type MeterMaid local_table option specifies
the kind of data used for the values in this table. Currently one may choose between integer
or string. For instance:

59–4 Messaging Server Reference

maxthreads Option Under
metermaid

msconfig> show metermaid.local_table.table-name.*
metermaid.local_table.table-name.table_type = simple
metermaid.local_table.table-name.value_type = string

59.1.6 maxthreads Option Under metermaid
The maxthreads MeterMaid option specifies the maximum number of work threads.

59.1.7 port Option Under metermaid
The port MeterMaid option specifies the TCP port number on which MeterMaid listens for
connections. The default is 63837.

59.1.8 secret Option Under metermaid
The secret MeterMaid option specifies the secret used to authenticate MeterMaid clients
with the server.

59.1.9 sslcachesize Option Under metermaid
The sslcachesize MeterMaid option specifies the number of SSL sessions to be cached
by the MeterMaid server. If this is set to 0 or not set, this will use a default provided by the
Mozilla NSS library which was 10000 last time this was checked (March 2016).

59.1.10 sslusessl Option Under metermaid
Setting the sslusessl MeterMaid option to 1 directs MeterMaid to expect that incoming
connections will be SSL-enabled. Enabling this option requires that you also set the
corresponding MeterMaid client sslusessl option.

59.2 metermaid_client options
A MeterMaid client can be run on any Messaging Server system to talk to (connect to) a
MeterMaid server (which may be running on a different system) maintaining various tables of
information. That is, a MeterMaid client is a consumer/updater of information maintained by a
MeterMaid server.

In Unified Configuration, any desired options for MeterMaid client operation are set under
metermaid_client:

msconfig> set metermaid_client.connectfrequency 10

Under metermaid_client, two types of named groups are also supported,
remote_server and remote_table.

See the MeterMaid topic for further discussion of general MeterMaid operation. And see
metermaid options for discussion of MeterMaid server options set under metermaid.

59.2.1 debug Option Under metermaid_client

MeterMaid 59–5

connectfrequency Option
Under metermaid_client

The debug MeterMaid Client option enables debug output from the MTA client into SMTP
log files.

59.2.2 connectfrequency Option Under
metermaid_client

The connectfrequency MeterMaid client option,
metermaid_client.connectfrequency, specifies that the client should attempt a
connection to the MeterMaid server every connectfrequency seconds.

59.2.3 connecttimeout Option Under metermaid_client
The connecttimeout MeterMaid Client option, (metermaid_client.connecttimeout
in Unified Configuration or metermaid.mtaclient.connectwait in legacy
configuration), specifies how long a thread should wait for a connection to be established to
MeterMaid (seconds).

59.2.4 max_conns Option Under metermaid_client
The max_conns MeterMaid client option, metermaid_client.max_conns, specifies how
many concurrent connections can be established to MeterMaid from a single process.

59.2.5 server_host Option Under metermaid_client
The server_host MeterMaid Client option, (metermaid_client.server_host in
Unified Configuration or metermaid.config.serverhost in legacy configuration),
specifies the host or IP address of the MeterMaid server to use.

59.2.6 server_port Option Under metermaid_client
The server_port MeterMaid client option specifies the TCP port to connect to when
contacting the MeterMaid server. If this option is not specified but a local MeterMaid server
is enabled, then the TCP port listened on by the local MeterMaid will be assumed. If no local
MeterMaid server is running, then the default value of 63837 is used.

59.2.7 sslusessl Option Under metermaid_client
Setting the MeterMaid client option sslusessl to 1 directs the metermaid_client
to connect to the MeterMaid server using SSL. This option also sets the default for the
remote_server's sslusessl option.

Note that if configuring a MeterMaid client to use SSL to connect to a MeterMaid server,
that MeterMaid server should also be configured to support SSL use; on the host where that
MeterMaid server runs, see its metermaid.sslusessl option.

59.2.8 timeout Option Under metermaid_client
The timeout MeterMaid Client option, (metermaid_client.timeout in Unified
Configuration, or metermaid.mtaclient.readwait in legacy configuration), specifies how
long in seconds a MeterMaid client will wait for communication with MeterMaid.

59–6 Messaging Server Reference

remote_server

59.2.9 remote_server
A remote_server named group may be set under metermaid_client.

59.2.9.1 max_conns Option Under remote_server

The max_conns MeterMaid client remote_server option,
metermaid_client.remote_server:server-name.max_conns, specifies how many
concurrent connections can be established to the specified remote server from a single process.

59.2.9.2 server_host Option Under remote_server

The server_host option for a remote_server specifies the host or IP address of the remote
MeterMaid server to use.

59.2.9.3 server_port Option Under remote_server

The server_port MeterMaid client remote_server option specifies the TCP port to which
the metermaid_client should connect for this remote_server.

59.2.9.4 sslusessl Option Under remote_server

Setting sslusessl to 1 in a MeterMaid client named remote_server group directs the
metermaid_client to connect to the specified MeterMaid remote_server using SSL.
Note that the default value for this option is the same as the value specified for the global
metermaid_client.sslusessl option. If that value is set to 1, this option will default to 1.

59.2.10 remote_table
A remote_table named group may be set under metermaid_client, to name
a table maintained by that name on a remote MeterMaid server. New in MS 8.0, the
server_nickname option may be set under a named remote_table group. No further
options are currently settable under remote_table; table options would instead be set under
the local_table definition on the remote MeterMaid server.

59.2.10.1 server_nickname Option

The server_nickname metermaid_client.remote_table option specifies the name of
the group of remote_server entries that define a remote MeterMaid server.

MeterMaid 59–7

59–8

Chapter 60 Notification messages
60.1 Notification message types .. 60–1

60.1.1 Message Store notifications that a user himself is overquota 60–3
60.2 Notification message generation timing ... 60–4
60.3 Notification message format .. 60–5

60.3.1 DSN language and customization ... 60–9
60.3.2 MDN language and customization .. 60–18
60.3.3 NOTIFICATION_LANGUAGE and DISPOSITION_LANGUAGE sample
mapping tables .. 60–22

60.4 Notification message routing ... 60–23
60.5 Bounces of spam messages .. 60–24
60.6 Notification message logging ... 60–25
60.7 Message size limits and notification messages .. 60–26
60.8 Postmaster addresses .. 60–26

The defining characteristic of notification messages is that they have an empty envelope From
address. Notification message types gives an overview of the different types of notification
messages, those generated by the MTA itself, as well as those notification messages generated
externally and sent to the MTA.

Since notification messages (mostly) are generated automatically, there are some special
aspects to them. Notification message generation timing discusses the timing of generation,
and for some types of notification messages the delivery scheduling, for notification messages
generated by the MTA. The special case of notification messages generated by the Message
Store is briefly discussed in Message Store notifications that a user himself is overquota;
see Message Store documentation for further details. The format, and potential language
selection and customization options, of those notification messages generated by the MTA
are discussed in Notification message format. Special handling of notification messages may
sometimes be desirable; Notification message routing discusses the routing of notification
messages, and Bounces of spam messages in particular discusses the case of of spam "blow
back" notification messages. Notification message logging discusses special features and
factors in MTA message transaction log entries relating to notification messages, and Message
size limits and notification messages discusses message size limits in relation to notification
messages.

60.1 Notification message types
The MTA may generate notification messages itself automatically. These may be Delivery
Status Notifications (see RFCs 3461-3464, which are updates to RFCs 1891-1894), such as a
notification of a successful message delivery (a so-called "delivery receipt"), or a warning
to the original message sender that the delivery of their message has been delayed or has
failed. The MTA can also optionally (see the *warnpost and *sendpost channel options)
generate notifications to the postmaster regarding failed and/or delayed message delivery;
such a notification to the postmaster is more-or-less a copy of the notification going back to
the original message sender. (In particular, note that the postmaster gets a copy in the same
language chosen based upon the original sender's language selection.)

Or MTA-generated notification messages may be Message Disposition Notifications (see
RFC 3798, which updated RFC 2298) generated due to Sieve filter actions such as vacation.

Notification messages 60–1

https://tools.ietf.org/html/rfc3798
https://tools.ietf.org/html/rfc2298

Notification message types

 Note that a common case of Message Disposition Notifications is the case of so-called
"read receipts", which in Message Disposition Notifications correspond to a disposition of
"displayed" (since whether or not a user actually read a message is a subjective question for the
user, whereas the display of a message is something mail user agent software can detect); in any
case, such "read receipt" notifications are generated by end user mail clients, not by the MTA
(which merely relays them as with any other message).

The MTA will also automatically generate notification messages (DSN format messages
of "error" type) to report certain sorts of syntax errors. Syntax errors in Sieve filters
will be reported to the "responsible" address via a notification message: syntax errors
in channel level Sieve filters or the system Sieve filter systemfilter (or in legacy
configuration, the CONFIGROOT/imta.filter file, located prior to MS 7.0.5 via the
imta_system_filter_file MTA Tailor option) will be reported to the postmaster; syntax
errors in user Sieve filters will be reported to the individual user to whom the Sieve filter
belongs; syntax errors in "head of household" (also called "parental control") Sieve filters will
be reported to the head of household filter "owner" (see the ldap_hoh_owner MTA option).

Similarly, (as of MS 6.1) the MTA will report syntax errors in alias or group definitions (that
is, errors of non-existent putatively "local" users in the alias/group membership, or clearly
syntactically invalid addresses in the alias/group membership) to the entire alias/group
membership. These error reports are in DSN format. Note:

1. There is a critical, fundamental distinction between a mailing list (where errors in list
definition as well as problems with list message deliveries get reported only to the list
"owner" as specified via an mgrpErrorsTo attribute overriding the original message
envelope From address) vs. a group (which has no mgrpErrorsTo attribute and hence
retains the original message envelope From address). From the MTA point of view, a group
is merely a---possibly large -- alias---an "auto-forwarder" in Internet e-mail terms.

2. The group definition syntax errors reported to the entire group membership are not
message delivery failures---which in the case of a group would be reported merely to the
original message sender---but rather are those syntactic errors in the group definition which
are apparent to the MTA at group alias expansion time. (Because a group, when properly
used, is a set of aliases for a single person or small, closely related set of people, problems
with the group membership definition are considered problems with the alias setup that the
rest of the group members should be informed about so that they can fix the definition.)

The MTA will also generate messages that have the form of notification messages (they have
an empty envelope From and contain the original message as an encapsulated part, usually
perceived as an "attachment") in response to typical forms of capture configuration: that is,
when a "capture" attribute (see the ldap_capture and ldap_domain_attr_capture MTA
options) is set on a user or domain, or when an explicit Sieve "capture" action applies to a
message, or when "capture" is triggered via another mechanism such as an address-based
*_ACCESS mapping table "capture" flag ($M). The capture message, having the superficial
form of a notification message, will be sent to the address specified to receive the capture
copies. Though the form of such capture copies is similar to other sorts of notification
messages, the intended purpose is usually quite different, as capture of messages is usually
intended either for monitoring (of a user's e-mail) or archiving purposes.

The MTA may also issue SMTP level rejections of attempted message submissions. In such
cases, the MTA is not generating the notification message itself; in such cases generation of a
notification message is the responsibility of the SMTP client attempting to send the message.
(And the SMTP client may or may not include the MTA's actual SMTP rejection text in the
message text that it generates to display or send to the original message sender.)

60–2 Messaging Server Reference

Message Store notifications that a
user himself is overquota

The Message Store can generate "notifications" that a user is over quota; such quota
"notifications" are deposited directly into the Message Store (without passing through the
MTA at all); see Message Store notifications that a user himself is overquota.

Also, other non-MTA components of Messaging Server (such as msprobe) may have
capabilities for generating alarm messages "from" some form of postmaster address and "to"
some form of postmaster address; see the noticesender and noticercpt Alarm options.

Furthermore, the MTA also processes numerous notification messages generated by systems
other than the MTA -- notification messages that arrive in to the MTA just like any other
messages.

All of these cases involve different issues, and different configuration choices. Whenever
a question about a notification message arises, it is critical to first determine what type of
notification message is involved. Note that looking at the outermost header of the notification
message is the most important first step in determining what type of notification message one
is dealing with.

60.1.1 Message Store notifications that a user himself is
overquota

Notifications to a user that that user himself or herself is overquota are generated by the
Message Store (if the quotanotification Message Store option is enabled), or generated
due to the system administrator using the imquotacheck utility to manually generate such
notifications; they are not generated by the MTA, and, since such warnings are deposited
directly into the store bypassing the MTA, they do not even go through the MTA. (Thus note
that the warnings to a local user of that selfsame user being overquota, or near to overquota,
are a separate and very different case than an MTA-generated notification telling a message
sender that his/her message could not be delivered to its intended recipient with the reason for
nondelivery happening to be that that intended local recipient was overquota.)

Such warnings to a user that he/she himself/herself has gone overquota, or is near going
overquota, are configurable via a number of Message Store quota* options (store.quota*
options in Unified Configuration, corresponding to legacy configuration store.*quota*
and local.store.*quota* configutil parameters), as well as imquotacheck features. The
handling of quota is a complex subject in itself; please see the Administration Guide for much
more complete discussion, as the discussion here is simplified and merely attempts to give an
(over-simplified) orientation.

The quotanotification Message Store option controls whether the Message Store
generates quota-related notifications to the user. The reporting of user overquota status
normally is triggered by a user's mailbox reaching the threshold specified by the quotawarn
option (legacy configuration store.quotawarn configutil parameter). However, if
quotaoverdraft is set, (legacy configuration local.store.quotaoverdraft=on), then
notifications are not generated until the user's mailbox actually exceeds their specified quota.
 Besides depositing a warning message into a user's mailbox when that user first goes over
the quota notification threshold, for users of IMAP clients that support the IMAP ALERT
functionality, the warning message will be displayed on the user's client each time the user
selects a mailbox. Also, the quotaexceededmsginterval Message Store option (in legacy
configuration, the configutil parameter store.quotaexceededmsginterval) controls the
periodic sending of additional overquota warnings if a user remains overquota.

A Messaging Server administrator may also manually trigger generation of a different form of
quota warning message via the imquotacheck utility.

Notification messages 60–3

Notification message generation
timing

60.2 Notification message generation timing
Many sorts of notification message the MTA generates immediately whenever the relevant
type of event occurs. For instance, if a message suffers a permanent rejection upon a delivery
attempt, then the MTA will immediately generate a non-delivery report (often referred to as
a "bounce message") to send back to the original message sender. If the MTA is expanding
a mailing list (looking up the mailing list name to determine the members of the list) and
discovers a clearly invalid member address (i.e., a syntactically invalid address, or an address
claiming to be in a local domain that does not in actuality correspond to any configured
user/mailbox), then the MTA will immediately generate a non-delivery report regarding that
address back to the list owner (list report address). Notifications generated due to a Sieve
"vacation" or "capture" action are generated when such a Sieve filter is evaluated (when
an original message that triggers the Sieve "vacation" or "capture" action is processed).
Similarly, notifications warning of a Sieve syntax error are generated whenever the relevant
Sieve filter is processed in an attempt to apply it to an incoming original message.

Another trigger for MTA generation of notification messages is postmaster use of the imsimta
return utility or imsimta qm utility's return command to explicitly, immediately bounce
specified messages.

But notification messages regarding temporary delivery problems, or those reporting a
message delivery failure due to finally "timing out" after repeated delivery attempts, are
instead generated upon a periodic (configurable) schedule; see the *notices channel options
for configuration of eligibility for such notifications, and the MTA return_job's scheduling
for actual generation of such notifications. Similarly, Message-Store-generated user overquota
warnings may be issued periodically; see the quotaexceededmsginterval Message Store
option (legacy configuration store.quotaexceededmsginterval configutil parameter).

The reporting of delayed (or eventually timed-out-and-given-up-on) messages is triggered
by the MTA return_job, which checks the settings of any *notices channel options in
order to decide whether it is time to generate a notification message regarding the delayed
(or eventually failed due to timing out) message. The MTA return_job must thus be
scheduled as appropriate for a site's needs in relation to the generation of such notification
messages. As of MS 6.0, the Messaging Server Scheduler, imsched, is normally used to
schedule the running of the MTA's return_job. (In previous versions, such scheduling was
normally performed by the Job Controller via a PERIODIC_JOB definition---an approach
that is now deprecated.) In Unified Configuration, the Scheduler configuration, besides
its enable option, consists primarily of a crontab option setting for each scheduled
job. In particular, in Unified Configuration the MTA return_job schedule is set via the
schedule.task:return_job.crontab option setting:

msconfig> show task:return_job.crontab
role.schedule.task:return_job.crontab = 30 0 * * * lib/return_job

In legacy configuration, the Scheduler configuration is controlled by configutil parameters;
for the MTA's return_job, see in particular the local.schedule.return_job parameter,
whose default value is

30 0 * * * /opt/SUMWmsgsr/lib/return_job

This is UNIX crontab format, i.e.,

60–4 Messaging Server Reference

Notification message format

minutes-after-hour hour day-of-month month-of-year day-of-week script

So the normal setting corresponds to the return_job being set to run at 30 minutes after
midnight every day, (with the asterisks indicating, respectively, every day of the month, every
month of the year, every day of the week).

60.3 Notification message format
The MTA generates standard notification messages (DSNs and MDNs) in the formats defined
by the respective Internet standards, in particular RFC 3462 and RFC 3464 in the case of DSNs,
and RFC 3798 in the case of MDNs. Shown in Example non-delivery DSN is a sample non-
delivery DSN with annotations.

Example non-delivery DSN

Return-Path: <> (1)
Received: from process-daemon.host1.domain.com by host1.domain.com (Sun Java (2)
 System Messaging Server 6.2-3.04 (built Jul 15 2005)) id
 <0JRJ00301JFFR300@host1.domain.com> for user1@domain.com (ORCPT
 user1@domain.com); Thu, 15 Nov 2007 01:25:45 -0800 (PST)
Received: from host1.domain.com (Sun Java System Messaging Server 6.2-3.04
 (built Jul 15 2005)) id <0JRJ0038FJIWYS00@host1.domain.com> for (3)
 user1@domain.com (ORCPT user1@domain.com); Thu, 15 Nov 2007 01:25:45 -0800
 (PST)
Date: November 15, 2007 1:25:45 AM -0800 (PST)
From: Internet Mail Delivery <postmaster@host1.domain.com> (4)
Subject: Delivery Notification: Delivery has failed (5)
To: user1@domain.com
Message-Id: <0JRJ0038MJIXYS00@domain.com>
Mime-Version: 1.0
Content-type: multipart/report; (6)
 boundary="Boundary_(ID_7qPwt/LotX5gy1oVEHL7SQ)"; report-type=delivery-status
Original-Recipient: rfc822;user1@domain.com

--Boundary_(ID_7qPwt/LotX5gy1oVEHL7SQ)
Content-type: text/plain; charset=us-ascii (7)
Content-language: en-US
Content-transfer-encoding: 7BIT

This report relates to a message you sent with the following header fields: (8)

 Message-id: <01MZZ7DIEUG400LXL0@host1.domain.com> (9)
 Date: Thu, 15 Nov 2007 01:23:18 -0800 (PST)
 From: user1@domain.com
 To: bogus@remote.com
 Subject: test to generate a bounce -- please ignore

Your message cannot be delivered to the following recipients: (10)

 Recipient address: bogus@remote.com (11)
 Original address: bogus@remote.com (12)
 Reason: Remote SMTP server has rejected address
 Diagnostic code: smtp;550 5.1.1 <bogus@remote.com>... User unknown
 Remote system: dns;mx1.remote.com (TCP|129.146.11.74|42429|129.156.85.165|25)
 (sunmail5.uk.sun.com ESMTP Sendmail 8.13.8+Sun/8.13.7/ENSMAIL,v2.2;
 Thu, 15 Nov 2007 09:25:44 GMT)
 (13)(14)
--Boundary_(ID_7qPwt/LotX5gy1oVEHL7SQ)

Notification messages 60–5

https://tools.ietf.org/html/rfc3462
https://tools.ietf.org/html/rfc3464
https://tools.ietf.org/html/rfc3798

Notification message format

Content-type: message/delivery-status (15)

Original-envelope-id: 01MZZ7DIEUG400LXL0@host1.domain.com
Reporting-MTA: dns;host1.domain.com (tcp-daemon) (16)
 (17)
Original-recipient: rfc822;bogus@remote.com (18)
Final-recipient: rfc822;bogus@remote.com (19)
Action: failed
Status: 5.1.1 (Remote SMTP server has rejected address)
Remote-MTA: dns;mx1.remote.com (TCP|129.146.11.74|42429|129.156.85.165|25)
 (sunmail5.uk.sun.com ESMTP Sendmail 8.13.8+Sun/8.13.7/ENSMAIL,v2.2; Thu, 15
 Nov 2007 09:25:44 GMT)
Diagnostic-code: smtp;550 5.1.1 <bogus@remote.com>... User unknown

--Boundary_(ID_7qPwt/LotX5gy1oVEHL7SQ)
Content-type: message/rfc822

Return-path: <user1@domain.com> (20)
Received: from [129.158.87.66] by host1.domain.com (Sun Java System Messaging (21)
 Server 6.2-3.04 (built Jul 15 2005)) with ESMTPA id
 <01MZZ7D1WINK00LXL0@host1.domain.com> for bogus@remote.com (ORCPT
 bogus@remote.com); Thu, 15 Nov 2007 1:25:08 -0800 (PST)
Date: Thu, 15 Nov 2007 01:23:18 -0800 (PST)
From: user1@domain.com
Subject: test to generate a bounce -- please ignore
To: bogus@remote.com
Message-id: <01MZZ7DIEUG400LXL0@host1.domain.com>
MIME-version: 1.0
Content-type: TEXT/PLAIN
Content-transfer-encoding: 7BIT

test

--Boundary_(ID_7qPwt/LotX5gy1oVEHL7SQ)--

1. As with all standard notification messages, the envelope From is empty, as shown/recorded
here in the Return-path: header line.

2. By default, notification messages are enqueued to the process channel; but see the
notificationchannel channel option. Note that the Received: header line below
this one---the very "first" (in time) Received: header line---corresponds to the initial
enqueue of the notification message from the channel that determined that a notification
message was needed to the process channel. (If the initial channel that determined that
a notification message was needed had a notificationchannel specified other
than the process channel, the initial enqueue would instead have been to that alternate
notificationchannel.) Thus by default (no notificationchannel used) this
second-from-the-bottom Received: header line, this second-from-oldest Received: header
line, on any notification message generated by the Messaging Server MTA, will show the
notification message coming from the process channel.

3. Note the "for recipient" clause present in this Received: header line. That such a clause
is present shows that at this point in time, the message had only one recipient, and that the
(default) receivedfor channel option was in effect. Note that the fact that there was only
one recipient for the message at that point (initial enqueue to the process channel), indicates
that the postmaster was not being copied on this notification: that one of nosendpost or
errsendpost was in effect.

4. By default, the MTA-wide postmaster address is used in the From: header line for
notifications; see the return_address and return_personal MTA options.

60–6 Messaging Server Reference

Notification message format

But override postmaster addresses may be set on a per-channel basis (see the
returnaddress and returnpersonal channel options), or on a per-domain basis (see
the mailDomainReportAddress attribute, or more precisely, the attribute named by the
ldap_domain_attr_report_address MTA option), or on a per-message basis via the
FROM_ACCESS mapping table's $(or $) flags.

5. The Subject: field for DSNs has the default text shown in Table of DSN types and their
default Subject: field text. The default may be overridden for all types of DSNs using the
SUBJECT option in the return_option.opt file, or may be overridden on a per-type-of-
DSN basis using the $T flag of the NOTIFICATION_LANGUAGE mapping table.

6.
DSNs at the outermost MIME level have type:

Content-type: multipart/report; ... report-type=delivery-status

7. The MIME header lines for the first message part (the human-readable part) are controlled
by the return_prefix.txt file . Which language-specific return_prefix.txt file is
used may be controlled by the NOTIFICATION_LANGUAGE mapping table .

8. This line (or optionally multiple lines) of introductory text is also set in the
return_prefix.txt file. Normally, return_prefix.txt also includes a %H
substitution to cause insertion of (a sample of) the original message headers.

9. The return_header.opt file controls exactly which header lines a %H substitution inserts.
The %H substitution itself is located in the language-specific return_prefix.txt file.

10.This line of text is set in the appropriate return_*.txt file , corresponding to the type of
DSN being generated: failed, bounced, timedout, delayed, deferred, delivered,
read, relayed, expanded, capture, or error. In the case of this sample DSN, this is a
"failed" DSN (the original message could not be delivered), so the return_failed.txt
file sets the line of text, as well as causing insertion of a list of the message's recipients via a
%R substitution.

11.If the relevant return_*.txt file requested it via a %R substitution, then a description of
the recipients of the original message (and what happened for each such recipient) will be
included. (Note tht the exact form of recipient address reported as "Recipient address:" may
be affected by the setting on the source channel -- the channel generating the notification --
of includefinal, suppressfinal, or useintermediate.) Overall, this is intended as
a more human-readable version of the information also presented (in standard, machine-
readable form) in the second part of the DSN, at (17). In particular, the text labels for each of
these fields (e.g., " Recipient address: "---note the two leading spaces as well as the terminal
colon and trailing space are considered part of the label) are configurable via the language-
specific return_option.opt file (selected via the NOTIFICATION_LANGUAGE mapping
table).

12.Optionally, additional, alternate text can be configured per SMTP enhanced status
code (e.g., in this example 5.1.1); if such alternate text has been configured in the
return_option.opt file corresponding to the enhanced status code being reported, then
it would be presented after the "Original address: " (ORIGINAL_ADDRESS) line and before
the "Reason: " (REASON) line.

13.
If the return_delivery_history MTA option is enabled (the default) and the
original message has a history of delivery attempts, then some delivery history, up to the

Notification messages 60–7

Notification message format

limit specified by history_to_return, will be included here (after the %R recipient
information), having the format:

Delivery attempt history for your mail:

time-stampdelivery-detailtime-stampdelivery-detail

...

14.
Note that the return_delayed.txt file used when generating a delayed delivery
warning often includes additional text after the %R recipient substitution, (and hence after
any delivery history detail, as discussed in (13)), detailing how much longer the MTA will
continue to attempt delivery. For instance, the distributed English language version of
return_delayed.txt causes inclusion of text:

The mail system will continue to try to delivery your message
for an additional N time-units .

where N is derived from the notices final value, and time-units is derived from the
return_units setting.

15.This second part of a DSN is a machine-readable part. Note that unlike the first, human-
readable part of a DSN, see (7), the machine-readable part is not subject to customization/
localization/alternate language selection. This part uses the format and fields specified in
RFC 3464 (An Extensible Message Format for Delivery Status Notifications). Because this
part is in a precisely specified, machine-readable format, clients or gateways that choose to
do so can in principle make choices of their own on how and whether to present this part to
users, potentially including performing their own (client or gateway level) translation of the
(precisely defined) content of this part.

16. The reporting MTA (the MTA that is generating the notification message) is reported here.
Note that this is not necessarily the MTA that rejected the message: as in the case of this
example, where the rejection occurred at the SMTP protocol level, with the message being
rejected by a remote host, but where the "local" MTA then had responsibility for generating
the notification message. Note also that the Received: header lines on the DSN itself---in
particular the first (in time, so lowest in the header) Received: header line---also show you
what MTA generated the DSN. But whichever place you gather this piece of information
from, note that it is a critical piece of information: you can only customize the DSNs that
your system generates!

17.Some additional fields can potentially appear here, including X400-Content-identifier:,
Content-identifier:, and UA-content-id:. As of MS 7.0, Arrival-date: and Future-release-
request: also may potentially appear.

18.A set of information fields is output for each of the recipients of the original message,
describing what happened for that recipient.

19.The exact form of recipient address reported as the "Final-recipient:" may be affected by the
setting on the source channel (the channel generating the notification) of includefinal,
suppressfinal, or useintermediate.

20.The Return-path: records the envelope From of the original message.

60–8 Messaging Server Reference

https://tools.ietf.org/html/rfc3464

DSN language and customization

21.The third and final part of the DSN contains the original message (or merely the headers
of the original message, if the sender originally set the NOTARY non-return-of-content
flag, or if the MTA was obliged to set or perform non-return-of-content due to message size
restrictions). The entire header of the original message is included.

 The MTA generates "autoreply" or "vacation" messages, whether requested due to the use
of mailAutoReply* attributes in a user's LDAP entry, or requested due to explicit use of
the "vacation" action in a user's Sieve filter, as a form of notification message also. Such
"vacation" messages may optionally be generated either in standard MDN format, or (for
the benefit of recipients whose user agents lack good handling for standard MDN messages)
as more "simple" messages consisting of a single text part. (Standard MDN format for a
"vacation" message is requested by use of mailAutoReplyMode: echo in the user's LDAP
entry, or use of the :echo argument to a vacation action in the user's Sieve script. The
"simple" form of "vacation" message is requested by use of mailAutoReplyMode: reply
in the user's LDAP entry, or use of the :reply argument to a vacation action in the user's
Sieve script.)

Selective choice of language used in, and customization of the contents of, notification
messages is possible, as discussed in DSN language and customization and MDN language
and customization below. But keep in mind that any such language usage and customization
must be within the guidelines of the overall notification message format, which in many cases
is prescribed by the above-mentioned Internet standards.

60.3.1 DSN language and customization
As mentioned in the discussion of the sample DSN of Example non-delivery DSN, there
are a number of localizable, customizable files consulted when constructing DSNs; these
files will be discussed further in Customizing DSNs via the return files. By default, if no
NOTIFICATION_LANGUAGE mapping table is configured, the return_*.* files located
in the IMTA_LANG: directory will be used to generate all DSNs. However, separate sets of
return_*.* files can be created and located in separate directories---for localization or site
customization purposes. Indeed, the MTA is distributed with several sets of language-specific
return_*.* files, and a basic NOTIFICATION_LANGUAGE mapping table (referenced in
the mappings file via file inclusion of the mappings.locale file) which selects among the
language-specific directories based on language preference of original message senders. That
is, the NOTIFICATION_LANGUAGE mapping table selects, based on any language preference
of the original message sender, a directory in which to find an appropriate set of return_*.*
files for generating a DSN back to that sender.

Probes to the NOTIFICATION_LANGUAGE mapping table have the form:

dsn-type|source-channel|accept-language|return-address|1st-recipient

In the probe, dsn-type can be a comma-separated list including any of failed, bounced,
timedout, delayed, deferred, delivered, read, relayed, expanded, capture,
error, or (as of MS 7.0u2) journal. The accept-language field will have any values
(possibly a comma-separated list) found on (preferentially) an Accept-Language: header line in
the original message (the message that the DSN will be reporting on), or if that header line is
not present then from a Preferred-language: header line if present, or failing that an X-Accept-
Language: header line. Note that valid language tag values are discussed in RFC 3066 (Tags for
the Identification of Languages).

The pattern (right hand side) of a NOTIFICATION_LANGUAGE entry may set the $I flag
to specify the directory (or as of MS 7.0 update 3, a list of comma-separated directories)
from which the MTA should use return_*.* files when constructing a DSN. It may also

Notification messages 60–9

https://tools.ietf.org/html/rfc3066
https://tools.ietf.org/html/rfc3066

DSN language and customization

optionally set the $T flag to set an override Subject: header field value to use in the DSN. Note
that the default Subject: field values for the various types of DSNs are shown in Table of DSN
types and their default Subject: field text. When both flags are set, the directory argument
should be first (left-most), separated by a vertical bar character from the Subject: header field.

Note: If using NOTIFICATION_LANGUAGE to select an alternate directory of return_*.txt
regardless of DSN type, then it is important to have a complete set of return_*.txt files
present in the specified directory. If the MTA cannot locate a return_*.txt file of the
appropriate type in the directory in which the MTA has been told to find such files, then the
DSN will be constructed omitting that part of the usual structure and the resulting DSN will
therefore look "odd" or "incomplete".

Note: When the MTA has been configured to send copies of notifications to the postmaster (see
for instance the sendpost and warnpost channel options), those postmaster copies of the
notification message back to the original sender are copies of the text sent back to the original
sender, and in particular are in the language selected for the original sender. The postmaster's
own personal language preferences, if any, are not relevant to these copies; the purpose of
these copies being to be a copy of what the original sender was sent.

60.3.1.1 Customizing DSNs via the return_*.* files

When the MTA needs to construct a notification message, the MTA will consult the
NOTIFICATION_LANGUAGE mapping table to find a language-appropriate set of return_*.*
files. The MTA will then use that set of return_*.* files to construct the notification message.
The return_header.opt file and (optional) return_option.opt file are modifier
files, potentially affecting the spectrum of notification messages. The return_*.txt files,
in contrast, are template files for the different types of notification messages. Each such
return_*.txt file is used nearly verbatim for its particular type(s) of notification messages,
with possible substitutions as specified via % substitutions. (The notary_quote MTA option
controls this meaning of the percent character, %, in notification message template files.)
Note that in order to specify inserting a literal percent character in a return_*.txt file, the
percent character must itself be quoted with another percent character, %%.

60.3.1.1.1 The sample header lines in DSNs: the return_header.opt file

The purpose of the return_header.opt file is to specify which message header lines to
include to identify a message in the human-readable first part of DSNs. Typically it is desired
to return only a few of the possible header lines a message might contain, only those most
significant to the original message sender.

Prior to MS 7.0 update 2, the return_header.opt file was not language-specific: it always
resided and was found in the IMTA_LANG: directory. All the other return_*.* files
may be language-specific, as the directory in which to locate them may be varied using the
NOTIFICATION_LANGUAGE mapping table. As of MS 7.0 update 2, the MTA will first look for
a language-specific return_header.opt in the directory (or as of MS 7.0 update 3, list of
directories) selected via $I in the NOTIFICATION_LANGUAGE or DISPOSITION_LANGUAGE
mapping table, as relevant; but if the MTA does not find a language-specific such file, then
it will fall back to looking in the LANGDIR directory instead. (As of MS 7.0, the former
IMTA_LANG Tailor file option is deprecated and replaced by the langdir MTA option as far
as locating on disk where files are located. But IMTA_LANG may still be used in, for instance,
mapping tables: the MTA will translate occurrences of IMTA_LANG to the location specified
by the langdir MTA option.)

As a concrete example, the return_header.opt file installed in the IMTA_LANG: directory
is shown here. The settings shown here mean that the %H substitution typically used in the

60–10 Messaging Server Reference

DSN language and customization

return_prefix.txt file will cause insertion of solely the Message-Id:, Date:, From:, To:,
and Subject: header lines of the original message into the first, human-readable portion of the
DSN messages constructed by the MTA; all other header lines from the original message will
be omitted. See the imsimta test -header utility for an example of application of this
header trimming to a set of headers. (Note that the notary_decode MTA option controls any
decoding and/or character set conversion of any MIME encoded non-US-ASCII material in
such substituted header lines.)

Sample distributed return_header.opt file

Message-Id: PRECEDENCE=3
Date: PRECEDENCE=4
From: PRECEDENCE=5
To: PRECEDENCE=6
Subject: PRECEDENCE=7
Others: MAXIMUM=-1
Defaults: MAXIMUM=-1

60.3.1.1.2 The required full set of DSN type-specific return_*.txt files

Within a language-specific directory as selected via the NOTIFICATION_LANGUAGE mapping
table, each type of DSN should have its own return_dsn-type.txt file, to be used in
constructing the text in the human-readable first part of the DSN, where the dsn-type in the
file name is also the value in the NOTIFICATION_LANGUAGE probe. Each type of DSN also has
a default Subject: header field value, shown in Table of DSN types and their default Subject:
field text, though these values may be overridden either via the NOTIFICATION_LANGUAGE
mapping table as described in DSN language and customization or via the SUBJECT option in
the return_option.opt file. Table of DSN types and their default Subject: field text lists the
usage of each of these return_dsn-type.txt files.

Table 60.1 DSN types and their default Subject: field text

Type of DSN Subject: field default text2 Usage
capture Message Capture Copy Used for the "capture" copy of a message

captured due to Sieve script or LDAP
attribute capture

bounced
(security)

Delivery Notification: Potential
security problem found

bounced
(manual)

Delivery Notification: Delivery
has been manually aborted

The message was manually returned due
to the postmaster using a utility such as
imsimta return or the imsimta qm
utility's return command to bounce the
message; this is one case of "R" MTA message
transaction log entries

timedout Delivery Notification: Delivery
has timed out and failed

Used when generating a bounce message due
to a message exceeding the final notices
value; this is one case of "R" MTA message
transaction log entries

failed Delivery Notification: Delivery
has failed

Recipient encountered a permanent delivery
failure (a rejection); this is one case of "R"
MTA message transaction log entries

Notification messages 60–11

DSN language and customization

deferred Delivery Notification: Delivery
has been deferred

Used when a notification is generated
that a message that had a "Deliver on first
try" notification request set encountered a
temporary failure on that first attempt

delayed Delivery Notification: Delivery
has been delayed

Used when a warning notification is
generated for a message that remains in the
MTA's queues as yet undelivered: that is,
this is the text used for warning messages
generated at the non-final notices values,
so corresponding to "W" MTA message
transaction log entries

 delivered Delivery Notification: Delivery
has been successful

Used when generating a delivery receipt for a
message that had a NOTARY delivery receipt
request

relayed Delivery Notification: Message
successfully relayed

Used when a message that had a NOTARY
delivery receipt request is relayed onward to a
host that does not support NOTARY

expanded Delivery Notification: Mailing
list successfully expanded

Used when an address that had a delivery
receipt notification request is expanded
into a mailing list; per NOTARY rules, such
expansion is considered to be a successful
"delivery" of the message (and the delivery
receipt request does not get propagated/
carried through to the message copies
addressed to actual list members)

error Problem during delivery
processing

Used, for instance, for error reports to a Sieve
"owner" regarding Sieve syntax problems

journal1 Message Journal Copy Used in messages captured with the Sieve
capture action's :journal parameter

1 New in MS 7.0u2.

2 The Subject: field value can be overridden by setting a single value to be used for all DSNs via
the SUBJECT option of return_option.opt. Alternatively, a more complex approach is to
use the $T flag in the NOTIFICATION_LANGUAGE mapping table to set Subject: field values.

As a concrete example, the distributed English language set of return_*.txt files will
be presented here. The prefix, bounced, capture, deferred, delayed, delivered, error,
failed, forwarded, timedout, and suffix files are the ones normally found in the directory
located via the langdir MTA option, typically IMTA_TABLE:locale/C. The MTA is
also distributed with sets of return_*.txt files in other, language-specific directories
under IMTA_ROOT:lib/locale. Note that regardless of what language is a site's own
"preferred" language, notifications may be generated by the MTA in other languages, using
the return_*.txt files from other language-specific directories, according to any expressed
language preference of the original message sender (who will receive the DSN). That is, it is not
a site's own language preference, but rather the language preference of the DSN recipient --
who is possibly a remote user---that matters most when it comes to DSN language!

Sample English language return_prefix.txt file

60–12 Messaging Server Reference

DSN language and customization

Content-type: text/plain; charset=us-ascii
Content-language: en-US

This report relates to a message you sent with the following header fields:
%H

Sample English language return_bounced.txt file

Your message is being returned. It was forced to return by the postmaster.

The recipient list for this message was:
%R

Sample English language return_capture.txt file

Attached message captured in accordance with site policy.

Sample English language return_deferred.txt file

This system has been unable to deliver your message to the
following recipients:
%R

Sample English language return_delayed.txt file

Your message has been enqueued and undeliverable for %C %u%s
to the following recipients:
%R

The mail system will continue to try to deliver your message
for an additional %L %u%s.

Sample English language return_delivered.txt file

Your message has been successfully delivered to the following recipients:
%R

Sample English language return_error.txt file

Processing errors occurred during delivery:
%R

Delivery processing continued in spite of these errors.

Notification messages 60–13

DSN language and customization

Sample English language return_failed.txt file

Your message cannot be delivered to the following recipients:
%R

Sample English language return_forwarded.txt file

Your message has been successfully relayed to the recipients
%R

on a remote system that does not support the generation of successful
delivery receipts. This does NOT mean that your message has actually been
placed in the recipients' mailboxes; merely that it has passed through a
part of the message transport infrastructure. In the event of a nondelivery
you should expect to receive a nondelivery notification; in the event of
successful delivery, however, you are unlikely to receive a positive
confirmation of delivery.

Sample English language return_timedout.txt file

Your message is being returned; it has been enqueued and undeliverable for
%C %u%s to the following recipients:
%R

Sample English language return_suffix.txt file - normally empty

(Note: the return_suffix.txt file is typically empty.)

60.3.1.1.3 The optional return_option.opt file

The return_option.opt file is the one optional file among the return_*.* files; it
need not exist, as in its absence, a reasonable set of (English language) default values will
be used. (Indeed, the English language defaulting for the text controlled by this file is
actually a bit more sophisticated than the handling available via the options in the file.)
However, while (unlike the other return_*.* files) its existence is not required, it is normally
desirable to have such a file in non-English, language-specific directories. The options
available for return_option.opt are listed below. Note that it is critical that any charset
parameter setting in the return_prefix.txt file be coordinated with the values used (the
representation of text used) in return_option.opt option values: the charset must match
(except for SUBJECT which, if non-US-ASCII characters are to be presented, must be specified
as an already RFC 2047 encoded value).

60.3.1.1.3.1 DAY (string), HOUR (string)

Specify the text string to use for %U and %u substitutions. When the MTA option
return_units=0 (units of days) is set, the string specified for DAY will be used; when the

60–14 Messaging Server Reference

DSN language and customization

MTA option return_units=1 (units of hours) is set, the string specified for HOUR will be
used. So for instance, in a French language version of return_option.opt:

DAY=jour
HOUR=heure

Note that the English language default handling, if no DAY and HOUR options are set, is
slightly more sophisticated than available with the option, in that the default English language
handling includes a case distinction: it will substitute Day or Hour in place of %U, while
substituting "day" or "hour" in place of %u. It is important that the actual values be specified in
the charset matching the charset parameter configured for the Content-type: header line in the
return_prefix.txt file.

60.3.1.1.3.2 DIAGNOSTIC_CODE (string)

The English language default is:

DIAGNOSTIC_CODE= Diagnostic code:

or for example a French language setting could be:

DIAGNOSTIC_CODE= Code de diagnostic :

60.3.1.1.3.3 ORIGINAL_ADDRESS (string)

The English language default is:

ORIGINAL_ADDRESS= Original address:

Or for example a French language setting could be:

ORIGINAL_ADDRESS= Adresse d'origine :

60.3.1.1.3.4 RETURN_PERSONAL (RFC 2047-encoded string)

Specify the personal name (RFC 822 phrase) to use with the postmaster address. If specified,
this will override the Postmaster personal name specified for the source channel via
returnpersonal as well as the global default specified via the return_personal MTA
option.

60.3.1.1.3.5 SUBJECT (RFC 2047-encoded string)

Specify the value to use on the Subject: header line of DSNs, in RFC 2047 encoded form. So for
instance in a French language version of return_option.opt:

SUBJECT==?iso-8859-1?Q?Notification_de_l=27=E9tat_de_remise?=

Note that the English language handling, if SUBJECT is not specified, is slightly more
sophisticated than available via this option as different values will be used for different types
of DSNs; see DSN types and their default Subject: field text. It is also possible to specify use of
different Subject: values via the $T flag of the NOTIFICATION_LANGUAGE mapping table.

Notification messages 60–15

DSN language and customization

60.3.1.1.3.6 REASON (string)

The English language default is:

REASON= Reason:

or for example a French language setting could be:

REASON= Raison :

60.3.1.1.3.7 RECIPIENT_ADDRESS (string)

The English language default is effectively:

RECIPIENT_ADDRESS= Recipient address:

or for example a French language setting could be:

RECIPIENT_ADDRESS= Adresse du destinataire :

60.3.1.1.3.8 REMOTE_SYSTEM (string)

The English language default is:

REMOTE_SYSTEM= Remote system:

or for example a French language setting could be:

REMOTE_SYSTEM= Système distant :

60.3.1.1.3.9 x.y.z (string)

For any possible SMTP enhanced status code that might be reported in a notification, it is
possible to configure additional, alternate text to include in the human-readable portion of
the notification. Such text might be chosen to perhaps "better explain" (or at least provide a
description in an alternate language) the corresponding enhanced status code. For instance:

5.1.0=Il y avait un erreur indefini avec l'adresse du destinaire.
5.1.1=La boite aux lettres a l'adresse specifiee n'existe pas.
5.1.2=Le systeme du destination specifiee dan l'adresse n'existe ou est incapable d'accepter la poste.

etc. See RFC 1893 for definitions of the standard meanings of enhanced status codes. Such
explanation text, if specified, will be output after the ORIGINAL_ADDRESS information and
before the REASON information as part of the %R recipient information substitution.

60.3.1.1.3.10 Option usage

So in particular, note that return_option.opt can re-define the meanings of some of
the various % substitutions available in the return_*.txt files. The available substitution

60–16 Messaging Server Reference

https://tools.ietf.org/html/rfc1893

DSN language and customization

sequences, along with any return_option.opt options controlling their text effect, are
shown in return_*.txt file substitution sequences.

Table 60.2 return_*.txt file substitution sequences
Sequence return_option.opt

option
Default value Meaning

%% % Substitute a literal % character.

%B Substitute a boundary marker.

%C Substitute the length of time (in days or hours---see
the return_units MTA option and the %u and %U
substitutions) the message has been queued; that is, the
length of time during which the MTA has been trying to
deliver a not-yet-delivered message.

%F Substitute the length of the time the message may
remain in the queue prior to the MTA bouncing it; that
is, the final backoff keyword value minus the %C time-
queued-so-far.

%H Substitute those header lines specified in the
return_header.opt file. See the notary_decode
MTA option for discussion of decoding of material
encoded due to use of non-US-ASCII characters.

%I Substitute the length of time until the next notice; the
next notices value minus the current %C time-queued-
so-far.

%L Substitute the length of time remaining until the MTA
will bounce (return) a not-yet-delivered message; the
length of time until the final backoff keyword value.
See the return_units MTA option for whether this
length of time is in units of days or hours; and see the
%u and %U unit name substitutions.

%N Substitute the length of time corresponding to the next
notices value; this is the total amount of time between
enqueue and that notice being due for generation, not
the remaining time (for which see instead %I).

%O (New in MS 6.2) Treat the % character as having
no special meaning in the remainder of this
return_*.txt file. That is, disable all % substitution
sequence interpretation in the remainder of this
template file.

%R see below
 Recipient address: address
 Original address: orcpt-value
 Reason: reason
 Diagnostic code: SMTP-error
 Remote system: name-and-details

The %R substitution causes output of a whole set
of recipient-specific information, for each relevant
envelope recipient, as a set of lines in customizable-field-
name field-value format. These are intended as human-
readable analogues (and in particular customizable
and localizable versions for use in the human-readable
portion of the DSN) of some of the standardized
fields that RFC 3464 defined for use in the machine-
readable portion of the DSN. The customizable-field-
name text may be customized using a number of
return_option.opt options.

%R RECIPIENT_ADDRESS Recipient address: The setting of includefinal, suppressfinal, or
useintermediate on the current source channel (the
channel generating the notification) can affect what
form of the recipient address is presented

%R ORIGINAL_ADDRESS Original address:

%R x.y.z MTA-error-text-for-x.y.z-status Substitute text explaining the "meaning" of the extended
SMTP status x.y.z---typically this would be alternate
language text intended to be more comprehensible than
the English language SMTP error text.

%R REASON Reason:

%R DIAGNOSTIC_CODE Diagnostic code:

Notification messages 60–17

https://tools.ietf.org/html/rfc3464

MDN language and customization

%R REMOTE_SYSTEM Remote system:

%s s Substitute a literal " s" character if the previously
substituted numeric value was not equal to one;
typically used after a %u or %U substitution.

%S S Substitute a literal " S" character if the previously
substituted numeric value was not equal to one;
typically used after a %u or %U substitution.

%u DAY day

%u HOUR hour

%U DAY Day

%U HOUR Hour

60.3.2 MDN language and customization
There are a number of localizable, customizable files the MTA consults when constructing
MDNs; these files will be discussed further in Customizing MDNs via the disposition files. By
default, if no DISPOSITION_LANGUAGE mapping table is configured, the disposition_*.*
files located in the langdir directory will be used to generate all MDNs. However, separate
sets of disposition_*.* files can be created and located in separate directories---for
localization or site customization purposes. Indeed, the MTA is distributed with several
sets of langauge-specific disposition_*.* files, and a basic DISPOSITION_LANGUAGE
mapping table (referenced in the mappings file via file inclusion of the mappings.locale
file) which selects among the language-specific directories based on language preference of
original message senders. That is, the DISPOSITION_LANGUAGE mapping table selects, based
on any language preference of the original message sender, a directory in which to find an
appropriate set of disposition_*.* files for generating an MDN back to that sender.

Probes to the DISPOSITION_LANGUAGE mapping table have the form:

mdn-type|modifier|source-channel|accept-language|return-address|recipient

where mdn-type can be any of displayed, dispatched, processed, deleted, denied,
or failed, and where modifier can be a comma-separated list including any of error,
warning, superseded, or expired. The accept-language field will have any values
(possibly a comma-separated list) found on (preferentially) an Accept-Language: header line,
or if that header line is not present then from a Preferred-language: header line if present,
or failing that an X-Accept-Language: header line. Note that valid language tag values are
discussed in RFC 3066 (Tags for the Identification of Languages).

The pattern (right hand side) of a DISPOSITION_LANGUAGE entry may set the $I flag
to specify the directory from which the MTA should use disposition_*.* files when
constructing an MDN, and optionally following a vertical bar character a destination charset.
 The pattern may also optionally use the $T flag to set the Subject: field value to use when
constructing this MDN; the Subject: field follows yet another vertical bar character. (Note
that the $T Subject: will only be used if there is neither a specific Subject: field for this type
of MDN (such as a Sieve "vacation :subject" might specify), nor a SUBJECT option
set in the disposition_option.opt file. That is, the $T specified Subject: field value
is of low precedence compared to the other ways of setting the Subject: field value.) The
pattern may also optionally set the names of the files to use when constructing this MDN
instead of the normal disposition_prefix.txt, disposition_mdn-type.txt, and
disposition_suffix.txt files; these are specified following the directory specification but
prior to the first vertical bar character, with comma separators. All together, the syntax of the
pattern is:

60–18 Messaging Server Reference

https://tools.ietf.org/html/rfc3066

MDN language and customization

ITlangdir,option,prefix,mdn-type-file,suffix|dest-charset|subject

See Sample NOTIFICATION_LANGUAGE and DISPOSITION_LANGUAGE mapping tables
for an example DISPOSITION_LANGUAGE mapping table.

Note that as of MS 7.0.5, all MDNs generated by the MTA include an Auto-Submitted: header
line, per the recommendation of RFC 3834 (Recommendations for Automatic Responses to
Electronic Mail) -- in prior versions only certain forms of MDNs contained such a header
line -- and the value placed on the Auto-submitted: header line has been updated to include
the additional information suggested in RFC 5436 (Sieve Notification Mechanism: mailto)
including additional values (such as auto-notified) and the owner-email parameter.

60.3.2.1 Customizing MDNs via the disposition_*.* files

When the MTA needs to construct an MDN, the MTA will consult the
DISPOSITION_LANGUAGE mapping table to find a language-appropriate set of
disposition_*.* files, and optionally some override files and values. The MTA will then
use that set of disposition_*.* files, plus as relevant the return_option.opt and
return_header.opt files discussed in Customizing DSNs via the return files, to construct
the MDN.

The return_option.opt file, return_header.opt file, and (optional)
disposition_option.opt files are modifier files, potentially affecting the spectrum
of MDN messages. The disposition_*.txt files, in contrast, are template files for the
different types of MDNs. The disposition_prefix.txt and disposition_suffix.txt
template files are used to "wrap" the MDN-type-specific text; each such disposition_mdn-
type.txt file is used nearly verbatim for its particular type(s) of MDN, with possible
substitutions as specified via % substitutions (defined from return_option.opt).
(The notary_quote MTA option controls this meaning of the percent character, %, in
MDN template files.) Note that in order to specify inserting a literal percent character in a
disposition_*.txt file, the percent character must itself be quoted with another percent
character, %%. For the %H substitution typically used in the disposition_prefix.txt
file (to insert header lines from the original message into the generated MDN), note that any
decoding and/or character set conversion of any MIME-encoded, non-US-ASCII material in
those original header lines is controlled by the notary_decode MTA option.

60.3.2.1.1 The disposition_*.txt files

The set of MDN disposition_*.txt template files is:

disposition_prefix.txt
disposition_deleted.txt
disposition_denied.txt
disposition_dispatched.txt
disposition_displayed.txt
disposition_failed.txt
disposition_processed.txt
disposition_suffix.txt

But note that currently, of these MDN-type files, only disposition_deleted.txt (an
old-style Sieve "reject" action), and disposition_dispatched.txt (Sieve "notify"
action), are routinely used by the MTA as those (and some forms of vacation messages) are

Notification messages 60–19

https://tools.ietf.org/html/rfc3834
https://tools.ietf.org/html/rfc3834
https://tools.ietf.org/html/rfc5436

MDN language and customization

the types of MDNs that the MTA routinely generates---and vacation messages have their
own distinct mechanisms for generating their text. The disposition_prefix.txt and
disposition_suffix.txt files are also used, to prefix and suffix, respectively, the context
placed in an MDN.

Each type of MDN has a default Subject: header field value, shown in MDN types
and their default Subject: field text, though these values may be overridden either
via the DISPOSITION_LANGUAGE mapping table or via the SUBJECT option in the
disposition_option.opt file. Furthermore, some types of MDNs have their own,
higher-precedence way, of specifying the Subject: header field value---as for instance the
"vacation :subject" parameter. MDN types and their default Subject: field text lists the
usage of each of these disposition_mdn-type.txt files.

Table 60.3 MDN types and their default Subject: field text

Type of MDN Subject: field default text1 Usage
deleted Message has been

deleted
Old-style Sieve "reject" action

denied Message has been denied
displayed Message has been

displayed
Would be used for read receipts, if the
MTA generated read receipts (which it
doesn't--- read receipts are up to user agents
to generate)

dispatched Message has been
dispatched

Sieve "notify" action

failed Message has failed
processed Message has been

processed
"vacation :echo" messages (or
mailAutoReplyMode: echo messages);
note that vacation messages may set their own
Subject: field value

1 The Subject: field value can be overridden by setting a single value to be used for all MDNs
via the SUBJECT option of disposition_option.opt. Alternatively, a more complex
approach is to use the $T flag in the DISPOSITION_LANGUAGE mapping table to set Subject:
field values. Certain types of MDNs have their own, more explicit, methods for setting the
Subject: field value.

As a concrete example, a few of the distributed English language set of disposition_*.txt
files will be presented here. Shown in Sample English language disposition_prefix.txt
file, Sample English languge disposition_deleted.txt file, Sample English
language disposition_dispatched.txt file, and Sample English language
disposition_suffix.txt file these are some of the files typically found in the directory
located via the langdir MTA option, IMTA_TABLE:locale/C/. The MTA is also distributed
with sets of disposition_*.txt files in other, language-specific directories under
IMTA_ROOT:lib/locale.

Note that regardless of what language is a site's own"preferred" language, notifications such
as MDNs may be generated by the MTA in other languages, using the disposition_*.txt
files from other language-specific directories, according to any expressed language preference
of the original message sender (who will receive the MDN). That is, it is not a site's own
language preference, but rather the language preference of the MDN recipient -- who is
possibly a remote user -- that matters most when it comes to MDN language!

60–20 Messaging Server Reference

MDN language and customization

Sample English language disposition_prefix.txt file

Content-type: text/plain; charset=us-ascii
Content-language: EN-US

This disposition report relates to a message you sent with the following header
fields:
%H

Sample English language disposition_deleted.txt file

Your message was refused by %R and has been deleted.
The reason given for the deletion was the following:

Sample English language disposition_dispatched.txt file

Your message has been sent somewhere in some manner (e.g., printed,
faxed, forwarded) without necessarily having been read by the recipient
%R.

Sample English language disposition_suffix.txt file - normally empty

(Note: the disposition_suffix.txt file is typically empty.)

60.3.2.1.2 The disposition_option.opt file

The disposition_option.opt file is optional; in its absence, a reasonable set of (English
language) default values will be used. (Indeed, the English language defaulting for the text
controlled by this file is actually a bit more sophisticated than the handling available via the
options in the file.) However, while its existence is not required, it is normally desirable to have
such a file in non-English, language-specific directories. The disposition_option.opt file
supports the following options:

60.3.2.1.2.1 SUBJECT

The SUBJECT option sets a default field value for the Subject: header line. The precedence is
that any Subject: field value specific to the type of MDN -- for instance, a subject specified via
a Sieve "vacation" action---takes precedence over the setting of the SUBJECT option. But the
SUBJECT option in turn, when set, takes precedence over any Subject: field value set via the $T
flag in the DISPOSITION_LANGUAGE mapping table, which in turn takes precedence over the
default text shown in MDN types and their default Subject: field text.

60.3.2.1.2.2 RETURN_PERSONAL

Notification messages 60–21

NOTIFICATION_LANGUAGE
and DISPOSITION_LANGUAGE
sample mapping tables

When an MDN with a From: header address of the postmaster address is being generated,
(which note is not the case for all types of MDNs), then the RETURN_PERSONAL option sets
the so-called "personal name" (technically, the RFC 822 "phrase") to use with the postmaster
address.

60.3.2.1.2.3 TEXT_CHARSET

When generating a vacation MDN in :reply format, and not using :mime (so not supplying
all MIME header lines and any necessary MIME encoding), the vacation reason text may
need to have charset conversion performed. The TEXT_CHARSET option specifies the output
charset.

60.3.3 NOTIFICATION_LANGUAGE and
DISPOSITION_LANGUAGE sample mapping tables

The normal configuration of the MTA, established by initial configuration, includes basic
NOTIFICATION_LANGUAGE and DISPOSITION_LANGUAGE mapping tables, as well as
subsidiary mapping tables. (In legacy configuration, these mappings were included into the
main MTA mappings file via a reference to the distributed file mappings.locale; these
language-related mappings were stored in mappings.locale for MTA administrator
convenience, as they are rather large mappings, complicated to read, and seldom changed by
MTA administrators.)

In Unified Configuration, these mappings appear as:

msconfig> show mapping:NOTIFICATION_LANGUAGE
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|en*|*|* $IIMTA_TABLE:locale/C/,IMTA_LIB:locale/C/
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|de*|*|* $IIMTA_TABLE:locale/de/,IMTA_LIB:locale/de/
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|es*|*|* $IIMTA_TABLE:locale/es/,IMTA_LIB:locale/es/
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|fr*|*|* $IIMTA_TABLE:locale/fr/,IMTA_LIB:locale/fr/
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|ja*|*|* $IIMTA_TABLE:locale/ja/,IMTA_LIB:locale/ja/
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|zh-TW|*|* $IIMTA_TABLE:locale/zh_TW/,IMTA_LIB:locale/zh_TW/
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|zh*|*|* $IIMTA_TABLE:locale/zh/,IMTA_LIB:locale/zh/
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|ko*|*|* $IIMTA_TABLE:locale/ko/,IMTA_LIB:locale/ko/
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|$_*,$T**|*|* R0|$1|$4|$5|$6
role.mapping:NOTIFICATION_LANGUAGE.rule = *|*|*|*@*|* C|LDAP_USERS_LANGUAGE;$3@$4|$E
msconfig> show mapping:LDAP_USERS_LANGUAGE
role.mapping:LDAP_USERS_LANGUAGE.rule = *@* $C|DC|$0@$1|$|DOMAIN_DC;$1|
role.mapping:LDAP_USERS_LANGUAGE.rule = |DC|*@*|* $C|BDN|$0@$1|$2|$]ldap:///$2,o=internet?inetDomainBaseDN?sub?(objectClass=inetDomain)[
role.mapping:LDAP_USERS_LANGUAGE.rule = |DC|*@*|* $C|BDN|$0@$1|$2|$]ldap:///$2,o=internet?aliasedObjectName?sub?(objectClass=inetDomainAlias)[
role.mapping:LDAP_USERS_LANGUAGE.rule =
 |BDN|*|*|* $C|LANG|$]ldap:///$2?preferredLanguage?sub?(|(mail=$=$0$_)(mailAlternateAddress=$=0_)(mailEquivalentAddress=$=$0$_))[
role.mapping:LDAP_USERS_LANGUAGE.rule =
 |BDN|*|*|* $C|LANG|$]ldap:///$1,o=internet?preferredLanguage?sub?(|(objectClass=inetDomain)(objectClass=inetDomainAlias))[
role.mapping:LDAP_USERS_LANGUAGE.rule = |LANG|* $CIMTA_TABLE:locale/$|LANGUAGE_LOCALES;$0|/,IMTA_LIB:locale/$|LANGUAGE_LOCALES;$0|/$$IYE
msconfig> show mapping:LANGUAGE_LOCALES
role.mapping:LANGUAGE_LOCALES.rule = en C$Y
role.mapping:LANGUAGE_LOCALES.rule = de de$Y
role.mapping:LANGUAGE_LOCALES.rule = es es$Y
role.mapping:LANGUAGE_LOCALES.rule = fr fr$Y
role.mapping:LANGUAGE_LOCALES.rule = ja ja$Y
role.mapping:LANGUAGE_LOCALES.rule = zh-TW zh_TW$Y
role.mapping:LANGUAGE_LOCALES.rule = zh zh$Y
role.mapping:LANGUAGE_LOCALES.rule = ko ko$Y
role.mapping:LANGUAGE_LOCALES.rule = * $N
msconfig> show mapping:DISPOSITION_LANGUAGE
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|en*|*|* $IIMTA_TABLE:locale/C/,IMTA_LIB:locale/C/|UTF-8
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|de*|*|* $IIMTA_TABLE:locale/de/,IMTA_LIB:locale/de/|UTF-8
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|es*|*|* $IIMTA_TABLE:locale/es/,IMTA_LIB:locale/es/|UTF-8
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|fr*|*|* $IIMTA_TABLE:locale/fr/,IMTA_LIB:locale/fr/|UTF-8
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|ja*|*|* $IIMTA_TABLE:locale/ja/,IMTA_LIB:locale/ja/|UTF-8
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|zh-TW|*|* $IIMTA_TABLE:locale/zh_TW/,IMTA_LIB:locale/zh_TW/|UTF-8
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|zh*|*|* $IIMTA_TABLE:locale/zh/,IMTA_LIB:locale/zh/|UTF-8
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|ko*|*|* $IIMTA_TABLE:locale/ko/,IMTA_LIB:locale/ko/|UTF-8
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|$_*,$T**|*|* R0|$1|$2|$5|$6|$7
role.mapping:DISPOSITION_LANGUAGE.rule = *|*|*|*|*@*|* C|LDAP_USERS2_LANGUAGE;$4@$5|$E
msconfig> show mapping:LDAP_USERS2_LANGUAGE
role.mapping:LDAP_USERS2_LANGUAGE.rule = *@* $C|BDN|$0@$1|$}$1,_base_dn_{
role.mapping:LDAP_USERS2_LANGUAGE.rule =
 |BDN|*|* $C|LANG|$]ldap:///$1?preferredLanguage?sub?(|(mail=$=$0$_)(mailAlternateAddress=$=0_)(mailEquivalentAddress=$=$0$_))[
role.mapping:LDAP_USERS2_LANGUAGE.rule = |BDN|*@*|* $C|LANG|$}$1,preferredLanguage{
role.mapping:LDAP_USERS2_LANGUAGE.rule =
 |LANG|* $CIMTA_TABLE:locale/$|LANGUAGE_LOCALES;$0|/,IMTA_LIB:locale/$|LANGUAGE_LOCALES;$0|/$$I|UTF-8YE

60–22 Messaging Server Reference

Notification message routing

Note: Some output lines have been wrapped for clarity.

60.4 Notification message routing
When the MTA needs to generate a notification message, its default is to enqueue the
notification message to the process channel. The new notification message will be enqueued
to the process channel from whatever channel encountered the condition that required the
notification message to be generated. For instance, a tcp_local channel when attempting
to send a message out to the Internet (that is, tcp_local operating as an SMTP client) may
need to generate a notification message if a message it is attempting to deliver encounters
a permanent rejection error from a remote SMTP server. Or the tcp_local channel's
SMTP server may need to generate a notification message if an incoming message that it
is attempting to process is addressed to a local recipient who has a Sieve filter containing
a syntax error; in this case while the original message gets delivered as "normal", the
tcp_local channel also needs to generate a notification message to the local Sieve filter
owner letting them know that their Sieve filter has a syntax error.

The process channel, having had a notification message enqueued to it, will then run to
send the notification message onwards to an appropriate destination channel. (This is in fact
the main purpose of the process channel, namely to handle notification messages: accept
them being generated by other channels, and then properly enqueue them onwards to their
destinations.)

Optionally, the MTA may be configured, on a per-channel basis, to enqueue notification
messages to alternate process_* channels via the notificationchannel and
dispositionchannel channel options. This may be useful when a site processes a large
number of notification messages. Splitting up notification message traffic into different
process_* channels, and then optionally using source-channel-specific rewrite rules (or
the CONVERSIONS mapping table) to route the messages coming from different process_*
channels out through different destination channels, may aid in managing large volumes of
notification messages. (In particular, this may be of interest with special purpose channels
that are subject to unusually high volumes of notification messages, or when dealing
with rejections of spam messages that had forged From: addresses claiming to come from
unresponsive rather than clearly nonexistent domains.)

For instance, suppose one adds new, special channel definitions that are variants of the usual
tcp_local and process channels, so along the lines of:

tcp_local_dsn_out smtp mx single_sys subdirs 20 maxjobs 7 pool SMTP_POOL \
 loopcheck
tcp-dsn-out-daemon

process_dsn_out
process-dsn-out-daemon

then adds notificationchannel process_dsn_out to the regular tcp_intranet
channel definition:

tcp_intranet ...usual-keywords... notificationchannel process_dsn_out
tcp_intranet-daemon

and configures special routing by using

Notification messages 60–23

Bounces of spam messages

CONVERSIONS

 IN-CHAN=process_dsn_out;OUT-CHAN=tcp_local;CONVERT \
Yes,Channel=tcp_local_dsn_out

This will result in notifications generated by the tcp_intranet channel regarding messages
originally from Internet senders (notifications back to Internet senders regarding the Internet
senders' messages originally addressed to recipients on other internal hosts) to be routed out
the special tcp_local_dsn_out channel, rather than out the usual tcp_local channel.
This can then allow for special handling, or special tuning of the handling, of such messages.

Also, the new-in-6.3P1 $~ flag in the FROM_ACCESS mapping table provides, among other
things, another way to do special routing of incoming notification messages (messages with
empty envelope From). That is, this provides a way to associate a special source channel (and
hence do special destination channel routing, or other special source-channel based handling)
for notification messages generated external to this MTA. E.g., with new, special channel
definitions that are variants of the usual tcp_local and tcp_lmtpcs channels, so along the
lines of:

tcp_local_dsn_in smtp mx single_sys remotehost inner switchchannel \
 subdirs 20 maxjobs 7 pool SMTP_POOL maytlsserver maysaslserver \
 saslswitchchannel tcp_auth missingrecipientpolicy 0 loopcheck
tcp-dsn-in-daemon

tcp_lmtpcs_dsn_out defragment lmtp multigate connectcanonical \
 fileinto @$4O:$U+$S@$D port 225 nomx single_sys subdirs 20 maxjobs 7 \
 pool SMTP_POOL dequeue_removeroute
lmtpcs-dsn-daemon

then use mappings along the lines of:

FROM_ACCESS

 TCP|*|SMTP*|MAIL|tcp_local||* Y~tcp_local_dsn_in

CONVERSIONS

 IN-CHAN=tcp_local_dsn_in;OUT-CHAN=tcp_lmtpcs;CONVERT \
Yes,Channel=tcp_lmtpcs_dsn_out

to cause notifications coming in from the Internet destined for LMTP recipients to get
routed out the special tcp_lmtpcs_dsn_out delivery channel, rather than out the usual
tcp_lmtpcs delivery channel.

60.5 Bounces of spam messages
Joe-job or blow back spam are terms for the following occurrence. When spam (unsolicited bulk
e-mail) is sent with a forged From: address pointing to one of your users (or at least an address
putatively in your domain), if that spam is then rejected (bounced) by some intended spam

60–24 Messaging Server Reference

Notification message logging

recipient, the resulting notification messages (the bounces of the original spam messages)
come back to your user, or at least your host! When one or more of your users' From: address
gets forged on spam messages, this can then lead to a large volume, a "storm", of notification
messages incoming to your users/hosts. One technique that can be helpful in such cases is to
"isolate" incoming notification messages, as discussed in Notification message routing, and
then perhaps do such things as "slow down" delivery of such notifications relative to other
messages (for instance, reducing the maxjobs for the special delivery channel) and/or perform
specially rigorous scanning of such incoming notifications and, when appropriate, discard
them rather than deliver them.

Another issue that can occur with notifications and spam messages is when spam messages
come in to your host with forged invalid (but not immediately obvious as such) From:
addresses. If the spam messages are bounced, this can lead to a large burden of notification
messages (regarding the spam) which your MTA is attempting to send (deliver) to what are
in fact undeliverable recipient addresses (those invalid forged purported original sender
addresses). When forged From: addresses on the original spam point to domains that will
result in merely temporary errors upon delivery attempts (of the notifications concerning the
bounces of the original spam), your MTA's outgoing message channels can get burdened with
these large numbers of notifications that will never be deliverable (but meantime are cluttering
up the outbound delivery channels). One approach to deal with this is to discard (rather than
bounce) such spam; however, some sites for legal or other reasons can not use such a discard
approach. In such cases, use of a notificationchannel and then a source-channel-specific
rewrite rule (or CONVERSIONS mapping table entry) to route messages coming from the
special notificationchannel in turn out a special outbound channel, can prevent such
messages from unduly burdening your MTA and unduly interfering with other message
processing. See Notification message routing for an example of such configuration.

60.6 Notification message logging
MTA message transaction log entries showing an empty envelope From address are the
indication of a notification message, whether generated externally and merely passing through
the MTA, or whether generated by the MTA itself.

For notification messages generated by the MTA itself, note that notification messages are
generated through the process channel. Indeed, typically the generation of notification
messages is the sole function of the process channel. So MTA message transaction log entries
showing a message being enqueued to the process channel typically correspond exactly to the
generation of a new notification message.

If the MTA option log_message_id is enabled, then when the MTA generates a notification
message it will include both the original message-id and the message-id of the new,
notification message in the message transaction log entry showing the notification message
initial generation (that is, in the entry showing the notification message being enqueued to
the process channel). Thus this allows correlating the original message with a corresponding
notification message. Note that the presence of two message-id's in the message-id field is,
also, a definite indication of MTA generation of a notification message.

Enabling the log_process MTA option is also helpful when investigating notification
message generation, as it will show the same process enqueueing the newly generated
notification message, and then recording whatever was the appropriate action on the original
message, e.g., an "R" record, a "W" record, an "E" record (as in the case of a notification due to
a Sieve syntax error report, or message capture notification), etc. (See also the new-in-MS-8.0
"P" records.) A point to emphasize here is that the notification message generation, that is, the

Notification messages 60–25

Message size limits and
notification messages

enqueue to the process channel, occurs and hence is recorded before the completion of the
operation on the original message, hence before the recording of what occurred to the original
message.

60.7 Message size limits and notification
messages

Administrative limits on message size can have interactions with notification messages.

First, note that it is very important to ensure that users can receive notification messages
when messages they send can not be delivered. And note that bounce messages (non-delivery
notifications) will sometimes include the contents of the originally sent message; so a non-
delivery notification may be larger than the originally sent message. So when imposing
administrative limits on message size, it is wise practice to make the limit on the size of
message that may be received somewhat larger than the limit on the size of message that may
be sent.

New behavior in MS 6.3-0.15 is that during address reversal of the envelope return address
(envelope From address) of a message, the MTA fetches the block limit associated with that
envelope return address and will set the NOTARY (RFCs 1891-1894) flag RET=HDRS (return
only message header lines, not message content) on the message if no explicit return policy
was already specified and the message size exceeds the block limit. This reduces cases where
non-delivery reports regarding large messages are undeliverable themselves due to size.

The MTA options bounce_block_limit and content_return_block_limit, channel
options such as blocklimit, and user LDAP attributes such as mailMsgMaxBlocks (or
more precisely, whatever attribute is named by the ldap_blocklimit MTA option), can
all affect what (whether and how much of an original message) gets included in notification
messages.

60.8 Postmaster addresses
There are two sides to postmaster addresses: the postmaster addresses for which your site
accepts mail, and the postmaster addresses your site emits as the From: address on notification
messages your site generates.

Domain names for SMTP servers visible on the Internet are required to be able to accept
mail addressed to postmaster@domain. This means that any host with an Internet-facing
SMTP server, and any visible-on-the-Internet hosted domain names, are required to support
a corresponding postmaster mailbox. And indeed, it is normal and strongly recommended
to have a postmaster mailbox for each and every e-mail domain name (including any purely
internal e-mail domain names) you support. The MTA itself will send warning messages and,
(depending upon version) may default to sending copies of users' bounce messages to the
postmaster.

It is critical that the postmaster address be a valid address for receiving mail! Hosting the
postmaster mailbox directly on the Internet-facing SMTP server system may reduce the
potential for problems arising in forwarding a message onwards. However, in a multi-tier
deployment it is possible that you will not want to have to have someone log on regularly
to the Internet-facing SMTP server system to check postmaster mail. If you do wish to direct
postmaster mail to a different system, be sure to ensure that the connection between the e-mail
Internet-facing system and that other system is a very reliable connection; and be prepared

60–26 Messaging Server Reference

Postmaster addresses

that if something happens to break that connection, you will want to immediately change
the postmaster address on the Internet-facing SMTP server system to some other functioning
address or be prepared for the potential for serious e-mail problems. (Bouncing postmaster
mail is not pretty.) See also the aliaspostmaster channel option which can sometimes
simplify consolidation of postmaster addresses.

The special postmaster local-part is defined (see RFC 822) to be case-insensitive even if
local-parts in general are allowed to be case-sensitive, and the MTA has special code to treat
postmaster case-insensitively even if it has been configured (see the alias_case MTA option)
to allow other local-parts to be case-sensitive.

Normal MTA configuration includes at least one postmaster address as an alias (whether
in the alias file, or as an alias in Unified Configuration). In particular, in a modern Unified
Configuration:

msconfig> show alias:root*
role.alias:root@&/IMTA_DEFAULTDOMAIN/.alias_entry = postmast
role.alias:root@&/IMTA_HOST/.alias_entry = postmast
msconfig> show alias:postmast*
role.alias:postmaster@&/IMTA_HOST/.alias_entry = postmast

which presumes that a valid user account (often the Messaging Server admin user) is
provisioned with postmast@/IMTA_DEFAULTDOMAIN/ as a mailAlternateAddress
value.

As regards what postmaster address(es) your site emits on the notification messages your
site generates, the MTA has a variety of configuration controls: the return_address
and return_personal MTA options for MTA-wide defaults, the returnaddress
and returnpersonal channel options for channel-specific settings, and the
mailDomainReportAddress domain-level LDAP attribute (more precisely, the LDAP
attribute named by the ldap_domain_attr_report_address MTA option) for a domain-
specific setting, as well as potential language-specific override of the Postmaster personal
name via the RETURN_PERSONAL option in language-specific return_option.opt files,
or FROM_ACCESS mapping table overrides of the Postmaster address via $(or $) flags. The
MTA defaults for return_address and return_personal mean that the MTA defaults
to emitting as Postmaster address postmaster@local-host where local-host is the
official_host_name on the L channel, and defaults to using as Postmaster personal name
"Internet Mail Delivery".

Certain non-MTA options also affect the postmaster address emitted in cases of postmaster
messages generated by other (non-MTA) components of Messaging Server; see also the
noticercpt and noticesender Alarm options.

Notification messages 60–27

https://tools.ietf.org/html/rfc822

60–28

Chapter 61 Message tracking and recall
61.1 Message tracking and recall setup and configuration .. 61–1

61.1.1 Memcache server setup .. 61–1
61.1.2 MTA channel setup for message tracking and recall 61–2
61.1.3 MTQP server setup .. 61–3

A general message tracking and recall facility has been implemented. The tracking aspect of
this facility conforms to RFC 3885, RFC 3886, and RFC 3887. The recall aspect is implemented
as a tracking extension. Additionally, some tracking extensions have been implemented to
make it possible for a tracking client to track and recall messages submitted by a non-tracking
client.

In order to enable message tracking and recall, a memcache server must be operating, and
the tracking_mode MTA option must be set to 1 to enable use of memcache for message
tracking purposes. Which messages get tracking information stored is controlled by various
message tracking channel options.

61.1 Message tracking and recall setup and
configuration

There are three parts to setting up message tracking and recall capabilities:

1. Setting up a shared memcached server (or other software that implements the memcache
protocol in a compatible fashion) to store tracking/recall information.

2. Configuring all the MTAs in the deployment to enable tracking and recall.

3. Setting up Message Tracking and Query Protocol (MTQP) servers on every MTA and
possibly additional hosts.

61.1.1 Memcache server setup
Setting up memcached or compatible server is beyond the scope of this document. That said,
note that mecmached setup is very simple: Configuration consists of a small number of options
on the command line. Indeed, it's often possible to simply say:

 memcached -l <ip-address>

Where <ip-address> is the IP address where memcached accepts connections.

Once a server implementing the memcache protocol has been set up, every MTA in the
deployment have to be configured to access it. This is done with the memcache_host MTA
option; there is no tracking-specific host setting at the present time. The memcache_port
MTA option must be explicitly set if the server is listening on a port other than 11211. It may be
appropriate to set the memcache_expire MTA option to an appropriate value as well.

Tracking/recall is enabled within the MTA by setting the tracking_mode MTA option to
1. Logging tracking identifiers is good idea; this is controlled by the log_tracking MTA
option.

Message tracking and recall 61–1

https://tools.ietf.org/html/rfc3885
https://tools.ietf.org/html/rfc3886
https://tools.ietf.org/html/rfc3887

MTA channel setup for message
tracking and recall

Taken together, and assuming the memcache server is listening on the default port, the MTA
option settings should look something like this:

msconfig> show memcache_host
role.mta.memcache_host memcache-server-ip
msconfig> show tracking_mode
role.mta.tracking_mode 1
msconfig> show log_tracking
role.mta.log_tracking 1

or in legacy configuration:

 MEMCACHE_HOST=<memcache-server-ip>
 TRACKING_MODE=1
 LOG_TRACKING=1

61.1.2 MTA channel setup for message tracking and
recall

The next step is to tell the tracking subsystem the semantics of the various channels in the
deployment using the trackinginternal, trackingrelayed, and trackingdelivered.
The general rules are:

1. Internal processing channels such as process, reprocess, conversion, and
defragment require no special decoration.

2. Channels that perform final delivery must be marked with the trackingdelivered
channel option. This includes not only ims-ms and tcp_lmtpcs channels, but also the
bitbucket and filter_discard channels.

3. Any channel that relays messages to systems outside the deployment must be marked with
the trackingrelayed channel option. Of course this includes the tcp_local channel,
but would also include, say a special tcp_aol channel set up to handle mail to the aol.com
domain.

4. Finally, any channel that relays message to other MTAs inside the deployment where
tracking is enabled. This would typically be something like a tcp_intranet channel.

Note that for tracking and recall to work messages relayed to external systems MUST be
handled by a different channel than messages relayed to other MTAs inside the deployment.
(At a minimum, this tends to mean using a distinct tcp_local vs. tcp_intranet channel.)
Meeting this requirement may require additional configuration changes.

The MTRK SMTP extension defined in RFC 3885 is used to transfer tracking/recall information
from one MTA to another. Use of this extension MUST be enabled on SMTP connections
between MTAs inside the deployment. It also must be enabled on SUBMIT channels used by
tracking/recall-enabled clients.

Since MTRK is an SMTP extension, its use is negotiated by the SMTP client and server. So the
simplest way to activate this extension is to put the trackingclient and trackingserver
on the defaults channel. However, if you wish to avoid use of this extension with systems
outside the deployment, a more targeted approach is needed: Place trackingclient on

61–2 Messaging Server Reference

https://tools.ietf.org/html/rfc3885

MTQP server setup

every tcp_* channel that has trackinginternal set. Then place trackingserver on
every channel that accepts messages from other hosts within the deployment. (Note that once
again this may require configuration changes to separate internal and external traffic.)

61.1.3 MTQP server setup
An extended version of MTQP as specified in RFC 3887 is used to perform tracking and
recall operations. If only tracking is desired a single MTQP server can be used for the entire
deployment and can be run on any host. However, in order to recall messages an MTQP server
must be running on every host with an MTA, and if "total recall" is enabled MTQP servers are
required on all store hosts as well.

The MTQP server leverages existing MTA facilities which require a channel. Note that the
MTQP channel doesn't sent or receive messages and has no rewrite rules or associated queue.
The specification of such a channel is very simple. In legacy configuration:

mtqp smtp
mtqp-daemon

or in Unified Configuration:

msconfig> set channel:mtqp.officical_host_name mtqp-daemon
msconfig# set channel:mtqp.smtp

Although somewhat counterintuitive, the "smtp" channel option is required to indicate this
is a channel with an associated server. Various optional channel options can also be specified,
including:

• maytlsserver or musttlsserver are used to control whether SSL/TLS is allowed or
required, respectively, before tracking/recall operations may be performed.

• slave_debug enables MTQP server debugging.

• maysaslserver may be specified to enable user authentication. User authentication is
required in order to use the MTRACK and/or MRECALL commands.

• disconnectbadauthlimit, disconnectbadcommandlimit, and
disconnectcommandlimit have their usual meanings.

Some MTQP-server-specific options are also available:

TOTAL_RECALL (boolean 0 or 1,
default 0)

If set to 1, this option enables recall of messages from the
store. Note that if this is used it will result in messages
being deleted from recipient's folder irrespective of whether
or not they have been read. Use of this option should only
be undertaken with a full understanding of the possible
consequences.

AUTH_DEBUG (debug token list,
default "")

This option is used to specify authentication debugging
tokens.

COMMAND_TIMEOUT (integer
seconds, default 60)

This option specifies the time the server will wait for a
command before disconnecting.

Message tracking and recall 61–3

https://tools.ietf.org/html/rfc3887

MTQP server setup

STATUS_TIMEOUT (integer
seconds, default 60)

This option specifies the time the server will wait for a
status write to the client before disconnecting.

CUSTOM_BANNER_STRING
(string, default "")

This option specifies the name the server uses to announce
itself.

Additionally, the server recognizes and will honor the TCP/IP channel-specific options
LOG_CONNECTION, TRACE_LEVEL, MAX_THREADS, and IGNORE_BAD_CERT.

Finally, a Dispatcher service definition for the MTQP server is also required. In legacy
configuration:

 [SERVICE=MTQP]
 PORT=1038
 IMAGE=IMTA_BIN:mtqp
 LOGFILE=IMTA_LOG:mtqp_server.log
 STACKSIZE=2048000

or in Unified Configuration:

msconfig> set service:MTQP.image IMTA_BIN:mtqp
msconfig# set service:MTQP.tcp_ports 1038
msconfig# set service:MTQP.logfilename IMTA_LOG:mtqp_server.log
msconfig# set service:MTQP.stacksize 2048000

61–4 Messaging Server Reference

Chapter 62 TCP/IP channels
62.1 Typical TCP/IP channels and servers .. 62–4
62.2 SMTP SUBMIT servers .. 62–7

62.2.1 Enabling BURL support for SMTP SUBMIT ... 62–7
62.2.2 SMTP SUBMIT FUTURERELEASE support .. 62–12

62.3 LMTP channels ... 62–13
62.3.1 LMTP client TCP/IP channels .. 62–14
62.3.2 LMTP back end TCP/IP channel .. 62–14

62.4 TCP/IP-channel-specific options ... 62–18
62.4.1 552_PERMANENT_ERROR_STRING TCP/IP-channel-specific option 62–19
62.4.2 ALLOW_ETRNS_PER_SESSION TCP/IP-channel-specific option 62–20
62.4.3 ALLOW_RECIPIENTS_PER_TRANSACTION TCP/IP-channel-specific
option ... 62–20
62.4.4 ALLOW_REJECTIONS_BEFORE_DEFERRAL TCP/IP-channel-specific
option ... 62–21
62.4.5 ALLOW_SESSION_BLOCKS TCP/IP-channel-specific option 62–21
62.4.6 ALLOW_TRANSACTION_BLOCKS TCP/IP-channel-specific option 62–21
62.4.7 ALLOW_TRANSACTIONS_PER_SESSION TCP/IP-channel-specific option 62–22
62.4.8 ATTEMPT_TRANSACTIONS_PER_SESSION TCP/IP-channel-specific
option ... 62–22
62.4.9 AUTH_DEBUG TCP/IP-channel-specific option 62–22
62.4.10 AUTH_PASSWORD, AUTH_USERNAME, EXTERNAL_IDENTITY TCP/IP-
channel-specific options ... 62–22
62.4.11 BANNER_ADDITION TCP/IP-channel-specific option 62–23
62.4.12 BANNER_HOST TCP/IP-channel-specific option 62–23
62.4.13 BANNER_RECEIVE_TIME TCP/IP-channel-specific option 62–23
62.4.14 BANNER_REVERSE_HOST TCP/IP-channel-specific option 62–23
62.4.15 BANNER_PURGE_DELAY TCP/IP-channel-specific option 62–24
62.4.16 BUFFER_SIZE TCP/IP-channel-specific option 62–24
62.4.17 CHECK_SOURCE TCP/IP-channel-specific option 62–24
62.4.18 CLIENT_CERT_NICKNAME TCP/IP-channel-specific option 62–25
62.4.19 CLIENT_STACK_SIZE TCP/IP-channel-specific option 62–25
62.4.20 COMMAND_RECEIVE_TIME TCP/IP-channel-specific option 62–25
62.4.21 COMMAND_TRANSMIT_TIME TCP/IP-channel-specific option 62–25
62.4.22 CONTINUATION_CHARS TCP/IP-channel-specific option 62–25
62.4.23 CUSTOM_VERSION_STRING TCP/IP-channel-specific option 62–26
62.4.24 DATA_RECEIVE_TIME TCP/IP-channel-specific option 62–26
62.4.25 DATA_TRANSMIT_TIME TCP/IP-channel-specific option 62–26
62.4.26 DISABLE_ADDRESS TCP/IP-channel-specific option 62–26
62.4.27 DISABLE_CIRCUIT TCP/IP-channel-specific option 62–27
62.4.28 DISABLE_EXPAND TCP/IP-channel-specific option 62–27
62.4.29 DISABLE_GENERAL TCP/IP-channel-specific option 62–28
62.4.30 DISABLE_SEND TCP/IP-channel-specific option 62–28
62.4.31 DISABLE_STATUS TCP/IP-channel-specific option 62–28
62.4.32 DOT_TRANSMIT_TIME TCP/IP-channel-specific option 62–29
62.4.33 FAST_SMTP_SESSION_TIME_LIMIT TCP/IP-channel-specific option .. 62–29
62.4.34 HELLO_RECEIVE_TIME TCP/IP-channel-specific option 62–29
62.4.35 HIDE_VERIFY TCP/IP-channel-specific option 62–29
62.4.36 IGNORE_BAD_CERT TCP/IP-channel-specific option 62–30
62.4.37 INITIAL_COMMAND TCP/IP-channel-specific option 62–30
62.4.38 KILLED_IP_TIMEOUT TCP/IP-channel-specific option 62–30

TCP/IP channels 62–1

62.4.39 KILLED_USER_TIMEOUT TCP/IP-channel-specific option 62–30
62.4.40 LOG_BANNER TCP/IP-channel-specific option 62–30
62.4.41 LOG_CONNECTION TCP/IP-channel-specific option 62–31
62.4.42 LOG_TRANSPORTINFO TCP/IP-channel-specific option 62–31
62.4.43 MAIL_TRANSMIT_TIME TCP/IP-channel-specific option 62–32
62.4.44 MAILBOX_BUSY_FAST_RETRY TCP/IP-channel-specific option 62–32
62.4.45 MAX_A_RECORDS TCP/IP-channel-specific option 62–32
62.4.46 MAX_B_ENTRIES TCP/IP-channel-specific option 62–32
62.4.47 MAX_CLIENT_THREADS TCP/IP-channel-specific option 62–33
62.4.48 MAX_H_ENTRIES TCP/IP-channel-specific option 62–33
62.4.49 MAX_HELO_DOMAIN_LENGTH TCP/IP-channel-specific option 62–33
62.4.50 MAX_J_ENTRIES TCP/IP-channel-specific option 62–34
62.4.51 MAX_MX_RECORDS TCP/IP-channel-specific option 62–34
62.4.52 MAX_SERVER_THREADS TCP/IP-channel-specific option 62–34
62.4.53 OPEN_CONNECTION_TIME TCP/IP-channel-specific option 62–35
62.4.54 PACKET_SIZE_LIMIT TCP/IP-channel-specific option 62–35
62.4.55 PROXY_PASSWORD TCP/IP-channel-specific option 62–35
62.4.56 RCPT_TRANSMIT_TIME TCP/IP-channel-specific option 62–36
62.4.57 REJECT_RECIPIENTS_PER_TRANSACTION TCP/IP-channel-specific
option ... 62–36
62.4.58 REUSE_TIMED_OUT_TRANSFERS TCP/IP-channel-specific option 62–36
62.4.59 SESSION_TIME TCP/IP-channel-specific option 62–37
62.4.60 Delay threshold TCP/IP-channel-specific option 62–38
62.4.61 SSL_CLIENT TCP/IP-channel-specific option 62–38
62.4.62 STARTTLS_FAILURE_RECONNECT_DELAY TCP/IP-channel-specific
option ... 62–39
62.4.63 STATUS_DATA_RECEIVE_TIME TCP/IP-channel-specific option 62–39
62.4.64 STATUS_DATA_RECV_PER_ADDR_TIME TCP/IP-channel-specific
option ... 62–39
62.4.65 STATUS_DATA_RECV_PER_BLOCK_TIME TCP/IP-channel-specific
option ... 62–39
62.4.66 STATUS_DATA_RECV_PER_ADDR_PER_BLK_TIME TCP/IP-channel-
specific option ... 62–40
62.4.67 STATUS_MAIL_RECEIVE_TIME TCP/IP-channel-specific option 62–40
62.4.68 STATUS_RCPT_RECEIVE_TIME TCP/IP-channel-specific option 62–40
62.4.69 STATUS_RECEIVE_TIME TCP/IP-channel-specific option 62–40
62.4.70 STATUS_TRANSMIT_TIME TCP/IP-channel-specific option 62–41
62.4.71 TLS_NEGOTIATION_TIME TCP/IP-channel-specific option 62–41
62.4.72 TIMEOUT_MULTIPLIER TCP/IP-channel-specific option 62–41
62.4.73 TRACE_LEVEL TCP/IP-channel-specific option 62–41
62.4.74 TRANSACTION_LIMIT_RCPT_TO TCP/IP-channel-specific option 62–41
62.4.75 TRANSACTION_TIME TCP/IP-channel-specific option 62–42
62.4.76 WINDDOWN_TIMEOUT TCP/IP-channel-specific option 62–42

62.5 DEQUEUE_ACCESS mapping table ... 62–42
62.6 AUTH_ACCESS mapping table ... 62–43

62.6.1 Local user entry in LDAP example .. 62–48
62.6.2 Remote user entry in LDAP example ... 62–48
62.6.3 Third party submission example ... 62–49

62.7 AUTH_DEACCESS mapping table .. 62–50
62.8 MX_ACCESS mapping table .. 62–51
62.9 IP_ACCESS mapping table .. 62–52
62.10 SASL_ACCESS mapping table ... 62–54
62.11 TLS_ACCESS mapping table .. 62–55

62–2 Messaging Server Reference

62.12 SMTP_ACTIONS mapping table .. 62–56
62.13 Routing via gateway systems ... 62–57

62.13.1 Routing non-local mail to a mailhub .. 62–58
62.14 Blocking SMTP relaying .. 62–59

62.14.1 SRS and Relay Blocking .. 62–61
62.15 Triggering message transfer with remote SMTP systems 62–62
62.16 Authentication errors and resultant SMTP errors .. 62–63
62.17 Authentication errors .. 62–64

TCP/IP channels are used to link the MTA to TCP/IP based networks such as the Internet,
as well as linking multiple hosts within a single site. The TCP/IP channels all use either the
Simple Mail Transfer Protocol (SMTP), or the similar Local Mail Transport Protocol (LMTP).
SMTP was defined originally in RFC 821 and updated in RFC 5321, and nowadays has many
extensions such as those described in RFC 1426, RFC 1869, RFC 870, and RFC 1891. LMTP was
defined in RFC 2033.1 The descriptions of these protocols and extensions may be found at the
Internet Engineering Task Force (IETF) web site, www.ietf.org.

The TCP/IP SMTP channel includes a multithreaded SMTP server which runs under the
control of the MTA Dispatcher. Outgoing SMTP mail is processed by the multithreaded SMTP
client channel program (tcp_smtp_client), run as needed under the control of the MTA Job
Controller.

The TCP/IP LMTP channel similarly includes a multithreaded LMTP server which runs under
the control of the MTA Dispatcher; indeed, on a back end LMTP Message Store host, usually
the only components of the MTA that are used are the MTA Dispatcher and the MTA's LMTP
server. The TCP/IP LMTP channel also includes a multithreaded LMTP client channel program
(which is in fact the same code and program as the SMTP client channel program, merely
configured a bit differently), run as needed (on full-blown MTA hosts front-ending an LMTP
back end host) under the control of the MTA Job Controller.

At most sites, TCP/IP channels are the primary channels in use. See Typical TCP/IP channels
and servers for an overview of the basic, minimally-configured, TCP/IP channels and
servers included by default in a Unified Configuration. There are many, many configuration
modifications that may be made to TCP/IP channels. Besides the normal Channel options
and especially the SMTP and LMTP protocol channel options, see also the TCP/IP-channel-
specific options. In legacy configuration, channel options were termed "channel keywords"
and were set on channels in the imta.cnf file, whereas TCP/IP-channel-specific options were
set in channel-specific files such as tcp_local_option. In Unified Configuration, these
fundamentally different categories of options may be distinguished by the location at which
they are set, with channel options appearing directly under the name of the channel for which
they are set,

msconfig> show role.channel:tcp_local.pool
role.channel:tcp_local.pool = SMTP_POOL

whereas TCP/IP-channel-specific options are grouped under options,

msconfig> show role.channel:tcp_local.options.*

For normal hosts on the Internet, configuring to prevent being an open SMTP relay, that is,
configuring to block open SMTP relaying, is an esssential step. Nowadays initial installation
typically takes care of the basics of such configuration, but reviewing that configuration is
recommended.

TCP/IP channels 62–3

https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc1426
https://tools.ietf.org/html/rfc1869
https://tools.ietf.org/html/rfc870
https://tools.ietf.org/html/rfc1891
https://tools.ietf.org/html/rfc2033

Typical TCP/IP channels and
servers

Certain special configurations of TCP/IP channels can be of particular use. Routing via
gateway systems, describes how to establish a "gateway" channel to route mail through
another system, as for instance to a mailhub or firewall system. Triggering message transfer
with remote SMTP systems describes performing "polling" with TCP/IP channels, that is,
requesting that a remote system attempt to deliver any stored messages to your system; for
instance, this may be particularly useful over "intermittent" sorts of TCP/IP links, such as dial-
up connections.

Note 1 When using LMTP to deliver messages to the Messaging Server Message Store, the
MTA's LMTP server and LMTP client both make important use of several MTA proprietary
LMTP extensions. These LMTP extensions are aimed to permit the LMTP server side of the
LMTP transactions to be very simple, and not require "heavy weight" processing; the "heavier
weight" processing of message addresses and message content is instead pre-performed on
"front" MTAs. Thus the MTA's LMTP server is designed and intended to work only when
"front-ended" by an MTA LMTP client host. The MTA's LMTP client, in contrast, may in
principle be used with any LMTP back end.

62.1 Typical TCP/IP channels and servers
In Unified Configuration, several basic tcp_* channels are established by default in the
configuration. (Any legacy configuration generated in any relatively modern MTA version will
also normally have several basic tcp_* channels defined.) E.g.:

msconfig> show role.channel:tcp_*
role.channel:tcp_local.official_host_name = tcp-daemon
role.channel:tcp_local.daemon = mailgate.domain.com
role.channel:tcp_local.identnonenumeric (novalue)
role.channel:tcp_local.inner (novalue)
role.channel:tcp_local.loopcheck (novalue)
role.channel:tcp_local.maysaslserver (novalue)
role.channel:tcp_local.maytlsserver (novalue)
role.channel:tcp_local.nomx (novalue)
role.channel:tcp_local.pool = SMTP_POOL
role.channel:tcp_local.remotehost (novalue)
role.channel:tcp_local.saslswitchchannel = tcp_auth
role.channel:tcp_local.smtp (novalue)
role.channel:tcp_local.sourcetransitplugin = 1
role.channel:tcp_local.switchchannel (novalue)
role.channel:tcp_intranet.official_host_name = tcp_intranet-daemon
role.channel:tcp_intranet.allowswitchchannel (novalue)
role.channel:tcp_intranet.dequeueremoveroute (novalue)
role.channel:tcp_intranet.loopcheck (novalue)
role.channel:tcp_intranet.maysaslserver (novalue)
role.channel:tcp_intranet.maytlsserver (novalue)
role.channel:tcp_intranet.mx (novalue)
role.channel:tcp_intranet.pool = SMTP_POOL
role.channel:tcp_intranet.saslswitchchannel = tcp_auth
role.channel:tcp_intranet.single_sys (novalue)
role.channel:tcp_intranet.smtp (novalue)
role.channel:tcp_intranet.sourcetransitplugin = 1
role.channel:tcp_submit.official_host_name = tcp_submit-daemon
role.channel:tcp_submit.maytlsserver (novalue)

62–4 Messaging Server Reference

Typical TCP/IP channels and
servers

role.channel:tcp_submit.mustsaslserver (novalue)
role.channel:tcp_submit.saslswitchchannel = tcp_submit
role.channel:tcp_submit.smtp (novalue)
role.channel:tcp_submit.sourcetransitplugin = 1
role.channel:tcp_submit.submit (novalue)
role.channel:tcp_auth.official_host_name = tcp_auth-daemon
role.channel:tcp_auth.mustsaslserver (novalue)
role.channel:tcp_auth.smtp (novalue)
role.channel:tcp_auth.sourcetransitplugin = 1
role.channel:tcp_tas.official_host_name = tcp_tas-daemon
role.channel:tcp_tas.allowswitchchannel (novalue)
role.channel:tcp_tas.deliveryflags = 2
role.channel:tcp_tas.maytlsserver (novalue)
role.channel:tcp_tas.mustsaslserver (novalue)
role.channel:tcp_tas.smtp (novalue)
role.channel:tcp_tas.sourcetransitplugin = 1
msconfig>

with Dispatcher options (to complete the definitions of the SMTP and SMTP SUBMIT servers)
of:

msconfig> show dispatcher.service:*MTP*
role.dispatcher.service:SMTP.image = IMTA_BIN:tcp_smtp_server
role.dispatcher.service:SMTP.logfilename = IMTA_LOG:tcp_smtp_server.log
role.dispatcher.service:SMTP.stacksize = 2048000
role.dispatcher.service:SMTP.tcp_ports = 25
role.dispatcher.service:SMTP_SUBMIT.image = IMTA_BIN:tcp_smtp_server
role.dispatcher.service:SMTP_SUBMIT.logfilename = IMTA_LOG:tcp_submit_server.log
role.dispatcher.service:SMTP_SUBMIT.parameter = CHANNEL=tcp_submit
role.dispatcher.service:SMTP_SUBMIT.stacksize = 2048000
role.dispatcher.service:SMTP_SUBMIT.tcp_ports = 587

This corresponds to what in legacy configuration would appear as channels in the imta.cnf
file:

tcp_local daemon mailgate.domain.com identnonenumeric inner loopcheck \
 maysaslserver maytlsserver nomx pool SMTP_POOL remotehost \
 saslswitchchannel tcp_auth smtp sourcespamfilter1 switchchannel
tcp-daemon

tcp_intranet allowswitchannel dequeueremoveroute loopcheck maysaslserver \
 maytlsserver ms pool SMTP_POOL saslswitchchannel tcp_auth single_sys smtp \
 sourcespamfilter1
tcp_intranet-daemon

tcp_submit maytlsserver mustsaslserver saslswitchchannel tcp_submit smtp \
 sourcespamfilter1
tcp_submit-daemon

tcp_auth mustsaslserver smtp sourcespamfilter1
tcp_auth-daemon

TCP/IP channels 62–5

Typical TCP/IP channels and
servers

tcp_tas allowswitchchannel deliveryfalgs 2 maytlsserver mustsaslserver smtp \
 sourcespamfilter1
tcp_tas-daemon

And the corresponding legacy configuration Dispatcher part of the configuration -- the SMTP
and SMTP SUBMIT servers -- would be:

!
! multithreaded SMTP server
!
[SERVICE=SMTP]
PORT=25
IMAGE=IMTA_BIN:tcp_smtp_server
LOGFILE=IMTA_LOG:tcp_smtp_server.log
STACKSIZE=2048000
! Uncomment the following line and set INTERFACE_ADDRESS to an appropriate
! host IP (dotted quad) if the dispatcher needs to listen on a specific
! interface (e.g. in a HA environment).
!INTERFACE_ADDRESS=
!
! rfc 2476 Submit server
!
[SERVICE=SMTP_SUBMIT]
PORT=587
! Uncomment the following line if you want to support SSL on the alternate port 465
!TLS_PORT=465
IMAGE=IMTA_BIN:tcp_smtp_server
LOGFILE=IMTA_LOG:tcp_submit_server.log
PARAMETER=CHANNEL=tcp_submit
STACKSIZE=2048000
! Uncomment the following line and set INTERFACE_ADDRESS to an appropriate
! host IP (dotted quad) if the dispatcher needs to listen on a specific
! interface (e.g. in a HA environment).
!INTERFACE_ADDRESS=

At sites using LMTP, so-called "front end" MTAs typically have, in addition to the TCP/IP
channels shown above, one or more LMTP client channels, typically with tcp_lmtpcs* sorts
of names, appearing in Unified Configuration as:

msconfig> show channel:tcp_lmtpcs*
role.channel:tcp_lmtpcs.backoff = PT5M PT10M PT30M PT1H PT2H PT4H
role.channel:tcp_lmtpcs.connectcanonical (novalue)
role.channel:tcp_lmtpcs.defragment (novalue)
role.channel:tcp_lmtpcs.dequeueremoveroute (novalue)
role.channel:tcp_lmtpcs.fileinto = @$4O:$U+$S@$D
role.channel:tcp_lmtpcs.lmtp (novalue)
role.channel:tcp_lmtpcs.multigate (novalue)
role.channel:tcp_lmtpcs.nomx (novalue)
role.channel:tcp_lmtpcs.official_host_name = lmtpcs-daemon
role.channel:tcp_lmtpcs.pool = SMTP_POOL
role.channel:tcp_lmtpcs.port = 225
role.channel:tcp_lmtpcs.single_sys (novalue)

Or in legacy configuration in the imta.cnf file appearing as:

62–6 Messaging Server Reference

SMTP SUBMIT servers

!
! tcp_lmtpcs (LMTP client - store)
tcp_lmtpcs defragment lmtp multigate connectcanonical fileinto @$4O:$U+$S@$D \
 port 225 nomx single_sys pool SMTP_POOL dequeue_removeroute \
 backoff "PT5M" "PT10M" "PT30M" "PT1H" "PT2H" "PT4H"
lmtpcs-daemon

So-called "back end" LMTP systems run a simplified MTA configuration having only one
(LMTP server) channel as discussed in LMTP back end TCP/IP channel.

62.2 SMTP SUBMIT servers
A TCP/IP channel marked with the submit channel option will function with respect
to message submission as an SMTP SUBMIT server, as defined in RFC 6409 (Message
Submission for Mail). Port 587 is reserved for SMTP SUBMIT use, so submit is normally
set on the channel that, in the Dispatcher configuration, is associated with port 587; see the
dispatcher.tcp_ports option (Unified Configuration). But SMTP SUBMIT service can
also be set up on a different or other ports, if desired: any incoming channel marked with
submit will operate as an SMTP SUBMIT server. RFC 5068 (Email Submission Operations:
Access and Accountability Requirements), also known as BCP 134, encourages sites to
support---and indeed transition to using---SMTP SUBMIT rather than regular SMTP for initial
submission of user messages.

The configuration established when the MTA is installed normally includes an SMTP SUBMIT
server in the form of a tcp_submit channel; this channel is marked with the submit channel
option, and the Dispatcher configuration sets it to listen on port 587. In accord with RFC 5068's
recommendations, the channel is also marked with mustsaslserver and maytlsserver,
meaning that users must authenticate to submit messages to this channel and may use TLS. See
Typical TCP/IP channels and servers for an example. (TLS use should be encouraged, but is
not outright required in this typical configuration; sites that prefer to also require TLS use may
instead set musttlsserver.)

Sites should encourage their local users to submit messages to the SMTP SUBMIT server on
port 587, rather than to the regular SMTP server on port 25. But note that this does also imply
that users must authenticate and ought to use TLS---some configuration of the users' clients
may be needed to achieve this.

Extensions to SMTP SUBMIT permit additional functionality for users and user clients: see the
BURL_ACCESS mapping table and SMTP SUBMIT FUTURERELEASE support.

62.2.1 BURL_ACCESS mapping table
As of Messaging Server 7.0, the MTA supports the BURL extension to SMTP SUBMIT, defined
in RFC 4468 (Message Submission BURL Extension), and the Message Store IMAP server
supports RFC 4467 (IMAP - URLAUTH Extension). BURL permits an email client to refer,
in submitted messages, to content to be retrieved (using the IMAP URLAUTH extension)
from an IMAP server. This allows email clients to submit messages including content without
having to first download that content to the client and then upload (submit it) directly to
the SMTP SUBMIT server itself: to include content by supplying a URL reference (including
an authentication token allowing access) to the location of the content on an IMAP server.
Availability of the BURL extension is controlled by the BURL_ACCESS mapping table,
discussed below, and the MTA options imap_username and imap_password.

TCP/IP channels 62–7

https://tools.ietf.org/html/rfc6409
https://tools.ietf.org/html/rfc6409
https://tools.ietf.org/html/rfc5068
https://tools.ietf.org/html/rfc5068
https://tools.ietf.org/html/rfc5068
https://tools.ietf.org/html/rfc4468
https://tools.ietf.org/html/rfc4467

Enabling BURL support for SMTP
SUBMIT

For the BURL extension to be made available, a BURL_ACCESS mapping table must be defined.
Note that BURL is specifically an SMTP SUBMIT feature; in terms of MTA configuration, only
channel(s) marked with the submit channel option are capable of offering BURL support.

Technical note: A client BURL command to an SMTP SUBMIT server for which BURL has not
been enabled will be rejected with the error:

503 5.5.1 BURL has not been enabled.

BURL is only supported (may only be enabled) on SMTP SUBMIT channels; a client BURL
command to an LMTP server will be rejected with the error:

503 5.5.0 BURL illegal on LMTP port.

while a client BURL command to an SMTP (non-SUBMIT) server will be rejected with the
error:

503 5.5.1 BURL only allowed on submission port.

The BURL_ACCESS mapping table controls, via two different probe strings, first whether the
BURL extension is advertised, and then second, whether a client's BURL command is accepted.
The first probe is performed before responding to an EHLO command. It has the form:

port_access-probe-info|channel|authentication-identity|

Here port_access-probe-info consists of all the information usually included in a
PORT_ACCESS mapping table probe. It will be blank if BURL is being used in a "disconnected"
context such as batch SMTP. channel is the current source channel. authentication-
identity is the user's canonical authenticated login identity, normally uid@canonical-
domain (that is, the user's LDAP uid attribute value, an at sign, and the canonical domain
name in which the user's entry resides as found during domain lookup). authentication-
identity will be blank if no authentication has been performed. The "A" input flag will be set
if SASL authentication has been performed, and the "T" input flag will be set if TLS is in use;
thus the mapping templates may test using $:A and $:T, respectively. In order to offer BURL
support, the mapping output for this first probe must set $Y; it may also optionally provide a
space-separated list of supported URL types. imap is assumed if no explicit string is returned.

The second probe is performed when a BURL command is actually sent by the SUBMIT client
and received by the SMTP SUBMIT server. In addition to the prior fields (described above),
this second probe also includes as a final client-url field the URL specified in the client's
BURL command:

port_access-probe-info|channel|authentication-identity|client-url

where client-url would normally be in URLAUTH syntax as defined in RFC 4467 (IMAP
- URLAUTH Extension). See RFC 4467 for details on URLAUTH syntax, but for a rough idea
to better understand the remainder of this discussion, consider that for BURL "submit user"
access, the client-url will usually take a form along the lines of:

imap://enc-user@hostport/optional-expire-clause;URLAUTH=submit+enc-user:mechanism:token

(Other types of access in a URLAUTH and hence other forms of client-url, such as for
"anonymous" access, are possible, but their use is more questionable---see the "Security

62–8 Messaging Server Reference

https://tools.ietf.org/html/rfc4467
https://tools.ietf.org/html/rfc4467
https://tools.ietf.org/html/rfc4467

Enabling BURL support for SMTP
SUBMIT

Considerations" section of RFC 4468 -- and therefore the remainder of this discussion will
focus on enabling only "submit user" access.)

In this second (actual BURL command) BURL_ACCESS probe, as in the prior (advertise BURL)
probe, the "A" input flag will be set if SASL authentication has been performed, and the "T"
input flag will be set if TLS is in use; thus the mapping templates may test using $:A and $:T,
respectively.

Additionally, for this second (actual received BURL command) probe, the vertical bar flag,
|, will be set if the original URL sent by the client contained any vertical bars (which if
present could possibly confuse some sorts of access checks), and thus the mapping entry
template may test for vertical bars in the original client URL using the $:| test; note that the
mapping_paranoia MTA option , if set, will cause any vertical bar within the client's original
URL to be replaced in the probe by the specified alternate character (with the vertical bar input
flag still being set). The mapping must set $Y for the URL to be accepted for processing. If $D
is also set, then the string result of the mapping replaces the client's entire originally specified
URL. New in 7.4-18.01, if $M is set, then the IMAP host name in the client's original URL
will be replaced by the mailHost of the currently authenticated user; this tends to provide
both better security (by enforcing that BURL connections will only be made to a site's own
mailHost host(s)), and better performance (by more likely connecting to the "correct" host),
than relying on the IMAP host name supplied by the user's client. See Table of BURL_ACCESS
mapping flags for a summary of these available flags and tests.

Table 62.1 BURL_ACCESS mapping flags

Flag Description
$Yurl-types For the initial (EHLO) probe, enable advertising BURL support, optionally

providing via the string argument url-types a space-separated list of the
URL types to advertise.

$Nstring For the later (BURL command) probes, reject access. If the optional string is
supplied, use it as the (entire) SMTP rejection, including SMTP error code and
extended code as well as text. If no such string is supplied, then the default
SMTP error used for such rejections is

533 5.7.1 Access denied to specified URL.®

$I (New in 7.4-18.01) For the later (BURL command) probes, if specified in an
entry with $N rejecting that BURL command, the $I means further to forcibly
disconnect the session with disconnect reason text "BURL_ACCESS forced
disconnect".®

$Y For the later (BURL command) probes, a plain $Y flag allows the BURL
command.

$Dnew-url For the later (BURL command) probes, if $Y was also specified (allowing
access), then use the specified new-url instead of the URL that the SMTP
SUBMIT client provided.®

$M (New in 7.4-18.01) For the later (BURL command) probes that succeed,
in the actual BURL command override the IMAP host name in the client-
provided URL and instead connect to the host of the mailHost attribute
of the currently authenticated user. The BURL command probe itself will
be considered to fail if the currently authenticated user has no mailHost
attribute set.®

TCP/IP channels 62–9

https://tools.ietf.org/html/rfc4468

Enabling BURL support for SMTP
SUBMIT

$T (New in Messaging Server 7.0.5) For the later (BURL command) probes that
succeed, force TLS use for opening the BURL URL (force TLS use in the
connection to fetch the part specified in the client's BURL URL).®

$X (New in Messaging Server 7.0.5) For the later (BURL command) probes that
succeed, forcibly disable TLS use for opening the BURL URL (force non-use of
TLS in the connection to fetch the part specified in the client's BURL URL).®

Flag comparisons Description
$:| Match only if the original client URL included the vertical bar character, |®

$;| Match only if the original client URL included no vertical bar character, |®

$:A Match only if SASL (SMTP AUTH) was used.
$;A Match only if SASL (SMTP AUTH) was not used.
$:T Match only if TLS was used.
$;T Match only if TLS was not used.

®Available for the later (BURL command containing a URL) probes only; not available for the
initial probe on whether or not to offer the BURL extension

At an absolute minimum, a site's BURL_ACCESS mapping table should be configured to verify
that a proper type of URL has been specified: typically only imap: URLs should be allowed.
Additionally, in the case of IMAP URLs used in SMTP SUBMIT message submission, a check
ought to be made to insure that the URL "belongs" to the user: that is, that the access user
in the URL matches the authenticated uid for the SUBMIT session. Indeed, typically sites
will not even want to advertise BURL in the SMTP SUBMIT server response unless and until
the client has authenticated---in terms of the BURL_ACCESS mapping table, this means to
start with an entry that enables advertising BURL only if the authentication-identity
field in the initial probe is non-empty. Additionally, it is almost always essential to restrict
message fetching access via a BURL command's imap: URL to an appropriate set of IMAP
servers. As of 7.4-18.01, use of the $M flag in the mapping template (right hand side) is a simple
way to enforce that only users' own mailHost values are used as the IMAP server in the
eventually executed BURL command. Prior to 7.4-18.01, the BURL_ACCESS mapping table
should typically be setup up to explicitly look for (match) a list of known, internal IMAP
servers (users' valid mailHost values) and only allow BURL commands using those IMAP
server host names.

Thus as of 7.4-18.01, a minimal BURL_ACCESS mapping table might be something like (and
initial configuration will generate):

BURL_ACCESS

! Initial entry to allow advertising BURL in EHLO response
 |tcp_|%*| imap$Y
! Allow BURL commands, connecting to user's own mailHost
 |@*|imap://*;URLAUTH=submit+$1*:* $:A$M$Y

Or if hosted domains are in use, then include an additional entry to match the hosted domain
user use:

BURL_ACCESS

62–10 Messaging Server Reference

Enabling BURL support for SMTP
SUBMIT

! Initial entry to allow advertising BURL in EHLO response
 |tcp_|%*| imap$Y
! Allow BURL commands, connecting to (default domain) user's own mailHost
 |@*|imap://*;URLAUTH=submit+$1*:* $:A$M$Y
! Allow BURL commands, connecting to (hosted domain) user's own mailHost
 |@*|imap://*;URLAUTH=submit+$1*%40$2*:* $:A$M$Y

A better minimal BURL_ACCESS mapping table, implementing the recommended security
provisions of RFC 4468 (that is, also requiring TLS encryption as well as SMTP AUTH
authentication in order to allow BURL), would be (as of the 7.4-18.01 version):

BURL_ACCESS

! Initial entry to allow advertising BURL in EHLO response, if TLS was used
 |tcp_|%*| $:T$Yimap
! Allow BURL commands, connecting to (default domain) user's own mailHost
 |@*|imap://*;URLAUTH=submit+$1*:* $:A$:TMY
! Allow BURL commands, connecting to (hosted domain) user's own mailHost
 |@*|imap://*;URLAUTH=submit+$1*%40$2*:* $:A$:TMY

In versions prior to 7.4-18.01, a minimal BURL_ACCESS mapping table would be more verbose.
For instance, the following makes use of a subsidiary X-IMAP-HOSTS mapping table to list a
site's valid IMAP server host names.

X-IMAP-HOSTS

 mail1.example.com $Y
 mail2.example.com $Y
 mail3.example.com $Y

BURL_ACCESS

! Initial entry to allow advertising BURL in EHLO response
 |tcp_|%*| imap$Y
! Allow BURL commands that request connecting to one of the "known" IMAP hosts
! listed in the X-IMAP-HOSTS mapping table
 |@*|imap://*@*/*;URLAUTH=submit+$1*:* C:A$|X-IMAP-HOSTS;$4|YE
! Ditto for users in hosted domains
 |@*|imap://*@*/*;URLAUTH=submit+$1*%40$2*:* C:A$|X-IMAP-HOSTS;$4|YE

Once the SMTP SUBMIT server has checked that BURL use should be allowed in a particular
context, then in order to perform the IMAP URLAUTH operation specified in a BURL
command, the SMTP SUBMIT server has to have the ability to log in to the IMAP server as the
submit user. The imap_username and imap_password MTA options are used to accomplish
this. imap_username specifies the submit user and defaults to the setting of the submituser
IMAP option (in legacy configuration, the service.imap.submituser configutil option) if
not specified. imap_password specifies the password which of course must match the value
set for the submit user account. The imap_password option has no default value.

Technical note: Once logged in as the submit user, then the BURL check of the hashed
authentication token in the URLAUTH is performed: only messages accessible to the user

TCP/IP channels 62–11

https://tools.ietf.org/html/rfc4468

SMTP SUBMIT FUTURERELEASE
support

issuing the BURL command will be fetched. That is, the submit user logs in, but it is not
the submit user's message access that determines whether a message or message part can
be fetched and incorporated but rather the access of the original user is validated from the
URLAUTH.

When using BURL to fetch an entire, pre-composed message, a BURL command replaces
the usual DATA command in an SMTP dialogue. Alternatively, when the SMTP extension
CHUNKING is supported (see RFC 3030 and the chunking* channel options), then BURL
and BDAT commands may be interlaced---meaning that a new message may be composed
incorporating material (for instance, attachments) fetched via BURL commands. Unless
explicitly disabled (see nochunking* channel options), the MTA's TCP/IP channels (and in
particular its SMTP SUBMIT servers) by default support CHUNKING.

Note that new in 7.4-18.01, the MTA has a feature to force disconnection of the SMTP
SUBMIT session if a user attempts "too many" bad (failed) BURL commands: see the
disconnectbadburllimit channel option.

Note that as regards MTA message transaction logging, a message submitted using BURL
will include a "U" modifier on its "E" enqueue record, or include "UC" if both BURL and
CHUNKING were used; see MTA transaction log entry format.

62.2.2 SMTP SUBMIT FUTURERELEASE support
New in Messaging Server 7.0-0.04, the MTA supports the FUTURERELEASE extension to
SMTP SUBMIT, defined in RFC 4865 (SMTP Submission Service Extension for Future Message
Release). FUTURERELEASE permits a client to submit a message to the SMTP SUBMIT server
for the server to hold onto in its (server) queue until releasing for delivery at a specified time
in the future. This can be useful for clients that wish to compose messages "ahead of time", that
will only become eligible for delivery at some later time, or which have issues with saving/
retaining messages locally themselves, or with ensuring submission at the "right time". A
typical use case might be for messages intended as announcements or event reminders.

FUTURERELEASE support is enabled by placing the futurerelease channel option on a
submit source channel used for initial message submission. The futurerelease channel
option takes a single integer argument: the maximum number of seconds a message can be
held. Note that FUTURERELEASE is specifically an SMTP SUBMIT feature: in terms of MTA
configuration, only channel(s) marked with the submit keyword are capable of offering
FUTURERELEASE support. A client attempt to use a FUTURERELEASE parameter in a MAIL
FROM command to an SMTP SUBMIT server for which FUTURERELEASE has not been
enabled will be rejected with the error:

504 5.7.4 FUTURERELEASE extension not available.

or

503 5.7.1 FUTURERELEASE extension not available.

Care should be used when enabling future release since it allows messages to be in effect
stored in the MTA's queues. FUTURERELEASE should only be used for channels handling
initial message submission and authentication of the message submittor should be required.

Additionally, if you wish to make distinctions about just which senders may use
FUTURERELEASE (or for how long different classes of senders may postpone message
delivery), consider also using the mailSMTPSubmitChannel user attribute (or as of 8.0,

62–12 Messaging Server Reference

https://tools.ietf.org/html/rfc3030
https://tools.ietf.org/html/rfc4865
https://tools.ietf.org/html/rfc4865

LMTP channels

whatever LDAP attribute is named by the ldap_auth_attr_submit_channel MTA
option) to sort different classes of senders into different source channels with appropriately
different futurerelease settings.

Note that similar functionality was previously available: specification of a Deferred-delivery:
header field in a submitted message coupled with use of the deferred channel keyword
on the destination channel provided the ability to defer delivery of messages. However,
FUTURERELEASE provides superior functionality:

1. The FUTURERELEASE facility is controlled by a setting on the source channel, allowing
it to be provided to a subset of the user population. In contrast, placing deferred on a
destination channel opened the door to anyone submitting a message destined for that
channel to have that message be held for some period of time.

2. There's no way for a client which sets a Deferred-delivery: header field to know whether
or not the header has actually caused the message to be deferred. The FUTURERELEASE
SMTP SUBMIT extension, on the other hand, lets the client know how long a message can
be held and an error will be returned to the client if the message cannot be held for the time
the client requested.

3. With Deferred-delivery:, there was no (automatic) way to place a limit on the amount of
time a message could be held. Instead what (normally) happened was that a message held
longer than the channel's last notices value would simply be returned as undeliverable.

4. Deferred-delivery: settings on messages did not survive a Job Controller restart.

As part of the implementation work for FUTURERELEASE, the old Deferred-delivery:
mechanism has been redesigned to address some (but not all) of these points. In particular,
the deferred channel keyword has been replaced by two new channel options,
deferredsource and deferreddestination. (The deferred option is now a synonym
for deferreddestination.) Both of these options accept an optional integer argument
specifying in seconds the maximum amount of time in the future a Deferred-delivery: header
can specify and still be honored. The default if no argument is specified is 60*60*24*7, or 7
days. deferredsource enables Deferred-delivery: processing on the basis of the source
channel while deferreddestination operates on destination channels. Finally, Deferred-
delivery: settings on messages now survive Job Controller restarts. This addresses all of the
points on the above list except (2): use of a Deferred-delivery: header field still provides no
mechanism for informing the client whether or not their request will be honored.

Note that, as discussed above, FUTURERELEASE is an extension defined (and supported by
the MTA) solely for use with SMTP SUBMIT. A client attempt to use FUTURERELEASE to the
MTA's SMTP server will result in the error:

504 5.7.4 FUTURERELEASE is a SUBMIT extension; it cannot be used in SMTP.

or

503 5.7.1 FUTURERELEASE extension not available.

62.3 LMTP channels
LMTP over TCP/IP channels are a special case of TCP/IP channels. The MTA's LMTP channels
come in two varieties, LMTP client and LMTP server. (Unlike the MTA's general SMTP over
TCP/IP channels which are often configured for bidirectional use, the MTA's LMTP channels

TCP/IP channels 62–13

LMTP client TCP/IP channels

are each dedicated to either client or server operation, the LMTP client channels operating on
"front end" MTAs to transmit via LMTP over TCP/IP to back end Message Store systems, and
the LMTP server operating on back end Message Store systems to deposit messages into the
Message Store.)

The MTA's LMTP server operates as a sort of combination of the MTA's SMTP server, and
the ims-ms channel (the delivery into the Message Store portion of the ims-ms channel). In
particular, the IMAP error statuses that can be encountered by the ims-ms channel, discussed
further in ims-ms channel error messages, also are relevant for the LMTP server (and indeed,
since the LMTP server in turn passes such errors back in the form of SMTP error responses to
the LMTP client, they are reported to the LMTP client also).

62.3.1 LMTP client TCP/IP channels
In the MTA's implementation of LMTP, an LMTP client channel is a specially configured TCP/
IP channel. At its most basic, any outbound TCP/IP channel configured with the lmtp channel
option is an LMTP client channel. However, additional channel options should also be set
upon an LMTP client channel; see the example in Typical TCP/IP channels and servers.

In the Messaging Server implementation, the intended design is that, to the greatest extent
possible, message processing (including address canonicalization, spam/virus filter package
processing, user Sieve filter application, defragmentation of MIME message fragments, any
content conversion implemented via the conversion channel, etc.), will be applied on the "front
end" MTAs during (or prior to) enqueue to a tcp_lmtpcs* channel. (Then the LMTP server
on the back end Message Store host need merely insert the already-entirely-pre-digested
message into the Message Store.) In particular:

• In a typical LMTP configuration, various address transformations resulting from
the interpretation of the ldap_delivery_option MTA option and coordinating
LMTP-oriented rewrite rules are usually best handled by setting the multigate and
connectcanonical channel options on tcp_lmtpcs* channels.

• Various TCP/IP or LMTP protocol relevant channel options, e.g., port and single_sys, are
commonly set.

• To ensure MIME defragmentation of any messages destined via LMTP to the Message Store,
the defragment channel option should be set on the tcp_lmtpcs channels.

• And so that application of Sieve filters on the "front end" MTAs will properly convey any
intended "fileinto" action effects back to the back end LMTP server, the fileinto
channel option should be set on the tcp_lmtpcs channel(s).

• (The MTA's LMTP implementation also makes use of proprietary LMTP extensions to
convey other important information from the LMTP client to the LMTP server, including
quota data and IMAP flag Sieve effects; the MTA's LMTP server and LMTP client negotiate
the extension use and send this information automatically.)

In the MTA implementation, the LMTP client channel code is the SMTP client channel code,
merely configured specially: the many channel options and TCP/IP-channel-specific options
affecting SMTP client operation may also be set and affect LMTP client operation. (Note that
this in contrast to the MTA's LMTP server, which consists of distinct and separate code from
the SMTP server, so configuration options for the SMTP server do not always have LMTP
server counterparts.)

62.3.2 LMTP back end TCP/IP channel

62–14 Messaging Server Reference

LMTP back end TCP/IP channel

On an LMTP back end Message Store host, the typical TCP/IP channels and servers are
replaced instead by an LMTP server, defined in Unified Configuration as a tcp_lmtpss
channel and corresponding LMTPSS service under the Dispatcher:

msconfig> show channel:tcp_*
role.channel:tcp_lmtpss.official_host_name = tcp_lmtpss-daemon
role.channel:tcp_lmtpss.flagtransfer (novalue)
role.channel:tcp_lmtpss.identnonenumeric (novalue)
role.channel:tcp_lmtpss.lmtp (novalue)
msconfig> show dispatcher.service:*MTP*
role.dispatcher.service:LMTPSS.image = IMTA_BIN:tcp_lmtp_server
role.dispatcher.service:LMTPSS.logfilename = IMTA_LOG:tcp_lmtpss_server.log
role.dispatcher.service:LMTPSS.parameter = CHANNEL=tcp_lmtpss
role.dispatcher.service:LMTPSS.stacksize = 2048000
role.dispatcher.service:LMTPSS.tcp_ports = 225
msconfig> show mapping:PORT_ACCESS
role.mapping:PORT_ACCESS.rule TCP|*|225|*|* C|INTERNAL_IP;$1|$Y$E
role.mapping:PORT_ACCESS.rule TCP|* $N500 Do not connect to this machine
msconfig> show mapping:INTERNAL_IP
role.mapping:INTERNAL_IP.rule internal-host-or-subnet $Y
role.mapping:INTERNAL_IP.rule another-internal-host-or-subnet $Y
...
role.mapping:INTERNAL_IP.rule ${::1} $Y
role.mapping.INTERNAL_IP.rule 127.0.0.l $Y
role.mapping:INTERNAL_IP.rule * $N

A recipe that creates this configuration would be:

description("Configure backend store accessible via LMTP");
keywords(["backend", "store", "LMTP"]);

Back end's IP address
Script will prompt for address if left black
#myIP = "10.133.152.193";
myIP = "";

List of frontend machines that access this store via LMTP
Script will prompt for addresses if left blank
#feIPs = ["10.133.152.192", "10.133.152.193"];
feIPs = [];

Prompt for myIP and feIP if needed
if (length(myIP) <= 0) {
 myIP = read("Enter the IP address of this host: ");
}

if (length(feIPs) <= 0) {
 loop {
 ip = read("Enter the IP address of a frontend machine (<RET> if no more): ");
 exitif (ip == "");
 push(feIPs, ip);
 }

TCP/IP channels 62–15

LMTP back end TCP/IP channel

}

Configure LMTP back end
if exists_channel("tcp_lmtpss") {
 warn("WARNING: tcp_lmtpss channel already exists, will not be added");
} else {
 print("INFO: Adding tcp_lmtpss channel\n");
 add_channel("tcp_lmtpss",
 ["flagtransfer", "",
 "identnonenumeric", "",
 "lmtp", "",
 "official_host_name", "tcp_lmtpss-daemon"]);
}

if exists_group("dispatcher.service:LMTPSS") {
 warn("WARNING: Dispatcher.service:LMTPSS group already exists, will not be created");
} else {
 print("INFO: Creating dispatcher.service:LMTPSS group\n");
 add_group("dispatcher.service:LMTPSS",
 ["image", "IMTA_BIN:tcp_lmtp_server",
 "logfilename", "IMTA_LOG:tcp_lmtpss_server.log",
 "parameter", "CHANNEL=tcp_lmtpss",
 "tcp_ports", "225",
 "stacksize", "2048000"]);
}

Replace PORT_ACCESS mapping
print("INFO: Replace PORT_ACCESS mapping\n");
replace_mapping("PORT_ACCESS",
 ["TCP|*|225|*|*", "C|INTERNAL_IP;$1|$Y$E",
 "TCP|*", "$N500 Do not connect to this machine"]);

add PORT_ACCESS mapping entries
internal_ip = ["${::1}", "$Y",
 "127.0.0.1", "$Y",
 "*", "$N"];

list of IP addresses
ipaddrs = [feIPs];
push(ipaddrs, myIP);

loop {
 exitif (ipaddrs == []);
 ip = pop(ipaddrs);
 push(internal_ip, "$Y");
 push(internal_ip, ip);
}

print("INFO: Replace INTERNAL_IP mapping\n");
replace_mapping("INTERNAL_IP", internal_ip);

In legacy configuration, this would be defined as a tcp_lmtpss channel in the imta.cnf file:

62–16 Messaging Server Reference

LMTP back end TCP/IP channel

tcp_lmtpss flagtransfer identnonumeric lmtp
tcp_lmtpss-daemon

and a Dispatcher definition of the LMTPSS server in the dispatcher.cnf file:

!
! rfc 2033 LMTP server - store
!
[SERVICE=LMTPSS]
PORT=225
IMAGE=IMTA_BIN:tcp_lmtp_server
LOGFILE=IMTA_LOG:tcp_lmtpss_server.log
PARAMETER=CHANNEL=tcp_lmtpss
STACKSIZE=2048000
! Uncomment the following line and set INTERFACE_ADDRESS to an appropriate
! host IP (dotted quad) if the dispatcher needs to listen on a specific
! interface (e.g. in a HA environment).
!INTERFACE_ADDRESS=

and with PORT_ACCESS and INTERNAL_IP mapping tables in the mappings file:

PORT_ACCESS

 TCP|*|225|*|* C|INTERNAL_IP;$1|$Y$E
 TCP|* $N500 Do not connect to this machine

INTERNAL_IP

 host's-own-public-IP $Y
 another-public-IP-for-host $Y
 ...
 internal-host-or-subnet $Y
 another-internal-host-or-subnet $Y
 ...
 ${::1} $Y
 127.0.0.1 $Y
 * $N

Note that this configuration is only appropriate for back ends where delivery is only
performed by LMTP. In particular, the PORT_ACCESS and INTERNAL_IP mapping mapping
tables shown here would not be appropriate for back ends that also accept mail via SMTP.

62.3.2.1 LMTP server options

The loglevel option may be set under the tcp_lmtp_server group to override for LMTP
server purposes any MTA-wide setting (mta.logfile.loglevel) of the nslog log level
(controlling any Message Store logging triggered from the LMTP server).

Note that all other options affecting LMTP server operation are instead either set as channel
options (see especially the SMTP and LMTP protocol channel options), or as TCP/IP-channel-
specific options. In particular, the logging channel option on the LMTP server channel,
normally tcp_lmtpss, controls the MTA side of LMTP server logging.

TCP/IP channels 62–17

TCP/IP-channel-specific options

62.4 TCP/IP-channel-specific options
TCP/IP channels support, in addition to the usual channel options, a number of TCP/
IP-channel-specific options.1 These TCP/IP-channel-specific options are set in legacy
configuration in a channel-specific option file, or in Unified Configuration are set under the
channel's options option. For instance:

msconfig> set channel:tcp_local.options.BANNER_PURGE_DELAY 200

Note that in Unified Configuration such channel-specific options (those set under the
options option) are not (currently) schema checked: be careful when setting them as
msconfig will not warn of invalid values or syntax as it would for regular channel options!
(Nor will msconfig show whether or not such channel-specific options have any default
value.)

In legacy configuration, where an option file is used, such an option file must be named
x_option where x is the name of the channel, and stored in the MTA table directory. Since the
name of the default channel for the SMTP server is usually tcp_local, the option file for the
SMTP server is usually IMTA_TABLE:tcp_local_option on UNIX; similarly, the name of
the default channel for the SMTP SUBMIT server is usually tcp_submit, so the option file for
the SMTP SUBMIT server is usually IMTA_TABLE:tcp_submit_option.

For incoming messages, such TCP/IP-channel-specific options are actually options for
the server (SMTP, SMTP SUBMIT, or LMTPSS) as a whole. In particular, the only TCP/
IP-channel-specific options that matter for incoming SMTP submissions are those for the
SMTP server's default channel, not any channel options for possible other channels that may
putatively handle the incoming message due to a *switchchannel channel option based
"switching". Thus for instance in a typical configuration, for all incoming SMTP messages to
port 25, it is only the channel-specific options set under channel:tcp_local.options
that matter (in legacy configuration, only the tcp_local_option file that matters);
similarly, the channel-specific options set under channel:tcp_submit.options affect
all SMTP SUBMIT submissions (in legacy configuration, the tcp_submit_option
file affects all SMTP SUBMIT submissions); and the channel-specific options set under
channel:tcp_lmtpss.options affect all messages accepted by the LMTP server (in legacy
configuration, the tcp_lmtpss_option file affects all messages accepted by the LMTP
server). Any other channel-specific options (in legacy configuration, any other tcp_*_option
file(s)) would only be potentially relevant for outgoing SMTP or LMTP messages---only affect
SMTP or LMTP client operation.

Note that while master channel programs (the outgoing channel direction or SMTP client)
read their option file each time they run and usually do not keep running for an especially
long time, a slave channel program (each SMTP, SMTP SUBMIT, or LMTP server process)
reads its options (in legacy configuration, its option file) only when it is first started, hence will
not see changes while it continues to run, and its running time may be on the scale of hours.
Server processes do automatically shut down periodically, and the Dispatcher creates new
server processes in replacement, as required; so changes affecting server processes can get seen
eventually, even in the absence of an explicit restart of the relevant server processes---but the
change is likely not to take effect "quickly" in the absence of an explicit restart.

Note also that as of Messaging Server 7.0, TCP/IP channel option files for SMTP channels
and LMTP client channels (but not yet LMTP server channels) are incorporated as part
of a compiled configuration, if one exists. So as of Messaging Server 7.0, if a compiled
configuration exists, it is necessary to recompile to get changes seen:

62–18 Messaging Server Reference

552_PERMANENT_ERROR_STRING
TCP/IP-channel-specific option

imsimta cnbuild

Then, no different than ever, when it is important or essential to get changes to take effect
quickly, as opposed to waiting for existing server processes and channel delivery processes to
naturally age, executing

imsimta restart *

will restart (the otherwise often quite long-running) SMTP, SMTP SUBMIT, and LMTP server
processes; and see the imsimta qm utility's stop and start commands, or alternatively
its stress and unstress commands, which may be used to force quick replacement of the
(usually relatively short-lived in any case) SMTP and LMTP client processes (master channel
jobs).

1 Most of the options described actually relate to the SMTP protocol itself, rather than to
the TCP/IP transport. As such, other MTA channels that use the SMTP protocol over other
transports may have similar options.

62.4.1 TCP/IP-channel-specific options:
PERMANENT_ERROR_STRING_552 (string)

Important note: Prior to MS 8.0.1.3, the name of this option was
552_PERMANENT_ERROR_STRING. Unfortunately the leading digit "5" in the option makes
this option unworkable in unified configuration due to XML token name restrictions, so the
name of the option had to be changed to PERMANENT_ERROR_STRING_552. Both names
work in 8.0.1.3 and later legacy configurations.

RFC 821 showed 552 as a temporary error at a RCPT TO: command (although in all other
cases 500 numbers are permanent errors); some servers have implemented inconsistent use
of the 552 error number. The MTA's SMTP client by default, if this option is not set, normally
interprets 552 as a temporary error when seen as a response to an address command (MAIL
FROM:, RCPT TO:, or VRFY:); but see below for a new-in-6.3 refinement of the MTA's behavior
when a 5xy response is seen to the first RCPT TO: command in a transaction. If this SMTP
client option is set, then when an 552 response is received to an address command (MAIL
FROM:, RCPT TO:, or VRFY), then the string associated with the last line of that response
(excluding the initial "552 ", but including any leading x.y.z extended error code) is compared
against this string. If, and only if, the string matches will the 552 error be treated as permanent.
Case is not significant in the comparison. For instance, if dealing with a remote server that will
return "552 user no longer present" as an "intended" permanent error, then this option could be
set to:

PERMANENT_ERROR_STRING_552=user no longer present

This option is not supported by the LMTP client; it is an SMTP client-only option.

New in 6.3, if the MTA's SMTP client sees any 5xy response including a 552 response to its first
RCPT TO: command in a transaction and where after issuing its error the remote SMTP server
then immediately disconnects the session, (which behavior is, by the way, a standards violation
on the part of the remote SMTP server), then the MTA (regardless of the setting of this option)
will unconditionally interpret this as a permanent error for that recipient, but will reenqueue
any additional recipients of that message (copy) for another delivery attempt.

TCP/IP channels 62–19

https://tools.ietf.org/html/rfc821

ALLOW_ETRNS_PER_SESSION
TCP/IP-channel-specific option

New in 7.0, the option value may use glob-style wildcards; this new feature is available to
aid in cases where a remote server's error response includes the input address, hence where a
static, fixed value does not provide adequate matching.

As of 8.0.1.3 multiple patterns can also be specified, separated by vertical bars ("|").

62.4.2 TCP/IP-channel-specific options:
ALLOW_ETRNS_PER_SESSION (integer)

This SMTP server option sets a limit on the number of ETRN commands accepted per session.
The default is 1. When the limit is exceeded, the SMTP server will issue an error response to
any additional ETRN command of (prior to MS 7.0.5):

550 5.7.1 ETRN session limit reached.

or as of MS 7.0.5:

458 4.7.1 ETRN session limit reached

See also the *etrn channel options for a discussion of channel options affecting the MTA's
response to ETRN commands.

62.4.3 TCP/IP-channel-specific options:
ALLOW_RECIPIENTS_PER_TRANSACTION (integer)

This SMTP/LMTP server option set s a limit on the number of recipients allowed per
message, and on the number of address verifications (VRFY: commands) permitted
during a transaction. (Note that the count of actual recipients, RCPT TO:, is separate from
the count of verifies, VRFY:; that is, VRFY:'s do not count against the RCPT TO: limit,
nor do RCPT TO:'s count against the VRFY: limit; each is limited independently to the
ALLOW_RECIPIENTS_PER_TRANSACTION value.) Any additional recipients will be rejected
with a temporary error response to the RCPT TO: command:

451 4.5.3 Too many recipients specified

Any additional address verification attempts will be rejected with a temporary error

451 4.5.2 Verification blocked; too many operations performed

at the VRFY: line. The default is 128. (In iMS 5.2 and earlier, the default was no limit.) See also
the recipientlimit and (in the case of SMTP) disconnectrecipientlimit channel
options , and the ldap_recipientlimit and ldap_domain_attr_recipientlimit
MTA options. Note that with any setting of ALLOW_RECIPIENTS_PER_TRANSACTION other
than the maximum allowed integer (2147483647), the SMTP server will not allow multiple,
comma-separated values on the RCPT TO: command line. (The LMTP server, in contrast, will
always allow multiple, comma-separated values on the RCPT TO: command line --- though the
MTA's LMTP client will not itself send such a RCPT TO command.)

Note also that, unlike a channel recipientlimit (which may be completely overridden on a
per-user basis using the LDAP attribute named by the ldap_recipientlimit MTA option),

62–20 Messaging Server Reference

ALLOW_REJECTIONS_BEFORE_DEFERRAL
TCP/IP-channel-specific option

the TCP/IP-channel-specific option ALLOW_RECIPIENTS_PER_TRANSACTION imposes a hard
upper-limit, which other settings may only modify by imposing even stricter limits but may
not ignore (increase).

62.4.4 TCP/IP-channel-specific options:
ALLOW_REJECTIONS_BEFORE_DEFERRAL (integer)

This SMTP server option sets a limit on the number of bad (failing) RCPT TO: or
VRFY: addresses that will be allowed during a single session. (Note that unlike
ALLOW_RECIPIENTS_PER_TRANSACTION and REJECT_RECIPIENTS_PER_TRANSACTION
where the RCPT TO: and VRFY: counts are separate, this is a combined count; failing RCPT
TO:'s and VRFY:'s are added together.) That is, after the specified number of To: addresses
have been rejected at the RCPT TO: or at VRFY:, all subsequent recipients, good or bad, will be
rejected at their RCPT TO: presentations with a temporary error

451 4.5.3 Too many rejections; try again later

or at VRFY: presentations with a temporary error

451 4.5.3 Verification blocked; too many rejections

The default is (essentially) no limit. See also the deferralrejectlimit channel option.

Compare this option with the REJECT_RECIPIENTS_PER_TRANSACTION TCP/IP-channel-
specific option, which will cause all recipients to be rejected at the DATA command with a
temporary error

451 4.5.3 Transaction blocked; too many recipients specified

62.4.5 TCP/IP-channel-specific options:
ALLOW_SESSION_BLOCKS (integer)

The ALLOW_SESSION_BLOCKS TCP/IP-channel-specific option for the SMTP server imposes
a block limit on the session as a whole. The session is disconnected if this limit is exceeded. If
MTA transaction logging is enabled, the reason field in the close ("X") entry will show:

Maximum session data limit of xK octets has been exceeded

The default of 0 means no limit is imposed.

62.4.6 TCP/IP-channel-specific options:
ALLOW_TRANSACTION_BLOCKS (integer)

The ALLOW_TRANSACTION_BLOCKS TCP/IP-channel-specific option for the SMTP server
imposes a block limit on any transactions. The session is disconnected if this limit is exceeded.
If MTA transaction logging is enabled, the reason field in the close ("X") entry will show:

TCP/IP channels 62–21

ALLOW_TRANSACTIONS_PER_SESSION
TCP/IP-channel-specific option

Maximum transaction data limit of xK octets has been exceeded

The default of 0 means no limit is imposed.

62.4.7 TCP/IP-channel-specific options:
ALLOW_TRANSACTIONS_PER_SESSION (integer)

This SMTP/LMTP server option sets a limit on the number of messages allowed per
connection. The default is no limit. When the number of messages specified is exceeded, then
normally the temporary error

451 4.5.3 No more transactions allowed

is returned at the MAIL FROM: line; but see the TRANSACTION_LIMIT_RCPT_TO
TCP/IP-channel-specific option which will cause this temporary error to instead be
issued at the RCPT TO: line. See also the transactionlimit and (in the case of
SMTP) disconnecttransactionlimit channel options, which may be used to
set such limits on a per-channel basis (hence providing finer-grained control than the
ALLOW_TRANSACTIONS_PER_SESSION option which applies to all channels handled by the
same default Dispatcher SMTP or LMTP service).

62.4.8 TCP/IP-channel-specific options:
ATTEMPT_TRANSACTIONS_PER_SESSION (integer)

This SMTP/LMTP client option sets a limit on the number of messages the MTA will attempt to
transfer during any one connection session.

62.4.9 TCP/IP-channel-specific options: AUTH_DEBUG
(string)

(New in Messaging Server 7.4-18.01.) The AUTH_DEBUG SMTP server option allow enabling
SASL (HULA) debugging. The string argument should consist of one or more, space-
separated, of "perf", "connect", "authserv", "hula". In order for this option to take full
effect, slave_debug debugging must be enabled. When AUTH_DEBUG is set, it overrides the
debugkeys Base option setting for SMTP authentication logging purposes.

As an alternative to this channel-level enabling of SASL debug, note the PORT_ACCESS flag $A
is an alternate way to enable SASL debug on a per-connection basis.

62.4.10 TCP/IP-channel-specific options:
AUTH_PASSWORD (string), AUTH_USERNAME (string),
EXTERNAL_IDENTITY (string)

New in Messaging Server 7.0 update 1. In legacy configuration, these SMTP/LMTP client
options provide the credentials for SASL (SMTP AUTH) use by the SMTP/LMTP client;
in Unified Configuration, these options are not used, having been replaced instead by the
authpassword, authusername, and externalidentity channel options.

62–22 Messaging Server Reference

BANNER_ADDITION TCP/IP-
channel-specific option

SASL authentication will be attempted if either the maysaslclient or mustsaslclient
channel option is set, with success required for message transmission if mustsaslclient is
set.

The PLAIN and EXTERNAL SASL mechanisms are currently supported. The
AUTH_USERNAME and AUTH_PASSWORD TCP/IP-channel-specific options provide the
credentials for the plain mechanism and the EXTERNAL_IDENTITY TCP/IP-channel-specific
option provides the identity string for SASL EXTERNAL. (EXTERNAL_IDENTITY can be set to
the empty string to enable SASL EXTERNAL without an identity string.)

See the Base certmap options for general configuration of certificate mapping, as needed for
EXTERNAL authentication via client certificates.

62.4.11 TCP/IP-channel-specific options:
BANNER_ADDITION (string)

This SMTP/LMTP server option adds the specified string to the SMTP/LMTP banner line. If
the length of this addition string plus the MTA's regular banner line string (as constructed
normally by the MTA---see in particular the CUSTOM_VERSION_STRING TCP/IP-channel-
specific option) would be more than 80 characters, then the additional text will be put on
a continuation line as part of a multi-line banner response, rather than being included on
the initial 220 line. If the vertical bar character or "pipe" character, |, is included in the
BANNER_ADDITION string, it is interpreted as a request for a line break; the MTA's regular
banner line will be output as the first line of a multi-line banner response, and then each
vertical bar separated portion of the string (including the very first, even if it is "short"), will be
output on its own, separate line.

62.4.12 TCP/IP-channel-specific options:
BANNER_HOST (string)

This option applies to both the SMTP/LMTP server and the SMTP/LMTP client. If specified,
this value takes precedence over even a local_host_alias for the name used in the 220
banner (SMTP/LMTP server) and on the HELO/EHLO/LHLO line (SMTP/LMTP client).

62.4.13 TCP/IP-channel-specific options:
BANNER_RECEIVE_TIME (integer)

This SMTP/LMTP client option specifies how long to wait to receive the SMTP/LMTP initial
banner from the server. The default value is 2 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.14 TCP/IP-channel-specific options:
BANNER_REVERSE_HOST (boolean)

This option applies to the SMTP/LMTP server. It defaults to 0 (false). If set to 1 (true), when
a connection is accepted a reverse DNS lookup is performed on the local host's IP address.

TCP/IP channels 62–23

BANNER_PURGE_DELAY TCP/
IP-channel-specific option

if a result is returned it becomes the name used in the server's 220 banner. This value takes
precedence over any BANNER_HOST value as well as any local_host_alias value.

62.4.15 TCP/IP-channel-specific options:
BANNER_PURGE_DELAY (integer)

(New in MS 6.3.) A useful spam-fighting strategy is to delay sending the SMTP banner for a
brief time (half a second, say), then clear the input buffer, and finally send the banner. The
reason this works is that many spam clients are not standards-compliant and start blasting
SMTP commands as soon as the connection is open. Spam clients that do this when this
capability is enabled will lose the first few commands in the SMTP dialogue, rendering the
remainder of the dialogue invalid.

The BANNER_PURGE_DELAY SMTP server option exists to implement this strategy.
Set the BANNER_PURGE_DELAY option to the number of centiseconds to delay before
purging the input buffer and sending the banner. The default value of 0 disables both
the delay and purge. See also the PORT_ACCESS mapping table $D flag, which can also
be used to set such a banner purge delay, in a more selective manner And note that the
disconnectbadcommandlimit channel option may be of interest when using any such
banner purge delay technique.

62.4.16 TCP/IP-channel-specific options: BUFFER_SIZE
(integer)

(New in MS 6.3.) The BUFFER_SIZE option is available for the LMTP server only. It sets
the buffer size for the LMTP server to do in-memory buffering of incoming messages,
overriding the default 1,000,000 bytes. Thus this LMTP server option is analogous to the
max_internal_blocks MTA option which controls similar buffering for components
other than the LMTP server (and has no relationship to the MTA option with a similar name
buffer_size but a completely different meaning).

Messaging exceeding the limit will be written to a temporary file and the temporary file will
then be mapped into memory.

In unified configuration the option can be set as follows:

msconfig> set channel:tcp_lmtpss.options.buffer_size 1000000

62.4.17 TCP/IP-channel-specific options:
CHECK_SOURCE (0 or 1)

The MTA's SMTP and LMTP server normally attempts to determine the name of the host
from which a connection has been received, as specified by the ident* channel options.
When the determined name does not match the name presented by the remote SMTP/LMTP
client on the HELO/EHLO/LHLO line, the CHECK_SOURCE TCP/IP-channel-specific option
controls whether the name found from a DNS lookup (or the IP domain literal, if DNS lookups
have been disabled such as with the identnonenumeric channel option) is included in
the constructed Received: header as a comment after the presented name. A value of 1 (the
default) enables the inclusion of the determined name when different from the presented

62–24 Messaging Server Reference

CLIENT_CERT_NICKNAME TCP/
IP-channel-specific option

name. A value of 0 disables the inclusion of any such comment and thus eliminates one of the
more useful checks of message validity. For the SMTP server, setting CHECK_SOURCE to 0 also
effectively blocks switchchannel channel switching from taking effect.

62.4.18 TCP/IP-channel-specific options:
CLIENT_CERT_NICKNAME (string)

(New in Messaging Server 7.0.5) This SMTP client option specifies the certificate to use for
SMTP client authentication via STARTTLS. The nickname follows the same format as other
certificate nicknames in Messaging Server. It is split at the first ":" character, and the portion
prior to the colon is the security token; the portion subsequent to the ":" character is the
certificate nickname in that security token. If no ":" character is present, then the NSS built-in
certificate databases are used. Note that CLIENT_CERT_NICKNAME should only be used with
IGNORE_BAD_CERT=0 set, as otherwise the security it can provide is defeated.

62.4.19 TCP/IP-channel-specific options:
CLIENT_STACK_SIZE (integer)

New in MS 8.0.1.3. This SMTP/LMTP client option takes an integer number indicating the
stack size to allocate for SMTP client threads. The default value is 1024*1024 = 1048576. It is
strongly recommended that this value only be increased.

62.4.20 TCP/IP-channel-specific options:
COMMAND_RECEIVE_TIME (integer)

This SMTP/LMTP server option specifies how long to wait to receive general SMTP
commands, (commands other than those with explicitly specified time out values set using
other specifically named options). The default value is 10 minutes

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.21 TCP/IP-channel-specific options:
COMMAND_TRANSMIT_TIME (integer)

This SMTP/LMTP client option specifies how long to spend transmitting general SMTP
commands, (commands other than those with explicitly specified time out values set using
other specifically named options). The default value is 10 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.22 TCP/IP-channel-specific options:
CONTINUATION_CHARS (string)

DEPRECATED.

TCP/IP channels 62–25

CUSTOM_VERSION_STRING
TCP/IP-channel-specific option

The CONTINUATION_CHARS TCP/IP-channel-specific option is supported by the SMTP server
(but not the LMTP server), and by SMTP and LMTP clients. It takes a list of integer values
specifying the ASCII positions of additional characters that act like the continuation character
specified using the contchar channel option; that is, it specifies additional characters that will
be accepted as line continuation characters.

This option was used to accomodate the peculiar form of batch SMTP that was employed by
BITNET. Now that BITNET is no more, this option is obsolete and deprecated.

62.4.23 TCP/IP-channel-specific options:
CUSTOM_VERSION_STRING (string)

Use of this option is NOT RECOMMENDED! This SMTP server option (not supported by
the LMTP server) sets the IMTA version string to advertise on the SMTP server's 220 banner
line. By default, the string "Oracle Communications Messaging Server <version-number>
(<build-date>)" is used. This option is thus a complement to the (also not recommended)
received_version MTA option.

62.4.24 TCP/IP-channel-specific options:
DATA_RECEIVE_TIME (integer)

This SMTP/LMTP server option specifies how long to wait to receive each line of data during
the DATA phase of an SMTP/LMTP dialogue. The default is 5 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.25 TCP/IP-channel-specific options:
DATA_TRANSMIT_TIME (integer)

This SMTP/LMTP client option specifies how long to spend transmitting data during an
SMTP/LMTP dialogue. The default is 10 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.26 TCP/IP-channel-specific options:
DISABLE_ADDRESS (0 or 1)

The MTA's SMTP server implements a private command XADR. This command returns
information about how an address is routed internally by the MTA as well as general channel
information. Releasing such information may consistute a breach of security for some sites.
Settting the SMTP server option DISABLE_ADDRESS to 1 disables the XADR command, so that
the SMTP server returns the response

550 5.7.0 XADR command has been disabled.

62–26 Messaging Server Reference

DISABLE_CIRCUIT TCP/IP-
channel-specific option

to XADR attempts. The default is 0, which enables the XADR command. In 8.0, the default has
changed to 1, disabling the XADR command.

SMTP server probes of the PORT_ACCESS mapping table can enable use of XADR (overriding
a more general DISABLE_ADDRESS=0 setting) for connections from particular source IPs (e.g.,
the host itself, 127.0.0.1, and particular administrator systems) via the (new in 7.0) $V flag.

62.4.27 TCP/IP-channel-specific options:
DISABLE_CIRCUIT (0 or 1)

The MTA's SMTP server implements a private command XCIR. This command returns MTA
circuit check information. Releasing such information may consistute a breach of security
for some sites. Setting the SMTP server option DISABLE_CIRCUIT to 1 disables the XCIR
command, so that the SMTP server responds with the error

550 5.7.0 XCIR command has been disabled.

to any XCIR command attempts. Setting DISABLE_CIRCUIT to 0 enables the XCIR command.
If DISABLE_CIRCUIT is not explicitly set, then use of the XCIR command is controlled by the
DISABLE_GENERAL TCP/IP-channel-specific option setting. In 8.0, the default has changed to
1, disabling the XCIR command.

SMTP server probes of the PORT_ACCESS mapping table can enable use of XCIR (overriding
a more general DISABLE_ADDRESS=0 or DISABLE_GENERAL=0 setting) for connections from
particular source IPs (e.g., the host itself, 127.0.0.1, and particular administrator systems) via
the (new in Messaging Server 7.0) $V flag.

62.4.28 TCP/IP-channel-specific options:
DISABLE_EXPAND (0 or 1)

The SMTP EXPN command is used to expand mailing lists. Exposing the contents of mailing
lists to outside scrutiny may constitue a breach of security for some sites. The SMTP server
option DISABLE_EXPAND, when set to 1, disables the EXPN command completely, causing the
SMTP server to issue the response

550 5.7.2 EXPN command has been disabled

to any EXPN command. The default value is 0, which causes the EXPN command to work
normally.

See also the expnallow, expndefault, and expndisable channel options that can be used
to control this behavior on a per-channel, rather than per-SMTP-server, basis. And see the
expandable_default MTA option which sets an MTA-wide default.

Note that mailing list expansion can also be blocked on a list-by-list basis with the Unified
Configuration alias options alias_expandable and alias_nonexpandable, or the
[EXPANDABLE] and [NONEXPANDABLE] alias file named parameters.

Note that an LDAP attribute named by the ldap_expandable MTA option (normally set
to the attributes mgmanMemberVisibility and expandable) can also be used to disable
expansion on a list-by-list basis (and can be used on user entries as well).

TCP/IP channels 62–27

DISABLE_GENERAL TCP/IP-
channel-specific option

62.4.29 TCP/IP-channel-specific options:
DISABLE_GENERAL (0 or 1)

The MTA's SMTP server implements a private command XGEN. This command returns status
information about whether a compiled configuration and compiled character set are in use.
Releasing such information may constitute a breach of security for some sites. Setting the
SMTP server option DISABLE_GENERAL to 1 disables the XGEN command, so that the MTA
responds with

550 5.7.0 XGEN command has been disabled.

to any XGEN command. The default is 0, which enables the XGEN command. In 8.0, the
default has changed to 1, disabling the XGEN command.

SMTP server probes of the PORT_ACCESS mapping table can enable use of XGEN (overriding
a more general DISABLE_GENERAL=0 setting) for connections from particular source IPs
(e.g., the host itself, 127.0.0.1, and particular administrator systems) via the (new in Messaging
Server 7.0) $V flag.

62.4.30 TCP/IP-channel-specific options:
DISABLE_SEND (0 or 1)

This option applies to the MTA's SMTP server. The SMTP server is able to support the SEND
FROM:, SAML FROM:, and SOML FROM: SMTP commands (see RFC 821) that allow for
sending a broadcast message to a logged in user on the MTA system rather than or in addition
to, an e-mail message. This support is disabled by default (DISABLE_SEND=1), so that the
MTA will respond with

550 5.7.2 SEND/SAML/SOML commands have been disabled.

to any such commands. To enable support for these SMTP commands, set DISABLE_SEND=0.

62.4.31 TCP/IP-channel-specific options:
DISABLE_STATUS (0 or 1)

The MTA's SMTP server implements a private command XSTA. This command returns status
information about the number of messages processed and currently in the MTA channel
queues, status information about current associations (TCP/IP connections), and status
information about LDAP lookup caching. Releasing such information may constitute a breach
of security for some sites. Settting the SMTP server option DISABLE_STATUS to 1 disables the
XSTA command, so that the SMTP server responds with

550 5.7.0 XSTA command has been disabled.

The default is 0, which enables the XSTA command. In 8.0, the default has changed to 1,
disabling the XSTA command.

SMTP server probes of the PORT_ACCESS mapping table can enable use of XSTA (overriding
a more general DISABLE_STATUS=0 setting) for connections from particular source IPs (e.g.,

62–28 Messaging Server Reference

https://tools.ietf.org/html/rfc821

DOT_TRANSMIT_TIME TCP/IP-
channel-specific option

the host itself, 127.0.0.1, and particular administrator systems) via the (new in Messaging
Server 7.0) $V flag.

62.4.32 TCP/IP-channel-specific options:
DOT_TRANSMIT_TIME (integer)

This SMTP/LMTP client option specifies how long to spend transmitting the dot (period)
terminating the data in an SMTP/LMTP dialogue. The default is 10 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.33 TCP/IP-channel-specific options:
FAST_SMTP_SESSION_TIME_LIMIT (integer)

This SMTP server option controls the time threshold for whether or not to create a *.data-
failed file in cases where the SMTP connection has aborted (for instance, due to an SMTP
client timing out) after the MTA SMTP server has received the final "." terminating the data,
but before the MTA has acknowledged receipt with a "250 2.5.0 Ok" message. If the transaction
(message transfer) has taken more than this amount of time, in seconds, then normally (see
the REUSE_TIMED_OUT_TRANSFERS TCP/IP-channel-specific option) a *.data-failed file
will be created in such cases where the MTA has not been able to successfully send back its
acknowledgement of receipt of the message. If a transaction has taken less than the specified
amount of time, in seconds, then a *.data-failed file will not be created. The default is 30.

62.4.34 TCP/IP-channel-specific options:
HELLO_RECEIVE_TIME (integer)

(New in Messaging Server 7.0-3.01.) This SMTP server (but not LMTP server) option controls
how long the SMTP server will wait for a client's initial HELO or EHLO command. (Prior to
the addition of this option, that timeout was controlled by the COMMAND_RECEIVE_TIME
TCP/IP-channel-specific option, which still controls the SMTP server's timeout for other
commands.) The default is 1 minute.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.35 TCP/IP-channel-specific options: HIDE_VERIFY
(0 or 1)

The SMTP VRFY command can be used to establish the legality of an address prior to actually
using it. Unfortunately this command has been abused by automated query engines in some
cases. The SMTP server option HIDE_VERIFY, when set to 1, tells the MTA not to return any
useful information in the VRFY command result; in particular, when HIDE_VERIFY=1 is
set the MTA will, for arguments that are at least syntactically legal, return for addresses that
syntactically might be "local" only:

252 2.5.0 Possible local address <address>

TCP/IP channels 62–29

IGNORE_BAD_CERT TCP/IP-
channel-specific option

or return the same response it returns regardless of HIDE_VERIFY setting for apparently
remote addresses, namely:

252 2.5.0 Possible remote address not checked

The default value is 0, which causes VRFY to act normally. See also the channel options
controlling this behavior, vrfyallow, vrfydefault, and vrfyhide.

62.4.36 TCP/IP-channel-specific options:
IGNORE_BAD_CERT (bit-encoded integer)

This SMTP client and SMTP server option controls the MTA's reaction to bad (remote)
certificates. Bit 0 (value 1) controls whether a bad client certificate is ignored even when
musttls or musttlsserver is set. Bit 1 (value 2) controls whether a bad server certificate is
ignored even when musttls or musttlsclient is set. (Note that bad certificates are always
allowed in other cases -- e.g., when maytls* is set.) The default is 3.

62.4.37 TCP/IP-channel-specific options:
INITIAL_COMMAND (string)

The SMTP client option INITIAL_COMMAND may be used to specify an initial command to
send, at the beginning of each SMTP session. By default, it is not set.

62.4.38 TCP/IP-channel-specific options:
KILLED_IP_TIMEOUT (integer seconds)

The SMTP server option KILLED_IP_TIMEOUT may be used to specify an the timeout value,
in seconds, for entries made in the internal killed IP hash table associated with the imsimta
connkill -ip command. The default is twice the value of the COMMAND_RECEIVE_TIME
TCP/IP channel-specific option.

Note that the timeout value affects storage of all IP entries, however, the setting is especially
relevant when the -sticky switch is used.

62.4.39 TCP/IP-channel-specific options:
KILLED_USER_TIMEOUT (integer seconds)

The SMTP server option KILLED_USER_TIMEOUT may be used to specify an the timeout
value, in seconds, for entries made in the internal killed user hash table associated with the
imsimta connkill -user command. The default is 600 seconds.

Note that the timeout value affects storage of all user entries, however, the setting is especially
relevant when the -sticky switch is used.

62.4.40 TCP/IP-channel-specific options: LOG_BANNER
(0 or 1)

The SMTP/LMTP client option LOG_BANNER controls whether the remote SMTP/LMTP
server banner line is included in mail.log* file entries when the logging channel option is

62–30 Messaging Server Reference

LOG_CONNECTION TCP/IP-
channel-specific option

enabled for the channel. A value of 1 (the default) enables logging of the remote SMTP server
banner line; a value of 0 disables it. LOG_BANNER also affects whether a remote SMTP/LMTP
banner line, if available, is included in bounce messages generated by the channel.

62.4.41 TCP/IP-channel-specific options:
LOG_CONNECTION (integer)

The LOG_CONNECTION TCP/IP-channel-specific option controls whether or not connection
information, e.g., the domain name of the SMTP client sending the message, is saved in
mail.log file entries and the writing of connection records when the logging channel
option is enabled for the channel; it applies to both SMTP server and SMTP client, and to both
LMTP server and LMTP client. This value is a decimal integer representing a bit-encoded
integer, the interpretation of which is given in the table below.

Table 62.2 LOG_CONNECTION TCP/IP-channel-specific option bit mask
values

Bit Value Usage
0 1 When set, connection information is included in E and D log

records.
1 2 When set, connection open/close/fail records are logged by

message enqueue and dequeue agents such as the SMTP
and X.400 clients and servers.

2 4 When set, I records are logged recording ETRN events.

Bit 0 is the least significant bit.

This TCP/IP-channel-specific option defaults to the setting of the general MTA option
log_connection (as set in the MTA option file (legacy configuration) or at the mta level in
Unified Configuration). The TCP/IP-channel-specific option may be set explicitly to override
on a per-channel basis the behavior requested by the general option. That is, a pair of settings
such as:

msconfig> set mta.log_connection 7
msconfig> set channel:tcp_submit.options.LOG_CONNECTION 0

means that arbitrary tcp_* channels will log connection information, except for the
tcp_submit channel which will not log such connection information.

62.4.42 TCP/IP-channel-specific options:
LOG_TRANSPORTINFO (0 or 1)

The SMTP/LMTP client option LOG_TRANSPORTINFO controls whether or not transport
information, such as the sending and receiving side IP numbers and port numbers:

TCP|MTA-IP|MTA-port|remote-IP|remote-port

are included in mail.log file dequeue entries when the logging channel option is enabled
for the channel. A value of 1 enables transport information logging. A value of 0 disables
it. If not explicitly set, the LOG_TRANSPORTINFO TCP/IP-channel-specific option defaults

TCP/IP channels 62–31

MAIL_TRANSMIT_TIME TCP/IP-
channel-specific option

to 1 (transport information logging enabled) if at least one of bits 0 or 3 (values 1 or 8) is
set for the MTA option log_connection (log_connection as set in the MTA option
file in legacy configuration, or at the mta level in Unified Configuration), and otherwise
LOG_TRANSPORTINFO defaults to 0. The LOG_TRANSPORTINFO TCP/IP-channel-specific
option may be set explicitly for a channel to control the logging of transport information
regardless of whether connection logging is generally enabled.

LOG_TRANSPORTINFO also affects whether transport information, if available, is included in
bounce messages generated by the channel.

62.4.43 TCP/IP-channel-specific options:
MAIL_TRANSMIT_TIME (integer)

This SMTP/LMTP client option specifies how long to spend transmitting the SMTP command
MAIL FROM:. The default is 10 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.44 TCP/IP-channel-specific options:
MAILBOX_BUSY_FAST_RETRY (integer)

(New in MS 6.3.) This LMTP client option controls whether the LMTP client requests
that the Job Controller schedule the message's next retry attempt with a special "short
delay" (overriding the channel's usual backoff setting) in cases of temporary errors with a
4.2.1 extended response code. Since 4.2.1 is the extended response code used for the "Mailbox
is busy" (IMAP_MAILBOX_LOCKED) error condition, which can occur when a mailbox is
locked by another process due to another message delivery or to an IMAP message operation,
in such cases attempting another delivery "quickly" is likely to be useful.

The default is 1, meaning to ask the Job Controller for a fairly quick retry. Setting the option
to 0 disables the override of backoff. Positive values greater than 1 result in a retry, but not
quite as quick of one. The default value of 1 corresponds to the (not configurable) formula that
the ims-ms channel uses for such retries. (In 6.3 and 7.0.5.32 and later, the formula used is n +
rand() % (120 * n) seconds. In release 7.0 through 7.0.5.31.0, the formula used is n + rand() % (4
* n) seconds.)

As of MS 8.0.2.2, this option is also supported by ims-ms channels.

62.4.45 TCP/IP-channel-specific options:
MAX_A_RECORDS (integer)

This SMTP/LMTP client option specifies the maximum number of A records that the MTA
should try using when attempting to deliver a message. The default is no limit.

62.4.46 TCP/IP-channel-specific options:
MAX_B_ENTRIES (integer)

New in MS 6.2. This TCP/IP-channel-specific SMTP server option specifies the maximum
number of "B" entries per SMTP connection session that the server will write to the MTA

62–32 Messaging Server Reference

MAX_CLIENT_THREADS TCP/
IP-channel-specific option

message transaction log (mail.log*) file. Bad commands sent to the SMTP server are
logged as "B" records in the MTA's message log file (mail.log*), if message logging has
been enabled (the logging channel option). In such "B" entries, the recipient address
field will contain the bad command that was rejected by the SMTP server as invalid, while
the diagnostic field will contain the response the SMTP server gave. Once the value of
MAX_B_ENTRIES has been reached, the SMTP server writes its final (for that session) "B"
record, with the string

(limit reached; last B record for this session)

appended to the diagnostic field. The default value for MAX_B_ENTRIES is 10. Note
that keeping this value set to a reasonable size keeps the MTA from wasting too much
time writing "B" entries for unrecognized/illegal command attempts, so that deliberate
fake command attempts will not distract the MTA from more important work; i.e., it
protects against a certain form of "denial of service" attack. See also the (new in MS 6.2)
disconnectbadcommandlimit channel option.

62.4.47 TCP/IP-channel-specific options:
MAX_CLIENT_THREADS (integer)

This SMTP/LMTP client option takes an integer number indicating the maximum number of
simultaneous, outbound connections that the client channel program will allow. Note that
multiple processes may be used for outbound connections, depending on how you have
channel processing pools set up. This TCP/IP-channel-specific option controls the number of
threads per process. The default value is 10.

62.4.48 TCP/IP-channel-specific options:
MAX_H_ENTRIES (integer)

New in MS 8.1. This TCP/IP channel SMTP server option specifies the maximum number of "J"
mail.log* entries to write during a single SMTP connection session. The default is 10.

Note that keeping this value set to a reasonable size keeps the MTA from wasting too much
time writing "J" entries for VRFY and EXPN commands, so that deliberate abuse of these
commands will not distract the MTA from more important work; i.e., it protects against a
certain form of "denial of service" attack.

When this limit is reached, the final "J" record for the session will contain (in addition to the
"regular" text in a "J" record) the extra text "(limit reached; last H record for this session)".

62.4.49 TCP/IP-channel-specific options:
MAX_HELO_DOMAIN_LENGTH (integer)

This SMTP/LMTP server option may be used to specify a maximum length of host name that
a remote client may put on its HELO or EHLO line. If a longer name is seen on the HELO or
EHLO line, then the SMTP or LMTP server will reject the command with an error (in the case
of the SMTP server) of

501 5.5.0 Argument to HELO is too long.

TCP/IP channels 62–33

MAX_J_ENTRIES TCP/IP-channel-
specific option

or

501 5.5.0 Argument to EHLO is too long.

or (in the case of the LMTP server) of

501 5.5.0 Argument to LHLO is too long.

as appropriate. The default is no limit.

62.4.50 TCP/IP-channel-specific options:
MAX_J_ENTRIES (integer)

This TCP/IP channel SMTP server option specifies the maximum number of "J" mail.log*
entries to write during a single SMTP connection session. (Prior to MS 6.2 it also limited how
many increments of the "Rejected" counter would occur during a single transaction.) The
default is 10.

Note that keeping this value set to a reasonable size keeps the MTA from wasting too much
time writing "J" entries for unsuccessful submission attempts, so that deliberate unsuccessful
submission attempts will not distract the MTA from more important work; i.e., it protects
against a certain form of "denial of service" attack.

When this limit is reached, the final "J" record for the session will contain (in addition to the
"regular" text in a "J" record) the extra text "(limit reached; last J record for this session)". (As
of MS 6.2, the "Rejected" counter will continue to be incremented for each additional rejected
attempt during the session.)

62.4.51 TCP/IP-channel-specific options:
MAX_MX_RECORDS (integer <= 32)

This TCP/IP channel SMTP/LMTP client option specifies the maximum number of MX records
that the MTA should try using when attempting to deliver a message. The maximum value is
32, which is also the default. (Note that the IP_ACCESS mapping table provides an alternate
means to achieve such limits.)

62.4.52 TCP/IP-channel-specific options:
MAX_SERVER_THREADS (integer; <= 47 on Solaris)

This TCP/IP channel SMTP/LMTP server option has little relevance today, and the little
effect is does have is Solaris-specific. (Formerly, for the PMDF, pre-Dispatcher multithreaded
SMTP server, it controlled the maximum number of simultaneous, inbound connections
that the pre-Dispatcher multithreaded SMTP server program would allow. Note that since
only one such server process was allowed, this option effectively controlled the total number
of simultaneous, inbound SMTP connections that older versions of PMDF could handle.)
Nowadays, this option's sole effect is that on Solaris only, it is taken into account in deciding
the maximum number of file descriptors allowed for an SMTP server process. Since this value
is multiplied by 5 and then 20 added, the effect of the default of 40 is that a maximum of 220
file descriptors are allowed.

62–34 Messaging Server Reference

OPEN_CONNECTION_TIME
TCP/IP-channel-specific option

The default value is 40. Note that setting a value of 48 or more on Solaris will cause the server
process to exit with an error.

62.4.53 TCP/IP-channel-specific options:
OPEN_CONNECTION_TIME (integer)

This option controls how long the SMTP/LMTP client waits for a TCP/IP connection to open.
The default is 2 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.54 TCP/IP-channel-specific options:
PACKET_SIZE_LIMIT (integer)

RESTRICTED. This option exists for potential debugging purposes; it should not normally be
set by sites.

The PACKET_SIZE_LIMIT TCP/IP-channel-specific option is available both for SMTP and for
LMTP. The default is 4096. Attempts to set this option to more than 4096 will result in a value
of 4096 being used.

62.4.55 TCP/IP-channel-specific options:
PROXY_PASSWORD (string)

The legacy configuration TCP/IP-channel-specific option PROXY_PASSWORD has been replaced
in Unified Configuration by the smtpproxypassword MTA option.

In legacy configuration, in order for the MMP to perform SMTP proxying, this SMTP server
option must be set to the same "secret" password as the MMP's smtpproxypassword value.
If the PROXY_PASSWORD TCP/IP-channel-specific option is not set, client attempts to use the
XPEHLO command will receive an error:

503 5.5.0 Proxy support is not enabled.

If the PROXY_PASSWORD TCP/IP-channel-specific option is set but its value does not match the
MMP's value, client attempts to use the XPEHLO command will receive an error:

535 5.7.8 SMTP proxy authentication check failed.

62.4.55.1 XPEHLO proxy validation: proxy_hash_algorithm (hash
algorithm name)

New in MS 8.1.0.3. The proxy_hash_algorithm MTA option controls what hash algorithm
the MTA uses to authenticate the contents of an XPEHLO command. The value should be a
hash algorithm supported by the MTA, one of MD2, MD4, MD5, SHA1, SHA256, SHA512,
MD128, or MD160. MD5 is the default. Note that the setting of this option must be the same
across a deployment for successful operation of the XPEHLO command.

TCP/IP channels 62–35

RCPT_TRANSMIT_TIME TCP/IP-
channel-specific option

62.4.56 TCP/IP-channel-specific options:
RCPT_TRANSMIT_TIME (integer)

This SMTP/LMTP client option specifies how long to spend transmitting the SMTP command
RCPT TO:. The default is 10 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.57 TCP/IP-channel-specific options:
REJECT_RECIPIENTS_PER_TRANSACTION (integer)

This SMTP server option may be used to specify a limit on the number of recipients that will
be accepted during a single transaction. For the SMTP server, it also limits the number of VRFY
address verifications that may be performed. (Note that the count of actual recipients, RCPT
TO:, is separate from the count of verifies, VRFY:; that is, VRFY:'s do not count against the
RCPT TO: limit, nor do RCPT TO:'s count against the VRFY: limit; each is limited independently
to the REJECT_RECIPIENTS_PER_TRANSACTION value.) If the RCPT TO: limit is exceeded,
then at the DATA command the entire message to all recipients will be rejected with a
temporary error:

451 4.5.3 Transaction blocked; too many recipients specified

(Compare with ALLOW_RECIPIENTS_PER_TRANSACTION which rejects merely the excess
recipients with a

451 4.5.3 Too many recipients specified

error at the RCPT TO: command, allowing the message to be submitted to the initial
recipients.) Attempts to VRFY more addresses than the limit will be rejected with a

451 4.5.3 Verification blocked; too many operations performed

error. The default is no limit. Note that if both ALLOW_RECIPIENTS_PER_TRANSACTION
and REJECT_RECIPIENTS_PER_TRANSACTION are set, with
REJECT_RECIPIENTS_PER_TRANSACTION being set to a larger
value than ALLOW_RECIPIENTS_PER_TRANSACTION, then once
ALLOW_RECIPIENTS_PER_TRANSACTION is exceeded any additional recipients receive a
temporary error, and once REJECT_RECIPIENTS_PER_TRANSACTION is exceeded then the
entire message is rejected with a temporary error.

See also the recipientcutoff and disconnectrejectlimit channel options, and the
ldap_recipientcutoff and ldap_domain_attr_recipientcutoff MTA options.

62.4.58 TCP/IP-channel-specific options:
REUSE_TIMED_OUT_TRANSFERS (0 or 1)

This SMTP server option controls creation and use of *.data-failed files; the default is
1, meaning that such files may be created and used. More specifically, this option controls

62–36 Messaging Server Reference

SESSION_TIME TCP/IP-channel-
specific option

whether the MTA writes and uses IMTA_QUEUE:tcp_*/spool/*.data-failed files
(MS 6.3 and earlier) or in JS Messaging Server 7.0, $DATAROOT/queue/tcp_*/spool/
*.data-failed files. If enabled, the MTA writes such a file in cases where an SMTP client
connection is dropped after the MTA has received the final "." terminating the message data,
but before the MTA has successfully sent its "250 2.5.0 Ok." message acknowledging the receipt
of the message back to the client, and checks for the existence of such a file when receiving an
incoming message (so as to detect a "duplicate" attempted message submission). When such
files are being created/used, the MTA will do a hash of each incoming message to compare
the hash against any stored *.data-failed files to determine whether the current incoming
message had in fact already been received in a previous transaction. When the MTA does see
such a case, the MTA will issue a

250 2.5.0 Prior aborted transfer used

success back to the sending client (after the client finishes sending the message data).
The MTA will only create such a *.data-failed file in the case of an incoming
message where there was a significant delay in our sending of the "250 ok"; see the
FAST_SMTP_SESSION_TIME_LIMIT TCP/IP-channel-specific option. The MTA assumes
that cases of "short" disconnect times are where it's just a poorly behaved client, one that
likes to disconnect immediately without waiting for the acknowledgement, that won't in
fact be resending the message. Whereas the "long" timeout case, where the MTA will still
make the *.data-failed file, is a case where it's reasonable that the client timed out on the
connection, and the client likely will feel a need to try resending the message.

The *.data-failed files are normally retained in the incoming TCP/IP channel's spool
subdirectory for the number of days specified by an IMTA_TCP_FLAG_RETENTION Tailor
option, which defaults to 7 if not explicitly set. (The return_units MTA option has no
effect here; this Tailor option is always interpreted in units of days.) Thus by default (no
IMTA_TCP_FLAG_RETENTION Tailor option set) such *.data-failed files are retained for
seven days. Note that disabling the MTA's SMTP server creation and use of *.data-failed
files by setting REUSE_TIMED_OUT_TRANSFERS=0 can provide a noticable performance
(throughput) increase---perhaps 30% for the SMTP server; the downside is that disabling
their use means that the MTA will no longer detect and avoid certain cases of duplicate
submissions of messages, so users may receive "duplicate" copies of messages that might have
been avoided.

62.4.59 TCP/IP-channel-specific options: SESSION_TIME
(integer)

(New in Messaging Server 7.0-3.01.) This SMTP server (but not LMTP server) option controls
the maximum amount of time, in minutes, that an SMTP session is allowed before the session
will be disconnected. The default is 20 minutes. Note that, for performance reasons, this value
is checked only once every 10 reads (in order to save on time() calls). Once the SMTP server
notices that the specified session time limit has been exceeded, the session will be disconnected
with an SMTP error:

450 4.7.0 Maximum session time of n minutes has been exceeded

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

TCP/IP channels 62–37

Delay threshold TCP/IP-channel-
specific option

62.4.60 TCP/IP-channel-specific options:
SIZE_DELAY_THRESHHOLDS, SIZE_DELAY_AMOUNTS,
RECIPIENT_DELAY_THRESHHOLDS,
RECIPIENT_DELAY_AMOUNTS,
TRANSACTION_DELAY_THRESHHOLDS,
TRANSACTION_DELAY_AMOUNTS (comma-separated
list of integers)

These are SMTP server options; (they are also supported by the LMTP servers, though unlikely
to be useful in an LMTP context). The number of total message size, number of recipients,
and number of transactions are tracked by the SMTP server on a per-session basis. And via
these options, the SMTP server can impose punitive delays in responding when various
threshhold levels are exceeded. That is, the SMTP server can in gradated fashion "slow down"
its responses to clients that are submitting "large" numbers of "large" messages to "large"
numbers of recipients.

These options come in pairs, each containing a list of up to ten, comma-separated integers.
(The default is all zeros.) One list is the threshhold list, which specifies the point past which
the additional delay specified by the corresponding number in the other list applies. The delay
amounts are additive; that is, each delay value specifies an additional delay to impose, rather
than representing an absolute delay. The current delay in effect is maximized with the result of
summing the three contributors:

D_c=max(D_c,D_t+D_r+D_s)

Here D_c is the current delay, D_t is the delay due to transactions being exceeded, D_r is the
delay due to recipients being exceeded, and D_s is the delay due to size being exceeded.

Note that the SIZE_DELAY_THRESHHOLDS are in bytes, not blocks. The *_DELAY_AMOUNTS
values are interpreted as hundredths of seconds.

See also MeterMaid for an alternate way of implementing such intentional response delays.

62.4.61 TCP/IP-channel-specific options: SSL_CLIENT (0
or 1)

(New in 7.0.5) If set to 1, SSL/TLS negotiation will be performed immediately after any
connection is established by the SMTP client (without any use of STARTTLS). It is thus the
client analogue of the Dispatcher's ssl_ports option (TLS_PORT Dispatcher option in legacy
configuration) for servers. The default for SSL_CLIENT is 0, meaning that such automatic
(non STARTTLS) SSL/TLS negotiation will not be done by the client. (Client negotiation via
STARTTLS is a separate issue and may still be performed, depending upon configuration; see
the *tlsclient channel options.)

SSL_CLIENT is useful for establishing point to point links to other systems using smtps: on
port 465. In particular, a typical use of the SSL_CLIENT option would be on a special tcp_*
channel that has port 465 set; e.g.:

62–38 Messaging Server Reference

STARTTLS_FAILURE_RECONNECT_DELAY
TCP/IP-channel-specific option

msconfig> show channel:tcp_ssl_friend.port
instance.channel:tcp_ssl_friend.port = 465
msconfig> show channel:tcp_ssl_friend.options.SSL_CLIENT
instance.channel:tcp_ssl_friend.options.SSL_CLIENT = 1

62.4.62 TCP/IP-channel-specific options:
STARTTLS_FAILURE_RECONNECT_DELAY (integer)

(New in 7.0.5.32.) When maytlsclient is in effect, this SMTP/LMTP client option specifies,
in centiseconds, how long to wait after a TLS negotiation failure before reattempting
connection without use of TLS. The default is 200.

62.4.63 TCP/IP-channel-specific options:
STATUS_DATA_RECEIVE_TIME (integer)

This SMTP/LMTP client option specifies how long to wait to receive the SMTP response to our
sent data; i.e., how long to wait to receive a "250" (or other) response to the dot terminating sent
data. The default value is 10 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

See also the STATUS_DATA_RECV_PER_ADDR_TIME,
STATUS_DATA_RECV_PER_BLOCK_TIME, and
STATUS_DATA_RECV_PER_ADDR_PER_BLK_TIME TCP/IP-channel-specific options.

62.4.64 TCP/IP-channel-specific options:
STATUS_DATA_RECV_PER_ADDR_TIME (floating point
value)

This SMTP/LMTP client option specifies an adjustment factor for how long to wait to receive
the SMTP response to our sent data based on the number of addresses in the MAIL TO:
command. This value is multiplied by the number of addresses and added to the base wait
time (specified with the STATUS_DATA_RECEIVE_TIME TCP/IP-channel-specific option). The
default is 0.083333 in units of minutes per address.

The base unit time is in units of minutes by default; as of MS 8.0.2.3 this may be adjusted with
the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option.

62.4.65 TCP/IP-channel-specific options:
STATUS_DATA_RECV_PER_BLOCK_TIME (floating
point value)

This SMTP/LMTP client option specifies an adjustment factor for how long to wait to
receive the SMTP response to our sent data based on the number of blocks sent. This value
is multiplied by the number of blocks and added to the base wait time (specified with the
STATUS_DATA_RECEIVE_TIME TCP/IP-channel-specific option). The default is 0.001666

TCP/IP channels 62–39

STATUS_DATA_RECV_PER_ADDR_PER_BLK_TIME
TCP/IP-channel-specific option

in units of minutes per block. (For purposes of this option, a block is always 512 bytes, not
whatever block size might be defined by the block_size MTA option.)

The base unit time is in units of minutes by default; as of MS 8.0.2.3 this may be adjusted with
the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option.

62.4.66 TCP/IP-channel-specific options:
STATUS_DATA_RECV_PER_ADDR_PER_BLK_TIME
(floating point value)

This SMTP/LMTP client option specifies an adjustment factor for how long to wait to receive
the SMTP response to our sent data based on the number of addresses (in the MAIL TO:
command) per number of blocks sent. This value is multiplied by the number of addresses
per block and added to the base wait time (specified with the STATUS_DATA_RECEIVE_TIME
TCP/IP-channel-specific option). The default is 0.003333 (in units of minutes per block per
address). (For purposes of this option, a block is always 512 bytes, not whatever block size
might be defined by the block_size MTA option.)

The base unit time is in units of minutes by default; as of MS 8.0.2.3 this may be adjusted with
the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option.

62.4.67 TCP/IP-channel-specific options:
STATUS_MAIL_RECEIVE_TIME (integer)

This SMTP/LMTP client option specifies how long to wait to receive the initial 220 banner
line, how long to wait to receive a response to an HELO, EHLO, or RSET command, and how
long to wait to receive the SMTP response to a sent MAIL FROM: command. The default is 10
minutes

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.68 TCP/IP-channel-specific options:
STATUS_RCPT_RECEIVE_TIME (integer)

This SMTP/LMTP client option specifies how long to wait to receive the SMTP response to a
sent RCPT TO: command. The default value is 10 minutes.

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.69 TCP/IP-channel-specific options:
STATUS_RECEIVE_TIME (integer)

This SMTP/LMTP client option specifies how long to wait to receive the SMTP reply to general
SMTP commands, (replies other than those with explicitly specified time out values set using
other specifically named options). The default value is 10 minutes.

62–40 Messaging Server Reference

STATUS_TRANSMIT_TIME TCP/
IP-channel-specific option

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.70 TCP/IP-channel-specific options:
STATUS_TRANSMIT_TIME (integer)

This SMTP/LMTP server option specifies how long to spend transmitting the SMTP/LMTP
reply to an SMTP/LMTP command. The default value is 10 minutes

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.71 TCP/IP-channel-specific options:
TLS_NEGOTIATION_TIME (integer)

This SMTP/LMTP client option specifies how long the SMTP/LMTP client and server will wait
for the opposite end during TLS negotiation. The default value is 1 minute.

The default units for this option are minutes. The units of this option may be changed
with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular, setting
TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.72 TCP/IP-channel-specific options:
TIMEOUT_MULTIPLIER (integer)

This SMTP/LMTP client/server TCP/IP-channel-specific option specifies a multiplier value that
is applied to various other TCP/IP-channel-specific timeout options. While any positive value
is allowed, settings should be limited to 60 (the default), which causes the various associated
timeout options to be interpreted in minutes, or 1, which causes the timeouts to be interpreted
in seconds.

62.4.73 TCP/IP-channel-specific options: TRACE_LEVEL
(0, 1, or 2)

This TCP/IP channel SMTP server and SMTP client option, and LMTP server and LMTP
client option, controls whether TCP/IP level trace is included in debug log files. The default
value is 0, meaning that no TCP/IP packet traces are included; a value of 1 tells the MTA to
include TCP/IP packet traces in any debug log files; a value of 2 tells the MTA to include some
additional information, such as DNS lookup information, in addition to the basic TCP/IP
packet traces.

See also the $G flag of the PORT_ACCESS mapping table, which can be used to selectively
enable TRACE_LEVEL=2 only for particular incoming SMTP/SMTP SUBMIT/LMTP
connections.

62.4.74 TCP/IP-channel-specific options:
TRANSACTION_LIMIT_RCPT_TO (0 or 1)

TCP/IP channels 62–41

TRANSACTION_TIME TCP/IP-
channel-specific option

This SMTP/LMTP server option affects the MTA's behavior once
ALLOW_TRANSACTIONS_PER_SESSION has been exceeded. The default is 0, meaning that
once ALLOW_TRANSACTIONS_PER_SESSION has been exceeded, then the MTA will reject
subsequent transactions (during that same session) at the MAIL FROM: command. If set to 1,
the subsequent transactions will instead be rejected at the RCPT TO: command. In either case,
the rejection will be done via an error:

451 4.5.3 No more transactions allowed

62.4.75 TCP/IP-channel-specific options:
TRANSACTION_TIME (integer)

(New in Messaging Server 7.0-3.01.) This SMTP server (but not LMTP server) option controls
the maximum amount of time that an SMTP transaction is allowed before the session will
be disconnected. The default is 600 minutes. Note that, for performance reasons, this value
is checked only once every 10 reads (in order to save on time() calls). Once the SMTP server
notices that the specified transaction time limit has been exceeded, the session will be
disconnected with an SMTP error:

450 4.7.0 Maximum transaction time of n minutes has been exceeded

The default units for this option are minutes. As of MS 8.0.2.3, the units of this option may
be changed with the TIMEOUT_MULTIPLIER TCP/IP-channel-specific option. In particular,
setting TIMEOUT_MULTIPLIER to 1 will change the units of this option to seconds.

62.4.76 TCP/IP-channel-specific options:
WINDDOWN_TIMEOUT (integer)

This SMTP/LMTP client option sets the time, in seconds, to wait before killing active delivery
threads. The default is 60*90 seconds (i.e., 90 minutes).

62.5 DEQUEUE_ACCESS mapping table
New in 8.0.2.3 is the DEQUEUE_ACCESS mapping table, which is consulted at the beginning of
message dequeue processing.

The default probe for the DEQUEUE_ACCESS mapping is of the form:

channel|filename|queue-time|envelope-from|auth-parameter|auth-sender|priority|domain

where channel is the channel from which the message is being dequeued, filename is
the full file name of the message, queue-time is the approximate time in seconds that the
message has been in the queue (or -1 if that value cannot be determined), envelope-from
is the envelope From address for this message, auth-parameter is the unencoded value of
any MAIL FROM AUTH= parameter associated with the message, auth-sender is the mail
address associated with any authentication identity used to submit the message, priority
is the MT-priority value for the message, and domain is the DNS name of the server to which
the message is to be sent. Note that the mapping_paranoia MTA option, if set, will cause
any vertical bar characters that would have been in the envelope-from, auth-parameter,
auth-sender, or domain fields to be replaced by the specified character.

62–42 Messaging Server Reference

AUTH_ACCESS mapping table

As of MS 8.0.2.3, the $R input flag will be set if the message is being accessed in read-only
mode by a utility such as imsimta qm.

If bit 11, value 4096, of the include_conversiontag MTA option is set the probe changes to
include the conversion tag for the message:

channel|filename|queue-time|envelope-from|auth-parameter|auth-sender|priority|conversiontag|domain

If bit 1, value 2, of the include_retries MTA option is set the probe changes to include the
count of previous retries for the message:

channel|filename|retry-count|queue-time|envelope-from|auth-parameter|auth-sender|priority|domain

The DEQUEUE_ACCESS mapping should return a list of values delimited by vertical bars ("|").

(New in MS 8.1.0.6) The $> flag is used to indicate that a smartsend logging result has been
returned. A value is consumed from the returned string and appended to the smartsend log
value. Note that this value is only logged if the log_smartsend MTA option is set.

If $N is set by the mapping the current dequeue action is aborted without incrementing the
retry count. If the $S flag is also set a new backoff time in seconds, expressed as an integer, is
read from the mapping result string.

62.6 AUTH_ACCESS mapping table
New in 7.0.5 is the AUTH_ACCESS mapping table, which provides the means to exercise
increased control over SMTP session characteristics. This access mapping is consulted during
SMTP/LMTP client operations just prior to initiating client connections, and in particular,
prior to DNS or host table lookup of destination domains. (In particular, and as compared to
the later IP_ACCESS mapping, AUTH_ACCESS is consulted prior to MX record lookups.) The
AUTH_ACCESS mapping allows control or override of various SMTP session level features.

The default probe for the AUTH_ACCESS mapping is of the form:

channel|filename|queue-time|envelope-from|auth-parameter|username|domain

where channel is the channel from which the message is being dequeued, filename is
the full file name of the message, queue-time is the approximate time in seconds that
the message has been in the queue (or -1 if that value cannot be determined), envelope-
from is the envelope From address for this message, auth-parameter is the unencoded
value of any MAIL FROM AUTH= parameter associated with the message, username is
the authentication identity used to submit the message (plus an asterisk character suffix),
and domain is the DNS name of the server to which the message would (if not overridden
by this mapping) be sent. Note that the username is not necessarily the same as the user's
canonical e-mail address (mail attribute value) or any other LDAP attribute value; rather, the
username is a canonical identity constructed as uid@canonical-domain. Note also that
the mapping_paranoia MTA option, if set, will cause any vertical bar characters that would
have been in the envelope-from, auth-parameter, username, or domain fields to be
replaced by the specified character.

New in MS 8.0.2.2, If bit 11, value 2048, of the include_conversiontag MTA option is set
the probe changes to include the conversion tag for the message:

channel|filename|queue-time|envelope-from|auth-parameter|username|conversiontag|domain

TCP/IP channels 62–43

AUTH_ACCESS mapping table

New in MS 8.0.2.3, if bit 0, value 1, of the include_retries MTA option is set the probe
changes to include the count of previous retries for the message:

channel|filename|retry-count|queue-time|envelope-from|auth-parameter|username|domain

The mapping template (right hand side) can contain a number of flags plus a series of vertical
bar separated fields. Setting a flag causes the consumption of zero or more fields, processed in
the order, and with the effects, shown in Table of AUTH_ACCESS mapping output flags.

Table 62.3 AUTH_ACCESS mapping output flags

Flag Fields Description
$U Enable SMTP client debugging for this transaction.

No fields are consumed.
$n error-text (New in MS 8.0.2.3.) Abort this connection attempt

for this message. One field is used to specify the
error text. No further processing of the mapping
result is performed.

$N error-text Permanently fail the first recipient of the message
and return a DSN. The delivery operation
continues with the next recipient. The entire
message fails if there is only one remaining
recipient. One field is used to specify the error text.
No further processing of the mapping result is
performed.

$F env-from Override the message's envelope From address.
One field is used to specify that address.

$A auth-param Override the MAIL FROM AUTH= parameter. One
field is used to specify the override value.

$Q authorization|username|password Override the credentials used for PLAIN
authentication. Three fields are consumed with
use of this flag: the first specifies an authorization
identity (normally left blank), the second specifies
an authentication identity (the "username"), and the
third specifies a password.

$/ Treat a PLAIN authentication attempt failure as
an SMTP temporary failure. (Normally, when this
flag is not set, such an authentication failure is
instead treated as: ignored when maysaslclient
is in effect, vs. causing an SMTP permanent failure
(bounce) when mustsaslclient is in effect.)

$D host Override the DNS name of the server to which
the message will be sent. One field is used to
specify the new DNS name. (Note that use of this
flag causes the TCP/IP-channel-specific option
SSL_CLIENT to be ignored; instead use $S to
enable smtps: use.)

$P port Override the value of the port channel option
(default 25). One field is used to specify the new
port number. (Note that use of this flag causes the

62–44 Messaging Server Reference

AUTH_ACCESS mapping table

TCP/IP-channel-specific option SSL_CLIENT to be
ignored; instead use $S to enable smtps: use.)

$S Enables the use of TLS (smtps:). No fields are
consumed. Note that this flag enables smtps: use
even when $D or $P has also been used.

$X Disable MX lookups for connection establishment
(overriding any channel *mx channel option
setting). No fields are consumed.

$o (New in MS 8.1.0.2) Treat nonauthoritative DNS
lookup failures as temporary failures.

$O (New in MS 8.1.0.2) Treat all DNS lookup failures
as temporary failures.

$M Enable MX lookups for connection establishment
(overriding any channel *mx keyword setting); the
effect is randommx MX record use. No fields are
consumed.

$B lastresort-server Set a lastresort value, overriding the value
specified by the lastresort channel option. One
field is consumed as the lastresort server name.

$! min-version|max-version New in MS 8.1.0.1. Set tlsminversion and
tlsmaxversion value, overriding the values
specified by the corresponding channel options.
Two field are consumed as the minimum and
maximum values. Either field may be left blank to
avoid affecting the corresponding value.

$T Force musttlsclient on for this session. No
fields are consumed.

$H Disable TLS for this session. No fields are
consumed.

$G Force mustsaslclient on for this session. No
fields are consumed.

$I Disable SASL for this session. No fields are
consumed.

$Z (New in MS 8.1.0.1) Disable CHUNKING for this
session. No fields are consumed.

$J interface-address (New in 8.0.2.2) Use the specified value as the
source IP address. A single field containing the
IP address to use is consumed. If a connection is
currently open it will be closed unless the interface
address has not changed.

$+. host-name (New in 8.0.2.3) Use the specified value as the
host name in any EHLO/HELO/LHLO command
that the client issues. A single field containing the
banner host name is consumed.

$V skip-count (New in 8.0.2.3) Specify a new skip count to be
encoded in the queue file name for the message.
This flag is used by the smartsend plugin and is not

TCP/IP channels 62–45

AUTH_ACCESS mapping table

intended for other purposes. One field containing
an unsigned integer skip value is consumed.

$+R attempt-count (New in 8.0.2.3) Specify an override value for the
ATTEMPT_TRANSACTION_PER_SESSION TCP/IP-
specific channel option. A single field containing
the override value is consumed.

$(max-mx-count (New in 8.0.2.3) Specify an override value for the
MAX_MX_RECORDS TCP/IP-specific channel option.
A single field containing the override value is
consumed.

$+% backoff-time (New in 8.0.2.3) Specify an override value for the
backoff time in the event this delivery attempt fails
with a temporary error. A single field containing
the time in seconds is consumed.

$* header1,header2,... (New in 8.1.0.1) Specifies a list of header fields to
log in any transaction log entries that are generated.
A single field is consumed.

$> smartsend-log-string (New in 8.1.0.6) Specified a string to append to the
smartsend log value. A single field is consumed.

$, deaccess-parameter-string (New in 8.0.2.3) Specify the deaccess parameter
string to pass to the AUTH_DEACCESSS mapping.
Note that this consumes all remaining arguments in
the mapping result stirng.

$Y Perform no special overrides and send message
normally. This explicit "no-op" result is useful for
specifying mapping table match cases that cause
SMTP client processing to proceed normally. No
fields are consumed.

Input flag comparisons Description
$:| Match only if external material (e.g., the envelope

From address) in the probe contained a vertical bar
$;| Match only if no vertical bars were present in any

external material in the probe
$:S (New in MS 8.0.2.3) Match only if a connection to

the destination for this message is already open and
is going to be reused.

$;S (New in MS 8.0.2.3) Match only if no SMTP
connection is open or if one is open it is going to be
closed prior to processing this message.

$:T (New in MS 8.0.2.3) Match only if STARTTLS is
allowed or required for this connection

$;T (New in MS 8.0.2.3) Match only if STARTTLS is not
allowed for this connection.

$:U (New in MS 8.0.2.3) Match only if smtps: is allowed
or required for this connection

$;U (New in MS 8.0.2.3) Match only if smtps: is not
allowed for this connection.

62–46 Messaging Server Reference

AUTH_ACCESS mapping table

As of MS 8.1.0.1, there are also a number of input flags:

Table 62.4 AUTH_ACCESS mapping input flags

Flag Description
$S Set if a connection is currently open that has the potential to be reused.
$D Set if the destination host associated with the currently open connection matches the

destination host for the current message. $D is only set if $S is also set.
$T Set if current settings allow or require TLS.
$U Set if current settings allow or require smtps.

The AUTH_ACCESS mapping table can be used for a variety of purposes, including various
special-purpose, targetted, override effects on SMTP connections. However, the combination
of effects it allows is especially intended to facilitate special-purpose identity/authentication
scenarios, such as effective "on behalf of submission", also called "third party submission".

For instance, suppose that local user adam.brown@local.domain.com also has a remote
identity and mailbox as abrown@remote.domain.com, and that this local user when
submitting messages through your MTA would sometimes, for some messages, like those
message to go out under the remote identity/address. In the example below, for specificity,
assume further that the user client will authenticate when submitting such messages,
submitting with the user's normal, local address as the envelope From, but with a MAIL
FROM AUTH= parameter set to the remote address. Then an AUTH_ACCESS mapping to
redirect such messages to a remote.domain.com server and submit the messages using the
remote identity could be:

AUTH_ACCESS

 tcp_local|*|*|adam.brown@local.domain.com|abrown@remote.domain.com|$*adam.brown@local.domain.com|* \
$Fabrown@remote.domain.com|$Q|abrown@remote.domain.com|remotepassword|$/$Dremote.domain.com|$P587

If such a setup is desired for multiple users, rather than just one or a few special users hard-
coded (with their remote passwords!) into the AUTH_ACCESS mapping, then a more real-world
example might also include storing such users' remote credentials (remote identity and remote
password) in some data repository, for instance, perhaps in the regular user LDAP directory,
or perhaps in a special LDAP directory accessed via extldap: URLs, or even in some other
database, and then looking up the addresses and credential data when messages come through
with a MAIL FROM AUTH= parameter differing from the envelope From. Note that in such
setups, one of the most challenging aspects (not from the MTA configuration point of view, but
rather from the design and maintenance of the data point of view) is likely to be establishing,
and maintaining, a tight correspondence between each such local user identity and the remote
identity (or identities) that local user is authorized to use.

In AUTH_ACCESS mapping example: third party submission, when SMTP AUTH was used
to submit a message so that a username is present for the message, if also a MAIL FROM
AUTH= parameter is present and differs from the username, then the username is looked
up in LDAP and that user's LDAP entry is checked for whether a value of a special LDAP
attribute, here assumed to be mailRemoteIdentity, matches the MAIL FROM AUTH=
parameter value.

The user data is assumed, for purposes of AUTH_ACCESS mapping example: third party
submission, to be organized in two LDAP directories: the usual user/group LDAP directory

TCP/IP channels 62–47

Local user entry in LDAP example

(containing, in addition to all the usual attributes for users, a special site-added, potentially
multi-valued, mailRemoteIdentity attribute, used to store any remote addresses that
user is permitted to use), as well as a so-called "external" LDAP directory (containing remote
domain names under which are stored the remote addresses with their credentials and an
attribute for each remote address specifying which local address(es) are permitted to use
that remote identity). See AUTH_ACCESS mapping example: Excerptoflocal user entry in
user/group LDAP and AUTH_ACCESS mapping example: Excerpt of remote identity entries
in alternate (external) LDAP for example excerpts of such a data setup. Administratively,
the management and updating and access to the data in the "external" LDAP directory may
well be somewhat separate and different than for the usual user/group LDAP directory. See
the MTA options for configuration of external LDAP lookups, discussed in LDAP external
directory lookup MTA options.

62.6.1 AUTH_ACCESS mapping example: Excerpt of
local user entry in user/group LDAP

In the local.domain.com users portion of the DIT:

mail: adam.brown@local.domain.com
mailRemoteIdentity: abrown@remote1.domain.com
mailRemoteIdentity: adam.brown@remote2.domain.com

62.6.2 AUTH_ACCESS mapping example: Excerpt of
remote identity entries in alternate (external) LDAP

Under the remote1.domain.com portion of the "external" LDAP DIT:

mail: abrown@remote1.domain.com
username: remote1-username
password: remote1-password
submittor: adam.brown@local.domain.com

Under the remote2.domain.com portion of the "external" LDAP DIT:

mail: adam.brown@remote2.domain.com
username: remote2-username
password: remote2-password
submittor: adam.brown@local.domain.com

Another important aspect to consider is such setups is error handling: what should happen to
messages when (and note that it is almost certain to be a "when" not merely an "if" occurrence)
the remote credentials are not accepted by the remote server, or the remote SMTP SUBMIT
server is unavailable for an extended period of time. One possible approach, though surely
not the only approach, is to have the MTA repeat attempting the remote submission a few
times, but then "fall back" to emitting the message instead with the original From address
(the locally verified, local user identity) as the sender. The probe to AUTH_ACCESS has access
to the message filename and queue-time, which allows differential behavior based on
the name (hence number of delivery attempts) or age (time in queue) of messages. And
since AUTH_ACCESS operates by optionally overriding for a delivery attempt (but not in the
underlying message file on disk!) delivery attempt aspects such as envelope From address,
credentials, and remote server (and port) to which to connect, then message aspects such as

62–48 Messaging Server Reference

Third party submission example

original envelope From, and recipient destination domain remain present in a message file
that has failed delivery attempts, still available for "normal" use should one wish the MTA to
"fall back" to attempting a normal delivery without regard to the purported remote identity.
AUTH_ACCESS mapping example: third party submission incorporates such checks both on
the number of delivery attempts, as well as the age (time in queue) of a message, in order to
"fall back" to "normal" delivery (stop attempting the remote identity submission) after some
elapsed time and number of attempts.

62.6.3 AUTH_ACCESS mapping example: third party
submission

AUTH_ACCESS

! The following three entries detect the three cases, respectively:
! (1) no MAIL FROM AUTH= parameter
! (2) no username (message submitted without SMTP AUTH use)
! (3) MAIL FROM AUTH= parameter matches username
! These are three cases where DUE TO INHERENT FEATURES of the original
! message submission, the message will be sent "normally" (no
! special action taken).
!
 tcp_local|*|*|*||*|* $Y
 tcp_local|*|*|*|*||* $Y
 tcp_local|*|*|*|*|$3*|* $Y
!
! Now at the case where the MAIL FROM AUTH= parameter differs from the username.
!
! The following entry uses the subsidiary mapping table X-FILE-IS-OLD to
! check whether the message is "old" either in terms of retries (has had three
! or more delivery attempts) or in terms of time-in-queue (has been in the MTA
! queue for more than 3 hours). If the message file is "old" in either sense,
! presumably due to trouble performing the remote identity submission,
! then "fall back" to sending the message "normally" (no further remote
! identity submission attempts). That is, detect the case of a message where
! third party submission seemed appropriate and was attempted, but DUE TO
! OPERATIONAL TROUBLE with the third party submission, it is now desired to
! "fall back" to "normal" delivery.
!
 tcp_local|*|*|*|*|*|* C|X-FILE-IS-OLD;0|$1|$Y
!
! If the X-FILE-IS-OLD mapping check "failed" (the message file is still fresh),
! then fall through (continue) with the same input probe.
! So look up the authenticated sender identity in the user LDAP directory and
! check a special mailRemoteIdentity attribute to see whether that sender
! should be allowed to try sending with that AUTH= parameter.
!
! Step (1): Find the base DN for the domain of the authenticated sender
! (username):
!
 tcp_local|*|*|*|*|$**@*|* $C|BDN|$}$5,_base_dn_{|$3|$4@$5
!
! Step (2): If the base DN was found, then the probe is now
! |BDN|<username-domain-baseDN>|<auth-param>|<username>
! The following entry checks for a user entry whose canonical address or some
! alias is the authenticated sender address, with a mailRemoteIdentity
! matching the AUTH= parameter.
!
 |BDN|*|*|* \
$C|LYES|$1|$]ldap:///$0?mail?sub?(&(|(mail=$=$2$_)(mailAlternateAddress=$=2_)(mailRemoteIdentity=$=$1$_))[
!
! If the <username> user indeed has a mailRemoteIdentity value of the
! MAIL FROM AUTH= parameter, then the probe is now

TCP/IP channels 62–49

AUTH_DEACCESS mapping table

! |LYES|<auth-param>|<username>
! If not, then the probe is still
! |BDN|<username-domain-baseDN>|<auth-param>|<username>
!
! For the "not" (still |BDN|...) case, send the message "normally"
!
 |BDN|* $Y
!
! Step (3): For the |LYES|... case, now look up the <auth-param> in the external
! LDAP directory, assumed to have a structure of external user identities
! stored under their respective domains, with attributes in the external
! user entries including:
! mail: <remote-user-address-as-in-AUTH-param>
! username: <remote-username>
! password: <remote-password>
! submittor: <local-username>
!
! This entry is checking under the domain of the <auth-param> for an entry
! with mail=<auth-param> and submittor=<username> (<username> being the local
! username), and if there is such a match returning the username and password
! attribute values.
!
 |LYES|*@*|* \
$C|RYES|$0@$1|$]extldap:///dc=$1?username?one?(&(mail=$=$0@$1$_)(submittor=$=2_))[|\
$]extldap:///dc=$1?password?one?(&(mail=$=$0@1_)(submittor=$=$2$_))[
!
! Step (4): If the above succeeded, the probe is now:
! |RYES|<auth-param>|<remote-username>|<remote-password>
! so now connect to the submit port (587) of a server for the <auth-param>
! domain, using smtps:, overriding the original envelope From to instead use
! the <auth-param> value, and supplying the credentials (remote username
! and remote password) that were found with the extldap: lookups.
!
 |RYES|*@*|*|* FQDP$S|$0@$1||$2|$3|$1|587
!
! If the extldap: lookups didn't succeed, so the probe is still |LYES|... ,
! send the message "normally" (original From, etc.):
!
 |LYES|* $Y

X-FILE-IS-OLD
! The X-FILE-IS-OLD mapping table expects a probe of the form:
! <filename>|<seconds-in-queue>
! If the filename begins with other than ZZ..., ZY..., or ZX..., or if
! the <seconds-in-queue> is greater than 3 hours, then the
! mapping returns $Y; otherwise the mapping returns $N.
! When used in a callout from another mapping table, this means that an
! X-FILENAME-IS-OLD callout will only "succeed" if the file was "old".

 %%*|* \
$`("$0"!="Z"$ ||$!find("$1","ZYX")$ ||$ integer($3)>3*60*60)?"$$Y":"$$N"'

62.7 AUTH_DEACCESS mapping table
New in MS 8.0.2.3. The AUTH_DEACCESS mapping forms a pair with the AUTH_ACCESS
mapping table. It is only called when the AUTH_ACCESS mapping has been called and has set a
deaccess parameter string.

The call occurs immediately after the final connection associated with the AUTH_DEACCESS
mapping has been closed. Note that this may occur right after the message associated with
the AUTH_ACCESS call has been processed or it may occur many messages later as a result of
connection reuse. And since AUTH_ACCESS is called for every message, there may have been

62–50 Messaging Server Reference

MX_ACCESS mapping table

multiple intervening calls to the AUTH_ACCESS mapping, including a final one associated with
setting up a new connection.

This mapping is intended to be used to release resources allocated by the AUTH_ACCESS
mapping, typically through the use of a mapping callout. More specifically, AUTH_ACCESS can
now be used to allocate some connection-related resource, which can then be used by one or
more connections used to deliver the current message and possibly subsequent messages. The
AUTH_DEACCESSS mapping is called when the last connection associated with this activity is
finally closed.

The probe for the AUTH_DEACCESS mapping is of the form:

channel|filename|deaccess-parameter-string

Note that the deaccess-parameter-string may consist of multiple |-separated sections.

At present the result of the AUTH_DEACCESS is ignored.

62.8 MX_ACCESS mapping table
New in MS 8.1.0.1, the MX_ACCESS mapping table provides the means to control and/or
override MX lookup operations.

The MX_ACCESS access mapping table is consulted during SMTP/LMTP client operations just
prior to performing the MX lookup on the deatination domain. It thus provides a means of
changing the server hosts for a given domain. c

The MX_ACCESS mapping table probe has the following default format:

source-channel|to-address|domain

Or if bit 16 (value 65536) of the include_conversiontag MTA option is set, then the format
is:

source-channel|conversion-tag|to-address|domain

Here source-channel is the channel from which the message is being dequeued,
conversion-tag is a comma-separated list of the conversion tags associated with the
message, to-address first recipient address, and domain is the domain the message is being
sent to.

The mapping can set the flags shown in Table of MX_ACCESS mapping flags.

Table 62.5 MX_ACCESS mapping flags

Flag Description
$U Enable channel debugging.
$F Force a "host not found" error, as if the MX lookup failed because the domain

does not exist.
$N Force a temporary DNS error, as if the MX lookup failed due to a transient

problem.
$T Change the destination host to the mapping result string.

TCP/IP channels 62–51

IP_ACCESS mapping table

$Y Force the MX result to be the list of hosts specified in the mapping result string.
The order of this list will be randomized if mxrandom is in effect.

Note that at present all of the mapping actions are mutually exclusive, that is, it only makes
sense to specify one of $F, $N, $T, or $Y.

62.9 IP_ACCESS mapping table
One form of SMTP and LMTP client connection control is provided by the IP_ACCESS
mapping table. The IP_ACCESS mapping table was added for MS 6.3.

The IP_ACCESS access mapping table is consulted during SMTP/LMTP client operations just
prior to attempting to open connections to a remote server. (In particular, and as compared to
the AUTH_ACCESS mapping, the IP_ACCESS mapping is consulted after MX record lookup
just before the A record is used.) It thus allows a "last moment" or "last ditch" check on the
IP address to which the client would otherwise be about to connect---with the mapping table
being able to cause the connection attempt to be aborted or redirected. This has the potential to
be useful under certain special circumstances, such as security concerns where some potential
destination IP address should never be connected to, or where it is wished to avoid connecting
to known-to-be-bogus destination IP addresses (e.g., 127.0.0.1 -- see also the loopcheck
channel option), or where there is a desire to attempt to "fail over" to another destination IP
address (similar to a lastresort channel option effect).

The IP_ACCESS mapping table probe has the following default format:

source-channel|ip-current-count|ip-count|ip-current-address|hostname

Or if bit 0 (value 1) of the (new in Messaging Server 7.0-0.04) use_ip_access MTA option is
set, then the format is:

source-channel|ip-current-count|ip-count|ip-current-address|hostname|retry-count

Here source-channel is the channel from which the message is being dequeued, ip-
count is the total number of IP addresses for the remote server, ip-current-count is the
index of the current IP address being tried, ip-current-address is the current IP address,
hostname is the symbolic name of the remote server, and retry-count is what number
delivery attempt this is (based on how many prior delivery attempts, as determined by the
message filename) or -1 if the data is not available (if the message filename does not follow
the MTA's normal message filenaming conventions).

The mapping can set the flags shown in Table of IP_ACCESS mapping flags. In particular,
setting a $N, $n, $F, or $f flag will cause the connection attempt to be aborted.

Table 62.6 IP_ACCESS mapping flags

Flag Description
$N Immediately reject the connection attempt, hence immediately bounce the

message, generating a notification message with a "Illegal host/domain
name found" reason and a "5.4.4 Illegal host/domain name found"
error status in the notification message. Any supplied text will be logged as the
reason for rejection but will not be included in the DSN.

$F Synonym for $N: immediately reject the connection attempt and hence the
message.

62–52 Messaging Server Reference

IP_ACCESS mapping table

$I Skip the current IP without attempting to connect.
$A Replace the current IP address with the mapping result.

Possible applications of IP_ACCESS include:

• Detect when an apparently innocuous remote destination domain name resolves in the
DNS to a known "bad" or "malicious" IP address, and abort (or redirect) connections to that
remote destination.

• Detect and work around internal network or configuration problems, such as "surprise"
internal host name assignments, to detect and avoid host name use that might otherwise
result in messages looping or being misrouted.

• Forcibly re-route (or alternatively bounce) messages that have had multiple unsuccessful
delivery attempts.

• Limit the number of MX records attempted on a per-hostname basis (as opposed to use of
the TCP/IP-channel-specific option MAX_MX_RECORDS).

• Call out from IP_ACCESS to a MeterMaid table to achieve "throttling" of outbound
connection attempts to some specially limited remote server.

As a concrete example, here is an example of throttling outbound connections performed by a
special, dedicated-to-delivery-to-a-special-destination, channel. Note that this is not generally
a useful or appropriate thing to do. Limits on a remote server are its business, and under its
control. Any special configuration you attempt may become out-of-date, or counter-productive
in any of several ways, with no notice to you. And usually the MTA's normal scheduling, retry
strategies, and load management are effective and adaptable to wide ranges of circumstances,
including even unusual remote server problems. Furthermore, attempting to "work around"
limits that a remote server has intentionally imposed are likely to backfire if (or more likely
when) the remote server notices you "pushing" its limit and instead decides to block all your
system's submissions outright. However, should such special outbound throttling still be
desired...

In this example, a "special", three limited remote destination domains are assumed to be
slow1.domain.com, slow2.domain.com, and slow3.domain.com, assumed to be only able to
accept two hundred messages per MX host every thirty minutes.

! Special rewrite rules to route slow1.domain.com, slow2.domain.com, and
! slow3.domain.com out the special new tcp_outlimit channel:
!
slow1.domain.com $U%slow1.domain.com@tcp-outlimit-daemon
slow2.domain.com $U%slow2.domain.com@tcp-outlimit-daemon
slow3.domain.com $U%slow3.domain.com@tcp-outlimit-daemon

! Special channel for the throttled outbound messages.
! It is a good idea to have such a special channel for handling
! the throttled outbound messages since this channel may be more prone than
! a normal channel to getting backlogged with not-yet-delivered messages.
!
tcp_outlimit smtp mx backoff pt30 ...keywords-similar-to-tcp_local...
tcp-outlimit-daemon

TCP/IP channels 62–53

SASL_ACCESS mapping table

In legacy configuration:

metermaid.table.outthrottle.type = throttle
metermaid.table.outthrottle.data_type = ipv4
metermaid.table.outthrottle.value_type = integer
metermaid.table.outthrottle.max_entries = 50
metermaid.table.outthrottle.quota = 200
metermaid.table.outthrottle.quota_time = 1800

or in Unified Configuration:

msconfig> show metermaid.local_table:outthrottle.*
metermaid.local_table.table_type = throttle
metermaid.local_table.data_type = ipv4
metermaid.local_table.value_type = integer
metermaid.local_table.max_entries = 50
metermaid.local_table.quota = 200
metermaid.local_table.quota_time = 1800

IP_ACCESS

! For the special destination domains slow1.domain.com, slow2.domain.com,
! slow3.domain.com:
! Check the current destination IP address against MeterMaid outthrottle table.
! If over the outthrottle table's limit, this connection attempt will be
! skipped due to $I.
!
 tcp_outlimit|*|*|*|slow1.domain.com \
C[IMTA_LIB:check_metermaid.so,throttle,outthrottle,$2]$I
 tcp_outlimit|*|*|*|slow2.domain.com \
C[IMTA_LIB:check_metermaid.so,throttle,outthrottle,$2]$I
 tcp_outlimit|*|*|*|slow3.domain.com \
C[IMTA_LIB:check_metermaid.so,throttle,outthrottle,$2]$I
!
! Otherwise, fall through and perform the connection attempt as usual.

62.10 SASL_ACCESS mapping table
The new-in-MS-8.0.2 SASL_ACCESS mapping probe has the form:

operation|transport-info|app-info|src-chan|bad-auth-count|username|admin-type|statuscode|

Here operation is currently always "AUTHENTICATE". See discussion of the PORT_ACCESS
mapping table, or the MAIL_ACCESS mapping table, for discussion of the transport-
info and app-info portions of the probe string. src-chan is the currently selected source
channel, bad-auth-count is a count of the number of previous failed authentication
attempts on this connection, and username is the user name that the authentication
operation bound to, if any. The admin-type is the administrator type from the account the
authentication operation bound to, which will be one of:

• N/A

62–54 Messaging Server Reference

TLS_ACCESS mapping table

• NONE

• FULL

• READONlY

• DOMAIN

• UNKNOWN

Finally, statuscode is the status returned by the authentication operation attempt. The
possible values are listed in the MTAauth errors table.

The SASL_ACCESS mapping template can set any of the following flags:

Table 62.7 SASL_ACCESS mapping table flags

Flag Meaning
$U Enable debugging
$<string Send string to syslog
$>string Send string to syslog if access is explicitly rejected
$Nstring Reject access with authentication result specified by string
$Fstring Synonym for $N
$Xstring Override authentication result string with specified string
$Dn Delay sending response by n centiseconds
$An Update session protocol delay to be n centiseconds
$* Disconnect session after sending response

62.11 TLS_ACCESS mapping table
(New in 8.0.1.) The TLS_ACCESS mapping table, if it exists, will be consulted by the SMTP
server after a successful STARTTLS negotiation, and by the SMTP/LMTP client after a
successful STARTTLS negotiation, to determine whether the MTA is happy with the
STARTTLS negotiation. This allows the MTA to, for instance, decline to permit TLS use
based upon a remote side's certificate issuer. If the mapping returns a N or F, then the TLS
negotiation will be considered to have failed.

The probe has the form:

transport-info|app-info|channel|cert-subject|cert-issuer|cert-user

The channel field will be the source channel in the case of the SMTP server, or the operating
channel in the case of the SMTP/LMTP client. The cert-user field will be empty in the
case of the SMTP/LMTP client. See discussion of the PORT_ACCESS mapping table, or the
MAIL_ACCESS mapping table, for discussion of the transport-info and app-info
portions of the probe string, but note that the app-info will be limited in cases where TLS
negotiation occurs before an EHLO/HELO command is issued.

Table 62.8 TLS_ACCESS mapping flags

Flag Description

TCP/IP channels 62–55

SMTP_ACTIONS mapping table

$<string Send a string to syslog.
$>string Send a string to syslog if a negotiation failure is forced ($F or

($N is also set).
$N (New in 8.1.) Force TLS failure and close the connection, even

though negotiation succeeded, with error string string. On
outgoing connections $N differs from $F in that it allows fallback
to an unencrypted connection.

$Fstring Force TLS failure and close the connection, even though
negotiation succeeded, with error string string.

$Sstring (Incoming connections only.) Switch to channnel string.
$B (New in 8.1.) (Incoming connections only.) Block any subsequent

channel switch by the tlsswitchchannel channel option.

+ To use multiple flags with arguments, separate the arguments with the vertical bar character,
|, placing the arguments in the order listed in this table.

62.12 SMTP_ACTIONS mapping table
New in MS 8.1, the SMTP_ACTIONS mapping table can be used to process SMTP failure
responses and successful delivery of messages in the SMTP client and customize the MTA's
handling in various ways.

If present, the SMTP_ACTIONS mapping is called whenever a failure is returned by the remote
SMTP server. The mapping probe format is:

port_access-probe-info|app-info|channel|domain|conversion-tags|what|reply

New in MS 8.1.0.1, the conversion-tags are only included in the probe if bit 15, value 32768 of
the include_conversiontag MTA is set.

Here port_access-probe-info consists of all the information usually included in a
PORT_ACCESS mapping table probe (see PORT_ACCESS mapping table) and app-info is
application-specific information, which here will usually be SMTP/domain/mxhost in the
case of messages being relayed over SMTP and SMTP/domain/mxhost/TLS-crypto-
info/HELO-name in the case of messages being relayed via SMTP over TLS. channel is
the channel from which the message is being dequeued, domain is the destination domain,
mxhost is the DNS name of the server to which the message is being relayed, what is the
name of the SMTP command that produced the error (INITIAL, EHLO/HELO, STARTTLLS,
AUTH, MAIL, RCPT, DATASTART, DATAEND, RSET, QUIT), and reply is the SMTP reply
string.

As previously noted, the SMTP_ACTIONS is only called when a command fails and
unconditionally for the end of data (DATAEND) response.

Note also that the mapping_paranoia MTA option, if set, will cause any vertical bar
characters that would have been in the reply field to be replaced by the specified character.

The following flags can be set by the mapping:

Table 62.9 SMTP_ACTIONS mapping flags

Flag Fields Description

62–56 Messaging Server Reference

Routing via gateway systems

$T Treat the error as temporary even if a 5YZ code was
returned.

$K Treat the error as permanent even if a 4YZ code was
returned.

$+# syslog-text Send the specified text to syslog. One return value
is consumed.

$S comment-text Add the specified comment-text as a parenthetical
comment to the logged diagnostic value. One
return value is consumed.

$% backoff-value Replace the current backoff time with the specified
value, expressed as an integer number of seconds.
One return value is consumed.

$< Minimize the supplied new backoff value with the
current backoff value.

$> Maximize the supplied new backoff value with the
current backoff value.

$A header-text Add the specified header-text as a set of per-
recipient DSN fields (see RFC 3464 section 2.3) to
any DSN that is generated. One return value is
consumed; is it processed as a tilde-separated list of
header fields.

62.13 Routing via gateway systems
A local TCP/IP network may include one or more systems that are equipped to relay messages
to machines not directly accessible on the local network. Such gateway systems accept
addresses that are not palatable to the network itself.

One solution to this problem is to use appropriate MX records and a name resolver. However,
this approach may be infeasible in some environments, so a different solution may be needed.

There is an alternate approach, in which routing to TCP/IP gateways is done by creating
additional channels, one per gateway system or gateway "name" (a single gateway "name" may
reference a set of gateway hosts via use of MX records), in the configuration. The name of each
such channel must always begin with tcp_.

In Unified configuration, such a channel definition has the general form:

msconfig> show tcp_gateway.*
role.channel:tcp_gateway.official_host_name = gateway-system-name
role.channel:tcp_gateway.daemon = router
role.channel:tcp_gateway.smtp (novalue)

or equivalently

msconfig> show tcp_gateway.*
role.channel:tcp_gateway.official_host_name = arbitrary-placeholder-name
role.channel:tcp_gateway.daemon = gateway-system-name
role.channel:tcp_gateway.smtp (novalue)

TCP/IP channels 62–57

https://tools.ietf.org/html/rfc3464

Routing non-local mail to a
mailhub

In legacy configuration, the channel block for a gateway TCP/IP channel has the general form:

tcp_gateway smtp daemon router
gateway-system-name

or equivalently,

tcp_gateway smtp daemon gateway-system-name
arbitrary-placeholder-name

Rewrite rules must then be added to the configuration file to route the appropriate addresses
to the gateway. See, for instance, Routing non-local mail to a mailhub.

The "daemon router" setting tells the SMTP client program not to open a connection directly
to the first system named in the envelope address list, but to instead open a connection to
the official host for this channel, gateway-system-name. Usually the default multiple
setting is appropriate and desirable on gateway channels; but certain gateways may restrict
the number of addresses that can appear in a single copy of a message, in which case it may
be appropriate to add either the single or single_sys setting to those gateway channels.
If the gateway can handle multiple simultaneous connections, then use of the threaddepth
setting may be of interest to cause outgoing connections to be split amongst multiple threads.

Once a channel block for a gateway is created the channel should be ready to use.

Note that when addresses are being looked up in LDAP in a so-called "direct LDAP"
configuration, then certain domain-level LDAP attributes including mailRoutingHosts and
mailRoutingSmartHost (or more precisely, the LDAP attributes named by the MTA options
ldap_domain_attr_routing_hosts and ldap_domain_attr_smarthost), may also
potentially be used for similar route-to-gateway-host purposes. And so-called "detour host"
functionality, typically used for purposes of routing through an SMTP host performing spam/
virus filtering, also has a routing effect.

Typically, use of a daemon channel is especially appropriate for routing outbound (to the
Internet) messages, when all such messages should go out through a gateway. In contrast, use
of LDAP-based domain routing attributes is especially appropriate for controlling the routing
to internally-destined messages, when such messages should go through an internal "smart
host" that performs additional address handling. And use of "detour host" functionality is,
as already mentioned above, intended for cases of detour routing through spam/virus filter
boxes.

62.13.1 Routing non-local mail to a mailhub
Sometimes it is convenient to configure the MTA to route mail not for the local host, or a group
of local machines, to a central machine and leave it up to that machine to deal with the mail,
perhaps relaying it to the outside world or other local machines, or perhaps even gatewaying
it into other mail systems. The following example configuration, Routing messages to a central
system, illustrates doing just this.

In this example, the local host is host1.domain.com and two other local machines,
host2.domain.com and host3.domain.com, are recognized. Mail for either of those two
machines is sent via a tcp_local channel (SMTP over TCP/IP) to those hosts. All other
mail not for host1, host2, or host3 is sent via another SMTP over TCP/IP channel, named

62–58 Messaging Server Reference

Blocking SMTP relaying

tcp_gateway, to the host mailhub.domain.com. A "match-all" rewrite rule is used to direct all
mail not for host1, host2, or host3 to that channel. The daemon channel option is used with the
tcp_gateway channel, telling the channel to routed messages queued to it through the host
mailhub.domain.com. For additional discussion of such usage, see also Routing via gateway
systems.

A legacy configuration example of routing to a central system would be:

!
! Rewrite rules for the local host/cluster
!
host1 $U@host1.domain.com
host1.domain.com $U@host1.domain.com
!
! Rewrite rules for some internal systems
!
host2.domain.com $U%host2.domain.com@TCP-DAEMON
host3.domain.com $U%host3.domain.com@TCP-DAEMON
!
! Use a match all rewrite rule to route everything
! else to the mailhub.domain.com
!
. $U%$H@mailhub.domain.com$A

l
host1.domain.com

tcp_local smtp single_sys mx
TCP-DAEMON

tcp_gateway smtp mx daemon router
mailhub.domain.com

62.14 Blocking SMTP relaying
One application of the ORIG_SEND_ACCESS mapping table, along with appropriate
configuration of channels with switchchannel and saslswitchchannel channel options,
is to prevent people from using your MTA to relay junk mail to hundreds or thousands of
Internet mail boxes. By default, at a code level, the MTA does not prevent SMTP relaying
activity. However, the normal installation and initial configuration does configure to prevent
SMTP relaying from "external" sources.

Blocking unauthorized relaying while allowing it for legitimate local users requires
configuring the MTA to know how to distinguish between the two classes of users. The
distinction between "internal" vs. "external" users is achieved using a combination of the
switchchannel and allowswitchchannel channel options in conjunction with a rewrite
rule that compares connection source IP addresses against the INTERNAL_IP mapping table,
plus user authentication during message submission in conjunction with the maysasl and
saslswitchchannel channel options. The effect of such configuration is to "sort" incoming
messages based on knowledge of the message's source (whether that knowledge is of the
source of the IP connection, or of the sender of the messages) assigning the messages to
different source channels. Once such assignment of source channel has been achieved, then the

TCP/IP channels 62–59

Blocking SMTP relaying

desired relaying restrictions can be easily controlled in, e.g., the ORIG_SEND_ACCESS mapping
table.

When preventing unauthorized people from relaying SMTP mail through your system,
keep in mind that you do want to allow local users to relay SMTP mail! For instance, POP
and IMAP users typically rely upon using the MTA to send their mail. Note that local users
may either be physically local, in which case their messages come in from an internal IP
address, or may be physically remote but able to authenticate themselves as "local" users.
It's those random people out on the Internet who you want to prevent from using you as a
relay. With appropriate configuration to recognize the cases of "internal" source IP addresses
or local user authenticated messages and handle them via special channels, rather than
the default tcp_local channel, you can differentiate between these classes of users and
block only the correct class. Specifically, (once "internal" users have been properly sorted
for handling by one or another special incoming channel), you want to block mail from
coming in your tcp_local channel and going back out that same channel. To that end, an
ORIG_SEND_ACCESS mapping table may be conveniently used.

An ORIG_SEND_ACCESS mapping table may be used to block traffic based upon the source
and destination channel. In this case, traffic from and back to the tcp_local channel is to be
blocked. This is realized with the following ORIG_SEND_ACCESS mapping table:

ORIG_SEND_ACCESS

 tcp_local|*|tcp_local|* $NRelaying$ not$ permitted

In the above, the entry states that messages cannot come in the tcp_local channel and go
right back out it. That is, this entry disallows external mail from coming in your SMTP server
and being relayed right back out to the Internet.

Note that an ORIG_SEND_ACCESS mapping table is used rather than a SEND_ACCESS
mapping table, so that the blocking will not apply to addresses that originally match the l
(lowercase "L") channel (but which may expand via an alias or mailing list definition back to
an "external" address). With a SEND_ACCESS mapping table one would have to go to extra
lengths to allow outsiders to send to mailing lists that expand back out to "external" users, or
to send to users who forward their messages back out to "external" addresses.

A further refinement, to block attempts to relay "through" internal systems using source-
routed addresses, is included in the following sample mapping table:

ORIG_SEND_ACCESS

 tcp_local|*|tcp_local|* $NRelaying$ not$ permitted
!
! Block direct submission to MTA "intermediate" channels
!
 tcp_*|*|native|* $N
 tcp_*|*|hold|* $N
 tcp_*|*|pipe|* $N
!
! Block direct submission to Message Store delivery channels;
! routing to such channel should only occur due to MTA address/alias
! processing
!
 tcp_*|*|ims-ms|* $N

62–60 Messaging Server Reference

SRS and Relay Blocking

 tcp_*|tcp_lmtpcs*|* $N
!
! Block "external" submissions of explicitly source-routed "internal" addresses
!
 tcp_local|*|tcp_intranet|@*:*.* ND30|Explicit$ routing$ not$ allowed
 tcp_local|*|tcp_intranet|*$%*@* ND30|Explicit$ routing$ not$ allowed
 tcp_local|*|tcp_intranet|*.*!*@* ND30|Explicit$ routing$ not$ allowed
 tcp_local|*|tcp_intranet|"*@*"@* ND30|Explicit$ routing$ not$ allowed

The final four entries will cause attempts by remote senders to submit explicitly source-routed
messages to be immediately rejected. Note that depending upon the actual configuration of
your other, internal hosts, it is often the case that even such explicitly source-routed attempts
at relaying will not, in fact, end up truly getting relayed back out to the Internet, but will
instead be rejected by the other, internal host. But by rejecting the attempts immediately,
you can avoid getting (falsely) accused of being an open relay by carelessly constructed and
operated relay testers, that only check if their relay attempt was initially blocked, rather than
testing whether the probe message actually ever got relayed out and delivered.

62.14.1 SRS and Relay Blocking
Prior to the 8.0 release, decoding of SRS addresses happened invisibly before all other address
processing (including probing of access mapping tables such as ORIG_SEND_ACCESS),
with the result that when a remote site bounced a message from an SRS encoded sender
address, the notification message returning to the encoded SRS address came to the MTA
which decoded the address to (typically) discover a remote sender address and potentially
reject the notification message as an attempt to "relay" (a notification message from a remote
site to a remote original sender, in its attempt to pass through the MTA). As of 8.0, the still-
SRS-encoded address is used in the ORIG_SEND_ACCESS probe, nullifying this problem.
Meantime, in earlier versions, there is an approach to work around this problem.

Configuring with the access_orcpt=2 and modifying the entries of the
ORIG_SEND_ACCESS mapping table to expect an ORCPT field in each probe is one
way to work around such an issue. In the following example, all the "usual" entries of
ORIG_SEND_ACCESS have been modified to expect an additional field in the probe, the "orcpt"
field, and an initial entry (prior to the basic tcp_local -> tcp_local block entry) has been
added to allow passing through addresses that turn out to be "remote" when the MTA's own
SRS encoding is removed:

ORIG_SEND_ACCESS

! Allow "relaying" of responses (such as notification messages) back to
! those original messages that came from remote senders to originally local
! recipients which the MTA relayed onwards, SRS-encoded, to remote recipients.
! That is, these are messages (notification messages) from remote sites to
! which local users had forwarded their e-mail, back to original senders to
! those (forwarding) local users:
! such messages that come in addressed using an SRS encoding with this MTA's
! own srs_domain, but which (once SRS encoding is removed) end up addressed
! back to a "remote" address.
!
 tcp_local|*|tcp_local|*|rfc822;SRS0=*<srs_domain> $Y
!
! Normal relay blocking entry
!

TCP/IP channels 62–61

Triggering message transfer with
remote SMTP systems

 tcp_local|*|tcp_local|*|* $NRelaying$ not$ permitted
!
! Block direct submission to MTA "intermediate" channels
!
 tcp_*|*|native|*|* $N
 tcp_*|*|hold|*|* $N
 tcp_*|*|pipe|*|* $N
!
! Block direct submission to Message Store delivery channels;
! routing to such channel should only occur due to MTA address/alias
! processing
!
 tcp_*|*|ims-ms|*|* $N
 tcp_*|tcp_lmtpcs*|*|* $N
!
! Block "external" submissions of explicitly source-routed "internal" addresses
!
 tcp_local|*|tcp_intranet|@*:*.*|* ND30|Explicit$ routing$ not$ allowed
 tcp_local|*|tcp_intranet|*$%*@*|* ND30|Explicit$ routing$ not$ allowed
 tcp_local|*|tcp_intranet|*.*!*@*|* ND30|Explicit$ routing$ not$ allowed
 tcp_local|*|tcp_intranet|"*@*"@*|* ND30|Explicit$ routing$ not$ allowed

62.15 Triggering message transfer with remote
SMTP systems

In cases where the network connection between two systems is only available at particular
times---a "dial up" sort of connection for instance---there is an SMTP extension whereby one
system can inform another that it is ready to receive mail. This is performed using the SMTP
extension command ETRN, defined in RFC 1985: the side that desires to receive mail connects
to the remote side's SMTP server and issues the command ETRN receivinghostname. If the
remote side's SMTP server supports the ETRN command, it will then attempt delivery of any
messages it has waiting to be sent to receivinghostname.

The MTA's SMTP server supports ETRN. In particular, the SMTP server interprets a received
ETRN hostname command as a request to run the channel which hostname matches, a
received ETRN @hostname as a request to deliver all messages in the hostname subnet, and
a ETRN #channelname command as a request to run the channel channelname. By default,
the SMTP server always responds to remote side's ETRN requests; if you wish to restrict this
behavior, see disableetrn and related channel options, or the ETRN_ACCESS mapping table.

And outgoing SMTP-based channels, such as TCP/IP channels, can be configured to send an
ETRN command at the beginning of an outgoing SMTP dialogue via the sendetrn channel
option. For instance, suppose a system host1.acme.com has a dial-up connection to a remote
system intermittent.some.where.com, where the intermittent.some.where.com system also
supports ETRN. For a channel for connecting up to the remote side and sending ETRN, such a
site might use a channel definition along the lines of:

tcp_dialup smtp mx daemon intermittent.some.where.com \
 periodic sendetrn host1.domain.com
TCP-DIALUP

As of iMS V5.0, there is an ETRN_ACCESS mapping table. Probes have the form:

62–62 Messaging Server Reference

https://tools.ietf.org/html/rfc1985

Authentication errors and
resultant SMTP errors

transport-info|app-info|channel-to-run|full-name|claimed-system

(Here claimed-system is the ETRN parameter, and full-name is a processed version of
that parameter.) If the mapping table returns a $N, $n, $F, or $f, then the ETRN command is
rejected with a 459 4.5.0 error; by default

459 4.5.0 Cannot start delivery on channel - access denied

or if alternate text is included in the $N entry, then the alternate text is used.

If the ETRN_ACCESS mapping table returns a $S or $s, then the ETRN is attempted. If the
mapping table also returns a $Dchannel-name or $dchannel-name, then the MTA tries
to lookup channel-name (in the channel/host table from the configuration file) and if that
lookup is successful, runs that channel (rather than whatever channel the original ETRN
command might have run).

62.16 Authentication errors and resultant SMTP
errors

The authentication code performs various checks on the user account when attempting to
authenticate, as for instance during SMTP AUTH processing. This may result in authentication
errors being returned to the SMTP server, which will in turn issue an SMTP error back in
response to the SMTP AUTH attempt. Errors of note include the following.

If the client's SMTP AUTH attempt uses either a bad username or a bad password, or the
authentication mechanism is too weak for site policy, the SMTP server will issue the (same for
each case) error response:

535 5.7.8 Bad username or password

though the SMTP server will optionally (log_message_id=1 and log_connection's bit
7/value 128 set) record the real cause of the authentication failure (respectively, "No such
user" or "Bad password" or "Authentication mechanism is too weak") in the
message-id field of the "U" connection transaction log entry.

If the LDAP attribute mailAllowedServiceAccess has been set to disallow SMTP access,
the authentication attempt will be rejected with:

535 5.7.8 Authorization failure

If using this feature with the goal of disallowing certain users from sending messages, note
that it is critically important to first configure so that users are required to use SMTP AUTH
when submitting (see the mustsaslserver channel option); otherwise, in preventing certain
users from sending when they properly authenticate, the unintentional (and undesirable)
effect is likely to be to discourage those users from attempting authentication, instead
effectively encouraging those users to send without authentication!

 If the user's LDAP attribute mailUserStatus is set to inactive or disabled, then the
SMTP error will be:

TCP/IP channels 62–63

Authentication errors

525 5.7.13 Account disabled

with, if MTA connection transaction logging is enabled and in particular if the optional
SASL attempt logging is enabled, then in the resulting "U" connection transaction entry the
message-id field will include additional detail: either "Account disabled (inactive)" or
"Account disabled (hold)".

 There are additional errors that may be returned, as for syntax problems in the client's SMTP
AUTH command, or SASL mechanism problems, including:

501 5.7.0 Cannot decode BASE64
504 5.5.4 Unrecognized authentication type
501 5.5.0 Invalid input
523 5.7.10 Encryption needed to use mechanism
524 5.7.11 Password expired, has to be reset

 Temporary LDAP errors will result in a temporary SMTP error:

454 4.7.0 Authentication server unavailable

62.17 Authentication errors
Table 62.10 HULA error status

Name Text Meaning

HULA_FAIL Internal authentication error

HULA_NOMEM Not enough memory available

HULA_BUFOVER Internal buffer overflow

HULA_NOMECH Mechanism not available

HULA_BADPROT Invalid authentication protocol

HULA_NOTDONE Authentication not complete

HULA_BADPARAM Invalid parameter supplied

HULA_TRYAGAIN Transient failure -- try authentication
again

HULA_BADMAC Message corrupted in transit

HULA_BADSERV Server failed authentication

HULA_WRONGMECH Mechanism doesn't support requested
feature

HULA_BADAUTH Authentication failed

HULA_NOAUTHZ Not authorized to login asspecified user

HULA_TOOWEAK A stonger authentication mechanism is
required

HULA_ENCRYPT Encryption required

HULA_TRANS A transition is needed to use the specified
mechanism

HULA_EXPIRED Password expired

HULA_DISABLED Account disabled Roughly speaking, a domain status of "disabled" or user status of "disabled".
(More precisely, a domain status or user status that is not specially handled in another
way: so for instance unrecognized status values also result in this error.)

HULA_NOUSER User not found

HULA_PWLOCK Password locked

HULA_NOCHANGE No change was made

HULA_NOTINIT SASL library not initialized

62–64 Messaging Server Reference

Authentication errors

HULA_UNAVAIL Service temporarily unavailable Can't connect, or have trouble communicating with, the authentication server (e.g.,
LDAP server).

HULA_NOVERIFY Missing server authentication entry for
user

HULA_WEAKPASS Password fails site security policy, try
another

HULA_NOUSERPASS User supplied password not permitted

HULA_INPROGRESS Operation in progress

HULA_SVRACCESS Access control filter on server forbids
connection

HULA_DOMACCESS Access control filter on domain forbids
connection

HULA_USERACCESS Access control filter on user forbids
connection

TCP/IP channels 62–65

62–66

Chapter 63 BSMTP channels
63.1 Configuring the BSMTP channels .. 63–1
63.2 BSMTP service conversions ... 63–4

Batch SMTP (BSMTP) is a batch-mode implementation of the SMTP protocol which turns
SMTP into a remote-submission protocol. For over a decade, batch SMTP was used quite
heavily as a message transfer protocol on the international BITNET network. Cooperating
MTA sites can use BSMTP as an effective means of moving mail in bulk between one another;
for instance the exchange of company e-mail between two company offices by means of the
Internet.

That is, it is possible to tunnel messages between two or more cooperating MTA systems using
Batch SMTP (BSMTP). In addition, the MTA's general service conversion facilities can be used
to provide services such as payload compression and digital signatures for authentication and
integrity.

With BSMTP, messages are bundled together on one MTA system and then periodically
transmitted through arbitrary MTAs and networks to a remote MTA system. Upon receipt
at the remote system, the bundle is unpacked and the individual messages sent on to their
recipients. Note that the bundled (encapsulated) handling of messages with BSMTP has the
following inherent aspects which may be useful in some contexts:

1. The original message envelope information (sender, recipient, etc.) is not visible at the SMTP
level on the intermediate MTAs; instead, the generic BSMTP addressing information is all
that is visible at the outer message level.

2. The original message headers are transferred unaltered from the point of initial sending
system's BSMTP bundling (encapsulation) until the destination system's BSMTP
unbundling (message extraction) is performed.

Such aspects may be of interest in cases where it is desired to make traffic analysis (analysis
of who is sending how much e-mail to whom) difficult, or when it is desired to protect
original message headers from intermediate MTA processing, or desired to avoid exposing
the intermediate MTA hops (e.g., additional Received: header lines) to the final recipients.
Furthermore, with the MTA's general service conversion facilities, arbitrary transformations
can be performed on the bundles such as document conversion, compression, addition of
digital signatures for authentication and integrity, etc.

63.1 Configuring the BSMTP channels
Each of the MTA systems which will be exchanging mail via BSMTP will need one incoming
BSMTP channel and an outgoing BSMTP channel for each of the remote MTA systems. The
channel definitions should be along the lines of:

bsin_gateway smtp
bsin.host0

bsout_remote1 smtp master user bsmtp daemon host1
BSOUT-REMOTE1

BSMTP channels 63–1

Configuring the BSMTP channels

bsout_remote2 smtp master user bsmtp daemon host2
BSOUT-REMOTE2...

bsout_remoteN smtp master user bsmtp daemon hostN
BSOUT-REMOTEN

where host0 is the name of the local MTA host, as used by the other remote MTA systems,
and host1, host2, ..., hostN are the host names of the remote MTA systems. The strings
remote1, remote2, ... remoteN and REMOTE1, REMOTE2, ..., REMOTEN are arbitrary and need
just be distinct from one another.

With the above definitions, the channel bsout_remote1 will bundle up its BSMTP parcels
and send them on to the fixed address bsmtp@host1. Likewise for the remaining BSOUT
channels.

The rewrite rules appear as:

domain1 $U%$H@BSOUT-REMOTE1$Nbsout_remote1
.domain1 $U%$H$D@BSOUT-REMOTE1$Nbsout_remote1
domain2 $U%$H@BSOUT-REMOTE2$Nbsout_remote2
.domain2 $U%$H$D@BSOUT-REMOTE2$Nbsout_remote2
...
domainN $U%$H@BSOUT-REMOTEN$Nbsout_remoteN
.domainN $U%$H$D@BSOUT-REMOTEN$Nbsout_remoteN

where domain1, domain2, ... domainN are the domain names of the remote MTA systems.

Finally, add to the FORWARD mapping table the entry

FORWARD

 bsmtp@host0 bsmtp@bsin.host0YD

where, again, host0 is the host name for the local MTA system which will be used by the
BSOUT channels on the remote MTA systems. That way, when they send BSMTP parcels to
bsmtp@host0, it will be forwarded on to the local bsin_gateway channel.1

For example, assume that the domain.com domain will be exchanging BSMTP traffic with the
domain.co.uk domain via the MTA hosts hub.domain.com and athena.domain.co.uk. Then
hub.domain.com would have the configuration

domain.co.uk $U%$H@BSOUT-REMOTE1$Nbsout_remote1
.domain.co.uk $U%$H$D@BSOUT-REMOTE1$Nbsout_remote1

...

bsin_gateway smtp
bsin.hub.domain.com

bsout_remote1 smtp master user bsmtp daemon athena.domain.co.uk
BSOUT-REMOTE1

and the FORWARD mapping table entry

63–2 Messaging Server Reference

Configuring the BSMTP channels

FORWARD

 bsmtp@hub.domain.com bsmtp@bsin.hub.domain.comYD

The system athena.domain.co.uk would have the configuration

domain.com $U%$H@BSOUT-REMOTE1$Nbsout_remote1
.domain.com $U%$H$D@BSOUT-REMOTE1$Nbsout_remote1

...

bsin_gateway smtp
bsin.athena.domain.co.uk

bsout_remote1 smtp master user bsmtp daemon hub.domain.com
BSOUT-REMOTE1

and the FORWARD mapping table entry

FORWARD

 bsmtp@athena.domain.co.uk bsmtp@bsin.athena.domain.co.ukYD

With the above configurations, when a user on hub.domain.com sends mail to
user@domain.co.uk, the message is routed to the bsout_remote1 channel. That
channel will package the message up into a BSMTP parcel and send that parcel on to
bsmtp@athena.domain.co.uk. Owing to the $Nbsout_remote1 tag in the domain.co.uk
rewrite rules, those rewrite rules will be ignored when the bsout_remote1 channel enqueues
the message. Instead, the normal rewrite rules for domain.co.uk will take effect and route the
message containing the parcel out to the WAN (e.g., the Internet).

Note that the outbound BSMTP channels can construct application/batch-smtp message parts
containing multiple messages. As such, sites may wish to use the after channel option on
their BSOUT channels. So doing may prove advantageous for sites who wish to bundle their
mail up into large parcels and send those parcels only once every few minutes, hours, or days.
Also, the ATTEMPT_TRANSACTIONS_PER_SESSION TCP/IP-channel-specific option might
be used with the BSOUT channels to prevent cases where, under heavy load, a BSOUT channel
just runs continuously bundling into a single parcel messages queuing up to be sent out. This
option puts an upper limit on the number of messages placed in a single parcel and forces the
channel to close a parcel, send it along, and start a new parcel when there are lots of messages
to bundle up.

This completes the basic configuration so that BSMTP channels may run and deliver messages.
Commonly, however, sites also desire to perform one or more forms of message transformation
or processing on BSMTP messages; for further details, see BSMTP service conversions.

Note 1 Any of several mechanisms might be used to accomplish this forwarding. The most
efficient is the use of an alias when host0 is the official local host name for the MTA system.
The least efficient is the FORWARD mapping table; which method is best for a given site
depends upon site-specific issues. Use of the FORWARD mapping table is presented here
because that method works in all cases.

BSMTP channels 63–3

BSMTP service conversions

63.2 BSMTP service conversions
The MTA's service conversion facility may be used with BSMTP channels to perform desired
message transformations on incoming and outgoing messages.

Usually outgoing BSMTP channels, BSOUT channels, are configured to perform one sort of
service conversion on the messages they emit, and incoming BSMTP channels, BSIN channels,
are configured to perform the inverse service conversion on messages they receive. Thus
when BSMTP channels are used, the configuration would also usually contain a CHARSET-
CONVERSION mapping such as:

CHARSET-CONVERSION

 in-chan=bsout_*;out-chan=*;convert yes
 in-chan=*;out-chan=bsin_*;convert yes

whether in the MTA mappings file in legacy configuration, or in Unified Configuration
alternatively appearing as:

msconfig> show mapping:CHARSET-CONVERSION
role.mapping:CHARSET-CONVERSION.rule = in-chan=bsout_*;out-chan=*;convert yes
role.mapping:CHARSET-CONVERSION.rule = in-chan=*;out-chan=bsin_*;convert yes

Note that the CHARSET-CONVERSION entries shown are such as to enable service conversions
for messages sent from BSOUT channels (such as messages transitting through a BSOUT
channel on their way out to an outgoing TCP/IP channel), as well as for messages sent to a
BSIN channel (such as messages transitting through a BSIN channel on their way in from an
incoming TCP/IP channel).

Once execution of service conversions has been enabled via a CHARSET-CONVERSION
mapping such as that shown above, the specific service conversions to be performed must
be configured: whether as conversions entries in Unified Configuration, or in the MTA
conversions file in legacy configuration.

63–4 Messaging Server Reference

Chapter 64 ims-ms channels
64.1 ims-ms channel configuration .. 64–1

64.1.1 Additional ims-ms channels .. 64–4
64.2 ims-ms-channel-specific options ... 64–5

64.2.1 DEBUG ims-ms-channel-specific option ... 64–6
64.2.2 DELIVER_THREADS ims-ms-channel-specific option 64–6
64.2.3 FILEINTO ims-ms-channel-specific option ... 64–6
64.2.4 LIFETIME_CAPACITY ims-ms-channel-specific option 64–7
64.2.5 LOG_DEQUEUE_RATE ims-ms-channel-specific option 64–7

64.3 ims-ms channel program switches ... 64–7
64.4 ims-ms channel debugging and error logging ... 64–7
64.5 ims-ms channel error messages ... 64–8

ims-ms channels deliver messages to the Messaging Server Message Store. Normally, only one
ims-ms channel is needed. But for special purposes, it is possible to define and use additional
ims-ms_* channels.

64.1 ims-ms channel configuration
An appropriate initial ims-ms channel definition and rewrite rule(s) are normally set up
by the initial Messaging Server MTA installation and configuration process. Such a channel
definition usually looks something like:

msconfig> show channel:ims-ms
role.channel:ims-ms.official_host_name = ims-ms-daemon
role.channel:ims-ms.backoff = PT5M PT10M PT30M PT1H PT2H PT4H
role.channel:ims-ms.defragment (novalue)

role.channel:ims-ms.fileinto = $U+$S@$D
role.channel:ims-ms.maxjobs = 2
role.channel:ims-ms.notices = 1 7 14 21 28
role.channel:ims-ms.pool = IMS_POOL

role.channel:ims-ms.subdirs = 20

or in legacy configuration:

ims-ms defragment subdirs 20 notices 1 7 14 21 28 \
 backoff "pt5m" "pt10m" "pt30m" "pt1h" "pt2h" "pt4h" \
 maxjobs 2 pool IMS_POOL fileinto $U+$S@$D
ims-ms-daemon

Because the ims-ms channel is, on a typical system hosting a Message Store, such an
important channel in the overall picture of message handling, here is a brief synopsis of these
typical ims-ms channel option usages, discussed in turn.

• ims-ms channels should all normally be marked with the defragment channel option so
that any incoming MIME fragmented messages will take a detour through the defragment
channel to get an attempt at MIME message reassembly before being delivered to the
Message Store.

ims-ms channels 64–1

ims-ms channel configuration

• The ims-ms channel is typically a heavily used channel, at least on a system that hosts a
Message Store with numerous active users. For a heavily used such channel, it is typically a
good idea to configure with a generous number of subdirectories for performance reasons;
thus the use of the subdirs option. On an especially busy Message Store system, where
user quotas are enforced but a generous quota grace period is allowed, an even higher value
for subdirs may be desirable. On a system that is only, or primarily, an SMTP relay host,
that does not have a significantly used message store, use of subdirs may be unnecessary
and the option might be removed.

• With the MTA option return_units at its (default) setting of 0 so that notices values
are interpreted in units of days, the ims-ms channel is often set to retain messages for
a rather long period, intended to cover the overquota grace period---that is, give users a
chance to clean out old messages and receive their additional messages -- before eventually
returning (bouncing) the messages as undeliverable. That is, a special setting rather more
generous than the setting used for other channels (such as channels attempting to deliver
out to the Internet) is often used.

• Fairly "rapid" initial additional delivery attempts are often configured for the ims-ms
channel, via small initial backoff values. Since a user mailbox may get temporarily locked
by the Message Store while another message is being delivered, or while a user is moving
or copying a message to another folder via IMAP, it is possible to see short-term inabilities
to deliver to a particular mailbox that will resolve relatively quickly. Thus it is worthwhile
to re-attempt delivery at fairly rapid initial intervals. (This is unlike the case of a channel
attempting to deliver to remote Internet hosts, where remote hosts may be unreachable for
hours or days and hence where very rapid repeated delivery attempts may be useless and
often even counter-productive, and where furthermore, Internet standards require waiting
at least one half hour before reattempting message delivery to remote Internet hosts.)

• Due to the importance, in a typical deployment, of the ims-ms channel, a separate Job
Controller pool intended for the sole use of the ims-ms channel is usually defined, and then
the ims-ms channel is configured to run in that processing pool via the pool keyword. In
particular, in this way the ims-ms channel runs in a separate Job Controller processing pool
than TCP/IP channels (another heavily used type of channel), or than internal processing
channels such as the process channel (used for processing notification messages, hence
subject to periods of heavy use); the potential for competition for resources between these
different types of channels is limited thereby. The maxjobs channel option is used to limit
the number of simultaneously running ims-ms channel processes. Note that the ims-ms
channel is multi-threaded; see the DELIVER_THREADS ims-ms-channel-specific option. So
even a single ims-ms channel process can be attempting multiple deliveries at once. The Job
Controller attempts to sort messages destined for a particular user into the same processing
thread; this limits mailbox locking contention between different processing threads. (For
another factor that can affect ims-ms channel performance, see the threaddepth channel
option.)

• The fileinto channel option is used to specify support for Sieve fileinto actions. (That
is, the fileinto channel option is used to specify what a Sieve fileinto action actually
causes to occur---namely, changing the address to include the folder name as a subaddress.
The ims-ms channel by default then interprets the subaddress as a request to deliver to the
user's named folder, unless disabled via the ims-ms-channel-specific option FILEINTO.)

Rewrite rules for the ims-ms channel involve more complexity than the rewrite rules for
many other types of channels, as they are fundamentally intertwined with direct LDAP
lookup processing. This discussion will not attempt to cover the whole of direct LDAP

64–2 Messaging Server Reference

ims-ms channel configuration

lookup processing; instead, this discussion will merely provide a brief overview (simplifying
and omitting some details) of the basics of the rewriting involved in routing to the ims-ms
channel.

Basic rewrite rules relevant for the ims-ms channel are normally set up by the initial
Messaging Server MTA installation and configuration process. Those rewrite rules usually
look something like:

! Basic direct LDAP rewrite rule to select local users
!
$* AEFU%HV$H@local-channel-official-host-name
!
! ...various other rewrite rules...
!
! ims-ms
.ims-ms-daemon $U%$H.ims-ms-daemon@ims-ms-daemon

where local-channel-official-host-name is the "l" channel's official host name,
l.official_host_name in Unified Configuration, (or in legacy configuration, the first
name on the second logical line of the c"l", lowercase ell, channel definition).

In Unified Configuration, this would appear as:

msconfig> show rewrite * $*
role.rewrite.rule = $* AEFU%HV$H@&/IMTA_HOST/
msconfig> show rewrite * .ims-ms-daemon
role.rewrite.rule = .ims-ms-daemon $U%$H.ims-ms-daemon@ims-ms-daemon

where note that the &/IMTA_HOST/ handles the insertion of the ldap_local_host value
(which normally should match the channel:l.official_host_name value).

Also extremely relevant for the rewriting process for the ims-ms channel, and normal
routing of messages to the ims-ms channel, are the MTA options alias_urlN, especially
alias_url0, and delivery_options, especially its mailbox clause, normally set to:

*mailbox=$M%$\$2I$_+$2S@ims-ms-daemon

(And security-related settings are the use of the viaaliasrequired channel option on the
local channel, and the ORIG_MAIL_ACCESS mapping table entry that blocks direct submission
to username@ims-ms-daemon sorts of addresses; that is, these two configuration choices
add in restrictions to mean that "local" addresses must have an alias in LDAP, and route to the
ims-ms channel by way of an alias expansion.)

The normal process of routing messages to the ims-ms channel involves rewriting, alias
expansion, and application of user LDAP attributes, as follows:

1. Initially, the domain in an envelope To address (recipient address) is used to do an LDAP
search for the domain; this is done via the (direct LDAP domain lookup) rewrite rule:

ims-ms channels 64–3

Additional ims-ms channels

 $* AEFU%HV$H@local-channel-official-host-name

2. If the domain was found in LDAP, various domain level attributes are set and this rewrite
rule (when the LDAP lookup succeeds) forcibly matches the address to the local (lowercase
l) channel.

3. When an address matches the local (lowercase "l") channel, the MTA performs alias
expansion on the address. In particular, this includes an LDAP lookup (the alias_url0
lookup, and if other alias_urlN lookups are configured, then if necessary those lookups
also) attempting to find an LDAP entry for this user address.

4. When a user entry is found in LDAP, the values of its mailDeliveryOption
LDAP attribute (more specifically, the LDAP attribute named by the MTA option
ldap_delivery_option) are inspected. A value of mailbox will cause the configured
rule for the mailbox clause of the delivery_options MTA option to be applied; namely,
the address will be converted to the form (if no subaddress/folder name is present):

uid%lowercased-domain-name@ims-ms-daemon

or if a subaddress/folder name is present:

uid%lowercased-domain-name+folder@ims-ms-daemon

Or if the domain name is actually the default domain name (as specified via either
the defaultdomain option -- in legacy configuration, the configutil parameter
service.defaultdomain, or the MTA option ldap_default_domain), then the
domain name (and leading percent character) are omitted, hence:

uid@ims-ms-daemon

or

uid+folder@ims-ms-daemon

5. This (transformed) address then goes through rewriting, and it forcibly matches the ims-
ms channel, due to the matching official host name (ims-ms-daemon) for the channel: the
message is routed to the ims-ms channel.

64.1.1 Additional ims-ms channels
It is possible to define additional ims-ms_* channels, if special needs would make
additional such channels useful. Each such channel should have a name of the form ims-
ms_distinguishing-string, and its own unique official channel host name. Note that
due to the intimate connection between rewriting, alias expansion, and delivery options for
ims-ms channels, getting additional ims-ms_* channels used by the MTA typically requires
modification to other configuration choices also. For instance, one approach would be as
follows.

In this example a new channel ims-ms_shortterm will have a shorter retention policy for
holding onto messages that could not be delivered, while a new channel ims-ms_vip will
have a faster delivery retry rate, and will run in its own Job Controller processing pool so as
not to compete with the "regular" ims-ms channel and the ims-ms_shortterm channel.

First define additional ims-ms_* channels such as:

64–4 Messaging Server Reference

ims-ms-channel-specific options

ims-ms_shortterm defragment subdirs 20 notices 1 7 14 \
 backoff "pt5m" "pt10m" "pt30m" "pt1h" "pt2h" "pt4h" \
 maxjobs 2 pool IMS_POOL fileinto $U+$S@$D
ims-ms-short-daemon

ims-ms_vip defragment subdirs 20 notices 1 7 14 21 28 \
 backoff "pt5m" "pt5m" "pt10m" "pt10m" "pt30m" "pt1h" "pt2h" \
 maxjobs 2 pool IMS_VIP_POOL fileinto $U+$S@$D
ims-ms-vip-daemon

Next tell the MTA about two new delivery option values, mailboxshort and vipmailbox,
defining them in the MTA option delivery_options:

DELIVERY_OPTIONS=*mailbox=$M%$\$2I$_+$2S@ims-ms-daemon,\
 &members=*,\
 *mailboxshort=$M%$\$2I$_+$2S@ims-ms-short-daemon,\
 *vipmailbox=$M%$\$2I$_+$2S@ims-ms-vip-daemon,\
 *native=$M@native-daemon,\
 /hold=@hold-daemon:$A,\
 *unix=$M@native-daemon,\
 &file=+$F@native-daemon,\
 &@members_offline=*,\
 program=$M%$P@pipe-daemon,\
 #forward=**,\
 *^!autoreply=$M+$D@bitbucket

(In the above setting, note the use of a leading space before each continued line of the option
value to avoid causing interpretation of characters such as # as a comment character. Note
also that the site-specific definitions for mailboxshort and vipmailbox are added after
the usual first two definitions for mailbox and members respectively, as these first two value
clauses in the delivery_options definition have special meaning as far as being defaults.)

Finally, set appropriate users' LDAP entries with a value for the mailDeliveryOption
attribute (or more precisely whatever attribute is named by the ldap_delivery_option
MTA option) of mailboxshort or vipmailbox as desired.

64.2 ims-ms-channel-specific options
ims-ms channels support, in addition to the usual channel options, a number of ims-
ms-channel-specific options. These ims-ms-channel-specific options are set in legacy
configuration in a channel-specific option file, or in Unified Configuration are set under the
channel's options option. For instance:

msconfig> set channel:ims-ms.options.DEBUG 4

Note that in Unified Configuration such channel-specific options (those set under the
options option) are not (currently) schema checked: be careful when setting them as
msconfig will not warn of invalid values or syntax as it would for regular channel options!
(Nor will msconfig show whether or not such channel-specific options have any default
value.)

ims-ms channels 64–5

DEBUG ims-ms-channel-specific
option

In legacy configuration, where an option file is used, such an option file must be named
x_option where x is the name of the channel, and stored in the MTA table directory. Hence
the name of the ims-ms channel option file is ims-ms_option, i.e.config-root/ims-
ms_option.

64.2.1 ims-ms-channel-specific options: DEBUG
(integer)

The DEBUG ims-ms-channel-specific option can take values between 0, the default, up to 4;
increasing values mean increasing amounts of debug output being written to the imta log
file. The default of 0 means no debugging information. A value of 3 or more causes inclusion
of information about the numbers of messages waiting and numbers of threads in use, and
whether more threads must be started, and will also cause output when a thread exits, and if
a shutdown request has been received. A value of 4 or more causes debug output regarding
which message is currently being processed (specifically, the envelope From address for the
current message), and debugging that such a message has been successfully delivered.

The debug output from setting DEBUG is normally directed to the imta file (not the ims-
ms_master.log-* file), but will only be actually written to imta if the loglevel
option for the MTA (in legacy configuration, the logfile.imta.loglevel configutil
parameter) is set to the value debug. (And potentially, if the syslogfacility option is set --
logfile.imta.syslogfacility configutil parameter in legacy configuration -- then the
output is instead directed to syslog.)

Setting the master_debug channel option on an ims-ms channel also forces a DEBUG=4 level
setting. master_debug itself will cause additional output, to a different log file, than the
DEBUG ims-ms-channel-specific option; master_debug causes MTA processing debug output
to be written to a channel-name_master.log-* file, normally an ims-ms_master.log-*
file.

As of MS 6.2, see also the activate Message Trace option, which if set to yes will cause
Message Store message tracing information to be written to the msgtrace file.

64.2.2 ims-ms-channel-specific options:
DELIVER_THREADS (integer)

The DELIVER_THREADS ims-ms-channel-specific option controls the maximum number of
delivery threads used by an individual ims-ms delivery process. The default is 15, unless the
command line -t switch has been used to specify a different value. This option overrides such
a command line -t switch.

64.2.3 ims-ms-channel-specific options: FILEINTO (0 or
1)

The FILEINTO ims-ms-channel-specific option controls whether subaddresses are
interpreted as folder names for delivery purposes by the channel. The default is 1, meaning
that such folder delivery is enabled. If this option is set to 0, then folder delivery is disabled.

This channel-specific option is not normally changed from the default value; but if it is, see
also the general fileinto channel option, with whose setting this ims-ms-channel-specific
option should be coordinated.

64–6 Messaging Server Reference

LIFETIME_CAPACITY ims-ms-
channel-specific option

64.2.4 ims-ms-channel-specific options:
LIFETIME_CAPACITY (integer)

The LIFETIME_CAPACITY ims-ms-channel-specific option specifies the maximum number
of message files that a thread will handle before exitting. The default value is -1, meaning
no limit. Note that this count of message files is based on the number of files handed to the
channel, and that an individual message file, while from a single sender, may be destined for
multiple recipients; in particular, the count is not based on the number of message recipients.

64.2.5 ims-ms-channel-specific options:
LOG_DEQUEUE_RATE (0 or 1)

The LOG_DEQUEUE_RATE ims-ms-channel-specific option controls whether the channel
logs the message dequeue rate. The default is 0, unless the command line -d switch has been
used in which case the default is 1. The default of 0 means not to log message dequeue rate; a
value of 0 means to log message dequeue rate; if the DEBUG level has been set to 2 or more, the
message dequeue rate is periodically logged, rather than just a final summary being output.

64.3 ims-ms channel program switches
The Job Controller's default configuration has the Job Controller execute the ims_master
channel program with no arguments:

msconfig> show job_controller.channel_class:ims-ms*.master_command
role.job_controller.channel_class:ims-ms*.master_command = IMTA_BIN:ims_master

But note that the ims_master channel program has two optional switches.

• -d specifies that minimal debugging is enabled (corresponds to setting the DEBUG ims-
ms-channel-specific option to a value of 1; a higher DEBUG option value will override this
command line effect).

• -tnum-threads specifies that num-threads should be used; the DELIVER_THREADS
ims-ms-channel-specific option, if specified, will override this value.

64.4 ims-ms channel debugging and error
logging

Channel debugging output for the ims-ms channel goes to two (or three) places, the
channel-name_master.log-* file, and the imta file, which is an NSLOG file, and as of
MS 6.2, if message tracing is enabled (if the messagetrace.activate option in Unified
Configuration or the local.msgtrace.active configutil parameter in legacy configuration
is set to yes), then message tracing will also be written to the msgtrace file.

MTA processing debugging, including but not limited to the generation of nondelivery
notifications, enabled for instance via the master_debug channel option, goes to a channel-
name_master.log-* file. (Note that setting master_debug also forces the debug
level controlled by ims-ms.options.DEBUG to at least 4, and as of MS 8.0.2, forces the
mta.logfile.loglevel option setting to "debug".)

ims-ms channels 64–7

ims-ms channel error messages

All ims-ms channel level processing goes to the imta file. In general, the level of detail
recorded in the imta file is controlled by the mta.logfile.loglevel option in Unified
Configuration or the configutil parameter logfile.imta.loglevel in legacy
configuration; it can be set to any of the values critical, error, warning, notice,
information, or debug.

In order for the debug output generated due to a non-zero DEBUG ims-ms-channel-specific
option setting (ims-ms.options.DEBUG in Unified Configuration, or DEBUG option in the
in the ims-ms channel option file in legacy configuration) to in fact get included in the imta
log file, mta.logfile.loglevel (Unified Configuration) or logfile.imta.loglevel
(legacy configuration) must hence be set to debug.

As of 8.0.1.2 the ims-ms.options.DEBUG option value defaults to 2. In earlier 8.0 versions
the value is forced to 10 and the option setting is ignored. In 7.0.5 and earlier the default is
0, so either the channel-specific option or the master_debug channel option must be set in
addition to mta.logfile.loglevel for debug output to appear.

A number of conditions can cause the ims-ms channel to fail to initialize. When this happens
a critical error is sent to the imta file and the process exits with a nonzero status. Possible
initialization failures include, but are not limited to:

PMDF_CHANNEL
environment variable not
defined

The PMDF_CHANNEL environment variable is used by the
job controller to communicate the channel whose messages
are to be processed. This error indicates that the variable is
not set. This is usually an indication that the program has
been run manually.

Failed to initialize the MTA The MTA failed to initialized. This is usually the result of a
configuration error of some sort

ims_master requires
store.enable = 1

Self-explanatory.

ims_master requires
store.dbtype = "bdb"

Self-explanatory.

inetu_uginit failed The process was unable to initialize the LDAP client
subsystem.

Failed to initialize the store API The store failed to initialize. Additional errors may be
logged providing more specific information

64.5 ims-ms channel error messages
MTA channels attempting to deliver to the Message Store, i.e., ims-ms channels or
tcp_lmtpcs* channels, can encounter several different sorts of issues: initialization
errors (errors initializing the MTA, the Message Store, Message Store notify plugin
code (if notifytarget named group options are set in Unified Configuration, or the
local.store.notifyplugin configutil parameter is set in legacy configuration), domain
map code, or LDAP pool code) many of which will cause the channel to abort, subsequent
Message Store errors, subsequent trouble getting LDAP information about a domain or user,
or IMAP error statuses when attempting to deliver particular messages. When encountering a
problem doing an LDAP lookup for a domain or user while attempting to deliver a message,
or an IMAP error status on a particular message, the MTA channel keeps running (and moves
on to attempting to deliver any other messages awaiting delivery).

64–8 Messaging Server Reference

ims-ms channel error messages

In particular, the IMAP error statuses reported by an ims-ms channel or LMTP server, when
it attempts to access or manipulate the Message Store, are not specific to such channels, but
rather are general IMAP error statuses (which may also be seen in other contexts, such as
IMAP e-mail client attempts to access or manipulate the Message Store). Additional details on
the underlying Message Store issue that gave rise to an IMAP error status may be available in
the Message Store NSLOG logging for the component which encountered the issue; in the case
of the ims-ms channel or LMTP server, see the imta NSLOG file discussed in ims-ms channel
debugging and error logging.

Some IMAP error statuses are considered "permanent" errors: a message will be immediately
bounced, if such an error is encountered. Other IMAP error statuses are considered
"temporary" errors: a message will be retained in the MTA channel queue (ims-ms or LMTP
client tcp_lmtpcs* channel) for further delivery attempts. See IMAP error statuses for a full
listing of IMAP errors, or see IMAP error statuses relvant to the MTA for the subset of IMAP
errors relevant to the MTA, and in particular relevant to the ims-ms and LMTP channels.
(Note that in the case of LMTP, the IMAP error status is encountered by the LMTP server on a
Message Store back end, which then reports the error to the LMTP client running on a "front
end" MTA. So in the LMTP case, such errors may be reported in the LMTP server's message
transaction log file, in an LMTP server log file, and also as a reported LMTP error in the LMTP
client's log file or in the message transaction log file of the "front end" MTA running the LMTP
client channel.)

Table 64.1 IMAP error statuses relevant to the MTA

Name Type Text+ Meaning

Delivery permanent errors

 IMAP_INVALID_USER Permanent Invalid user The recipient address did not parse into syntactically valid uid, channel part,
and optionally domain and/or folder portions

IMAP_QUOTA_EXCEEDED_PERSISTENT
Permanent Over quota The user has exceeded their configured quota for more than the configured

grace period.

 IMAP_MESSAGE_TOO_LARGE Permanent Message too large Message is larger than the user's entire quota (mailQuota).

 IMAP_MAILBOX_NONEXISTENT Permanent Mailbox does not exist (Recall that these error messages are general IMAP error messages, that
may occur in other contexts besides ims-ms channel or LMTP channel
delivery.) When this error occurs in the context of an ims-ms or LMTP
channel delivery, the meaning is as follows. Normally, the ims-ms channel
and LMTP server tcp_lmtpss* channel will create a mailbox, if it does
not exist. And when delivery to a specific folder is being attempted due
to a Sieve "fileinto" action, and the folder does not exist, the channel
will attempt to create the folder. (If the folder part of the address was not
generated by the user's Sieve filter nor world writeable, then the channel
will log a General facility, Information level notice to the imta file saying
"append_setup path failed, trying INBOX:" followed by the
IMAP_MAILBOX_NONEXISTENT error text. If the folder part was due
to the user's Sieve filter but the folder could not be created, then the
channel will log a General facility, Error level notice to the imta file saying
"mboxlist_createmailbox path failed, trying INBOX:" with the
specific IMAP error text.) But if the partition is bogus, then this error will be
returned.

 IMAP_MESSAGE_CONTAINSNULL Permanent Message contains NUL characters (A message that has gone through the MTA will not normally cause such an
error, as the MTA will normally legalize message content.)

 IMAP_MESSAGE_CONTAINSNL Permanent Message contains bare newlines (A message that has gone through the MTA will not normally cause such an
error, as the MTA will normally canonicalize message content resulting in
proper use of CRLF for line breaks, and encoded newlines in binary content;
see the discussion of the lmtp* and smtp* channel options.)

 IMAP_MESSAGE_BADHEADER Permanent Message contains invalid header

 IMAP_MESSAGE_NOBLANKLINE Permanent Message has no header/body
separator

(A message that has gone through the MTA will not normally cause such an
error, as the MTA will normally legalize messages one way or another; see the
*headertermination channel options.)

 IMAP_PERMISSION_DENIED Permanent Permission denied

IMAP_CONFIG_ERROR Permanent Configuration error Returned if either LDAP pool code, or the domain map code, cannot be
initialized. (Note that normally such initialization is done when the ims-ms
channel first starts up, and when the LMTP server first starts up, and errors
initializing at that time will cause the channel or server to exit. So this is not
expected to occur for the ims-ms channel and LMTP server tcp_lmtpss*
channel at this later, message processing, stage.)

ims-ms channels 64–9

ims-ms channel error messages

IMAP_PROXY_ONLY Permanent Server is not configured for local
users

 IMAP_WRONG_MAILHOST Permanent Mailbox is on a different server This suggest that either the user's LDAP entry is missing a mailHost attribute
entirely, or their mailHost has been changed (their mailbox has been moved)
while old messages were awaiting delivery in the ims-ms channel queue
area, or that there is an error in the MTA configuration (causing it to attempt
to deliver a message on the wrong mailHost), or operator error whereby
messages have been manually moved (incorrectly) from one host to another.

 IMAP_MAILBOX_BADNAME Permanent Invalid mailbox name

 Delivery temporary errors

 IMAP_MAILBOX_LOCKED Temporary Mailbox is busy The mailbox was locked. When this status is encountered, the MTA delivery
channel (ims-ms or tcp_lmtpcs*) first retries 10 times at 100 millisecond
intervals (before this error is ever even reported back from the channel). Prior
to 8.0, lock attempts were nonblocking; a 1 second time is used in 8.0 or later. If
the mailbox remains locked, then the channel gives up on this delivery attempt,
generating a "Q" record with the "Mailbox is busy" reason if logging
is enabled. And then there is special code in the ims-ms channel (and as of
MS 7.0 in the LMTP client channel) to ask the Job Controller to retry delivery
again very, very soon---with a randomly generated backoff of between one
second and two minutes---overriding the normal *backoff values. Occasional
occurrences of such a temporary error are normal, as for instance if a user is
logged in and performing extensive, time-consuming operations on a mailbox;
indeed, it is because an occasional such occurrence is "normal" that the delivery
channels have special code to handle this (usually transient) error condition by
retrying delivery very soon. However, persistent occurrences for the same user
might suggest a problem with that user's mailbox. Or, if such errors suddenly
start occurring at around the same time for all (or many) users, that could be a
suggestion of some more widespread and general problem with the Message
Store.

 IMAP_MAILBOX_BADFORMAT Temporary Mailbox has an invalid format The mailbox may be corrupted.

 IMAP_MAILBOX_NOTSUPPORTED Temporary Operation is not supported on
mailbox

The mailbox may be corrupted.

 IMAP_IOERROR Temporary System I/O error. Administrator,
check server log for details.

The Message Store may be corrupted, or otherwise inaccessible (e.g., disk
not mounted); or the Message Store store.idx file may have reached its 2
gigabyte size limit.

 IMAP_PARTITION_UNKNOWN Temporary Unknown/invalid partition The user's mailMessageStore LDAP attribute does not correspond
to a partition-name defined via a path partition option in Unified
Configuration (a store.partition.partition-name.path
configutil parameter in legacy configuration), or the value of that option
or configutil parameter does not point to a valid location, or contains
invalid characters (only alphanumeric characters are allowed). (If a
user does not have a mailMessageStore set at all, then the Message
Store's default partition, defaultpartition Message Store option
in Unified Configuration or store.defaultpartition configutil
parameter in legacy configuration, is assumed, which defaults to primary.
When the absence of an explicit mailMessageStore is causing use
of the default partition, then whatever the default partition is, it must
then have a valid path specified in the path option for that named
partition in Unified Configuration (partititon:whatever.path)
or the store.partition.whatever.path configutil parameter;
in particular, when store.defaultpartition has its default
value of primary, then the primary partition must have a valid path
specified in partition:primary.path in Unified Configuration or
store.partition.primary.path in legacy configuration.)

 IMAP_PARTITION_FULL Temporary Store partition is full See also the (new in MS 6.2) configutil parameters
local.store.checkdiskusage and
local.store.diskusagethreshold (initially instead named
local.store.diskthreshold in MS 6.2), or in Unified Configuration the
checkdiskusage and diskusagethreshold Message Store options, which
control whether---and when---the store performs checks on its disk space
usage. With such checks enabled, the store will "lock" a partition (at which
point the IMAP_PARTITION_FULL error will be returned) slightly before the
partition is actually filled up. This is a safety measure, to ensure that expunge
operations (which need to rewrite the index files) have disk room in which to
operate.

 IMAP_QUOTA_EXCEEDED Temporary Over quota The recipient has exceeded their configured quota, but for less than the
configured grace period.

 Other statuses (not seen by ims-ms channels or LMTP channels)++

 IMAP_USERFLAG_EXHAUSTED Too many keywords in mailbox

IMAP_MAILBOX_EXISTS Mailbox already exists When attempting to create a folder, this is a success status

IMAP_MAILBOXLIST_NONEXISTENT Mailbox list does not exist

 IMAP_INVALID_IDENTIFIER Invalid identifier May occur when attempting to set an ACL on a folder

IMAP_INVALID_MSGNO Invalid message number

 IMAP_QUOTAROOT_NONEXISTENT Quota root does not exist

64–10 Messaging Server Reference

ims-ms channel error messages

+ The IMAP error text is localizable. The text shown in this table is merely the default text
(which happens to be English).

++ For completeness, additional IMAP statuses are listed, though they are not normally
relevant (do not normally appear) as ims-ms channel or LMTP channel delivery error statuses.

The IMAP delivery temporary error statuses listed in IMAP error statuses relevant to the MTA
may appear in the "history" field of messages that failed a delivery attempt; this is visible via,
for instance, the history command of the imsimta qm utility, as well as being physically
present in the history field in the deferred message files awaiting further delivery attempts
in the MTA ims-ms channel disk queue area or tcp_lmtpcs* channel disk queue area.
(Should a message eventually bounce due to "timing out", such history information may also
be included in the bounce message, as controlled by the history_to_return MTA option.)
Furthermore, the temporary error text will be included in the ims-ms channel's "Q" record in
the MTA message transaction log file, should such logging be enabled via use of the logging
channel option.

The IMAP delivery permanent error statuses shown in IMAP error statuses will appear in
the ims-ms channel's or tcp_lmtpcs* channel's "R" or "K" record in the MTA message
transaction log file, should such logging be enabled via use of the logging channel option.

As with other types of channel processes, the ims-ms channel processes do not have an
infinite life time: after running for a (configurable) while, they shut down (and the Job
Controller will start up new ims-ms channel processes, as needed). The Job Controller
options max_life_time and max_life_askwork (max_life_age and max_life_conns,
respectively, in legacy configuration) and the ims-ms channel's own 60 seconds limit on time
to persist while idle, control the timing of the ims-ms channel process "recycling". In addition,
an administrator restart of the Job Controller will cause the Job Controller to tell channel
processes to shut down. So notices in the imta log file such as the following are part of normal
operation:

At Notice level:

product ims_master version shutting down

product ims_master version starting up

And at Debug level: When the ims-ms channel process' threads have all been idle for 60
seconds or more (or are deadlocked):

idle shutdown

When a thread is exiting due to having no work to do:

Tthread-number exiting

When the Job Controller is telling a process to shut down due to the process having gotten old:

EOF from job controller

And after an administrator restart of the Job Controller, the following sorts of messages can
also be expected in the imta file. At Debug level:

ims-ms channels 64–11

ims-ms channel error messages

shutdown received

When the Job Controller is telling a process to shut down due to an administrator restart
command:

exit from job controller mta-status

A message (at Warning level) of

Shutdown timeout, possible deadlock

however, is an indication that one or more threads in a process attempting to shut down
have not been able to finish their work. If this error repeats, it may indicate that a mailbox is
corrupted or locked.

In an MTA message transaction log file "Q" or "Z" record, a reason of "shutdown" indicates that
a delivery attempt for that recipient is being deferred due to a shutdown in progress---either
an administrator's manual shutdown, or a shutdown due to a channel process "timing out".

64–12 Messaging Server Reference

Chapter 65 Other channels
65.1 Local channel ... 65–1
65.2 Bitbucket channel ... 65–2

65.2.1 Bitbucket channel configuration .. 65–2
65.3 Defragmentation channel .. 65–3

65.3.1 Defragmentation channel configuration ... 65–3
65.3.2 MAX_PARTS Defragmentation-channel-specific option 65–4
65.3.3 Defragmentation channel message retention time 65–4
65.3.4 Multi-host defragmentation channel operation 65–5

65.4 filter_discard channel .. 65–7
65.4.1 Retrieving messages from the filter_discard channel 65–8

65.5 Generic SMTP channels ... 65–9
65.6 Hold channel .. 65–10

65.6.1 Hold channel configuration .. 65–10
65.6.2 Releasing messages from the hold channel ... 65–11
65.6.3 Diagnosing .HELD files .. 65–11

65.7 Pipe channels ... 65–13
65.7.1 Setting up a pipe channel ... 65–13
65.7.2 Pipe entry match order ... 65–19

65.8 Process and Reprocess channels ... 65–20
65.8.1 Reprocess channel operation as prior channel 65–20

The MTA has a number of subsidiary channels, (that is, channels used for internal or special
processing purposes, rather than for delivery to local mailboxes or relaying to remote hosts),
and a sample "generic" SMTP channel provided as an example of channel code, including:

• the Local channel,

• the bitbucket channel,

• the defaults and nodefaults pseudo-channels,

• the conversion channel,

• the defragment channel,

• the filter_discard channel,

• the "generic" SMTP channels,

• the hold channel,

• the pipe channel,

• the process and reprocess channels,

The defaults and nodefaults pseudo-channels, which are place-holders rather than actual
channels, are discussed under Channel configuration. The conversion channel, which has
relatively complex configuration, is discussed separately under Message conversions. The
other channels listed are discussed in the chapter below.

65.1 Local channel

Other channels 65–1

Bitbucket channel

In modern usage, the local or "l" channel's main use is as a placeholder in identifying "local"
addresses, in that (normally) only addresses that initially rewrite to the local channel will be
checked for MTA aliasing. (See, however, the aliaslocal channel option.) The presence
of the viaaliasrequired channel option on the "l" channel is critical both operationally
and for security purposes, as it enforces that only those addresses that have a successful alias
lookup (hence correspond to a provisioned address) are accepted as valid "local" addresses.

In principle, the local channel could also be used to deliver messages to UNIX mailboxes on
the local host; however, that use is deprecated.

In principle, the local channel would also be considered to be the source of messages
submitted on the iMS host itself via utilities such as sendmail, mail, mailx, mailtools,
imsimta send, etc.; however, such submission is mostly moot nowadays.

Configuration settings on the "l" channel are somewhat privileged, since it is taken (in
the absence of overriding configuration settings) as the default set of names for the
MTA system itself. See the notices channel option. And compared to the "l" channel
official_host_name, see the id_domain and received_domain MTA options and the
BANNER_HOST TCP/IP-channel-specific option for some examples of configuration options
to override this "l" channel value.

65.2 Bitbucket channel
As the name itself suggests, the bitbucket channel simply deletes any message enqueued to it.
Indeed, messages that match the bitbucket channel are instantly deleted, without even being
written to a bitbucket disk area. (In particular, note that no IMTA_QUEUE:bitbucket/*
(or equivalently $DATAROOT/queue/bitbucket/*) message files are created---a message
is simply discarded immediately once the MTA sees that it matches the bitbucket channel.
 However, if logging is enabled then the MTA does write MTA transaction log entries for
the bitbucket channel as if it actually ran, for monitoring/statistics purposes. (Note that the
bitbucket channel "D" supposed "dequeue" record is in fact written by the enqueueing process
at the same time as it writes its "E" supposed "enqueue" record: note the identical time stamps
and, if the MTA option log_process=1 is set, the identical process id corresponding to the
enqueuing process.)

Note that Sieve filter "discard" and "jettison" actions are, depending upon the setting of
the filter_discard and filter_jettison MTA options, potential sources of purported
"enqueues" to the bitbucket channel, as are matches of an attempted poster's envelope From
address to the value of an mgrpJettisonDomain or mgrpJettisonBroadcasters
LDAP attribute (more precisely to the value of whatever LDAP attributes are named by the
ldap_jettison_domain or ldap_jettison_url MTA options), as well as *_ACCESS
mapping table $V, $v, $Z, or $z flag effects.

65.2.1 Bitbucket channel configuration
Bitbucket channel configuration is quite simple and minimal, consisting of a bare bones
channel definition and a few rewrite rules to recognize pseudodomain name(s) which will be
used when directing messages to the bitbucket channel. (Even if users never explicitly type in
a bitbucket domain name, note that the MTA itself uses some bitbucket pseudodomain names
internally, as in certain delivery_options values.)

For instance, initial configuration normally creates:

65–2 Messaging Server Reference

Defragmentation channel

msconfig> show channel:bitbucket
role.channel:bitbucket.official_host_name = bitbucket-daemon
msconfig> show rewrite.rule * bitbucket*
role.rewrite.rule = bitbucket $U%bitbucket.domain.com@bitbucket-daemon
role.rewrite.rule = bitbucket.&/IMTA_HOST/ $U%bitbucket.domain.com@bitbucket-daemon

65.3 Defragmentation channel
The MIME standard (RFC 2046) provides the message/partial content type for breaking up
messages into smaller parts. This is useful when messages have to traverse networks with size
limits. It can also be useful when sending over networks subject to connection drops, as a form
of "check-pointing" of the sending of a message, since a connection drop during transmission
of a fragment of a message will require resending only of that fragment, rather than of the
entire message. Information is included in each part so that the message can be automatically
reassembled once it arrives at its destination.

The defragment channel option (used on channels other than the defragmentation channel)
and the defragmentation channel itself provide the means to reassemble messages in the
MTA. When a channel is marked defragment, any message/partial messages queued to that
channel will be placed in the defragmentation channel queue instead. The defragmentation
channel maintains a database which is used to match the parts of each message up with each
other. Once all the parts have arrived, the message is rebuilt and sent on its way.

The defragment database can optionally be stored on a filesystem accessible to multiple
hosts (for instance, over NFS), and then shared by multiple hosts. Such sharing of the
defragment database can be particularly useful for achieving appropriate and efficient
message defragmentation in multi-tiered, multi-plexed deployments. See Multi-host
defragmentation channel operation for further details.

All channels that perform local delivery or send messages on to hosts (e.g., LMTP back end
Message Store hosts) or networks that cannot deal with fragmented messages should be
marked with the defragment channel option. In particular all ims-ms and tcp_lmtpcs*
channels should be marked with the defragment channel option. The defragment channel
option will have no effect unless a defragmentation channel is also defined.

A defragmentation channel is produced automatically by initial configuration.

65.3.1 Defragmentation channel configuration
A defragmentation channel is normally generated as part of an initial configuration.

In legacy configuration, the defragmentation channel definition consists of a channel entry, at
its most minimal perhaps merely:

defragment
defragment-daemon

or as of 8.0:

defragment receivedstate "convert/defragment"

Other channels 65–3

https://tools.ietf.org/html/rfc2046

MAX_PARTS Defragmentation-
channel-specific option

defragment-daemon

and rewrite rules of the form:

defragment $U@defragment.localhostname@defragment-daemon
defragment.localhostname $U@defragment.localhostname@defragment-daemon

where localhostname should be replaced by the name of the local host.

In Unified Configuration, the equivalent would be:

msconfig> show channel:defragment.*
role.channel:defragment.official_host_name = defragment-daemon
msconfig> show rewrite.rule * defragment*
role.rewrite.rule = defragment $U%defragment.domain.com@defragment-daemon
role.rewrite.rule = defragment.&/IMTA_HOST/ $U%defragment.domain.com@defragment-daemon

(with domain.com being replaced by a site's own domain name).

Once such a defragment channel and rewrite rules are in the configuration, then an address of
the form

user%host@defragment.localhostname

will be routed through the defragmentation channel. (Sending anything other than a message/
partial message to the defragmentation channel causes the channel to simply requeue the
message for normal delivery.)

65.3.2 Defragmentation-channel-specific option:
MAX_PARTS (10 <= integer <= 100,000)

New in Messaging Server 7.4-18.01, the defragmentation channel supports, (in addition to
the usual channel options), one defragmentation-channel-specific option, MAX_PARTS.
MAX_PARTS specifies the maximum number of fragments a message can be broken into and
still be reassembled. The maximum is 100,000; the minimum is 10; the default is 1000.

This defragmentation-channel-specific option would be set in legacy configuration in a
channel-specific option file, IMTA_TABLE:defragment_option, or in Unified Configuration
is set under the channel's options option. For instance:

msconfig> set channel:defragment.options.MAX_PARTS 500

Note that in Unified Configuration such channel-specific options are not (currently) schema
checked: be careful when setting them as msconfig will not warn of invalid values or syntax
as it would for regular channel options! (Nor will msconfig show whether or not such
channel-specific options have any default value.)

In legacy configuration, where an option file is used, such an option file must be named
defragment_option, and stored in the MTA table directory.

65.3.3 Defragmentation channel message retention time

65–4 Messaging Server Reference

Multi-host defragmentation
channel operation

Messages are retained in the defragment channel queue only for a limited time. When one
half of the time before the first nondelivery notice is sent has elapsed1 (and a backoff time
has elapsed so that the channel is attempting to process relevant message fragments), the
various parts of a message will be sent on without being reassembled. This choice of time
value (normally) eliminates the possibility of a nondelivery notification being sent about a
message in the defragment channel queue.

The notices channel option (and optionally its priority-sensitive variants, *notices)
controls the amount of time that can elapse before nondelivery notifications are sent, while the
backoff channel option (and optionally its priority-sensitive variants, *backoff) controls
when message delivery attempts are made. So between the two of them, they control the
amount of time messages are retained before being sent on in pieces, with notices normally
being the primary control (controlling how long before the channel "gives us" on attempting
to reassemble message fragments), modulated by when the backoff values in fact cause the
channel to run and attempt message delivery (hence deliver message fragments that have
lingered past half the final notices value and still do not make up a complete message "as
is", without reassembly). Set the notices option value to twice the amount of time you wish
to retain messages for possible defragmentation (and ensure that the backoff values in effect
for the defragment channel are such that a delivery attempt will be made shortly after half the
final notices value). For example, normally a notices value of 4 would cause retention of
message fragments for two days:

defragment notices 4
defragment-daemon

Or if the more general backoff values do not align well with the defragment channel's
notices time scale, then also set some sensible backoff values explicitly on the defragment
channel. For instance, setting the final backoff value to p4h means that message (fragments)
will get a reassembly-and-possible-delivery attempt every four hours. Hence the following sort
of definition:

defragment backoff "p1h" "p2h" "p2h" "p4h" notices 4

will mean that message fragments will get sent on as is (still as fragments, rather than
reassembled) after approximately forty-nine hours. (There will be message delivery attempts
immediately, then at one hour, three hours, five hours, nine hours, then every four hours
thereafter---so the first time past the two day point, the expiration of half of the notices final
value, will be at forty-nine hours.)

When the defragment channel cannot reassemble a message, and decides to send onwards a
message fragment, it will add a header line

Defragment-failed: official-local-host-name

showing the official_host_name from the L channel.
1 Note that the "half" is calculated using integer integral division but not allowed to go below
one, so for instance an initial notices value of 5 results in fragments being eligible for
delivery after 2 days or hours depending upon return_units, but even an initial notices
value of 1 still means fragments aren't eligible for delivery until after 1 day or hour.

65.3.4 Multi-host defragmentation channel operation

Other channels 65–5

Multi-host defragmentation
channel operation

The defragment database can optionally be stored on a filesystem accessible to multiple hosts
(for instance, over NFS1), and then shared by multiple hosts. This can be particularly useful
when multiple "front end" hosts can potentially deliver to the same "back end" message stores,
particularly when the "back end" message store can not do message defragmentation itself (as
for LMTP message stores).

To set up such sharing, make a link from the config-root/defragment_cache on each
individual system to whatever file you want to have be the shared defragment database on the
shared (NFS) disk. Note that the NFS mounted file system should be set for "soft mount" with
a relatively short time out, rather than for (the default for NFS) "hard mount". Regarding the
NFS time out, the NFS mount option (see the mount_nfs(1M) man page) timeo will need
to be set on the /etc/dfs/dfstab entry (or amtomount map) that causes the file system to
be mounted. (With a "hard mount", if NFS went down then the defragment channel would
hang, waiting for the access to the defragment cache to succeed. But with a "soft mount", the
defragment channel will time out its attempt to access the defragment cache. So the channel
will not hang; instead, in the unlikely event that all message fragments happen to end up on
one host, that host's defragment channel should be able to reassemble the fragments and send
the message onwards, properly reassembled; but more likely, the fragments will be spread
among different hosts, none of which can reassemble or properly route to another host's
defragment channel in the absence of successful access to the defragment cache, so instead the
various fragments with eventually get sent onwards still as separate fragments.)

When setting up a defragment database that will be shared over NFS by multiple systems,
note that the MTA user (typically mailsrv -- see the user option in restricted.cnf) on
each system must be defined to have the same uid number on each system. If systems define
the MTA user with different uid numbers, permission problems can be expected.

The defragment database entries include a field specifying the host upon which a message
fragment resides. Once an initial part has been received and noted in the defragment database,
any other parts of the message that are received on any other systems using the same
defragment database will get routed to that "first" host that received the "first" part. (The
defragment channel when it runs, first checks if any message fragment parts are already
present, and if so on which host; then if a part or parts are already present on some other host,
the defragment channel sends its just-received part onward to the other host, using explicit
source routing to route to the other host, rather than retaining the part for reassembly attempts
itself. See the Multi-host defragmentation channel operation example for an example.)
Thus all remaining parts of a fragmented message end up getting redirected to the host
whose defragment channel happened to attempt processing the very first (first to arrive, not
necessarily part=1) part of the message; that host's defragment channel is then responsible
for doing the message defragmentation (reassembly) once all fragments have been received.
(One consequence is some load-balancing of the defragmentation of messages depending upon
which host happens to receive the "first" part of each message.)

1 Note that sharing the defragmentation database over NFS is an exception to the general rule
that the MTA does not support sharing filesystems via NFS. The MTA's use of the defragment
database has been specially designed with NFS' limited locking semantics in mind.

65.3.4.1 Multi-host defragmentation channel operation example

The defragmentation channel supports operating in a setup where multiple hosts share the
same defragmentation database. In such setups, the routing of message fragments to and
between defragment channels on a multi-host setup (when multiple hosts are sharing the same
defragment database) is as follows:

65–6 Messaging Server Reference

filter_discard channel

1. "message/partial; id=123; part=x" arrives on host 1, and is routed to the
defragment channel on host 1 due to the defragment keyword being present on what
would otherwise be the destination/outbound channel.

2. The defragment channel on host 1 runs, checks the defragment database for whether any
other parts of this message have yet arrived. None have, so the defragment channel (on host
1) enters this part into the defragment database marking the part as being on host 1.

3. "message/partial; id=123; part=y" arrives on host 2, and is routed to the
defragment channel on host 2 due to the defragment keyword being present on what
would otherwise be the destination/outbound channel.

4. The defragment channel on host 2 runs, checks the defragment database, sees that part x
of this message is already present and stored on host 1. So the host 2 defragment channel
redirects the message over to host 1 (source routes the address with @host1).

5. "message/partial id=123; part=y" arrives on host 1, is routed to the defragment
channel, the host 1 defragment channel runs and enters it into the database, etc.

6. Eventually, the "final" fragment of the message gets to host 1 (possibly having first gone
through another host such as host 2, which then routed the message to host 1). The
defragment channel runs and now sees that it has all the fragments of the message,
reassembles them all into the original message, and sends the message onwards to the
intended recipient.

65.4 filter_discard channel
By default, messages discarded via a Sieve filter are immediately discarded (deleted) from the
system. However, when users are first setting up Sieve filters (and perhaps making mistakes),
or for debugging purposes, it can be useful to have the deletion operation delayed for a period.
(Certain flags in *_ACCESS mapping tables cause Sieve filter like discarding of messages; such
messages also are eligible for delayed deletion.)

To have Sieve filter discarded messages temporarily retained on the MTA system for later
deletion, first add a filter_discard channel in your MTA configuration, e.g.:

filter_discard notices 7
FILTER-DISCARD

or in Unified Configuration:

msconfig> set role.channel:filter_discard.official_host_name FILTER_DISCARD
msconfig# set role.channel:filter_discard.notices 7

As of 8.0, use of the new-in-8.0 receivedstate channel option is recommended, so:

msconfig> set role.channel:filter_discard.receivedstate "quarantine/sieve-discarded"

or in legacy configuration:

filter_discard receivedstate "quarantine/sieve-discarded" notices 7
FILTER-DISCARD

Other channels 65–7

Retrieving messages from the
filter_discard channel

with the notices channel option specifying the length of time (normally number of days) to
retain the messages before deleting them. Then set the MTA option filter_discard=2:

msconfig# set role.filter_discard 2

By default, messages discarded due to a Sieve "jettison" action get the same handling as
those discarded due to a "discard" action, as controlled by the filter_discard MTA
option, either being deleted from disk immediately or retained in the filter_discard
channel queue area. However, the filter_jettison MTA option may be used to
differentiate the handling; for instance, if one wishes to retain messages discarded by
a (presumably user level) "discard" action in the filter_discard channel, while
immediately deleting messages discarded due to a (system level) "jettison" action, one
could set filter_discard=2 and filter_jettison=1:

msconfig> set role.filter_discard 2
msconfig# set role.filter_jettison 1

Setting the MTA option filter_jettison=2 explicitly (or the implicit effect if the MTA
option filter_discard=2 is set) will cause messages discarded due to a Sieve "jettison"
action to be retained in the filter_discard channel.

Messages in the filter_discard channel queue area should be considered to be in an
extension of users' personal wastebasket folders. As such, note that warning messages are
never sent for messages in the filter_discard channel queue area, nor are such messages
returned to their senders when a bounce or return is requested. Rather, the only action taken
for such messages is to eventually silently delete them, either when the final notices value
expires, or if a manual bounce is requested using a utility such as imsimta return or the
imsimta qm utility's return command.

65.4.1 Retrieving messages from the filter_discard
channel

One reason for configuring use of the filter_discard channel (rather than simply having
"discarded" messages immediately deleted from disk) is that it permits the potential for the
system administrator to "retrieve" messages while they are still in the filter_discard
channel queue on disk. The general process for such "retrieval" is as follows:

1. Move the message files in question manually to the reprocess channel queue area
(typically DATAROOT/queue/reprocess), changing the filename slightly (e.g., from *.00
to *.02) when doing so, and making sure to preserve the proper ownership and protections
on the message files.

2. Issue the command "imsimta cache -synch" so that the Job Controller will do an
immediate scan to notice the moved message files. (If one is in no particular hurry for such
messages to begin getting delivery attempts, this step can be omitted in favor of waiting
for the Job Controller to get around to noticing such files on its own; the Job Controller
normally scans automatically every four hours per its synch_time option.)

3. After the imsimta cache -synch has completed, one may issue the command "imsimta
run reprocess " to run an extra reprocess channel job immediately, rather than

65–8 Messaging Server Reference

Generic SMTP channels

waiting for the Job Controller to get around to scheduling a reprocess job to process any
messages (such as the recently moved messages) that it might have due for processing.

When the MTA applies a Sieve "discard" or "jettison" action, a bit in the message
envelope gets set; if the MTA subsequently sees a message file that has that bit set, it will
not again apply a Sieve "discard" or "jettison" action. The purpose of this is precisely
so that the above sort of operation (moving a previously discarded message from the
filter_discard channel to the reprocessing channel) can be used to get messages
delivered, without the "discard" getting re-applied.

Note that the discarding of a message can be caused by a "discard" or "jettison" actions
arising from any of a number of locations, including a number of potentially applicable
Sieve filters (system, channel, user, group, domain, etc.), or by address-based *_ACCESS
mapping table $v, $V, $z, or $Z flags. Wherever/whatever the source of the discarding
action, the setting of the same ignore-future-discard-actions bit occurs, and if such a message
is subsequently "retrieved" (reinjected into the MTA's regular channel queues typically being
moved manually to the reprocess channel queue area), then all such discarding actions that
might otherwise be applicable on this MTA will be henceforth ignored for the message in
question (on this MTA -- such delivery flags are not normally transferred to other MTAs,
though see the flagtransfer channel option).

One more note: messages enqueued to the filter_discard channel always get the
username field for the message (the "owner" of the message for access purposes) set to the
string "FILTER_DISCARD"; this value will, for instance, show up in the log_username field
of the MTA message transaction log file.

65.5 Generic SMTP channels
The channel programs test_smtp_master and test_smtp_slave are provided as models
upon which additional channels using the SMTP protocol can be built. They are intended as
examples only and not as production channel programs.

Both programs require that the environment variable PMDF_CHANNEL (on UNIX) translate
to the name of the channel they are servicing -- and expect that channel to be defined in the
MTA configuration.

When test_smtp_master is executed, it asks the Job Controller for messages waiting to be
processed by the channel PMDF_CHANNEL. SMTP commands are written to stdout and
responses are expected on stdin.

Similarly, test_smtp_slave accepts SMTP commands on stdin and writes responses to
stdout.

The the imsimta run utility and the regular configuration of the Job Controller never invoke
test_smtp_master and will have to be modified in order to use test_smtp_master. The
configuration to execute tcp_master can be used as a model to drive test_smtp_master.

test_smtp_master includes code to distinguish between use as a direct connection to
the target system and use for routing through a gateway. This facility parallels the gateway
support found in TCP/IP channels, namely support for the daemon option.

Though test_smtp_master and test_smtp_slave never open or receive, respectively,
an actual TCP/IP connection, if the environment variables TRANSPORTINFO and

Other channels 65–9

Hold channel

APPLICATIONINFO are set, then these programs will use that information to initialize the
relevant fields that would be present in a real SMTP-over-TCP/IP message transport.

test_smtp_master and test_smtp_slave perform normal MTA channel initialization
steps, including consulting the MTA configuration to determine if the named channel (the
channel PMDF_CHANNEL translates to) has any local_host_alias set; they check for any
TCP/IP-channel-specific options; and they "support" typical channel options relevant to SMTP-
over-TCP/IP channels, such as master_debug, slave_debug, smtp*, and (as previously
mentioned) the daemon channel option.

65.6 Hold channel
When messages are incoming to a user whose mailUserStatus attribute (more precisely,
the attribute named by the ldap_user_mail_status MTA option) is set to a value of hold,
or who is in a domain whose mailDomainStatus attribute (more precisely, the attribute
named by the ldap_domain_attr_mail_status MTA option) is set to a value of hold,
then the messages will be routed to the hold channel and will be marked as .HELD. (Both of
these things---the routing to the hold channel, and the marking of the message as .HELD---are
configured via the delivery_options MTA option's value for the hold clause.)

The hold channel is intended for temporarily detaining messages addressed to users (or to
users in domains) for purposes such as migration of the users' (or an entire domain of users')
mailboxes. The incoming messages can be sidelined in the hold channel queue area on disk,
and then once the users' mailboxes are once again ready to receive e-mail, and the user and/or
domain status has been set back to active, the messages can be delivered onwards.

Hold channel configuration discusses the basic configuration of the hold channel. Releasing
messages from the hold channel discusses how to release messages from the hold channel.

65.6.1 Hold channel configuration
The initial configuration generated during an install generates a hold channel. The channel
definition and basic rewrite rules would normally appear as

msconfig> show channel:hold
role.channel:hold.official_host_name = hold-daemon
msconfig> show rewrite * *hold*
role.rewrite.rule = hold-daemon $U%$H@hold-daemon
role.rewrite.rule = .hold-daemon $U%$H@hold-daemon

Or in legacy configuration:

hold
hold-daemon

and rewrite rules appearing as

hold-daemon $U%$H@hold-daemon
.hold-daemon $U%$H@hold-daemon

65–10 Messaging Server Reference

Releasing messages from the hold
channel

Note that as of MS 6.0, the hold "channel" is in fact merely a variant (same image, but run as
a different channel) of the reprocess channel. In particular, the Job Controller configuration
should include:

msconfig> show job_controller.channel_class:hold
role.job_controller.channel_class:hold.master_command = IMTA_BIN:reprocess

Or in legacy configuration, the Job Controller configuration file, normally
job_controller.cnf, should contain a definition:

[CHANNEL=hold]
master_command=IMTA_BIN:reprocess

65.6.2 Releasing messages from the hold channel
To cause messages sidelined as .HELD in the hold channel queue area to become eligible for
delivery (to be delivered onwards) once again, set the user's status (mailUserStatus) and
domain status (mailDomainStatus) once again to active, and then use the imsimta qm
utility's release command to release the held messages for processing. As of Messaging
Server 7.0u4, the imsimta qm utility informs the Job Controller of such message release,
which for normal messages usually results in an "immediate" (more-or-less, depending on
current load on the MTA) delivery attempt. (But in some earlier versions, the released message
would not get "seen" by the Job Controller until the next cache -sync occurred, whether via
an explicit imsimta cache -sync command, or via the Job Controller's own automatic,
periodic cache -sync.)

Note that attempting to release a message for a user who is still marked as "hold" will merely
result in the message again getting sidelined as .HELD with a temporary error (recorded
in the MTA message transaction log, and the message's own delivery history) using the
error_text_still_held MTA option's text, so by default

452 4.2.1 cannot reenqueue while still held

65.6.3 Diagnosing .HELD files
The causes of .HELD files can be considered to fall into three major categories:

1. Messages .HELD due to a user status or domain status of "hold": These are messages that
are, by intent of the MTA administrator, intentionally being side-lined, typically while some
maintenance procedure is being performed, (e.g., while moving user mailboxes).

2. Looping messages: messages that the MTA side-lined as .HELD because the MTA detected
(via build-up of one or another sort of *Received: header lines) that the messages were
looping.

3. Suspicious messages: messages that met some suspicion threshhold, and were therefore
side-lined as .HELD for later, manual inspection and action by the MTA administrator.
Messages can be side-lined as .HELD due to exceeding a configured maximum
number of envelope recipients (see the holdlimit channel option), due to exceeding
max_mime_levels or max_mime_parts if such an MTA option has been set to a
negative integer, due to an MTA administrator imsimta qclean, imsimta qm clean

Other channels 65–11

Diagnosing .HELD files

or imsimta qm hold command executed by the MTA administrator based on some
suspicion of the message(s) in question, due to use of a "hold" action in a Sieve script or
spam/virus filter package action, due to use of a Milter SMFIF_QUARANTINE action (or
explicit "hold;" in a QUARANTINE_ACTION Milter plugin option), or due to a conversion
command script exit status of PMDF__FORCEHOLD.

When diagnosing the reason why a particular message or messages are .HELD, consider the
following:write file

1. All messages .HELD due to a user status or domain status of "hold"---and only messages
.HELD for such a reason--- will normally be stored in the hold channel's queue area. That is,
.HELD message files in the hold channel's queue area can be assumed to be .HELD due to
user or domain status.

2. Messages .HELD due to the MTA having detected that they were looping can be expected
to have a great many of one or another sort of *Received: header lines, when inspected.
Furthermore, those Received: header lines typically illustrate the exact path of the message
loop: look especially carefully at the hostnames and any recipient address information
(e.g., "for recipient" clauses or "(ORCPT recipient)" comments) appearing in
such header lines. One cause of such message loops is user error: a user forwards their
messages on system A to system B, and has system B set up to forward back to system A.
(The solution is for the user to fix their forwarding definitions.) Another common cause of
message loops is the MTA receiving a message that was addressed to the MTA host using
a network name that the MTA does not recognize (has not been configured to recognize)
as one of its own names. (The solution is to add the additional name to the list of names
that your MTA recognizes as "its own"; more on this below). Or another possible cause
is missing or erroneous host table entries or DNS records that cause routing back to the
MTA of addresses in domains not intended to be handled by this MTA. (The solution in
such a case should be to correct the name records at the TCP/IP level; when that can not be
achieved, some host table or nameserver problems can be worked around by special routing
configuration on the MTA, though solving any underlying name problems is preferable.)
Note that the MTA's thresholds for determining that a message is likely "looping" are
configurable; see Received header line MTA options. Also note that the MTA may optionally
be configured---see the held_sndopr MTA option---to generate a syslog notice whenever a
message is forced into .HELD state due to exceeding such a threshold. If syslog messages of

HELDMSG, Header count exceeded; message has been marked .HELD automatically

are present, then you know that this is occurring.

3. Messages .HELD due to some suspicious characteristic will of course exhibit that
characteristic---though a priori that characteristic could be anything which the site has
chosen to characterize as "suspicious". If you are an administrator of the MTA, you should
attempt to stay reasonably aware of whatever such configuration choices and actions have
been taken on your MTA. However, if you are not the only or original administrator of
this MTA, then check the MTA configuration for any configured use of the holdlimit
channel option, any use of the $H flag in the FROM_ACCESS mapping table or a recipient-
address-based *_ACCESS mapping table, any negative value for the max_mime_levels
or max_mime_parts MTA options, or any use of the "hold" action in any system Sieve
file (the systemfilter MTA option/system level imta.filter file, or any channel level
Sieve filters configured and named via use of sourcefilter or destinationfilter
channel options) or spam/virus filter package action's Sieve scriptlet, or (when using a
milter) use of the SMFIF_QUARANTINE milter action, or use of the conversion channel
with a script that exits with the status PMDF__FORCEHOLD. Also ask any fellow MTA

65–12 Messaging Server Reference

Pipe channels

administrators about any manual command line side-lining (via, for instance, a imsimta
qm clean command) they might have recently performed. Note also that application of a
Sieve filter "hold" action, whether from a system Sieve filter or from users' personal Sieve
filters, may optionally be logged in MTA message transaction logging; see the log_filter
MTA option. (As of MS 8.0 with its new, private Sieve "transactionlog" extension, MTA
administrators may wish to make use of the "transactionlog" action in any Sieve filter
that performs a "hold" action, to record details regarding the reason(s) that the "hold" was
performed.)

65.7 Pipe channels
Pipe channels are used to effect delivery for specific addresses via a site-supplied program
or script. While pipe channels are loosely based upon the | (pipe) functionality of sendmail,
they have been carefully designed to not pose a security threat. First, the availability of a
pipe channel is configurable: the MTA administrator may remove the pipe channel from the
configuration if he or she prefers not to trust the technology. Second, the commands executed
by the pipe channel are controlled by the MTA administrator, and no user supplied input can
find its way into those commands: each command the administrator supplies is used verbatim
with the exception of the optional substitution of a filename generated by the channel itself
without reference to user supplied input. Finally, the decision to run a command is not based
upon the presence of special characters appearing in a recipient address, but rather upon a
recipient address exactly matching a specific address or host name in a table or database which
the MTA administrator must provide. If an exact match between an incoming address and the
site's table or database exists, then the command listed in the table for that match is executed.

Unlike the sendmail pipe functionality, the MTA's pipe channel does not pipe the message
to be processed to the program or script. Instead, it writes the message to be processed to a
temporary file and then forks a subprocess to run the site-supplied command for that message.
The forked subprocess then opens the message file on stdin prior to executing the command.

The command can either read the message from stdin or it can make use of the name of the
temporary file which can be substituted into the command by the channel. The temporary file
should not be deleted or altered by the subprocess; the channel will delete it itself. If it is not
possible to prevent the subprocess from disrupting the file, then the pipe channel should be
marked with the single channel option.

If the subprocess exits with exit code of 0 (EX_OK) then the message is presumed to have been
delivered successfully and is removed from the MTA's queues. If it exits with an exit code of
71, 74, 75, or 79 (EX_OSERR, EX_IOERR, EX_TEMPFAIL, or EX_DB) then a temporary error is
presumed to have occurred and delivery of the message is deferred. If any other exit code is
returned, then the message will be returned to its originator as undeliverable. These exit codes
are defined in the system header file sysexits.h.

65.7.1 Setting up a pipe channel
There are two steps in setting up a pipe channel:

1. adding the channel definition to the configuration, (note that initial configuration normally
generates a pipe channel itself), and

2. specifying the addresses to receive pipe channel processing and their corresponding
processing, via LDAP attributes on users, or via the channel option file, pipe database, or
profile database entries

Other channels 65–13

Setting up a pipe channel

65.7.1.1 Adding a pipe channel to the configuration

Initial configuration normally configures a pipe channel automatically. In Unified
Configuration, that definition would appear as:

msconfig> show channel:pipe.*
role.channel:pipe.official_host_name = pipe-daemon
role.channel:pipe.defragment (novalue)
role.channel:pipe.single (novalue)
msconfig> show rewrite.rule * *pipe*
role.rewrite.rule = .pipe-daemon $U%$H.pipe-daemon@pipe-daemon

corresponding to the legacy configuration:

.pipe-daemon $U%$H.pipe-daemon@pipe-daemon

...rest-of-rewrite-rules...

...start-of-channel-definitions...

pipe single defragment
pipe-daemon

But for those wishing to add a pipe channel manually, the following discussion is provided.
Note that usually a single pipe channel can suffice; but it is possible to configure multiple
pipe_* channels, if desired.

A message to be processed by a pipe channel is usually routed to the channel via a
combination of an alias and rewrite rules. For instance, the system domain.com might want all
mail for the addresses info-list@domain.com and gripes@domain.com to be routed to a pipe
channel. This could be accomplished with the alias file entries

info-list: info-list@pipe.domain.com
gripes: gripes@pipe.domain.com

where pipe.domain.com is in turn a host name associated with a pipe channel via rewrite
rules. For instance,

pipe.domain.com $u%pipe.domain.com@PIPE-DAEMON

So, to configure a pipe you need to determine the host names, pipe1.domain,
pipe2.domain, ... which you wish to use. Once you have determined these, add them to the
rewrite rules section of your MTA configuration file:

pipe1.domain $u%pipe1.domain@PIPE-DAEMON
pipe2.domain $u%pipe2.domain@PIPE-DAEMON
... ...

Then, to the end of your MTA configuration, add the definition of the pipe channel itself:

pipe

65–14 Messaging Server Reference

Setting up a pipe channel

PIPE-DAEMON

Be sure to include a blank line before and after this channel definition.

The pipe channel runs by default as the Messaging Server user, as specified by the user
option in restricted.cnf. So on UNIX, if you wish the pipe channel to run as some other
user, you may use the user channel option to specify the desired username though that usage
is deprecated as of MS 8.0; as of MS 8.0, the preferred usage is to use the pipeuser option in
the restricted.cnf file. Note that the argument to user channel option is normally forced
to lowercase, but original case will be preserved if the argument is quoted.

At this point, the pipe channel has been added to the configuration. However, it cannot be
used until you create a channel option file, or define and set delivery methods for pipe channel
addressees, as described next.

65.7.1.2 Pipe channel addressees and their handling

In order for a pipe channel to handle an address, each specific recipient address (or at least
each domain) to be handled must be explicitly configured with the desired pipe channel
handling. There are several ways to do this configuration.

Most typically users to receive pipe channel handling would get markings in their LDAP
entries, and Pipe options would define the program(s) available to run to process these
users. In this case addresses of the form "uid%programinfo@pipe-channel" are used. As of
Messaging Server 8.0.1.3 recognition of "a%b" form address is enabled by bit 0 (value 1) of the
ADDRESS_TYPES pipe channel-specific option. (Bit 0 is set by default.)

Older approaches using the MTA profile database or Pipe channel-specific option file
also exist. In these cases addresses of the form "user+domain@pipe-channel" are used.
As of MS 8.0.1.3 recognition of "a+b" form addresses is enabled by bit 1 (value 2) of the
ADDRESS_TYPES pipe channel-specific option. (Bit 1 is set by default.)

Finally, as of MS 8.0.1.3, when bit 2 (value 4) of the ADDRESS_TYPES pipe channel-specific
option is set (which is the default) addresses with a local part not containing a "%" or "+" are
handled as if they had a local part of the form: "PIPE-USER%PIPE-CHANNEL_default", where
"PIPE-USER" is the value of the pipeuser restricted.cnf option and "PIPE-CHANNEL" is the
name of the pipe channel (normally "pipe").

65.7.1.2.1 User LDAP attributes for pipe channel processing

When the MTA finds a user entry in LDAP that has a mailDeliveryOption attribute
(or whatever LDAP attribute is named by the ldap_delivery_option MTA option)
value of program, the delivery_option MTA option's program clause defines this to
mean (by default) to route the message to the pipe channel with the address composed
of the user's uid value and the value of the user's mailProgramDeliveryInfo LDAP
attribute (or whatever attribute is named by the ldap_program_info MTA option), i.e.,
uid@mailProgramDeliveryInfo.

The definition of what that mailProgramDeliveryInfo value means is controlled by Pipe
options.

65.7.1.2.1.1 Pipe options

A few options control operation of the Pipe channel when a user's mailDeliveryOption
LDAP attribute (or more precisely, the attribute named by the ldap_delivery_option

Other channels 65–15

Setting up a pipe channel

MTA option) includes a value of program, with execution as defined via the MTA
delivery_options option's program clause.

The delivery_options option's program clause (normally) defines such program delivery
to mean routing to the pipe channel with an address of the form "uid%programinfo@pipe-
channel", where "uid" is the user's uid (which will be the user the the program runs under) and
"programinfo" is the value of the user's mailProgramDeliveryInfo attribute (or whatever
attribute is named by the ldap_program_info MTA option).

The "programinfo" from the address is used as to construct a set of option names which then
provide the command to execute, parameters, and permissions. For example, a "foo" program
value would check the following options:

pipe:foo.command
pipe:foo.params
pipe:foo.perms

As of Messaging Server 8.0.1.3, pipe options are also used to handle pipe channel address that
do not contain a "%" or "+" charracter. In this case, assuming that the usual pipe channel named
"pipe" is used, the following options will be checked:

pipe:pipe_default.command
pipe:pipe_default.params
pipe:pipe_default.perms

65.7.1.2.1.1.1 params Option

The params Pipe option specifies program delivery arguments. The substitution sequence %s
may be used in the value to cause substitution of the (current) username.

65.7.1.2.1.1.2 perms Option

The perms Pipe option specifies permissions for the pipe delivery program.

65.7.1.2.1.1.3 command Option

The command Pipe option specifies the location of the program to execute to perform delivery.

The path can be absolute or relative. The base for relative paths is DATAROOT/site-programs.
msconfig checks to make sure the specified program exists; it will not allow the option to be set
if it doesn't.

65.7.1.2.2 Profile database

The Profile database is located at IMTA_DATAROOT:db/profiledb.

Entries in the Profile database are created and managed using the imsimta profile utility.

65.7.1.2.3 Profile database entries for pipe channel addressees

Before looking in the pipe channel option file, a pipe channel first queries the MTA profile
database checking whether there is a delivery method set for the addressee. Only if there is no
such entry is the pipe option file consulted.

65–16 Messaging Server Reference

Setting up a pipe channel

An MTA profile database delivery method entry for a pipe channel addressee is similar to that
for a local (L) channel addressee, except that the pipe channel domain is used. For instance,

imsimta profile
profile> set delivery MIME -user=jane.doe@pipe.domain.com

65.7.1.2.4 Pipe database

The pipe database was an alternate approach for storing larger numbers of address definitions
than was convenient for the Pipe channel option file -- but this approach is now more-or-less
obsolete.

65.7.1.2.5 Pipe channel option file

Unless you have a pipe database, or have established delivery methods for pipe channel
addressees, each pipe channel must have an option file. If there are no delivery methods set in
the MTA profile database, nor a pipe channel option file, nor a pipe database, then the channel
will not operate.

The commands to execute for each envelope recipient address presented to the channel are
specified in the MTA profile database, in the pipe database or in the pipe channel's option file.
If an address does not appear in one of these locations, then an error notification is sent back to
the message originator.

In legacy configuration, pipe channel option files are stored in the MTA configuration
directory CONFIGROOT/advanced and have names of the form x_option, where x is the
name of the pipe channel to which the option file applies. (In most instances, the file name will
be pipe_option; i.e., CONFIGROOT/advanced/pipe_option on UNIX.)

To process the address user@host, the pipe channel first probes the option file for an entry of
the form

user@host=command

If no matching entry is found, the channel next probes the option file for an entry of the form

host=command

If still no matching entry is found, then the recipient address is deemed bad and an error
notification is sent back to the message originator. See Pipe entry match order below for an
additional discussion of the order in which probes of various forms are made to the various
possible entry sources.

If, however, a probe does find a matching entry, then the specified command, command,
is executed. Prior to being executed, any occurrences of the phrase %s or %f appearing in
command are replaced with the name of the temporary file containing the message to be
processed. It is important that the command to be executed neither delete nor otherwise alter
the temporary message file as it may be needed for further pipe channel recipients of the same
message. If disruption of the message file cannot be prevented, then mark the channel with the
single channel option.

In Unified Configuration, the pipe channel option file is replaced by settings under
channel:pipe.options, e.g.,

Other channels 65–17

Setting up a pipe channel

msconfig> set channel:pipe.options.user_host command
msconfig# set channel:pipe.options.host command

where all "@", "%", and "+" characters are replaced by underscores. Also note that
any periods in the host will need to be backslash quoted. So for instance, if host is
mailhost.domain.com, then the commands would appear as:

msconfig> set channel:pipe.options.user_mailhost\.domain\.com command
msconfig# set channel:pipe.options.mailhost\.domain\.com command

The command to be executed will be run by a subprocess of the process running the pipe
channel. As such, it will be running with the privileges of the user named as the pipe channel
processing account via (prior to MS 8.0) the user channel option on the pipe channel or
(preferred approach as of MS 8.0) the pipeuser option in restricted.cnf, or if no pipe
channel user was specified, then it will be running with the privileges of the MTA user account
(see the user option in restricted.cnf). See Pipe channels for a description of the exit or
completion codes with which the command should exit the subprocess.

Note: As with any MTA option file, it is important that the option file not be world writable.
This is especially true of pipe channel option files.

In addition to the command entries in the pipe channel option file, there are additional general
options available:1

1 General UNIX L channel/native channel options may also be specified in a pipe option file,
though their relevance for the pipe channel tends to be limited.

65.7.1.2.5.1 SHELL_TIMEOUT (integer; UNIX only)

The SHELL_TIMEOUT option may be used to control how long in seconds the channel will
wait for a shell command to complete. Upon such time outs, the message will be returned back
to the original sender with an error message along the lines of "Timeout waiting for ...'s shell
command ... to complete". The default value is 600 (corresponding to 10 minutes).

65.7.1.2.5.2 SHELL_TMPDIR (directory-specification)

The SHELL_TMPDIR option may be used to control where the pipe channel creates its
temporary files when delivering to a shell command. By default, such temporary files are
created in the home directory of the MTA user (or the user specified by the user channel
option). Via this option the MTA administrator may instead choose to have the temporary files
created in some (single) other directory; e.g. (legacy configuration):

SHELL_TMPDIR=/tmp

or (Unified Configuration):

msconfig> set channel:pipe.options.SHELL_TMPDIR /tmp

65.7.1.2.5.3 ADDRESS_TYPES (0-7)

65–18 Messaging Server Reference

Pipe entry match order

New in MS 8.0.1.3, the ADDRESS_TYPES pipe channel option controls what kinds of
addresses this pipe channel allows. This is a bit encoded value, with the individual bits
defined as follows:

Table 65.1 ADDRESS_TYPES pipe channel option bits

Bit ValueMeaning
0 1 If set, process addresses of the form

a%b.
1 2 If set, process addresses of the form

a+b.
2 4 If set, process addresses using

default programs.

The default value of this option is 7, meaning all types of processing are enabled.

One use of the ADDRESS_TYPES option is to allow the use of subaddresses with default
programs. This can be accomplished by disabling processing of a+b address forms:

msconfig> set channel:pipe.options.ADDRESS_TYPES 5

65.7.1.2.5.4 UNIX_STYLE (0 or 1)

Setting UNIX_STYLE=1 causes the pipe channel to write out a UNIX style mbox file, including
a colonless From line, if a pipe command such as

cat %s >> filename.txt

is used. UNIX_STYLE=1 is the default on UNIXplatforms. Setting UNIX_STYLE=0 tells the
pipe channel not to write the colonless From line. E.g., in Unified Configuration:

msconfig> set channel:pipe.options.UNIX_STYLE 0

65.7.2 Pipe entry match order
The logic for checking entries in the profile database (UNIX only), pipe database and pipe
channel option file is as follows:

1. (UNIX only) Check the profile database for a user@host entry.

2. Check the pipe database for a user@host entry. (The "@" and any "+" or "%" characters are
converted to a "_" when checking unified configuration pipe channel-specific options.)

3. Check the pipe option file for a user@host entry.

4. Check the pipe database for a host entry.

5. Check the pipe option file for a host entry.

If no profile database entry exists and if the pipe database does not exist, then only the pipe
option file is checked, i.e., steps (3) and (5) only. If no profile database entry exists and if the
pipe database exists but cannot be opened, then the message is passed over --- the condition

Other channels 65–19

Process and Reprocess channels

is treated as a temporary error. And when checks (1)--(5) turn up no results, the message is
bounced.

65.8 Process and Reprocess channels
The processing and reprocessing channels are essentially the intersection of all other channel
programs --- they perform only those operations that are shared among all other channels.
In other words, such a channel is simply a channel queue whose contents are processed and
requeued to other channels. Messages receive no special processing whatsoever.

The difference between a reprocessing channel and a processing channel is that a reprocessing
channel is normally "invisible" as a source or destination channel, as for instance in a
CONVERSIONS, in a CHARSET-CONVERSION, or in a Recipient access mapping table such
as SEND_ACCESS, or in a source channel or destination channel specific rewrite rule. A
processing channel, on the other hand, is visible like other MTA channels.

It may appear that such a channel is effectively useless, but this turns out to be untrue. For
example, the act of processing message bodies or generating message files for a message
with a large number of recipients may be very time-consuming. Timeouts may occur if this
is done during the operation of a channel slave program with an open network connection.
So the MTA provides the expandlimit channel option, which forces requeuing of the
message to the reprocessing channel. Address expansion is then done as the reprocessing
channel runs, free of any network timing constraints. The reprocess channel is also normally
used to achieve deferred ("off-line") processing of expansion of mailing lists (see the
defer_group_processing MTA option), and implementation of Sieve "redirect" actions;
and in cases of LDAP directory unresponsiveness, submissions from "local" users are normally
deferred to the reprocess channel (see the domain_failure MTA option). As of MS 6.3, a
spam/virus filter package becoming unresponsive also optionally may cause such deferral; see
the spamfilterN_optional MTA options.

If a message destined to an address of the form user@domain is routed to the reprocessing
channel, (e.g., due to rewrite rules or the expandlimit channel option) then the reprocessing
channel will simply re-enqueue the message to the channel associated with the domain
domain; if a message destined to an address of the form user@reprocessing-domain is
routed to the reprocessing channel, (e.g., as may be the case for mailing lists using deferred
expansion), then the reprocessing channel will re-enqueue the message to the local channel. In
either case, the reprocessing channel performs any necessary expansion of the user part of the
address.

When an MTA channel has to generate a notification (bounce) message, such a notification
message is initially enqueued to the processing channel.

A processing channel and a reprocessing channel are produced automatically by the
MTA configuration generator. Note: Furthermore, for its own uses, the MTA will act as if
process and reprocess channels are defined even if they are not explicitly present in your
configuration. But if you wish to make any site specific uses of such channels, explicitly
addressing or rewriting to such channels, then you will need to have the channels explicitly
present in your configuration.

Prior to the 8.0 release, the reprocess channel handled Sieve "redirect" messages; as of
8.0, Sieve "redirect" messages instead go through the process channel.

65.8.1 Reprocess channel operation as prior channel

65–20 Messaging Server Reference

Reprocess channel operation as
prior channel

The reprocess channel performs various checks and operations as if it "were" the prior
channel (the channel that enqueued to the reprocess channel); this includes some of its logging,
as discussed in Reprocess channel message transaction log entries. In particular, this operation-
as-prior channel includes determination of whether channel debugging is enabled when
the reprocess channel runs: the prior channel must have debugging enabled to obtain
debugging for the reprocess channel. This operation as prior channel also includes the
address-based *_ACCESS mapping table checks, where the probes are done "as if" the prior
channel were probing; though note that as of 8.0, the $:R input flag check may be used to
detect cases of the reprocess channel probing an address-based *_ACCESS mapping table.

Note that as of 7.0.5, transactionlimit settings from the prior channel are not applied
when the reprocess channel is running.

65.8.1.1 Reprocess channel transaction log entries

Note that MTA message transaction (mail.log*) records involving the reprocess channel
require a bit of special reading, as one of the whole goals of use of reprocess is to preserve
the "original" source channel name (for purposes of access checks, etc.), and this then affects
the message transaction log entries. For instance, in the case of a message enqueued (received)
by the tcp_intranet channel and automatically deferred to the reprocess channel
(perhaps because, say, the LDAP server is not currently responding, or because a Sieve
"redirect" must be performed), relevant MTA message transaction log entries, with the MTA
option log_process=1 set, might have the rough form:

date-time-1 SMTP-process-id tcp_intranet reprocess E ...
date-time-2 reprocess-id tcp_intranet tcp_local E ...
date-time-3 reprocess-id reprocess D ...

That is, the reprocess channel's enqueue onwards is recorded (and access checked, if
appropriate) as if it were an enqueue from the original enqueueing channel---but if you have
log_process=1 set, then you can see by the process-id that it's actually the reprocess
channel that did that second enqueue.

Prior to 8.0, the reprocess channel handled Sieve "redirect" messages; as of 8.0, Sieve
"redirect" messages instead go through the process channel.

Other channels 65–21

65–22

Chapter 66 SMS options
66.1 SMS gateway options .. 66–2

66.1.1 enable Option Under sms_gateway ... 66–2
66.1.2 debug Option Under sms_gateway ... 66–2
66.1.3 foreground Option .. 66–3
66.1.4 history_file_directory Option .. 66–3
66.1.5 history_file_mode Option .. 66–3
66.1.6 history_file_flush_period Option .. 66–3
66.1.7 history_file_flush_threshold Option 66–3
66.1.8 history_file_rollover_period Option 66–3
66.1.9 max_conns Option Under sms_gateway ... 66–4
66.1.10 record_lifetime Option ... 66–4
66.1.11 thread_count_initial Option ... 66–4
66.1.12 thread_count_maximum Option ... 66–4
66.1.13 thread_stack_size Option ... 66–4

66.2 SMS gateway_profile options .. 66–4
66.2.1 text_to_subject Option .. 66–4
66.2.2 mta_channel Option .. 66–5
66.2.3 email_body_charset Option .. 66–5
66.2.4 email_header_charset Option .. 66–5
66.2.5 from_domain Option .. 66–5
66.2.6 in_re Option .. 66–5
66.2.7 parse_re_N SMS options .. 66–6
66.2.8 profile Option .. 66–7
66.2.9 route_to Option .. 66–8
66.2.10 select_re Option .. 66–8
66.2.11 smsc_default_charset Option ... 66–8
66.2.12 use_sms_priority Option ... 66–8
66.2.13 use_sms_privacy Option ... 66–9

66.3 SMS smpp_relay options ... 66–9
66.3.1 backlog Option Under smpp_relay ... 66–9
66.3.2 listen_addresses Option Under smpp_relay 66–9
66.3.3 listen_receive_timeout Option .. 66–9
66.3.4 listen_transmit_timeout Option .. 66–9
66.3.5 make_source_addresses_unique Option 66–9
66.3.6 max_conns Option Under smpp_relay ... 66–10
66.3.7 server_host Option Under smpp_relay ... 66–10
66.3.8 server_port Option Under smpp_relay ... 66–10
66.3.9 server_receive_timeout Option .. 66–10
66.3.10 server_transmit_timeout Option ... 66–10
66.3.11 tcp_ports Option Under smpp_relay .. 66–10

66.4 SMS smpp_server options ... 66–10
66.4.1 backlog Option Under smpp_server .. 66–10
66.4.2 esme_address_npi Option .. 66–11
66.4.3 esme_address_range Option .. 66–11
66.4.4 esme_address_ton Option .. 66–11
66.4.5 esme_password Option .. 66–12
66.4.6 esme_system_id Option .. 66–12
66.4.7 esme_system_type Option .. 66–12
66.4.8 listen_addresses Option Under smpp_server 66–12
66.4.9 listen_receive_timeout Option .. 66–13

SMS options 66–1

SMS gateway options

66.4.10 listen_transmit_timeout Option ... 66–13
66.4.11 max_conns Option Under smpp_server .. 66–13
66.4.12 server_host Option Under smpp_server .. 66–13
66.4.13 server_port Option Under smpp_server .. 66–13
66.4.14 system_id Option .. 66–13
66.4.15 tcp_ports Option Under smpp_server .. 66–13

SMS (Short Message Service) configuration allows some global settings under sms_gateway,
and below that is controlled via three named groups of options:

• General/global SMS gateway options,

• named groups of SMS gateway profile options,
sms_gateway.gateway_profile:profile-name.option-name

• named groups of SMS smpp_relay options, sms_gateway.smpp_relay:profile-
name.option-name, configuring aspects of the SMPP (Short Message Peer-to-Peer) relay
operation, and

• named groups of SMS smpp_server options, sms_gateway.smpp_server:profile-
name.option-name, configuring aspects of the SMPP (Short Message Peer-to-Peer) server
operation.

66.1 SMS gateway options
The SMS options set directly under sms_gateway establish general values, and global
defaults. In particular, the enable option enables the SMS gateway on start-msg startup.

66.1.1 enable Option Under sms_gateway
The enable SMS gateway option, sms_gateway.enable (Unified Configuration) or
local.smsgateway.enable (legacy configuration), enables the SMS service on start-msg
startup.

66.1.2 debug Option Under sms_gateway
The sms_gateway.debug option enables debug output for the SMS gateway. The default
value is 6, which selects warning and error messages. The actual value of this option is a bit
mask with the values shown below.

Table 66.1 SMS Gateway Debug Bit Mask Values

Bit Value Description
0-31 -1 Extremely verbose output
0 1 Informational messages
1 2 Warning messages
3 4 Error messages
3 8 Subroutine call tracing

66–2 Messaging Server Reference

foreground Option

4 16 Hash table diagnostics
5 32 I/O diagnostics, receive
6 64 I/O diagnostics, transmit
7 128 SMS to email conversion diagnostics

(mobile originate and SMS
notification)

8 256 PDU diagnostics, header data
9 512 PDU diagnostics, body data
10 1024 PDU diagnostics, type-length-value

data
11 2048 Option processing; sends all option

settings to the log file.

66.1.3 foreground Option
The foreground SMS gateway option, if set, means to run the SMS Gateway Server in the
foreground with debugging enabled. See also the sms_gateway.debug option.

66.1.4 history_file_directory Option
The history_file_directory SMS gateway option specifies the absolute path to the
directory to which to write the history files. The directory path will be created if it does not
exist. The default value for this option is IMTA_DATAROOT:sms_gateway_cache/.

The directory used should be on a reasonably fast disk system and have more than sufficient
free space for the anticipated storage; see SMS Gateway Server Storage Requirements to
change this option to a more appropriate value.

66.1.5 history_file_mode Option
The history_file_mode SMS gateway option specifies permissions for files of historical
data. The specified value is interpreted as an octal value.

66.1.6 history_file_flush_period Option
The history_file_flush_period SMS gateway option specifies how frequently cached
history data is periodically flushed to disk; i.e., the data is held solely in memory for no longer
than history_file_flush_period milliseconds. By default, a value of 100 milliseconds
(0.1 second) is used. Note that data written to disk is typically kept cached in memory as well.
The data is written to disk so as to not lose it across server restarts.

66.1.7 history_file_flush_threshold Option
When the amount of cached history data exceeds the value of the
history_file_flush_threshold SMS gateway option, the cached data is written to the
history file. By default, a value of 16M is used.

66.1.8 history_file_rollover_period Option

SMS options 66–3

max_conns Option Under
sms_gateway

The current history file is closed and a new one created every
history_file_rollover_period seconds. By default, a value of 3600 seconds (60
minutes) is used.

66.1.9 max_conns Option Under sms_gateway
The max_conns SMS gateway option, sms_gateway.max_conns, specifies the maximum
number of concurrent, inbound TCP connections to allow across all SMPP relay and server
instantiations. A value of 0 (zero) indicates that there is no global limit on the number of
connections. There may, however, be per relay or server limits imposed by a given relay or
server instantiation; see the smpp_server.max_conns and smpp_relay.max_conns
values.

66.1.10 record_lifetime Option
The record_lifetime SMS gateway option specifies the lifetime in seconds of a historical
record. Records older than this lifetime will be purged from memory; history files older than
this lifetime will be deleted from disk. By default, a value of 259,200 seconds (3 days) is used.
Records stored in memory are purged in sweeps by a thread dedicated to managing the in-
memory data. These sweeps occur every history_file_rollover_period seconds. Files
on disk are purged when it becomes necessary to open a new history file.

66.1.11 thread_count_initial Option
The thread_count_initial SMS gateway option specifies the number of worker threads
to initially create upon startup. By default, ten worker threads are initially created. The
number of threads dynamically adjusts as the server runs.

66.1.12 thread_count_maximum Option
The thread_count_maximum SMS gateway option specifies the maximum number of
concurrent worker threads to allow. By default, a maximum of fifty worker threads are
allowed.

66.1.13 thread_stack_size Option
Each worker thread is outfitted with a stack whose maximum size is specified with the
thread_stack_size SMS gateway option. By default, a stack size of 64K is used. Specify
a value of zero to use the platform's default thread stack size which is usually documented
under or within the platform's pthread_create documentaton. Any non-zero value specified
with this option will be rounded up to the nearest multiple of 64K which is not less than the
operating system's minimum thread stack size.

66.2 SMS gateway_profile options

66.2.1 text_to_subject Option
By default, the content of an SMS message, when gatewayed to e-mail, is split between
the Subject: header line and body of the resultant e-mail message, as per the setting of the

66–4 Messaging Server Reference

mta_channel Option

parse_re_N options. When the value of the text_to_subject SMS gateway profile
option, gateway_profile.text_to_subject, is set to 1, then the entire SMS text message
is placed in the Subject: header line of the resulting e-mail message. No portion of the SMS text
message is placed in the message's body.

66.2.2 mta_channel Option
The mta_channel SMS gateway profile option, gateway_profile.mta_channel,
specifies the name of the MTA channel used to enqueue e-mail messages. If not specified, then
sms is assumed. The specified channel must be defined in the MTA's configuration.

For discussion of MTA channel definitions, (in particular, for discussion of Unified
Configuration options set under a channel group), see instead Channel_configuration.

66.2.3 email_body_charset Option
The email_body_charset SMS gateway profile option,
gateway_profile.email_body_charset, specifies the character set to which to translate
the SMS text prior to insertion into an e-mail message's body. If necessary, the translated text
will be MIME encoded. The default value is US-ASCII. If the SMS message contains glyphs not
available in the charset, they will be converted to mnemonic characters, which may or may not
be meaningful to the recipient.

A list of the character sets known to the MTA may be found in the file charsets.txt.

This option is ignored when placement of the entire SMS message into the Subject: header line
is enabled with the text_to_subject SMS gateway profile option.

66.2.4 email_header_charset Option
 The character set to translate SMS text to prior to insertion into an RFC 822 Subject: header
line. If necessary, the translated string will be MIME encoded. The default value is US-ASCII.
If the SMS message contains glyphs not available in the charset, they will be converted to
mnemonic characters, which may or may not be meaningful to the recipient.

66.2.5 from_domain Option
The from_domain SMS gateway_profile option, gateway_profile.from_domain,
specifies the domain name to append to SMS source addresses when constructing envelope
From addresses for e-mail messages. The name specified should be the correct name for
routing e-mail back to SMS, (for example, the host name associated with the MTA SMS
channel). If not specified, then the official host name of the channel specified with the
mta_channel SMS gateway_profile option (CHANNEL in legacy configuration) will be
used.

66.2.6 in_re Option
The in_re SMS gateway profile option specifies the prefix text to use in the Subject: line
of a gatewayed response from SMS to E-mail. By default, the US-ASCII string "Re: " is
used. The string should be specified using the same character set as that specified by the
email_header_charset option.

SMS options 66–5

https://tools.ietf.org/html/rfc822

parse_re_N SMS options

66.2.7 Address extraction SMS options: parse_re_N
(regular expression)

 For mobile origination of e-mail, the gateway profile needs to extract a destination e-mail
address from the text of the SMS message. This is done by means of one or more POSIX-
compliant regular expressions (REs). The text of the SMS message will be evaluated by each
regular expression until either a match producing a destination e-mail address is found or the
list of regular expressions exhausted.

Note: Use of the parse_re_ and route_to options are mutually exclusive. Use of both in
the same gateway profile is a configuration error.

Each regular expression must be POSIX compliant and encoded in the UTF-8 character set.
The regular expressions must output as string 0 the destination address. They may optionally
output text to use in a Subject: header line as string 1, and text to use in the message body as
string 2. Any text not "consumed" by the regular expression will also be used in the message
body, following any text output as string 2.

The regular expressions will be tried in the order parse_re_0, parse_re_1, ..., up to
parse_re_9. If no regular expressions are specified and the option text_to_subject has
the value 0, then the following default regular expression is used,

[\t]*([^\(]*)[\t]*(?:\(([^\)]*)\))?[\t]*(.*)

This default regular expression breaks into the following components:

[\t]*

Ignore leading white space characters (SPACE and TAB).

([^\(]*)

Destination e-mail address. This is the first reported string.

[\t]*

Ignore white space characters.

(?:\(([^\)]*)\))?

Optional subject text enclosed in parentheses. This is the second reported string. The leading
?: causes the outer parentheses to not report a string. They are being used merely for
grouping their contents together into a single RE for the trailing ?. The trailing ? causes this RE
component to match only zero or one time and is equivalent to the expression {0,1}.

[\t]*

Ignore white space characters.

66–6 Messaging Server Reference

profile Option

(.*)

Remaining text to message body. This is the third reported string.

For example, with the above regular expression, the sample SMS message:

dan@sesta.com(Testing)This is a test

yields the e-mail message:

 To: dan@sesta.com
 Subject: Testing

 This is a test

As a second example, the SMS message:

sue@sesta.com This is another test

would yield:

 To: sue@sesta.com

 This is another test

Note that the SMS message, prior to evaluation with these regular expressions, will be
translated to the UTF-16 encoding of Unicode. The translated text is then evaluated with
the regular expressions which were previously converted from UTF-8 to UTF-16. The
results of the evaluation are then translated to US-ASCII for the destination e-mail address,
email_header_charset for the Subject: text, if any, and email_body_charset for the
message body, if any.

When the option text_to_subject has the value 1, then the default value for parse_re_0
is instead,

[\t]*([^\(]*)[\t]*(.*)

With this default, the ability to split the SMS text between the resulting e-mail message's
Subject: header line and body is no longer present. The entire SMS message is placed in the
Subject: header line. This regular expression only describes how to distinguish the recipient's
e-mail address from the remainder of the SMS message.

66.2.8 profile Option
The profileSMS gateway profile option specifies a SMS profile to assume. Presently
this information is only used to map SMS priority flags to RFC 822 Priority: header lines.
Consequently, this option has no effect when use_sms_priority has the value 0 (zero)
which is the default setting for that option.

SMS options 66–7

https://tools.ietf.org/html/rfc822

route_to Option

The permitted values for this option are "GSM", "TDMA", or "CDMA". The string "ANSI-136"
is treated as a synonym for TDMA; the string "IS-95" as a synonym for "CDMA".

66.2.9 route_to Option
The route_to SMS gateway_profile option specifies an IP host name to which all SMS
messages targeted to the profile will be rerouted, using an e-mail address of the form:

SMS-destination-address@route-to-value

where SMS-destination-address is the SMS message's destination address, and the
route-to-value is the IP host name specified with this route_to option. The entire
content of the SMS message is sent as the content of the resulting e-mail message.

Note: Use of parse_re_ and route_to options are mutually exclusive. Use of both in the
same gateway profile is a configuration error.

66.2.10 select_re Option
The select_re SMS gateway_profile option specifies a US-ASCII POSIX-compliant
regular expression to compare against each SMS message's SMS destination address. If an SMS
message's destination address matches this RE, then the SMS message will be sent through the
gateway to e-mail in accord with this gateway profile.

Note that since an SMS message's destination address is specified in the US-ASCII character
set, this regular expression must also be expressed in US-ASCII.

66.2.11 smsc_default_charset Option
The smsc_default_charset SMS gateway_profile option specifies the name of the
default character set used by the remote SMSC. The two common choices for this option are
US-ASCII and UTF-16-BE (USC2). If not specified, US-ASCII is assumed.

66.2.12 use_sms_priority Option
By default, priority flags in SMS messages are ignored and not sent with the e-mail messages.
To have the priority flags passed with the e-mail, specify use_sms_priority=1. When
passed with the e-mail, the mapping from SMS to e-mail is as shown in Table of SMS Priority
Flag Mappings to E-Mail.

Table 66.2 SMS Priority Flag Mappings to E-Mail

SMS Profile SMS Priority Flag Resulting E-Mail Priority:
Header Line

GSM 0 (non-priority) 1, 2, 3 (priority) No header line (implies
"normal") Urgent

TDMA 0 (bulk) 1 (Normal) 2 (Urgent) 3
(Very Urgent)

Nonurgent No header line
(implies Normal) Urgent
Urgent

CDMA 0 (Normal) 1 (Interactive) 2
(Urgent) 3 (Emergency)

No header line (implies
Normal) Urgent Urgent Urgent

66–8 Messaging Server Reference

use_sms_privacy Option

Note that the e-mail Priority: header line values are Nonurgent, Normal, and Urgent.

66.2.13 use_sms_privacy Option
By default, SMS privacy indications are ignored and not sent with the e-mail messages. To
have this information passed with the e-mail in a Sensitivity: header line, specify a value of 1
for the use_sms_privacy SMS gateway_profile option. When passed along in e-mail, the
mapping from SMS to a Sensitivity: header line is as shown in Table of Privacy Flag Mappings
from SMS to E-Mail,

Table 66.3 Privacy Flag Mappings from SMS to E-Mail

SMS Privacy Flag Resulting E-Mail Sensitivity: Header Line
0 (Not restricted) No header line
1 (Restricted) Personal
2 (Confidential) Private
3 (Secret) Company-confidential

Note that the values of the e-mail Sensitivity: header line are Personal, Private, and Company-
confidential.

66.3 SMS smpp_relay options
There are a number of options under smpp_relay.

66.3.1 backlog Option Under smpp_relay
The backlog SMS smpp_relay option (in legacy configuration, LISTEN_BACKLOG)
specifies the size of the connection backlog for inbound SMPP client connections.

66.3.2 listen_addresses Option Under smpp_relay
The listen_addresses SMS smpp_relay option (in legacy configuration,
LISTEN_INTERFACE_ADDRESS) specifies the network interface for inbound SMPP client
connections. If this option is not set, then listen on INADDR_ANY (that is, all addresses).

66.3.3 listen_receive_timeout Option
The listen_receive_timeout option, available under smpp_relay and smpp_server,
specifies the timeout (in seconds) to allow when waiting to read data from an SMPP client. The
default value is 600 seconds (10 minutes).

66.3.4 listen_transmit_timeout Option
The listen_transmit_timeout option for the SMS smpp_relay and smpp_server
specifies a timeout (in seconds) to allow when sending data to an SMPP client. The default
value is 120 seconds (2 minutes).

66.3.5 make_source_addresses_unique Option

SMS options 66–9

max_conns Option Under
smpp_relay

By default, the SMPP relay will append to each SMS source address a unique, ten digit string.
The resulting SMS source address is then saved along with the other historical data. The result
is a unique SMS address which may then be replied to by SMS users. The SMPP server will
detect this address when used as an SMS destination address and will then send the SMS
message to the correct e-mail originator.

To disable this generating of unique SMS source addresses (for one-way SMS), specify a value
of 0 (zero) for the make_source_addresses_uniqueSMS smpp_relay option.

66.3.6 max_conns Option Under smpp_relay
The max_conns SMPP Relay option, smpp_relay.max_conns, specifies the maximum
number of concurrent, inbound TCP connections to allow for this SMPP Relay instantiation. By
default, a value of 7,000 connections is used. Note that this option will be ignored if it exceeds
the global sms_gateway.max_conns setting.

66.3.7 server_host Option Under smpp_relay
The server_host SMPP Relay option specifies the SMPP server to which to relay SMPP
client traffic. Either a hostname or IP address may be specified. Specification of this option is
mandatory; there is no default value for this option.

66.3.8 server_port Option Under smpp_relay
The server_port SMS smpp_relay option specifies the TCP port for the remote SMPP
server to which to relay. Specification of this option is mandatory; there is no default value
for this option. There is no IANA assignment for this service; do not confuse with the IANA
assignment for SNPP.

66.3.9 server_receive_timeout Option
The server_receive_timeout SMPP Relay option specifies the timeout (in seconds) to
allow when waiting to read data from the SMPP server. The default value is 600 seconds (10
minutes).

66.3.10 server_transmit_timeout Option
The server_transmit_timeout SMPP Relay option specifies the timeout (in seconds) to
allow when sending data to the SMPP server. The default value is 120 seconds (2 minutes).

66.3.11 tcp_ports Option Under smpp_relay
The tcp_ports SMS smpp_relay option specifies the TCP port for inbound SMPP client
connections. Specification of this option is mandatory; there is no default value. Note also that
there is no Internet Assigned Numbers Authority (IANA) assignment for this service.

66.4 SMS smpp_server options
There are a number of options under smpp_server.

66.4.1 backlog Option Under smpp_server

66–10 Messaging Server Reference

esme_address_npi Option

The backlog SMS smpp_server option (in legacy configuration, LISTEN_BACKLOG)
specifies the size of the connection backlog for inbound SMPP server connections.

66.4.2 esme_address_npi Option
By default, when binding as a receiver in response to an OUTBIND request, the SMPP server
will specify an ESME Numeric Plan Indicator (NPI) value of zero indicating an unknown NPI.
Values for this option may be specified in one of three ways,

• A decimal value (for example, 10).

• A hexadecimal value prefixed by “0x” (for example, 0x0a).

• One of the case-insensitive text strings shown in Supported ESME NPI types

Table 66.4 Supported ESME NPI types

String Hexadecimal Value
data 0x03
default 0x00
e.163 0x01
e.164 0x01
e.212 0x06
ermes 0x0a
f.69 0x04
internet 0x0e
ip 0x0e
isdn 0x01
land-mobile 0x06
national 0x08
private 0x09
telex 0x04
unknown 0x00
wap 0x12
x.121 0x03

This option is ignored unless the server_port is also specified. See the description of the
various server_port options for further information.

66.4.3 esme_address_range Option
The ESME address range to present when binding as a receiver in response to an outbind
request. By default, an empty string is used. For some SMSCs, an address range of “[:alnum:]*”
may be appropriate. Any string specified must not exceed a length of 40 bytes.

66.4.4 esme_address_ton Option

SMS options 66–11

esme_password Option

By default, when binding as a receiver in response to an OUTBIND request, the SMPP server
will specify an ESME Type of Number (TON) value of zero indicating an unknown TON.
Values for this option may be specified in one of three ways,

• A decimal value (for example, 1).

• A hexadecimal value prefixed by “0x” (for example, 0x01).

• One of the case-insensitive text strings shown in Table of supported ESME TON types

Table 66.5 Supported ESME TON types

String Hexadecimal Value
abbreviated 0x06
alphanumeric 0x05
default 0x00
international 0x01
national 0x02
network-specific 0x03
subscriber 0x04
unknown 0x00

This option is ignored unless the smpp_server.server_port option is also specified. See
the description of the server_port option for further information.

66.4.5 esme_password Option
When binding as a receiver in response to an OUTBIND request, the SMPP server must specify
an ESME password. By default, an empty string is used for the password. Use this option to
specify a non-empty string. As with all ESME passwords, the maximum length of this string is
8 bytes.

66.4.6 esme_system_id Option
ESME system id to present when binding as a receiver in response to an OUTBIND request. By
default, an empty string is used. Use this option to specify a string at most 15 bytes long.

66.4.7 esme_system_type Option
The esme_system_type smpp_server option specifies the ESME system type to present
when binding as a receiver in response to an OUTBIND request. By default, an empty string is
used. Use this option to specify a string at most 12 bytes long.

66.4.8 listen_addresses Option Under smpp_server
The listen_addresses SMS smpp_server option (in legacy configuration,
LISTEN_INTERFACE_ADDRESS) specifies the network interface for inbound SMPP server
connections. If this option is not set, then listen on INADDR_ANY (that is, all addresses).

66–12 Messaging Server Reference

listen_receive_timeout
Option

66.4.9 listen_receive_timeout Option
The listen_receive_timeout option, available under smpp_relay and smpp_server,
specifies the timeout (in seconds) to allow when waiting to read data from an SMPP client. The
default value is 600 seconds (10 minutes).

66.4.10 listen_transmit_timeout Option
The listen_transmit_timeout option for the SMS smpp_relay and smpp_server
specifies a timeout (in seconds) to allow when sending data to an SMPP client. The default
value is 120 seconds (2 minutes).

66.4.11 max_conns Option Under smpp_server
The max_conns SMPP Server option, smpp_server.max_conns, specifies the maximum
number of concurrent, inbound TCP connections to allow for this SMPP Server instantiation.
By default, a value of 7,000 connections is used. Note that this option will be ignored if it
exceeds the global sms_gateway.max_conns setting.

66.4.12 server_host Option Under smpp_server
The server_host SMPP Server option specifies the remote host to bind back to in response
to an OUTBIND request. This option is ignored unless the server_port is also specified. See
the description of the server_port option for further information.

66.4.13 server_port Option Under smpp_server
Some SMSCs incorrectly implement the OUTBIND operation by sending an OUTBIND PDU
and then closing the TCP connection. As per the SMPP specification, the SMSC is expected
to leave the connection open, allowing the receiver of the OUTBIND to then bind back as
receiver over the same connection. Use the server_port SMPP Server option to interoperate
with such SMSCs by specifying the TCP port to bind back to when an OUTBIND request is
received. If the server_host SMPP Server option is not specified, then the source IP address
associated with the current TCP connection is used.

See also the esme_address_npi, esme_address_range, esme_address_ton,
esme_password, esme_system_id, and esme_system_type options.

66.4.14 system_id Option
An optional SMPP system_id string of zero to fifteen (0-15) US-ASCII characters may be
specified. This string will then be returned as the SMPP server's system id in bind responses
sent to SMPP clients. By default, an empty system id string is returned.

66.4.15 tcp_ports Option Under smpp_server
The tcp_ports SMS smpp_server option specifies the TCP port for inbound SMPP server
connections. Specification of this option is mandatory; there is no default value. Note also that
there is no Internet Assigned Numbers Authority (IANA) assignment for this service.

SMS options 66–13

66–14

Chapter 67 Message capture
67.1 MESSAGE-SAVE-COPY mapping table .. 67–3

67.1.1 MESSAGE-SAVE-COPY mapping table format and examples 67–4
67.1.2 Message replay of captured message copies ... 67–5

67.2 Capture triggered via LDAP attributes ... 67–6
67.3 Capturing messages via Sieve scripts ... 67–6
67.4 Format of captured message copies ... 67–7
67.5 Archiving messages .. 67–16

67.5.1 Choosing which messages to archive ... 67–17
67.5.2 Message identifier generation .. 67–18
67.5.3 AXS:One archive integration ... 67–19

Message capture may be desired for purposes including: archiving, lawful interception,
covert or administrative monitoring, or message replay (disaster recovery). The MTA has a
number of facilities that can be used to "capture" messages, taking the message "outside" the
normal message processing flow; this can be useful for tasks such as: monitoring (without a
user's knowledge) the messages sent and received by the user such as for lawful interception
purposes, or for making copies of messages passing through the MTA, possibly for archival
purposes or to allow for possible future "message replay" as part of a disaster recovery
strategy.

Note that the facilities discussed here are fundamentally different in spirit (as well as
in details) from techniques such as automatically forwarding messages to an additional
address---forwarding techniques that have the potential, as part of normal e-mail processing
in cases of delivery problems for the "forwarded" message copy, to result in exposure of the
fact of message "forwarding" or "copying" to end users, or which may, as part of normal
e-mail processing in cases of group or alias expansion problems, prevent end users from
being notified of certain sorts of recipient address problems even for the recipient(s) the
end user did knowingly address. (That is, techniques such as adding LDAP attributes
mailDeliveryOption with value forward and mailForwardingAddress to user LDAP
entries, or use of a FORWARD mapping table, or use of "redirect" Sieve actions, or use of
the clonehosts channel option to generate "clone" copies of messages to an additional
destination, are not discussed here.) Rather, the techniques discussed here are those that
have as a fundamental aspect the goal of separate handling of the "captured" message copies,
techniques where the fact/process of copying is invisible to the end users. Message capture is
distinct from simple message forwarding.

The main techniques that the MTA provides for interception/covert/archival "capture" of
messages are:

• The MESSAGE-SAVE-COPY mapping table, used to copy message files from the MTA's
disk queue area. This facility was originally designed for, and is especially well-suited for,
making short-term copies of outbound messages for possible "message replay" (re-sending)
in case of loss of messages on the destination host(s).

• The LDAP "capture" user attribute, used to capture copies of all messages sent or received
by the user (by generating encapsulated copies of the messages and directing them to a
specified capturer address), discussed in Capture triggered via LDAP attributes. This facility
was originally designed for, and is especially well-suited for, monitoring of individual users'
message traffic (e.g., for legal purposes or administrative monitoring purposes). Or, by
capturing such messages in Microsoft® Exchange "envelope journaling" format, the captured

Message capture 67–1

message copies may be convenient for archiving purposes; see the (new in MS 7.0u4)
capture_format_default MTA option, or (new in MS 8.0) use an LDAP tag ;format-
journal-header on the LDAP attributes named by the MTA options ldap_capture and
(also new in MS 8.0) ldap_domain_attr_capture.

• (New in MS 8.0) The LDAP "capture" domain attribute (a domain-level analogue of the
LDAP "capture" user attribute), used to capture copies of all messages sent or received by
users in that domain, discussed in Capture triggered via LDAP attributes.

• (New in MS 6.2) The CAPTURE named parameter for aliases and mailing lists defined in
the MTA alias file operates similarly to the LDAP "capture" user attribute. For the syntax
of the CAPTURE named parameter for simple aliases and for groups or mailing lists, see
Alias file format and Alias file named parameters. Nowadays MTA alias file definitions are
less commonly used than LDAP provisioning of users and lists---but the CAPTURE named
parameter is provided as an alternative that may be convenient for sites that do make more
use of the MTA alias file. In Unified Configuration, the alias_capture alias option is the
equivalent of the alias file named parameter CAPTURE.

• (New in MS 7.2-0.01) The JOURNAL named parameter for aliases and mailing lists defined
in the MTA alias file operates similarly to the CAPTURE named parameter, but generates
a Microsoft Exchange "envelope journaling" format message; this format may be especially
useful for archiving purposes. In Unified Configuration, the alias_journal alias option is
the equivalent.

• The MTA's address access mapping tables (see Address access mapping table flags) can be
configured to trigger message capture via the $M flag; and new in MS 7.0.5, such captured
messages can optionally be generated in Microsoft Exchange "envelope journaling" format,
configured via the $+L flag. (Address access mapping table triggered capture is a less
commonly used feature: although it allows for greater discrimination than a user LDAP
"capture" attribute, since for instance a mapping entry might be configured to capture only
messages from one specific sender to another specific recipient, it is less discriminating
than use of a Sieve "capture" action. So unless configuration in an access mapping table
is particularly convenient, more commonly some other technique such as Sieve "capture"
would be employed.)

• The Sieve "capture" action, used to capture copies of messages meeting any Sieve-
specifiable criteria, and directing encapsulated copies of the messages to a specified capturer
address, discussed in Capturing messages via Sieve scripts. Because of Sieve flexibility,
this is especially well-suited for capturing only specific categories of messages: messages
meeting some rather specific (and Sieve specifiable) criteria. (New in MS 6.3, messages
captured via a Sieve filter may optionally be sent without MIME encapsulation, but with
an override of the original envelope From address. This new option for capture may be
of special interest for archiving purposes, when the simpler, unencapsulated message
form may be more convenient. Or yet another option, new in MS 7.0 update 2, is that
such capture messages may be generated in Microsoft Exchange's "envelope journaling"
format: a multipart MIME message where the first part contains semi-structured envelope
information and the second part contains the actual original message. "envelope journaling"
format may be more convenient for archiving purposes.)

• (New in MS 6.3) Integration with the AXS:One archive facility, used to generate message
copies that will be archived by AXS:One, discussed in AXS:One archive integration. This is
primarily suitable for compliance archiving.

Note that with any of the techniques discussed below, issues of use of "captured" message
copies, and potentially issues of correlation (and elimination of "duplicate" copies of the "same"

67–2 Messaging Server Reference

MESSAGE-SAVE-COPY mapping
table

message capt ured at different stages of processing) may arise; it is the responsibility of sites to
devise strategies appropriate for their goals.

Note also that any "capture" of users' messages may, indeed is likely to, have legal
ramifications. Sites are cautioned to obtain legal advice before beginning any use of message
capture techniques.

67.1 MESSAGE-SAVE-COPY mapping table
The MESSAGE-SAVE-COPY mapping table provides a way to tell the MTA to copy (rename)
message files from its disk queue area when dequeuing messages. The resulting files are in the
MTA's disk queue area (proprietary) format. When copied (renamed) to some area outside the
MTA's normal disk queue area, these copies of the MTA's message files are no longer subject to
normal processing by the MTA. But if subsequently renamed back into the MTA's disk queue
area, the message files are perfectly suited to being "picked up" by the MTA, and re-sent just as
the original message files were sent.

The original motivation for this facility was as a means to capture copies of messages
outbound from the MTA to be retained (for some period) for purposes of potential future
"message replay", that is, it was intended to be used to resend messages in case of disaster on
the original receiving host(s). (The new-in-MS-8.0 clonehosts channel option provides a
different facility, with different trade-offs, that can also be suitable for certain "message replay"
purposes.) The MESSAGE-SAVE-COPY facility can potentially be used, however, for other
purposes such as monitoring (capturing) of messages sent by particular users, or as a way to
obtain message copies for long-term archiving purposes.

When using this facility for purposes of monitoring particular users' e-mail messages, keep in
mind that while capturing of messages sent from a particular user is straightforward enough
(the MESSAGE-SAVE-COPY mapping table probes include the envelope From address as part
of the probe field), the capturing of messages sent to a particular user is less straightforward
with this facility, as it normally distinguishes only between classes of destination addresses---
that is, it distinguishes on a destination channel basis (as the MESSAGE-SAVE-COPY mapping
table probes include the destination channel, but not the envelope To recipient(s)). Thus if it is
desired to use this facility to capture specifically those messages to a particular user or users, it
may be necessary to either capture additional messages (to other recipients) as well and then in
some site-supplied subsequent processing discard the undesired messages, or else to perform
some additional, more complex, configuration of the MTA to allow the MESSAGE-SAVE-COPY
mapping table to distinguish which messages are to the recipient(s) in question.

When using this facility to obtain message copies that will then be further processed, e.g.,
delivered into an archiving system, note that the copies created are in MTA message file
format. All access to such message files should be done via the MTA SDK. (Essentially, a
channel program should be written to process the messages.) Accessing the message files
only through the MTA SDK insulates applications from potential future changes in the MTA's
message file structure (particularly, changes and additions to the message envelope portion of
the message file).

The choice of when the MESSAGE-SAVE-COPY mapping table should be applied -- for which
destination channel(s), and in a multi-host e-mail environment, on which hosts---should be
carefully considered in relation to the fundamental goals of the message capture. And typically
some thought needs to be given to issues of message "split up" -- the cases where a multi-
recipient message may bifurcate into separate "copies" due to different recipients needing
different types of handling -- in relation to the message capture goals. If the goal is simply

Message capture 67–3

MESSAGE-SAVE-COPY mapping
table format and examples

to capture "all messages going out a particular channel" (the case for which this facility was
designed), achieving that goal is simple. But otherwise, other questions arise. Is the goal to
capture each such message copy? Will there be a desire to "correlate" or "consolidate" the
cases where separate eventual message copies all correspond to a single, originally submitted
message? In a multi-host environment, is it desired to capture merely those messages passing
through a particular host? Or do messages potentially need to be captured on multiple hosts
and if so, does there need to be some "correlation" or "consolidation" of the message copies
captured on different hosts (some of which copies may consist of the "same" message, at
a different point in its processing life-cycle)? As regards message "split-up", a most basic
example would be the case of a multi-recipient message where the recipients are destined
out different channels. But there are also many other sorts of message processing that imply
separate handling via separate message files, such as local recipients with different conversion
tags, or mailing list recipients vs. directly addressed recipients, etc. Even on a single system,
the potential use of any "intermediate" channels such as the conversion or reprocess channels
should be considered in relation to timing of the MESSAGE-SAVE-COPY operation. And when
operating in a multi-host environment, the timing and message bifurcation issues tend to
become more complex.

67.1.1 MESSAGE-SAVE-COPY mapping table format and
examples

The format of a MESSAGE-SAVE-COPY mapping table entry is, by default:

out-channel|return-address|D|orig-file-path $Yresult-file-path

where out-channel is the destination channel out which the message is being dequeued,
return-address is the envelope From address, and orig-file-path and result-
file-path are full file path specifications. Note that the template (right hand side) of the
mapping table entry must include one of the flags $Y, $y, $T, or $t in order for the rename to be
attempted.

If the new-in-6.3 message_save_copy_flags MTA option has all of its bits set
(corresponding to a value of 7), then the probe format instead becomes

transport-info|app-info|source-channel|conv-tags|out-channel|return-address|D|orig-file-path

where the transport-info and app-info are as usually defined (transport-info in
particular corresponding to the fields seen in a PORT_ACCESS probe) -- see for instance their
discussion in the discussion of the MAIL_ACCESS mapping table or in the discussion of the
log_connection MTA option; where source-channel is the original source channel; and
where conv-tags consists of any current conversion tags.

As a rename operation is used to rename the original file to the result (copied) file, the result
file specification must be on the same disk as the original file path, and the path must be
writable by the MTA. However, normally an area under the IMTA_QUEUE area should not
be used as the result location, as that is the MTA's area for message files that it expects to be
eligible for MTA automatic processing. Thus normally an area on the same disk, and owned by
the MTA, but outside the actual IMTA_QUEUE area itself, should be used as the place to which
to copy (rename) the message files.

 As of the 8.0 release, MESSAGE-SAVE-COPY provides a means of copying message files
instead of, or in addition to, renaming them. If $G is specified, then a file name is read from the
mapping result and the current message file is copied there. If both $G and $Y are specified,
then the file is both copied and renamed; in this case the mapping result must be of the form:

67–4 Messaging Server Reference

Message replay of captured
message copies

YGcopy-file-name|rename-file-name

 If $Q is specified in addition to $Y, then an attempt will be made to tell the Job Controller to
process the message file in its new location. $Q is intended to be used when a message file is
moved from one queue to another.

 Also new in 8.0 is the $S flag. $S can be used in a MESSAGE-SAVE-COPY mapping to say that
the message file has been renamed or otherwise processed by the mapping template and the
file should simply be closed, not deleted or otherwise modified. $S is only effective if $Y is not
specified.

 As an example, to capture a copy of each message file being dequeued out to the Internet (out
the tcp_local channel), a mapping table as follows might be used:

MESSAGE-SAVE-COPY

 tcp_local|*|D|/opt/SUNWmsgsr/data/queue/tcp_local/%%%/* \
 $Y/opt/SUNWmsgsr/msg-save/tcp_local/$1$2$3/$4

Note how in the above example the assumption is that the subdirs channel option is in
use on the tcp_local channel (so that message files are stored in subdirectories under the
tcp_local channel's disk queue area), and how the subdirectory structure is preserved due
to the same values being substituted back in via the template.

 As another example, to capture a copy of message file being dequeued out to the Message
Store via the ims-ms channel, a mapping table such as the following might be used:

MESSAGE-SAVE-COPY

 ims-ms|*|D|IMTA_QUEUE:ims-ms/%%%/* \
 $Y/opt/SUNWmsgsr/msg-save/ims-ms/$1$2$3/$4

To capture all messages from a particular user is straightforward via the MESSAGE-SAVE-
COPY mapping table, by specifying that user's address as the return-address in the probe.
 However, capturing all messages to a particular user but only to that particular user via
this facility would require a more complex configuration of the rest of the MTA: prior to MS
6.3, such a task would typically require use of a special delivery channel -- see Additional
ims-ms channels -- or in MS 6.3 or later, an alternative approach for capturing messages
to some special user(s) would be to configure the user(s) in question with some special
mailConversionTag value, set the message_save_copy_flags MTA option to 4 (or some
value including 4 in the bit mask) so that probes to MESSAGE-SAVE-COPY include conversion
tags, and then use conversion tag sensitive entries in the MESSAGE-SAVE-COPY mapping
table.

67.1.2 Message replay of captured message copies
Message files captured via the MESSAGE-SAVE-COPY mapping table, if moved back into
appropriate MTA channel queue area(s), are perfectly suited to being "replayed"---redelivered.

Message capture 67–5

Capture triggered via LDAP
attributes

imsimta qm stopchannel-name
imsimta qm cache -change -global -inorder_rebuild
mvsaved-message-files/opt/SUNWmsgsr/data/queue/channel-name
imsimta cache -synchronize
imsimta qm startchannel-name
imsimta qm cache -change -global -noinorder_rebuild

67.2 Capture triggered via LDAP attributes
The LDAP capture attribute (the exact attribute name is site-chosen, and specified via the
ldap_capture MTA option) provides a way to tell the MTA to "capture" a copy of each
message sent to or from a user who has the attribute present. The capture copy will be sent to
the value (the address) specified in the LDAP capture attribute. Normally, the LDAP capture
attribute itself should be configured in the LDAP directory as an attribute that the user can
neither set nor even see themselves; that is to preserve the covert nature of the LDAP capture
attribute.

Multiple capture attributes may apply to a particular user, or particular message copy (due
either to multiple attributes on one user, or to attributes on both sender and recipient(s)).

New in MS 8.0, the MTA also supports enabling capture at the domain level; see the
ldap_domain_attr_capture MTA option.

See Format of captured message copies for a discussion of the format of captured message
copies.

Note that (LDAP attribute triggered) capture of messages that a user sends is triggered during
address reversal, and hence in order to capture the messages that the user sends, it is critical
to be performing address reversal, and in particular properly configured address reversal. See
Intended side effects of LDAP address reversal.

(In the interests of symmetry and completeness, it could be noted that (LDAP attribute
triggered) capture of messages to a user is triggered during LDAP alias expansion for the user
(alias_urlN lookups), so for capture of messages to a user it is critical that such LDAP alias
lookups be configured as normal. However, LDAP alias lookups are such a fundamental part
of normal MTA operation, that unless a site has intentionally modified their configuration in
abnormal ways, it would be very unusual for this to be a concern. This is in contrast to address
reversal which, though strongly recommended nowadays, may still be omitted from older
configurations at some sites.)

67.3 Capturing messages via Sieve scripts
The MTA has a private Sieve extension action, "capture", that takes an argument specifying a
destination address to which to send an encapsulated copy of the original message. "capture"
is supported only in system Sieves: that is, channel Sieves or the MTA systemfilter (in
legacy configuration, the imta.filter file). By default, this causes generation of a new
message to the capturer in almost exactly the same DSN format (see Format of captured
message copies) as results from use of the ldap_capture attribute (discussed in Capture
triggered via LDAP attribute).

New in MS 6.3 are the optional, nonpositional parameters :dsn and :message. The default
is :dsn, which corresponds to the only behavior previously available, that of captured copies
being in encapsulated format as with ldap_capture attribute use. However, if the new-in-6.3

67–6 Messaging Server Reference

Format of captured message copies

":message" parameter is specified, then the "capture" message copy may instead be generated
without MIME encapsulation (though the envelope From address of the new message copy
will be set to that of the "owner" of the Sieve filter).

New in MS 7.0 update 2 is the optional parameter :journal, which is an alternative to
:message or :dsn. This new :journal parameter causes the Sieve "capture" action
to produce Microsoft Exchange's "envelope journaling" format. This format consists of a
multipart MIME message where the first part contains envelope information in a semi-
structured format and the second part is the actual message.

Because the "capture" action can, like any other Sieve action, be coded into use in a Sieve
script doing complicated filtering of messages, it is especially well-suited to cases where it is
desired to "capture" only particular sorts of messages (e.g., those containing particular header
lines, particular combinations of senders and recipients, particular sorts of message contents,
etc.). For some examples, see Example Sieve external lists with properties.

However, Sieve filter based "capture", especially with the new-in-6.3 :message argument or
the new-in-7.0u2 :journal argument, may also be a useful part of an archiving approach.
See Format of captured message copies for a discussion of the possible formats for captured
message copies.

67.4 Format of captured message copies
"Captured" message copies by default are in the form of Delivery Status Notifications (see
RFC 1892). So for instance, if an original message has the form shown in Original message to
be captured, as submitted at the point when the MTA applies capture (for instance capture
performed by the SMTP server when the message is first submitted)---and where, for
comparison, that original message by the time it is delivered to a user mailbox might have a
form as shown in Original message as delivered:

Original message to be captured, as submitted

Date: Tue, 13 Oct 2009 17:27:03 -0700 (PDT)
Subject: test message
From: user1@domain.com
To: user2@domain.com
Message-id: <0IH400G04EU3G800@host.domain.com>

an original line of text

Original message as delivered

Return-path: <user1@domain.com>
Received: from [10.1.110.115] ([10.1.110.115])
 by host.domain.com (Sun Java(tm) System Messaging Server 7.3-11.01 64bit
 (built Sep 1 2009)) with ESMTP id <0KRH00A3QAO42T10@host.domain.com>
 for user2@domain.com; Tue, 13 Oct 2009 17:28:52 -0700 (PDT)
Date: Tue, 13 Oct 2009 17:27:03 -0700 (PDT)
Subject: test message
From: user1@domain.com

Message capture 67–7

https://tools.ietf.org/html/rfc1892

Format of captured message copies

To: user2@domain.com
Message-id: <0IH400G04EU3G800@host.domain.com>
Original-recipient: rfc822;user2@domain.com

an original line of text

then a captured message copy (the copy generated and sent to the value of an LDAP attribute
named by the ldap_domain_attr_capture MTA option or the ldap_capture MTA
option) would have the form shown in Captured message copy (default DSN format).
Similarly, a captured message copy generated and sent to the address named in an unadorned
"capture" Sieve action would have almost exactly that same form, with only a minor text
difference as discussed at (11).

Captured message copy (default DSN format)

Return-path: <> (1)
Received: from process-daemon.host.domain.com by host.domain.com (Sun Java(tm)
 System Messaging Server 7.3-11.01 64bit (built Sep 1 2009)) id
 <01NEVLK3B0VK00170V@host.domain.com> for subpoena1-on-user1@domain.com;
 Tue, 13 Oct 2009 17:28:14 -0700 (PDT)
Received: from host.domain.com (Sun Java(tm) System Messaging Server
 7.3-11.01 64bit (built Sep 1 2009)) id <01NEVLJLOOF600156Q@host.domain.com>;
 Tue, 13 Oct 2009 17:28:11 -0700 (PDT)
Date: Tue, 13 Oct 2009 17:28:11 -0700 (PDT)
From: Internet Mail Delivery <postmaster@host.domain.com> (2)
Subject: Message Capture Copy (3)
To: subpoena1-on-user1@domain.com (4)
Message-id: <0IH400G08EULG800@ketu.west.sun.com>
MIME-version: 1.0
Original-recipient: rfc822;subpoena1-on-user1@domain.com
Content-type: multipart/report; report-type=delivery-status;
 boundary="Boundary_(ID_nChZX4aV2kgbzSzzoDGCvw)"

--Boundary_(ID_nChZX4aV2kgbzSzzoDGCvw)
Content-type: text/plain; charset=us-ascii (5)
Content-language: en-US

This report relates to a message you sent with the following header fields:

 Message-id: <0IH400G04EU3G800@host.domain.com> (6)
 Date: Tue, 13 Oct 2009 17:27:03 -0700 (PDT)
 From: user1@domain.com
 To: user2@domain.com
 Subject: test message

Attached message captured in accordance with site policy. (7)

--Boundary_(ID_nChZX4aV2kgbzSzzoDGCvw)
Content-type: message/delivery-status

Reporting-MTA: dns;host.domain.com (tcp_intranet-daemon) (8)

67–8 Messaging Server Reference

Format of captured message copies

Arrival-date: Tue, 13 Oct 2009 17:28:02 -0700 (PDT) (9)

Original-recipient: rfc822;user2@domain.com (10)
Final-recipient: rfc822;user2@domain.com
Action: capture
Status: 2.0.0 (Copy requested by capture attribute) (11)

--Boundary_(ID_nChZX4aV2kgbzSzzoDGCvw)
Content-type: message/rfc822

Return-path: <user1@domain.com> (12)
Received: from [10.1.110.115] ([10.1.110.115]) (13)
 by host.domain.com (Sun Java(tm) System Messaging Server 7.3-11.01 64bit
 (built Sep 1 2009)) with ESMTP id <0KRH00A3QAO42T10@host.domain.com>;
 Tue, 13 Oct 2009 17:28:11 -0700 (PDT)
Date: Tue, 13 Oct 2009 17:27:03 -0700 (PDT) (14)
Subject: test message
From: user1@domain.com
To: user2@domain.com
Message-id: <0IH400G04EU3G800@host.domain.com>

an original line of text

--Boundary_(ID_nChZX4aV2kgbzSzzoDGCvw)--

In the captured message copy, note the following items of interest:

1. As with any DSN, note that the envelope From address on this DSN is empty. (Note that the
addition of a Return-path: header line only occurs at final message delivery time; if looking
at the capture message copy earlier, such as while it is transitting the MTA, this header line
would not be expected to be present.)

2. Captured message copies are encapsulated, with the new, encapsulating message having
the form of a notification message: an empty envelope From and a From: header value set
to the postmaster address. (By default, the host's postmaster address is used, though an
override postmaster address may be used if domain-specific postmasters are configured ---
see the ldap_domain_attr_report_address MTA option --- or if use of an override
postmaster address has been set by the FROM_ACCESS mapping table.)

3. The Subject: value for captured message copies defaults to the string "Message Capture
Copy", or may be set to an alternate string (then used for all DSNs in the relevant language
choice) using the SUBJECT option in the return_option.opt file, or may be modified on
a per-type-of-DSN basis using the $T flag in the appropriate NOTIFICATION_LANGUAGE
mapping table entries.

4. The message capture copies are sent to the address specified as the value of the attribute
named by the ldap_capture or (new in MS 8.0) the ldap_domain_attr_capture
MTA option; as for instance in this example the attribute is assumed to have the value
subpoena1-on-user1@domain.com. (Or in the case of Sieve "capture" actions, the
message capture copies are sent to the address specified in the "capture" action.)

5. The return_prefix.txt file is used to construct the first part of DSN messages:
specifically, the MIME header lines, plus (typically, and in particular in this example) the
introductory text line and insertion of a sample of the original message headers. Normally,

Message capture 67–9

Format of captured message copies

the NOTIFICATION_LANGUAGE mapping table is configured to choose an appropriate,
language-specific such set of MIME header lines and introductory text.

6. When the return_prefix.txt file uses the %H substitution, exactly which header
lines from the original message that will cause to be included in this first part normally
is controlled, for all DSNs of all types in all languages, by the return_header.opt file.
(New in MS 7.0 update 2, use of language-specific variants of return_header.opt may
be configured.) That is, the use of %H substitution in return_prefix.txt causes inclusion
of headers, with return_header.opt controlling exactly which headers.

7. The appropriate, language-specific return_capture.txt file specifies the text added
here at the bottom of the first part of the DSN in the case of message capture copies.

8. The host and channel that are generating the DSN (the captured message copy in this case)
are reported.

9. As of MS 7.0, the arrival date of when the message "arrived" at the reporting MTA is
reported on an "Arrival-date:" line. Note that as this represents the time when the MTA
began processing this message, it will tend to be a time slightly prior to the time of the
Received: header line that the MTA added on this "capture" message copy (though this time
is of course after the time at which the original message was composed).

10.For each current recipient of the message, a set of fields is output, reporting on that
recipient. Normally this set consists of an "Original-recipient:" field, a "Final-recipient:"
field (note that the useintermediate and suppressfinal channel options alter what
is actually reported here), an "Action:" field (which is of course "capture" for capture
copies), and a "Status:" field (for capture copies due to ldap_domain_attr_capture
or ldap_capture, this field will contain a string along the lines of "Copy requested by
capture attribute"; or for capture copies due to Sieve "capture", "Copy requested by
capture filter").

11.The one difference between a captured copy due to use of the
ldap_domain_attr_capture or ldap_capture attribute vs. use of a Sieve unadorned
"capture" action is whether the text reported on the Status: line says "Copy requested by
capture attribute" (or one of the new in MS 8.0 variants corresponding to tagged LDAP
attribute value "Copy requested by journal attribute", "Copy requested by capture header
attribute", "Copy requested by journal header attribute") vs. "Copy requested by capture
filter".

12.The envelope From of the original message is reported on the Return-path: header line of
the included original message.

13.For the captured message copy, a Received: header line closely corresponding to the
Received: header line that was constructed for the original message during the processing at
the time that the original message was captured, is constructed and reported here.

14.The entire header (all header lines) of the original message is included, as it existed at the
point of capture.

Note that as usual with DSNs, some customization of the text intended to be human-
readable is possible. The text value on the Subject: header line may be modified (for all
DSNs in the relevant language choice) via the SUBJECT option in the return_option.opt
file, or may be modified on a per-type-of-DSN basis using the $T flag in the appropriate
NOTIFICATION_LANGUAGE mapping table entries. The first part of the DSN (the TEXT/
PLAIN part), may be localized or site modified via the return_prefix.txt file and the

67–10 Messaging Server Reference

Format of captured message copies

return_capture.txt file corresponding to the relevant language choice, as well as the
general return_header.opt file. See DSN language and customization for further details.

When using an ldap_capture or (new in MS 8.0) an ldap_domain_attr_capture named
LDAP attribute, the regular, DSN form of captured message copy, as shown in Captured
message copy (default DSN format) (or with the slight variations configurable via DSN
configuration as discussed there) is (prior to MS 8.0) always generated. (New in MS 8.0, the
LDAP attributes named by the ldap_capture and ldap_domain_attr_capture MTA
options supported tagged values, where the tags select the format to be generated. So as
of MS 8.0, LDAP attribute triggered capture can also cause generation of "journal" format,
or of modified DSN or "journal" format containing only headers of the original message --
which may be useful for administrative monitoring that preserves message content privacy.)
That DSN format is also (essentially) the format generated by default when using the Sieve
"capture" action. But when using the Sieve "capture" action, two other alternate formats
may be generated.

Requesting "capture :message" results in a format such as shown in Captured :message
message copy, where the capture copy is not much changed from the original message copy,
other than the original envelope From address being overriden for the capture copy to be that
of the relevant system Sieve's "owner" (normally the postmaster address), and differences
in Received: header line(s) corresponding to the new routing of the capture message copy.
Although such a "capture :message" copy does not have as much information regarding
the original message as would a plain "capture" copy or even a "capture :journal"
copy (as discussed in Captured journal 2003 format message copy) --- specifically, this form
of capture does not have fields in which to record the original message copy's envelope From
and envelope To values --- for some purposes it may provide sufficient information and its
"simple" structure may be convenient. However, because the fact that this is a capture message
copy is not called out obviously in the capture message copy's header, the recipient of such
capture copies will need to be alert to the reason why he or she has received the capture copy!
Hence, typically the mailbox receiving such capture copies should be either: (a) a special
mailbox dedicated to receiving such capture copies, or (b) the mailbox of a sophisticated e-
mail user who knows to expect capture copies, and knows to look carefully at all messages
received so as to detect which messages are being received due to capturing and handle such
received messages appropriately. (For instance, if a dedicated mailbox is not available, consider
directing capture copies to a distinguished subaddress of the mailbox, combined with a Sieve
filter that detects the presence of the subaddress to cause special handling, such as delivery
into a special folder.)

Captured :message message copy

Return-path: <postmaster@host.domain.com> (1)
Received: from host.domain.com (host.domain.com [10.1.110.114]) by (2)
 host.domain.com (Sun Java(tm) System Messaging Server 7.3-11.01 64bit
 (built Sep 1 2009)) id <01NEVMSAJ6K00015BG@host.domain.com>
 (original mail from user1@domain.com)
 for subpoena1-on-user1@domain.com; Tue, 13 Oct 2009 17:28:55 -0700 (PDT)
Received: from [10.1.110.115] ([10.1.110.115]) (3)
 by host.domain.com (Sun Java(tm) System Messaging Server 7.3-11.01 64bit
 (buil
t Sep 1 2009)) with ESMTP id <0KRH00A3QAO42T10@host.domain.com>
 for subpoena1-on-user1@domain.com; Tue, 13 Oct 2009 17:28:52 -0700 (PDT)
Date: Tue, 13 Oct 2009 17:27:03 -0700 (PDT) (4)
Subject: test message

Message capture 67–11

Format of captured message copies

From: user1@domain.com
To: user2@domain.com
Message-id: <0IH400G04EU3G800@host.domain.com>
Original-recipient: rfc822;user2@domain.com

an original line of text

In the captured :message format message copy, note the following items of interest:

1. The envelope From address for a "capture :message" copy is the postmaster
address; more specifically, it is the owner of whichever system Sieve performed the
"capture :message" action, and system Sieves are all owned by the postmaster.

2. This is the Received: header line constructed during the enqueue from the reprocess channel
to the delivery channel. (Unlike the other capture formats, which are notification messages
processed through the process channel, the processing of a "capture :message" copy is
more similar to the effect of a Sieve "redirect" action and in particular, (prior to MS 8.0)
is handled through the reprocess channel. As of MS 8.0, the process channel, rather than the
reprocess channel, handles these messages too.)

3. This is the Received: header line constructed by the SMTP server enqueuing this capture
message copy to the reprocess channel. Note that this Received: header line in the capture
message copy is very similar to the Received: header that the SMTP server added to the
original message; the difference is in the respective "for recipient-address" clauses, as the
capture message copy shows the recipient address for this capture message copy (if there is
only one capture message recipient).

4. From here on, the copy consists of the original message (all its original header lines); in
particular, the header From: is still that of the original message. Note that when capturing
a message that had been relayed, the captured message copy would also contain more
Received: header lines than shown here, if the original message (as in a relayed message)
itself contained Received: header lines; but this example corresponds to an original message
whose initial submission was to this MTA, with the capture being triggered during the
processing of that initial submission.

Alternatively, again with the original message shown in Original message to be
captured, as submitted, a basic (2003 format) "capture :journal" (or an LDAP
attribute triggered capture due to an LDAP attribute named by ldap_capture or
ldap_domain_attr_capture having a value tagged by ;format-journal) message copy
would have the form shown in Captured journal 2003 format message copy:

Captured journal 2003 format message copy

Return-path: <> (1)
Received: from process-daemon.host.domain.com by host.domain.com (Sun Java(tm) (2)
 System Messaging Server 7.3-11.01 64bit (built Sep 1 2009)) id
 <01NEVSAYXRVK0017PR@host.domain.com> for subpoena1-on-user1@domain.com;
 Tue, 13 Oct 2009 17:28:25 -0700 (PDT)
Received: from host.domain.com (Sun Java(tm) System Messaging Server (3)
 7.3-11.01 64bit (built Sep 1 2009)) id <01NEVSA2342U0014CT@host.domain.com>;
 Tue, 13 Oct 2009 17:28:13 -0700 (PDT)
Date: Tue, 13 Oct 2009 17:28:13 -0700 (PDT)
From: Internet Mail Delivery <postmaster@host.domain.com> (4)
Subject: Message Journal Copy (5)
To: subpoena1-on-user1@domain.com (6)

67–12 Messaging Server Reference

Format of captured message copies

Message-id: <0KR2001I49JPZ582@host.domain.com>
MIME-version: 1.0
Original-recipient: rfc822;subpoena1-on-user1@domain.com
X-MS-Journal-Report: (7)
Content-type: multipart/mixed; boundary="Boundary_(ID_xWvHuuTuAMSgGf6g0CDWjg)" (8)

--Boundary_(ID_xWvHuuTuAMSgGf6g0CDWjg)
Content-type: text/plain (9)

Sender: <user1@domain.com> (10)
Message-ID: <0IH400G04EU3G800@host.domain.com> (11)
Recipients:
 <user2@domain.com> (12)

--Boundary_(ID_xWvHuuTuAMSgGf6g0CDWjg)
Content-type: message/rfc822 (13)

Return-path: <user1@domain.com> (14)
Received: from [10.1.110.115] ([10.1.110.115]) (15)
 by host.domain.com (Sun Java(tm) System Messaging Server 7.3-11.01 64bit
 (built Sep 1 2009)) with ESMTP id <0KRH00A3QAO42T10@host.domain.com>;
 Tue, 13 Oct 2009 17:28:11 -0700 (PDT)
Date: Tue, 13 Oct 2009 17:27:03 -0700 (PDT) (16)
Subject: test message
From: user1@domain.com
To: user2@domain.com
Message-id: <0IH400G04EU3G800@host.domain.com>

an original line of text

--Boundary_(ID_xWvHuuTuAMSgGf6g0CDWjg)--

In the captured journal format message copy, note the following items of interest:

1. The journal format is a notification message: it has an empty envelope From, as reported
here on the Return-path: header line for this journal capture copy.

2. This is the Received: header line constructed during the enqueue from the process channel
to the delivery channel. Note that journal format message copies, being constructed as
notification messages, are generated via the process channel.

3. This is the Received: header line constructed by the SMTP server during its enqueue of this
capture message to the process channel.

4. The header From: on such a journal message copy is that of the MTA postmaster.

5. The Subject: header line says "Message Journal Copy" for such copies -- unless use
of different Subject: text has been configured as discussed in DSN language and
customization.

6. The header To: shows the capturing address, as directed in the "capture :journal"
action or (new in MS 8.0) the value (sans the ;format-journal tag) of an LDAP attribute
named by the ldap_capture or ldap_domain_attr_capture or MTA option.

7. New in MS 7.0u4, a X-MS-Journal-Report: header line is generated, as some third-party
archive software appears to require such a header line.

Message capture 67–13

Format of captured message copies

8. Note that the journal format consists, at the outermost MIME level, of a multipart/mixed
part; this is in contrast to the default, DSN format for captured messages, which, making
use of the standard notification message format, consists of a multipart/report part at the
outermost MIME level.

9. This text part contains the journal format's minimal set of envelope information for the
captured message (itself contained in the subsequent part).

10.The envelope From address for the original message is reported on a "Sender:" line.

11.The Message-id: of the original message is reiterated here.

12.The list of envelope To recipients are reported, one envelope To recipient per line. As of MS
7.0u3, any source routes on the envelope To recipient address or addresses are removed.
 As of MS 7.0.5, it is the so-called "intermediate address" rather than the "final address"
that is reported; this is especially notable for local Message Store recipients. This example
corresponds to an original message having only one recipient (or more precisely, an original
message having only one recipient at time of capture).

13.This message part contains the original message, essentially as it existed at time of capture,
but with the addition of a Return-path: header line, plus a constructed Received: header line
contemporaneous with capture processing.

14.The original envelope From address is reported here in a constructed Return-path: header
line.

15.A Received: header line is present effectively corresponding to the Received: header line
constructed for the original message while capture processing was occurring, though this
journal capture copy Received: header line contains no "for ..." clause.

16.From here on, the original message as it existed at time of capture, is duplicated.

Alternatively, again with the same original message, a journal 2007 format message as
generated due to a "capture :journal" action when the (new in MS 7.0.5) MTA option
journal_format has bit 0 (value 1) set and when the addrtypescan channel option has
been set on all relevant channels, would have the form shown in Captured journal 2007 format
message copy:

Captured journal 2007 format message copy

Return-path: <> (1)
Received: from process-daemon.host.domain.com by host.domain.com (Sun Java(tm) (2)
 System Messaging Server 7.5-11.01 64bit (built Jul 23 2010)) id
 <01NEVSAYXRVK0017PR@host.domain.com> for subpoena1-on-user1@domain.com;
 Wed, 28 Jul 2010 17:28:25 -0700 (PDT)
Received: from host.domain.com (Sun Java(tm) System Messaging Server (3)
 7.5-11.01 64bit (built Jul 23 2010)) id <01NEVSA2342U0014CT@host.domain.com>;
 Wed, 28 Jul 2010 17:28:13 -0700 (PDT)
Date: Wed, 28 Jul 2010 17:28:13 -0700 (PDT)
From: Internet Mail Delivery <postmaster@host.domain.com> (4)
Subject: Message Journal Copy (5)
To: subpoena1-on-user1@domain.com (6)
Message-id: <0KR2001I49JPZ582@host.domain.com>
MIME-version: 1.0

67–14 Messaging Server Reference

Format of captured message copies

Original-recipient: rfc822;subpoena1-on-user1@domain.com
X-MS-Journal-Report: (7)
Content-type: multipart/mixed; boundary="Boundary_(ID_xWvHuuTuAMSgGf6g0CDWjg)" (8)

--Boundary_(ID_xWvHuuTuAMSgGf6g0CDWjg)
Content-type: text/plain (9)

Sender: user1@domain.com (10)
Subject: test message
Message-ID: <0IH400G04EU3G800@host.domain.com> (11)
To: <user2@domain.com> (12)

--Boundary_(ID_xWvHuuTuAMSgGf6g0CDWjg)
Content-type: message/rfc822 (13)

Return-path: <user1@domain.com> (14)
Received: from [10.1.110.115] ([10.1.110.115]) (15)
 by host.domain.com (Sun Java(tm) System Messaging Server 7.5-11.01 64bit
 (built Jul 23 2010)) with ESMTP id <0KRH00A3QAO42T10@host.domain.com>;
 Wed, 28 Jul 2010 17:28:11 -0700 (PDT)
Date: Tue, 13 Oct 2009 17:27:03 -0700 (PDT) (16)
Subject: test message
From: user1@domain.com
To: user2@domain.com
Message-id: <0IH400G04EU3G800@host.domain.com>

an original line of text

--Boundary_(ID_xWvHuuTuAMSgGf6g0CDWjg)--

In the captured journal format message copy, note the following items of interest:

1. The journal format is a notification message: it has an empty envelope From, as reported
here on the Return-path: header line for this journal capture copy.

2. This is the Received: header line constructed during the enqueue from the process channel
to the delivery channel. Note that journal format message copies, being constructed as
notification messages, are generated via the process channel.

3. This is the Received: header line constructed by the SMTP server during its enqueue of this
capture message to the process channel.

4. The header From: on such a journal message copy is, by default, that of the MTA
postmaster. New in MS 7.0.5, if bit 1 (value 2) of the MTA option journal_format is set,
then the From: field value will be set to that of the original message.

5. The Subject: header line normally says "Message Journal Copy" for such copies --
unless use of different Subject: text has been configured as discussed in DSN language
and customization, or (new in MS 7.0.5) unless bit 1 (value 2) of the MTA option
journal_format is set (in which case the Subject: field value is set to that of the original
message).

6. The header To: normally shows the capturing address, as directed in the
"capture :journal" action. New in MS 7.0.5, if bit 1 (value 2) of the MTA option
journal_format is set, then the To: field value will be set to that of the original message.

Message capture 67–15

Archiving messages

7. New in MS 7.0u4, a X-MS-Journal-Report: header line is generated, as some third-party
archive software appears to require such a header line. New in MS 7.0.5, if bit 2 (value 4) of
the MTA option journal_format is set, then an X-MS-Exchange-Organization-Journal-
Report: header line is generated rather than an X-MS-Journal-Report: header line.

8. Note that the journal format consists, at the outermost MIME level, of a multipart/mixed
part; this is in contrast to the default, DSN format for captured messages, which, making
use of the standard notification message format, consists of a multipart/report part at the
outermost MIME level.

9. This text part contains the journal format's minimal set of envelope information for the
captured message (itself contained in the subsequent part).

10.The envelope From address for the original message is reported on a "Sender:" line. (Note
that unlike 2003 format, the envelope From is not enclosed in angle brackets.)

11.The Message-id: of the original message is reiterated here.

12. The list of envelope To recipients are reported, one envelope To recipient per line. As of MS
7.0u3, any source routes on the envelope To recipient address or addresses are removed.
As of MS 7.0.5, it is the so-called "intermediate address" rather than the "final address" that
is reported; this is especially notable for local Message Store recipients. With bit 0 (value
1) of the MTA option journal_format set, as well as optionally also bit 3 (value 8), what
exactly will be noted on each envelope To recipient line will depend upon whether the
addrtypescan channel option has applied, and if so, on whether envelope To recipient
address strings exactly match recipient header values. This example corresponds to an
original message having only one recipient (or more precisely, an original message having
only one recipient at time of capture), and where that envelope To recipient string is exactly
the same as a value on the To: header line. When the addrtypescan channel option has
been applied, then envelope recipient addresses may be denoted with "To:" (if exactly
matching a header To: or Resent-To: value), or denoted with "Cc:" or "Bcc:" similarly, or
denoted with simply "Recipient:" if no such exact string match exists; "Recipient:" is
also what is used whenever addrtypescan) was not applied. Recipient addresses may be
further elaborated with "Forwarded:" or "Expanded:" labelling, e.g.,

To: active-address, Forwarded: original-address

in those cases where the MTA can detect that forwarding or list expansion, respectively, has
occurred.

13.This message part contains the original message, essentially as it existed at time of capture,
but with the addition of a Return-path: header line, plus a constructed Received: header line
contemporaneous with capture processing.

14.The original envelope From address is reported here in a constructed Return-path: header
line.

15.A Received: header line is present effectively corresponding to the Received: header line
constructed for the original message while capture processing was occurring, though this
journal capture copy Received: header line contains no "for ..." clause.

16.From here on, the original message as it existed at time of capture, is duplicated.

67.5 Archiving messages

67–16 Messaging Server Reference

Choosing which messages to
archive

Message archiving can take different forms, and serve different purposes. For record keeping
(especially legal compliance) purposes, it may be desired to retain copies of "all" messages that
have passed through the Messaging Server, or to retain copies of more specifically selected
messages; in this sense, the "archive" is a long term record or history of message traffic,
where this historical record of messages is intended for administrative/legal use, rather than
(normally) being accessed directly by end e-mail users. For operational efficiency purposes, it
may be desired to "archive" messages in the sense of "off-loading" older/larger/less frequently
accessed messages to "more economical" storage, that is nevertheless still accessible; in this
sense, the "archive" is an implementation-achieved efficiency measure, preferrably remaining
reasonably conveniently usable by end users.

From the design point of view, these two distinct purposes for archiving mean somewhat
different requirements for message access. For compliance archiving, the primary focus
is on thoroughness of the scope of message capture, while the requirements for accessing
messages are fewer; in particular, whether the message archive is accessible to end users may
be optional. While for operational archiving, not all messages may need to be archived---but
those messages that are archived must still be reasonably conveniently retrieved by end users.

67.5.1 Choosing which messages to archive
The choice of which messages to archive is a critical one for sites, especially when the
archiving is for compliance purposes. This has three components: (1) choosing whose or which
types of messages to archive, (2) choosing in what form and at what stage(s) of processing
and transitting the MTA the messages should be captured for archiving, and (3) choosing
whether Message Store IMAP APPEND operations (moving a message to a folder) should
cause archiving. Of these three questions, the first (whose or which types of messages to
archive) is usually well specified. The third question (whether to archive due to Message
Store operations) also tends to be straightforward to decide. However, the second question
may require additional consideration. Between initial message submission and eventual final
delivery into a mailbox, while transitting the MTA, messages undergo various transformations,
some trivial and some potentially dramatic. Such transformations can include: addition of
Received: header lines, addition of other header lines (such as missing-but-required header
lines such as Date:, or addition of spam filtering header lines, or addition of mailing list
header lines, etc.), transformations ("address reversal") of addresses in header lines, alias
or list expansion changing the currently active set of envelope recipients, "split up" of a
multi-recipient message into different copies for different subsets of recipients, addition of
"disclaimer" text, changes in Content-transfer-encoding, document conversion processing,
conversion to a different charset (CHARSET-CONVERSION), etc.

Three possible approaches for selection of which messages transitting the MTA are eligible for
archiving include:

1. Flow-based: Those messages passing through certain channels (such as channels delivering
to the Message Store, or channels sending out to the Internet) should be archived.

2. User-based: Those messages sent to or from certain users (perhaps all users; perhaps all
users in certain domains; perhaps only some distinguished subset of users) should be
archived.

3. Content-based: Those messages containing certain content should be archived.

Such approaches correspond, respectively, to techniques of:

1. For flow-based archiving, it would be typical to trigger archiving via channel
spamfilter options (if using an archiving callout approach) or via channel Sieve

Message capture 67–17

Message identifier generation

filters (using a "capture" action in a channel Sieve filter located via a sourcefilter or
destinationfilter, as relevant). Choice of the "correct" channels on which to trigger
archiving is critical.

2. For user-based archiving, it would be typical to trigger archiving via some user-level
(or new in MS 8.0, domain-level) LDAP attribute; see Capture triggered via LDAP
attribute. Use of a class-of-service may be helpful in setting such an attribute on all (or
large subsets) of users. Note that when such an ldap_capture or (new in MS 8.0)
ldap_domain_attr_capture named LDAP attribute is used, then capture will occur
at whatever channel stage a user alias is expanded (capturing messages to the user),
as well as whenever address reversal occurs (capturing messages from the user). Since
address reversal in particular normally occurs during every message enqueue, deployments
involving multiple channel "hops" or multiple relay hosts may find multiple "copies"
of messages---one "copy" per channel "hop" -- getting captured for archiving. Thus an
alternative to such global use of an LDAP attribute is to use instead a Sieve filter "capture"
action, perhaps consulting a Sieve external list (which may consist of consulting a user-level
LDAP attribute). This technique of using a channel-specific Sieve filter that consults a Sieve
external list allows more precisely timed (limited to specific channels) archiving that is still
based on (provisioned via) LDAP attribute settings; see for instance Example Sieve external
lists with properties.

3. For content-based archiving, it is critical to detect and label which messages contain the sort
of content that needs archiving. If users and user e-mail agents can be relied upon to label
such context ab initio, when messages are first generated, that is one solution for labelling.
Very simple, and easy to detect, content criteria may be codable into a Sieve script---for
instance, detecting certain MIME Content-type: labelling. More complex content detection,
especially in cases of concerns about uncooperative users attempting to evade archiving
requirements, may require special, third-party scanning-and-detection software, a la spam/
virus filter software. As usual, the preferred approach for integrating such third party
packages is via the MTA's spamfilter plug-in facility; if the third party package does not
support such callout use, then the second best choice is to deploy the package "on the side"
of the MTA using the usual aliasdetourhost/alternate conversion channel approach. In
any case, once the messages are labelled in whatever way chosen, then the actual trigger for
archiving can use Sieve filter based "capture" triggered by presence of the relevant label.

67.5.2 Message identifier generation
When doing archiving, whether with the AXS:One archiving module or via some other
mechanism, it is typically useful or even required to "identify" messages via some identifier.
The MTA has the ability to generate an identifying "hash" for messages passing through it,
based on configurable selection of message features. It is also (at least typically) necessary to
uniquely identify the recipient(s) of the archived message copies---and in some cases, using the
recipient's (canonical) e-mail address may not be the preferred choice. The MTA has an option
to control the generation of message recipient identifiers. These options will be discussed
below.

Messages undergo more-or-less constant change during their traverse from initial submission
to eventual final delivery: Received: header lines are added at each "hop"; mailing lists get
expanded changing the set of recipients for a message; for a multi-recipient message, the
message may need to get "split up" into separate copies for separate types of recipients;
individual addresses undergo routing and esthetic transformations; message contents
may be modified as for example addition of header lines indicating spam/virus filtering or
content encoding changes or character set conversions, or addition of "disclaimer" text, etc.
So "identifying" a message is not a straightforward question: one has to ask which portions

67–18 Messaging Server Reference

AXS:One archive integration

of a message "matter" as far as the identification is concerned, vs. which sorts of "changes"
should be ignored. By default, the MTA generates a hash over the following message fields (or
a different set may be selected using the message_hash_fields MTA option):

• Message-id:
• From:
• To:
• Cc:
• Bcc:
• Resent-message-id:
• Resent-From:
• Resent-To:
• Resent-Cc:
• Resent-Bcc:
• Subject:
• Content-id:
• Content-type:
• Content-description:

(Note that the Content-type: and Content-description: header are those from the top or
outermost MIME level of the message.)

Keep in mind that the choice of when (which channel(s)) to generate a message hash will
affect which version(s) of a message are archived. A typical configuration, especially for
"operational" mode, might be to set generatemessagehash on channels delivering to the
Message Store, such as ims-ms and tcp_lmtpcs* channels, with deletemessagehash
(the default) on all other channels (especially tcp_local). Such a configuration would result
in separate message hashes for each message copy separate at the time of enqueue to the
final delivery channel. Or in other cases, where it is desired to archive only an "earlier" copy
of messages, possibly a copy from before certain later message bifurcations have occurred,
then another potentially useful configuration (especially in "compliance" mode) might be
to set generatemessagehash "earlier", such as on any (known to be used) "intermediate"
channels and on channels delivering to other internal hosts such as tcp_intranet. Any final
delivery channels such as ims-ms or tcp_lmtpcs* will still need either keepmessagehash
set (if such messages are guaranteed to have already passed through a channel that did hash
generation---as in the case of messages that have already passed through a "front end" MTA)
or generatemessagehash if it is possible for a message to get to the channel without a
previously generated hash. And a channel delivering externally (such as tcp_local) should
again be set deletemessagehash.

The unique_id_template MTA option may be used to configure how unique recipient
identifiers will be generated for purposes of archiving.

67.5.3 AXS:One archive integration
One approach for message archiving is to make use of an AXS:One archive. The MTA and the
Message Store support integration with AXS:One for archiving.

67.5.3.1 Architecture of the AXS:One integration

The Messaging Server integration with AXS:One has the following components:

• The MTA and Message Store can compute a message hash to be used as a unique identifier
of the message for AXS:One's purposes.

Message capture 67–19

AXS:One archive integration

• Data transfer between Messaging Server (either or both of the MTA and the Message Store)
and AXS:One is via configuration-specific file drop directories.

In one such file drop directory, the MTA and Message Store can deposit message copy files:
for each message, AXS:One wants an "archive package" consisting of the message main
body, any attachment files, and a .info file that contains the meta data of the message, the
message hash computed by Messaging Server (and stored in the .info file's MessageId
field), and references to the other files in that set (archive package).

Technical note: The Messaging Server writes the .info files initially as .tmp files, only
renaming to .info once all the files referenced by that .info file are written and the
.info file itself is complete. That is, until an archive package is complete, the eventual
.info file will appear instead as a .tmp file. On the AXS:One side, it consumes (and
deletes) a .info file and all the files it references as part of its processing.

In another file drop directory, AXS:One deposits report files to inform Message Server after
it has archived messages.

Technical note: AXS:One writes a single line record per message to the report file.
When writing, AXS:One writes to a tmp file; when the file is completed, it is renamed to
timestamp_mamsg.txt. (Such files will subsequently be consumed by imarchive.)

• The MTA's general "spam filter" plug-in approach can be used to call an AXS:One specific
plug-in module. During message enqueues, the MTA can call the AXS:One integration
plug-in which generates message copy files (an "archive package") suitable for AXS:One
consumption and deposits those message copy files in the integration file drop directory. All
the MTA's usual configuration options regarding which messages to copy for archiving are
thereby available. As this archiving is occurring while messages are transitting the MTA, it is
usually a part of compliance archiving.

•
The Message Store's imexpire utility has an archive action. Expiration rules configured
with the archive action control which messages are moved to the archive. This is primarily
used for operational archiving: for instance, moving older (or larger) messages off to
the archive. If the message already has a message hash identifier for the message , then
imexpire will use it, but otherwise will generate a message hash itself; in either case,
imexpire will both include the message hash in the archive package it generates for
AXS:One, and insert the message hash into the msghash database.

•
The Message Store's imarchive utility processes the report files generated by AXS:One.
imarchive should be scheduled to run periodically to perform this processing task.

Technical note When imarchive runs, it renames the timestamp_mamsg.txt file
generated by AXS:One to timestamp_mamsg.pid before processing the records in the file.
If such processing is successful, imarchive removes the file; otherwise, the file is renamed
to timestamp_mamsg.err.

67.5.3.2 MTA support for AXS:One archiving

(New MS 6.3) The MTA has support for use with the AXS:One archive facility. AXS:One
operates by scanning a directory for files to archive, so the MTA writes copies of the messages
to be archived, in a special AXS:One format (in particular including a hash "identifier" for
each copy of a message delivered to the Message Store), to this specified special directory (for
AXS:One to then "pick up"). (The AXS:One archive facility will generate a message identifier

67–20 Messaging Server Reference

AXS:One archive integration

itself for messages that it finds without one, and this is sufficient for copies of messages that
were delivered to external Internet sites. The presence of an identifier generated by the MTA
on copies of messages delivered to the Message Store is instead important for correlation of the
archived message copies with the message copies actually in the Message Store.)

Note that the MTA's generic facilities to generate and add an "identifer" to messages may be
useful with other forms of archiving as well; see Message identifier generation, as well as the
*messagehash channel options, and Message archival and hashing MTA options, for further
discussion of the generation and addition to messages of such an identifying "hash" value.

While archiving is most often configured for all users and messages, it is possible to configure
archiving only for certain sets of users, using the sorts of "opt-in" approaches (per-user "opt-in"
LDAP attribute or channel-level "opt-in") available with the MTA's general spam/virus filter
package integration approach (of which the MTA's AXS:One integration is one instance). See
the ldap_optinN MTA options, the *spamfilterNoptin channel options, and the (new in
MS 6.3) ldap_source_optinN MTA options.

When ldap_source_optinN based triggering of archiving on a per-sending-user basis
is desired, note that this is triggered during address reversal, and hence it is critical to be
performing address reversal, and in particular properly configured address reversal. See
Intended side effects of LDAP address reversal.

67.5.3.3 MTA configuration for AXS:One archiving

From the point of view of MTA configuration, the archiving support is configured
rather similarly to configuring use of a third-party, integrated, spam/virus filter
package; in particular, use of the archiving support routines is configured via
spamfilterN_config_file and spamfilterN_library MTA options. For some value of
N, the spamfilterN_library MTA option must be set to point to the libarch.so module,
while the spamfilterN_config_file option points to an archive module option file (in
MTA option file format) controlling a few options for the archiving module. For instance:

spamfilter1_library=IMTA_LIB:libarch.so
spamfilter1_config_file=IMTA_TABLE:archive.dat

See Archive_spamfilterN_config_file for further discussion of what may (and must) appear in
the archive module option file.

In addition, when it is desired (as it normally is) to be able to correlate the messages in
the Message Store with their archived version in the AXS:One system, then the MTA itself
should be configured to generate an identifying hash for each message being delivered
into the Message Store. (The AXS:One archiving module will generate an identifying
message hash for each message that does not already have one itself; this is sufficient for
archived messages that do not have a corresponding copy in the Message Store---for instance,
archived copies of messages sent to remote recipients.) The material to be hashed, and the
algorithm for generating the hash, are controlled via MTA options message_hash_fields
and message_hash_algorithm; channels are individually configurable, via certain
*messagehash channel options, as to whether they generate, preserve, or delete, such hashes
for messages passing through them. See Message identifier generation for further discussion of
the generation of such identifying hashes.

Finally, when archiving messages there is the question of identifying the user for whom
messages were originally destined---a user identifier. By default, each user's canonical e-mail

Message capture 67–21

AXS:One archive integration

address is used. However, the unique_id_template MTA option, also discussed in Message
identifier generation, may be set to specify use of some alternate form of identifier; when set,
the AXS:One archiving facility will generate and use unique user identifiers according to this
template, rather than e-mail addresses as by default.

67.5.3.3.1 Example message archiving configuration

Here is an example configuration for using AXS:One archiving.

• In the MTA option file:

SPAMFILTER1_LIBRARY=IMTA_LIB:libarch.so
SPAMFILTER1_CONFIG_FILE=IMTA_TABLE:archive.dat
MESSAGE_HASH_ALGORITHM=MD5
!
! Not bothering to hash over Content-type: and Content-description:
!
MESSAGE_HASH_FIELDS=Message-id,Resent-message-id,From,Resent-From,\
 To,Resent-to,Cc,Resent-Cc,Bcc,Resent-Bcc,Subject,Content-id

• In the archive.dat file:

STYLE=1
DIRECTORY=/opt/SUNWmsgsr/archive/
! For compliance mode (legal archiving requirements compliance):
IDSUFFIX=-0000MD500

• If the desire is to archive a copy of each message getting delivered to the Message Store
on the ims-ms channel, plus a copy of each message going out to the Internet on the
tcp_local channel, then those two channels in the MTA configuration file, imta.cnf,
would be marked with destinationspamfilter1, with the ims-ms channel also being
marked generatemessagehash (so that archived copies could be correlated with the
copies in the Message Store, delivered by the ims-ms channel), e.g.,

ims-ms ...rest-of-keywords... generatemessagehash destinationspamfilter1
ims-ms-daemon

...other-channel-definitions...

tcp_local ...rest-of-keywords... destinationspamfilter1
tcp-daemon

Or in Unified Configuration, the MTA and channel options set as:

msconfig> set mta.spamfilter1_library IMTA_LIB:libarch.so
msconfig# set mta.spamfilter1_config_file IMTA_TABLE:archive.dat
msconfig# set mta.message_hash_algorithm MD5
msconfig# set mta.message_hash_fields "Message-id Resent-message-id...etc..."
msconfig# set channel:ims-ms.generatemessagehash
msconfig# set channel:ims-ms.destinationspamfilter1
msconfig# set channel:tcp_local.destinationspamfilter1

67–22 Messaging Server Reference

AXS:One archive integration

and the IMTA_TABLE:archive.dat (i.e., CONFIGROOT/archive.dat) file:

STYLE=1
DIRECTORY=/opt/SUNWmsgsr/archive/
! For compliance mode (legal archiving requirements compliance):
IDSUFFIX=-0000MD500

Message capture 67–23

67–24

Chapter 68 Monitoring the MTA
68.1 MTA transaction logging .. 68–1

68.1.1 Managing the MTA transaction log files .. 68–2
68.1.2 MTA transaction log entry format ... 68–3
68.1.3 Triggering effects from transaction logging with LOG_ACTION 68–10

68.2 MTA counters ... 68–23
68.2.1 MTA channel counters .. 68–23
68.2.2 Purpose and design of MTA counters .. 68–26
68.2.3 MTA counters implementation .. 68–27
68.2.4 SNMP subagents .. 68–27

For monitoring the MTA, usually the best place to start is with the MTA's optional logging
of message traffic; from this basic information, sites may gather statistics such as how many
messages are passing through the MTA, and answering other questions on message traffic.

The command line utility imsimta qm may be used to scan what messages are present in the
MTA queue area.

The MTA also has facilities to collect and monitor channel counters based upon RFC 1566, the
Mail Monitoring MIB. Note that counters are intended for providing real-time "snap-shots"
of MTA behavior, rather than for gathering the sort of statistics instead available from the log
files. For a description of the MTA counters, see the discussion of MTA counters.

The MTA provides utilities to display the counters directly; see the imsimta counters and
imsimta qm utilities, described in MTA command line utilities.

68.1 MTA transaction logging
The MTA's optional logging of message traffic is enabled via the logging channel option.
Enabling logging causes the MTA to write an entry to a mail.log* file each time a message
passes through an MTA channel. Such log entries can be useful if you wish to get statistics on
how many messages are passing through the MTA (or through particular channels), or when
investigating other questions such as whether and when a message was sent or delivered.

If you are only interested in gathering statistics on the number of messages passing through
a few particular MTA channels, then you may wish to enable the logging channel option
on just those MTA channels of main interest. But more generally, many sites prefer to enable
logging on all MTA channels; in particular, if you are trying to track down problems, the first
step in diagnosing some problems is to notice that messages are not going to the channel you
expected or intended, and having logging enabled for all channels can help you spot such
issues.

In addition to the basic information always provided when logging is enabled,
additional, optional informational fields may also be logged in the mail.log files,
controlled via various log_* MTA options. Particularly likely to be of interest are the
log_message_id, log_envelope_id, log_filename, log_connection, log_process,
and log_username options.

• Enabling log_message_id allows correlation of which entries relate to which message.

Monitoring the MTA 68–1

https://tools.ietf.org/html/rfc1566,
https://tools.ietf.org/html/rfc1566,

Managing the MTA transaction log
files

• Enabling log_envelope_id allows easier correlation of which entries from mail.log
files from different systems correspond to the same message at the SMTP level.

• Enabling log_filename makes it easier to immediately spot how many times delivery of a
particular message file has been retried, and can be useful in understanding when the MTA
does or does not split a message to multiple recipients into separate message file copies on
disk.

• Enabling log_connection causes the MTA to log TCP/IP connections, as well as message
traffic, to the mail.log files by default; alternatively, the separate_connection_log
option may be used to specify that connection log entries instead be written to
connection.log files.

• When using log_connection to cause generation of TCP/IP connection entries,
additionally enabling log_process allows correlation of which connection entries
correspond to which message entries.

• log_username is mostly of interest in the case of users who authenticate their message
submission using the SMTP AUTH command; in such cases, log_username causes logging
of the user identity (prefixed with an asterisk character if the identity was established by
authentication). As of the 8.0 release, the log_username option can also be used to log
the primary mail address associated with the authenticated identity and in the case of "U"
connection log entries, the authentication mechanism used.

The mail.log and connection.log entries may optionally be duplicated to syslog via the
log_messages_syslog and log_connections_syslog options.

68.1.1 Managing the MTA transaction log files
When the logging channel option is enabled, all MTA message transaction log entries are
made to the file mail.log_current in the MTA log directory, of MS 7.0.5 DATAROOT/
log/mail.log_current; (prior to MS 7.0, the MTA message transaction log file was located
via the imta_primary_log MTA Tailor option). If connection logging is enabled via the
log_connection MTA option, connection transaction log entries are also by default written
to the mail.log_current file, but if the MTA option separate_connection_log=1
has been set, then the connection transaction log entries will instead be written to the
connection.log_current file.

The message return_job, which the Scheduler is typically configured to run every night
shortly after midnight, appends any existing mail.log_yesterday to the cumulative log
file, mail.log, renames the current mail.log_current file to mail.log_yesterday,
and then begins a new mail.log_current file. It also performs the analogous operations
for any connection.log* files. (In older versions of the MTA, the names and location
of these log files were controlled by the imta_primary_log, imta_secondary_log,
and imta_tertiary_log MTA Tailor options; as of MS 7.0.5, these names are not
configurable and the location is derived from the SERVERROOT value.) (Note that the
return_split_period MTA option can modify the frequency of such transaction log file
"roll over".)

Note that the MTA itself by default never does anything to the cumulative mail.log file; it is
up to each site to manage that log file however they choose, whether by periodically saving it
to backup, deleting it, truncating it, or the like.

When considering how to manage the log files, note that the MTA periodic return_job
will execute a site-supplied DATAROOT/site-programs/bin/daily_cleanup shell

68–2 Messaging Server Reference

MTA transaction log entry format

script, if one exists. Thus some sites may choose to supply their own daily_cleanup that,
for instance, renames the old mail.log file once a week (or once a month), etc. (Note that the
return_cleanup_period MTA option can modify the frequency at which such "cleanup" is
performed.)

68.1.2 MTA transaction log entry format

The format of message transaction log entries and connection transaction log entries is subject
to change. By default, message transaction log entries and connection transaction log entries
all appear in the same message log files (mail.log* files); however, if the MTA option
separate_connection_log=1 is set, then the connection transaction log entries will
instead appear in the connection transaction log files (connection.log* files).

Currently, by default, each message transaction log entry contains eight or nine fields, e.g.,

19-Jan-1998 19:16:57.64 tcp_intranet tcp_local E 1 adam@domain.com rfc822;mark@innosoft.com mark@innosoft.com

 (1) (2) (3) (4)(5) (6) (7) (8) (9)

These fields are:

1. The date and time when the entry was made.

2. The channel name for the source channel.

3. The channel name for the destination channel.

4. The type of entry; see Message logging entry action type codes.

5. The size of the message.1 This is expressed in kilobytes by default, although this default
can be changed by using the block_size MTA option. If message size is not an exact
block_size multiple, then the size is rounded up to the next block for logging purposes.
(Note that in "Q" records, the size is not necessarily the size of the message as a whole, but
rather indicates the amount of message processed before the delivery attempt failed: in
particular, the size field in a "Q" record may be 0 such as in cases where the MTA's SMTP
client encounters a connection failure, or the size field may correspond to the full size of the
message such as in cases where the MTA's SMTP client encounters message rejection after
the final ".", or in cases such as a network disconnect part way through message transfer the
size field will indicate roughly at what point in message transfer the disconnect occurred.)

6. The envelope From address. Note that for messages with an empty envelope From address,
such as notification messages, this field will be blank.

7. The original form of the envelope To address. (Note that this is the ORCPT value, and
hence follows ORCPT syntax; see RFC 3461. Also note that the semantics of ORCPT are
neither "originally submitted address", nor "address originally given to this MTA", and
hence ORCPT only sometimes corresponds to one or the other or both. For the "address
originally given to this MTA", see instead the log_intermediate MTA option.)

8. The active (current) form of the envelope To address.

9. The delivery status (SMTP channels only).

Monitoring the MTA 68–3

https://tools.ietf.org/html/rfc3461

MTA transaction log entry format

Table 68.1 Message logging entry action type codes

Type Modifiers Description
General

 B E, P, A, S,
U, B, C

(New in MS 6.2) Unrecognized/invalid SMTP command. Logging limit set
by MAX_B_ENTRIES TCP/IP channel-specific option.

D E, L, A, S,
U, B, C

Successful dequeue

E E, P, A, S,
U, B, C,
W, T

Enqueue. An "E" or null modifier will be present to indicate whether the
enqueue was with EHLO or HELO, respectively.

 H E, P, A, S,
U, B, C

(New in MS 8.1) VRFY/EXPN command. Logging limit set by
MAX_H_ENTRIES TCP/IP channel-specific option.

 J E, P, A, S,
U, B, C,
W, T, R

Rejection of attempted enqueue (rejection by slave channel program).
Logging limit set by MAX_J_ENTRIES TCP/IP channel-specific option,

 K E, L, S, U,
B, C

Recipient address rejected on attempted dequeue (rejection by master
channel program) when the recipient has the NOTIFY=NEVER DSN flag
set (so no bounce message will be generated regarding this rejection), or
deletion of a timed-out NOTIFY=NEVER message by the return_job;
compare with "R" records which are the same sort of rejection/time-out
occurring, but where a new notification message is also generated regarding
this failed message

 P F, X, J, Y,
D

(New in MS 8.0) Request to generate a Delivery Status Notification. (Note
that in some cases no actual DSN will end up being sent.) "P" records are
only generated in cases where the error causing the DSN isn't recorded
in any other log entry. The various cases where this happens are further
detailed by the presence of a modifier character on the action. Currently the
defined modifiers are:

• F - address errors detected during alias or mailing list expansion
operations (this includes bad RCPT TO addresses that are allowed because
the acceptalladdresses channel option is in effect)

• X - capture operations

• J - journal operations

• Y - Sieve syntax or evaluation errors

• D - success delivery receipts
Q E, L, S, U,

B, C
Temporary failure to dequeue

 R E, L, S, U,
B, C

Recipient address rejected on attempted dequeue (rejection by master
channel program), or generation of a failure/bounce message; compare with
"K" records, which are the same sort of rejection/time-out occurring, but
where no notification message is generated and the original message is just
deleted

 V E, L, P, A,
S, C

(New in MS 6.2p2) An incoming SMTP transaction ended prematurely;
frequently corresponds to an address verification operation by a remote

68–4 Messaging Server Reference

MTA transaction log entry format

SMTP client. The "C" modifier was not recorded on "V" records until circa
MS 7.0u4

 W Warning message (generated by the return_job) regarding a not-yet-
delivered message

 Z E, L, P, A,
S, U, B, C

Some successful recipients, but this recipient was temporarily unsuccessful;
the original message file of all recipients was dequeued, and in its place
a new message file for this and other unsuccessful recipients will be
immediately reenqueued

LMTP server
 J S, C Rejection by LMTP server of address or message. Logging limit set by

MAX_J_ENTRIES TCP/IP channel-specific option, As of MS 7.0, J records
are routinely generated for LMTP server rejections (whereas in previous
versions only LMTP rejections at the envelope address stages would be
recorded, while LMTP rejections after the DATA would not be recorded).
Prior to MS 7.0u4, note that unlike SMTP and SMTP SUBMIT server "J"
records, LMTP server "J" records did not include any modifier letters; new in
MS 7.0u4, "S" (TLS used) and/or "C" (CHUNKING used) modifiers may be
present.

 S S, C (New in MS 7.0) LMTP deposit into the store; in prior versions indicated
with the (somewhat misleading) D action code instead; the addition of
"S" (TLS used) and/or "C" (CHUNKING used) modifiers is new in MS 7.0u4.

SMTP/LMTP modifiers
 E (New in MS 6.3) ESMTP (EHLO) used
 L (New in MS 6.3) LMTP (LHLO) used
 Absence of both "E" and "L" implies that HELO was used
 P (New in MS 7.0) POP-before-SMTP used (via the MMP)
 Q (New in 7.0) Pipelining used
 A Authentication (SMTP AUTH) successfully used
 S TLS (STARTTLS) successfully used
 U (New in MS 7.0) BURL used.
 B (New in MS 8.0) BINARYMIME used; see the binaryserver channel

option.
 C (New in MS 6.3) CHUNKING used without BINARYMIME; see the

chunking* channel options.
 8 (New in MS 8.0) UTF-8 message transfer (UTF8SMTP) successfully used
 W (New in MS 8.1.0.1) Lines longer than 1000 characters were found and

wrapped
 T (New in MS 8.1.0.1) Lines longer than 1000 characters were found and

truncated
 R (New in MS 8.1.0.1) Lines longer than 1000 characters were found, causing

the message to be rejected

In addition to the default message transaction fields (shown above), the MTA may optionally
be configured to log additional information to the message transaction log file; see the log_*
MTA options described in Transaction logging MTA options. With log_connection,

Monitoring the MTA 68–5

MTA transaction log entry format

log_filename, log_envelope_id, log_message_id, log_node, log_notary,
log_sensitivity, log_priority, log_process, and log_username all enabled,
the format becomes as follows. (Note that the sample transaction log entry line has been
wrapped for typographic reasons; the actual message transaction log entry would appear on
one physical line.)

19-Jan-1998 13:13:27.10 hosta 2e2d.5.1 tcp_local tcp_intranet E 1 service@innosoft.com
 (1) (10) (11) (2) (3) (4) (5) (6)

 rfc822;adam@domain.com adam 276
 (7) (8) (12)

 /opt/sun/comms/messaging64/data/queue/tcp_intranet/ZZi0D4d9f5mwC.00
 (13)

 <01IWFVYLGTS499EC9W@innosoft.com> <01IWFVYLGTS499EC9Y@innosoft.com>
 (14) (15)

 mailsrv innosoft.com (innosoft.com [192.160.253.66]) 0 3
 (16) (17) (18) (19) (9)

Here the additional fields, beyond those already discussed above, are:

• (10) (log_node) The name of the node on which the channel process is running.

• (11) (log_process) The process id (expressed in hexadecimal), followed by a period (dot)
character, if it is a multithreaded channel entry a process id and another period (dot), and
finally a count.

• (12) (log_notary) The NOTARY (delivery receipt request) flags for the message, expressed
as an integer.

• (13) (log_filename) The file name in the MTA queue area.

• (14) (log_envelope_id) The envelope id.

• (log_tracking new in MS 8.0 and not shown in the above example) Tracking ID.

• (log_times new in MS 8.0 and not shown in the above example) Deferred delivery time
and expiry time.

• (15) (log_message_id) The message id.

• (16) (log_username) The username of the executing process. Note that in the case of
Dispatcher services such as the SMTP server, this will be the username of the user who most
recently did a startup of the Dispatcher.

• (log_auth new in MS 7.0.5 and not shown in the above example) The SMTP MAIL FROM's
AUTH parameter value.

• (17) (log_connection) The exact connection information shown varies according to
whether a message is incoming (E record) or outgoing (e.g., D record), whether or not
the channel is an SMTP (or LMTP) channel, and for SMTP/LMTP channels for incoming
messages, the specific bits set for the log_connection MTA option. For incoming
messages, the connection information consists of the sending system or channel name, such
as the name presented by the sending system on the HELO/EHLO line (for incoming SMTP
messages), or the enqueuing channel's official host name (for other sorts of channels). In

68–6 Messaging Server Reference

MTA transaction log entry format

the case of TCP/IP channels, the sending system's real name, that is, the symbolic name
as reported by a DNS reverse lookup and/or the IP address, can also be reported within
parentheses as controlled by the ident* channel options. This sample assumes use of
one of these options, for instance use of the default identnone channel option, that
selects display of both the name found from the DNS and IP address. This example also
assumes that log_connection=1 is set, but that higher bits of log_connection are
not set. If bit 5 (value 32) of log_connection were set, then the incoming connection
information for a message incoming over TCP/IP would also include the entire transport
information string, TCP|MTA-IP|MTA-port|remote-IP|remote-port. If bit 6 (value
64) of log_connection were set, then the incoming connection information would
also include the application information string, just SMTP for the case of incoming SMTP
messages. For outgoing messages, e.g., D records, the connection information (due to
log_connection's bit 0/value 1 being set) is present only for SMTP/LMTP channels, and
in such cases consists of the remote host name and the remote name as found in the DNS,
the transport information string (see above), and the remote SMTP banner line. And this
information is included at the start of the SMTP diagnostic field.

• (18) (log_sensitivity) The sensitivity for the message.

• (log_mtpriority new in MS 8.0 and not shown in the above example) The SMTP MT-
PRIORITY associated with the transaction.

• (19) (log_priority) This effective processing priority for the message; 3 corresponds to
"normal" priority. Note that the effective processing priority may not be the same as the
message's Priority: header value (if any); for instance, the *blocklimit channel options
can cause lowering of effective message processing priority.

• (log_intermediate not shown in the above example) The intermediate form of the
recipient address.

• (log_intermediate not shown in the above example) The original (RCPT TO) form of
the recipient address.

• (log_uid new in MS 8.0 and not shown in the above example) LDAP uid attribute for local
users.

• (log_mailbox_uid new in MS 7.0.5 and not shown in the above example) For messages
delivered to the MS Message Store, the UID and UIDVALIDITY.

• (log_futurerelease new in MS 8.0 and not shown in the above example) SMTP
FUTURERELEASE value.

• (log_filter not shown in the above example) The Sieve filter actions applying to the
message, including effects from verdicts from spam/virus package "plug-ins".

• (log_reason new in MS 6.3 and not shown in the above example) The reason field (due to
setting log_reason=1). It would appear in a message transaction log entry corresponding
to a message rejection (for instance, an "R" or "K" entry), appearing just before the SMTP
delivery status (SMTP diagnostic) field.

• (log_diagnostics not shown in the above example) The SMTP delivery status/SMTP
diagnostic field (due to having the default of log_diagnostics=1 set)

• (log_queue_time new in MS 6.3 and not shown in the above example) The "time in
queue" field (due to setting log_queue_time=1).

Monitoring the MTA 68–7

MTA transaction log entry format

• (log_conversion_tag new in MS 7.0.5 and not shown in the above example) Any
conversion tags on the message.

• (log_imap_flags new in MS 7.0.5 and not shown in the above example) Any IMAP flags
that have been set on the message by the MTA.

• (log_delivery_flags new in MS 7.0.5 and not shown in the above example) Delivery
flags.

• (log_callout_delays new in MS 8.0 and not shown in the above example) Callout delay
timer values.

• (log_transactionlog new in MS 8.0 and not shown in the above example) String(s)
logged due to the Sieve "transactionlog" action.

The maximum line length for message transaction records is 4096 characters.

Currently, each connection transaction log entry contains at least six fields, with the
presence of up to five additional optional fields controlled by the MTA options log_node,
log_process, log_message_id, log_username, and log_queue_time, e.g., (note that
for display purposes here, the output lines have been wrapped at the transport information
field at (7)),

04-Sep-2002 01:00:04.23 host.domain.com 1f625.d.0 tcp_local + O
 TCP|129.153.12.42|25|123.4.5.67|65228 SMTP
04-Sep-2002 01:00:05.21 host.domain.com 1f625.d.3 tcp_local + C
 TCP|129.153.12.42|25|123.4.5.67|65228 SMTP/TLS-192-DES-CBC3-SHA
04-Sep-2002 01:00:06.23 host.domain.com 1f627.3.0 tcp_local - O
 TCP|129.153.12.42|4303|123.45.6.7|25 SMTP/domain.com/mail.domain.com
04-Sep-2002 01:00:06.49 host.domain.com 1f627.3.3 tcp_local - C
 TCP|129.153.12.42|4303|123.45.6.7|25 SMTP/domain.com/mail.domain.com/TLS-192-DES-CBC3-SHA

 (1) (2) (3) (4) (5) (6)
 (7) (8)

• (1) The date and time when the entry was made.

• (2) [Optional---only present when log_node=1 is set.] (New in MS 6.3) The host name of
the MTA system.

• (3) [Optional---only present when log_process=1 is set.] The process id (expressed in
hexadecimal), followed by a period (dot) character and then a thread id, followed by a
period (dot) character and a count.

• (4)The channel name for the source channel. In the case of "-" entries (outgoing messages),
this is the name of the channel acting as SMTP client or LMTP client. Note, however, that in
the case of "+" entries (incoming messages), the name shown is that of the default channel
for the Dispatcher service listening on the port and interface address for the incoming
connection, so is typically merely one of tcp_local (for the SMTP server on port 25)
or tcp_submit (for the SMTP SUBMIT server on port 587) or tcp_lmtpss (for the
LMTP server); in particular, channel "switching" due to *switchchannel channel option
based effects (such as switching to a tcp_intranet channel due to switchchannel or
switching to a tcp_auth channel due to saslswitchchannel) is not reflected in such
entries. (In the case of "I" records, that is, ETRN records, this "source" channel field instead is
used to display the name of the channel which the ETRN command would cause to run.)

• (5) A plus, +, or minus, -, indicating whether this is an inbound or outbound connection,
respectively. That is, a + indicates a connection inbound to an SMTP, SMTP SUBMIT, or

68–8 Messaging Server Reference

MTA transaction log entry format

LMTP server; a - indicates a connection outbound by a channel acting as an SMTP (or
LMTP) client.

• (6) A code indicating the type of entry; see Connection logging entry action type codes.

• (7) The transport information. This takes the form:

TCP|local-IP|local-port|remote-IP|remote-port

• (8) The application information. For inbound connections (to the SMTP server), the "O" (that
is, open) records will just show "SMTP" in this field; the "C" (that is, close) records will
just show "SMTP" unless TLS was used, in which case this field will show "SMTP/TLS-
info". The TLS-info string consists of "TLS-bitstrength-cipherinfo". (Note that
the cipherinfo field may not be present, and if present may be unreliable in the MTA,
especially as of MS 6.0 and later, as the cipher information is not reliably reported back by
the underlying NSS library in use.) For outbound connections, the field has some additional
information, showing the initial host name (prior to DNS lookup) to which to connect,
and the host name found from doing a DNS lookup, that is, the host name to which the
connection was really made/attempted. In the case of outbound connections where TLS was
used, the TLS information will also be shown in the C (that is, close) record. So for outbound
connections, the field takes the form

SMTP/initial-host/DNS-host

or when TLS was used, the C records will take the form

SMTP/initial-host/DNS-host/TLS-info

For instance, initial-host might be a name used for e-mail addresses which merely has
MX records, and then DNS-host will be the actual host name to which the connection was
made (the name pointed to by an MX record).

• (9) [Optional---only present if log_message_id=1.] In "I" records, the host name presented
on the ETRN command line. In "U" records, the MTA AUTH error, if there was one.

• (10) [Optional---only present if log_username=1.] In "U" records, the authenticated user.

• (11) (New in MS 6.2) "C" records may include additional information about the reason for
the close, if the close was due to an error. For instance, "Error reading SMTP packet" (in
cases where the connection was dropped, for instance due to a network problem or the
remote system aborting the connection), or "Timeout after x minutes trying to read SMTP
packet" (in cases where the MTA times out the connection due to remote system inactivity).

• (12) [Optional---only present if log_queue_time=1.] (New in MS 6.3) "O" records may
include the "time to open the connection", "Y" records may include the "time attempting to
open a connection for an attempt that failed", and "C" records may include the total time the
connection was open as a final field. This appears as a ct attribute in XML format logs.

Table 68.2 Connection logging entry action type codes

Type Modifiers Description

Monitoring the MTA 68–9

Triggering effects from transaction
logging with LOG_ACTION

Actions
C F Connection closed
O Connection opened
T PORT_ACCESS mapping table rejection; logged if both bit 1 (value

2) of the log_connection MTA option is set (or overridden by the
LOG_CONNECTION TCP/IP-channel-specific option), and the $T flag is used
in a PORT_ACCESS rejection entry

U (New in MS 6.2) Authentication attempt (SMTP AUTH use), whether
successful or failed; logged if bit 5 (value 32) of the log_connection MTA
option is set

X F Connection rejected, or closed, due to an SMTP level error response
Y Connection try failed before being established
I ETRN command received; logged if bit 2 (value 4) of the log_connection

MTA option is set (or overridden by the LOG_CONNECTION TCP/IP-channel-
specific option)

Modifiers
 F (New in MS 7.1) A *.data-failed file was created; may be reported on

"C" or "X" records for SMTP and SMTP SUBMIT connections (but not for
LMTP connections, since *.data-failed files are never generated by the
LMTP server)

The maximum line length for connection transaction records is 4096 characters.

1The mechanism for computing size values in enqueue entries in the MTA transaction logs
was revised for MS 7.0 update 2. Previously message sizes were computed based on counting
octets in the input, which did not take various things, including charset-conversion, into
account. It was done this way in order to facilitate certain calculations needed for performing
message fragmentation. Now that message fragmentation has become a rarity, this approach
is no longer appropriate, and the code has been changed to work directly with the output
message.

68.1.3 Triggering effects from transaction logging with
LOG_ACTION

(LOG_ACTION itself was added in Messaging Server 7.0-3.01. But use of LOG_ACTION with
MeterMaid---other than simple "throttle" calls -- typically requires MeterMaid features new in
Messaging Server 7.2-0.01. In particular, MeterMaid "remove" and "test" routines are new in
Messaging Server 7.2-0.01.)

The LOG_ACTION mapping table provides a way for any transactions recorded by the MTA
to also, as a side-effect, trigger other effects. A great deal of information, of different types, can
be reported in the MTA's message transaction and connection transaction log files. Sites may
be interested in noticing certain sorts of log entries as evidence of certain sorts of occurrences,
or counting (or at least monitoring trends for) certain sorts of occurrences, or making access
decisions based on certain sorts of occurrences. The LOG_ACTION mapping table provides a
way to turn MTA message transaction and connection transaction log file entries into syslog
notices, or into MeterMaid counter updates; or if a site wishes to provide their own routine
for the mapping table to call, to take whatever, site-defined "action" the site chooses, based
upon relevant transaction log entries. For instance, a site might want to notice (via a syslog

68–10 Messaging Server Reference

Triggering effects from transaction
logging with LOG_ACTION

notice) failed SMTP AUTH attempts as a warning of possible account break-in attempt; or
a site might want to count (via MeterMaid) the number of failed (bad) recipients for users'
outgoing messages, and react to "high" numbers as a possible sign of a user sending spam with
a poor-quality recipient list.

68.1.3.1 LOG_ACTION operation

The LOG_ACTION mapping table is probed each time a message transaction or connection
transaction log entry is written. At present the LOG_ACTION mapping table's only direct effect
on the normal transaction log entries is its ability to disable output (recording) of specified
entries. But its more interesting uses tend to be for its "side effects", which can be considered
rather similar to the "side effects" available for the address based *_ACCESS mapping tables
and FROM_ACCESS mapping table: In particular, LOG_ACTION has the potential to generate
syslog notices, or make call-outs such as to MeterMaid.

68.1.3.2 Probe format

The format of the LOG_ACTION probe for a message transaction log entry consists at a
minimum of the following, plus additional, optional fields:

 source-channel|destination-channel|action|size|envelope-from|orig-envelope-to|current-envelope-to

Here action is the usually logged action code; (i.e., the ac attribute's value in XML format
MTA transaction logging). Additional log entry fields may be included in the probe,
depending upon the setting of the corresponding log_* MTA options; usually bit 1 (value 2)
for a log_* MTA option controls whether the field controlled by that option is included in
the LOG_ACTION probe. For log_connection, where bit 1 already has another meaning,
bit 8 (value 256) enables inclusion of the claimed source system (as claimed in the client's the
HELO/EHLO command for SMTP channels, or the enqueueing channel's official host name
for other types of channels), and the bit that enables inclusion of application-info and
transport-info in the LOG_ACTION probe is bit 9 (value 512); for log_intermediate,
bits 2 and 3 (values 4 and 8, respectively) control the inclusion of fields in the probe. These
optional fields consist of:

|notary-bits|filename|envelope-id|message-id|username|source-system|sensitivity
|mt-priority|priority|intermediate-dest|initial-dest|ldap-uid|imap-uid:uidvalidity
|future-release|filter|reason|diagnostics|remote-mta|isc-status
|application-info|transport-info|time-in-queue|conversion-tags|imap-flags
|delivery-flags

The source-system, and application-info and transport-info fields result from
two bits of log_connection. The intermediate-dest and initial-dest fields
result from two bits of log_intermediate. The rest of the fields result from, respectively,
log_notary, log_filename, log_envelope_id, log_message_id, log_username,
log_sensitivity, log_mtpriority, log_priority, log_uid, log_mailbox_uid,
log_futurerelease, log_filter, log_reason, log_diagnostics, log_remote_mta,
log_isc_status, log_queue_time, log_conversion_tag, log_imap_flags, and
log_delivery_flags.

The format of the probe for a connection transaction log entry consists at a minimum of the
following, plus additional, optional fields:

Monitoring the MTA 68–11

Triggering effects from transaction
logging with LOG_ACTION

source-channel|direction|action

The direction is either + for inbound connections, or - for outbound connections. action
is the usually logged connection action code, with the possible addition of an "F" suffix (on "C"
or "X" action entries), added if the entry corresponds to a case where the MTA encountered
an error with its attempt to create a *.data-failed file. The optional fields consist of any
subset of:

|SASL-error-or-ETRN-host-name|username|extra|adminser|diagnostics|transport-info|application-info|queue-time

Optional fields are enabled by the relevant bit or bits of log_message_id (bit 1, value 2
enables logging of the SASL error in "U" SMTP AUTH records and the host name from client
ETRN commands in "I" ETRN records), log_username (especially relevant for U SMTP
AUTH records), log_conversion_tag (especially relevant for open/close SMTP records),
log_diagnostics, log_connection (bit 9, value 512 enables both transport-info and
application-info), and log_queue_time. Note that the same bit (or bits) enable probe
inclusion both for message transaction probes and connection transaction probes.

Mapping input flags are described in the following table.

Table 68.3 LOG_ACTION mapping input flags

Flag Description
$| (New in MS 8.0.1.2) Set if one or more of the input strings contains a

vertical bar character. (A vertical bar in an input string has the potential of
being misinterpreted as a delimiter.)

$R (New in MS 8.0.1.2) Set if the source channel is an "internal" channel and
the MTA is operating in reprocessing mode.

$S (New in MS 8.0.2.3) Set if the per-entry save flag is set and the entry is
going to be written to the log file; clear otherwise.

If the probe string matches the pattern (i.e., the left hand side of an entry in the mapping table),
then the resulting output template (right hand side) is checked. The output templates in the
LOG_ACTION mapping table can use the special flags defined in the table below, as well, of
course, as any general mapping table substitutions or metacharacters such as calling out to a
routine.

68–12 Messaging Server Reference

Triggering effects from transaction
logging with LOG_ACTION

Table 68.4 LOG_ACTION mapping output flags
Flag Description
$F Disable writing this entry to the transaction log file
$N Disable writing this entry to the transaction log file
$+| Causes any syslog message produced by $< or $> to consume all

remaining arguments as well as including the vertical bars themselves.
Output flags with arguments, in argument reading order1

$Tprobe-tag (New in MS 8.0) (Only takes effect for message transaction probes, not
connection transaction probes.) Prefix subsequent *_ACCESS mapping
table probes with the tag probe-tag. The last such tag may optionally be
prepended to the AUTH_REWRITE mapping table probe.

$DN (New in MS 8.0.1.2) Delay the session after logging operation is complete.
The delay is controlled by the signed integer parameter value N. Positive
values of N specify the number of centiseconds to delay; if multiple log
records are being written as part of a transaction the value associated with
the last matching probe is used. Negative values of N are cumulative; the
absolute values of matching probes are added together to produce the
number of centiseconds to delay.

$<string Send string to syslog (UNIX) if probe matches; see also the
sndopr_priority MTA option.

$>string Send string to syslog (UNIX) if access is rejected; see also the
sndopr_priority MTA option.

1 To use multiple flags with arguments, separate the arguments with the vertical bar character,
|, placing the arguments in the order listed in this table.

68.1.3.3 Examples of LOG_ACTION use

This section shows examples of some possible uses of the LOG_ACTION mapping table. The
syntax and general operation of the LOG_ACTION mapping table is discussed above. The first
example below is a very simple use to disable recording of certain entries. The additional
LOG_ACTION examples below are more sophisticated, making use of MeterMaid callouts.

68.1.3.3.1 Disabling logging of connections from a periodic monitoring source

One use of LOG_ACTION is to disable logging of some particular type of entry, while still
retaining logging in general: for instance, connection attempts from some special source, when
such connections are performed merely for "monitoring" or "heartbeat" reasons, may not
deserve to be recorded.

For instance, if the monitor source IP is monitor-ip, then set bit 9 (value 512) of the
log_connection MTA option and then use a LOG_ACTION mapping table along the lines
of that shown below to disable the logging of the connection "O"pen and connection "C"lose
records generated by the monitoring probe connections.

LOG_ACTION

 ||O|*|monitor-ip|* $N

Monitoring the MTA 68–13

Triggering effects from transaction
logging with LOG_ACTION

 ||C|*|monitor-ip|* $N

68.1.3.3.2 Syslog notices after SMTP AUTH attempts with bad password

One use of LOG_ACTION might be to generate a syslog notice if more than some site-chosen
number of bad password SMTP AUTH attempts are made against any user account. This can
be achieved by calling out to MeterMaid from LOG_ACTION, and then generating the syslog
notice when MeterMaid's threshold is reached.

First, in the MTA option file make sure that appropriate data will be included in the
LOG_ACTION mapping table probes by setting log_* MTA options as below, and set
sndopr_priority to values for syslog facility and severity that will coordinate with your
syslog.conf configuration for syslog notice handling:

msconfig
msconfig> show log_connection
role.mta.log_connection = 6
instance.channel:tcp_monitor.log_connection = 0
msconfig> set mta.log_connection 134
msconfig# write -remark="Set bit 7/value 128 of log_connection to get U connection records"
msconfig> set log_message_id 3
msconfig# set log_username 3
msconfig# set log_diagnostics 3
msconfig# write -remark="Enable more fields in LOG_ACTION probes"
msconfig> set sndopr_priority 20
msconfig> set sndopr_prefix ""
msconfig# write -remark="MTA syslog notices to get LOG_MAIL+LOG_WARNING syslog.conf handling"
msconfig> quit
#

In legacy configuration mode, this would correspond to setting MTA options in the
option.dat file along the lines of:

! Sites likely want additional bits of LOG_CONNECTION set; this example
! requires that bit 7/value 128 be set.
!
LOG_CONNECTION=128
LOG_MESSAGE_ID=3
LOG_USERNAME=3
LOG_DIAGNOSTICS=3
!
! Set SNDOPR_PRIORITY to a syslog facility+severity value that will
! coordinate with your syslog.conf configuration, e.g.
! SNDOPR_PRIORITY=20 to choose LOG_MAIL+LOG_WARNING syslog.conf handling.
!
SNDOPR_PRIORITY=20
!
! Eliminate the syslog prefix
!
SNDOPR_PREFIX=

(The above settings represent likely site practice, rather than what is strictly required, as they
show log_* option values set so that regular MTA connection transaction log entries will be
generated as well as fields in LOG_ACTION probes; but in principle, the LOG_ACTION probes
could be set without having to enable the connection transaction logging.)

68–14 Messaging Server Reference

Triggering effects from transaction
logging with LOG_ACTION

To have a MeterMaid table named bad_password_attempts, configure MeterMaid with a
new table via:

msconfig
msconfig> ! First check if MeterMaid has had basic configuration:
msconfig> show metermaid.*
role.metermaid_client.server_host = host-name
role.metermaid.enable = 1
role.metermaid.secret (suppressed)
msconfig> ! Yes, MeterMaid basics already configured;
msconfig> ! so now add a new bad_password_attempts table
msconfig> set metermaid.local_table:bad_password_attempts.data_type string
msconfig# set metermaid.local_table:bad_password_attempts.max_entries 1000
msconfig# set metermaid.local_table:bad_password_attempts.table_options "nocase penalize"
msconfig# set metermaid.local_table:bad_password_attempts.table_type throttle
msconfig# set metermaid.local_table:bad_password_attempts.quota 5
msconfig# set metermaid.local_table:bad_password_attempts.quota_time 3600
msconfig# write -remark="Added bad_password_attempts MeterMaid table"
msconfig> quit
#

In legacy configuration mode, (assuming basic MeterMaid configuration had already been
performed via additional configutil parameters not shown below), this would correspond
to a MeterMaid table configured via configutil values, including these (though note that
many of the values shown being set are actually defaults):

metermaid.table.bad_password_attempts.data_type: string
metermaid.table.bad_password_attempts.max_entries: 1000
metermaid.table.bad_password_attempts.options: nocase,penalize
metermaid.table.bad_password_attempts.type: throttle
metermaid.table.bad_password_attempts.quota: 5
metermaid.table.bad_password_attempts.quota_time: 3600

Then a LOG_ACTION mapping table to make use of that MeterMaid table could be as follows:

LOG_ACTION

! With log_connection=128 set, we get "U" action records.
! With log_message_id=3 set, the SASL-error is recorded in the message-id field
! With log_username=3, get a username field
! With log_diagnostics=3, get a diagnostics field
!
! So probe format is:
!
! source-chan|direction|action|SASL-error|username|diagnostics
!
 tcp_*|+|U|Bad$ password$_*|$_*|* \
$[IMTA_LIB:check_metermaid.so,throttle,bad_password_attempts,$1]$<LOGACTION,$ \
Too$ many$ bad$ password$ attempts$ for$ user$ $1

There is a subtlety in the above, which is that log_diagnostics is shown being set purely
to ensure that there is at least one more vertical bar and (possibly empty) field appearing after
the username field. Furthermore, asterisk wildcard for matching the username field has the

Monitoring the MTA 68–15

Triggering effects from transaction
logging with LOG_ACTION

"minimal matching" $_ modifier set on it.) This is not strictly necessary for this exact example,
but makes this example easier to extend with additional fields should sites wish to do so.

There is also a prior $_* match in the reason field portion of the pattern, just after "Bad$
password"; that is necessary as of 8.0 when additional detail text was added to the reason field.

68.1.3.3.3 Syslog notices after SMTP AUTH attempts with bad username

Another example would be to generate a syslog notice if the same source IP makes multiple
attempts to authenticate with a bad username (hence suggestive of a possible "dictionary
attack" against your user name space). With MTA options settings of:

msconfig
msconfig> show log_connection
role.mta.log_connection = 2
msconfig> set mta.log_connection 642
msconfig# write -remark="Set bit 1/value 2 plus bit 7/value 128 plus bit
 9/value 512 of mta.log_connection to get O and C plus U connection records,
 plus application and transport fields included in LOG_ACTION probes"
msconfig> set log_message_id 3
msconfig# set log_username 3
msconfig# set log_diagnostics 3
msconfig# write -remark="Enable extra fields in LOG_ACTION probes"
msconfig# set sndopr_priority 20
msconfig# write -remark="MTA syslog notices to get LOG_MAIL+LOG_WARNING syslog.conf handling"
msconfig> quit
#

Or in legacy configuration mode:

! Sites likely want additional bits of LOG_CONNECTION set; this example
! requires that bit 1/value 2 plus bit 7/value 128 plus bit 9/value 512 be set.
LOG_CONNECTION=642
LOG_MESSAGE_ID=3
LOG_USERNAME=3
LOG_DIAGNOSTICS=3
!
! Set SNDOPR_PRIORITY to a syslog facility+severity value that will
! coordinate with your syslog.conf configuration, e.g.
! SNDOPR_PRIORITY=20 to choose LOG_MAIL+LOG_WARNING syslog.conf handling.
!
SNDOPR_PRIORITY=20

To have a MeterMaid table named bad_user_attempts, configure MeterMaid with a new
table via:

msconfig
msconfig> ! First check if MeterMaid has had basic configuration:
msconfig> show metermaid.*
role.metermaid_client.server_host = host-name
role.metermaid.enable = 1
role.metermaid.secret (suppressed)
msconfig> ! Yes, MeterMaid basics already configured;
msconfig> ! so now add a new bad_user_attempts table
msconfig> set metermaid.local_table:bad_user_attempts.data_type ipv4

68–16 Messaging Server Reference

Triggering effects from transaction
logging with LOG_ACTION

msconfig# set metermaid.local_table:bad_user_attempts.max_entries 1000
msconfig# set metermaid.local_table:bad_user_attempts.table_options "penalize"
msconfig# set metermaid.local_table:bad_user_attempts.table_type throttle
msconfig# set metermaid.local_table:bad_user_attempts.quota 5
msconfig# set metermaid.local_table:bad_user_attempts.quota_time 3600
msconfig# write -remark="Added bad_user_attempts MeterMaid table"
msconfig> quit
#

In legacy configuration mode, (assuming basic MeterMaid configuration had already been
performed via additional configutil parameters not shown below), this would correspond
to a MeterMaid table configured via configutil values including:

metermaid.table.bad_user_attempts.data_type: ipv4
metermaid.table.bad_user_attempts.max_entries: 1000
metermaid.table.bad_user_attempts.options: penalize
metermaid.table.bad_user_attempts.type: throttle
metermaid.table.bad_user_attempts.quota: 5
metermaid.table.bad_user_attempts.quota_time: 3600

then a LOG_ACTION mapping table could be:

LOG_ACTION

! With log_connection=642 set, we get "U" action records and transport-info
! fields.
! With log_message_id=3 set, the SASL-error is recorded in the message-id field
! With log_username=3, get a username field
! With log_diagnostics=3, get a diagnostics field
!
! So probe format is:
!
! source-chan|direction|action|SASL-error|username|diagnostics|transport-info
! where transport-info is: TCP|host-IP|host-port|source-IP|source-port
!
 tcp_*|+|U|No$ such$ user|*|*|TCP|$_*|$_*|$_*|* \
$[IMTA_LIB:check_metermaid.so,throttle,bad_user_attempts,$5]$<LOGACTION,$ \
Too$ many$ wrong$ username$ attempts$ from$ 5 (username$ attempted:$ $1)

68.1.3.3.4 Syslog notices after failing SMTP AUTH attempts, resetting after
success

Both of the above examples could be improved by using the (new in 7.2-0.01) remove routine
of MeterMaid to achieve a "reset" effect after desired "good" occurrences. For instance, with
settings as above (including log_diagnostics=3 and log_connection=642):

LOG_ACTION

! With log_connection=642 set, we get "U" action records and transport-info
! fields.
! With log_message_id=3 set, the SASL-error is recorded in the message-id field

Monitoring the MTA 68–17

Triggering effects from transaction
logging with LOG_ACTION

! With log_username=3, get a username field
! With log_diagnostics=3, get a diagnostics field
!
! So probe format is:
!
! source-chan|direction|action|SASL-error|username|diagnostics|transport-info
! where transport-info is: TCP|host-IP|host-port|source-IP|source-port
!
 tcp_*|+|U|Bad$ password|$_*|* \
$[IMTA_LIB:check_metermaid.so,throttle,bad_password_attempts,$1]$<LOGACTION,$ \
Too$ many$ bad$ password$ attempts$ for$ user$ $1
 tcp_*|+|U|No$ such$ user|*|*|TCP|$_*|$_*|$_*|* \
$[IMTA_LIB:check_metermaid.so,throttle,bad_user_attempts,$5]$<LOGACTION,$ \
Too$ many$ wrong$ username$ attempts$ from$ 5 (username$ attempted:$ $1)
!
! Once a successful AUTH occurs, remove the entry for that username in the
! bad_password_attempts table, and remove the entry for that source IP in
! the bad_user_attempts table. We want to try to remove the source IP entry in
! the second table, even if (for some reason) the MeterMaid callout on the
! first fails, so we split the store calls into two separate entries, rather
! than attempting two routine calls from one right hand side.
!
 tcp_*|+|U|*|*|*authentication$ successful*|TCP|$_*|$_*|$_*|* $CCLEAR|$2|$7
!
! If the authentication was successful, then the probe is now:
! CLEAR|username|source-ip
!
 CLEAR|*|* \
$CCLEAR|$0|1[IMTA_LIB:check_metermaid.so,remove,bad_password_attempts,$0]
 CLEAR|*|* $[IMTA_LIB:check_metermaid.so,remove,bad_user_attempts,$1]

In the above example, it is convenient to detect successful authentication via the diagnostics
field (the SMTP response). However, as of Messaging Server 7.3-11.01, an equivalent approach
would be to detect successful authentication via the reason field (and use log_reason=3):
as of Messaging Server 7.3-11.01, the reason field in cases of successful authentication would
either be "authentication successful" or "authentication successful -
switched to channel channel-name". (In prior versions, the reason field confounded
some cases.)

68.1.3.3.5 Syslog notices when time-in-queue becomes "high", ceasing after any
quick delivery

(Note that this example uses the MeterMaid "remove" routine, new in Messaging Server
7.2-0.01.) Another example of generating syslog notices when some condition occurs, and
then resetting the MeterMaid table entry (and hence stopping the syslog notices) when the
condition ceases, would be for cases where messages, while getting delivered upon first
delivery attempt, are not getting delivered sufficiently promptly for the site's taste. That
is, considering only messages that actually do manage to get delivered upon first attempt
rather than failing a delivery attempt and having to be retried later (hence inherently taking
a relatively "long" time to be delivered), the site wishes to watch for cases where that initial,
successful, delivery attempt nevertheless was rather "slow". Here we will record in MeterMaid
the destination domain for each new ZZ* message whose delivery is "slow" (taking 300
seconds or more), and generate a syslog notice for such domains once 5 messages have been
slow within an hour (3600 seconds), but reset (to 0) the MeterMaid table entry for that domain
once a "quick delivery" (within 60 seconds) has occurred.

68–18 Messaging Server Reference

Triggering effects from transaction
logging with LOG_ACTION

LOG_FILENAME=3
LOG_QUEUE_TIME=3
!
! Set SNDOPR_PRIORITY to a syslog facility+severity value that will
! coordinate with your syslog.conf configuration, e.g.
! SNDOPR_PRIORITY=20 to choose LOG_MAIL+LOG_WARNING syslog.conf handling.
!
SNDOPR_PRIORITY=20

metermaid.table.slow_delivery.data_type: string
metermaid.table.slow_delivery.max_entries: 2000
metermaid.table.slow_delivery.options: nocase
metermaid.table.slow_delivery.type: throttle
metermaid.table.slow_delivery.quota: 5
metermaid.table.slow_delivery.quota_time: 3600

LOG_ACTION

! source-chan|dest-chan|D|size|env-from|orig-env-to|env-to|filename|queue-time
!
 ||D*|*|*|*|*@*|ZZ*|* $CDEQUEUEDOMAINTIME|$7|$9
!
! Now probing with just DEQUEUEDOMAINTIME|domain|queue-time
!
 DEQUEUEDOMAINTIME|*|* $CFASTDOMAIN|$`integer($1)<=60'|$0|$1
!
! Now the probe will be FASTDOMAIN|1|domain|queue-time for queue-time<=60s
! or FASTDOMAIN|0|domain|queue-time for queue-time>60
!
 FASTDOMAIN|1|*|* \
$[IMTA_LIB:check_metermaid.so,remove,slow_delivery,$0]
 FASTDOMAIN|0|*|* $CSLOWDOMAIN|$`integer($1)>=300'|$0|$1
!
! Now the probe will be SLOWDOMAIN|1|domain|queue-time for queue-time>=300s
! or SLOWDOMAIN|0|domain|queue-time for 60s<queue-time<300s
!
 SLOWDOMAIN|1|*|* \
$[IMTA_LIB:check_metermaid.so,throttle,slow_delivery,$0]$<LOGACTION,$ \
Domain$ 0 deliveries$ slow

The above example uses the mapping table expression substitution syntax, $`expression',
to perform a test on the value of the queue-time (time in queue) field: such an expression
will evaluate to 1 if true, 0 if false, so such an expression substitution inserts the string 1 if the
numeric test was true or inserts the string 0 if the numeric test was false.

68.1.3.3.6 Blocking submissions of local senders who may be spammers

(Note that this example uses the MeterMaid "test" routine, new in Messaging Server 7.0 update
2.) A different type of use of LOG_ACTION is to update a MeterMaid table with information
relating to message dequeue, which a message enqueue access mapping table can then consult.
That is, LOG_ACTION with MeterMaid can provide a way for decisions on allowing message
enqueue to reference historical data regarding message dequeue. For instance, a local user

Monitoring the MTA 68–19

Triggering effects from transaction
logging with LOG_ACTION

whose outbound to the Internet messages suffer a high number of rejections of bad addresses
by remote destinations may raise the suspicion that that user is attempting to send spam using
a poor quality recipient list; a site may wish to deny that account further submissions that day.

For any such access restrictions on senders, it is always strongly advisable to require local users
to authenticate (use SMTP AUTH) in order to submit messages, and then to perform the access
checks using the authenticated submission address. Because the SMTP envelope From is easy
to forge in the base SMTP protocol, attempts to enforce access restrictions based solely upon
envelope From are regrettably likely to unintentionally encourage (or at least motivate) users to
forge their envelope From as a way to bypass the access restrictions. Thus poorly considered
access restrictions on senders can cause more harm than good, by motivating users to obscure
their identity to evade the restrictions. So this example will assume that a security-conscious
configuration, where users are required to use SMTP AUTH to submit, is already in place, so
that authentication information is available both for logging via the LOG_USERNAME MTA
option, and for performing an access check from the FROM_ACCESS mapping table.

So with MTA options settings that include (legacy configuration style):

! Bit 1/value 2 is not set in any of:
! LOG_NOTARY, LOG_FILENAME, LOG_ENVELOPE_ID, or LOG_MESSAGE_ID
LOG_REASON=3
LOG_USERNAME=3
LOG_DIAGNOSTICS=3

or in Unified Configuration:

msconfig> show log_*
role.mta.log_diagnostics = 3
role.mta.log_reason = 3
role.mta.log_username = 3
...and likely additional log_* MTA options settings...

and configutil MeterMaid table settings that, in addition to basic configuration not shown
here, include:

metermaid.table.sends_to_bogus_recipients.data_type: string
metermaid.table.sends_to_bogus_recipients.max_entries: 5000
metermaid.table.sends_to_bogus_recipients.options: nocase,penalize
metermaid.table.sends_to_bogus_recipients.type: throttle
metermaid.table.sends_to_bogus_recipients.quota: 15
metermaid.table.sends_to_bogus_recipients.quota_time: 86400

then a LOG_ACTION mapping table to track in MeterMaid bad recipient addresses discovered
at dequeue time, and a corresponding FROM_ACCESS mapping table that checks that
MeterMaid data to decide whether to allow new message submissions, could be:

LOG_ACTION

! source-chan|dest-chan|action|size|env-from|orig-env-to|env-to|
! username|reason|diagnostics
!

68–20 Messaging Server Reference

Triggering effects from transaction
logging with LOG_ACTION

 tcp_local||R*|*|*|*|*|$**|Remote$ SMTP$ server$ has$ rejected$ address|* \
$[IMTA_LIB:check_metermaid.so,throttle,sends_to_bogus_recipients,$5]
 tcp_local||K*|*|*|*|*|$**|Remote$ SMTP$ server$ has$ rejected$ address|* \
$[IMTA_LIB:check_metermaid.so,throttle,sends_to_bogus_recipients,$5]

FROM_ACCESS

 TCP|*|*|*|*|SMTP*|MAIL|tcp_auth|*|* \
$[IMTA_LIB:check_metermaid.so,test,sends_to_bogus_recipients,$6,>=15]$NYou$ \
have$ sent$ to$ too$ many$ bad$ addresses$ today

Note that since in the logging (MTA transaction log entries and hence the LOG_ACTION field)
the username field resulting from SMTP AUTH authentication is actually the mail attribute
value with the asterisk character prefixed, whereas in FROM_ACCESS the "username" field
is simply the pure mail attribute value, above in LOG_ACTION the entries make sure to
explicitly match the asterisk character and then not include it in the sends_to_bogus_recipients
table updates, so that the FROM_ACCESS probes can match on just the username.

68.1.3.3.7 Blocking dictionary attack on user name space (botnet attack)

Automated spam engines may mount a so-called "dictionary attack", attempting to run quickly
through possible recipient addresses when submitting messages. So a source that frequently
submits messages with many bad (invalid) addresses in the local domain may be regarded
with suspicion. One possible use of MeterMaid with LOG_ACTION is to throttle submissions
from senders who cause many "J" records (rejections of attempted submissions).

So with deferralrejectlimit 4 set on the tcp_local channel, and with MTA options
settings that include:

LOG_CONNECTION=515
LOG_DIAGNOSTICS=3

or in Unified Configuration

msconfig> show log_*
role.mta.log_connection = 515
role.mta.log_diagnostics = 3
...and likely additional log_* MTA options settings...

and configutil MeterMaid table settings that, in addition to basic configuration not shown
here, includes configuration of a MeterMaid "J-by-IP" table and a "J-jail" table:

metermaid.table.J-by-IP.data_type: ipv4
metermaid.table.J-by-IP.max_entries: 10000
metermaid.table.J-by-IP.quota: 4
metermaid.table.J-by-IP.quota_time: 600
metermaid.table.J-jail.data_type: ipv4
metermaid.table.J-jail.max_entries: 10000
metermaid.table.J-jail.quota: 1
metermaid.table.J-jail.quota_time: 3600

or in Unified Configuration:

Monitoring the MTA 68–21

Triggering effects from transaction
logging with LOG_ACTION

metermaid.table.J-by-IP.data_type: ipv4
metermaid.table.J-by-IP.max_entries: 10000
metermaid.table.J-by-IP.quota: 4
metermaid.table.J-by-IP.quota_time: 600
metermaid.table.J-jail.data_type: ipv4
metermaid.table.J-jail.max_entries: 10000
metermaid.table.J-jail.quota: 1
metermaid.table.J-jail.quota_time: 3600

then a LOG_ACTION mapping table to track in MeterMaid "J" records, and a corresponding
PORT_ACCESS mapping table that checks that MeterMaid data to decide whether or not to
allow connections, could be:

PORT_ACCESS

 ||*|*|* C|INTERNAL_IP;$3|$Y$E
 TCP|*|*|*|* \
$:A$C$[IMTA_LIB:check_metermaid.so,test,J-jail,$2,>0]$N$2-blocked2$E
 * $YEXTERNAL

DONT_JAIL

 $<10.0.0.0/24> $N
 * $Y

LOG_ACTION

! To count only the "J" records that exceeded the chosen toleration
! level of 3, we look for the deferralrejectlimit error text:
!
tcp_local|*|J*|*|rfc822;|*|451$ 4.5.3$ Too$ many$ rejections;$ \
try$ again$ later.*|TCP|*|*|*|*|SMTP \
C|DONT_JAIL;$6|\
$[IMTA_LIB:check_metermaid.so,throttle,j-by-ip,$6]\
$[IMTA_LIB:check_metermaid.so,throttle,j-jail,$6]$E

The asterisk at the end of the diagnostic text is so that even a "final" "J" record for an SMTP
session -- as when the TCP/IP-channel-specific option MAX_J_ENTRIES is exceeded, resulting
in some additional, extra text -- will be counted.

68.1.3.3.8 Delay after bad username and password specified in SUBMIT

Given the following MTA option settings:

LOG_CONNECTION=515
LOG_USERNAME=3
LOG_DIAGNOSTICS=3

And mapping:

68–22 Messaging Server Reference

MTA counters

LOG_ACTION

 tcp_*|+|U|*|535* $D300

A three second delay would follow any failed authentication attempt.

68.2 MTA counters
The MTA has facilities to collect and monitor channel counters based upon the Mail
Monitoring MIB, RFC 2789 (which updates RFC 1566). Note that counters are intended for
providing real-time "snap-shots" of MTA behavior, rather than for gathering the sort of
statistics instead available from the MTA transaction log files. For a description of the MTA
channel counters, see MTA channel counters.

New in 8.0, the MTA also maintains eight signed, 64 bit counters intended for updating from
within Sieve scripts, for site-customizable use; see the Sieve adjustcounter extension.

The MTA provides utilities to display the counters directly; see the imsimta counters and
imsimta qm utilities.

68.2.1 MTA channel counters
The MTA has facilities to collect and monitor channel counters based upon the Mail
Monitoring MIB, RFC 2789 (which updates RFC 1566). These counters tabulate on a per
channel basis the twelve items described in Table of channel counters from MADMAN MIB.

The MTA also supports some additional channel, association, and arbitrary counters; see this
more extensive list at Table of MTA counters.

Table 68.5 Channel counters from MADMAN MIB
Field name Description
RECEIVED_MESSAGES The number of messages enqueued to the channel
SUBMITTED_MESSAGES The number of messages enqueued by the channel
STORED_MESSAGES The total number of messages currently stored for the channel
DELIVERED_MESSAGES The number of messages dequeued by the channel
RECEIVED_VOLUME The volume of messages enqueued to the channel as measured in MTA

blocks
SUBMITTED_VOLUME The volume of messages enqueued by the channel as measured in MTA

blocks
STORED_VOLUME The volume of messages currently stored for the channel as measured in

MTA blocks
DELIVERED_VOLUME The volume of messages dequeued by the channel as measured in MTA

blocks
RECEIVED_RECIPIENTS The total number of recipients specified in all messages enqueued to the

channel
SUBMITTED_RECIPIENTS The total number of recipients specified in all messages enqueued by the

channel
STORED_RECIPIENTS The total number of recipients specified in all messages currently stored

for the channel

Monitoring the MTA 68–23

https://tools.ietf.org/html/rfc2789
https://tools.ietf.org/html/rfc1566
https://tools.ietf.org/html/rfc2789
https://tools.ietf.org/html/rfc1566

MTA channel counters

DELIVERED_RECIPIENTS The total number of recipients specified in all messages dequeued by the
channel

An MTA block is, by default, 1024 bytes. However, this size may vary from system to system.
The size of an MTA block is controlled with the block_size MTA option.

Table 68.6 MTA counters

Accessible via PMDF API
Field name Description
received_messages The number of messages enqueued to the channel
stored_messages The total number of messages currently stored for the channel
delivered_messages The number of messages dequeued by the channel
submitted_messages The number of messages enqueued by the channel
attempted_messages The number of temporary errors encountered during attempted

message dequeues by the channel
rejected_messages The number of attempted messages enqueues rejected by the channel
failed_messages The number of permanent errors (hard delivery failures) encountered

during attempted messages dequeues by the channel
received_volume The volume of messages enqueued to the channel as measured in

MTA blocks
stored_volume The volume of messages currently stored for the channel as measured

in MTA blocks
delivered_volume The volume of messages dequeued by the channel as measured in

MTA blocks
submitted_volume The volume of messages enqueued by the channel as measured in

MTA blocks
attempted_volume The volume of messages that encountered temporary errors during

attempted message dequeues by the channel as measured in MTA
blocks

rejected_volume The volume of the messages for message enqueues rejected by the
channel as measured in MTA blocks

failed_volume The number of permanent errors (hard delivery failures) encountered
during attempted messages dequeues by the channel as measured in
MTA blocks

received_recipients The total number of recipients specified in all messages enqueued to
the channel

stored_recipients The total number of recipients specified in all messages currently
stored for the channel

delivered_recipients The total number of recipients specified in all messages dequeued by
the channel

submitted_recipients The total number of recipients specified in all messages enqueued by
the channel

attempted_recipients The total number of recipients encountering temporary errors during
attempted message dequeues by the channel

68–24 Messaging Server Reference

MTA channel counters

rejected_recipients The total number of recipients rejected by the channel
failed_recipients The total number of recipients encountering permanent errors (hard

delivery failures) during attempted messages dequeues by the
channel

delivered_first_messages The total number of messages enqueued to the channel which were
either successfully delivered, or returned as undeliverable, upon their
first processing attempt

delivered_first_queue_count Cumulative count of first message delivery attempts made by
the channel. When this value is less then received_messages, it
means that delivery has not yet been attempted for all received
messages. This is not unusual: this value is expected to lag behind
received_messages.

delivered_first_queue_time Cumulative count of elapsed seconds between when a message
is enqueued and when processing of its first delivery attempt
completes. The result of dividing delivered_first_queue_time by
delivered_first_queue_count gives the average amount of time in
seconds spent by a message in the processing queues as it awaits its
initial delivery attempt.

delivered_queue_count Cumulative count of message delivery attempts made by the channel
delivered_queue_time Cumulative count of elapsed seconds between when a message

is enqueued and when it is finally removed from the channel
queue. The result of dividing delivered_queue_time by
delivered_queue_count gives the average amount of time in seconds
spent by a message in the processing queues.

Association counters displayed by counters utility
Field name Description
accum_inbound_assocs
current_inbound_assocs
rejected_inbound_assocs
failed_inbound_assocs
accum_outbound_assocs
current_outbound_assocs
rejected_outBound_assocs
failed_outbound_assocs

Sieve adjustcounter counters
Field name Description
Sieve counter [1]
Sieve counter [2]
Sieve counter [3]
Sieve counter [4]
Sieve counter [5]
Sieve counter [6]
Sieve counter [7]

Monitoring the MTA 68–25

Purpose and design of MTA
counters

Sieve counter [8]
Additional message counters

Field name Description
DeliveredVolumeBins
DeliveredFirstQueueCountBins
DeliveredFirstQueueTimeBins
DeliveredQueueCountBins
DeliveredQueueTimeBins
LastInbound Most recent "E" or "J" record for this (source) channel
LastOutbound Most recent "D", "Q", "Z", or "R" record for this (destination) channel;

(Bug # 6774400 is that "K" records don't update this counter)
ConvSuccessed For the conversion channel, identical to DeliveredMessages; 0 for all

other channels
ConvFailed For the conversion channel, identical to FailedMessages; 0 for all

other channels
HeldCount Obtained by periodically scanning the queue directories and

counting .HELD files. Whether this scan is performed is controlled
by the directoryscan SNMP option (in legacy configuration, the
local.snmp.directoryscanconfigutil parameter) which
defaults to 1---TRUE.

OldestAge
OldestMsgid

• 1. An MTA block is, by default, 1024 bytes. However, this size may vary from system to
system. The size of an MTA block is controlled with the block_size MTA option.

• 2. rejected_volume does not generally capture the entire volume of the messages rejected by
the channel. Depending upon when, during attempted message submission, the rejection
occurs, little to none of the message content and size may have been transferred (or made
known) to the channel.

It is important to note that these counters generally need to be looked at over time noting the
minimum values seen. The minimums may actually be negative for some channels. Such a
negative value merely means that there were messages queued for a channel at the time that
its counters were zeroed (e.g., the cluster-wide database of counters created). When those
messages were dequeued, the associated counters for the channel were decremented therefore
leading to a negative minimum. For such a counter, the correct "absolute" value is the current
value less the minimum value that counter has ever held since being initialized.

68.2.2 Purpose and design of MTA counters

MTA channel counters are intended for indicating the health and performance trends of your e-
mail system. MTA channel counters are neither designed nor intended to provide an accurate
accounting of message traffic; for precise accounting, instead see MTA transaction logging.
The lack of accuracy in the MTA's channel counters in an inherent aspect of their design; it
is not a bug. Specifically, the MTA's channel counters adhere to what Marshall Rose calls
the fundamental axiom of management, which is that management must itself not interfere

68–26 Messaging Server Reference

MTA counters implementation

with proper system and network operation by consuming anything but the tiniest amount of
resource.

Therefore the MTA's channel counters are implemented using the lightest weight mechanisms
available, namely a shared memory section on each system. Channel counters do not try harder:
if an attempt to map the section fails, no information is recorded; if one of the locks in the
section cannot be obtained almost immediately, no information is recorded; when a system is
shut down, the information contained in the in-memory section is lost forever. MTA counters
implementation provides further discussion of the implementation of counters.

68.2.3 MTA counters implementation
For performance reasons, each MTA host keeps a cache of MTA channel counters in memory
using a shared memory section (on UNIX). As processes on the host enqueue and dequeue
messages, they update the counters in this in-memory cache. If the in-memory section does not
exist when a channel runs, the section will be created automatically. (The imsimta startup
command also creates the in-memory section, if it does not exist.)

The command imsimta counters -show or the imsimta qm command counters show
may be used to show the values of the counters.

The command imsimta counters -clear or the imsimta qm command counters
clear may be used to reset the counters to zero.

In addition to the above commands for directly displaying the MTA's counters, on some
platforms an SNMP subagent may be available to serve the MTA counters out through SNMP
to any standards-based SNMP monitoring station.

68.2.4 SNMP subagents
On some platforms, SNMP subagents are available to serve out the MTA channel counters
using the Mail and Directory Management (MADMAN) SNMP MIB described in RFC 2788
and RFC 2789 (originally RFC 1565 and RFC 1566). (See MIB variables served for a more
detailed list of the exact MIB variables served, with OIDs and syntaces.) Presently, SNMP
subagents are available for use with Net-SNMP used on Solaris platforms running Solaris 10,
as well as Linux platforms.

Several options affect operation of these subagents; see SNMP options.

68.2.4.1 MIB variables served

The SNMP subagents serve out selected variables from the MADMAN MIBs (see RFC
2788 and RFC 2789, updating RFC 1565 and 1566), specifically, those variables from the
applicationTable, mtaTable, and mtaGroupTable tables as shown in Table of supported MIB
variables.

Table 68.7 Supported MIB variables
applicationTable variables

Variable name OID Syntax Value

applName mib-2.27.1.1.2 SnmpAdminString instance-nameservice-name on host-name

applVersion mib-2.27.1.1.4 SnmpAdminString major-version. minor-versionormajor-version. minor-
version Patch patch-version

applDirectoryName mib-2.27.1.1.3 SnmpAdminString NULL

Monitoring the MTA 68–27

https://tools.ietf.org/html/rfc2788
https://tools.ietf.org/html/rfc2789
https://tools.ietf.org/html/rfc1565
https://tools.ietf.org/html/rfc1566
https://tools.ietf.org/html/rfc2788
https://tools.ietf.org/html/rfc2788
https://tools.ietf.org/html/rfc2789
https://tools.ietf.org/html/rfc1565
https://tools.ietf.org/html/rfc

SNMP subagents

applUpTime mib-2.27.1.1.5 TimeStamp If the Job Controller is running, then the time (in
hundredths of seconds) since the Job Controller
was started up (or restarted); otherwise, 0

applOperStatus mib-2.27.1.1.6 Integer 1 (up) or 2 (down)

applLastChange mib-2.27.1.1.7 TimeStamp Time (in hundredths of seconds) since the Job
Controller's pidfile was modified

applInboundAssociations mib-2.27.1.1.8 Gauge32 Sum over all mtaGroups (channels) of the
mtaGroupInboundAssociations

applOutboundAssociations mib-2.27.1.1.9 Gauge32 Sum over all mtaGroups (channels) of the
mtaGroupOutboundAssociations

applAccumulatedInboundAssociations mib-2.27.1.1.10 Counter32 Sum over all mtaGroups (channels) of the
mtaGroupAccumulatedInboundAssociations

applAccumulatedOutboundAssociations mib-2.27.1.1.11 Counter32 Sum over all mtaGroups (channels) of the
mtaGroupAccumulatedOutboundAssociations

applLastInboundActivity mib-2.27.1.1.12 TimeStamp Most recent of the
mtaGroupLastInboundActivity values

applLastOutboundActivity mib-2.27.1.1.13 TimeStamp Most recent of the
mtaGroupLastInboundActivity values

applRejectedInboundAssociations mib-2.27.1.1.14 Counter32 Sum over all mtaGroups (channels) of the
mtaGroupRejectedInboundAssociations

applFailedOutboundAssociations mib-2.27.1.1.15 Counter32 Sum over all mtaGroups (channels) of the
mtaGroupFailedOutboundAssociations

applDescription mib-2.27.1.1.16 SnmpAdminString ims-nameapplVersion-value

applURL mib-2.27.1.1.17 URLString NULL

mtaTable variables

Variable name OID Syntax Derived from MTA counter

mtaReceivedMessages mib-2.28.1.1.1 Counter32 received_messages

mtaStoredMessages mib-2.28.1.1.2 Gauge32 stored_messages

mtaTransmittedMessages mib-2.28.1.1.3 Counter32 delivered_messages

mtaReceivedVolume mib-2.28.1.1.4 Counter32 received_volume (converted, as necessary, to
Kbytes)

mtaStoredVolume mib-2.28.1.1.5 Gauge32 stored_volume (converted, as necessary, to
Kbytes)

mtaTransmittedVolume mib-2.28.1.1.6 Counter32 delivered_volume (converted, as necessary, to
Kbytes)

mtaReceivedRecipients mib-2.28.1.1.7 Counter32 received_recipients

mtaStoredRecipients mib-2.28.1.1.8 Gauge32 stored_receipients

mtaTransmittedRecipients mib-2.28.1.1.9 Counter32 delivered_recipients

mtaSuccessfulConvertedMessages mib-2.28.1.1.10 Counter32 Sum over all mtaGroups (channels) of
mtaGroupSuccessfulConvertedMessages;
since all non-conversion* channels have
value 0, this ends up being the sum over just
conversion* channels

mtaFailedConvertedMessages mib-2.28.1.1.11 Counter32 Sum over all mtaGroups (channels) of
mtaGroupFailedConvertedMessages; since all
non-conversion* channels have value 0, this
ends up being the sum over just conversion*
channels

mtaLoopsDetected mib-2.28.1.1.12 Counter32 Sum over all mtaGroups (channels) of
mtaGroupLoopsDetected

mtaGroupTable variables

Variable name OID Syntax Derived from MTA counter

mtaGroupReceivedMessages mib-2.28.2.1.2 Counter32 received_messages

mtaGroupRejectedMessages mib-2.28.2.1.3 Counter32 rejected_messages

mtaGroupStoredMessages mib-2.28.2.1.4 Gauge32 stored_messages

68–28 Messaging Server Reference

SNMP subagents

mtaGroupTransmittedMessages mib-2.28.2.1.5 Counter32 delivered_messages

mtaGroupReceivedVolume mib-2.28.2.1.6 Counter32 received_volume (converted, as necessary, to
Kbytes)

mtaGroupStoredVolume mib-2.28.2.1.7 Gauge32 stored_volume (converted, as necessary, to
Kbytes)

mtaGroupTransmittedVolume mib-2.28.2.1.8 Counter32 delivered_volume (converted, as necessary, to
Kbytes)

mtaGroupReceivedRecipients mib-2.28.2.1.9 Counter32 received_recipients

mtaGroupStoredRecipients mib-2.28.2.1.10 Gauge32 stored_recipients

mtaGroupTransmittedRecipients mib-2.28.2.1.11 Counter32 delivered_recipients

mtaGroupName mib-2.28.2.1.25 String channel_name

mtaGroupInboundAssociations mib-2.28.2.1.13 Gauge32 current_inbound_assocs

mtaGroupOutboundAssociations mib-2.28.2.1.14 Gauge32 current_outbound_assocs

mtaGroupAccumulatedInboundAssociations mib-2.28.2.1.15 Counter32 accum_inbound_assocs

mtaGroupAccumulatedOutboundAssociations mib-2.28.2.1.16 Counter32 accum_outbound_assocs

mtaGroupRejectedInboundAssociations mib-2.28.2.1.19 Counter32 rejected_inbound_assocs

mtaGroupFailedOutboundAssociations mib-2.28.2.1.20 Counter32 failed_outbound_assocs

mtaGroupOldestMessageStored mib-2.28.2.1.12 TimeInterval oldest_age: Time, in hundredths of a second, that
the oldest, non-.HELD message in the channel
queue has been present; the Job Controller
maintains this information and updates the
oldest_age MTA counter

mtaGroupLastInboundActivity mib-2.2.28.1.17 TimeInterval Channel counter lastinbound

mtaGroupLastOutboundActivity mib-2.2.28.1.18 TimeInterval Channel counter lastoutbound

mtaGroupInboundRejectionReason mib-2.2.28.1.21 SnmpAdminString NULL

mtaGroupOutboundConnectFailureReason mib-2.2.28.1.22 SnmpAdminString NULL

mtaGroupScheduledRetry mib-2.2.28.1.23 TimeInterval 0

mtaGroupMailProtocol mib-2.2.28.1.24 OID smtp-oid, i.e., 9.1.3.6.1.2.1.27.4.25

mtaGroupSuccessfulConvertedMessages mib-2.28.2.1.26 Counter32 delivered_messages for a conversion*
channel; 0 for all other channels

mtaGroupFailedConvertedMessages mib-2.28.2.1.27 Counter32 failed_messages for a conversion* channel; 0
for all other channels

mtaGroupDescription mib-2.28.2.1.28 SnmpAdminString instance-name MTA channel-name channel

mtaGroupURL mib-2.28.2.1.29 URLString NULL

mtaGroupCreationTime mib-2.28.2.1.30 TimeInterval 0x7FFFFFFF

mtaGroupHierarchy mib-2.28.2.1.31 Integer 0

mtaGroupOldestMessageId mib-2.28.2.1.32 SnmpAdminString oldest_msgid: Message-id of the oldest,
non-.HELD message present in the channel
queue; the Job Controller updates the
oldest_msgid MTA counter

mtaGroupLoopsDetected mib-2.28.2.1.33 Counter32 Corresponds to the MTA's private HeldCount
counter (which is a cached count of .HELD files
seen during a periodic scan of the channel queue
directory)

mtaGroupLastOutboundAssociationAttempt mib-2.2.28.1.34 TimeInterval mtaGroupLastOutboundActivity value

Note: the OID for mib-2 is 1.3.6.1.2.1.

Each MTA channel is identified with with an MTA group. Thus, for each channel, there will be
a row in the mtaGroupTable. For example, if there are M channels, the OID mib-2.28.2.1.25.n
gives the name of the channel associated with the nth row in the table where n satisfies
1<=n<=M .

Monitoring the MTA 68–29

SNMP subagents

Only one application and MTA is recognized by the subagent and consequently there is only
one row in the applicationTable and mtaTable tables. The only valid instance identifier for
those two tables is thus ".1"; i.e., for either table, the OID for an instance of a variable is formed
by taking the OID of the variable and appending ".1" to it. For example, a get operation on
mib-2.27.1.1.4.1 would return the version number of MTA.

Each row of the mtaGroupTable table corresponds to a set of MTA channel counters
maintained by the MTA. A description of each mtaGroupTable variable is given in Table of
mtaGroupTable variable descriptions. These counters may be directly manipulated imsimta
counters utility or the imsimta qm utility's counters command. Refer to the discussion of
MTA channel counters for further information on the MTA channel counters.

Table 68.8 mtaGroupTable variable descriptions

mtaGroupTable variable MTA counter Description
mtaGroupReceivedMessages RECEIVED_MESSAGES Count of messages enqueued to

the channel.
mtaGroupStoredMessages STORED_MESSAGES Count of messages enqueued

to the channel but not yet
delivered.

mtaGroupTransmittedMessages DELIVERED_MESSAGES Count of messages delivered
(dequeued) by the channel.

mtaGroupReceivedVolume RECEIVED_VOLUME Volume of messages enqueued
to the channel as measured in
Kbytes = 1024 bytes.

mtaGroupStoredVolume STORED_VOLUME Volume of messages enqueued
to the channel but not yet
delivered as measured in
Kbytes.

mtaGroupTransmittedVolume DELIVERED_VOLUME Volume of messages which
have been delivered (dequeued)
by the channel as measured in
Kbytes.

mtaGroupReceivedRecipients RECEIVED_RECIPIENTS Volume of messages enqueued
to the channel as measured by
the total number of envelope
recipient addresses.

mtaGroupStoredRecipients STORED_RECIPIENTS Volume of messages enqueued
to the channel but not yet
delivered as measured by
the total number of envelope
recipient addresses.

mtaGroupTransmittedRecipients DELIVERED_RECIPIENTS Volume of messages which
have been delivered (dequeued)
by the channel as measured by
the total number of envelope
recipient addresses.

mtaGroupName Name of the channel.

68–30 Messaging Server Reference

SNMP subagents

The values in the mtaTable correspond to the column sums of the mtaGroupTable;
e.g., mtaReceivedMessages is the sum over all rows of the mtaGroupTable column
mtaGroupReceivedMessages.

Note: The underlying MTA channel counters may take on negative values. However, the
corresponding MIB variables must be non-negative. To reconcile this difference, the subagent
tracks the minimum value seen for each channel counter and then uses that minimum to adjust
the MIB variable such that it has a minimum of zero. This is done by subtracting the minimum
value from the counter when that minimum is less than zero. For this reason, the values of the
counters displayed with the imsimta counters command may differ from those displayed
from an SNMP client.

Note: The MIB volume variables measure in units of kilobytes, whereas MTA counters
measure message volume in units of MTA blocks. While the default MTA block size
(block_size MTA option) is 1024 bytes = 1 kilobyte and thus identical to the units for the
MIB volume variables, if the MTA block size has been set to some other value, then the MTA
counters for volumes will be in different units than the kilobytes of MIB volume variables. The
subagent will adjust the MTA counters volume values, if needed, to obtain kilobyte values for
the MIB volume variables.

Monitoring the MTA 68–31

68–32

Chapter 69 MTA performance tuning
69.1 MTA performance: CPU and resources .. 69–1
69.2 MTA performance: Disks and files ... 69–3
69.3 System parameters on Solaris .. 69–4

69.3.1 For the Dispatcher: ... 69–4
69.3.2 For the Job Controller: .. 69–5

There are a variety of things which may be done to improve the MTA's performance. However,
before trying to tune the MTA you should first feel comfortable with the MTA: have a basic
understanding of how it works, be familiar with your configuration, and be able to recognize
when the MTA isn't working on your system. In addition, it is important that you spend some
time identifying what the bottlenecks are on your system: CPU resources, disk speed, memory,
network speed or latencies, etc. Without a clear idea of where the bottlenecks are, any tuning
you do is likely to be ineffective.

69.1 MTA performance: CPU and resources
Not necessarily in order of importance, here are some points to consider:

• In versions past, it was important to use a compiled configuration, to reduce the startup time
of MTA processing jobs. As of 7.0.5 and Unified Configuration, this is no longer important.

• If your system has the memory to spare, increasing the size of message that processing jobs
can buffer internally can reduce use of temporary buffer files on disk when receiving or
processing large messages. See the discussion of the max_internal_blocks MTA option.
 On an LMTP back end system, see instead the BUFFER_SIZE TCP/IP-channel-specific
option.

• Ensure that you have sufficient swap space for the needs of your configuration.

• Consider Job Controller pools for specific channels which you wish to ensure always have
processing slots. The usual initial configuration establishes a basic set of pools suitable
for the typical use of the channels in the initial configuration, but if you have added
special purpose channels to your configuration, or if your site's message traffic has special
characteristics or you have special needs, then you may benefit from adding new pool
definitions and/or assigning particular channels to different pools. For instance, if you have
a dedicated, heavy-use TCP/IP channel for sending to some sister site, then you may wish to
define a separate pool that will be dedicated for the use of that special channel. Then use the
pool channel option to direct the special channel to run in that new pool.

• The Dispatcher controls the creation and use of multithreaded SMTP server processes. If,
as is typical, incoming SMTP over TCP/IP messages are a major component of e-mail traffic
at your site, monitor how many simultaneous incoming SMTP connections you tend to
have, and the pacing at which such connections come in. Tuning of Dispatcher configuration
options controlling the number of SMTP server processes, the number of connections each
can handle, the threshold at which new server processes are created, etc., may be beneficial
if your site's incoming SMTP over TCP/IP traffic is unusually high or low.

• In general, for outgoing SMTP over TCP/IP channels, adjustment of the number of messages
handled per thread (threaddepth channel option), the maximum number of threads

MTA performance tuning 69–1

MTA performance: CPU and
resources

per process (MAX_CLIENT_THREADS TCP/IP-channel-specific option), the maximum
number of processes for the channel (maxjobs channel option, potentially also limited
by the Job Controller's job_limit option value for the pool in which the channel runs),
can potentially be beneficial, especially if your site's message traffic has out of the ordinary
characteristics. For typical SMTP over TCP/IP channels, used to send to multiple different
remote systems, the MTA's multithreaded TCP/IP channel's default behavior of sorting
messages to different destinations into different threads and then handling all messages (up
to the channel's threaddepth channel option's value) to a single host in a single thread is
desirable for performance; indeed, in some cases increasing such a channel's threaddepth
may be useful. However, for a daemon TCP/IP channel, one dedicated to sending to a
specific system, if the receiving system supports multiple simultaneous connections it may
be preferable to force the MTA to split the outgoing messages into separate threads at a
lower threshold, by using a "small" threaddepth value, and then perhaps correspondingly
adjusting to allow more threads and/or more processes using the MAX_CLIENT_THREADS
TCP/IP-channel-specific option or the maxjobs channel option, respectively. And see also
the discussion above regarding defining and using new pools for particular channels, to
control the degree of resource sharing/resource competion among separate outgoing TCP/IP
channels.

• Disabling the MTA's SMTP server creation and use of *.data-failed files by setting the
TCP/IP-channel-specific option REUSE_TIMED_OUT_TRANSFERS=0 can provide a noticable
performance (throughput) increase---perhaps 30% for the SMTP server; the downside is
that disabling their use means that the MTA will no longer detect and avoid certain cases
of duplicate submissions of messages, so users may receive "duplicate" copies of messages
that might have been avoided. (The main performance issue here is not usually the creation
of the actual files, but rather the CPU used while deciding whether to make such a file; that
is, the performance impact of such potential file use exists whether or not any *.data-
failed file is in fact ever created.)

• Another channel heavily used at typical sites is the ims-ms channel for delivery to the
Message Store. This, like the TCP/IP channels, is a multithreaded channel, and controls over
its threaddepth, DELIVER_THREADSims-ms-channel-specific option, maxjobs, and
the job_limit for the pool in which it runs can potentially be relevant to performance,
particularly if your site's needs are out of the ordinary.

• Use of LMTP back ends allows separation of MTA systems from back end Message Store
systems, so that individual systems may be dedicated to one type of functionality or the
other. Configuration of MTA LMTP client channels can benefit both from the sorts of
considerations for ims-ms channels (regarding Message Store delivery) and from the sorts
of considerations for TCP/IP channels (regarding the network connectivity). Consider using
a separate Job Controller pool or pools for the LMTP client channel(s). When there are
multiple back end LMTP systems, note that there are tradeoffs between using one channel to
deliver to all back ends, vs. creating separate channels to deliver to each back end.

• In direct LDAP mode, the caching of LDAP lookups represents a tradeoff between
efficiency ("large" caches), vs. memory usage (which should not be too great a burden on
a reasonably sized system) and small latency in LDAP entry changes ("small" caches).
See especially the alias_entry_cache_size, alias_entry_cache_timeout,
reverse_address_cache_size, reverse_address_cache_timeout,
and ldap_domain_timeout MTA options, and to a lesser degree the
domain_match_cache_size and domain_match_cache_timeout MTA options,
which all fall into the category of LDAP lookup caching. Sites using Sieve filters should
also see filter_cache_size and filter_cache_timeout; sites making heavy
use of custom LDAP callouts (from mapping tables or rewrite rules) should also see

69–2 Messaging Server Reference

MTA performance: Disks and files

url_result_cache_size and url_result_cache_timeout, also in that same
category of LDAP lookup caching.

• When generating very large "mass mailings", see Performance submitting mass mail
messages.

• Note that increased processing or filtering of messages, such as that resulting from
processing the inner levels of messages (inner, innertrim channel options), "sniffing" of
message bodies (thurman or uma channel options or CHARSET-CONVERSION keywords),
use of character set conversion, use of the conversion channel, use of Sieve filters, use of
callouts to third party virus or spam detection software such as Brightmail or Spamassassin,
MIME message fragmentation or defragmentation (maxblocks, defragment channel
options), use of TLS for encryption of SMTP messages (*tls* channel options), use of DNS
reverse lookups for incoming SMTP messages (ident* channel options, forwardcheck*
channel options, mailfromdnsverify channel option, or dns_verify* image callouts
from an *_ACCESS mapping table), etc., requires the MTA to do extra work hence of course
has a performance impact. This is not to discourage use of such features---such features
exist because they are useful, and desirable features for message processing---but do keep in
mind the potential performance impact of increased message processing.

• In particular, especially for system-wide or channel Sieve filters, it may be worth paying
some attention to ensure that such Sieves use reasonable test logic, and are not really
excessively long (excessively many tests).

• Also, when using mapping tables, such as *_ACCESS mapping tables, it is worthwhile
to set up the mapping tables in an efficient way, without excessive numbers of entries,
and attempting to keep the pattern matching reasonably efficient. As a rough rule of
thumb, consider that once a mapping table has reached about 50 entries (lines), it is worth
considering whether the table could be restructured to make use of general database callouts
to do some of the specific matching, rather than having all matching text explicitly present in
the mapping table itself.

• When callouts to third party spam/virus filter packages such as Brightmail or Spamassassin
are part of the configuration, it is important to size and tune those third party filter packages
adequately: their important filtering functionality tends to be inherently "expensive".

69.2 MTA performance: Disks and files
One of the more common bottlenecks for the MTA itself is disk I/O -- especially if the MTA is
using the same disks or disk controller as the Message Store, which does a lot of disk I/O! The
MTA itself does a lot of disk I/O. Try to keep the disks with the MTA's message queues below
66% capacity so that the operating system can efficiently manage file create and delete cycles.
Also, use disk striping or other aggregate disk spindle techniques that help both read and
writes. Avoid disk shadowing if possible. Disk is cheap these days: spend money on multiple
spindles and sufficient free space.

By using symbolic links under the MTA's queue and log directories, you can redirect where
the MTA keeps its store-and-forward message queues and log files. The MTA's command,
executable, and configuration directories can also be separated if absolutely necessary.

Note that MTA debugging, which can be enabled for various components, and at various
levels, (see for instance, the job_controller.debug and dispatcher.debug options for
the Dispatcher and Job Controller, respectively, and the master_debug and slave_debug
channel options for channels) is in some cases potentially very verbose and voluminous.

MTA performance tuning 69–3

System parameters on Solaris

MTA debugging is distinct from MTA transaction logging (which is, however, also written to
the MTA log directory). Debugging is intended for short-term use to track down problems.
Leaving debugging enabled unnecessarily for extended periods may make the MTA log
directory "hotter" than desirable for the long term.

The location for MTA temporary files can also be moved. The tmpdir MTA option (formerly
imta_tmp in the MTA Tailor file) controls the location of temporary unnamed files (such as
those used to buffer incoming large SMTP messages or incoming large messages submitted
by local users, and to buffer all incoming LMTP messages); it also controls the location of
temporary named files (such as those used by the conversion channel). mta.tmpdir defaults
to /tmp/; note than on Linux, it tends to be preferable to set it explicitly to /dev/shm/. Note
that if explicitly defining tmpdir (and intending to support message submissions directly
from command line utilities by users logged onto the MTA system itself) it is important to
point it to a device on which any user may create files.

By default, the messages for a given channel are stored in a single, channel-specific directory
under the MTA queue directory, DATAROOT/queue/. File system performance degrades
rapidly for directories with more than a couple thousand files; this can present a problem for
channels which see heavy message traffic --- especially when the network associated with that
channel is down and messages begin to queue up. Use the subdirs channel option to indicate
that a channel should uniformly spread its messages across several subdirectories. For Internet
sites with heavy traffic loads, this should be done for their outgoing TCP/IP channel, usually
tcp_local.

MTA options such as osync and buffer_size may affect file system I/O performance and
hence impact MTA performance.

UNIX sites may consider whether for their use it is acceptable to set the MTA option fsync=0.
Doing so improves performance, but at the cost that if a UNIX (or NT) system crashes at just
the wrong moment, messages not yet synched to disk could be lost.

Sites running on Solaris, and especially on Solaris 10 (which has a high default rlim_fd_max
value), if running a version of the MTA prior to MS 6.4, should take steps to check and ensure
that a high system maximum file descriptor limit is not unduly burdening the Job Controller
and the channel delivery jobs that it initiates; see System parameters on Solaris.

69.3 System parameters on Solaris

69.3.1 For the Dispatcher:
As of Solaris 11, the siffp_fd_max parameter in /etc/system is likely to need to be
increased from its default of 50 (which may be much too small for the Dispatcher's needs in
handing off file descriptors to its worker processes) to some much larger value -- perhaps
50,000.

The system's heap size (datasize) must be enough to accomodate the Dispatcher's thread
stack usage. For each Dispatcher service compute stacksize*max_conns, and then add up
the values computed for each service. The system's heap size needs to be at least twice this
number.

To display the heap size (i.e., default datasize as reported by limit or default data size as
reported by ulimit), use the csh command

69–4 Messaging Server Reference

For the Job Controller:

limit

or the ksh command (see the data result)

ulimit -a

or the utility

sysdef

69.3.2 For the Job Controller:
As of MS 6.4, the Job Controller will set its file descriptor limit to the lesser of 1024 or
rlim_fd_max. Previously, the rlim_fd_max value would be used---which on systems with
a high such value (in particular, on Solaris 10 where the default is 65535), would mean that
the Job Controller -- and jobs it forks---could potentially spend significant time closing a great
many unused file descriptors.

If running a version of the MTA prior to MS 6.4, and if the system has a high rlim_fd_max
configured, it will benefit performance to modify the script that starts the Job Controller to
issue an rlimit command setting a smaller file descriptor hard limit (for instance, 1024)
before starting the Job Controller.

MTA performance tuning 69–5

69–6

Chapter 70 Restricting information
emitted

70.1 SMTP probe commands .. 70–1
70.2 Internal host names in Received: and Message-Id: header lines 70–2
70.3 Extra concerns for address canonicalization .. 70–4

Some sites will have special, heightened concerns regarding emitting information about their
internal user names, host names, etc.. There are various ways that information may "leak out";
some ways of controlling such information leakage are discussed here.

70.1 SMTP probe commands
During an SMTP connection, a remote sending side (or a person manually telnetting to your
SMTP port) can issue commands requesting information such as a check on the validity of
addresses. This very useful information can, however, be subject to abuse, e.g., by automated
search engines checking for valid email addresses on your firewall system. Therefore some
sites may have an interest in disabling these helpful features.

Setting the option DISABLE_EXPAND=1 for your Internet TCP/IP channel (typically
tcp_local) disables the SMTP EXPN command. The SMTP EXPN command is
normally used to expand (get the membership of) mailing lists. Note that the alias options
alias_expandable and alias_nonexpandable (in legacy configuration, mailing list
named parameters [EXPANDABLE] and [NONEXPANDABLE]) can be used on a per-mailing-
list basis to control the SMTP EXPN response for that mailing list. Note also that use of
mailing list access controls, e.g., LDAP list attributes such as mgrpAllowedBroadcaster
and mgrpDisallowedBroadcaster (or more precisely, those attributes named by the
ldap_auth_url and ldap_cant_url MTA options), or alias optionsalias_auth_list,
alias_auth_mapping, etc., (corresponding in legacy configuration to named parameters
such as [AUTH_LIST], [AUTH_MAPPING], etc.), also affect the SMTP EXPN response for the
mailing list so marked: only if an SMTP client has passed the access controls (for instance by
issuing a MAIL FROM: command identifying as a sender allowed to post to the list) will the
MTA's SMTP server then return an informative response to the client's SMTP EXPN command.
So DISABLE_EXPAND=1 is suitable if you wish to disable all EXPN responses. However, if
you only have some "sensitive" lists you can instead effectively get per-list controls on EXPN
use.

Setting HIDE_VERIFY=1 for your Internet TCP/IP channel causes the MTA to return a
"generic" response to the SMTP VRFY command. The SMTP VRFY command is normally
used to check whether an address is a legitimate address on the local system. (Note that as it
is required that SMTP servers support the VRFY command, the MTA has to return some sort
of response; with HIDE_VERIFY=1, this response is simply a "maybe" sort of response rather
than an explicit yes or no.) See also domainvrfy and related channel options for a discussion
of channel options that can also be used to affect SMTP VRFY responses.

Setting DISABLE_ADDRESS=1 for your Internet TCP/IP channel causes the MTA to disable
responses to its SMTP server's private XADR command, which normally returns information
about the channel an address matches.

Setting DISABLE_CIRCUIT=1 for your Internet TCP/IP channel causes the MTA to disable
responses to the its SMTP server's private XCIR command, which normally returns
information about the MTA message circuit checking facility.

Restricting information
emitted 70–1

Internal host names in Received:
and Message-Id: header lines

Setting DISABLE_STATUS=1 for your Internet TCP/IP channel causes the MTA to disable
responses to its SMTP server's private XSTA command, which normally returns information
about the numbers of messages in MTA queues.

Setting DISABLE_GENERAL=1 for your Internet TCP/IP channel option file causes the MTA to
disable responses to its SMTP server's private XGEN command, which normally returns status
information about whether an MTA compiled configuration and character set are in use.

Sample msconfig commands to disable such probes on a typical tcp_local channel would
be:

msconfig> set channel:tcp_local.options.DISABLE_EXPAND 1
msconfig# set channel:tcp_local.options.HIDE_VERIFY 1
msconfig# set channel:tcp_local.options.DISABLE_ADDRESS 1
msconfig# set channel:tcp_local.options.DISABLE_CIRCUIT 1
msconfig# set channel:tcp_local.options.DISABLE_STATUS 1
msconfig# set channel:tcp_local.options.DISABLE_GENERAL 1

For legacy configuration, a sample TCP/IP channel option file to disable probing via the SMTP
server, for a site using a tcp_local channel, would be as shown below:

DISABLE_EXPAND=1
HIDE_VERIFY=1
DISABLE_ADDRESS=1
DISABLE_CIRCUIT=1
DISABLE_STATUS=1
DISABLE_GENERAL=1

See TCPIP-channel-specific options for more details on these options.

70.2 Internal host names in Received: and
Message-Id: header lines

Received: headers are normally exceptionally useful headers for displaying the routing that
a message really took. Their worth can be particularly apparent in cases of dealing with
apparently forged email, or in cases where one is trying to track down what happened to a
broken messages, or in cases where a message does not appear to be repliable and one is trying
to figure out who might know how to respond to the message. Received: headers are also used
by the Messaging Server MTA (and other mailers) to try to detect message loops.

Message-id: headers are normally useful for message tracking and correlation.

However, on the converse side, Received: headers on messages you send out give the message
recipient information about the routing that a message really took through your internal
systems and tend to include internal system names and possibly an envelope recipient
address. And Message-id: headers tend to include internal system names. At some sites, this
may be considered a security exposure.

If your site is concerned about this information being emitted, first see if you can configure
your internal systems to control what information they put in these headers. For instance,
the MTA options received_domain and id_domain can be used on a Messaging Server
system to specify the domain name to use when constructing Received: headers and Message-

70–2 Messaging Server Reference

Internal host names in Received:
and Message-Id: header lines

id: headers, respectively. Although these options are not usually particularly relevant on an
edge MTA system -- an edge system is by definition a system whose name is intended to
be visible to the outside world --- if you have the MTA on internal systems also, the options
may be of interest on those internal MTA systems. In a similar spirit, the channel keyword
noreceivedfor can be used on channels on an MTA system to instruct the MTA not to
include the envelope recipient address in the Received: header it constructs, if limiting the
exposure of internal "routing" addresses is a concern for your site. And for those rare cases
where the inclusion of original envelope From information in Received: headers constructed
is of concern, the channel keyword noreceivedfrom can be used on channels on an MTA
system to instruct the MTA not to include envelope From information in Received: headers
it constructs in those cases (involving changing the envelope From, such as certain sorts of
mailing list expansions) where the MTA would normally include the envelope From: address.
New in MS 7.0.5.37, the forcedreceivedfrom channel option

Note that for messages that web clients submit through the MSHTTPD server to the MTA,
the MSHTTPD server will (as of iMS 5.2p2) use any original client source IP present in
an X-Forwarded-for: or Client-ip: or (as of MS 6.3) Proxy-ip: HTTP header to construct a
"(Forwarded-for: source-ip)" comment clause in the Received: header line it (MSHTTP) submits
to the MTA.

If necessary, address reversal on an MTA system can be used to "canonicalize" message
id's, to remove undesired information, (though note that this removal of information
may mean that the resulting message id's are no longer particularly useful). Note that the
use_reverse_database MTA option must have bit 6 (value 64) set in order for address
reversal to apply to message id's; for instance, if the option was previously set to the default
value of 5, it must be set to 69 to apply to message id's. For instance, a site domain.com
that wishes to ensure that no host.domain.com domains appear in message id's might use a
REVERSE mapping such as:

REVERSE

 @.domain.com C:I$0@domain.com$Y$E

This REVERSE mapping only applies to message id's, due to the $:I flag.

As regards Received: headers, only if you cannot configure your internal systems to control
such sorts of information should you consider resorting to stripping such headers off entirely.
Received: headers should not be removed lightly, due to their many and important uses, but if
the internal routing and system name information in them is sensitive for your site and if you
cannot configure your internal sytems to control what information appears in these headers,
then you may wish to strip off those headers on messages going out to the Internet via header
trimming on your outgoing TCP/IP channel.

Note: Do not remove Received: headers or remove or simplify Message-id: headers on general
principles or because your users do not like them! Removing such headers, among other
things, (1) removes one of the best tracking mechanisms you have, (2) removes information
that may be critical in tracking down and solving problems, (3) removes one of the few (and
best) warnings of forged mail you may have, and (4) blocks the mail system's ability to detect
and short-circuit message loops. Only remove such headers if you know your site needs them
removed.

To implement header trimming, put the headertrim channel option --- you will probably
want the innertrim channel option as well --- on your outgoing external TCP/IP channel or

Restricting information
emitted 70–3

Extra concerns for address
canonicalization

channels, generally tcp_local and possibly other tcp_* channels (possibly every tcp_*
channel except your internal channel, tcp_internal), and create a header trimming file for
each such channel. The headertrim keyword causes header trimming to be applied to the
outer message headers; the innertrim keyword causes the header trimming to be applied
also to embedded message parts (message/rfc822 parts) within the message. A sample header
trimming file for a site using a tcp_local channel is shown below:

Received: MAXIMUM=-1
MR-Received: MAXIMUM=-1
X400-Received: MAXIMUM=-1

See the headertrim channel option for more details on header trimming.

As of MS 6.3, the Sieve "deleteheader" and "replaceheader" actions provide another
approach -- very powerful, so use with caution! -- to modifying header lines to limit emission
of internal host names.

70.3 Extra concerns for address
canonicalization

Proper address canonicalization (converting any "internal" address forms to canonicalized,
appropriate-for-external-use, forms) is, nowadays, typically part of proper domain
provisioning in LDAP, in particular proper use of LDAP domain attributes such
as (in Schema 1) aliasedObjectName and inetCanonicalDomainName and
aliasedObjectName (or more precisely, those LDAP domain attributes named
by the ldap_domain_attr_canonical and ldap_domain_attr_alias MTA
options) or (in Schema 2) sunPreferredDomain and associatedDomain (or more
precisely, those LDAP domain attributes named by the ldap_attr_domain1_schema2
and ldap_attr_domain2_schema2 MTA options) and proper user provisioning
in LDAP, in particular proper use of mail, mailAlternateAddress, and
maiLEquivalentAddress LDAP attributes (or more precisely, those LDAP user
attributes named by the ldap_primary_address, ldap_alias_addresses, and
ldap_equivalence_addresses MTA options). However, there are a few additional
configuration items that may be of interest.

1. Put the inner keyword on (at least) your channels outgoing to the external world so that
address rewriting will be applied to address in embedded message parts (message/rfc822
parts).

2. If you do not wish notification messages generated by MTA systems the internal address,
then you may wish to use the suppressfinal channel option.

70–4 Messaging Server Reference

Chapter 71 MTA command line utilities
71.1 cache -change ... 71–6

71.1.1 Syntax .. 71–6
71.1.2 Parameters ... 71–6
71.1.3 Description .. 71–6
71.1.4 Switches ... 71–7
71.1.5 Examples ... 71–8

71.2 cache -synchronize .. 71–9
71.2.1 Syntax .. 71–9
71.2.2 Parameters ... 71–9
71.2.3 Description .. 71–9
71.2.4 Switches ... 71–9
71.2.5 Examples ... 71–9

71.3 cache -view .. 71–10
71.3.1 Syntax .. 71–10
71.3.2 Parameters ... 71–10
71.3.3 Description .. 71–10
71.3.4 Examples ... 71–10

71.4 cache -walk .. 71–11
71.4.1 Syntax .. 71–11
71.4.2 Parameters ... 71–11
71.4.3 Description .. 71–11
71.4.4 Switches ... 71–11
71.4.5 Examples ... 71–11

71.5 calc .. 71–12
71.5.1 Syntax .. 71–12
71.5.2 Parameters ... 71–12
71.5.3 Description .. 71–13
71.5.4 Switches ... 71–13

71.6 chbuild ... 71–16
71.6.1 Syntax .. 71–16
71.6.2 Parameters ... 71–16
71.6.3 Description .. 71–16
71.6.4 Switches ... 71–17
71.6.5 Examples ... 71–18

71.7 clbuild .. 71–19
71.7.1 Syntax .. 71–19
71.7.2 Parameters ... 71–19
71.7.3 Description .. 71–19
71.7.4 Switches ... 71–19
71.7.5 Examples ... 71–20

71.8 cnbuild ... 71–22
71.8.1 Syntax .. 71–22
71.8.2 Description .. 71–22
71.8.3 Switches ... 71–26
71.8.4 Examples ... 71–27

71.9 connutil .. 71–29
71.9.1 Syntax .. 71–29
71.9.2 Description .. 71–29

71.10 counters -clear ... 71–31
71.10.1 Syntax .. 71–31

MTA command line utilities 71–1

71.10.2 Parameters ... 71–31
71.10.3 Description ... 71–31

71.11 counters -show .. 71–32
71.11.1 Syntax .. 71–32
71.11.2 Description ... 71–32
71.11.3 Switches ... 71–32
71.11.4 Examples .. 71–33

71.12 crdb .. 71–35
71.12.1 Syntax .. 71–35
71.12.2 Parameters ... 71–35
71.12.3 Description ... 71–35
71.12.4 Switches ... 71–36
71.12.5 Examples .. 71–37

71.13 find .. 71–38
71.13.1 Syntax .. 71–38
71.13.2 Parameters ... 71–38
71.13.3 Description ... 71–38
71.13.4 Switches ... 71–38
71.13.5 Examples .. 71–39

71.14 process ... 71–40
71.14.1 Syntax .. 71–40
71.14.2 Parameters ... 71–40
71.14.3 Description ... 71–40
71.14.4 Examples .. 71–40

71.15 purge .. 71–41
71.15.1 Syntax .. 71–41
71.15.2 Parameters ... 71–41
71.15.3 Description ... 71–41
71.15.4 Switches ... 71–42
71.15.5 Examples .. 71–42

71.16 qclean ... 71–43
71.16.1 Syntax .. 71–43
71.16.2 Parameters ... 71–43
71.16.3 Description ... 71–43
71.16.4 Switches ... 71–44
71.16.5 Examples .. 71–45

71.17 qtop .. 71–46
71.17.1 Syntax .. 71–46
71.17.2 Parameters ... 71–46
71.17.3 Description ... 71–46
71.17.4 Switches ... 71–47
71.17.5 Examples .. 71–48

71.18 reload ... 71–50
71.18.1 Syntax .. 71–50
71.18.2 Parameters ... 71–50
71.18.3 Description ... 71–50
71.18.4 Error messages ... 71–50

71.19 restart ... 71–51
71.19.1 Syntax .. 71–51
71.19.2 Parameters ... 71–51
71.19.3 Description ... 71–51
71.19.4 Examples .. 71–52
71.19.5 Error messages ... 71–53

71–2 Messaging Server Reference

71.20 return ... 71–55
71.20.1 Syntax .. 71–55
71.20.2 Parameters ... 71–55
71.20.3 Description ... 71–55
71.20.4 Examples .. 71–55

71.21 run ... 71–56
71.21.1 Syntax .. 71–56
71.21.2 Parameters ... 71–56
71.21.3 Description ... 71–57
71.21.4 Examples .. 71–57

71.22 shutdown ... 71–58
71.22.1 Syntax .. 71–58
71.22.2 Parameters ... 71–58
71.22.3 Description ... 71–58
71.22.4 Examples .. 71–59
71.22.5 Error messages ... 71–59

71.23 startup .. 71–61
71.23.1 Syntax .. 71–61
71.23.2 Parameters ... 71–61
71.23.3 Description ... 71–61
71.23.4 Examples .. 71–61
71.23.5 Error messages ... 71–62

71.24 submit_master .. 71–63
71.24.1 Syntax .. 71–63
71.24.2 Parameters ... 71–63
71.24.3 Description ... 71–63
71.24.4 Switches ... 71–64
71.24.5 Examples .. 71–64

71.25 submit utility .. 71–65
71.26 test -domain_map ... 71–66

71.26.1 Syntax .. 71–66
71.26.2 Description ... 71–66
71.26.3 Commands ... 71–67
71.26.4 Error messages ... 71–68

71.27 test -eightbit .. 71–85
71.27.1 Syntax .. 71–85
71.27.2 Parameters ... 71–85
71.27.3 Description ... 71–85
71.27.4 Switches ... 71–85
71.27.5 Examples .. 71–86

71.28 test -expression ... 71–87
71.28.1 Syntax .. 71–87
71.28.2 Description ... 71–88
71.28.3 Switches ... 71–92
71.28.4 Examples .. 71–95

71.29 test -hash .. 71–97
71.29.1 Syntax .. 71–97
71.29.2 Parameters ... 71–97
71.29.3 Description ... 71–97
71.29.4 Switches ... 71–97
71.29.5 Examples .. 71–98

71.30 test -header ... 71–99
71.30.1 Syntax .. 71–99

MTA command line utilities 71–3

71.30.2 Parameters ... 71–99
71.30.3 Description ... 71–99
71.30.4 Switches ... 71–100
71.30.5 Examples .. 71–101

71.31 test -mapping .. 71–104
71.31.1 Syntax .. 71–104
71.31.2 Parameters ... 71–104
71.31.3 Description ... 71–104
71.31.4 Switches ... 71–105
71.31.5 Examples .. 71–107

71.32 test -match .. 71–109
71.32.1 Syntax .. 71–109
71.32.2 Parameters ... 71–109
71.32.3 Description ... 71–109
71.32.4 Examples .. 71–109

71.33 test -mime ... 71–111
71.33.1 Syntax .. 71–111
71.33.2 Parameters ... 71–112
71.33.3 Description ... 71–112
71.33.4 Switches ... 71–112
71.33.5 Examples .. 71–115

71.34 test -rewrite .. 71–117
71.34.1 Syntax .. 71–117
71.34.2 Parameters ... 71–119
71.34.3 Description ... 71–119
71.34.4 Switches ... 71–121
71.34.5 Examples .. 71–129
71.34.6 Error messages ... 71–133

71.35 test -time .. 71–134
71.35.1 Syntax .. 71–134
71.35.2 Parameters ... 71–134
71.35.3 Description ... 71–134
71.35.4 Switches ... 71–134
71.35.5 Examples .. 71–135

71.36 test -translation ... 71–136
71.36.1 Syntax .. 71–136
71.36.2 Parameters ... 71–136
71.36.3 Description ... 71–136
71.36.4 Switches ... 71–137
71.36.5 Examples .. 71–138

71.37 test -zone .. 71–139
71.37.1 Syntax .. 71–139
71.37.2 Parameters ... 71–139
71.37.3 Description ... 71–139
71.37.4 Examples .. 71–139

71.38 version .. 71–140
71.38.1 Syntax .. 71–140
71.38.2 Parameters ... 71–140
71.38.3 Description ... 71–140
71.38.4 Example ... 71–140

71.39 view ... 71–141
71.39.1 Syntax .. 71–141
71.39.2 Parameters ... 71–141

71–4 Messaging Server Reference

71.39.3 Description ... 71–141
71.39.4 Switches ... 71–141
71.39.5 Examples .. 71–142

The MTA contains a modest collection of management utility programs, which are used to
perform various maintenance, testing, and management tasks.

These utilities are generally invoked via imsimta commands, e.g.,

imsimta version

Generally, use of these utilities requires superuser privileges, or being logged in as the MTA
user (see the user option in the restricted.cnf file).

MTA command line utilities 71–5

cache -change

71.1 cache -change utility
Change Job Controller option effective values for the currently running Job Controller process.

71.1.1 Syntax

 imsimta cache -change

Table 71.1 imsimta cache -change Command Switches

Switch Default
-global

-debug=n

-max_messages=n

-template=name

-master_job=command

-slave_job=command

-channel=name

-thread_depth=n

-job_limit=n

-parallel_rebuild=n -parallel_rebuild=12

-inorder_rebuild -noinorder_rebuild

71.1.2 Parameters
None.

71.1.3 Description
(New in MS 6.2.) The imsimta cache -change utility is used to change various Job
Controller option effective values "on the fly" (that is, without requiring a restart of the Job
Controller in order to take effect) for the currently running Job Controller process.

Exactly one of -channel, -template, or -global must be specified. -channel is for
changing the behavior or definition of a particular channel: changing its effective maxjobs (-
job_limit) or threaddepth (-thread_depth), or its master_command (-master_job)
or slave_command (-slave_job). -template is for adding a new type of channel, or for
changing the definition of all channels of that type: (re)defining its master_command (-
master_job) and/or slave_command (-slave_job). -global is for setting certain global
Job Controller options: debug, max_cache_messages (-max_messages), or (6.2p2 and
later?) rebuild_parallel_channels (-parallel_rebuild).

Note that restarting the Job Controller is very much to be avoided on a production MTA
that has messages already in its queues. So for certain sorts of Job Controller configuration
changes that one might want to make on a running MTA, especially configuration changes
to trace down problems (debugging) or re-deploy resources at times of heavy load (change

71–6 Messaging Server Reference

Switches

channel maxjobs via -job_limit or channel threaddepth via -thread_depth, or define
new channels which one has added to the configuration to deal with additional load), it is
desirable to make such changes "on the fly". This utility exists to allow making those changes
that are both desirable, and feasible without too much disruption to existing Job Controller
data structures.

71.1.4 Switches

71.1.4.1 -channel=name

Change a configuration setting for an existing channel, or inform the Job Controller of
the name of a new channel (of a valid, already defined type) that has been added to the
configuration.

71.1.4.2 -debug=n

Set a debug level for Job Controller operation. -global must be specified in order to use
-debug.

71.1.4.3 -global

Set certain global Job Controller options.

71.1.4.4 -inorder_rebuild, -noinorder_rebuild

-inorder_rebuild directs the Job Controller to rebuild the message list in order.
The -global switch must be specified in order to use -inorder_rebuild. -
noinorder_rebuild (the default) means to not rebuild the queues in order: to simply insert
messages into the queue cache in whatever order they are encountered while scanning the
queue area.

71.1.4.5 -job_limit=n

The -channel=name switch must be specified in order to use -job_limit; override the
effective maxjobs/job_limit for the specified channel.

71.1.4.6 -max_messages=n

Override the effective max_cache_messages value, or any previously set -max_messages
value. -global must be specified in order to use -max_messages.

71.1.4.7 -master_job=command

Specify the command to execute (channel program to run) for the master direction of a
channel. This switch may be used either with the -channel switch, to set the value for a
particular channel, or with the -template switch, to set the value for a class of channels.

71.1.4.8 -slave_job=command

Specify the command to execute (channel program to run) for the slave direction of a channel.
This switch may be used either with the -channel switch, to set the value for a particular
channel, or with the -template switch, to set the value for a class of channels.

MTA command line utilities 71–7

Examples

71.1.4.9 -parallel_rebuild=n

Override the value of the rebuild_parallel_channels Job Controller option. -global
must be specified in order to use -parallel_rebuild.

71.1.4.10 -template=channel-pattern

Define a new type of channel, or redefine an existing type of channel. If redefining an existing
type, all channels derived from that template are affected. The argument to -template
should be a channel pattern; e.g., tcp_*.

71.1.4.11 -thread_depth=n

The -channel=name switch must be specified in order to use -thread_depth; override the
effective threaddepth for the specified channel.

71.1.5 Examples

imsimta cache -change -global -debug=7

The above (UNIX) command turns on Job Controller debugging, at level 7.:

imsimta cache -change -channel=tcp_special

This command informs the Job Controller of a new tcp_special channel that has been
added to the configuration (in Unified Configuration, added using msconfig via an edit
channels command or via appropriate set channel:tcp_special.* commands; in
legacy configuration, added to the imta.cnf file). That is, this imsimta cache -change
command does not in and of itself define the channel -- definition of the channel must be
performed as normal; however, this command informs the Job Controller of the new channel,
so that the Job Controller will know to begin running the channel, as needed.

71–8 Messaging Server Reference

cache -synchronize

71.2 cache -sync utility
Update the Job Controller's in-memory cache of message files in the queues so as to reflect all
messages currently present in the message queues.

71.2.1 Syntax

 imsimta cache -synchronize

Table 71.2 imsimta cache -synchronize Command Switches

Switch Default
-debug=n -nodebug

-recipient -recipient

71.2.2 Parameters
None.

71.2.3 Description
The imsimta cache -synchronize utility tells the MTA Job Controller to re-scan the
queue disk area, DATAROOT/queue/* on UNIX, checking for any (non-.HELD) message files
not already present in the Job Controller's in-memory queue cache of message files.

71.2.4 Switches

71.2.4.1 -debug=n, -nodebug (default)

The -debug switch may be cause debugging of the cache synchronization. The default is
-nodebug. Specifying -debug is equivalent to -debug=1.

71.2.4.2 -recipient (default), -norecipient

-recipient, which is the default, causes the cache synchronization to actually open message
files to obtain full message details; this is slower than the "basic" operation (which can be
selected with -norecipient), but gets more detailed message information.

71.2.5 Examples
To synchronize the queue cache, for instance after renaming a message file, issue the UNIX
command

imsimta cache -synchronize

MTA command line utilities 71–9

cache -view

71.3 cache -view utility
View the current entries for a channel in the MTA queue cache database.

71.3.1 Syntax

 imsimta cache -view [channel-name]

71.3.1.1 Restrictions

Must have superuser privileges or be logged in as the MTA user (see the user option in
restricted.cnf) in order to use this utility.

71.3.2 Parameters

71.3.2.1 channel-name

Optional parameter specifying the name of the channel for which to show entries. If no
channel name is specified, all entries in the queue cache database will be shown.

71.3.3 Description
The imsimta cache -view utility shows the current entries in the MTA queue cache
database for a channel.

71.3.4 Examples
This example shows checking the queue cache database for entries for the ims-ms channel
and finding one such entry:

imsimta cache -view ims-ms
 channel : ims-ms
 file name : /opt/sun/comms/messaging64/data/queue/ims-ms/010/ZYi041V0jMRS0.00
 subdirectory : 10
 enqueue time : 21-Sep-2015:10:51:36.00
 last delivery attempt : 21-Sep-2015:10:52:15.00
 processing priority : 3
 destination system : ims-ms
 recipient count : 1
 message size : 1 (kbyte)
 owner :
 expiration date : 18-Jan-2038:19:14:07.00
 due date : No due date recorded

71–10 Messaging Server Reference

cache -walk

71.4 cache -walk utility
Cause the Job Controller to write its current state (in particular, what message entries it has in
its queue cache) to its log file.

71.4.1 Syntax

 imsimta cache -walk

Table 71.3 imsimta cache -walk Command Switches

Switch Default
-debug=n -nodebug

71.4.2 Parameters
None.

71.4.3 Description
The imsimta cache -walk utility tells the Job Controller to write its current state (in
particular, its current list of message entries in its queue cache) to its log file.

71.4.4 Switches

71.4.4.1 -debug=n, -nodebug (default)

The -debug switch may be used to cause the inclusion of additional debug output in state
description that the Job Controller writes to its log file. The default is -nodebug.

71.4.5 Examples
This UNIX example shows telling the Job Controller to write its current state to its log file,
with its debug level for this state dump set to 80:

imsimta cache -walk -debug=80

MTA command line utilities 71–11

calc

71.5 calc utility
The calc utility provides an interface to the MTA's internal expression parser and evaluator.
Additional function "sets" can be added by specifying appropriate switches, e.g., the -mm
switch provides access to the Sieve function set.

71.5.1 Syntax

 imsimta calc [expression]

Table 71.4 imsimta calc Command Switches

Switch Default
-input=filename None
-output=filename None
-statement=n -statement=1

-debug[=n] -debug=4

-uav=n -uav=1

-multiple -multiple

-mm See text
-message=filename None
-symbols -nosymbols

-from -from=""

-required -required

-to None
-system -nosystem

-mtpriority=n -mtpriority=0

-source=source-channel-name -source=l

-rsecret=recall-secret

71.5.1.1 Restrictions

None.

71.5.1.2 Prompts

calc>expression

71.5.2 Parameters

71.5.2.1 expression

The expression to evaluate.

71–12 Messaging Server Reference

Description

71.5.3 Description
The calc utility is a calculator, for performing integer and string operations. See Operators in
Order of Precedence for a list of basic arithmetic and symbolic operators available, and Symbol
table functions for a list of functions available.

Variables can be created, and values assigned to them, using the "=" assignment operator, e.g.,

calc> a = 3

Use Ctrl-D to exit.

In addition to its use for performing simple calculations, the imsimta calc utility may also
be helpful for testing planned use of calculations in Sieve filters, or in expressions inside MTA
mapping tables. Compared with the imsimta test -expression utility, the calc utility
is simpler for testing the fundamentals of mathematical calculation or string manipulation, but
does not test, for instance, Sieve filter-specific syntax.

71.5.4 Switches

71.5.4.1 -debug=n, -nodebug (default)

The -debug switch may be used to enable debug output. Specifying -debug is equivalent to
specifying -debug=4.

71.5.4.2 -from=address, -to=address

(-from new in MS 6.2; -to new in MS 6.3.) The -mm and -message switches must be used
in order to use -from or -to. With -from, specify the envelope From address (for instance,
for purposes of Sieve filter evaluation). If not specified, the MTA's default postmaster return
address is assumed. If -message is not specified, then -from has no effect. With -to, specify
the envelope To address.

71.5.4.3 -input=filename, -noinput (default)

The -input switch may be used to specify a file from which to read the expressions to be
evaluated.

71.5.4.4 -message=filename, -nomessage (default)

Initialize the MTA as if for message submission of the specified message. The -mm switch
must be used in order to use -message. When -message is used, the -from switch and -to
switch also become available.

71.5.4.5 -mm, -nomm (default)

If specified, loads the Sieve function set. This causes an MTA initialization call to be made.
Use of any of the -message, -required, or -system switches requires that -mm also be
specified. The -mm and -sy switches are mutually exclusive (they cannot be used with each
other).

71.5.4.6 -mtpriority=n, -nomtpriority

MTA command line utilities 71–13

Switches

(New in MS 8.0) -mtpriority takes a required integer argument specifying the initial MT-
PRIORITY value. It may only be specified when -mm has also been specified.

71.5.4.7 -multiple (default), -nomultiple

The default, -multiple, allows evaluating multiple, comma-separated statements per
physical line. Specifying -nomultiple disables this, so that only the first result (from the
physical line) is returned.

71.5.4.8 -output=filename, -nooutput (default)

The -output switch may be used to specify a file to which to write the output of the
calculator.

71.5.4.9 -required (default), -norequired

(New in MS 6.2.) The -mm switch must be used in order to use -required.

71.5.4.10 -rsecret=recall-secret

(New in MS 8.0) Specify the recall secret.

71.5.4.11 -source=source-channel-name

(New in MS 8.0) Specify the source channel; the default is l (the "L"ocal channel).

71.5.4.12 -statement=n

n is a bit-encoded integer. The default is -statement=1. But note that specifying -mm
forces setting bit 9 (value 512), overriding whether or not -statement set that bit, to allow
bracketed lists.

See the test -expression utility's description of Statement parsing flags for details on the
meaning of the bits for this switch's value.

To test Sieve scripts using the "loop" construct or (new in MS 8.0) "sub" construct, note that
-statement=3 must be specified.

71.5.4.13 -symbols, -nosymbols (default)

The -symbols switch, if specified, enables references to environment variables. -nosymbols
is the default.

71.5.4.14 -system, -nosystem (default)

(New in MS 7.0.5) The -mm switch must be used in order to use -system. If -system is
specified with -mm, then the Sieve is treated as a system-level Sieve; if not, then it is treated as a
user-level Sieve.

71.5.4.15 -uav=n

The -uav switch controls the interpretation of unassigned variables. The default is -uav=1.

71–14 Messaging Server Reference

Switches

Table 71.5 calc utility's -uav switch values

Value Usage
0 Variables must be predefined; variable creation not allowed
1 Assignment defines variable; no default value
2 Define variable upon first reference; default value ""
3 Define variable upon first reference except in modify operations;

default value 0
4 (New in MS 8.0/patch to MS 7.0u5) Same as value 1 (assignment

defines variable; no default value), with the difference
(appropriate for Sieve usage) don't create a symbol table at parse
time

MTA command line utilities 71–15

chbuild

71.6 chbuild utility
Compile the MTA character set conversion tables, and tlds.txt file.

71.6.1 Syntax

 imsimta chbuild

Table 71.6 imsimta chbuild Command Switches

Switch Default
-image_file=file-spec -image_file=IMTA_CHARSET_DATA

-maximum -nomaximum

-option_file=file-spec -nooption_file

-remove None
-sizes -nosizes

-statistics -nostatistics

71.6.1.1 Restrictions

Must have superuser privileges, or be logged in as the MTA user (see the user option in
restricted.cnf) in order to use this utility.

71.6.2 Parameters
None.

71.6.3 Description
The imsimta chbuild utility compiles the character set conversion tables and loads the
resulting image file into shared memory. As of MS 7.0.5, imsimta chbuild is also the means
for informing the MTA of an updated tlds.txt file---the new file used as of MS 7.0.5 to store
the IANA list of Top Level Domains.

The MTA ships with very complete character set tables so prior to MS 7.0.5, it was not
normally necessary to run this utility. However, as of MS 7.0.5, imsimta chbuild should
be used whenever an updated tlds.txt file has been fetched from IANA. (Note that to get
updates to tlds.txt to take effect, it is not necessary to also do imsimta cnbuild after
the imsimta chbuild---but it is necessary that processes be new in order to see the newly
compiled charset/TLD data. So if in a hurry for the changes to take effect, issue an imsimta
restart command.)

Prior to MS 7.0.5, two MTA Tailor options were relevant for imsimta
chbuild: imta_charset_data specified the default output image file, and
imta_charset_option_file specified an option file adjusting charset internal table
sizes. As of MS 7.0.5, these MTA Tailor options have been deleted, and hard-coded file
paths are used instead, config-root/advanced/charset_data and server-root/lib/
option_charset.dat, where server-root is the product install directory or the value of the
SERVERROOT environment variable.

71–16 Messaging Server Reference

Switches

71.6.4 Switches

71.6.4.1 -image_file[=file-spec], -noimage_file

By default, imsimta chbuild creates as output the image file (formerly named by
the imta_charset_data option of the MTA tailor file) CONFIGROOT/advanced/
charset_data. With the -image_file switch, an alternate file name may be specified.
When the -noimage_file switch is specified, imsimta chbuild does not produce
an output image file; this switch is used in conjunction with the -option_file switch
to produce as output an option file which specifies table sizes adequate to hold the tables
required by the processed input files.

71.6.4.2 -maximum, -nomaximum (default)

When -maximum is specified, the file SERVERROOT/lib/maximum_charset.dat
is read, in addition to the charset option file (prior to MS 7.0.5 located via the
imta_charset_option_file MTA Tailor option) CONFIGROOT/advanced/
option_charset.dat. This maximum_charset.dat file specifies near maximum table
sizes but does not change any other charset option file (option_charset.dat) parameter
settings. Only use the -maximum switch if the current table sizes are inadequate. The -
noimage_file and -option_file switches should always be used in conjunction with this
switch -- it makes no sense to actually output the enormous configuration that is produced
by -maximum, but it does make sense to use -maximum to get past size restrictions in order
to build an updated charset option file (option_charset.dat) containing proper size
settings so that a properly sized character set image can be built with a subsequent imsimta
chbuild invocation.

71.6.4.3 -option_file[=file-spec], -nooption_file (default)

imsimta chbuild can optionally produce a charset option file that contains correct table
sizes to hold the character set conversion tables which were just compiled (plus a little room
for growth). The -option_file switch causes this file to be output, whereas use of the
-nooption_file switch means that no option file will be output. Note that imsimta
chbuild always reads any pre-existing charset option file (first looking for CONFIGROOT/
advanced/option_charset.dat, then CONFIGROOT/option_charset.dat, then
finally SERVERROOT/lib/option_charset.dat -- or prior to MS 7.0.5, looking for
the file named by the imta_charset_option_file MTA Tailor option) -- use of the
-nooption_file switch does not affect reading the old charset option file -- however,
specifying -option_file causes imsimta chbuild to also output an updated charset
option file. By default, the output charset option file is updated to the same location where the
utility found the input charset option file. The value on the -option_file switch may be
used to specify an alternate file name.

While the MTA ships with an initial SERVERROOT/lib/option_charset.dat, it is
recommended that any site-generated option_charset.dat file instead be written to
CONFIGROOT/advanced (or at least to CONFIGROOT) so that MTA updates will not
overwrite the site-generated option_charset.dat. Thus the first time a site wishes to
generate their own, modified option_charset.dat, the administrator should start by
copying the distributed, initial option_charset.dat from the SERVERROOT/lib directory
to the CONFIGROOT/advanced directory.

The -maximum switch may be used in conjunction with -option_file to cause imsimta
chbuild to read options from maximum_charset.dat in addition to the charset option

MTA command line utilities 71–17

Examples

file (option_charset.dat). This maximum_charset.dat file specifies near maximum
table sizes. Only use the -maximum switch if the current table sizes are quite inadequate, and
only use it to create a new charset option file. The -noimage_file switch should always be
specified when -maximum is specified since a maximum-size image would be truly enormous
and extremely wasteful.

71.6.4.4 -remove

Remove any existant compiled character set conversion table; i.e., remove the file (prior to MS
7.0.5 located via the imta_charset_data MTA Tailor option) CONFIGROOT/advanced/
charset_data.

71.6.4.5 -sizes, -nosizes (default)

The -sizes switch instructs imsimta chbuild to output information on the sizes of the
uncompiled character set tables.

71.6.4.6 -statistics, -nostatistics (default)

The -statistics switch instructs imsimta chbuild to output information on the
compiled conversion tables. These numbers give a rough measurement of the efficiency of the
compilation, and may indicate whether or not an additional rebuild with the -option_file
switch is needed.

71.6.5 Examples
The standard command used on UNIX to compile character set conversion tables is:

imsimta chbuild

Or if a drastically increased set of Top Level Domains (tlds.txt file) or drastically increased
set of character sets calls for a big increase in the size of the compiled charset set tables, then:

If a site has never before generated their own option_charset.dat,
first copy the distributed option_charset.dat to the site's config area
cp SERVERROOT/lib/option_charset.dat CONFIGROOT/advanced/option_charset.dat
Now have the chbuild utility figure out what it needs to resize...
imsimta chbuild -noimage -option_file -maximum
Finally, build new compiled charset tables...
imsimta chbuild

71–18 Messaging Server Reference

clbuild

71.7 clbuild utility
Compile an MTA command definition file and generate an image file (suitable for memory
mapping by MTA processes).

71.7.1 Syntax

 imsimta clbuild cld-file-spec

Table 71.7 imsimta clbuild Command Switches

Switch Default
-debug -nodebug

-image_file=file-spec -noimage_file

-maximum -nomaximum

-option_file=file-spec -nooption_file

-sizes -nosizes

-statistics -nostatistics

71.7.1.1 Restrictions

Must have superuser privileges or be logged in as the MTA user (see the user option in
restricted.cnf) in order to use this utility.

71.7.2 Parameters

71.7.2.1 cld-file-spec

The file specification of an MTA command definition file to read as input; e.g., on UNIX
SERVERROOT/lib/pmdf.cld.

71.7.3 Description
The imsimta clbuild utility compiles a command line definition file and generates a binary
file (suitable for memory mapping by MTA processes).

The MTA ships with any pre-compiled command line definition files it needs so it is not
normally necessary to run this utility.

71.7.4 Switches

71.7.4.1 -debug, -nodebug (default)

The -debug switch causes imsimta clbuild to output debug information regarding its
operation.

MTA command line utilities 71–19

Examples

71.7.4.2 -image_file=file-spec, -noimage_file (default)

By default, imsimta clbuild does not produce a compiled command definition image file.
In order to produce a compiled command definition file, the file to produce must be specified
using the -image_file switch.

71.7.4.3 -maximum, -nomaximum (default)

The file SERVERROOT/lib/maximum_command.dat is read when -maximum is specified.
This file specifies near maximum table sizes but does not change any other command option
file parameter settings. Only use this switch if the current table sizes are inadequate. The -
noimage_file and -option_file switches should always be used in conjunction with
this switch---it makes no sense to output the enormous command definition image that is
produced by -maximum, but it does make sense to use -maximum to get past size restrictions
in order to build a properly sized command option file so that a properly sized command
definition image can be built with a subsequent imsimta clbuild invocation.

71.7.4.4 -option_file[=file-spec], -nooption_file (default)

imsimta clbuild can optionally produce a command option file that contains correct
table sizes to hold the command definitions which were just compiled (plus a little room for
growth). The -option_file switch causes this file to read as input and a new such option
file created as output. If -option_file is specified with no value, then the file written will
have the same name as the input command definition file, but with the file extension .cop;
for instance, if the file SERVERROOT/lib/pmdf.cld was the input parameter, then the
default name for the output command option file would be SERVERROOT/lib/pmdf.cop.
If the -nooption_file switch is specified (the default), then no option file will be output.
Note that use of the -maximum switch causes imsimta clbuild to read options from
maximum_command.dat in addition to any command option file. This file specifies near
maximum table sizes. Only use this switch if the current table sizes are inadequate, and only
use it to create a new option file. The -noimage_file switch should always be specified
when -maximum is specified since a maximum-size image would be truly enormous and
extremely wasteful.

71.7.4.5 -remove

Remove an existant compiled command definition image.

71.7.4.6 -sizes, -nosizes (default)

The -sizes switch instructs imsimta clbuild to output information on the sizes of the
uncompiled command definitions.

71.7.4.7 -statistics, -nostatistics (default)

The -statistics switch instructs imsimta clbuild to output information on the
compiled command definition image. These numbers give a rough measurement of the
efficiency of the compilation, and may indicate whether or not an additional rebuild with the -
option_file switch is needed.

71.7.5 Examples
The standard command used to compile the basic MTA command definition file on UNIX is:

71–20 Messaging Server Reference

Examples

imsimta clbuild -option -image=IMTA_TABLE:advanced/command_data IMTA_LIB:pmdf.cld

To remove the compiled version of the basic MTA command definitions, use

imsimta clbuild -remove IMTA_TABLE:advanced/command_data

MTA command line utilities 71–21

cnbuild

71.8 cnbuild utility
Legacy configuration: Compile the MTA configuration, alias, mapping, conversion, system
wide filter, circuit check, and option files, and various configutil parameters, as well as
(optionally) the reverse "database", general "database", and forward "database", and also (as
of MS 7.0) the Job Controller configuration file, the Dispatcher configuration file, and TCP/IP
channel option files; generate an image file (suitable for memory mapping by MTA processes).

Unified Configuration: Compile confdesc.xml as well as (optionally) the reverse "database",
general "database", and forward "database"; generate an image file (suitable for memory
mapping by MTA processes).

71.8.1 Syntax

 imsimta cnbuild

Table 71.8 imsimta cnbuild Command Switches

Switch Default
-image_file=file-spec -image_file=IMTA_TABLE:advanced/config_data

-maximum -nomaximum

-option_file=file-spec -option_file=IMTA_TABLE:option.dat

-remove -noremove

-sizes -nosizes

-statistics -nostatistics

-check -nocheck

-synonyms -nosynonyms

-xml_config -noxml_config

71.8.1.1 Restrictions

Must have superuser privileges, or be logged in as the MTA user (see the user option in
restricted.cnf) in order to use this utility.

71.8.2 Description
With a legacy configuration, the cnbuild utility compiles the textual configuration,
option, mapping, conversion, system wide filter, circuit check, and alias files, and various
configutil parameters (see Basic configuration settings relevant to alias LDAP lookups
and Basic configuration settings relevant to domain LDAP lookups), and (depending upon
the setting of the use_text_databases MTA option) also optionally the reverse "database",
general "database", and forward "database", and (as of MS 7.0) also the Job Controller
configuration file, Dispatcher configuration file, and TCP/IP channel option files (for SMTP
channels or LMTP client channels), and generates an image file (suitable for memory mapping
by MTA processes). With a Unified Configuration, most of these files have been consolidated:
when using a Unified Configuration, the cnbuild utility compiles the confdesc.xml file,
and (depending upon the setting of the use_text_databases MTA option) also optionally

71–22 Messaging Server Reference

Description

the reverse "database", general "database", and forward "database", and generates an image
file (suitable for memory mapping by MTA processes). The resulting image is the file formerly
named by the imta_config_data option of the MTA tailor file; as of MS 7.0.5, such MTA
tailor file options have been replaced by consistent locations, and the image file is simply
IMTA_TABLE:advanced/config_data.

Whenever a component of the MTA (e.g., a channel program) must read any possibly compiled
configuration component, it first checks to see whether a compiled configuration image file
exists, and if so, the running program uses that image. There are five exceptions to this rule.
The first is imsimta cnbuild itself, which for obvious reasons always reads the text files and
never tries to use an image form of the configuration data. The remaining four exceptions are
imsimta test -domain_map, imsimta test -rewrite, imsimta test -mapping,
and imsimta test -x400 which can all be instructed with the -image_file switch to use
a different compiled configuration file. This facility in imsimta test -rewrite is useful for
testing changes prior to compiling them.

One reason for compiling configuration information is simple: performance. Precompiling
the MTA configuration allows MTA processes to quickly load that precompiled configuration
and then get immediately to work, rather than each new MTA process needing to read the
MTA configuration and build the in-memory representation of the configuration itself, before
starting its own work. Note that MTA design includes short-lived, transient processes (e.g.,
most channel delivery job processes), as well as long-lived processes (e.g., Dispatcher and Job
Controller), so avoiding the overhead of each MTA process, short-lived or not, repeating the
same configuration-processing work reduces overhead.

A second, and nowadays often more important, reason for compiling configuration
information is for convenience in configuration management and updating: due to the
fact that when a compiled configuration exists the MTA processes will normally refer to it
preferentially, the MTA administrator can make changes to the underlying configuration files
at leisure, and optionally perform some testing of such changes (e.g., using a -noimage_file
switch with test utilities) prior to compiling the updated configuration and having the changes
become "live"; meantime, the MTA continues running with the older, compiled configuration.

Once you begin to use a compiled configuration, it will be necessary to recompile the
configuration every time changes are made to the settings and files comprising the source of
the compiled configuration. For a Unified Configuration, this is primarily confdesc.xml
(normally modified using the msconfig utility); if the use_text_databases MTA option
has been set, then also potentially the reverse "database" replacement text file, the general
"database" replacement text file, and the forward "database" replacement text file. Specifically,
these are the files

• CONFIGROOT/confdesc.xml,
• CONFIGROOT/reverse.txt,
• CONFIGROOT/general.txt, and
• CONFIGROOT/forward.txt.

For a legacy configuration, this includes various relevant configutil parameters (see
Basic configuration settings relevant to alias LDAP lookups and Basic configuration settings
relevant to domain LDAP lookups) and the following files: the MTA configuration file
(or any files referenced by it, such as internet.rules), the MTA system alias file, the
MTA mapping file, the MTA option file, the MTA conversion file, system wide filter file,
or the circuit check configuration file; if the use_text_databases MTA option has
been set, then also the reverse "database" replacement text file, the general "database"
replacement text file, the forward "database" replacement text file; as of MS 7.0, also the

MTA command line utilities 71–23

Description

Job Controller configuration file, the Dispatcher configuration file, and TCP/IP channel
option files (affecting SMTP channels and LMTP client channels). Specifically, these
are the files which, prior to MS 7.0.5, were pointed at by the MTA Tailor file options
imta_config_file, imta_alias_file, imta_mapping_file, imta_option_file,
imta_conversion_file, imta_system_filter_file, imta_reverse_data,
imta_general_data, imta_forward_data, respectively, or nowadays are simply:

• CONFIGROOT/imta.cnf,
• CONFIGROOT/aliases,
• CONFIGROOT/mappings,
• CONFIGROOT/option.dat,
• CONFIGROOT/conversions,
• CONFIGROOT/imta.filter,
• CONFIGROOT/reverse.txt,
• CONFIGROOT/general.txt, and
• CONFIGROOT/forward.txt,

as well as the file CONFIGROOT/circuitcheck.cnf.

Until such time as the configuration is recompiled, changes to any of these files will not
be visible to the MTA. Furthermore, even after recompiling the configuration, note that
changes to the MTA compiled configuration will not be seen by running MTA processes
unless and until the MTA configuration is reloaded via the imsimta reload utility, or until
the process expires and is replaced by a new process. In the case of transient, short-lived
processes, (e.g., most channel delivery jobs) their own natural quick expiration may lead to
them being replaced by new processes soon enough that any lag in making use of the new
MTA configuration is relatively unimportant; however, for significant changes impacting
the Job Controller, or the Dispatcher or its server processes (SMTP server processes, SMTP
SUBMIT server processes, LMTP server processes), after performing imsimta cnbuild also
consider performing imsimta reload, when the change needs to take effect "immediately"
and imsimta reload will suffice. (Note that imsimta reload only updates certain parts
of the precompiled MTA configuration; in particular, it does not reload the channel definitions
and rewrite rules portions of the MTA configuration as they are complex and intertwined and
require a full re-read of the configuration. Some additional cases of configuration changes
relevant to the Job Controller can instead be modified "live", without requiring a restart of
the Job Controller, via the imsimta cache -change utility.) A full restart of the MTA
(especially restarting the Job Controller) should be avoided on production systems unless
truly necessary as a restart interrupts and disrupts message delivery; however, a imsimta
restart * to restart the various servers underneath the Dispatcher causes only brief
disruption in acceptance of incoming messages, so is acceptable when enqueue processing
changes beyond those covered by imsimta reload need to take effect "immediately" upon
incoming messages.

Note that updates to the tlds.txt file (introduced in MS 7.0.5) do not require use of
imsimta cnbuild to take effect; instead, updates to tlds.txt are incorporated by use of
the chbuild utility.

See Compiling the MTA configuration for further details on the use of compiled
configurations.

If imsimta cnbuild spots a syntactic error in one of the files that it is attempting to use to
build the compiled configuration, it will be reported, typically as an error of the form

time-stamp: Error in mm_init -- detail

71–24 Messaging Server Reference

Description

where the detail provides additional, specific detail about the particular error. For instance
(with output wrapped here for display convenience; in reality it would appear all on one line):

09:28:26.15: Error in mm_init -- duplicate host in channel table -- host.domain.
com -- line #45 in file IMTA_CONFIG_FILE

Note that imsimta cnbuild does not know specifics of the syntax and semantics of the
Dispatcher configuration file or Job Controller configuration file, or channel option files, so
generally errors in the option settings in those files---other than egregiously, obviously broken
syntax problems---will not be reported by the utility and instead will get reported by the
component in question when it attempts to begin running.

As of MS 6.3p1, errors compiling the configuration (in particular, mm_init errors) will cause
imsimta cnbuild to exit with a non-zero status. Prior to that version, while such errors
would certainly cause imsimta cnbuild to exit with error text and without making a new
compiled configuration, the exit status was nevertheless zero in many cases.

There is also a secondary, "tuning" use of imsimta cnbuild. When the MTA is building
an in-memory representation of its configuration (whether that is to generate a compiled
configuration, or whether in the absence of any compiled configuration MTA processes are
each reading the MTA configuration and building their own private representations of the
MTA configuration), it starts by assuming certain table sizes, and if those table sizes are not
adequate, iteratively increases those sizes until reaching "big enough" tables in memory
to hold the current configuration. The starting points for such table sizes are controlled by
internal size MTA options . Using imsimta cnbuild with its -statistics switch provides
information on how "close" the current internal size MTA options are to the sizes needed
for the current MTA configuration, and using imsimta cnbuild with the set of switches
-noimage_file -maximum -option_file will generate a new MTA option file with
internal size MTA options set appropriately for the current MTA configuration. This sort of
tuning permits more efficient compilation of the MTA configuration---though it is not strictly
necessary (since the MTA will interatively resize, if necessary, on-the-fly while reading its
configuration).

Since the MTA will resize its internal table sizes as needed, errors about exceeding table sizes
are normally seen only if the MTA's more-or-less "hard" limits on resizing are reached. (The
limits are established by the maximum.dat file and/or "hard" limits in the code.) And since
the MTA's "hard" limits are very generous, exceeding the limits is usually an indication of
either a configuration error of a type that has confused the MTA about the intended meaning
of certain configuration inputs (for instance, an extraneous blank line in the rewrite rules,
causing the MTA to attempt to interpret all remaining material as channel definitions), or
configuration choices involving poor use of MTA facilities that would be better handled in an
alternate manner (such as attempting to hard code many thousands of mapping table entries,
rather than using a few general entries that do general database callouts> for the specific
fields). In particular, reaching the limits specified in the normal maximum.dat file is usually
an indication of poor configuration choices; you should contact Oracle if you believe you wish
to exceed those limits, as you may be better served by alternate configuration tactics.

Finally, a command such as

imsimta cnbuild -noimage_file -option_file=file-spec

may be used to list current option values (as specified in the current MTA option file, plus
default values) in the file specified as file-spec. To list (most) default option values,

MTA command line utilities 71–25

Switches

irrespective of override values specified in the current MTA option file, the current MTA
option file must be "moved aside" before the above command is issued. (For instance,
temporarily rename the MTA option file, then issue the above command, then rename the
MTA option file back to its normal location.)

71.8.3 Switches

71.8.3.1 -check, -nocheck (default)

-check means to check the structure of the confdesc.xml file.

71.8.3.2 -image_file[=file-spec], -noimage_file

By default, imsimta cnbuild creates as output the image file named CONFIGROOT/
advanced/config_data; (prior to MS 7.0.5, the file located via the imta_config_data
MTA Tailor option). With the -image_file switch, an alternate file name may be specified.
When the -noimage_file switch is specified, imsimta cnbuild does not produce an
output image file. This switch is used in conjunction with the -option_file switch to
produce as output an option file which specifies table sizes adequate to hold the configuration
required by the processed input files.

71.8.3.3 -maximum, -nomaximum (default)

When -maximum is specified, the file SERVERROOT/lib/maximum.dat is read in addition
to the internal size MTA options (which in legacy configuration would be stored in the MTA
option.dat file, located prior to MS 7.0.5 via the imta_option_file MTA Tailor file
option). The maximum.dat file specifies near maximum table sizes but does not change
any other MTA option settings. Only use the -maximum switch if the current table sizes are
inadequate. The -noimage_file and -option_file switches should always be used in
conjunction with this switch---it makes no sense to output the enormous configuration that is
produced by -maximum, but it does make sense to use -maximum to get past size restrictions
in order to set properly adjusted MTA option values (in legacy configuration, build an MTA
option file with properly adjusted option values) so that a properly sized configuration can be
built with a subsequent imsimta cnbuild invocation.

71.8.3.4 -option_file[=file-spec], -nooption_file (default)

imsimta cnbuild can optionally set various internal size MTA options (in legacy
configuration, produce an option file that contains correct table sizes) to hold the configuration
that was just compiled (plus a little room for growth). The -option_file switch causes this
file to be output. By default, this file is named CONFIGROOT/option.dat (or prior to MS
7.0.5, was located via the imta_option_file MTA Tailor file option). The value on the -
option_file switch may be used to specify an alternate file name. If the -nooption_file
switch is given, then no option file will be output. imsimta cnbuild always reads any MTA
options previously set, whether set as Unified Configuration MTA options or set in the MTA
option file, CONFIGROOT/option.dat; use of the -nooption_file switch will not alter
this behavior. However, use of the -maximum switch causes imsimta cnbuild to also read
MTA options from the file CONFIGROOT/advanced/maximum.dat This maximum.dat file
specifies near maximum table sizes. Only use the -maximum switch if the current table sizes
are inadequate, and only use it to generate new MTA option settings (set either as new values
for MTA options in Unified Configuration, or by building a new option.dat file in legacy
configuration). The -noimage_file switch should always be specified when -maximum is
specified since a maximum-size image would be truly enormous and extremely wasteful.

71–26 Messaging Server Reference

Examples

71.8.3.5 -remove, -noremove (default)

The -remove switch causes removal of any existant compiled configuration; i.e., removes
the file CONFIGROOT/advanced/config_data (located prior to MS 7.0.5 via the
imta_config_data MTA Tailor file option).

71.8.3.6 -sizes, -nosizes (default)

The -sizes switch instructs imsimta cnbuild to output information on the sizes of
uncompiled MTA tables.

71.8.3.7 -statistics, -nostatistics (default)

The -statistics switch instructs imsimta cnbuild to output information on how much
of the various tables in the compiled configuration were actually used to store data. These
numbers give a rough measurement of the efficiency of the compilation, and may indicate
whether or not an additional rebuild with the -option_file switch is needed. Specifying
-statistics effectively forces -noimage_file.

71.8.3.8 -synonyms, -nosynonyms (default)

-synonyms means to output a list of MTA option and channel option synonyms; that is,
output a list of the MTA options and channel option marked as aliases in confdesc.xml:

spamfilter_config_file -> spamfilter1_config_file
brightmail1_config_file -> spamfilter1_config_file
brightmail_config_file -> spamfilter1_config_file
...additional aliased MTA options...
733 -> percents
822 -> sourceroute
brightmail -> sourcespamfilter1
channelfilter -> destinationfilter
...additional aliased channel keywords...

71.8.3.9 -xml_config, -noxml_config (default)

-xml_config directs cnbuild to compile a Unified Configuration; -noxml_config directs
cnbuild to compile a legay configuration.

71.8.4 Examples

imsimta cnbuild
Depending upon what has changed, consider issuing:
imsimta reload
imsimta restart *

This is the standard command used on UNIX to regenerate a compiled configuration. After
compiling the configuration, restart any programs which may need to reload the new
configuration; e.g., the SMTP server should be restarted. (Note that the * character may need
shell-quoting so that it will be passed through the shell properly to the MTA utility.)

MTA command line utilities 71–27

Examples

imsimta cnbuild -noimage_file -option_file -maximum
imsimta cnbuild

Use these two UNIX commands when you encounter the infamous "No room in table"
MTA error message.

71–28 Messaging Server Reference

connutil

71.9 connkill utility
iref item="Utilities" subitem="connutil"/>

Terminate MTA connections coming from a specified IP address or authenticated using a
specified account. The termination can be a one-time thing only affecting current connections
matching the given criteria (the default), or it can be "sticky" and made to apply to future
connections until a timeout value is reached. The termination request can also be applied to all
dispatcher services (the default), or only to services whose names match a specified pattern.

Note: At present only SMTP services respond to the kill requests sent by this utility.

71.9.1 Syntax

 imsimta connkill -ip=<ip-address>
 imsimta connkill -user=<user>

Table 71.9 imsimta connkill Command Switches

Switch Default
-ip=ip-address n/a
-service=service-pattern -service=*

-sticky -nosticky

-user=uid@domain n/a

71.9.1.1 Restrictions

Must have superuser privileges, or be logged in as the MTA user (see the user option in
restricted.cnf) in order to use this utility.

71.9.2 Description
Compromised hosts and user accounts are a fact of life in modern email environments.
Blocking connections from specific IP addresses and suspending user accounts, respectively,
are the usual of dealing with these threats.

However, blocking future connections doesn't affect currently active connections, which can
continue to send mail until transaction limits are reached, connections time out, and so on.

It is therefore desirable to have some means of terminating active connections based on IP
address or authentication state. The imsimta connkill utility provides this capability.

The command has two basic forms:

• The -ip switch is used to specify an IP address. In this case connections originating from
this IP address are terminated.

• The -user switch is used to specify a user name of the form uid@domain. In this case
connections that have authenticated to the account with the specified uid and in the specified
domain are terminated.

MTA command line utilities 71–29

Description

At least one of -ip and -user are required, but they cannot be specified simultaneously. Both
switches require an argument.

In both cases termination will occur the next time a command is read from the client.

Normally only current connections are affected - a subsequent connection from the specified
IP address or authentication using the specified user will be allowed. The optional -sticky
switch can be used to change this behavior. If -sticky is specified, subsequent connections or
authentications will result in an immediate disconnect until the timeout in seconds specified
by the KILLED_IP_TIMEOUT and KILLED_USER_TIMEOUT TCP/IP channel-specific options,
respectively. The former defaults to twice the value of the COMMAND_RECEIVE_TIME TCP/IP
channel-specific option; the latter defaults to 600 seconds.

Kill requests are sent to all dispatcher services by default. The -service switch can be used
to specify which services requests are sent to. The required argument is a pattern the service
name must match in order to receive the request.

71–30 Messaging Server Reference

counters -clear

71.10 counters -clear utility
Clear the in-memory cache of channel counters.

71.10.1 Syntax

 imsimta counters -clear

71.10.1.1 Restrictions

The process must have the same UID as either the root or the MTA user (user option in
restricted.cnf) accounts.

71.10.2 Parameters
None.

71.10.3 Description
To zero the in-memory channel counters, issue an imsimta counters -clear command.

The imsimta counters -clear command will create a new memory section, if one does
not already exist. The values in the in-memory section will be set to zero, and then the stored
messages, recipients, and volumes fields will be set from the values currently in the MTA
queue cache database.

Since some initial values will be set based on entries in the MTA queue cache database, you
may wish to issue the UNIX command

imsimta cache -synchronize

before clearing the counters, to ensure that the MTA queue cache database entries are current.

MTA command line utilities 71–31

counters -show

71.11 counters -show utility
Display the contents of the in-memory cache of channel counters.

71.11.1 Syntax

 imsimta counters -show

Table 71.10 imsimta counters -show Command Switches

Switch Default
-associations -associations

-channels[=channel-name] -channels

-debug -nodebug

-format=n -format=0

-headers -headers

-output=file-spec None

71.11.1.1 Restrictions

On UNIX, normally none, but if a new in-memory section must be created then privileges
sufficient to create such a section are required.

71.11.2 Description
The contents of the in-memory cache of channel counters may be displayed with the imsimta
counters -show command.

A new in-memory section will be created if one does not already exist. Note that if a new in-
memory section must be created, the initial values for the number of messages stored, number
of recipients, and message volumes will be set based on the entries in the MTA queue cache
database.

See MTA counters, especially the discussion of the Purpose and design of MTA counters.

71.11.3 Switches

71.11.3.1 -associations (default), -noassociations

The -associations switch specifies whether to show the in-memory cache of association
counters.

71.11.3.2 -channels[=channel-name] (default), -nochannels

The -channels switch specifies whether to show the in-memory cache of channel counters.
By default, counters for all channels are shown; specifying an argument to the -channels
specifies a specific channel for which to show counters.

71–32 Messaging Server Reference

Examples

71.11.3.3 -debug, -nodebug (default)

The -debug qualifer enables debugging.

71.11.3.4 -format=0 (default=0)

Controls the format of the command output. The following values are supported:

0 Human-readable tabuular text

10 CVS format

11 JSON format, zero values omitted

12 JSON format, no values omitted

71.11.3.5 -headers (default), -noheaders

Controls whether or not a header line describing each column in the table of counters is
output.

71.11.3.6 -output=file-spec

Direct the output to the specified file. By default the output appears on your display.

71.11.4 Examples
This example shows displaying the counters for all channels and associations.

imsimta counters -show
Channel Messages Recipients Blocks
------------------------ ---------- ---------- ----------
ims-ms
 Received 3863 3881 25786
 Stored 89 89 460
 Delivered 3876 3894 26018 (3859 first time)
 Submitted 1 1 7
 Attempted 17 17 25
 Rejected 0 0 0
 Failed 1 1 6

 Queue time/count 29794837/3877 = 7.68502E3
 Queue first time/count 18904343/3860 = 4.8975E3

tcp_local
 Received 208 217 4153
 Stored 3 3 9
 Delivered 200 212 2461 (197 first time)
 Submitted 4053 4078 25919
 Attempted 7 7 0
 Rejected 46 68 0
 Failed 14 14 1695

 Queue time/count 1106266/211 = 5.24297E3
 Queue first time/count 455897/208 = 2.19181E3

MTA command line utilities 71–33

Examples

 Current In Assocs 127
 Total In Assocs 1056
 Total Out Assocs 132
 Rejected Out Assocs 11
 Failed Out Assocs 1

Channel Timestamp Association
------------ ------------ ---
tcp_local 01-
Feb 00:27 TCP|192.160.253.70|25|192.160.253.66|3465
tcp_local 25-Jan 00:31 TCP|192.160.253.70|25|192.160.253.66|3496
tcp_local 26-Jan 14:50 TCP|192.160.253.70|25|192.160.253.66|2086
tcp_local 05-Feb 12:23 TCP|192.160.253.70|25|192.160.253.66|3593
tcp_local 01-Feb 00:34 TCP|192.160.253.70|25|192.160.253.66|3581

...

71–34 Messaging Server Reference

crdb

71.12 crdb utility
imsimta crdb is a utility used to create and update MTA (on-disk) database files.

71.12.1 Syntax

 imsimta crdb input-file-spec output-database-spec

Table 71.11 imsimta crdb Command Switches
Switch Default
-append -noappend

-count -count

-dump See text
-duplicates -noduplicates

-exception_file=file-spec -noexception_file

-huge_records -huge_records

-long_records -nolong_records

-quoted -noquoted

-remove -noremove

-statistics -statistics

-strip_colons -nostrip_colons

71.12.2 Parameters

71.12.2.1 input-file-spec

A text file containing the entries to be placed into the database. Each line of the text file must
correspond to a single entry.

71.12.2.2 output-database-spec

The initial name string of the file to which to write the database; the database will consist of a
file named output-database-spec.db.

71.12.3 Description
imsimta crdb is a utility to create and or update MTA (on disk) database files. imsimta
crdb simply converts a plain text file into MTA database records and from them either creates
a new database or adds the records to an existing database.

If run from the root account, imsimta crdb will set the ownership of the database it creates
to the MTA user account; see the user option from the restricted.cnf file, or in older
versions of the MTA, see the imta_user MTA Tailor option. If run from an unprivileged
account, then the database will be owned by that unprivileged user.

In general, each line of the input file must consist of a left hand side and a right hand side.
The two sides are separated by one or more spaces or tabs. The left hand side is limited to

MTA command line utilities 71–35

Switches

32 characters in a short database (the default variety) and 80 characters in a long database.
The right hand side is limited to 80 characters in a short database and 256 in a long database.
Spaces and tabs may not appear in the left hand side (but see the description of the -quoted
switch below).

The format of the input file is described in the sections describing each particular MTA
database. For instance, the format of the input file for an alias database is described in Alias
database format; the format of the input file for the domain database (rewrite rule database)
is described in Domain database; the format of the input file for the forward database
is described in Forward database; the format of the input file for the general database is
described in General database; the format of the input file for the address reversal database is
described in Reverse database.

71.12.4 Switches

71.12.4.1 -append, -noappend (default)

When the default, -noappend, switch is in effect, a new database is created, overwriting any
old database of that name. Use the -append switch to instruct the MTA to instead add the
new records to an existing database.

71.12.4.2 -count (default), -nocount

Controls whether or not a count is output after each group of 100 input lines are processed.

71.12.4.3 -dump

imsimta crdb -dump is a synonym for imsimta dumpdb. It is used to dump an existing
database to a flat text file---or to stdout if no output file is specified. The parameters are
interpreted as the input database specification, and optionally a flat text file to which to write
the output. No other switches are valid when -dump is specified.

71.12.4.4 -duplicates, -noduplicates (default)

Controls whether or not duplicate records are allowed in the output files. Currently duplicate
records are of use only in the domain database (rewrite rules database) and databases
associated with the directory channel.

71.12.4.5 -exception_file=file-spec, -noexception_file
(default)

imsimta crdb may encounter records that cannot be loaded into the database. This usually
means that these records had keys (left hand sides) that were duplicates of other keys
previously encountered in the input file. These exception records can optionally be written to a
separate output file for later examination; the -exceptions_file switch controls the writing
of this file. Note that the lines in this file are not plain text; they are formatted as database
entries.

71.12.4.6 -long_records, -nolong_records (default),
-huge_records, -nohuge_records

These switches control the size of the output records. By default left hand sides are limited
to 32 characters and right hand sides are limited to 80 characters. If -long_records is

71–36 Messaging Server Reference

Examples

specified, the limits are changed to 80 and 256, respectively. If -huge_records is specified,
the limits are changed to 252 and 1024, respectively. Currently, -huge_records databases are
supported only for the alias database.

71.12.4.7 -quoted, -noquoted (default)

This switch controls the handling of quotes. Normally imsimta crdb pays no particular
attention to double quotes. If -quoted is specified, imsimta crdb matches up double quotes
in the process of determining the break between the left and right hand sides of each input
line. Spaces and tabs are then allowed in the left hand side if they are within a matching pair of
quotes. This is useful for certain kinds of databases, where spaces may form a part of database
keys. Note: The quotes are not removed unless the -remove switch is also specified.

71.12.4.8 -remove, -noremove (default)

These switches control the removal of quotes. If imsimta crdb is instructed to pay attention
to quotes, the quotes are normally retained. If -remove is specified, imsimta crdb removes
the outermost set of quotes from the left hand side of each input line. Spaces and tabs are then
allowed in the left hand side if they are within a matching pair of quotes. This is useful for
certain kinds of databases, where spaces may form a part of database keys. Note: -remove is
ignored if -quoted is not in effect.

71.12.4.9 -statistics (default), -nostatistics

Controls whether or not some simple statistics are output by imsimta crdb, including the
number of entries (lines) converted, the number of exceptions (usually duplicate records)
detected, and the number of entries that could not be converted because they were too long to
fit in the output database. -nostatistics suppresses output of this information.

71.12.4.10 -strip_colons, -nostrip_colons (default)

The -strip_colons switch instructs imsimta crdb to strip a trailing colon from the right
end of the left hand side of each line it reads from the input file. This is useful for turning alias
file entries into an alias database.

71.12.5 Examples

imsimta crdb -long_records IMTA_DATAROOT:db/aliases.txt IMTA_DATAROOT:db/tmpdb
imsimta renamedb IMTA_DATAROOT:db/tmpdb IMTA_DATAROOT:db/aliasesdb

The above example shows UNIX commands that may be used to create an alias database
with "long" record entries; note that the creation is performed in a two-step process using a
temporary database to minimize any window of time, such as during database generation,
when the database would be locked and inaccessible to the MTA.

MTA command line utilities 71–37

find

71.13 find utility
Find specified version of an MTA log file.

71.13.1 Syntax

 imsimta find file-pattern

Table 71.12 imsimta find Command Switches

Switch Default
-debug None
-f=offset-from-first None
-first=offset-from-first None
-l=offset-from-last None
-last=offset-from-last None

71.13.1.1 Restrictions

Must have read access to the requested file.

71.13.2 Parameters

71.13.2.1 file-pattern

A file name pattern for which MTA debug log file to find. If no directory is specified, the utility
looks in the MTA log directory (imta_log). Note that the utility does not support relative
directory specifications; when specifying a directory, use an absolute directory specification.

71.13.3 Description
The imsimta find utility may be used to find the precise file name of the specified
"version" of an MTA debug log file. MTA debug log files have a -uniqueid appended to
the file name to allow for the creation of multiple "versions" of the log file; on UNIX, the
-uniqueid is appended to the very end of the file name (the end of the file extension).
(See for instance the master_debug and slave_debug channel options, and the
dispatcher.debugjob_controller.debug options.) The imsimta find utility
understands these unique ids and can find the particular file name corresponding to the
requested "version" of the file.

The default, if no offset switch is specified, is to find the most recent "version" of the file.

71.13.4 Switches

71.13.4.1 -debug

The -debug switch enables debug output.

71–38 Messaging Server Reference

Examples

71.13.4.2 -f=offset-from-first, -first=offset-from-first

The -f or -first switch is used to specify finding the nth "version" of the file (starting
counting from 0). For instance, to find the earliest (oldest) "version" of the file, specify -f=0

71.13.4.3 -l=offset-from-last, -last=offset-from-last

The -l or -last switch is used to specify finding the nth from the last "version" of the file
(starting decrementing from 0 as the most recent version). For instance, to find the most recent
(newest) "version" of the file, specify -l=0

71.13.5 Examples

imsimta find tcp_local_slave.log

The above UNIX command will print out the file name of the
tcp_local_slave.log-uniqueid file most recently created in the MTA log directory.

imsimta find tcp_local_master.log -f=0

The above UNIX command will display the file name of the oldest
tcp_local_master.log-uniqueid file in the MTA log directory.

MTA command line utilities 71–39

process

71.14 process utility
List currently executing MTA processes and jobs.

71.14.1 Syntax

 imsimta process

71.14.2 Parameters
None.

71.14.3 Description
Show current MTA processes. Normally on a regular MTA system, the Dispatcher and
Job Controller should always be present; typically some SMTP and SMTP SUBMIT server
processes are present; and additional processes may be present if messages are currently being
processed, or if certain additional MTA components are in use. On an LMTP back end Message
Store system, the Dispatcher should always be present, and typically one or more LMTP server
processes are present.

71.14.4 Examples
The following command shows currently executing Messaging Server MTA processes on a
regular MTA system:

imsimta process
 USER PID S VSZ RSS STIME TIME COMMAND
 mailsrv 235 S 44592 20324 18:25:00 00:01 /opt/sun/comms/messaging64/lib/tcp_smtp_server
 mailsrv 236 S 44756 20924 18:25:00 00:04 /opt/sun/comms/messaging64/lib/tcp_smtp_server
 mailsrv 262 S 44816 21024 18:27:30 00:01 /opt/sun/comms/messaging64/lib/tcp_smtp_server
 mailsrv 358 S 44836 21052 18:37:30 00:04 /opt/sun/comms/messaging64/lib/tcp_smtp_server
 mailsrv 8286 S 44296 19724 08:55:08 00:00 /opt/sun/comms/messaging64/lib/managesieve
 mailsrv 8287 S 44232 19648 08:55:08 00:00 /opt/sun/comms/messaging64/lib/managesieve
 mailsrv 18763 S 42068 9004 Aug_23 03:44 /opt/sun/comms/messaging64/lib/dispatcher
 mailsrv 18775 S 37492 12044 Aug_23 00:06 /opt/sun/comms/messaging64/lib/job_controller

71–40 Messaging Server Reference

purge

71.15 purge utility
Purge MTA log files.

71.15.1 Syntax

 imsimta purge [file-pattern]

Table 71.13 imsimta purge Command Switches

Switch Operation Default
-day=value Days after which the file should be deleted. None
-debug Display the action(s) purge would take but do

not perform them
None

-hour=value Hours after which the file should be deleted. None
-num=value -num=5

71.15.2 Parameters

71.15.2.1 file-pattern

A file name pattern for which MTA log files to purge. The default, if no file name pattern
is specified, is to purge all the files in the MTA log directory. (The MTA log directory has
symbolic name IMTA_LOG:, which is the directory DATAROOT/log. If no directory path is
included in the file name pattern, the default is to purge files matching the file name pattern
from the MTA log directory.

IMPORTANT NOTE: imsimta knows nothing about the specifics of the log files it operates
on; it uses generic file name patterns which can effect ANY file in the log directory. As such,
administrators MUST avoid creating their own files in the log directory - whether that be a
rename of logs the product creates, any derivative material from the logs (parsing output, tar,
zip, ... any), or anything completely unrelated - putting it in the log directory is unsupported
and may produce unexpected results.

If you want to do your own parsing and archiving of the logs,then that is fine, but make sure
you put the results into some other directory.

As of 8.0.1.2, imsimta purge unconditionally ignores the connection and transaction log files
mail.log, mail.log_current, and mail.log_yesderday and connection log files connection.log,
connection.log_current, and connection.log_yesterday. Files with names beginning with "." are
also ignored.

71.15.3 Description

imsimta purge purges back older versions of MTA log files. (imsimta purge can tell
which log files are older based on the uniqueid strings terminating MTA log file names.)

MTA command line utilities 71–41

Switches

71.15.4 Switches

71.15.4.1 -day=d

Specifying -day=d results in purging all but the last d days worth of log files. Note that here
"day" means a 24 hour period, rather than a calendar day (midnight to midnight); i.e., all but
the log files created in the last 24d hours will be purged.

71.15.4.2 -debug

Specifying -debug enables some debug output to stdout.

71.15.4.3 -hour=h

Specifying -hour=h results in purging all but the last h hours worth of log files.

71.15.4.4 -num=n

Specifying -num=n results in purging all but the last n log files. The default is -num=5.

71.15.5 Examples

imsimta purge

This UNIX command will purge all but the last five versions of each sort of log file in the MTA
log directory, SERVERROOT/log.

imsimta purge -num=10 tcp_local_master.log

This UNIX command will purge all but the last ten versions of any
tcp_local_master.log-* files from the MTA log directory, SERVERROOT/log/.

71–42 Messaging Server Reference

qclean

71.16 qclean utility
Hold or delete message files from the MTA queue disk area that contain specified substrings in
their envelope From address, Subject: header, or message content.

71.16.1 Syntax

 imsimta qclean [channel]

Table 71.14 imsimta qclean Command Switches

Switch Default
-content=substring None
-database -database

-delete -hold

-directory_tree -database

-domain_to=substring None
-env_from=substring None
-env_to=substring None
-from=substring None
-hold -hold

-ignore_zz -noignore_zz

-match=keyword -match=AND

-min_length=n -min_length=24

-subject=substring None
-threads=n -nothreads

-to=substring None
-verbose -noverbose

71.16.1.1 Restrictions

Privileges sufficient to read and delete files in the MTA channel queue directory tree, as well as
read the MTA queue cache database (obtain information from the Job Controller), are required.

71.16.2 Parameters

71.16.2.1 channel

Optional parameter which specifies a specific MTA channel area to be searched for matching
messages. * or ? wildcard characters may be used in the channel specification.

71.16.3 Description
Hold or delete message files containing specific substrings in their envelope From address,
Subject: line, or content. (Note that .HELD message files are not checked or affected by

MTA command line utilities 71–43

Switches

this utility.) By default, message files are held (-hold). Specify -delete to instead delete
matching message files. The -content, -domain_to, -env_from (synonym -from),
-env_to (synonym -to), and -subject switches are used to specify the substrings for
which to search. Often, the specific user recipient is not as relevant as the domain of the
recipient(s), so the -domain_to switch is available for the purpose of specifying the recipient
domain.

Any combination of -content, -domain_to, -env_from (synonym -from), -env_to
(synonym -to), and -subject may be specified. However, only one of each may be used.
The -match switch controls whether a message file must contain all (-match=AND, the
default) or only one of (-match=OR) the specified substrings in order to be held or deleted.
The default is -match=AND.

By default, each substring to be searched for must be at least 24 bytes long
(-min_length=24). This is a safety measure: the longer the substring, the less likely the
chance of false "hits". Use the -min_length switch to override this limit, making sure to
specify -min_length before any switches specifying "short" strings. And note that only
values for -min_length of 5 or more will be respected; attempting to set a -min_length of
less than 5 will result in a value of 5 being used. Also by default, only message files identified
by the queue cache database are searched (-database). Use the -directory_tree switch to
instead search all message files actually present in the channel queue directory tree.

The optional channel parameter restricts the search to message files in the specified channel.
The channel parameter may use * and ? wild cards.

The -threads switch may be used to accelerate searching on multiprocessor systems by
dividing the work amongst multiple, simultaneously running threads. To run n simultaneous
searching threads, specify -threads=n. The value n must be in the range 1-8. The default is
-nothreads.

Note that this utility does not bother to update the Job Controller's queue cache regarding
the .HELDing or deleting of message files; the utility merely makes the change directly to the
message file on disk. (The Job Controller, when it happens to attempt to access and process
such a modified or deleted message file, will see that the message file no longer exists in
its previous form and then update its own data structure and continue on to process other
messages.)

71.16.4 Switches

71.16.4.1 -content=substring, -domain_to=substring,
-env_from=substring, -env_to=substring,
-subject=substring, -to=substring

The -content, -domain_to, -env_from (synonym -from), -env_to (synonym -to), and
-subject switches are used to specify the substrings for which to search. Any combination
of -content, -domain_to, -env_from (synonym -from), -env_to (synonym -to), and
-subject may be specified; explicit use of at least one such switch is required. However,
only one occurrence of each such switch may be used. When a combination of such switches is
used, the -match switch controls whether the switches are interpreted as further restrictions
(-match=AND), or as alternatives (-match=OR).

71.16.4.2 -database (default), -directory_tree

71–44 Messaging Server Reference

Examples

The -database switch, the default, specifies that only message files identified by the Job
Controller's queue cache be searched. Use the -directory_tree switch to instead search all
message files actually present in the channel queue directory tree.

71.16.4.3 -delete, -hold (default)

-hold is the default and means that matching message files will be sidelined as .HELD files.
Specify -delete to instead delete matching message files.

71.16.4.4 -match=keyword

The default is -match=AND, meaning that any criteria specified by -content, -env_from,
and -subject switches must all match in order for the current hold or delete operation to be
applied. Specifying -match=OR means that a message will match as long as at least one such
criterion matches.

71.16.4.5 -min_length=n

By default, each substring to be searched for must be at least 24 bytes long
(-min_length=24). This is a safety measure: the longer the substring, the less likely the
chance of false "hits". Use the -min_length switch to override this limit, making sure to
specify -min_length before any switches specifying "short" strings.

Note that the -min_length value must be 5 or more; attempting to set a smaller value will
result in the value 5 being used.

71.16.4.6 -threads=n, -nothreads (default)

The -threads switch may be used to accelerate searching on multiprocessor systems by
dividing the work amongst multiple, simultaneously running threads. To run n simultaneous
searching threads, specify -threads=n. The value n must be an integer in the range 1-8. The
default is -nothreads.

71.16.4.7 -verbose, -noverbose (default)

The -verbose switch may be used to request that the utility print out information about what
it is doing as it operates.

71.16.5 Examples

imsimta qclean -min_length=12 -subject="make money fast" -env_from="spammers.com"
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 72 message files
%QM-I-SCANNED, scanned 72 message files in 3.7500 seconds (19.20 messages/second)
%QM-I-HELD, held 5 message files

The above UNIX example shows holding all message files in the MTA queue area that have
the string "make money fast" in the Subject: header and have the string "spammers.com" in the
envelope From address.

MTA command line utilities 71–45

qtop

71.17 qtop utility
Display the most frequently occurring envelope From, envelope To, Subject:, or message
content fields found in message files in the channel queues.

71.17.1 Syntax

 imsimta qtop [channel]

Table 71.15 imsimta qtop Command Switches

Switch Default
-content=offset-specifier None
-database -database

-directory_tree -database

-domain_to=offset-specifier None
-env_from=offset-specifier None
-env_to=offset-specifier None
-from=offset-specifier None
-ignore_zz -noignore_zz

-min_count=n -min_count=2

-output=file-spec See text
-subject=offset-specifier -subject=(START=1,LENGTH=2147483647)

-threads=n -nothreads

-to=offset-specifier None
-top=n -top=20

-verbose -noverbose

71.17.1.1 Restrictions

Privileges sufficient to read files in the MTA channel queue directory tree, as well as read the
MTA queue cache database, are required.

71.17.2 Parameters

71.17.2.1 channel

Optional parameter which specifies a specific MTA channel area to be scanned for string
frequencies. * or ? wildcard characters may be used in the channel specification.

71.17.3 Description
Display the most frequently occurring envelope From, envelope To, Subject: field, or
message content fields found in message files in the channel queues. (Note that .HELD

71–46 Messaging Server Reference

Switches

message files are not checked or displayed by this utility.) By default, only Subject: fields are
shown (-subject). Use -env_from to display frequent envelope From fields, -env_to
or -domain_to to display frequent envelope To fields, or -content to display frequent
message contents. Any combination of -content, -env_from, -env_to, and -subject
may be specified. However, only one of each may be used.

The optional channel parameter restricts the scan to message files in the specified channel. The
channel parameter may use * and ? wild cards.

By default, the top 20 most frequently occurring fields are shown (-top=20) provided that
they occur 2 or more times (-min_count=2). Use the -top and -min_count switches to alter
this behavior. Also by default, only message files identified by the queue cache database are
scanned (-database). Use the -directory_tree switch to instead scan all message files
actually present in the channel queue directory tree.

The -threads switch may be used to accelerate scanning on multiprocessor systems by
dividing the work amongst multiple, simultaneously running threads. To run n simultaneous
scanning threads, specify -threads=n. The value n must be in the range 1-8. The default is
-nothreads.

The -content, -env_from, -env_to, and -subject switches accept the
optional qualifiers start=n and length=n. These qualifiers indicate the
starting offset and number of bytes in the field to consider. The defaults are
-content=(START=1,LENGTH=256), -env_from=(START=1,LENGTH=2147483647),
-env_to=(START=1,LENGTH=2147483647), and
-subject=(START=1,LENGTH=2147483647). Use of these qualifiers is useful when, for
example, trying to identify occurrences of a spam message which uses random text at the start
of the Subject: line.

71.17.4 Switches

71.17.4.1 -content[=offset-specifier],
-domain_to[=offset-specifier], -
env_from[=offset-specifier], -env_to[=offset-specifier],
-from[=offset-specifier], -subject[=offset-specifier], -
to[=offset-specifier]

The -content, -domain_to, -env_from (synonym -from), -env_to (synonym -to),
and -subject switches are used to specify which frequently occurring fields should
be displayed. By default, only Subject: fields are shown (-subject). Use -env_from
to display frequent envelope From fields, -env_to or -domain_to to display frequent
envelope To fields, or -content to display frequent message contents. Any combination
of -content, -domain_to, -env_from (synonym -from), -env_to (synonym
-to), and -subject may be specified. However, only one of each may be used. The
-content, -domain_to, -env_from (synonym -from), -env_to (synonym -to), and
-subject switches accept the optional qualifiers START=n and LENGTH=n. These qualifiers
indicate the starting offset and number of bytes in the field to consider. The defaults are
-content=(START=1,LENGTH=256), -env_from=(START=1,LENGTH=2147483647),
-env_to=(START=1,LENGTH=2147483647), and
-subject=(START=1,LENGTH=2147483647). Use of these qualifiers is useful when, for
example, trying to identify occurrences of a spam message which uses random text at the start
of the Subject: line.

MTA command line utilities 71–47

Examples

71.17.4.2 -database (default), -directory_tree

The -database switch, the default, specifies that only message files identified by the queue
cache database be searched. Use the -directory_tree switch to instead search all message
files actually present in the channel queue directory tree.

71.17.4.3 -ignore_zz, -noignore_zz (default)

-noignore_zz is the default and means to scan all messages queued in a channel.
-ignore_zz means to scan only those files which are not ZZ files; that is, only those files
which have already had at least one delivery attempt.

71.17.4.4 -min_count=n

By default, a string must occur at least 2 times, -min_count=2, in order to be displayed.

71.17.4.5 -output=file-spec

By default, output goes to stdout. The -output switch may be used to direct the utility's
output to a file instead.

71.17.4.6 -threads=n, -nothreads (default)

The -threads switch may be used to accelerate searching on multiprocessor systems by
dividing the work amongst multiple, simultaneously running threads. To run n simultaneous
searching threads, specify -threads=n. The value n must be an integer in the range 1-8. The
default is -nothreads.

71.17.4.7 -top=n

By default, the top 20 most frequently occurring fields are shown, (-top=20).

71.17.4.8 -verbose, -noverbose (default)

The -verbose switch may be used to request that the utility print out information about what
it is doing as it operates.

71.17.5 Examples

imsimta qtop -subject -env_from
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds (130.36 messages/secon
d)
Top 20 Envelope From: addresses which occur 2 or more times
 Count Envelope From: address
====== ==
 27
 10 owner-ex-list@acme.com
 2 owner-test-list@acme.com

Top 20 Subject: header lines which occur 2 or more times

71–48 Messaging Server Reference

Examples

 Count Subject
====== ==
 6 Re: your ex-list posting
 2 Test posting to test-list

The above UNIX example shows displaying the most frequently occurring Subject: field and
envelope From addresses amongst messages in the MTA queue area.

imsimta qtop -subject=START=12 -min_count=15
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds (130.36 messages/secon
d)
Top 20 Subject: header lines which occur 15 or more times
 Count Subject
====== ==
 25 ake money fast $$$

The above UNIX example shows displaying the most frequently occuring Subject: lines that
occur 20 times or more, starting from 12 characters into the Subject: header value. This may be
useful when trying to spot spam that inserts random characters at the beginning of the Subject:
header value.

MTA command line utilities 71–49

reload

71.18 reload utility
Reload portions of the MTA configuration.

71.18.1 Syntax

 imsimta reload

71.18.2 Parameters
None.

71.18.3 Description
For compiled configurations, this utility reloads any mapping tables (mapping group settings
in Unified Configuration or the mapping file in legacy configuration), and the general, reverse,
and forward "databases", if the applicable bits of use_text_databases have been set.
It does not, however, reload the entire compiled configuration; in particular, changes to
channel definitions and rewrite rules (e.g., the imta.cnf file in legacy configuration) are not
propagated by imsimta reload. Nor does it, in general, reload changes to MTA options.

The imsimta reload utility also reloads authentication, SSL/TLS, and as of Messaging
Server 8.0.2, affinity group options. This is done even if the MTA's configuration is not
compiled.

For making certain changes "live" to a running Job Controller, see also the cache -change
utility.

71.18.4 Error messages
Problems encountered attempting to reload the configuration can result in a syslog notice (sent
with syslog facility and mask controlled by the sndopr_priority MTA option):

BADCONFIGLOAD, Attempt to load new configuration failed.

or

BADCONFIG, Attempt to map new configuration failed.

71–50 Messaging Server Reference

restart

71.19 restart utility
Restart MTA components.

71.19.1 Syntax

 imsimta restart [component]

71.19.1.1 Restrictions

Must have superuser privileges or use the Solaris RBAC feature in order to use this utility.

71.19.2 Parameters

71.19.2.1 component

Optional parameter which specifies a specific MTA component, or Dispatcher service, to be
restarted. The components which may be restarted with this utility are job_controller,
dispatcher. Any Dispatcher service may be restarted with this utility by specifying the
service name; with the services in a typical configuration, this means smtp, smtp_submit,
and lmtpss, but any other site-specific services may be restarted similarly by specifying their
name. Note that restarting the MTA Dispatcher, i.e., the dispatcher component, effectively
restarts all the service components it handles, which may include smtp, smtp_submit,
and lmtpss. If no component name is given, then all active components will be restarted.
If the asterisk character, *, is specified as the "component", then all active services under
the Dispatcher (but not the Dispatcher itself) will be restarted; note that to avoid shell
interpretation and get the asterisk character passed through as an argument to the utility itself,
it will usually be necessary to quote the asterisk character, "*".

71.19.3 Description
Detached MTA processes should be restarted whenever relevant portions of the MTA
configuration are altered---these processes load information from the configuration once
only and generally need to be restarted in order for configuration changes to become visible
to them. (In legacy configuration, in addition to general MTA configuration files such as
the imta.cnf file, note that components such as the Dispatcher have their own specific
configuration files, e.g., dispatcher.cnf, and should be restarted after changes to any of
these files.) However, note that some configuration changes can be put into effect without a
restart: see the imsimta reload and imsimta cache -change utilities.

An imsimta restart command is equivalent to performing a imsimta shutdown
followed by an imsimta startup on the specified component.

If no component name is specified, then the imsimta restart utility stops any old Job
Controller process and Dispatcher process that might be running, and restarts the Job
Controller and Dispatcher. If a component parameter is specified, then only detached
processes associated with that component will be restarted. If an asterisk character, *, is
specified, then all active services running under the Dispatcher will be restarted (though the
Dispatcher itself will not be restarted in this case); note that shell interpretation will usually

MTA command line utilities 71–51

Examples

require that the asterisk character be quoted so that the shell will pass the asterisk through as
an argument to the imsimta restart command.

The standard component names are:

Table 71.16 Component Names

Component Description
dispatcher MTA multithreaded Dispatcher handling services such as SMTP,

SMTP SUBMIT, and LMTP servers.
job_controller MTA Job Controller.
lmtpss LMTP server for Message Store delivery
smtp SMTP server processes.
smtp_submit SMTP SUBMIT (port 587) server processes.

Note that restarts of the Job Controller should be avoided, especially during periods of large
message backlogs, unless such a restart is necessary. Note that a restart of the Job Controller
requires that the Job Controller rescan the queue directory structure to re-discover all message
files, and completely rebuild its internal data structures that control message delivery
scheduling and the order of message delivery attempts. Such rescanning and rebuilding
of data structures is designed to be fast, and have a low impact on the processing of any
newly submitted messages that may come in during the rebuilding. But it is not intended
to necessarily restore the exact state of the Job Controller's original scheduling, and in
practice a certain degree of "out-of-order" processing of the backlogged messages (messages
already existing on disk), and "unfair" division between channels of effort on processing the
backlogged messages, is expected to occur after a restart of the Job Controller.

Whenever the Job Controller is shutdown (and a restart includes a shutdown of the "old" Job
Controller process), before it shuts down it sends a "no more messages" notice to all its child
processes (channel processes), which such processes will see once they finish up whatever
current message they are working on and ask the Job Controller whether there are any more
messages. That is, the Job Controller itself shuts down, but leaves a "poison" message that the
channel jobs will see as they each finish up their own work. So generally (but with a couple
of exceptions, to be discussed just below) any old channel processes that the Job Controller
had previously started finish up whatever message they had already been working on. Once
a channel process has finished its already started work and then asks for another message
to process, it will see that there are no more messages for it to process, and exit. However,
exceptions are the ims-ms channel, and less commonly, outbound TCP/IP channels. ims-ms
channels will interrupt processing even of currently being processed messages after a brief
amount of time (an additional 55 seconds) to attempt to complete processing of a current
message; the remaining recipients of a message for which processing had begun will be
deferred for later processing; (when logging is enabled, "Z" records with a reason, as of MS
8.0, of "shutting down" will be generated for those recipients; note that prior to MS 8.0, the
reason was was "shutdown"). TCP/IP channels will abort processing after their configurable
WINDDOWN_TIMEOUT channel-specific option time period has expired. (The default value for
WINDDOWN_TIMEOUT is relatively "large" due to the potential for undesirable remote SMTP
server handling of aborted message transfers, and the potential expense of resending a "large"
message.)

71.19.4 Examples

71–52 Messaging Server Reference

Error messages

imsimta restart dispatcher

The above UNIX command restarts the Dispatcher, and hence all services under the
dispatcher.

imsimta restart "*"

The above UNIX command restarts all the services under the Dispatcher (typically SMTP,
SMTP_SUBMIT, and LMTPSS) without restarting the Dispatcher itself.

imsimta restart

The above UNIX command restarts all the MTA jobs, including the Job Controller (and should
be avoided unless a restart of the Job Controller is truly needed).

imsimta restart
Stopping dispatcher server 29615 .. done
Stopping job_controller server 29637 . done
Starting dispatcher server . 29645
Starting job_controller server . 29655

The above shows the sort of output shown as of MS 6.3, including in particular the pids of the
stopped and started processes.

imsimta restart job_controller
job_controller server is not running
Starting job_controller server .. 29683

The above shows the sort of output shown as of MS 6.3, if a restart command is given for
the Job Controller when it is not actually currently running.

71.19.5 Error messages
Trouble communicating with the Dispatcher, shutting it down, or restarting it, will be reported
back to stderr:

dispatcher server is not running

Cannot stop dispatcher server (pid=pid) with SIGTERM
Retrying with SIGKILL

dispatcher server is running already

Trouble restarting the Job Controller will be reported back to stderr:

job_controller server is not running

MTA command line utilities 71–53

Error messages

job_controller server is running already

71–54 Messaging Server Reference

return

71.20 return utility
Return (bounce) a mail message to its originator.

71.20.1 Syntax

 imsimta return message-file-spec

71.20.1.1 Restrictions

Must have superuser privileges or be logged in as the MTA user (see the user option in
restricted.cnf) in order to use this utility.

71.20.2 Parameters

71.20.2.1 message-file-spec

File specification of the message file to return. The specification may include wildcards, but if
so, the specification must be quoted.

71.20.3 Description
The imsimta return utility returns a message to the message's originator, (unless the
original message had NOTIFY=NEVER set, in which case the message is simply deleted
without generation of a DSN). The returned message is in three parts. The first part explains
the reason why the message is being returned; the text of the reason is contained in the file
return_bounced.txt file located in the MTA language-specific directory. The second
part of the returned message is a machine-readable report. The third part contains either the
original message itself, or the original message's header (depending upon any RET=FULL
vs. RET=HDRS setting on the original message, and on whether the original message size
triggered application of MTA size limits such as content_return_block_limit).

As regards MTA transaction logging, when it is enabled via the logging channel option,
such postmaster manual bounces will result in either a "R" (bounce original message with a
DSN) or "K" (delete original message without a DSN since the original message requested
NOTIFY=NEVER) MTA transaction log entry.

71.20.4 Examples

imsimta return 'IMTA_QUEUE:ims-ms/*'

The above UNIX command will cause all of the messages currently in the ims-ms channel
queue to be returned to their respective originators (i.e., "bounced").

MTA command line utilities 71–55

run

71.21 run utility
Process messages in a specified channel.

71.21.1 Syntax

 imsimta run channel [poll-flag [start-time [start-id
 [channel-specific-argument [name-filter [min-priority:max-priority]]]]]]

71.21.1.1 Restrictions

Must be the MTA user (see the user option in restricted.cnf), or have superuser
privileges (in which case the MTA will automatically become the MTA user) in order to use
this utility.

71.21.2 Parameters

71.21.2.1 channel

This parameter specifies the channel to be processed.

71.21.2.2 poll-flag

Valid values for poll-flag are nopoll or its synonym master (the default), poll, or
slave. By default, if neither poll nor slave is specified, then only the master direction of the
channel will be run. If poll is specified, then first the master and then the slave directions of
the channel will be run. If slave is specified, then only the slave direction of the channel will
be run.

71.21.2.3 queuename

This parameter is of historical interest only, and has no effect when the Job Controller is in use.

71.21.2.4 start-time

This parameter is of historical interest only, and has no effect when the Job Controller is in use.

71.21.2.5 start-id

This parameter is of historical interest only, and has no effect when the Job Controller is in use.

71.21.2.6 channel-specific-argument

This parameter has no effect.

71.21.2.7 name-filter

For TCP/IP channel master jobs and for ims-ms channel jobs, the name-filter may be used
to specify a message file name filter and/or a (destination) host name filter, using the syntax

71–56 Messaging Server Reference

Description

file-name-filter@host-name-filter

This parameter is not respected by other channels.

71.21.2.8 min-priority:max-priority

This parameter is of historical interest only, and has no effect when the Job Controller is in use.

71.21.3 Description
The imsimta run utility processes the messages in the channel specified by the channel
parameter.

In order to run the channel "outside" normal Job Controller processing (and the Job
Controller's normal limits on job creation---that being one of the reasons that imsimta
run is sometimes used, to force execution of a channel that the Job Controller would not
normally want to run at that moment), a sort of light-weight, pseudo-Job Controller runs
in your process, and it then forks the actual channel job. So some Job Controller-like output
(Job Controller error output, or debug output if you have Job Controller debugging enabled)
may be output at your terminal, and your terminal will be "tied up" for the duration of the
operation of the utility, though the actual channel execution will be forked to a child process
(which if channel debugging is enabled, will write its own debug log file, as usual).

See also the imsimta submit utility (or synonymous imsimta submit_master utility),
which, unlike imsimta run, submits a request to start a job to the Job Controller (and the Job
Controller then forks the actual channel job, as appropriate), so these other commands will not
tie up your terminal.

As alluded to above, one of the typical purposes of using imsimta run is to start up an
"extra" channel processing job, exempt from both the Job Controller's usual rules for triggering
creation of a new job, and its configured limits on creation of channel processing jobs. As of
MS 6.3, the imsimta submit utility will also trigger a new job creation (be exempt from the
usual rules for triggering creation of a channel job), though only within the Job Controller's
configured limit on the maximum number of channel processing jobs allowed. That is, either
imsimta run or imsimta submit may be used to attempt to trigger an "additional"
channel job---but only imsimta run guarantees that the request will in fact result in another
job (possibly an "extra" job beyond the Job Controller's configured limits on numbers of jobs).
Triggering creation of another job might be desired, for instance, when attempting to process
a "large" backlog of messages; and creation of an "extra" job (beyond the usual maxjobs and
job_limit limits) via imsimta run might be desired when you know that you want "extra"
jobs beyond the Job Controller's configured limits.

Note that since imsimta run is using special routines to simulate Job Controller channel
job creation from within your own process, it is not typically useful for purposes of viewing/
debugging actual Job Controller operation.

71.21.4 Examples

imsimta run tcp_local poll

The above UNIX command may be used to process any messages in the tcp_local channel.

MTA command line utilities 71–57

shutdown

71.22 shutdown utility
Shut down MTA components.

71.22.1 Syntax

 imsimta shutdown [component]

71.22.1.1 Restrictions

Must have superuser privileges or use the Solaris RBAC feature in order to use this utility.

71.22.2 Parameters

71.22.2.1 component

The optional component parameter specifies a specific MTA component to be shut down.
The components that may be specified are job_controller, dispatcher, and any services
defined in the Dispatcher configuration, which typically might include smtp, smtp_submit,
and lmtpss.

71.22.3 Description
The imsimta shutdown utility shuts down the MTA Job Controller and the MTA Dispatcher.

Note that shutting down the MTA Dispatcher causes a graceful shutdown of all services (e.g.,
SMTP, SMTP_SUBMIT, LMTPSS) being managed by the MTA Dispatcher. That is, existing
such server processes "finish up" whatever connections they currently have open, but do
not accept new connections. As of MS 6.2p8, such server processes "finish up" processing
of whatever message submissions were already in progress, but reject any attempts (even
in the same, already opened connections) to submit further messages, with an effect as if
ALLOW_TRANSACTIONS_PER_SESSION/transactionlimit had been reached. That is,
prior to MS 6.2p8 while new connections would not be accepted, old connections might
continue to work, accepting further message submissions; however, as of MS 6.2p8 even
already existing connections are "poisoned" so that they may not receive additional new
message submissions. (See the disconnecttransactionlimit channel option if you wish
to have the server processes force a disconnect of connections once they will no longer accept
further messages.)

Whenever the Job Controller is shutdown, before it shuts down it sends a "no more messages"
notice to all its child processes (channel processes), which such processes will read from their
communication buffer once they finish up whatever current message they are working on
and wish to ask the Job Controller whether there are any more messages. That is, the Job
Controller itself shuts down, but leaves a "poison" message in a buffer that the channel jobs
will see as they each finish up their own work. So generally (but with a couple of exceptions,
to be discussed just below) any old channel processes that the Job Controller had previously
started finish up whatever message they had already been working on. Once a channel process
has finished its already started work and then asks for another message to process, it will
see that there are no more messages for it to process, and exit. However, exceptions are the
ims-ms channel, and less commonly, outbound TCP/IP channels. When the Job Controller

71–58 Messaging Server Reference

Examples

has been shutdown, then ims-ms channels will interrupt processing even of currently being
processed messages after a brief amount of time (an additional 55 seconds) spent attempting
to complete processing of the current message; but the remaining recipients of a message for
which processing had begun will be deferred for later processing; (when logging is enabled,
"Z" records with a reason of "shutdown" will be generated for those recipients). TCP/IP
channels will abort processing after their configurable WINDDOWN_TIMEOUT TCP/IP-channel-
specific option time period has expired. (Note that the default value for WINDDOWN_TIMEOUT
is relatively "large" due to the potential for undesirable remote SMTP server handling of
aborted message transfers, and the potential expense of resending a "large" message.)

In typical Messaging Server configurations, msprobe may be configured to check
periodically on the Job Controller, the SMTP server, and SMTP SUBMIT, and LMTP
server; see the msprobe.probe:job_controller.*, msprobe.probe:smtp.*,
msprobe.probe:submit.*, msprobe.probe:lmtp.*, and schedule.task:msprobe.*
options in Unified Configuration. In particular, if with such configuration msprobe
determines that the Job Controller, or a service managed by the Dispatcher, is not responding
to its probe, and if autorestart has been enabled (autorestart.enable in Unified
Configuration), then msprobe will ask the Watcher to restart the non-responsive process (such
as the Job Controller or Dispatcher). So performing a shutdown of an MTA management
process, or specific service (e.g., SMTP) causes a temporary shutdown, but that shutdown
is likely to be only temporary (unless such Messaging Server monitoring-and-automatic-
restarting has not been enabled). (To shut down a service more permanently, the configuration
should be more fundamentally modified: for instance, remove the Dispatcher's definition of
the service in question, or to disable the Dispatcher or Job Controller, respectively, in Unified
Configuration, set dispatcher.enable or job_controller.enable to 0.) Thus the
use/purpose of the shutdown command in modern usage tends to be to perform a temporary
shutdown, perhaps while a configuration change is being made, with imsimta startup
often used shortly thereafter, to start the component back up once a desired configuration
change has been implemented.

71.22.4 Examples

imsimta shutdown
Stopping dispatcher server 29020 done
Stopping job_controller server 29637 . done

The above UNIX command shuts down the MS MTA, showing the sort of output shown in MS
6.3. (Earlier versions would not have as much/the same sort of output.)

imsimta shutdown
dispatcher server is not running
job_controller server is not running

The above shows an example of the sort of output shown as of MS 6.3, if a shutdown
command is issued when the MTA Dispatcher and Job Controller had not in fact been running.

71.22.5 Error messages
Trouble communicating with the Dispatcher, shutting it down, will be reported back to
stderr:

MTA command line utilities 71–59

Error messages

dispatcher server is not running

or

Cannot stop dispatcher server (pid=pid) with SIGTERM
Retrying with SIGKILL

Trouble shutting down the Job Controller will be reported back to stderr:

job_controller server is not running

71–60 Messaging Server Reference

startup

71.23 startup utility
Start the MTA Job Controller and the MTA Dispatcher.

71.23.1 Syntax

 imsimta startup [component]

71.23.1.1 Restrictions

Must have superuser privileges or use the Solaris RBAC feature in order to use this utility.

71.23.2 Parameters

71.23.2.1 component

Optional parameter which specifies a specific MTA component to be started:
job_controller or dispatcher. If no component name is given, then all active
components will be started.

71.23.3 Description
The imsimta startup utility starts up detached MTA processes. If no component parameter
is specified, then the MTA Job Controller and MTA Dispatcher are started. Note that starting
the Dispatcher starts all services the Dispatcher is configured to handle, which may include,
for instance, SMTP, SMTP SUBMIT, or LMTP servers. If a component parameter is specified,
then only detached process associated with that component will be started. The standard
component names are:

Table 71.17 imsimta startup Component Names

Component Description
dispatcher Dispatcher managing SMTP/SMTP SUBMIT/LMTP services
job_controller Job Controller managing MTA channel processing jobs

Note that the services handled by the MTA Dispatcher must be started by starting (or
restarting) the Dispatcher itself; only services not being handled by the Dispatcher can be
individually started via the imsimta startup utility. (The Dispatcher may be configured
to handle various services, e.g., the SMTP, SMTP SUBMIT, and LMTP servers; see Dispatcher
options for details.) Thus if adding a new service under the Dispatcher, or to reenable
execution of a previously shutdown service which runs under the Dispatcher, on a running
system you must restart the Dispatcher itself.

Since in Messaging Server usage, the overall Messaging Server startup command, start-msg,
is normally used to start up not only the MTA but also other components of Messaging Server,
the MTA-specific imsimta startup command is seldom used nowadays.

71.23.4 Examples

MTA command line utilities 71–61

Error messages

imsimta startup
Starting dispatcher server ... 29034
Starting job_controller server . 29045

The above shows the sort of output shown as of MS 6.3, which includes the pids of the started
Dispatcher and Job Controller processes.

imsimta startup
dispatcher server is running already
job_controller server is running already

The above shows the sort of output issued in MS 6.3 if a startup command is issued when
the MTA's Dispatcher and Job Controller were already running.

71.23.5 Error messages
Attempting to start up the Dispatcher when it is already running, or the Job Controller when it
is already running, will be reported as an error to stderr:

dispatcher server is running already

job_controller server is running already

71–62 Messaging Server Reference

submit_master

71.24 submit_master utility
Process messages in a specified channel.

71.24.1 Syntax

 imsimta submit_master channel [poll-flag [host-pattern]]

Table 71.18 imsimta submit_master Command Switches

Switch Default
-delayed -nodelayed

71.24.1.1 Restrictions

Must have superuser privileges or be logged in as the MTA user (see the user option in
restricted.cnf) in order to use this utility.

71.24.2 Parameters

71.24.2.1 channel

This required parameter specifies the channel to be processed.

71.24.2.2 poll-flag

Valid values for poll-flag are nopoll or its synonym master (the default), poll, or
slave. By default, if neither poll nor slave is specified, the Job Controller will be requested
to perform only a master direction execution of the channel (and the channel will not run
unless there are actually messages waiting to be processed in that channel, whose backoff
has expired). If poll is specified, the Job Controller will be requested to perform both master
and slave direction executions of the channel. If slave is specified, the Job Controller will be
requested to perform only a slave direction execution of the channel.

71.24.2.3 host-pattern

Specify a hostname for which to deliver. (This is not relevant for all channels, but for outgoing
TCP/IP channels marked with the single_sys channel option, where the Job Controller
maintains separate delivery queues for each distinct destination host, this parameter specifies
which messages to consider delivering.)

71.24.3 Description
The imsimta submit_master utility requests that the Job Controller begin (consider
beginning) a delivery job for the specified channel.

Note that stopped channels (imsimta qm utility's stop command) will not be run. And
if there are already more than twice the maxjobs requests to run the channel, then this
additional request will be ignored. A request will also be ignored if the backlog of messages

MTA command line utilities 71–63

Switches

in the channel queue area is smaller than the number of already executing jobs for that
channel times the threaddepth for the channel (unless there is only one executing job,
in which case another job will be started). Note that the channel's backoff values will be
respected in determing which, if any, messages to process. Thus it is rare that the imsimta
submit_master utility is of much interest: generally, the Job Controller's intrinsic scheduling
will already have started the maximum-appropriate-for-the-moment number of processing
jobs for the channel, and so an imsimta submit_master command will have no immediate
effect (other than causing the Job Controller to run through its checks before deciding that this
additional request should be ignored). Since a limited (by maxjobs) number of such requests
will be kept pending, in the medium term this utility may be used to attempt to influence the
Job Controller to more aggressively schedule delivery of one destination host over another
(within the same channel), via the host-pattern parameter; as the originally existing jobs
terminate, the pending requests can begin to be honored.

See also the synonymous imsimta submit utility, and the imsimta run utility, which
runs at your terminal outside the Job Controller's normally scheduling limits and checks (for
instance, disregarding backoff conditions), rather than running as a regular Job Controller
child process.

71.24.4 Switches

71.24.4.1 -delayed, -nodelayed (default)

By default (-nodelayed), the submitted job only considers and attempts processing of newly-
submitted (have not yet received a delivery attempt) messages. To request delivery attempts
for "old" messages (those that have already received one or more delivery attempts), use
-delayed.

71.24.5 Examples

imsimta submit_master tcp_local poll

The above UNIX command may be used to process any messages in the tcp_local channel.

71–64 Messaging Server Reference

submit utility

71.25 submit utility
imsimta submit is an abbreviation for imsimta submit_master.

MTA command line utilities 71–65

test -domain_map

71.26 test -domain_map utility
Test a domain (domain map) lookup.

71.26.1 Syntax

 imsimta test -domain_map [expression]

Table 71.19 imsimta test -domain_map Command Switches

Switch Default
-debug -nodebug

-image_file -noimage_file

-input=filename None
-option_file=file-spec -option_file=IMTA_TABLE:option.dat

-xml_config=file-spec None

71.26.2 Description
imsimta test -domain_map is an interactive utility for testing how domains are
provisioned in LDAP.

Especially common uses/commands to use are to list (properly) provisioned domains in
LDAP using the ENUMERATE command, or verify proper (as regards MTA requirements)
provisioning of domains in LDAP using the VERIFY command.

Targetted probing of specific domain definitions can also be performed. A base command
sequence is to LOCATE and then SHOW a domain:

DOMAIN_MAP> LOCATE DOMAIN mrochek.com
Entry located
DOMAIN_MAP> SHOW
Domain name: mrochek.com
Canonical name: mrochek.com
Lower case canonical name: mrochek.com
Base DN: o=mrochek.com,o=usergroup
Domain DN: dc=mrochek,dc=com,o=internet

After locating a domain, you can probe the value of a specific basic attributes:

DOMAIN_MAP> LOCATE DOMAIN mrochek.com
Entry located
DOMAIN_MAP> QUERY inetDomainBaseDN
Attribute value(s):
 [0] "o=doof,o-mrochek.org,o=usergroup"
DOMAIN_MAP> QUERY inetCanonicalDomainName
Attribute value(s):
 [0] "mrochek.org"

71–66 Messaging Server Reference

Commands

If you wish to know about other than the couple of basic attributes, then you have to let the
utility know about such attributes via the ATTRIBUTE command before doing the LOCATE. E.g.,

DOMAIN_MAP> LOCATE DOMAIN mrochek.com
Entry located
DOMAIN_MAP> QUERY creatorsname
Not on known attribute list
DOMAIN_MAP> ATTRIBUTE creatorsname
Attribute now known to map
DOMAIN_MAP> LOCATE DOMAIN mrochek.com
Entry located
DOMAIN_MAP> QUERY creatorsname
Attribute value(s):
 [0] "cn=directory manager"

71.26.3 Commands
imsimta test -domain_map commands shows the interactive commands available.

Table 71.20 imsimta test -domain_map commands

Command Purpose
ATTRIBUTE attr-name Tell the utility the name of an LDAP attribute which you wish to be able

to do QUERY on; only necessary for non-basic attributes.
CANONICALIZE dn Return the canonicalized DN.
ENUMERATE [extra-
filter-terms]

List all provisioned domains; or if some extra-filter-terms have
been specified, all domains matching the filter.

ENUMERATE -ALIASES
[extra-filter-terms]

(New in MS 7.4) List all provisioned domains and domain aliases; or
if some extra-filter-terms have been specified, all domains and
domain aliases matching the filter.

EXIT Exit the utility.
LOCATE DOMAIN domain Locate the specified (by name) domain entry. (Release any previously

LOCATEd domain.)
LOCATE BASEDN dn Locate the specified (by base DN) domain entry. (Release any previously

LOCATEd domain.)
QUERY attribute Return the value(s) of the specified attribute of the previously

LOCATEd domain.
QUERY -LOCATION=n
attribute

Return the nth value of the specified attribute of the previously
LOCATEd domain. (Recall that the LDAP specification makes no
guarantees regarding the order in which attributes and values are
returned, so the result of such a command may vary even while the data
in LDAP remains the same.)

QUIT Quit the utility.
RELEASE Release the presently LOCATEd domain entry.
SHOW Show the (previously LOCATEd) domain.
USER ADD dn Add the specified user to the utility's in-memory hash table of users

belonging to the previously LOCATEd domain.

MTA command line utilities 71–67

Error messages

USER DELETE dn Delete the specified user from the utility's in-memory hash table of users
belonging to the previously LOCATEd domain.

USER DNADMIN dn Check whether or not the specified (by DN) user is an admin.
(In particular, an admin user entry will have the object classes
groupOfUniqueNames and inetMailAdministrator.)

USER IDADMIN id Check whether or not the specified (by ID) user is an admin.
(In particular, an admin user entry will have the object classes
groupOfUniqueNames and inetMailAdministrator.)

USER TEST dn Check whether the specified user is in the utility's in-memory hash table
of users belonging to the previously LOCATEd domain.

VERIFY Check the provisioning of domains in LDAP, potentially returning
various errors if any error (as regards MTA requirements for domain
provisioning) is found.

71.26.4 Error messages
Below are listed possible warnings and errors that may be reported. Note that "errors" are
reported when a domain is defined in a way not suitable for MTA use as an addressing or
routing domain; however, if a domain is defined in LDAP for use by some component(s)
other than (not including) Messaging Server, then it is not necessarily an error to have a
domain defined in a fashion inappropriate for MTA domain usage. That is, reports of "errors"
regarding domain definitions must be interpreted in light of a site's intended usage of
domains: errors reported regarding domains used by the MTA are definitely problems, but
"errors" reported regarding other domains must be interpreted in light of such a domain's
intended usage.

Missing, empty, invalid or duplicate entry

• Facility: General

• Severity: Error

• Explanation: Problem with a domain entry

Identifier too long

• Facility: General (e.g., imsimta test -domain_map LOCATE domain-name)

• Severity: Error

• Explanation: Specified domain name was too long.

Attribute not listed

• Facility: General (e.g., imsimta test -domain_map QUERY attribute-name)

• Severity: Error

• Explanation: Specified attribute not found in domain entry.

71–68 Messaging Server Reference

Error messages

LDAP error

• Facility: General

• Severity: Error

• Explanation: Trouble communicating with LDAP.

Bad schema level

• Facility: General

• Severity: Error

• Explanation: Schema mode other than 1 or 2 specified.

%DMAP-E-ALIASANDBASEDN, Domain alias entry 'domain-name' also contains
a base DN

• Facility: dmap_verify

• Severity: Error

• Explanation: The supposed domain alias entry has an inetDomainBaseDN LDAP
attribute (in the case of the MTA, more precisely, whatever LDAP attribute is named by the
ldap_domain_attr_basedn MTA option), which is an attribute that ought only to be
present on an actual domain entry, not on a domain alias entry.

• User Action: If this domain entry is truly intended as a domain alias entry, then remove the
inetDomainBaseDN LDAP attribute from it (while also making sure that the real domain
entry does have an inetDomainBaseDN attribute present). If, however, this domain entry
ought instead to be its own, real domain entry, then remove the LDAP attributes (such as
aliasedObjectName) that are setting it up as a domain alias entry.

%DMAP-E-ALIASTOOLONG, Domain alias 'domain-name' in entry with DN
'DN-string' is too long

• Facility: dmap_verify

• Severity: Error

• Explanation: The domain entry has a associatedDomain LDAP attribute (or for the MTA,
more precisely whatever LDAP attribute is named by the ldap_attr_domain2_schema2
MTA option) with a value longer than 1024 characters.

• User Action: Shorten the associatedDomain value.

MTA command line utilities 71–69

Error messages

%DMAP-E-BASEDNTOOLONG, Base DN 'DN-string' in base entry for domain
'domain-name' is too long

• Facility: dmap_verify

• Severity: Error

• Explanation: Schema 2. This domain entry has no explicit inetDomainBaseDN (optional in
Schema 2) and the DN of this domain entry, when converted to a string, is longer than 1024
characters.

• User Action: One possibility is to add an explicit inetDomainBaseDN attribute
(or more precisely, for the MTA add whatever attribute is named by the
ldap_domain_attr_basedn MTA option) specifying where users/groups in this domain
are stored in the DIT; while this may work around this immediate issue, note that if the DNs
in your DIT are long enough to trigger this error, then you may encounter other processing
difficulties due to the "long" DNs. Alternatively, shorten the DNs for your domains; this
may require some restructuring of your domain names or DIT, but lead to more satisfactory
processing in general.

%DMAP-E-BASEDNTOOLONG, Base DN pointer 'DN-string' in entry for
domain 'domain-name' is too long

• Facility: dmap_verify

• Severity: Error

• Explanation: The inetDomainBaseDN value (for the MTA, more precisely the value of
whatever attribute is named by the ldap_domain_attr_basedn MTA option) is longer
than 1024 characters.

• User Action: Shorten the inetDomainBaseDN, restructuring the data in the directory, if
necessary.

%DMAP-E-CANONICAL, Overlapping domains 'domain-name-1' and
'domain-name-2' defined by entries 'DN-1' and 'DN-2' have
different canonical domains 'canon-name-1' and 'canon-name-2'

• Facility: dmap_verify

• Severity: Error

• Explanation: The domain name usage is not consistent: domains with overlapping sets of
users have conflicting "canonical" domain names.

• User Action: Check the structuring of the domains, especially the use of the
inetDomainBaseDN and inetCanonicalDomainName LDAP domain attributes
(or more precisely, the attributes named by the ldap_domain_attr_basedn and
ldap_domain_attr_canonical MTA options).

71–70 Messaging Server Reference

Error messages

%DMAP-E-CANONICALINVALID, Canonical domain 'canon-name'
defined/referenced by domain entry with DN 'dn-string' is
syntactically invalid

• Facility: dmap_verify

• Severity: Error

• Explanation: The inetCanonicalDomainName domain attribute (or more precisely, the
LDAP domain attribute named by the ldap_domain_attr_canonical MTA option) has
a value which is not syntactically valid as a domain name.

• User Action: Ensure that the canonical domain name is a syntactically valid, fully-qualified,
Internet domain name. (Note that a not-fully-qualified domain name, a "short form" host
name, will instead result in the error below: %DMAP-E-CANONICALSHORTFORM.)

%DMAP-E-CANONICALSHORTFORM, Short form canonical domain 'domain-name'
defined/reference by domain entry with DN 'dn-string'

• Facility: dmap_verify

• Severity: Error

• Explanation: The inetCanonicalDomainName (or more precisely, the LDAP domain
attribute named by the ldap_domain_attr_canonical MTA option) has its value set to a
"short form" host name value rather than a fully qualified domain name.

• User Action: Change the value to be a fully qualified domain name. There are some places
where it is acceptable to use a "short form" host name, but the canonical domain name
should be a fully qualified domain name.

%DMAP-E-CANONICALTOOLONG, Canonical name 'canon-name' in entry for
domain 'domain-name' is too long

• Facility: dmap_verify

• Severity: Error

• Explanation: The inetCanonicalDomainName domain attribute (or more precisely, the
LDAP domain attribute named by the ldap_domain_attr_canonical MTA option) has
a value longer than 1024 characters.

• User Action: Shorten the canonical domain name.

%DMAP-E-CANTCONVDCDN, Cannot convert alias pointer DN
'aliasedObjectName-value' for domain alias domain-name to
domain name

• Facility: dmap_verify

• Severity: Error

MTA command line utilities 71–71

Error messages

• Explanation: The DN specified by the aliasedObjectName LDAP attribute (in
the case of the MTA, more precisely, whatever LDAP attribute is named by the
ldap_domain_attr_alias MTA option), could not be processed to produce a domain
name; presumably it was not of a organization sort of form.

• User Action: Check that the aliasedObjectName value is correctly specified.

%DMAP-E-CANTCONVDCDN, Cannot convert DN 'dn-string' in DC tree to
domain name

• Facility: dmap_verify

• Severity: Error

• Explanation: A failure occurred attempting to convert the domain's DN into a domain
name.

• User Action: Check the LDAP domain structure.

%DMAP-E-CANTEXTALIAS, Empty alias pointer attribute in 'domain-name' domain alias entry

• Facility: dmap_verify

• Severity: Error

• Explanation: The supposed domain alias entry has no aliasedObjectName LDAP
attribute (in the case of the MTA, more precisely, none of whatever LDAP attribute is named
by the ldap_domain_attr_alias MTA option).

• User Action: Add an aliasedObjectName attribute pointing to a "real" domain entry.

%DMAP-F-CANTGETDN, Cannot obtain DN of domain entry, directory error

• Facility: dmap_verify routine (called by, e.g., imsimta test -domain_map verify)

• Severity: Fatal

• Explanation: An unexpected error: something "wrong" has happened with the data in the
LDAP directory, or with retrieval and basic handling of that data.

• User action: There may be something seriously wrong with the LDAP directory. Verify that
the LDAP directory is operating and its data is uncorrupted.

%DMAP-W-DISALLOWEDATTR, Domain 'domain-name' has a disallowed
attribute 'attr-name' with value 'string'

• Facility: dmap_verify

• Severity: Warning

71–72 Messaging Server Reference

Error messages

• Explanation: The iplanet-am-user-account-life domain attribute is present (and has
a value set).

• User Action: Remove the attribute.

%DMAP-E-DNTOOLONG, Domain entry DN beginning with 'dn-string' is too
long

• Facility: dmap_verify routine (called by, e.g., imsimta test -domain_map verify)

• Severity: Error

• Explanation: The DN for this domain is longer than the maximum permitted DN length
(1024 characters).

• User action: If this domain is one that it is desired that the MTA make use of (say in
addressing or routing), then change its DN to something shorter; this may require some
restructuring of data and entries in LDAP.

%DMAP-E-DOMAINALIASINVALID, Domain alias 'string' defined/referenced
by domain entry with DN 'DN-string' is syntactically invalid

• Facility: dmap_verify

• Severity: Error

• Explanation: A domain alias, whether found via aliasedObjectName pointer
in Schema 1 mode, or set as a associatedDomain in Schema 2 mode, (see the
ldap_domain_attr_alias or ldap_attr_domain2_schema2 MTA options) is not a
syntactically valid domain name.

• User Action: Correct the domain alias.

%DMAP-E-DOMAININVALID, Domain name 'domain-name' defined/referenced by
domain entry with DN 'DN-string' is syntactically invalid

• Facility: dmap_verify

• Severity: Error

• Explanation: The domain name (whether constructed from the "dc" chunks in the DN in
Schema 1 mode, or found in the sunPreferredDomain attribute in Schema 2 mode) is not
syntactically valid.

• User Action: Correct the domain entry.

%DMAP-E-DOMAINMULTDEF, Domain 'domain-name' multiply defined by entries
with DNs 'DN-string-1' and 'DN-string-2'

MTA command line utilities 71–73

Error messages

• Facility: dmap_verify

• Severity: Error

• Explanation: Two different domain entries in Schema 2 mode both claim the
same domain name, that is, have the same value in either of their respective
sunPreferredDomain or associatedDomain LDAP attributes (or for the MTA, more
precisely whatever LDAP attributes are named by the ldap_attr_domain1_schema2 and
ldap_attr_domain2_schema2 MTA options).

• User Action: Correct the domain entries so that each domain entry has its own, unique,
domain name (its own, unique, sunPreferredDomain value) and so that different domain
entries do not claim the same domain alias (same associatedDomain value). Note that
it is perfectly normal and legitimate to have domain aliases, and overlapping domain
name usage is also legitimate and supported -- but there are correct ways to provision such
usage. A domain alias is configured in Schema 2 via use of the associatedDomain LDAP
attribute on the real domain entry. Overlapping domain name usage is configured by use
of distinct domain entries that specify and control overlap via inetDomainBaseDN and
inetCanonicalDomain LDAP attributes.

%DMAP-E-DOMAINTOOLONG, Domain 'domain-name' in entry with DN 'DN-string'
is too long

• Facility: dmap_verify

• Severity: Error

• Explanation: The domain entry's (Schema 2 mode) domain name, that is, the value in its
sunPreferredDomain LDAP attribute (or for the MTA, more precisely whatever LDAP
attribute is named by the ldap_attr_domain1_schema2 MTA option), is longer than
1024 characters.

• User Action: Shorten the sunPreferredDomain value so that it is at most 1024 characters
long.

%DMAP-E-DOMAINUNDEF, Domain name 'domain-name' referenced by domain
entry with DN 'DN-string' never defined

• Facility: dmap_verify

• Severity: Error

• Explanation: The domain name usage is not consistent; an undefined domain name has
been found.

• User Action: Check the list of domains that can be properly located in the directory (see for
instance the ENUMERATE command of imsimta test -domain_map), and compare with
the list of domains you desire to have defined: look for any "orphan" (undefined/not located)
domain name.

%DMAP-W-EMPAPPSTAT, Domain 'domain-name' has an empty application

71–74 Messaging Server Reference

Error messages

status

• Facility: dmap_verify

• Severity: Warning

• Explanation: The mailDomainStatus domain attribute (or more precisely, the LDAP
domain attribute named by the ldap_domain_attr_mail_status MTA option) is
present but with no value set.

• User Action: The MTA interprets a missing value as meaning "inactive", but a valid value
should be set (especially as non-MTA components may have other behaviors upon failing to
find a valid value).

%DMAP-W-EMPDEFMAILHOST, Domain 'domain-name' has an empty mailHost
default

• Facility: dmap_verify

• Severity: Warning

• Explanation: The domain LDAP attribute named by the
ldap_domain_attr_default_mailhost MTA option (not set by default) is present, but
has no value set.

• User Action: Set a valid value, or remove the attribute.

%DMAP-W-EMPDISALLOWED, Domain 'domain-name' has an empty disallowed
attribute

• Facility: dmap_verify

• Severity: Warning

• Explanation: The iplanet-am-user-account-life domain attribute is present, but
with no value set.

• User Action: Remove the attribute.

%DMAP-W-EMPDOMSTAT, Domain 'domain-name' base node at DN-string has
an empty domain status

• Facility: dmap_verify

• Severity: Warning

• Explanation: Schema 2. The domain entry has no inetDomainStatus attribute, or such
an attribute has no value set. (For MTA purposes, more precisely the attribute named by
the ldap_domain_attr_status MTA option is not present or is present but with no
value set.) Processing will continue after this warning; indeed the MTA treats such a missing
attribute or empty value as equivalent to a setting of active.

MTA command line utilities 71–75

Error messages

• User Action: Consider setting inetDomainStatus to a value of active for clarity (and to
avoid this warning).

%DMAP-E-EMPTYBASEDN, Domain 'domain-name' has an empty base DN

• Facility: dmap_verify

• Severity: Error

• Explanation: The domain entry has an inetDomainBaseDN attribute (or for the MTA, more
precisely whatever attribute is named by the ldap_domain_attr_basedn MTA option),
but with no value set for that attribute.

• User Action: In Schema 1 mode, this attribute must be present and must have a value: set
a value for the attribute. In Schema 2 mode, this presence of this attribute is optional, but if
present it must have a value: either remove the attribute entirely (if the user entries are all
located directly under the domain entry), or set a correct value for the attribute.

%DMAP-E-EMPTYCANONICAL, Domain 'domain-name' has an empty canonical
name

• Facility: dmap_verify

• Severity: Error

• Explanation: The inetCanonicalDomainName domain attribute (or more precisely, the
LDAP domain attribute named by the ldap_domain_attr_canonical MTA option) is
present but does not have a value.

• User Action: Either remove the attribute, or set a valid value for it.

%DMAP-W-EMPUIDSEP, Domain 'domain-name' has an empty UID separator
attribute

• Facility: dmap_verify

• Severity: Warning

• Explanation: The domainUidSeparator domain attribute (or more precisely, the LDAP
attribute named by the ldap_domain_attr_uid_separator MTA option) is present, but
with no value set.

• User Action: Set a valid value, or remove the attribute. Note that while the MTA doesn't
directly use the value, the authentication library code does make use of the attribute's value.

%DMAP-F-INTDEFERROR, Internal defined flag error on domain
'domain-name', aborting

• Facility: dmap_verify

71–76 Messaging Server Reference

Error messages

• Severity: Fatal

• Explanation: The code encountered a problem with its internal hashed storage of domain
names, possibly a coding error.

• User Action: Report this error to Oracle.

%DMAP-F-INTHASHERROR, Internal hash error, aborting

• Facility: dmap_verify

• Severity: Fatal

• Explanation: The code encountered a problem with its internal hashed storage of domain
names or domain base DNs, possibly a coding error.

• User Action: Report this error to Oracle.

%DMAP-F-INTHASHERROR, Internal tree structure error, aborting

• Facility: dmap_verify

• Severity: Fatal

• Explanation: The code encountered a problem with its domain tree structure, possibly a
coding error.

• User Action: Report this error to Oracle.

%DMAP-F-INTTREESTRUCTERROR, Internal tree structure error, aborting

• Facility: dmap_verify

• Severity: Fatal

• Explanation: The code encountered a problem with its domain tree structure, possibly a
coding error.

• User Action: Report this error to Oracle.

%DMAP-W-INVALIDAPPSTAT, Application status 'string' for domain
'domain-name' is invalid

• Facility: dmap_verify

• Severity: Warning

• Explanation: The mailDomainStatus domain attribute (or more precisely, the LDAP
domain attribute named by the ldap_domain_attr_mail_status MTA option) has
an invalid value set: a value which is none of active, inactive, overquota, removed,
unused, nonlocal, disabled, hold, or deleted.

MTA command line utilities 71–77

Error messages

• User Action: Set a valid value. Although the MTA will interpret invalid values as meaning
"inactive", it is unwise to rely on that effect when other components with other behavior
may also interpret (and interpret differently) the attribute's value.

%DMAP-E-INVALIDBASEDN, Base DN pointer 'DN-string' in entry for
domain 'domain-name' is not a valid DN

• Facility: dmap_verify

• Severity: Error

• Explanation: The inetDomainBaseDN domain attribute's value, (for MTA purposes, the
value of whatever attribute is named by the ldap_domain_attr_basedn MTA option),
does not parse properly as a DN.

• User Action: Check for syntax errors in the value of inetDomainBaseDN.

%DMAP-E-INVALIDDEFMAILHOST, Default mailHost 'host-string' for domain
'domain-name' is invalid

• Facility: dmap_verify

• Severity: Error

• Explanation: The domain LDAP attribute named by the
ldap_domain_attr_default_mailhost MTA option (not set by default) is set to a
value which is not a syntactically valid domain name.

• User Action: Specify a syntactically valid (and, one hopes, semantically correct) domain
name as the value.

%DMAP-W-INVALIDDOMSTAT, Domain status 'status' for domain 'domain-name'
base node at DN-string is invalid

• Facility: dmap_verify

• Severity: Warning

• Explanation: Schema 2. The inetDomainStatus value (for MTA purposes, the value
of whatever attribute is named by ldap_domain_attr_status) was not valid: it was
something other than active, inactive, or deleted. Processing will continue after this
warning.

• User Action: If this is a domain intended for mail use by the MTA, set a valid
value for inetDomainStatus; however, if this domain is not going to be used
for mail purposes, this warning may not be of concern. (Note that "switching"
of the meaning of inetDomainStatus and inetDomainMailStatus is
supported by the MTA, by "switching" the values of ldap_domain_attr_status
and ldap_domain_attr_mail_status, with the attribute named by
ldap_domain_attr_mail_status, normally inetDomainMailStatus, allowing

71–78 Messaging Server Reference

Error messages

additional supported values. So other than a simply outright "wrong" value for
inetDomainStatus, another possibility is that the meanings and hence values were
"switched" in a prior configuration.)

%DMAP-W-INVALIDUIDSEP, Domain 'domain-name' has an empty UID separator
attribute

• Facility: dmap_verify

• Severity: Warning

• Explanation: The domainUidSeparator domain attribute (or more precisely, the LDAP
attribute named by the ldap_domain_attr_uid_separator MTA option) is set to a
value containing invalid characters.

• User Action: Set a valid value. Note that while the MTA doesn't directly use the value, the
authentication library code does make use of the attribute's value.

%DMAP-W-MULTDOMAINNAMES, Domain entry with DN 'DN-string' has
multiple domain names, used value 'name-1' ignored 'name-2'

• Facility: dmap_verify

• Severity: Warning

• Explanation: The domain entry has multiple values of the sunPreferredDomain LDAP
attribute (or for the MTA, more precisely whatever LDAP attribute is named by the
ldap_attr_domain1_schema2 MTA option). Processing will continue---but this is
presumably a provisioning error.

• User Action: Remove the extraneous sunPreferredDomain values.

%DMAP-W-MULTIAPPSTAT, Multivalued application status in entry for domain
'domain-name', used value 'first-found' ignored 'later-found'

• Facility: dmap_verify

• Severity: Warning

• Explanation: The mailDomainStatus domain attribute (or more precisely, the LDAP
domain attribute named by the ldap_domain_attr_mail_status MTA option) has
multiple values set.

• User Action: Remove the extraneous values: this should be a single-valued attribute. Note
that as LDAP leaves unspecified the order in which values are returned, having multiple
values set will result in unpredictable/unreliable results.

%DMAP-W-MULTIBASEDN, Multivalued base DN pointer in entry for domain
'domain-name', used value 'DN-string-1' ignored 'DN-string-2'

MTA command line utilities 71–79

Error messages

• Facility: dmap_verify

• Severity: Warning

• Explanation: The domain entry has two (or more) inetDomainBaseDN values (or for
the MTA, more precisely multiple values of whatever LDAP attribute is named by the
ldap_domain_attr_basedn MTA option). Processing continues, but a warning is issued
since this is presumably a provisioning error.

• User Action: Remove all but one inetDomainBaseDN value, as only one value will be
used. Note that if user/group entries for the domain are currently scattered under multiple
locations in the DIT, attempting to set multiple inetDomainBaseDN values to point to
those multiple locations will not work---instead, one inetDomainBaseDN must be specified
above all the user/group entries for the domain, restructing the DIT if necessary to achieve
this.

%DMAP-E-MULTICANONICAL, Multivalued canonical name in entry for domain
'domain-name', used value 'first-found' ignored 'later-found'

• Facility: dmap_verify

• Severity: Error

• Explanation: The inetCanonicalDomainName domain attribute (or more precisely, the
LDAP domain attribute named by the ldap_domain_attr_canonical MTA option) has
multiple values set.

• User Action: It is a provisioning error to have multiple canonical domain names set: remove
the extraneous value(s). Note that the LDAP specification does not define which value will
be returned "first", and indeed the order may vary from LDAP query to LDAP query. So
although processing will continue after such an error, the resulting effect during operation
may be unreliable, if varying canonical names are returned.

%DMAP-E-MULTIDEFMAILHOST, Multivalued mailhost default in entry for domain
'domain-name', used value 'value-0' ignored 'value-1'

• Facility: dmap_verify

• Severity: Error

• Explanation: The domain LDAP attribute named by the
ldap_domain_attr_default_mailhost MTA option (not set by default) has multiple
values set.

• User Action: Remove the extraneous values.

%DMAP-W-MULTIDOMSTAT, Multivalued domain status in entry for domain
'domain-name' base node at DN-string, used value 'status-0'
ignored 'status-1'

• Facility: dmap_verify

71–80 Messaging Server Reference

Error messages

• Severity: Warning

• Explanation: Schema 2. Multiple inetDomainStatus values (for MTA purposes, multiple
values for whatever attribute is named by ldap_domain_attr_status) were found.
Processing will continue after this warning, with whatever value LDAP happened to return
first being used.

• User Action: Remove all but one (correct) value for inetDomainStatus.

%DMAP-W-MULTIUIDSEP, Multivalued UID separator in entry for domain
'domain-name', used value 'value-0' ignored 'value-1'

• Facility: dmap_verify

• Severity: Warning

• Explanation: The domainUidSeparator domain attribute (or more precisely, the LDAP
attribute named by the ldap_domain_attr_uid_separator MTA option) has multiple
values.

• User Action: Remove the extraneous values. Recall that as LDAP makes no guarantees
regarding the order in which values are returned, having multiple values can lead to
unpredictable/unreliable results. Note that while the MTA doesn't directly use the value, the
authentication library code does make use of the attribute's value.

%DMAP-W-MULTIVALIAS, Multivalued alias pointer in entry for domain
alias 'domain-name', used value 'DN-string-0', ignored 'DN-string-x'

• Facility: dmap_verify

• Severity: Warning

• Explanation: The supposed domain alias entry has multiple values of the
aliasedObjectName LDAP attribute (in the case of the MTA, more precisely, multiple
values for whatever LDAP attribute is named by the ldap_domain_attr_alias MTA
option). All values other than the "first" that happened to be reported on this LDAP
query will be ignored---but recall that LDAP makes no guarantee as to the order in which
attributes are returned, so such ordering and hence which value is used may vary between
different queries! Since getting inconsistent effects, varying with the order in which the
LDAP directory happened to return results, is unlikely to be desirable, this is a warning of
what can be presumed to be a provisioning error, though processing will continue using the
"first" value reported by LDAP.

• User Action: Remove all the redundant or extraneous aliasedObjectName values, so
that only the one correct value remains in the domain alias entry, and so that consistent
processing will occur.

%DMAP-E-NOBASEDN, Domain 'domain-name' has no base DN

• Facility: dmap_verify

MTA command line utilities 71–81

Error messages

• Severity: Error

• Explanation: Schema 1. This domain entry has no explicit inetDomainBaseDN,
(or for the MTA, more precisely whatever LDAP attribute is named by the
ldap_domain_attr_basedn MTA option); such an attribute is required in Schema 1.

• User Action: Add an inetDomainBaseDN attribute specifying where users/groups in this
domain are stored in the DIT.

%DMAP-E-NOBASEDN, Domain 'domain-name' has an empty base DN

• Facility: dmap_verify

• Severity: Error

• Explanation: Schema 1 or Schema 2. This domain entry has an inetDomainBaseDN
LDAP attribute, (or for the MTA, more precisely whatever LDAP attribute is named by the
ldap_domain_attr_basedn MTA option) with no value set.

• User Action: Specify a value for the inetDomainBaseDN LDAP attribute specifying where
users/groups in this domain are stored in the DIT; or in Schema 2 only another alternative is
to remove the inetDomainBaseDN attribute entirely, to indicate that users and groups in
this domain will be located directly under this domain entry in the DIT.

%DMAP-W-NOBASEDNNODE, Base DN pointer 'DN-string' in entry for
domain 'domain-name' doesn't point at anything

• Facility: dmap_verify

• Severity: Warning

• Explanation: The inetDomainBaseDN value (for the MTA, more precisely the value
of whatever attribute is named by the ldap_domain_attr_basedn MTA option)
corresponds to no actual node in the directory. Processing will continue after this warning.

• User Action: If the domain in question is intended for current use, then this is a warning
of some form of provisioning error: either the inetDomainBaseDN value is incorrect, or
the data supposed to be in the directory is missing or in the "wrong" location. However, if
this is a "place-holder" domain entry intended for later use, but not yet fully provisioned
(in particular not yet provisioned with any users), then this warning may not be of concern
at this time. Decide whether the domain in question is intended for current use, and if so,
ensure that its inetDomainBaseDN value points to the intended base DN under which its
users are, or will be, located.

%DMAP-E-NODOMAINNAME, Domain entry with DN 'DN-string' does not have
a domain name

• Facility: dmap_verify

• Severity: Error

71–82 Messaging Server Reference

Error messages

• Explanation: Schema 2. The domain entry does not have a sunPreferredDomain
LDAP attribute (or for the MTA, more precisely whatever LDAP attribute is named by the
ldap_attr_domain1_schema2 MTA option).

• User Action: Add the domain name to the entry; that is, add a sunPreferredDomain
LDAP attribute specifying the desired domain name.

%DMAP-W-NODOMAINNAME, Domain entry with DN 'DN-string' has a blank
domain alias

• Facility: dmap_verify

• Severity: Warning

• Explanation: Schema 2. The domain entry has a associatedDomain LDAP
attribute (or for the MTA, more precisely whatever LDAP attribute is named by the
ldap_attr_domain2_schema2 MTA option) with no value. Processing continues, but a
warning is issued since this is presumably a provisioning error.

• User Action: Either set a valid value in associatedDomain, or remove the attribute.

%DMAP-W-NOENTRIES, No domain entries found, aborting

• Facility: dmap_verify

• Severity: Warning

• Explanation: No domain entries were found.

• User Action: This is the expected output if pointing to an LDAP directory that does not
contain Schema 1 or Schema 2 compatible domain entries. However, if the MTA has been
configured to consult an LDAP directory that does (supposedly) contain valid domain
entries, then something is wrong with basic configuration: e.g., MTA configuration for
what LDAP directory to consult is incorrect, or the MTA cannot see the domain entries
(authentication problems, or ACLs preventing access), or the MTA has not been configured
properly for where in the DIT to look to find domain entries.

%DMAP-W-SHORTFORMDEFMAILHOST, Default mailHost 'host-string' for domain
'domain-name' is a shortform name

• Facility: dmap_verify

• Severity: Warning

• Explanation: The domain LDAP attribute named by the
ldap_domain_attr_default_mailhost MTA option (not set by default) is set to a short
form hostname value, rather than to a fully qualified domain name.

• User Action: Use of fully qualified domain names is strongly recommended: change value to
be in fully qualified form.

MTA command line utilities 71–83

Error messages

%DMAP-W-SHORTFORMDOMAIN, Short form domain name 'domain-name'
defined/referenced by domain entry with DN 'DN-string'

• Facility: dmap_verify

• Severity: Warning

• Explanation: The domain name (whether constructed from the "dc" chunks in the DN in
Schema 1 mode, or found in the sunPreferredDomain attribute in Schema 2 mode) is a
"short form" host name, rather than a fully qualified domain name.

• User Action: Use of fully qualified domain names is strongly recommended; strongly
consider revisiting domain name usage and switching to use of fully qualified domain
names.

%DMAP-W-SHORTFORMDOMAINALIAS, Short form domain alias 'string' is
defined/referenced by domain entry with DN 'DN-string'

• Facility: dmap_verify

• Severity: Warning

• Explanation: A domain alias has been specified in "short form" host name form, rather than
as aa fully qualified domain name.

• User Action: Use of fully qualified domain names is strongly recommended; strongly
consider revisiting domain name usage and switching to use of fully qualified domain
names.

71–84 Messaging Server Reference

test -eightbit

71.27 test -eightbit utility
Test whether a file contains eight bit material.

71.27.1 Syntax

 imsimta test -eightbit filename

Table 71.21 imsimta test -eightbit Command Switches

Switch Default
-performance -noperformance

-summary -nosummary

-number -number

-mode=n -mode=0

71.27.2 Parameters

71.27.2.1 filename

The name of the file to inspect for eight bit material.

71.27.3 Description
Check whether or not a file contains eight bit material.

The output of this utility will say either:

File contains one or more 8-bit chars

or

File contains no 8-bit chars

In -noperformance -nosummary operation (the default), the output will also show which
line(s) contained eight bit material, with line numbers (unless -nonumber has been specified).

71.27.4 Switches

71.27.4.1 -performance, -noperformance (default)

When -performance is specified, the utility reads the entire file into memory and then scans
the in-memory copy of the file. -performance operation may be faster, but does not allow for
outputting which line(s) contained eight bit material. -performance may not be specified if
-summary is specified.

MTA command line utilities 71–85

Examples

71.27.4.2 -summary, -nosummary (default)

Specifying -summary disables outputting which specific lines contained eight bit material.
-nosummary (meaning that such lines are output) is the default. -summary may not be
explicitly specified if -performance is specified; -performance always causes summary-
like output.

71.27.4.3 -number (default), -nonumber

-number (the default) means that when outputting lines containing eight bit material
(which is done in -nosummary -noperformance operation), to prefix those lines with line
numbers. -nonumber turns off the line numbering.

71.27.4.4 -mode=n

The default is -mode=0.

71.27.5 Examples

imsimta test -eightbit IMTA_LIB:locale/en/return_error.txt
File contains no 8-bit chars
imsimta test -eightbit IMTA_LIB:locale/fr/return_error.txt
 1 Des erreurs de traitement se sont produites lors de la distribution?:
 4 Le traitement de la distribution s'est poursuivi malgr? ces erreurs.
File contains one or more 8-bit chars

The above two commands show example output for a file containing no eight bit characters,
compared to a file that does contain eight bit characters. (Note that unless you have gone to
special work on a UNIX system to properly display eight bit characters, any eight bit character
is likely to appear as a question mark, as shown in this example.)

71–86 Messaging Server Reference

test -expression

71.28 test -expression utility
Test an expression, e.g., a Sieve filter or configuration recipe.

71.28.1 Syntax

 imsimta test -expression

Table 71.22 imsimta test -expression Command Switches

Switch Default
-statement=n -statement=1

-multiple -multiple

-block -noblock

-symbols -nosymbols

-uav=n -uav=1

-input=filename None
-output=filename None
-parseonly None
-string=n -string=65535

-iterations=n -iterations=max_sieve_match_iterations

-list=n -list=max_sieve_list_size

-debug[=n] -debug=1

-mm See text
-xc See text
-message=filename None
-required -required

-from=address -from="postmaster-address"

-to=recipient-address -noto

-envid=id -noenvid

-system -nosystem

-mtpriority=n -mtpriority=0

-sender=sender -nosender

-username=username -nousername

-utf8 -noutf8

-source=source-channel-name -source=l

-rsecret=recall-secret -norsecret

71.28.1.1 Restrictions

Must be superuser or the MTA user (the user option in restricted.cnf, or prior to
MS 7.0.5, the imta_user MTA Tailor option value), or be in the group specified by the

MTA command line utilities 71–87

Description

group option in restricted.cnf (prior to MS 7.0.5, be in the group specified by the
imta_world_group MTA Tailor option value), in order to have any hold or capture
actions applied by a Sieve filter be shown in the utility's output.

71.28.1.2 Prompts

Table 71.23 imsimta test -exression Prompts

Prompt Value
Expression: expression

71.28.2 Description
Test an expression, such as a Sieve filter or a configuration recipe. test -expression -mm
tests message enqueue functions, such as Sieve filters (with the -message switch). test
-expression -xc tests recipe syntax operating on a Unified Configuration. Testing consists
of parsing the expression, which converts it to an internal compiled form, and then evaluating
the compiled form. The -parseonly switch can be used to disable the evaluation step.

Basic arithmetic and string operators are supported in expressions; and when variables may
be used, that is, if the -symbols switch has been used, then additional operations upon
variables are supported. For a list of the supported operators (with one exception), see the
recipe language's list of Operators in Order of Precedence. The one difference between the
operator support for the recipe language, vs. for Sieve filters, is that since in Sieve syntax
square brackets represent lists, indexing into a string in Sieve must be performed using
parentheses rather than square brackets. So for instance a Sieve script:

require "fileinto";
str := "12folderXYZ";
substr := str(3,9);
fileinto substr;

is equivalent to 'fileinto "folder";'. (See Variable indices under Recipe language for
further discussion of indexing into strings and lists.)

Without the -mm switch, test -expression tests symbol table functions (in general,
comprising various string functions). The symbol table functions available include those
shown in Symbol table functions. (Note that this set of functions supported by imsimta
test -expression and by Sieve filters does not include all of the Recipe language functions
discussed under Recipe language; the recipe language includes support for additional
functions useful in configuration recipes.)

Conditional expressions may be used, having the form:

test ? then-result : else-result

However, "if..." tests of the form

if test {then-result} else {else-result}

are only allowed in certain contexts; in particular, they are not allowed when only basic
expressions are permitted, as in mapping table expression substitutions.

71–88 Messaging Server Reference

Description

Table 71.24 Symbol table functions

Function Description
abs(i) Return the absolute value of i.
allof(i1[,i2...]) Returns a nonzero value if all of i1, i2, ... are nonzero; returns 0

otherwise.
any(s1,s2) Return 2 if any character in s1 appears as the first character of s2;

return 0 otherwise.
anyof(i1[,i2...]) Returns a nonzero value if any of i1, i2, ... are nonzero, returns 0 if

all are zero.
bal(c1,c2,c3,s) Scan s looking for an occurence of a character in c1 that is balanced

with respect to c2 and c3. Returns the position of the first balanced
c3 character in s if one is found, length(s)+1 if no c3 character
is found but the string as a whole is balanced, or 0 if the string isn't
balanced.

center(s1,n,s2) Return a string that has string s1's last character at position n,
padding on the left with the character or characters from string s2. s2
may be omitted, in which case space characters are used to pad out
the string.

check8(s) Return 1 if string s contains any eight bit data; return 0 otherwise.
check8(s,n) If n is 0, it is ignored and the function returns 0 or 1 according to

whether the string s contains any eight bit data. If n is any positive
integer, then return the string s with any eight bit characters replaced
by the question mark character, "?".

chr(i1[,i2...]) Returns a string containing successive characters with decimal values
i1,i2, ...

datetime Return the current date and time, in RFC 822/RFC 1123 date-time
string format, e.g., "Fri, 10 Oct 2008 15:40:02 -0700
(PDT)"

decode [:e] s Decodes the string s from the specified encoding :e. The :e
nonpositional parameter must be one of :base64, :base85, :hex, :idn,
or :quotedprintable. The default is :hex.

defined(s) Returns 1 if s is defined as a variable; return 0 otherwise.
encode [:e] s Encodes the string s into the specified encoding

:e. The :e nonpositional parameter must be one
of :base64, :base85, :hex, :idn, :param, :quotedprintable, or :url. The
default is :hex.

find(s1,s2[,i,j]) Returns the position of the first occurence of s1 in s2[i:j]. The
entire string is searched if i and j are omitted.

find(s,l[,i,j]) Returns the position of the first list element from l[i:j] that
matches s. The entire list is searched if i and j are omitted.

genid Return a unique id string, such as that used for generating Message-
id's or message queue file names.

integer(e) Converts e to an integer. If e is already an integer it is returned
unchanged; if e is a string it is read as a sequence of ASCII digits. If e
is a list it must contain one element and is treated in the same way a
string would be.

MTA command line utilities 71–89

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc1123

Description

lcase(e) Converts any upper case characters in e to lower case. If e is a
number it is converted to a string.

left(s1,i[,s2]) Returns leftmost i characters of s1. If i is greater than length(s1)
the result is padded with s2. As much of s2 as is necessary will be
used; if s2 is too short it will be used multiple times. s2 defaults to a
space if it is omitted.

left(l1,i[,l2]) Returns leftmost i elements of l1. If i is greater than length(l1)
the result is padded with l2. As much of l2 as is necessary will be
used; if l2 is too short it will be used multiple times. l2 defaults to
one empty list element if it is omitted.

length(s) Returns the number of 8-bit characters in the string s.
length(l) Returns the number of elements in the list l.
list(s[,n]) Returns a list n elements long with each element equal to the string s.

If omitted n defaults to 1.
list(l[,n]) Returns a list consisting of n copies of list l. If omitted n defaults to 1.
map(s1,s2,s3) Returns a string obtained by mapping characters of s1 that occur in

s2 into corresponding characters in s3. Characters that don't appear
in s2 are unchanged.

max(i,j[,...]) Returns the largest element in a set of integers.
match(r,s) Returns 1 (true) if the regular expression r matches a substring of

string s, 0 (false) otherwise. Note that the pattern r may be prefixed
with "^" (match beginning of line) and suffixed with "$" (match end of
line) to require a full string match. The regular expression vocabulary
is compatible with that of the TCL/TK scripting language.

max(s1,s2[,...]) Returns the largest element in a set of strings.
min(i,j[,...]) Returns the smallest element in a set of integers.
min(s1,s2[,...]) Returns the smallest element in a set of strings.
repl(s,j) Returns a string consisting of j concatenations of s.
repl(l,j) Returns a list consisting of j concatenations of l.
reverse(s) Reverses all the characters in s and returns the result.
reverse(l) Reverses all the elements in l and returns the result.
right(s1,i[,s2]) Returns rightmost i characters of s1. If i is greater than

length(s1) the result is padded with s2. As much of s2 as is
necessary will be used; if s2 is too short it will be used multiple times.
s2 defaults to a space if it is omitted.

right(l1,i[,l2]) Returns rightmost i elements of l1. If i is greater than length(l1)
the result is padded with l2. As much of l2 as is necessary will be
used; if l2 is too short it will be used multiple times. l2 defaults to
one empty list element if it is omitted.

sign(i) Returns -1 if i < 0, 0 if i = 0, +1 if i > 0.
sort(l1[,i[,l2]]) Sorts the elements of l1 to be in ascending order if i <> 0 and

descending order if i = 0. i defaults to 1 if it is omitted. If l2 is
present its elements are shifted in the same way as elements in l1 are
shifted.

71–90 Messaging Server Reference

Description

split(s[,c[,i]]) Produces a list of elements consisting of pieces of s delineated by
characters in c. If omitted c defaults to a comma. If i is 0 or 1, zero
length elements are preserved; if i is 2, they are not. If omitted i
defaults to 1.

split(l[,c[,i]]) Produces a list of elements consisting of pieces of elements of l
delineated by characters in c. If omitted c defaults to a comma. If i
is 0, boundaries between the original elements aren't preserved and
zero length elements can be output; if i is 1, boundaries are preserved
and zero length elements can be output; if i is 2, boundaries aren't
preserved and zero length elements are omitted. If omitted i defaults
to 1.

string(e) Converts e to a string. If e is already a string it is returned
unchanged. If e is an integer it is converted to a string. If e is a list, the
string that results from concatenating the elements of e is returned.

string(l,s) Converts the list l to a string, inserting the string s between each pair
of elements of l. So for instance string(["a","cd","e"],"01")
would return the string "a01cd01e".

string(i[,j[,k]]) (New in MS 6.3 are the optional second and third arguments.)
Converts the integer i to a string, optionally padding with zeros
(on the left) so that the length of the string is j, and optionally
outputting the result in the radix specified by k. So for instance
string(15,8,2) returns 00001111.

trim(s[,c]) Returns s with any trailing characters found in c removed. c defaults
to space and tab if omitted.

trim(l[,c]) Returns l with any trailing characters found in c removed from each
element. c defaults to space and tab if omitted.

type(e) Returns "integer" if e evaluates to an integer, "string" if e
evaluates to a string, and "list" if e evaluates to a list.

ucase(e) Converts any lower case characters in e to upper case. If e is a
number it is converted to a string.

Directory function Description
gettag(x) If x evalutes to a string, returns the tag character for that string. If x

evaluates to a list, returns the default and per-element tags as a string.
An error will be returned if x evalutes to anything other than a string
or list.

settag(x,y) Sets the tag or tags of x to y. x may be either a string or a list. If x is a
string, then y must be a one character string. If x is a list, then y must
be a string of length length(x)+1 and the first character of y must
be a space.

The expression to test may be read from a file via the -input switch. If -input is not
specified, then the utility enters an interactive loop, prompting for expressions to test with an
"Expression:" prompt; the utility will exit when CTRL/D (UNIX) is entered.

By default, each line of expression is evaluated independently (separately). The -block switch
may be used to tell the utility to evaluate the entire block of input expression(s) at once, as a
whole; thus in particular, -block is useful when evaluating a multi-line Sieve filter.

MTA command line utilities 71–91

Switches

New in MS 7.0u2, imsimta test -expression -mm will return a nonzero status in the
event of either a parse or evaluation error.

71.28.3 Switches

71.28.3.1 -block, -noblock (default)

By default (-noblock), input is evaluated one line at time. With the -block switch,
evaluation is postponed until the entire input file has been read (if the -input switch is
used), or until CTRL/D is entered (if -input is not used and expressions are being entered
interactively). Thus in particular -block allows use of multi-line Sieve constructs.

71.28.3.2 -debug[=n], -nodebug (default)

The test -expression utility is capable of outputting additional, detailed information
about the internal steps of its operation. The -debug switch enables this output. Specifying
-debug is equivalent to specifying -debug=1; greater amounts of debug information can be
requested by specifying -debug=n for values of n up to 10.

Note that a debug level of 2 or more enables output of strings specified via Sieve "debug"
actions. Note that a debug level of 3 or more enables output (via "mmc_output_line(x)
header line:" debug output lines) of the header lines of the message file being processed,
while a debug level of 4 or more enables output not only of the header lines, but also of the
message body lines handled in memory (via "mmc_output_line(x) internal body
line:" debug output lines) of the message file being processed, and a debug level of 5
or more enables output of the message body lines handled via an external file for "large"
message bodies (via "mmc_output_line(x) external body line:" debug output lines).
-debug=1 is the default.

New in MS 7.0u2, -nodebug turns off the dump of the expression.

71.28.3.3 -envid=id, -noenvid (default)

(New in MS 7.0u3.) -envid is only available when -mm and -message are specified. -envid
sets the envelope ENVID value for use with the Sieve envelope-dsn extension for envelope
ENVID tests. -noenvid is the default.

71.28.3.4 -from=return-address, -to=recipient-address,
-noto (default)

(-from new in MS 6.2; -to and -noto new in MS 6.3) -from and -to are only available
when -mm and -message are specified. -from sets the return address for use in Sieve
envelope From comparisons. If this switch is not used, the default postmaster address is
assumed (see the return_address MTA option).

To specify an empty (null) envelope From, the command wants to see -from=""--- however
shell quoting, e.g., -from=\"\", may be required in order to get such an argument through
the shell.

-to sets the recipient address for use in Sieve envelope To comparisons. If this switch is not
used, or if -noto is explicitly specified, then no recipient address is set.

71–92 Messaging Server Reference

Switches

71.28.3.5 -input=filename

The -input switch tells the utility to read its input from the specified file, rather than
prompting for and reading input interactively. Note that when using -input to enter a Sieve
filter file, one usually also wants to use -block (so that multi-line Sieve constructs can be
handled).

71.28.3.6 -iterations=n

The -iterations switch may be used to specify the maximum number of iterations
permitted in the internal code implementing :matches, overriding (for this command
execution) any setting of the max_sieve_match_iterations MTA option. (Note that the
default value of max_sieve_match_iterations is 1,000,000,000.)

71.28.3.7 -list=n

The -list switch may be used to specify the maximum size of list permitted, overriding (for
this command execution) any setting of the max_sieve_list_size MTA option. (Note that
the default value of max_sieve_list_size is 64.)

71.28.3.8 -message=filename

The -message switch may only be used when the -mm switch is present. It is used to specify
an input message to process; this should be an RFC 822 message, not a message file from the
MTA's queue area (which contains additional, envelope information beyond the basic RFC 822
message itself).

71.28.3.9 -mm, -xc

The -mm switch means to test using the MTA's normal enqueue code. The -xc switch (new in
MS 7.5) means to test recipe language syntax, operating on a Unified Configuration. -mm and
-xc may not be specified together.

71.28.3.10 -mtpriority=n, -nomtpriority (default)

(New in MS 8.0) -mtpriority takes a required integer argument specifying the initial
MT-PRIORITY value. This can affect, for instance, the value of the Sieve environment item
vnd.oracle.mtpriority. This may only be specified when -mm has also been specified.
Furthermore, it is only relevant when -message has been specified (though it will not result
in an error to specify -mtpriority without -message).

71.28.3.11 -multiple (default), -nomultiple

Specifying -nomultiple disables evaluating multiple, semicolon-separated, result-
generating, statements per physical line. When -nomultiple is specified, only the first result
found when evaluating the line will be returned. -multiple is the default.

71.28.3.12 -output=filename

The -output switch tells the utility to output to the specified file, rather than to the terminal
screen.

71.28.3.13 -required (default), -norequired

MTA command line utilities 71–93

https://tools.ietf.org/html/rfc822

Switches

(New in MS 6.2.) The -required or -norequired switch may only be used when -mm
is specified. Specifying -norequired causes Sieve "require" clauses to not be required:
any Sieve operation that would normally need an appropriate "require" clause in order
to be permitted will be permitted even without such a "require" clause. In other words,
-norequired gives an effect as if the Sieve script in question had initially done a

require list-of-all-possible-extensions;

71.28.3.14 -rsecret=recall-secret, -norsecret (default)

(New in MS 8.0) Specify the recall secret. This is only relevant when -message has been
specified.

71.28.3.15 -sender=sender-address, -nosender (default)

(New in MS 8.0.) The -sender switch may be used to specify an "authenticated" sender
address, as if SMTP AUTH had been used. For instance, the Sieve environment item
vnd.sun.authenticated-sender-address will be set to the sender value, if specified.
This is only relevant when -message has been specified.

71.28.3.16 -source=source-channel-name, -nosource

(New in MS 8.0) Specify the source channel; the default is l (the "L"ocal channel). This is only
relevant when -message has been specified.

71.28.3.17 -statement=n

Set symbol table statement parsing flags. The argument is a bit-encoded integer, with default
value 1. The meanings of the various bits are shown below.

Table 71.25 Statement parsing flags

Bit(s) Value(s) Usage
0 1 Allow statements
1 2 Allow loops, including the Sieve "loop"

construct
2-4 4-28 Debug level (4, 8, 12, ... 28)
6 64 Allow mapped file
7 128 Allow directives
8 256 Enforce "require" must be used only at

beginning of Sieve
9 512 Allow bracketed lists
10 1024 Return evaluation error details

Bit 0 is the least significant bit.

Note that use of the -mm switch sets bit 9 (allow bracketed lists). Use of the -debug switch sets
bits 2 through 4 (debug level).

71.28.3.18 -string=n

71–94 Messaging Server Reference

Examples

The -string switch may be used to specify the maximum length of string permitted; the
default is 65535.

71.28.3.19 -symbols, -nosymbols (default)

The -symbols switch allows the use of variables and symbolic values, and operations may be
performed on variables. For instance, symbolic names such as IMTA_TABLE may be used to
reference the imta_table directory specification, and assignments may be made to symbolic
variable names, such as a := 1, and operators such as those shown in Operators in Order of
Precedence of the recipe language may be used. -nosymbols is the default.

71.28.3.20 -system, -nosystem (default)

(New in MS 7.0.5) The -mm switch must be used in order to use -system. If -system is
specified with -mm, then the Sieve is treated as a system-level Sieve; if not, then it is treated as a
user-level Sieve.

71.28.3.21 -uav=n

The -uav switch controls the interpretation of unassigned variables. The default is -uav=1.

Table 71.26 Unassigned variable interpretation

Value Usage
0 Variables must be predefined; variable creation not allowed
1 Assignment defines variable; no default value
2 Define variable upon first reference; default value ""
3 Define variable upon first reference except in modify operations;

default value 0
4 (New in MS 8.0/patch to MS 7.0u5) Same as value 1 (assignment

defines variable; no default value), with the difference
(appropriate for Sieve usage) don't create a symbol table at parse
time

71.28.3.22 -username=username, -nousername (default)

(New in MS 8.0) The -username switch may be used to specify a username, relevant
when username-based checks are in use. For instance, the Sieve environment item
vnd.sun.authenticated-sender-id will be set to the username value, if specified. This
is only relevant when -message has been specified.

71.28.3.23 -utf8, -noutf8 (default)

(New in MS 8.0) The -utf8 switch specifies allowing use of internationalized email addresses,
as with the SMTPUTF8 SMTP extension (from RFC 6531). -noutf8 is the default.

71.28.4 Examples

./imsimta test -expression -mm -block -message=msg.txt

MTA command line utilities 71–95

https://tools.ietf.org/html/rfc6531

Examples

Expression: require "fileinto";
Expression: if header :contains ["Subject"] ["foo"] { fileinto "foo"; }
Expression: if header :contains ["Subject"] ["test"] { discard; }
Expression: CTRL/D
Dump: header:2000111;0 3 1 :contains 1 "Subject" 1 "foo" if
Dump: 5 ; fileinto:2000110;0 1 1 "foo" ; header:2000111;0 3
Dump: 1 :contains 1 "Subject" 1 "test" if 3 ; discard:2000107;0
Dump: 0
Result: 1
Filter result: [discard]

The above command sequence tests the result of various Sieve filter command lines on a
message file, msg.txt, that for the purposes of this example is assumed to have a Subject:
header line that contains the word "test" but does not contain the word "foo".

./imsimta test -expression -mm -block -message=msg.txt -from=\"\"
Expression: require ["envelope","fileinto"];
Expression: if envelope :all :is "from" "" { fileinto "notifications"; }
Expression: CTRL/D
Dump: envelope:4000115;0 4 1 :all 1 :is 1 "from" 1 "" if 5
Dump: ; fileinto:4000114;0 1 1 "notifications"
Result: "notifications" ' '
Filter result: [fileinto "notifications"]

The above command sequence tests the result of a Sieve filter script that files all notification
messages (messages with empty envelope From) to a folder named "notifications", when
that Sieve filter is presented with some message and when the envelope From is set to be
empty via the -from switch.

./imsimta test -expression -mm -statement=3 -block -message=msg.txt"
Expression: loop { discard; exitif (true); }
Expression: CTRL/D
Dump: loop 5 discard;0 0 ; 1 exitif
Result: 1
Filter result: [discard]

The above example shows use of the new-in-MS-7.0.5 "loop" construct in a Sieve filter. Note
that -statement=3 must be specified on the command line in order to use a "loop" construct
in this utility.

71–96 Messaging Server Reference

test -hash

71.29 test -hash utility
Test generating a hash of a string or of file contents.

71.29.1 Syntax

 imsimta test -hash hash-name [file-name]

Table 71.27 imsimta test -hash Command Switches

Switch Default
-string=string -nostring

-repetitions=n None
-key=key None

71.29.2 Parameters

71.29.2.1 hash-name

Required parameter specifying the hash function to use. Valid values are MD2, MD4, MD5, SHA1,
SHA256, SHA512, MD128, or MD160.

71.29.2.2 file-name

Optional parameter specifying the name of a file whose contents to input to the hash function.
The -string switch may not be used if a file is specified.

71.29.3 Description
The imsimta test -hash utility generates a hash of string or file input. This may be
of interest when testing the MTA's ability to generate message hashes, a feature useful for
message archiving purposes.

71.29.4 Switches

71.29.4.1 -string=string, -nostring (default)

-string may not be specified if a file-name parameter has been supplied.

71.29.4.2 -key=key

May only be used when a string is being hashed (-string), not when a file is specified.

71.29.4.3 -repetitions=n

May only be used when a string is being hashed (-string), not when a file is specified.

MTA command line utilities 71–97

Examples

71.29.5 Examples

./imsimta test -hash -string="just a test" SHA1
Hash value: E6F36746CCBA42C288ACF906E636BB278EAEB7E8

In the above example, a hash of the string "just a test" is generated using the SHA-1 hash
function.

71–98 Messaging Server Reference

test -header

71.30 test -header utility
Test message header processing.

71.30.1 Syntax

 imsimta test -header

Table 71.28 imsimta test -header Command Switches

Switch Default
-length=n -length=80

-increment=n -increment=20

-alignment=n -alignment=0

-options=filename None
-push -nopush

-apply -noapply

-folds -nofolds

-blank -noblank

-digits -nodigits

-trim -trim

-keeporder -nokeeporder

-input=filename None
-output=filename None
-postscript -nopostscript

-dump -nodump

71.30.2 Parameters
None.

71.30.3 Description
The imsimta test -header utility parses header lines, optionally performing certain types
of header trimming, and outputs the processed header lines (including, prior to MS 7.0u4, a
PostScript version). The utility may either read header lines from a file (-input=filename)
or from the command line (in that case prompting with header>). The output takes the
general form:

--- Output with options ---

parsed> header-line-1
parsed> header-line-2
...

MTA command line utilities 71–99

Switches

--- PS ---

PostScript-output

--- After decode/encode and no options ---

parsed> header-line-1
parsed> header-line-2
...

though as of MS 7.0u4, the PostScript output is optional and will not be included unless
-postscript is explicitly specified. The "Output with options" section of the output
is what results from performing any relevant header trimming specified via the -options
switch. The "After decode/encode and no options" section of the output shows
canonicalization effects on header field names and header field values, but does not include
effects of -options header trimming unless -apply has been specified.

71.30.4 Switches

71.30.4.1 -alignment=n

Specify the alignment point for header lines, analogous to the headerlabelalignment
channel option; the default is 0, which causes header lines not to be aligned.

71.30.4.2 -apply, -noapply (default)

-apply causes application of any relevant header trimming directives specified via the
-options=filename switch, applying such trimming to the underlying header structure.
Note that not all trim options make sense to apply to the underlying header structure, as some
trim options relate to output, not to the underlying header storage. So for instance trim options
such as RELABEL, and LINELENGTH, are not relevant (and will not occur) with -apply.
-apply is only relevant when -options has been specified (-apply has no effect unless
-options has been specified), so -apply cannot sensibly be combined with -keeporder;
(as of MS 7.0u4, indeed the combination is an error).

71.30.4.3 -blank, -noblank (default)

The default is -noblank.

71.30.4.4 -digits, -nodigits (default)

The default is -nodigits.

71.30.4.5 -dump, -nodump (default)

(New in MS 7.0u4) When -dump is specified, the output includes, prior to the "After applying
options" output:

--- Dump of header ---
dump of header structure

71–100 Messaging Server Reference

Examples

71.30.4.6 -folds, -nofolds (default)

The default -nofolds switch corresponds to the headerfoldremove channel option, while
the -folds switch corresponds to the headerfoldpreserve channel option.

71.30.4.7 -increment=n

Specify the increment used when attempting to fold header lines, analogous to the
headerlineincrement channel option; the default is 20.

71.30.4.8 -keeporder, -nokeeporder (default)

Specifying -keeporder causes -options to be ignored, and forces -noapply. (As of MS
7.0u4, attempting to specify either -options or -apply with -keeporder is an error.)

71.30.4.9 -linelength=n

Specify the length at which to wrap header lines, analogous to the headerlinelength
channel option and the LINELENGTH header trimming option; the default is 80.

71.30.4.10 -options=filename, -nooptions (default)

The -options switch specifies a header trimming option file to open, read, and parse.
Options relevant to output of header lines will be shown when -apply is not specified; if -
apply is specified then only those options affecting the underlying header structure (header
structure storage) will take effect. (In particular, with -apply set, only ADD, FILL, and
PRECEDENCE will take effect. In contrast, with the default -noapply, then options such as
RELABEL and LINELENGTH will also take effect.) -options can not be combined with -
keeporder; (indeed, as of MS 7.0u4 specifying both is an error).

71.30.4.11 -postscript, -nopostscript (default)

(New in MS 7.0u4) -nopostscript (the default as of MS 7.0u4) disables the outputting of a
PostScript version of the header lines. Specifying -postscript causes the PostScript version
to be output; prior to MS 7.0u4, this was not controllable with the PostScript version always
being output.

71.30.4.12 -push, -nopush (default)

Specifying -push causes the MTA to use a different way of reading header information. The
results with -push vs. -nopush should always be identical; report to Oracle if differences are
seen. -push is ignored if -input has been specified; (indeed, as of MS 7.0u4 attempting to
specify both is an error). -nopush is the default.

71.30.4.13 -trim (default), -notrim

Control whether or not to trim trailing white space off header lines. The default is -trim,
meaning to perform such white space trimming.

71.30.5 Examples

MTA command line
utilities 71–101

Examples

./imsimta test -header
header> CoNtEnT-TrAnsFeR-eNcOdInG: bAsE64
header>
--- After applying options ---

parsed> Content-transfer-encoding: bAsE64

--- PS ---

/Courier-Bold findfont 10 scalefont
/Courier findfont 10 scalefont
/SHOW_HEADERS where
{pop (Content-transfer-encoding: bAsE64) SHOW_HEADERS}
{35 720 moveto exch dup setfont (Content-transfer-encoding:) show exch dup
setfo
nt (bAsE64) show} ifelse
pop pop

--- After decode/encode and no options ---

parsed> Content-transfer-encoding: BASE64
header> Ctrl-D
#

The above example from an older version (when the PostScript was included by default)
shows the canonicalization of the Content-transfer-encoding: header line field name, and field
value.

./imsimta test -header -options=IMTA_TABLE:return_header.opt -input=sample_headers.txt

--- Output with options ---

parsed> Message-id: <01NYWMSLISS600H4Y@domain.com>
parsed> Date: Mon, 14 Mar 2011 14:18:50 -0700 (PDT)
parsed> From: John Doe <jdoe@domain.com>
parsed> To: Jane Brown <jbrown@domain.com>
parsed> Subject: New report

--- After decode/encode and no options ---

parsed> Received: from localhost by host.domain.com
parsed> (Oracle Communications Messaging Exchange Server 7u5-2.03 64bit)
parsed> (built Feb 6 2011) with ESMTP id <0G8P00B01ZFNUV@domain.com>
parsed> for jbrown@domain.com (ORCPT jbrown@domain.com); Mon,
parsed> 14 Mar 2011 15:47:47 -0800 (PDT)
parsed> Date: Mon, 14 Mar 2011 15:47:47 -0800 (PDT)
parsed> From: John Doe <jdoe@domain.com>
parsed> Subject: New report
parsed> To: Jane Brown <jbrown@domain.com>
parsed> Message-id: <01NYWMSLISS600H4Y@domain.com>
parsed> MIME-version: 1.0
parsed> Content-type: MULTIPART/MIXED
#

71–102 Messaging Server Reference

Examples

The above example shows applying the default header trimming file, return_header.opt,
used when constructing DSNs; see Sample distributed return_header.opt file. Note that
such trimming has removed the Received:, MIME-version:, and Content-type: header lines,
and moved the Message-Id: header line above the other retained header lines.

MTA command line
utilities 71–103

test -mapping

71.31 test -mapping utility
Test an MTA mapping table.

71.31.1 Syntax

 imsimta test -mapping [input-string]

Table 71.29 imsimta test -mapping Command Switches

Switch Default
-context -context

-debug -nodebug

-
destination_channel=channel

-nodestination_channel

-flags=list-of-characters -noflags

-image_file -image_file

-mapping_file=file-spec -mapping_file=IMTA_TABLE:mappings

-option_file=file-spec -option_file=IMTA_TABLE:option.dat

-table=table-name None
-reload -noreload

-input=file-spec -input=stdin

-originator=address -nooriginator

-output=file-spec -output=stdout

-sources -sources

-source_channel=channel -nosource_channel

71.31.1.1 Prompts

Table 71.30 imsimta test -mapping Prompts

Prompt Value
Enter table name: table-name

71.31.2 Parameters

71.31.2.1 input-string

Optional input string to run through the mapping.

71.31.3 Description
imsimta test -mapping may be used to test the behavior of an MTA mapping table.
The string resulting from mapping an input string will be output along with a list of any
metacharacters specified in the output string.

71–104 Messaging Server Reference

Switches

If an input string is supplied on the command line, then only the result of mapping that input
string will be output. If no input string is specified, then imsimta test -mapping will
enter a loop, prompting for an input string, mapping that string, and prompting again for
another input string. imsimta test -mapping will exit when a CTRL/D (UNIX) is entered.

Note that this utility is testing only the formal syntax and formal result of a mapping table; it
is not testing what the mapping table means (the effect of the mapping table) for actual MTA
operation. In particular, for testing the effect of the FROM_ACCESS mapping table or recipient
address *_ACCESS mapping tables, see instead the test -rewrite utility.

Or in the other (less semantic, more syntactic) direction, note that the matching of wildcards
in mapping table patterns (left hand sides of entries) may be tested in detail via the test
-match utility, which may be of particular interest when using "complex" wildcards such as
character "glob" matches, or IP address prefix matches.

71.31.4 Switches

71.31.4.1 -context (default), -nocontext

(New in MS 7.0) The -context switch is the default, and causes the mapping table to be
probed as if operating in a normal, MTA usage, application (with normal MTA initialization
having been performed). -nocontext causes the mapping table to be probed as if operating
in a mode without normal MTA initialization, and hence may be useful for testing mapping
table operation in non-MTA contexts.

71.31.4.2 -debug, -nodebug (default)

The mapping test process is capable of producing additional, detailed information about the
sequence of steps in the mapping probe(s) and match(es). Such information is particularly
likely to be of interest (useful) with iterative mapping tables, or mapping tables that involve
callouts; that is, such debug information is most likely to be of interest when exploring
implications of $C, $L, or $R metacharacter use, or effects of callouts such as to other mapping
tables, to the general database, to LDAP, or to Oracle or site-supplied routines. The -debug
switch enables this output; it is disabled by default.

71.31.4.3 -destination_channel=channel

(New in MS 8.1.0.1) The -destination_channel switch is used to specify a destination
channel when the MTA is initialized for writing. The source channel is used if no desitnation
channel is specified. See the documentation on the -source_channel switch below for
additional information.

71.31.4.4 -flags=list-of-characters, -noflags (default)

The -flags switch is used to specify particular flags to set during the mapping testing; for
instance, the E (envelope), B (header/body), R (backwards pointing), or I (message id) flags
when testing a REVERSE mapping. Multiple flags may be specified by concatenating them, e.g.,
-flags=BR.

71.31.4.5 -image_file (default), -noimage_file

When the -image_file switch is specified (the default), the MTA will load the compiled
configuration file CONFIGROOT/advanced/config_data (located prior to MS 7.0 via

MTA command line
utilities 71–105

Switches

the imta_config_data MTA Tailor option). When -noimage_file is specified, then
imsimta test -mapping will unconditionally ignore any compiled mapping information
and instead read mapping information directly from the named MTA mapping groups
(Unified Configuration) or the mappings file (legacy configuration).

71.31.4.6 -input=filename

(New in MS 8.0) By default, imsimta test -mapping takes input from stdin. The -input
switch may be used to specify a different source for input.

71.31.4.7 -mapping_file=filename

This switch instructs imsimta test -mapping to use the specified mapping file rather than
the default MTA mapping file, CONFIGROOT/mappings (located prior to MS 7.0 via the
imta_mapping_file MTA Tailor option). This switch has no effect unless -noimage_file
is specified or no compiled configuration exists; use of any compiled configuration will
preclude reading any MTA mapping values (Unified Configuration) or physical mapping file
(legacy configuration); this switch also has no effect when an XML configuration is in use.

71.31.4.8 -option_file=filename, -nooption_file

This switch instructs imsimta test -mapping to use the specified option file rather than
the default MTA option file, CONFIGROOT/option.dat (prior to MS 7.0 located via the
imta_option_file MTA Tailor option). This switch has no effect unless -noimage_file is
specified or no compiled configuration exists; use of any compiled configuration will preclude
reading any MTA options whether from mta.option-name (Unified Configuration) or from a
physical option file (legacy configuration). Use of the switch -nooption_file will prevent
the MTA option file from being read in when there is no compiled configuration. These
switches have no effect when an XML configuration is in use.

71.31.4.9 -originator=address

(New in MS 8.1.0.1) The -originator switch is used to specify the envelope from (MAIL
FROM) address when the MTA is initialized for writing. The value "mail@fom" is used if no
originator address is specified. See the documentation on the -source_channel switch
below for additional information.

71.31.4.10 -output=output_file_spec

(New in MS 8.0) By default, imsimta test -mapping writes output to stdout. The
-output switch may be used to direct the output of imsimta test -mapping elsewhere.

71.31.4.11 -reload, -noreload (default)

The -reload switch may be used to tell the utility to reread MTA mapping group options
(Unified Configuration) or the mappings file (legacy configuration) if the mapping table name
specified is not found cached in memory.

71.31.4.12 -source_channel=channel

(New in MS 8.1.0.1) Mappings do not depend on the MTA being initialized for writing a
message, but some mapping plugins do. In order to test such plugins, the -source_channel
can be used to cause the enqueue logic to be initialized using the specified channel. Also see

71–106 Messaging Server Reference

Examples

the -originator and -destination_channel switches, which can be used to specify the
envelope from (MAIL FROM) address and destination channel, respectively.

71.31.4.13 -sources (default), -nosources

(New in MS 8.0) The -nosources switch may be used to suppress the (new in MS 8.0) output
of segment sources.

71.31.4.14 -table=table-name

This switch specifies the name of the mapping table to test. If this switch is not specified, then
imsimta test -mapping will prompt for the name of a table to use.

71.31.5 Examples

imsimta test -mapping -noimage_file -mapping_file=IMTA_TABLE:mac_mappings.sample
Enter table name: MAC-TO-MIME-CONTENT-TYPES
Input string: BINHEX|7344424e|4d535744|Test.doc
Output string: APPLICATION/MSWORD
Output flags: [0, 'Y' (89)]
Input string: ^D
#

In the above UNIX example, the sample MAC-TO-MIME-CONTENT-TYPES mapping is tested.
The -mapping_file switch is used to select the mapping file mac_mappings.sample
instead of the default mapping file.

imsimta test -mapping -flags=A -table=X-FLAGS
Input string: testing
Output string: testing plus A flag
Output flags: [0, 'Y' (89)]
Input string: ^D
imsimta test -mapping -flags=B -table=X-FLAGS
Input string: next
Output string: next without A flag
Output flags: [0, 'Y' (89)]
Input string: ^D

The above example assumes that the mappings file contains a mapping table:

X-FLAGS

 * C:A0 plus$ A$ flagYE
 * $;A$0$ without$ A$ flag$Y

That X-FLAGS mapping table outputs the original input string plus suffix string " plus A
flag" if the input flag "A" was present, or outputs the original input string plus suffix string
" without A flag" if the input flag "A" was not set. In the above test -mapping utility
output, it can be seen that input flags, if any, do not carry over to being present amongst the
set of output flags: an input flag set via the -flags switch does not carry over to appear
amongst the output flags in the "Output flags:" portion of the output. Input flags and

MTA command line
utilities 71–107

Examples

output flags are distinct and separately stored. Also note how the entry with the $:A test has
that test "wrapped" with the "$C...$E"; this is to cause the mapping process to "continue on"
if that entry (in particular the test for the presence of the input flag "A") failed, but "end" if the
test succeeded. In this particular example, the "$E" could have been omitted since the only
subsequent entry explicitly checked for the opposite ("A" flag not present) condition. However
wrapping with "$C...$E" is better practice, and is commonly used in entries containing tests.

71–108 Messaging Server Reference

test -match

71.32 test -match utility
Test a mapping wildcard pattern.

71.32.1 Syntax

 imsimta test -match

71.32.2 Parameters
None.

71.32.3 Description
imsimta test -match may be used to test a mapping pattern, particularly, to test wildcard
and glob matching.

When invoked, imsimta test -match prompts for a pattern and then for a target string
to compare against the pattern, and will output whether or not the target string matched and
if it did match, which characters in the target string matched which wildcard or glob of the
pattern. imsimta test -match will loop, prompting for input, until exitted with a CTRL/D
(UNIX).

71.32.4 Examples

% imsimta test -match
Pattern: $[ax1]*@*.acme.com
 [1S] cglob [1ax]
 [2] "@"
 [3S] glob, req 109, reps 2
 [4] "."
 [5] "a"
 [6] "c"
 [7] "m"
 [8] "e"
 [9] "."
 [10] "c"
 [11] "o"
 [12] "m"
Target: xx11a@sys1.acme.com
Match.
0 - xx11a
1 - sys1
Pattern: $[ax1]*@*.acme.com
 [1S] cglob [1ax]
 [2] "@"
 [3S] glob, req 109, reps 2
 [4] "."
 [5] "a"

MTA command line
utilities 71–109

Examples

 [6] "c"
 [7] "m"
 [8] "e"
 [9] "."
 [10] "c"
 [11] "o"
 [12] "m"
Target: 12a@node.acme.com
No match.
Pattern: $[ax1]*@*.acme.com
 [1S] cglob [1ax]
 [2] "@"
 [3S] glob, req 109, reps 2
 [4] "."
 [5] "a"
 [6] "c"
 [7] "m"
 [8] "e"
 [9] "."
 [10] "c"
 [11] "o"
 [12] "m"
Target: 1xa@node.acme.com
Match.
0 - 1xa
1 - node
Pattern: ^D
%

In the above UNIX example, the sample mapping pattern $[ax1]*@*.acme.com is tested for
several sample target strings.

% imsimta test -match
Pattern: $(1.2.3.0/24)
 [1S] ipv4 [1.2.3.0/255.255.255.0]
Target: 1.2.3.4
Match.
0 - 1.2.3.4
Pattern: $(1.2.3.0/24)
 [1S] ipv4 [1.2.3.0/255.255.255.0]
Target: 1.2.8.0
No match.
Pattern: ^D
%

In the above UNIX example, the sample mapping pattern $(1.2.3.0/24) is tested for two
sample target strings.

71–110 Messaging Server Reference

test -mime

71.33 test -mime utility
Test a message's MIME structure.

71.33.1 Syntax

 imsimta test -mime [input-file [output-file]]

Table 71.31 imsimta test -mime Command Switches

Switch Default
-line -noline

-convert -noconvert

-header -noheader

-thurman -nothurman

-security -nosecurity

-rotate[=n] -rotate=0 or -norotate
-debug -nodebug

-mparts=n -mparts=0

-mlevels=n -mlevels=0

-message_handling=keyword -message_handling=KEEP

-multipart_handling=keyword -multipart_handling=KEEP

-format=keyword See text
-encoding=keyword -encoding=NONE

-mode=keyword

-length=n -length=0

-eightbit See text
-charset=charset-name -charset=US-ASCII

-new_charset=charset-name See text
-number -number

-level See text
-describe See text
-pmaximum=n -pmaximum=1024

-nmaximum=n -nmaximum=128

-pformat=n -pformat=0

-iencoding -iencoding

-iemessage -iemessage

-iemultipart -iemultipart

-channel=channel-name -channel=scan_channel-value

-scan=sieve-expression None

MTA command line
utilities 71–111

Parameters

71.33.1.1 Restrictions

None.

71.33.1.2 Prompts

Table 71.32 imsimta test -mime Prompts

Prompt Value
Input file: file-spec

Output file: file-spec

71.33.2 Parameters

71.33.2.1 input-file

Parameter specifying the name of the input message file.

71.33.2.2 output-file

Optional parameter specifying a file to which to write the utility's output. If no output file is
specified, the output is written to the terminal.

71.33.3 Description
imsimta test -mime may be used to test and analyze, or convert, a message's MIME
structure. When used with -convert or -archive, the utility's output is respectively the
result of converting, or constructing an archive version of, the message. When used with
-scan and -channel, the utility runs the specified Sieve filter and/or channel configured
spam/virus filtering. Otherwise, the output is an analyzed (and, depending on the switches
specified, optionally somewhat annotated) copy of the original message.

71.33.4 Switches

71.33.4.1 -archive=archive-channel-name, -noarchive
(default)

(New in MS 6.3.) -archive cannot be used with -convert or -line. The default is
-noarchive. Specifying -archive=archive-channel-name causes the MTA to write an
archive file per the configuration of the specified archive channel.

71.33.4.2 -channel=channel-name, -nochannel (default)

(New in 7.0.5) The -channel switch may be used when -scan is used; it must be used if it
is desired to engage spam/virus filter package scanning. If -channel is specified without an
argument, then the channel defaults to the setting of the scan_channel MTA option, or the
local channel if scan_channel is not set. Note that spam/virus filter package scanning is only
engaged if -channel is explicitly specified.

71–112 Messaging Server Reference

Switches

71.33.4.3 -convert, -noconvert (default)

-convert cannot be used with -archive or -line.

71.33.4.4 -describe, -nodescribe

-describe only matters when -line has been specified. Setting -new_charset overrides
any setting of -describe or -nodescribe: depending upon whether the specified new
charset is one known to the MTA the describe flag is either set, or cleared, respectively. In the
absence of -new_charset, setting either -prefix or -suffix will force the describe flag to
be set. When the describe flag is set, due either to one of the above-mentioned override effects,
or otherwise via explicit -describe switch use, then a Content-transfer-encoding: header line
and a Content-MD5: header line can be added to message parts.

71.33.4.5 -eightbit, -noeightbit

Specifying -eightbit sets the "eight always" handling; specifying -noeightbit sets
the "seven only" handling. Note that the default behavior corresponds to neither keyword,
corresponding instead to "eight negotiate" handling.

71.33.4.6 -encoding=keyword

The default is -encoding=NONE. Valid values for the encoding keyword are: NONE,
QUOTED_PRINTABLE, BASE32, OBASE64, BASE64, CBASE64, DBASE64, HEXADECIMAL,
UUENCODE, CUUENCODE, DUUENCODE, PATHWORKS, BINHEX, BTOA, BASE85, or CDATA.

71.33.4.7 -format=keyword

-format cannot be used unless -line is used. When -line is used, the default is
-format=MIME. The valid keyword arguments for -format are: MIME, RFC1154,
MAILWORKS, NEXT, HEADER_SET, and STREAM_DECODE.

71.33.4.8 -iencoding (default), -noiencoding

New in MS 6.3. The default is -iencoding, which means to interpret (decode) message
content whose encoding is described by the non-standard Encoding: header line. Specifying
-noiencoding means to ignore any such Encoding: header line; that is, not perform
decoding. These switches are thus analogues of the channel options interpretencoding
and ignoreencoding.

71.33.4.9 -iemessage (default), -noiemessage

New in MS 6.3. The default is -iemessage, which means to interpret (decode) encodings
of MIME message parts; note that such encodings are illegal, but may sometimes be
encountered in messages from incompliant software. Specifying -noiemessage means
to ignore any such Content-transfer-encoding: illegally present on a message part. These
switches are thus analogues of the channel options interpretmessageencoding and
ignoremessageencoding.

71.33.4.10 -iemultipart (default), -noiemultipart

New in MS 6.3. The default is -iemultipart, which means to interpret (decode)
encodings of MIME multiparts; note that such encodings are illegal, but may sometimes

MTA command line
utilities 71–113

Switches

be encountered in messages from incompliant software. Specifying -noiemultipart
means to ignore any such Content-transfer-encoding: illegally present on a multipart. These
switches are thus analogues of the channel options interpretmultipartencoding and
ignoremultipartencoding.

71.33.4.11 -line, -noline (default)

-line cannot be used with -convert or -archive.

71.33.4.12 -message_handling=keyword

Valid arguments for -message_handling are: KEEP, TOP, BOTTOM or END, DELETE, or
MERGE. The default is -message_handling=KEEP.

71.33.4.13 -mode=keyword

Valid arguments for -mode are: CRATTRIBUTE, LFATTRIBUTE, CRLFATTRIBUTE,
BLOCK, RECORD, TEXT[=n], POSTSCRIPT, ENRICHED, FLOWED, HTML, DOUBLEAPPLE,
SINGLEAPPLE, MACBINARY, BINHEX, VIRUSSCAN. -mode=text means -mode=text=80.

71.33.4.14 -number (default), -nonumber

The -number switch is ignored when used with -archive or -capture. When used with
-line (or with none of -line, -archive, or -capture), it tells the utility to output initial
table heading lines prior to its output analyzing the message structure. Combined with -line,
-number causes table heading lines of:

Line # ?
------ -

Or if none of -line, -archive, or -capture is specified, then -number causes table
heading lines of:

Line # Level Count ?
------ ----- ----- -

Note that -number is the default; specifying -nonumber disables this table heading output.

71.33.4.15 -rotate=n, -norotate (default)

-rotate is equivalent to -rotate=13.

71.33.4.16 -nmaximum=n

(New in MS 6.0) Specify a maximum allowed length for the NAME parameter and for the
FILENAME parameter on the Content-type: and Content-disposition: MIME header lines,
respectively; longer parameters will be truncated. This switch is thus an analogue of the
nameparameterlengthlimit channel option. The default is 128.

Note that other, general parameters on the Content-type: and Content-disposition: MIME
header lines are controlled instead via the -pmaximum switch. (The reason why such lengths

71–114 Messaging Server Reference

Examples

are of interest, and why these switches exist, is due to the history in certain popular e-mail
clients of security problems involving buffer overruns.)

71.33.4.17 -number (default), -nonumber

Specifying -nonumber turns off the display of line numbers in the output. -number is the
default.

71.33.4.18 -pformat=n

The default is 0.

71.33.4.19 -pmaximum=n

(New in MS 6.0) Specify a maximum allowed length for general parameters on Content-type:
and Content-disposition: MIME header lines; longer parameters will be truncated. This switch
is thus an analogue of the parameterlengthlimit channel option. The default is 1024.

Note that the Content-type: NAME parameter and Content-disposition: FILENAME parameter
maximum length are controlled separately via the -nmaximum switch. (The reason why such
lengths of interest, and these switches exist, is due to the history in certain popular e-mail
clients of security problems involving buffer overruns.)

71.33.4.20 -scan=sieve-expression, -noscan (default)

(New in MS 7.0.5) The -scan switch specifies a Sieve expression to apply to the input
message. This emulates imexpire message scanning. If -channel is specified, then spam/
virus filter package scanning can be engaged also. If -channel is not specified, then spam/
virus filter package scanning is not engaged, and the channel value (when relevant) defaults to
the value of the scan_channel MTA option.

71.33.4.21 -thurman, -nothurman (default)

Specifying -thurman causes the MTA to perform "sniffing" of non-MIME message bodies for
UUENCODE or BINHEX "blobs" (akin to application of the thurman channel option), and to
pull such "blobs" out into MIME attachments instead.

71.33.5 Examples

% imsimta test -mime not-zz.00
Line # Level Count ?
------ ----- ----- -
 1 0 1 H Received: from localhost by elvira.innosoft.com (PMDF V6.0-24 #43970)
 2 0 1 H with ESMTP id <0G8P00B01ZFNUV@elvira.innosoft.com> for
 3 0 1 H kristin@elvira.innosoft.com (ORCPT kristin@elvira.innosoft.com); Tue,
 4 0 1 H 13 Feb 2001 15:47:47 -0800 (PST)
 5 0 1 H Date: Tue, 13 Feb 2001 15:47:47 -0800 (PST)
 6 0 1 H From: System Privileged Account <root@elvira.innosoft.com>
 7 0 1 H Subject: test of relaying
 8 0 1 H To: kristin hubner <kristin@elvira.innosoft.com>
 9 0 1 H Message-id: <Pine.SOL.4.21L.0102131547360.15366-100000@elvira.innosoft.com>
 10 0 1 H MIME-version: 1.0
 11 0 1 H Content-type: TEXT/PLAIN; charset=US-ASCII
 12 0 1 D ctype: TEXT

MTA command line
utilities 71–115

Examples

 13 0 1 D csubtype: PLAIN
 14 0 1 D cparameters:
 15 0 1 D charset=US-ASCII
 16 0 1 B test
 17 0 1 B
% imsimta test -mime -line not-zz.00
Line # ?
------ -
 1 Received: from localhost by elvira.innosoft.com (PMDF V6.0-24 #43970)
 2 with ESMTP id <0G8P00B01ZFNUV@elvira.innosoft.com> for
 3 kristin@elvira.innosoft.com (ORCPT kristin@elvira.innosoft.com); Tue,
 4 13 Feb 2001 15:47:47 -0800 (PST)
 5 Date: Tue, 13 Feb 2001 15:47:47 -0800 (PST)
 6 From: System Privileged Account <root@elvira.innosoft.com>
 7 Subject: test of relaying
 8 To: kristin hubner <kristin@elvira.innosoft.com>
 9 Message-id: <Pine.SOL.4.21L.0102131547360.15366-100000@elvira.innosoft.com>
 10 MIME-version: 1.0
 11 Content-type: TEXT/PLAIN; charset=US-ASCII
 12
 13 test
 14

In the above UNIX example, the not-zz.00 message file contains:

Received: from localhost by elvira.innosoft.com (PMDF V6.0-24 #43970)
 with ESMTP id <0G8P00B01ZFNUV@elvira.innosoft.com> for
 kristin@elvira.innosoft.com (ORCPT kristin@elvira.innosoft.com); Tue,
 13 Feb 2001 15:47:47 -0800 (PST)
Date: Tue, 13 Feb 2001 15:47:47 -0800 (PST)
From: System Privileged Account <root@elvira.innosoft.com>
Subject: test of relaying
To: kristin hubner <kristin@elvira.innosoft.com>
Message-id: <Pine.SOL.4.21L.0102131547360.15366-100000@elvira.innosoft.com>
MIME-version: 1.0
Content-type: TEXT/PLAIN; charset=US-ASCII

test

71–116 Messaging Server Reference

test -rewrite

71.34 test -rewrite utility
Test address rewriting specified by an MTA configuration; test syntactic validity of an MTA
configuration.

71.34.1 Syntax

 imsimta test -rewrite [test-address]

Table 71.33 imsimta test -rewrite Command Switches

Switch Default
-aby=value -noaby

-additions -noadditions

-alias_file=file-spec -alias_file=IMTA_TABLE:aliases

-alternate_recipient=address -noalternate_recipient

-by=value -noby

-applicationinfo=string None
-channel[=type] -channel=forward

-check_expansions -nocheck_expansions

-configuration_file=file-spec -configuration_file=IMTA_TABLE:imta.cnf

-conversion_file=file-spec -conversion_file=IMTA_TABLE:conversions

-database=database-list See text
-debug -nodebug

-delivery_receipt See text
-destination_channel=channel None
-ebm -noebm

-esmtpused -noesmtpused

-expandlimit=n None
-extra_local_channel=channel None
-filter -nofilter

-from=address -from=postmaster@localhost

-header -noheader

-identifiers -noidentifiers

-image_file[=file-spec] -image_file

-input=input-file-spec -input=stdin

-jacket -nojacket

-lmtpused -nolmtpused

-local_alias=value -nolocal_alias

-mapping_file=file-spec -mapping_file=IMTA_TABLE:mappings

MTA command line
utilities 71–117

Syntax

-multiple -nomultiple (see text)
-mtpriority=n -mtpriority=0

-option_file=file-spec -option_file=IMTA_TABLE:option.dat

-output=output-file-spec output=stdout

-password= -nopassword

-proxyused -noproxyused

-quotacheck -quotacheck

-read_receipt See text
-reprocessing -reprocessing

-restricted=setting -restricted=0

-rrvs=ISO8601-value -norrvs

-saslused -nosaslused

-sender=address -nosender

-size=n -nosize

-soptin -nosoptin

-source_channel=channel -source_channel=l

-spares -nospares

-statistics -nostatistics

-srs=([domain=domain],
[secrets=secrets],
[maxage=maxage])

None

-system_filter=file-spec -system_filter=IMTA_TABLE:imta.filter

-tag=tag-list -notag

-tlsused -notlsused

-transportinfo=string None
-user=string -user="--USERNAME--"

-utf8 -noutf8

-xml_config=file-spec -xml_config=IMTA_TABLE:config.xml

71.34.1.1 Restrictions

Must be superuser or the MTA user (the user option in restricted.cnf, or prior to MS
7.0.5, the imta_user MTA Tailor option value), or be in the group specified by the group
option in restricted.cnf (prior to MS 7.0.5, be in the imta_world_group group), in
order to display -filter, -soptin, or -spares output.

71.34.1.2 Prompts

Table 71.34 imsimta test -rewrite Prompts

Prompt Value
Address: test-address

71–118 Messaging Server Reference

Parameters

71.34.2 Parameters

71.34.2.1 test-address

Optional parameter specifying one or more (comma-separated) addresses to rewrite.

71.34.3 Description

imsimta test -rewrite provides a straightforward test facility for examining the MTA's
address rewriting and channel matching process without actually sending any message.
Various switches can be used to control whether imsimta test -rewrite uses the
configuration text files or the compiled configuration (if present), the amount of output
produced, and so on.

The imsimta test -rewrite utility has several especially common and useful uses:

1. testing overall syntactic validity (though not semantic correctness) of the MTA configuration,

2. testing MTA configuration changes prior to making them "live" with imsimta cnbuild,
and conversely checking that the compiled configuration in fact corresponds to the "most
current" versions of the configuration files,

3. testing that the Messaging Server LDAP configuration information is accessible,

4. testing that the LDAP server is responding to domain and user/group lookups,

5. testing the rewriting, alias lookup and expansion, and resulting routing, of specific
addresses,

6. testing the expansion (membership) of groups and mailing lists,

7. testing the canonicalization of specific (local) addresses resulting from address reversal (i.e.,
testing how local addresses will appear in header lines),

8. testing the effects of address-based *_ACCESS mapping tables,

9. testing the effects of posting restrictions such as restrictions on mailing list postings,

10.determining which Sieve filters are applicable for a particular recipient address,

11.testing SRS/MUL encoding and decoding of addresses (if SRS MTA options have been
configured).

If a test address is specified on the command line, imsimta test -rewrite applies MTA
address rewriting to that address, reports the results, and exits. If no test address is specified,
imsimta test -rewrite will enter a loop, prompting for an address, rewriting it, and
prompting again for another address. imsimta test -rewrite will exit when CTRL/D
(UNIX) is entered.

In interactive mode, note that the caret character, ^, may be used to enter a character or
characters by ASCII value (in hexadecimal); each character must be entered as a two digit
hexadecimal value, with a final caret character meaning to return to "normal" (as typed)

MTA command line
utilities 71–119

Description

character entry. For instance, ^20^ is one way of entering a space character. To enter a literal
caret character, caret-quote the caret, ^^.

When testing an alias corresponding to a mailing list which has an AUTH_ or CANT_ type
of named parameter (legacy configuration) or an alias_auth_* or alias_cant_*
alias option (Unified Configuration) controlling who may post to the list, or which has an
mgrp[Dis]Allowed* LDAP attribute controlling who may post to the list, or when testing
rewriting when SEND_ACCESS or related mapping tables are in effect, note that by default
imsimta test -rewrite uses as the posting address the return address of the local
postmaster as specified by the return_address MTA option. To specify a different posting
address for the rewriting process, use the -from switch.

Note that as mentioned above, the imsimta test -rewrite utility also provides a basic
"sanity check" of the syntactical correctness (though not the semantic correctness) of the
configuration. In particular, if the utility returns any

Error in mm_init -- detail

error message, that is a warning of a serious configuration problem, preventing the MTA from
operating.

If an active compiled configuration appears to be "out-of-date" compared to configuration files,
then the imsimta test -rewrite utility will issue the following warning (but proceed to
operate):

Warning - compiled configuration does not match configuration files
 -- detail

with further detail (such as what file(s) appear to have been modified subsequent to the
compilation of the currently active compiled configuration) in the detail text.

The imsimta test -rewrite utility also provides a way of checking that the LDAP server
is responsive. Using the -noimage switch, that is, using an imsimta test -rewrite
-noimage command, is a way of checking that the Messaging Server configuration
information in LDAP is accessible; if it is not, then the utility will return a warning of the
general form:

[date-and-time] hostname [pid]: General Warning: could not get server configurat
ion in ldap, using cached configuration information

and then proceed to attempt to process the address using cached LDAP configuration
information. Note that one of the more common cases where the above warning can be
issued is where the LDAP server is in fact not responding, in which case the imsimta test
-rewrite utility may further not be able to successfully lookup "local" domains and users.
Then temporary errors of the form

4.0.0 Temporary lookup failure: address

(or whatever is configured via the domain_failure MTA option) when attempting to
rewrite addresses suggest that the LDAP user/group directory is unavailable/unresponsive;
further details on the underlying LDAP error may be obtained using the utility's
-debug=level=3 switch.

71–120 Messaging Server Reference

Switches

71.34.4 Switches

71.34.4.1 -aby=value, -noaby (default)

(New in MS 8.0) The -aby switch may be used to specify an alternate address deliver by value.
-noaby is the default.

71.34.4.2 -additions, -noadditions (default)

(New in MS 8.0) Specifying -additions causes any added prefix or suffix text to
be displayed. (That is, -additions causes display of text added via alias options
alias_prefix_text or alias_suffix_text, or via mailing list named parameters
[PREFIX_TEXT] or [SUFFIX_TEXT], or via LDAP attributes such as mgrpMsgPrefixText
or mgrpMsgSuffixText.) -noadditions is the default.

71.34.4.3 -alias_file=filename

If a compiled configuration is not being used, then imsimta test -rewrite normally
consults the default alias file during the rewriting process. Prior to MS 7.0, that alias
file was located via the imta_alias_file option of the MTA Tailor file, so usually
IMTA_TABLE:aliases; as of MS 7.0, the alias file is located as CONFIGROOT/aliases. The
-alias_file switch specifies an alternate file for imsimta test -rewrite to use. This
switch has no effect unless -noimage_file is specified or no compiled configuration exists;
use of a compiled configuration precludes direct reading of the alias file from any location; this
switch also has no effect when an XML configuration is in use.

71.34.4.4 -alternate_recipient=address

(New in MS 8.0) Specify an alternate recipient address.

71.34.4.5 -applicationinfo=string

This switch is used to specify the application-info string to use during, for instance,
FROM_ACCESS, ORIG_MAIL_ACCESS, and MAIL_ACCESS mapping table probes. For instance,
for an incoming SMTP message where the sending client claimed (on its HELO/EHLO line) a
hostname of domain.com, and where TLS was not used, the application-info string would be
"SMTP/domain.com".

71.34.4.6 -by=value, -noby (default)

(New in MS 8.0) The -by switch may be used to specify a deliver by (SMTP DELIVERBY
extension BY parameter) value. -noby is the default.

71.34.4.7 -channel[=type] (default), -nochannel

This switch controls whether the utility outputs detailed information, e.g., channel flags,
regarding the channel an address matches.

As of MS 8.0.2.1, this switch accepts an optional channel type, which controls which of the
various channels selected by the rewriting process is displayed. Possible values are forward,
backward, source, and destionation. The default is forward, which displays the channel
selected by rewriting the input address in the "forward" direction. Note that source and

MTA command line
utilities 71–121

Switches

destination display channel information for the selected source and destination channels,
which are not address-dependent.

71.34.4.8 -check_expansions, -nocheck_expansions (default)

This switch controls checking of alias address expansion. Normally the MTA considers the
expansion of an alias to have been "successful" if any of the addresses to which the alias
expands are legal. The -check_expansions switch causes a much stricter policy to be
applied: imsimta test -rewrite -check_expansions checks each expanded address
in detail and reports a list of any addresses, expanded or otherwise, that fail to rewrite
properly. For addresses that match the L channel, the MTA also performs validity checks.

71.34.4.9 -configuration_file=filename

If no compiled configuration is being used, then imsimta test rewrite normally consults
the default MTA configuration file during the rewriting process. Prior to MS 7.0, the MTA
configuration file was located via the imta_config_file option of the MTA Tailor file,
usually pointing to IMTA_TABLE:imta.cnf; as of MS 7.0, the MTA configuration file
is located at CONFIGROOT/imta.cnf. The -configuration_file switch specifies
an alternate file to use in place of the regular configuration file. This switch has no effect
unless -noimage_file is specified or no compiled configuration exists; use of a compiled
configuration will preclude direct reading of the MTA configuration file from any location; this
switch also has no effect when an XML configuration is in use.

71.34.4.10 -conversion_file=filename, -noconversion_file

If no compiled configuration is being used, then imsimta test rewrite normally
accesses the default conversion file as part of its initialization during the rewriting process;
while the conversion file has no particular effect on address rewriting, it is considered part
of the core configuration (and hence imsimta test -rewrite will warn of problems
accessing the conversion file, or of out-of-date versions of the conversion file). Prior to MS
7.0, that default conversion file was located via the imta_conversion_file option of the
Tailor file, so usually IMTA_TABLE:conversions; as of MS 7.0, in legacy configuration
the conversion file is located as CONFIGROOT/conversions; in Unified Configuration, a
separate file is not used and instead the conversions MTA option stores the conversions.
The -conversion_file switch specifies an alternate file to use in place of the regular
converison file. These switches have no effect unless -noimage_file is specified or no
compiled configuration exists; use of a compiled configuration will preclude direct reading of
the conversion file from any location. Use of the -noconversion_file switch will prevent
the conversion file from being read in when there is no compiled configuration. These switches
also have no effect when an XML configuration is in use.

71.34.4.11 -database=database-list

imsimta test -rewrite by default during its operation consults any of the
usual MTA databases that it has been configured to use. (For MTA configuration
controlling whether databases are normally used, see the Database MTA options, and
in particular the alias_magic, use_alias_database, use_domain_database,
use_forward_database, and use_reverse_database MTA options.) The -database
switch is used to either disable references to various databases or to redirect the database paths
to nonstandard locations. The allowed list items are alias, noalias, personal_alias,
nopersonal_alias, domain, nodomain, forward, noforward, general, nogeneral,
reverse, and noreverse. The list items beginning with "no" disable use of the

71–122 Messaging Server Reference

Switches

corresponding database. The remaining items require an associated value, which is taken to be
the name of that database.

71.34.4.12 -debug, -nodebug (default)

The address rewriting process is capable of producing additional, detailed explanations of
what actions are taken and why. The -debug switch enables this output; it is disabled by
default. In cases of problems with address expansion, -debug, especially -debug=level=3,
can also give more details as to the exact nature of the problem; for instance, the exact LDAP
directory error returned in response to a domain lookup up, the exact LDAP directory
error returned in response to a user lookup, rejection resulting from an recipient *_ACCESS
mapping table, etc.. As of MS 7.0, note that the basic -debug output will report if address
"duplicate elimination" occurs, via a debug output line of the form:

time-stamp: - Duplicates previous recipient address, merge

This may be of particular interest when multiple, comma-separated addresses were provided
initially.

71.34.4.13 -delivery_receipt, -nodelivery_receipt

The -delivery_receipt and -nodelivery_receipt switches, which explicitly set
the corresponding receipt request flags, can be useful when testing the handling of receipt
requests when rewriting forwarded addresses or mailing lists.

71.34.4.14 -destination_channel=channel

The -destination_channel switch controls for which destination or target channel
imsimta test -rewrite rewrites addresses. Some address rewriting is destination channel
specific; this switch allows control of the assumed destination channel.

71.34.4.15 -esmtpused, -noesmtpused (default)

(New in MS 6.3.) The -esmtpused switch may be used to set an internal flag indicating that
ESMTP is in use. In particular, this may be useful when testing *_ACCESS mapping tables that
make use of that flag (the $:E flag).

71.34.4.16 -expandlimit=n

(New in MS 6.3p1.) This switch may be used to initialize the MTA's internal alias expansion
limit; this is intended for testing expansion limit interactions with mailing lists and other MTA
facilities.

71.34.4.17 -extra_local_channel=channel

(New in MS 7.0u2) The -extra_local_channel switch may be used to specify the name of
a channel to be treated as if it were the local channel.

71.34.4.18 -filter, -nofilter (default)

The -filter switch may be used to have imsimta test -rewrite output any Sieve
filters (personal mailbox, so-called "Head of Household", channel, or system) applicable for the
address in question. Note that a user's mailAutoReply* attributes are converted by the MTA
into a Sieve "vacation" action which is incorporated at the beginning of the user's personal

MTA command line
utilities 71–123

Switches

Sieve filter. As of MS 6.1, the filter output will also be labelled as to which Sieve filter it came
from, taking the form (under the addresses under the "Submitted address list:" portion
of the output):

Filter: <type> name location [addr response-addr] [owner owner] (h) [i] {j}

or as of MS 6.2:

Filter: <type> name location [addr response-addr] [owner owner] (h) [i])k({j}

where type is either system or user, location is a URL to the location of the Sieve filter
(or in the case of the system filter, as of the MS 6.2 patch time frame says merely system:),
response-addr is the address to which a notification would be sent back (usually only
relevant and non-null for the case of vacation actions, in which case it is the envelope
From address), and owner is the address of the "owner" of this Sieve filter: normally the local
postmaster address for system-level (the system and channel) filters, or the user himself for a
personal Sieve filter, or the specified owner for a "Head of Household" Sieve filter. (The three
or four, depending upon MTA version, integers in hexadecimal notation following are internal
debug information, showing the location in memory of internal parts of the Sieve structure.)
So for instance, one might see output such as the following (where additional line breaks have
been inserted for display purposes):

Submitted address list:
 ims-ms
 uid%hosteddomain1.com@ims-ms-daemon (orig first.last@hosteddomain1.com,
 inter first.last@hosteddomain1.com, host ims-ms-daemon)
 NOTIFY-FAILURES *NOTIFY-DELAYS*
 Filter: <user> name user:uid%hosteddomain1.com@ims-ms-daemon
 [addr uid%hosteddomain1.com@ims-ms-daemon]
 [owner uid%hosteddomain1.com@ims-ms-daemon] (0x032107f8) [0x0322b718]
)0x0322ae58({0x03218e98}
...sample filter lines...
 Filter: <system> name file:///IMTA_TABLE%3Aims-ms.filter
 [addr] [owner postmaster@host.domain.com]
 (0x00073af8) [0x0009bb28])0x0009b2c0({0x0009e670}
....sample filter lines...
 Filter: <system> name system: [addr] [owner postmaster@host.domain.com]
 (0x00d37158) [0x0320de88])0x0320e788({0x031ec708}
 header:2000116;0 3 1 :matches 1 "Subject" 1 "ID *... t
 hanks" if 8 ; refuse:2000127;0 1 1 "I think you've se
 nt me a virus.%0AMessage rejected on this basis." ; "" stop
 ;

Note that the -filter output shows applicable Sieve filters, that is, which Sieve filters would
get evaluated for this address. But it does not show the actual evaluation of those Sieve filters
(as such evaluation can only be done in the context of actual message processing), thus it does
not show what the effect(s) of those Sieve filters would be.

Must be superuser or the MTA user in order to display -filter output.

71.34.4.19 -from=address, -nofrom

71–124 Messaging Server Reference

Switches

The -from switch controls what envelope From address is used for access control probes and
mailing list access probes. If this switch is omitted, then any such probes use the postmaster
return address (as set via the return_address MTA option). Specifying -nofrom tells the
MTA to use an empty envelope From address for access probes.

As of MS 7.0.5, note that returnenvelope (or mailfromdnsverify) or
return_envelope settings that cause the MTA to attempt a "verification" of the From
address can affect imsimta test -rewrite output: the output will include a warning if the
From address appeared to be problematic, though the input address will still be rewritten as
usual.

71.34.4.20 -header, -noheader (default)

The -header switch causes the utility to output any applicable header trimming option file
associated with the channel of the destination address. This information will appear after the
destination address itself, before any dumped filter information (from the -filter switch),
hence before the "Submitted notifications list:" output. -noheader is the default. Note that
-header merely outputs the header trimming option file; to investigate the potential effect(s)
of a header trimming option file, see instead test -header.

71.34.4.21 -identifiers, -noidentifiers (default)

(New in MS 7.0.5) The -identifiers switch tells the utility to rewrite the parameter value as
a message identifier, rather than as an address. (For instance, in the default mode of addresses,
an a@b@c form will be turned into a %-route form, whereas in -identifiers mode a value
of a@b@c would be quoted.)

71.34.4.22 -image_file (default), -noimage_file

When the -image_file switch is specified (the default), imsimta test -rewrite
will load the compiled configuration. Prior to MS 7.0, this compiled configuration was
located via the imta_config_data option in the MTA tailor file, usually pointing to
IMTA_TABLE:advanced/config_data. As of MS 7.0, the compiled configuration is located
as CONFIGROOT/advanced/config_data. When -noimage_file is specified, imsimta
test -rewrite unconditionally ignores any previously compiled configuration and instead
reads configuration information directly from the various text files.

71.34.4.23 -input=input-file-spec

By default, imsimta test -rewrite takes input from stdin. The -input switch may be
used to specify a different source for input.

71.34.4.24 -jacket, -nojacket (default)

Specifying -jacket will result in passing any $I flag checks in the FROM_ACCESS mapping
table or recipient address *_ACCESS mapping tables.

71.34.4.25 -lmtpused, -nolmtpused (default)

(New in MS 6.3.) The -lmtpused switch may be used to set an internal flag indicating that
LMTP is in use. In particular, this may be useful when testing *_ACCESS mapping tables that
make use of that flag (the $:L flag).

71.34.4.26 -local_alias=value, -nolocal_alias (default)

MTA command line
utilities 71–125

Switches

This switch controls the setting of an alias for the local host. The MTA supports multiple
"identities" for the local host; the local host may have a different identity on each channel. This
switch may be used to set the local_host_alias to the specified value; appearances of the
local host in rewritten addresses will be replaced by this value.

71.34.4.27 -multiple, -nomultiple

(New in 8.0.1.2) Normally the specified address is presented to the enqueue machinery all at
once. Specifying -multiple causes the argument to be treated as a comma-separated list of
addresses; each address will be presented for enqueue processing separately, simulating the
effect of multiple RCPT TOs.

The MTA's enqueue facilities handle the submission of multiple addresses at the same time
as an extension. Specifying -nomultiple disables this capability; multiple addresses will be
considered an error.

71.34.4.28 -mapping_file[=file-spec], -nomapping_file

If no compiled configuration is being used, then this switch instructs imsimta test
-rewrite to use the specified mapping file rather than the default mapping file. Prior to
MS 7.0, the default mapping file was located via the imta_mapping_file option in the
MTA tailor file, so usually IMTA_TABLE:mappings; as of MS 7.0, in legacy configuration the
mappings file is located as CONFIGROOT/mappings; in Unified Configuration, a separate
file is not used and instead mappings are stored under named mapping groups. These
switches have no effect unless -noimage_file was specified or no compiled configuration
exists; use of any compiled configuration will preclude direct reading of the mappings file.
Use of the -nomapping_file switch will prevent the MTA mapping file from being read in
when there is no compiled configuration. These switches also have no effect when an XML
configuration is in use.

71.34.4.29 -mtpriority=n, -nomtpriority (default)

(New in MS 8.0) -mtpriority takes a required integer argument specifying the initial MT-
PRIORITY value.

71.34.4.30 -option_file[=filename], -nooption_file

If no compiled configuration is being used, then the -option_file switch instructs imsimta
test -rewrite to use the specified option file rather than the default location MTA
option file. Prior to MS 7.0, the MTA option file was located via the imta_option_file
option in the MTA Tailor file, so usually IMTA_TABLE:option.dat; as of MS 7.0, in legacy
configuration the MTA option file is located at CONFIGROOT/option.dat; in Unified
Configuration, a separate file is not used and instead these are MTA options. These switches
have no effect unless -noimage_file is specified or no compiled configuration exists; use
of any compiled configuration will preclude direct reading of the MTA option file from any
location. Use of the -nooption_file switch will prevent the MTA option file from being
read in when there is no compiled configuration. These switches have no effect when an XML
configuration is in use.

71.34.4.31 -output=output-file-spec

By default, imsimta test -rewrite writes output to stdout. The -output switch may
be used to direct the output of imsimta test -rewrite elsewhere.

71–126 Messaging Server Reference

Switches

71.34.4.32 -password=

Used to specify the password for a password-protected list.

A prompt will appear that allows the password to be entered without echo.

71.34.4.33 -proxyused, -noproxyused (default)

(New in MS 6.3.) The -proxyused switch may be used to set an internal flag indicating that
proxy authentication (POP-before-SMTP) is in use. In particular, this may be useful when
testing *_ACCESS mapping tables that make use of that flag (the $:P flag).

71.34.4.34 -quotacheck (default), -noquotacheck

(New in MS 8.0.1.2.) The -quotacheck switch controls whether or not the alias expansion
process treats an account's overquota status as an error. -quotacheck is the default; -
noquotacheck may be used to disable the check. This may be useful in simulating the
behavior of temporary failure reenqueue operations, which disable this check.

71.34.4.35 -read_receipt, -noread_receipt

The -read_receipt and -noread_receipt switches, which explicitly set the
corresponding receipt request flags, can be useful when testing the handling of receipt
requests when rewriting forwarded addresses or mailing lists.

71.34.4.36 -reprocessing (default), -noreprocessing

By default, the test -rewrite utility runs as if the -reprocessing switch is set, meaning
that some operations that would normally be deferred for "off-line" execution by the reprocess
channel will instead be performed directly by the test address processing. -noreprocessing
may be used to tell the utility to run in a mode more similar to that of a "normal" channel,
where various operations (e.g., mailing list password lookups) will not be performed by the
channel, and where instead the message will be forcibly routed to the reprocess channel which
is expected to perform the necessary tasks later ("off-line").

71.34.4.37 -restricted=setting

This switch controls the setting of the restricted flag. By default, this flag has value 0. When
set to 1, i.e., -restricted=1, the restricted flag will be set on and addresses will be rewritten
using the restricted mailbox encoding format recommended by RFC 1137. This flag is used to
force rewriting of address mailbox names in accordance with the RFC 1137 specifications; see
the restricted channel option for further details.

71.34.4.38 -rrvs=ISO8601-value, -norrvs

(New in MS 8.0) The -rrvs switch is used to specify an RRVS value (Require-Recipient-Valid-
Since: value), in ISO 8601 format. -norrvs is the default.

71.34.4.39 -saslused, -nosaslused (default)

(New in MS 6.2p8.) The -saslused switch may be used to set an internal flag indicating that
SASL authentication (SMTP AUTH) is in use. In particular, this may be useful when testing
*_ACCESS mapping tables that make use of that flag (the $:A flag).

MTA command line
utilities 71–127

https://tools.ietf.org/html/rfc1137

Switches

71.34.4.40 -sender=address, -nosender (default)

New in MS 6.2. The -sender switch may be used to set the "authenticated sender" field, for
use in FROM_ACCESS mapping table probes.

71.34.4.41 -size=n, -nosize (default)

(New in MS 7.0.5) The -size switch sets an assumed "message size" (in bytes), as if the SMTP
SIZE extension had been used. It requires an integer argument, which the MTA interprets
as being in units of bytes. This can be useful for checking message size-based restrictions.
-nosize is the default.

71.34.4.42 -soptin, -nosoptin (default)

(New in MS 7.0 update 2.) Control whether or not to show per-recipient spamfilter "opt-in".

Must be superuser or the MTA user in order to display -soptin output.

71.34.4.43 -source_channel=channel

The -source_channel switch controls which source channel to assume when rewriting
addresses. Some address rewriting is source channel specific; imsimta test -rewrite
by default assumes that the channel source for which it is rewriting is the local channel, l on
UNIX.

71.34.4.44 -spares, -nospares (default)

(New in MS 7.0 update 2.) Control whether or not to show per-recipient "spare" LDAP
attributes.

Must be superuser or the MTA user in order to display -spares output.

71.34.4.45 -statistics, -nostatistics (default)

The -statistics switch can be used to tell the MTA to output the direct LDAP lookup cache
statistics for the rewriting performed; statistics for the domain cache, reverse cache, and alias
cache will be displayed. -nostatistics is the default.

71.34.4.46 -srs=([domain=domain],[secrets=secrets],
[maxage=maxage])

The -srs switch provides a way to override certain SRS-related MTA configuration options:
The domain value overrides the srs_domain MTA option, the secrets value overrides the
srs_secrets MTA option, and the maxage> value overrides the srs_maxage value.

Additionally, specification of -nosrs causes test -rewrite to act as it none of the srs_* options
are set.

71.34.4.47 -system_filter=filename, -nosystem_filter

If no compiled configuration is being used, then imsimta test -rewrite normally
consults the default system Sieve filter during the rewriting process: this is the systemfilter
MTA option in Unified Configuration, or the system filter file in legacy configuration. Prior

71–128 Messaging Server Reference

Examples

to MS 7.0, the MTA system filter file was located via the imta_system_filter_file
option of the MTA Tailor file, so usually IMTA_TABLE:imta.filter; as of MS 7.0, the MTA
system filter file is located as CONFIGROOT/imta.filter. The -system_filter switch
specifies an alternate file to use in place of the default system Sieve filter file. These switches
have no effect unless -noimage_file is specified or no compiled configuration exists; use
of a compiled configuration will preclude direct reading of the system filter file from any
location. Use of the -nosystem_filter switch will prevent the MTA system filter file (legacy
configuration) from being read in when there is no compiled configuration. These switches
have no effect when an XML configuration is in use.

71.34.4.48 -tag=tag-list, -notag (default)

(New in MS 7.0.5) The -tag switch can be used to set the conversion tag (or comma-separated
list of tags) that will be available at the time of REVERSE mapping table probes. This can be
useful when bit 8 (value 256) of the include_conversiontag MTA option is set, so that
REVERSE mapping table probes include conversion tags.

71.34.4.49 -tlsused, -notlsused (default)

(New in MS 6.2p8.) The -tlsused switch may be used to set an internal flag indicating that
TLS is in use. In particular, this may be useful when testing *_ACCESS mapping tables that
make use of that flag (the $:T flag).

71.34.4.50 -transportinfo=string

This switch is used to specify the transport-info string to use during, for instance,
FROM_ACCESS, ORIG_MAIL_ACCESS, and MAIL_ACCESS mapping table probes. (Note that
the PORT_ACCESS mapping table is not checked by the test -rewrite utility, as the
PORT_ACCESS mapping table is consulted for decisions regarding TCP/IP connections, rather
than for address handling; in particular the PORT_ACCESS mapping table is used by the
Dispatcher, and then again by SMTP server processes, at a much earlier stage of processing
than the address rewriting process.) Note that a typical transport-info string, of the form

TCP|server-address|server-port|client-address|client-port

contains vertical bar characters, |, which will require some quoting to pass through the shell;
e.g.,

-transportinfo=TCP\|123.45.67.8\|12435\|10.0.0.1\|25

71.34.4.51 -xml_config[=file-path]

(New in MS 7.0.) imsimta test -rewrite normally reads its configuration from
IMTA_TABLE:config.xml, if such a file exists. The -xml_config switch specifies use of a
Unified Configuration (which is the MTA's default behavior if IMTA_TABLE:config.xml
exists), and optionally specifies an alternate, XML format, configuration file to use in place of
IMTA_TABLE:config.xml.

71.34.5 Examples
This UNIX example shows typical output generated by imsimta test -rewrite in MS
6.3. Perhaps the single most important piece of information generated by imsimta test

MTA command line
utilities 71–129

Examples

-rewrite is displayed on the last few lines of the output, (6), showing the channel to which
imsimta test -rewrite would submit a message with the specified test address and the
form in which the test address would be rewritten for that channel. This output is invaluable
when debugging configuration problems.

% imsimta test -rewrite dan@innosoft.com
 channel = tcp_local (1)
 channel description =
 channel caption =
 channel user filter =
 dest channel filter =
 source channel filter =
 channel flags #0 = BIDIRECTIONAL SINGLE_SYSTEM IMMNORMAL NOSERVICEALL (2)
 channel flags #1 = SMTP_CRLF MX IDENTNONENUMERIC DEFAULT
 channel flags #2 = COPYSENDPOST COPYWARNPOST POSTHEADBODY HEADERINC NOEXPROUTE
 channel flags #3 = LOGGING NORESTRICTED RETAINSECURITYMULTIPARTS
 channel flags #4 = EIGHTNEGOTIATE HEADERKEEPORDER NOHEADERREAD RULES
 channel flags #5 = TRUNCATESMTPLONGLINES
 channel flags #6 = LOCALUSER REPORTNOTARY
 channel flags #7 = SWITCHCHANNEL REMOTEHOST DATEFOUR DAYOFWEEK
 channel flags #8 = NODEFRAGMENT EXQUOTA REVERSE NOCONVERT_OCTET_STREAM
 channel flags #9 = NOTHURMAN INTERPRETENCODING USEINTERMEDIATE RECEIVEDFROM VALIDATELOCALNONE NOTURN
 defaulthost = domain.com domain.com
 linelength = 998
 addrsperfile = 99
 channel env addr type = SOURCEROUTE
 channel hdr addr type = SOURCEROUTE
 channel official host = tcp-daemon (3)
 channel queue 0 name = SMTP_POOL
 channel queue 1 name = SMTP_POOL
 channel queue 2 name = SMTP_POOL
 channel queue 3 name = SMTP_POOL
 channel after params =
 channel user name =
 urgentnotices = 1 2 4 7
 normalnotices = 1 2 4 7
 nonurgentnotices = 1 2 4 7
 channel rightslist ids = (4)
 local behavior flags = %x0
 expandchannel =
 notificationchannel =
 dispositionchannel =
 tlsswitchchannel =
 backward channel = tcp_local (5)
 unique identifier = dan@innosoft.com
 header forward address = dan@innosoft.com (route (TCP-DAEMON,TCP-DAEMON)) (host innosoft.com)
 header reverse address = dan@innosoft.com
 envelope forw address = dan@innosoft.com (route (TCP-DAEMON,TCP-DAEMON)) (host innosoft.com)
 envelope rev address = dan@innosoft.com (route (TCP-DAEMON,TCP-DAEMON)) (host innosoft.com)
 name =
 mbox = dan
Extracted address action list:
 dan@innosoft.com
Extracted 733 address action list:
 dan@innosoft.com
Address list expansion:
-13 expansion total.
Expanded address:
 dan@innosoft.com
Submitted address list: (6)
 tcp_local
 dan@innosoft.com (orig dan@innosoft.com, host innosoft.com) *NOTIFY-FAILURES* *NOTIFY-DELAYS*

Submitted notifications list: (7)

1. The channel to which, after rewriting as an envelope To address, the address is mapped.

71–130 Messaging Server Reference

Examples

2. The flags set for the channel indicated in (1). These flags are controlled by the channel
options set on the channel (in legacy configuration, those channel options set on the first
line of the channel control block for the specified channel). Any unknown options---options
which may have been mistyped---will be interpreted as group ids and will appear on the
line (4).

3. The channel's official host name as specified on the second line of the channel control block
for the channel indicated in (1).

4. Any items appearing on the first line of the channel block which were not channel options
are interpreted as group ids. Any group ids so specified for the channel are listed on this
line.

5. The channel which the address would match if rewritten as an envelope From address.

6. The channel to which a message with the address dan@innosoft.com would be queued and
the envelope To address which would be used. Here, the message would be submitted to
the TCP/IP channel, tcp_local, using the address dan@innosoft.com. Other information
appearing here might include an explicit Errors-to: address, which, if present, appears
enclosed in square brackets; or notations such as *RR* or *NRR*, indicating whether or
not the message is flagged for read receipts, or notations such as *NOTIFY FAILURES*,
NOTIFY DELAYS, *NOTIFY SUCCESSES*, etc., indicating the message's delivery receipt
mechanism and flagging.

7. Notification addresses. If notifications need to be generated regarding this address, as for
instance in the case of a group or list whose definition includes some (immediately obvious
as such) bad addresses, then the addresses about which a notification needs to be generated
will be listed here, along with the error corresponding to each such address. If an override
envelope From is in effect for the original message, hence if the notification will go back to
some address other than the original message's sender, then that address (the address to
which the notification will be sent) will be shown enclosed in square brackets. Note that the
recipient address for the notification will only be shown if it is something different than the
original sender address (as specified via the -from switch, or defaulting to the postmaster
address). New in MS 7.0u2, the word "to" will appear within such square brackets, to
emphasize that the address shown is the address to which the notification will be sent.

The example below shows typical output generated by imsimta test -rewrite in MS 8.0.

% imsimta test -rewrite dan@innosoft.com
 address channel = tcp_local (1)
 forward channel = tcp_local (2)
 channel description =
 channel caption =
 channel user filter =
 dest channel filter =
 source channel filter =
 phase filter =
 channel flags #0 = BIDIRECTIONAL MULTIPLE IMMNONURGENT NOSERVICEALL (3)
 channel flags #1 = SMTP_CRLF AFFINITYLIST IDENTNONENUMERIC DEFAULTDKIMIGNORE
 channel flags #2 = NOSENDPOST NOWARNPOST POSTHEADBODY HEADERINC NOEXPROUTE
 channel flags #3 = LOGGING NORESTRICTED RETAINSECURITYMULTIPARTS
 channel flags #4 = UTF8NEGOTIATE HEADERKEEPORDER NOHEADERREAD RULES
 channel flags #5 = TRUNCATESMTPLONGLINES
 defaulthost = domain.com domain.com
 linelength = 998
 addrsperfile = 99
 channel env addr type = SOURCEROUTE
 channel hdr addr type = SOURCEROUTE

MTA command line
utilities 71–131

Examples

 channel official host = tcp-daemon (4)
 channel queue 0 name = SMTP_POOL
 channel queue 1 name = SMTP_POOL
 channel queue 2 name = SMTP_POOL
 channel queue 3 name = SMTP_POOL
 channel after params =
 channel daemon name = outgate.domain.com
 channel user name =
 urgentnotices = 1 2 4 7
 normalnotices = 1 2 4 7
 nonurgentnotices = 1 2 4 7
 local behavior flags = %x0
 expandchannel =
 notificationchannel =
 dispositionchannel =
 backward channel = tcp_local (5)
 unique identifier = dan@innosoft.com
 header forward address = dan@innosoft.com (route (TCP-DAEMON,TCP-DAEMON)) (host innosoft.com)
 header reverse address = dan@innosoft.com
 envelope forw address = dan@innosoft.com (route (TCP-DAEMON,TCP-DAEMON)) (host innosoft.com)
 envelope rev address = dan@innosoft.com (route (TCP-DAEMON,TCP-DAEMON)) (host innosoft.com)
 name =
 mbox = dan
Extracted address action list:
 dan@innosoft.com
Extracted 733 address action list:
 dan@innosoft.com
Address list expansion:
-13 expansion total.
Expanded address:
 dan@innosoft.com
Submitted address list: (6)
 tcp_local
 dan@innosoft.com (orig dan@innosoft.com, host innosoft.com) *NOTIFY-FAILURES* *NOTIFY-DELAYS* 4

Submitted notifications list: (7)

1. The channel to which, after performing any address reversal, the address matches an an
envelope From address.

2. The channel which, rewriting as an envelope To address, the address matches.

3. The channel options set for the channel indicated in (2).

4. The channel's official host name as specified by the official_host_name option (Unified
Configuration) or the second line of the channel block (legacy configuration) for the channel
indicated in (2).

5. The channel which the address would match if rewritten as an envelope From address.

6. The channel to which a message with the address dan@innosoft.com would be queued
and the envelope To address which would be used. Here, the message would be submitted
to the TCP/IP channel tcp_local using the address dan@innosoft.com. Other
information appearing here might include an explicit Errors-to: address, which, if present,
appears enclosed in square brackets; or notations such as *RR* or *NRR*, indicating
whether or not the message is flagged for read receipts, or notations such as *NOTIFY
FAILURES*, *NOTIFY DELAYS*, *NOTIFY SUCCESSES*, etc., indicating the message's
delivery receipt mechanism and flagging.

7. Notification addresses. If notifications need to be generated regarding this address, as for
instance in the case of a group or list whose definition includes some (immediately obvious

71–132 Messaging Server Reference

Error messages

as such) bad addresses, then the addresses about which a notification needs to be generated
will be listed here, along with the error corresponding to each such address. If an override
envelope From is in effect for the original message, hence if the notification will go back to
some address other than the original message's sender, then that address (the address to
which the notification will be sent) will be shown enclosed in square brackets. Note that the
recipient address for the notification will only be shown if it is something different than the
original sender address (as specified via the -from switch, or defaulting to the postmaster
address).

71.34.6 Error messages
Usually errors reported by imsimta test -rewrite are not actually errors regarding
imsimta test -rewrite in particular, but rather are the utility warning of an underlying
configuration problem. For instance, "Error in mm_init: ..." sorts of errors are typically
configuration errors (whether errors of syntax, of access, of inconsistent/incompatible settings,
etc.).

Address list error -- unknown host or domain:

The above error indicates that the domain name in the specified address did not rewrite to
any MTA channel. Check that the domain name was correctly spelled. If the domain name
was correct and was a locally hosted domain, then most likely it is not correctly provisioned
as a domain in LDAP; see the Schema Reference. If the domain name was a correctly spelled
external domain name, then most likely you need a new (or changed) rewrite rule in the MTA
configuration to handle that domain name, or an updated tlds.txt file; see TLD comparison
rewrites.

Unknown group identifier ... found on channel ...

Prior to MS 7.0, any word on a channel not recognized as a channel option was interpreted
as a group identifier. So prior to MS 7.0, the above error was possible, meaning that you (the
executor of the imsimta test -rewrite command) do not have the specified group
identifier. Check that the word shown is truly intended to be present as a group identifier,
rather than simply being a misspelled channel option.

MTA command line
utilities 71–133

test -time

71.35 test -time utility
Test date-time strings.

71.35.1 Syntax

 imsimta test -time input-string

Table 71.35 imsimta test -time Command Switches

Switch Default
-iso8601 None
-rfc822 None
-periodic -noperiodic

-stamp None

71.35.2 Parameters

71.35.2.1 string

String to test for validity (and meaning) as a date-time.

71.35.3 Description
Test whether a string is a valid date-time string. See also the imsimta test -zone utility.

71.35.4 Switches

71.35.4.1 -iso8601, -rfc822, -stamp

The -iso8601, -rfc822, and -stamp qualifiers specify whether the input string is to be
checked as a possible ISO 8601 time, an RFC 822 date-time, or as a "time stamp" string (such as
from an MTA transaction log file entry), respectively. These qualifiers are mutually exclusive;
one must be specified to obtain output. -stamp expects a 23 (or more) character long input, of
the general form

DD-MMM-YYYY HH:MM:SS.cc

or alternatively

DD-MMM-YYYY:HH:MM:SS.cc

though as the .cc centiseconds are ignored, the output is determined only by the portion of
the form:

DD-MMM-YYYY HH:MM:SS

or alternatively

71–134 Messaging Server Reference

https://tools.ietf.org/html/rfc822

Examples

DD-MMM-YYYY:HH:MM:SS

71.35.4.2 -periodic, -noperiodic

-periodic and -noperiodic (the default) switches are modifiers available with the -
iso8601 qualifier, indicating whether ISO 8601 format is being tested, or ISO 8601 P format is
being tested.

71.35.5 Examples
This example shows conversion of a time stamp (such as from an MTA transaction log entry)
into other date-time formats.

imsimta test -time -stamp "10-MAR-2013 12:13:14.55"
Result: 1362942794 Sun Mar 10 12:13:14 2013
After conversion to system time: "Sun, 10 Mar 2013 12:13:14 -0700 (PDT)"
After conversion back to time_t: 1362942794 Sun Mar 10 12:13:14 2013

This example shows checking the validity of an ISO 8601 format time.

imsimta test -time -iso8601 "2014-06-01T020304.05"
Result: "Sun, 01 Jun 2014 02:03:04 -0700 (PDT)"

MTA command line
utilities 71–135

test -translation

71.36 test -translation utility
Test charset translation.

71.36.1 Syntax

 imsimta test -translation [input-string]

Table 71.36 imsimta test -translation Command Switches

Switch Default
-image_file=filename -image_file=IMTA_TABLE:advanced/charset_data

-source=charset-name

-destination=charset-name

-input=filename

-output=filename

-strip_accent -nostrip_accent

-call_reset -nocall_reset

-generate -nogenerate

-mnemonic_input -nomnemonic_input

-utf8_input -noutf8_input

71.36.1.1 Prompts

Table 71.37 imsimta test -translate Prompts

Prompt Value
Destination character set: charset-name

Source character set: charset-name

Input string: string

71.36.2 Parameters

71.36.2.1 input-string

Input string to try translating to an alternate charset.

71.36.3 Description

The imsimta test -translation utility allows testing charset translation. Note that this
is not language translation; rather, it is conversion of the representation of characters, from one
charset representation, into another charset representation.

71–136 Messaging Server Reference

Switches

71.36.4 Switches

71.36.4.1 -image_file=filename

Specify the compiled charset data image file. By default, the image file used is
IMTA_TABLE:advanced/charset_data (prior to MS 7.0, the file named by the
imta_charset_data MTA Tailor option).

71.36.4.2 -source=charset-name

Specify a source charset: the charset used in the input string.

71.36.4.3 -destination=charset-name

Specify a destination charset: the charset to use in the output string.

71.36.4.4 -input=filename

Read input from the specified file.

71.36.4.5 -output=filename

Direct output to the specified file.

71.36.4.6 -strip_accent, -nostrip_accent (default)

When translating from one charset to another charset that does not have the actual character,
but does have the character sans accent, specifying -strip_accent causes the accentless
character to be output; effectively it "strips" accents. So for instance, -strip_accent may be
useful when desiring to downgrade a charset such as ISO-8859-1 down to US-ASCII.

71.36.4.7 -call_reset, -nocall_reset (default)

Specifies whether or not the state of the charset converter is reset prior to each call.

71.36.4.8 -generate, -nogenerate (default)

Specifying -generate tells the utility to generate and output the entire charset table for
converting from UTF-8 to the specified output charset. Specifying -generate implies -
source=UTF-8. (Thus note that in particular, -generate and -source=charset-name
cannot both be specified; and while some input file or string can be specified, it will be
ignored.)

71.36.4.9 -mnemonic_input, -nomnemonic_input (default)

Specifies whether or not mnemonics can be used to enter non-US-ASCII characters.

71.36.4.10 -utf8_input, -noutf8_input (default)

Specifies whether or not escape sequences can be used to enter UTF-8 characters.

MTA command line
utilities 71–137

Examples

71.36.5 Examples

imsimta test -trans -source=utf-8 -input=utf8.txt -dest=koi8-r -output=koi8r.txt

The above example shows a command line for translating the source file utf8.txt which is
in the UTF-8 charset, into the destination file koi8r.txt which is in the KOI8-R charset.

imsimta test -trans -source=koi8-r -dest=us-ascii -input=koi8r.txt -output=mnemonicized.txt
cat mnemonicized.txt
U=V=E=L=I=C%I=T=%" P=R=O=D=A=Z%I=

"Converting" text to US-ASCII, when the original text contained characters not present in
the US-ASCII charset, results in outputting the mnemonics (as defined in charnames.txt)
for the "missing" characters. The above example shows outputting the character mnemonics
corresponding to two (Russian language) words, originally represented in the KOI8-R charset;
in this case, the output consists of mnemonics for a number of Cyrillic characters.

71–138 Messaging Server Reference

test -zone

71.37 test -zone utility
Test a time zone string.

71.37.1 Syntax

 imsimta test -zone string

71.37.2 Parameters

71.37.2.1 string

String to test for validity (and meaning) as a time zone name.

71.37.3 Description
Test whether a string is a recognized time zone name. See also the imsimta test -time
utility.

71.37.4 Examples
This example shows a sample query on a recognized time zone name string. The offset shown
is from GMT.

imsimta test -zone PDT
Zone PDT decodes to -7 hours, 0 minutes.

This example shows testing a string that is not recognized by the MTA as a valid time zone
name.

imsimta test -zone bogus
Zone decode failed.

MTA command line
utilities 71–139

version

71.38 version utility
Print MTA version number.

71.38.1 Syntax

 imsimta version

71.38.2 Parameters
None.

71.38.3 Description
imsimta version prints out the MTA version number, and displays the system's name,
operating system release number and version, and hardware type.

As of Messaging Server 8.0 this utility also displays whether or not a compiled configuration is
being used.

71.38.4 Example

imsimta version
Oracle Communications Messaging Server 7.0.5.33.0 64bit (built Aug 22 2014)
libimta.so 7.0.5.33.0 64bit (built 00:04:52, Aug 22 2014)
Using /opt/sun/comms/messaging64/config/config.xml (compiled)
NSS Library Version: 3.16.3 Basic ECC
SunOS example 5.10 Generic_127128-11 i86pc i386 i86pc

The above example shows MTA version information for a Solaris x86 system running the 64 bit
version of Oracle Messaging Server 7.0u6, running with a compiled unified configuration.

71–140 Messaging Server Reference

view

71.39 view utility
Display the contents of the specified "version" of an MTA log file.

71.39.1 Syntax

 imsimta view file-pattern

Table 71.38 imsimta view Command Switches

Switch Default
-f=offset-from-first None
-l=offset-from-last None

71.39.1.1 Restrictions

Must have read access to the requested file.

71.39.2 Parameters

71.39.2.1 file-pattern

A file name pattern for which MTA log file to display. A complete file path may be specified.
Or if merely a file name (sans unique id) is specified, the utility will look in the MTA log
directory, imta_log.

71.39.3 Description
The imsimta view utility may be used to display a specified "version" of an MTA log file.
MTA log files have a -uniqueid appended to the file name to allow for the creation of
multiple "versions" of the log file; on UNIX, the -uniqueid is appended to the very end of the
file name (the end of the file extension). The imsimta view utility understands these unique
ids and can display the contents of the particular file corresponding to the requested "version"
of the file.

The default, if no offset switch is specified, is to display the most recent "version" of the file.

71.39.4 Switches

71.39.4.1 -f=offset-from-first

This switch is used to specify displaying the nth "version" of the file (starting counting from 0).
For instance, to display the earliest (oldest) "version" of the file, specify -f=0

71.39.4.2 -l=offset-from-last

This switch is used to specify displaying the nth from the last "version" of the file (starting
decrementing from 0 as the most recent version). For instance, to display the most recent
(newest) "version" of the file, specify -l=0

MTA command line
utilities 71–141

Examples

71.39.5 Examples

imsimta view -l=0 job_controller.log
fat_main: watch_connect failed: Connection refused

The above example shows displaying the most recent Job Controller log file, and finding
logged therein that the Watcher though enabled (watcher.enable in Unified Configuration,
or local.watcher.enable in legacy configuration) was apparently not running (which is
what the error message shown in that log file indicates).

imsimta view -f=0 tcp_intranet_master.log
13:00:16.79: Checking for TLS usage
13:00:16.79: Initializing TLS library
13:00:16.98: SMTP options read and set
13:00:16.98: Debug output enabled, system mail.domain.com, process 6597.1, SMTP client version V8.0 compiled Aug 11 2014 11:38:29
13:00:16.98: Oracle Communications Messaging Server shared library version 8.0.0.0.0 linked 11:42:42, Aug 7 2014
13:00:16.98: max concurrent threads 10, jobs/thread 10
13:00:16.98: (2) tcp_intranet running
13:00:16.98: (2) tcp_intranet -- delivering /opt/sun/comms/messaging64/data/queue/tcp_intranet/004/ZZi0Z6h0Ykfc0.00
13:00:30.29: waiting for 1 threads to exit, or 5400 seconds
13:00:32.31: (2) tcp_intranet finished. did 1 messages
13:00:32.31: (2) No more hosts, ending connections
13:00:32.31: All message processing completed.
imsimta view -f=1 tcp_intranet_master.log
13:00:16.98: Initializing message dequeue via quc_rinit, file "/opt/sun/comms/messaging64/data/queue/tcp_intranet/004/ZZi0Z6h0Ykfc0.00"
13:00:16.98: Reading first To: address
13:00:16.98: log_queue_entry called.
13:00:16.98: Originator address john.doe@domain.com
13:00:16.98: Recipient address jane.doe@domain.com
13:00:16.98: Original recipient address rfc822;jane.doe@domain.com
13:00:16.98: Forced routing to host1.domain.com
13:00:16.98: Setting up connection to "host1.domain.com", initial mailbox "jane.doe"
13:00:16.98: No connection currently open
13:00:16.98: Opening new connection for host1.domain.com
...etc...

The above example shows displaying two tcp_intranet_master.log-* files containing
master_debug output, the (currently) oldest (which in this case is "controller" thread
output), and the (currently) next-to-oldest (which in this case is output from a delivery thread,
processing a particular message file).

71–142 Messaging Server Reference

Part VIII Additional components
Messaging Server includes a Personal Addressbook facility, SNMP support, and support for an Event
Notification Service.

Chapter 72 PAB options
72.1 enable Option Under pab ... 72–1
72.2 defaulthostindex Option .. 72–1
72.3 active Option .. 72–1
72.4 alwaysusedefaulthost Option .. 72–1
72.5 attributelist Option .. 72–1
72.6 ldapbasedn Option .. 72–1
72.7 ldapbinddn Option ... 72–2
72.8 ldaphost Option ... 72–2
72.9 ldappasswd Option ... 72–2
72.10 ldapport Option ... 72–2
72.11 ldapusessl Option ... 72–2
72.12 maxnumberofentries Option ... 72–2
72.13 migrate415 Option ... 72–2
72.14 numberofhosts Option ... 72–2

A number of options affect PAB (Personal Address Book) operation.

Note that for purposes of MTA queries of PABs, there are a number of PAB-related MTA
options that can affect the MTA's PAB queries.

72.1 enable Option Under pab
The enable PAB option enables or disables the Personal Address Book (PAB) feature.

72.2 defaulthostindex Option
The defaulthostindex PAB option specifies the index of the default host.

72.3 active Option
The active PAB option should be set to 1 if PAB host is active, 0 otherwise.

72.4 alwaysusedefaulthost Option
The alwaysusedefaulthost PAB option enables one PAB server to be used (overriding
hostname in PAB URIs).

72.5 attributelist Option
The attributelist PAB option allows adding new attributes to a personal address book
entry. With this parameter, you can create an attribute that does not already exist.

72.6 ldapbasedn Option
The ldapbasedn PAB option specifies the base DN for PAB searches. If not set, it defaults to
the value of the ugldapbasednbase option (local.ugldapbasedn in legacy configuration).

PAB options 72–1

ldapbinddn Option

72.7 ldapbinddn Option
The ldapbinddn PAB option specifies the bind DN for PAB searches. If not set, it defaults to
the value of the ugldapbinddnbase option (local.ugldapbinddn in legacy configuration).

72.8 ldaphost Option
The ldaphost PAB option specifies the hostname of the PAB Directory Server. If not set,
it defaults to the value of the ugldaphostbase option (local.ugldaphost in legacy
configuration).

72.9 ldappasswd Option
The ldappasswd PAB option specifies the password for the user specified by the
ldapbinddn PAB option (respectively, local.service.pab.ldappasswd and
local.service.pab.ldapbinddn in legacy configuration). If not set, ldappasswd
defaults to the value of the ugldapbindcredbase option (local.ugldapbindcred in
legacy configuration).

72.10 ldapport Option
The ldapport PAB option specifies the port number of the PAB Directory Server. If not
set, it defaults to the value of the ugldapportbase option (local.ugldapport in legacy
configuration).

72.11 ldapusessl Option
The ldapusessl PAB option specifies whether to use SSL to connect to the PAB Directory
Server.

72.12 maxnumberofentries Option
The maxnumberofentries PAB option specifies the maximum number of entries a single
PAB can store.

72.13 migrate415 Option
The migrate415 PAB option enables PAB migration when set to 1.

72.14 numberofhosts Option
The numberofhosts PAB option specifies the number of PAB servers (up to a maximum of
16).

72–2 Messaging Server Reference

Chapter 73 SNMP options
73.1 enable Option Under snmp .. 73–1
73.2 listenaddr Option Under snmp ... 73–1
73.3 port Option Under snmp .. 73–1
73.4 cachettl Option Under snmp ... 73–2
73.5 contextname Option ... 73–2
73.6 directoryscan Option ... 73–2
73.7 enablecontextname Option ... 73–3
73.8 registerindices Option ... 73–3
73.9 servertimeout Option ... 73–3
73.10 standalone Option ... 73–3

Several options affect operation of Messaging Server's SNMP subagent(s). Some options
only affect Messaging Server's Net-SNMP based SNMP subagent, used on Solaris platforms
running Solaris 10 and later, as well as Linux platforms, but do not apply to the legacy SNMP
subagent supplied for Solaris platforms running Solaris 9 and earlier operating systems.

Note that while Messaging Server's SNMP support normally runs as a SNMP subagent,
receiving SNMP requests via the platform's SNMP master agent, snmpd, Messaging Server's
SNMP subagent can be run in a different mode, as an SNMP agent itself, independent of
snmpd; see the standalone, listenaddr, and port SNMP options.

See also the logfile options set as snmp.logfile.*.

73.1 enable Option Under snmp
The enable SNMP option, snmp.enable (Unified Configuration) or local.snmp.enable
(legacy configuration), enables the SNMP subagent on start-msg startup.

This option applies to both the Net-SNMP based SNMP subagent, and the legacy SNMP
subagent for Solaris 9 and earlier.

73.2 listenaddr Option Under snmp
The listenaddr SNMP option specifies the IPv4 address to listen on when running as
a SNMP master agent -- that is, when the standalone SNMP option has been set to 1.
The allowed values for listenaddr include an IPv4 address in dotted decimal form (e.g.,
127.0.0.1), or a short form or fully-qualified DNS host name which will be resolved to an
IPv4 address by obtaining the DNS A record for the name. To explicitly specify the default
value of binding to all available interfaces, the string "INADDR_ANY" may be used; (this is
the default). To bind to the loopback device, 127.0.0.1, the string "localhost" may be
specified.

This option applies only to the Net-SNMP based SNMP subagent, but not to the legacy SNMP
subagent for Solaris 9 and earlier.

73.3 port Option Under snmp
The port SNMP option specifies the UDP port to listen on when running as a SNMP master
agent -- that is, when the standalone SNMP option has been set to 1. The default is 161.

SNMP options 73–1

cachettl Option Under snmp

This option applies only to the Net-SNMP based SNMP subagent, but not to the legacy SNMP
subagent for Solaris 9 and earlier.

73.4 cachettl Option Under snmp
The cachettl SNMP option specifies the time to live (TTL) in seconds for cached monitoring
data. That is, this option controls how long the subagent will report the same monitoring
data before refreshing that data with new information obtained from Messaging Server. With
the exception of message loop information, data is cached for no longer than 30 seconds
by default. Loop information, as determined by scanning for .HELD files, is updated only
once every 10 minutes. That because of the resource cost of scanning all the on-disk message
queues; (see also the directoryscan SNMP option).

Note that the subagent does not continually update its monitoring data: it is only updated
upon receipt of an SNMP request and the cached data has expired (that is, outlived its TTL). If
the TTL is set to 30 seconds and SNMP requests are made only every five minutes, then each
SNMP request will cause the subagent to obtain fresh data from Messaging Server. That is,
data from Messaging Server will be obtained only once every five minutes. If, on the other
hand, SNMP requests are made every 10 seconds, then the subagent will respond to some of
those requests with cached data as old as 29 seconds; Messaging Server will be polled only
once every 30 seconds.

This option applies to both the Net-SNMP based SNMP subagent, and the legacy SNMP
subagent for Solaris 9 and earlier.

73.5 contextname Option
When the use of SNMP v3 context names has been enabled with the enablecontextname
SNMP option, then the contextname SNMP option may be used to explicitly set the
context name used by the subagent for its MIBs. The value supplied for this option is a
string value and must be appropriate for use as a SNMP v3 context name. If not explicitly
set, the default value for contextname is the value of the defaultdomain base option
(the service.defaultdomain configutil parameter in legacy configuration). The
contextname option is ignored when enablecontextname has the value 0.

This option applies only to the Net-SNMP based SNMP subagent, but not to the legacy SNMP
subagent for Solaris 9 and earlier.

73.6 directoryscan Option
The directoryscan SNMP option selects whether or not the subagent performs
scans of the MTA's on-disk channel message queues to count .HELD message files, and
update its information on the oldest message files. That information corresponds to the
mtaGroupLoopsDetected, mtaGroupOldestMessageStored and mtaGroupOldestMessageId
MIB variables; see MIB variables served. When this option has the value 1 (or "true" in legacy
configuration), then a cache of this information is maintained and updated as needed. Sites
with thousands of queued messages, if not interested in these particular MIB variables, should
consider setting this option's value to 0, as performing the message queue traversal involves
some overhead.

This option applies to both the Net-SNMP based SNMP subagent, and the legacy SNMP
subagent for Solaris 9 and earlier.

73–2 Messaging Server Reference

enablecontextname Option

73.7 enablecontextname Option
The Net-SNMP based SNMP subagent has the ability to register its MIBs under an SNMP
v3 context name. When this is done, the MIBs may only be requested by a SNMP v3 client
which specifies the context name in its SNMP request. Use of context names allows multiple,
independent subagents to register Network Services and MTA MIBs under the same OID tree
(that is, under the same SNMP master agent).

The enablecontextname SNMP option controls whether to register this instance's MIBs
under an SNMPv3 context name. When the option is set to a value of 1, the subagent will
default to using the value of defaultdomain for its context name, unless a different context
name has been specified using via the contextname SNMP option.

This option applies only to the Net-SNMP based SNMP subagent, but not to the legacy SNMP
subagent for Solaris 9 and earlier.

73.8 registerindices Option
The registerindices SNMP option controls whether to register as visible MIB variables the
applIndex, assocIndex, and mtaGroupIndex MIB indices. By default, these MIB variables are
implicit and not explicitly shown as distinct MIB variables when walking the MIBs.

This option applies only to the Net-SNMP based SNMP subagent, but not to the legacy SNMP
subagent for Solaris 9 and earlier.

73.9 servertimeout Option
The servertimeout SNMP option specifies the maximum number of seconds to wait for
each step in probing a server (connect to, read from, write to, etc.).

The subagent determines the operational status of each monitored service by actually opening
TCP connections to each service and undergoing a protocol exchange. This timeout value,
measured in seconds, controls how long the subagent will wait for a response to each step in
the protocol exchange. By default, a timeout value of five seconds is used.

This option applies to both the Net-SNMP based SNMP subagent, and the legacy SNMP
subagent for Solaris 9 and earlier.

73.10 standalone Option
The standalone SNMP option may be set to run as a standalone SNMP agent when set to 1
(or "true" for the legacy configuration local.snmp.standalone configutil parameter).

Messaging Server's SNMP support normally runs as a SNMP subagent, receiving SNMP
requests via the platform's SNMP master agent, snmpd. This operational mode is the default
and is selected by giving the standalone option a value of 0 (or "false" for the legacy
configuration parameter). However, the subagent may run in a "standalone" mode whereby
it operates as a SNMP agent independent of snmpd. When run in standalone mode, the
subagent--now a SNMP agent--listens directly for SNMP requests on the Ethernet interface
and UDP port specified by, respectively, the snmp.listenaddr and snmp.port options
(configutil parameters local.snmp.listenaddr and local.snmp.port in legacy

SNMP options 73–3

standalone Option

configuration). To run in this standalone mode, specify a value of 1 (or "true" in legacy
configuration) for this option.

Running in standalone mode does not interfere with other SNMP master or subagents running
on the system.

This option applies only to the Net-SNMP based SNMP subagent, but not to the legacy SNMP
subagent for Solaris 9 and earlier.

73–4 Messaging Server Reference

Chapter 74 ENS options
74.1 enable Option Under ens .. 74–1
74.2 port Option Under ens .. 74–1
74.3 enablesslport Option Under ens .. 74–1
74.4 sslport Option Under ens .. 74–2
74.5 secret Option Under ens .. 74–2
74.6 loglevel Option Under ens .. 74–2
74.7 domainallowed Option Under ens .. 74–2
74.8 domainnotallowed Option Under ens .. 74–2
74.9 sslnicknames Option Under ens .. 74–2
74.10 mustauthenticate Option ... 74–2

Several options affecting operation of the ENS server may be set under the ens group; in
particular, ens.enable must be set to enable running the ENS server. For additional, logging
related options, see the logfile options set as ens.logfile.*.

For related functionality and options, see also the base.listenaddr option, the enssub
value of the debugkeys option, the msprobe.probe:ens.*, and the notifytarget
options.

74.1 enable Option Under ens
The enable ENS option enables the ENS server on start-msg startup. The default value is
the value of store.enable (aka local.store.enable in legacy config).

74.2 port Option Under ens
The port ENS option specifies the TCP port the ENS server will listen on. The default is
7997. Versions of ENS prior to 7 update 4 support inclusion of a server IP address in addition
to a port number in the local.ens.port configutil option. That syntax is deprecated. In
legacy configuration, the IP address portion is ignored as of 8.0.1. In Unified Configuration,
the legacy syntax is disallowed. The base.listenaddr option (service.listenaddr in
legacy configuration) is the recommend way to set the ENS server host IP for version 7 update
4 and later.

If ens.port is set, then the notifytarget:target-name.ensport option
(local.store.notifyplugin.*.ensportin legacy configuration) must be configured
to match. In legacy configuration, if the local.ens.port configutil parameter also
specified a host IP address, then local.store.notifyplugin.*.enshost would
also need to be set correspondingly. For Unified Configuration, the equivalent is that the
notifytarget:target-name.enshost option value must match the base.listenaddr
option value.

74.3 enablesslport Option Under ens
The enablesslport ENS option sets whether or not ENS over SSL service is started. Note
that the ens.sslport option controls what port is the ENS+SSL port.

ENS options 74–1

sslport Option Under ens

74.4 sslport Option Under ens
The sslport ENS option specifies the port number for the ENS over SSL port. Note that to
enable the ENS+SSL service, the ens.enablesslport option must be set.

74.5 secret Option Under ens
The secret ENS option specifies the secret used to authenticate ENS clients with the server.

74.6 loglevel Option Under ens
The loglevel ENS option specifies the level of ENS client library logging to the process
nslog file. Messages are also filtered per the loglevel of the process. Allowed values are as in
the Unified Configuration logfile.loglevel option (logfile.*.loglevel in legacy
configuration). But note that the value "debug" generates lots of data and is not recommended.

74.7 domainallowed Option Under ens
The domainallowed ENS option specifies access filters specifying which domains and/or IP
addresses are allowed ENS access.

74.8 domainnotallowed Option Under ens
The domainnotallowed ENS option specifies access filters specifying which domains and/or
IP addresses are not allowed ENS access.

74.9 sslnicknames Option Under ens
The sslnicknames ENS option specifies a list of SSL/TLS server certificate nicknames
(only one per certificate type) for HTTP to offer clients if SSL/TLS enabled. Overrides for
HTTP the base level sslnicknames option (corresponding to the legacy configuration
encryption.rsa.nssslpersonalityssl configutil parameter).

74.10 mustauthenticate Option
The mustauthenticate option under ens, ens.mustauthenticate, specifies whether the
ENS server requires authentication.

74–2 Messaging Server Reference

Chapter 75 eval_ldapd options
75.1 domainallowed Option Under eval_ldapd ... 75–1
75.2 domainnotallowed Option Under eval_ldapd ... 75–1

The Evaluation LDAP server (eval_ldapd) supports options controlling access via access filters.

75.1 domainallowed Option Under eval_ldapd
The domainallowed option under eval_ldapd allows setting access filters specifying which
domains and/or IP addresses are allowed evaluation ldapd access.

75.2 domainnotallowed Option Under
eval_ldapd

The domainnotallowed option under eval_ldapd allows setting access filters specifying
which domains and/or IP addresses are not allowed evaluation ldapd access.

eval_ldapd options 75–1

75–2

Appendix A Supported Standards
This information lists national, international, industry, and de-facto standards related to
electronic messaging and for which support is claimed by Oracle Communications Messaging
Server. Most of these are Internet standards, published by the RFC Editor and approved by the
Internet Engineering Task Force (IETF). Standards for documents from other sources are noted.

Software compliant with older IETF RFCs is usually compatible with newer RFCs unless
the protocol version changes. Where the table mentions a newer version in parentheses
and that version is not listed in a separate row, we have not made a complete assessment
of compatibility but are probably compatible with the new version unless otherwise stated.
Newer versions of IETF specifications often drop features that were optional, rarely used
or problematic. If we implemented features of note that are present only in the older
specification, the older specification is listed on a separate row in addition to the parenthetical
mention.

Features with status "Experimental" or "Work in Progress" may be changed incompatibly in
a future version until the specification has settled. Features with status "De Facto" may not
interoperate with all software as interpretations of the de facto standard may vary.

Table A.1 Protocols

Reference Status Feature and Information
RFC 3501 Proposed standard IMAP (port 143) (Usage:

Server Client) (Older specs:
RFC2060) March 2003

RFC 2180 Informational IMAP4 Multi-Accessed Mailbox
Practice (port 143) (Usage:
Server Client) July 1997

RFC 2061 Informational IMAP4 Compatibility with
IMAP2bis (port 143) (Usage:
Server Client) (Older specs:
RFC1730) December 1996

RFC 2062 Informational Internet Message Access
Protocol - Obsolete Syntax (port
143) (Usage: Server Client)
December 1996

RFC 2683 Informational IMAP4 Implementation
Recommendations (port
143) (Usage: Server Client)
September 1999

 RFC 1730 Proposed standard IMAP4 (Usage: Server)
(Newer specs: RFC2060
RFC2061) December 1994

 RFC 3501 section 7.2.1 Proposed standard IMAP4rev1 Caveat: Cassandra
store and ISS search are not
complaint with the IMAP
specification. (Usage: Server
Client) (Older specs: RFC2060)
March 2003

Supported Standards A–1

http://www.rfc-editor.org/
http://www.ietf.org/
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc2180
http://tools.ietf.org/html/rfc2061
http://tools.ietf.org/html/rfc2062
http://tools.ietf.org/html/rfc2683
http://tools.ietf.org/html/rfc1730
http://tools.ietf.org/html/rfc3501#section-7.2.1

 RFC 3501 section 6.2.1 Proposed standard IMAP STARTTLS (Usage:
Server Off-by-default) (Older
specs: RFC2060) March 2003

 RFC 8446 TLS 1.3 as used by IMAP
STARTTLS (Usage: Server Off-
by-default)

 RFC 3501 section 6.2.3 Proposed standard IMAP LOGINDISABLED
(Usage: Server Off-by-default)
(Older specs: RFC2060) March
2003

 RFC 4422 Proposed standard AUTHENTICATE (SASL)
Caveat: SASLprep is not
implemented. (Usage: Server
Client) (Older specs: RFC2222)
June 2006

 RFC 3501 section 6.2.2 Proposed standard AUTHENTICATE (SASL)
Caveat: SASLprep is not
implemented. (Usage: Server
Client) (Older specs: RFC2060)
March 2003

 RFC 4616 Proposed standard IMAP AUTH=PLAIN
Caveat: SASLprep is not
implemented. (Usage: Server
Client) August 2006

 RFC 4422 page 29 Proposed standard IMAP AUTH=EXTERNAL
(Usage: Server Off-by-default)
(Older specs: RFC2222) June
2006

 RFC 2245 Proposed standard IMAP AUTH=ANONYMOUS
(Usage: Server Off-by-default)
(Newer specs: RFC4505)
November 1997

 RFC 2195 Proposed standard IMAP AUTH=CRAM-MD5
(Usage: Server Off-by-default)
(Older specs: RFC2095)
September 1997

 RFC 2086 Proposed standard IMAP ACL Caveat: Support
for the 'p' right only works
for user 'anyone' presently.
(Usage: Server) (Newer specs:
RFC4314) January 1997

 RFC 2087 Proposed standard IMAP QUOTA (Usage: Server)
January 1997

 RFC 2088 Proposed standard IMAP LITERAL+ (Usage:
Server) January 1997

 RFC 2342 Proposed standard IMAP NAMESPACE (Usage:
Server) May 1998

A–2 Messaging Server Reference

http://tools.ietf.org/html/rfc3501#section-6.2.1
http://tools.ietf.org/html/rfc8446
http://tools.ietf.org/html/rfc3501#section-6.2.3
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc3501#section-6.2.2
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc4422#page-29
http://tools.ietf.org/html/rfc2245
http://tools.ietf.org/html/rfc2195
http://tools.ietf.org/html/rfc2086
http://tools.ietf.org/html/rfc2087
http://tools.ietf.org/html/rfc2088
http://tools.ietf.org/html/rfc2342

 RFC 2359 Proposed standard IMAP UIDPLUS (Usage:
Server) (Newer specs:
RFC4315) June 1998

 RFC 3348 Informational IMAP CHILDREN (Usage:
Server) July 2002

 RFC 3516 Proposed standard IMAP BINARY (Usage: Server)
April 2003

 RFC 3691 Proposed standard IMAP UNSELECT Added in
release: 6.3 (Usage: Server)
February 2004

 RFC 2177 Proposed standard IMAP IDLE Added in release:
6.3 (Usage: Server Off-by-
default) (Enhancement
Request: 12037435) June 1997

 RFC 4959 Proposed standard IMAP SASL-IR Added in
release: 7.0 (Usage: Server)
September 2007

 RFC 4469 Proposed standard IMAP CATENATE Added in
release: 7.0 (Usage: Server)
April 2006

 RFC 5161 Proposed standard IMAP ENABLE Added in
release: 7.0 (Usage: Server)
March 2008

 RFC 4731 Proposed standard IMAP ESEARCH Added in
release: 7.0 (Usage: Server)
November 2006

 RFC 4551 Proposed standard IMAP CONDSTORE Added
in release: 7.0 (Usage: Server)
(Newer specs: RFC7162) June
2006

 RFC 5092 Proposed standard IMAP URL Details: Used by
IMAP referrals, URLFETCH
and CATENATE Added in
release: 8.0.1 (Usage: Server
Client) (Older specs: RFC2192)
(Enhancement Request:
21092120) November 2007

 RFC 4467 Proposed standard IMAP URLAUTH Added in
release: 7.0 (Usage: Server
Client) May 2006

 RFC 5162 Proposed standard IMAP QRESYNC Added in
release: 7.0 (Usage: Server)
(Newer specs: RFC7162)
March 2008

 RFC 5032 Proposed standard IMAP WITHIN Added in
release: 7.0 (Usage: Server)
September 2007

Supported Standards A–3

http://tools.ietf.org/html/rfc2359
http://tools.ietf.org/html/rfc3348
http://tools.ietf.org/html/rfc3516
http://tools.ietf.org/html/rfc3691
http://tools.ietf.org/html/rfc2177
https://support.oracle.com/epmos/faces/BugDisplay?id=12037435
http://tools.ietf.org/html/rfc4959
http://tools.ietf.org/html/rfc4469
http://tools.ietf.org/html/rfc5161
http://tools.ietf.org/html/rfc4731
http://tools.ietf.org/html/rfc4551
http://tools.ietf.org/html/rfc5092
https://support.oracle.com/epmos/faces/BugDisplay?id=21092120
http://tools.ietf.org/html/rfc4467
http://tools.ietf.org/html/rfc5162
http://tools.ietf.org/html/rfc5032

 RFC 2221 Proposed standard IMAP Login Referrals Details:
Used to detect user in transit
via rehostuser utility. Added
in release: 7.0 (Usage: Server
Client) October 1997

 RFC 5257 Experimental IMAP ANNOTATE Added in
release: 7.0 (Usage: Server)
June 2008

 RFC 5267 Proposed standard IMAP CONTEXT Added in
release: 7.0 (Usage: Server)
July 2008

 RFC 5256 Proposed standard IMAP THREAD Caveat: We
don't implement I18NLEVEL
or i;unicode-casemap as
required, and instead use
a similar unicode collator
Added in release: 7.0 (Usage:
Server) June 2008

 RFC 5256 Proposed standard IMAP SORT Caveat: We
don't implement I18NLEVEL
or i;unicode-casemap as
required, and instead use
a similar unicode collator
Added in release: 6.3 (Usage:
Server Client) June 2008

 RFC 5957 Proposed standard IMAP SORT=DISPLAY
Caveat: We don't implement
I18NLEVEL or i;unicode-
casemap as required, and
instead use a similar unicode
collator Added in release: 8.0
(Usage: Server) (Enhancement
Request: 19597156) July 2010

 RFC 5255 Proposed standard IMAP LANGUAGE (Usage:
Server Client) June 2008

 RFC 5464 Proposed standard IMAP METADATA Added in
release: 7.0.5 (Usage: Server)
February 2009

 RFC 2971 Proposed standard IMAP ID Added in release:
7 Update 4 (Usage: Server)
(Enhancement Request:
12139651) October 2000

 RFC 5530 Proposed standard IMAP Response Codes Added
in release: 7.0.5 (Usage:
Server) May 2009

 RFC 4314 Proposed standard IMAP ACL Extension (Usage:
Server) (Older specs:
RFC2086) December 2005

A–4 Messaging Server Reference

http://tools.ietf.org/html/rfc2221
http://tools.ietf.org/html/rfc5257
http://tools.ietf.org/html/rfc5267
http://tools.ietf.org/html/rfc5256
http://tools.ietf.org/html/rfc5256
http://tools.ietf.org/html/rfc5957
https://support.oracle.com/epmos/faces/BugDisplay?id=19597156
http://tools.ietf.org/html/rfc5255
http://tools.ietf.org/html/rfc5464
http://tools.ietf.org/html/rfc2971
https://support.oracle.com/epmos/faces/BugDisplay?id=12139651
http://tools.ietf.org/html/rfc5530
http://tools.ietf.org/html/rfc4314

 RFC 5182 Proposed standard IMAP Referencing the Last
SEARCH Result Added in
release: 7 Update 2 (Usage:
Server) March 2008

 RFC 5819 Proposed standard IMAP4 Extension for Returning
STATUS Information in
Extended LIST Added in
release: 8.0 (Usage: Server)
(Enhancement Request:
16773851) March 2010

 RFC 6154 Proposed standard IMAP LIST Extension for
Special-Use Mailboxes Added
in release: 8.0 (Usage: Server)
(Enhancement Request:
16773916) March 2011

 RFC 7377 Proposed standard IMAP MULTISEARCH Added
in release: 8.0 (Usage: Server)
(Older specs: RFC6237)
(Enhancement Request:
17596568) October 2014

 RFC 2221 Proposed standard IMAP LOGIN-REFERRALS
Added in release: 8.0.1 (Usage:
Server Client) (Enhancement
Request: 21092120) October
1997

 RFC 6855 Proposed standard IMAP UTF8=ACCEPT
Caveat: The implementation
is more permissive about
using/allowing UTF-8
in the protocol than the
specification. Added in
release: 8.1 (Usage: Server)
(Older specs: RFC5738) March
2013

 RFC 5550 Proposed standard IMAP URL-PARTIAL
Added in release: 8.0.2.3
(Usage: Server) (Older specs:
RFC4550) August 2009

 RFC 8438 IMAP STATUS=SIZE Added
in release: 8.0.2.3 (Usage:
Server)

 RFC 8437 UNAUTHENTICATE Added
in release: future (Usage:
Server)

 RFC 8514 SAVEDATE Added in release:
future (Usage: Server)

RFC 1939 Internet standard POP3 (port 110) (Usage:
Server Client) (Older specs:
RFC1725) May 1996

Supported Standards A–5

http://tools.ietf.org/html/rfc5182
http://tools.ietf.org/html/rfc5819
https://support.oracle.com/epmos/faces/BugDisplay?id=16773851
http://tools.ietf.org/html/rfc6154
https://support.oracle.com/epmos/faces/BugDisplay?id=16773916
http://tools.ietf.org/html/rfc7377
https://support.oracle.com/epmos/faces/BugDisplay?id=17596568
http://tools.ietf.org/html/rfc2221
https://support.oracle.com/epmos/faces/BugDisplay?id=21092120
http://tools.ietf.org/html/rfc6855
http://tools.ietf.org/html/rfc5550
http://tools.ietf.org/html/rfc8438
http://tools.ietf.org/html/rfc8437
http://tools.ietf.org/html/rfc8514
http://tools.ietf.org/html/rfc1939

RFC 1957 Informational Some Observations on
Implementations of the Post
Office Protocol (POP3) (port
110) (Usage: Server Client)
June 1996

 RFC 1939 section 7 Internet standard POP TOP (Usage: Server)
(Older specs: RFC1725) May
1996

 RFC 1939 page 12 Internet standard POP UIDL (Usage: Server
Client) (Older specs: RFC1725)
May 1996

 RFC 1939 page 13 Internet standard POP USER / PASS (Usage:
Server Client) (Older specs:
RFC1725) May 1996

 RFC 1939 page 15 Internet standard APOP (Usage: Server Off-
by-default) (Older specs:
RFC1725) May 1996

 RFC 2449 section 6.3 Proposed standard POP SASL (Usage: Server
Client) November 1998

 RFC 2449 Proposed standard POP CAPA Caveat: We
don't implement EXPIRE
or LOGIN-DELAY. (Usage:
Server) November 1998

 RFC 2449 section 6.6 Proposed standard POP PIPELINING (Usage:
Server) November 1998

 RFC 2449 section 6.4 Proposed standard POP RESP-CODES (Usage:
Server) November 1998

 RFC 2449 section 6.9 Proposed standard POP IMPLEMENTATION
(Usage: Server) November
1998

 RFC 2595 section 4 Proposed standard POP STLS (Usage: Server Off-
by-default) June 1999

 RFC 8446 TLS 1.3 as used by POP STLS
(Usage: Server Off-by-default)

 RFC 3206 Proposed standard POP AUTH-RESP-CODES
(Usage: Server) February 2002

RFC 5321 Draft standard SMTP Specification (port 25)
(Usage: Server Client) (Older
specs: RFC2821) October 2008

RFC 821 Internet standard SMTP Legacy Specification
(port 25) (Usage: Server
Client) (Older specs: RFC0788)
(Newer specs: RFC2821)
August 1982

RFC 920 Unknown Domain requirements (port 25)
(Usage: Server Client) October
1984

A–6 Messaging Server Reference

http://tools.ietf.org/html/rfc1957
http://tools.ietf.org/html/rfc1939#section-7
http://tools.ietf.org/html/rfc1939#page-12
http://tools.ietf.org/html/rfc1939#page-13
http://tools.ietf.org/html/rfc1939#page-15
http://tools.ietf.org/html/rfc2449#section-6.3
http://tools.ietf.org/html/rfc2449
http://tools.ietf.org/html/rfc2449#section-6.6
http://tools.ietf.org/html/rfc2449#section-6.4
http://tools.ietf.org/html/rfc2449#section-6.9
http://tools.ietf.org/html/rfc2595#section-4
http://tools.ietf.org/html/rfc8446
http://tools.ietf.org/html/rfc3206
http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc821
http://tools.ietf.org/html/rfc920

RFC 974 Historic SMTP Mail Routing and
DNS (port 25) (Usage:
Server Client) (Newer specs:
RFC2821) January 1986

RFC 1123 section 5 Internet standard SMTP Host Requirements (port
25) (Usage: Server Client)
October 1989

RFC 2505 Best current practice Anti-Spam Recommendations for
SMTP MTAs (port 25) (Usage:
Server Client) February 1999

RFC 3848 Draft standard ESMTP and LMTP
Transmission Types Registration
(port 25) (Usage: Server
Client) July 2004

RFC 1428 Informational Transition of Internet Mail from
Just-Send-8 to 8bit-SMTP/
MIME (port 25) (Usage: Server
Client) February 1993

 RFC 6152 Internet standard SMTP 8BITMIME (Usage:
Server Client) (Older specs:
RFC1652) March 2011

 RFC 2920 Internet standard SMTP PIPELINING (Usage:
Server Client) (Older specs:
RFC2197) September 2000

 RFC 3030 Proposed standard SMTP CHUNKING
Caveat: Spec also contains
BINARYMIME which has not
been implemented. Added
in release: 6.3 (Usage: Server
Client) (Older specs: RFC1830)
(Enhancement Request:
12143903) December 2000

 RFC 3461 Draft standard SMTP DSN (Usage: Server
Client) (Older specs: RFC1891)
January 2003

 RFC 2034 Proposed standard SMTP
ENHANCEDSTATUSCODES
(Usage: Server Client) October
1996

 RFC 3463 Draft standard Enhanced Mail System Status
Codes (Usage: Server Client)
(Older specs: RFC1893)
January 2003

 RFC 2821 section 4.1.1.7 Proposed standard SMTP EXPN (Usage: Server)
(Older specs: RFC0821
RFC0974 RFC1869) (Newer
specs: RFC5321) April 2001

 RFC 2821 section 4.1.1.8 Proposed standard SMTP HELP (Usage: Server)
(Older specs: RFC0821

Supported Standards A–7

http://tools.ietf.org/html/rfc974
http://tools.ietf.org/html/rfc1123#section-5
http://tools.ietf.org/html/rfc2505
http://tools.ietf.org/html/rfc3848
http://tools.ietf.org/html/rfc1428
http://tools.ietf.org/html/rfc6152
http://tools.ietf.org/html/rfc2920
http://tools.ietf.org/html/rfc3030
https://support.oracle.com/epmos/faces/BugDisplay?id=12143903
http://tools.ietf.org/html/rfc3461
http://tools.ietf.org/html/rfc2034
http://tools.ietf.org/html/rfc3463
http://tools.ietf.org/html/rfc2821#section-4.1.1.7
http://tools.ietf.org/html/rfc2821#section-4.1.1.8

RFC0974 RFC1869) (Newer
specs: RFC5321) April 2001

 RFC 821 section 3.4 Internet standard SMTP SAML (Usage: Server
Off-by-default) (Older specs:
RFC0788) (Newer specs:
RFC2821) August 1982

 RFC 821 section 3.4 Internet standard SMTP SEND (Usage: Server
Off-by-default) (Older specs:
RFC0788) (Newer specs:
RFC2821) August 1982

 RFC 821 section 3.4 Internet standard SMTP SOML (Usage: Server
Off-by-default) (Older specs:
RFC0788) (Newer specs:
RFC2821) August 1982

 RFC 821 section 3.8 Internet standard SMTP TURN (Usage: Server
Off-by-default) (Older specs:
RFC0788) (Newer specs:
RFC2821) August 1982

 RFC 3207 Proposed standard SMTP STARTTLS (Usage:
Server Client Off-by-default)
(Older specs: RFC2487)
February 2002

 RFC 8446 TLS 1.3 as used by SMTP
STARTTLS (Usage: Server
Client Off-by-default)

 RFC 4954 Proposed standard SMTP AUTH Caveat:
SASLprep is not
implemented. Versions 8.0
and prior may use different
error codes than those in RFC
4954. Support for AUTH=
mail parameter is server-
only. (Usage: Server Client
Off-by-default) (Older specs:
RFC2554) July 2007

 RFC 4422 Proposed standard SMTP AUTH Caveat:
SASLprep is not
implemented. Versions 8.0
and prior may use different
error codes than those in RFC
4954. Support for AUTH=
mail parameter is server-
only. (Usage: Server Client
Off-by-default) (Older specs:
RFC2222) June 2006

 RFC 1985 Proposed standard SMTP ETRN (Usage: Server)
August 1996

A–8 Messaging Server Reference

http://tools.ietf.org/html/rfc821#section-3.4
http://tools.ietf.org/html/rfc821#section-3.4
http://tools.ietf.org/html/rfc821#section-3.4
http://tools.ietf.org/html/rfc821#section-3.8
http://tools.ietf.org/html/rfc3207
http://tools.ietf.org/html/rfc8446
http://tools.ietf.org/html/rfc4954
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc1985

 RFC 1870 Internet standard SMTP SIZE (Usage: Server)
(Older specs: RFC1653)
November 1995

 RFC 1846 Experimental SMTP 521 Reply Code (Usage:
Client) September 1995

 RFC 7505 Proposed standard Null MX No Service Resource
Record Details: Used to
provide more timely reporting
of SMTP errors Added in
release: 8.0 (Usage: Client)
June 2015

 RFC 7372 Proposed standard Email Authentication Status
Codes Details: Used to provide
more accurate reporting of
SMTP DNS errors Added in
release: 8.0 (Usage: Client)
September 2014

 RFC 3865 Proposed standard SMTP NO-SOLICITING
(Usage: Server Off-by-default)
September 2004

SMTP AUTH=LOGIN Widely Used or De Facto SMTP AUTH=LOGIN Details:
Undocumented pre-standard
subset of AUTH PLAIN
but with interoperability
problems. (Usage: Server)

 RFC 4408 Experimental Sender Permitted From (Usage:
Client) (Newer specs:
RFC7208) April 2006

 RFC 2852 Proposed standard SMTP Deliver By Details:
Control when message is
returned as undeliverable
Added in release: 8.0.1 (Usage:
Server Client) June 2000

draft-melnikov-smtp-altrecip-
on-error-01.txt

Work in Progress, subject to
change

SMTP ALTRECIP Details:
Delivery to alternate recipient
on error Added in release:
8.0.1 (Usage: Client)

 RFC 6710 Proposed standard SMTP Priority Details:
Envelope specification of
message processing priority
Added in release: 8.0 (Usage:
Server Client) August 2012

 RFC 6710 Proposed standard SMTP Priority Tunneling
Details: Tunneling of SMTP
Message Transfer Priorities
Added in release: 8.0.1 (Usage:
Server Client) August 2012

 RFC 6729 Proposed standard Received state Details:
Received: field indicator of the

Supported Standards A–9

http://tools.ietf.org/html/rfc1870
http://tools.ietf.org/html/rfc1846
http://tools.ietf.org/html/rfc7505
http://tools.ietf.org/html/rfc7372
http://tools.ietf.org/html/rfc3865
http://tools.ietf.org/html/rfc4408
http://tools.ietf.org/html/rfc2852
http://tools.ietf.org/html/draft-melnikov-smtp-altrecip-on-error-01.txt
http://tools.ietf.org/html/draft-melnikov-smtp-altrecip-on-error-01.txt
http://tools.ietf.org/html/rfc6710
http://tools.ietf.org/html/rfc6710
http://tools.ietf.org/html/rfc6729

state attached to the message
Added in release: 8.0 (Usage:
Server) September 2012

 RFC 7293 Proposed standard Require Recipient Valid Since
Details: Mailbox ownership
change detection Added in
release: 8.0 (Usage: Server
Client) July 2014

RFC 6409 Internet standard Message Submission Details:
Superset of SMTP adding
AUTH by default. (port 587)
(Usage: Server Client) (Older
specs: RFC4409) November
2011

 RFC 4954 Proposed standard Submission AUTH
Caveat: SASLprep is not
implemented. Versions 8.0
and prior may use different
error codes than those in RFC
4954. Support for AUTH=
mail parameter is server-only.
(Usage: Server Client) (Older
specs: RFC2554) July 2007

 RFC 4422 Proposed standard Submission AUTH
Caveat: SASLprep is not
implemented. Versions 8.0
and prior may use different
error codes than those in RFC
4954. Support for AUTH=
mail parameter is server-only.
(Usage: Server Client) (Older
specs: RFC2222) June 2006

 RFC 4616 Proposed standard Submission AUTH PLAIN
Caveat: SASLprep is not
implemented. (Usage: Server
Client) August 2006

 RFC 4422 page 29 Proposed standard Submission
AUTH=EXTERNAL (Usage:
Server Client Off-by-default)
(Older specs: RFC2222) June
2006

Submission AUTH=LOGIN Widely Used or De Facto Submission AUTH=LOGIN
Details: Undocumented,
subset of AUTH PLAIN
functionality. (Usage: Server
Client)

 RFC 4468 Proposed standard Submission BURL Added in
release: 7.0 (Usage: Server)
May 2006

A–10 Messaging Server Reference

http://tools.ietf.org/html/rfc7293
http://tools.ietf.org/html/rfc6409
http://tools.ietf.org/html/rfc4954
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc4422#page-29
http://tools.ietf.org/html/rfc4468

 RFC 4865 Proposed standard Submission Future Release
Added in release: 7.0 (Usage:
Server) May 2007

RFC 3887 Proposed standard MTQP Specification Details:
Message Tracking Added in
release: 8.0 (port 1038) (Usage:
Server Client) September 2004

RFC 3886 Proposed standard Tracking response format
Details: Message Tracking
Added in release: 8.0 (port
1038) (Usage: Server Client)
September 2004

RFC 3885 Proposed standard SMTP MSGTRK extension
Details: Message Tracking
Added in release: 8.0 (port
1038) (Usage: Server Client)
September 2004

RFC 3888 Informational Tracking model and requirements
Details: Message Tracking
Added in release: 8.0 (port
1038) (Usage: Server Client)
September 2004

RFC 3458 Proposed standard Message Context for Internet
Mail Details: Gateway for
pager/cell phone connectivity
for SMS. (Usage: Server Client
Off-by-default) January 2003

RFC 2251 Proposed standard LDAPv3 (port 389) (Usage:
Client) (Newer specs:
RFC4510 RFC4511 RFC4513
RFC4512) December 1997

RFC 8314 IMAPS Details: standard
IMAP SSL port (port 993)
(Usage: Server Client Off-by-
default)

RFC 8314 POP3S Details: standard POP3
SSL port (port 995) (Usage:
Server Client Off-by-default)

RFC 8314 SUBMISSIONS Details:
standard mail submission SSL
port (port 465) (Usage: Server
Client Off-by-default)

RFC 1034 Internet standard Domain names - concepts and
facilities (port 53) (Usage:
Client) (Older specs: RFC0973
RFC0882 RFC0883) November
1987

RFC 1035 Internet standard Domain names - implementation
and specification (port 53)

Supported Standards A–11

http://tools.ietf.org/html/rfc4865
http://tools.ietf.org/html/rfc3887
http://tools.ietf.org/html/rfc3886
http://tools.ietf.org/html/rfc3885
http://tools.ietf.org/html/rfc3888
http://tools.ietf.org/html/rfc3458
http://tools.ietf.org/html/rfc2251
http://tools.ietf.org/html/rfc8314
http://tools.ietf.org/html/rfc8314
http://tools.ietf.org/html/rfc8314
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1035

(Usage: Client) (Older specs:
RFC0973 RFC0882 RFC0883)
November 1987

 RFC 1035 section 3.4.1 Internet standard DNS A (Usage: Client) (Older
specs: RFC0973 RFC0882
RFC0883) November 1987

 RFC 3596 Draft standard DNS AAAA Details: Support
can be configured on (Usage:
Client) (Older specs: RFC3152
RFC1886) October 2003

 RFC 1035 section 3.3.1 Internet standard DNS CNAME (Usage: Client)
(Older specs: RFC0973
RFC0882 RFC0883) November
1987

 RFC 1035 section 3.3.9 Internet standard DNS MX (Usage: Client)
(Older specs: RFC0973
RFC0882 RFC0883) November
1987

 RFC 934 Unknown DNS MX (Usage: Client)
January 1985

 RFC 1035 section 3.3.12 Internet standard DNS PTR (Usage: Client)
(Older specs: RFC0973
RFC0882 RFC0883) November
1987

 RFC 1035 section 3.3.14 Internet standard DNS TXT Details: For RBL
and SPF. (Usage: Client)
(Older specs: RFC0973
RFC0882 RFC0883) November
1987

RFC 3507 Informational ICAP Details: For Norton AV.
(port 1344) (Usage: Client Off-
by-default) April 2003

RFC 1928 Proposed standard SOCKS 5 (port 1080) (Usage:
Client Off-by-default) March
1996

RFC 2788 Proposed standard SNMP Network Services
MIB Details: Provided via
NetSNMP. (port 161) (Usage:
Server Off-by-default) (Older
specs: RFC2248) March 2000

RFC 2789 Proposed standard SNMP Mail MIB Details:
Provided via NetSNMP.
(port 161) (Usage: Server Off-
by-default) (Older specs:
RFC2249 RFC1566) March
2000

RFC 2033 Informational LMTP Caveat: The addressing
model is non-standard in
order to avoid the need for

A–12 Messaging Server Reference

http://tools.ietf.org/html/rfc1035#section-3.4.1
http://tools.ietf.org/html/rfc3596
http://tools.ietf.org/html/rfc1035#section-3.3.1
http://tools.ietf.org/html/rfc1035#section-3.3.9
http://tools.ietf.org/html/rfc934
http://tools.ietf.org/html/rfc1035#section-3.3.12
http://tools.ietf.org/html/rfc1035#section-3.3.14
http://tools.ietf.org/html/rfc3507
http://tools.ietf.org/html/rfc1928
http://tools.ietf.org/html/rfc2788
http://tools.ietf.org/html/rfc2789
http://tools.ietf.org/html/rfc2033

the LMTP server to perform
address lookups in LDAP.
Third-party use of this is not
supported and will not work
as expected. (port 225) (Usage:
Server Client Off-by-default)
October 1996

Table A.2 Data and File Formats, Schema

Reference Status Feature and Information
RFC 822 Internet standard Legacy Internet Message

Format (Usage: Generate
Accept Process) (Older specs:
RFC0733) (Newer specs:
RFC2822) August 1982

RFC 5322 Draft standard Internet Message Format
(Usage: Generate Accept
Process) (Older specs:
RFC2822) October 2008

RFC 6532 Proposed standard Internationalized Email Headers
(Usage: Generate Accept
Process) (Older specs:
RFC5335) February 2012

RFC 2045 Draft standard Multi-purpose Internet Mail
Extensions (MIME) (Usage:
Generate Accept Process)
(Older specs: RFC1521
RFC1522 RFC1590) November
1996

RFC 2046 Draft standard Multi-purpose Internet Mail
Extensions (MIME) (Usage:
Generate Accept Process)
(Older specs: RFC1521
RFC1522 RFC1590) November
1996

RFC 2049 Draft standard Multi-purpose Internet Mail
Extensions (MIME) (Usage:
Generate Accept Process)
(Older specs: RFC1521
RFC1522 RFC1590) November
1996

RFC 2047 Draft standard MIME International Headers
(Usage: Generate Accept
Process Normalize) (Older
specs: RFC1521 RFC1522
RFC1590) November 1996

RFC 2231 Proposed standard MIME International Parameters
(Usage: Accept Process)

Supported Standards A–13

http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc6532
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2231

(Older specs: RFC2184)
November 1997

RFC 2183 Proposed standard MIME Content-Disposition
(Usage: Generate Accept
Process) (Older specs:
RFC1806) August 1997

RFC 1864 Draft standard Content-MD5 (Usage: Process
Validate) (Older specs:
RFC1544) October 1995

RFC 3458 Proposed standard Message Context for Internet
Mail Details: For per-context
quotas. Added in release: 6.3
(Usage: Generate Accept)
January 2003

RFC 1740 Proposed standard Macintosh MIME Format
(Usage: MTA Translate Off-
by-default) December 1994

RFC 1741 Informational Macintosh Binhex Encoding
(Usage: MTA Translate Off-
by-default) December 1994

RFC 2045 section 6.7 Draft standard MIME base-64 and quoted-
printable encodings (Usage:
Generate Accept Process
MTA Translate Validate
Normalize) (Older specs:
RFC1521 RFC1522 RFC1590)
November 1996

RFC 1847 Proposed standard MIME multipart/signed (Usage:
Process) October 1995

RFC 2480 Proposed standard Gateways and MIME Security
Multiparts (Usage: Process)
January 1999

RFC 3280 Proposed standard X.509 Certificate Profile
Details: Generated by certutil.
Accepted by SSL/TLS. (Usage:
Accept Off-by-default) (Older
specs: RFC2459) (Newer
specs: RFC5280) April 2002

RFC 3462 Draft standard MIME multipart/report (Usage:
Generate Process) (Older
specs: RFC1892) (Newer
specs: RFC6522) January 2003

 RFC 3464 Draft standard Delivery Status Notifications
(DSN) (Usage: Generate
Process) (Older specs:
RFC1894) January 2003

 RFC 3798 Draft standard Message Disposition
Notifications (MDN) (Usage:
Generate Process Off-

A–14 Messaging Server Reference

http://tools.ietf.org/html/rfc2183
http://tools.ietf.org/html/rfc1864
http://tools.ietf.org/html/rfc3458
http://tools.ietf.org/html/rfc1740
http://tools.ietf.org/html/rfc1741
http://tools.ietf.org/html/rfc2045#section-6.7
http://tools.ietf.org/html/rfc1847
http://tools.ietf.org/html/rfc2480
http://tools.ietf.org/html/rfc3280
http://tools.ietf.org/html/rfc3462
http://tools.ietf.org/html/rfc3464
http://tools.ietf.org/html/rfc3798

by-default) (Older specs:
RFC2298) May 2004

RFC 2442 Informational Batch SMTP (Usage: Generate
Accept Off-by-default)
November 1998

RFC 5228 Proposed standard Sieve (Mail Filtering Language)
(Usage: Accept) (Older specs:
RFC3028) January 2008

 RFC 5173 Proposed standard Sieve body Details: Includes
some storage and complexity
limits. Added in release: 7
Update 3 (Usage: Accept Off-
by-default) April 2008

 RFC 3894 Proposed standard Sieve :copy parameter (Usage:
Accept) October 2004

 RFC 5260 Proposed standard Sieve date and index Added in
release: 7 Update 4 (Usage:
Accept) (Enhancement
Request: 12183152) July 2008

 RFC 7352 Proposed standard Sieve duplicate Added in
release: 8.0 (Usage: Accept)
September 2014

 RFC 5293 Proposed standard Sieve Editheader Added in
release: 6.3 (Usage: Accept)
August 2008

 RFC 5228 Proposed standard Sieve Encoded-character
extension Added in release: 7.0
(Usage: Accept) (Older specs:
RFC3028) January 2008

 RFC 6069 Experimental Sieve envelope-dsn, redirect-
dsn Details: Messaging Server
Support for envelope DSN
access. Added in release: 7
Update 2 (Usage: Accept)
December 2010

 RFC 5183 Proposed standard Sieve Environment Added in
release: 7 Update 1 (Usage:
Accept) May 2008

 RFC 5429 Proposed standard Sieve ereject Added in
release: 7.0 (Usage: Accept)
(Older specs: RFC3028)
(Enhancement Request:
12228618) March 2009

draft-ietf-sieve-external-
lists-10.txt

Work in Progress, subject to
change

Messaging Server Support
for Externally Stored
Lists Sieve Extension
Details: Likely subject to
incompatible change in
a future version. Caveat:

Supported Standards A–15

http://tools.ietf.org/html/rfc2442
http://tools.ietf.org/html/rfc5228
http://tools.ietf.org/html/rfc5173
http://tools.ietf.org/html/rfc3894
http://tools.ietf.org/html/rfc5260
https://support.oracle.com/epmos/faces/BugDisplay?id=12183152
http://tools.ietf.org/html/rfc7352
http://tools.ietf.org/html/rfc5293
http://tools.ietf.org/html/rfc5228
http://tools.ietf.org/html/rfc6069
http://tools.ietf.org/html/rfc5183
http://tools.ietf.org/html/rfc5429
https://support.oracle.com/epmos/faces/BugDisplay?id=12228618
http://tools.ietf.org/html/draft-ietf-sieve-external-lists-10.txt
http://tools.ietf.org/html/draft-ietf-sieve-external-lists-10.txt
https://wikis.oracle.com/display/CommSuite/Messaging Server Support for Externally Stored Lists Sieve Extension
https://wikis.oracle.com/display/CommSuite/Messaging Server Support for Externally Stored Lists Sieve Extension
https://wikis.oracle.com/display/CommSuite/Messaging Server Support for Externally Stored Lists Sieve Extension

Implementation includes
additional features not in the
current specification. Added
in release: 7 Update 1 (Usage:
Accept Off-by-default)

 RFC 5463 Proposed standard Sieve ihave Added in release:
7.0 (Usage: Accept) March
2009

 RFC 5232 Proposed standard Sieve imap4flags Added in
release: 6.3p1 (Usage: Accept)
(Enhancement Request:
12108510) January 2008

 RFC 5703 Proposed standard Sieve MIME extension
Caveat: Only mime and
foreverypart implemented,
other extensions in spec not
implemented (foreverypart
added in pimento release)
Added in release: 7 Update 2
(Usage: Accept) October 2009

draft-martin-sieve-
notify-01.txt

Work in Progress, subject to
change

Sieve Notifications by email
Caveat: We only implement
notify method email. Added
in release: 6.2 (Usage: Accept
Off-by-default) (Enhancement
Request: 12070010)

 RFC 5435 Proposed standard Sieve extension for notifications
Caveat: Only mailto: URLs are
presently supported Added in
release: 7.0.5 (Usage: Accept)
January 2009

 RFC 5436 Proposed standard Sieve notification mechanism:
mailto Added in release: 7.0.5
(Usage: Accept) January 2009

 RFC 5231 Proposed standard Sieve Relational Tests (Usage:
Accept) (Older specs:
RFC3431) January 2008

 RFC 5233 Proposed standard Sieve subaddress Added in
release: 6.0 (Usage: Accept)
(Older specs: RFC3598)
January 2008

 RFC 5235 Proposed standard Sieve Spamtest / Virustest
(Usage: Accept) (Older specs:
RFC3685) January 2008

 RFC 5230 Proposed standard Sieve vacation (Usage: Accept)
January 2008

 RFC 6131 Proposed standard Sieve vacation seconds Added in
release: 7.0.5 (Usage: Accept)
July 2011

A–16 Messaging Server Reference

http://tools.ietf.org/html/rfc5463
http://tools.ietf.org/html/rfc5232
https://support.oracle.com/epmos/faces/BugDisplay?id=12108510
http://tools.ietf.org/html/rfc5703
http://tools.ietf.org/html/draft-martin-sieve-notify-01.txt
http://tools.ietf.org/html/draft-martin-sieve-notify-01.txt
https://support.oracle.com/epmos/faces/BugDisplay?id=12070010
http://tools.ietf.org/html/rfc5435
http://tools.ietf.org/html/rfc5436
http://tools.ietf.org/html/rfc5231
http://tools.ietf.org/html/rfc5233
http://tools.ietf.org/html/rfc5235
http://tools.ietf.org/html/rfc5230
http://tools.ietf.org/html/rfc6131

 RFC 5229 Proposed standard Sieve variables Added in
release: 6.3 (Usage: Accept)
January 2008

RFC 952 section 1 Unknown Domain Name Syntax (Usage:
Accept Validate) (Older specs:
RFC0810) October 1985

RFC 1123 section 2.1 Internet standard Domain Name Syntax (Usage:
Accept Validate) October 1989

RFC 2251 Proposed standard namingContexts of root
DSE Details: Used by
comm_dssetup.pl with
Directory Server 6 to
determine naming contexts so
customer can select one to use
for user/group tree. Added in
release: 6.3 (Usage: Accept)
(Newer specs: RFC4510
RFC4511 RFC4513 RFC4512)
December 1997

RFC 2849 Proposed standard LDAP Data Interchange Format
(LDIF) (Usage: Generate) June
2000

RFC 2254 Proposed standard LDAP Search Filter String
Format (Usage: Generate
Accept Validate) (Older specs:
RFC1960) (Newer specs:
RFC4510 RFC4515) December
1997

RFC 2253 Proposed standard LDAP Distinguished Name
String Format (Usage:
Generate MTA Translate
Normalize) (Older specs:
RFC1779) (Newer specs:
RFC4510 RFC4514) December
1997

RFC 2255 Proposed standard LDAP URL Format (Usage:
Accept Validate) (Older specs:
RFC1959) (Newer specs:
RFC4510 RFC4516) December
1997

RFC 3280 Proposed standard PKIX Details: Internet X.509
Public Key Infrastructure
Certificate and Certificate
Revocation List (CRL) Profile
Caveat: As implemented
by Mozilla NSS library,
believed to be complete. Some
new features in RFC 5280
not implemented. (Usage:
Generate Accept Validate)

Supported Standards A–17

http://tools.ietf.org/html/rfc5229
http://tools.ietf.org/html/rfc952#section-1
http://tools.ietf.org/html/rfc1123#section-2.1
http://tools.ietf.org/html/rfc2251
http://tools.ietf.org/html/rfc2849
http://tools.ietf.org/html/rfc2254
http://tools.ietf.org/html/rfc2253
http://tools.ietf.org/html/rfc2255
http://tools.ietf.org/html/rfc3280

(Older specs: RFC2459)
(Newer specs: RFC5280) April
2002

ITU-T Rec. X.680, ITU-T Rec.
X.690.

Other National/International ASN.1 Caveat: Only the
LDAP, PKIX and SNMP
subsets are implemented.
(Usage: Generate Accept
Validate)

RFC 1738 section 3.10 Proposed standard File URL Format (Usage:
Accept) (Newer specs:
RFC4248 RFC4266) December
1994

RFC 3339 Proposed standard Internet Date / Time Timestamps
Details: Also ISO 8601.
Used in a few places that
don't require mail-specific
timestamp format. (Usage:
Generate) July 2002

Unix /var/mail mailbox file
format

Widely Used or De Facto Unix /var/mail mailbox file
format Details: Traditional
'From ' Unix mailbox format
(multiple messages per file).
Used by MTA native channel
and migration tool. (Usage:
Generate MTA Translate)

RFC 8259 application/json Details: Used
for Elastic search, ISS, etc.
(Usage: Generate Accept)

Table A.3 Charsets

Reference Status Feature and Information
ANSI X3.4-1986 Other National/International US-ASCII Details: ANSI

X3.4-1986 (Usage: Accept
MTA Translate Validate IMAP
Search)

RFC 3629 Internet standard UTF-8 Details: Unicode
Transformation Format 8-
bit. (Usage: Accept MTA
Translate Validate Normalize
IMAP Search) (Older specs:
RFC2279) November 2003

ISO 8859 (1-10,14,15) National/International ISO 8859 (1-10,14,15) Details:
ISO 8859 family of 8-bit
charsets. Several languages
with proper US-ASCII subset.
(Usage: MTA Translate IMAP
Search)

ISO 8859 11 National/International ISO 8859 11 Details: ISO 8859
8-bit Thai with ASCII subset.

A–18 Messaging Server Reference

http://tools.ietf.org/html/rfc1738#section-3.10
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc8259
http://tools.ietf.org/html/rfc3629

Added in release: 7 Update 3
(Usage: MTA Translate IMAP
Search)

CNS 11643-1986, GB
2312-1980

Other National/International GB-2312 Details: Simplified
Chinese, also CNS 11643-1986.
(Usage: MTA Translate IMAP
Search)

RFC 1842 Informational HZ-GB-2312 Details:
Simplified Chinese. No
MTA support. (Usage: IMAP
Search) August 1995

Big5 Big5 Details: Traditional
Chinese (Usage: MTA
Translate IMAP Search)

GB-18030 National/International GB-18030 Details: Extended
Simplified Chinese with
Unicode subset. (Usage: MTA
Translate) (Enhancement
Request: 12068067)

ISO/IEC 2022-1986 Other National/International ISO-2022 Details: ISO
standard technique for code-
switching; very complex so
everything uses a subset.
Caveat: We only implement a
subset of full 2022 as needed
by language-specific charsets
and other MTA functions.
(Usage: MTA Translate IMAP
Search)

RFC 1468 Informational ISO-2022-JP Details: Japanese,
based on ISO 2022, JIS X
0201-1976, JIS X 0208-1990
(Usage: MTA Translate IMAP
Search) June 1993

RFC 1554 Informational ISO-2022-JP-2 Details:
Japanese, with additional
language support, not widely
used. (Usage: MTA Translate
IMAP Search) December 1993

JIS X 0201-1976, JIS X
0208-1990 with EUC encoding

Other National/International EUC-JP Details: Japanese.
(Usage: MTA Translate IMAP
Search)

RFC 1557 Informational ISO-2022-KR Details: Korean
KSC 5601-1987 with ISO
2022 encoding (Usage: MTA
Translate IMAP Search)
December 1993

RFC 1557 Informational EUC-KR Details: Korean KSC
5601-1987 with EUC encoding

Supported Standards A–19

http://tools.ietf.org/html/rfc1842
https://support.oracle.com/epmos/faces/BugDisplay?id=12068067
http://tools.ietf.org/html/rfc1468
http://tools.ietf.org/html/rfc1554
http://tools.ietf.org/html/rfc1557
http://tools.ietf.org/html/rfc1557

(Usage: MTA Translate IMAP
Search) December 1993

RFC 1345 Informational ks_c_5601-1987 Details:
Alternate name for Korean
KSC 5601-1987 with EUC
encoding Added in release:
7.0.5.34.0 (Usage: MTA
Translate IMAP Search) June
1992

RFC 1489 Informational KOI8-R Details: Russian 8-bit
with US-ASCII subset. (Usage:
MTA Translate IMAP Search)
July 1993

Thai Industrial Standard
620-2533

Other National/International TIS-620 Details: TIS-620.
IMAP SEARCH support new
in 7u4 (Usage: MTA Translate
IMAP Search)

Windows-1250 Vendor Non-standard, subject
to change

Windows-1250 Details:
Windows variant of
ISO-8859-2 (Eastern/Central
Latin) with extensions. IMAP
SEARCH support new in 7u3
(Usage: MTA Translate IMAP
Search)

Windows-1251 Vendor Non-standard, subject
to change

Windows-1251 Details:
Windows variant of KOI8-
R (Russian) with extensions.
IMAP SEARCH support new
in 7u3 (Usage: MTA Translate
IMAP Search)

Windows-1252 Vendor Non-standard, subject
to change

Windows-1252 Details:
Windows variant of
ISO-8859-1 (Latin) with
extensions. (Usage: MTA
Translate IMAP Search)

Windows-1253 Vendor Non-standard, subject
to change

Windows-1253 Details:
Windows incompatible
variant of ISO-8859-7 (Greek)
with extensions. IMAP
SEARCH support new in 7u3
(Usage: MTA Translate IMAP
Search)

Windows-1254 Vendor Non-standard, subject
to change

Windows-1254 Details:
Windows variant of
ISO-8859-9 (Turkish) with
extensions. IMAP SEARCH
support new in 7u3 (Usage:
MTA Translate IMAP Search)

Windows-1255 Vendor Non-standard, subject
to change

Windows-1255 Details:
Windows incompatible

A–20 Messaging Server Reference

http://tools.ietf.org/html/rfc1345
http://tools.ietf.org/html/rfc1489

variant of ISO-8859-8
(Hebrew) with extensions.
IMAP SEARCH support new
in 7u3 (Usage: MTA Translate
IMAP Search) (Enhancement
Request: 12272449)

Windows-1256 Vendor Non-standard, subject
to change

Windows-1256 Details:
Windows incompatible
variant of ISO-8859-6 (Arabic)
with extensions. (Usage: MTA
Translate IMAP Search)

Windows-1257 Vendor Non-standard, subject
to change

Windows-1257 Details:
Windows incompatible
variant of ISO-8859-13 (Baltic)
with extensions. IMAP
SEARCH support new in 7u3
(Usage: MTA Translate IMAP
Search)

Windows-1258 Vendor Non-standard, subject
to change

Windows-1258 Details:
Windows Vietnamese 8-bit.
IMAP SEARCH support new
in 7u3 (Usage: MTA Translate
IMAP Search)

RFC 2152 Informational UTF-7 Details: Use not
recommended, doesn't
interoperate well. (Usage:
MTA Translate IMAP Search)
(Older specs: RFC1642) May
1997

RFC 3501 section 5.1.3 Proposed standard IMAP Modified UTF-7 (Usage:
Accept MTA Translate
Validate) (Older specs:
RFC2060) March 2003

Table A.4 Library files

Reference Status Feature and Information
RFC 1345 Informational charnames.txt Details: Defines

the mnemonic character
names (based on RFC 1345)
used in charsets.txt (Usage:
Accept) June 1992

RFC 1345 Informational charsets.txt Details: Character
set definitions based on RFC
1345 (Usage: Accept) June
1992

ISO 3166 country codes Other National/International countries.txt Details: List
of ISO 3166 country codes
(Usage: Accept)

Supported Standards A–21

https://support.oracle.com/epmos/faces/BugDisplay?id=12272449
http://tools.ietf.org/html/rfc2152
http://tools.ietf.org/html/rfc3501#section-5.1.3
http://tools.ietf.org/html/rfc1345
http://tools.ietf.org/html/rfc1345

IANA top-level domain list Other National/International tlds.txt Details: Copy of http://
data.iana.org/TLD/tlds-alpha-
by-domain.txt (Usage: Accept)

RFC 3066 Best current practice languages.txt Details: List
of language codes (Usage:
Accept) (Older specs:
RFC1766) (Newer specs:
RFC4646 RFC4647) January
2001

A–22 Messaging Server Reference

http://tools.ietf.org/html/rfc3066

Glossary
A
APOP RFC 1939 (POP3) defines the APOP command. This is an alternate

method for authenticating the user which, rather than sending the
username and password in the clear over the network, encodes the
password.

Authentication mechanism An authentication mechanism is a particular method for a client
to prove its identity to a server. APOP, PLAIN and CRAM-MD5
(mechanism names are as defined by RFC 2222 (SASL)), are examples
of authentication mechanisms. Another, but non-standard, mechanism
is the LOGIN mechanism. For discussions of particular mechanisms,
see for instance RFC 2195 documenting CRAM-MD5, and RFC 1939
documenting APOP.

Authentication source An authentication source is a file, database, interface to an LDAP
directory, etc., which is accessible to the server and wherein are stored
authentication verifiers for users. The system password file, the user
portion of the DIT in an LDAP directory, or a certificate database, are
examples of authentication sources.

Authentication verifier An authentication verifier (e.g., password) is stored on the server and
contains information used to verify a user's identity. The format of the
authentication verifier may restrict which mechanisms can be used. The
term authentication verifier is preferred in place of password, since while
passwords are the most common instance of authentication verifiers, an
authentication verifier could also be something like a certificate in an
LDAP directory or the like; usually, however, one may think "password"
wherever one sees "authentication verifier".

C
Certificate In the security context, a certificate is a guarantee, signed by some

trusted authority, that says that a piece of information is what it purports
to be. For instance, certificates are often needed and encountered when
using a public key pair.
See Also Public key pair.

Certificate Authority A Certificate Authority is a recognized, generally well-trusted authority
that is willing to sign other organization's certificates. A Certificate
Authority has a well-published certificate (containing their public key)
that other organizations can use to verify the Certificate Authority's
signature on other certificates. Assuming that an organization trusts the
Certificate Authority, this then gives them confidence in certificates that
include a valid signature from the Certificate Authority. Verisign, Inc.
(now owned by Symantec Corp.), and Thawte Consulting are two of the
better known commercial Certificate Authorities. Large corporations will
sometimes, for their own internal purposes, act as their own Certificate
Authority.

Glossary G–1

https://tools.ietf.org/html/rfc1939
https://tools.ietf.org/html/rfc2222
https://tools.ietf.org/html/rfc2195
https://tools.ietf.org/html/rfc1939

Certificate request A certificate request is a special form of a site's public key suitable for
signing by a Certificate Authority. The signing of a certificate request
generates a certificate.
See Also Certificate Authority.

Channel In the context of the Oracle MTA, a channel is an abstract combination
of message transport and protocol, realized through a channel program.
Each different transport and protocol combination has a corresponding
different type of MTA channel. A channel represents a connection with
another computer system or group of systems, over which messages
may be transported. For instance, the MTA supports SMTP-over-TCP/
IP channels, for sending and receiving messages from the Internet (as
well as internal networks); typically, several distinct SMTP-over-TCP/
IP channels are configured, for separate handling of SMTP-over-TCP/IP
message traffic originating from, or destined to, different categories of
remote and local systems. See Channels.
See Also Channel program.

Channel block The definition of an MTA channel appearing as a named set of options
under a channel group (Unified Configuration) or in the MTA
configuration file (legacy configuration) is called a channel block; see
Channel configuration.
See Also Channel.

Channel keyword In Unified Configuration, channel options take the place of the legacy
configuration channel keywords. A large number of channel options
(channel keywords in legacy configuration) are available for use in MTA
channel definitions (channel blocks) to control and modify the action of
the channel to which a keyword is applied; see Channel options.
See Also Channel.

Channel program Loosely speaking, any program which enqueues or dequeues messages
to or from the MTA's message queues. See the master_command and
slave_command Job Controller options.
See Also Channel.

CIDR (Classless Inter-
Domain Routing)

CIDR is a method for allocating IP addresses and routing IP packets. In
IPv4, it permits allocating address space on any address bit boundary,
rather than necessarily in 8-bit groups.

CIDR notation A notation of specifying IP addresses and their associated routing
prefix. It appends a slash character to the address and the decimal
number of leading bits of the routing prefix.
See Also CIDR (Classless Inter-Domain Routing).

Cipher suite A cipher suite is a set of cryptographic algorithms used for key
exchange, encryption, and generation of hashes and signatures on
content. In order for the SSL or TLS network protocol to be used,
both sides of a communication must support a common cipher suite.
Examples of cipher suites include RSA, Diffie-Hellman, Triple DES, and
IDEA. See for instance the ssladjustciphersuites option.
See Also SSL (Security Sockets Layer), TLS (Transport Layer Security).

Common name In X.500 terminology, the common name or commonName or CN
attribute is a multi-valued attribute that describes an entry; typically

G–2 Messaging Server Reference

it is something like a person's name, "First Middle Last", etc. The term
is also used in other contexts, such as in a certificate, and in non-X.500
directories, especially LDAP directories.
See Also Certificate.

Conversion tag Conversion tags are a private-to-the-MTA envelope field in
message copies traversing the MTA. Conversion tags are stored
per message copy (message file); so cases where different message
recipients need to have different conversion tags set require
that the MTA generate separate message files. Conversion tags
may be initially set due to user or domain LDAP attributes (see
ldap_conversion_tag, ldap_source_conversion_tag,
ldap_domain_attr_conversion_tag, and
ldap_domain_attr_source_conversion_tag) or set in
Sieve scripts (see Sieve conversiontag extensions) or set in Unified
Configuration in an alias option (see alias_conversion_tag) or
correspondingly in legacy configuration in an alias file entry (see the
[CONVERSION_TAG]named parameter), or set in an the FROM_ACCESS
mapping table or recipient address *_ACCESS mapping tables (see the
$G flag discussed in Address access mapping table flags). Conversion
tag values may optionally be used in various mapping tables (see
the include_conversiontag MTA option)), or may be tested
in Sieve scripts (see Sieve conversiontag extensions). Conversion
tags are normally consumed by the conversion channel; see the TAG
conversion parameter discussed in Available conversion parameters,
listed alphabetically.

CRAM-MD5 RFC 2195 (IMAP/POP AUTHorize Extension) defines the CRAM-MD5
mechanism (Challenge-Response Authentication Mechanism using the
MD5 digest algorithm) for authenticating using an encoded password,
rather than sending the user's password in the clear over the network.

D
Dequeue The act of removing a mail message from the MTA's message queues.

(Often but not always such removal is due to delivering the message;
however dequeue encompasses other cases of removal, such as when a
message expires (delivery attempts time out), or is intentionally deleted
by the mail system administrator via a utility such as imsimta qm
delete, or when an original message with multiple recipients has some
recipients successfully delivered while other recipients suffer temporary
failures, thereby resulting in a dequeue of the original, multi-recipient,
message combined with a re-enqueue of a new message copy containing
only the not-yet-delivered recipients.)

Directory Information Tree Information in an LDAP directory is considered to be in the form of a
directory information tree: information is stored in nodes, arranged in a
hierarchical (tree) structure.

Distinguished name In X.500 terminology, the distinguished name or distinguishedName or
DN attribute uniquely identifies an object in the Directory Information
Tree. The term is also used in other contexts, such as in a certificate, and
in non-X.500 directories, especially LDAP directories.

Glossary G–3

https://tools.ietf.org/html/rfc2195

See Also Directory Information Tree.

DIT An abbreviation for Directory Information Tree.
See Also Directory Information Tree.

DNS (Domain Name
System)

 Distributed naming system for computers, services, etc., on the Internet
or on private networks, that in particular translates domain names into
numerical IP addresses.

DNSBL Another term for Realtime Black List (RBL).
See Also RBL (Realtime Blackhole List, Realtime Block List, Realtime
Blacklist).

Domain alias A domain alias is another, synonymous, name used for a domain.
The MTA supports various forms and mechanisms for domain
aliases, some simple and some complex. See in particular the
ldap_domain_attr_alias MTA option (Schema 1), the
ldap_attr_domain2_schema2 MTA option (Schema 2), and the
domain_uplevel MTA option.
See Also Virtual domain.

E
EAI (Email Address
Internationalization)

 EAI is a proposal from the EAI IETF working group to permit
internationalized email, and in particular internationalized (non-
ASCII) email addresses. See RFC 6530 (Overview and Framework for
Internationalized Email) for an overview.

encoded-word In the context of MIME messages and particularly in the headers of
messages, see the MIME specifications, especially RFC 2047.
See Also MIME.

Enqueue The act of submitting for transmission a mail message to the MTA.

Envelope Additional information may also be present in a message envelope,
including notification flags, and various MTA-private fields. Sieve filters
may access certain message envelope fields using the "envelope" test.)
See Also Message envelope.

F
Final address The "final" form of a recipient address is intended for machine-delivery,

not necessarily user-visibility, and may include delivery-specific
information, such as, in the case of messages being delivered to the
Message Store, folder names or host names or MTA channel names. This
"final" form is thus in contrast to the original form of the address, and the
"intermediate" form also used by the MTA.
See Also Intermediate address.

FQDN (Fully Qualified
Domain Name)

 A domain name specified fully, all the way out to a Top Level Domain,
e.g., host.domain.com, not merely a short form hostname.
See Also TLD (Top Level Domain).

G–4 Messaging Server Reference

https://tools.ietf.org/html/rfc6530
https://tools.ietf.org/html/rfc6530
https://tools.ietf.org/html/rfc2047

G
General database In MTA usage, the term general database refers to a particular database,

that can be used by the MTA for a variety of purposes; see for instance
rewrite general database substitutions and mapping table general
database substitutions. Depending upon the setting of the MTA option
use_text_databases, the general "database" is either stored and
accessed in the form of an on-disk, true database (the default), or else
is stored as an in-memory, hashed structure built from an on-disk
file. Alternatively, new in MS 8.0, it may be stored and accessed via
memcache; see the general_database_url MTA option.

Grey-listing Grey-listing refers to issuing a temporary rejection to attempted
submissions of SMTP messages from "new" (not previously encountered)
senders; that is, a temporary rejection is issued the first time the sender
attempts to send the message, while accepting the message on any
later submission attempt. This approach to reducing spam is based on
the theory that automated spam blasters typically will not bother to
attempt to resend messages, whereas messages from legitimate remote
correspondents will get additional delivery attempts performed by
remote MTAs. But not all sites are willing to accept imposing a delay on
accepting messages from "new" remote senders.

Group In the email context, shorthand for mail group.
See Also Mail group.

GUI (Graphical User
Interface)

 A Graphical User Interface or GUI is a visually oriented interface, such
as typically seen on Mac or Windows systems.

I
ICAP (Internet Content
Adaptation Protocol)

 See RFC 3507 (Internet Content Adaptation Protocol (ICAP)), ICAP
provides a lightweight protocol for executing a "remote procedure call"
on HTTP messages. As such, it is suitable for purposes such as spam/
virus scanningand HTML sanitization.

IETF The IETF, Internet Engineering Task Force, is the Internet standards
body.

Intermediate address The MTA commonly deals with several forms of address, including
the preserved "original" form of a recipient address (the ORCPT form---
in principle, that form originally typed by the sending user, but in
practice that true original form may not have been preserved and instead
some "later", transformed version may be the earliest form preserved),
the "recently" active form (referred to as the "intermediate" form)
corresponding to the form of the address produced after list expansion
but prior to any most recent forwarding applied by the MTA, and an
altered "final" form of that recipient address (as for instance a final form
after forwarding is applied, or after user mailbox name generation occurs
as with the "mailbox" delivery option). For instance, the "intermediate"
form of an address might be first.last@hosted.domain.com in contrast to
a "final" form of uid%hosted.domain.com@ims-ms-daemon.

Glossary G–5

https://tools.ietf.org/html/rfc3507

See Also Final address.

K
Keyword Shorthand for Channel keyword.

See Also Channel keyword.

L
LDIF (LDAP Data
Interchange Format)

 LDIF is a standard plain text format for representing LDAP directory
content; see RFC 2849 (LDIF).

local-part The local-part is the non-domain portion of an email address: the
portion sometimes thought of as the "username", plus optionally a
subaddress; see RFC 5322.
See Also Subaddress.

M
MADMAN MADMAN was the name of the Mail and Directory Management

Working Group. The MADMAN group originated RFC 1566 (Mail
Monitoring MIB).

Mail group A set of addresses (or aliases to expand) which receive email addressed
to some one address: a "mail forwarder". This is distinguished from true
mailing lists, as mailing lists have additional semantics. A mail group
is intended, and normally should only be used, for a small number of
closely related addresses/recipients -- such as a group of mail system
administrators, or a group of family members. See Proper use of lists
rather than groups for further discussion.
See Also Mailing list.

Mailbox filter Mailbox filters are rules for individual users, for MTA channels, or for
the MTA as a whole, specifying screening and certain delivery handling
features for incoming messages. Nowadays, Sieve filters are the common
form of mailbox filters (and Sieve filters are also used in some non-MTA
contexts, such as post-delivery processing by Sieve-enabled email clients,
or use by the Message Store in filtering which messages to purge).
See Also Sieve.

Mailing list A mailing list consists, at the most basic, of a mailing list address, a
list owner address, and a set of member addresses to whom to post
messages addressed to the list. Mailing lists optionally have many other
configuration options -- see the MTA's support for mailing lists; mailing
lists may restrict who can post to the list, restrict the content of what
may be posted to the list, add header lines to postings, "tag" the Subject:
header line, add disclaimer text, etc. But the fundamental and critical
difference between a true mailing list and a mail group is the existence
of a list owner address -- an address that replaces whatever envelope
From was originally present on messages sent to the list address with
that list owner address for the postings to the list membership. This
has a number of semantic implications, especially as relates to potential

G–6 Messaging Server Reference

https://tools.ietf.org/html/rfc2849
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc1566
https://tools.ietf.org/html/rfc1566

notification messages regarding delivery problems to list members. See
Proper use of lists rather than groups for further discussion.
See Also Mail group.

Mapping table Many components of the MTA make use of one or another mapping
table: a table mapping input strings to output strings. All MTA mapping
tables are stored in Unified Configuration as mapping XML elements, or
in legacy configuration are stored in the MTA's mapping file.

Mass mailing A mass mailing is any message sent to a (relatively) large number of
recipients. The recipients might be all of the users hosted at a site, all
of the users in some domain, all users in some organizational unit,
all members (including external members) of a large mailing list, etc.
The purpose of the message might be one of great urgency (such as an
emergency communication), or it might be of general interest but low
urgency (such as announcements). A number of considerations and
configuration options relevant to mass mailings are discussed under
Mass mailings.

Master channel program Any program which enqueues messages to the MTA's message queues.
See Also Slave channel program.

Message archiving Message archiving is a term used in several different senses, with
different purposes. Two of the most common senses/forms are as follows.
(1) Compliance archiving: By this is meant keeping a long term record of
all message traffic (or of certain selected message traffic) to comply with
legal or other requirements. For such compliance archiving, certainty
that "relevant" messages have been captured is usually paramount; but
the captured messages are intended for administrative/legal access, not
normally for further direct end-user access. (2) Operational archiving:
By this is meant "off-loading" storage of certain messages, especially for
instance older messages, to more economical storage/access mechanisms.
Part of operational archiving is an expectation that end-users will still be
able to access "their" messages, when desired, reasonably conveniently.
Some additional discussion of message archiving, along with techniques
of interest, may be found under Message archival and hashing MTA
options.

Message envelope A message envelope specifies for MTA purposes (message routing
purposes) who a message was sent from, and who its recipients are. The
message envelope is not normally visible (directly) to end users, other
than in special ways such as the Return-path: header line value (which
records the final form of the envelope From: address), or as the list of
message recipients in the user's message user agent message composition
interface. (End users instead see the message header and message body.)
In terms of the SMTP protocol, the message envelope includes the MAIL
FROM: and RCPT TO: portions of the SMTP dialogue. The imsimta
qm utility's read command may be used to show these fundamental
envelope fields (as well as headers and optionally content) of a message
in the MTA's queues. The MTA maintains additional envelope fields in
its message files in the MTA queues, which it uses as appropriate and
configured. (Note that some such fields have standardized meanings,
such as notification flags; others are private to the MTA.) The format of
all envelope fields as stored in message files in the MTA queue area is

Glossary G–7

private to the MTA and hence envelope fields should not be accessed
directly through inspection of message files, but rather be accessed
through normal, supported MTA mechanisms, or if being accessed
for custom purposes, should be accessed via the MTA SDK. Examples
of normal, supported mechanisms involving envelope fields would
include: Sieve filter access to certain message envelope fields using the
"envelope" test; the conversion channel use of conversion tags; MTA
transaction logging that may include envelope data; etc.
See Also Envelope.

Message Store The component of a messaging system that contains the user mailboxes,
and facilities (e.g., IMAP, POP, and HTTP servers) to access those
messages; e.g., the Oracle Message Store

MIB MIB is an acronym for Management Information Base. In the email
context, see RFC 1566 (Mail Monitoring MIB).

MIME MIME stands for Multipurpose Internet Mail Extensions. It is the format
used for standard representation of email messages across the Internet
(and also used in HTTP for the World Wide Web). It was originally
specified in RFC 1521 and RFC 1522, later updated by RFCs 2045--2049.

Moderated mailing list A mailing list where only some senders are allowed to post directly
to the list, while attempted postings from other senders are re-routed
to a list moderator or moderators, who can then approve and post the
message to the list, or disapprove the message and thereby prevent it
from being posted.

MTA Message transfer agent; e.g., the Oracle Messaging Server MTA.

MUA Mail user agent; see UA.
See Also UA (User Agent).

N
NOTARY See originally RFCs 1891-1894, now obsoleted by RFCs 3461-3464.

P
Polling In the e-mail context, polling tends to mean an active step to query

whether there are messages or data for the MTA to receive. This is as
opposed to the MTA passively waiting to receive messages or data. For
instance, the SMTP TURN and ESMTP ETRN commands are examples of
polling at the SMTP protocol level.

Private key A private key is the secret half of a public key pair.
See Also Public key pair.

Public key A public key is the published half of a public key pair.
See Also Public key pair.

Public key encryption So-called public key encryption refers to encryption and decryption
using a pair of keys, referred to as a public key pair. One key is referred

G–8 Messaging Server Reference

https://tools.ietf.org/html/rfc1566
https://tools.ietf.org/html/rfc1521
https://tools.ietf.org/html/rfc1522

to as the public key, and is generally published (visible to the outside
world); the other key is referred to as the private key and is secret and
known only to the owner of the public key pair. User A may encrypt data
to send to user B using user B's public key, and then only user B will be
able to decrypt the data by using user B's own private key.
See Also Public key pair, Public key, Private key.

Public key pair Public key encryption uses pairs of keys, one kept secret and one
published (made accessible) to the outside world. What the public key
encrypts, the private key decrypts, and vice-versa. The keys together are
called a public key pair.

Q
Queue cache database The queue cache database, also referred to as the Job Controller queue

cache, is an in-memory data structure maintained by the Job Controller
(as one of its primary responsibilities) that lists the message files
awaiting delivery in the MTA's channel queue areas. (In older versions of
PMDF, the queue cache database was stored as an on-disk database.)

R
RBL (Realtime Blackhole
List, Realtime Block List,
Realtime Blacklist)

 An RBL is a list, usually published through the DNS, of the IP addresses
of problem message senders (spammers). The MTA can be configured
to consult such lists via any of several mechanisms, most notably a
dns_verify callout.

Rewrite rules Also called domain rewriting rules: those rules specified in the MTA as
rewrite XML elements in Unified Configuration, or configured in the
upper half of the legacy configuration file, for transformating domain
names in addresses.

RFC Request For Comments; the Internet's method of publishing documents.

RFC 822 address RFC 822 (Standard for the format of ARPA Internet text messages)
defined the format for Internet e-mail addresses.
See Also EAI (Email Address Internationalization).

S
SASL (Simple
Authentication and Security
Layer)

 See RFC 2222 (Simple Authentication and Security Layer).

Schema Definitions, including structure and syntax, of the types of information
that can be stored as entries in an LDAP Directory Server.

Schema tag A tag (name) identifying the schema in use. The Oracle Messaging
Server MTA has native support for several schemata (and can potentially
support other, more or less compatible schemata), such as the Netscape
Messaging Server 4.1 schema (schema tag nms41), the Sun Internet Mail
Server 4.0 schema (schema tag sims40), and the iPlanet Messaging

Glossary G–9

https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc2222

Server 5.0 schema (schema tag ims50); the MTA merely needs to be told
which schema is in use. See in particular the ldap_schematag MTA
option (and in legacy configuration, also see the configutil parameter
local.imta.schematag).
See Also Schema.

Security rule set A security rule set is a set of rules determining which authentication
mechanisms and sources are permitted or used by a server. For the MTA,
the PORT_ACCESS mapping table is used to determine the security rule
set to apply to an incoming connection, based on IP addresses and ports.

Sieve In the context of e-mail, the term "Sieve" usually refers to the Sieve
mail filtering language defined in RFC 5228, and extended in additional
RFCs including RFC 3431 (Sieve Extension: Relational Tests), RFC
3598 (Sieve Email Filtering---Subaddress Extensions), RFC 3685 (Sieve
Email Filtering: Spamtest and VirusTest Extensions), RFC 3894 (Sieve
Extension: Copying Without Side Effects). Sieve scripts written in
the Sieve filtering language can specify tests to perform on incoming
messages, and then actions to take based on the tests, such as discarding
certain messages, or filing certain messages into specific folders, etc. The
Messaging Server MTA supports Sieve scripts, both at the system level
(an MTA-wide Sieve script, and channel level scripts), and user Sieve
scripts stored and evaluated at the MTA level (stored either in LDAP or
in files on the MTA server). The Message Store supports use of Sieve tests
for specifying which messages to purge.

Sign In the context of a TLS certificate, to say that a certificate is signed
means that a Certificate Authority has generated a hash of the contents
of the certificate and used their own private key to encrypt that hash
and then appended that encrypted hash to the original certificate. Then
other sites that want to check on the validity of your certificate can use
the Certificate Authority's well-published certificate (containing the
Certificate Authority's public key) to verify the hash and thus verify that
the contents of your supposed certificate match the contents that were
seen and signed off on by the Certificate Authority. Assuming that the
other site trusts the Certificate Authority, this then gives them confidence
in your certificate.
See Also Certificate, Certificate Authority, TLS (Transport Layer
Security).

Slave channel program Any program which dequeues messages from the MTA's message
queues.
See Also Master channel program.

SMTP (Simple Mail Transfer
Protocol)

 See RFC 821, or its update, RFC 5321.

Spam Unsolicited bulk messages, especially e-mail messages, and usually
undesired. The more formal term is Unsolicited Bulk E-mail (UBE). The
term "spam" is believed to have originated from a Monty Python Flying
Circus sketch.

SSL (Security Sockets Layer) This protocol was developed by Netscape and has been superseded by
TLS, which is backward compatible with SSL.

G–10 Messaging Server Reference

https://tools.ietf.org/html/rfc5228
https://tools.ietf.org/html/rfc3431
https://tools.ietf.org/html/rfc3598
https://tools.ietf.org/html/rfc3598
https://tools.ietf.org/html/rfc3685
https://tools.ietf.org/html/rfc3685
https://tools.ietf.org/html/rfc3894
https://tools.ietf.org/html/rfc3894
https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc5321

See Also TLS (Transport Layer Security).

Subaddress A subaddress consists of extra detail information in the RFC 5322
"local-part" of an address (the portion to the left of the "@" sign"); the
subaddress is typically encoded into the local-part by using a separator
character such as the plus character, +, and is subject to site-specific
interpretation. Use of subaddresses can be a convenient way, to e.g.:

• Request delivery directed to a named folder.

• Indicate that a message is being received due to membership of some
mailing list.

• Request other special delivery handling, such as delivery to a voice
mailbox.

See Also local-part.

Symmetric encryption When encryption is done such that the same key encrypts and decrypts
the data, it is said that the encryption is symmetric. This does require
that the key that is used to encrypt the data must be given to the
decryption side in a secure fashion.

T
Tar-pitting Intentionally slowing down SMTP responses: every response dragged

out slowly, as if in a tar pit.

TLD (Top Level Domain) The permissible last part of domain names. For MTA purposes, see the
tlds.txt file.

TLS (Transport Layer
Security)

 See RFC 2246 (The TLS Protocol).

Traffic analysis Analysis of who is sending what to whom; in an e-mail context,
who (what senders) are sending what e-mail messages (how big,
etc.), to what recipients. In some contexts, such information may
be considered useful (or sensitive) even in the absence of specific
information about exact message contents: for instance, merely
knowing whether communications have increased or decreased
between two correspondents provide useful competitive information.
Monitoring, especially message logging, may be useful in obtaining
traffic information on an MTA system. Use of BSMTP channels may,
in some cases, be of interest in blocking others from performing traffic
analysis on your own messages.

U
UA (User Agent) User agent; e.g., the Messenger Express e-mail client, or the Convergence

e-mail client.

UBE (Unsolicited Bulk E-
mail)

 Unsolicited bulk messages, especially e-mail messages, and usually
undesired.
See Also Spam.

Glossary G–11

https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc2246

V
Vanity domain An apparent domain for which addresses are supported, but which

does not have a domain entry in the LDAP directory (nor is it a domain
alias); instead it is supported more as a sort of analogue to an alias on
a user entry (typically by placing an attribute msgVanityDomain on
the user entry). The use of vanity domains is strongly discouraged;
proper domain entries (or domain aliases and analogues such as domain
"uplevel" support) is preferred.

VERP (Variable Envelope
Return Path)

 Variable Envelope Return Path (VERP) refers to emitting messages with
each recipient's version of the message copy having a different variant
of the envelope From (envelope return path). One use is for mailing list
messages, so that a list maintainer can correlate bounces of messages to
the list back to which list member had a delivery problem.

Virtual domain When a system hosts multiple domain names, it is considered to
be supporting virtual domains---pseudodomain names that do not
correspond to a system dedicated to only that domain name. Such setups
are routine for modern Messaging Server deployments, and are typically
provisioned via domain entries in an LDAP directory.
See Also Domain alias.

G–12 Messaging Server Reference

Index
Symbols
"l" channel

See Local channel, 65–2
$SERVERROOT

Used to construct CONFIGROOT value, 3–1
Used to construct DATAROOT value, 3–1
Used to construct default dbtmpdir location,
26–10
Used to construct default lockdir location, 16–11

${text} substitution in mapping table, 50–17
% routing, 47–4
&/IMTA_DEFAULTDOMAIN/ substitution

Local channel rewrite rule, 47–15
&/IMTA_HOST/ substitution

Conversion channel rewrite rule, 51–6
ldap_local_host MTA option, 52–89, 52–104,
64–3
Local channel rewrite rules, 47–15

.HELD files
$H flag in address access mapping tables, 57–10
$V flag in FORWARD mapping table, 48–62
delivery_option clause, 52–98
Diagnosing, 65–11
directoryscan SNMP option, 73–2
HeldCount MTA counter, 68–26
Hold channel, 65–10

delivery_option clause, 52–98
holdlimit channel option, 46–67, 46–99, 46–113,
46–124
Job Controller does not track, 55–3
mailDomainStatus of hold, 16–9, 52–154
mailUserStatus of hold, 52–121
max_mime_levels MTA option, 52–222
max_mime_parts MTA option, 52–222
qclean utility

-hold switch, 71–45
qtop utility does not inspect, 71–46
QUARANTINE_ACTION Milter option, 58–6
Releasing from hold channel, 65–11
Sieve hold action, 5–23, 5–60
syslog notice

held_sndopr MTA option, 52–234, 52–266

A
acceptalladdresses channel option, 46–34

Sieve refuse action, 5–33
accepttemporaryfailures channel option, 46–35
acceptvalidaddresses channel option, 46–34
Access control, 57–1

Access mapping tables, 57–2
ACIs on LDAP attributes, 52–120
AUTH_ACCESS mapping table, 62–43
AUTH_REWRITE mapping table, 57–3
BURL_ACCESS mapping, 62–7
Client access to IMAP, POP, and MSHTTP
servers, 33–1
connlimits option, 34–12, 35–4, 41–10, 42–5
Denial of service attacks

Defending against, 57–19
ENS connections, 33–1

domainallowed ENS option, 6–9, 74–2
domainnotallowed ENS option, 6–10, 74–2

ETRN_ACCESS mapping table, 46–128
FROM_ACCESS mapping table, 57–2
IMAP connections, 33–1

domainallowed IMAP option, 6–8, 34–14
domainallowed MMP/IMAP Proxy option,
6–8, 6–8, 41–14
domainnotallowed IMAP option, 6–9, 34–14
domainnotallowed MMP/IMAP Proxy option,
6–9, 6–9, 41–14
tcpaccess MMP/IMAP Proxy/vdomain option,
41–29

IP_ACCESS mapping table, 62–52
LDAP attributes

ACIs on, 52–120
LDAP connections

domainallowed eval_ldapd option, 6–9, 75–1
domainnotallowed eval_ldapd option, 6–9,
75–1

LMTP connections, 57–1
PORT_ACCESS mapping table, 57–3

Mailing lists
Interpretation of multiple controls, 49–2

MAIL_ACCESS mapping table, 57–2
Mapping tables, 57–2
MSHTTP connections, 33–1

domainallowed MSHTTP option, 6–8, 42–7
domainnotallowed MSHTTP option, 6–9,
42–7

MX_ACCESS mapping table, 62–51
ORIG_MAIL_ACCESS mapping table, 57–2
ORIG_SEND_ACCESS mapping table, 57–2
POP connections, 33–1

domainallowed MMP/POP Proxy option, 6–8,
6–8, 6–8, 41–14
domainallowed POP option, 6–9, 35–5
domainnotallowed MMP/POP Proxy option,
6–9, 6–9, 6–9, 41–14
domainnotallowed POP option, 6–9, 35–5
tcpaccess MMP/POP Proxy/vdomain option,
41–29

Index–1

PORT_ACCESS mapping table, 57–2, 57–3
Recipient access mapping tables, 57–7
Recipient restrictions, 57–2
SASL_ACCESS mapping table, 62–54
Sender restrictions, 57–2
SEND_ACCESS mapping table, 57–2
SMTP connections, 57–1

PORT_ACCESS mapping table, 57–3
SMTP SUBMIT connections, 57–1

PORT_ACCESS mapping table, 57–3
TCP wrappers, 6–1

Filter syntax, 6–2
Access mapping tables, 57–2

Interaction and timing, 57–17
MTA options, 52–199

access_auth MTA option, 52–199
FROM_ACCESS mapping table probe, 57–16

access_counts MTA option, 52–200
*_ACCESS mapping table probes, 57–8

access_errors MTA option, 52–166
Recipient *_ACCESS mapping table rejections,
57–9
Spam/virus filter package recipient rejections,
52–167

access_orcpt MTA option, 52–200
*_ACCESS mapping table probes, 57–8
SRS and relay blocking, 62–61

Accounts
Administrators

inetMailAdministrator object class, 71–68
Certificate Revocation List access

crlurllogindn S/MIME option, 43–4
Directory Manager

crlurllogindn S/MIME option, 43–4
logindn S/MIME option, 43–2

Dispatcher worker processes run under
user Dispatcher option, DEPRECATED, 54–12
user Dispatcher service option,
DEPRECATED, 54–12

External LDAP user/group administrator
ldap_ext_username MTA option, 52–193

LDAP user/group administrator
ldap_username MTA option, 52–83
ugldapbinddn base option, 16–22

Message Store
serveruid Base option, 16–14

Message Store admin
admins Message Store option, 26–5
admins Message Store option, MSHTTP
support for SMTP AUTH, 46–170
httpadmin, DEPRECATED: see proxyadmin
instead, 40–1
httpproxyadmin MSHTTP option, 42–9

httpproxyadmin MSHTTP option,
DEPRECATED, 42–9
imapadmin Proxy option, 40–1
proxyadmin base option, 16–12
smtpauthuser MSHTTP option, 42–13
storeadmin MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–28

Message Store indexer administrators
indexeradmins Message Store option, 26–12

Message Store public shared folders owner
publicsharedfolders Message Store option,
26–30

Message Store service administrator group
serviceadmingroupdn Message Store option,
26–17

Message Store submit user
imap_username MTA option, 52–73
submituser IMAP option, 34–18

MTA user
imsimta crdb utility, 71–35
imta_user MTA Tailor option, Replaced by
user option in restricted.cnf, 53–11
Pipe channel command processing, 65–18
uid, Defragment database, 65–6
uid, Vacation response files, 52–72
Using MTA command line utilities, 71–5

noprivuser
Mapping table sequence number files, 50–13

noprivuser option in restricted.cnf
Replaces imta_user_username to define MTA
user, 53–11

Owner of MMP AService process
DELETED: betheuser MMP option, 41–7

PAB LDAP administrator
ldapbinddn PAB option, 72–2
ldap_pab_username MTA option, 52–194

Pipe channel runs under
pipeuser option in restricted.cnf, 46–71,
46–117
user channel option, 46–71, 46–117

S/MIME URL access
logindn S/MIME option, 43–2

See also restricted.cnf file, 15–1
user option in restricted.cnf

Replaces serveruid base option, 16–14
accounturl base option, 16–3
ackpolicy Message Store dbreplicate option, 26–21
acktimeout Message Store dbreplicate option,
26–22
action attribute in store.expirerule files, 31–2
actionattributes IMAP/POP/Messagetrace option,
34–3, 35–2, 36–1

Index–2 Messaging Server Reference

actions IMAP/POP/Messagetrace option, 34–3,
35–2, 36–1
activate messagetrace option, 36–1, 46–95

ims-ms channel debugging, 64–6, 64–7
active PAB option, 72–1
additional_host_names channel option, 46–89
addlineaddrs channel option, 46–36
Address access mapping tables

Conversion tags, 57–10
Enabling channel debugging, 57–10
Flags

List of, 57–10
FROM_ACCESS, 57–15
Header addition, 57–10
MAIL_ACCESS, ORIG_MAIL_ACCESS,
SEND_ACCESS, and ORIG_SEND_ACCESS,
57–7
Message capture, 57–10
Message recipient limits, 57–10
Message size limits, 57–10
Sieve filter effects, 57–10
SMTP protocol delays, 57–10
Spam level setting, 57–10
syslog notice generation, 57–10
Testing of, 50–27

Address reversal, 48–50
Channel switch effect, 48–52
Conversion tags, 48–52
Direct LDAP lookups, 48–50

Caching, 52–163
Performance tuning, 52–163

LDAP attribute triggered message capture, 67–6
Message archiving, 48–52
Message capture, 48–52
Message size limits, 48–52
MTA options

ldap_alias_addresses, 52–129
ldap_equivalence_addresses, 52–129
reverse_envelope, 52–64
use_reverse_database, 52–67, 52–212

NOTARY flags, 48–52
Notification language preference, 48–52
Postmaster address

Per-domain, 48–52
REVERSE mapping table, 48–52
reverse_database_url MTA option, 48–54
reverse_envelope MTA option, 52–64
Side effects (intended), 48–51
Spam/virus filter package optin, 48–52
usereversedatabase channel option, 46–50
use_reverse_database MTA option, 52–67,
52–212

Addressbook (personal) lookups by the MTA,
52–193
Addresses

% routing, 46–40, 47–4
-owner@

Disables vacation message, 5–53, 57–17
-request@

Disables vacation message, 5–53, 57–17
Authenticated sender

Adding to headers, 57–16
FORWARD mapping table probes, 48–61,
52–66, 52–212
ldap_auth_attr_sender MTA option, 52–161
Logging of, log_auth MTA option, 52–272
Logging of, log_username MTA option,
52–298
MAIL FROM command's AUTH parameter,
46–173
Mapping table probes, use_auth_return MTA
option, 52–206
sasl*auth channel options, 46–173
saslswitchchannel channel option, 46–91,
46–174
use_auth_return MTA option, 52–206

Canonicalization, 48–50
reverse_url MTA option, 52–93

Catchall
aliaswild channel option, 46–39, 48–47
alias_url1 MTA option, 52–91
ldap_domain_attr_catchall_address MTA
option, 52–157
ldap_domain_attr_catchall_mapping MTA
option, 52–158
mailDomainCatchallAddress LDAP attribute,
52–157
mailDomainCatchallMapping LDAP
attribute, 52–158

Channel options, 46–34
Characters

Eight bit, 46–59
RFC 822 "specials" characters, In aliases,
48–26

Comment strings
comment* channel options, 46–73
COMMENT_STRINGS mapping table, 48–56
mail_off MTA option, 52–196
post_off MTA option, 52–197
Sieve filter address test :comment modifier,
5–26
sourcecomment* channel options, 46–73

Domain literals
Example, 47–4
Rewrite rule [] matches any, 47–12

Index–3

Rewriting of, 47–8
Spaces in, 47–9

Domain name omitted
Authentication, defaultdomain option, 41–13
Fixup of, 46–42, 46–74
log_local and logging of, 52–288

Duplicate elimination
-debug output of test -rewrite, 71–123
Mailing list membership, 49–19

EAI, G–4
utf8* channel options, 46–60, 46–138

Eight bit characters in, 46–59
Envelope From

*receivedfrom channel options, 46–83
-from switch of imsimta test -expression,
71–92
-from switch of test -rewrite, 71–120, 71–124
Accepted,
error_text_accepted_return_address MTA
option, 52–176
Authenticated sender as, 57–16
AUTH_REWRITE mapping table, 46–163
Blank, Distinguishing feature of notification
messages, 60–1
Blank, returnenvelope channel option, 46–108
Channel options, 46–34
Domain corresponds to null MX,
returnenvelope channel option, 46–109
Empty, Distinguishing feature of notification
messages, 60–1
exproute channel option, 46–44
Fixup when domain name omitted, 46–42,
46–74
Force on local system name, 46–44
FORWARD mapping table probes, Form
used, 48–61
Invalid, error_text_invalid_return_address
MTA option, 52–176
Mailing list override of, 48–34, 52–146
Mailing list postings and alias_envelope_from
alias option, 48–15
Null, Distinguishing feature of notification
messages, 60–1
Overridden via AUTH_ACCESS mapping,
62–44
Recipient *_ACCESS mapping probes, Form
used, 57–8
Reply-to: addition, 48–38
Rewrite rules, Limiting application to, 47–29
setenvelopefrom Sieve action, 5–10, 5–76
Sieve filter access to, 5–31
SMS source, from_domain gateway_profile
option, 66–5

spamfilter*_returnpath MTA options, 52–258
Unknown,
error_text_unknown_return_address MTA
option, 52–176
userswitchchannel effect, 46–91
use_*_return MTA options, 52–206
Verifying apparently local addresses are
valid, returnenvelope channel option, 46–108
Verifying apparently local addresses are
valid, return_envelope MTA option, 52–166,
52–229
Verifying it rewrites to an MTA channel,
returnenvelope channel option, 46–108
Verifying it rewrites to an MTA channel,
return_envelope MTA option, 52–166, 52–229
Verifying its domain resolves in the DNS,
returnenvelope channel option, 46–108
Verifying its domain resolves in the DNS,
return_envelope MTA option, 52–166, 52–229

Envelope To
*receivedfor channel options, 46–83
-to switch of imsimta test -expression, 71–92
Channel options, 46–34
Channel options for long lists of, 46–95
Domain aliases, 48–59
Fixup when domain name omitted, 46–42,
46–74
FORWARD mapping table, 48–61
Forward-pointing, 47–29
Processing of, 48–59
Rewrite rules, 48–59
Rewrite rules, Limiting application to, 47–29
Sieve filter access to, 5–31, 49–7

Equal sign
token_char MTA option, 52–65, 52–265

Explicit routing
Interpretation of % and ! characters, 46–40
Removed with routelocal channel option,
46–48

Final form, G–4
includefinal channel option, 46–105
spamfilterN_final MTA options, 52–256

Fixup of "bare" username, 46–42, 46–74
Initial form

FORWARD mapping table probes, 48–61,
52–66, 52–212

Intermediate form, G–5
$K flag in FORWARD mapping table, 48–62
FORWARD mapping table probes, 48–61,
52–66, 52–212
Logging of, 52–288
Reported in "capture :journal" 2003 format
message copies, 67–14

Index–4 Messaging Server Reference

Reported in "capture :journal" 2007 format
message copies, 67–16
spamfilterN_final MTA options, 52–256,
52–256
useintermediate channel option, 46–105

Internationalization, G–4
-utf8 switch of imsimta test -expression, 71–95

Length limit, 48–2, 48–25
LISTSERVE@*

Disables vacation message, 5–53, 57–17
Long lists of

Channel options, 46–95
MAILER-DAEMON@*

Disables vacation message, 5–53, 57–17
majordomo@*

Disables vacation message, 5–53, 57–17
MTA options, 52–58
Original form

Logging of, 52–288
owner-*@*

Disables vacation message, 5–53, 57–17
Parsing

ap_debug MTA option, 52–77
Debugging, ap_debug MTA option, 52–77
Sieve filter address test, 5–26

Percent hack
Special rewriting of, 47–12

Personal name (RFC 822 "phrase")
personal channel options, 46–47, 46–85
ldap_personal_name MTA option, 52–128
Length limit, 48–3
MIME encoding and the charset8 channel
option, 46–59
Not included in reverse database probes,
48–52
PERSONAL_NAMES mapping table, 48–56
Sieve filter address test :display modifier,
5–26

Postmaster, 60–26
$H flag in REVERSE mapping table, 48–55
DSNs, RETURN_PERSONAL option in
return_option.opt, 60–15
MDNs, RETURN_PERSONAL option in
disposition_option.opt, 60–22
Per-domain, Address reversal, 48–52
Per-domain,
ldap_domain_attr_report_address MTA
option, 52–157
Per-domain, mailDomainReportAddress
domain LDAP attribute, 52–157
user_case MTA option, 52–69

Pre-alias-expansion form
Logging of, 52–288

spamfilterN_final MTA options, 52–256
Quotation marks embedded in local-part, 47–20
Reversal

See Address reversal, 48–50
RFC 1137 restricted encoding of, 46–46

-restricted switch of test -rewrite utility,
71–127

RFC 822 "specials" characters
In aliases, 48–26

RFC 822 phrase, 48–56
Source routes, 46–40

*exproute and *improute channel options,
46–44
delivery_option clauses, 52–99
Interpretation of % and ! characters, 46–40
Removing during rewriting, 47–8
Removing from recipient addresses passed to
spam/virus filter packages, 52–256
Stripping, 46–43

SRS encoding
addresssrs channel option, 46–36
Bad hash, error_text_srs_badhash MTA
option, 52–173
Channel options, 46–36, 46–45, 46–77
Debugging decoding of, mm_debug MTA
option, 52–79
destinationsrs channel option, 46–36
Domain name, srs_domain MTA option,
52–265
MTA options, 52–263
sourcesrs channel option, 46–36
Syntax errors, error_text_srs_syntax MTA
option, 52–173
Testing via test -rewrite, 71–119
Time out, error_text_srs_timeout MTA
option, 52–173
Time out, srs_maxage MTA option, 52–265

Subaddresses, 48–46, G–11
Address reversal, 48–56
Alias file, 48–25
ldap_domain_attr_subaddress MTA option,
52–152
Mailing list members, 49–22
Mailing list VERP type functionality, 52–146
Meta-groups, 52–106
Rewrite rule substitution, 47–20
Sieve filter subaddress extension, 5–51
subaddress* channel options, 46–49

Syntax check not performed after rewriting,
47–8
Testing of

test -rewrite utility, 71–117
token_char MTA option, 52–65, 52–265

Index–5

Trailing dot on host/domain, 47–5
user_case MTA option, 52–69
UUCP style

Special rewriting of, 47–12
Vacation messages

ldap_autoreply_addresses MTA option,
52–137

addresssrs channel option, 46–36
addreturnpath channel option, 46–72
addrsperfile channel option, 46–66
addrsperjob channel option, 46–109
addrtypescan channel option, 46–36, 46–118

"capture :journal" message copies, 67–16
HEADER_CHECK alias file named parameter,
48–36
ldap_check_header MTA option, 52–150

addrtypescanbccdefault channel option, 46–36,
46–118

ldap_check_header MTA option, 52–150
adminbypassquota IMAP option, 34–4
admins Message Store option, 26–5
affinitylist channel option, 46–150
after channel option, 46–110

BSMTP channels, 63–3
Alarm options, 1, 20–1

noticehost, 20–1
noticeport, 20–1
noticercpt, 20–1
noticesender, 20–1

Postmaster address, 60–3
smtpauthpassword, 20–2
smtpauthuser, 20–2
smtptls, 20–4
system group, 20–2
system:diskavail

description, 20–2
statinterval, 20–3
threshold, 20–3
thresholddirection, 20–3
warninginterval, 20–4

system:serverresponse
description, 20–2
statinterval, 20–3
threshold, 20–3
thresholddirection, 20–3
warninginterval, 20–4

Alias and address MTA options, 52–58
Alias database, 48–43

alias_database_url MTA option, 52–215
Case insensitive, 48–44
Example, 48–44
Format of, 48–45
MTA options

alias_database_url MTA option, 52–215
comment_chars, 48–45
use_alias_database, 52–65

Used in addition to (not replacing) alias options
or alias file, 48–43
World readable, 48–45

Alias file
Maximum number of entries

alias_hash_size MTA option, 52–186
Named parameters, 48–27

alias group, 48–8, 48–9
Alias options, 48–9

alias_alternate_recipient, 48–10
alias_and, 48–10
alias_auth_channel, 48–10
alias_auth_list, 48–10
alias_auth_mapping, 48–11
alias_auth_username, 48–11
alias_blocklimit, 46–123, 48–11

error_text_list_block_over MTA option,
52–169
error_text_user_block_over MTA option,
52–170

alias_cant_channel, 48–10
alias_cant_list, 48–10
alias_cant_mapping, 48–11
alias_cant_username, 48–11
alias_capture, 48–11
alias_capture_header, 48–12
alias_conversion_tag, 48–12
alias_creation_date, 48–12
alias_deferred, 48–13
alias_deferred_list, 48–13
alias_deferred_mapping, 48–13
alias_delay_notifications, 48–14
alias_digest_recurrence, 48–14
alias_direct_list, 48–14
alias_direct_mapping, 48–14
alias_entry, 48–9
alias_envelope_from, 48–15
alias_error_text, 48–15
alias_expandable, 48–15
alias_expiry, 48–16
alias_filter, 48–16

Sieve hierarchy, 5–81
alias_header_addition, 48–16

Compared to use of mgrpAddHeader group
LDAP attribute, 52–147

alias_header_alias, 48–17
alias_header_check, 48–17
alias_header_expansion, 48–17
alias_header_trim, 48–16

Index–6 Messaging Server Reference

Compared to use of mgrpRemoveHeader
group LDAP attribute, 52–147

alias_hold_list, 48–17
alias_hold_mapping, 48–17
alias_importance, 48–17
alias_journa,_header, 48–12
alias_journal, 48–11
alias_keep_delivery, 48–18
alias_keep_read, 48–18
alias_linelimit, 46–123, 48–11

error_text_list_line_over MTA option, 52–170
error_text_user_line_over MTA option,
52–170

alias_list_name, 48–18
alias_nodelay_notifications, 48–14
alias_nohold_list, 48–17
alias_nohold_mapping, 48–17
alias_nonexpandable, 48–15

expn* channel options, 46–139
alias_nooriginator_reply, 48–19
alias_noreceivedfor, 48–20
alias_noreceivedfrom, 48–20
alias_nosolicit, 48–20
alias_optin1, 48–20
alias_optout1, 48–20
alias_or, 48–10
alias_originator_reply, 48–19
alias_password, 48–21
alias_precedence, 48–17
alias_prefix_text, 48–21

-additions switch of test -rewrite, 71–121
alias_priority, 48–17
alias_private, 48–21
alias_public, 48–21
alias_receivedfor, 48–20
alias_receivedfrom, 48–20
alias_reprocess, 48–22
alias_sasl_auth_list, 48–22
alias_sasl_auth_mapping, 48–23
alias_sasl_cant_list, 48–23
alias_sasl_cant_mapping, 48–23
alias_sasl_mdoerator_list, 48–23
alias_sasl_moderator_mapping, 48–23
alias_sensitivity, 48–17
alias_sequence_prefix, 48–23
alias_sequence_strip, 48–23
alias_sequence_suffix, 48–23
alias_single, 48–23
alias_spare*, 48–23
alias_suffix_text, 48–21

-additions switch of test -rewrite, 71–121
alias_tag, 48–24
alias_to, 48–24

alias_username, 48–24
alias_username_auth_list, 48–10
alias_username_cant_list, 48–10
description, 48–14
Header addition modifiers, 48–47
Values

URL types, 1–4
aliasdetourhost channel option, 46–37, 46–68

Alternate conversion channel, 51–5
Routing to a gateway system, 62–58
See also aliasoptindetourhost channel option,
46–37, 46–68

aliasdetourhost_null_optin MTA option, 52–96
Aliases, 48–2

Alias file, 48–24
Backslash character, 48–25
Colon character, 48–25
Comment line, 48–27
Compiling, 48–27
Continuation lines, 48–25
Duplicate left hand sides not allowed, 48–27
Format, 48–25
Including additional files, 48–27
LDAP URL alias values, 48–42
Mailing lists, 48–42
Named parameters, 48–26
Protection of include files, 48–27
Restrictions, 48–48
Subaddresses, 48–25

alias group, 48–8, 48–9
alias_case MTA option, 52–59
alias_domains MTA option, 52–60
alias_magic MTA option, 52–61
Case sensitivity

alias_case MTA option, 52–59
Insensitive matching in alias database, 48–44

Creation date
alias_creation_date alias option, 48–12
CREATION_DATE alias file named
parameter, 48–32

Database
Format of probes, alias_domains MTA option,
52–60

Disabled alias
error_text_disabled_alias MTA option, 52–171

Duplicates (left hand side) not allowed in alias
file, 48–27
Duplicates in LDAP

error_text_duplicate_addrs MTA option,
52–172

File
Format of probes, alias_domains MTA option,
52–60

Index–7

Header addition modifiers, 48–47
LDAP, 48–5

alias_urlN MTA options, 52–90
Overview, 48–3
Special formats, 48–47

ldap_alias_addresses MTA option, 52–129
ldap_equivalence_addresses MTA option,
52–129
MTA options, 52–58

string_pool_size_2, 52–191
Named parameters, 48–27

Header addition modifiers, 48–47
No valid translation values

error_text_empty_alias MTA option, 52–173
Options

See Alias options, 48–9
Postmaster, 48–9
Recursive definition, 48–44, 48–48

max_alias_levels MTA option, 48–48, 52–63
Restrictions, 48–48
string_pool_size_2 MTA option, 52–191
Subaddresses in, 48–46, 48–46

subaddress* channel options, 46–49
Testing if found in *_ACCESS mapping table
entries, 57–14
Testing of

test -rewrite utility, 71–117
Unified Configuration, 48–8
Used in notification messages (DSNs and
MDNs), 48–25

aliaslocal channel option, 46–38, 48–46, 52–60
Compared to local channel, 65–2
Compared to localbehavior, 46–45

aliasmagic channel option, 46–38
Aliases in LDAP, 48–5
alias_magic MTA option provides default, 46–39
Override via $nT rewrite rule control sequence,
47–34

aliasoptindetourhost channel option, 46–37, 46–68
aliasdetourhost_null_optin to selectively disable
effect, 52–96
See also aliasdetourhost channel option, 46–37,
46–68

aliaspostmaster channel option, 46–103
aliaswild channel option, 46–39, 52–60
alias_alternate_recipient alias option, 48–10
alias_and alias option, 48–10
alias_auth_channel alias option, 48–10
alias_auth_list alias option, 48–10
alias_auth_mapping alias option, 48–11
alias_auth_username alias option, 48–11
alias_blocklimit alias option, 46–123, 48–11

error_text_list_block_over MTA option, 52–169

error_text_user_block_over MTA option, 52–170
alias_cant_channel alias option, 48–10
alias_cant_list alias option, 48–10
alias_cant_mapping alias option, 48–11
alias_cant_username alias option, 48–11
alias_capture alias option, 48–11
alias_capture_header alias option, 48–12
alias_case MTA option, 52–59
alias_conversion_tag alias option, 48–12
alias_creation_date alias option, 48–12
alias_database_url MTA option, 52–215
alias_deferred alias option, 48–13
alias_deferred_list alias option, 48–13
alias_deferred_mapping alias option, 48–13
alias_delay_notifications alias option, 48–14
alias_description alias option, 48–14
alias_digest_recurrence alias option, 48–14
alias_direct_list alias option, 48–14
alias_direct_mapping alias option, 48–14
alias_domains MTA option, 52–60

Compared with aliaswild channel option, 46–39
alias_entry alias option, 48–9
alias_entry_cache_negative MTA option, 52–162
alias_entry_cache_size MTA option, 52–162
alias_entry_cache_timeout MTA option, 52–162

Lag in seeing LDAP alias changes take effect,
48–49

alias_envelope_from alias option, 48–15
alias_error_text alias option, 48–15
alias_expandable alias option, 48–15
alias_expiry alias option, 48–16
alias_filter alias option, 48–16

Sieve hierarchy, 5–81
alias_hash_size MTA option, 52–186
alias_header_addition alias option, 48–16
alias_header_alias alias option, 48–17
alias_header_check alias option, 48–17
alias_header_expansion alias option, 48–17
alias_header_trim alias option, 48–16
alias_hold_list alias option, 48–17
alias_hold_mapping alias option, 48–17
alias_importance alias option, 48–17
alias_journal alias option, 48–11
alias_journal_header alias option, 48–12
alias_keep_delivery alias option, 48–18
alias_keep_read alias option, 48–18
alias_linelimit alias option, 46–123, 48–11

error_text_list_line_over MTA option, 52–170
error_text_user_line_over MTA option, 52–170

alias_list_name, 48–18
alias_magic MTA option, 52–61

Aliases in LDAP, 48–5
Default for aliasmagic channel option, 46–39

Index–8 Messaging Server Reference

Override via $nT rewrite rule control sequence,
47–34

alias_member_size MTA option, 52–186
alias_nodelay_notifications alias option, 48–14
alias_nohold_list alias option, 48–17
alias_nohold_mapping alias option, 48–17
alias_nonexpandable alias option, 48–15

expn* channel options, 46–139
alias_nooriginator_reply alias option, 48–19
alias_noreceivedfor alias option, 48–20
alias_noreceivedfrom alias option, 48–20
alias_nosolicit alias option, 48–20
alias_optin1 alias option, 48–20
alias_optout1 alias option, 48–20
alias_or alias option, 48–10
alias_originator_reply alias option, 48–19
alias_password alias option, 48–21
alias_precedence alias option, 48–17
alias_prefix_text alias option, 48–21

-additions switch of test -rewrite, 71–121
alias_priority alias option, 48–17
alias_private alias option, 48–21
alias_public alias option, 48–21
alias_receivedfor alias option, 48–20
alias_receivedfrom alias option, 48–20
alias_reprocess alias option, 48–22
alias_sasl_auth_list alias option, 48–23
alias_sasl_auth_mapping alias option, 48–23
alias_sasl_cant_list alias option, 48–23
alias_sasl_cant_mapping alias option, 48–23
alias_sasl_moderator_list alias option, 48–23
alias_sasl_moderator_mapping alias option, 48–23
alias_sensitivity alias option, 48–17
alias_sequence_prefix alias option, 48–23
alias_sequence_strip alias option, 48–23
alias_sequence_suffix alias option, 48–23
alias_single alias option, 48–23
alias_spare* alias options, 48–24
alias_suffix_text alias option, 48–21

-additions switch of test -rewrite, 71–121
alias_tag alias option, 48–24
alias_to alias option, 48–24
alias_url0 MTA option

Example, 48–7
alias_urlN MTA options, 52–90

Aliases in LDAP, 48–5
Alternative to alias file LDAP URL alias values,
48–42

alias_username alias option, 48–24
alias_username_auth_list alias option, 48–10
alias_username_cant_list alias option, 48–10
allowanonymouslogin IMAP option, 34–4
allowanonymouslogin MSHTTP option, 42–4

allowanonymouslogin POP option, 35–2
allowcollect MSHTTP option, 42–4
allowetrn channel option, 46–127
allowldapaddresssearch MSHTTP option, 42–4
allowswitchchannel channel option, 46–90

Alternate conversion channel, 51–5
allow_pipe_setuid option in restricted.cnf file, 15–1
allow_unquoted_addrs_violate_rfc2798, 52–97
alternateblocklimit channel option, 46–96, 46–122
alternatechannel channel option, 46–96, 46–122
alternatelinelimit channel option, 46–96, 46–122
alternaterecipientlimit channel option, 46–96,
46–122
alternate_recipient_mode MTA option, 52–61,
52–195
altservice MSHTTP option, 42–4
alwaysencrypt smime option, 43–4
alwayssign smime option, 43–4
alwaysusedefaulthost PAB option, 72–1
annotatemsg notifytarget option, 37–7
APOP, G–1

crams mmp/imapproxy/popproxy/vdomain
option, 41–11
has_plain_passwords auth option, 21–3
userPassword LDAP attribute

Contain clear-text password, 52–109
appletlogging smime option, 43–7
Application information, 68–9

-applicationinfo switch of test -rewrite utility,
71–121
alias_deferred_mapping option's mapping table
probes

include_connectioninfo MTA option, 48–14
APPLICATIONINFO environment variable

test_smtp channels, 65–9
DEFERRED_MAPPING named parameter's
mapping table probe, 48–33
ETRN_ACCESS mapping table probes, 46–128,
62–63
include_connectioninfo MTA option, 52–201
LOG_ACTION mapping table probes

log_connection MTA option, 68–11
Mapping probe prefix, 50–18
MESSAGE-SAVE-COPY mapping table probes

message_save_copy_flags MTA option, 67–4
MTA connection transaction log entries, 68–12
remote-host Sieve environment item, 5–32
Rewrite rule mapping probe prefix, 47–25
Syntax of, 68–9
TLS_ACCESS mapping table probes, 62–55

APPLICATIONINFO environment variable
test_smtp_master and test_smtp_slave use of,
65–9

Index–9

ap_debug MTA option, 52–77
Archive package integration

DEBUG Archive option, 58–10
DESTINATION Archive option, 52–97, 52–124,
58–11
DIRECTORY Archive option, 58–10
IDSUFFIX Archive option, 58–10
MODE Archive option, 58–10
POSTEDDATEMODE Archive option, 58–10
RESETDEBUG Archive option, 58–10
REVERSE Archive option, 58–10
SOURCE_CHANNEL Archive option, 58–11
spamfilterN_config_file options, 58–10
STYLE Archive option, 58–10
SUBDIRS Archive option, 58–10
TRUSTEXISTINGHASH Archive option, 58–10
USEHEADERRECIPIENTS Archive option,
58–10

Archiving, 67–16, G–7
-archive switch of test -mime, 71–112
AXS:One integration, 67–19

Architecture, 67–19
MTA configuration, 67–21
MTA configuration, Example, 67–22
MTA support, 67–20

Compliance, 67–16, G–7
Debugging

archive keyword in debugkeys option value,
41–12

IMAP APPEND operations, 26–18
imexpire, 31–2

Exempting archival address from expiration
of old messages, 31–2

Message identifier generation, 67–18
Message Store archive options, 26–18

Journal format, 26–18, 26–18
MESSAGE-SAVE-COPY mapping table, 67–3
MTA configuration

AXS:One integration, 67–21
Message identifier generation, 67–18

Operational, 67–16, G–7
Plug-in integration

libarch.so, 52–252
See Archive package integration, 52–216
See Message, Archiving, 52–216
Which messages to archive, 67–17

async MeterMaid option, 59–2
Attachments

gzip
gzipattach MSHTTP option, 42–8, 42–8, 42–8

safe-tcl
safe_tcl_mode MTA option, 52–302

See also Character set, Conversion, 51–17

See also Message, Conversions, 51–1
See also MIME, 52–302

attributelist PAB option, 72–1
Auth options, 1, 21–1

authenticationldapattributes, 21–1, 41–6
authenticationserver, 21–1, 41–6
auto_transition, 21–2
broken_client_login_charset, 21–2
canonicalsearchfilter, 21–3
has_plain_passwords, 21–3
requireauthenticationserver, 21–3, 41–20
searchfilter, 21–3
searchfordomain, 21–3
usedomainmap, 21–4

authcachesize base option, 16–3
authcachettl base option, 16–3
authcachettl MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–5
Authentication

Anonymous
allowanonymouslogin IMAP option, 34–4
allowanonymouslogin MSHTTP option, 42–4
allowanonymouslogin POP option, 35–2

Auth options, 21–1
authservice POP Proxy/vdomain option, 41–6
authservicettl POP Proxy/vdomain option, 41–6
Bad guys

bgdecay option, 16–4, 34–5, 35–3, 41–8
bglinear option, 16–4, 16–4, 34–5, 34–5, 35–3,
35–3, 41–8, 41–8
bgmax option, 16–3, 34–4, 35–3, 41–7
bgmaxbadness option, 16–4, 34–4, 35–3, 41–8
bgpenalty option, 16–3, 34–4, 35–3, 41–8

Caching
authcachesize base option, 16–3
authcachettl base option, 16–3

Channel options
authpassword, 46–162
authusername, 46–162
disconnectbadauthlimit, 46–169
externalidentity, 46–162
maysasl*, 46–169
mustsasl*, 46–169
nosasl*, 46–169
nosasl*auth, 46–173
sasl*auth, 46–173
saslswitchchannel, 46–91, 46–174

Channel switch
ldap_auth_attr_submit_channel MTA option,
52–161
mailSMTPSubmitChannel LDAP attribute,
52–161

Index–10 Messaging Server Reference

saslswitchchannel channel option, 46–91,
46–174

Client certificate
Base certmap options, 16–26
externalidentity channel option, 46–162
EXTERNAL_IDENTITY TCP/IP-channel-
specific option, 62–22
sslrenegotiate base option, 16–20
TCP/IP-channel-specific options, 62–22

Debugging
authserv keyword in debugkeys option value,
41–12
AUTH_DEBUG TCP/IP-channel-specific
option, 62–22
hula keyword in debugkeys option, 41–12
MMP, perf keyword in debugkeys option
value, 41–12

defaultdomain option, 41–13
Errors, 62–64
IMAP SASL-IR extension

capability_sasl_ir IMAP option, 34–9
ISC client to ISC server, 32–11, 32–12
ISC server to ISC server, 32–10
LDAP attributes returned to MTA, 52–161
ldap_domain_attr_uid_separator base option,
16–8, 52–152
Mechanism, G–1

EXTERNAL, externalidentity channel option,
46–162
EXTERNAL, implicitsaslexternal channel
option, 46–170
EXTERNAL, XCLIENT SMTP extension,
46–85, 46–145, 46–173
PLAIN, auth* channel options, 46–162
PORT_ACCESS mapping table, 57–2

Message Store
SASL library code used, 48–5, 52–109

Password expiration
IMAP password expiration alert options,
34–19

preauth MMP/IMAP Proxy/POP Proxy/vdomain
option, 41–19
preauthtimeout MMP/IMAP Proxy/POP Proxy
option, 41–19
PROXYAUTH

admins Message Store option, 26–5
legacy_proxyauth IMAP option, 34–15
serviceadmingroupdn Message Store option,
26–17

SMTP AUTH
AUTH parameter on MAIL FROM, 46–173
AUTH_ACCESS mapping table, 62–43

AUTH_PASSWORD TCP/IP-channel-specific
option, 62–22
AUTH_USERNAME TCP/IP-channel-specific
option, 62–22
Bad attempts LOG_ACTION example, 68–14,
68–16, 68–17
Channel options, 46–169
Channel options, *sasl*auth, 46–173
Channel options, authpassword, 46–162
Channel options, authrewrite, 46–39, 46–72,
46–162
Channel options, authusername, 46–162
Channel options, disconnectbadauthlimit,
46–170
Channel options, externalidentity, 46–162
Channel options, trackinggenerate, 46–102
EXTERNAL_IDENTITY TCP/IP-channel-
specific option, 62–22
FROM_ACCESS mapping table, 57–2
futurerelease channel option, 46–114, 46–139
implicitsaslexternal channel option, 46–170
MTA options, access_auth, 52–200
MTA options, log_connection, 52–276
SASL library code used, 48–5, 52–109
TCP/IP-channel-specific options, 62–22

Source, G–1
Verifier, G–1

authenticationldapattributes auth option, 21–1,
41–6
authenticationldapattributes IMAP Proxy/POP
Proxy option, 21–1, 41–6
authenticationldapattributes vdomain option, 21–1,
41–6
authenticationserver auth option, 21–1, 41–6
authenticationserver IMAP Proxy/POP Proxy
option, 21–1, 41–6
authfaildelay IMAP/POP option, 34–4, 35–2
authpassword channel option, 46–162

*saslclient channel options, 46–169
authpassword elasticsearch option, 32–7
authpassword ISC option, 32–10
authpassword redis option, 52–237, 52–237, 52–238,
52–238
authrewrite channel option, 46–39, 46–72, 46–162

AUTH_REWRITE mapping table, 46–163
FROM_ACCESS mapping table, 57–16

authrewrite_extra_headers MTA option, 46–168
authservice POP proxy/Virtual Domain option,
41–6
authservicettl POP proxy/Virtual Domain option,
41–6
authusername channel option, 46–162

*saslclient channel options, 46–169

Index–11

authusername elasticsearch option, 32–7
authusername ISC option, 32–11
AUTH_REWRITE mapping table

acceptalladdresses channel option, 46–34
autodetect Message Store deadlock option, 26–22
autorepair Message Store option, 26–5
autorepairdebug Message Store option, 26–5
autoreply_timeout_default MTA option, 52–70
Autorestart options, 16–26

enable, 16–26
timeout, 16–26

auto_transition auth option, 21–2
AXS:One

See Archive package integration, 58–10

B
backlog Dispatcher service option, 54–3
backlog MeterMaid option, 59–3
backlog SMS smpp_relay option, 66–9
backlog SMS smpp_server option, 66–10
backlog tcp_listen option, 41–29
backoff channel option, 46–110

Defragmentation channel, 65–5
ims-ms channels, 64–1, 64–2

Automatic override, 62–32
LMTP client channels

Override via
MAILBOX_BUSY_FAST_RETRY, 62–32

Z record implies override, 46–111
backsideport IMAP Proxy and POP Proxy option,
41–6
Backslash

Alias options
Quoting of periods, 48–8

Continuation line indicator
In aliases file, 48–25
In MTA option file, 52–10

Conversion entries, 51–13
IMAP flags

System flags begin with, 5–43
LDAP URL character encoding, 47–23
Mapping tables

Quote character inside globs, 50–5
Mappings file, 50–2

Continuation line indicator, 50–2
Pipe-channel-specific options

Quoting of periods, 65–18
Recipes

Use for quoting, 4–2
Rewrite rules

Line continuation character, 47–23
Sieve filters

Regex quoting, 5–6, 5–10

Use for quoting, 5–17
Wildcard quoting, 5–6, 5–6, 5–10, 5–10

Backup
backupdir Message Store option, 26–5
backupexclude Message Store option, 26–6
backup_group options, 29–1
rollingdbbackup Message Store option, 26–16

backupdir Message Store option, 26–5
backupexclude Message Store option, 26–6
backup_group options, 29–1, 29–1
Bad guy penalty

bgdecay option, 16–4, 34–5, 35–3, 41–8
bgexcluded option, 16–4, 34–5, 35–3, 41–8
bglinear option, 16–4, 34–5, 35–3, 41–8
bgmax option, 16–3, 34–4, 35–3, 41–7
bgmaxbadness option, 16–4, 34–4, 35–3, 41–8
bgpenalty option, 16–3, 34–4, 35–3, 41–8

bangonly channel option, 46–40
bangoverpercent channel option, 46–40

Rewrite rule address interpretation, 47–3, 47–5
bangstyle channel option, 46–40
Banner

IMAP
banner IMAP option, 34–4
banner IMAP Proxy option, 41–7

POP
banner POP option, 35–3
banner POP Proxy option, 41–7

SMTP server
BANNER_PURGE_DELAY TCP/IP-channel-
specific option, 62–24
CUSTOM_VERSION_STRING TCP/IP-
channel-specific option, 62–26
Hostname used, 46–89

SMTP server (remote)
5xx or 4xx error, X connection transaction log
entries, 46–148
fire away, 46–129
MurkWorks, 46–129
Timeout awaiting, lastresort host not
attempted, 46–71, 46–154
Whether EHLO is supported, *ehlo channel
options, 46–129

SMTP/LMTP server
BANNER_ADDITION TCP/IP-channel-
specific option, 62–23
BANNER_HOST TCP/IP-channel-specific
option, 62–23
BANNER_REVERSE_HOST TCP/IP-channel-
specific option, 62–23

SMTP/LMTP server (remote)
Logging of, LOG_BANNER TCP/IP-channel-
specific option, 62–30

Index–12 Messaging Server Reference

Timeout awaiting,
STATUS_MAIL_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40

banner IMAP option, 34–4
banner IMAP Proxy option, 41–7
banner MMP option, 41–7
banner POP option, 35–3
banner POP Proxy option, 41–7
BANNER_ADDITION TCP/IP-channel-specific
option, 62–23
BANNER_HOST TCP/IP-channel-specific option,
62–23

Local channel official_host_name, 65–2
BANNER_PURGE_DELAY TCP/IP-channel-
specific option, 62–24
BANNER_REVERSE_HOST TCP/IP-channel-
specific option, 62–23
Base

Options
sslconnlimit, 16–20

Base options, 1, 16–3
accounturl, 16–3
authcachesize, 16–3
authcachettl, 16–3
autorestart group, 16–26

enable, 16–26, 16–26
bgdecay, 16–4, 34–5, 35–3, 41–8
bgexcluded, 16–4, 34–5, 35–3, 41–8
bglinear, 16–4, 34–5, 35–3, 41–8
bgmax, 16–3, 34–4, 35–3, 41–7
bgmaxbadness, 16–4, 34–4, 35–3, 41–8
bgpenalty, 16–3, 34–4, 35–3, 41–8
certmap group, 16–26

cmapldapattr, 16–27
dncomps, 16–26
filtercomps, 16–26
verifycert, 16–27

dblockcount, 16–4
dbtxnsync, 16–4
dcroot, 16–4

Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32

debugkeys, 16–5, 41–13
AUTH_DEBUG TCP/IP-channel-specific
option, 62–22

defaultdomain, 16–5, 41–13
Default for contextname SNMP option, 73–2
Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32

dnsresolveclient, 16–5
domainmap group, 16–3

debug, 16–3, 16–27
enablelastaccess, 16–5

filterurl, 16–5
folderurl, 16–6
hostname, 16–6

Default for http.smtphost option, 42–13
Direct LDAP alias lookups, 48–6
From: header line of Message Store over
quota notifications, 26–15
ldap_local_host MTA option, 52–89, 52–104

installedlanguages, 16–6
ipv6in, 16–6, 41–15
ipv6out, 16–6, 41–15
ipv6sortorder, 16–6
ipv6usegethostbyname, 16–6
ldapconnecttimeout, 16–10

Direct LDAP alias lookups, 48–5
ldapmodifytimeout, 16–10
ldappoolrefreshinterval, 16–10
ldaprequiretls, 16–11

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

ldapsearchtimeout, 16–11
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

ldaptrace, 16–11
ldap_basedn_filter_schema1, 16–9, 52–87, 52–94
ldap_basedn_filter_schema2, 16–9, 52–87, 52–94
ldap_domain_attr_alias, 16–8, 52–151
ldap_domain_attr_basedn, 16–8, 52–151
ldap_domain_attr_mail_status, 16–9, 52–153
ldap_domain_attr_status, 16–9, 52–153
ldap_domain_attr_uid_separator, 16–8, 52–152
ldap_domain_filter_schema1, 16–10, 52–88,
52–94

Direct LDAP domain lookups, 47–32
ldap_domain_filter_schema2, 16–10, 52–88,
52–94

Direct LDAP domain lookups, 47–32
ldap_domain_known_attributes, 16–7, 52–88

Direct LDAP domain lookups, 47–32
ldap_domain_timeout, 16–7, 52–88, 52–163

TCP wrappers, 6–2
ldap_extid, 52–123
ldap_host_alias_list, 16–10
ldap_permid, 52–122
ldap_schemalevel, 16–7, 52–95
listenaddr, 16–11

ENS server host, 74–1
listurl, 16–11
lockdir, 16–11
loginseparator, 16–12
obsoleteimap, 16–12
preferpoll, 16–12, 41–19
projectid, 16–12

Index–13

properties, 16–12, 23–2
proxyadmin, 16–12

Host-specific override by imapadmin option,
40–1

proxyadminpass, 16–12
Host-specific override by imapadminpass
option, 40–1

proxyimapport, 16–13
proxyimapssl, 16–13
proxyserverlist, 16–13
proxytrustmailhost, 16–13
pwchangeurl, 16–13, 16–14
rbac, 16–13
rfc822headerallow8bit, 16–13
secret, 16–14
serveruid, 16–14
softtokendir, 16–14
ssladjustciphersuites, 16–14, 41–22
sslcachedir, 16–18, 41–27
sslcompress, 16–19
ssldblegacy, 16–19
ssldbpath, 16–19
ssldbprefix, 16–19
sslnicknames, 16–19
sslpkix, 16–20
sslrenegotiate, 16–20
sslrequiresafenegotiate, 16–20
stressfdwait, 16–20
stressperiod, 16–20
supportedlanguages, 16–21
threadholddelay, 16–21
tlsmaxversion, 46–175
tlsminversion, 16–21
tlsv12enable, 16–21
tlsv13enable, 16–21
tmpdir, 16–22
ugldapbasedn, 16–22

Direct LDAP alias lookups, 48–6
ugldapbindcred, 16–22

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
ldap_init recipe language function, 4–35
Recipes, ldap_init function, 4–14

ugldapbinddn, 16–22
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
ldap_init recipe language function, 4–35
Recipes, ldap_init function, 4–14

ugldaphost, 16–22
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
ldap_init recipe language function, 4–35

Mapping table $]ldap-url[substitutions,
50–15
Recipes, ldap_init function, 4–14

ugldapport, 16–22
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
ldap_init recipe language function, 4–35
Mapping table $]ldap-url[substitutions,
50–15
Recipes, ldap_init function, 4–14

ugldapusessl, 16–23
Direct LDAP alias lookups, 48–5
ldap_init recipe language function, 4–35
Recipes, ldap_init function, 4–14

welcomemsg, 16–23
basicjavaswitches ISC option, 32–10
bgdecay option, 16–4, 34–5, 35–3, 41–8
bgexcluded option, 16–4, 34–5, 35–3, 41–8
bglinear option, 16–4, 34–5, 35–3, 41–8
bgmax option, 16–3, 34–4, 35–3, 41–7
bgmaxbadness option, 16–4, 34–4, 35–3, 41–8
bgpenalty option, 16–3, 34–4, 35–3, 41–8
bidirectional channel option, 46–111
Binary attachments

Macintosh files, 51–23
binaryclient channel option, 46–129
binaryserver channel option, 46–129
Bitbucket channel, 65–2

Configuration, 65–2
discard or jettison actions, 5–28
MTA message transaction log entries, 65–2
Routing via address access mapping tables,
57–10

blocked_mail_from_ips MTA option, 52–165
blocketrn channel option, 46–127
blocklimit channel option, 46–123, 52–169

acceptalladdresses channel option, 46–34
Effect set via address access mapping tables,
57–10
Notification messages, 60–26

block_limit MTA option, 46–123, 52–218
acceptalladdresses channel option, 46–34
Effect set via address access mapping tables,
57–10

block_size MTA option, 52–219
alias_blocklimit alias option, 48–11
[BLOCKLIMIT] alias file named parameter,
48–31

block_time local_table MeterMaid option, 59–3
Blow-back spam

See Spam/virus filtering, "blow-back" spam,
60–24

bodytextonly indexer option, 32–9

Index–14 Messaging Server Reference

Botnet attack
Blocking via LOG_ACTION, 68–21

bounce_block_limit MTA option, 52–220, 52–227
Brightmail

See Spam/virus filter package integration,
Brightmail, 58–2

broken_client_login_charset auth options, 21–2
BSMTP channels, 63–1

BSIN channels, 63–1
BSOUT channels, 63–1
Configuration, 63–1
Service conversions, 63–4

BSMTP-specific channel options, 46–58
Buffer overruns

Content-disposition: header lines, 46–56
Content-type: header lines, 46–56

buffer_size MTA option, 52–181
Performance, 69–4

BURL
MTA options, 52–73
U modifier in MTA message transaction log
entries, 68–5

C
cacheconnectpoints message store option, 26–6
cacheeverything channel option, 46–148
cachefailures channel option, 46–148
cachepath partition option, 28–1
cachepreviewlen Message Store option, 26–6
cachesuccesses channel option, 46–148
cachesynclevel Message Store option, 26–6
cachettl isc option, 32–11
cachettl SNMP option, 73–2
cache_debug MTA option, 52–77
cache_magic MTA option -- OBSOLETE, 52–181
Calendar invitations

msexchange channel option, 46–56, 46–143,
46–172

Canonicalization
Domain name

domain_uplevel MTA option, 52–86
inetCanonicalDomainName LDAP attribute,
52–152
ldap_domain_attr_canonical MTA option,
52–152

canonicalsearchfilter auth option, 21–3
canonicalvirtualdomaindelim MMP/IMAP Proxy/
POP Proxy option, 41–9
capability_acl IMAP option, 34–5
capability_annotate IMAP option, 34–5
capability_binary IMAP option, 34–5
capability_catenate IMAP option, 34–6
capability_children IMAP option, 34–6

capability_condstore IMAP option, 34–6
QRESYNC implies CONDSTORE support, 34–9

capability_context_search IMAP option, 34–6
capability_context_sort IMAP option, 34–6
capability_create_special_use IMAP option, 34–6
capability_enable IMAP option, 34–6
capability_esearch IMAP option, 34–6
capability_esort IMAP option, 34–7
capability_id IMAP option, 34–7
capability_idle IMAP option, 34–7
capability_imap4 IMAP option, 34–7
capability_imap4rev1 IMAP option, 34–7
capability_language IMAP option, 34–7
capability_list_status IMAP option, 34–7
capability_literal IMAP option, 34–8
capability_login_referrals IMAP option, 34–8
capability_metadata IMAP option, 34–8
capability_multisearch IMAP option, 34–8
capability_namespace IMAP option, 34–8
capability_notify IMAP option, 34–8
capability_qresync IMAP option, 34–9

Enables CONDSTORE, 34–6
capability_quota IMAP option, 34–9
capability_sasl_ir IMAP option, 34–9
capability_savedate IMAP option, 34–9
capability_searchres IMAP option, 34–9
capability_sort IMAP option, 34–9
capability_sort_display IMAP option, 34–9
capability_special_use IMAP option, 34–9
capability_starttls Deploymap option, 23–1
capability_starttls IMAP option, 34–10
capability_status_size IMAP option, 34–10
capability_thread_references IMAP option, 34–10
capability_thread_subject IMAP option, 34–10
capability_uidplus IMAP option, 34–10
capability_unselect IMAP option, 34–10
capability_urlauth IMAP option, 34–10
capability_url_partial IMAP option, 34–10
capability_utf8_accept IMAP option, 34–11
capability_within IMAP option, 34–11
capability_xrefresh IMAP option, 34–12
capability_xsender IMAP option, 34–12
capability_xserverinfo IMAP option, 34–12
capability_xsnippet IMAP option, 34–12
capability_xum1 IMAP option, 34–12
capability_x_netscape IMAP option, 34–11
capability_x_orcl_as IMAP option, 34–11
capability_x_sun_imap IMAP option, 34–11
capability_x_sun_sort IMAP option, 34–11
capability_x_unauthenticate IMAP option, 34–11,
34–12
caption channel option, 46–63
capture_domain_replace MTA option, 52–217

Index–15

capture_format_default MTA option, 52–97
cascachedc message store option, 26–8
cascacherf message store option, 26–7
cascasopretrycount message store option, 26–7
cascasopretryintervalinms message store option,
26–7
casconnectpoints message store option, 26–6
Case sensitivity

Aliases
alias_case MTA option, 52–59

Host/domain names not case sensitive per RFC
822, 47–5
Postmaster local-part not case sensitive per RFC
822, 60–27
Preserved in msconfig arguments, 46–8
User names

user_case MTA option, 52–69
caskeyspaceprefix message store option, 26–8
casmaxconnectionsperhost message store option,
26–7
casmetadc message store option, 26–8
casmetarf message store option, 26–7
casmsgdc message store option, 26–8
casmsgrf message store option, 26–7
casnumthreadsio message store option, 26–7
caspassword message store option, 26–7
cassolrdc message store option, 26–8
cassolrrf message store option, 26–7
casusername message store option, 26–7
Certificate, G–1

Authority, G–1
certmap options, 16–26
certurl smime option, 43–2
cert_enable MSHTTP option, 42–4
Client

cmapldapattr certmap option, 16–27
dncomps certmap option, 16–26
filtercomps certmap option, 16–27
usergroupdn MMP/IMAP Proxy/POP Proxy
option, 41–30
verifycert certmap option, 16–27

Client authentication
certmapfile option, DELETED, 41–9
sslrenegotiate base option, 16–20

Debugging
certmap keyword in debugkeys option value,
41–12

Nicknames
CLIENT_CERT_NICKNAME TCP/IP-
channel-specific option, 62–25
sslnicknames base option, 16–19
sslnicknames ENS option, 74–2

sslnicknames MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–28
sslnicknames MTA option, 52–232
sslnicknames POP option, 35–7

Request, G–2
Revocation List

cert_enable MSHTTP option, 42–4
cert_port MSHTTP option, 42–4
checkoverssl S/MIME option, 43–5
crlaccessfail S/MIME option, 43–5
crldir smime option, 43–4
crlenable smime option, 43–4
crlmappingurl smime option, 43–5
crlurllogindn smime option, 43–4
crlurlloginpw smime option, 43–5
crlusepastnextupdate S/MIME option, 43–7
readsigncert S/MIME option, 43–6
revocationunknown S/MIME option, 43–6
sendencryptcert S/MIME option, 43–6
sendencryptcertrevoked S/MIME option, 43–6
sendsigncert S/MIME option, 43–7
sendsigncertrevoked S/MIME option, 43–7
sslpkix base option, 16–20

Signed, G–10
SMTP TLS

Required for implicitsaslexternal to take
effect, 46–170

sslcertprefix option
DEPRECATED: see ssldbprefix instead,
41–27, 41–27

ssldblegacy base option, 16–19
ssldbpath base option, 16–19
ssldbprefix base option, 16–19
sslrootcacertsurl S/MIME option, 43–2
Storage of

ssldblegacy base option, 16–19
ssldbpath base option, 16–19

TLS_ACCESS mapping table
MTA decline to permit TLS use, 62–55

usercertfilter S/MIME option, 43–1
Validation

sslpkix base option, 16–20
Validity

IGNORE_BAD_CERT TCP/IP-channel-
specific option, 62–30
Required for implicitsaslexternal to take
effect, 46–170

Certificate Authority, G–1
Certificate server

msprobe probe of, 19–2
Certmap options

cmapldapattr, 16–27
dncomps, 16–26

Index–16 Messaging Server Reference

filtercomps, 16–27
verifycert, 16–27

certurl smime option, 43–2
cert_enable MSHTTP option, 42–4
changeflag notifytarget option, 37–8
channel attribute in store.expirerule files, 31–3
Channel block, G–2

Testing definition of
test -rewrite utility, 71–117

channel group, 46–5
Channel options, 46–7

*notices
return_job, 17–5

acceptalladdresses, 46–34
Sieve refuse action, 5–33

accepttemporaryfailures, 46–35
acceptvalidaddresses, 46–34
additional_host_names, 46–89
addlineaddrs, 46–36
Addresses, 46–34
addresssrs, 46–36
addreturnpath, 46–72
addrsperfile, 46–66
addrsperjob, 46–109
addrtypescan, 46–36, 46–118

"capture :journal" message copies, 67–16
HEADER_CHECK alias file named
parameter, 48–36
ldap_check_header MTA option, 52–150

addrtypescanbccdefault, 46–36, 46–118
ldap_check_header MTA option, 52–150

affinitylist, 46–150
after, 46–110

BSMTP channels, 63–3
aliasdetourhost, 46–37, 46–68

Alternate conversion channel, 51–5
Routing to a gateway system, 62–58

aliaslocal, 46–38, 48–46, 52–60
Compared to local channel, 65–2
Compared to localbehavior, 46–45

aliasmagic, 46–38
Aliases in LDAP, 48–5
alias_magic MTA option provides default,
46–39
Override via $nT rewrite rule control
sequence, 47–34

aliasoptindetourhost, 46–37, 46–68
aliaspostmaster, 46–103
aliaswild, 46–39, 52–60
allowetrn, 46–127
allowswitchchannel, 46–90

Alternate conversion channel, 51–5
Alphabetic list, 46–8

alternateblocklimit, 46–96, 46–122
alternatechannel, 46–96, 46–122
alternatelinelimit, 46–96, 46–122
alternaterecipientlimit, 46–96, 46–122
Arguments

Case preservation, 46–8
Length limits, 46–8
Quoting, 46–8
URL types, 1–4

Attachments and MIME processing, 46–51
authpassword, 46–162

*saslclient channel options, 46–169
authrewrite, 46–39, 46–72, 46–162

AUTH_REWRITE mapping table, 46–163
FROM_ACCESS mapping table, 57–16

authusername, 46–162
*saslclient channel options, 46–169

backoff, 46–110
Defragmentation channel, 65–5
ims-ms channel automatic override, 62–32
ims-ms channels, 64–1, 64–2
LMTP client channel override via
MAILBOX_BUSY_FAST_RETRY, 62–32
Z record implies override, 46–111

bangonly, 46–40
bangoverpercent, 46–40

Rewrite rule address interpretation, 47–3,
47–5

bangstyle, 46–40
bidirectional, 46–111
binaryclient, 46–129
binaryserver, 46–129
blocketrn, 46–127
blocklimit, 46–123

acceptalladdresses channel option, 46–34
error_text_block_over MTA option, 52–169
Notification messages, 60–26

BSMTP, 46–58
contchar, 46–58
contposition, 46–58
notick, 46–58
tick, 46–58
verb_never, 46–58
verb_none, 46–58
verb_off, 46–58
verb_on, 46–58

cacheeverything, 46–148
cachefailures, 46–148
cachesuccesses, 46–148
caption, 46–63
Changes take effect, 52–11
Character sets and eight bit data, 46–59
charset7, 46–59

Index–17

charset8, 46–59
charsetesc, 46–59
checkehlo, 46–129
checkrrvs, 46–41, 46–130
chunkingclient, 46–130
chunkingserver, 46–130

binaryserver enables BDAT even without,
46–129
BURL interaction, 62–12

clonehosts, 46–42, 46–69
Message reply, 67–3

commentinc, 46–73
commentmap, 46–73

use_comment_strings MTA option, 52–211
commentomit, 46–73
commentstrip, 46–73
commenttotal, 46–73
conditionalpassthrough, 46–130
conditionalrelay, 46–130
conditionalsecuritymultiparts, 46–52
connectalias, 46–149
connectcanonical, 46–149
contchar, 46–58
contposition, 46–58
Conversion tags, 46–62
convertoctetstream, 46–52
copysendpost, 46–103, 60–1
copywarnpost, 46–104, 60–1
daemon, 46–70, 46–149

Routing to a gateway, 62–58
datefour, 46–73
datetwo, 46–73
dayofweek, 46–74
defaulthost, 46–42, 46–74

Initial configuration, 46–7
Use of value in rewrite rule substitution,
47–21

defaultmx, 46–150
defaultnameservers, 46–150
deferralrejectlimit, 46–96, 46–132
deferred, 46–112
deferreddestination, 46–112
deferredsource, 46–112
defertemporaryfailures, 46–35
defragment, 46–52, 65–3

ims-ms channel, 64–1
ims-ms channels, 64–1, 65–3
LMTP channels, 65–3

deletemessagehash, 46–100
deliverbychannel, 46–136
deliverbymin, 46–136
deliveryflags, 46–118, 46–135
dequeueremoveroute, 46–43

description, 46–63
destinationconversiontag, 46–62
destinationdkimignore, 46–63
destinationdkimpreserve, 46–63

dkim_ignore_domains MTA option's effect
on, 52–164
dkim_preserve_domains MTA option's effect
on, 52–165

destinationdkimremove, 46–63
dkim_ignore_domains MTA option's effect
on, 52–164
dkim_remove_domains MTA option's effect
on, 52–165

destinationfilter, 46–119
Message capture example, 5–41
Sieve hierarchy, 5–81

destinationnosolicit, 46–136
destinationpassthrough, 46–130
destinationspamfilter*, 46–126
destinationsrs, 46–36
disabledestinationfilter, 46–119
disabledestinationspamfilter*, 46–126
disableetrn, 46–127
disablesourcefilter, 46–119
disablesourcespamfilter*, 46–126
disconnectbadauthlimit, 46–169
disconnectbadburllimit, 46–96, 46–132, 62–12
disconnectbadcommandlimit, 46–96, 46–132
disconnectcommandlimit, 46–96, 46–132
disconnectrecipientlimit, 46–96, 46–132
disconnectrejectlimit, 46–96, 46–132
disconnecttransactionlimit, 46–137
Display label, 46–63
dispositionchannel, 46–104, 60–23
DKIM, 46–63
dkimignore, 46–63
dkimpreserve, 46–64

dkim_ignore_domains MTA option's effect
on, 52–164
dkim_preserve_domains MTA option's effect
on, 52–165

dkimremove, 46–64
dkim_ignore_domains MTA option's effect
on, 52–164
dkim_remove_domains MTA option's effect
on, 52–165

dnsformcetemporary, 46–151
domainetrn, 46–127
domainvrfy, 46–137
dropblank, 46–75
ehlo, 46–129
eightbit, 46–60, 46–138

-eightbit switch of test -mime, 71–113

Index–18 Messaging Server Reference

eightnegotiate, 46–60, 46–138
Default for test -mime, 71–113

eightstrict, 46–60, 46–138
acceptalladdresses channel option, 46–34
error_text_unnegotiated_eightbit MTA
option, 52–177

enqueueremoveroute, 46–43
envelopetunnel, 46–75
Error interpretation, 46–65
errsendpost, 46–103, 60–1
errwarnpost, 46–104, 60–1
expandchannel, 46–67, 46–99, 46–112, 46–124
expandlimit, 46–67, 46–99, 46–113, 46–124

-expandlimit switch of test -rewrite, 71–123
Address expansion through reprocess
channel, 65–20

expirysource, 46–76, 46–115
explicitsaslexternal, 46–170
expnallow, 46–139
expndefault, 46–139
expndisable, 46–139
exproute, 46–44

exproute_forward MTA option, 52–62
externalidentity, 46–162

*saslclient channel options, 46–169
File creation in the MTA queue area, 46–65

addrsperfile, 46–66
expandchannel, 46–67, 46–99, 46–113, 46–124
expandlimit, 46–67, 46–99, 46–113, 46–124
multiple, 46–66
single, 46–66
single_sys, 46–66
subdirs, 46–68

fileinto, 46–121
ims-ms channels, 46–121, 64–1, 64–2
LMTP client (tcp_lmtpcs*) channels, 46–121
Subaddresses in addresses, 46–121

filesperjob, 46–109
filter, 46–119

Sieve hierarchy, 5–81
fixsyntaxerrors, 46–76
flagtransfer, 46–118, 46–135

Previously discarded message flag, 65–9
forcedreceivedfrom, 46–76
forwardcheckdelete, 46–151
forwardchecknone, 46–151
forwardchecktag, 46–151
Functional group list, 46–19
futurerelease, 46–114, 46–139
Gateway/firewall/mailhub, 46–68

aliasdetourhost, 46–37, 46–68
aliasoptindetourhost, 46–37, 46–68
daemon, 46–70, 46–149

lastresort, 46–70, 46–154
multigate, 46–71
nomultigate, 46–71

generatemessagehash, 46–100
vnd.oracle.message-hash Sieve environment
item, 5–19

headerbottom, 46–76
headercut, 46–77
headerdecodesrs, 46–45, 46–77
headerfoldpreserve, 46–77

test -header utility, 71–101
headerfoldremove, 46–77

test -header utility, 71–101
headerinc, 46–77
headerkeeporder, 46–79
headerlabelalignment, 46–77

test -header utility, 71–100
headerlimit, 46–79
headerlineincrement, 46–77

test -header utility, 71–101
headerlinelength, 46–77

test -header utility, 71–101
headeromit, 46–77
headerread, 46–79

Header option file, 46–175
Header option file, Location, 46–175, 46–176
test -rewrite utility, 71–125

Headers, 46–71
headerset7, 46–61
headerset8, 46–61
headersetesc, 46–61
headertrailingpreserve, 46–80
headertrailingremove, 46–80
headertrim, 46–79

Header option file, 46–175
Header option file, Location, 46–175
Removing Received: header lines, 70–3
test -rewrite utility, 71–125

header_733, 46–40
header_822, 46–40
header_uucp, 46–40
holdlimit, 46–67, 46–99, 46–113, 46–124

Diagnosing .HELD files, 65–12
Host names, 46–87

additional_host_names, 46–89
local_host_alias, 46–88
official_host_name, 46–88

identnone, 46–151
identnonelimited, 46–151
identnonenumeric, 46–151
identnonesymbolic, 46–151
identtcp, 46–151
identtcplimited, 46–151

Index–19

identtcpnumeric, 46–151
identtcpsymbolic, 46–151
ignoreencoding, 46–53

-noiencoding switch of test -mime, 71–113
ignoremessageencoding, 46–53

-noiemessage switch of test -mime, 71–113
ignoremultipartencoding, 46–53

-noiemultipart switch of test -mime, 71–113
ignorerrvs, 46–41, 46–130
implicitsaslexternal, 46–170
improute, 46–44

improute_forward MTA option, 52–62
includefinal, 46–105

Recipient address reported in notifications,
60–6, 60–17

includereceivedip, 46–80
Incoming channel match and switch, 46–90
inner, 46–80
innertrim, 46–79

Header option file, 46–175
Header option file, Location, 46–175
Removing Received: header lines, 70–3
test -rewrite utility, 71–125

interfaceaddress, 46–153
interpretencoding, 46–53

-iencoding switch of test -mime, 71–113
interpretmessageencoding, 46–53

-iemessage switch of test -mime, 71–113
interpretmultipartencoding, 46–53

-iemultipart switch of test -mime, 71–113
ipbackoff, 46–110
ISC, 46–93
keepmessagehash, 46–100
language, 46–81, 46–105
lastresort, 46–70, 46–154

AUTH_ACCESS $B flag, 62–45
Length limits, 46–8
limitheadertermination, 46–81
linelength, 46–54
linelimit, 46–123

acceptalladdresses channel option, 46–34
error_text_line_over MTA option, 52–169

lmtp, 46–140
lmtp*

Imply nonotary, 46–106, 46–144
lmtp_cr, 46–140
lmtp_crlf, 46–140
lmtp_crorlf, 46–140
lmtp_lf, 46–140
localbehavior, 46–45
localvrfy, 46–137
local_host_alias, 46–88

-local_alias switch of test -rewrite, 71–125

Overridden by BANNER_HOST, 62–23
Overridden by BANNER_REVERSE_HOST,
62–23

logging, 46–94, 68–1
Postmaster manual message bounce, 71–55

Logging and debugging, 46–93
logheader, 46–94
Long address lists or headers, 46–95
loopcheck, 46–141
mailfromdnsverify, 46–142, 46–154

Bit in returnenvelope, 46–108
Bit in return_envelope, 52–166, 52–229
DNS verification, test -rewrite utility, 71–125
error_text_mailfromdnsverify MTA option,
52–176

master, 46–111
master_debug, 46–94

AUTH_ACCESS mapping $U flag, 62–44
Example output, 71–142
ims-ms channels, 64–6, 64–7
mm_debug MTA option, 52–79
os_debug MTA option, 52–79
Reprocess channel, 46–95, 65–21

maxblocks, 46–54
maxconnectionrateperdomain, 46–155
maxconnectionsperdomain, 46–156
maxheaderaddrs, 46–82
maxheaderchars, 46–82
maxjobs, 46–109, 46–115

-job_limit switch of cache -change, 71–7
ims-ms channel, 64–2
ims-ms channels, 64–1
Initial configuration, 46–7
Job Controller operation, 55–2
Modified effect under stress, 55–4
Modified under stress, stressjobs Job
Controller option, 55–15
Modified under stress, unstressjobs Job
Controller option, 55–15
Use imsimta run to exceed, 71–57

maxlines, 46–54
maxmessagerateperdomain, 46–156
maxperiodicnonurgent, 46–115
maxperiodicnormal, 46–115
maxperiodicurgent, 46–115
maxprocchars, 46–100
maysasl, 46–169
maysaslclient, 46–169

AUTH_ACCESS mapping, 62–44
maysaslserver, 46–169
maytls, 46–92, 46–171
maytlsclient, 46–92, 46–171
maytlsserver, 46–92, 46–171

Index–20 Messaging Server Reference

Should be set on SMTP SUBMIT server
channel, 46–131

Message hash, 46–100
Message tracking, 46–101

notracking*, 46–101
tracking*, 46–101
trackinggenerate, 46–102

minperiodicnonurgent, 46–115
minperiodicnormal, 46–115
minperiodicurgent, 46–115
missingrecipientpolicy, 46–45, 46–82

acceptalladdresses channel option, 46–34
MLS (Multi Layer Security), 46–103
mlslabel, 46–103
mlsrange, 46–103
msexchange, 46–55, 46–143, 46–172
mtprioritiesallowed, 46–115, 46–143
mtprioritiesrequired, 46–115, 46–143
multigate, 46–71

LMTP, 52–100
multiple, 46–66

Channel to a gateway system, 62–58
mustsasl, 46–169
mustsaslclient, 46–169

AUTH_ACCESS $G flag, 62–45
AUTH_ACCESS mapping, 62–44

mustsaslserver, 46–169
Required for implicitsaslexternal to take
effect, 46–170
Should be set on SMTP SUBMIT server
channel, 46–131

musttls, 46–92, 46–171
musttlsclient, 46–92, 46–171

AUTH_ACCESS $T flag, 62–45
musttlsserver, 46–92, 46–171
mx, 46–150

AUTH_ACCESS mapping table $M flag,
62–45
AUTH_ACCESS mapping table $X flag, 62–45

nameparameterlengthlimit, 46–56
-nmaximum switch of test -mime, 71–114

nameservers, 46–150
DNS verification, 46–151
Reverse lookups, 46–151

noaddlineaddrs, 46–36
noaddresssrs, 46–36
noaddreturnpath, 46–72
nobangorpercent, 46–40
nobangoverpercent, 46–40

Rewrite rule address interpretation, 47–5
nobinaryclient, 46–129
nobinaryserver, 46–129
noblocklimit, 46–123

nocache, 46–148
nochunkingclient, 46–130
nochunkingserver, 46–130

BURL interaction, 62–12
noconvertoctetstream, 46–52
nodayofweek, 46–74
nodefaulthost, 46–42, 46–74
nodefragment, 46–52
nodestinationfilter, 46–119
nodestinationsrs, 46–36
nodns, 46–150
nodnsforcetemporary, 46–151
nodropblank, 46–75
noehlo, 46–129
noexpirysource, 46–76, 46–115
noexproute, 46–44
nofileinto, 46–121
nofilter, 46–119
noflagtransfer, 46–118, 46–135
noheaderdecodesrs, 46–45, 46–77
noheaderread, 46–79

Header option file, 46–175
noheadertrim, 46–79

Header option file, 46–175
noimproute, 46–44
noinner, 46–80
noinnertrim, 46–79

Header option file, 46–175
nolinelimit, 46–123
nolocalbehavior, 46–45
nologging, 46–94
noloopcheck, 46–141
nomailfromdnsverify, 46–142, 46–154
nomaster_debug, 46–94
nomsexchange, 46–55, 46–143, 46–172
nomultigate, 46–71
nomx, 46–150
nonotary, 46–106, 46–144
nonrandommx, 46–150
nonurgentafter, 46–110
nonurgentbackoff, 46–110
nonurgentblocklimit, 46–125
nonurgentnotices, 46–106
noproxyprotocol, 46–144
noreceivedfor, 46–83

Limiting emission of internal host names,
70–3

noreceivedfrom, 46–83
Limiting emission of internal host names,
70–3

noremotehost, 46–42, 46–74
norestricted, 46–46
noreturnaddress, 46–107

Index–21

noreturnpersonal, 46–107
noreverse, 46–47
normalafter, 46–110
normalbackoff, 46–110
normalblocklimit, 46–125
normalnotices, 46–106
norules, 46–47
nosasl, 46–169
nosaslclient, 46–169
nosaslpassauth, 46–173
nosaslserver, 46–169
nosaslswitchchannel, 46–91, 46–174
nosasltrustauth, 46–173
nosendetrn, 46–144
nosendpost, 46–103, 60–1
noserviceconversion, 46–63
noslave_debug, 46–94
nosocks, 46–156
nosourcefilter, 46–119
nosourcesrs, 46–36
nosubdirs, 46–68
noswitchchannel, 46–90

Initial configuration, 46–7
notary, 46–106, 46–144
nothurman, 46–56
notices, 46–106

Defragmentation channel, 65–5
filter_discard channel, 65–8
ims-ms channel, 64–2
ims-ms channels, 64–1
Initial configuration, 46–7
Local channel value, 65–2
Notification message format, 60–6
Notification message generation, 60–4
return_units MTA option, 52–230

notick, 46–58
Notification messages and postmaster messages,
46–103
notificationchannel, 46–104, 60–23
notls, 46–92, 46–171
notlsclient, 46–92, 46–171
notlsserver, 46–92, 46–171
notracking*, 46–101
noturn, 46–145
novrfy, 46–137
nowarnpost, 46–104, 60–1
noxclient, 46–84, 46–145, 46–172
nox_env_to, 46–84
official_host_name, 46–88

Domain used to construct message-id's,
id_domain MTA option overrides, 52–235
ims-ms channels, 64–1

L channel's name used communicating
with remote hosts, Overridden by
BANNER_HOST, 62–23
L channel's name used communicating with
remote hosts, Overridden by local_host_alias,
46–89
Local channel, Defragment-failed: header
line, 65–5
Overridden by ldap_default_domain, 52–236
Overridden by local_host_alias, 46–88
Overridden by received_domain, 52–236

parameterformatdefault, 46–57, 46–61
parameterformatminimizeencoding, 46–57,
46–61
parameterformatstripencoding, 46–57, 46–61
parameterlengthlimit, 46–56

-pmaximum switch of test -mime, 71–115
passsyntaxerrors, 46–76
passthrough, 46–130

destinationdkim* trigger, 46–63
dkimpreserve trigger, 46–64
dkim_ignore_domains avoids triggering,
52–164
dkim_preserve_domains trigger, 52–165

percentonly, 46–40
percents, 46–40
personalinc, 46–47, 46–85
personalmap, 46–47, 46–85

use_personal_names MTA option, 52–214
personalomit, 46–47, 46–85
personalstrip, 46–47, 46–85
pool, 46–116

ims-ms channel, 64–2
ims-ms channels, 64–1
Job Controller operation, 55–2
job_pool Job Controller option, 55–18

port, 46–157
AUTH_ACCESS mapping table $P flag, 62–44

postheadbody, 46–107
postheadonly, 46–107
Processing control and job submission, 46–109
processsecuritymultiparts, 46–52
proxyprotocol, 46–144
randommx, 46–150
receivedfor, 46–83
receivedfrom, 46–83
receivedstate, 46–86

Conversion channel, 51–6
filter_discard channel, 65–7

recipientcutoff, 46–96, 46–132
recipientlimit, 46–96, 46–132

error_text_recipient_over MTA option, 52–171
refuseehlo, 46–129

Index–22 Messaging Server Reference

refusenotary, 46–106, 46–144
rejectsmtplonglines, 46–146

acceptalladdresses channel option, 46–34
error_text_smtp_lines_too_long MTA option,
52–177

relaxheadertermination, 46–81
relay, 46–130
remotehost, 46–42, 46–74
reportboth, 46–108
reportheader, 46–108
reportnotary, 46–108
reportsuppress, 46–108
restricted, 46–46

-restricted switch of test -rewrite utility,
71–127

retainsecuritymultiparts, 46–52
returnaddress, 46–107
returnenvelope, 46–108

DNS verification, test -rewrite utility, 71–125
error_text_invalid_return_address MTA
option, 52–176
error_text_mailfromdnsverify MTA option,
52–176
error_text_unknown_return_address MTA
option, 52–176
return_envelope MTA option, 52–166, 52–229

returnpersonal, 46–107
Overriden by RETURN_PERSONAL option
in return_option.opt, 60–15
return_personal MTA option, 52–230

reverse, 46–47
routelocal, 46–48

Compared to localbehavior, 46–45
Removal of source routes during rewriting,
47–8

Routing
aliasdetourhost, 46–37, 46–68
aliasoptindetourhost, 46–37, 46–68
daemon, 46–70, 46–149
lastresort, 46–70, 46–153
multigate, 46–71
nomultigate, 46–71

rules, 46–47
Source channel-specific rewriting, 47–28

SASL and TLS, 46–161
saslpassauth, 46–173

Value set via AUTH_REWRITE mapping,
46–164

saslruleset, 46–174
saslswitchchannel, 46–91, 46–174

Effect nullified by XUNAUTHENTICATE
SMTP command, 46–92, 46–175
SMTP relay blocking, 62–59

sasltrustauth, 46–173
scriptlimit, 46–122
secondclassafter, 46–110
secondclassblocklimit, 46–125
sendetrn, 46–144
sendpost, 46–103, 60–1
Sensitivity limits, 46–117
sensitivity*

acceptalladdresses channel option, 46–34
sensitivitycompanyconfidential, 46–117
sensitivitynormal, 46–117
sensitivitypersonal, 46–117
sensitivityprivate, 46–117
Service conversions, 46–62
serviceconversion, 46–63
sevenbit, 46–60, 46–138

-sevenbit switch of test -mime, 71–113
Sieve filters

*flagtransfer, 46–118, 46–135
Sieve filters and delivery flags, 46–118

addrtypescan, 46–36, 46–118
*filter, 46–119
deliveryflags, 46–118, 46–135
fileinto, 46–121
nofileinto, 46–121
scriptlimit, 46–122

silentetrn, 46–127
single, 46–66

Channel to a gateway system, 62–58
Effect via deliveryflags channel option,
46–118, 46–135
Pipe channels, 65–13, 65–17

single_sys, 46–66
Channel to a gateway system, 62–58

Size limits on messages, 46–122
slave, 46–111
slave_debug, 46–94

$U flag in address *_ACCESS mapping table,
57–10
$U flag in PORT_ACCESS mapping table,
57–4
mm_debug MTA option, 52–79
os_debug MTA option, 52–79
RESETDEBUG Archive option, 58–10

smtp, 46–140
SMTP and LMTP protocol

deliverbychannel, 46–136
SMTP protocol, 46–127
smtp_cr, 46–140
smtp_crlf, 46–140
smtp_crorlf, 46–140
smtp_lf, 46–140
sockshost, 46–157

Index–23

socksnoauth, 46–156
sockspassword, 46–157
socksport, 46–157
socksusername, 46–157
socksuserpassword, 46–156
sourceblocklimit, 46–123

acceptalladdresses channel option, 46–34
sourcecommentinc, 46–73
sourcecommentmap, 46–73

use_comment_strings MTA option, 52–211
sourcecommentomit, 46–73
sourcecommentstrip, 46–73
sourcecommenttotal, 46–73
sourceconversiontag, 46–62
sourcefilter, 46–119

error_text_source_sieve_access MTA option,
52–176
error_text_source_sieve_authorization MTA
option, 52–176
error_text_source_sieve_syntax MTA option,
52–176
Message capture example, 5–41
Sieve hierarchy, 5–81

sourcenosolicit, 46–136
sourcepersonalinc, 46–47, 46–85
sourcepersonalmap, 46–47, 46–85

use_personal_names MTA option, 52–214
sourcepersonalomit, 46–47, 46–85
sourcepersonalstrip, 46–47, 46–85
sourceroute, 46–40
sourcespamfilter*, 46–126
sourcesrs, 46–36
Spam/virus filter package use, 46–126

destinationspamfilter*, 46–126
disabledestinationspamfilter*, 46–126
disablesourcespamfilter*, 46–126
sourcespamfilter*, 46–126

spare*, 46–48
spfhelo, 46–158
spfmailfrom, 46–158
spfnone, 46–158
spfrcptto, 46–158
streaming, 46–147
subaddressexact, 46–49

Address reversal, 48–56
subaddressrelaxed, 46–49

Address reversal, 48–56
Subaddresses on aliases, 48–46

subaddresswild, 46–49
Address reversal, 48–56

subdirs, 46–68
submit, 46–130
suppressfinal, 46–105

Recipient address reported in notifications,
60–6, 60–17

suppressreceivedip, 46–80
switchchannel, 46–90

Effectively disabled if CHECK_SOURCE=0,
62–25
INTERNAL_IP mapping table, 57–6
SMTP relay blocking, 62–59

TCP/IP connections and DNS lookups, 46–148
thirdclassafter, 46–110
threaddepth, 46–116, 46–161

-thread_depth switch of cache -change, 71–8
Channel to a gateway system, 62–58
ims-ms channel, 64–2
Job Controller operation, 55–3
Modified under stress, stressfactor Job
Controller option, 55–15
Modified under stress, unstressfactor Job
Controller option, 55–15

thurman, 46–56
-thurman switch of test -mime, 71–115

tick, 46–58
tlsmaxversion

AUTH_ACCESS $! flag, 62–45
tlsminversion

AUTH_ACCESS $! flag, 62–45
tlsswitchchannel, 46–92, 46–171
tracking*, 46–101
trackinggenerate, 46–102
transactionlimit, 46–137

error_text_transaction_limit_exceeded MTA
option, 52–176
Reprocess channel, 65–21

truncatesmtplonglines, 46–146
turn, 46–145
turn_in, 46–145
turn_out, 46–145
unrestricted, 46–46
urgentafter, 46–110
urgentbackoff, 46–110
urgentblocklimit, 46–125
urgentnotices, 46–106
useintermediate, 46–105

Recipient address reported in notifications,
60–6, 60–17

usepermanenterror, 46–65
user, 46–71, 46–117

Pipe channels, 65–15
See also pipeuser option in restricted.cnf,
46–71, 46–117

usereplyto, 46–87
useresent, 46–87
usereversedatabase, 46–50

Index–24 Messaging Server Reference

userswitchchannel, 46–90
Address reversal, 48–52

usetemporaryerror, 46–65
utf8header, 46–60, 46–138
utf8negotiate, 46–60, 46–138
utf8strict, 46–60, 46–138

acceptalladdresses channel option, 46–34
error_text_unnegotiated_eightbit MTA
option, 52–177

Values
Case preservation, 46–8
Length limits, 46–8
Quoting, 46–8
URL types, 1–4

verb_never, 46–58
verb_none, 46–58
verb_off, 46–58
verb_on, 46–58
viaaliasoptional, 46–51
viaaliasrequired, 46–51

Critical that it be set on the local channel, 65–2
Error text if user not found, 52–168
ims-ms channels, 64–3
Success simulated via deliveryflags channel
option, 46–119, 46–136

vrfyallow, 46–148
vrfydefault, 46–148
vrfyhide, 46–148
warnpost, 46–104, 60–1
wrapsmtplonglines, 46–146
xclient, 46–84, 46–145, 46–172
xclientrepeat, 46–84, 46–145, 46–172
xclientsasl, 46–84, 46–145, 46–172
xclientsaslrepeat, 46–84, 46–145, 46–172
x_env_to, 46–84

Channels, G–2
"l"

See Local channel, 65–2
Available, 46–2
Bitbucket

See Bitbucket channel, 65–2
BSMTP

See BSMTP channels, 63–1
Clearing defaults for channel options, 46–7
Configuration, 46–5
Conversion

See Conversion channel, 51–1
Defaults for channel options, 46–6
Defragment

See Defragmentation channel, 65–3
Defragmentation

See Defragmentation channel, 65–3
Executable program

master_command Job Controller option,
55–11
slave_command Job Controller option, 55–14

filter_discard
See filter_discard channel, 65–7

Generic SMTP
See Generic SMTP channels, 65–9

Hold
See Hold channel, 65–10

ims-ms
See ims-ms channels, 64–1

List of, 46–2
LMTP

See also TCP/IP channels, 62–3
See LMTP channels, 62–3

Local
See Local channel, 65–1

Master program, 46–2
Name used by SMS gateway for enqueueing

mta_channel gateway_profile option, 66–5
Nodefaults, 46–6
Overview, 46–1
Pipe

See Pipe channel, 65–13
Process

Process channel, 65–20
Reprocess

Reprocess channel, 65–20
Reserved names, 46–2
Sieve filter

See also destinationfilter channel option,
46–119
See also sourcefilter channel option, 46–119
vnd.sun.destination-channel environment
item, 5–20
vnd.sun.source-channel environment item,
5–20, 5–20

Slave program, 46–2
SMTP over TCP/IP

See TCP/IP channels, 62–3
Switch of effective source

$S flag in PORT_ACCESS mapping table,
57–4
*switchchannel channel options, 46–90
Adding domain name to "bare" username,
46–43, 46–75
Does not effect SMTP line terminator
selection, 46–141
saslswitchchannel channel option, 46–91,
46–174
tlsswitchchannel channel option, 46–93,
46–172

TCP/IP

Index–25

See TCP/IP channels, 62–3
test_smtp

See Generic SMTP channels, 65–9
Channels options

daemon
Routing to a mailhub, 62–59

channel_class group, 55–18
Character set

Authentication
broken_client_login_charset auth option, 21–2

charset parameter in return_prefix.txt file must
match charset used in return_option.opt values,
60–14, 60–15
charset7 channel option, 46–59
charset8 channel option, 46–59
charsetesc channel option, 46–59
Conversion, 51–1, 51–19

Allowed character sets, 46–59
CHARSET-CONVERSION mapping table,
51–17
Implicit for some vacation :reply messages,
60–22
ISO-2022-JP to UTF-8 example, 51–21
Override labelling, 51–21
test -translation utility, 71–136
test -translation utility, Within conversion
scripts, 51–31
translate Recipe function, 4–18
translate Sieve filter action, 5–78

detectcharset MSHTTP option, 42–7
Disposition messages

disposition_prefix.txt file, 60–20
DSNs

return_prefix.txt file, 60–12
Eight bit characters

test -eightbit utility, 71–85
headerset7 channel option, 46–61
headerset8 channel option, 46–61
headersetesc channel option, 46–61
httpcharset MSHTTP option, 42–16
Initial (incoming) character set labelling

charset* channel options, 46–59
UNKNOWN, 46–59

ISO-2022-JP
charsetesc channel option, 46–60

ISO-2022-KR
charsetesc channel option, 46–60

Japanese
ISO-2022-JP, charsetesc channel option, 46–60

Korean
ISO-2022-KR, charsetesc channel option,
46–60

Line wrap and encoding interaction, 46–147

mailcharset MSHTTP option, 42–16
MDNs

disposition_prefix.txt file, 60–20
Messenger Express

rfc822headerallow8bit base option, 16–13
MIME parameter

RFC 2231 encoding removal, 46–57, 46–62
MSHTTP validation

charsetvalidation MSHTTP option, 42–4
Notification messages

notary_decode MTA option, 52–228
return_prefix.txt file, 60–12

Override labelling, 51–21
rfc822headerallow8bit base option

Messenger Express header line display, 16–13
Sieve filters

translate function, 5–78
utf-8, 5–17

smsc_default_charset gateway_profile option,
66–8
Sniffing, 51–21
Translation

See Character set, Conversion, 71–136
UNKNOWN, 46–59

Rejecting messages with unnegotiated 8bit,
46–60, 46–138

Used by SMS gateway for enqueued message
body

email_body_charset gateway_profile option,
66–5

UTF-8
Non-breaking space, forcenbsptospace
MSHTTP option, 42–7

Vacation :reply messages
TEXT_CHARSET option in
disposition_option.opt file, 60–22

Charset
See Character set, 51–1

charset7 channel option, 46–59
charset8 channel option, 46–59
charsetesc channel option, 46–59
charsetvalidation MSHTTP option, 42–4
checkdiskusage Message Store option, 26–8

IMAP_PARTITION_FULL error status, 38–3,
64–10

checkehlo channel option, 46–129
checkinterval Message Store deadlock option,
26–22
checkmailhost Message Store option, 26–8
checkoverssl smime option, 43–5
Checkpointing

Message Store operation, 26–20
Message transmission, 46–55

Index–26 Messaging Server Reference

checkrrvs channel option, 46–41, 46–130
check_memcache.so, 50–29
check_metermaid.so, 50–32

Example of use, 62–54, 68–15, 68–17
chunkingclient channel option, 46–130
chunkingserver channel option, 46–130

binaryserver enables BDAT even without,
46–129
BURL interaction, 62–12

chunk_cache_limit MTA option, 52–187
CIDR notation, G–2

Mapping table wildcards, 50–7
TCP wrapper filter wildcard patterns, 6–5

Cipher suites, G–2
ssladjustciphersuites option, 16–14, 41–22

Circuit check
circuitcheck_completed_bins MTA option, 52–75
Counters

Binning of, circuitcheck_completed_bins
MTA option, 52–75

MTA options
circuitcheck_completed_bins, 52–75

circuitcheck_completed_bins MTA option, 52–75
circuitcheck_paths_size MTA option, 52–187
ClamAV

See Spam/virus filter package integration,
ClamAV, 58–4

cleanupage Message Store option, 26–8
cleanupsize Message Store option, 26–9
clonehosts channel option, 46–42, 46–69

Message replay, 67–3
cmapldapattr Base certmap option, 16–27
cmapldapattr certmap option, 16–27
command pipe option, 65–16
Comment lines

comment_chars MTA option, 52–181
MTA option file, 52–10

comment_chars MTA option does not affect,
52–182

Recipe language, 4–2
Comment strings

alternate_recipient MTA option, 52–61, 52–195
commentinc channel option, 46–73
commentmap channel option, 46–73

use_comment_strings MTA option, 52–211
commentomit channel option, 46–73
commentstrip channel option, 46–73
commenttotal channel option, 46–73
comment_chars MTA option, 52–181

Alias database, 48–45
Domain database, 47–37
General database, 50–25

Common name, G–2

Communications Express
Address search

allowldapaddresssearch MSHTTP option,
42–4

Compiled configuration
-image_file switch of test -rewrite, 71–125
Testing of

test -rewrite utility, 71–117
compliance Message Store archive option, 26–19
conditionalpassthrough channel option, 46–130
conditionalrelay channel option, 46–130
conditionalsecuritymultiparts channel option,
46–52
configutil parameters

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
local.hostname, 52–89, 52–104

Direct LDAP alias lookups, 48–6
local.imta.hostnamealiases

Direct LDAP alias lookups, 48–6
MTA use, 52–89, 52–103

local.imta.mailaliases
Direct LDAP alias lookups, 48–6

local.imta.schematag
Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32

local.ldapconnecttimeout
Direct LDAP alias lookups, 48–5

local.ldapsearchtimeout
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

local.service.pab.ldapbinddn, 52–194
local.service.pab.ldaphost, 52–194
local.service.pab.ldappasswd, 52–194
local.service.pab.ldapport, 52–194
local.ugldapbasedn

Direct LDAP alias lookups, 48–6
local.ugldapbindcred

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

local.ugldapbinddn
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

local.ugldaphost
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

local.ugldapport
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

local.ugldapusessl
Direct LDAP alias lookups, 48–5

logfile.imta.syslogfacility
Effect on log_messages_syslog, 52–269

Index–27

metermaid.table.*, 59–2
service.dcroot

Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32

service.defaultdomain
Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32

config_debug MTA option, 52–78
connectalias channel option, 46–149
connectcanonical channel option, 46–149
connectfrequency MeterMaid Client option, 59–6
Connection access control

PORT_ACCESS mapping table, 57–2
connecttimeout IMAP Proxy option, 41–10
connecttimeout indexer option, 32–9
connecttimeout MeterMaid Client option, 59–6
connecttimeout MMP option, 41–9
connecttimeout POP Proxy option, 41–10
connlimits MSHTTP/IMAP/POP/MMP/IMAP
Proxy/POP Proxy option, 34–12, 35–4, 41–10, 42–5
connrejectthreshold MMP option, 41–11
contchar channel option, 46–58
contenttype Message Store messagetype mtindex
option, 26–26
content_return_block_limit MTA option, 52–220,
52–227

Postmaster manual message bounce, 71–55
contextname SNMP option, 73–2
Continuation lines

In aliases file, 48–25
contposition channel option, 46–58
convergencefilterenabled MSHTTP option, 42–6
Conversion channel, 51–1

$R input flag in AUTH_REWRITE mapping
table, 46–164
Alternate routing, 51–3
Configuration, 51–6
Control of conversion operation, 51–7
Conversion entries

-conversion_file switch of test -rewrite,
71–122
Backslash quoting, 51–13
Environment variables, 51–13
Example, 51–7
Example, Conversion tag, 48–12
Example, Mapping table callout, 51–15
Mapping table callouts, 51–15
Parameters, 51–9
Parameters, Wildcards in values, 51–12
Scanning and application, 51–7
Single quote character, 51–13
Symbol substitution, 51–13
Symbols, 51–13

Syntax of, 51–7
Conversion scripts

COMMAND conversion entry parameter,
51–9
Exit statuses, 51–16
Exit statuses, Diagnosing .HELD files, 65–12
Header access, 51–15

Conversion tag, 51–3
Conversion tags

Adding via address access mapping tables,
57–10

CONVERSIONS mapping table, 51–2
Conversion tag, 51–3

ignore*encoding channel options, 46–54
Part by part operation, 51–7
receivedstate channel option, 51–6

Conversion tags, 48–12, 51–16, G–3
*conversiontag Sieve actions, 5–23, 5–56
*_ACCESS mapping table probes, 57–8
-tag switch of test -rewrite utility, 71–129
Address reversal, 48–52
alias_conversion_tag alias option, 48–12
Channel options, 46–62
CHARSET-CONVERSION mapping table, 51–18
CONVERSIONS mapping table, 51–3

include_conversiontag MTA option, 51–2
CONVERSION_TAG alias file named
parameter, 48–32
deliveryflags channel option, 46–119, 46–135
destinationconversiontag channel option, 46–62
Domain

ldap_domain_attr_conversion_tag MTA
option, 52–154
ldap_domain_attr_source_conversion_tag
MTA option, 52–155, 52–155

Envelope field, 51–16
FORWARD mapping table probes, 48–61
include_conversiontag MTA option, 52–202
ldap_conversion_tag MTA option, 52–131
ldap_source_conversion_tag MTA option,
52–128
Logging of

log_conversion_tag MTA option, 51–16,
52–276

MESSAGE-SAVE-COPY mapping table probe,
67–4, 67–5
message_save_copy_flags MTA option, 52–210,
52–298
See also Sieve filters, Conversion tags, 5–56
Sieve filter access to, 5–31
Sieve filters, 5–56
sourceconversiontag channel option, 46–62
TAG conversion entry parameter, 51–10

Index–28 Messaging Server Reference

Conversions
See Message, Conversions, 51–1

conversions file, 51–2
conversions MTA option, 51–2, 52–74
conversion_size MTA option, 52–187
convertoctetstream channel option, 46–52
cookiedomain MSHTTP option, 42–6
cookiename MSHTTP option, 42–6
copymsg notifytarget option, 37–8
copysendpost channel option, 46–103, 60–1
copywarnpost channel option, 46–104, 60–1
count Message Store purge option, 26–28
Counters

See MTA counters, 68–23
CRAM-MD5, G–3

crams mmp/imapproxy/popproxy/vdomain
option, 41–11
has_plain_passwords auth option, 21–3
userPassword LDAP attribute

Contain clear-text password, 52–109
crams MMP/IMAP Proxy/POP Proxy/Virtual
Domain option, 41–11
CRL

See Certificate, Revocation List, 43–4
crldir smime option, 43–4
crlenable smime option, 43–4
crlmappingurl smime option, 43–5, 43–5
crlurllogindn smime option, 43–4
crlurlloginpw smime option, 43–5
crlusepastnextupdate smime option, 43–7
crontab Scheduler task:expire option, 17–3
crontab Scheduler task:msprobe option, 17–4
crontab Scheduler task:purge option, 17–5, 26–28
crontab Scheduler task:return_job option, 17–5,
60–4
crontab Scheduler task:snapshot option, 17–6
crontab Scheduler task:snapshotverify option, 17–6

D
daemon channel option, 46–70, 46–149

Routing to a gateway, 62–58
Routing to a mailhub, 62–59

data: URLs
data:, discard;

spamfilterN_null_action options' default
value, 52–256

data:, require "fileinto"; fileinto "$U";
spamfilterN_string_action options' default
value, 52–258

data:,$M
spamfilterN_string_action option value for
Milters, 52–258, 58–8, 58–15

Example of spamfilterN_string_action value,
58–3
Example spamfilter2_string_action option value,
58–10
MTA URL types, 1–4

Database MTA options, 52–76
name_table_name (OpenVMS only), 52–64

Databases
Conversion rules, 51–2
Defragment database used by defragmentation
channel, 65–3
Job Controller queue cache, 55–1

cache -sync utility, 71–9
cache -walk utility, 71–11
max_cache_messages Job Controller option,
55–12
Operation under stress, 55–3
queue_cache_mode MTA option, 52–184
queue_cache_mode_3_files MTA option,
52–184
synch_time Job Controller option, 55–16

LDAP
Aliases and domains stored in, 48–3
Aliases stored in, 48–5

Memcache, 52–214
MeterMaid, 52–224
MTA alias database, 48–45

-database switch of test -rewrite, 71–122
MTA conversion entries, 51–7
MTA domain database

-database switch of test -rewrite, 71–122
MTA Forward database, 48–63

-database switch of test -rewrite, 71–122
MTA General database, 50–24

-database switch of test -rewrite, 71–122
MTA options, 52–76
MTA Pipe database, 65–17
MTA profile database, 65–16
MTA queue cache database, G–9

Job Controller operation under stress, 55–3
Maintained by Job Controller, 55–12

MTA Reverse database, 48–52
-database switch of test -rewrite, 71–122

Redis, 52–236
See also Message Store options, db*, 26–4
See also Message Store options, dbreplicate,
26–20
See also MTA options, Autoresponse periodicity,
52–69
See also Vacation messages, Previous response
database, 52–69
Sieve extlists extension, 5–34

data_type local_table MeterMaid option, 59–3

Index–29

datefour channel option, 46–73
datetwo channel option, 46–73
dayofweek channel option, 46–74
da_host MSHTTP option, 42–6
da_port MSHTTP option, 42–6
dbcachesize Message Store msghash option, 26–27
dbcachesize Message Store option, 26–9
dblockcount base option, 16–4
dblogregionmax Message Store option, 26–9
dbnumcaches Message Store option, 26–9
dbpriority Message Store dbreplicate option, 26–21
dbregionmax Message Store option, 26–9
dbremotehost Message Store dbreplicate option,
26–21, 26–21
dbsync Message Store option, 26–9
dbtmpdir Message Store option, 26–10
dbtxnsync base option, 16–4
dbtype message store option, 26–10
dcroot base option, 16–4

Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32

deadlockaggressive Message Store option, 26–10
debug Base domainmap option, 16–3, 16–27
debug Deployment Map option, 23–1
debug Dispatcher option, 54–3
debug Dispatcher service option, 54–3
debug domainmap option, 16–27
debug Job Controller option, 55–10

-debug switch of cache -change, 71–7
debug Message Store checkpoint option, 26–20
debug MeterMaid Client option, 59–5
debug sms_gateway option, 66–2
Debugging

Address parsing by the MTA
ap_debug MTA option, 52–77

Address processing
-debug switch of test -rewrite, 71–123

Archive package integration
DEBUG Archive option, 58–10
RESETDEBUG Archive option, 58–10

Archiving
archive keyword in debugkeys option value,
41–12

Authentication
$A flag in PORT_ACCESS mapping table,
57–4
authserv keyword in debugkeys option value,
41–12
AUTH_DEBUG TCP/IP-channel-specific
option, 62–22
hula keyword in debugkeys option, 41–12
MMP, perf keyword in debugkeys option
value, 41–12

AUTH_DEBUG TCP/IP-channel-specific option,
62–22
Brightmail

blCommonDebugFilename Brightmail option,
58–4
blCommonDebugLevel Brightmail option,
58–4
blswcDebugFileName Brightmail option,
58–4
blswcDebugLevel Brightmail option, 58–4
blswsDebugFileName Brightmail option,
58–4
blswsDebugLevel Brightmail option, 58–4

cache_debug MTA option, 52–77
Calculations

-debug switch of calc utility, 71–13
Certificate map

certmap keyword in debugkeys option value,
41–12

Channel dequeue, 46–94
$U flag in AUTH_ACCESS mapping, 62–44
dequeue_debug MTA option, 52–78

Channel enqueue, 46–94
$U flag in address *_ACCESS mapping table,
57–10
$U flag in PORT_ACCESS mapping table,
57–4
mm_debug MTA option, 52–78

Channel log files, 46–94
ims-ms channels, 46–95, 64–6
LMTP server, 46–95
Reprocess channel, 46–95, 65–21
TCP/IP channels, 46–95

Channel operation
See Debugging, Channel dequeue, 46–94
See Debugging, Channel enqueue, 46–94

check_memcache.so callout, 50–29
ClamAV

DEBUG ClamAV option, 58–5
debugkeys option, 16–5, 41–13

os_debug MTA option, 52–79
Dispatcher, 54–13

debug Dispatcher option, 54–3
debug_flush MTA option, 52–78, 52–182

ENS
enssub keyword in debugkeys option value,
41–12

Flushing to disk
debug_flush MTA option, 52–78, 52–182

Force via address access mapping tables, 57–10
HULA

$A flag in PORT_ACCESS mapping table,
57–4

Index–30 Messaging Server Reference

ICAP
DEBUG ICAP option, 58–5

IMAP
logprotocolerrors IMAP option, 34–16
maparse keyword in debugkeys option value,
41–12
search keyword in debugkeys option value,
41–12

ims-ms and LMTP server
messagetrace.activate option, 36–1

ims-ms channels, 64–7
loglevel MTA option, 54–12, 55–17

Job Controller
cache -walk utility, 71–11
debug Job Controller option, 55–10
debug_flush MTA option, 52–78, 52–182
Enabling, imsimta cache -change -global -
debug=N, 71–7
Example of enabling, 71–8

LDAP
debugkeys option's ldap key, 41–12
ldaptrace base option, 16–11

LDAP lookup cache
cache_debug MTA option, 52–77

LDAP lookups
mm_debug MTA option, 52–79

LDAP pool connections
lpool keyword in debugkeys option value,
41–12

LMTP server
imta file, 54–12, 55–17
loglevel MTA and tcp_lmtp_server option,
54–12, 55–17

lpool
os_debug MTA option, 52–79

master_debug channel option, 46–94
Message Store checkpoint, 26–20
Message tracking

tracking_debug MTA option, 52–80
MeterMaid

metermaid keyword in debugkeys option
value, 41–12

MeterMaid client operation
debug metermaid_client option, 59–5

Milter
DEBUG Milter option, 58–6
RESETDEBUG Milter option, 58–6

mm_debug MTA option, 52–78
MSHTTP

nofilecache MSHTTP option, 42–10
MTA

Performance impact, 69–3
MTA options, 52–77

POP
logprotocolerrors POP option, 35–6

return_debug MTA option, 52–80
return_job

return_debug MTA option, 52–80
return_verify MTA option, 52–80

Sieve filter processing
Low-level, filter_debug MTA option, 52–78,
52–248
mm_debug MTA option, 52–79

slave_debug channel option, 46–94
SMS gateway

debug option, 66–2
foreground sms_gateway option, 66–3

SMTP server processes
debug_flush MTA option, 52–78, 52–182
MeterMaid client operations, debug
metermaid_client option, 59–5
slave_debug channel option, 46–94

Spam/virus filter package integration
mm_debug MTA option, 52–79

SpamAssassin
DEBUG SpamAssassin option, 58–9

SPF lookups
mm_debug MTA option, 52–79

SRS/MUL decoding
mm_debug MTA option, 52–79

SSL/TLS
tls keyword in debugkeys option value, 41–12

TCP connections
bind keyword in debugkeys option value,
41–12
connect keyword in debugkeys option value,
41–12

TLS
Dispatcher initialization of, 54–14

TRACE_LEVEL TCP/IP-channel-specific option,
62–41

debugkeys base option, 16–5, 41–13
os_debug MTA option, 52–79

debugkeys Base option
AUTH_DEBUG TCP/IP-channel-specific option,
62–22

debugkeys mmp/imapproxy/popproxy/
submitproxy/vdomain option, 41–11
debug_flush MTA option

Dispatcher debug output, 54–13
decode_encoded_words MTA option, 52–239
defaultdomain base option, 16–5, 41–13

Default for contextname SNMP option, 73–2
Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32
ims-ms channels, 64–4

Index–31

defaultdomain MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–13
defaultdomain option, 41–13
defaultdomain vdomain option, 41–13
defaulthost channel option, 46–42, 46–74

Initial configuration, 46–7
use of value in rewrite rule substitution, 47–21

defaulthostindex PAB option, 72–1
defaultmx channel option, 46–150
defaultnameservers channel option, 46–150
defaultpartition Message Store option, 26–11
defaults pseudo-channel, 46–6
deferralrejectlimit channel option, 46–96, 46–132
deferred channel option, 46–112
deferreddestination channel option, 46–112
deferredsource channel option, 46–112
defertemporaryfailures channel option, 46–35
defer_group_processing MTA option, 52–195

List expansion through reprocess channel, 65–20
Mass mailings, 49–22

defer_header_addition MTA option, 52–239
Sieve redirect action, 5–48

defragment channel option, 46–52, 65–3
ims-ms channel, 64–1
ims-ms channels, 64–1, 65–3
LMTP channels, 65–3

Defragmentation channel, 65–3
backoff channel option, 65–5
Configuration, 65–3
Defragment database, 65–3

Multi-host access, 65–3, 65–6
NFS storage, 65–3, 65–5

Fragment retention time, 65–4
Multi-host operation

Defragment database shared among hosts,
65–3, 65–6
Example, 65–6

notices channel option, 65–5
Options

MAX_PARTS, 65–4
deleted attribute in store.expirerule files, 31–3
deleted Message Store expirerule option, 26–23
deletemessagehash channel option, 46–100
deletemsg notifytarget option, 37–6
delimiter_char MTA option, 52–62
deliverbychannel channel option, 46–136
deliverbymin channel option, 46–136
Delivery flags

deliveryflags channel option, 46–118, 46–135
flagtransfer channel option, 46–118, 46–135
Logging

log_delivery_flags MTA option, 52–287
noflagtransfer channel option, 46–118, 46–135

Delivery options
delivery_options MTA option, 52–98
Direct LDAP address processing, 48–3
ldap_delivery_option MTA option, 52–127
Testing of

test -rewrite utility, 71–117
Delivery receipts

-delivery_receipt switch of test -rewrite, 71–123
Channel source for those generated by the MTA,
46–104
Format of those generated by the MTA, 60–5
Request/non-request indicated in log_notary
field, 52–291
Request/non-request noted in test -rewrite
output, 71–130
Requests on mailing list postings

alias_keep_delivery alias option, 48–18
KEEP_DELIVERY named parameter, 48–37

Subject: field for those generated by the MTA,
60–12
Text of those generated by the MTA

return_delivered.txt file, 60–13
deliveryflags channel option, 46–118, 46–135
delivery_options MTA option, 52–98

Direct LDAP address processing, 48–3
Effect on mailRoutingHosts interpretation,
52–153
Group default delivery approach, 52–100
LMTP, 52–99
nomail clause, 52–99
Order of caluses, 52–100
Preserve subaddress in .HELD messages, 52–99
User default delivery approach, 52–100

Denial-of-service
Defending against attacks, 57–19
Dispatcher self-protection features, 54–2
Job Controller self-protection features, 55–3
MMP

ldappendingoplimit, 41–16
stressfdwait base option, 16–21
stressperiod base option, 16–20

MTA logging self-protection features
$N flag in LOG_ACTION mapping table,
68–11
MAX_B_ENTRIES TCP/IP-channel-specific
option, 62–32
MAX_H_ENTRIES TCP/IP-channel-specific
option, 62–33
MAX_J_ENTRIES TCP/IP-channel-specific
option, 62–34

preauth mmp/imapproxy/popproxy/vdomain
option, 41–19

Deployment Map

Index–32 Messaging Server Reference

Default deployment
site-01, 4–10

Messaging Server infrastructure, 1
Options, 23–1

capability_starttls, 23–1
debug, 23–1
enable, 23–1
heartbeat, 23–1
passwd, 23–2
port, 23–2
run_as_server, 23–2
server_host, 23–2
sslusessl, 23–2
starttls capability, 23–2
userid, 23–2

properties base option, 16–12, 23–2
Server

msprobe probe of, 19–2
dequeueremoveroute channel option, 46–43
dequeue_debug MTA option, 52–78

os_debug MTA option, 52–79
dequeue_map MTA option, 52–182
describe_cache_limit MTA option, 52–187
description alarm.system:diskavail option, 20–2
description alarm.system:serverresponse option,
20–2
description channel option, 46–63
destination Message Store archive option, 26–19
destinationconversiontag channel option, 46–62
destinationdkimidentityN channel option, 46–64
destinationdkimignore channel option, 46–63
destinationdkimpreserve channel option, 46–63

dkim_ignore_domains MTA option's effect on,
52–164
dkim_preserve_domains MTA option's effect on,
52–165

destinationdkimremove channel option, 46–63
dkim_ignore_domains MTA option's effect on,
52–164
dkim_remove_domains MTA option's effect on,
52–165

destinationdkimselectorN channel option, 46–64
destinationfilter channel option, 46–119

Message capture example, 5–41
Performance impact, 69–3
Sieve hierarchy, 5–81

destinationnosolicit channel option, 46–136
destinationpassthrough channel option, 46–130
destinationspamfilter* channel options, 46–126
destinationsrs channel option, 46–36
detectcharset MSHTTP option, 42–7
diacritical_sensitive_language IMAP option, 34–14
Dial up connections

SMTP ETRN extension, 62–62
Dictionary attack

Blocking via LOG_ACTION, 68–21
Warning of possible, 68–16

digest_on MTA option, 52–196
Direct LDAP lookups

Address reversal
Caching, 52–163
domain_uplevel MTA option, 52–85
Performance tuning, 52–163

Aliases and addresses
configutil parameters, 48–5
Deferring group (list) expansion,
defer_group_processing MTA option, 52–195
domain_uplevel MTA option, 52–85
Forwarding user mail, 48–60
MTA options, 48–5

Caching, 52–161
-statistics switch of test -rewrite, 71–128
Domain lookups, domain_match_cache_size,
52–162
Domain lookups,
domain_match_cache_timeout, 52–162
Domains, 16–7, 47–32, 52–88, 52–163
Domains, domain_match_cache_size MTA
option, 52–162
Domains, domain_match_cache_timeout
MTA option, 52–162
Domains, ldap_domain_timeout MTA option,
52–162
Reverse addresses, 52–163

Configuration of, 48–3
Domains

Aliases for domains, 52–152
Aliases for domains, aliasedObjectName
LDAP attribute, 16–8, 52–151
Aliases for domains, associatedDomain
LDAP attribute, 52–87, 52–151
Aliases for domains, domain_uplevel MTA
option, 52–85
Aliases for domains,
ldap_attr_domain2_schema2 MTA option,
52–87, 52–151
Aliases for domains, ldap_domain_attr_alias
MTA option, 16–8, 52–151
Caching, 16–7, 47–32, 52–88, 52–163
configutil parameters, 47–31
domain_failure MTA options, 52–84
domain_uplevel MTA option, 52–85
MTA options, 47–31, 52–83
Performance tuning, 16–7, 47–32, 52–88,
52–163

Index–33

Rewrite rule, ldap_domain_known_attributes
MTA option, 47–32
Rewrite rules, $V and $Z flags, 47–31

Forwarding user mail, 48–60
ims-ms channel, 64–2
Overview of, 48–3
Performance tuning, 52–161

Domains, 16–7, 47–32, 52–88, 52–163
Reverse addresses, 52–163

Rewrite rules
Domain found/not-found in LDAP, 47–31

Schema
Authentication results, 52–161

Timeouts on LDAP queries, 52–82
User/group lookup MTA options, 52–89

Directories
$DATAROOT/store/mboxlist

Default for crldir S/MIME option, 43–4
$DATAROOT/store/partition/*

path partition option, 28–1
$DATAROOT/tmp

Default for tmpdir base option, 16–22
/dev/shm

dbtmpdir Message Store option's
recommended Linux value, 26–10
tmpdir base option's recommended Linux
value, 16–22
tmpdir Message Store archive option's
recommended Linux value, 26–19
tmpdir MTA option's recommended Linux
value, 52–164

/dev/shm/.encoded-SERVERROOT/lock
Default for lockdir base option on Linux,
16–11

/tmp
Default for tmpdir MTA option, 52–164

/tmp/.encoded-SERVERROOT/lock
Default for lockdir base option on Solaris,
16–11

/tmp/.encoded-SERVERROOT/store
Default for dbtmpdir Message Store option,
26–10

Archiving
store.archive.tmpdir option, 26–18

Backup of Message Store data
backupdir Message Store option, 26–5

Configuration
imta_table, 53–3

DATAROOT/store/partition, 28–1
Dirsync

imta_dl, 53–3
imta_bin, 53–3
imta_dl, 53–3

imta_lib, 53–3
imta_log, 53–3
imta_program, 53–5
imta_table, 53–3
log

imta_log, 53–3
Message Store

dbtmpdir option, 26–10
Message Store snapshots

snapshotpath Message Store option, 26–17
MTA options, 52–164
sslcachedir option, 16–18, 41–27
ssldbpath option, 16–19
storedebug under tmpdir

autorepairdebug Message Store option, 26–5
Temporary

dbtmpdir Message Store option, 26–10
tmpdir base option, 16–22
tmpdir Message Store archive option, 26–18
tmpdir MTA option, 52–164

Directory Information Tree (DIT), G–3
directoryscan SNMP option, 73–2
disabledestinationfilter channel option, 46–119
disabledestinationspamfilter* channel options,
46–126
disableetrn channel option, 46–127
disablesourcefilter channel option, 46–119
disablesourcespamfilter* channel options, 46–126
DISABLE_EXPAND TCP/IP-channel-specific
option

expn* channel options, 46–139
discard_disables_capture MTA option, 52–241
disconnectbadauthlimit channel option, 46–169
disconnectbadburllimit channel option, 46–96,
46–132, 62–12
disconnectbadcommandlimit channel option,
46–96, 46–132
disconnectcommandlimit channel option, 46–96,
46–132
disconnectrecipientlimit channel option, 46–96,
46–132
disconnectrejectlimit channel option, 46–96, 46–132
disconnecttransactionlimit channel option, 46–137
Disk quota

Domain
ldap_domain_attr_disk_quota MTA option,
52–156
ldap_domain_attr_message_quota MTA
option, 52–156

Disk space
Alarms under diskavail, 20–2
checkdiskusage Message Store option, 26–8
Insufficient for MTA queue

Index–34 Messaging Server Reference

error_text_insufficient_disk MTA option,
52–171
error_text_insufficient_queue_space MTA
option, 52–176

Message Store
checkdiskusage option, 26–8
diskusagethreshold option, 26–11
relinker, 26–29

MTA queue directories
queuedir msprobe option, 19–1

diskflushinterval Message Store option (deleted)
Analogous to fsync MTA option, 52–182

diskusagethreshold Message Store option, 26–11
checkdiskusage interaction, 26–8
IMAP_PARTITION_FULL error status, 38–3,
64–10

Dispatcher, 54–1
Access control

PORT_ACCESS mapping table, 57–2
Autorestart

autorestart.enable option, 16–26
Debugging, 54–13

debug Dispatcher option, 54–3
debug_flush MTA option, 52–78, 52–182

Log file, 54–13
dns_verify_domain rejections, 54–5

Operation, 54–2
max_conns option, 54–2
max_procs option, 54–2
min_conns option, 54–2
min_procs option, 54–2
Worker Processes, 54–2

Options
debug, 54–3
dns_verify_domain, Compared to
dns_verify_domain mapping table callout,
50–36
enable, 54–3
Historical interest, 54–13
historical_time, 54–5
interface_address, See listenaddr, 54–6
listenaddr, 54–6
max_conns, 54–7
max_conns, Operation, 54–2
max_handoffs, 54–8
max_idle_time, 54–8
max_life_conns, 54–9
max_life_time, 54–9
max_procs, 54–9
max_procs, Operation, 54–2
max_shutdown, 54–9
min_conns, 54–8
min_conns, Operation, 54–2

min_procs, 54–10
min_procs, min_procs, 54–10
min_procs, Operation, 54–2
service, 54–10
service, backlog, 54–3
service, debug, 54–3
service, dns_verify_domain, 54–4
service, enable, 54–3
service, historical_time, 54–5
service, image, 54–6
service, listenaddr, 54–6
service, logfilename, 54–7
service, max_conns, 54–7
service, max_handoffs, 54–8
service, max_idle_time, 54–8
service, max_life_conns, 54–9
service, max_life_time, 54–9
service, max_procs, 54–9
service, max_shutdown, 54–9
service, min_conns, 54–8
service, parameter, 54–10
service, ssl_ports, 54–11
service, stacksize, 54–11
service, tcp_ports, 54–11
service, tls_bits_reject_msg, 54–12
service, tls_min_bits, 54–12
service, user, 54–12
ssl_ports, Compared to maytls* channel
options, 46–93, 46–172
user, 54–12
use_nslog, 54–12

Solaris system parameters, 69–4
Startup, 52–58
Virtual memory

historical_time option, 54–5
dispositionchannel channel option, 46–104, 60–23
Distinguished name, G–3
DIT

See Directory Information Tree, G–4
DKIM (DomainKeys Identified Mail)

Channel options, 46–63
dkim* channel options, 46–64
dkim_ignore_domains MTA option, 52–164
dkim_preserve_domains MTA option, 52–165
dkim_remove_domains MTA option, 52–165
MAX_PREPEND_INDEX milter spamfilter
option, 58–14
MTA options, 52–164

dkimignore channel option, 46–64
dkimpreserve channel option, 46–64

dkim_ignore_domains MTA option's effect on,
52–164

Index–35

dkim_preserve_domains MTA option's effect on,
52–165

dkimremove channel option, 46–64
dkim_ignore_domains MTA option's effect on,
52–164
dkim_remove_domains MTA option's effect on,
52–165

dkim_ignore_domains MTA option, 52–164
dkimpreserve interaction, 46–64
dkimremove interaction, 46–64
dkim_preserve_domains interaction, 52–165
dkim_remove_domains interaction, 52–165

dkim_preserve_domains MTA option, 52–165
dkimpreserve interaction, 46–64

dkim_remove_domains MTA option, 52–165
dkimremove interaction, 46–64

dlopen
Rewrite rule routine callouts, 47–26

dlsym
Rewrite rule routine callouts, 47–26

DMARC
Sieve filter to deal with broken DMARC usage,
5–31

dncomps Base certmap option, 16–26
dncomps certmap option, 16–26
DNS (Domain Name System), G–4
DNS lookups

A records
ipv6out option, 16–6, 41–15
ipv6sortorder option, 16–7
mailfromdnsverify channel option, 46–142,
46–154
MAX_A_RECORDS TCP/IP-channel-specific
option, 62–32

AAAA records
ipv6out option, 16–6, 41–15
ipv6sortorder option, 16–7

Access control TCP wrappers, 6–1
BANNER_REVERSE_HOST TCP/IP-channel-
specific option, 62–23
blocked_mail_from_ips MTA option, 52–165
Channel options, 46–150, 46–151, 46–151
CHECK_SOURCE TCP/IP-channel-specific
option, 62–24
Debugging of

TRACE_LEVEL TCP/IP-channel-specific
option, 62–41

DNS verifications
nameservers channel option, 46–151
test -rewrite utility, 71–125

dnsresolveclient option, 16–5
dns_verify callouts, 50–33
Domain of envelope From

error_text_mailfromdnsverify MTA option,
52–176
HOST_NOT_FOUND, returnenvelope
channel option, 46–109
returnenvelope channel option, 46–108

Forward lookups
forwardcheck* channel options, 46–153
TCP wrapper filters, 6–1

Host name
Mail routing loops, 65–12

IPv6
ipv6out option, 16–6, 41–15
ipv6sortorder option, 16–7
ipv6usegethostbyname option, 16–6

Local hostname
BANNER_REVERSE_HOST TCP/IP-channel-
specific option, 62–23

MTA options, 52–165
MX records

AUTH_ACCESS $M flag, 62–45
AUTH_ACCESS $X flag, 62–45
AUTH_ACCESS mapping table consulted
before, 62–43
Gateway systems, 62–57
lastresort channel option, 46–70, 46–154
mailfromdnsverify channel option, 46–142,
46–154
MAX_MX_RECORDS TCP/IP-channel-
specific option, 62–34
Null entry, returnenvelope channel option,
46–109
Null entry, return_envelope MTA option,
52–166, 52–229

Nameservers, 46–150, 46–151
Null MX record entry

error_text_null_mx MTA option, 52–176
returnenvelope channel option, 46–109
return_envelope MTA option, 52–166, 52–229

Reverse lookups
BANNER_REVERSE_HOST TCP/IP-channel-
specific option, 62–23
dnsresolveclient option, 16–5
ident* channel options, 46–151
nameservers channel option, 46–151
TCP wrapper filters, 6–1, 6–4

SPF, 52–259
Debugging, mm_debug MTA option, 52–79
Permanent errors,
spf_smtp_status_permerror MTA option,
52–260
spf* channel options, 46–158
SPF_LOCAL mapping table avoids actual
DNS lookups, 46–160

Index–36 Messaging Server Reference

spf_max_dns_queries MTA option, 52–263
spf_max_recursion MTA option, 52–263
spf_max_time MTA option, 52–263
SRS MTA options, 52–263
Temporary errors,
spf_smtp_status_permerror MTA option,
52–261

TCP/IP channels, 46–150, 46–151
DNS verification services

dns_verify_domain Dispatcher service option,
54–4

DNSBL, G–4
dnsforcetemporary channel option, 46–151
dnsresolveclient base option, 16–5
dns_verify lookups

blocked_mail_from_ips MTA option, 52–165
Mapping table callout routines, 50–33

dns_verify_domain Dispatcher option
Compared to dns_verify_domain mapping table
callout, 50–36

dns_verify_domain Dispatcher service option, 54–4
Domain alias, G–4

aliasedObjectName LDAP attribute, 16–8,
52–151
associatedDomain LDAP attribute, 52–87,
52–151
LDAP entry

Testing with test -domain_map utility, 71–66
Testing with test -rewrite utility, 71–117

ldap_attr_domain2_schema2 MTA option,
52–87, 52–151
ldap_domain_attr_alias MTA option, 16–8,
52–151

Domain database, 47–36
domain_database_url MTA option, 52–215
imta_domain_database MTA option
(DELETED), 53–9
MTA options

comment_chars, 47–37
Spaces in key or value

On-disk crdb format, 47–37
TAB character

On-disk crdb format, 47–37
use_domain_database MTA option, 52–65

Domain entries in LDAP
Testing with test -domain_map utility, 71–66
Testing with test -rewrite utility, 71–117

Domain map
usedomainmap auth option, 21–4

Domain rewriting rules
See Rewrite rules, 47–1

Domain-based Message Authentication, Reporting
& Conformance

See DMARC, 5–31
domainallowed ENS option, 6–9, 74–2
domainallowed eval_ldapd option, 6–9, 75–1
domainallowed IMAP option, 6–8, 34–14
domainallowed IMAP Proxy/POP Proxy option,
6–8, 6–8, 6–8, 41–14
domainallowed MSHTTP option, 6–8, 6–9, 35–5,
42–7
domainallowed option, 6–8

TCP wrapper syntax, 6–4
domainetrn channel option, 46–127
domainmap options, 16–27
Domainmap options

debug, 16–27
domainnotallowed ENS option, 6–10, 74–2
domainnotallowed eval_ldapd option, 6–9, 75–1
domainnotallowed IMAP option, 6–9, 34–14
domainnotallowed IMAP Proxy/POP Proxy option,
6–9, 6–9, 6–9, 41–14
domainnotallowed MSHTTP option, 6–9, 42–7
domainnotallowed option, 6–9

TCP wrapper syntax, 6–4
domainnotallowed POP option, 6–9, 35–5
Domains

Aliases for domains, G–4
aliasedObjectName LDAP attribute, 16–8,
52–151
associatedDomain LDAP attribute, 52–87,
52–151
ldap_attr_domain2_schema2 MTA option,
52–87, 52–151
ldap_domain_attr_alias MTA option, 16–8,
52–151

Catchall address, 52–91
alias_domains MTA option, 52–60
mailDomainCatchallAddress default for
ldap_domain_attr_catchall_address, 52–157

Catchall mapping
mailDomainCatchallMapping default for
ldap_domain_attr_catchall_mapping, 52–158

Creation date
ldap_domain_attr_creation_date MTA option,
52–160

Direct LDAP lookups
Caching, 47–32
Caching, domain_match_cache_size MTA
option, 52–162
Caching, domain_match_cache_timeout MTA
option, 52–162
Caching, ldap_domain_timeout MTA option,
52–162
Performance tuning, 47–32
Vanity, 48–8

Index–37

Forwarding, 48–59
IP literal address

Rewrite rule handling of, 47–8
Spaces in, 47–9

LDAP attributes
aliasedObjectName default for
ldap_domain_attr_alias MTA option, 16–8,
52–151
associatedDomain default for
ldap_attr_domain2_schema2 MTA option,
52–87, 52–151
Autoreply timeout semantics, 52–155
Autosecretary semantics, 52–155
Default mailHost semantics, 52–156
Domain disk quota semantics, 52–156
Domain message quota semantics, 52–156
Domain opt-in to detour routing semantics,
52–160
Domain recipient cutoff semantics, 52–160
Domain recipient limit semantics, 52–159
Domain source channel semantics, 52–158
Domain spam/virus package 1 opt-in, 52–155
Domain uplevel semantics, 52–152
DomainUidSeparator default for
ldap_domain_attr_uid_separator MTA
option, 16–8, 52–152
inetCanonicalDomainName default for
ldap_domain_attr_canonical MTA option,
52–152
inetDomainBaseDn default for
ldap_domain_attr_basedn MTA option, 16–8,
52–151
inetDomainStatus default for
ldap_domain_attr_status MTA option, 16–8,
52–153
ldap_attr_domain2_schema2 MTA option,
52–87, 52–151
ldap_domain_attr_sourceblocklimit MTA
option, 52–158
mailDomainCatchalAddress default for
ldap_domain_attr_catchall_address, 52–157
mailDomainCatchallMapping default for
ldap_domain_attr_catchall_mapping, 52–158
mailDomainConversionTag default for
ldap_domain_attr_conversion_tag MTA
option, 52–154
mailDomainMsgMaxBlocks default for
ldap_domain_attr_blocklimit MTA option,
52–154
mailDomainReportAddress default for
ldap_domain_attr_report_address, 52–157
mailDomainSieveRuleSource default for
ldap_domain_attr_filter, 52–156

mailDomainStatus default for
ldap_domain_attr_mail_status MTA option,
16–9, 52–153
mailRoutingHosts, Default for
ldap_domain_attr_routing_hosts MTA
option, 52–153
mailRoutingSmartHost default for
ldap_domain_attr_smarthost MTA option,
52–153
Nosoliciting semantics, 52–155
objectClass, 52–120
Presence semantics, 52–155
Source conversion tag semantics, 52–155
Spare N attribute, 52–133

Message size limits
ldap_domain_attr_blocklimit MTA option,
52–154
ldap_domain_attr_sourceblocklimit MTA
option, 52–158

Postmaster
mailDomainReportAddress default for
ldap_domain_attr_report_address, 52–157

Routing
mailRoutingHosts LDAP attribute, 52–153
mailRoutingSmartHost LDAP attribute,
52–153

Trailing dot on name, 47–5
Vanity, 52–83, 52–91, G–12

Direct LDAP lookups, 48–8
domain_match_url MTA option, 47–32

domainsearchformat mmp/imapproxy/popproxy/
vdomain option, 41–14
domainvrfy channel option, 46–137
domain_database_url MTA option, 52–215
domain_failure MTA option, 52–84

Direct LDAP domain lookups, 47–32, 47–32
domain_match_cache_size MTA option, 52–162

Direct LDAP domain lookups, 47–32, 47–32
domain_match_cache_timeout MTA option

Direct LDAP domain lookups, 47–32, 47–32
domain_match_url MTA option, 52–85

Direct LDAP domain lookups, 47–32, 47–32
Example, 48–8

domain_uplevel MTA option, 52–85
Direct LDAP domain lookups, 47–32, 47–32
Example, 48–7

dropblank channel option, 46–75
duplicate_timeout_default MTA option, 52–248

E
EAI (Email Address Internationalization), G–4

See also Addresses, EAI, 46–60, 46–138
ehlo channel option, 46–129

Index–38 Messaging Server Reference

Eight bit characters
test -eightbit utility, 71–85

eightbit channel option, 46–60, 46–138
-eightbit switch of test -mime, 71–113

eightnegotiate channel option, 46–60, 46–138
Default for test -mime, 71–113

eightstrict channel option, 46–60, 46–138
acceptalladdresses channel option, 46–34
error_text_unnegotiated_eightbit MTA option,
52–177

Elasticsearch
Options, 32–2, 32–3, 32–3, 32–6

email_body_charset gateway_profile option, 66–5
email_header_charset SMS gateway_profile option,
66–5
enable autorestart option, 16–26
enable Base autorestart option, 16–26, 16–26
enable Deployment Map option, 23–1
enable Dispatcher option, 54–3

Default for schedule.task:purge.enable, 54–3
enable Dispatcher service option, 54–3
enable ENS option, 74–1
enable IMAP option, 34–3
enable indexer option, 32–8
enable ISC option, 32–10
enable Job Controller option, 55–10

Default for schedule.task:purge.enable, 55–10
Default for schedule.task:return_job.enable,
55–10

enable Message Store dbreplicate option, 26–21
enable Message Store messagetype option, 26–26
enable Message Store msghash option, 26–27
enable Message Store option, 26–4

Default for schedule.task:expire.enable, 17–3
Default for schedule.task:snapshot.enable, 17–6

enable Message Store purge option, 26–28
enable Message Store relinker option, 26–29
enable Message Store typequota option, 26–25,
26–26, 26–27
enable MeterMaid option, 59–2
enable MMP option, 41–5
enable MSHTTP option, 42–3
enable MTA option, 52–58

Default for dispatcher.enable, 54–3
Default for job_controller.enable, 55–10
Default for schedule.task:purge.enable, 17–5,
26–28
Default for schedule.task:return_job.enable,
17–5, 17–5

enable notifytarget option, 37–2
enable PAB option, 72–1
enable POP option, 35–2
enable rollovermanager option, 24–1

enable S/MIME option, 43–1
enable Scheduler option, 17–1
enable Scheduler task option, 17–3
enable Scheduler task:expire option, 17–3
enable Scheduler task:msprobe option, 17–4
enable Scheduler task:purge option, 17–4
enable Scheduler task:return_job option, 17–5, 60–4
enable Scheduler task:snapshot option, 17–6
enable Scheduler task:snapshotverify option, 17–6
enable SMS gateway option, 66–2
enable SNMP option, 73–1
enable Watcher option, 18–1
enableblacklistfilter MSHTTP option, 42–7
enablecontextname SNMP option, 73–3
enablelastaccess base option, 16–5
enablelog Scheduler option, 17–2
enablesslport ENS option, 74–1
enablesslport IMAP option, 34–14
enablesslport MSHTTP option, 42–3
enablesslport POP option, 35–5
enableuserlist IMAP option, 34–14
enableuserlist MSHTTP option, 42–7
enable_delay_timers MTA option, 52–75
enable_sieve_body MTA option, 5–27, 52–245
enable_sieve_ereject MTA option, 52–245
enable_sieve_memcache MTA option, 52–245

Disabling memcache Sieve extension, 5–62
enable_sieve_metermaid MTA option, 52–246

Disabling metermaid Sieve extension, 5–67
enable_sieve_redis MTA option, 52–246

Disabling redis Sieve extension, 5–70
enable_sieve_regex MTA option, 52–246

regex Sieve extension, 5–76
encoded-word, 51–21, G–4

Language tag, 51–21
Encodings, 51–20

BASE64 CONVERSIONS mapping keyword,
51–3
IN-ENCODING conversion entry parameter,
51–10
Message/* and multipart/* parts, 46–53
OUT-ENCODING conversion entry parameter,
51–11
QUOTED-PRINTABLE CONVERSIONS
mapping keyword, 51–4
UUENCODE

thurman and uma channel options, 46–56
UUENCODE CONVERSIONS mapping
keyword, 51–4

Encryption
Symmetric, G–11

encryptnew Message Store option, 26–11
enqueueremoveroute channel option, 46–43

Index–39

ENS, 1
enseventkey notifytarget option, 37–2
enshost notifytarget option, 37–2
ensport notifytarget option, 37–2
enspwd notifytarget option, 37–3
ensuser notifytarget option, 37–3
Host

base.listenaddr option, 16–11
listenaddr base option, 74–1

IMAP IDLE, 34–7
Logging

Subscribe/unsubscribe events, enssub value in
debugkeys option, 41–12

msprobe probe of, 19–2
Options, 74–1

domainallowed, 6–9, 74–2
domainnotallowed, 6–10, 74–2
enable, 74–1
enablesslport, 74–1
Example of settings, 37–1
local.store.notifyplugin not used in Unified
Configuration, 2–1
loglevel, 74–2
mustauthenticate, 74–2
port, 74–1
port, Default for ensport notifytarget option,
37–2
port, Match ensport notifytarget option, 37–2
secret, 74–2
sslnicknames, 74–2
sslport, 74–2
sslport, Default for ensport notifytarget
option with ENS+SSL, 37–2

SSL
sslport ENS option, 74–2

Startup, 74–1
enseventkey notifytarget option, 37–2
enshost notifytarget option, 37–2

Match base.listenaddr option value, 74–1
ensport notifytarget option, 37–2

Match ens.port option value, 74–1
enspwd notifytarget option, 37–3
ensureownerrights Message Store option, 26–11
ensuser notifytarget option, 37–3
Envelope From address

*receivedfrom channel options, 46–83
Accepted

error_text_accepted_return_address MTA
option, 52–176

Adding SMTP AUTH authenticated address,
57–16
Authenticated sender as, 57–16
Blank

returnenvelope channel option, 46–108
Channel options, 46–34
Domain corresponds to null MX

returnenvelope channel option, 46–109
Empty

Distinguishing feature of notification
messages, 60–1

Invalid
error_text_invalid_return_address MTA
option, 52–176

Mailing list override of
ENVELOPE_FROM alias file named
parameter, 48–34
ldap_errors_to MTA option, 52–146

Mailing lists
alias_envelope_from alias option, 48–15

Overridden via AUTH_ACCESS mapping,
62–44
Replace via FROM_ACCESS mapping table,
57–10
Reply-to: addition

ORIGINATOR_REPLY alias file named
parameter, 48–38

Return-path: header field, 46–72
Sieve filter access to, 5–31
SMS gateway

from_domain SMS gateway_profile option,
66–5

spamfilter*_returnpath MTA options, 52–258
Unknown

error_text_unknown_return_address MTA
option, 52–176

userswitchchannel effect, 46–91
Verifying apparently local addresses are valid

returnenvelope channel option, 46–108
Verifying it rewrites to an MTA channel

returnenvelope channel option, 46–108
Verifying its domain resolves in the DNS

returnenvelope channel option, 46–108
Envelope To address

*receivedfor channel options, 46–83
Channel options, 46–34
Channel options for long lists of, 46–95
Sieve filter access to, 5–31, 49–7

envelopetunnel channel option, 46–76
Environment variables, 51–11

Access within calc utility
-symbols switch, 71–14

Access within recipe language
getenv recipe function, 4–14

APPLICATIONINFO
test_smtp_master and test_smtp_slave use of,
65–9

Index–40 Messaging Server Reference

calc utility access to
-symbols switch, 71–14

CONFIGROOT, 53–2
Default for ssldbpath Base option, 16–19
Recipe language access to value, 4–13, 4–14
Symbolic names in msconfig option values or
recipes, 3–1

Conversion channel access to Content-type:
parameters, 51–11
DATAROOT

queuedir msprobe option, 19–1
Recipe language access to value, 4–13, 4–14
Symbolic names in msconfig option values or
recipes, 3–1
Use in locating Message Store partitions, 28–1

PMDF_CHANNEL
test_smtp_master and test_smtp_slave use of,
65–9

PMDF_DISPATCHER_DEBUG, 54–14
Recipe language access to

getenv recipe function, 4–14
SERVERROOT, 53–2, 53–4

Base for location of mail.log, 53–7
Base for location of mail.log_current, 53–7
Base for location of mail.log_yesterday, 53–7
Base for location of MTA alias file, 53–6
Base for location of MTA compiled charset
data, 53–6
Base for location of MTA compiled command
data, 53–6
Base for location of MTA compiled config
data, 53–6
Base for location of MTA configuration, 53–3
Base for location of MTA executables, 53–3,
53–3
Base for location of MTA files and
configuration, 53–2
Base for location of MTA legacy configuration
file, 53–5
Base for location of MTA log file directory,
53–3
Base for location of MTA run-time libraries,
53–3
Base for location of MTA Unified
Configuration file, 53–6
Base for location of option.dat file, 53–5
Base for location of pipe channel programs,
53–5
Base of location of system Sieve filter file,
53–5
CONFIGROOT and DATAROOT are relative
to, 53–2

Constructing default value for base.tmpdir
option, 16–22
Message transaction log file location, 53–7
Recipe language access to value, 4–13, 4–14
Symbolic names in msconfig option values or
recipes, 3–1

SOFTTOKEN_DIR, 16–14
TRANSPORTINFO

test_smtp_master and test_smtp_slave use of,
65–9

Errors
(bad authentication limit reached;
disconnecting), 46–170
250 2.1.5 address accepted in spite of processing
errors

acceptalladdresses channel option, 46–34
4.2.1 cannot reenqueue while still held, 65–11
5.4.6 (SMTP client-server loop detected), 46–141
5.7.1 <Sieve-rejection-text>, 5–34
525 5.7.13 Account disabled, 62–63
535 5.7.8 Authorization failure, 62–63
535 5.7.8 Bad username or password, 62–63
550 5.7.1 unknown host or domain

Recipient *_ACCESS mapping tables, 57–9
550 5.7.1 you are not allowed to use this address

Recipient *_ACCESS mapping tables, 57–9
Address list error -- unknown host or domain: ,
71–133
cannot initialize IMTA

restart utility, 71–53
shutdown utility, 71–59
startup utility, 71–62

Cannot stop dispatcher server (pid=<pid>) with
SIGTERM

restart utility, 71–53
default file

Critical level, <service-name> server is not
responding, 19–1
Error level, unable to connect to <service-
name> server:, 19–1
Warning level, <server-name> server took
over N seconds to respond!, 19–1

dispatcher server is not running
restart utility, 71–53

dispatcher server is running already
restart utility, 71–53
startup utility, 71–62

Domain map
Attribute not listed, 71–68
Bad schema level, 71–69
Identifier too long, 71–68
LDAP error, 71–69

Index–41

Missing, empty, invalid or duplicate entry,
71–68

Error '<milter-errstring>' [<milter-errno>]
reading message body data, 58–19
Error in mm_init:

test -rewrite utility, 71–133
Error reading Milter options file, 58–19
Error: invalid port in tcp_listen, 41–29, 41–29
fat_main: watch_connect failed: Connection
refused, 71–142
filtering/scanning error, 52–256, 52–270
IMAP_MAILBOX_EXHAUSTED

maxsearchmailboxes IMAP option, 34–16
IMAP_MAILBOX_LOCKED

Special backoff handling by ims-ms and
LMTP client channels, 46–111

imexpire
Warning, <value> is not a valid value for
deleted, ignored, 31–3
Warning, <value> is not a valid value for seen,
ignored, 31–3
Warning, WARNING: unknown attribute
'<name>' in <file-path>., 31–2

imta file
append_setup <path> failed, trying INBOX:,
38–1, 64–9
Invalid mailbox name, 38–2, 64–10
Invalid user, 38–3, 64–9
Mailbox does not exist, 38–1, 64–9
Mailbox has an invalid format, 38–1, 64–10
Mailbox is busy, 38–2, 64–10
Mailbox is busy,
MAILBOX_BUSY_FAST_RETRY TCP/IP-
channel-specific option, 62–32
Mailbox is on a different server, 38–1, 64–10
mboxlist_createmailbox <path> failed, trying
INBOX:, 38–1, 64–9
Message contains bare newlines, 38–4, 64–9
Message contains invalid header, 38–2, 64–9
Message contains NUL characters, 38–2, 64–9
Message too large, 38–1, 64–9
Operation is not supported on mailbox, 38–1,
64–10
Over quota, 38–1, 38–1, 64–9, 64–10
Permission denied, 38–1, 64–9
Store partition is full, 38–3, 64–10
System I/O error. Administrator, check server
log for details., 38–1, 64–10
Unknown/invalid partition, 38–2, 64–10

Integer spamfilter names must match the slot
number, 52–253
Javascript

Webmail clients, charset problems, 42–4

job_controller server is not running
restart utility, 71–53

job_controller server is running already
restart utility, 71–54
startup utility, 71–62

Mailbox is busy
MAILBOX_BUSY_FAST_RETRY TCP/IP-
channel-specific option, 62–32

message too sensitive for one or more paths
used, 46–117
Milter rejected message, 58–19
Milter rejected recipient, 58–19
mm_init

ALIAS_HASH_SIZE exceeds maximum,
52–186
ALIAS_MEMBER_SIZE exceeds maximum,
52–187
authpassword only valid in XML
configuration, 46–162
authusername only valid in XML
configuration, 46–162
CHANNEL_TABLE_SIZE exceeds maximum,
52–187
DOMAIN_HASH_SIZE exceeds maximum,
52–188
duplicate host in channel table -- ..., 46–88
duplicate mapping name found, 50–3
externalidentify only valid in XML
configuration, 46–162
FILE_MEMBER_SIZE exceeds maximum,
52–188
FORWARD_DATA_SIZE exceeds maximum,
52–188
GENERAL_DATA_SIZE exceeds maximum,
52–189
HOST_HASH_SIZE exceeds maximum,
52–189
illegal alias; too long, 48–25
Invalid delivery option clause:, 52–101
invalid mapping name, 50–3
LDAP_ATTR_NAME_HASH_SIZE exceeds
maximum, 52–189
LDAP_OBJECT_CLASS_HASH_SIZE exceeds
maximum, 52–189
mapping name is too long, 50–3
MAP_NAMES_SIZE exceeds maximum,
52–190, 52–210
mtprioritiesallowed value must be an integer,
46–116, 46–143
mtprioritiesallowed value outside -9..9 range,
46–116, 46–143
mtprioritiesrequired value must be an integer,
46–116, 46–144

Index–42 Messaging Server Reference

mtprioritiesrequired value outside -9..9 range,
46–116, 46–144
no official host name for channel ..., 46–88
no room in alias member table for alias,
52–187
no room in channel host table for, 52–189
no room in channel table for, 52–187
no room in file member table for file string,
52–188
no room in pool for alias ..., 52–191
no room in pool for charset7 ..., 52–191
no room in pool for charset8 ..., 52–191
no room in pool for conversion data ...,
52–191, 52–191
no room in pool for daemon ..., 52–191
no room in pool for file member string ...,
52–191
no room in pool for forward data, 52–191
no room in pool for general data, 52–191
no room in pool for map entry ..., 52–191
no room in pool for queue ..., 52–191
no room in pool for reverse data, 52–191
no room in pool for value of option ..., 52–191
no room in rewrite rule table for, 52–188
no room in string pool for local alias ...,
52–191
no room in string pool for map entry...,
52–191
No room in table, 71–28
no room in table for alias, 52–186
no room in table for forward data, 52–188
no room in table for general data ..., 52–189
no room in table for mapping named, 52–190,
52–210
no room in table for reverse data, 52–190
official host name is too long -- ..., 46–88
OPTIONS_HASH_SIZE exceeds maximum,
52–190
REVERSE_DATA_SIZE exceeds maximum,
52–190
string pool overflow on pattern - ..., 52–191
Unable to allocate LDAP attribute name hash
array., 52–189
Unable to allocate LDAP object class hash
array., 52–189
Unable to expand LDAP attribute name hash
table, 52–189
Unable to expand LDAP object class hash
table, 52–189

MSHTTP
Error level, <client-host> Attach: <n> bytes
exceeds maxpostsize <m>, 42–10

Error level, <client-host> Compose: <n> bytes
exceeds maxmessagesize <m>, 42–10
Error level, <client-host> HTTP POST <n>
bytes exceeds maxpostsize, 42–10
Warning level, Maximum message size
accepted by SMTP server is lower than
service.http.maxmessagesize, 42–10

MTA options, 52–166
Must be root to run command

restart utility, 71–51
shutdown utility, 71–58
startup utility, 71–61

nslog Warning level
Idle timeout too short, using 30 minutes,
34–15

Postmaster mail, 60–1
Recipes

:digit argument must be an integer, 4–16
:digit argument out of range, 4–16
:lower argument must be an integer, 4–16
:lower argument out of range, 4–16
:maxlength argument must be an integer,
4–16
:maxlength argument out of range, 4–16
:minlength argument must be an integer, 4–16
:minlength argument out of range, 4–16
:Multiple :maxlength arguments to
read_password, 4–16
:symbol argument must be an integer, 4–16
:symbol argument out of range, 4–16
:upper argument must be an integer, 4–16
:upper argument out of range, 4–16
<recipe-specific>, 4–12
Add_alias/add_channel content argument
must be a list, 4–8
Add_alias/add_channel name argument must
be a string, 4–8
Add_alias/add_channel name cannot be
blank, 4–8
Add_alias/add_channel name is too long, 4–8
Add_group content argument must be a list,
4–8
Add_group name argument must be a string,
4–8
Add_group name cannot be blank, 4–8
Add_group name is too long, 4–8
Add_mapping content argument must be a
list, 4–8
Add_mapping name argument must be a
string, 4–8
Add_mapping name cannot be blank, 4–8
Add_mapping name is too long, 4–8

Index–43

Alias/channel <name> already exists in
add_alias/add_channel, 4–8
Alias/channel <name> doesn't exist in
get_alias, 4–13
All arguments must have values in this
deploymap delete operation, 4–11, 4–11, 4–11,
4–11
All arguments must have values in this
deploymap rename operation, 4–11, 4–11
Append_alias/set_channel name cannot be
blank, 4–9, 4–17
Append_alias/set_channel name is too long,
4–9, 4–17
Append_alias/set_channel name must be a
string, 4–9, 4–17
Append_alias/set_channel value argument
must be a list, 4–9, 4–17
Append_group name cannot be blank, 4–9
Append_group name is too long, 4–9
Append_group name must be a string, 4–9
Append_group value argument must be a
list, 4–9
Append_mapping name cannot be blank, 4–9
Append_mapping name is too long, 4–9
Append_mapping name must be a string, 4–9
Append_mapping value argument must be a
list, 4–9
Append_rewrites argument must be a list,
4–9
argv argument must be an integer greater
than 0 and less than or equal to argc, 4–9
Attempted file delete has been blocked, 4–24
Cannot store to standard function <function-
name>, 4–8
continue prompt argument must be a string,
4–9
defined argument must be a variable, 4–10
Delete_alias/delete_channel name argument
must be a string, 4–10
Delete_alias/delete_channel name cannot be
blank, 4–10
delete_file name cannot be blank, 4–10
Delete_file name is too long, 4–10
delete_file name must be a string, 4–10
Delete_file not allowed to prompt for
permission in -noprompt mode, 4–10, 4–24
delete_group name argument must be a
string, 4–10
delete_group name cannot be blank, 4–10
delete_mapping name cannot be blank, 4–10
delete_optlist name argument cannot be
blank, 4–10

delete_optlist name argument must be a
string, 4–10
delete_optlist name is too long, 4–10
delete_optlist option argument must be a list,
4–10
Delete_rewrites argument must be a list, 4–10
delete_statefile variable name argument must
be a string, 4–10
delete_statefile variable name cannot be
blank, 4–10
deploymap deployment name must be a
string, 4–10
deploymap host name must be a string or list,
4–10
deploymap property value must be a string
or list, 4–10
deploymap read value must be a string, 4–10
deploymap rename value must be a
nonempty string, 4–11, 4–11
deploymap rename value must be a string,
4–10
deploymap role name must be a string or list,
4–10
Deployment <deploy-name< does not exist in
deployment map, 4–11
Deployment <deploy-name> does not exist in
deployment map, 4–11, 4–11, 4–11, 4–11
Duplicate attrs attribute in ldap_search, 4–15
Duplicate basedn attribute in ldap_search,
4–15
Duplicate filter attribute <string> in
ldap_search, 4–15
Duplicate optlist item <option-name> in
ldap_init, 4–14
Duplicate scope attribute in ldap_search, 4–15
Empty string no allowed in deploymap
rename operation, 4–11
Empty string not allowed in deploymap
rename operation, 4–11
Environment variable name must be a string,
4–14
Error (<detail>) reading file <file-name> in
read_file, 4–16
Error (<j> <k>) replacing file <file-name> in
write_file, 4–19
Error adding alias/channel <name> in
add_alias/add_channel: <detail>, 4–8
Error adding entries to alias/group <name> in
prepend_alias/group: <detail>, 4–16
Error adding entries to group <group-name>
in append_group: <detail>, 4–9
Error adding entries to group <group-name>
in replace_group: <detail>, 4–17

Index–44 Messaging Server Reference

Error adding entry <string> to alias/group
<name> in prepend_alias/prepend_group:
<detail>, 4–16
Error adding entry <string> to group <group-
name> in replace_group: <detail>, 4–17
Error adding group <group-name> entry
<value> in add_group: <detail>, 4–8
Error adding group <group-name> entry
<value> in append_group: <detail>, 4–9
Error adding group <group-name> in
add_group: <detail>, 4–8
Error adding mapping <mapping-name> in
add_mapping: <detail>, 4–8
Error adding mapping <mapping-name> in
replace_mapping: <detail>, 4–17
Error adding option <option-name> to alias/
channel <name> in append_alias/set_channel:
<detail>, 4–9, 4–17
Error adding option <option-name> to
alias/channel <name> in replace_alias/
replace_channel: <detail>, 4–17
Error adding option(s) to alias/channel
<name> in append_alias/set_channel:
<detail>, 4–9, 4–17
Error adding option(s) to alias/channel
<name> in replace_alias/channel: <detail>,
4–17
Error adding rewrite rule in append_rewrites:
<detail>, 4–9
Error adding rewrite rule in
prepend_rewrites: <detail>, 4–16
Error adding rewrites in append_rewrites:
<detail>, 4–9
Error adding rewrites in prepend_rewrites:
<detail>, 4–16
Error adding rewrites in replace_rewrites:
<detail>, 4–17
Error adding rule <string> to mapping
<mapping-name> in append_mapping:
<defailt>, 4–9
Error adding rule to mapping <mapping-
name> in prepend_mapping: <detail>, 4–16
Error adding rules to mapping <mapping-
name> in append_mapping: <defailt>, 4–9
Error adding rules to mapping <mapping-
name> in prepend_mapping: <detail>, 4–16
Error checking for alias/channel <name> in
add_alias/add_channel: <detail>, 4–8
Error checking for alias/channel <name> in
append_alias/set_channel: <detail>, 4–9, 4–17
Error checking for alias/channel <name> in
replace_alias/replace_channel: <detail>, 4–17

Error checking for group <group-name> in
add_group: <detail>, 4–8
Error checking for group <group-name> in
append_group: <detail>, 4–9
Error checking for mapping <mapping-name>
in add_mapping: <detail>, 4–8
Error checking for mapping <mapping-name>
in append_mapping: <detail>, 4–9
Error checking for mapping <mapping-name>
in replace_mapping: <detail>, 4–17
Error checking for rewrites in
replace_rewrites: <detail>, 4–17
Error checking option <option-name> in
unset_option: <detail>, 4–19
Error deleting alias/channel <name> in
delete_alias/delete_channel: <defailt>, 4–10
Error deleting alias/group <name> in
prepend_alias/prepend_group: <detail>, 4–16
Error deleting group <group-name> in
delete_group: <detail>, 4–10
Error deleting group <group-name> in
replace_group: <detail>, 4–17
Error deleting mapping <mapping-name> in
delete_mapping: <detail>, 4–10
Error deleting mapping <mapping-name> in
prepend_mapping: <detail>, 4–16
Error deleting mapping >mapping-name> in
replace_mapping: <detail>, 4–17
Error deleting option <option-name> in
unset_option: <detail>, 4–19
Error deleting rewrites in delete_rewrites:
<detail>, 4–10
Error deleting rewrites in prepend_rewrites:
<detail>, 4–16
Error deleting rewrites in replace_rewrites:
<detail>, 4–17
Error finding routine <s2-value> in <s1-
value>; status = 0, 4–9
Error getting alias/channel <name> in
delete_alias/delete_channel: <detail>, 4–10
Error getting alias/channel <name> in
get_alias/get_channel: <detail>, 4–13
Error getting channel <channel-name> in
exists_channel: <detail>, 4–12
Error getting content for mapping <mapping-
name> in prepend_mapping, 4–16
Error getting content of alias/group <name>
in prepend_alias/prepend_group: <detail>,
4–16
Error getting content of group <group-name>
in replace_group: <detail>, 4–17
Error getting group <group-name> in
delete_group: <detail>, 4–10

Index–45

Error getting group <group-name> in
exists_group: <detail>, 4–12
Error getting group <group-name> in
get_group: <detail>, 4–13
Error getting mapping <mapping-name> in
delete_mapping: <detail>, 4–10
Error getting mapping <mapping-name> in
exists_mapping: <defailt>, 4–12
Error getting mapping <mapping-name> in
get_mapping: <detail>, 4–13
Error getting option <option-name> in
exists_option: <detail>, 4–12
Error getting option <option-name> in
get_option: <detail>, 4–13
Error getting option <option-name> in
get_options: <detail>, 4–13
Error getting option <option-name> in
unset_option: <detail>, 4–19
Error getting option with prefix <string> in
list_names: <detail>, 4–15
Error getting rewrite rules in delete_rewrites:
<detail>, 4–10
Error getting rewrite rules in get_rewrites:
<detail>, 4–13
Error getting rewrite rules in
prepend_rewrites: <detail>, 4–16
Error getting ugldapbindcred value in
ldap_init: <detail>, 4–14
Error getting ugldapbinddn value in
ldap_init: <detail>, 4–14
Error getting ugldaphost value in ldap_init:
<detail>, 4–14
Error getting ugldapport value in ldap_init:
<detail>, 4–14
Error getting ugldapusessl value in ldap_init:
<detail>, 4–14
Error setting option <option-name> in
set_option: <detail>, 4–18
Error setting option <option-name> in
set_options: <detail>, 4–18
Error unsetting option <option-name>
on alias/channel <name> in unset_alias/
unset_channel: <detail>, 4–19
Error unsetting option(s) to alias/channel
<name> in unset_alias/unset_channel:
<detail>, 4–19
Excessive arguments in call to function:
<function-name>, 4–8
Execution halted manually, 4–16
Execution halted manually, yesno, 4–19
Exists_alias/exists_channel name cannot be
blank, 4–12

Exists_alias/exists_channel name is too long,
4–12
Exists_alias/exists_channel name must be a
string, 4–12
exists_file name argument must be a string,
4–12
Exists_file name cannot be blank, 4–12
Exists_file name is too long, 4–12
Exists_group name cannot be blank, 4–12
Exists_group name is too long, 4–12
Exists_group name must be a string, 4–12
Exists_mapping name argument must be a
string, 4–12
Exists_mapping name cannot be blank, 4–12
Exists_mapping name is too long, 4–12
Exists_option name cannot be blank, 4–12
Exists_option name is too long, 4–12
Exists_option name must be a string, 4–12
exists_statefile name argument cannot be
blank, 4–12
exists_statefile name argument must be a
string, 4–12
exists_statefile name is too long, 4–12
exists_statefile variable name must be a
string, 4–12
Extraneous arguments given to deploymap,
4–10
File <file-name> doesn't exist in read_file,
4–16
first push argument must be a list, 4–16
Get_alias/get_channel name cannot be blank,
4–13
Get_alias/get_channel name is too long, 4–13
Get_alias/get_channel name must be a string,
4–13
Get_group name cannot be blank, 4–13
Get_group name is too long, 4–13
Get_group name must be a string, 4–13
Get_mapping name cannot be blank, 4–13
Get_mapping name is too long, 4–13
Get_mapping name must be a string, 4–13
Get_mapping pattern filter is too long, 4–13
Get_mapping pattern filter must be a string,
4–13
Get_mapping template filter is too long, 4–13
Get_mapping template filter must be a string,
4–13
Get_option name cannot be blank, 4–13
Get_option name is too long, 4–13
Get_option name must be a string, 4–13
get_option on <option-name> returned
multiple options, 4–13
Get_options name cannot be blank, 4–13

Index–46 Messaging Server Reference

Get_options name is too long, 4–13
Get_options name must be a string, 4–13
get_optlist name argument cannot be blank,
4–13
get_optlist name argument must be a string,
4–13
get_optlist name is too long, 4–13
get_optlist option argument must be a list,
4–13
Get_path argument must be a string, 4–13
Get_rewrites rule pattern is too long, 4–13
Get_rewrites rule pattern must be a string,
4–13
Get_rewrites template pattern is too long,
4–13
Get_rewrites template pattern must be a
string, 4–13
get_statefile name argument cannot be blank,
4–13
get_statefile name argument must be a string,
4–13
get_statefile name is too long, 4–13
get_statefile variable name must be a string,
4–13
Group <group-name> already exists in
add_group, 4–8
Group <group-name> doesn't exist in
get_group, 4–13
Host <host-name> does not exist in
deployment map, 4–11, 4–11, 4–11
Image name argument to calluser must be a
string, 4–9
index pattern value must be a string, 4–12
Information item name must be a string, 4–13,
4–13
Insufficient arguments in call to function:
<function-name>, 4–8
Internal error: Error looking up variable:
<detail>, 4–16
Internal error: Error looking up variable:
<string>, 4–10
Internal error: Error looking up variable:
<variable-name>, 4–16
Internal error: Missing element in argument
list, 4–9
Internal error: String length/segment
inconsistency, 4–14
Invalid arguments in deploymap delete -
internal error, 4–11, 4–11
Invalid arguments in deploymap delete -
internal error, 4–11, 4–11
Invalid combination of arguments in
deploymap delete, 4–11, 4–11, 4–11, 4–11

Invalid combination of arguments in
deploymap rename, 4–11, 4–11
Invalid optlist value <value> for item <option-
name> in ldap_init, 4–14
Invalid utf-8 in deployment name argument
to deploymap rename, 4–11, 4–11
LDAP initialization failure, 4–14
LDAP must be initialized prior to using
ldap_ldif, 4–14, 4–35
LDAP must be initialized prior to using
ldap_search, 4–15
ldap_init argument must be an optlist, 4–14,
4–15
ldap_ldif flags argument must be an integer,
4–14
ldap_ldif ldif argument must be a string, 4–14
ldap_ldif returned an LDAP error: <lpool-
err>, 4–14
ldap_search entry argument must be an
integer, 4–15
ldap_search returned an LDAP error: <ldap-
errstring> (<ldap-errno>), 4–15
List argument given to ord, 4–15
List_names prefix cannot be blank, 4–15
List_names prefix is too long, 4–15
List_names prefix must be a string, 4–15
List_names retain parameter must be an
integer, 4–15
Make_path argument cannot be blank, 4–15
Make_path argument is too long, 4–15
Make_path argument must be a string, 4–15
Mapping <mapping-name> already exists in
add_mapping, 4–8
Mapping <mapping-name> doesn't exist in
get_mapping, 4–13
Memory allocation failure in ldap_search,
4–15
mismatched arguments in put_optlist, 4–16
Missing mandatory basedn value in
ldap_search, 4–15
Multiple :digit arguments to read_password,
4–16
Multiple :lower arguments to read_password,
4–16
Multiple :minlength arguments to
read_password, 4–16
Multiple :online/:offline arguments given to
deploymap, 4–10
Multiple :symbol arguments to
read_password, 4–16
Multiple :upper arguments to
read_password, 4–16

Index–47

Multiple deployment arguments given to
deploymap, 4–10
Multiple host arguments given to deploymap,
4–10
Multiple operations given to deploymap,
4–10
Multiple property arguments given to
deploymap, 4–10
Multiple role arguments given to deploymap,
4–10
Name too long for variable: <detail>, 4–16
Name too long for variable: <string>, 4–10,
4–16
No host specified in deploymap delete
property, 4–11
No host specified in deploymap delete role,
4–11
No room in table for variable: <string>, 4–10,
4–16
No room in table for variable: <variable-
name>, 4–16
No value/multiple values for ugldapbindcred
in ldap_init: <detail>, 4–14
No value/multiple values for ugldapbinddn
in ldap_init: <detail>, 4–14
No value/multiple values for ugldaphost in
ldap_init: <detail>, 4–14
No variable table to pop value out of, 4–16
No variable table to push value into, 4–16
Odd number of optlist elements in ldap_init,
extra element value <string>, 4–14
Odd number of optlist elements in
ldap_search; extra element: <string>, 4–15
pop argument must be a defined variable,
4–16
pop argument must be a list, 4–16
pop argument must be a variable, 4–16
pop list must contain at least one element,
4–16
Prepend_alias/prepend_group name cannot
be blank, 4–16
Prepend_alias/prepend_group name is too
long, 4–16
Prepend_alias/prepend_group name must be
a string, 4–16
Prepend_alias/prepend_group value
argument must be a list, 4–16
Prepend_mapping name cannot be blank,
4–16
Prepend_mapping name is too long, 4–16
Prepend_mapping name must be a string,
4–16

Prepend_mapping value argument must be a
list, 4–16
Prepend_rewrites argument must be a list,
4–16
Print terminator argument must be a string,
4–16
Property >string> does not exist in
deployment map - internal error, 4–11
push list argument must be a defined
variable, 4–16
push list argument must be a variable, 4–16
push string is too long to insert into list, 4–16
push would exceed maximum list size, 4–16
put_optlist name argument cannot be blank,
4–16
put_optlist name argument must be a string,
4–16
put_optlist name is too long to insert into list,
4–16, 4–16
put_optlist option argument must be a list,
4–16
put_optlist value argument must be a string,
4–16
put_optlist value is too long to insert into list,
4–16
put_optlist would exceed maximum list size,
4–16
Random range argument must be an integer,
4–16
Randomseed seed argument must be an
integer, 4–16
Read default value must be a string, 4–16
Read prompt must be a string, 4–16
Read tag value missing in deploymap, 4–10
Read_file name cannot be blank, 4–16
Read_file name is too long, 4–16
read_file name must be a string, 4–16
read_optlist argument must be a string, 4–16
read_optlist would exceed maximum list size,
4–16
Read_password prompt must be a string,
4–16
Read_password verify prompt must be a
string, 4–16
Rename tag value missing in deploymap,
4–10
Replace_alias/replace_channel content
argument must be a list, 4–17
Replace_alias/replace_channel name cannot
be blank, 4–17
Replace_alias/replace_channel name is too
long, 4–17

Index–48 Messaging Server Reference

Replace_alias/replace_channel name must be
a string, 4–17
Replace_group name cannot be blank, 4–17
Replace_group name is too long, 4–17
Replace_group name must be a string, 4–17
Replace_group value argument must be a list,
4–17
Replace_mapping content argument must be
a list, 4–17
Replace_mapping name cannot be blank,
4–17
Replace_mapping name is too long, 4–17
Replace_mapping name must be a string,
4–17
replace_rewrites argument must be a list,
4–17
Resolve_option name cannot be blank, 4–17
Resolve_option name is too long, 4–17
Resolve_option name must be a string, 4–17
Routine name argument to calluser must be a
string, 4–9
second push argument must be a string, 4–16
set_option name cannot be blank, 4–18
set_option name is too long, 4–18
set_option name must be a string, 4–18
set_option value1 must be a string, 4–18
Set_option value2 is too long, 4–18
set_option value2 must be a string, 4–18
set_options argument must be a list, 4–18
set_statefile variable name argument must be
a string, 4–18
set_statefile variable name cannot be blank,
4–18
set_statefile variable value must be a string,
4–18
Some warnings have occurred. Do you want
to continue [N]? , 4–9, 4–9
String must contain at least one character,
4–15
strongrandom argument <n> larger than 256
byte maximum, 4–18
strongrandom argument must be an integer,
4–18
System error <errno> in deploymap delete,
4–11
System error <errno> in deploymap rename,
4–11, 4–11
Text argument to edit must be a string, 4–12
Text argument to error must be a string, 4–12
Text argument to warn must be a string, 4–19
Too few arguments given to read_password,
4–16

Unknown error <dmap-errno> in deploymap
delete, 4–11, 4–11
Unknown error <dmap-errno> in deploymap
delete role, 4–11, 4–11
Unknown error <dmap-errno> in deploymap
rename, 4–11, 4–11
Unknown optlist item <string> in ldap_init,
4–14
Unknown optlist item <string> in
ldap_search, 4–15
Unknown scope attribute value <string> in
ldap_search, 4–15
Unknown tag <string> given to deploymap,
4–10
Unknown tag <string> given to
read_password, 4–16
Unset_alias/unset_channel name cannot be
blank, 4–19
Unset_alias/unset_channel name is too long,
4–19
Unset_alias/unset_channel name must be a
string, 4–19
Unset_alias/unset_channel value argument
must be a string or list, 4–19
Unset_option name cannot be blank, 4–19
Unset_option name is too long, 4–19
Unset_option name must be a string, 4–19
validate_option name cannot be blank, 4–19
validate_option name is too long, 4–19
validate_option name must be a string, 4–19
validate_option value1 must be a string, 4–19
validate_option value2 must be a string, 4–19
Write_file name cannot be blank, 4–19
Write_file name is too long, 4–19
Write_file name must be a string, 4–19
Write_file terminator argument must be a
string, 4–19
Write_file text argument must be a string or
list, 4–19
write_optlist argument must be a list, 4–19
write_optlist would exceed maximum string
size, 4–19
yesno default value must be an integer, 4–19
Yesno prompt must be a string, 4–19
yesno warning must be a string, 4–19

Returned messages, 60–1
See also error_text_* MTA options, 52–167
Sieve filter

5.7.1 <Sieve-rejection-text>, 5–34
:content decode not supported for body test,
5–26
:keepmailfrom conflicts with :notify in
redirect action, 5–49

Index–49

:keepmailfrom conflicts with :ret in redirect
action, 5–49
:notify conflicts with :keepmailfrom in
redirect action, 5–49
:regex only allowed in system-level sieves,
enable_sieve_regex MTA option, 52–246
:ret conflicts with :keepmailfrom in redirect
action, 5–49
A non system-level sieve script specified
warn, 5–78
A non-system level sieve script specified
addconversiontag, 5–23, 5–56
A non-system level sieve script specified
adjustcounter, 5–23, 5–58
A non-system level sieve script specified
removeconversiontag, 5–23, 5–56
A non-system level sieve script specified
setconversiontag, 5–23, 5–56
A non-system level sieve script specified
setenvelopefrom, 5–10, 5–76
A non-system level sieve script specified
transactionlog, 5–23, 5–77
Adjustcounter value argument must be an
integer, 5–58
Argument to addconversiontag must be a
string, 5–56
Argument to capture must be a string, 5–59
Argument to envelope must be string or list,
5–32
Argument to removeconversiontag must be a
string, 5–56
Argument to setconversiontag must be a
string, 5–56
Argument to setenvelopefrom must be a
string, 5–10, 5–76
Argument to setmtpriority must be a string or
integer, 5–23, 5–77
Argument to setnotify must be a string or list,
5–76
Argument to setoperation must be a string,
5–23, 5–77
Argument to setpriority must be a string or
number, 5–25
Argument to setreturn must be a string, 5–76
Argument to transactionlog must be a string,
5–77
Argument to warn must be a string, 5–78
Body not listed in require clause prior to use,
5–12, 5–27
Body test only allowed in system-level sieves,
5–27
Cannot build translation map for these
charsets: <reason>, 5–78

Cannot combine erefuse with anything but
discard, 5–34
Cannot combine ereject with anything but
discard, 5–34
Cannot combine reject with anything but
discard, 5–34
Capture :message cannot be marked :header,
5–59
Channel argument must be a string, 5–58
Closing "}" is missing from list, 5–4
Comma or closing ")" is missing from <name>
routine declaration, 5–
Comma or closing ")" is missing from <name>
routine definition, 5–80
Comma or closing ")" is missing from <name>
routine variable reference, 5–
Comma or closing "]" is missing from <name>
routine variable reference, 5–
Comparator argument must be a string,
virustest, 5–16
Comparator cannot be used with :list in
virustest, 5–16
Content argument to body must be string or
list, 5–26, 5–55
Content of report message, return_error.txt
file, 60–13
Conversion tag result is too long, 5–56
Conversiontag envelope field specified in
non-system script, 5–32
Copy not listed in require clause prior to use,
5–27, 5–48
Copy not listed in require clause prior to use,
fileinto action, 5–6
Copy not listed in require clause prior to use,
redirect action, 5–8
Copy used twice in one action, 5–27
Copy used twice in one fileinto action, 5–6,
5–27
Count argument must be a string, virustest,
5–16
Date not listed in require clause prior to use,
5–28
Date not listed in require clause prior to use,
currentdate test, 5–12
Date not listed in require clause prior to use,
date test, 5–12
Destination charset name must be a string,
5–78
Dsn-redirect not listed in require clause prior
to use, 5–49
Duplicate not listed in require clause prior to
use, 5–12, 5–29

Index–50 Messaging Server Reference

Duplicate test is not available, Seen when
duplicate_tracking_url is not set (length 0),
5–29
Editheader not listed in require clause prior
to deleteheader use, 5–6, 5–30
Editheader not listed in require clause prior
to replaceheader use, 5–10, 5–30
editheader not listed in require clause prior
to use of deleteheader/addheader action, 5–6,
5–30
Enotify not listed in require clause prior to
notify use, 5–21
Enotify not listed in require clause prior to
notify_method_capability use, 5–14
Enotify not listed in require clause prior to
use, 5–21
Envelope not listed in require clause prior to
use, 5–12, 5–31
Envelope-auth not listed in require clause
prior to use, 5–19, 5–31
Envelope-dsn not listed in require clause
prior to use, 5–31
Envelope-dsn not listed in require clause
prior to use, envid, 5–19
Envelope-dsn not listed in require clause
prior to use, notify, 5–19
Envelope-dsn not listed in require clause
prior to use, orcpt, 5–19
Envelope-dsn not listed in require clause
prior to use, ret, 5–19
Environment not listed in require clause prior
to use, 5–19
Ereject not listed in require clause prior to
use, 5–6, 5–33
Ereject not listed in require clause prior to
use, Issued when enable_sieve_ereject=0,
52–245
Error decoding zone argument to currentdate
test, 5–29
Error decoding zone argument to date, 5–29
Error in sieve filter: List too large,
max_sieve_list_size MTA option, 52–243
Error in sieve filter: Resultant string is too
long, 52–244
Error in sieve filter: Too many iterations
in :matches, max_sieve_match_iterations
MTA option, 52–244
Extlist not listed in require clause prior to use,
5–20
Extlists not listed in require clause prior to
use, 5–20, 5–31
Extlists not listed in require clause prior to
use, virustest, 5–16

Extlists not listed in require clause prior to
valid_ext_list use, 5–16
Extracttext not listed in require clause prior to
use, 5–6, 5–44
Fileinto cannot be combined with jettison,
5–27
Fileinto cannot be combined with refuse, 5–34
Fileinto cannot be combined with reject, 5–34
Fileinto not allowed in this type of filter, 5–6,
5–43
Fileinto not listed in require clause prior to
use, 5–6, 5–42
First addheader string too long for header
label, 5–31
Foreverypart not listed in require clause prior
to use, 5–6, 5–44
Function <name> called with too many
parameters, 5–
Ihave not listed in require clause prior to use,
5–13, 5–43
Illegal terminal element found in expression,
5–4
Imap4flags not listed in require clause prior
to addflag use, 5–5, 5–43
Imap4flags not listed in require clause prior
to hasflag use, 5–13, 5–43
Imap4flags not listed in require clause prior
to removeflag use, 5–9, 5–43
Imap4flags not listed in require clause prior
to setflag use, 5–10, 5–43
Imap4flags not listed in require clause prior
to use, 5–43
Imap4flags not listed in require clause prior
to use of flag action, 5–5, 5–9, 5–10, 5–13, 5–43
Imap4flags not listed in require clause prior
to use, fileinto :flags, 5–6
Imap4flags not listed in require clause prior
to use, keep :flags, 5–7
Improperly terminated {} block, 5–4
Improperly terminated {} structure, 5– ,
5–79
Incompatible match type and comparator
given to virustest, 5–16
Index not listed in require clause prior to use,
5–20, 5–28
Invalid argument <argument-string> to
setoperation, 5–23, 5–77
Invalid argument <argument-string> to
setreturn, 5–76
Invalid destination charset name <string>,
5–78
Invalid header field name in addheader, 5–31
Invalid routine parameter list, 5– , 5–80

Index–51

Invalid source charset name <string>, 5–78
Jettison cannot be combined with anything
but discard, 5–27
Jettison not listed in require clause prior to
use, 5–23, 5–27
Keep cannot be combined with jettison, 5–27
Keep cannot be combined with refuse, 5–34
Keep cannot be combined with reject, 5–34
Left hand side of assignment must be a
variable, 5–3
Loop is disabled, 5–61
Maximum number of duplicate tests
exceeded, 5–29
Maximum number of duplicate tests
exceeded, max_duplicates MTA option,
52–242, 52–248
Memcache access has been disabled, 5–62
Memcache access has been disabled,
enable_sieve_memcache MTA option, 52–246
Memcache only allowed in system-level
sieves, 5–62
Memcache only allowed in system-level
sieves, enable_sieve_memcache MTA option,
52–246
Metermaid access has been disabled, 5–67
MeterMaid access has been disabled,
enable_sieve_metermaid MTA option, 52–246
Metermaid only allowed in system-level
sieves, 5–67
Metermaid only allowed in system-level
sieves, enable_sieve_metermaid MTA option,
52–246
Mime not listed in require clause prior to use,
5–21, 5–44
Multiple :duplicate arguments given to
adjustcounter, 5–58
Multiple :zone/:originalzone arguments given
to date, 5–29
Multiple channel arguments given to
adjustcounter, 5–58
Multiple comparator arguments given to
virustest, 5–16
Multiple delay arguments to setnotify, 5–76
Multiple failure arguments to setnotify, 5–76
Multiple header arguments given to capture,
5–59
Multiple match arguments given to virustest,
5–16
Multiple success arguments to setnotify, 5–76
Multiple type arguments given to capture,
5–59
Multiple zone arguments given to currentdate
test, 5–29

My can only be used inside a routine body,
5–5, 5–17, 5–
My must be followed by a valid internal
variable name, 5–5, 5–17, 5–
Name too long for variable: <variable-name>,
5–55
Nested routine definitions not allowed,
5– , 5–79
Never combined with delay in setnotify, 5–76
Never combined with failure in setnotify,
5–76
Never combined with success in setnotify,
5–76
No room in table for variable: <variable-
name>, 5–55
No room in table for variable:, max_variables
MTA option, 52–244
Nonotify specified in a non-system level sieve
script, 5–23, 5–47
Notify :from argument is not a valid address,
5–46, 52–240
Notify mailto: recipient is not a valid address,
5–46, 52–240
Notify/enotify not listed in require clause
prior to notify use, 5–21
Notify/enotify not listed in require clause
prior to use, 5–21, 5–21
Novacation specified in a non-system level
sieve script, 5–23, 5–52
Only :contains and :is matches supported for
body test, 5–26, 5–76
Override not listed in require clause prior to
use, 5–23, 5–47
Parameter <name> already declared,
5– , 5–80
Redirect cannot be combined with jettison,
5–27, 5–48
Redirect cannot be combined with refuse,
5–34, 5–48
Redirect cannot be combined with reject,
5–34, 5–48
Redis access has been disabled, 5–70
redis access has been disabled,
enable_sieve_redis MTA option, 52–246
Redis only allowed in system-level sieves,
5–70
redis only allowed in system-level sieves,
enable_sieve_redis MTA option, 52–246
Refuse not listed in require clause prior to
use, 5–9, 5–33
Refuse specified in a non-system sieve script,
MS 6.1, 5–34

Index–52 Messaging Server Reference

Regex not listed in require clause prior to use,
5–23, 5–76
Regex not listed in require clause prior to use,
virustest, 5–16
Reject not listed in require clause prior to use,
5–9, 5–33
Relational not listed in require clause prior to
use, 5–31, 5–49
Relational not listed in require clause prior to
use with <test-name>, 5–49
Relational not listed in require clause prior to
use, :count, 5–20
Relational not listed in require clause prior to
use, :value, 5–20
Relational not listed in require clause prior to
use, virustest, 5–16
Resultant string is too long, 52–244
Return can only be used inside a routine, 5–5,
5–17, 5– , 5–80
Routine <name> <n> parameters exceeds 64
maximum, 5–80
Routine <name> <n> parameters exceeds <m>
maximum, 5–
Routine <name> called with <n> rather than
<m> parameters, 5–
Setmtpriority specified in a non-system level
sieve script, 5–23, 5–77
Setnotify "NEVER" argument cannot be
combined with other values, 5–76
Setnotify specified in a non-system level sieve
script, 5–23, 5–76
Setoperation specified in a non-system level
sieve script, 5–23, 5–77
Setpriority specified in a non-system level
sieve script, 5–23, 5–77
Setreturn specified in a non-system level sieve
script, 5–23, 5–76
Sieve counter index must be an integer, 5–58
Sieve counter index out of range, 5–58
Sieve variables have been disabled,
max_variables MTA option, 5–55
Sieve variables have been disabled; <test-
action> not possible, 5–21
Source charset name cannot be blank, 5–78
Source charset name must be a string, 5–78
Spamtest not listed in require clause prior to
use, 5–16, 5–50
Spamtestplus not listed in require clause prior
to use, 5–16, 5–50
Strongrandom specified in a non-system level
sieve script, 5–23
Sub has been disabled, 5– , 5–80
Sub not allowed in this context, 5–

Sub not followed by a valid unused routine
name, 5– , 5–79
Sub not followed by routine definition,
5– , 5–79
Subaddress not listed in require clause prior
to use, 5–26, 5–31, 5–51
Subaddress not listed in require clause prior
to use, :detail, 5–17
Subaddress not listed in require clause prior
to use, :user, 5–18
Too few arguments given to adjustcounter,
5–58
Too few arguments given to capture, 5–59
Too few arguments given to virustest, 5–16
Too many addheaders specified in user sieve,
max_addheaders MTA option, 5–30, 52–242
Too many addheaders specified,
max_addheaders MTA option, 52–242
Too many addheaders specified,
max_addheaders MTA option MS 7.0.5 and
earlier, 5–30
Too many arguments given to adjustcounter,
5–58
Too many arguments given to capture, 5–59
Too many fileintos specified in user sieve,
5–6, 5–43
Too many fileintos specified, max_fileintos
MTA option, 52–242
Too many notifys specified, 5–46
Too many notifys specified, max_notifys MTA
option, 52–242
Too many redirects specified, 5–48
Too many redirects specified, max_redirects
MTA option, 52–243
Too many vacations specified, max_vacations
MTA option, 5–52, 5–54, 52–244
Unable to open memcache connection for
vacation: <reason>, 5–54
Undefined function or variable "<name>"
referenced, 5–3
Unknonw relation value <string> given to
virustest, 5–16
Unknown channel value '<name>' given to
adjustcounter, 5–58
Unknown comparator <comparator-name>
given to <test-name>, 5–60
Unknown comparator <string> given to
virustest, 5–16
Unknown function required: <name>, 5–3
Unknown namespace <name> specified, 5–56
Unknown namespace specified in variable
<name>, 5–56

Index–53

Unknown or illegal tagged argument: <tag-
name>, 5–4
Unknown tag <string> given to adjustcounter,
5–58
Unknown tag <string> given to capture, 5–59
Unknown tag <string> given to virustest, 5–16
Unrecognized setnotify argument <string>,
5–76
Vacation file <file-name> cannot be opened,
5–54
Vacation not listed in require clause prior to
use, 5–11, 5–51, 5–52, 52–244
Vacation specified in a system level sieve
script, 5–11, 5–51, 5–54
Vacation-seconds not listed in require clause
prior to use, 5–11, 5–51, 5–52, 52–244
Value argument must be a string, virustest,
5–16
Value argument to importanceadjust must be
a string, 5–60
Value argument to virustest must be string,
5–16
Variables not listed in require clause prior to
string test use, 5–16, 5–55
Variables not listed in require clause prior to
use, 5–55
Variables not listed in require clause prior to
use in <test-action-name>, 5–21, 5–55
Variables not listed in require clause prior to
use of <test-action-name> action, 5–21, 5–55
Variables not listed in require clause prior to
use, set, 5–10
Variables not listed in require clause prior to
use, string, 5–16
Virustest not listed in require clause prior to
use, 5–16, 5–50
Zero :days and :noaddresses given to
vacation, 5–52
Zero :hours and :noaddresses given to
vacation, 5–52
Zero :seconds and :noaddresses given to
vacation, 5–52
Zone argument to currentdate test must be a
string, 5–29
Zone argument to date must be a string, 5–29
{} block not allowed in this context, 5–4

SMTP client-server loop detected, 46–141
Spamfilter names for slots <M> and <N> are the
same, 52–253
Status: 5.3.0 (message returned by the
postmaster), 71–55
Too many mailboxes

maxsearchmailboxes IMAP option, 34–16

Too many open files
connrejectthreshold MMP option, 41–11

Unable to find an unused URL context, 58–19
Unable to open a TCP connection to the milter
server, 58–19
Unable to read mesage body data, 58–19
Unable to read message body data, 58–19
Unknown group identifier <name> found on
channel <channel-name>, 71–133
Unknown/invalid command, 58–19
[slot <spamfilter-n> name <spamfilter-name>],
52–253, 58–1

errors
Recipes

Error in option name <option-name> in
validate_option: <detail>, 4–19

error_text_* MTA options, 52–167
error_text_accepted_return_address MTA option,
52–176
error_text_access_failure MTA option, 52–168
error_text_alias_auth MTA option, 52–168
error_text_alias_fileerror MTA option, 52–168

Effect of use_permanent_error MTA option,
52–179

error_text_alias_fileexist MTA option, 52–168
Effect of use_permanent_error MTA option,
52–179

error_text_alias_locked MTA option, 52–168
error_text_alias_temp MTA option, 52–168
error_text_block_over MTA option, 52–169
error_text_deleted_group MTA option, 52–172
error_text_deleted_user MTA option, 52–172
error_text_disabled_alias MTA option, 52–171

Effect of use_temporary_error MTA option,
52–180

error_text_disabled_group MTA option, 52–172
error_text_disabled_user MTA option, 52–171

Effect of use_temporary_error MTA option,
52–179

error_text_inactive_group MTA option
Effect of use_permanent_error MTA option,
52–179

error_text_inactive_user MTA option
Effect of use_permanent_error MTA option,
52–179

error_text_over_quota MTA option
Effect of use_permanent_error MTA option,
52–179

error_text_recipient_over MTA option
Effect of use_permanent_error MTA option,
52–179
recipientlimit channel option, 46–96, 46–133

error_text_spf_* MTA options

Index–54 Messaging Server Reference

spfmailfrom and spfrcptto channel options,
46–160

error_text_still_held MTA option
Hold channel, 65–11

error_text_transaction_limit_exceeded MTA option
transactionlimit channel option, 46–137

error_text_unknown_alias MTA option
Effect of use_temporary_error MTA option,
52–180

error_text_unknown_host MTA option
Effect of use_temporary_error MTA option,
52–180

error_text_unknown_user MTA option
Effect of use_temporary_error MTA option,
52–180

error_text_wrong_account MTA option, 52–171
checkrrvs channel option, 46–41, 46–130

error_text_wrong_domain MTA option, 52–171
checkrrvs channel option, 46–42, 46–130

errsendpost channel option, 46–103, 60–1
errwarnpost channel option, 46–104, 60–1
esme_address_npi SMPP server option, 66–11
esme_address_range SMPP server option, 66–11
esme_address_ton SMPP server option, 66–12
esme_password SMPP server option, 66–12
esme_system_id SMPP server option, 66–12
esme_system_type SMPP server option, 66–12
eval_ldapd

Options
domainallowed, 6–9, 75–1
domainnotallowed, 6–9, 75–1

eval_ldapd options, 75–1
Event log (NT)

Notices generated by address access mapping
tables, 57–10

Exclamation point
Alias file

Comment line, 48–27
Comment line in MTA configuration files

comment_chars MTA option, 52–181
Mappings file

Comment line, 50–2
exclusive attribute in store.expirerule files, 31–3
exclusive Message Store expirerule option, 26–23
expandable_default MTA option, 52–196
expandchannel channel option, 46–67, 46–99,
46–113, 46–124
expandlimit channel option, 46–67, 46–99, 46–113,
46–124

-expandlimit switch of test -rewrite, 71–123
Address expansion through reprocess channel,
65–20

expire

Enable scheduling of, 17–3
expire task

Options, 17–3
crontab, 17–3
enable, 17–3

expires attribute in store.expirerule files, 31–3
expiresieve Message Store option, 26–11
expiry-date attribute in store.expirerule files, 31–3
expirysource channel option, 46–76, 46–115
expirytime logfile option, 16–23
explicitsaslexternal channel option, 46–170
exploglevel Message Store expire option, 26–23
expnallow channel option, 46–139
expndefault channel option, 46–139
expndisable channel option, 46–139
exproute channel option, 46–44

exproute_forward MTA option, 52–62
exproute_forward MTA option

exproute channel option, 46–44
expungemsg notifytarget option, 37–7
expungesynclevel Message Store option, 26–11
External filtering context MTA options, 52–180
externalidentity channel option, 46–162

*saslclient channel options, 46–169
extldap: URLs

Example, 49–15
MTA URL types, 1–4

extldaps: URLs
MTA URL types, 1–4

extrajavaswitches ISC option, 32–11
extrauserldapattrs MSHTTP option, 42–7
extra_capabilities IMAP option, 34–14

F
fdirectory MTA option, 52–182
File descriptors

connrejectthreshold MMP option, 41–11
MAX_SERVER_THREADS TCP/IP-channel-
specific option, 62–34
rlim_fd_max Solaris system parameter, 69–5
siffp_fd_max Solaris system parameter, 69–4
stressfdwait base option, 16–21

file: URLs
Example in memberURL attribute's value, 49–10
MTA URL types, 1–4

fileinto channel option, 46–121
ims-ms channels, 46–121, 64–1, 64–2
LMTP client (tcp_lmtpcs*) channels, 46–121
Subaddresses in addresses, 46–121

FILEINTO ims-ms-channel-specific option
fileinto channel option, 46–121
Subaddresses in addresses, 48–47

filemode logfile option, 16–24

Index–55

Files
$DATAROOT/queue/tcp_*/spool/*.data-failed,
62–36
*.data-failed, 62–29, 62–36

F modifier in MTA connection transaction log
entry, 68–10
F suffix on C or X connection transaction log
entry, 68–12
Performance impact, 69–2

.*.dispatcher.socket
tmpdir MTA option, 52–164

<channel-name>_option
Format, 52–10
Legacy configuration, 46–8

<prefix>cert9.db
sslcertprefix option, DEPRECATED: see
ssldbprefix instead, 41–27
ssldbprefix base option, 16–19

<prefix>key4.db
ssldbprefix base option, 16–19

Access to
umask Message Store option, 26–18

aliasesdb, 53–8
alias_file

imta_alias_file, 53–6
bmclient_log

blswcDebugFileName Brightmail option,
58–4

bmserver_log
blswsDebugFileName Brightmail option,
58–4

cert8.db
ssldblegacy base option, 16–19

cert9.db
ssldblegacy base option, 16–19
ssldbpath base option, 16–19

charnames.txt
Character mnemonics, 71–138

charsets.txt, 51–19, 66–5
Character set names, 46–59

charset_data
chbuild utility, 71–16
imta_charset_data, 53–6

check_memcache.so, 50–29
check_metermaid.so, 50–32
command_data

imta_command_data, 53–6
common_log

blCommonDebugFilename Brightmail option,
58–4

config.xml, 1
imta_xml_config_file, 53–6

config_data

imta_config_data, 53–6
connection.log, 53–7, 68–2
connection.log*

separate_connection_log MTA option, 52–299
connection.log_current, 53–7, 68–2
connection.log_yesterday, 53–7, 68–2
conversions, 51–2, 53–10

Legacy configuration, 52–74
countries.txt

ldap_preferred_country MTA option, 52–127
Creation of

filemode logfile option, 16–24
osync MTA option, 52–184
umask Message Store option, 26–18

daily_cleanup, 52–300, 68–2
dispatcher.cnf, 54–3

Format, 52–10
dispatcher.log, 54–13

Format of, 54–14
dispatcher.log-<uniqueid>

dns_verify_domain rejections, 54–5
disposition_*.txt, 60–19
disposition_deleted.txt

Example, 60–21
disposition_dispatched.txt

Example, 60–21
disposition_option.opt, 60–19, 60–21
disposition_prefix.txt

Example, 60–20
disposition_suffix.txt

Example, 60–21
dns_verify.so, 50–33
domaindb, 53–9
expire_exclude_list, 31–2
Format

MTA options, 52–181
forward.txt, 53–8
forwarddb, 53–9
general.txt, 53–8
generaldb, 53–9
hold_list, 53–10
imapcmd

logcommands IMAP option, 34–16
imta, 38–1, 64–9

Debugging, 46–95
ims-ms channel debugging, 64–7, 64–7
loglevel MTA option, 54–12, 55–17

imta.cnf
imta_config_file, 53–5

imta.filter, 53–5
-system_filter switch of test -rewrite utility,
71–128
Legacy configuration, 52–238

Index–56 Messaging Server Reference

Sieve hierarchy, 5–81
imta_alias_file, 53–6
imta_charset_data, 53–6
imta_command_data, 53–6
imta_config_data, 53–6
imta_config_file, 53–5
IMTA_DATAROOT:sms_gateway_cache, 66–3
imta_primary_log, 53–7
imta_secondary_log, 53–7
imta_tailor

OBSOLETE, 53–2
imta_tertiary_log, 53–7
imta_xml_config_file, 53–6
include/libmilter/mfapi.h

Defining SMFIF_SPECRCPT for recipient-
specific modification actions, 58–18

internet.rules, 47–10
error_text_unknown_host MTA option,
52–168
New rewrite rule consults tlds.txt, 47–13
Used in past instead of . match-all rewrite
rule, 47–13

job_controller.cnf, 55–10
Format, 52–10
Legacy configuration, 55–7

job_controller.log-*
cache -walk utility, 71–11
debug Job Controller option, 55–10
Errors, 55–19
Viewing with view utility, 71–142

job_controller.log-<uniquestring>
return_debug MTA option, 52–80

job_controller.site, 55–7
key3.db

ssldblegacy base option, 16–19
key4.db

ssldblegacy base option, 16–19
ssldbpath base option, 16–19

LDIF, G–6
libarch.so, 52–252
libbmiclient.so, 52–251
libicap.so, 52–252
libimtamap.so, 53–10
libimtautil.so, 53–10
libmilter.so, 52–252
libmilters.so, 52–252
libmilters.so versus libmilter.so, 58–19
libspamass.so, 52–252
Lock files

lockdir base option, 16–11
Log files

Access to, umask Message Store option, 26–18
log_header.opt

Legacy configuration, 52–287
mail.log, 68–2

imta_tertiary_log, 53–7
mail.log*

separate_connection_log MTA option, 52–299
mail.log_current, 68–2

imta_primary_log, 53–7
mail.log_yesterday, 68–2

imta_secondary_log, 53–7
mappings, 53–9

Legacy configuration, 51–2
mappings.locale, 60–22

DISPOSITION_LANGUAGE mapping table,
60–18

maximum.dat
cnbuild utility, 71–25

maximum_charset.dat
chbuild utility, 71–17

msgtrace, 36–1, 46–95
Debugging, 46–95
ims-ms channel debugging, 64–6, 64–7

mtasdkhdr.h, 46–176
name_content.dat, 53–8
nsswitch.conf, 46–151
option.dat

delivery_options MTA option, 52–100
imta_option_file MTA Tailor option, 53–5
Legacy configuration, 52–8

option_charset.dat, 53–9
chbuild utility, 71–17

pmdf.cld
imta_command_data MTA tailor option, 53–6

pmdf_err.h, 51–16
Recipe language access to

read_file function, 4–16
write_file function, 4–19

restricted.cnf, 1, 15–1, 53–11
group option, imsimta test -expression
utility's output, 71–87
group, imta_world_group old Tailor option,
53–11
noprivuser option, Mapping table sequence
number files, 50–13
noprivuser, imta_user_username MTA tailor
option, 53–11
pipeuser option, 46–71, 46–117
user option, 16–14
user option, Defragment database sharing
over NFS, 65–6
user option, imsimta test -expression utility's
output, 71–87
user option, Vacation response file sharing
over NFS, 52–72

Index–57

user, imta_user MTA tailor option, 53–11
return templates

notary_quote MTA option, 52–184, 52–228
return-<uniquestring>.log

return_debug MTA option, 52–80
return_*.*, 60–10
return_*.txt, 60–11
return_bounced.txt

Example, 60–13
return_capture.txt

Example, 60–13
return_deferred.txt

Example, 60–13
return_delayed.txt

Example, 60–13
return_delivered.txt

Example, 60–13
return_error.txt

Example, 60–13
Sieve syntax error, 52–243, 52–244, 52–244
Testing for eight bit characters, 71–86

return_failed.txt
Example, 60–14

return_forwarded.txt
Example, 60–14

return_header.opt, 60–10
Example, 60–11
Example applying via test -header, 71–102
MDN generation, 60–19

return_option.opt, 60–14
MDN generation, 60–19

return_prefix.txt, 60–12
return_suffix.txt

Example, 60–14
return_timedout.txt

Example, 60–14
reverse.txt, 53–8
reversedb, 53–8
security.cnf, 53–10
smartsend.so, 50–38
sslpassword.conf, 22–1, 41–27
ssrdb, 53–9
store.expirerule, 26–23, 31–1

Attributes within, 31–2
expiresieve Message Store option, 26–11

store.idx
2 gigabyte size limit, IMAP_IOERROR error
status, 38–1, 64–10

sysexits.h
Pipe channel, 65–13

tcp_*_master.log-<uniqueid>
master_debug channel option, 46–95

tcp_local_master.log-<uniqueid>

master_debug channel option, 46–95
tcp_local_slave.log-<uniqueid>

slave_debug channel option, 46–95
tcp_smtp_server.log-<uniqueid>

slave_debug channel option, 46–95
tcp_submit_server.log-<uniqueid>

slave_debug channel option, 46–95
tcp_submit_slave.log-<uniqueid>

slave_debug channel option, 46–95
Temporary

dbtmpdir Message Store option, 26–10
tmpdir base option, 16–22
tmpdir Message Store archive option, 26–18
tmpdir MTA option, 52–164
tmpdir MTA option, Performance, 69–4

test_smtp_master, 65–9
test_smtp_slave, 65–9
tlds.txt, 47–10, 47–34

Consulted by rewrite rule in internet.rules,
47–13
error_text_unknown_host MTA option,
52–168
Fetching from IANA, 47–34
Outdated version, test -rewrite utility, 71–133
Updating, chbuild utility, 71–16
Use chbuild rather than cnbuild, 71–24

umask Message Store option, 26–18
vdmap.cfg, 41–31
Writing of

fsync MTA option, 52–182
filesperjob channel option, 46–109
file_member_size MTA option, 52–188
filter channel option, 46–119

Sieve hierarchy, 5–81
filtercomps Base certmap option, 16–27
filtercomps certmap option, 16–27
filterhiddenmailinglists MSHTTP option, 42–7
filterurl base option, 16–5
filter_cache_size MTA option, 52–245
filter_cache_timeout MTA option, 52–245
filter_debug MTA option, 52–78, 52–248
filter_discard channel, 65–7

log_username field in transaction entries, 52–298
Retrieving messages from, 65–8

finalcheckpoint Message Store option, 26–11
firstwarn pwexpirealert option, 34–19
FIT

Options, 32–13
FIT jloglevel option, 32–13
fit logdir option, 32–13, 41–17
FIT options

jloglevel, 32–13
logdir, 32–13, 41–17

Index–58 Messaging Server Reference

fixinternaldate IMAP option, 34–14
fixsyntaxerrors channel option, 46–76
flagname Message Store messagetype mtindex
option, 26–26
flagtransfer channel option, 46–118, 46–135

Previously discarded message flag, 65–9
flushinterval logfile option, 16–23
folderlockcount Message Store option, 26–12
folderpattern attribute in store.expirerule files, 31–3
folderpattern Message Store expirerule option,
26–24
Folders

ACL
IMAP_INVALID_IDENTIFIER error status,
38–2, 64–10

Delivery to
Configuration permitting, 5–43
fileinto channel option, 46–121
FILEINTO ims-ms-channel-specific option,
64–6
FILEINTO ims-ms-channel-specific option,
Interaction with fileinto channel option,
46–121
IMAP post ACL, 46–49, 46–122
Sieve filter fileinto, 5–1
Subaddress, 46–49
Subaddress, deliveryflags channel option,
46–118, 46–135
Subaddresses, 46–49
Subaddresses, In aliases, 48–46

Expiring messages from
folderpattern expirerule option, 26–24
foldersizebytes expirerule option, 26–24

folderlockcount Message Store option, 26–12
Hidden

ensureownerrights Message Store option,
26–11

maxfolders Message Store option, 26–13
Maximum messages per

maxmessages Message Store option, 26–13
Message expiration

Folder patterns, 31–3
Localized mailbox names, 31–4

Moving to
imexpire, 31–2

Pinned
pin Message Store option, 26–14

privatesharedfolders Message Store options,
26–30
publicsharedfolders Message Store options,
26–30
Quota

enable folderquota option, 26–25

Shared
imexpire, 31–2
listimplicit Message Store option, 26–12
Private, restrictanyone Message Store
privatesharedfolders option, 26–30
Private, restrictdomain Message Store
privatesharedfolders option, 26–30
publicsharedfolders Message Store option,
26–30
sharedfolders Message Store option, 26–17
shareflags Message Store
privatesharedfolders option, 26–30

Undeletable
pin Message Store option, 26–14

Unread messages in
showunreadcounts MSHTTP option, 42–12

foldersizebytes attribute in store.expirerule files,
31–3
foldersizebytes Message Store expirerule option,
26–24
folderurl base option, 16–6
forcedreceivedfrom channel option, 46–76
forcenbsptospace MSHTTP option, 42–7
forcetelemetry icapservice option, 45–1
forcetelemetry IMAP option, 34–15
forcetelemetry MSHTTP option, 42–8
forcetelemetry POP option, 35–5
foreground sms_gateway option, 66–3
form_names MTA option, 52–301
Forward database, 48–63

comment_chars MTA option, 52–181
Consulted after FORWARD mapping table,
48–61
forward_database_url MTA option, 52–216
forward_data_size MTA option, 52–188
MTA options

comment_chars, 52–181
forward_data_size, 52–188
string_pool_size_3, 52–191
use_text_databases, 52–185

Source specific entries, 48–64
string_pool_size_3 MTA option, 52–191
use_text_databases MTA option, 52–185

forwardcheckdelete channel option, 46–151
forwardchecknone channel option, 46–151
forwardchecktag channel option, 46–151
Forwarding

Testing of
test -rewrite utility, 71–117

forward_database_url MTA option, 52–216
Forward database, 48–64

forward_data_size MTA option, 52–188
FQDN (Fully Qualified Domain Name), G–4

Index–59

from_domain gateway_profile option, 66–5
fsync MTA option, 52–182

Performance, 69–4
fullfromheader MSHTTP option, 42–8
futurerelease channel option, 46–114, 46–139

G
General database, 50–24, G–5

Backslash quoting
In-memory format, 50–24

Callout from mapping tables
Example, 50–23
Performance, 50–22

Callout from rewrite rules, 47–24
Comment lines

In-memory format, 50–25
comment_chars MTA option, 52–181
Examples

Sieve external list, 5–39
File protection of

Rewrite rule callout, 47–25
general_case MTA option, 50–25
general_database_url MTA option, 52–216
general_data_size MTA option, 52–188
Mapping table lookups, 50–17
MTA options

comment_chars, 50–25, 52–181
general_case, 50–25
general_data_size, 50–25, 52–188
string_pool_size_3, 50–25, 52–191
use_text_databases, 52–185

Rewrite rule substitution, 47–24
Spaces in key or value

In-memory format, 50–24
On-disk crdb format, 50–25

string_pool_size_3 MTA option, 52–191
TAB character

Converted to space, In-memory format, 50–24
On-disk crdb format, 50–25

use_text_databases MTA option, 52–185
general_case MTA option, 50–25
general_database_url MTA option, 52–216

Rewrite rule general database substitutions,
47–24

general_data_size MTA option, 52–188
General database, 50–25

generatemessagehash channel option, 46–100
vnd.oracle.message-hash Sieve environment
item, 5–19

generatereceivedheader MSHTTP option, 42–8
Generic SMTP channels, 65–9
Grey-listing, G–5

Sieve metermaid :greylisting operation, 5–69

Via MeterMaid
block_time MeterMaid local_table option,
59–3
inactivity_time MeterMaid local_table option,
59–3
resubmit_time MeterMaid local_table option,
59–3
table_type MeterMaid local_table option,
greylisting, 59–4

group option in restricted.cnf, 1
imsimta test -expression utility's output, 71–87

group option in restricted.cnf file, 15–1
group_dn_template MTA option, 52–101

Mailing list membership, 49–11
GUI (Graphical User Interface), G–5
gzipattach MSHTTP option, 42–8
gzipdynamic MSHTTP option, 42–8
gzipstatic MSHTTP option, 42–8

H
Hash

Mapping template substitution, 50–13
Message identifier

Sieve filter access to, 5–19
Message identifier generation for archiving,
67–19
Message Store msghash options, 26–27
Message-hash: header value

Channel options, 46–100
message_hash_algorithm MTA option, 52–217
message_hash_fields MTA option, 52–218

has_plain_passwords auth option, 21–3
Header

A1-Format:
IN-A1-FORMAT conversion entry parameter,
51–9
OUT-A1-FORMAT conversion entry
parameter, 51–11

A1-Type:
IN-A1-TYPE conversion entry parameter,
51–9
OUT-A1-TYPE conversion entry parameter,
51–11

Accept-language:
DISPOSITION_LANGUAGE mapping table
probe, 60–18
language channel option, 46–81, 46–106
ldap_spare_4, ldap_spare_5, ldap_spare_6
values, 52–134
NOTIFICATION_LANGUAGE mapping
table probe, 60–9
Vacation message, Choice of body text,
52–136, 52–136

Index–60 Messaging Server Reference

Vacation message, Choice of Subject:, 52–135
Adding of

$A flag in AUTH_REWRITE mapping table,
46–164
ADD header trimming option, 46–176
addheader Sieve action, 5–30
alias_header_addition alias option, 48–16
alias_header_trim alias option, 48–16
dns_verify_domain_warn callout, 50–37
FILL header trimming option, 46–176
HEADER_ADDITION alias file named
parameter, 48–35
HEADER_TRIM alias file named parameter,
48–35
Importance:, alias_importance alias option,
48–17
ldap_add_header MTA option, 52–147
Precedence:, alias_precedence alias option,
48–17
Priority:, alias_priority alias option, 48–17
Sensitivity:, alias_sensitivity alias option,
48–17
spamfilter*_includeheaders MTA option,
52–256
spamfilter*_received MTA option, 52–257
spamfilter*_returnpath MTA option, 52–258
Via address access mapping tables, 57–10

alias_header_addition alias option, 48–16
alias_header_trim alias option, 48–16
Approved:

alias_password alias option, 48–21
ldap_auth_password MTA option, 52–142
Mass mailings, 49–21
mgrpBroadcasterPolicy LDAP attriobute,
52–115
Moderated mailing list example, 49–6
PASSWORD alias file named parameter,
48–39
Password-protected mailing lists, 49–4

Authentication-results:
Sieve filter test on, 5–59

Auto-submitted:
deleteheader Sieve action cannot delete, 5–6
MDNs, 60–19
Values other than "no" disables sending back
a vacation message, 5–53

Bcc:
Blank, missingrecipientpolicy channel option,
46–46, 46–82
Blank, missing_recipient_policy MTA option,
52–64
Generated when original message had no
recipient header lines, 52–63

message_hash_fields MTA option, 67–19
missingrecipientpolicy channel option, 46–45,
46–82
passsyntaxerrors channel option, 46–76
Use in Axs:One archiving,
userheaderecipients Message Store archive
option, 26–20

Buffer overruns
Content-disposition: parameters, 46–56
Content-type: parameters, 46–56

Cc:
dropblank channel option, 46–75
Forward-pointing, 47–29
message_hash_fields MTA option, 67–19
passsyntaxerrors channel option, 46–76
Use in Axs:One archiving,
userheaderecipients Message Store archive
option, 26–20

Character set
Disposition messages, disposition_prefix.txt
file, 60–20
Notification messages, notary_decode MTA
option, 52–228
Notification messages, return_prefix.txt file,
60–12

Client-ip:, 70–3
Comment strings, 46–73, 48–56

mail_off MTA option, 52–196
Content-annotation:

OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15

Content-comments:
OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15

Content-description:
IN-DESCRIPTION conversion entry
parameter, 51–10
IN-DISPOSITION conversion entry
parameter, 51–10
message_hash_fields MTA option, 67–19
OUT-DESCRIPTION conversion entry
parameter, 51–11
OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15

Content-disposition:
Buffer overruns, 46–56
Buffer overruns, -nmaximum switch of test -
mime, 71–114
Buffer overruns, -pmaximum switch of test -
mime, 71–115
FILENAME parameter length limit, 46–56
msexchange channel option, 46–56, 46–143,
46–172

Index–61

nameparameterlengthlimit channel option,
46–56
OUT-DISPOSITION conversion entry
parameter, 51–11
OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15
Parameter length limits, 46–56
Parameter length limits, -nmaximum switch
of test -mime, 71–114
Parameter length limits, -pmaximum switch
of test -mime, 71–115
Parameter length limits, RFC 2231
segmentation of long values, 46–57, 46–61
parameterlengthlimit channel option, 46–56
Parameters, DPARAMETER-COPY-n
conversion entry parameters, 51–11
Parameters, DPARAMETER-SYMBOL-n
conversion entry parameters, 51–11
Parameters, IN-DPARAMETER-DEFAULT-n
conversion entry parameters, 51–10
Parameters, IN-DPARAMETER-NAME-n
conversion entry parameters, 51–10
Parameters, IN-DPARAMETER-VALUE-n
conversion entry parameters, 51–10
Parameters, OUT-DPARAMETER-NAME-n
conversion entry parameters, 51–11
Parameters, OUT-DPARAMETER-VALUE-n
conversion entry parameters, 51–11

Content-id:
message_hash_fields MTA option, 67–19
OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15

Content-language:
CHARSET-CONVERSION mapping table,
51–21
IN-LANGUAGE conversion entry parameter,
51–10
OUT-LANGUAGE conversion entry
parameter, 51–12
OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15
return_prefix.txt, 60–12
See RFC 3066 (Tags for the Identification of
Languages), 60–9

Content-MD5:
-describe switch of test -mime, 71–113

Content-mode:
OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15

Content-transfer-encoding:
-describe switch of test -mime, 71–113
-emultipart switch of test -mime, 71–113
-iemessage switch of test -mime, 71–113

ignoremessageencoding channel option,
46–53
ignoremultipartencoding channel option,
46–53
IN-ENCODING conversion entry parameter,
51–10
interpretmessageencoding channel option,
46–53
interpretmultipartencoding channel option,
46–53
OUT-ENCODING conversion entry
parameter, 51–11
OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15

Content-type:
application/batch-smtp, 63–3
Buffer overruns, 46–56
Buffer overruns, -nmaximum switch of test -
mime, 71–114
Buffer overruns, -pmaximum switch of test -
mime, 71–115
Charset labelling forces addition of, 46–59
charset parameter, 46–59, 51–17
IN-SUBTYPE conversion entry parameter,
51–10
IN-TYPE conversion entry parameter, 51–10
Inspected by conversion channel, 51–7
Message Store message typing, header
Message Store messagetype option, 26–25,
26–26
message/partial, 46–54
message/partial, defragment channel option,
46–52
message/partial, Defragmentation channel,
65–3
message_hash_fields MTA option, 67–19
multipart/report, DSNs, 60–1
multipart/report, MDNs, 60–1
NAME parameter length limit, 46–56
nameparameterlengthlimit channel option,
46–56
OUT-SUBTYPE conversion entry parameter,
51–12
OUT-TYPE conversion entry parameter,
51–12
OVERRIDE-HEADER-FILE conversion entry
parameter, 51–15
Parameter length limits, 46–56
Parameter length limits, -nmaximum switch
of test -mime, 71–114
Parameter length limits, -pmaximum switch
of test -mime, 71–115

Index–62 Messaging Server Reference

Parameter length limits, RFC 2231
segmentation of long values, 46–57, 46–61
parameterlengthlimit channel option, 46–56
Parameters, IN-PARAMETER-DEFAULT-n
conversion entry parameters, 51–10
Parameters, IN-PARAMETER-NAME-n
conversion entry parameters, 51–10
Parameters, IN-PARAMETER-VALUE-n
conversion entry parameters, 51–10
Parameters, Model for format of conversion
entries, 51–7
Parameters, OUT-PARAMETER-NAME-n
conversion entry parameters, 51–12
Parameters, OUT-PARAMETER-VALUE-n
conversion entry parameters, 51–12
Parameters, PARAMETER-COPY-n
conversion entry parameters, 51–12
Parameters, PARAMETER-SYMBOL-*
conversion entry parameters, 51–11
text/calendar, msexchange channel option,
46–56, 46–143, 46–172

Date-warning:, 46–131
Not generated with SMTP SUBMIT, 46–131
received_domain MTA option, 52–236

Date:
Absence ignored in passthrough mode,
46–131
Axs:One PostedDate, 26–20
Day of the week, 46–74
DSN human-readable part, 60–11
Format of date, 46–73
Not required with SMTP SUBMIT, 46–131
Required in relay mode, 46–131
Tests on, See also Sieve filters, date extension,
5–28
Used for date archiving, 58–10
usesentdate MSHTTP option, 42–15

Deferred-delivery:, 46–112, 46–112
alias_deferred alias option, 48–13
alias_deferred_list alias option, 48–13
alias_deferred_mapping alias option, 48–13
Compared to FUTURERELEASE, 62–13
Compared to FUTURERELEASE SMTP
extension, 46–112
Compared with futurerelease, 46–114, 46–139
Compared with futurerelease functionality,
46–114, 46–139
DEFERRED named alias file parameter, 48–32
DEFERRED_LIST named alias file parameter,
48–32
DEFERRED_MAPPING named alias file
parameter, 48–32
Not honored by default, 48–14

Defragment-failed:, 65–5
Detecting end of, 46–81

IMAP_MESSAGE_NOBLANKLINE error
status, 38–2, 64–9

Disposition-notification-to:, 60–1
DKIM-Signature:

destinationdkim* channel options, 46–63
dkim* channel options, 46–64
dkim_ignore_domains MTA option, 52–164
dkim_preserve_domains MTA option, 52–165,
52–165
dkim_remove_domains MTA option, 52–165,
52–165
MTA options, 52–164

Encoding:
-iencoding switch of test -mime, 71–113
ignoreencoding channel option, 46–53
interpretencoding channel option, 46–53

envelopetunnel channel option, 46–76
Errors-to:

error-return-address alias file positional
parameter, 48–15

Expires:
Defined in RFC 2156 (MIXER) to replace
Expiry-date:, 46–76, 46–115
Message expiration rule sets, 31–3

Expiry-date:
alias_expiry alias option, 48–16
Defined in RFC 1327 (Mapping between X.400
and RFC 822), 46–76, 46–115
EXPIRY alias file named parameter, 48–35
expirysource channel option, 46–76, 46–115
Message expiration rule sets, 31–3

Fixup of
passthrough/relay/submit channel options,
46–130
Sieve setoperation does not affect, 5–77

Folding of
headerfold* channel options, 46–77
headerlinelength channel option, 46–77
LINELENGTH header trimming option,
46–177
PRESERVE_BREAKS Milter option, 58–6

From:
authrewrite channel option, 46–39, 46–72,
46–162
AUTH_REWERITE mapping table, 46–164
AUTH_REWRITE mapping table probe,
46–163
Backwards-pointing, 47–29
DSN human-readable part, 60–11
fullfromheader MSHTTP option, 42–8

Index–63

MDNs, RETURN_PERSONAL option in
disposition_option.opt, 60–21
message_hash_fields MTA option, 67–19

Fruit-of-the-day-warning:
fruits_size MTA option, 52–188

Fruit-of-the-day:
Example Sieve test on, 5–79

HTAB character
headerfoldpreserve channel option, 46–78

Importance:
alias_importance alias option, 48–17
Contrasted with Priority:, 55–5
IMPORTANCE alias file named parameter,
48–36
Mass mailings, 49–9
Relabelling from X-Priority:, 46–178

Label alignment, 46–77
Line folding

FOLDITEMS header trimming option, 46–176
MIME parameter segmentation, 46–57, 46–61

List-*:
Adding via mgrpAddHeader group LDAP
attribute, 52–147
Nested list definitions, 49–20

List-Archive:, 48–16, 48–35
Disables sending back a vacation message,
5–53

List-Help:, 48–16, 48–35
Disables sending back a vacation message,
5–53

List-id:
Disables sending back a vacation message,
5–53

List-Owner:, 48–16, 48–35
Disables sending back a vacation message,
5–53

List-Post:, 48–16, 48–35
Disables sending back a vacation message,
5–53

List-Subscribe:, 48–16, 48–35
Disables sending back a vacation message,
5–53

List-Unsubscribe:, 48–16, 48–35
Disables sending back a vacation message,
5–53

Logging in MTA transaction log
log_header MTA option, 52–286
log_headers_maxchars MTA option, 52–287
log_header_options MTA option, 52–287
transactionlog Sieve action, 52–250, 52–297

Maximum length included in ENS/JMQ
notifications

maxheadersize notifytarget option, 37–5

Maximum length of total in message
headercut channel option, 46–77
headerlimit channel option, 46–79

Message expiration rule sets, 31–3
Message-context:

IN-MESSAGE-CONTEXT conversion entry
parameter, 51–10
Message Store message typing, header
Message Store messagetype option, 26–25
OUT-MESSAGE-CONTEXT conversion entry
parameter, 51–12

Message-hash:, 46–100
Message-id:

-identifiers switch of test -rewrite utility,
71–125
Altering via REVERSE mapping, 70–3
Default for duplicate Sieve test, 5–30
DSN human-readable part, 60–11
genid function to generate unique id string,
71–89
id_domain MTA option, 52–235
message_hash_fields MTA option, 67–19
Modification of, 52–68, 52–213
Modifying internal names in, 70–2
MTA options, 52–234
passsyntaxerrors channel option, 46–76

message_hash_fields MTA option, 52–218
Messenger Express display of 8-bit characters

rfc822headerallow8bit base option, 16–13
Milter modifications to

IMMEDIATE_HEADER_MODIFICATIONS
Milter option, 58–6

Mime-version:
Charset labelling forces addition of, 46–59

MR-Received:
max_mr_received_lines MTA option, 52–235
max_total_received_lines MTA option, 52–235

MT-Priority:
envelopetunnel channel option, 46–76

Original-recipient:
addreturnpath channel option, 46–72
Defined in RFC 2298 (Message Disposition
Notifications), 46–72

Personal names (RFC 822 phrases), 48–56
personal channel options, 46–47, 46–85
ldap_personal_name MTA option, 52–128
Postmaster, return_personal MTA option,
52–230

Position vis-à-vis message body
header* channel options, 46–77

PostScript version of
test -header utility, 71–101

Precedence:

Index–64 Messaging Server Reference

alias_precedence alias option, 48–17
Contrasted with Priority:, 55–5
PRECEDENCE alias file named parameter,
48–36
use_precedence MTA option, 52–231

Preferred-language:
DISPOSITION_LANGUAGE mapping table
probe, 60–18
language channel option, 46–81, 46–106
NOTIFICATION_LANGUAGE mapping
table probe, 60–9
Vacation message, Choice of body text,
52–136
Vacation message, Choice of Subject:, 52–135

Priority:
*after channel options, 46–110
*backoff channel options, 46–110
alias_priority alias option, 48–17
Defined in RFC 2156 (MIXER: Mapping
between X.400 and RFC 822/MIME), 55–5
Delay in delivery attempt, 46–110
Effect on delivery retry frequency, 46–111
Effect on MTA processing, 55–2, 55–5
Effect on timing of generation of notification
messages, 46–106
Frequency of delivery reattempts, 46–110
Job Controller delivery execution window,
55–16
Job Controller handling, 55–5
log_priority MTA option, 52–292
Mass mailings, 49–9
Overridden by MT-PRIORITY, 52–233
Overridden by MT-PRIORITY, log_mtpriority
MTA option, 52–291
Overridden via setpriority Sieve action, 5–77
PRIORITY alias file named parameter, 48–36
profile SMS gateway_profile option, 66–7
Relabelling from X-MSMail-Priority:, 46–178
SMS messages, 66–8

Processing of
Channel options, 46–71
fixsyntaxerrors channel option, 46–76
inner channel option, 46–80
limitheadertermination channel option, 46–81
maxprocchars channel option, 46–100
max_header_lines MTA option, 52–222
passthrough/relay/submit channel options,
46–130
relaxheadertermination channel option, 46–81

Proxy-ip:, 70–3
Received-SPF:, 46–160
Received:

"(original mail from sender-address)"
comments, 46–83
"by host-name" clause, Milter, 58–14
"by host-name" clause, received_domain MTA
option, 52–236
"for recipient-address" clauses, 46–83
"from <host>" clause, forcedreceivedfrom
channel option, 46–76
"from <host>" clause, includereceivedip
channel option, 46–80
"from <host>" clause, suppressreceivedip
channel option, 46–80
"priority <mt-priority>" clause, 46–116, 46–143
(envelope-sender (sender)) comments, 52–257
(Forwarded-for: <source-ip>) clause, 70–3
alias_noreceivedfor alias option, 48–20
alias_noreceivedfrom alias option, 48–20
alias_receivedfor alias option, 48–20
alias_receivedfrom alias option, 48–20
Axs:One PostedDate, 26–20
CHECK_SOURCE TCP/IP-channel-specific
option, 62–24
conditionalpassthrough channel option,
46–132
conditionalrelay channel option, 46–132
Day of the week, 46–74
deleteheader Sieve action cannot delete, 5–6
Diagnosing .HELD files, 65–12
DNS lookup, 46–151
forcedreceivedfrom channel option, 46–76
Format of, 46–83
Format of date, 46–73
Format of, Milter, 58–14
from clause, XCLIENT SMTP command,
46–85, 46–145, 46–173
generatereceivedheader MSHTTP option,
42–8
host name comment, CHECK_SOURCE TCP/
IP-channel-specific option, 62–24
IDENT lookup, 46–151
includereceivedip channel option, 46–80
Mailing list postings, 48–39
max_local_received_lines MTA option,
52–235
max_received_lines MTA option, 52–235
max_total_received_lines MTA option, 52–235
Modifying internal names in, 70–2
MTA options, 52–234
MTA's own name appearing,
max_local_received_lines MTA option,
52–235
OpenDKIM, MAX_PREPEND_INDEX milter
spamfilter option, 58–14

Index–65

received_version MTA option, 52–236
Sieve filter access to, sieve_received MTA
option, 52–240
spamfilterN_received MTA options, 52–257
state clause, convert/defragment, 65–3
state clause, receivedstate channel option,
46–86
suppressreceivedip channel option, 46–80
Used for date in archiving, 58–10
version Sieve filter environment item, 5–19

Relabelling
Header trimmming approach, 46–178
MIME relabelling approach, 51–27
MIME relabelling approach, RELABEL
conversion entry parameter, 51–9

Removing of
alias_header_trim alias option, 48–16
deleteheader Sieve action, 5–30
HEADER_TRIM alias file named parameter,
48–35
ldap_remove_header MTA option, 52–147

Reply-to:
alias_nooriginator_reply alias option, 48–19
alias_originator_reply alias option, 48–19
ORIGINATOR_REPLY alias file named
parameter, 48–38
usereplyto channel option, 46–87

Require-Recipient-Valid-Since:
-rrvs switch of test -rewrite, 71–127
checkrrvs channel option, 46–41, 46–130

Resent-*:
Sieve filter redirect action, :resent
and :noresent parameters, 5–48
useresent channel option, 46–87

Resent-Bcc:
message_hash_fields MTA option, 67–19

Resent-Cc:
dropblank channel option, 46–75
message_hash_fields MTA option, 67–19

Resent-Date:
sieve_redirect_add_resent MTA option,
52–240

Resent-From:
authrewrite channel option, 46–39, 46–72,
46–162
AUTH_REWERITE mapping table, 46–164
AUTH_REWRITE mapping table probe,
46–163
Backwards-pointing, 47–29
message_hash_fields MTA option, 67–19
sieve_redirect_add_resent MTA option,
52–240

Resent-message-id:

message_hash_fields MTA option, 67–19
Resent-Sender:

authrewrite channel option, 46–39, 46–72,
46–162
AUTH_REWRITE mapping table, 46–164
AUTH_REWRITE mapping table probe,
46–163

Resent-To:
dropblank channel option, 46–75
Forwarding-pointing, 47–29
message_hash_fields MTA option, 67–19
sieve_redirect_add_resent MTA option,
52–240

Return-path:
addreturnpath channel option, 46–72
Defined in RFC 2821 (SMTP), Section 4.4
Trace Information, 46–72
Passing to spam/virus filter package, 52–258

Sender:
Adding SMTP AUTH authenticated address,
57–16
authrewrite channel option, 46–39, 46–72,
46–162
AUTH_REWRITE mapping table, 46–164
AUTH_REWRITE mapping table probe,
46–163
Backwards-pointing, 47–29
Replace via FROM_ACCESS mapping table,
57–10

Sensitivity:
alias_sensitivity alias option, 48–17
log_sensitivity MTA option, 52–295
SENSITIVITY alias file named parameter,
48–36
sensitivity* channel options, 46–117
SMS messages, 66–9

Size limits
header_limit MTA option, 52–220
max_header_blocks MTA option, 52–221
max_header_lines MTA option, 52–222

Solicitation:
*nosolicit channel options, 46–136

Spam-test:
Example from SpamAssassin, 58–10

Status:
popstatuskludge POP option, 35–6

Subject:
addtag Sieve action, 5–23, 5–58
alias_tag alias option, 48–24
DSN human-readable part, 60–11
DSNs generated by the MTA, 60–11

Index–66 Messaging Server Reference

DSNs generated by the MTA, $T flag in
NOTIFICATION_LANGUAGE mapping
table, 60–9
DSNs generated by the MTA, SUBJECT
option in return_option.opt, 60–15
IN-SUBJECT conversion entry parameter,
51–10
ldap_add_tag MTA option, 52–148
MDNs, 60–20
MDNs generated by the MTA, 60–20
MDNs generated by the MTA, $T flag in
DISPOSITION_LANGUAGE mapping table,
60–18
MDNs generated by the MTA, SUBJECT
option in disposition_option.opt, 60–21
message_hash_fields MTA option, 67–19
SMS messages, text_to_subject
gateway_profile option, 66–4
SMS text charset, email_header_charset
gateway_profile option, 66–5
SMS text messages, charset, 66–7
SMS text messages, parse_re_<n>
gateway_profile options, 66–6
TAG alias file named parameter, 48–41
Tag on gatewayed SMS to email messages,
in_re gateway_profile option, 66–5
Tag on mailing list postings, 48–40
Vacation message, ldap_autoreply_subject
MTA option, 52–134

Sun-Java-System-SMTP-Warning:, 46–146,
46–147
Sun-ONE-SMTP-Warning:, 46–146
Sun-One-SMTP-Warning:, 46–147
Testing of

test -header utility, 71–99
To:

"Recipients not specified: ;" or other empty
group construct, 52–63
alias_to alias option, 48–24
dropblank channel option, 46–75
DSN human-readable part, 60–11
Forward-pointing, 47–29
Generated when original message had no
recipient header lines, 52–63
Mailing list postings, TO named parameter,
48–41
message_hash_fields MTA option, 67–19
missingrecipientpolicy channel option, 46–45,
46–82
passsyntaxerrors channel option, 46–76
Use in Axs:One archiving,
userheaderecipients Message Store archive
option, 26–20

To: Recipients not specified: ;
missingrecipientpolicy channel option, 46–46,
46–82
missing_recipient_group_text MTA option,
52–63
missing_recipient_policy MTA option, 52–64

User-Agent:
MSIE, gzipattach MSHTTP option, 42–8

Warnings-to:
use_warnings_to MTA option, 52–231, 52–231

White space, 46–80
Terminating header, 46–81

Wrapping of
LINELENGTH header trimming option,
46–177

X-Accept-language:
DISPOSITION_LANGUAGE mapping table
probe, 60–18
NOTIFICATION_LANGUAGE mapping
table probe, 60–9
Vacation message, Choice of body text,
52–136
Vacation message, Choice of Subject:, 52–135

X-Dispatcher:
Added by dns_verify_domain_warn callout,
50–37

X-Envelope-from:
MESSAGE-HEADER-FILE=2 conversion
entry parameter, 51–11

X-Envelope-to:, 46–84
MESSAGE-HEADER-FILE=2 conversion
entry parameter, 51–11

X-Forwarded-for:, 70–3
X-Mailer:

xmailer MSHTTP option, 42–16
X-MS-Exchange-Organization-Journal-Report:,
52–102, 52–217

In "capture :journal" 2007 format message
copy, 67–16

X-MS-Journal-Report:, 52–102, 52–217
In "capture :journal" 2003 format message
copy, 67–13
In "capture :journal" 2007 format message
copy, 67–16

X-MSMail-Priority:
Relabelling to Priority:, 46–178

X-Priority:
Relabelling to Importance:, 46–178

X400-Received:
max_total_received_lines MTA option, 52–235
max_x400_received_lines MTA option, 52–236

Header option files
Format, 46–176

Index–67

Location, 46–175
test -header utility, 71–101
test -rewrite utility, 71–125

Header trim options, 46–175
ADD, 46–176
Defaults: field name, 46–176
FILL, 46–176
FOLDITEMS, 46–176
GROUP, 46–177
LINELENGTH, 46–177

test -header utility, 71–101
MAXCHARS, 46–177
MAXIMUM, 46–177
MAXLINES, 46–177
Other: field name, 46–176
PRECEDENCE, 46–177
RELABEL, 46–178

headerbottom channel option, 46–77
headercut channel options, 46–77
headerdecodesrs channel option, 46–45, 46–77
headerfoldpreserve channel option, 46–77

test -header utility, 71–101
headerfoldremove channel option, 46–77

test -header utility, 71–101
headerinc channel option, 46–77
headerkeeporder channel option, 46–79
headerlabelalignment channel option, 46–77

test -header utility, 71–100
headerlimit channel option, 46–79
headerlineincrement channel option, 46–77

test -header utility, 71–101
headerlinelength channel option, 46–77

test -header utility, 71–101
headeromit channel option, 46–77
headerread channel option, 46–79

Header option file, 46–175
Location, 46–175, 46–176

test -rewrite utility, 71–125
headerset7 channel option, 46–61
headerset8 channel option, 46–61
headersetesc channel option, 46–61
headertrailingpreserve channel option, 46–80
headertrailingremove channel option, 46–80
headertrim channel option, 46–79

Header option file, 46–175
Location, 46–175

Removing Received: header lines, 70–3
test -rewrite utility, 71–125

header_733 channel option, 46–40
header_822 channel option, 46–40
header_limit MTA option, 52–220

headerlimit channel option, 46–80
header_uucp channel option, 46–40

heartbeat Deployment Map option, 23–1
Held files

alias_hold_* alias options, 48–17
delivery_option clause, 52–98
Hold channel, 65–10

delivery_option clause, 52–98
HOLD_LIST alias file named parameter, 48–36
HOLD_MAPPING alias file named parameter,
48–36
loopcheck channel option, 46–141
mailDomainStatus of hold, 16–9, 52–154
mailUserStatus of hold, 52–121
max_local_received_lines MTA option, 52–235
max_mr_received_lines MTA option, 52–235
max_received_lines MTA option, 52–235
max_total_received_lines MTA option, 52–235
max_x400_received_lines MTA option, 52–236
Releasing from hold channel, 65–11
Sieve hold action, 5–60

held_sndopr MTA option, 52–234, 52–266
Diagnosing .HELD files, 65–12
max_mime_levels MTA option, 52–222
max_mime_parts MTA option, 52–222

historical_time Dispatcher option, 54–5
historical_time Dispatcher service option, 54–5
history_file_directory SMS gateway option, 66–3
history_file_flush_period sms_gateway option,
66–3
history_file_flush_threshold sms_gateway option,
66–3
history_file_mode sms_gateway option, 66–3
history_file_rollover_period sms_gateway option,
66–4
history_to_return MTA option, 52–227

Notification message format, 60–6
Hold channel, 65–10

Configuration, 65–10
Releasing messages from, 65–11

error_text_still_held MTA option, 52–173
Routing to

delivery_options MTA option, 52–99, 52–99
Runs reprocess channel program, 65–10

holdlimit channel option, 46–67, 46–99, 46–113,
46–124

Diagnosing .HELD files, 65–12
hosteddomains MMP/imapproxy/popproxy/
vdomain option, 41–14
hostlist Message Store elasticsearch option, 32–6
hostlist Redis option, 52–237, 52–237
hostlist Redis Sentinuel option, 52–237, 52–238
hostname base option, 16–6

Default for http.smtphost option, 42–13
Direct LDAP alias lookups, 48–6

Index–68 Messaging Server Reference

ldap_local_host MTA option, 52–89, 52–104
hostname Base option

From: header line of Message Store over quota
notifications, 26–15

host_hash_size MTA option, 52–189
htmlprocessor MSHTTP option, 42–8

ICAP service use enabled, 45–1
httpadmin Proxy option

DEPRECATED: see proxyadmin instead, 40–1
httpadminpass Proxy option

DEPRECATED: see proxyadminpass instead,
40–1

httpproxyadmin MSHTTP option, 42–9
httpproxyadminpass MSHTTP option, 42–9, 42–11

I
ICAP, G–5

HTML sanitization, 45–1
See Spam/virus filter package integration, ICAP,
58–5
Spam/virus filtering, 58–5

icapservice
Options, 45–1

forcetelemetry, 45–1
server_host, 45–1
server_port, 45–1
service_name, 45–1

identnone channel option, 46–151
identnonelimited channel option, 46–151
identnonenumeric channel option, 46–151
identnonesymbolic channel option, 46–151
identtcp channel option, 46–151
identtcplimited channel option, 46–151
identtcpnumeric channel option, 46–151
identtcpsymbolic channel option, 46–151
idletimeout IMAP option, 34–15
idletimeout MSHTTP option, 42–9
idletimeout POP option, 35–5
idn_config_file MTA option, 52–62
id_domain MTA option, 52–235

Limiting emission of internal host names, 70–2
Local channel official_host_name, 65–2

IETF (Internet Engineering Task Force), G–5
ignoreencoding channel option, 46–53
ignoremessageencoding channel option, 46–53

-noiemessageswitch of test -mime, 71–113
ignoremultipartencoding channel option, 46–53

-noiemultipartswitch of test -mime, 71–113
ignorencoding channel option

-noiencoding switch of test -mime, 71–113
ignorerrvs channel option, 46–41, 46–130
image Dispatcher service option, 54–6
IMAP

ACL extension
Folder delivery, 46–49, 46–122

ACLs
IMAP_INVALID_IDENTIFIER error status,
38–2, 64–10

ALERT
Overquota warning, 60–3
Password expiration warnings, 34–18
Password expiration warnings, pwchangeurl
base option, 16–13
Password expiration, firstwarn pwexpirealert
option, 34–19
Password expiration, metermaidtable
pwexpirealert option, 34–19
Password expiration, viametermaid
pwexpirealert option, 34–19
Quota warnings, 26–15
quotanotification Message Store option,
26–15, 60–3
serverdomainalert IMAP Proxy option, 41–21

APPEND
Archiving, destination Message Store archive
option, 26–19

Autorestart
base.autorestart.enable option, 16–26

BURL
imap_password MTA option, 52–73
imap_username MTA option, 52–73

CAPABILITY
capability IMAP proxy option, 41–9
Discovery of, 41–9

Connection thread hold delay time
threadholddelay base option, 16–21

Contexts
withinresolution IMAP option, 34–18

Disconnect
Forcing via maxprotocolerrors IMAP option,
34–16

DNS reverse lookup
dnsresolveclient base option, 16–5

Errors
* BYE Connection limit reached for your
IP address, connlimits IMAP Proxy option,
34–12, 35–4, 41–10, 42–5
* BYE timeout surpassed, idletimeout IMAP
option, 34–15
* BYE timeout surpassed, timeout IMAP
Proxy option, 41–30
* BYE Too many protocol errors, 34–16
Critical level, Disabling the feature for
keeping track of imapd logged users, 34–14
Critical level, Excessive number of users are
allowed to log in., 34–14

Index–69

Error level, <err-string> could not open
userlist '<file-spec>' shared memory: <err-str>
(<err-no>), 34–14
Error level, Indexing Server not enabled
because service.imap.indexer.hostname is not
configured, 32–8
Localized mailbox names, 31–4
Notice level, Too many protocol errors
<client-host> <userid>: closing connection,
34–16

Extensions
ACL RIGHTS=tekx, capability_acl IMAP
option, 34–5
ACL, capability_acl IMAP option, 34–5
ACL, IMAP_INVALID_IDENTIFIER error
status, 38–2, 64–10
ANNOTATE-EXPERIMENT-1,
capability_annotate IMAP option, 34–5
AUTH=, Added to capability list by MMP,
41–9
BINARY, capability_binary IMAP option,
34–5
CATENATE, capability_catenate IMAP
option, 34–6
CHILDREN, capability_children IMAP
option, 34–6
CONDSTORE, capability_condstore IMAP
option, 34–6
CONDSTORE, Implied by QRESYNC, 34–9
CONTEXT=SEARCH,
capability_context_search IMAP option, 34–6
CONTEXT=SORT, capability_context_sort
IMAP option, 34–6
CREATE-SPECIAL-USE,
capability_create_special_use IMAP option,
34–6
ENABLE, capability_enable IMAP option,
34–6
ESEARCH, capability_esearch IMAP option,
34–6
ESEARCH, capability_multisearch IMAP
option, 34–8
ESORT, capability_esort IMAP option, 34–7
ID, capability_id IMAP option, 34–7
IDLE, capability_idle IMAP option, 34–7
LANGUAGE, capability_language IMAP
option, 34–7
LANGUAGE, diacritical_sensitive_languages
IMAP option, 34–14
LANGUAGE, langlist MMP/IMAP proxy
option, 41–15
LIST-STATUS, capability_list_status IMAP
option, 34–7

LITERAL+, capability_literal IMAP option,
34–8
LOGIN-REFERRALS,
capability_login_referrals IMAP option, 34–8
METADATA, capability_metadata IMAP
option, 34–8
MULTISEARCH, capability_multisearch
IMAP option, 34–8
NAMESPACE, capability_namespace IMAP
option, 34–8
Non-standard, extra_capabilities IMAP
option, 34–14
NOTIFY, capability_notify IMAP option, 34–8
QRESYNC, capability_qresync IMAP option,
34–9
QRESYNC, Subsumes CONDSTORE, 34–6
QUOTA, capability_quota IMAP option, 34–9
SASL-IR, capability_sasl_ir IMAP option,
34–9
SAVEDATE, capability_savedate IMAP
option, 34–9
SEARCHRES, capability_searchres IMAP
option, 34–9
SORT, capability_sort IMAP option, 34–9
SORT_DISPLAY, capability_sort_display
IMAP option, 34–9
SPECIAL-USE, capability_special_use IMAP
option, 34–9
STARTTLS, Added to capability list by MMP,
41–9
STARTTLS, capability_starttls IMAP option,
34–10
STARTTLS, sslenable IMAP Proxy option,
41–27
THREAD=ORDEREDSUBJECT,
capability_thread_subject IMAP option, 34–10
THREAD=REFERENCES,
capability_thread_references IMAP option,
34–10
UIDPLUS, capability_uidplus IMAP option,
34–10
UNSELECT, capability_unselect IMAP
option, 34–10
URLAUTH, 62–7
URLAUTH, BURL_ACCESS mapping probes,
62–8
URLAUTH, capability_urlauth IMAP option,
34–10
WITHIN, capability_within IMAP option,
34–11
X-NETSCAPE, capability_x_netscape IMAP
option, 34–11

Index–70 Messaging Server Reference

X-ORCL-AS, capability_x_orcl_as IMAP
option, 34–11
X-SUN-IMAP, capability_x_sun_imap IMAP
option, 34–11
X-SUN-SORT, capability_x_sun_sort IMAP
option, 34–11
X-UNAUTHENTICATE,
capability_x_unauthenticate IMAP option,
34–11, 34–12
XMSEARCH, capability_multisearch IMAP
option, 34–8
XREFRESH, capability_xrefresh IMAP option,
34–12
XSENDER, capability_xsender IMAP option,
34–12
XSERVERINFO, capability_xserverinfo IMAP
option, 34–12
XSNIPPET, capability_xsnippet IMAP option,
34–12
XUM1, capability_xum1 IMAP option, 34–12

Flags
$undeleted, undeleteflag Message Store
option, 26–18
imap4flags Sieve extension, 5–43
IMAP_USERFLAG_EXHAUSTED error
status, 38–1, 64–10
immediateflagupdate IMAP option, 34–15
Logging, log_imap_flags MTA option, 52–287
Message expiration effects, 31–3
Set via Sieve filter at delivery time, 5–43
shareflags Message Store
privatesharedfolders option, 26–30
Sieve filters, 5–1
System flags begin with backslash, 5–43
undeleteflag Message Store option, 26–18
User, 5–44
\Deleted, immediateflagupdate IMAP option,
34–15
\Deleted, Message expiration, 26–23
\Deleted, Message expiration rule sets, 31–3
\Deleted, shareflags Message Store
privatesharedfolders option, 26–30
\Deleted, store.expirerule.deleted option,
26–23
\Deleted, undeleteflag Message Store option,
26–18
\Seen, immediateflagupdate IMAP option,
34–15
\Seen, Message expiration, 26–24
\Seen, Message expiration rule sets, 31–3
\Seen, shareflags Message Store
privatesharedfolders option, 26–30
\Seen, store.expirerule.seen option, 26–24

IDLE
immediateflagupdate IMAP option, 34–15

Internal date
fixinternaldate IMAP option, 34–14
messagedays Message Store expirerule
option, 26–24
posteddatemode Message Store archive
option, 26–20

Last access time
enablelastaccess base option, 16–5

Logging
logauthsessionid option, 34–16
logprotocolerrors IMAP option, 34–16
rollover manager, 24–1

LSUB
Unaffected by sharedfolders Message Store
option, 26–17

msprobe probe of, 19–2
Options, 34–3, 34–17

actionattributes, 34–3, 35–2, 36–1
actions, 34–3, 35–2, 36–1
adminbypassquota, 34–4
allowanonymouslogin, 34–4
authfaildelay, 34–4, 35–2
banner, 34–4
bgdecay, 16–4, 34–5, 35–3, 41–8
bgexcluded, 16–4, 34–5, 35–3, 41–8
bglinear, 16–4, 34–5, 35–3, 41–8
bgmax, 16–3, 34–4, 35–3, 41–7
bgpenalty, 16–3, 34–4, 35–3, 41–8
broken_client_defer_exists, 34–5
capability_acl, 34–5
capability_annotate, 34–5
capability_binary, 34–5
capability_catenate, 34–6
capability_children, 34–6
capability_condstore, 34–6
capability_context_search, 34–6
capability_context_sort, 34–6
capability_create_special_use, 34–6
capability_enable, 34–6
capability_esearch, 34–6
capability_esort, 34–7
capability_id, 34–7
capability_idle, 34–7
capability_imap4, 34–7
capability_imap4rev1, 34–7
capability_language, 34–7
capability_list_status, 34–7
capability_literal, 34–8
capability_login_referrals, 34–8
capability_metadata, 34–8
capability_multisearch, 34–8

Index–71

capability_namespace, 34–8
capability_notify, 34–8
capability_qresync, 34–8
capability_quota, 34–9
capability_sasl_ir, 34–9
capability_savedate, 34–9
capability_searchres, 34–9
capability_sort, 34–9
capability_sort_display, 34–9
capability_special_use, 34–9
capability_starttls, 34–10
capability_status_size, 34–10
capability_thread_references, 34–10
capability_thread_subject, 34–10
capability_uidplus, 34–10
capability_unauthenticate, 34–12
capability_unselect, 34–10
capability_urlauth, 34–10
capability_url_partial, 34–10
capability_utf8_accept, 34–11
capability_within, 34–11
capability_xrefresh, 34–12
capability_xsender, 34–12
capability_xserverinfo, 34–12
capability_xsnippet, 34–12
capability_xum1, 34–12
capability_x_netscape, 34–11
capability_x_orcl_as, 34–11
capability_x_sun_imap, 34–11
capability_x_sun_sort, 34–11
capability_x_unauthenticate, 34–11
connlimits, 34–12, 35–4, 41–10, 42–5
defaultdomain, 41–13
diacritical_sensitive_language, 34–14
domainallowed, 6–8, 34–14
domainnotallowed, 6–9, 34–14
enable, 34–3
enablesslport, 34–14
enableuserlist, 34–14
extra_capabilities, 34–14
fixinternaldate, 34–14
forcetelemetry, 34–15
idletimeout, 34–15
immediateflagupdate, 34–15
legacy_proxyauth, 34–15
logauthsessionid, 34–16
logcommands, 34–16
logprotocolerrors, 34–16
logunauthsession, 34–16
maxmessagesize, 34–16
maxnoops, 34–16
maxprotocolerrors, 34–16
maxsearchmailboxes, 34–16

maxsessions, 34–17
maxthreads, 34–17
numprocesses, 34–17
plaintextmincipher, 34–17
polldelay, 34–17, 41–19
See also obsoleteimap base option, 16–12
sslcachesize, 34–18
sslnicknames, 34–18
sslport, 34–18
sslusessl, 34–18
submituser, 34–18, 52–73
submituser, BURL usage, 62–11
withinresolution, 34–18

Password expiration alert
firstwarn pwexpirealert option, 34–19
metermaidtable pwexpirealert option, 34–19
viametermaid pwexpirealert option, 34–19

Performance
preferpoll base option, 16–12, 41–19

QUOTA extension
quotaroot Message Store messagetype
mtindex option, 26–26
quotaroot Message Store
messagetype mtindex option,
IMAP_QUOTAROOT_NONEXISTENT error
status, 38–3, 64–10

SEARCH
bodytextonly indexer option, 32–9
diacritical_sensitive_languages IMAP option,
34–14
ISS (Indexing and Search Service), 32–8
prefix_search indexer option, 32–10
substring_search indexer option, 32–9
suffix_search indexer option, 32–9
withinresolution IMAP option, 34–18

Search queries
enable indexer option, 32–8

SELECT
Unaffected by sharedfolders Message Store
option, 26–17

SORT
ISS (Indexing and Search Service), 32–8

SSL
enablesslport IMAP option, 34–14
sslport IMAP option, 34–18

Startup, 34–3
UID and UIDVALIDITY

log_mailbox_uid MTA option, 52–289
URLFETCH

proxytrustmailhost Base option, 16–13
IMAP commands

APPEND
adminbypassquota IMAP option, 34–4

Index–72 Messaging Server Reference

fixinternaldate IMAP option, 34–14
maxmessagesize IMAP option, 34–16

Debugging
maparse keyword in debugkeys option, 41–12
search keyword in debugkeys option, 41–12

ESEARCH
ISS use, 32–8
maxsearchmailboxes IMAP option, 34–16

IDLE
capability_idle IMAP option, 34–7

LOGIN
broken_client_login_charset auth option, 21–2

NOOP
maxnoops IMAP option, 34–16

PROXYAUTH
legacy_proxyauth IMAP option, 34–15

STARTTLS
sslusessl option, 34–18

Xmailboxinfo MANAGEURL
folderurl base option, 16–6

Xserverinfo MANAGEACCOUNTURL
accounturl base option, 16–3

Xserverinfo MANAGEFILTERSURL
filterurl base option, 16–5

Xserverinfo MANAGELISTSURL
listurl base option, 16–11

IMAP Proxy
Options, 41–3

authcachettl, 41–5
authenticationldapattributes, 21–1, 41–6
authenticationserver, 21–1, 41–6
backsideport, 41–6
banner, 41–7
canonicalvirtualdomaindelim, 41–9
capability, 41–9
connecttimeout, 41–10
connlimits, 34–12, 35–4, 41–10, 42–5
crams, 41–11
debugkeys, 41–11
defaultdomain, 41–13
domainallowed, 6–8, 6–8, 41–14
domainnotallowed, 6–9, 6–9, 41–14
domainsearchformat, 41–14
hosteddomains, 41–14
langlist, 41–15
ldapcachesize, 41–15
ldapcachettl, 41–16
ldappendingoplimit, 41–16
ldaprefreshinterval, 41–16
ldaptimeout, DEPRECATED, 41–16
ldapurl, DEPRECATED, 41–16
logfile, 41–5
loglevel, 41–17

mailhostattrs, 41–18
maxconcurrentconnectionattempts, 41–18
plaintextmincipher, 41–18
preauth, 41–19
preauthtimeout, 41–19
replayformat, 41–19
replaypass, 41–20
requireauthenticationserver, 21–3, 41–20
restrictplainpasswords, 41–20
searchformat, 41–20
serverdownalert, 41–21
ssladjustciphersuites, 16–14, 41–22
sslbacksideport, 41–26
sslcachedir, 16–18, 41–27
sslcertprefix, DEPRECATED: see ssldbprefix
instead, 41–27
sslnicknames, 41–28
storeadmin, 41–28
storeadminpass, 41–28
syncldap, 41–28
tcpaccess, 41–29
tcpaccessattr, 41–30
timeout, 41–30
usergroupdn, DEPRECATED; see
ugldapbasedn instead, 41–30
use_nslog, 41–30
virtualdomaindelim, 41–31
virtualdomainfile, DELETED; see vdomain
options instead, 41–31

imap: URLs
BURL_ACCESS mapping probes, 62–8
MTA URL types, 1–4
Only URL type to permit for BURL, 62–10

imapadmin proxy option, 40–1
imapadminpass proxy option, 40–1
imapport proxy option, 40–2
imaps: URLs

MTA URL types, 1–4
imap_password MTA option, 52–73, 62–11
imap_username MTA option, 52–73

BURL usage, 62–11
imdbverify

crontab Scheduler task option, 17–6
imdbverify -s -m

crontab Scheduler task option, 17–6
imexpire

crontab Scheduler expire task option, 17–3
enable Scheduler expire task option, 17–3
expire Scheduler task, 17–3
expiresieve Message Store option, 26–11
Invoking spamfilter packages, 58–21
See also Message Store options, expirerule,
26–23

Index–73

imexpire utility
Folder patterns, 31–3

immediateflagupdate IMAP option, 34–15
implicitsaslexternal channel option, 46–170
improute channel option, 46–44

improute_forward MTA option, 52–62
improute_forward MTA option

improute channel option, 46–45
impurge daemon, 26–28

Disabling, 17–3
imquotacheck utility

Notification that a Message Store user is
overquota, 60–3
quotanotification Message Store option, 26–15
Warning that a Message Store user is nearly
overquota, 60–3

Quota overdraft operation, 26–16
ims-ms channels, 64–1

Additional ims-ms_* channels, 64–4
MESSAGE-SAVE-COPY mapping table, 67–5

alias_url0 MTA option, 64–3
backoff channel option, 64–1, 64–2
Channel options

backoff, 64–1
defragment, 64–1, 65–3
fileinto, 64–1
master_debug, 64–6
maxjobs, 64–1
notices, 64–1
official_host_name, 64–1
pool, 64–1
viaaliasrequired, 64–3

Channel program switches, 64–7
Configuration, 64–1

Additional ims-ms_* channels, 64–4
Debug, 64–7

Log files, 46–95
defragment channel option, 64–1, 64–1, 65–3
delivery_options MTA option, 64–3
Direct LDAP, 64–2
Errors, 64–8
fileinto channel option, 64–1, 64–2
Job Controller shutdown, 71–58
loglevel option, 64–6
master_debug channel option, 64–6
maxjobs channel option, 64–1, 64–2
Memory usage

dequeue_map MTA option, 52–182
Message Store stress, 55–4
notices channel option, 64–1, 64–2
official_host_name channel option, 64–1
Options, 64–5

DEBUG, 64–6, 64–8

DELIVER_THREADS, 64–2, 64–6
FILEINTO, 64–6
FILEINTO, Interaction with fileinto channel
option, 46–121
FILEINTO, Subaddresses in aliases, 48–47
LIFETIME_CAPACITY, 64–7
LOG_DEQUEUE_RATE, 64–7

ORIG_MAIL_ACCESS mapping table, 64–3
Performance, 64–2, 69–2
pool channel option, 64–1, 64–2
Rewrite rules, 64–2
subdirs channel option, 64–2
syslogfacility option, 64–6
threaddepth channel option, 64–2
viaaliasrequired channel option, 64–3

ims5compat MSHTTP option, 42–9
imsconnutil utility

enablelastaccess base option, 16–5
enableuserlist IMAP option, 34–14
enableuserlist MSHTTP option, 42–7

IMTA_BIN: symbolic name, 3–1
IMTA_DEFAULTDOMAIN: symbolic name, 3–1
imta_forward_data MTA Tailor option (DELETED),
53–8
imta_general_data MTA Tailor option (DELETED),
53–8
IMTA_HOST: symbolic name, 3–1
IMTA_LANG: symbolic name, 3–1
IMTA_LIB: symbolic name, 3–1
IMTA_LIBMAP: symbolic name, 3–1
IMTA_LIBUTIL: symbolic name, 3–1
IMTA_QUEUE: symbolic name, 3–1
imta_reverse_data MTA Tailor option (DELETED),
53–8
IMTA_ROOT: symbolic name, 3–1
IMTA_TABLE: symbolic name, 3–1
imta_tmp MTA Tailor option

Effect on location of MTA database temp files,
53–4

IMTA_TMP: symbolic name, 3–1
inactivity_time local_table MeterMaid option, 59–3
includefinal channel option, 46–105

Recipient address reported in notifications, 60–6,
60–17

includereceivedip channel option, 46–80
include_connectioninfo MTA option, 52–201

DEFERRED_MAPPING named_parameter's
mapping table probes, 48–33

include_conversiontag MTA option, 52–201
*_ACCESS mapping table probes, 57–8
-tag switch of test -rewrite utility, 71–129
CONVERSIONS mapping table, 51–2

Index–74 Messaging Server Reference

Effect on FORWARD mapping table probe,
48–61

include_domain MTA option, 51–6
include_mtpriority MTA option, 52–203

Effect on FORWARD mapping table probe,
48–61

include_retries MTA option, 52–204
include_spares MTA option, 52–206
include_spares1 MTA option, 52–204

*_ACCESS mapping table probes, 57–8
include_spares2 MTA option, 52–209

Effect on FORWARD mapping table probe,
48–61
ldap_spare_N values, 52–134

Indexer
Options, 32–8

bodytextonly, 32–9
connecttimeout, 32–9
enable, 32–8
port, 32–8
prefix_search, 32–9
server_host, 32–8
substring_search, 32–9
suffix_search, 32–9
timeout, 32–9

indexeradmins Message Store option, 26–12
Indexing and Search Service

Consulted by Messaging Server
indexer.enable option, 32–8

indexmapreadonly Message Store option, 26–12
indexsynclevel Message Store option, 26–12
Initial configuration

Bitbucket channel, 65–2
Channel options

defaulthost, 46–7
maxjobs, 46–7
noswitchchannel, 46–7
notices, 46–7

connlimits IMAP Proxy/POP Proxy option
:20, 34–13, 35–4, 41–11, 42–5

Conversion channel, 51–6
dcroot base option, 16–4
defaultdomain base option, 16–5, 41–13
Defaults pseudo-channel, 46–7
Defragment channel, 46–53, 65–3
Dispatcher services, 62–5
ens.enable, 74–1
Hold channel, 65–10
hostname base option, 16–6
imap.enable, 34–3
ims-ms channel, 64–1
isc.enable, 32–10
Job Controller configuration, 55–6

master_command defaults as of MS 7.0.5,
55–12
Pools, 69–1

Mapping tables
BURL_ACCESS, 62–10
DISPOSITION_LANGUAGE, 60–22
FROM_ACCESS, 5–52, 57–17
INTERNAL_IP, 57–6
NOTIFICATION_LANGUAGE, 60–22
ORIG_SEND_ACCESS, 62–59
PORT_ACCESS, 57–6
SEND_ACCESS, 57–14

mmp.enable, 41–5
mta.enable, 52–58
No vacation messages to list addresses, 5–52
Pipe channel, 65–14
pop.enable, 35–2
Postmaster aliases, 60–27
Postmaster group, 48–9
Process channel, 65–20
properties base option, 16–12, 23–2
purge.enable, 26–28
Reprocess channel, 46–67, 46–99, 46–113, 46–125,
65–20
schedule.enable, 17–1
schedule.task:expire.crontab, 17–4
schedule.task:msprobe.crontab, 17–4
schedule.task:purge.crontab, 17–5, 26–29
schedule.task:return_job.crontab, 17–6
schedule.task:snapshot.crontab, 17–6
schedule.task:snapshotverify.crontab, 17–6
secret Job Controller option, 55–14
servicelist MMP option

Legacy configuration, 41–21
SMTP relay blocking, 62–59
smtpauthpassword MSHTTP option, 42–12
store.enable, 26–5
store.serviceadmingroupdn, 26–17
TCP/IP channels, 62–4
ugldapbasedn base option, 16–22
ugldapbinddn base option, 16–22
ugldaphost base option, 16–22
ugldapport base option, 16–22
watcher.enable, 18–1

inner channel option, 46–80
innertrim channel option, 46–79

Header option file, 46–175
Location, 46–175

Removing Received: header lines, 70–3
test -rewrite utility, 71–125

installedlanguages base option, 16–6
instancename option, 2–1
interfaceaddress channel option, 46–153

Index–75

interface_address Dispatcher option
See listenaddr Dispatcher option, 54–6

interface_address Job Controller option
See listenaddr, 54–6

interpretencoding channel option, 46–53
-iencoding switch of test -mime, 71–113

interpretmessageencoding channel option, 46–53
-iemessageswitch of test -mime, 71–113

interpretmultipartencoding channel option, 46–53
-iemultipartswitch of test -mime, 71–113

intext Message Store archive option, 26–19
in_re gateway_profile option, 66–5
IP access

Access control
See also Access mapping tables, 57–2
See also TCP wrappers, 6–1

IP address
Host's own

INTERNAL_IP mapping table, 57–7
In email address

Rewrite rule handling of, 47–8
Loopback

INTERNAL_IP mapping table, 57–7
Outgoing POP connections when collecting
external mail

popbindaddr MSHTTP option, 42–11
Source IP address for outgoing SMTP
connections, 46–153

ipbackoff channel option, 46–110
ipsecurity MSHTTP option, 42–9
ipv6in base option, 16–6, 41–15
ipv6in mmp option, 16–6, 41–15
ipv6out base option, 16–6, 41–15
ipv6out MMP option, 16–6, 41–15
ipv6sortorder base option, 16–7
ipv6sortorder MMP option, 16–7
ipv6usegethostbyname base option, 16–6
ISC

Options, 32–10
authpassword, 32–10
authusername, 32–11
basicjavaswitches, 32–10
enable, 32–10
extrajavaswitches, 32–11
sslusessl, 32–11

Startup, 32–10
isc

Options
server_port, 32–11

isc logdir option, 32–12, 41–17
ISC options

cachettl, 32–11
ischosts, 32–12

logdir, 32–12, 41–17
maxthreads, 32–12

ischosts isc_client isc option, 32–12
isc_client

Options
server_port, 32–12

ISO 8601 duration format, 1–3
ISO 8601 format, 1–3
ISO 8601 P format, 1–3
ISO 8601 time format, 1–3
ISS

See Indexing and Search Service, 32–8
ISS client

See Indexer, 32–8
it.com

See Archive package integration, 58–10

J
JMQ

destinationtype notifytarget option, 37–5
jmqhost notifytarget option, 37–4
jmqport notifytarget option, 37–4
jmqpwd notifytarget option, 37–4
jmqqueue notifytarget option, 37–4
jmqtopic notifytarget option, 37–4
jmquser notifytarget option, 37–4
ldapdestination notifytarget option, 37–5
msgtypes notifytarget option, 37–7
persistent notifytarget option, 37–6
priority notifytarget option, 37–6
ttl notifytarget option, 37–6

jmqhost notifytarget option, 37–4
jmqport notifytarget option, 37–4
jmqpwd notifytarget option, 37–4
jmqqueue notifytarget option, 37–4
jmqtopic notifytarget option, 37–4
jmquser notifytarget option, 37–4, 37–5
Job Controller, 55–1

*backoff channel options
Scheduling of channel jobs, 46–110

Autorestart
autorestart.enable option, 16–26

Changing options while running, 71–6
channel_class, 55–18
Checking that it is running, 55–18
Configuration

Default, 55–6
Debugging

debug option, 55–10
debug_flush MTA option, 52–78, 52–182
Enabling, imsimta cache -change -global -
debug=N, 71–7
Example of enabling, 71–8

Index–76 Messaging Server Reference

job_pool, 55–17
DEFAULT, Initial configuration, 55–6
IMS_POOL, Initial configuration, 55–6
SMTP_POOL, Initial configuration, 55–6

Log file
cache -walk utility, 71–11
debug Job Controller option, 55–10

msprobe probe of, 19–2
Operation, 55–2

Priority-based processing, 55–5
Stress, 55–3

Options, 55–10
Changing values while running, 71–6
channel_class, see Job Controller,
channel_class, 55–18
debug, 55–10
debug, -debug switch of cache -change, 71–7
enable, 55–10
interface_address, See listenaddr, 54–6
job_limit, 55–11
job_limit, -job_limit switch of cache -change,
71–7
job_limit, maxjobs channel option, 46–115
job_limit, Modified effect under stress, 55–4
job_limit, Use imsimta run to exceed, 71–57
job_pool, See Job Controller, job_pool, 55–17
listenaddr, 55–10
master_command, 55–11
master_command, -master_job switch of
cache -change, 71–7
max_cache_messages, 55–12
max_cache_messages, cache -sync utility, 71–9
max_cache_messages, Operation under
stress, 55–3
max_cache_messages, Overriding via imsimta
cache -change -global -max_messages=N,
71–7
max_life_askwork, 55–13
max_life_conns, Alias for max_life_askwork,
55–13
max_life_time, 55–13
nonurgent_delivery, 55–16
nonurgent_delivery, Example, 55–6
normal_delivery, 55–16
notice_time, Restricted: for future use, 55–13
port, 55–14
rebuild_parallel_channels, 55–14
rebuild_parallel_channels, Override
via imsimta cache -change -global -
parallel_rebuild=N, 71–8
Secret, 55–14
slave_command, 55–14

slave_command, -slave_job switch of cache -
change, 71–7
stressblackout, 55–4, 55–15
stressfactor, 55–15
stressfactor, Operation under stress, 55–4
stressjobs, 55–15
stressjobs, Operation under stress, 55–4
stresstime, 55–15
stresstime, Operation under stress, 55–4
synch_time, 55–16
synch_time, Hold channel, 65–11
synch_time, Operation, 55–3
synch_time, Retrieving messages from
filter_discard, 65–8
tcp_ports, 55–16
unstressfactor, 55–15
unstressfactor, Operation under stress, 55–4
unstressjobs, 55–15
unstressjobs, Operation under stress, 55–4
urgent_delivery, 55–16
use_nslog, 55–17

Priority effects on delivery reattempt schedule,
46–110
Processing pool

IMS_POOL dedicated to the ims-ms channel,
64–2
job_pool Job Controller group, 55–17
pool channel option, 46–116
Stopping from processing, 55–11

Queue cache
cache -sync utility, 71–9
max_cache_messages Job Controller option,
55–12
Operation under stress, 55–3
queue_cache_mode MTA option, 52–184

Scheduling of channel jobs
*backoff channel options, 46–110

Solaris system parameters, 69–5
Startup, 52–58

job_limit Job Controller option, 55–11
-job_limit switch of cache -change, 71–7
Modified effect under stress, 55–4
Use imsimta run to exceed, 71–57

job_pool group, 55–17
Joe-job spam

See Spam/virus filtering, "joe-job" spam, 60–24
join attribute in store.expirerule files, 31–3
journal_format MTA option, 52–101, 52–216

"capture :journal" message copies, 67–16

K
keepmessagehash channel option, 46–100
keylabel Message Store option, 26–12

Index–77

keypass Message Store option, 26–12
kill utility

Effect on Dispatcher Worker Processes, 54–2

L
L channel

See Local channel, 65–2
langdir MTA option, 52–164

Fallback location for return_*.txt files, 60–10
langlist MMP/IMAP proxy option, 41–15
Language

Diacritical sensitive IMAP searches, 34–14
DSN generation, 60–12

Postmaster copy, 60–10
IMAP LANGUAGE extension

langlist option, 41–15
MDN generation, 60–20
Site

sitelanguage base option, 16–14
User preference

DISPOSITION_LANGUAGE mapping table,
60–18
ldap_preferred_language MTA option, 52–126
NOTIFICATION_LANGUAGE mapping
table, 60–9
Postmaster copy of DSN, 60–10
preferredLanguage LDAP attribute, 52–126
Remote users, 60–12, 60–20
See also Header, Accept-language:, 60–9
See also Header, Preferred-language:, 60–9
See also Header, X-Accept-language:, 60–9
See also language channel option, 46–81,
46–105
Vacation message, Choice of body text,
52–136, 52–136
Vacation message, Choice of Subject:, 52–135,
52–136

language channel option, 46–81, 46–105
Language tag

CHARSET-CONVERSION mapping table, 51–21
Content-language: header line, 51–21
diacritical_sensitive_languages IMAP option,
34–14
DISPOSITION_LANGUAGE mapping table,
60–18
Encoded-words

CHARSET-CONVERSION mapping table,
51–21

language channel option, 46–81, 46–105
LDAP attributes with, 52–126
ldap_preferred_language MTA option, 52–126
Message Store

sitelanguage base option, 16–14

MSHTTP
sitelanguage base option, 16–14

NOTIFICATION_LANGUAGE mapping table,
60–9
preferredLanguage LDAP attribute, 52–126
sitelanguage base option, 16–14

lastresort channel option, 46–70, 46–154
Latency server

MTA options, 52–191
latency_expire MTA option, 52–192
latency_host MTA option, 52–191
latency_max_failures MTA option, 52–192
latency_port MTA option, 52–192
latency_timeout MTA option, 52–192
LDAP ACI

PAB
Example, 52–193

LDAP attributes
ACIs on, 52–120

Capture attribute, 67–6
Capture trigger attribute, 52–124
ldap_autoreply_addresses MTA option,
52–137, 52–137
ldap_filter_reference MTA option, 52–138
ldap_nosolicit MTA option, 52–127
ldap_parental_controls MTA option, 52–138
mailAutoReplyMode, 52–134
mailAutoReplySubject, 52–135
mailAutoReplyText, 52–135
mailAutoReplyTextInternal, 52–136
mailDeliveryOption, 52–127
mailForwardingAddress, 52–138
mailProgramDeliveryInfo, 52–133
mailSieveRuleSource, 52–138
Message capture, 5–41
PAB, 52–193
preferredLanguage, 52–126
Reassigning MTA interpretation of attributes,
52–109
userPassword, 21–2
vacationEndDate, 52–131
vacationStartDate, 52–131

aliasedObjectName
Invalid value (Schema 1 mode) causes
domain map error, 71–73
Missing causes domain map error, 71–72
Multi-valued causes domain map warning,
71–81
Short form host name in entry (Schema 1
mode) causes domain map error, 71–84

associatedDomain
Invalid value (Schema 2 mode) causes
domain map error, 71–73

Index–78 Messaging Server Reference

Present with no value causes a domain map
warning, 71–83
Short form host name (Schema 2 mode)
causes domain map error, 71–84
Two domain entries claiming causes domain
map error, 71–73
Value too long causes domain map error,
71–69

Authentication library use, 52–109
Caching of values, 52–161

-statistics switch of test -rewrite, 71–128
certSubjectDN, 16–27
Client certificate subject

cmapldapattr certmap option, 16–27
cn

Possible setting for ldap_personal_name MTA
option, 52–128

department
Example, 49–15

DN
Client certificate subject, dncomps certmap
option, 16–26
Invalid conversion to domain name (Schema
1 mode) causes domain map error, 71–73
Problem converting to domain name alias
causes domain map error, 71–71
Problem converting to domain name causes
domain map error, 71–72
Short form host name (Schema 1 mode)
causes domain map error, 71–83
Too long causes domain map error, 71–73
Trouble locating causes domain map error,
71–72

Domain
aliasedObjectName, 16–8, 52–151
associatedDomain, 52–87, 52–151
Disk quota, 52–156
domainUidSeparator, Default for
ldap_domain_attr_uid_separator MTA
option, 16–8, 52–152
inetCanonicalDomainName, Default for
ldap_domain_attr_canonical MTA option,
52–152
inetDomainBaseDn, Default for
ldap_domain_attr_basedn MTA option, 16–8,
52–151
inetDomainMailserv, 52–152
inetDomainSearchFilter, canonicalsearchfilter
auth option, 21–3
inetDomainSearchFilter, Possible value for
ldap_attr_domain_search_filter MTA option,
52–87, 52–93, 52–151

inetDomainSearchFilter, searchfilter auth
option, 21–3
inetDomainStatus, 16–9, 52–153
ldap_domain_attr_capture MTA option,
52–157
ldap_domain_attr_creation_date MTA option,
52–160
ldap_domain_attr_default_mailhost MTA
option, 52–132, 52–156
ldap_domain_attr_disk_quota,
Domain LDAP attribute to override
defaultmailboxquota, 26–10
ldap_domain_attr_message_quota,
Domain LDAP attribute to override
defaultmessagequota, 26–10
ldap_domain_attr_optinN MTA option,
52–155
ldap_domain_attr_prefix_text MTA option,
52–159
ldap_domain_attr_sourceblocklimit MTA
option, 52–158
ldap_domain_attr_source_channel MTA
option, 52–158
ldap_domain_attr_subaddress MTA option,
52–152
ldap_domain_attr_suffix_text MTA option,
52–159
mailAccessProxyPreAuth, 41–19
mailAccessProxyReplay, 41–20
mailAllowedServiceAccess, TCP wrapper
access filters, 6–2
mailDomainAllowedServiceAccess,
Authentication library use, 52–109
mailDomainAllowedServiceAccess, TCP
wrapper access filter, 6–7
mailDomainAllowedServiceAccess, TCP
wrapper access filters, 6–8
mailDomainCatchallAddress default for
ldap_domain_attr_catchall_address, 52–157
mailDomainCatchallMapping default for
ldap_domain_attr_catchall_mapping, 52–158
mailDomainConversionTag, 52–154, 52–155
mailDomainMsgMaxBlocks, 52–154
mailDomainReportAddress default for
ldap_domain_attr_report_address, 52–157
mailDomainSenderSieve, 52–156
mailDomainSieveRuleSource default for
ldap_domain_attr_filter, 52–156
mailDomainSieveRuleSource, Sieve hierarchy,
5–81
mailDomainStatus, 16–9, 52–153
mailDomainStatus, imquotacheck utility
setting to overquota, 16–9, 52–154

Index–79

mailRoutingHosts, Default for
ldap_domain_attr_routing_hosts MTA
option, 52–153
mailRoutingSmartHost, Default for
ldap_domain_attr_smarthost MTA option,
52–153
Message quota, 52–156
objectClass, 52–120
preferredMailHost, Possible value for
ldap_domain_attr_default_mailhost MTA
option, 52–156
Spam/virus opt-in, 52–155
sunPreferredDomain, 52–86, 52–151

domainUidSeparator
Empty value causes domain map warning,
71–76
Invalid value causes domain map warning,
71–79
Multi-valued causes domain map warning,
71–81

Example of list in external LDAP directory,
49–15
expandable

Default for ldap_expandable MTA option,
52–149

Group
expandable, expn* channel options, 46–139
ldap_group_status MTA option, 52–121
ldap_personal_name MTA option, 52–128
mailAutoReplyMode, Default for
ldap_autoreply_mode, 52–134
mailAutoReplySubject, Default for
ldap_autoreply_subject MTA option, 52–134
mailAutoReplyTimeout, Default for
ldap_autoreply_timeout MTA option, 52–137
mailDeferProcessing, Default for
ldap_reprocess MTA option, 52–139
mailDeliveryOption, Default behavior if
attribute is missing, 52–100, 52–127
mailDeliveryOption, Default for
ldap_delivery_option MTA option, 52–127
mailForwardingAddress, Default for
ldap_forwarding_address MTA option,
52–138
mailHost, Default for ldap_mailhost MTA
option, 52–132
mailSieveRuleSource, ACI, 52–138
mailSieveRuleSource, Default for ldap_filter
MTA option, 52–138
mailSieveRuleSource, Sieve hierarchy, 5–81
memberURL, Default for ldap_group_url2,
52–143

mgmanMemberVisibility, expn* channel
options, 46–139
mgrpAddHeader, Default for
ldap_add_header MTA option, 52–147
mgrpAuthPassword, Default for
ldap_auth_password, 52–142
mgrpDeliverTo, Default for ldap_group_url1,
52–143
mgrpJettisonBroadcasters, Default for
ldap_jettison_url MTA option, 52–139
mgrpJettisonDomain, Default for
ldap_jettison_domain MTA option, 52–139
mgrpLastAccessTime, Default for
ldap_group_ldap_access_time, 52–143
mgrpListTag, Default for ldap_add_tag MTA
option, 52–148
mgrpListTag, Language-tag, 52–148
mgrpModerator, Default for
ldap_moderator_url, 52–142
mgrpRemoveHeader, Default for
ldap_remove_header MTA option, 52–147
mgrpUniqueID, Additional
mgrpBroadcasterPolicy values, 52–140
objectClass, 52–120
preferredLanguage, ldap_preferred_language
MTA option, 52–126
uniqueMember, Default for ldap_group_dn,
52–144
vacationEndDate, Default for ldap_end_date
MTA option, 52–131
vacationStartDate, Default for ldap_start_date
MTA option, 52–130

Head-of-household controls
ldap_filter_reference MTA option, 52–138
ldap_filter_reference MTA option, Sieve
hierarchy, 5–81
ldap_hoh_filter MTA option, Sieve hierarchy,
5–81
ldap_parental_controls MTA option, 52–138

inetCanonicalDomainName
Conflicting values when inetDomainBaseDN
values overlap causes domain map error,
71–70
Empty value causes domain map error, 71–76
Long value causes domain map error, 71–71
Multi-valued causes domain map error,
71–70, 71–80
Short form host name value causes domain
map error, 71–71

inetDomainBaseDN
Absence in Schema 1 mode causes domain
map error, 71–81

Index–80 Messaging Server Reference

Absence of explicit value with converted
value too long causes domain map error,
71–69
Empty value causes domain map error, 71–76
Multi-valued causes domain map warning,
71–79
Overlapping values with conflicting
inetCanonicalDomainName values causes
domain map error, 71–70
Presence on domain alias entry causes
domain map error, 71–69
Present with no value causes a domain map
error, 71–82
Value points to nonexistent node causes
domain map warning, 71–82
Value syntactically invalid causes domain
map error, 71–78
Value too long causes domain map error,
71–70

inetDomainStatus
Default for ldap_domain_attr_status MTA
option, 16–9, 52–153
Invalid value causes domain map warning,
71–78
Missing or no value causes domain map
warning, 71–75
Multi-valued causes domain map warning,
71–80

inetMailGroupStatus
acceptalladdresses channel option, 46–34
Default for ldap_group_mail_status MTA
option, 52–122
Deleted or removed,
error_text_deleted_group MTA option,
52–172
Disabled, error_text_disabled_group MTA
option, 52–172
Inactive, error_text_inactive_group MTA
option, 52–172
Supported values, 52–122
Values that disable vacation message
generation, 5–53

inetMailUser
searchfilter default, 52–95

inetUserStatus
Authentication library use, 52–109
Default for ldap_user_status MTA option,
52–120
Deleted or removed, error_text_deleted_user
MTA option, 52–172
Inactive, error_text_inactive_user MTA
option, 52–172

Overquota, error_text_over_quota MTA
option, 52–171

iplanet-am-user-account-life
Empty value causes domain map warning,
71–75
Presence causes domain map warning, 71–72

Language-tag
language channel option, 46–81, 46–106
ldap_autoreply_addresses MTA option,
52–137, 52–137
mailAutoReplySubject, 52–135
mailAutoReplyText, 52–136
mailAutoReplyTextInternal, 52–136
mgrpListTag, 52–148
preferredLanguage, 52–126

ldapaddresssearchattrs MSHTTP option, 42–9
ldapdestination notifytarget option, 37–5
ldap_domain_attr_default_mailhost MTA
option

Empty value causes domain map warning,
71–75
Invalid value causes domain map warning,
71–78
Multi-valued causes domain map warning,
71–80
Short form host name value causes domain
map warning, 71–83

ldap_spare_* MTA options, 52–133
*_ACCESS mapping table probes, 57–8
-spares switch of test -rewrite, 71–128
FORWARD mapping table probes, 48–61
SIEVE_EXTLISTS mapping probes, 5–35

listID
Example, 49–12

mail
Address reversal, reverse_url filter, 48–51
FROM_ACCESS mapping table use, 57–15
Head-of-household use, 5–89
Mailing list membership definitions, 49–11
Omitting from group definition, 49–19
Presence on group LDAP entry, 49–17
SASL library use, 57–15
Typically requested in LDAP URL alias
lookups, 48–43
uniqueMember group members, 49–11
URL filter for finding use certificate,
usercertfilter S/MIME option, 43–1

mailAccessProxyReplay, 41–20
mailAllowedServiceAccess

Authentication library use, 52–109
SMTP AUTH effect, 62–63

mailAlternateAddress
Address reversal, 48–51

Index–81

URL filter for finding use certificate,
usercertfilter S/MIME option, 43–1

mailAntiUBEService, 52–129
mailAutoReplyMode

vacation message format, 60–9
mailAutoReplySubject

Language-tag, 52–135
mailAutoReplyText

Language-tag, 52–136
Vacation message not generated, 5–54

mailAutoReplyTextInternal
Default for ldap_autoreply_text_internal
MTA option, 52–136
Language-tag, 52–136
Vacation message not generated, 5–54

mailAutoReplyTimeout
Vacation message not generated, 5–54

mailAutoReplyTimeOut
vacation_maximum_timeout MTA option,
52–72, 52–108
vacation_minimum_timeout MTA option,
52–72, 52–107

mailConversionTag, 52–131
mailDeferProcessing, 52–196

AFTER_AUTH value, Example, 49–5
Example on large mailing list, 49–20
Mass mailings, 49–22

mailDeliveryOption, 52–14, 52–196
Custom values for custom ims-ms_* channel
delivery, 64–5
Default behavior if attribute is missing,
52–100, 52–127
Default for ldap_delivery_option MTA
option, 52–127
delivery_options interpretation, 52–98, 52–127
mailbox delivery via ims-ms channel, 64–4

mailDeliveryOptions
forward, sieve_user_carryover MTA option,
52–106, 52–241

mailDomainMsgMaxBlocks
Address reversal, 48–51
error_text_list_block_over MTA option,
52–169
error_text_user_block_over MTA option,
52–170

mailDomainReportAddress
Address reversal, 48–51

mailDomainSenderSieve, 52–156
mailDomainStatus

acceptalladdresses channel option, 46–34
Default for ldap_domain_attr_mail_status
MTA option, 16–9, 52–153

Empty value causes domain map warning,
71–74
Hold channel, 65–10
Hold channel, Releasing messages, 65–11
Multi-valued causes domain map warning,
71–79
Overquota, error_text_over_quota MTA
option, 52–171
spooftempfail POP Proxy option, 41–21
Unrecognized value causes domain map
warning, 71–77
Values that disable vacation message
generation, 5–53

mailDomainWelcomeMessage, 16–23
mailEquivalentAddress

Address reversal, 48–51
URL filter for finding use certificate,
usercertfilter S/MIME option, 43–1

mailEventNotificationDestination, 37–5
mailHost

aliasdetourhost override of, 46–37, 46–68
checkmailhost Message Store option, 26–8
dequeueremoveroute channel option, 46–44
enqueueremoveroute channel option, 46–44
Error text when a user entry that needs a
mailHost, lacks one, 52–168
IMAP AUTHURL use, 62–9
IMAP_WRONG_MAILHOST error status,
38–1, 64–10
proxytrustmailhost base option, 16–13
storehostlist Proxy option, 40–2

Mailing lists
mail, Fetched during head of household Sieve
filter lookups, 52–138
mailHost,
ldap_domain_attr_default_mailhost MTA
option, 52–156
mailSieveRuleSource, Fetched during head of
household Sieve filter lookups, 52–138
mgrpDigestInterval, 52–147
uniqueMember, 49–12

mailMessageStore
IMAP_PARTITION_UNKNOWN error
status, 38–2, 64–10

mailMsgMaxBlocks, 52–132
Address reversal, 48–51
Notification messages, 60–26

mailMsgQuota
Can be reported in Message Store quota
warning messages, 26–14, 27–1
Text of quotaexceededmsg message, 26–14,
27–1

mailQuota

Index–82 Messaging Server Reference

Can be reported in Message Store quota
warning messages, 26–14, 27–1
IMAP_MESSAGE_TOO_LARGE error, 64–9
Text of quotaexceededmsg message, 26–14,
27–1

mailRoutingAddress, 52–127
mailRoutingHosts

route_to_routing_host MTA option, 52–106
mailRoutingSmartHost

enqueueremoveroute channel option, 46–44
mailSieveRuleSource

Head-of-household use, 5–89
mailSMTPSubmitChannel, 46–91, 46–141,
46–174, 52–109

Use with FUTURERELEASE, 62–12
mailUserStatus

acceptalladdresses channel option, 46–34
Authentication library use, 52–109
Default for ldap_user_mail_status MTA
option, 52–121
Deleted or removed, error_text_deleted_user
MTA option, 52–172
Hold channel, 65–10
Hold channel, Releasing messages, 65–11
Inactive, error_text_inactive_user MTA
option, 52–172
Overquota, error_text_over_quota MTA
option, 52–171
Set to overquota by Message Store, 26–13
SMTP AUTH effect, 62–63
spooftempfail POP Proxy option, 41–21
Values that disable vacation message
generation, 5–53

memberOf
Example, 49–12

memberURL
Example, 49–10
Example in meta-list, 49–15
Mailing list membership, 49–19
Mass mailings, 49–9
process_substitutions MTA option, 52–105

Message size limits
ldap_blocklimit MTA option, 52–132
ldap_domain_attr_blocklimit MTA option,
52–154
ldap_domain_attr_sourceblocklimit MTA
option, 52–158
ldap_maximum_message_size MTA option,
52–141
ldap_sourceblocklimit MTA option, 52–125
mailDomainMsgMaxBlocks, 52–154
mailMsgMaxBlocks, 52–132
mgrpMsgMaxSize, 52–141

mgmanhidden
filterhiddenmailinglists MSHTTP option,
42–7

mgmanMemberVisibility
Default for ldap_expandable MTA option,
52–149

mgrpAddHeader
Default for ldap_add_header MTA option,
52–147

mgrpAllowedBroadcaster, 52–195
Default for ldap_auth_url MTA option,
52–141
Example, 49–20
Moderated mailing lists, 49–4
Multiple values ORed, 49–3
process_substitutions MTA option, 52–105

mgrpAllowedDomain
Default for ldap_auth_domain MTA option,
52–141
Multiple values ORed, 49–3

mgrpAuthPassword
Example, 49–21

mgrpBroadcasterPolicy, 52–140
Example, 49–20

mgrpDelayNotifications, 52–147
mgrpDeliverTo

Mass mailings, 49–9
process_substitutions MTA option, 52–105

mgrpDisallowedBroadcaster
Default for ldap_cant_url MTA option, 52–140
process_substitutions MTA option, 52–105

mgrpDisallowedDomain
Default for ldap_cant_domain MTA option,
52–141

mgrpErrorsTo
Analogous to alias_envelope_from alias
option, 48–15
Mailing list vs. group, 49–16, 49–17
Moderated mailing lists, 49–4
Setting to / value, 49–18

mgrpMaxMessagesPerDay
Default for
ldap_maximum_messages_per_day MTA
option, 52–142

mgrpModerator
Moderated mailing lists, 49–4
process_substitutions MTA option, 52–105

mgrpMsgMaxSize
Default for ldap_maximum_message_size
MTA option, 52–141
error_text_list_block_over MTA option,
52–169

Index–83

error_text_user_block_over MTA option,
52–170

mgrpMsgPrefixText
-additions switch of test -rewrite, 71–121
Default for ldap_prefix_text MTA option,
52–148

mgrpMsgRejectAction, 52–140
Moderated mailing lists, 49–4

mgrpMsgRejectText, 52–140
mgrpMsgSuffixText

-additions switch of test -rewrite, 71–121
Default for ldap_suffix_text MTA option,
52–148

mgrpRejectText, 52–140
mgrpRemoveHeader

Default for ldap_remove_header MTA option,
52–147

mgrpUniqueId
Default for ldap_list_id MTA option, 52–139

mgrpURLResultMapping
Example, 49–14

msgVanityDomain, 48–8
domain_match_url MTA option, 52–85

MTA use of, 52–109
Multi-purpose use, 52–108
objectClass

ldap_objectclass MTA option, 52–120
PAB

displayName, 5–36
memberOfPiGroup, 5–36
piEmail*, 5–36
piEntryID, 5–36

Parental controls
ldap_filter_reference MTA option, 52–138
ldap_filter_reference MTA option, Sieve
hierarchy, 5–81
ldap_hoh_filter MTA option, Sieve hierarchy,
5–81
ldap_parental_controls MTA option, 52–138

preferredLanguage
Address reversal, 48–51
DISPOSITION_LANGUAGE mapping table
probes, 52–126
Effect on mgrpListTag, 52–148
IMAP SEARCH,
diacritical_sensitive_languages IMAP option,
34–14
NOTIFICATION_LANGUAGE mapping
table probes, 52–126

Sieve filters
ldap_domain_attr_filter MTA option, 52–156
ldap_filter_reference MTA option, 52–138
ldap_hoh_filter MTA option, 52–102, 52–150

mailDomainSieveRuleSource, 52–156
mailSieveRuleSource, 52–138

SMSdomain, 49–14
smsID, 49–14
Source channel switch

ldap_source_channel MTA option, 52–126
sunPreferredDomain

Absence causes domain map error, 71–82
Invalid value (Schema 2 mode) causes
domain map error, 71–73
Multi-valued causes domain map warning,
71–79
Short form host name (Schema 2 mode)
causes domain map error, 71–84
Two domain entries claiming causes domain
map error, 71–73
Value too long causes domain map error,
71–74

uid
Authentication library use, 52–109
Canonical authenticated identity in
BURL_ACCESS probes, 62–8
Changes should be avoided, 52–122
Illegal characters, Error text, 52–168
Invalid characters in, 52–104
ldap_domain_attr_uid_separator MTA
option, 16–8, 52–152
ldap_uid MTA option, 52–123
Length limit, 52–104, 52–123
Logging via log_uid MTA option, 52–297
mailbox delivery via ims-ms channel, 64–4
Must be single-valued, 52–123

uniqueMember, 49–11
group_dn_template MTA option, 52–15
Interpretation affected by group_dn_template
MTA option, 52–101

User
Capture attribute, ACI, 67–6
cn, Used by MSHTTP if fullfromheader
MSHTTP option set, 42–8
Extra or "spare" attributes, *_ACCESS
mapping table probes, 57–8
Extra or "spare" attributes, -spares switch of
test -rewrite, 71–128
Extra or "spare" attributes, FORWARD
mapping table probes, 48–61
Extra or "spare" attributes, ldap_spare_* MTA
options, 52–133
Extra or "spare" attributes, SIEVE_EXTLISTS
mapping probes, 5–35
extrauserldapattrs MSHTTP option, 42–7
inetUserStatus, Authentication library use,
52–109

Index–84 Messaging Server Reference

ldapdestination, 37–2
ldap_autoreply_addresses MTA option, ACI
on, 52–137
ldap_filter_reference MTA option, Sieve
hierarchy, 5–81
ldap_personal_name MTA option, 52–128
ldap_preferred_country MTA option, 52–127
mail, Default for ldap_auth_attr_sender MTA
option, 52–161
mail, Default for ldap_default_attr MTA
option, 52–91
mail, Fetched during head of household Sieve
filter lookups, 52–138
mail, Head-of-household purposes, 52–102,
52–150
mailAllowedServiceAccess, 41–30
mailAllowedServiceAccess, altservice
MSHTTP option, 42–4
mailAllowedServiceAccess, Authentication
library use, 52–109
mailAllowedServiceAccess, TCP wrapper
access filter, 6–7
mailAllowedServiceAccess, TCP wrapper
access filters, 6–2, 6–8
mailAllowedServiceAccess, TCP wrapper
syntax, 6–4
mailAlternateAddress, Matching for vacation
message generation, 5–52
mailAutoReply*, Vacation message
generation, 5–52
mailAutoReplyMode, ACI, 52–134
mailAutoReplyMode, Default for
ldap_autoreply_mode, 52–134
mailAutoReplySubject, ACI, 52–135
mailAutoReplySubject, Default for
ldap_autoreply_subject MTA option, 52–134
mailAutoReplyText, ACI, 52–135
mailAutoReplyText, Default for
ldap_autoreply_text MTA option, 52–135
mailAutoReplyTextInternal, ACI, 52–136
mailAutoReplyTextInternal,
vnd.sun.autoreply-internal Sieve
environment item, 5–20
mailAutoReplyTimeout, ACI, 52–137
mailAutoReplyTimeout, Default for
ldap_autoreply_timeout MTA option, 52–137
mailCaptureInternet (site-defined), 5–41
mailConversionTag, MESSAGE-SAVE-COPY
mapping table detection of, 67–5
mailDeferProcessing, Default for
ldap_reprocess MTA option, 52–139
mailDeliveryOption value of program, Pipe
options, 65–15

mailDeliveryOption, Default behavior if
attribute is missing, 52–100, 52–127
mailDeliveryOption, Default for
ldap_delivery_option MTA option, 52–127
mailDeliveryOption, nomail, 49–23, 52–99
mailDeliveryOption, Pipe channel, 65–15
mailDeliveryOptions, Forwarding user's mail,
48–60
mailEquivalentAddress, Matching for
vacation message generation, 5–52
mailForwardingAddress, ACI, 52–138
mailForwardingAddress, Default for
ldap_forwarding_address MTA option,
52–138
mailForwardingAddress, Forwarding user's
mail, 48–60
mailHost, aliasdetourhost override of, 46–37,
46–68
mailHost, checkmailhost Message Store
option, 26–8
mailHost, Default for
ldap_auth_attr_mail_host MTA option,
52–161
mailHost, Default for ldap_mailhost MTA
option, 52–132
mailHost, Fallback if MSHTTP option
smtphost hosts not responding, 42–13
mailHost,
ldap_domain_attr_default_mailhost MTA
option, 52–156
mailHost, ldap_host_alias_list base option,
16–10
mailHost, mailhostattrs mmp/imapproxy/
popproxy/vdomain option, 41–18
mailHost, proxytrustmailhost base option,
16–13
mailMsgMaxBlocks, 52–132
mailMsgQuota, Message type example, 26–26
mailMsgQuota, Override
defaultmessagequota store option, 26–10
mailMsgQuota, Per message type, 26–27
mailProgramDeliveryInfo, $P substitution in
LDAP URLs, 1–8
mailProgramDeliveryInfo, Pipe channel,
65–15
mailQuota, Message type example, 26–26
mailQuota, Override defaultmailboxquota
store option, 26–10
mailQuota, Per message type, 26–27
mailSieveRuleSource, 46–119
mailSieveRuleSource, ACI, 52–138
mailSieveRuleSource, Default for ldap_filter
MTA option, 52–138

Index–85

mailSieveRuleSource, Fetched during head of
household Sieve filter lookups, 52–138
mailSieveRuleSource, Head-of-household
purposes, 52–102, 52–150
mailSieveRuleSource, Sieve hierarchy, 5–81
mailSMTPSubmitChannel, 46–91, 52–109
mailSMTPSubmitChannel, Default for
ldap_auth_attr_submit_channel MTA option,
52–161
mailSMTPSubmitChannel, saslswitchchannel
channel option, 46–26
mailSMTPSubmitChannel, SMTP long lines,
46–147
mailUserStatus, Authentication library use,
52–109
mailUserStatus, Set to overquota by Message
Store, 26–13
msgVanityDomain, 47–32, 48–8, G–12
objectClass, 52–120, 52–120
Passed to third-party authentication server,
authenticationldapattributes auth option,
21–1, 41–6
preferredLanguage, ldap_preferred_language
MTA option, 52–126
preferredLanguage, ldap_spare_4,
ldap_spare_5, ldap_spare_6 values, 52–134
psroot, 5–36
uid, $M substitution in LDAP URLs, 1–7
uid, Authentication library use, 52–109
uid, canonicalsearchfilter auth option, 21–3
userCertificate, verifycert Base certmap
option, 16–27
userPassword, 52–109
userPassword, ACI on, 21–2
userPassword, authecachettl timeout on
caching, 41–6
userPassword, broken_client_login_charset
Auth option, 21–2
userPassword, Correcting incompliant
password entry, 21–2
userPassword, crams mmp/imapproxy/
popproxy/vdomain option, 41–11
vacation*, Vacation message generation, 5–52
vacationEndDate, Default for ldap_end_date
MTA option, 52–131
vacationStartDate, Default for ldap_start_date
MTA option, 52–130

User-modifiable, 52–120
ldap_autoreply_addresses MTA option,
52–137
mailAutoReplyMode, 52–134
mailAutoReplySubject, 52–135
mailAutoReplyText, 52–135

mailAutoReplyTextInternal, 52–136
mailAutoReplyTimeout, 52–137
mailDeliveryOption, 52–127
mailForwardingAddress, 52–138
mailProgramDeliveryInfo, 52–133
mailSieveRuleSource, 52–138
preferredLanguage, 52–126
userPassword, 52–109
vacationEndDate, 52–131
vacationStartDate, 52–131

userID
Synonym for uid, 52–104

userPassword
ACI on, broken_client_login_charset Auth
option, 21–2
Authentication library use, 52–109
broken_client_login_charset Auth option,
21–2

Vacation message generation
Address recognition,
ldap_autoreply_addresses MTA option,
52–137
mailAutoReplyMode, 52–134
mailAutoReplySubject, 52–134
mailAutoReplyText, 52–135
mailAutoReplyTextInternal, 52–136
mailAutoReplyTimeout, 52–137
mailSieveRuleSource, 52–138
preferredLanguage, 52–135, 52–136
preferredLanguage, mailAutoReplySubject
language-tag, 52–134

vacationEndDate
Current date comparison for vacation
message generation, 5–53

vacationStartDate
Current date comparison for vacation
message generation, 5–53

LDAP bind and connect MTA options, 52–81
LDAP external directory lookups

Example, 49–15, 62–49
extldap: and extldaps: URLs, 1–4
ldap_ext_host MTA option, 52–193
ldap_ext_max_connections MTA option, 52–193
ldap_ext_password MTA option, 52–193
ldap_ext_port MTA option, 52–193
ldap_ext_username MTA option, 52–193
MTA options, 52–192

LDAP lookups
Debugging

mm_debug MTA option, 52–79
ldap: and ldaps: URLs, 1–4
Mapping tables, 50–15
maxldaplimit MSHTTP option, 42–10

Index–86 Messaging Server Reference

MMP POP and IMAP proxy
Performance, 41–28

Performance impact, 69–2
Recipe language, 4–34
Rewrite rules, 47–22

LDAP object classes
certificationauthority, 43–2, 43–2
Domain

inetDomain, 16–10, 52–88, 52–94
inetdomainalias, 16–10, 52–88, 52–94
sunManagedOrganization, 16–10, 52–88,
52–94

Group
inetLocalMailRecipient, iMS 5.0 schema,
52–95
inetmailgroup, iMS 5.0 schema, 52–95
inetmailgroup, SIMS 4.0 schema, 52–95
inetMailRouting, SIMS 4.0 schema, 52–95
ldap_group_object_classes MTA option,
52–95
mailGroup, NMS 4.1 schema, 52–95

groupOfUniqueNames
Present on admin users, 71–68

inetMailAdministrator
Present on admin users, 71–68

inetOrgPerson
Defined in RFC 2798, 52–97, 52–108

ldap_objectclass MTA option, 52–120
msgCRLMappingTable, 43–5
PiTypeGroup, 5–36
User

Authentication purposes, searchfilter auth
option, 52–96
Client certificate, filtercomps certmap option,
16–27
inetLocalMailRecipient, iMS 5.0 schema,
52–95
inetMailRouting, SIMS 4.0 schema, 52–95
inetMailUser, 49–11
inetmailuser, canonicalsearchfilter Auth
option, 21–3
inetmailuser, Default searchfilter for
authentication, 21–3
inetmailuser, iMS 5.0 schema, 52–95
inetmailuser, searchfilter auth option, 52–95
inetmailuser, SIMS 4.0 schema, 52–95
inetOrgPerson, 49–11
inetOrgPerson, Defined in RFC 2798, 52–97,
52–108
ldap_user_object_classes MTA option, 52–95
mailRecipient, NMS 4.1 schema, 52–95
nsMessagingServerUser, NMS 4.1 schema,
52–95

LDAP PAB MTA options, 52–193
LDAP schema, 41–14, 52–108, G–9

ACIs
mailAutoReplyTimeout attribute, 52–137
User-modifiable LDAP attributes, 52–120

Base DN for domain portion of the DIT
ldap_domain_root MTA option, 52–88, 52–94

Base DN for the user portion of the DIT
ldap_user_root MTA option, 52–92, 52–96

Default for group objectClasses, 52–95
Default for user objectClasses, 52–95
Extending, 16–27

ldap_domain_known_attributes MTA option,
16–7, 52–88
mailAutoReply* attributes on mailing lists
and groups, 52–98

iMS 5.0
ldap_schematag MTA option, 52–95

ldap_schemalevel base option, 16–7, 52–95
ldap_schematag MTA option, 52–95
MTA options, 52–93
NMS 4.1

ldap_schematag MTA option, 52–95
Renaming attributes of, 52–161
RFC 2798, 52–108
SIMS 4.0

ldap_schematag MTA option, 52–95
Tag, G–9

ldap_schematag MTA option, 52–95
LDAP server

Connection
ldaprefreshinterval mmp/imapproxy/
popproxy option, 41–16

Performance
ldap_domain_known_attributes MTA option,
16–7, 52–88

Problems
Authentication server unavailable, 62–64

Timeout on modifications
ldapmodifytimeout base option, 16–10

Timeout on queries
ldapsearchtimeout base option, 16–11
ldaptimeout mmp/imapproxy/popproxy
option (DEPRECATED), 41–16

LDAP StartTLS
ldaprequiretls base option, 16–11

LDAP URL
Length limit, 50–16

See Length limits in configuration, 48–7
Mapping table substitution, 50–15
max_urls MTA option, 52–83
Quoting (encoding) requirements, 50–15
Recursive references

Index–87

max_urls MTA option, 52–83
Rewrite rule substitution, 47–22
Substitution sequences, 1–5

$A, Used in group_dn_template value, 49–12
$A, Used in GROUP_TEMPLATES mapping
table template, 49–13
$B, Used in GROUP_TEMPLATES mapping
table template, 49–13
$S, Example in meta-list, 49–15
process_substitutions MTA option, 52–105
Special interpretation in
spamfilterN_action_M MTA options, 52–254

Syntax
Alias value (in alias file or alias database),
48–43
alias_urlN MTA options, 48–6
ldap_default_attr MTA option, 52–91

ldap: URLs
ldap:///$V?$N?sub?$R

reverse_url option's default value, 52–93
ldap:///$V?*?sub?$R

alias_url0 option's default value, 52–91
MTA URL types, 1–4
Syntax, 47–22

Substitution sequences, 1–5
ldapaddresssearchattrs MSHTTP option, 42–9
ldapbasedn PAB option, 72–1
ldapbinddn PAB option, 72–2
ldapcachesize MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–15
ldapcachettl MMP et al. option, 41–16
ldapconnecttimeout base option, 16–10

Direct LDAP alias lookups, 48–5
ldapdestination notifytarget option, 37–5
ldaphost PAB option, 72–2

ldap_pab_host MTA option override for MTA
PAB query purposes, 52–194

ldapmodifytimeout base option, 16–10
ldappasswd PAB option, 72–2
ldappendingoplimit IMAP Proxy, POP Proxy, and
MMP option, 41–16
ldappoolrefreshinterval base option, 16–10
ldapport PAB option, 72–2
ldaprefreshinterval mmp/imapproxy/popproxy
option, 41–16
ldaprequiretls base option, 16–11

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

ldaps: URLs
MTA URL types, 1–4

ldapsearchtimeout base option, 16–11
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

ldaptimeout option (DEPRECATED), 41–16
ldaptrace base option, 16–11
ldapurl MMP/IMAP Proxy/POP Proxy option,
41–16
ldapusessl PAB option, 72–2
ldap_add_header MTA option, 52–147
ldap_alternate_recipient MTA option, 52–130
ldap_attr_domain1_schema2 MTA option, 52–86,
52–151
ldap_attr_domain2_schema2 MTA option, 52–87,
52–151
ldap_attr_domain_search_filter MTA option,
52–87, 52–93, 52–151
ldap_auth_attr_hold_for MTA option, 52–161
ldap_auth_attr_mail_host MTA option, 52–161
ldap_auth_attr_recall_secret MTA option, 52–161
ldap_auth_attr_sender MTA option, 52–161

authrewrite channel option, 46–39, 46–72, 46–162
ldap_auth_attr_submit_channel MTA option,
52–161

Use with FUTURERELEASE, 62–12
ldap_auth_domain MTA option, 52–141
ldap_auth_mappingN MTA option, 52–149
ldap_auth_password MTA option, 52–142
ldap_auth_policy MTA option, 52–140
ldap_auth_url MTA option, 52–141
ldap_autoreply_addresses MTA option

Vacation message not generated, 5–53
ldap_autoreply_reply MTA option

Vacation message not generated, 5–54
ldap_autoreply_text MTA option

Vacation message not generated, 5–54
ldap_autoreply_text_internal MTA option

Vacation message not generated, 5–54
vnd.sun.autoreply-internal Sieve environment
item, 5–20

ldap_autoreply_timeout MTA option, 52–70
ldap_autosecretary MTA option, 52–130
ldap_basedn_filter_schema1 base option, 16–9,
52–87, 52–94
ldap_basedn_filter_schema1 MTA option, 16–9,
52–87, 52–94
ldap_basedn_filter_schema2 base option, 16–9,
52–87, 52–94
ldap_basedn_filter_schema2 MTA option, 16–9,
52–87, 52–94
ldap_blocklimit MTA option, 46–123, 52–132

acceptalladdresses channel option, 46–34
ldap_cant_domain MTA option, 52–141
ldap_cant_url MTA option, 52–140
ldap_capture MTA option, 52–124
ldap_check_header MTA option, 52–150
ldap_conversion_tag MTA option, 52–131

Index–88 Messaging Server Reference

ldap_creation_date MTA option, 52–160
ldap_default_attr MTA option, 52–91
ldap_default_domain MTA option, 52–87, 52–102

Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32
Twin of base.defaultdomain, 16–5, 41–13

ldap_delay_notifications MTA option, 52–147
ldap_delivery_file MTA option, 52–133
ldap_delivery_option MTA option, 52–127

Deferred expansion of groups, 52–196
delivery_options interpretation, 52–98
Direct LDAP address processing, 48–3

ldap_detourhost_optin MTA option, 52–131
ldap_disk_quota MTA option, 52–133

User LDAP attribute to override
defaultmailboxquota, 26–10

ldap_domain_attr_alias base option, 16–8, 52–151
ldap_domain_attr_alias MTA option, 16–8, 52–151
ldap_domain_attr_autoreply_timeout MTA option,
52–70, 52–155
ldap_domain_attr_autosecretary MTA option,
52–155
ldap_domain_attr_basedn base option, 16–8,
52–151
ldap_domain_attr_basedn MTA option, 16–8,
52–151
ldap_domain_attr_blocklimit MTA option, 46–123

acceptalladdresses channel option, 46–34
ldap_domain_attr_capture MTA option, 52–157
ldap_domain_attr_catchall_address MTA option,
52–157
ldap_domain_attr_catchall_mapping MTA option,
52–158

Compared to FORWARD mapping table, 48–63
ldap_domain_attr_conversion_tag MTA option,
52–154
ldap_domain_attr_creation_date MTA option,
52–160
ldap_domain_attr_detourhostoptin MTA option,
52–160
ldap_domain_attr_disk_quota MTA option, 52–156
ldap_domain_attr_filter MTA option, 52–156

Sieve hierarchy, 5–81
ldap_domain_attr_mailserv MTA option, 52–152
ldap_domain_attr_mail_status base option, 16–9,
52–153
ldap_domain_attr_mail_status MTA option, 16–9,
52–153

Hold channel, 65–10
Releasing messages, 65–11

ldap_domain_attr_message_quota MTA option,
52–156
ldap_domain_attr_nosolicit MTA option, 52–155

ldap_domain_attr_presence MTA option, 52–155
ldap_domain_attr_pretix_text MTA option, 52–159,
52–159
ldap_domain_attr_recipientcutoff MTA option,
46–97, 46–133, 52–160
ldap_domain_attr_recipientlimit MTA option,
46–97, 46–133, 52–159
ldap_domain_attr_report_address MTA option,
52–157
ldap_domain_attr_routing_hosts MTA option,
52–153

Routing to a gateway system, 62–58
ldap_domain_attr_sender_sieve MTA option,
52–156
ldap_domain_attr_smarthost MTA option, 52–153

Routing to a gateway system, 62–58
ldap_domain_attr_sourceblocklimit MTA option,
46–123, 52–158

acceptalladdresses channel option, 46–34
ldap_domain_attr_source_channel MTA option,
46–91, 52–158

userswitchchannel channel option, 46–26
ldap_domain_attr_source_conversion_tag MTA
option, 52–155
ldap_domain_attr_status base option, 16–9, 52–153
ldap_domain_attr_status MTA option, 16–9, 52–153
ldap_domain_attr_subaddress MTA option, 52–152

Subaddresses and LDAP lookups, 48–47
ldap_domain_attr_uid_separator base option, 16–8,
52–152
ldap_domain_attr_uplevel MTA option, 52–152
ldap_domain_filter_schema1 base option, 16–10,
52–88, 52–94

Direct LDAP domain lookups, 47–32
ldap_domain_filter_schema1 MTA option, 16–10,
52–88, 52–94

Direct LDAP domain lookups, 47–32
ldap_domain_filter_schema2 base option, 16–10,
52–88, 52–94

Direct LDAP domain lookups, 47–32
ldap_domain_filter_schema2 MTA option, 16–10,
52–88, 52–94

Direct LDAP domain lookups, 47–32
ldap_domain_known_attributes base option, 16–7,
52–88

Direct LDAP domain lookups, 47–32
ldap_domain_known_attributes MTA option, 16–7,
52–88

Direct LDAP domain lookups, 47–32, 47–32
ldap_domain_root MTA option, 52–88, 52–94

Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32
Twin of base.dcroot, 16–4

Index–89

ldap_domain_timeout base option, 16–7, 52–88,
52–163
ldap_domain_timeout base/MTA option

TCP wrappers, 6–2
ldap_domain_timeout MTA option, 16–7, 52–88,
52–163

Direct LDAP domain lookups, 47–32, 47–32
ldap_end_date MTA option, 52–131

Current date comparison for vacation message
generation, 5–53

ldap_errors_to MTA option, 52–146
ldap_expandable MTA option

expn* channel options, 46–139
ldap_filter MTA option, 52–138

Sieve hierarchy, 5–81
ldap_filter_reference MTA option

Sieve hierarchy, 5–81
ldap_global_config_templates MTA option, 52–94
ldap_group_dn MTA option, 52–144
ldap_group_mail_status MTA option, 52–122
ldap_group_object_classes MTA option, 52–95
ldap_group_object_classses MTA option

Direct LDAP alias lookups, 48–6
ldap_group_rfc822 MTA option, 52–145
ldap_group_status MTA option, 52–121
ldap_hoh_filter MTA option, 52–102, 52–150
ldap_hoh_owner MTA option, 52–102, 52–150

Sieve syntax error notification messages, 60–2
ldap_host MTA option, 52–81

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Twin of ugldaphost base option, 16–22

ldap_host_alias_list base option, 16–10
ldap_host_alias_list MTA option, 52–89, 52–103

Direct LDAP alias lookups, 48–6
ldap_jettison_domain MTA option, 52–139
ldap_jettison_url MTA option, 52–139
ldap_list_advertised MTA option, 52–199
ldap_list_description MTA option, 52–199
ldap_list_name MTA option, 52–199
ldap_list_public_roster MTA option, 52–199
ldap_list_subscribe_policy MTA option, 52–199
ldap_list_trust_new_members MTA option, 52–199
ldap_list_unsubscribe_policy MTA option, 52–199
ldap_local_host MTA option, 52–89, 52–104

Direct LDAP alias lookups, 48–6
L channel official_host_name, 46–88
Twin of base.hostname, 16–6

ldap_mailhost MTA option, 52–132
ldap_mail_aliases MTA option, 52–92

Direct LDAP alias lookups, 48–6
ldap_mail_reverses MTA option, 52–92

ldap_maximum_message_size MTA option,
46–123, 52–141

acceptalladdresses channel option, 46–34
ldap_max_connections MTA option, 52–81

Direct LDAP domain lookups, 47–32, 48–6
ldap_message_quota MTA option, 52–133, 52–133

User LDAP attribute to override
defaultmessagequota, 26–10

ldap_mlsrange MTA option, 52–124
ldap_mlsub_action_key MTA option, 52–198
ldap_mlsub_digest MTA option, 52–198
ldap_mlsub_join_date MTA option, 52–198
ldap_mlsub_join_ip MTA option, 52–198
ldap_mlsub_list_id MTA option, 52–198
ldap_mlsub_mail MTA option, 52–198
ldap_mlsub_object_class MTA option, 52–198
ldap_mlsub_receive_mail MTA option, 52–198
ldap_mlsub_role MTA option, 52–198
ldap_mlsub_suppress_duplicates MTA option,
52–198
ldap_mlsub_tentative_email MTA option, 52–198
ldap_mlsub_track MTA option, 52–198
ldap_mluser_basedn MTA option, 52–198
ldap_mluser_join_date MTA option, 52–198
ldap_mluser_join_ip MTA option, 52–198
ldap_mluser_mail MTA option, 52–198
ldap_mluser_name MTA option, 52–198
ldap_mluser_object_class MTA option, 52–198
ldap_mluser_password MTA option, 52–198
ldap_mluser_unique_id MTA option, 52–198
ldap_moderator_url MTA option, 52–142
ldap_optin* MTA options, 52–129
ldap_optout* MTA options, 52–130
ldap_pab_host MTA option, 52–194
ldap_pab_max_connections MTA option, 52–194
ldap_pab_password MTA option, 52–194
ldap_pab_port MTA option, 52–194
ldap_pab_username MTA option, 52–194
ldap_password MTA option, 52–81

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Twin of base.ugldapbindcred, 16–22

ldap_permid base option, 52–122
ldap_personal_name MTA option, 52–128

PERSONAL_NAMES mapping table, 48–57
ldap_port MTA option, 52–81

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Twin of ugldapport base option, 16–23

ldap_prefix_text MTA option
-additions switch of test -rewrite, 71–121

ldap_presence MTA option, 52–130
ldap_primary_address MTA option, 52–128

Index–90 Messaging Server Reference

ldap_program_info MTA option
$P substitution in LDAP URLs, 1–8

ldap_recipientcutoff MTA option, 46–97, 46–133,
52–125
ldap_recipientlimit MTA option, 46–97, 46–133,
52–124
ldap_reject_action MTA option, 52–140
ldap_reject_text MTA option, 52–140
ldap_remove_header MTA option, 52–147
ldap_reprocess MTA option, 52–139

Deferred expansion of groups, 52–196
Mass mailings, 49–22

ldap_routing_address MTA option, 52–127
ldap_schemalevel base option, 16–7, 52–95
ldap_schemalevel MTA option, 16–7, 52–95
ldap_schematag MTA option, 52–95

Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32

ldap_sender_sieve MTA option, 52–128
ldap_sourceblocklimit MTA option, 46–123, 52–125

acceptalladdresses channel option, 46–34
ldap_source_channel MTA option, 52–126

Name of attribute used for userswitchchannel
purposes, 46–91
userswitchchannel channel option, 46–26

ldap_source_conversion_tag MTA option, 52–128
ldap_source_optin* MTA options, 52–126

Archiving, 67–21
ldap_spare_4 MTA option

SIEVE_EXTLISTS mapping probes, 5–35
ldap_spare_5 MTA option

SIEVE_EXTLISTS mapping probes, 5–35
ldap_spare_6 MTA option

SIEVE_EXTLISTS mapping probes, 5–35
ldap_start_date MTA option, 52–130

Current date comparison for vacation message
generation, 5–53

ldap_suffix_text MTA option
-additions switch of test -rewrite, 71–121

ldap_timeout MTA option, 52–82
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

ldap_uid MTA option, 52–123
$M substitution in LDAP URLs, 1–7

ldap_uid_invalid_chars MTA option, 52–104
ldap_url_result_mapping MTA option, 52–145

Example, 49–14
ldap_username MTA option, 52–83

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Twin of base.ugldapbinddn, 16–22

ldap_user_mail_status MTA option, 52–121
Hold channel, 65–10

Releasing messages, 65–11
ldap_user_object_classes MTA option, 52–95
ldap_user_object_classses MTA option

Direct LDAP alias lookups, 48–6
ldap_user_root MTA option, 52–92, 52–96

Direct LDAP alias lookups, 48–6
Twin of base.ugldapbasedn, 16–22

ldap_user_status MTA option, 52–120
ldap_use_async MTA option, 52–82

Mass mailings, 49–22
LDIF, G–6

Recipe language use of
ldap_ldif function, 4–14, 4–35

Legacy configuration
option.dat file, 52–8, 52–9

legacy_proxyauth IMAP option, 34–15
Length limits in configuration, 52–91

Alias file
Alias length, 48–25
Alias translation address length, 48–25
Number of alias translation addresses, 48–25
Physical line, 48–25

alias_urlN template
LDAP URL substitution results, 48–7

Channel names, 46–2
Channel option arguments, 46–8
Conversion tags, 51–3
delivery_options MTA option

Length of each clause, 52–101
Number of clauses, 52–98, 52–100

Header label length
256 characters, addheader Sieve action, 5–31

mailAutoReplySubject value, 52–135
Mapping tables

Line length, 50–3
Number of entries, 50–3
Pattern length, 50–3
Probe length, 50–3
Probe strings, 51–3
Table name length, 50–3
Template length, 50–3

Message size
SpamAssassin, MESSAGE_BUFFER_SIZE
SpamAssassin option, 58–9

Option value, 52–10
reverse_url MTA option value, 52–93
Rewrite rules

LDAP URL substitution results, 47–24
Pattern length, 47–2
Template length, 47–2

Sieve filter string length when variables are
enabled, 52–244
spamfilterN_action_M values, 52–255

Index–91

spamfilterN_string_action, 52–258
spamfilterN_verdict_M values, 52–254

limitheadertermination channel option, 46–81
Line continuation

In aliases file, 48–25
Line wrapping

For display
CHARSET-CONVERSION mapping table,
51–18
CONVERSIONS mapping table, 51–4

Header lines
LINELENGTH header trimming option,
46–177
MIME parameter segmentation, 46–57, 46–61

linelength channel option, 46–54
linelimit channel option, 46–123

acceptalladdresses channel option, 46–34
error_text_line_over MTA option, 52–169

lines_to_return MTA option, 52–227
line_limit MTA option, 46–123, 52–221

acceptalladdresses channel option, 46–34
Linux

dbtmpdir Message Store option, 26–10
lockdir base option, 16–12
tmpdir base option, 16–22
tmpdir Message Store archive option, 26–19
tmpdir MTA option, 52–164

listenaddr base option, 16–11
ENS server host, 74–1

listenaddr Dispatcher option, 54–6
listenaddr Dispatcher service option, 54–6
listenaddr Job Controller option, 55–10
listenaddr MeterMaid option, 59–3
listenaddr SNMP option, 73–1
listen_addresses SMS smpp_relay option, 66–9
listen_addresses SMS smpp_server option, 66–12
listen_addresses tcp_listen option, 41–29
listen_receive_timeout smpp_relay option, 66–9,
66–13
listen_receive_timeout smpp_server option, 66–9,
66–13
listen_transmit_timeout SMS smpp_relay and
smpp_server option, 66–9, 66–13
listimplicit Message Store option, 26–12
listurl base option, 16–11
lmtp channel option, 46–140
LMTP channels, 62–13

Client, 62–14
defragment option, 65–3
delivery_options MTA option, 52–99
multigate channel option, 52–100
Rewrite rules, 52–100

Errors, 64–8

Line terminators
lmtp* channel options, 46–141

Message Store stress, 55–4
250 2.3.99 Delivery OK but store under stress,
55–4

noticehost alarm option, 20–1
Options, 62–18

See also TCP/IP channels, Options, 62–18
Performance, 69–2
See also TCP/IP channels, 62–3
Server, 62–14

-lmtpused switch of test -rewrite, 71–125
Access control, See PORT_ACCESS mapping
table, 57–3
BUFFER_SIZE TCP/IP-channel-specific
option, 62–24
BUFFER_SIZE TCP/IP-channel-specific
option, Performance impact, 69–1
Connection, PORT_ACCESS mapping table,
57–3
Errors, 503 5.5.0 XCLIENT illegal on LMTP
port, 46–84, 46–145, 46–172
In-memory buffering of incoming messages,
62–24
In-memory buffering of incoming messages,
Performance impact, 69–1
Line terminator(s), 46–140
Line terminators, 46–141
lmtp* channel options, 46–140
msprobe probe of, 19–2
Options, 62–17
Options, loglevel, 54–12, 55–17
Startup, Dispatcher startup, 71–61

LMTP commands
LHLO

$L input flag in AUTH_REWRITE mapping
table, 46–164
BANNER_HOST TCP/IP-channel-specific
option, 62–23
BANNER_REVERSE_HOST TCP/IP-channel-
specific option, 62–23
Host name, 46–89

RCPT TO
XAFLG parameter, 46–119, 46–136
XDFLG parameter, 46–119, 46–136

See also SMTP commands, 62–14
lmtp* channel options

Imply nonotary, 46–106, 46–144
lmtp_cr channel option, 46–140
lmtp_crlf channel option, 46–140
lmtp_crorlf channel option, 46–140
lmtp_lf channel option, 46–140
Local channel, 65–2

Index–92 Messaging Server Reference

aliaslocal channel option emulates alias
expansion behavior, 46–38
Default for -source switch of calc utility, 71–14
Default source for imsimta test -expression,
71–94
localbehavior channel option emulates, 46–45
official_host_name

Default for id_domain MTA option, 52–235
Default for received_domain MTA option,
52–236
Defragment-failed: header line, 65–5
ldap_local_host MTA option, 52–89, 52–104

Removal of source routes during rewriting, 47–8
Reprocess channel addresses, 65–20
routelocal channel option emulates route
removal behavior, 46–48
Source routes

Removal during rewriting, 47–8
local-part, G–6
local.hostname configutil parameter, 52–89, 52–104
local.imta.hostnamealiases configutil parameter

MTA use, 52–89, 52–103
localbehavior channel option, 46–45
Localization

DSNs generated by the MTA, 60–9
Error text in MTA errors, 52–167
MDNs generated by the MTA, 60–18
Welcome message for new Message Store users

welcomemsg message_language option, 27–1
localvrfy channel option, 46–137
local_format_restrictions MTA option, 52–62
local_host_alias channel option, 46–88

-local_alias switch of test -rewrite, 71–125
Overridden by BANNER_HOST, 62–23
Overridden by BANNER_REVERSE_HOST,
62–23

local_quota_checks MTA option
RESTRICTED, 52–221

lockdir base option, 16–11
lockmailbox POP option, 35–5
Locks

BDB
dblockcount base option, 16–4

LOGASSOCDEL, Failed to find and delete
association entry <detail>, 52–76, 52–269
logauthsessionid IMAP option, 34–16
logcommands IMAP option, 34–16
logdir logfile option, 41–17
logexpungedetails Message Store option, 26–12
logfile MMP/IMAP Proxy/POP Proxy options, 41–4
logfile MTA options, 52–271
logfile options, 16–23

expirytime, 16–23

filemode, 16–23
flushinterval, 16–23
logdir, 41–17
loglevel, 16–24
logmillisecond, 16–24
maxlogfiles, 16–24
maxlogfilesize, 16–24
maxlogsize, 16–25
rolloverpolicy, 16–25
rollovertime, 16–25
syslogfacility, 16–25

logfilename Dispatcher service option, 54–7
Logging

default file
Errors, msprobe timeouts, 19–1
Warnings, msprobe timeouts, 19–1

Deployment Map
debug deploymap option, 23–1

Dispatcher
debug Dispatcher option, 54–3
use_nslog Dispatcher option, 54–12

IMAP
logauthsessionid option, 34–16
logprotocolerrors IMAP option, 34–16
logunauthsession IMAP option, 34–16

imapcmd file, 34–16
ims-ms channels

LOG_DEQUEUE_RATE ims-ms-channel-
specific option, 64–7

imta file
ims-ms channel debugging, 64–7

Job Controller
debug Job Controller option, 55–10
use_nslog Job Controller option, 55–17

LMTP server
logfilename Dispatcher option, 54–7

logcommands IMAP option, 34–16
logexpungedetails Message Store option, 26–12
loglevel logfile option, 16–24
maxlog Message Store option, 26–13
maxlogfiles logfile option, 16–24
Message Store

Message Trace options, 36–1
Message Store transaction

actionattributes option, 34–3, 35–2, 36–1
actions option, 34–3, 35–2, 36–1

MeterMaid client operations
debug metermaid_client option, 59–5

MMP/IMAP Proxy/POP Proxy
use_nslog option, 41–30

msgtrace file
activate Message Trace option, 36–1
ims-ms channel, 64–7

Index–93

MSHTTP
logunauthsession MSHTTP option, 42–9

MTA
log_debug MTA option, 52–78
purge task, 17–4
Z records, backoff channel option, 46–111

MTA log files
Purging of, 17–5, 26–28

MTA message return job
return_split_period MTA option, 52–300
return_verify MTA option, 52–80

MTA transaction, 68–1
Application information, Syntax of, 68–9
B records, 68–4, 68–4
B records, MAX_B_ENTRIES TCP/IP-channel-
specific option, 62–32
Bitbucket channel, 65–2
BURL use, 62–12
Cleanup of, 68–2
Connections, C entries, 57–4
Connections, T entries, 57–4
Connections, T records, 57–3
Format, 68–3
Format, ETRN client host name, 52–291
Format, J records corresponding to rejections
due to message size, 46–124
Format, logheader channel option, 46–94
Format, log_8bit_encode MTA option, 52–299
Format, log_auth MTA option, 52–272
Format, log_callout_delays MTA option,
52–273
Format, log_connection MTA option, 52–275
Format, LOG_CONNECTION TCP/IP-
channel-specific option, 62–31
Format, log_conversion_tag MTA option,
52–276
Format, log_delivery_flags MTA option,
52–287
Format, log_diagnostics MTA option, 52–277
Format, log_dkim MTA option, 52–277
Format, log_envelope_id MTA option, 52–278
Format, log_filename MTA option, 52–278
Format, log_filter MTA option, 52–249, 52–278
Format, log_format MTA option, 52–279
Format, log_from MTA option, 52–285
Format, log_futurerelease MTA option,
52–285
Format, log_header MTA option, 52–286
Format, log_headers_maxchars MTA option,
52–287
Format, log_header_options MTA option,
52–287
Format, log_imap_flags MTA option, 52–287

Format, log_intermediate MTA option, 52–288
Format, log_isc_status MTA option, 52–288
Format, log_local MTA option, 52–288
Format, log_mailbox_uid MTA option, 52–289
Format, log_message_id MTA option, 52–290
Format, log_mtpriority MTA option, 52–291
Format, log_node MTA option, 52–291
Format, log_notary MTA option, 52–291
Format, log_priority MTA option, 52–292
Format, log_process MTA option, 52–292
Format, log_queue_time MTA option, 52–293
Format, log_reason MTA option, 52–294
Format, log_remote_mta MTA option, 52–294
Format, log_sensitivity MTA option, 52–295
Format, log_smartsend MTA option, 52–295
Format, log_times MTA option, 52–296
Format, log_tracking MTA option, 52–296
Format, log_transactionlog MTA option,
52–249, 52–296
Format, log_uid MTA option, 52–297
Format, log_username MTA option, 52–298
Format, log_use_xtext MTA option, 52–298
Format, SASL error, 52–291
Format, XML compatible, 52–280
H records, MAX_H_ENTRIES TCP/IP-
channel-specific option, 62–33
I records, Host name, 52–291
imta_primary_connection_log MTA Tailor
option (DELETED), 53–7
imta_primary_log MTA Tailor option
(DELETED), 53–7
imta_secondary_connection_log MTA Tailor
option (DELETED), 53–7
imta_secondary_log MTA Tailor option
(DELETED), 53–7
imta_tertiary_connection_log MTA Tailor
option (DELETED), 53–7
imta_tertiary_log MTA Tailor option
(DELETED), 53–7
J records, 68–4
J records, LMTP server, 68–5
J records, MAX_J_ENTRIES TCP/IP-channel-
specific option, 62–34
J records, Message size restrictions, 46–124
J records, SPF HELP/EHLO check failure,
46–159
K records, 68–4
K records, return utility, 71–55
logging channel option, 46–94, 46–94
logheader channel option, 46–94
log_8bit_encode MTA option, 52–299
log_alternate_recipient MTA option, 52–272
log_auth MTA option, 52–272

Index–94 Messaging Server Reference

LOG_BANNER TCP/IP-channels-specific
option, 62–30
log_callout_delays MTA option, 52–273
log_connection MTA option, 52–275
LOG_CONNECTION TCP/IP-channel-
specific option, 62–31
log_connections_syslog MTA option, 52–266
log_deliver_by MTA option, 52–277
log_diagnostics MTA option, 52–277
log_dkim MTA option, 52–277
log_envelope_id MTA option, 52–278
log_filename MTA option, 52–278
log_filter MTA option, 52–249, 52–278
log_format MTA option, 52–279
log_from MTA option, 52–285
log_futurerelease MTA option, 52–285
log_header MTA option, 52–286
log_headers_maxchars MTA option, 52–287
log_header_options MTA option, 52–287
log_imap_flags MTA option, 52–287
log_intermediate MTA option, 52–288
log_local MTA option, 52–288
log_mailbox_uid MTA option, 52–289
log_messages_syslog MTA option, 52–267
log_message_id MTA option, 52–290
log_mtpriority MTA option, 52–291
log_node MTA option, 52–291
log_notary MTA option, 52–291
log_priority MTA option, 52–292
log_process MTA option, 52–292
log_queue_time MTA option, 52–293
log_reason MTA option, 52–294
log_remote_mta MTA option, 52–294
log_sensitivity MTA option, 52–295
log_smartsend MTA option, 52–295
log_sndopr MTA option, 52–76, 52–269
log_syslog_prefix MTA option, 52–269
log_times MTA option, 52–296
log_tracking MTA option, 52–296
log_transactionlog MTA option, 52–249,
52–296
LOG_TRANSPORTINFO TCP/IP-channel-
specific option, 62–31
log_uid MTA option, 52–297
log_username MTA option, 52–298
log_use_xtext MTA option, 52–298
Managing the files, 68–2
Message size, Reported in units of MTA
blocks, 52–219
P records, 68–4
Q records, Too many failures to this host
during this run; skipping this host:, 46–149
R records, 68–4

R records, return utility, 71–55
Rollover, 68–2
S records, 68–5
separate_connection_log MTA option, 52–299
Size of message, Reported in units of MTA
blocks, 52–219
transactionlog Sieve action, 5–23
Transport information, Syntax of, 68–9
U records, Details on AUTH error, 52–291
V records, 68–4
W records, 68–5
X record, SMTP disconnect, 62–21
Z records, 68–5
Z records, Job Controller shutdown, 71–58

nslog
Dispatcher, use_nslog Dispatcher option,
54–12
Job Controller, use_nslog Job Controller
option, 55–17
MMP/IMAP Proxy/POP Proxy, use_nslog
option, 41–30
Rollover, maxlogfilesize logfile option, 16–24
Rollover, maxlogsize logfile option, 16–25
Rollover, rolloverpolicy logfile option, 16–25
Rollover, rollovertime logfile option, 16–25

NT event log
Notices generated by address access mapping
tables, 57–10

POP
logprotocolerrors POP option, 35–6
logunauthsession POP option, 35–6
poplogmboxstat POP option, 35–6

return_job
return_verify MTA option, 52–80

rollovermanager, 24–1
S/MIME applet

appletlogging S/MIME option, 43–7
See also logfile options, 16–23
SMS gateway

debug option, 66–2
SMTP server

debug metermaid_client option, 59–5
logfilename Dispatcher option, 54–7

Store transaction
Format, 30–1

SUBMIT server
logfilename Dispatcher option, 54–7

syslog
held_sndopr MTA option, 52–234, 52–266
Line length maximum, 52–267, 52–269
log_connections_syslog MTA option, 52–266
log_messages_syslog MTA option, 52–267
log_sndopr MTA option, 52–76, 52–269

Index–95

log_syslog_prefix MTA option, 52–269
MTA options, 52–266
Notices generated by address access mapping
tables, 57–10
sndopr_prefix MTA option, 52–269
sndopr_priority MTA option, 52–269
spamfilterN_optional MTA options, 52–256,
52–270
syslogfacility logfile option, 16–25

Telemetry
forcetelemetry icapservice option, 45–1
forcetelemetry IMAP option, 34–15
forcetelemetry MSHTTP option, 42–8
forcetelemetry POP option, 35–5
Less private than imap.logcommands output,
34–16

X record
SMTP disconnect, 62–21

logging channel option, 46–94, 68–1
Postmaster manual message bounce, 71–55

logheader channel option, 46–94
Logical name table (OpenVMS)

name_table_name MTA option, 52–64
logindn smime option, 43–2
loginpw smime option, 43–3
loginseparator base option, 16–12
loglevel ENS option, 74–2
loglevel imapproxy option, 41–17
loglevel logfile option, 16–24
loglevel messagetrace option, 36–2
loglevel MMP option, 41–17
loglevel MTA option, 54–12, 55–17
loglevel option

ims-ms channels, 64–6
loglevel popproxy option, 41–17
loglevel tcp_lmtp_server option, 54–12, 55–17
logmillisecond logfile option, 16–24
logprotocolerrors IMAP option, 34–16
logprotocolerrors POP option, 35–6
logunauthsession IMAP option, 34–16
logunauthsession MSHTTP option, 42–9
logunauthsession POP option, 35–6
loguser notifytarget option, 37–6
log_8bit_encode MTA option, 52–299
log_alq MTA option, 52–183, 52–272
log_alternate_recipient MTA option, 52–272
log_connection MTA option, 52–275

$T flag in PORT_ACCESS mapping table, 57–4
Example, 68–5

log_connections_syslog MTA option, 52–266
log_conversion_tag MTA option, 52–276
log_debug MTA option, 52–78
log_delay_bins MTA option, 52–75

log_delivery_flags MTA option, 52–287
log_deliver_by MTA option, 52–277
log_deq MTA option, 52–183, 52–272
log_diagnostics MTA option, 52–277
log_dkim MTA option, 52–277
log_envelope_id MTA option, 52–278

Example, 68–5
log_filename MTA option, 52–278

Example, 68–5
log_filter MTA option, 52–249, 52–278

addprefix or addsuffix actions, 5–57
Diagnosing .HELD files, 65–12
discard or jettison strings, 5–28
Example, 68–5
Memcache protocol errors, 5–78
Sieve duplicate errors, 5–30, 5–78
Sieve vacation errors, 5–53, 5–54, 5–78
spamtest level and virustest level, 5–51
systemfilter MTA option, 52–239
vacation action, 5–53

log_format MTA option, 52–279
log_from MTA option, 52–285
log_frustration_limit MTA option, 52–76
log_futurerelease MTA option, 52–285
log_header MTA option, 52–286

Affected by log_messages_syslog, 52–269
Compared with transactionlog use in Sieve
script, 52–250, 52–297

log_headers_maxchars MTA option, 52–287
log_header_options MTA option, 52–287
log_imap_flags MTA option, 52–287
log_intermediate MTA option, 52–288

Example, 68–5
log_isc_status MTA option, 52–288
log_local MTA option, 52–288
log_messages_syslog MTA option, 52–267
log_message_id MTA option, 52–290

Example, 68–5
SMTP AUTH error detail, 52–177

log_node MTA option, 52–291
Example, 68–5

log_notary MTA option, 52–291
Example, 68–5

log_priority MTA option, 52–292
Example, 68–5

log_process MTA option, 52–292
Example, 68–5
Reprocess channel, 65–21
Use with logheader channel option, 46–94
Use with log_header MTA option, 52–286

log_queue_time MTA option, 52–293
log_reason MTA option, 52–294

Job Controller shutdown, 71–58

Index–96 Messaging Server Reference

log_remote_mta MTA option, 52–294
log_sensitivity MTA option, 52–295

Example, 68–5
log_size_bins MTA option, 52–76
log_smartsend MTA option, 52–295
log_sndopr MTA option, 52–76, 52–269
log_statistics MTA option, 52–76
log_syslog_prefix MTA option, 52–269
log_tracking MTA option, 52–296
log_transactionlog MTA option, 52–249, 52–296
log_username MTA option, 52–298

Example, 68–5
filter_discard channel logs as
FILTER_DISCARD, 65–9

log_use_xtext MTA option, 52–298
Loop

CPU
Alias nesting limit, max_alias_levels MTA
option, 52–63
Alias recursion limit, 48–48
Mapping table processing iteration limit, 50–8
Rewrite rule repeated rewriting, 47–15
Sieve filter loop construct, 5–61
Sieve filter regex evaluation, Exponential
computation performance, 5–76

Message
See Looping message, 65–11

Message routing
loopcheck channel option, 46–141
Received: header line MTA options, 52–234

Notification messages
returnenvelope channel option, 46–108
return_address MTA option, 52–228
Vacation messages, RFC 3834, 5–54

loopcheck channel option, 46–141
Looping message

Troubleshooting
.HELD files, 65–11

M
MacMIME

Format conversions, 51–23
See also RFC 1740, 51–23

MADMAN, G–6
Mail filtering, 57–1

Sieve filters, 5–1, 57–1
Sieve language, 5–3

Mail group
Definition of, 48–8

mailboxpurgedelay Message Store option, 26–13
mailfromdnsverify channel option, 46–142, 46–154

Bit in returnenvelope, 46–108
Bit in return_envelope, 52–166, 52–229

DNS verification
test -rewrite utility, 71–125

error_text_mailfromdnsverify MTA option,
52–176

mailhostattrs mmp/imapproxy/popproxy/vdomain
option, 41–18
Mailing list and group MTA options, 52–194
Mailing lists, 49–1

Access control for expansion
DISABLE_EXPAND TCP/IP-channel-specific
option, 62–27
expandable_default MTA option, 52–196
expn* channel options, 46–139
Makes use of access control for postings,
52–196

Access control for postings, 49–20
alias_and alias option, 48–10
alias_auth_channel alias option, 48–10
alias_auth_list alias option, 48–10
alias_auth_mapping alias option, 48–11
alias_auth_username alias option, 48–11
alias_cant_channel alias option, 48–10
alias_cant_mapping alias option, 48–11
alias_cant_username alias option, 48–11
alias_moderator_address, 48–18
alias_moderator_list, 48–18
alias_moderator_mapping, 48–18
alias_or alias option, 48–10
alias_username_moderator_list, 48–18
AND alias file named parameter, 48–28
AUTH_CHANNEL alias file named
parameter, 48–28
AUTH_LIST alias file named parameter,
48–29
AUTH_MAPPING alias file named
parameter, 48–29
AUTH_USERNAME alias file named
parameter, 48–30
CANT_CHANNEL alias file named
parameter, 48–28
CANT_LIST alias file named parameter,
48–29
CANT_MAPPING alias file named
parameter, 48–29
CANT_USERNAME alias file named
parameter, 48–30
Deferred expansion interactions, 49–20
Example, 49–20
Interpretation of multiple, 49–2
Moderator of non-member attempted
postings, 49–21
MODERATOR_ADDRESS, 48–37
MODERATOR_LIST, 48–37

Index–97

MODERATOR_MAPPING, 48–37
OR alias file named parameter, 48–28
Password, 49–3
PASSWORD alias file named parameter,
48–39
Password, alias_password alias option, 48–21
Password, Example, 49–21
SMTP AUTH use required, 49–20, 49–21
USERNAME_AUTH_LIST alias file named
parameter, 48–29
USERNAME_CANT_LIST alias file named
parameter, 48–29
USERNAME_MODERATOR_LIST, 48–37

Addresses of, 49–2
Alias options

alias_hold_*, 48–17
alias_moderator_address, 48–18
alias_moderator_list, 48–18
alias_moderator_mapping, 48–18
alias_username_moderator_list, 48–18

Attachments
alias_prefix_text alias option, 48–21
alias_suffix_text alias option, 48–21

Constructing list member addresses, 49–13
Deferred expansion

defer_group_processing MTA option, 52–195
Members vs. access controls, 49–20

Delivery receipt request
SMTP response to RCPT TO,
error_text_receipt_it MTA option, 52–172

Digests
digest_on MTA option, 52–196

Duplicate message elimination
alias_header_check alias option, 48–17
Copies to members of multiple sub-lists,
49–19
HEADER_CHECK named parameter, 48–36
ldap_check_header MTA option, 52–150
See also Message, Duplicate, 48–36

Dynamic
Example, 49–11

Envelope From address
alias_envelope_from alias option, 48–15

Errors
alias_error_text alias option, 48–15

Example
Disallow replies to prior postings, 49–6

Forwarding
ldap_forwarding_address MTA option,
52–138

Head-of-household controls
ldap_filter_reference MTA option, 52–138
ldap_parental_controls MTA option, 52–138

Header
Approved:, 49–3
Approved:, alias_password alias option,
48–21
Approved:, PASSWORD named parameter,
48–39
Deferred-delivery:, DEFERRED named
parameter, 48–32
Deferred-delivery:, DEFERRED_LIST named
parameter, 48–32
Deferred-delivery:, DEFERRED_MAPPING
named parameter, 48–32
Expiry-date:, 48–35
HEADER_ADDITION alias file named
parameter, 48–35
Received:, 48–39
Subject:, Tag on postings, 48–40
To:, TO named parameter, 48–41

LDAP attributes
Alternate to uniqueMember, 52–144
Auto-secretary use, 52–130
Capture trigger, 52–124
expandable, 52–149
Group status, 52–121
GROUP_AUTH mapping table, 49–21
inetMailGroupStatus, 52–122
ldap_group_last_access_time MTA option,
52–143
ldap_group_url1 MTA option, 52–143
ldap_group_url2 MTA option, 52–143
mail, 52–128
mail, Fetched during head of household Sieve
filter lookups, 52–138
mailAlternateAddress, 52–129
mailConversionTag, 52–131
mailDeliveryFile, 52–133
mailDeliveryFileURL, 52–133
mailDeliveryOption, 52–127
mailEquivalentAddress, 52–129
mailHost, 52–132
mailHost,
ldap_domain_attr_default_mailhost MTA
option, 52–156
mailMsgMaxBlocks, 52–132
mailProgramDeliveryInfo, 52–133
mailRoutingAddress, 52–127
mailSieveRuleSource, Fetched during head of
household Sieve filter lookups, 52–138
mgmanMemberVisibility, 52–149
mgrpAddHeader, 52–147
mgrpAuthPolicy, 52–142
mgrpDelayNotifications, 52–147, 52–147
mgrpDigestInterval, 52–147

Index–98 Messaging Server Reference

mgrpErrorsTo, 52–146
mgrpListTag, 52–148
mgrpMaxMessagesPerDay, 52–142
mgrpModerator, 52–142
mgrpMsgMaxSize, 52–141
mgrpMsgPrefixText, 52–148
mgrpMsgSuffixText, 52–148
mgrpRemoveHeader, 52–147
mgrpRFC822MailMember, 52–145
mgrpUniqueId, 52–139
MLS range, 52–124
NO-SOLICITING values, 52–127
objectClass, 52–120
Opt-in to detour routing, 52–131
Opt-in to spam package N, 52–129
Opt-out of spam package N, 52–130
Personal name, 52–128
Preferred country labelling, 52–127
preferredLanguage, 52–126
Recipient cutoff, 52–125
Recipient limit, 52–124
rfc822mailalias, 52–129
rfc822MailMember, 52–145
Source block limit, 52–125
Source channel switch, 52–126
Source conversion tag, 52–128
Source opt-in to spam package N, 52–126
Spare N attribute, 52–133
Subject: tag, 52–148
uid, 52–123
uniqueMember, 52–144
URL result mapping table, 52–145
vacationEndDate, 52–131
vacationStartDate, 52–130

Lists vs. groups, 49–16
Mass mailings, 49–9

defer_group_processing MTA option, 49–22
ldap_reprocess MTA option, 49–22
ldap_use_async, 49–22
mailDeferProcessing LDAP attribute, 49–22
Membership, 49–10
Sender restrictions, 49–20

Membership
Addresses constructed from non-email SMS
attributes, 49–13
Constructing e-mail addresses from non e-
mail address LDAP attribute values, 49–13
Defined via separate groups, 49–19
Error reporting, 49–11
Example, 52–145
Examples, 49–10
GROUP_TEMPLATES mapping table, 49–16
Indirect definitions, 49–12

mail LDAP attribute, 49–11
Meta definitions, 49–15
Meta-groups, 52–106
Nested definitions, 49–19
Reporting syntax errors, 49–17
Stored in external LDAP directory, 49–15

Message size limits
mgrpMsgMaxSize LDAP attribute, 52–141

Meta-group list definitions, 49–15
Meta-groups, 49–15, 52–106
mgrpErrorsTo LDAP attribute

Critical for definition, 49–16
Moderated, 49–4, G–8

alias_*moderator_* alias options, 48–18
alias_envelope_from, 49–4
alias_moderator_address, 49–4
alias_moderator_list, 49–4
alias_moderator_mapping, 49–4
alias_sasl_moderator_list, 49–4
alias_sasl_moderator_mapping, 49–4
alias_username_moderator_list, 49–4
For non-members, 49–21
mgrpAllowedBroadcaster LDAP attribute,
49–4
mgrpBroadcasterPolicy LDAP attribute, 49–5
mgrpErrorsTo LDAP attribute, 49–4
mgrpModerator LDAP attribute, 49–4
mgrpMsgRejectAction LDAP attribute, 49–4
mgrpMsgRejectAction value of toModerator,
52–140
Posting access controls, 49–3

Named parameters, 48–27
AND, 48–28
AUTH_CHANNEL, 48–28
AUTH_LIST, 48–28
AUTH_MAPPING, 48–29
AUTH_USERNAME, 48–30
BLOCKLIMIT, 48–31
BLOCKLIMIT, error_text_list_block_over
MTA option, 52–169
BLOCKLIMIT, error_text_user_block_over
MTA option, 52–170
CANT_CHANNEL, 48–28
CANT_LIST, 48–29
CANT_MAPPING, 48–29
CANT_USERNAME, 48–30
CAPTURE, 48–31
CAPTURE_HEADER, 48–31
CONVERSION_TAG, 48–32
CREATION_DATE, 48–32
DEFERRED, 48–32
DEFERRED_LIST, 48–32
DEFERRED_MAPPING, 48–32

Index–99

DELAY_NOTIFICATIONS, 48–33
DIGEST_RECURRENCE, 48–33
DIRECT_LIST, 48–34
DIRECT_MAPPING, 48–34
ENVELOPE_FROM, 48–34, 49–16
ERROR_TEXT, 48–34
EXPANDABLE, 48–34, 52–196
EXPIRY, 48–35
FILTER, 48–35
HEADER_ADDITION, 48–35
HEADER_ADDITION, Compared to use
of mgrpAddHeader group LDAP attribute,
52–147
HEADER_ALIAS, 48–36
HEADER_CHECK, 48–36
HEADER_EXPANSION, 48–36
HEADER_TRIM, 48–35
HEADER_TRIM, Compared to use of
mgrpRemoveHeader group LDAP attribute,
52–147
HOLD_LIST, 48–36
HOLD_MAPPING, 48–36
IMPORTANCE, 48–36
JOURNAL, 48–31
JOURNAL_HEADER, 48–31
KEEP_DELIVERY, 48–37
KEEP_READ, 48–37
LINELIMIT, 48–31
LINELIMIT, error_text_list_line_over MTA
option, 52–170
LINELIMIT, error_text_user_line_over MTA
option, 52–170
LIST_NAME, 48–37
MODERATOR_ADDRESS, 48–37
MODERATOR_LIST, 48–37
MODERATOR_MAPPING, 48–37
NODELAY_NOTIFICATIONS, 48–33
NOHOLD_LIST, 48–36
NOHOLD_MAPPING, 48–36
NONEXPANDABLE, 48–34, 52–196
NOORIGINATOR_REPLY, 48–38
NORECEIVEDFOR, 48–39
NORECEIVEDFROM, 48–39
NOSOLICIT, 48–38
OPTIN, 48–38
OPTIN1, 48–38
OPTIN2, 48–38
OPTIN3, 48–38
OPTIN4, 48–38
OPTIN5, 48–38
OPTIN6, 48–38
OPTIN7, 48–38
OPTIN8, 48–38

OR, 48–28
ORIGINATOR_REPLY, 48–38
PASSWORD, 48–39
PRECEDENCE, 48–36
PREFIX_TEXT, 48–39
PREFIX_TEXT, -additions switch of test -
rewrite, 71–121
PRIORITY, 48–36
PRIVATE, 48–39
PUBLIC, 48–39
RECEIVEDFOR, 48–39
RECEIVEDFROM, 48–39
REPROCESS, 48–40
SASL_AUTH_LIST, 48–40
SASL_AUTH_MAPPING, 48–40
SASL_CANT_LIST, 48–40
SASL_CANT_MAPPING, 48–40
SASL_MODERATOR_LIST, 48–40
SASL_MODERATOR_MAPPING, 48–40
SENSITIVITY, 48–36
SEQUENCE_PREFIX, 48–40
SEQUENCE_STRIP, 48–40
SEQUENCE_SUFFIX, 48–40
SINGLE, 48–41
SPARE*, 48–41
SUFFIX_TEXT, 48–39
SUFFIX_TEXT, -additions switch of test -
rewrite, 71–121
TAG, 48–41
TO, 48–41
USERNAME, 48–42
USERNAME_AUTH_LIST, 48–29
USERNAME_CANT_LIST, 48–29
USERNAME_MODERATOR_LIST, 48–37

Nested definitions, 49–19
Notifications, 49–17

alias_envelope_from alias option, 48–15
Delay notifications, 48–33
ldap_delay_notifications MTA option, 52–147
ldap_errors_to MTA option, 52–146
List owner, 48–15
mgrpErrorsTo LDAP attribute, 49–16
NOTARY flags, 49–19

Parental controls
ldap_filter_reference MTA option, 52–138
ldap_parental_controls MTA option, 52–138

Password-protected, 49–3
-password switch for test -rewrite, 71–127
-reprocessing switch for test -rewrite, 71–127
alias_password alias option, 48–21

Performance tuning, 49–22
Positional parameters

envelope From address, 49–16

Index–100 Messaging Server Reference

Recursive definition, 48–48
max_alias_levels MTA option, 48–48, 52–63

Sieve filters
FILTER named parameter, 48–35
ldap_filter MTA option, 52–138
ldap_filter_reference MTA option, 52–138
Sieve hierarchy, 5–81

Size limits
alias_blocklimit alias option, 48–11
alias_linelimit alias option, 48–11

SMTP EXPN command
Checked against access control for postings,
52–196
DISABLE_EXPAND TCP/IP-channel-specific
option, 62–27
expandable LDAP attribute, 52–149
expandable_default MTA option, 52–196
expn* channel options, 46–139

Subscription to, 49–22
Subaddress, 49–22

Text additions
-additions switch of test -rewrite, 71–121
addprefix and addsuffix Sieve extensions,
5–57
alias_prefix_text alias option, 48–21
alias_suffix_text alias option, 48–21
mgrpMsgPrefixText LDAP attribute, 52–148
mgrpMsgSuffixText LDAP attribute, 52–148

Unique identifier
mgrpUniqueId LDAP attribute, 52–139

Vacation
delivery_options MTA option, 52–98
ldap_autoreply_addresses MTA option,
52–137
ldap_autoreply_mode MTA option, 52–134
ldap_autoreply_subject MTA option, 52–134
ldap_autoreply_text MTA option, 52–135
ldap_autoreply_text_internal MTA option,
52–136
ldap_autoreply_timeout MTA option, 52–137

VERP type functionality, 48–15, 52–146
MAILSERV

LDAP attributes
mgrpUniqueId, 52–139

LDAP schema
MTA options, 52–198

List subscriptions
LDAP attribute names, 52–198

mailserv_moderator_mail MTA option, 52–197
mailserv_moderator_uid MTA option, 52–197
mailserv_secret MTA option, 52–198
Moderator user

LDAP attributes, uid, 52–197

mailserv_moderator_mail MTA option,
52–197
mailserv_moderator_uid MTA option, 52–197
MTA options, 52–197

MTA options, 52–197
LDAP schema, 52–198
List LDAP attribute names, 52–199
List subscription LDAP attribute names,
52–198
mailserv_moderator_mail, 52–197
mailserv_moderator_uid, 52–197
mailserv_secret, 52–198
Moderator user, 52–197
User LDAP attribute names, 52–198

Unique identifier
mgrpUniqueId LDAP attribute, 52–139

Users
LDAP attribute names, 52–198

MAILSERV lists
mgrpBroadcasterPolicy values, 52–140

mailserv_moderator_mail MTA option, 52–197
mailserv_moderator_uid MTA option, 52–197
mailto: URLs

Example of mgrpAllowedBroadcaster attribute's
value, 49–5
Example of mgrpModerator attribute's value,
49–5
List-*: header field values, 48–35
MTA URL types, 1–4

mail_delivery_filename MTA option, 52–301
mail_off MTA option, 52–196

Mailing list members, 49–23
make_source_addresses_unique SMS smpp_relay
option, 66–9
mapping group, 50–21
Mapping table

INTERNAL_IP
Used in initial configuration PORT_ACCESS
mapping table, 57–6

Mapping tables, 50–1
Access mapping tables, 57–2

AUTH_ACCESS, 62–43
DEQUEUE_ACCESS, 62–42
Interaction and timing, 57–17

Alias AUTH_MAPPING, 48–29
Alias CANT_MAPPING, 48–11, 48–11, 48–29
Alias DEFERRED_MAPPING, 48–13
Alias DIRECT_MAPPING, 48–14
Alias HOLD_MAPPING, 48–17
Alias NOHOLD_MAPPING, 48–17
alias_deferred_mapping alias option, 48–13
alias_direct_mapping alias option, 48–14
alias_hold_mapping alias option, 48–17

Index–101

alias_moderator_mapping alias option, 48–18,
48–19
alias_nohold_mapping alias option, 48–17
Application information

-applicationinfo switch of test -rewrite utility,
71–121
alias_deferred_mapping option's mapping
table probes, 48–14
DEFERRED_MAPPING named parameter's
mapping table probe, 48–33
ETRN_ACCESS probes, 46–128, 62–63
include_connectioninfo MTA option, 52–201
LOG_ACTION probes, 68–11
MESSAGE-SAVE-COPY probes, 67–4
Syntax of, 68–9
TLC_ACCESS probes, 62–55

AUTH_ACCESS, 62–43
Example, 62–48, 62–49
include_retries MTA option, 51–6, 52–204
mapping_paranoia MTA option, 52–206

AUTH_DEACCESS, 62–50
AUTH_MAPPING alias file named parameter,
48–29
AUTH_REWRITE, 46–163, 57–3

acceptalladdresses channel option, 46–34
mapping_paranoia MTA option, 52–206
Timing of application, 57–18

BURL_ACCESS, 62–7
mapping_paranoia MTA option, 52–206

Callout routines, 50–28
dns_verify, 50–33
dns_verify*, Compared to dns_verify_domain
Dispatcher service option, 54–4
memcache, 50–29
metermaid, 50–32
mm_check_reputation, 58–12
smartsend, 50–38
Syntax, 50–20

Callout to general database
Example, 50–23
Performance, 50–22

CANT_MAPPING alias file named parameter,
48–29
CHARSET-CONVERSION, 51–17

include_conversiontag MTA option, 52–202
Line wrapping, Compared to linelength
channel option, 46–54
MIME relabelling, 51–27
Reprocess channel is invisible, 65–20
serviceconversion channel option as alternate
trigger, 46–63
Template keywords, 51–18
Versus CONVERSION timing, 51–30

COMMENT_STRINGS, 48–56
commentmap channel option, 46–73
sourcecommentmap channel option, 46–73
use_comment_strings MTA option, 52–211

Conversion entries calling out to, 51–15
Conversion tags

include_conversiontag MTA option, 52–202
CONVERSIONS, 51–2

Channel (alternate) example, 51–5, 51–5,
60–24
Conversion tag, 51–3
Example with conversion tag, 48–12
include_conversiontag MTA option, 52–202
include_mtpriority MTA option, 52–203
original_channel_probe MTA option, 52–210
Reprocess channel is invisible, 65–20
Template keywords, 51–3
Template keywords, Channel=<channel-
name>, 51–5
Template keywords, Preprocess, 51–31
Versus CHARSET-CONVERSION timing,
51–30

DEQUEUE_ACCESS, 62–42
include_retries MTA option, 52–204

DISPOSITION_LANGUAGE, 60–18
Example, 60–22
language channel option, 46–81, 46–106
preferredLanguage user attribute use, 52–126

DKIM_SIGN_DOMAINS, 46–65
Dollar sign quoting, 50–4

dns_verify callouts, 50–34
Domain catchall

include_mtpriority MTA option, 52–203
ldap_domain_attr_catchall_mapping MTA
option, 52–158

Efficiency of large, 50–22
Entry patterns, 50–4

$n substitutions, 50–6
Asterisk character, 50–6
Back match wildcards, 50–6
Backslash character, 50–5
Dollar sign character, 50–5
Double quote character, No special meaning,
50–5
Glob match example, 51–12
Hyphen character within glob, 50–5
IPv4 matching, 50–7
IPv6 matching, 50–7
Parentheses characters, No special meaning,
50–5
Quoting of special characters, 50–4
Right bracket within glob, 50–5

Index–102 Messaging Server Reference

Single quote character, No special meaning,
50–5
Wildcard matching, Greedy or minimal, 50–6

Entry templates, 50–8
$#sec-file-spec#, 50–12
$&...&, 50–14
$+n#...#, 50–13
$+n|mapping-name;probe|, 50–18
$.temporary-failure-text., 50–21
$=, 50–15
$= effect turned off by $_, 50–10
$?a,b,c...? random selection, 50–12
$?x? random result, 50–11
$C metacharacter, 50–8, 50–10
$C metacharacter, Example, 50–24
$E metacharacter, 50–8, 50–10
$E metacharacter, Example, 50–24
$L metacharacter, 50–8, 50–10
$n substitution, 50–10
$R metacharacter, 50–8, 50–10
$[image,routine,argument], 50–20
$\, 50–10
$]ldap-url[, 50–15
$^, 50–10
$_, 50–10
$_ turns off LDAP URL quoting, 50–16
$`expression', 50–20
$|mapping-name;probe|, 50–18
$}domain-name,attribute{, 50–16
$}host,query{, 50–17
$}user-identifier,attribute{, 50–17
Callout routine temporary failure, 50–21
Case of substitutions, 50–10
Deployment map queries, 50–17
dns_get_first_mx callout, 50–38
dns_verify_domain callout, 50–36
dns_verify_domain_port callout, 50–36
dns_verify_domain_warn callout, 50–37
dns_verify_ptr callout, 50–35
Dollar sign character, 50–8
Domain attribute lookup temporary failures,
50–21
Domain map attributes, 50–16
Expression substitution, 50–20
External LDAP lookup, 52–192
extldap: URL, 52–192
General database lookup, 50–17
Hash substitution, 50–13
LDAP lookup temporary failures, 50–21
LDAP URL, 50–15
LDAP URL encoding, 50–15
Mapping table substitutions, 50–18
Routine substitution, 50–20

Routine substitution, dns_get_first_mx, 50–38
Routine substitution, dns_verify_domain,
50–36
Routine substitution,
dns_verify_domain_port, 50–36
Routine substitution,
dns_verify_domain_warn, 50–37
Routine substitution, dns_verify_ptr, 50–35
Sequence file, 50–12
User identifier attributes, 50–17
UTF-8 strings, 50–14

ETRN_ACCESS, 46–128, 46–128
Restricting ETRN use, 62–62

FILTER_testname, 5–79
Flags

Testing, 50–11
Flow of evaluation through a table, 50–10
FORWARD, 48–60

$H blocks reapplication, 48–62
Arbitrary LDAP attribute values in probes,
52–209
BSMTP channels, 63–3
Consulted before forward database, 48–61
include_conversiontag MTA option, 52–202
include_mtpriority MTA option, 52–203
ldap_spare_N values, 52–134

FROM_ACCESS, 57–1, 57–2, 57–15
$! flag, Disables sending back a vacation
message, 5–53
$, spam level flag, 5–50
$H flag, Diagnosing .HELD files, 65–12
$S flag imposing a message size limit, 46–123
$S flag, error_text_recipient_over MTA
option, 52–171
$~ flag, 57–15, 60–24
$~ for source channel switching, 46–91
access_auth MTA option, 52–200
Alternative to authentication for SMTP
SUBMIT use, 46–131
Arbitrary LDAP attribute values in probes,
52–205
Authenticated sender, -sender switch of test -
rewrite, 71–128
Disabling vacation message generation, 57–17
End user not seeing error text, 57–17
Example setting Sieve environment item, 5–33
include_conversiontag MTA option, 52–202
include_mtpriority MTA option, 52–203
Initial configuration, 57–17
mapping_paranoia MTA option, 52–206
Reprocess channel, 65–21
Timing of application, 57–17

GROUP_AUTH, 49–21

Index–103

ldap_auth_mappingN MTA options, 52–149
mapping_paranoia MTA option, 52–206

GROUP_TEMPLATES, 49–12, 49–16
Example, 49–13, 52–145
ldap_group_dn MTA option, 52–144

HOLD_MAPPING alias file named parameter,
48–36
INTERNAL_IP, 57–6

Example, 57–7
Example for LMTP back end, 62–17
Rewrite rule use of, 47–12
SMTP relay blocking, 62–59

IP_ACCESS, 62–52
Alternative to lastresort channel option,
46–71, 46–154
Compared with loopcheck channel option,
46–141
use_ip_access MTA option, 52–206

Large
Efficiency of, 50–22

LDAP callouts, 50–15
PORT_ACCESS, Not supported prior to MS
6.3-0.15, 57–6
url_result_cache_* MTA options, 52–163

Location of, 53–9
LOG_ACTION, 68–10

Application information in probes, 68–11
Examples, 68–13
Examples, Block submissions of local
spambots, 68–19
Examples, Blocking botnet attack, 68–21
Examples, Disable connection transaction log
entries for particular source, 68–13
Examples, Syslog notice upon excessive bad
password SMTP AUTH attempts, 68–14
Examples, Syslog notice upon SMTP AUTH
bad username attempts, 68–16
Examples, Syslog notice upon SMTP AUTH
failures, 68–17
Examples, Syslog notice when time-in-queue
is high, 68–18
log_deliver_by MTA option bit 1 (value 2),
52–272, 52–277
log_futurerelease MTA option bit 1 (value 2),
52–286
Transport information in probes, 68–11

Loop in processing, 50–8
MAC-TO-MIME-CONTENT-TYPES, 51–23

Sample entries, 51–24
test -mapping example, 71–107

MAIL_ACCESS, 57–1, 57–2, 57–7
$V, $v, $Z, $z flags, discard or jettison actions,
5–28

Arbitrary LDAP attribute values in probes,
52–205
Deferred expansion of groups, 52–195
dns_verify callout example, 50–37
dns_verify_domain callout example, 50–37
include_conversiontag MTA option, 52–202
include_mtpriority MTA option, 52–203
mapping_paranoia MTA option, 52–206
Reprocess channel, 65–21
Reprocess channel is invisible, 65–20
Sieve hierarchy, 5–81
Timing of application, 57–17

mapping group, 50–21
map_names_size MTA option, 52–190, 52–209
MESSAGE-SAVE-COPY, 67–3

Application information in probes, 67–4
Copy operation, 67–4
Example, 67–5, 67–5
Examples, 67–4
File close operation, 67–5
Format, 67–4
include_retries MTA option, 52–204
Job Controller notification, 67–5
message_save_copy_flags MTA option,
52–210
Rename operation, 67–4
Result file specification on same disk, 67–4
Transport information in probes, 67–4

MILTER_ACTIONS, 58–16
MILTER_MACROS, 58–17

mapping_paranoia MTA option, 52–206
MODERATOR_MAPPING alias file named
parameter, 48–37
MTA options, 52–199
MX_ACCESS, 62–51
Naming convention

Site-supplied, 50–26
NOHOLD_MAPPING alias file named
parameter, 48–36
NOTIFICATION_LANGUAGE

Example, 60–22
language channel option, 46–81, 46–106
preferredLanguage, 52–126
preferredLanguage user attribute use, 52–126

ORIG_MAIL_ACCESS, 57–2, 57–7
$V, $v, $Z, $z flags, discard or jettison actions,
5–28
Arbitrary LDAP attribute values in probes,
52–205
Deferred expansion of groups, 52–195
ims-ms channels, 64–3
include_conversiontag MTA option, 52–202
include_mtpriority MTA option, 52–203

Index–104 Messaging Server Reference

mapping_paranoia MTA option, 52–206
Reprocess channel, 65–21
Reprocess channel is invisible, 65–20
Sieve hierarchy, 5–81
Timing of application, 57–17

ORIG_SEND_ACCESS
$V, $v, $Z, $z flags, discard or jettison actions,
5–28
Arbitrary LDAP attribute values in probes,
52–205
Example, 50–4, 50–23
Example with SRS in use, 62–61
include_conversiontag MTA option, 52–202
include_mtpriority MTA option, 52–203
mapping_paranoia MTA option, 52–206
Reprocess channel, 65–21
Reprocess channel is invisible, 65–20
Sieve hierarchy, 5–81
SMTP relay blocking, 62–59

Performance, 50–22, 69–3
PERSONAL_NAMES, 48–56

include_conversiontag MTA option, 52–202
personalmap channel option, 46–48, 46–86
sourcepersonalmap channel option, 46–48,
46–86
use_personal_names MTA option, 52–214

PORT_ACCESS, 57–1, 57–2, 57–3
dns_verify callout example, 50–35
dns_verify_domain Dispatcher option
interaction, 54–5
dns_verify_domain_port callout example,
50–37
Example for LMTP back end, 62–17
Initial configuration, 57–6
mm_check_reputation callout, 58–12
mm_check_reputation callout, Example,
58–12
Timing of application, 57–17
Transport information, XCLIENT SMTP
extension, 46–85, 46–146, 46–173

Pre-defined, 50–25
Quoting of special characters, 50–4
Randomizing selection, 50–12
Randomizing success, 50–11
Recipe language access, 4–28
REVERSE, 48–54

Conversion tags and test -rewrite utility,
71–129
Example modifying Message-Id:, 70–3
include_conversiontag MTA option, 52–202
Limiting emission of internal host names,
70–3

Routine substitutions

Callout delays, Logging of, 52–273
check_memcache, 50–29
check_metermaid, 50–32
dns_verify, 50–33
mm_check_reputation, 58–12, 58–12
smartsend, 50–38

SASL_ACCESS, 62–54
SEND_ACCESS, 57–1, 57–2, 57–2, 57–7, 57–7

$V, $v, $Z, $z flags, discard or jettison actions,
5–28
Arbitrary LDAP attribute values in probes,
52–205
Deferred expansion of groups, 52–195, 52–195
dns_verify callout example, 50–35
include_conversiontag MTA option, 52–202
include_mtpriority MTA option, 52–203
Initial configuration, 57–14
mapping_paranoia MTA option, 52–206
Reprocess channel, 65–21
Reprocess channel is invisible, 65–20
Sieve hierarchy, 5–81
Timing of application, 57–17, 57–17

SEND_ACCESS, etc.
$, spam level flag, 5–50

Sieve filter
vnd.sun.source-channel environment item,
5–20

SIEVE_EXTLISTS, 5–35
ldap_spare_4, ldap_spare_5, ldap_spare_6
MTA option, 52–134
mapping_paranoia MTA option, 52–206

Site-specific
Called from rewrite rule, 47–25
X-* naming convention, 50–26

SMTP_ACTIONS, 62–56
SPF_LOCAL, 46–160
string_pool_size_1 MTA option, 52–191
Substitutions

Expression, Example, 62–49
LDAP domain specific attribute, Example,
62–49
Mapping table, Example, 62–49

Syntax, 50–2
Blank lines, 50–2
Legacy configuration, 50–2
Unified Configuration, 50–3

Testing of, 50–27
test -mapping utility, 50–27, 71–104
test -match utility, 50–27, 71–109
test -rewrite utility, 50–27, 71–117

TLS_ACCESS, 62–55
Transport information

-transportinfo switch of test -rewrite, 71–129

Index–105

alias_deferred_mapping option's mapping
table probes, 48–14
DEFERRED_MAPPING named parameter's
mapping table probe, 48–33
ETRN_ACCESS probes, 46–128, 62–63
FROM_ACCESS probes, 57–15
include_connectioninfo MTA option, 52–201
LOG_ACTION probes, 68–11
MAIL_ACCESS probes, 57–8
MESSAGE-SAVE-COPY probes, 67–4
ORIG_MAIL_ACCESS probes, 57–8
PORT_ACCESS probes, 57–3
Syntax of, 68–9
TLS_ACCESS probes, 62–55

URL result mapping named by
ldap_url_result_mapping MTA option

Applies to ldap_group_dn MTA option,
52–144
Applies to ldap_group_dn2 MTA option,
52–145

USERNAME_MAPPING SpamAssassin option,
58–9
When changes take effect, 50–25
Wildcards

$n* back match, Example, 62–49
Back match, 50–6
Greedy or minimal, 50–6
IPv4, 50–7
IPv6, 50–7
Maximum, 50–6
test -match to test behavior of, 50–6

wild_pool_size MTA option, 52–191
mapping_paranoia MTA option, 52–206

*_ACCESS mapping table probes, 57–9
BURL_ACCESS_mapping_table, 62–9
MILTER_MACROS mapping table, 58–17

Mass mailings
Performance impact, 69–3

master channel option, 46–111
master_command Job Controller option

-master_job switch of cache -change, 71–7
master_debug channel option, 46–94, 62–44

Example output, 71–142
ims-ms channels, 64–6, 64–7
os_debug MTA option, 52–79
Reprocess channel, 46–95, 65–21

maxage Message Store relinker option, 26–29
maxblocks channel option, 46–54
maxbodysize notifytarget option, 37–5
maxcachefilesize Message Store option, 26–13
maxcollectmsglen MSHTTP option, 42–10
maxconcurrentconnectionattempts MMP/IMAP
proxy/POP proxy option, 41–18

maxconnectionrateperdomain smartsend channel
option, 46–155
maxconnectionsperdomain smartsend channel
option, 46–156
maxfolders Message Store option, 26–13
maxheaderaddrs channel option, 46–82
maxheaderchars channel option, 46–82
maxheadersize notifytarget option, 37–5
maxjobs channel option, 46–109, 46–115

-job_limit switch of cache -change, 71–7
ims-ms channel, 64–2
ims-ms channels, 64–1
Initial configuration, 46–7
Job Controller operation, 55–2
Modified effect under stress, 55–4
Use imsimta to exceed, 71–57

maxldaplimit MSHTTP option, 42–10
maxlines channel options, 46–54
maxlog Message Store option, 26–13
maxlogfiles logfile option, 16–24
maxlogfiles MMP logfile option, 16–24
maxlogfilesize logfile option, 16–24
maxlogsize logfile option, 16–25
maxmessagerateperdomain smartsend channel
option, 46–156
maxmessages Message Store option, 26–13
maxmessagesize IMAP option, 34–16
maxmessagesize MSHTTP option, 42–10
maxnoops IMAP option, 34–16
maxnumberofentries PAB option, 72–2
maxperiodicnonurgent channel option, 46–115
maxperiodicnormal channel option, 46–115
maxperiodicurgent channel option, 46–115
maxpostsize MSHTTP option, 42–10
maxprocchars channel option, 46–100
maxprotocolerrors IMAP option, 34–16
maxprotocolerrors POP option, 35–6
maxsearchmailboxes IMAP option, 34–16
maxsessions IMAP option, 34–17
maxsessions MSHTTP option, 42–10
maxsessions POP option, 35–6
maxthreads IMAP option, 34–17
maxthreads isc option, 32–12
maxthreads Message Store purge option, 26–28
maxthreads MeterMaid option, 59–5
maxthreads MMP option, 41–18
maxthreads MSHTTP option, 42–10
maxthreads POP option, 35–6
max_addheaders MTA option, 5–30, 52–242
max_cache_messages Job Controller option, 55–12

Operation under stress, 55–3
Overriding via imsimta cache -change -global -
max_messages=N, 71–7

Index–106 Messaging Server Reference

max_conns Dispatcher option, 54–7
Operation, 54–2

max_conns Dispatcher service option, 54–8
max_conns MeterMaid client option, 59–6
max_conns smpp_relay option, 66–10
max_conns smpp_server option, 66–13
max_conns sms_gateway option, 66–4
max_duplicates MTA option, 52–242, 52–248
max_entries local_table MeterMaid option, 59–4
max_fileintos MTA option, 52–242
max_handoffs Dispatcher option, 54–8
max_handoffs Dispatcher service option, 54–8
max_header_blocks MTA option, 52–221
max_header_block_use MTA option, 52–221
max_header_lines MTA option, 52–222
max_header_line_use MTA option, 52–221
max_idle_time Dispatcher option, 54–8
max_idle_time Dispatcher service option, 54–8
max_internal_blocks MTA option, 52–183

Performance impact, 69–1
max_life_askwork Job Controller option, 55–13
max_life_conns Dispatcher option, 54–9
max_life_conns Dispatcher service option, 54–9
max_life_conns Job Controller option, 55–13
max_life_time Dispatcher option, 54–9
max_life_time Dispatcher service option, 54–9
max_life_time Job Controller option, 55–13
max_mime_levels MTA option, 52–222

Diagnosing .HELD files, 65–12
max_mime_parts MTA option, 52–222

Diagnosing .HELD files, 65–12
max_notifys MTA option, 52–242
max_procs Dispatcher option, 54–9

Operation, 54–2
max_procs Dispatcher service option, 54–9
max_redirect MTA option

Sieve redirect action, 5–48
max_redirects MTA option, 52–243
max_redirect_addresses MTA option, 52–243

redirect to external list, 5–49
Sieve external list example, 5–38

max_shutdown Dispatcher option, 54–9
max_shutdown Dispatcher service option, 54–9
max_sieve_list_size MTA option, 52–243

-list switch of imsimta test -expression, 71–93
max_sieve_match_iterations MTA option, 52–243

-iterations switch of imsimta test -expression,
71–93

max_sieve_string_size MTA option, 52–244
max_vacations MTA option, 52–244

vacation action, 5–52
Vacation message not generated, 5–54

max_variables MTA option, 52–244

maysasl channel option, 46–169
maysaslclient channel option, 46–169

AUTH_ACCESS mapping, 62–44
maysaslserver channel option, 46–169
maytls channel option, 46–92, 46–171
maytlsclient channel option, 46–92, 46–171
maytlsserver channel option, 46–92, 46–171

Should be set on SMTP SUBMIT server channel,
46–131

mboxutil utility
enablelastaccess base option, 16–5
Moving (and pinning) folders to specified
partition, 26–14

Memcache, 52–245
Errors in protocol

Logging of, 5–78
Message tracking and recall, 61–1
MTA options, 52–214
Sieve filter memcache extension, 5–61
tracking_mode MTA option, 52–224
Vacation messages not being generated, 5–54

memcache: URLs
MTA URL types, 1–4

memcache_expire MTA option, 52–215
Use with Message Tracking, 61–1

memcache_hash_algorithm MTA option, 52–215
memcache_host MTA option, 52–214

check_memcache.so use of, 50–29
Effect on duplicate_tracking_url, 52–248
Sieve duplicate test, 5–30
Sieve filter memcache extension, 5–61
Use with Message Tracking, 61–1

memcache_port MTA option, 52–215
check_memcache.so use of, 50–29
Effect on duplicate_tracking_url, 52–248
Sieve duplicate test, 5–30
Use with Message Tracking, 61–1

memcache_timeout MTA option, 52–215
Memory

Dispatcher usage
historical_time Dispatcher option, 54–5
stacksize Dispatcher option, 54–11

ims-ms channel usage
dequeue_map, 52–182

Job Controller usage
max_cache_messages Job Controller option,
55–12

LMTP server usage
BUFFER_SIZE TCP/IP-channel-specific
option, 52–183, 62–24

Message Store
dbnumcaches Message Store option, 26–9

MTA usage

Index–107

BUFFER_SIZE TCP/IP-channel-specific
option, 52–183, 62–24
Internal size MTA options, 52–185
max_internal_blocks MTA option, 52–183
max_mime_levels MTA option, 52–222
max_mime_parts MTA option, 52–222

Shared
Identifier for ftok() calls, projectid base
option, 16–12
Identifier for ftok() calls, projectid MTA
option, 52–184

SMTP server/SMTP SUBMIT server usage
max_internal_blocks MTA option, 52–183
max_mime_levels MTA option, 52–222
max_mime_parts MTA option, 52–222

Message
.HELD

alias_hold_* alias options, 48–17
directoryscan SNMP option, 73–2
held_sndopr MTA option, 52–234, 52–266
Hold channel, Releasing, 65–11
loopcheck channel option, 46–141
Not tracked by Job Controller, 55–3

Archiving, G–7
Address reversal, 48–52
imexpire, 31–2
MESSAGE-SAVE-COPY mapping table, 67–3
MTA options, 52–216
MTA options, message_hash_fields, 52–218
MTA options, unique_id_template, 52–218

Attachments
CHARSET-CONVERSION mapping table,
51–22
Converting from non-standard formats, 51–22
gzipattach MSHTTP option, 42–8
gzipdynamic MSHTTP option, 42–8
gzipstatic MSHTTP option, 42–8
MS Mail SMTP gateway, 51–22
Pathworks Mail, 51–22
See also Message, Conversions, 51–1

Automatic discard
Sieve filter discard, 5–1

BinHex
thurman channel option, 46–56

Body processing
Performance, chunk_cache_limit MTA option,
52–187
Performance, describe_cache_limit MTA
option, 52–187
See also Message, Conversions, 51–1

Bouncing
return_bounced.txt, 60–13

Bulk precedence

Notification, use_precedence MTA option,
52–231

Capture, 67–1
$M flag in *_ACCESS mapping tables, 60–2
Address reversal, 48–52
alias_capture alias option, 48–11
alias_capture_header alias option, 48–12
alias_journal alias option, 48–11
alias_journal_header alias option, 48–12
CAPTURE alias file named parameter, 48–31
capture Sieve action, 5–59
CAPTURE_HEADER alias file named
parameter, 48–31
clonehosts channel option, 46–42, 46–69
Form of notification message, 60–2
Format examples, 67–7
Format of, 52–124
JOURNAL alias file named parameter, 48–31
Journal format, journal_format MTA option,
52–216
Journal format, Recipient types, 46–36, 46–118
JOURNAL_HEADER alias file named
parameter, 48–31
LDAP attributes, 67–6
LDAP attributes, Address reversal, 67–6
ldap_capture MTA option, 52–124
ldap_domain_attr_capture MTA option,
52–157
MESSAGE-SAVE-COPY mapping table, 67–3
return_capture.txt, 60–13
Sieve external lists, 5–40
Sieve filters, 67–6
Trigger via address access mapping tables,
57–10

Character set
charsetvalidation MSHTTP option, 42–4
detectcharset MSHTTP option, 42–7

Conversions, 51–1
MIME relabelling, 51–27
MIME relabelling, RELABEL conversion
entry parameter, 51–9
Service conversions, 51–29
Service conversions, Channel options, 46–62
Service conversions, serviceconversion
channel option, 46–63

Damaged
Bare NL (newline) characters, 38–4, 64–9
BinHex blobs instead of attachments, -
thurman switch of test -mime, 71–115
BinHex blobs instead of attachments,
nothurman channel option, 46–56
BinHex blobs instead of attachments, nouma
channel option, 46–56

Index–108 Messaging Server Reference

BinHex blobs instead of attachments,
thurman channel option, 46–56
Character set interactions with forced line
breaks, 46–147
Character set mis-labelling, 46–59
Forced line breaks, 46–147
Fragmentation, 65–3
Fragmentation, defragment channel option,
65–3
Fragmentation, Fragments timing out, 65–4
Fragmentation, Too many parts, 65–4
Header/body separation, 46–81
Header/body separation,
IMAP_MESSAGE_NOBLANKLINE error
status, 38–2, 64–9
HTML, Long lines, 46–146
Long lines, 46–146
Missing = characters, 46–53
NUL characters, 38–2, 64–9
Truncated long line, 46–146
UUENCODEd blobs instead of attachments, -
thurman switch of test -mime, 71–115
UUENCODEd blobs instead of attachments,
nothurman channel option, 46–56
UUENCODEd blobs instead of attachments,
nouma channel option, 46–56
UUENCODEd blobs instead of attachments,
thurman channel option, 46–56
White space in message header lines, 46–78
Wrapped long line, 46–147

Defragmentation, 65–3
defragment channel option on ims-ms
channel, 64–1
defragment channel option on tcp_lmtpcs*
channels, 62–14

Delivery receipts
See also Delivery receipts, 60–1
See also Message, Notification, Delivery
receipt, 60–1

Disclaimer
addsuffix Sieve action, 5–57
alias_suffix_text alias option, 48–21
ldap_suffix_text MTA option, 52–148

Disposition
Format of, 60–18
Language, 60–18

Domain
CONVERSIONS mapping table probe,
include_domain MTA option, 51–3

Duplicate
duplicate Sieve test, 5–23
Mailing list copy, alias_header_check alias
option, 48–17

Mailing list copy, HEADER_CHECK named
parameter, 48–36
Mailing list copy, ldap_check_header MTA
option, 52–150
Mailing list copy, Members of multiple sub-
lists, 49–19
Sieve duplicate extension, 5–29
Sieve duplicate extension, MTA options,
52–247

Encoding
-encoding switch of test mime, 71–113
CHARSET-CONVERSION mapping table,
51–18
CONVERSIONS mapping table, 51–3
Encoding: header line, -iencoding switch of
test -mime, 71–113
linelength channel option, 46–54

Envelope, G–4, G–7
envelopetunnel channel option, 46–76
Logging of, 68–3
Not available in Message Store operational
archiving, 26–20
Sieve filter access to, 5–31

Envelope From
-owner@, 5–53, 57–17
-request@, 5–53, 57–17
Blank and the return_envelope MTA option,
52–166, 52–229
Disabling vacation messages back to list
owner addresses, 5–53, 57–17
LISTSERVE@*, 5–53, 57–17
Logging of, 68–3
MAILER-DAEMON@*, 5–53, 57–17
majordomo@*, 5–53, 57–17
owner-*@*, 5–53, 57–17
redirect Sieve action overriding, 5–48
setenvelopefrom Sieve action, 5–10, 5–23, 5–76

Envelope To
Logging of, 68–3
NOTIFY=NEVER DSN flag, Disables sending
back a vacation message, 5–53

Expiration, 31–1
*notices channel options, 46–106
alias_expiry alias option, 48–16
expiresieve Message Store option, 26–11
EXPIRY alias file named parameter, 48–35
expirysource channel option, 46–76, 46–115
exploglevel Message Store expire option,
26–23
imexpire, 31–2
Logging, exploglevel Message Store expire
option, 26–23
Message Store expirerule options, 26–23

Index–109

store.expirerule files, 31–1
Format conversion

MacMIME, 51–23
RFC 1154, Encoding: header line, 46–53
thurman and uma channel options, 46–56

Forwarding
FORWARD mapping table, 48–61
forward value of mailDeliveryOption LDAP
attribute, 52–99
ldap_forwarding_address MTA option,
52–138
Sieve filter redirect, 5–1
Sieve redirect action, 5–48
sieve_user_carryover MTA option, 52–106,
52–241

Fragmentation
maxblocks channel option, 46–54
maxlines channel option, 46–54
max_header_block_use MTA option, 46–55,
52–221
max_header_line_use MTA option, 46–55,
52–221

Fragments
Delivery of, 65–4
Reassembly of, 65–3

Holding
$H flag in address access mapping tables,
57–10
alias_hold_* alias options, 48–17
delivery_option clause, 52–98
hold value of mailDeliveryOption LDAP
attribute, 52–99
holdlimit channel option, 46–67, 46–99,
46–113, 46–124
HOLD_LIST alias file named parameter,
48–36
HOLD_MAPPING alias file named
parameter, 48–36
mailDomainStatus of hold, 16–9, 52–154
mailUserStatus of hold, 52–121
Sieve hold action, 5–60

Importance
importanceadjust and importancetest Sieve
actions, 5–23
Sieve filter importance extension, 5–60

List precedence
Notification, use_precedence MTA option,
52–231

Manifest
Example constructing with Sieve, 5–45
Sieve filter construction of, 5–45

MIME structure

Adding prefix or suffix text to first text part, -
additions switch of test -rewrite, 71–121
Adding prefix or suffix text to first text part,
addprefix and addsuffix Sieve extensions,
5–57
Adding prefix or suffix text to first text part,
alias_prefix_text and alias_suffix_text alias
options, 48–21
Adding prefix or suffix text to first text part,
mgrpMsgPrefixText LDAP attribute, 52–148
Adding prefix or suffix text to first text part,
mgrpMsgSuffixText LDAP attribute, 52–148
Boundary markers, 46–52
Converting from non-standard formats, 51–22
Damaged, Illegal encoding, 46–53
message/partial, defragment channel option,
46–52
message/partial, Defragmentation channel,
65–3
multipart/encrypted, 46–52
multipart/signed, 46–52
Redundant multipart levels, CHARSET-
CONVERSION mapping table, 51–18
Redundant multipart levels, CONVERSIONS
mapping table, 51–4

Monitoring, 67–1
capture Sieve action, 5–59
clonehosts channel option, 46–42, 46–69
MESSAGE-SAVE-COPY mapping table, 67–3

Notification, 60–1
Alias expansion value used in, 48–25
Capture, 60–2
Capture, $M flag in *_ACCESS mapping
tables, 60–2
Channel options, 46–103
Delay warning, DSN SMTP extension, 46–106,
46–144
Delayed, use_precedence MTA option, 52–231
Delivery delay warning, return_delayed.txt,
60–13
Delivery delay warning, See also notices
channel option, 60–13
Delivery receipt, 60–1
Delivery receipt, return_delivered.txt, 60–13
Delivery receipt, return_forwarded.txt, 60–14
Disposition, 60–1
Enqueued to process channel, 65–20
Envelope From address, 60–25
filter_discard channel messages not eligible,
65–8
Format of, 60–5
Format of, DSN language, 60–9

Index–110 Messaging Server Reference

Format of, history_to_return MTA option,
52–227
Format of, LOG_BANNER TCP/IP-channel-
specific option, 62–30
Format of, LOG_TRANSPORTINFO TCP/IP-
channel-specific option, 62–32
Format of, MDN language, 60–18
FROM_ACCESS mapping rejection text,
57–17
Generated by remote MTAs, 60–3
Generated by SMTP clients, 60–2
Generation of, 60–4
Generation of, Scheduler, 17–5
Generation, Channel used, 46–104
Group (in LDAP) syntax errors, 60–2
Language choice,
DISPOSITION_LANGUAGE mapping table,
60–18
Language choice, language channel option,
46–81, 46–106
Language choice,
NOTIFICATION_LANGUAGE mapping
table, 60–9
Language preference, Address reversal, 48–52
Language specific, RETURN_PERSONAL
option in return_option.opt, 52–230
ldap_delay_notifications MTA option, 52–147
Localization, langdir MTA option, 52–164
Logging of, 60–25
log_message_id MTA option, 60–25
log_process MTA option, 60–25
Mailing lists, 49–17
Mailing lists, alias_envelope_from alias
option, 48–15
Mailing lists, alias_error_text alias option,
48–15
Mailing lists, alias_keep_delivery alias option,
48–18
Mailing lists, alias_keep_read alias option,
48–18
MDN, disposition_deleted.txt file, 60–21
MDN, disposition_dispatched.txt file, 60–21
MDN, disposition_prefix.txt file, 60–20
MDN, disposition_suffix.txt file, 60–21
msprobe alarm messages, 20–1
MTA options, 52–226
Non-delivery report, 60–1
Nondelivery, return_bounced.txt, 60–13
Nondelivery, return_failed.txt file, 60–14
Nondelivery, return_timedout.txt, 60–14
nonotify Sieve action, 5–23
NOTARY flags, Address reversal, 48–52
notary_decode MTA option, 52–228

Over quota warnings, 60–2
Overquota in Message Store, 60–3
Postmaster, 60–26
Postmaster address, Domain-specific, 52–157
Postmaster address, returnaddress channel
option, 46–107
Postmaster address, returnpersonal channel
option, 46–107
Postmaster address, return_personal MTA
option, 52–230
Postmaster copied on, 60–1
Postmaster notifications of channel and
system Sieve filter syntax errors, 60–2
Postmaster, Format of msprobe alarm
messages, 20–2
Process channel, 60–25
Read receipt, 60–1
Request, alias_[no]delay_notifications alias
options, 48–14
Return job, return_units MTA option, 52–230
Return of content, 60–26
Return of content, content_return_block_limit
MTA option, 52–220, 52–227
Return of content, DSN SMTP extension,
46–106, 46–144
Return-of-content flag, ldap_blocklimit MTA
option, 52–132
return_envelope MTA option, 52–166, 52–229
return_option.opt file, 60–14
return_prefix.txt, 60–12
Routing of, 60–23
setnotify Sieve action, 5–23
setreturn Sieve action, 5–23
Sieve filter control of DSN settings, 5–76
Sieve filter notify, 5–1
Sieve filter processing error, return_error.txt,
60–13
Sieve filter syntax error reports, 60–2
Sieve filters, redirect-dsn extension, 5–49
Sieve reject extension, 5–33
Sieve syntax error, 52–243, 52–243, 52–244
Size limit, blocklimit channel option, 52–220,
52–227
Size limit, content_return_block_limit MTA
option, 52–220, 52–227
Size limits, 52–220, 52–227, 60–26
Spam bounces, 60–24
SRS addresses, Relay blocking interaction,
62–61
Subject: header line, 60–11
Troubleshooting "incomplete" DSNs, 60–10
Types, 60–1
Vacation, 60–1

Index–111

Warning of delayed delivery, 60–1
Part numbers, 51–9
Priority

alias_priority alias option, 48–17
Defragmentation, 65–5
Effect delaying "immediate" delivery attempt,
*after channel options, 46–110
Effect on delivery retry frequency, 46–111
Effect on MTA processing, 46–110, 55–2, 55–5
Effect on timing of DSN generation, 46–106
Effect on timing of message return (bounce),
46–106
Example of "off-hours" delivery eligibility,
55–18
LOG_ACTION mapping table probes, 68–11
Mass mailings, 49–9
Message size influence, 46–125, 52–222,
52–233
Message transaction log entries, log_priority
MTA option, 52–292
Overriding, 55–6
Rewrite rule access to, 47–35
Sieve setpriority extension, 5–77
SMS messages, use_sms_priority SMS
gateway option, 66–8
[PRIORITY] named parameter for mailing
lists, 48–36

Priority (MT-PRIORITY)
CONVERSIONS mapping table probe,
include_mtpriority MTA option, 51–3
envelopetunnel channel option, 46–76
LOG_ACTION mapping table probes,
log_mtpriority MTA option, 52–291
Mapping table probes, 52–203
Message transaction log entries,
log_mtpriority MTA option, 52–291, 52–292
MESSAGE-SAVE-COPY mapping table
probes, message_save_copy_flags MTA
option, 52–210
Policy, mtpriority_policy MTA option, 52–233
Sieve setmtpriority extension, 5–77
vnd.oracle.mt-priority Sieve environment
item, 5–33

Queue files
Creation of, addrsperfile channel option,
46–66
Creation of, expandchannel channel option,
46–67, 46–99, 46–113, 46–124
Creation of, expandlimit channel option,
46–67, 46–99, 46–113, 46–124
Creation of, multiple channel option, 46–66
Creation of, osync MTA option, 52–184
Creation of, single channel option, 46–66

Creation of, single_sys channel option, 46–66
Creation of, subdirs channel option, 46–68
Flushing of, fsync MTA option, 52–182

Read receipts
See also Message, Notification, Read receipt,
60–1
See also Read receipts, 60–1

Recall of
See Message recall, 61–1

Recipients
Access control mapping tables, 57–7
Limiting number of, Address access mapping
tables, 57–10
Limiting number of,
ALLOW_RECIPIENTS_PER_TRANSACTION,
62–20
Limiting number of, Channel options, 46–96,
46–132
Limiting number of,
ldap_domain_attr_recipientcutoff MTA
option, 52–160
Limiting number of,
ldap_domain_attr_recipientlimit MTA option,
52–159
Limiting number of, ldap_recipientcutoff
MTA option, 52–125
Limiting number of, ldap_recipientlimit MTA
option, 52–124

Reformatting, 51–1
Replay

MESSAGE-SAVE-COPY mapping table, 67–5
Returning

return_bounced.txt, 60–13
Routing

See Routing, 51–5
Sieve notify

notify_maximum_timeout MTA option, 52–70
notify_minimum_timeout MTA option, 52–71

Size
Affected by encoding, decoding, and
conversions, 52–204
Logging of, Reported in units of MTA
block_size, 52–219
Logging of, sz attribute, 52–281
Mapping table probes, include_mtpriority
MTA option, 52–203
Rewrite rule access to, 47–35
Sieve filter access to, 5–16, 5–44
SMTP SIZE extension, Interaction with size
limit settings, 52–169
SMTP SIZE extension, Mapping table probes,
52–204

Size limits, 46–123

Index–112 Messaging Server Reference

Address reversal, 48–52
alias_blocklimit alias option, 48–11
alias_linelimit alias option, 48–11
BLOCKLIMIT alias file named parameter,
48–31
Bounce messages, 52–220, 52–227
Bounce messages, content_return_block_limit
MTA option, 52–220, 52–227
ENS/JMQ notifications, maxbodysize
notifytarget option, 37–5
ENS/JMQ notifications, maxheadersize
notifytarget option, 37–5
Force non-return of content flag, 60–26
Headers, header_limit MTA option, 52–220
Headers, max_header_blocks MTA option,
52–221
Headers, max_header_lines MTA option,
52–222
ldap_blocklimit MTA options, 52–132
ldap_domain_attr_blocklimit MTA option,
52–154
ldap_domain_attr_sourceblocklimit MTA
option, 52–158
ldap_maximum_message_size MTA option,
52–141
ldap_message_quota MTA option, 52–133
ldap_sourceblocklimit MTA option, 52–125
LINELIMIT alias file named parameter, 48–31
Logging rejection due to, 46–124
mailDomainMsgMaxBlocks domain LDAP
attribute, 52–154
mailMsgQuota attribute, 52–133
maxbodysize notifytarget option, 37–5
maxcollectmsglen MSHTTP option, 42–10
maxheadersize notifytarget option, 37–5
maxmessagesize IMAP option, 34–16
maxmessagesize MSHTTP option, 42–10
maxpostsize MSHTTP option, 42–10
max_header_block_use MTA option, 46–55
max_header_line_use MTA option, 46–55
MTA options, 52–218
Set via address access mapping tables, 57–10

Text parts
Character set, 51–17
Character set labelling, 46–59
Character set, detectcharset MSHTTP option,
42–7
Character set, httpcharset and mailcharset
MSHTTP options, 42–16
forcenbsptospace MSHTTP option, 42–7

Tracking of
See Message tracking, 61–1

Tunnelling, 63–1

uuencode
thurman channel option, 46–56
uma channel option, 46–57
UUENCODE CHARSET-CONVERSION
mapping keyword, 51–19
UUENCODE CONVERSIONS mapping
keyword, 51–4

Vacation
:reply, Character set conversion, 60–22
Addresses recognized,
ldap_autoreply_addresses MTA option,
52–137
Check start and end time via delivery_option,
52–98
delivery_option clause to use Sieve vacation
action, 52–98
Format of, 60–9
Format of, ldap_autoreply_mode MTA
option, 52–134
FROM_ACCESS mapping table disables
generation of, 57–17
Language choice, language channel option,
46–81, 46–106
novacation Sieve action, 5–23
Repeat of, autoreply_timeout_default MTA
option, 52–70
Repeat of, ldap_autoreply_timeout MTA
option, 52–137
Repeat of,
ldap_domain_attr_autoreply_timeout MTA
option, 52–155
Repeat of, vacation_template MTA option,
52–72
Sieve filter vacation action, 5–1, 5–51
Subject of, ldap_autoreply_subject MTA
option, 52–134
Text of, ldap_autoreply_text MTA option,
52–135
Text of, ldap_autoreply_text_internal MTA
option, 52–136
Text of, vnd.sun.autoreply-internal envelope
item in Sieve filters, 5–32
Time range, ldap_end_date MTA option,
52–131
Time range, ldap_start_date MTA option,
52–130
Time range, vacationEndDate LDAP
attribute, 52–131
Time range, vacationStartDate LDAP
attribute, 52–130
vacation_hash_algorithm MTA option, 52–71
vacation_maximum_timeout MTA option,
52–71, 52–108

Index–113

vacation_minimum_timeout MTA option,
52–72, 52–107
Why not generated, 5–53
Why not generated, Domain not properly
defined in LDAP or not found, 5–53
Why not generated, Domain, user or group
status, 5–53
Why not generated, Incompatible other Sieve
action performed, 5–54
Why not generated, mailAutoreplyText
LDAP attribute or value missing, 5–54
Why not generated, Original message a list
post per header lines, 5–53
Why not generated, Original message
disabled all notifications, 5–53
Why not generated, Original message's From
address suggests list post, 5–53
Why not generated, Outside
vacationStartDate-vacationEndDate range,
5–53
Why not generated, Recipient address not
present in original message header, 5–53
Why not generated, Recipient not properly
defined in LDAP or not found, 5–53
Why not generated, Same vacation response
already sent recently, 5–54
Why not generated, Sieve novacation or
FROM_ACCESS $! applied, 5–53
Why not generated, Sieve vacation action
syntax error, 5–54
Why not generated, Too many vacation
actions already performed in Sieve script,
5–54
Why not generated, Trouble accessing
vacation-previous-response database, 5–54
Why not generated, Vacation action not
supported in system Sieves, 5–54

Message circuit check
Display via XCIR SMTP command

DISABLE_CIRCUIT TCP/IP-channel-specific
option, 62–27

Message conversions
Character set conversion

Example, 51–21
Character set, Conversion, 51–19
Performance impact, 69–3
Reformatting, 51–22

Message expiration
Folder patterns, 31–3

Message recall, 61–1
-rsecret switch of calc utility, 71–14
-rsecret switch of imsimta test -expression, 71–94
Configuration, 61–1

notracking* channel options, 46–101
tracking* channel options, 46–101

Message replay
clonehosts channel option, 46–42, 46–69
MESSAGE-SAVE-COPY mapping table, 67–3

Message return job
See return_job, 17–5

Message Store, 1
Admin user

admins Message Store option, 26–5
httpproxyadmin MSHTTP option,
DEPRECATED, 42–9
indexeradmins Message Store option, 26–12
proxyadmin base option, 16–12
proxyadminpass base option, 16–12
smtpauthpassword Alarm option, 20–2
smtpauthpassword MSHTTP option, 42–12
smtpauthuser MSHTTP option, 42–13
storeadmin MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–28
storeadminpass MMP/IMAP Proxy/POP
Proxy/vdomain option, 41–28

Backup
See also backup_group options, 29–1

Database snapshot job
Scheduler task, 17–2

Database snapshot verification job
Scheduler task, 17–2

Database transactions
dbtxnsync base option, 16–4
maxlog Message Store option, 26–13

Delivery channel
See ims-ms channels, 64–1
See LMTP channels, 62–13

Disk space
relinker, 26–29

Error statuses, 38–1
Error statuses (delivery), 38–1, 64–8
Expiration job

Scheduler task, 17–2
Expiration of messages, 31–1

exploglevel Message Store expire option,
26–23
imexpire, 31–2
Logging, exploglevel Message Store expire
option, 26–23
store.expirerule files, 31–1

File creation
umask Message Store option, 26–18

Folders
Delivery to, 46–49, 46–122
enable folderquota option, 26–25

Index–114 Messaging Server Reference

Event notification, noninbox notifytarget
option, 37–7
Expiration of messages, 31–1
Hidden, ensureownerrights Message Store
option, 26–11, 26–11
junkmail, Default Brightmail spam
destination, 58–3
Localized mailbox names, 31–4
maxfolders option, 26–13
Maximum age of messages (days),
messagedays attribute in store.expirerule
files, 31–3
Maximum age of messages (days),
messagedays store.expirerule option, 26–24
Maximum age-in-folder of messages (days),
savedays attribute in store.expirerule files,
31–3
Maximum retention (days) for over-sized
messages, messagesizedays attribute in
store.expirerule files, 31–3
Maximum retention (days) for over-sized
messages, messagesizedays store.expirerule
option, 26–24
Maximum size of (# messages), messagecount
attribute in store.expirerule files, 31–3
Maximum size of (# messages), messagecount
store.expirerule option, 26–24
Maximum size of (bytes), foldersizebytes
attribute in store.expirerule files, 31–3
Maximum size of (bytes), foldersizebytes
store.expirerule option, 26–24
Maximum size of message (bytes),
messagesize attribute in store.expirerule files,
31–3
Maximum size of message (bytes),
messagesize store.expirerule option, 26–24
maxmessages option, 26–13
pin option, 26–14
Shared, proxyserverlist base option, 16–13
sharedfolders option, 26–17
Unread messages per, showunreadcounts
MSHTTP option, 42–12

Hierarchical storage
Pinning folders onto specified partitions,
26–14

Language tag
sitelanguage base option, 16–14

Logging
logexpungedetails Message Store option,
26–12
maxlog Message Store option, 26–13
Message Trace options, 36–1

Mailbox locked, 38–2

MAILBOX_BUSY_FAST_RETRY TCP/IP-
channel-specific option, 62–32

Memory usage
dbnumcaches Message Store option, 26–9

Message expiration
Age at which purge permanently removes,
cleanupage Message Store option, 26–8
Sieve filters, 5–1

Message typing
contenttype Message Store messagetype
option, 26–26
enable Message Store messagetype option,
26–26
enable Message Store typequota option, 26–26
flagname Message Store messagetype option,
26–26
header Message Store messagetype option,
26–26
msgtypes notifytarget option, 37–7
Options, 26–25
quotaroot Message Store messagetype option,
26–26
quotaroot Message Store messagetype option,
IMAP_QUOTAROOT_NONEXISTENT error
status, 38–3, 64–10
Quotas, 26–25

Options
See Message Store options, 26–4

Partitions
Bogus, IMAP_MAILBOX_NONEXISTENT
error status, 38–1, 64–9
defaultpartition Message Store option, 26–11
diskusagethreshold Message Store option,
26–11
IMAP_PARTITION_FULL error status, 38–3,
64–10
IMAP_PARTITION_UNKNOWN error
status, 38–2, 64–10
Pinning folders, 26–14
See also Partition, Options, 28–1

Performance
dbtmpdir Message Store option, 26–10
relinker, 26–29

Shared folders, 26–30
Snapshot

snapshotdirs Message Store option, 26–17
snapshotpath Message Store option, 26–17

Transaction log
finalcheckpoint option, 26–11

Transaction logging
rollover manager, 24–1

Utilities

Index–115

mboxutil, Moving (and pinning) folders to
specified partition, 26–14

Welcome message for new users
Localized, welcomemsg message_language
option, 27–1
welcomemsg base option, 16–23

Message Store options, 26–4
admins, 26–5
archive, 26–18

compliance, 26–19
destination, 26–19
intext, 26–19
operational, 26–19
path, 26–20
posteddatemode, 26–20
reportdir, 26–19
retrieveport, 26–20
retrieveserver, 26–20
retrievetimeout, 26–20
source_channel, 26–19
style, 26–19
tmpdir, 26–18
useheaderrecipients, 26–20

autorepair, 26–5
autorepairdebug, 26–5
autounsubscribe, 26–5
backupdir, 26–5
backupexclude, 26–6
cacheconnectpoints, 26–6
cachepreviewlen, 26–6
cachesynclevel, 26–6
cascachedc, 26–8
cascacherf, 26–7
cascasopretrycount, 26–7
cascasopretryintervalinms, 26–7
casconnectpoints, 26–6
caskeyspaceprefix, 26–8
casmaxconnectionsperhost, 26–7
casmetadc, 26–8
casmetarf, 26–7
casmsgdc, 26–8
casmsgrf, 26–7
casnumthreadsio, 26–7
caspassword, 26–7
cassolrdc, 26–8
cassolrrf, 26–7
casusername, 26–7
checkdiskusage, 26–8

IMAP_PARTITION_FULL error status, 38–3,
64–10

checkmailhost, 26–8
checkpoint, 26–20

debug, 26–20

stresslimit, 26–20
cleanupage, 26–8
cleanupsize, 26–9
dbcachesize, 26–9
dblogregionmax, 26–9
dbnumcaches, 26–9
dbregionmax, 26–9
dbreplicate, 26–20

ackpolicy, 26–21
acktimeout, 26–22
dbpriority, 26–21
dbremotehost, 26–21
enable, 26–21
port, 26–21
queuemax, 26–21
twosites, 26–21

dbsync, 26–9
dbtmpdir, 26–10
dbtype, 26–10
deadlock, 26–22

autodetect, 26–22
checkinterval, 26–22

deadlockaggressive, 26–10
defaultmailboxquota, 26–10
defaultmessagequota, 26–10
defaultpartition, 26–11
diskflushinterval

Analogous to fsync MTA option, 52–182
diskusagethreshold, 26–11

checkdiskusage interaction, 26–8
IMAP_PARTITION_FULL error status, 38–3,
64–10

elasticsearch
hostlist, 32–6
numreplicas, 32–7
numshards, 32–7
port, 32–7
source, 32–7

enable, 26–4
Default for schedule.task:expire.enable, 17–3
Default for schedule.task:snapshot.enable,
17–6

encryptnew, 26–11
ensureownerrights, 26–11
expire, 26–22

exploglevel, 26–23
expirerule, 26–23

deleted, 26–23
exclusive, 26–23
folderpattern, 26–24
foldersizebytes, 26–24
messagecount, 26–24
messagedays, 26–24

Index–116 Messaging Server Reference

messagesize, 26–24
messagesizedays, 26–24
seen, 26–24

expiresieve, 26–11
expungesynclevel, 26–11
finalcheckpoint, 26–11
folderlockcount, 26–12
folderquota, 26–24

enable, 26–25
indexeradmins, 26–12
indexmapreadonly, 26–12
indexsynclevel, 26–12
keylabel, 26–12
keypass, 26–12
listimplicit, 26–12
logexpungedetails, 26–12
mailboxpurgedelay, 26–13
maxcachefilesize, 26–13
maxfolders, 26–13
maxlog, 26–13
maxmessages, 26–13
messagesynclevel, 26–13

Analogous to fsync MTA option, 52–182
messagetype, 26–25

enable, 26–26
header, 26–26
mtindex, contenttype, 26–26
mtindex, flagname, 26–26
mtindex, quotaroot, 26–26
mtindex, quotaroot example, 26–25
mtindex, quotaroot,
IMAP_QUOTAROOT_NONEXISTENT error
status, 38–3, 64–10

msgconnectpoints, 26–6
msghash, 26–27

dbcachesize, 26–27
enable, 26–27
nummsgs, 26–27

overquotastatus, 26–13
Enables quota overdraft, 26–16
Implies quotaoverdraft, 26–16

perusersynclevel, 26–14
pin, 26–14
privatesharedfolders

restrictanyone, 26–30
restrictdomain, 26–30
shareflags, 26–30

publicsharedfolders
user, 26–30

purge, 26–27
count, 26–28
enable, 26–28
maxthreads, 26–28

percentage, 26–28
quotaenforcement, 26–14

subdirs channel option on ims-ms channel,
64–2

quotaexceededmsg, 26–14
quotaexceededmsginterval, 26–15

Notification that a Message Store user is
overquota, 60–3

quotagraceperiod, 26–15
IMAP_QUOTA_EXCEEDED_PERSISTENT
error status, 38–1, 64–9
subdirs channel option on ims-ms channel,
64–2

quotanotification, 26–15
quotaoverdraft, 26–15

Notification that a Message Store user is
overquota, 60–3

quotawarn, 26–16
Notification that a Message Store user is
overquota, 60–3

relinker, 26–29
enable, 26–29
maxage, 26–29
minsize, 26–29

rollingdbbackup, 26–16
searchengine, 26–16
seenckpinterval, 26–16
seenckpstart, 26–16
serviceadmingroupdn, 26–16
Shared folders, 26–30
sharedfolders, 26–17
snapshotdirs, 26–17
snapshotpath, 26–17
solrconnectpoints, 26–6
subscribesynclevel, 26–17
synclevel, 26–17
typequota

enable, 26–25, 26–26, 26–27
umask, 26–18
undeleteflag, 26–17

Message tracing, 36–1, 46–95
messagetrace options, 36–1

Message tracking, 61–1
Configuration, 61–1
MTA options, 52–223

Message transaction logging
See Logging, MTA transaction, 52–271

messagecount attribute in store.expirerule files,
31–3
messagecount Message Store expirerule option,
26–24
messagedays attribute in store.expirerule files, 31–3

Index–117

messagedays Message Store expirerule option,
26–24
messageheader.<field-name> attribute in
store.expirerule files, 31–3
messagepath partition option, 28–1
messagesize attribute in store.expirerule files, 31–3
messagesize Message Store expirerule option,
26–24
messagesizedays in store.expirerule files, 31–3
messagesizedays Message Store expirerule option,
26–24
messagesynclevel Message Store option, 26–13

Analogous to fsync MTA option, 52–182
messagetrace options, 36–1

actionattributes, 34–3, 35–2, 36–1
actions, 34–3, 35–2, 36–1
activate, 36–1, 46–95

ims-ms channel debugging, 64–6, 64–7
loglevel, 36–2

messagetype Message Store options
mtindex

flagname, 26–26
quotaroot, 26–26
quotaroot,
IMAP_QUOTAROOT_NONEXISTENT error
status, 38–3, 64–10

message_hash_algorithm MTA option, 52–217
message_hash_fields MTA option, 52–218

Message identifier generation (for archiving),
67–19

message_language options, 27–1
quotaexceededmsg, 27–1
welcomemsg, 27–1

message_save_copy_flags MTA option, 52–210
MESSAGE-SAVE-COPY mapping table probe,
67–4

Messenger Express
Address search

allowldapaddresssearch MSHTTP option,
42–4

Meta-group
Mailing list definitions, 52–106

MeterMaid, 57–1, 59–1
Debugging

metermaid keyword in debugkeys option
value, 41–12

enable_sieve_metermaid MTA option, 52–246
IMAP pwexpirealert options

metermaidtable, 34–19
viametermaid, 34–19

metermaidtable pwexpirealert option, 34–19
MTA options, 52–224
Sieve filter metermaid extension, 5–67

Startup, 59–2
viametermaid pwexpirealert option, 34–19

MeterMaid client
Options, 59–5

connectfrequency, 59–6
connecttimeout, 59–6
debug, 59–5
max_conns, 59–6
remote_server, 59–7
remote_server, server_host, 59–7
remote_table, 59–7
remote_table, server_nickname, 59–7
server_host, 59–6
server_port, 59–6
timeout, 59–6

MeterMaid options, 59–2
async, 59–2
backlog, 59–3
enable, 59–2
listenaddr, 59–3
local_table

block_time, 59–3
data_type, 59–3
inactivity_time, 59–3
max_entries, 59–4
quota, 59–4
quota_time, 59–4
resubmit_time, 59–3
storage, 59–4
table_options, 59–4
table_type, 59–4
value_type, 59–4

maxthreads, 59–5
secret, 59–5
sslcachesize, 59–5

MeterMaid remote_server options
server_port, 59–7

MeterMaid server
msprobe probe of, 19–2

metermaid: URLs
MTA URL types, 1–4

metermaidtable pwexpirealert option, 34–19
metermaid_backoff MTA option, 52–224
metermaid_expire MTA option, 52–225
metermaid_host MTA option, 52–225
metermaid_port MTA option, 52–225
metermaid_secret MTA option, 52–225
metermaid_timeout MTA option, 52–225
MIB (Management Information Base), G–8
MIB variables, 68–27

Channel counters, 68–23
mtaGroupLoopsDetected

directoryscan SNMP option, 73–2

Index–118 Messaging Server Reference

mtaGroupOldestMessageId
directoryscan SNMP option, 73–2

mtaGroupOldestMessageStored
directoryscan SNMP option, 73–2

Microsoft® Exchange
Journal format

;format-journal* tags on user LDAP capture
attribute, 52–124
addrtypescan* channel options, 46–36, 46–118
capture_format_default MTA option, 52–97
DESTINATION Archive option, 58–11
destination Message Store archive option,
26–19
journal_format MTA option, 52–101, 52–216
Message Store archiving, 26–18, 26–18
SOURCE_CHANNEL Archive option, 58–11
source_channel Message Store archive option,
26–19
STYLE Archive option, 58–10
style Message Store archive option, 26–19

msexchange channel option, 46–55, 46–143,
46–172

migrate415 PAB option, 72–2
Migration of users

Hold channel, 65–10
Milter

See Spam/virus filter package integration,
Milter, 58–6, 58–12, 58–16, 58–17

MIME (Multipurpose Internet Mail Extensions),
G–8
MIME labelling

Batch SMTP, 63–3
Boundary parameter segmentation, 46–57, 46–62
Calendar parts

msexchange channel option, 46–56, 46–143,
46–172

charset
RFC 2231 encoding removal, 46–57, 46–62

Charset, 46–59
Encoding

Long lines, 46–54
Text parts, CHARSET-CONVERSION
mapping table, 51–20

Illegally encoded message parts, 46–53
Illegally encoded multiparts, 46–53
MacMIME conversions, 51–23
Modifying (relabelling), 51–27

RELABEL conversion entry parameter, 51–9
Parameter encoding

parameterformat* channel options, 46–57,
46–61
rfc2231compliant MSHTTP option, 42–12

Parameter length limits, 46–56

RFC 2231 segmentation of long values, 46–57,
46–61

minperiodicnonurgent channel option, 46–115
minperiodicnormal channel option, 46–115
minperiodicurgent channel option, 46–115
minsize Message Store relinker option, 26–29
min_conns Dispatcher option, 54–8

Operation, 54–2
min_conns Dispatcher service option, 54–8
min_procs Dispatcher option, 54–10

Operation, 54–2
min_procs Dispatcher service option, 54–10
Miscellaneous mapping table MTA options, 52–208
missingrecipientpolicy channel option, 46–45,
46–82

acceptalladdresses channel option, 46–34
missing_address MTA option, 52–301
missing_recipient_group_text MTA option, 52–63
missing_recipient_policy MTA option, 52–63

acceptalladdresses channel option, 46–34
MLS (Multi Layer Security)

Channel options, 46–103
ldap_mlsrange MTA option, 52–124
mlslabel channel option, 46–103
mlsrange channel option, 46–103
MTA options, 52–226

mls MTA option, 52–226
mlslabel channel option, 46–103
mlsrange channel option, 46–103
MMP, 1

Access filters, 57–1
Denial-of-service

ldappendingoplimit, 41–16
stressfdwait base option, 16–21
stressperiod base option, 16–20

Logging
maxlogfiles option, 16–24

Options, 41–3
adminpolicy, 41–5
authcachettl, 41–5
banner, 41–7
canonicalvirtualdomaindelim, 41–9
connecttimeout, 41–9
connlimits, 34–12, 35–4, 41–10, 42–5
connrejectthreshold, 41–11
crams, 41–11
debugkeys, 41–11
defaultdomain, 41–13
dnsrbl, 41–13
domainsearchformat, 41–14
enable, 41–5
hosteddomains, 41–14
ipv6in, 16–6, 41–15

Index–119

ipv6out, 16–6, 41–15
ipv6sortorder, 16–7
langlist, 41–15
ldapcachesize, 41–15
ldapcachettl, 41–16
ldappendingoplimit, 41–16
ldaprefreshinterval, 41–16
ldaptimeout, DEPRECATED, 41–16
ldapurl, 41–16
ldapurl, DEPRECATED, 41–16
logfile, 41–5
logfile, rollovertime, 16–25
loglevel, 41–17
mailhostattrs, 41–18
maxconcurrentconnectionattempts, 41–18
maxthreads, 41–18
memcached_enable, 41–5
memcached_host, 41–5
memcached_port, 41–5
numprocesses, 41–18
numthreads, DELETED; see maxthreads,
41–18
polldelay, 34–17, 41–19
preauth, 41–19
preferpoll, 16–12, 41–19
replayformat, 41–19
replaypass, 41–20
restrictplainpasswords, 41–20
searchformat, 41–20
ssladjustciphersuites, 16–14, 41–22
sslcachedir, 16–18, 41–27
sslcertprefix, DEPRECATED: see ssldbprefix
instead, 41–27
sslnicknames, 41–28
sslsecmodfile, DELETED, 41–28
storeadmin, 41–28
storeadmin, Default taken from store.admins
option, 26–5
storeadminpass, 41–28
tcpaccess, 41–29
tcpaccessattr, 41–29
tcpaccessattr, TCP wrappers, 6–2
timeout, 41–30
usergroupdn, DEPRECATED; see
ugldapbasedn instead, 41–30
use_nslog, 41–30
virtualdomaindelim, 41–31
virtualdomainfile, DELETED; see vdomain
options instead, 41–31

Ports
tcp_listen block, 41–5

SMTP proxy

PROXY_PASSWORD TCP/IP-channel-specific
option, 62–35

Startup, 41–5
XPEHLO reset of connection

PORT_ACCESS mapping probe, 57–18
mm_debug MTA option, 52–78

$U flag in address *_ACCESS mapping tables,
57–10
$U flag in PORT_ACCESS mapping table, 57–4

mm_mbc MTA option, 52–183
mm_mbf MTA option, 52–183
Monitoring

MTA, 68–1
Monty Python Flying Circus

Spam, G–10
msadmin

Debugging
debugkeys values, 41–12

msconfig information
Recipe language access to

get_msconfig_info recipe function, 4–13
msconfig utility

Commands
EDIT CONVERSIONS, 51–7
run, -restricted, 4–17

EDIT CONVERSIONS, 52–74
EDIT LOG_HEADER_OPTIONS, 52–287
EDIT MAPPINGS, 50–4
EDIT REWRITES, 47–2
Used to configure Messaging Server, 1

msexchange channel option, 46–55, 46–143, 46–172
msgconnectpoints message store option, 26–6
msgflags notifytarget option, 37–5
msgtypes notifytarget option, 37–7
MSHTTP, 1

Autorestart
autorestart.enable option, 16–26

DNS reverse lookup
dnsresolveclient base option, 16–5

Errors, 42–16
Language tag

sitelanguage base option, 16–14
msprobe probe, 19–2
SSL

enablesslport MSHTTP option, 42–3
sslport MSHTTP option, 42–14
sslport MSHTTP sieve option, 42–26

Startup, 42–3
MSHTTP options, 42–3

allowanonymouslogin, 42–4
allowcollect, 42–4
allowldapaddresssearch, 42–4
altservice, 42–4

Index–120 Messaging Server Reference

cert_enable, 42–4
cert_port, 42–4
charsetvalidation, 42–4
connlimits, 34–12, 35–4, 41–10, 42–5
convergencefilterenabled, 42–6
cookiedomain, 42–6
cookiename, 42–6
da_host, 42–6
da_port, 42–6
detectcharset, 42–6
domainallowed, 6–8, 42–7
domainnotallowed, 6–9, 42–7
enable, 42–3
enableblacklistfilter, 42–7
enablesslport, 42–3
enableuserlist, 42–7
extrauserldapattrs, 42–7
feedback, 42–16

notspam, 42–16
spam, 42–16

filterhiddenmailinglists, 42–7
forcenbsptospace, 42–7
forcetelemetry, 42–8
fullfromheader, 42–8
generatereceivedheader, 42–8
gzipattach, 42–8
gzipdynamic, 42–8
gzipstatic, 42–8
htmlprocessor, 42–8

ICAP service use enabled, 45–1
httpcharset and mailcharset options, 42–16
httpproxyadmin, 42–9
httpproxyadminpass, 42–9, 42–11
idletimeout, 42–9
ims5compat, 42–9
ipsecurity, 42–9
ldapaddresssearchattrs, 42–9
logunauthsession, 42–9
maxcollectmsglen, 42–9
maxldaplimit, 42–10
maxmessagesize, 42–10
maxpostsize, 42–10
maxsessions, 42–10
maxthreads, 42–10
nofilecache, 42–10
numprocesses, 42–10
plaintextconvspace, 42–11
plaintextmincipher, 42–11
plaintexttabsize, 42–11
popbindaddr, 42–11
port, 42–11
replayformat, 42–11
resourcetimeout, 42–12, 42–12

rfc2231compliant, 42–12
showunreadcounts, 42–12
sieve, 42–25

port, 42–25
sslport, 42–26

singlesignoff, 42–12
smtpauthpassword, 42–12

Attempt SMTP AUTH, 46–170
smtpauthuser, 42–12

Attempt SMTP AUTH, 46–170
smtphost, 42–13
smtpport, 42–13
smtptls, 42–13
sourceurl, 42–13
spooldir, 42–13
sslcachesize, 42–14
sslnicknames, 42–14
sslport, 42–14
sslsourceurl, 42–14
sslusessl, 42–14
sso_enable, 42–14
sso_id, 42–14
sso_prefix, 42–15
usesentdate, 42–15
uwccontexturi, 42–15
uwcenabled, 42–15
uwchome, 42–15
uwclogouturl, 42–15
uwcport, 42–15
uwcsslport, 42–16
xmailer, 42–16

msprobe
crontab Scheduler task option, 17–4
Enable scheduling of, 17–4
Messaging Server infrastructure, 1
Options, 19–1

queuedir, 19–1
timeout, 19–1
warningthreshold, 19–1

Restart of stored
maxlog Message Store option, 26–13

Scheduler task, 17–2
msprobe task

Options, 17–4
MTA, 1, G–8

Startup, 52–8, 52–58
MTA counters, 68–23

Binning of
log_delay_bins MTA option, 52–75
log_size_bins MTA option, 52–76

Channel counters, 68–23
Clearing

counters -clear utility, 71–31

Index–121

Displaying
counters -show utility, 71–32

enable_delay_timers MTA option, 52–75
Implementation of, 68–27
log_debug MTA option, 52–78
log_delay_bins MTA option, 52–75
log_frustration_limit MTA option, 52–76
log_size_bins MTA option, 52–76
log_sndopr MTA option, 52–76, 52–269
log_statistics MTA option, 52–76
MTA options

enable_delay_timers, 52–75
log_debug, 52–78
log_delay_bins, 52–75
log_frustration_limit, 52–76
log_size_bins, 52–76
log_sndopr, 52–76, 52–269
log_statistics, 52–76

Purpose and use of, 68–26
Sieve filters, 5–58
SNMP subagents to serve out, 68–27
Strict creation of

log_statistics MTA option, 52–76
Syslog notices regarding problems with, 52–76,
52–269
Updating of

log_frustration_limit MTA option, 52–76
MTA message transaction log file

See Logging, MTA transaction, 68–1
MTA option file, 52–9

Comment characters, 52–10
comment_chars MTA option does not affect,
52–182

MTA options, 52–8
.HELD messages, 52–234, 52–234, 52–266
Access mapping tables, 52–199

access_auth, 52–200
access_errors, 52–166
access_orcpt, 52–200
include_connectioninfo, 52–201
include_conversiontag, 52–202
include_mtpriority, 52–203
include_retries, 52–204
include_spares, 52–206
include_spares1, 52–204
mapping_paranoia, 52–206
use_ip_access, 52–206

access_auth, 52–200
FROM_ACCESS mapping table probe, 57–16

access_counts, 52–200
*_ACCESS mapping table probes, 57–8

access_errors, 52–166

Recipient *_ACCESS mapping table
rejections, 57–9
Spam/virus filter package recipient rejections,
52–167

access_orcpt, 52–200
*_ACCESS mapping table probes, 57–8
SRS and relay blocking, 62–61

Alias and address, 52–58
alias_case, 52–59
alias_domains, 52–60
alias_magic, 52–61
ap_debug, 52–77
delimiter_char, 52–62
exproute_forward, 52–62
improute_forward, 52–62
max_alias_levels, 52–63
missing_recipient_group_text, 52–63
missing_recipient_policy, 52–63
name_table_name, 52–64
reverse_envelope, 52–64
subaddress_char, 52–65
user_case, 52–69
use_alias_database, 52–65
use_auth_return, 52–206
use_canonical_return, 52–206
use_domain_database, 52–65
use_forward_database, 52–66, 52–211
use_orig_return, 52–206
use_reverse_database, 52–67, 52–212

aliasdetourhost_null_optin, 52–96
Aliases in LDAP, 48–5
alias_case, 52–59
alias_database_url, 52–215
alias_domains, 52–60

Compared with aliaswild channel option,
46–39

alias_entry_cache_negative, 52–162
alias_entry_cache_size, 52–162
alias_entry_cache_timeout, 52–162

Lag in seeing LDAP alias changes take effect,
48–49

alias_hash_size, 52–186
alias_magic, 52–61

Aliases in LDAP, 48–5
Default for aliasmagic channel option, 46–39
Override via $nT rewrite rule control
sequence, 47–34

alias_member_size, 52–186
alias_url0

Example, 48–7
ims-ms channels, 64–3, 64–4

alias_urlN, 52–90
Aliases in LDAP, 48–5

Index–122 Messaging Server Reference

Alternative to alias file LDAP URL alias
values, 48–42

allow_unquoted_addrs_violate_rfc2798, 52–97
alternate_recipient, 52–61, 52–195
alternate_recipient_mode, 52–61, 52–195
ap_debug, 52–77
Archival and hashing

message_hash_algorithm, 52–217
message_hash_fields, 52–218
unique_id_template, 52–218

authrewrite_extra_headers, 46–168
autoreply_timeout_default, 52–70
Autoresponse periodicity, 52–69

Vacation message not generated, 5–54
vacation_cleanup, 52–71
vacation_maximum_timeout, 52–71, 52–108
vacation_minimum_timeout, 52–72, 52–107
vacation_template, 52–72

blocked_mail_from_ips, 52–165
block_limit, 46–123, 52–218

acceptalladdresses channel option, 46–34
block_size, 52–219

alias_blocklimit alias option, 48–11
[BLOCKLIMIT] alias file named parameter,
48–31

bounce_block_limit, 52–220, 52–227
Notification messages, 60–26

buffer_size, 52–181
Performance, 69–4

BURL, 52–73
imap_password, 52–73
imap_username, 52–73

cache_debug, 52–77
cache_magic -- OBSOLETE, 52–181
capture_domain_replace, 52–217
capture_format_default, 52–97

ldap_capture MTA option, 52–124
Changes take effect, 52–11
chunk_cache_limit, 52–187
circuitcheck_completed_bins, 52–75
circuitcheck_paths_size, 52–187
comment_chars, 52–181

Alias database, 48–45
Domain database, 47–37
General database, 50–25

configutil parameter override , 52–73
config_debug, 52–78
content_return_block_limit, 52–220, 52–227

Notification messages, 60–26
Postmaster manual message bounce, 71–55

conversions, 51–2, 52–74
Conversions, 52–74

conversions, 52–74

conversion_size, 52–187
include_conversiontag, 52–202
log_conversion_tag, 52–276
original_channel_probe, 52–210
personal_conversion_size, 52–190
string_pool_size_0, 52–191
string_pool_size_4, 52–191

conversion_size, 52–187
Counters, 52–75

circuitcheck_completed_bins, 52–75
enable_delay_timers, 52–75
log_debug, 52–78
log_delay_bins, 52–75
log_frustration_limit, 52–75
log_size_bins, 52–76
log_statistics, 52–76

Databases, 52–76
alias_database_url, 52–215
domain_database_url, 52–215
forward_database_url, 52–216
general_database_url, 52–216
name_table_name (OpenVMS only), 52–64
reverse_database_url, 52–216
reverse_data_size, 52–190
use_alias_database, 52–65
use_domain_database, 52–65
use_forward_database, 52–66, 52–211
use_reverse_database, 52–67, 52–212
use_text_databases, 52–185

Debug, 52–77
ap_debug, 52–77
cache_debug, 52–77
config_debug, 52–78
debug_flush, 52–78, 52–182
dequeue_debug, 52–78
filter_debug, 52–78, 52–248
log_debug, 52–78
mm_debug, 52–78
os_debug, 52–79
post_debug, 52–79
return_debug, 52–80
tracking_debug, 52–80

debug_flush, 52–78, 52–182
Dispatcher debug output, 54–13
Dispatcher debugging, 52–78, 52–182

decode_encoded_words, 52–239
defer_group_processing, 52–195

List expansion through reprocess channel,
65–20
Mass mailings, 49–22

defer_header_addition, 52–239
Sieve redirect action, 5–48

delimiter_char, 52–62

Index–123

delivery_options, 52–98
autoreply (vacation) for mailing lists and
groups, 52–98
Comment confusion, 52–100
Custom clauses for custom ims-ms_* channel
delivery, 64–5
Direct LDAP address processing, 48–3
Effect on mailRoutingHosts interpretation,
52–153
Forwarding user's mail, 48–60
Group default delivery approach, 52–100
Hold channel, 65–10
Interpretation of mailDeliveryOption values,
52–127
LMTP, 52–99
mailbox delivery for ims-ms channel, 64–3
nomail clause, 52–99
Order of clauses, 52–100
Pipe channel, 65–15
Preserve subaddress in .HELD messages,
52–99
User default delivery approach, 52–100

dequeue_debug, 52–78
os_debug MTA option, 52–79

dequeue_map, 52–182
describe_cache_limit, 52–187
digest_on, 52–196
Direct LDAP alias lookups, 48–5
Direct LDAP attribute interpretation, 52–96

aliasdetourhost_null_optin, 52–96
delivery_options, 52–97
group_dn_template, 52–101
ldap_host_alias_list, 52–89, 52–103
ldap_local_host, 52–89, 52–104
ldap_uid_invalid_chars, 52–104
process_substitutions, 52–105
route_to_routing_host, 52–106
spare_*_separator, 52–107
vacation_maximum_timeout, 52–71, 52–72,
52–107, 52–108

Direct LDAP attribute names, 52–108
Capture trigger, 52–124, 52–157
ldap_add_header, 52–147
ldap_alias_addresses, 52–129
ldap_attr_domain1_schema2, 52–86, 52–151
ldap_attr_domain2_schema2, 52–86, 52–151
ldap_attr_domain_search_filter, 52–87, 52–93,
52–151
ldap_auth_domain, 52–141
ldap_auth_mappingN, 52–149
ldap_auth_password, 52–142
ldap_auth_policy, 52–140
ldap_auth_url, 52–141

ldap_autoreply_addresses, 52–137
ldap_autoreply_mode, 52–134
ldap_autoreply_subject, 52–134
ldap_autoreply_text, 52–135
ldap_autoreply_text_internal, 52–136
ldap_autoreply_timeout, 52–137
ldap_autosecretary, 52–130
ldap_blocklimit, 52–132
ldap_cant_domain, 52–141
ldap_cant_url, 52–140
ldap_check_header, 52–150
ldap_conversion_tag, 52–131
ldap_creation_date, 52–160
ldap_delay_notifications, 52–147
ldap_delivery_file, 52–133
ldap_delivery_option, 52–127
ldap_detourhost_optin, 52–131
ldap_digest_interval, 52–147
ldap_disk_quota, 52–133
ldap_domain_attr_alias, 16–8, 52–151
ldap_domain_attr_autoreply_timeout, 52–155
ldap_domain_attr_autosecretary, 52–155
ldap_domain_attr_basedn, 16–8, 52–151
ldap_domain_attr_canonical, 52–152
ldap_domain_attr_capture, 52–157
ldap_domain_attr_catchall_address, 52–157
ldap_domain_attr_catchall_mapping, 52–158
ldap_domain_attr_conversion_tag, 52–154
ldap_domain_attr_creation_date, 52–160
ldap_domain_attr_default_mailhost, 52–156
ldap_domain_attr_detourhostoptin, 52–160
ldap_domain_attr_disk_quota, 52–156
ldap_domain_attr_filter, 52–156
ldap_domain_attr_filter, Sieve hierarchy, 5–81
ldap_domain_attr_mail_status, 16–9, 52–153
ldap_domain_attr_message_quota, 52–156
ldap_domain_attr_nosolicit, 52–155
ldap_domain_attr_optinN, 52–155
ldap_domain_attr_prefix_text, 52–159
ldap_domain_attr_presence, 52–155
ldap_domain_attr_recipientcutoff, 52–160
ldap_domain_attr_recipientlimit, 52–159
ldap_domain_attr_report_address, 52–157
ldap_domain_attr_routing_hosts, 52–153
ldap_domain_attr_smarthost, 52–153
ldap_domain_attr_sourceblocklimit, 52–158
ldap_domain_attr_source_channel, 52–158
ldap_domain_attr_source_conversion_tag,
52–155
ldap_domain_attr_status, 16–9, 52–153
ldap_domain_attr_subaddress, 52–152
ldap_domain_attr_suffix_text, 52–159

Index–124 Messaging Server Reference

ldap_domain_attr_uid_separator, 16–8,
52–152
ldap_domain_attr_uplevel, 52–152
ldap_end_date, 52–131
ldap_equivalence_addresses, 52–129
ldap_expandable, 52–149
ldap_filter, 52–138
ldap_filter, Sieve hierarchy, 5–81
ldap_filter_reference, 52–138
ldap_filter_reference, Sieve hierarchy, 5–81
ldap_forwarding_address, 52–138
ldap_group_dn, 52–144
ldap_group_dn2, 52–144
ldap_group_last_access_time, 52–143
ldap_group_mail_status, 52–122
ldap_group_rfc822, 52–145
ldap_group_status, 52–121
ldap_group_url1, 52–143
ldap_group_url2, 52–143
ldap_jettison_domain, 52–139
ldap_jettison_url, 52–139
ldap_list_id, 52–139
ldap_mailhost, 52–132
ldap_maximum_messages_per_day, 52–142
ldap_maximum_message_size, 52–141
ldap_message_quota, 52–133, 52–133
ldap_mlsrange, 52–124
ldap_moderator_url, 52–142
ldap_nosolicit, 52–127
ldap_objectclass, 52–120
ldap_optin*, 52–129
ldap_optout*, 52–130
ldap_parental_controls, 52–138
ldap_personal_name, 52–128
ldap_preferred_country, 52–127
ldap_preferred_language, 52–126
ldap_prefix_text, 52–148
ldap_presence, 52–130
ldap_primary_address, 52–128
ldap_recipientcutoff, 52–125
ldap_recipientlimit, 52–124
ldap_reject_action, 52–140
ldap_reject_text, 52–140
ldap_remove_header, 52–147
ldap_reprocess, 52–139
ldap_routing_address, 52–127
ldap_sourceblocklimit, 52–125
ldap_source_channel, 52–126
ldap_source_conversion_tag, 52–128
ldap_source_optinN, 52–126
ldap_start_date, 52–130
ldap_suffix_text, 52–148
ldap_url_result_mapping, 52–145

ldap_user_mail_status, 52–121
ldap_user_status, 52–120
Prefix text, 52–159
Suffix text, 52–159
uid, 52–123

Direct LDAP domain lookup, 47–31, 52–83
Direct LDAP lookup cache

ldap_domain_timeout, 16–7, 52–88, 52–163
Direct LDAP schema, 52–93

ldap_basedn_filter_schema1, 16–9, 52–87,
52–94
ldap_basedn_filter_schema2, 16–9, 52–87,
52–94
ldap_domain_filter_schema1, 16–10, 52–88,
52–94
ldap_domain_filter_schema2, 16–10, 52–88,
52–94
ldap_domain_root, 52–88, 52–94
ldap_global_config_templates, 52–94
ldap_group_object_classes, 52–94
ldap_schematag, 52–95
ldap_user_object_classes, 52–95
ldap_user_root, 52–92, 52–96

Direct LDAP user/group lookup, 52–90
alias_urlN, 52–90
allow_unquoted_addrs_violate_rfc2798,
52–97
ldap_default_attr, 52–91
ldap_mail_aliases, 52–92
ldap_mail_reverses, 52–92
reverse_url, 52–93

Directory location, 52–164
langdir, 52–164
tmpdir, 52–164

discard_disables_capture, 52–241
dis_nesting, 52–301
DKIM, 52–164

dkim_ignore_domains, 52–164
dkim_ignore_domains, dkimpreserve
interaction, 46–64
dkim_ignore_domains, dkimremove
interaction, 46–64
dkim_ignore_domains,
dkim_preserve_domains interaction, 52–165
dkim_ignore_domains,
dkim_remove_domains interaction, 52–165
dkim_preserve_domains, 52–165
dkim_preserve_domains, dkimpreserve
interaction, 46–64
dkim_remove_domains, 52–165
dkim_remove_domains, dkimremove
interaction, 46–64

dkim_ignore_domains, 52–164

Index–125

dkimpreserve interaction, 46–64
dkimremove interaction, 46–64
dkim_preserve_domains interaction, 52–165
dkim_remove_domains interaction, 52–165

dkim_preserve_domains, 52–165
dkimpreserve interaction, 46–64

dkim_remove_domains, 52–165
dkimremove interaction, 46–64

DNS lookups, 52–165
domain_database_url, 52–215
domain_failure, 52–84

Direct LDAP domain lookups, 47–32, 47–32
domain_hash_size, 52–188
domain_match_cache_size, 52–162

Direct LDAP domain lookups, 47–32, 47–32
domain_match_cache_timeout

Direct LDAP domain lookups, 47–32, 47–32
domain_match_url, 52–85

Direct LDAP domain lookups, 47–32, 47–32
Example, 48–8

domain_uplevel, 52–85
Direct LDAP domain lookups, 47–32, 47–32
Example, 48–7

duplicate_maximum_timeout, 52–247
duplicate_minimum_timeout, 52–247
duplicate_timeout_default, 52–247
duplicate_tracking_url, 52–248
enable, 52–58

Default for schedule.task:purge.enable, 17–5,
26–28
Default for schedule.task:return_job.enable,
17–5, 17–5

enable_delay_timers, 52–75
enable_sieve_body, 5–27, 52–245
enable_sieve_ereject, 52–245
enable_sieve_memcache, 52–245

Disabling memcache Sieve extenion, 5–62
enable_sieve_metermaid, 52–246

Disabling metermaid Sieve extenion, 5–67
enable_sieve_redis, 52–246

Disabling redis Sieve extenion, 5–70
enable_sieve_regex, 52–246

regex Sieve extension, 5–76
Error interpretation, 52–166

access_errors, 52–166
spamfilterN_optional, 52–256, 52–270
use_permanent_error, 52–178
use_temporary_error, 52–179

Error text, 52–166
error_text_wrong_account, checkrrvs channel
option, 46–41, 46–130
error_text_wrong_domain, checkrrvs channel
option, 46–42, 46–130

error_text_*, 52–167
error_text_accepted_return_address, 52–176
error_text_access_failure, 52–168
error_text_alias_auth, 52–168
error_text_alias_fileerror, 52–168

Effect of use_permanent_error MTA option,
52–179

error_text_alias_fileexist, 52–168
Effect of use_permanent_error MTA option,
52–179

error_text_alias_locked, 52–168
error_text_alias_temp, 52–168
error_text_block_over, 52–169
error_text_deleted_group, 52–172
error_text_deleted_user, 52–172
error_text_disabled_alias, 52–171

Effect of use_temporary_error MTA option,
52–180

error_text_disabled_group, 52–172
error_text_disabled_user, 52–171

Effect of use_temporary_error MTA option,
52–179

error_text_inactive_group
Effect of use_permanent_error MTA option,
52–179

error_text_inactive_user
Effect of use_permanent_error MTA option,
52–179

error_text_over_quota
Effect of use_permanent_error MTA option,
52–179

error_text_recipient_over
Effect of use_permanent_error MTA option,
52–179
recipientlimit channel option, 46–96, 46–133

error_text_spf_*
spfmailfrom and spfrcptto channel options,
46–160

error_text_still_held
Hold channel, 65–11

error_text_transaction_limit_exceeded
transactionlimit channel option, 46–137

error_text_unknown_alias
Effect of use_temporary_error MTA option,
52–180

error_text_unknown_host
Effect of use_temporary_error MTA option,
52–180

error_text_unknown_user
Effect of use_temporary_error MTA option,
52–180

error_text_wrong_account, 52–171
checkrrvs channel option, 46–41, 46–130

Index–126 Messaging Server Reference

error_text_wrong_domain, 52–171
checkrrvs channel option, 46–42, 46–130

expandable_default, 52–196
exproute_forward, 52–62

exproute channel option, 46–44
External filtering context, 52–180

scan_channel, 52–180
scan_originator, 52–180
scan_recipient, 52–180

External LDAP directory
ldap_ext_host, 52–193
ldap_ext_max_connections, 52–193
ldap_ext_password, 52–193
ldap_ext_port, 52–193
ldap_ext_username, 52–193

fdirectory, 52–182
File format and handling, 52–181

cache_magic -- OBSOLETE, 52–181
comment_chars, 52–181
dequeue_map, 52–182
fdirectory, 52–182
fsync, 52–182
log_alq, 52–183
log_deq, 52–183
max_internal_blocks, 52–183
mm_mbc, 52–183
mm_mbf, 52–183
osync, 52–184
queue_cache_mode, 52–184
queue_cache_mode_3_files, 52–184
use_text_databases, 52–184

file_member_size, 52–188
filter_cache_size, 52–245
filter_cache_timeout, 52–245
filter_debug, 52–78, 52–248
filter_discard, 52–240

filter_discard channel, 65–7
filter_jettison, 52–240

filter_discard channel, 65–7
form_names, 52–301
FORWARD mapping table

include_conversiontag, 52–202
include_mtpriority, 52–203
include_spares2, 52–209
use_forward_database, 52–66, 52–211

forward_database_url, 52–216
Forward database, 48–64

forward_data_size, 52–188
fruits_size, 52–188
fsync, 52–182

Performance, 69–4
general_case, 50–25
general_database_url, 52–216

Rewrite rule general database substitutions,
47–24

general_data_size, 52–188
General database, 50–25

group_dn_template, 52–101, 52–101
Mailing list membership, 49–11

header_limit, 52–220
headerlimit channel option, 46–80

held_sndopr, 52–234, 52–266
Diagnosing .HELD files, 65–12

history_to_return, 52–227
Notification message format, 60–6
return_delivery_history MTA option, 52–229

host_hash_size, 52–189
idn_config_file, 52–62
id_domain, 52–235

Limiting emission of internal host names,
70–2
Local channel official_host_name, 65–2

imap_password, 52–73
BURL usage, 62–11

imap_username, 52–73
BURL usage, 62–11

improute_forward, 52–62
improute channel option, 46–45

include_connectioninfo, 52–201
DEFERRED_MAPPING named parameter's
mapping table probes, 48–33

include_conversiontag, 52–202
*_ACCESS mapping table probes, 57–8
-tag switch of test -rewrite utility, 71–129
CHARSET-CONVERSION mapping table,
51–18
FORWARD mapping table probes, 48–61
FROM_ACCESS mapping table, 57–15

include_domain, 51–6
include_mtpriority, 52–203

FORWARD mapping table probes, 48–61
include_retries, 52–204
include_spares, 52–206
include_spares1, 52–204

*_ACCESS mapping table probes, 57–8
FROM_ACCESS mapping table, 57–15

include_spares2, 52–209
FORWARD mapping table probes, 48–61
ldap_spare_N values, 52–134

Internal size, 52–185
alias_hash_size, 52–186
alias_member_size, 52–186
circuitcheck_paths_size, 52–187
conversion_size, 52–187
describe_cache_limit, 52–187
domain_hash_size, 52–188

Index–127

file_member_size, 52–188
forward_data_size, 52–188
fruits_size, 52–188
general_data_size, 52–188
host_hash_size, 52–189
ldap_attr_name_hash_size, 52–189
ldap_object_class_hash_size, 52–189
map_names_size, 52–190, 52–209
options_hash_size, 52–190
personal_conversion_size, 52–190
reverse_data_size, 52–190
wild_pool_size, 52–191

journal_format, 52–101, 52–216
"capture :journal" message copies, 67–16

langdir, 52–164
Fallback location for return_*.txt files, 60–10

latency server, 52–191
latency_expire, 52–192
latency_host, 52–191
latency_max_failures, 52–192
latency_port, 52–192
latency_timeout, 52–192

latency_expire, 52–192
latency_host, 52–191
latency_max_failures, 52–192
latency_port, 52–192
latency_timeout, 52–192
LDAP and URL lookup cache, 52–161
LDAP attributes returned upon authentication

ldap_auth_attr_mail_host, 52–161
ldap_auth_attr_sender, 52–161
ldap_auth_attr_submit_channel, 52–161

LDAP attributes returned with authentication
ldap_auth_attr_recall_secret, 52–161

LDAP bind and connect, 52–81
ldap_host, 52–81
ldap_max_connections, 52–81
ldap_password, 52–81
ldap_port, 52–81
ldap_timeout, 52–82
ldap_username, 52–83
ldap_use_async, 52–82
max_urls, 52–83

LDAP external directory, 52–192
LDAP lookup cache

cache_debug, 52–77
reverse_address_cache_size, 52–163
reverse_address_cache_timeout, 52–163
url_result_cache_case, 52–163
url_result_cache_size, 52–163
url_result_cache_timeout, 52–163

LDAP PAB, 52–193
ldap_add_header, 52–147

ldap_alias_addresses, 52–129
Address reversal, 48–51

ldap_alternate_recipient, 52–130
ldap_attr_domain1_schema2, 52–86, 52–151
ldap_attr_domain2_schema2, 52–87, 52–151
ldap_attr_domain_search_filter, 52–87, 52–93,
52–151
ldap_attr_name_hash_size, 52–189
ldap_auth_attr_hold_for, 52–161
ldap_auth_attr_mail_host, 52–161
ldap_auth_attr_recall_secret, 52–161
ldap_auth_attr_sender, 52–161

authrewrite channel option, 46–39, 46–72,
46–162

ldap_auth_attr_submit_channel, 46–26, 52–161
Use with FUTURERELEASE, 62–12

ldap_auth_domain, 52–141
ldap_auth_mappingN, 52–149
ldap_auth_password, 52–142
ldap_auth_policy, 52–140
ldap_auth_url, 52–141

process_substitutions MTA option, 52–105
ldap_autoreply_addresses, 52–137

Vacation message not generated, 5–53
ldap_autoreply_mode, 52–134
ldap_autoreply_subject, 52–134
ldap_autoreply_text, 52–135

Vacation message not generated, 5–54
ldap_autoreply_text_internal, 52–136

Vacation message not generated, 5–54
vnd.sun.autoreply-internal Sieve
environment item, 5–20

ldap_autoreply_timeout, 52–70, 52–137
Vacation message not generated, 5–54
vacation_maximum_timeout MTA option,
52–72, 52–108
vacation_minimum_timeout MTA option,
52–72, 52–107

ldap_autosecretary, 52–130
ldap_basedn_filter_schema1, 16–9, 52–87, 52–94
ldap_basedn_filter_schema2, 16–9, 52–87, 52–94
ldap_blocklimit, 46–123, 52–132

acceptalladdresses channel option, 46–34
Address reversal, 48–51
Notification messages, 60–26

ldap_cant_domain, 52–141
ldap_cant_url, 52–140

process_substitutions MTA option, 52–105
ldap_capture, 52–124

Address reversal, 48–51
ldap_check_header, 52–150
ldap_conversion_tag, 52–131
ldap_creation_date, 52–160

Index–128 Messaging Server Reference

ldap_default_attr, 52–91
ldap_default_domain, 52–87, 52–102

Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32
ims-ms channels, 64–4
Twin of base.defaultdomain, 16–5, 41–13

ldap_delay_notifications, 52–147
ldap_delivery_file, 52–133
ldap_delivery_option, 52–127

Deferred expansion of groups, 52–196
delivery_options interpretation, 52–98
Direct LDAP address processing, 48–3
Forwarding user's mail, 48–60
ims-ms channels, 64–4

ldap_detourhost_optin, 52–131
aliasoptindetourhost_null_optin specifies
ignored value of, 52–96

ldap_digest_interval, 52–147
ldap_disk_quota, 52–133

User LDAP attribute to override
defaultmailboxquota, 26–10

ldap_domain_attr_alias, 16–8, 52–151
ldap_domain_attr_autoreply_timeout, 52–70,
52–155
ldap_domain_attr_autosecretary, 52–155
ldap_domain_attr_basedn, 16–8, 52–151
ldap_domain_attr_blocklimit, 46–123

acceptalladdresses channel option, 46–34
Address reversal, 48–51

ldap_domain_attr_canonical, 52–152
ldap_domain_attr_capture, 52–157
ldap_domain_attr_catchall_address, 52–157
ldap_domain_attr_catchall_mapping, 52–158

Compared to FORWARD mapping table,
48–63

ldap_domain_attr_conversion_tag, 52–154
ldap_domain_attr_creation_date, 52–160
ldap_domain_attr_default_mailhost, 52–156
ldap_domain_attr_detourhostoptin, 52–160
ldap_domain_attr_disk_quota, 52–156
ldap_domain_attr_filter, 52–156

Sieve hierarchy, 5–81
ldap_domain_attr_mailserv, 52–152
ldap_domain_attr_mail_status

Hold channel, 65–10
Hold channel, Releasing messages, 65–11

ldap_domain_attr_message_quota, 52–156
ldap_domain_attr_nosolicit, 52–155
ldap_domain_attr_optinN, 52–155
ldap_domain_attr_prefix_text, 52–159
ldap_domain_attr_presence, 52–155
ldap_domain_attr_recipientcutoff, 52–160

Address reversal, 48–51

Compared to channel options, 46–97, 46–133
ldap_domain_attr_recipientlimit, 52–159

Address reversal, 48–51
Compared to channel options, 46–97, 46–133

ldap_domain_attr_report_address, 52–157
Address reversal, 48–51

ldap_domain_attr_routing_hosts, 52–153
Interpretation affected by
route_to_routing_host MTA option, 52–106
Routing to a gateway system, 62–58

ldap_domain_attr_sender_sieve, 52–156
ldap_domain_attr_smarthost, 52–153

Routing to a gateway system, 62–58
ldap_domain_attr_sourceblocklimit, 46–123,
52–158

acceptalladdresses channel option, 46–34
Address reversal, 48–51

ldap_domain_attr_source_channel, 52–158
Address reversal, 48–51
Name of attribute used for userswitchchannel
purposes, 46–91
userswitchchannel channel option, 46–26

ldap_domain_attr_source_conversion_tag,
52–155

Address reversal, 48–51
ldap_domain_attr_subaddress, 52–152

Subaddresses and LDAP lookups, 48–47
ldap_domain_attr_suffix_text, 52–159
ldap_domain_attr_uid_separator, 16–8, 52–152
ldap_domain_attr_uplevel, 52–152
ldap_domain_filter_schema1, 16–10, 52–88,
52–94

Direct LDAP domain lookups, 47–32
ldap_domain_filter_schema2, 16–10, 52–88,
52–94

Direct LDAP domain lookups, 47–32
ldap_domain_known_attributes, 16–7, 52–88

Direct LDAP domain lookups, 47–32, 47–32
ldap_domain_root, 52–88, 52–94

Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32
Twin of base.dcroot, 16–4

ldap_domain_timeout, 16–7, 52–88, 52–163
Direct LDAP domain lookups, 47–32, 47–32
TCP wrappers, 6–2

ldap_end_date, 52–131
Current date comparison for vacation
message generation, 5–53

ldap_equivalence_addresses, 52–129
Address reversal, 48–51

ldap_errors_to, 52–146
ldap_expandable, 52–149

expn* channel options, 46–139

Index–129

ldap_ext_host, 52–193
ldap_ext_max_connections, 52–193
ldap_ext_password, 52–193
ldap_ext_port, 52–193
ldap_ext_username, 52–193
ldap_filter, 52–137

Sieve hierarchy, 5–81
ldap_filter_reference, 52–138

Sieve hierarchy, 5–81
ldap_forwarding_address, 52–138

Forwarding user's mail, 48–60
ldap_global_config_templates, 52–94
ldap_group_dn, 52–143

Interpretation affected by group_dn_template
MTA option, 52–101

ldap_group_dn2, 52–144
Interpretation affected by group_dn_template
MTA option, 52–101

ldap_group_last_access_time, 52–143
ldap_group_mail_status, 52–122
ldap_group_object_classes, 52–95

Direct LDAP alias lookups, 48–6
ldap_group_rfc822, 52–145
ldap_group_status, 52–121

Supported values, 52–122
ldap_group_url1, 52–143

process_substitutions MTA option, 52–105
ldap_group_url2, 52–143

process_substitutions MTA option, 52–105
ldap_hoh_filter, 52–102, 52–150
ldap_hoh_owner, 52–102, 52–150

Sieve syntax error notification messages, 60–2
ldap_host, 52–81

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Mapping table $]ldap-url[substitutions,
50–15
Twin of ugldaphost base option, 16–22

ldap_host_alias_list, 52–88, 52–103
Direct LDAP alias lookups, 48–6

ldap_jettison_domain, 52–139
ldap_jettison_url, 52–139
ldap_list_id, 52–139
ldap_local_host, 52–89, 52–103

Direct LDAP alias lookups, 48–6
L channel official_host_name, 46–88
Twin of base.hostname, 16–6

ldap_mailhost, 52–132
aliasdetourhost interaction, 46–37, 46–68

ldap_mail_aliases, 52–92
Adjusting when ldap_equivalence_addresses
is changed, 52–129
Direct LDAP alias lookups, 48–6

ldap_mail_reverses, 52–92
ldap_maximum_messages_per_day, 52–142
ldap_maximum_message_size, 46–123, 52–141

acceptalladdresses channel option, 46–34
ldap_max_connections, 52–81

Direct LDAP domain lookups, 47–32, 48–6
ldap_message_quota, 52–133, 52–133

User LDAP attribute to override
defaultmessagequota, 26–10

ldap_mlsrange, 52–124
ldap_moderator_url, 52–142

process_substitutions MTA option, 52–105
ldap_nosolicit, 52–127
ldap_objectclass, 52–120
ldap_object_class_hash_size, 52–189
ldap_optin*, 52–129
ldap_optout*, 52–130
ldap_pab_host, 52–194
ldap_pab_max_connections, 52–194
ldap_pab_password, 52–194
ldap_pab_port, 52–194
ldap_pab_username, 52–194
ldap_parental_controls, 52–138
ldap_password, 52–81

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Twin of base.ugldapbindcred, 16–22

ldap_permid
$M substitution in LDAP URLs, 1–7

ldap_personal_name, 52–128
Address reversal, 48–51
PERSONAL_NAMES mapping table, 48–57

ldap_port, 52–81
Default for ldap_ext_port MTA option,
52–193
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Mapping table $]ldap-url[substitutions,
50–15
Twin of ugldapport base option, 16–23

ldap_preferred_country, 52–127
Address reversal, 48–51

ldap_preferred_language, 52–126
Address reversal, 48–51

ldap_prefix_text, 52–148
-additions switch of test -rewrite, 71–121

ldap_presence, 52–130
ldap_primary_address, 52–128

Address reversal, 48–51
ldap_program_info

$P substitution in LDAP URLs, 1–8
ldap_recipientcutoff, 52–125

Address reversal, 48–51

Index–130 Messaging Server Reference

Compared to channel options, 46–97, 46–133
ldap_recipientlimit, 52–124

Address reversal, 48–51
Compared to channel options, 46–97, 46–133

ldap_reject_action, 52–140
ldap_reject_text, 52–140
ldap_remove_header, 52–147
ldap_reprocess, 52–139

Deferred expansion of groups, 52–196
Mass mailings, 49–22

ldap_routing_address, 52–127
ldap_schemalevel, 16–7, 52–95
ldap_schematag, 52–95

Affects default for ldap_alias_addresses MTA
option, 52–129
Direct LDAP alias lookups, 48–6
Direct LDAP domain lookups, 47–32

ldap_sender_sieve, 52–128
ldap_sourceblocklimit, 46–123, 52–125

acceptalladdresses channel option, 46–34
Address reversal, 48–51

ldap_source_channel, 52–125
Address reversal, 48–51
Name of attribute used for userswitchchannel
purposes, 46–91
userswitchchannel channel option, 46–26

ldap_source_conversion_tag, 52–128
Address reversal, 48–51

ldap_source_optin
Address reversal, 48–51

ldap_source_optin*
Archiving, 67–21

ldap_source_optinN, 52–126
ldap_spare_1

Address reversal, 48–51
ldap_spare_2

Address reversal, 48–51
ldap_spare_3

Address reversal, 48–51
ldap_spare_4

Address reversal, 48–51
Example for Sieve external list, 5–41
SIEVE_EXTLISTS mapping probes, 5–35

ldap_spare_5
Address reversal, 48–51
SIEVE_EXTLISTS mapping probes, 5–35

ldap_spare_6
SIEVE_EXTLISTS mapping probes, 5–35

ldap_start_date, 52–130
Current date comparison for vacation
message generation, 5–53

ldap_suffix_text, 52–148
-additions switch of test -rewrite, 71–121

ldap_timeout, 52–81
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31

ldap_uid, 52–123
$M substitution in LDAP URLs, 1–7

ldap_uid_invalid_chars, 52–104
ldap_url_result_mapping, 52–145

Example, 49–14
Relationship to process_substitutions MTA
option, 52–106

ldap_username, 52–83
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Twin of base.ugldapbinddn, 16–22

ldap_user_mail_status, 52–121
Hold channel, 65–10
Hold channel, Releasing messages, 65–11

ldap_user_object_classes, 52–95
Direct LDAP alias lookups, 48–6

ldap_user_root, 52–92, 52–96
Direct LDAP alias lookups, 48–6
Twin of base.ugldapbasedn, 16–22

ldap_user_status, 52–120
ldap_use_async, 52–82

Mass mailings, 49–22
lines_to_return, 52–227
line_limit, 46–123, 52–221

acceptalladdresses channel option, 46–34
Listed alphabetically, 52–12
Listed by functional group, 52–26
local_format_restrictions, 52–62
local_quota_checks

RESTRICTED, 52–221
logfile, 52–271
Logging, 52–271

log_alternate_recipient, 52–272
log_auth, 52–272
log_callout_delays, 52–273
log_conversion_tag, 52–276
log_debug, 52–78
log_delivery_flags, 52–287
log_deliver_by, 52–277
log_dkim, 52–277
log_filter, systemfilter MTA option, 52–239
log_from, 52–285
log_futurerelease, 52–285
log_imap_flags, 52–287
log_isc_status, 52–288
log_mailbox_uid, 52–289
log_mtpriority, 52–291
log_smartsend, 52–295
log_sndopr, 52–76, 52–269
log_syslog_prefix, 52–269

Index–131

log_times, 52–296
log_tracking, 52–296
log_transactionlog, 52–249, 52–296
log_uid, 52–297
log_username, 52–298
log_use_xtext, 52–297

loglevel, 54–12, 55–17
log_8bit_encode, 52–299
log_alq, 52–183, 52–272
log_alternate_recipient, 52–272
log_auth, 52–272
log_callout_delays, 52–273
log_connection, 52–275, 68–1

$T flag in PORT_ACCESS mapping table,
57–4
Example, 68–5

log_connections_syslog, 52–266
log_conversion_tag, 52–276
log_debug, 52–78
log_delay_bins, 52–75
log_delivery_flags, 52–287
log_deliver_by, 52–277
log_deq, 52–183, 52–272
log_diagnostics, 52–277
log_dkim, 52–277
log_envelope_id, 52–278, 68–1

Example, 68–5
log_filename, 52–278

Example, 68–5
log_filename_id, 68–1
log_filter, 52–249, 52–278

addprefix or addsuffix actions, 5–57
Diagnosing .HELD files, 65–12
discard or jettison strings, 5–28
Example, 68–5
Memcache protocol errors, 5–78
Sieve duplicate errors, 5–30, 5–78
Sieve vacation errors, 5–53, 5–54, 5–78
Sieve vacation errors, Error <n> modifying
key <string> value <string> to vacation file
<filename>, 5–53, 5–54
Sieve vacation errors, Error updating vacation
memcache entry <errno> <string>, 5–53, 5–54
Sieve vacation errors, Memcache client error
adding entry <errno> <string>, 5–53, 5–54
Sieve vacation errors, Memcache server error
adding entry <errno> <string>, 5–53, 5–54
Sieve vacation errors, Server error adding
memcache vacation entry <errno> <string>,
5–53, 5–54
Sieve vacation errors, Unable to open
memcache connection for vacation: <string>
(<errno>), 5–53, 5–54

Sieve vacation errors, Vacation file <filename>
cannot be opened, 5–53, 5–54
Sieve vacation errors, Vacation operation:
Memcache client returned error <errno>
<string>, 5–53, 5–54
Sieve vacation errors, Vacation operation:
Memcache server returned error <errno>
<string>, 5–53, 5–54
spamtest level and virustest level, 5–51
systemfilter MTA option, 52–239
vacation action, 5–53

log_format, 52–279
Influence on defaults for other log_* MTA
options, 52–272

log_from, 52–285
log_frustration_limit, 52–76
log_futurerelease, 52–285
log_header, 52–286

Affected by log_messages_syslog, 52–269
Compared with transactionlog use in Sieve
script, 52–250, 52–297

log_headers_maxchars, 52–287
log_header_options, 52–287
log_imap_flags, 52–287
log_intermediate, 52–288

Example, 68–5
log_isc_status, 52–288
log_local, 52–288
log_mailbox_uid, 52–289
log_messages_syslog, 52–267
log_message_id, 52–290, 68–1

Example, 68–5
Notification messages, 60–25
SMTP AUTH error detail, 52–177

log_mtpriority, 52–291
log_node, 52–291

Example, 68–5
log_notary, 52–291

Example, 68–5
log_priority, 52–292

Example, 68–5
log_process, 52–292, 68–1

Bitbucket channel dequeues, 65–2
Example, 68–5
Notification messages, 60–25
Reprocess channel, 65–21
Use with logheader channel option, 46–94
Use with log_header MTA option, 52–286

log_queue_time, 52–293
log_reason, 52–294

Job Controller shutdown, 71–58
log_remote_mta, 52–294
log_sensitivity, 52–295

Index–132 Messaging Server Reference

Example, 68–5
log_size_bins, 52–76
log_smartsend, 52–295
log_sndopr, 52–76, 52–269
log_statistics, 52–76
log_syslog_prefix, 52–269
log_times, 52–295
log_tracking, 52–296
log_transactionlog, 52–249, 52–296
log_uid, 52–297
log_username, 52–298, 68–1

Example, 68–5
filter_discard channel logs as
FILTER_DISCARD, 65–9

log_use_xtext, 52–298
Mailing lists and groups, 52–194

expandable_default, 52–196
mail_off, 52–196
or_clauses, 52–197
post_off, 52–197

MAILSERV, 52–197
mailserv_moderator_mail, 52–197
mailserv_moderator_uid, 52–197
mailserv_secret, 52–198

MAILSERV LDAP schema, 52–198
MAILSERV list subscription LDAP attribute
names, 52–198
MAILSERV managed lists, 52–199
MAILSERV moderator user, 52–197
MAILSERV user LDAP attribute names, 52–198
mailserv_moderator_mail, 52–197
mailserv_moderator_uid, 52–197
mailserv_secret, 52–198
mail_delivery_filename, 52–301
mail_off, 52–196

Mailing list members, 49–23
Mapping table miscellaneous, 52–208
Mapping tables, 52–199
mapping_paranoia, 52–206

*_ACCESS mapping table probes, 57–9
AUTH_ACCESS mapping table, 62–43
BURL_ACCESS mapping table, 62–9
MILTER_MACROS mapping table, 58–17

map_names_size, 52–190, 52–209
max_addheaders, 5–30, 52–242
max_alias_levels, 52–63
max_duplicates, 52–242, 52–248
max_fileintos, 52–242
max_header_blocks, 52–221
max_header_block_use, 46–55, 52–221
max_header_lines, 52–222
max_header_line_use, 46–55, 52–221
max_internal_blocks, 52–183

max_local_received_lines, 52–235
max_mime_levels, 52–222

Diagnosing .HELD files, 65–12
max_mime_parts, 52–222

Diagnosing .HELD files, 65–12
max_mr_received_lines, 52–235
max_notifys, 52–242
max_received_lines, 52–235
max_redirect

Sieve redirect action, 5–48
max_redirects, 52–243
max_redirect_addresses, 52–243

redirect to external list, 5–49
Sieve external list example, 5–38

max_sieve_list_size, 52–243
-list switch of imsimta test -expression, 71–93

max_sieve_match_iterations, 52–243
-iterations switch of imsimta test -expression,
71–93

max_sieve_string_size, 52–244
max_total_received_lines, 52–235
max_urls, 52–83
max_vacations, 52–244

vacation action, 5–52
vacation action, Vacation message not
generated, 5–54

max_variables, 52–244
max_x400_received_lines, 52–236
Memcache, 52–214

alias_database_url, 52–215
domain_database_url, 52–215
enable_sieve_memcache, 52–245
forward_database_url, 52–216
general_database_url, 52–216
memcache_expire, 52–215
memcache_hash_algorithm, 52–215
memcache_host, 52–214
memcache_port, 52–215
memcache_timeout, 52–215
reverse_database_url, 52–216

memcache_expire, 52–215
Use with Message Tracking, 61–1

memcache_hash_algorithm, 52–215
memcache_host, 52–214

check_memcache.so use of, 50–29
Effect on duplicate_tracking_url, 52–248
Sieve duplicate test, 5–29
Sieve filter memcache extension, 5–61
Use with Message Tracking, 61–1

memcache_port, 52–215
check_memcache.so use of, 50–29
Effect on duplicate_tracking_url, 52–248
Sieve duplicate test, 5–30

Index–133

Use with Message Tracking, 61–1
memcache_timeout, 52–215
Message archival and hashing, 52–216

journal_format, 52–101, 52–216
Message fragmentation size limits

max_header_block_use, 52–221
max_header_line_use, 52–221

Message loop detection and .HELD messages,
52–234, 52–234, 52–266
Message size, 52–218

block_limit, 52–218
block_size, 52–219
header_limit, 52–220
line_limit, 52–221
max_header_blocks, 52–221
max_header_lines, 52–222
max_mime_levels, 52–222
max_mime_parts, 52–222
non_urgent_block_limit, 52–223, 52–233
normal_block_limit, 52–223, 52–233
second_class_block_limit, 52–223, 52–234
urgent_block_limit, 52–223, 52–234

Message tracking, 52–223
ldap_auth_attr_recall_secret, 52–161
log_tracking, 52–296
tracking_debug, 52–80
tracking_hash_algorithm, 52–224
tracking_mode, 52–224
tracking_retries, 52–224
tracking_retry_delay, 52–224

Message-id: header lines, 52–234
MESSAGE-SAVE-COPY mapping table

include_retries, 52–204
message_hash_algorithm, 52–217
message_hash_fields, 52–218

Message identifier generation (for archiving),
67–19

message_save_copy_flags, 52–210
Conversion tags, 67–5
MESSAGE-SAVE-COPY mapping table
probe, 67–4

MeterMaid, 52–224
metermaid_backoff, 52–224
metermaid_expire, 52–225
metermaid_host, 52–225
metermaid_port, 52–225
metermaid_secret, 52–225
metermaid_timeout, 52–225

metermaid_backoff, 52–224
metermaid_expire, 52–225
metermaid_host, 52–225
metermaid_port, 52–225
metermaid_secret, 52–225

metermaid_timeout, 52–225
Miscellaneous mapping table

map_names_size, 52–190, 52–209
message_save_copy_flags, 52–210
original_channel_probe, 52–210
use_comment_strings, 52–211
use_personal_names, 52–214
wild_pool_size, 52–191

missing_address, 52–301
missing_recipient_group_text, 52–63
missing_recipient_policy, 52–63

acceptalladdresses channel option, 46–34
mls, 52–226
MLS (Multi Layer Security), 52–226
mm_debug, 52–78

$U flag in address *_ACCESS mapping tables,
57–10, 57–10
$U flag in PORT_ACCESS mapping table,
57–4
Sieve debug action, 5–23

mm_mbc, 52–183
mm_mbf, 52–183
mtpriority_policy, 52–232
MTQP, 52–226

mtqp_expire, 52–226
mtqp_port, 52–226
mtqp_timeout, 52–226

Multi Level Security
mls, 52–226

multinet_mm_exclusive, 52–301
name_table_name, 52–64
non_urgent_block_limit, 52–223, 52–233
normal_block_limit, 52–223, 52–233
notary_decode, 52–228
notary_quote, 52–184, 52–228

disposition_*.txt files, 60–19
Interpretation of content in notification
message template files, 60–10

Notification messages, 52–226
history_to_return, 52–227
history_to_return, return_delivery_history
MTA option, 52–229
lines_to_return, 52–227
notary_decode, 52–228
notary_quote, 52–184, 52–228
return_address, 52–228
return_cleanup_period, 52–300
return_delivery_history, 52–229
return_envelope MTA option, 52–166, 52–229
return_personal, 52–230
return_split_period, 52–300
return_units, 52–230
return_verify, 52–80

Index–134 Messaging Server Reference

use_precedence, 52–231
use_warnings_to, 52–231

notify previous response
notify_maximum_timeout, 52–70
notify_minimum_timeout, 52–71

notify_ignore_errors, 5–46, 52–240
notify_maximum_timeout, 52–70
notify_minimum_timeout, 52–71
notify_timeout_default, 52–71
OpenVMS only

form_names, 52–301
name_table_name, 52–64

OpenVMS user agent, 52–300
dis_nesting, 52–301
form_names, 52–301
mail_delivery_filename, 52–301
missing_address, 52–301
multinet_mm_exclusive, 52–301
read_receipt_off, 52–301
read_receipt_on, 52–302
safe_tcl_mode, 52–302
use_mail_delivery, 52–302
vms_mail_exclusive, 52–302

optin_user_carryover, 52–104, 52–251
options_hash_size, 52–190
original_channel_probe, 52–210
or_clauses, 52–197
osync, 52–184

Performance, 69–4
os_debug, 52–79

$U flag in PORT_ACCESS mapping table,
57–4

PAB
ldap_pab_host, 52–194
ldap_pab_max_connections, 52–194
ldap_pab_password, 52–194
ldap_pab_port, 52–194
ldap_pab_username, 52–194

Password and TLS, 52–231
personal_conversion_size, 52–190
plaintextmincipher, 52–231
post_debug, 52–80
post_off, 52–197

Mailing list members, 49–23
prefix_text_attr, 52–108
Processing priority, 52–232
process_substitutions, 52–105
projectid, 52–184
proxy_hash_algorithm, 62–35
queue_cache_mode, 52–184

queue_cache_mode_3_files MTA option,
52–184

queue_cache_mode_3_files, 52–184

read_receipt_off, 52–301
read_receipt_on, 52–302
Received: header lines, 52–234, 52–234, 52–266

received_domain MTA option, 52–236
received_version, 52–236

received_domain, 52–236
Limiting emission of internal host names,
70–2
Local channel official_host_name, 65–2

received_version, 52–236
Redis, 52–236

alias_database_url, 52–215
domain_database_url, 52–215
forward_database_url, 52–216
general_database_url, 52–216
reverse_database_url, 52–216

redis
enable_sieve_redis, 52–246
hostlist, 52–237, 52–237
port, 52–237, 52–237

reject_disables_capture, 52–241
returnenvelope

DNS verification, test -rewrite utility, 71–125
return_address, 52–228

-from switch of calc utility, 71–13
test -rewrite utility's -from switch, 71–120
Value used by imsimta test -expression, 71–92

return_cleanup_period, 52–300
return_debug, 52–80
return_delivery_history, 52–229

Notification message format, 60–6
return_envelope, 52–165, 52–229

returnenvelope channel option, 46–109
return_personal, 52–230

Overriden by RETURN_PERSONAL option
in return_option.opt, 60–15

return_split_period, 52–300
return_units, 52–230

Interpretation of *notices channel options,
46–106
Notification message format, 60–6

return_verify, 52–80
reverse_address_cache_size, 52–163
reverse_address_cache_timeout, 52–163
reverse_database_url, 52–216

Address reversal, 48–54
reverse_data_size, 52–190
reverse_envelope, 52–64
reverse_url, 52–93

mailDomainMsgMaxBlocks effect, 52–154
route_to_routing_host, 52–106

Effect on mailRoutingHosts interpretation,
52–153

Index–135

safe_tcl_mode, 52–302
scan_channel, 52–180

imexpire, 58–21
scan_originator, 52–180

imexpire, 58–21
scan_recipient, 52–180

imexpire, 58–21
second_class_block_limit, 52–223, 52–234
sentinel

hostlist, 52–237, 52–238
port, 52–237, 52–238

separate_connection_log, 52–299, 68–1
Sieve filter logging and debugging, 52–248
Sieve filters, 52–238

Caching, 52–244
decode_encoded_words, 52–239
discard_disables_capture, 52–241
Duplicate recent messages, 52–247
enable_sieve_body, 52–245
enable_sieve_ereject, 52–245
enable_sieve_memcache, 52–245
enable_sieve_memcache, Disabling
memcache Sieve extension, 5–62
enable_sieve_metermaid, 52–246
enable_sieve_metermaid, Disabling
metermaid Sieve extension, 5–67
enable_sieve_redis, 52–246
enable_sieve_redis, Disabling redis Sieve
extension, 5–70
enable_sieve_regex, 52–246
enable_sieve_regex, regex Sieve extension,
5–76
Error text, 52–248
filter_debug, 52–78, 52–248
filter_discard, 52–240
filter_jettison, 52–240
Interpretation of, 52–239
Interpretation of, notify_ignore_errors,
52–240
Language extensions, 52–245
Language extensions, notify_ignore_errors,
52–240
max_addheaders, 52–242
max_duplicates, 52–242, 52–248
max_fileintos, 52–242
max_notifys, 52–242
max_redirects, 52–243
max_redirect_addresses, 52–243
max_redirect_addresses, redirect to external
list, 5–49
max_sieve_list_size, 52–243
max_sieve_match_iterations, 52–243
max_sieve_string_size, 52–244

max_vacations, 52–244
max_variables, 52–244
reject_disables_capture, 52–241
See also External filtering context MTA
options, 52–180
sieve_body_needed, 52–242
sieve_mime_needed, 52–241
sieve_received, 52–240
sieve_redirect_add_resent, 52–240
sieve_redirect_add_resent, Default for
redirect action, 5–48
sieve_user_carryover, 52–106, 52–241
Size limits, 52–242
strict_require, 52–247
strict_require, Sieve extensions, 5–23

sieve_body_needed, 52–242
sieve_mime_needed, 52–241
sieve_received, 52–240
sieve_redirect_add_resent, 52–240

Default for redirect action, 5–48
sieve_user_carryover, 52–106, 52–241
smartsend_use_redis, 50–56
sndopr_prefix, 52–269
sndopr_priority, 52–270

Effect on log_sndopr MTA option, 52–76,
52–269
held_sndopr MTA option, 52–235, 52–266
MTA configuration reload errors, 71–50

Spam filter, 52–250
optin_user_carryover, 52–105, 52–251
scan_channel, 52–180
scan_originator, 52–180
scan_recipient, 52–180
See also External filtering context MTA
options, 52–180
spamfilterN_action_M, 52–253
spamfilterN_config_file, 52–252
spamfilterN_final, 52–255
spamfilterN_includeheaders, 52–256
spamfilterN_library, 52–251
spamfilterN_library, libarch.so, 52–252
spamfilterN_library, libbmiclient.so, 52–251
spamfilterN_library, libicap.so, 52–252
spamfilterN_library, libmilter.so, 52–252
spamfilterN_library, libmilters.so, 58–19
spamfilterN_library, libspamass.so, 52–252
spamfilterN_name, 52–253
spamfilterN_null_action, 52–256
spamfilterN_null_action, Compared to
spamfilterN_verdict/spamfilterN_action
pairs, 52–255
spamfilterN_null_optin, 52–253
spamfilterN_optional, 52–256, 52–270

Index–136 Messaging Server Reference

spamfilterN_received, 52–257
spamfilterN_returnpath, 52–258
spamfilterN_string_action, 52–258
spamfilterN_string_action, Compared to
spamfilterN_verdict/spamfilterN_action
pairs, 52–255
spamfilterN_verdict_M, 52–253

spamfilter2_string_action
Example, 58–10

spamfilterN_action_M, 52–253
spamfilterN_config_file, 52–252

Brightmail, 58–3
ClamAV, 58–4
ICAP, 58–5
Milter, 58–6
SpamAssassin, 58–8

spamfilterN_final, 52–256
spamfilterN_includeheaders, 52–256
spamfilterN_library, 52–251

libarch.so, 52–252
libbmiclient.so, 52–251
libicap.so, 52–252
libmilter.so, 52–252
libmilters.so, 58–19
libspamass.so, 52–252

spamfilterN_name, 52–253
spamfilterN_null_action, 52–256

Compared to spamfilterN_verdict/
spamfilterN_action pairs, 52–255

spamfilterN_null_optin, 52–253
spamfilterN_optional, 52–256, 52–270

accepttemporaryfailures channel option,
46–35
Defer spam/virus callout through reprocess
channel, 65–20

spamfilterN_received, 52–257
spamfilterN_returnpath, 52–258
spamfilterN_string_action, 52–258

Compared to spamfilterN_verdict/
spamfilterN_action pairs, 52–255

spamfilterN_verdict_M, 52–253
spare_*_separator, 52–107
SPF, 52–259

spf_max_dns_queries, 52–263
spf_max_recursion, 52–263
spf_max_time, 52–263
spf_smtp_status_fail, 52–259
spf_smtp_status_fail_all, 52–259
spf_smtp_status_permerror, 52–260
spf_smtp_status_softfail, 52–261
spf_smtp_status_softfail_all, 52–261
spf_smtp_status_temperror, 52–261

spf_max_dns_queries, 52–263

spf_max_recursion, 52–263
spf_max_time, 52–263
spf_smtp_status_fail, 52–259

spf* channel options, 46–159
spf_smtp_status_fail_all, 52–259

spf* channel options, 46–159
spf_smtp_status_permerror, 52–260

spf* channel options, 46–158
spfmailfrom channel option, 46–159

spf_smtp_status_softfail, 52–261
spf* channel options, 46–159

spf_smtp_status_softfail_all, 52–261
spf_smtp_status_temperror, 52–261

spf* channel options, 46–158
spfmailfrom channel option, 46–159

SRS, 52–263
srs_domain, 52–265
srs_hash_algorithm, 52–265
srs_maxage, 52–265
srs_secrets, 52–265
token_char, 52–65, 52–265

srs_domain, 52–265
srs_hash_algorithm, 52–265
srs_maxage, 52–265

error_text_srs_timeout MTA option, 52–173
srs_secrets, 52–265
sslnicknames, 52–232
strict_require, 52–246

-statement switch of imsimta test -expression,
71–94
Sieve extensions, 5–23

string_pool_size_3
General database, 50–25

string_pool_size_N, 52–191
subaddress_char, 52–65
suffix_text_attr, 52–108
Syslog, 52–266

log_sndopr, 52–76, 52–269
log_syslog_prefix, 52–269

Syslog notices
held_sndopr, 52–234, 52–266
log_connections_syslog, 52–266
log_messages_syslog, 52–267
sndopr_prefix, 52–269
sndopr_priority, 52–270
spamfilterN_optional, 52–256, 52–270

systemfilter, 52–238
-system_filter switch of test -rewrite, 71–128
Sieve hierarchy, 5–81
Syntax error report message, 60–2

tmpdir, 52–164
Effect on location of MTA database temp files,
53–4

Index–137

Performance, 69–4
token_char, 52–65, 52–265
tracking_debug, 52–80
tracking_hash_algorithm, 52–224
tracking_mode, 52–224
tracking_retries, 52–224
tracking_retry_delay, 52–224
Transaction logging

log_header, Affected by log_messages_syslog,
52–269
return_cleanup_period, 52–300
return_split_period, 52–300

Unified Configuration presentation of, 52–8
unique_id_template, 52–218

Message identifier generation (for archiving),
67–19

urgent_block_limit, 52–223, 52–234
url_result_cache_case, 52–163
url_result_cache_size, 52–163
url_result_cache_timeout, 52–163
user_case, 52–69
use_alias_database, 52–65
use_auth_return, 52–206

FORWARD mapping table probes, 48–61
From address in address-based *_ACCESS
mapping table probes, 57–8
From address in FROM_ACCESS mapping
table probe, 57–15

use_canonical_return, 52–206
FORWARD mapping table probes, 48–61
From address in address-based *_ACCESS
mapping table probes, 57–8
From address in FROM_ACCESS mapping
table probe, 57–15

use_comment_strings, 52–211
use_domain_database, 52–65
use_forward_database, 52–66, 52–211

Enabling use of forward database, 48–63
FORWARD mapping table probes, 48–61
FORWARD mapping table probes, Initial
and intermediate forms of recipient address,
48–61

use_ip_access, 52–206
use_mail_delivery, 52–302
use_orig_return, 52–206

FORWARD mapping table probes, 48–61
From address in address-based *_ACCESS
mapping table probes, 57–8
From address in FROM_ACCESS mapping
table probe, 57–15

use_permanent_error, 52–178
recipientlimit channel option, 46–96, 46–133

use_personal_names, 52–214

use_precedence, 52–231
use_reverse_database, 52–67, 52–212
use_temporary_error, 52–179
use_text_databases, 52–185

Forward database, 48–63
Mapping table general database lookups,
50–18
Reverse database, 48–54
Rewrite rule general database substitutions,
47–24

use_warnings_to, 52–231, 52–231
vacation_cleanup, 52–71
vacation_hash_algorithm, 52–71
vacation_maximum_timeout, 52–71, 52–107
vacation_minimum_timeout, 52–72, 52–107

Vacation message not generated, 5–54
vacation_template, 52–72
Values

URL types, 1–4
vms_mail_exclusive, 52–302
wild_pool_size, 52–191

MTA queue directories
imta_queue MTA Tailor option -- OBSOLETE,
53–4
Job Controller queue cache representation of

max_cache_messages Job Controller option,
55–12

Message file names
genid function to generate unique id string,
71–89

Monitoring of
directoryscan SNMP option, 73–2
queuedir msprobe option, 19–1

Reserved for use by Oracle software only, 46–66
Scan of

cache -synch utility, 71–9
qclean utility, 71–43
qtop utility, 71–46
synch_time Job Controller option, 55–16

MTA Tailor options, 53–2
Directory locations, 53–2
File names, 53–5
imta_alias_file, 53–6
imta_bin, 53–3
imta_charset_data, 53–6
imta_command_data, 53–6
imta_config_data, 53–6
imta_config_file, 53–5
imta_db_tmp (DELETED), 53–4
imta_dl, 53–3
imta_forward_data (DELETED), 53–8
imta_general_data (DELETED), 53–8
imta_lib, 53–3

Index–138 Messaging Server Reference

imta_log, 53–3
imta_option_file, 53–5
imta_primary_log, 53–7
imta_program, 53–5
imta_queue, 53–4
imta_return_verity

Replaced in MS 7.0.5 by return_verify MTA
option, 52–80

imta_reverse_data (DELETED), 53–8
imta_root, 53–2
imta_secondary_log, 53–7
imta_ssr_database

DELETED, 53–9
imta_system_filter_file, 53–5
imta_table, 53–3
imta_tertiary_log, 53–7
imta_tmp

Effect on location of MTA database temp files,
53–4
See tmpdir instead, 53–4

imta_user, 53–11
imta_user_username, 53–11
imta_world_group, 53–11
imta_xml_config_file, 53–6
Scheduling, 53–11
User, 53–11

MTA user
imta_user MTA Tailor option changed to user
option in restricted.cnf, 53–11

mta_channel gateway_profile option, 66–5
mtindex Message Store options

flagname, 26–26
quotaroot, 26–26

IMAP_QUOTAROOT_NONEXISTENT error
status, 38–3, 64–10

mtprioritiesallowed channel option, 46–115, 46–143
mtprioritiesrequired channel option, 46–115,
46–143
mtpriority_policy MTA option, 52–233
MTQP

MTA options, 52–226
MTQP (Message Tracking and Query Protocol)
server

Certificate nickname, 52–232
Message tracking and recall, 61–1
TLS, 52–232

mtqp_expire MTA option, 52–226
mtqp_port MTA option, 52–226
mtqp_timeout MTA option, 52–226
MUA (Mail User Agent), G–8
Multi Layer Security

See MLS (Multi Layer Security), 46–103
multigate channel option, 46–71

LMTP, 52–100
multinet_mm_exclusive MTA option, 52–301
multiple channel option, 46–66

Channel to a gateway system, 62–58
mustauthenticate ENS option, 74–2
mustsasl channel option, 46–169
mustsaslclient channel option, 46–169

AUTH_ACCESS mapping, 62–44
mustsaslserver channel option, 46–169

Required for implicitsaslexternal to take effect,
46–170
Should be set on SMTP SUBMIT server channel,
46–131

musttls channel option, 46–92, 46–171
musttlsclient channel option, 46–92, 46–171
musttlsserver channel option, 46–92, 46–171
mx channel option, 46–150

AUTH_ACCESS mapping table $M flag, 62–45
AUTH_ACCESS mapping table $X flag, 62–45

N
nameparameterlengthlimit channel option, 46–56

-nmaximum switch of test -mime, 71–114
nameservers channel option, 46–150

DNS verification, 46–151
Reverse lookups, 46–151

Net-SNMP
Messaging Server's SNMP subagent, 73–1

Network
Dial up

ETRN SMTP extension, 62–4, 62–62
newmsg notifytarget option, 37–6
NFS

Defragment database, 65–3, 65–6
indexmapreadonly Message Store option, 26–12
Vacation response files, 52–72

noaddlineaddrs channel option, 46–36
noaddresssrs channel option, 46–36
noaddreturnpath channel option, 46–72
nobangorpercent channel option, 46–40
nobangoverpercent channel option, 46–40

Rewrite rule address interpretation, 47–5
nobinaryclient channel option, 46–129
nobinaryserver channel option, 46–129
noblocklimit channel option, 46–123
nocache channel option, 46–148
nochunkingclient channel option, 46–130
nochunkingserver channel option, 46–130

BURL interaction, 62–12
noconvertoctetstream channel option, 46–52
nodayofweek channel option, 46–74
nodefaulthost channel option, 46–42, 46–74
nodefaults pseudo-channel, 46–6

Index–139

nodefragment channel option, 46–52
nodestinationfilter channel option, 46–119
nodestinationsrs channel option, 46–36
nodns channel option, 46–150
nodnsforcetemporary channel option, 46–151
nodropblank channel option, 46–75
noehlo channel option, 46–129
noexpirysource channel option, 46–76, 46–115
noexproute channel option, 46–44
nofilecache MSHTTP option, 42–10
nofileinto channel option, 46–121
nofilter channel option, 46–119
noflagtransfer channel option, 46–118, 46–135
noheaderdecodesrs channel option, 46–45, 46–77
noheaderread channel option, 46–79

Header option file, 46–175
noheadertrim channel option, 46–79

Header option file, 46–175
noimproute channel option, 46–44
noinner channel option, 46–80
noinnertrim channel option, 46–79

Header option file, 46–175
nolinelimit channel option, 46–123
nolocalbehavior channel option, 46–45
nologging channel option, 46–94
noloopcheck channel option, 46–141
nomail delivery option, 52–99
nomailfromdnsverify channel option, 46–142,
46–154
nomaster_debug channel option, 46–94
nomsexchange channel option, 46–55, 46–143,
46–172
nomultigate channel option, 46–71
nomx channel option, 46–150
noninbox notifytarget option, 37–7
nonotary channel option, 46–106, 46–144
nonrandommx channel option, 46–150
nonurgentafter channel option, 46–110
nonurgentbackoff channel option, 46–110
nonurgentblocklimit channel option, 46–125

Job Controller delivery execution window, 55–17
nonurgentnotices channel option, 46–106
nonurgent_delivery Job Controller job_pool option,
55–16

Example, 55–6
non_urgent_block_limit MTA option, 52–223,
52–233
noprivuser option in restricted.cnf file, 15–1
noproxyprotocol channel option, 46–144
noreceivedfor channel option, 46–83

Limiting emission of internal host names, 70–3
noreceivedfrom channel option, 46–83

Limiting emission of internal host names, 70–3

noremotehost channel option, 46–42, 46–74
norestricted channel option, 46–46
noreturnaddress channel option, 46–107
noreturnpersonal channel option, 46–107
noreverse channel option, 46–47
normalafter channel option, 46–110
normalbackoff channel option, 46–110
normalblocklimit channel option, 46–125

Job Controller delivery execution window, 55–6,
55–17

normalnotices channel option, 46–106
normal_block_limit MTA option, 52–223, 52–233
normal_delivery Job Controller job_pool option,
55–16
norules channel option, 46–47
nosasl channel option, 46–169
nosaslclient channel option, 46–169
nosaslpassauth channel option, 46–173
nosaslserver channel option, 46–169
nosaslswitchchannel channel option, 46–91, 46–174
nosasltrustauth channel option, 46–173
nosendetrn channel option, 46–144
nosendpost channel option, 46–103, 60–1
noserviceconversion channel option, 46–63
noslave_debug channel option, 46–94
nosocks channel option, 46–156
nosourcefilter channel option, 46–119
nosourcesrs channel option, 46–36
nosubdirs channel option, 46–68
noswitchchannel channel option, 46–90

Initial configuration, 46–7
NOTARY, G–8
notary channel option, 46–106, 46–144
notary_quote MTA option, 52–184, 52–228

disposition_*.txt files, 60–19
Interpretation of content in notification message
template files, 60–10

nothurman channel option, 46–56
noticehost alarm option, 20–1
noticeport alarm option, 20–1
noticercpt alarm option, 20–1
notices channel option, 46–106

Defragmentation channel, 65–5
filter_discard channel, 65–8
ims-ms channel, 64–2
ims-ms channels, 64–1
Initial configuration, 46–7
Local channel value, 65–2
Notification message format, 60–6
Notification message generation, 60–4
return_job, 17–5
return_units MTA option, 52–230

noticesender alarm option, 20–1

Index–140 Messaging Server Reference

Postmaster address, 60–3
notice_time Job Controller option

Restricted: for future use, 55–14
notick channel option, 46–58
Notification messages, 60–1

Channel options, 46–103
Delay warnings

Mailing list postings, Alias file named
parameters, 48–33

Format of, 60–5
DSN language, 60–9
MDN language, 60–18

Generation of, 60–4
qm utility, 60–4
return utility, 60–4

Logging of, 60–25
Mailing lists

alias_keep_delivery alias option, 48–18
alias_keep_read alias option, 48–18
KEEP_DELIVERY alias file named parameter,
48–37
KEEP_READ alias file named parameter,
48–37

Overquota in Message Store, 60–3
Postmaster addresses, 60–26
return_job

Scheduler task enable, 17–5
Routing of, 60–23
Size limits, 60–26
Spam bounces, 60–24
SRS addresses

Relay blocking interaction, 62–61
Types of, 60–1

notificationchannel channel option, 46–104, 60–23
notifytarget options, 37–1

annotatemsg, 37–7
changeflag, 37–8
copymsg, 37–8
deletemsg, 37–6
enable, 37–2
enseventkey, 37–2
enshost, 37–2

Match base.listenaddr option value, 74–1
ensport, 37–2

Match ens.port option value, 74–1
enspwd, 37–3
ensuser, 37–3
expungemsg, 37–7
jmqhost, 37–3
jmqport, 37–4
jmqpwd, 37–4
jmqqueue, 37–4
jmqtopic, 37–4

jmquser, 37–4, 37–5
ldapdestination, 37–5
loguser, 37–6
maxbodysize, 37–5
maxheadersize, 37–5
msgflags, 37–5
msgtypes, 37–7
newmsg, 37–6
noninbox, 37–7
notifytype, 37–2
overquota, 37–6
persistent, 37–5
priority, 37–6
purgemsg, 37–7
readmsg, 37–7
setacl, 37–7
ttl, 37–6
underquota, 37–7
updatemsg, 37–7

notifytype notifytarget option, 37–2
notify_ignore_errors MTA option, 5–46, 52–240
notify_timeout_default MTA option, 52–71
notls channel option, 46–92, 46–171
notlsclient channel option, 46–92, 46–171
notlsserver channel option, 46–92, 46–171
notracking* channel options, 46–101
notspam MSHTTP feedback option, 42–16
noturn channel option, 46–145
novrfy channel option, 46–137
nowarnpost channel option, 46–104, 60–1
noxclient channel option, 46–84, 46–145, 46–172
nox_env_to channel option, 46–84
numberofhosts PAB option, 72–2
nummsgs Message Store msghash option, 26–27
numprocesses IMAP option, 34–17
numprocesses MMP option, 41–18
numprocesses MSHTTP option, 42–10
numprocesses POP option, 35–6
numreplicas Message Store elasticsearch option,
32–7
numshards Message Store elasticsearch option,
32–7
numthreads MMP option

DELETED; see maxthreads, 41–18

O
obsoleteimap base option, 16–12
official_host_name channel option, 46–88

Domain used to construct message-id's
id_domain MTA option overrides, 52–235

ims-ms channels, 64–1
L channel

Postmaster address, 52–228

Index–141

Local channel
Defragment-failed: header line, 65–5

Overridden by ldap_default_domain, 52–236
Overridden by local_host_alias, 46–88
Overridden by received_domain, 52–236

On behalf of submission
AUTH_ACCESS mapping, 62–47

OpenDKIM
Sieve counters, 5–59

OpenVMS user agents
MTA options, 52–300

operational Message Store archive option, 26–19
optin_user_carryover MTA option, 52–105, 52–251
Options

Syntax, 1–1, 52–10
Bit-encoded integer, 52–11
Boolean, 52–11
Floating point, 52–11
Integer, Base, 52–10
Integer, Bit-encoded, 52–11
Special symbolic names, 3–1

options_hash_size MTA option, 52–190
or_clauses MTA option, 52–197

Effect on alias file named parameter access
controls, 48–28
Effect on ldap_auth_password processing,
52–142
Effect on mailing list access control interactions,
49–3, 49–3
Overridden per-list by mgrpBroadcasterPolicy,
52–115
Sets default as alias_and vs. alias_or for aliases,
48–10

osync MTA option
Performance, 69–4

os_debug MTA option, 52–79
$U flag in PORT_ACCESS mapping table, 57–4

overquota notifytarget option, 37–6
overquotastatus Message Store option, 26–13

Enables quota overdraft, 26–16
Implies quotaoverdraft, 26–16

P
PAB, 1
PAB lookups by the MTA

ACI, 52–193
MTA options, 52–193

PAB options, 72–1
active, 72–1
alwaysusedefaulthost, 72–1
attributelist, 72–1
defaulthostindex, 72–1
enable, 72–1

ldapbasedn, 72–1
ldapbinddn, 72–2
ldaphost, 72–2

ldap_pab_host MTA option override for MTA
PAB query purposes, 52–194

ldappasswd, 72–2
ldapport, 72–2
ldapusessl, 72–2
maxnumberofentries, 72–2
migrate415, 72–2
numberofhosts, 72–2

pabldap: URLs
MTA URL types, 1–4

pabldaps: URLs
MTA URL types, 1–4

parameter Dispatcher service option, 54–10
parameterformatdefault channel option, 46–57,
46–61
parameterformatminimizeencoding channel
option, 46–57, 46–61
parameterformatstripencoding channel option,
46–57, 46–61
parameterlengthlimit channel option, 46–56

-pmaximum switch of test -mime, 71–115
params pipe option, 65–16
Parental control

ldap_hoh_filter MTA option, 52–102, 52–150
ldap_hoh_owner MTA option, 52–102, 52–150
See Sieve filters, Head of household, 5–89

parse_re_* gateway_profile options, 66–6
Partition

Bogus
IMAP_MAILBOX_NONEXISTENT error
status, 38–1, 64–9

checkdiskusage Message Store option, 26–8
defaultpartition Message Store option, 26–11
Full

IMAP_PARTITION_FULL error status, 38–3,
64–10

Options, 28–1
cachepath, 28–1
messagepath, 28–1
path, 28–1

passsyntaxerrors channel option, 46–76
passthrough channel option, 46–130

destinationdkim* trigger, 46–63
dkimpreserve trigger, 46–64
dkim_ignore_domains avoids triggering, 52–164
dkim_preserve_domains trigger, 52–165

passwd Deployment Map option, 23–2
Password

Alarm authenticated submission to MTA
smtpauthpassword Alarm option, 20–2

Index–142 Messaging Server Reference

auto_transition Auth option, 21–2
Character set

broken_client_login_charset Auth option,
21–2

Expiration
firstwarn pwexpirealert option, 34–19
IMAP ALERT notifications to users warning
of expiration, 34–19
metermaidtable pwexpirealert option, 34–19
viametermaid pwexpirealert option, 34–19

has_plain_passwords Auth option, 21–3
imap_password MTA option, 52–73
Mailing list postings, 49–3

alias_password alias option, 48–21
MSHTTP authenticated submission to MTA

smtpauthpassword MSHTTP option, 42–12
On behalf of submission

AUTH_ACCESS mapping $Q flag, 62–44
Protection via SSL/TLS

plaintextmincipher IMAP Proxy/POP Proxy
option, 41–18

See also Files, restricted.cnf, 1
SMTP/LMTP client SMTP AUTH use

AUTH_ACCESS mapping $Q flag, 62–44
Transitioning from plaintext to APOP or CRAM-
MD5

auto_transition Auth option, 21–2
User

pwchangeurl base option, 16–13
Remote password and AUTH_ACCESS
mapping, 62–44
userPassword LDAP attribute, 52–109

path Message Store archive option, 26–20
path partition option, 28–1
Percent signs

Default for notary_quote MTA option, 52–184,
52–228
In addresses, 47–4

routelocal channel option, 47–8
In disposition_*.text files, 60–19
In return_*.txt files, 60–10

percentage Message Store purge option, 26–28
percentonly channel option, 46–40
percents channel option, 46–40
Performance

CPU usage in munmap
indexmapreadonly Message Store option,
26–12

Dispatcher operation, 54–2
File creation

osync MTA option, 52–184
File handling MTA options, 52–181
ims-ms channel, 64–2

Job Controller operation, 55–2
LDAP and URL lookup caching

MTA options, 52–161
LDAP lookup caching

authcachesize base option, 16–3
authcachettl base option, 16–3

LDAP lookups
MMP POP and IMAP proxy, 41–28

LDAP server
ldap_domain_known_attributes MTA option,
16–7, 52–88

LDAP user lookup caching
ldapcachesize, 41–15
ldapcachettl, 41–16

Mapping tables
Large, 50–22

Measuring
log_queue_time MTA option, 52–293

Message Store
dbtmpdir Message Store option, 26–10, 26–10

MTA options
File handling, 52–181
LDAP and URL lookup caching, 52–161
Sieve filter caching, 52–244

munmap CPU usage
indexmapreadonly Message Store option,
26–12

SNMP
directoryscan SNMP option, 73–2

TCP/IP channels
MAX_CLIENT_THREADS TCP/IP-channel-
specific option, 62–33

tmpdir MTA option, 52–164
Tuning, 69–1

buffer_size MTA option, 52–181
chunk_cache_limit MTA option, 52–187
CPU and resources, 69–1
dequeue_map MTA option, 52–182
describe_cache_limit MTA option, 52–187
Disks and files, 69–3
Dispatcher, 69–4
Job Controller, 69–5

UFS
osync MTA option, 52–184

ZFS
osync MTA option, 52–184

Periodic jobs
return_job

MTA transaction log file concatencation, 68–2
See also Scheduler task options, 17–2

perms pipe option, 65–16
persistent notifytarget option, 37–6
Personal Addressbook (PAB) lookups

Index–143

See PAB, 72–1
personalinc channel option, 46–47, 46–85
personalmap channel option, 46–47, 46–85

use_personal_names MTA option, 52–214
personalomit channel option, 46–47, 46–85
personalstrip channel option, 46–47, 46–85
personal_conversion_size MTA option, 52–190
perusersynclevel Message Store option, 26–14
pin Message Store option, 26–14
Pipe channels, 65–13

Addressees and their handling, 65–15
Aliases in LDAP, 65–15
Command exit codes, 65–13
Configuration, 65–13

Channel definition and rewrite rules, 65–14
Entry match order, 65–19
LDAP attributes, 65–15
Options

ADDRESS_TYPES, 65–18
SHELL_TIMEOUT, 65–18
SHELL_TMPDIR, 65–18
UNIX_STYLE, 65–19

Permanent delivery failure
Command exit codes, 65–13

Pipe database, 65–17
pipeuser option in restricted.cnf, 46–71, 46–117
Profile database, 65–16
single channel option, 65–13, 65–17
site-programs directory, 53–5
Successful delivery

Command exit codes, 65–13
Temporary delivery failure

Command exit codes, 65–13
user channel option, 65–15

Pipe options, 65–15
command, 65–16
params, 65–16
perms, 65–16

pipeuser option in restricted.cnf, 46–71, 46–117
pipeuser option in restricted.cnf file, 15–1
plaintextconvspace MSHTTP option, 42–11
plaintextmincipher IMAP option, 34–17
plaintextmincipher IMAP Proxy/POP Proxy
option, 41–18
plaintextmincipher MSHTTP option, 42–11
plaintextmincipher MTA option, 52–231
plaintextmincipher POP option, 35–6
plaintexttabsize MSHTTP option, 42–11
platformhpux smime option, 43–3
platformlinuxx86 smime option, 43–3
platformmac smime option, 43–3
platformsolarissparc smime option, 43–3
platformwin smime option, 43–3

plugins option, 2–1
PMDF API

PMDFgetChannelCounters64, 5–59
PMDF_CHANNEL environment variable

test_smtp_master and test_smtp_slave use of,
65–9

polldelay IMAP option, 34–17, 41–19
polldelay MMP option, 34–17, 41–19
pool channel option, 46–116

ims-ms channel, 64–2
ims-ms channels, 64–1
Job Controller operation, 55–2
job_pool Job Controller option, 55–18

POP
Autorestart

autorestart.enable option, 16–26
Commands

STARTTLS, sslusessl option, 35–7
USER/PASS, broken_client_login_charset
auth option, 21–2

Connection thread hold delay time, 16–21
Disconnect

Forcing via maxprotocolerrors POP option,
35–6

DNS reverse lookup
dnsresolveclient base option, 16–5

Errors
-ERR Access denied, 33–1
-ERR Connection limit reached for your IP
address, 33–1, 34–12, 35–4, 41–10, 42–5
-ERR Connection limit reached for your IP
address, connlimits POP Proxy option, 34–12,
35–4, 41–10, 42–5
-ERR GURL failed, 16–3
-ERR Too many connections, 35–6, 35–6
-ERR Too many protocol errors, 35–6
-ERR [IN-USE] Mailbox is already in use,
35–5
Critical level, Failed to bind SSL socket to <ip-
addr< <port>, 35–7
Critical level, Fatal error: cannot open ssl
socket, 35–7
Critical level, Unable to start slave daemons,
35–6
Error level, Failed to initialize POP session
lock, 35–5
Informational level, <client-host> <user-id>
connection timed out, 35–5
TIMEOUT <user-ip> <date-time>, 35–5
Warning level, Idle timeout too short, using
10 minutes, 35–5
Warning level, invalid
service.pop.domainallowed filter, 6–9, 35–5

Index–144 Messaging Server Reference

Warning level, invalid
service.pop.domainnotallowed filter, 6–9,
35–5

Extensions
STARTTLS, sslenable POP Proxy option,
41–27

External message collection
allowcollect MSHTTP option, 42–4
maxcollectmsglen MSHTTP option, 42–10
popbindaddr MSHTTP option, 42–11

Logging
logprotocolerrors POP option, 35–6
rollover manager, 24–1

Options, 35–1
actionattributes, 34–3, 35–2, 36–1
actions, 34–3, 35–2, 36–1
allowanonymouslogin, 35–2
authfaildelay, 34–4, 35–2
banner, 35–3
bgdecay, 16–4, 34–5, 35–3, 41–8
bgexcluded, 16–4, 34–5, 35–3, 41–8
bglinear, 16–4, 34–5, 35–3, 41–8
bgmax, 16–3, 34–4, 35–3, 41–7
bgpenalty, 16–3, 34–4, 35–3, 41–8
connlimits, 34–12, 35–4, 41–10, 42–5
defaultdomain, 41–13
domainallowed, 6–8, 35–5
domainnotallowed, 6–9, 35–5
enable, 35–2
enablesslport, 35–5
forcetelemetry, 35–5
idletimeout, 35–5
lockmailbox, 35–5
logprotocolerrors, 35–6
logunauthsession, 35–6
maxprotocolerrors, 35–6
maxsessions, 35–6
maxthreads, 35–6
numprocesses, 35–6
plaintextmincipher, 35–6
poplogmboxstat, 35–6
popstatuskludge, 35–6
port, 35–7
sslcachesize, 35–7
sslnicknames, 35–7
sslport, 35–7
sslusessl, 35–7

Read vs. unread messages
popstatuskludge POP option, 35–6

Server
msprobe probe of, 19–2

SSL
enablesslport POP option, 35–5

sslport POP option, 35–7
Startup, 35–2
XQUERYAUTH

authservice option, 41–6
POP before SMTP

$P input flag in address *_ACCESS mappings,
57–13
$P input flag in AUTH_REWRITE mapping
table, 46–164
$P input flag in domain catchall mapping,
52–158
$P input flag in FORWARD mapping, 48–63
-proxyused switch of test -rewrite utility, 71–127
authservice POP proxy/Virtual Domain option,
41–6
authservicettl POP proxy/Virtual Domain
option, 41–6
Domain catchall mapping, 52–158
P modifier in MTA message transaction log
entries, 68–5
preauth MMP/IMAP Proxy/POP Proxy/vdomain
option, 41–19
Testing for use in address access mapping tables,
57–13

POP Proxy
Options, 41–3

authcachettl, 41–5
authenticationldapattributes, 21–1, 41–6
authenticationserver, 21–1, 41–6
authservice, 41–6
authservicettl, 41–6
backsideport, 41–6
banner, 41–7
canonicalvirtualdomaindelim, 41–9
connecttimeout, 41–10
connlimits, 34–12, 35–4, 41–10, 42–5
crams, 41–11
debugkeys, 41–11
defaultdomain, 41–13
domainallowed, 6–8, 6–8, 6–8, 41–14
domainnotallowed, 6–9, 6–9, 6–9, 41–14
domainsearchformat, 41–14
hosteddomains, 41–14
ldapcachesize, 41–15
ldapcachettl, 41–16
ldappendingoplimit, 41–16
ldaprefreshinterval, 41–16
ldaptimeout, DEPRECATED, 41–16
ldapurl, DEPRECATED, 41–16
logfile, 41–5
loglevel, 41–17
mailhostattrs, 41–18
maxconcurrentconnectionattempts, 41–18

Index–145

plaintextmincipher, 41–18
preauth, 41–19
preauthtimeout, 41–19
replayformat, 41–19
replaypass, 41–20
requireauthenticationserver, 21–3, 41–20
restrictplainpasswords, 41–20
searchformat, 41–20
spoofemptymailbox, 41–21
spoofmessagefile, 41–21
spooftempfail, 41–21
ssladjustciphersuites, 16–14, 41–22
sslbacksideport, 41–26
sslcachedir, 16–18, 41–27
sslcertprefix, DEPRECATED: see ssldbprefix
instead, 41–27
sslnicknames, 41–28
storeadmin, 41–28
storeadminpass, 41–28
syncldap, 41–28
tcpaccess, 41–29
tcpaccessattr, 41–30
timeout, 41–30
usergroupdn, DEPRECATED; see
ugldapbasedn instead, 41–30
use_nslog, 41–30
virtualdomaindelim, 41–31
virtualdomainfile, DELETED; see vdomain
options instead, 41–31

popbindaddr MSHTTP option, 42–11
poplogmboxstat POP option, 35–6
popstatuskludge POP option, 35–6
Port

1038
Default for MTQP server, 52–226

1080
socksport channel option's default, 46–157

1083
Default for SpamAssassin SOCKS_PORT
option, 58–9

110
pop.port default, 35–7

11211
Default for memcache: URLs, 52–247
Default for memcache: URLs, Sieve duplicate
test, 5–30
Default for memcache_port MTA option,
52–215

1344
ICAP server, 45–1

143
Access control, 33–1
base.proxyimapport default, 16–13

imap.port default, 34–17
161

snmp.port default, 73–1
25

http.smtpport default, 42–13
SMTP client connects to by default, 46–157
SMTP server, 54–11

27442
Job Controller internal communications,
55–16

389
Default for base.ugldapport, 16–22

443
uwcsslport MSHTTP option, 42–16

4570
deploymap.port default, 23–2

49994
watcher.port default, 18–1

55000
Default in dbremotehost option, 26–21
store.dbreplicate.port default, 26–21

55443
Default for cert_port MSHTTP option, 42–4

56
Recommended for authentication server,
21–1, 41–6

587
alarm.noticeport default, 20–1
SMTP SUBMIT server, 54–11, 62–7

636
Effect on base.ugldapport, 16–22
Effect on base.ugldapport, Forces use of SSL
for LDAP connections, 16–23

63837
Default for MeterMaid server, 59–7
metermaid.port default, 59–5
server_port MeterMaid client option, 59–6

7072
Default for latency_port MTA option, 52–192

783
Default for SpamAssassin PORT option, 58–9

7997
ens.port default, 74–1
notifytarget ensport default prior to MS 8.0,
37–2

80
retrieveport Message Store archive option,
26–20
uwcport MSHTTP option, 42–16

8070
Default for server_port ISC option, 32–12
Default for server_port isc_client option,
32–13

Index–146 Messaging Server Reference

indexer.port default, 32–8
ISS listens by default, 32–8

8080
da_port default, 42–6

8990
http.port default, 42–11

8991
http.sslport default, 42–14

8997
ens.sslport default, 74–2
notifytarget ensport, 37–2

9200
elasticsearch.port default, 32–7

993
Access control, 33–1
Defaults to enabling SSL IMAP access,
proxyimapssl Base option, 16–13
imap.sslport default, 34–18

995
pop.sslport default, 35–7

backsideport IMAP Proxy and POP Proxy
option, 41–6
Brightmail

blswcServerAddress Brightmail option, 58–4
cert_port MSHTTP option, 42–4
ClamAV

PORT ClamAV option, 58–5
Client

Passing to Milter, 58–15
ENS+SSL

sslport ENS option, 74–2
http.sieve.port option, 42–26
ICAP

PORT ICAP option, 58–5
IMAP+SSL

sslport IMAP option, 34–18
imapport Proxy option, 40–2
JMQ broker

jmqport notifytarget option, 37–4
latency_port MTA option, 52–192
LDAP

ugldapport, 16–22
memcache_port MTA option, 52–215
Milter server

PORT Milter option, 58–6
noticeport alarm option, 20–1
PAB

ldapport PAB option, 72–2
ldap_pab_port MTA option, 52–194

POP+SSL
sslport POP option, 35–7

proxyimapport base option, 16–13
proxyport MSHTTP option, 42–11

server_port SMS smpp_relay option, 66–10
server_port SMS smpp_server option, 66–13
SHTTP+SSL

sslport MSHTTP option, 42–14
SMTP

noticeport alarm option, 20–1
SMTP SUBMIT, 62–7
smtpport MSHTTP option, 42–13
sslbacksideport IMAP Proxy and POP Proxy
option, 41–26
ssl_ports Dispatcher service option, 54–11
ssl_ports tcp_listen option, 41–29
tcp_listen block

MMP, 41–5
tcp_ports Dispatcher service option, 54–11
tcp_ports Job Controller option, 55–16
tcp_ports SMS smpp_relay option, 66–10
tcp_ports SMS smpp_server option, 66–13
tcp_ports tcp_listen option, 41–29

port channel option, 46–157
AUTH_ACCESS mapping table $P flag, 62–44

port Deployment Map option, 23–2
port ENS option, 74–1

Match ensport notifytarget option, 37–2
port IMAP option, 34–17
port indexer option, 32–8
port Job Controller option, 55–14
port Message Store dbreplicate option, 26–21
port Message Store elasticsearch option, 32–7
port MSHTTP option, 42–11
port MSHTTP sieve option, 42–26
port POP option, 35–7
port Redis option, 52–237, 52–237
port Redis Sentinel option, 52–237, 52–238
port SNMP option, 73–1
port Watcher option, 18–1
posteddatemode Message Store archive option,
26–20
PostFix

XCLIENT SMTP extension
xclient channel options, 46–84, 46–145,
46–172

postheadbody channel option, 46–107
postheadonly channel option, 46–107
Postmaster

Address
$H flag in REVERSE mapping table, 48–55
aliaspostmaster channel option, 46–103
Case insensitive local-part, 60–27
Case-insensitive, 52–59
Channel options, 46–103
Emitted, 60–27
Emitted, Default, 60–27

Index–147

Initial configuration, 60–27
msprobe alarm messages, noticercpt alarm
option, 20–1
msprobe alarm messages, noticesender alarm
option, 20–1
Owner of system level Sieves, duplicate test,
5–30
Owner of system level Sieves, Sieve duplicate
test, 52–247
Owner of system level Sieves,
SIEVE_EXTLISTS mapping table probes, 5–35
Required, 48–9, 60–26
returnaddress channel option, 46–107
returnpersonal channel option, 46–107
return_address MTA option, 52–228
return_personal MTA option, 52–230
user_case MTA option, 52–69

Per-domain
Address reversal, 48–52
ldap_domain_attr_report_address MTA
option, 52–157

Warning messages, 60–1
post_debug MTA option, 52–80
post_off MTA option, 52–197

Mailing list members, 49–23
preauth option, 41–19
preauthtimeout IMAP Proxy/POP Proxy option,
41–19
preferpoll base option, 16–12, 41–19
preferpoll MMP option, 16–12, 41–19
prefix_search indexer option, 32–10
priority notifytarget option, 37–6
Private key, G–8
probe options, 19–1
Process channel, 65–20

$R input flag in AUTH_REWRITE mapping
table, 46–164
Notification messages, 60–23
Sieve redirect action, 5–48
Used for notification messages, 65–20

Processing jobs
Log file purge job

Scheduler task, 17–2
Return job

*notices channel options, 46–106
Expiry-date:, alias_expiry alias option, 48–16
Expiry-date:, EXPIRY alias file named
parameter, 48–35
Expiry-date:, expirysource channel option,
46–76, 46–115
MTA transaction log file rollover, 46–94
return_units MTA option, 52–230
Scheduler task, 17–2

processsecuritymultiparts channel option, 46–52
process_substitutions MTA option, 52–105

Effect on ldap_moderator_url attribute's value,
52–143

Profile database, 65–16
projectid base option, 16–12
projectid MTA option, 52–184
properties base option, 16–12, 23–2
Protections

Alias database, 48–45
Alias file

Include files, 48–27
General database, 47–25

Proxies, 1
Proxy options, 40–1

httpadmin
DEPRECATED: see proxyadmin instead, 40–1

httpadminpass
DEPRECATED; see proxyadminpass instead,
40–1

imapadmin, 40–1
imapadminpass, 40–1
imapport, 40–2
storehostlist, 40–2

proxyadmin base option, 16–12
Host-specific override by imapadmin option,
40–1

proxyadminpass base option, 16–12
Host-specific override by imapadminpass
option, 40–1

proxyimapport base option, 16–13
proxyimapssl base option, 16–13
proxyprotocol channel option, 46–144
proxyserverlist base option, 16–13
proxyserverlist Base option

User's mailHost assummed
proxytrustmailhost Base option, 16–13

proxytrustmailhost base option, 16–13
proxy_hash_algorithm MTA option, 62–35
Public key encryption, G–8
Purge (MTA log files) job

crontab Scheduler task option, 17–5, 26–28
Enable scheduling of, 17–4

purge task
Options, 17–4

crontab, 17–5, 26–28
enable, 17–4

purgemsg notifytarget option, 37–7
pwchangeurl base option, 16–13, 16–14

Q
qm utility

Notification message generation, 60–4

Index–148 Messaging Server Reference

Queue cache database, G–9
-database switch of imsimta qclean, 71–44
-max_messages switch of imsimta cache -
change, 55–12, 71–7
cache -sync utility, 71–9
cache -walk utility, 71–11
Job Controller in-memory database, 55–1

Operation under stress, 55–3
max_cache_messages Job Controller option,
55–12
qtop utility, 71–48
queue_cache_mode MTA option, 52–184

queuedir msprobe option, 19–1
queuemax Message Store dbreplicate option, 26–21
queue_cache_mode_3_files MTA option, 52–184
Quota

Admin bypass
adminbypassquota IMAP option, 34–4

Bypassing for delivery
deliveryflags channel option, 46–118, 46–135

capability IMAP Proxy option
IMAP QUOTA extension, 41–9

capability_quota IMAP option
IMAP QUOTA extension, 34–9

defaultmailboxquota Message Store option,
26–10
defaultmessagequota Message Store option,
26–10
Domain

overquota status, acceptalladdresses channel
option, 46–34

Folder
enable folderquota option, 26–25

Group
overquota status, acceptalladdresses channel
option, 46–34

IMAP QUOTA extension
capability IMAP Proxy option, 41–9
capability_quota IMAP option, 34–9

LMTP implementation, 62–14
Message type

enable typequota option, 26–26
MeterMaid connection quota

quota local_table option, 59–4
quota_time local_table option, 59–4

MeterMaid throttle parameter
check_memcache.so use, 50–30, 50–31

Over quota Message Store notification, 60–3
Over quota status

accepttemporaryfailures channel option,
46–35
ldap_user_mail_status MTA option, 52–110
overquotastatus Message Store option, 26–13

SMTP rejection, defertemporaryfailures
channel option, 46–35
SMTP rejection, error_text_over_quota MTA
option, 52–171
SMTP rejection, use_permanent_error MTA
option, 52–179

OverQuota event notification
overquota notifytarget option, 37–6

overquotastatus Message Store option, 26–13
Pitfall of support for deferred message
processing, 46–112
quotaenforcement Message Store option, 26–14
quotaexceededmsginterval Message Store
option, 26–15
quotagraceperiod Message Store option, 26–15
quotanotification Message Store option, 26–15
quotawarn Message Store option, 26–16
Sieve reservations

:quota memcache parameter, 5–13
:quota redis parameter, 5–15

Sieve throttling
:quota memcache parameter, 5–14, 5–62
:quota redis parameter, 5–15, 5–70
:quotatimeout memcache parameter, 5–7, 5–7,
5–13, 5–13, 5–14, 5–62
:quotatimeout redis parameter, 5–9, 5–9, 5–15,
5–15, 5–15, 5–70

UnderQuota event notification
underquota notifytarget option, 37–6

User
Disk quota, mailQuota LDAP attribute,
52–112, 52–133
folderquota Message Store options, 26–24
IMAP_MESSAGE_TOO_LARGE error status,
38–1, 64–9
IMAP_QUOTA_EXCEEDED error status,
38–1, 64–10
Mailbox quota, defaultmailboxquota Message
Store option, 26–10
Maximum messages per folder, maxmessages
Message Store option, 26–13
Maximum number of folders, maxfolders
Message Store option, 26–13
Message quota, defaultmessagequota
Message Store option, 26–10
messagetype Message Store options, 26–25
Notification of overquota, IMAP ALERT, 60–3
Over quota notification, Message Store
generation of, 60–3
Over quota notification, quotaexceededmsg
Message Store option, 26–14
Over quota status, Customizing MTA error
text, 52–167

Index–149

Over quota status, error_text_over_quota
MTA option, 52–171
Over quota status, IMAP ALERT message,
60–3
Over quota status, inetUserStatus LDAP
attribute, 52–110
Over quota status, mailUserStatus LDAP
attribute, 52–110
Over quota status, quotaoverdraft Message
Store option, 26–15
Over quota status, Reported to entire group
membership, 49–17
Over quota status, SMTP rejection and
overquotastatus Message Store option, 26–13
Over quota status, SMTP rejection text,
52–171
Over quota status, use_permanent_error
MTA option, 52–179
overquota status, acceptalladdresses channel
option, 46–34
Per message type, 26–26
Per message type, Example, 26–25
Per message type,
IMAP_QUOTAROOT_NONEXISTENT error
status, 38–3, 64–10
Per-message size quota, mailMsgQuota
LDAP attribute, 52–133
quotaroot Message Store messagetype
mtindex option, 26–26
quotaroot Message Store
messagetype mtindex option,
IMAP_QUOTAROOT_NONEXISTENT error
status, 38–3, 64–10
subdirs channel option on ims-ms channel,
64–2
typequota Message Store options, 26–25

Warning message
Generated by Message Store and directly
deposited, 60–2
Message Store notification, 60–3

quota local_table MeterMaid option, 59–4
quotaenforcement Message Store option, 26–14

subdirs channel option on ims-ms channel, 64–2
quotaexceededmsg Message Store option, 26–14
quotaexceededmsginterval Message Store option,
26–15
quotagraceperiod Message Store option, 26–15

subdirs channel option on ims-ms channel, 64–2
quotanotification Message Store option, 26–15
quotaoverdraft Message Store option, 26–15

Notification that a Message Store user is
overquota, 60–3

quotaroot Message Store messagetype mtindex
option, 26–26

IMAP_QUOTAROOT_NONEXISTENT error
status, 38–3, 64–10

quotawarn Message Store option, 26–16
Notification that a Message Store user is
overquota, 60–3

quota_time local_table MeterMaid option, 59–4

R
Random number generation

Mapping table template, 50–11, 50–12
Recipes

strongrandom function, 4–35
strongrandom recipe function, 4–35

randommx channel option, 46–150
Rate limiting

By authenticated sender using memcached,
50–31
By authenticated sender using metermaid, 50–33
Outbound connections, 62–53
Per-recipient, 50–19

rbac base option, 16–13
RBL (Realtime Blackhole List, Realtime Block List),
G–9

dns_verify callouts, 50–33
dns_verify_domain Dispatcher option, 54–4

Read receipts
-read_receipt switch of test -rewrite, 71–127
Generated by mail user agents and not by MTA,
60–2, 60–20
read_receipt_off MTA option, 52–301
read_receipt_on MTA option, 52–302
Request/non-request noted in test -rewrite
output, 71–130
Requests on mailing list postings

alias_keep_read alias option, 48–18
KEEP_READ named parameter, 48–37

readmsg notifytarget option, 37–7
readsigncert smime option, 43–6
read_receipt_off MTA option, 52–301
read_receipt_on MTA option, 52–302
rebuild_parallel_channels Job Controller option,
55–14
Receipt requests

read_receipt_off MTA option, 52–301
read_receipt_on MTA option, 52–302

receivedfor channel option, 46–83
receivedfrom channel option, 46–83
receivedstate channel option, 46–86

Conversion channel, 51–6
filter_discard channel, 65–7

received_domain MTA option, 52–236

Index–150 Messaging Server Reference

Limiting emission of internal host names, 70–2
Local channel official_host_name, 65–2

Recipe language, 4–1
Access to configuration options, 4–19

Groups, 4–21
Access to LDAP, 4–34
Access to MTA alias definitions, 4–25
Access to MTA channel definitions, 4–26
Access to MTA mapping tables, 4–28
Access to rewrite rules, 4–28
Character set conversion

translate function, 4–18
Comments, 4–2
deploymap, 4–30

:add, 4–30
:create, 4–31
:delete, 4–31
:dump, 4–31
:list, 4–32
:read, 4–33
:rename, 4–33
:set, 4–33
:write, 4–33

Deployment map operations, 4–30
Environment access, 4–23
File operations, 4–23
Functions, 4–8

add_alias, 4–8, 4–26
add_channel, 4–8, 4–27
add_group, 4–21
add_mapping, 4–29
append_alias, 4–9, 4–26
append_group, 4–9, 4–21
append_mapping, 4–29
argc, 4–23
argv, 4–23
call_user, 4–35
continue, 4–9, 4–24
decode, 4–10
default, 4–10
defined, 4–10
delete_alias, 4–10, 4–26
delete_channel, 4–10, 4–27
delete_file, 4–10, 4–24
delete_group, 4–10, 4–21
delete_mapping, 4–29
delete_mapping name argument must be a
string, 4–10
delete_options, 4–20
delete_optlist, 4–10
delete_rewrites, 4–10
delete_statefile, 4–10
deploymap, 4–10

deploymap :add :host h, 4–10
deploymap :add :host h :property p, 4–10
deploymap :add :host h :property p :role r,
4–11
deploymap :create, 4–11
deploymap :delete :deployment d, 4–11
deploymap :delete :host h, 4–11
deploymap :delete :host h :property p, 4–11
deploymap :delete :host h :role, 4–11
deploymap :dump, 4–11
deploymap :list, 4–11
deploymap :read, 4–11
deploymap :rename, 4–11
deploymap :rename :host h, 4–11
deploymap :set, 4–12
deploymap :write, 4–12
description, 4–12, 4–23
edit, 4–12
encode, 4–12
error, 4–12, 4–24
exists_alias, 4–12, 4–25
exists_channel, 4–12, 4–26
exists_file, 4–12, 4–24
exists_group, 4–12, 4–21
exists_mapping, 4–12, 4–29
exists_option, 4–12, 4–19
exists_optlist, 4–12
exists_statefile, 4–12
find, 4–12
getenv, 4–14, 4–23
get_alias, 4–13, 4–25
get_channel, 4–13, 4–26
get_defalt, 4–13
get_default, 4–20
get_group, 4–13, 4–21
get_mapping, 4–13, 4–29
get_msconfig_info, 4–13
get_option, 4–13, 4–20
get_options, 4–13, 4–20
get_option_modification_locations, 4–13, 4–23
get_optlist, 4–13
get_path, 4–13, 4–23
get_rewrites, 4–13
get_statefile, 4–13
get_system_info, 4–13
hash, 4–14
hash_hmac, 4–14
instance, 4–14
integer, 4–14
keywords, 4–14
lcase, 4–14
ldap_init, 4–14, 4–34
ldap_ldif, 4–14, 4–35

Index–151

ldap_search, 4–35
left, 4–15
length, 4–15
list, 4–15
list_names, 4–15, 4–20
make_path, 4–15, 4–23
map, 4–15
match, 4–15
max, 4–15
min, 4–15
Optlist manipulation, 4–34
ord, 4–15
pop, 4–16
prepend_alias, 4–16, 4–26
prepend_group, 4–16, 4–21
prepend_mapping, 4–16, 4–29
prepend_rewrites, 4–16
print, 4–16, 4–24
push, 4–16
put_optlist, 4–16, 4–34
random, 4–16
randomseed, 4–16
read, 4–16, 4–25
read_file, 4–16, 4–24
read_optlist, 4–16
read_password, 4–16, 4–25
repl, 4–16
replace_alias, 4–17, 4–26
replace_channel, 4–17, 4–27
replace_group, 4–17, 4–21
replace_mapping, 4–17, 4–29
replace_rewrites, 4–17
resolve_option, 4–17, 4–20
restricted, 4–17, 4–25
reverse, 4–17
Rewrite rules, 4–28
right, 4–17
role, 4–17
set_channel, 4–17, 4–27
set_option, 4–18, 4–20
set_options, 4–18, 4–20
set_statefile, 4–18
sign, 4–18
sort, 4–18
split, 4–18
string, 4–18
strongrandom, 4–18, 4–35
Terminal I/O, 4–24
translate, 4–18
trim, 4–18
type, 4–18
ucase, 4–18
unset_alias, 4–19, 4–26

unset_channel, 4–19
unset_option, 4–19, 4–20
validate_option, 4–19, 4–21
warn, 4–19, 4–24
write_file, 4–19, 4–24
write_optlist, 4–19
yesno, 4–19, 4–25

Funtions
keywords, 4–23

Group access, 4–21
instance vs. role, 4–21
Integer values, 4–2
LDAP operations, 4–34
List values, 4–2

Optlists, 4–3
Loops, 4–5
msconfig information, 4–22, 4–23
Operators, 4–6
Optlists, 4–3
Preprocessing directives, 4–37
Routines (user-defined), 4–36
Special symbolic names, 3–1
Statements, 4–5

Assignments, 4–6
if...then...else..., 4–5

String and list values
Optlists, Manipulation of, 4–34

String values, 4–2
Backslash, 4–2

System information, 4–22
Terminal I/O, 4–24
Testing

-xc switch of imsimta test -expression, 71–93
Variables, 4–3

Indices, 4–3
Recipient access mapping tables, 57–7
recipientcutoff channel option, 46–96, 46–132

Effect set via address access mapping tables,
57–10

recipientlimit channel option, 46–96, 46–132
Effect set via address access mapping tables,
57–10
error_text_recipient_over MTA option, 52–171

record_lifetime sms_gateway option, 66–4
Redis

MTA options, 52–236
Sieve filter redis extension, 5–70

redis, 52–246
redis: URLs

MTA URL types, 1–4
refuseehlo channel option, 46–129
refusenotary channel option, 46–106, 46–144
regexp attribute in store.expirerule files, 31–3

Index–152 Messaging Server Reference

Folder pattern interpretation, 31–3
registerindices SNMP option, 73–3
Regular expression

enable_sieve_regex MTA option, 52–246
folderpattern Message Store option, 26–24
parse_re_N SMS options, 66–6
Recipe language

match function, 4–15
re_pattern backup_group option, 29–1
select_re SMS gateway_profile option, 66–8
Sieve regex extension, 5–76

Regular expressions
imexpire folder patterns, 31–3

Example, 31–2
Message expiration rule sets, 31–3

rejectsmtplonglines channel option, 46–146
acceptalladdresses channel option, 46–34
error_text_smtp_lines_too_long MTA option,
52–177

reject_disables_capture MTA option, 52–241
relaxheadertermination channel option, 46–81
Relay blocking

See SMTP relay blocking, 62–59
relay channel option, 46–130
Relaying to an outbound gateway host

See daemon channel option, 46–70, 46–149
remotehost channel option, 46–42, 46–74
replayformat MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–19
replayformat MSHTTP option, 42–11
replaypass mmp/imapproxy/popproxy option,
41–20
reportboth channel option, 46–108
reportdir Message Store archive option, 26–19
reportheader channel option, 46–108
reportnotary channel option, 46–108
reportsuppress channel option, 46–108
Reprocess channel, 65–20

$R input flag in AUTH_REWRITE mapping
table, 46–164
accepttemporaryfailures channel option

Causing routing to, 46–35
Address *_ACCESS mapping tables

Probe as prior channel, 65–21
Debug output, 46–95, 65–21
domain_failure MTA option and temporary
LDAP errors conditions, 47–32
Force routing via delivery_option, 52–98
Forced routing when LDAP unavailable

domain_failure MTA option, 52–84
ldap_reprocess MTA option, 52–139
Logging, 65–21
log_process MTA option, 65–21

Operation as prior channel, 65–20
Logging, 65–21

Retrieving messages from the filter_discard
channel, 65–8
Routing due to presence of mgrpAuthPassword,
52–142
Sieve redirect action, 5–48
spamfilterN_received MTA options, 52–258
transactionlimit channel option, 65–21

Require Recipient Valid Since
See SMTP, Extensions, RRVS, 46–41, 46–130

requireauthenticationserver auth option, 21–3,
41–20
requireauthenticationserver IMAP Proxy/POP
Proxy option, 21–3, 41–20
rescanhours attribute in store.expirerule files, 31–3
resourcetimeout MSHTTP option, 42–12, 42–12
restrictanyone Message Store privatesharedfolders
option, 26–30
restrictdomain Message Store privatesharedfolders
option, 26–30
restricted channel option, 46–46

-restricted switch of test -rewrite utility, 71–127
Restricted options

-restricted switch of msconfig run command,
4–17, 4–21
restricted recipe operation, 4–21, 4–25

restricted.cnf file, 15–1
allow_pipe_setuid option, 15–1
group option, 15–1

imsimta test -expression utility's output,
71–87

noprivuser option, 15–1
Mapping table sequence number files, 50–13

pipeuser option, 15–1
user option, 15–1

imsimta test -expression utility's output,
71–87

restrictplainpasswords mmp/imapproxy/
popproxy/vdomain option, 41–20
resubmit_time local_table MeterMaid option, 59–3
retainsecuritymultiparts channel option, 46–52
retrieveport Message Store archive option, 26–20
retrieveserver Message Store archive option, 26–20
retrievetimeout Message Store archive option,
26–20
return utility, 71–55

Notification message generation, 60–4
returnaddress channel option, 46–107
returnenvelope channel option, 46–108

DNS verification
test -rewrite utility, 71–125

Index–153

error_text_invalid_return_address MTA option,
52–176
error_text_mailfromdnsverify MTA option,
52–176
error_text_unknown_return_address MTA
option, 52–176
return_envelope MTA option, 52–166, 52–229

returnenvelope MTA option
DNS verification

test -rewrite utility, 71–125
returnpersonal channel option, 46–107

Overriden by RETURN_PERSONAL option in
return_option.opt, 60–15
return_personal MTA option, 52–230

return_*.txt files, 60–11
return_address MTA option

-from switch of calc utility, 71–13
test -rewrite utility's -from switch, 71–120
Value used by imsimta test -expression, 71–92

return_cleanup_period MTA option, 52–300
return_debug MTA option, 52–80
return_delivery_history MTA option, 52–229

Notification message format, 60–6
return_envelope MTA option, 52–166, 52–229

returnenvelope channel option, 46–109
return_header.opt file, 60–10
return_job

crontab Scheduler task option, 17–5
Debugging

return_debug MTA option, 52–80
return_verify, 52–80

Enable scheduling of
enable Scheduler task:return_job option, 17–5

MTA transaction logging
K records, 68–4
Log file rollover, return_split_period MTA
option, 52–300
R records, 68–4
W records, 68–5

Options, 17–5
return_units MTA option, 52–230

return_option.opt file, 60–14
RETURN_PERSONAL option

return_personal MTA option, 52–230
return_personal MTA option, 52–230

Overriden by RETURN_PERSONAL option in
return_option.opt, 60–15

return_split_period MTA option, 52–300
return_units MTA option, 52–230

Interpretation of *notices channel options,
46–106
Notification message format, 60–6

return_verify MTA option, 52–80

reverse channel option, 46–47
Reverse database, 48–52

comment_chars MTA option, 52–181
MTA options

comment_chars, 52–181
reverse_data_size, 52–190
string_pool_size_3, 52–191
use_text_databases, 52–185

reverse_database_url MTA option, 52–216
reverse_data_size MTA option, 52–190
string_pool_size_3 MTA option, 52–191
usereversedatabase channel option, 46–50
use_reverse_database MTA option, 52–67,
52–212
use_text_databases MTA option, 52–185

reverse_address_cache_size MTA option, 52–163
reverse_address_cache_timeout MTA option,
52–163
reverse_database_url MTA option, 52–216

Address reversal, 48–54
reverse_data_size MTA option, 52–190
reverse_url MTA option, 52–93
revocationunknown smime option, 43–6
rewrite group, 47–2
Rewrite rules, 47–1, G–9

Callout routines, 50–28
Direct LDAP domain lookup ($V)

domain_match_cache_size MTA option,
52–14, 52–162

Direct LDAP domain lookups, 47–31
Domain database

imta_domain_database MTA option
(DELETED), 53–9

Domain literal handling, 47–8
Host/domain with trailing dot, 47–5
LDAP callouts, 47–22

url_result_cache_* MTA options, 52–163
LMTP channels, 52–100
Operation of, 47–2

Apply rewrite rule template, 47–7
Extraction of the first host/domain
specification, 47–3
Failure to match, 47–8
Finishing rewriting process, 47–8
Scan for a domain match, 47–5

Patterns, 47–5
$!, 47–12
$%, 47–11
$*, 47–11
$*, ims-ms channels, 64–3
*, 47–12
., 47–13
Domain literal match-all, 47–12

Index–154 Messaging Server Reference

Initial match-all, 47–11
Match any address, 47–13
Match bang-style addresses, 47–12
Match exact numbers of domain components,
47–12
Match percent hacks, 47–11
Short form host name, 47–12
Syntax, 47–9
Syntax, Case-insensitive matching, 47–10
Tagged sets of rewrite rules, 47–13
[], 47–12

Percent signs, 47–4
Recipe language access, 4–28
rewrite group, 47–2
Selectively analyze and modify domains, 47–25
Selectively analyze and modify usernames,
47–26
Source channel-specific

BSMTP channel example, 63–3
Syntax checking of resulting address, 47–8
Template, 47–7

Case preserving, 47–14
Formats, 47–14
Ordinary format, 47–15
Repeated rewriting format, 47–15
Specified route formats, 47–16
Syntax, 47–14

Template control sequences, 47–16
$,, 47–34
$/, 47–30
$1M, 47–28
$1M, domain_failure MTA option usage of,
52–84
$1N, 47–28
$1~, 47–33
$1~, domain_failure MTA option usage of,
52–84
$:, 47–34
$;, 47–34
$>, 47–34
$?, 47–36
$?, domain_failure MTA option usage of,
52–85
$A, 47–30
$B, 47–29
$C, 47–29
$E, 47–29
$F, 47–29
$I, 47–34
$M, 47–28
$M, domain_failure MTA option usage of,
52–84
$N, 47–28

$nT, 47–34
$nxxxyyy?, 47–36
$O, 47–34
$P, 47–30
$Q, 47–29
$R, 47–29
$S, 47–30
$T, 47–35
$V, domain_failure MTA option, 52–84
$V, domain_match_cache_size MTA option,
52–14, 52–162
$V, domain_match_url MTA option, 52–85
$X, 47–30
$|, 47–30
Alias-sensitive, 47–34
alias_magic override, 47–34
Deployment map role-specific rewrites, 47–30
Destination channel-specific, 47–29
Direction-specific, 47–29
Domain found/not-found in LDAP, 47–31
Error text, 47–36
Host location-specific, 47–30
List-name matching, 47–34
Location-specific, 47–29
Message MT-PRIORITY comparisons, 47–35
Message size comparisons, 47–35
Source channel-specific, 47–28
Tag value, 47–35
TLD comparison, 47–34

Template substitutions, 47–7, 47–16
$!n, 47–21
$#n, 47–21
$$, 47–21
$%, 47–21
$&n, 47–20
$(...), 47–24
$*n, 47–21
$.., 47–27
$.text., 47–27
$0U, 47–20
$1U, 47–20
$<...>, 47–27
$=, 47–22
$@, 47–21
$D, 47–20
$D, $H, $U, 47–7
$G, 47–21
$H, 47–20
$L, 47–20
$n<...>, 47–27
$nD, 47–20
$nG, 47–21
$nH, 47–20

Index–155

$nY, 47–27
$U, 47–20
$W, 47–27
$Y, 47–27
$[...], 47–26
$\, 47–21
$]...[, 47–22
$^, 47–22
$_, 47–22
$_ turns off LDAP URL encoding, 47–23
${...}, 47–25
Case changing, 47–22
Domain, 47–20
General database, 47–24
Hash of argument, 47–27
Host, 47–20
IP literal, 47–20
LDAP query results, 47–22
LDAP URL encoding, 47–22
Literal character, 47–21
Local-part, 47–20
Mapping table callout, 47–25
Routine callout, 47–26
Subaddress, 47–20
Subdomain single field, 47–21
Temporary failures, 47–27
Transport information, 47–27
Unique string, 47–27
Username, 47–20

Testing of
test -rewrite utility, 71–117

re_pattern backup_group option, 29–1
RFC

See Standards, RFC, G–9
RFC 822 address, G–9
rfc2231compliant MSHTTP option, 42–12
rfc822headerallow8bit base option, 16–13
Role-Based Access Controls

rbac base option, 16–13
rolename option, 2–1
rollingdbbackup Message Store option, 26–16
rollovermanager

Options, 24–1
enable, 24–1, 24–1

rolloverpolicy logfile option, 16–25
rollovertime logfile option, 16–25
Rose, Marshall

Fundamental axiom of management
MTA counters, 68–26

routelocal channel option, 46–48
Compared to localbehavior, 46–45
Removal of source routes during rewriting, 47–8

route_to SMS gateway_profile option, 66–8

route_to_routing_host MTA option
Effect on mailRoutingHosts interpretation,
52–153

Routing
$~ flag in FROM_ACCESS mapping, 57–15,
60–24
aliasdetourhost channel option, 46–37, 46–68
Alternate conversion channel, 51–5

aliasdetourhost used in conjunction, 46–37,
46–68
Notification messages, 60–24

Gateway systems, 62–57
Example, 62–58
vs. Smart host vs. Spam/virus filter box, 62–58

ldap_detourhost_optin MTA option, 52–131
See also daemon channel option, 46–70, 46–149

RRVS
See SMTP, Extensions, RRVS, 46–41, 46–130

rules channel option, 46–47
Source channel-specific rewriting, 47–28

run_as_server Deployment Map option, 23–2

S
S/MIME, 1
S/MIME options, 43–1

alwaysencrypt, 43–3
alwayssign, 43–4
appletlogging, 43–7
certurl, 43–2
checkoverssl, 43–5
crldir, 43–4
crlenable, 43–4
crlmappingurl, 43–5, 43–5
crlurllogindn, 43–4
crlurlloginpw, 43–5
crlusepastnextupdate, 43–7
enable, 43–1
logindn, 43–2
loginpw, 43–2
platformhpux, 43–3
platformlinuxx86, 43–3
platformmac, 43–3
platformsolarissparc, 43–3
platformwin, 43–3
readsigncert, 43–6
revocationunknown, 43–6
sendencryptcert, 43–6
sendencryptcertrevoked, 43–6
sendsigncert, 43–7
sendsigncertrevoked, 43–7
sslrootcacertsurl, 43–2
timestampdelta, 43–5
trustedurl, 43–2

Index–156 Messaging Server Reference

usercertfilter, 43–1
safe_tcl_mode MTA option, 52–302
SASL, G–9

Mechanisms
ANONYMOUS, allowanonymouslogin
MSHTTP option, 42–4
EXTERNAL, externalidentity channel option,
46–162
EXTERNAL, EXTERNAL_IDENTITY TCP/IP-
channel-specific option, 62–23
EXTERNAL, XCLIENT SMTP extension,
46–85, 46–145, 46–173
PLAIN, authpassword and authusername
channel options, 46–162
PLAIN, AUTH_PASSWORD and
AUTH_USERNAME TCP/IP-channel-specific
options, 62–23

saslpassauth channel option, 46–173
Value set via AUTH_REWRITE mapping,
46–164

saslruleset channel option, 46–174
saslswitchchannel channel option, 46–91, 46–174

Effect nullified by XUNAUTHENTICATE SMTP
command, 46–92, 46–175

sasltrustauth channel option, 46–173
savedays attribute in store.expirerule files, 31–3
scan_channel MTA option, 52–180

imexpire, 58–21
scan_originator MTA option, 52–180

imexpire, 58–21
scan_recipient MTA option, 52–180

imexpire, 58–21
Scheduler

Messaging Server infrastructure, 1
Scheduler options, 17–1

enable, 17–1
enablelog, 17–2
task

enable, 17–3
expire, enable, 17–3
msprobe, enable, 17–4
purge, enable, 17–4
return_job, crontab, 60–4
return_job, enable, 17–5, 60–4
snapshot, enable, 17–6
snapshotverify, enable, 17–6

task:expire
crontab, 17–3

task:msprobe
crontab, 17–4

task:purge
crontab, 17–5, 26–28

task:return_job

crontab, 17–5
task:snapshot

crontab, 17–6
task:snapshotverify

crontab, 17–6
Scheduler task options, 17–2

enable, 17–3
Schema

See LDAP schema, G–9
scriptlimit channel option, 46–122
searcheninetype message store option, 26–16
searchfilter auth option, 21–3

Compared with ldap_schematag, 52–95
searchfordomain auth option, 21–3
searchformat mmp/imapproxy/popproxy/vdomain
option, 41–20
secondclassafter channel option, 46–110
secondclassblocklimit channel option, 46–125
second_class_block_limit MTA option, 52–223,
52–234
secret base option, 16–14
secret ENS option, 74–2
secret Job Controller option, 55–14
secret MeterMaid option, 59–5
secret Watcher option, 18–1
sectoken options, 22–1

tokenpass, 22–1
Security rule set, G–10
Security token options

See sectoken options, 22–1
seen attribute in store.expirerule files, 31–3
seen Message Store expirerule option, 26–24
seenckpinterval Message Store option, 26–16
seenckpstart Message Store option, 26–16
select_re SMS gateway_profile option, 66–8
Semicolon

Comment line in MTA configuration files
comment_chars MTA option, 52–181

sendencryptcert smime option, 43–6
sendencryptcertrevoked smime option, 43–6
Sender Permitted From

See SPF lookups, 52–259
Sender Policy Framework

See SPF lookups, 52–259
Sender Rewriting Scheme

See SRS, 52–263
sendetrn channel option, 46–144
sendpost channel option, 46–103, 60–1
sendsigncert smime option, 43–7
sendsigncertrevoked smime option, 43–7
sensitivity* channel options

acceptalladdresses channel option, 46–34

Index–157

sensitivitycompanyconfidential channel option,
46–117
sensitivitynormal channel option, 46–117
sensitivitypersonal channel option, 46–117
sensitivityprivate channel option, 46–117
separate_connection_log MTA option, 52–299
Server Side Rules database

imta_ssr_database, 53–9
serverdomainalert IMAP Proxy option, 41–21
servertimeout SNMP option, 73–3
serveruid base option, 16–14
server_host Deployment Map option, 23–2
server_host icapservice option, 45–1
server_host indexer option, 32–8
server_host MeterMaid Client option, 59–6
server_host remote_server MeterMaid client
option, 59–7
server_host smpp_relay option, 66–10
server_host smpp_server option, 66–13
server_nickname MeterMaid client remote_table
option, 59–7
server_port icapservice option, 45–1
server_port isc option, 32–12
server_port isc_client option, 32–13
server_port MeterMaid client option, 59–6
server_port MeterMaid remote_server option, 59–7
server_port smpp_server option, 66–13
server_port SMS smpp_relay option, 66–10
server_receive_timeout smpp_relay option, 66–10,
66–10
Service conversions, 51–28

BSMTP channels, 63–4
SERVICE-CALL conversion entry parameter,
51–9
SERVICE-COMMAND conversion entry
parameter, 51–9

service Dispatcher group, 54–10
serviceadmingroupdn Message Store option, 26–17
serviceconversion channel option, 46–63
service_name icapservice option, 45–1
setacl notifytarget option, 37–7
sevenbit channel option, 46–60, 46–138

-sevenbit switch of test -mime, 71–113
sharedfolders Message Store option, 26–17
shareflags Message Store privatesharedfolders
option, 26–30
Shell utilities, 71–5
showunreadcounts MSHTTP option, 42–12
sieve attribute in store.expirerule files, 31–3
Sieve filters, 5–1, 5–3, 57–1, G–10

-filter switch of test -rewrite, 71–123
Actions

addconversiontag, 5–23, 5–56

addconversiontag, Executed unconditionally,
5–83
addflag, 5–43
addheader, 5–30
addheader, max_addheaders MTA option,
52–242
addprefix, 5–23, 5–57
addsuffix, 5–23, 5–57
addtag, 5–23, 5–58
adjustcounter, 5–23
capture, 5–23, 5–59
capture, Executed unconditionally, 5–83
capture, Timing of capture message
generation, 60–4
debug, 5–23
deleteheader, 5–30
duplicate, max_duplicates MTA option,
52–242, 52–248
ereject, 5–33
ereject, enable_sieve_ereject MTA option,
52–245
fileinto, 5–42
fileinto, :flags, 5–43
fileinto, max_fileintos MTA option, 52–242
hold, 5–23, 5–60
importanceadjust, 5–23, 5–60
importancetest, 5–23
jettison, 5–23, 5–27
keep, :flags, 5–43
memcache, 5–61
metermaid, 5–67
monitor, 5–23
monitor, Synonym for capture, 5–59
nonotify, 5–23, 5–47
notify, 5–46
notify, Cancelled in user Sieves by ereject,
reject, or refuse, 5–34
notify, jettison cancels, 5–28
notify, max_notifys MTA option, 52–242
novacation, 5–23, 5–52
override, 5–23, 5–47
redirect, 5–48
redirect, :copy parameter, 5–48
redirect, :keepmailfrom parameter, 5–48
redirect, :list, 5–34
redirect, :notify, 5–49
redirect, :resent and :noresent parameters,
5–48
redirect, :resetmailfrom parameter, 5–48
redirect, :ret, 5–49
redirect, Extensions to, 5–48
redirect, max_redirect_addresses MTA
option, 52–243

Index–158 Messaging Server Reference

redirect, Reprocess channel vs. process
channel, 65–20
redis, 5–70
refuse, 5–33
refuse, Sieve hierarchy, 5–83
reject, Redefined by ereject extension, 5–33
removeconversiontag, 5–23, 5–56
removeflag, 5–43
replaceheader, 5–30
set, 5–54
set, :encodeurl, 5–47, 5–55
set, :length, 5–54
set, :lower, 5–54
set, :lowerfirst, 5–54
set, :quoteregex, 5–55
set, :quotewild, 5–55
set, :quotewildcard, 5–55
set, :upper, 5–54
set, :upperfirst, 5–54
setconversiontag, 5–23, 5–56
setconversiontag, Executed unconditionally,
5–83
setdate, 5–54
setenvelopefrom, 5–23, 5–76
setenvelopefrom, Syntax, 5–10
setflag, 5–43
setmtpriority, 5–23, 5–77
setnotify, 5–23
setoperation, 5–23, 5–77, 46–132
setpriority, 5–77
setreturn, 5–23
spamadjust, 5–23, 5–50
transactionlog, 5–23, 5–77
translate, 5–78
vacation, autoreply_timeout_default MTA
option, 52–70
vacation, jettison cancels, 5–28
vacation, Timing of response message
generation, 60–4
virusset, 5–23, 5–50
warn, 5–78

addconversiontag action, 5–56
Example, 5–57
Executed unconditionally, 5–83

addflag action, 5–43
addprefix action, 5–57
address test, 5–25

:aindex, 5–26, 5–29
:anychild, 5–44
:comment, 5–26
:detail, 5–26
:display, 5–26
:index, 5–28

:last, 5–28
:mime, 5–44
:raw, 5–23, 5–26
:text, 5–23, 5–26
:user, 5–26

addsuffix action, 5–57
alias_filter alias option, 48–16
Assignment statements, 5–54

Integer values, 5–
List values, 5–

Authenticated originator
Access to, 5–32

Autoreply external vs. internal
Access to, 5–32

body test, 5–26
:regex match type not supported, 5–76

capture action, 5–59
Executed unconditionally, 5–83
Format of message, 60–13
Timing of capture message generation, 60–4

Channel name
Access to, 5–32

Channel options, 46–119
Comparators, 5–60

Collapsing white space, 5–60
Compressing white space, 5–60
i;ascii-casemap, 5–60
i;ascii-casemap-collapse, 5–60
i;ascii-casemap-compress, 5–60
i;ascii-integer, 5–60
i;ascii-numeric, 5–60
i;ascii-numeric, Example scriptlet, 49–7, 58–22
i;octet, 5–60
i;octet-collapse, 5–60
i;octet-compress, 5–60
utf-8, :regex match type not supported, 5–76

Control structures
error, 5–43
foreverypart, 5–44
loop, 5–61
require, Not needed after ihave, 5–43
require, strict_require MTA option, 52–247

Conversion tags, 5–56
Example, 5–57

copy extension, 5–27
Counters, 5–58
currentdate test

:list, 5–29
:zone, 5–29
Example, 5–40

date extension, 5–28
Example, 5–40

date test, 5–28

Index–159

:list, 5–29
:originalzone, 5–29
:zone, 5–29

debug action
-debug=2 switch of imsimta test -expression,
71–92
mm_debug MTA option, 5–23

Debugging, 52–248
debug action, 5–23
filter_debug MTA option, 52–78, 52–248

decode_encoded_words MTA option, 52–239
deleteheader action

Limiting emission of internal host names,
70–4

discard action, 5–27
deliveryflags channel option, 46–118, 46–135
Disabled on messages retrieved from
filter_discard channel, 65–9
filter_discard MTA option, 52–240
Force via address access mapping tables,
57–10

Domain
ldap_domain_attr_filter MTA option, 52–156

DSN parameters
redirect action, :notify and :ret parameters,
5–49

duplicate test, 5–29
duplicate_maximum_timeout MTA option,
52–247
duplicate_minimum_timeout MTA option,
52–247
duplicate_tracking_url MTA option, 52–248
Issues, log_filter MTA option, 5–30
memcache update timing, 5–30

editheader extension, 5–30
Alternative to header trimming, 46–175
Compared to use of mgrpAddHeader group
LDAP attribute, 52–147
Compared to use of mgrpRemoveHeader
group LDAP attribute, 52–148

envelope test, 5–31
-from switch of imsimta test -expression,
71–92
-to switch of imsimta test -expression, 71–92
conversiontag, Example, 5–57
from, Example, 5–38
Head-of-household use, 5–89

environment extension, 5–32
Custom items, 5–20
Custom items via $+E *_ACCESS flag, 5–33
domain, 5–19, 5–32
domain, ldap_default_domain MTA option,
52–87, 52–102

domain, received_domain MTA option,
52–87, 52–102, 52–236
host, 5–19, 5–32
location, 5–19, 5–32
name, 5–19, 5–32
phase, 5–19, 5–32
remote-host, 5–19, 5–32
remote-ip, 5–19, 5–32
version, 5–19, 5–32
vnd.oracle.last-verdict, 5–19, 5–32
vnd.oracle.max_mime_width, 5–19, 5–33
vnd.oracle.message-hash, 5–19
vnd.oracle.mime_levels, 5–19, 5–33
vnd.oracle.mt-priority, 5–19, 5–33
vnd.oracle.notifycount, 5–19, 5–33
vnd.oracle.notifyquota, 5–19, 5–33
vnd.oracle.operation-type, 5–19, 5–33, 5–77,
46–132
vnd.oracle.reevaluate, 5–19
vnd.oracle.tracking-id, 5–19
vnd.oracle.vacationcount, 5–20, 5–20, 5–33
vnd.oracle.vacationquota, 5–20, 5–33
vnd.sun.authenticated-sender-address, 5–20,
5–32
vnd.sun.authenticated-sender-id, 5–20, 5–32
vnd.sun.autoreply-internal, 5–20, 5–32
vnd.sun.destination-channel, 5–20, 5–32
vnd.sun.source-channel, 5–20, 5–20, 5–32

Environment items
vnd.oracle.mtpriority, -mtpriority switch of
imsimta test -expression, 71–93
vnd.sun.authenticated-sender-address, -
sender switch of imsimta test -expression,
71–94
vnd.sun.authenticated-sender-id, -username
switch of imsimta test -expression, 71–95

error control structure, 5–43
Errors

error_text_sieve_* MTA options, 52–171,
52–248
error_text_source_sieve_* MTA options,
52–176, 52–248
return_error.txt file, 60–13
See also Errors, Sieve filter, 60–13

Example scriptlets
:= assignment, 5–78
:comparator "i;ascii-numeric", 49–7, 58–22
:flags, 5–44
addprefix action, 5–31
addprefix extension, 5–45
adjustcounter action, 5–59
Attachment rejection, 49–7
Automatic response to list postings, 49–8

Index–160 Messaging Server Reference

Conditional capture, 5–41
Conversion tag manipulation, 5–57
Counters, 5–59
currentdate, 5–28, 5–40
Custom (mapping-defined) heloname
environment item, 5–33
Date-based redirects, 5–40
DMARC broken usage and corresponding
address adjustment, 5–31
envelope, 5–86, 49–7
envelope "to", 5–51
Envelope test on conversion tags, 5–57
Envelope test on subaddress, 49–6
Envelope test whether originator in PAB, 5–38
envelope, Moderated mailing list, 49–6
Environment test on custom (mapping-
defined) item, 5–33
environment test, host, 5–59
Expression in place of simple argument, 5–78
External list, 5–38, 5–38, 5–41
fileinto, 5–51
foreverypart extension, 5–45
header test, Authentication-results, 5–59
Holiday redirection, 5–40
imap4flags, 5–44
Logging header line, 52–250, 52–297
loop construct, 5–61
Manifest, 5–45
Mapping table test, 5–79
memcache, 5–63
mime :anychild, 49–7
mime extension, 5–45
Moderate medium-sized messages; reject
large messages, 49–8
Moderate possible spam; reject likely spam,
49–7
Multi-line string using the text: keyword,
5–31
notify action, 5–46
notify, Moderated mailing list, 49–8
PAB lookups, 5–38
PAB white-listing of sender, 5–38
redirect :copy, 5–27
redirect :resetmailfrom, 49–7
redirect :resetmailfrom, Moderated mailing
list, 49–6
redis, 5–71
Reject messages with non-text parts, 49–7
reject, Moderated mailing list, 49–6
reject, QUARANTINE_ACTION Milter
option, 58–6
Rejecting replies, 49–6
relational, 5–38, 5–50

Relational extension, Conversion tag count,
5–57
relational, Date operations, 5–28
relational, imexpire use, 58–22
relational, Moderated mailing list, 49–7
replaceheader action, 5–31
Replies not allowed, 49–6
setnotify, 5–76
setreturn, 5–76
size, Moderated mailing list, 49–8
spamadjust, 5–38, 5–39
spamtest, 5–38, 5–39, 5–50
spamtest, imexpire use, 58–22
spamtest, Moderated mailing list, 49–7
subaddress, 5–51, 5–86
subaddress, Moderated mailing list, 49–6
Test of client HELO/EHLO name, 5–33
text: keyword and a multi-line string, 5–31
transactionlog, 52–250, 52–297
translate, 5–78, 5–78
vacation, Date checks, 5–28
vacation, Moderated mailing list, 49–8
variables, 5–59, 5–79
variables extension and external list
properties, 5–41
Variables substitutions in body test not
permitted, 5–26
variables, Conversion tags, 5–57
variables, Header line logging with
transactionlog, 52–250, 52–297
variables, replaceheader action, 5–31
virustest, 5–50
White-listing known correspondents (PAB
addresses), 5–39

exists test
:anychild, 5–44
:mime, 5–44

exitif, 5–61
Expressions, 5–80

Example, 5–78
Extensions, 5–21

:raw and :text modifiers for address and
header tests, 5–23
Add prefix or suffix text to first text part,
5–23, 5–57
addtag, 5–23, 5–58
adjustcounter, 5–58
Body, :matches match type not supported,
5–26
Body, :regex match type not supported, 5–26
body, :regex match type not supported, 5–76
body, enable_sieve_body MTA option, 52–245
body, imexpire, 5–27

Index–161

Body, Restrictions, 5–26
Body, Variable substitution not supported in
body test arguments, 5–26
capture, 5–23, 5–59
comparator-*, 5–60
Conversion tag operations, 5–23, 5–56
copy, 5–27
copy, redirect, 5–48
Counters value adjustment, 5–23
Custom tests defined via mapping tables,
5–78
Custom tests via mapping tables, 5–23
date, 5–28
Date and index, Example, 5–40
debug, 5–23
duplicate, 5–23, 5–29
duplicate, Error logging, 5–78
duplicate, MTA options, 52–247
editheader, 5–30
editheader, Alternative to header trimming,
46–175
enotify, 5–46
enotify, notify_method_capability test, 5–47
enotify, valid_notify_method test, 5–47
envelope, 5–31
envelope, conversiontag, 5–32
envelope-auth, 5–31
envelope-dsn, 5–31
envelope-dsn, -envid switch of imsimta test -
expression, 71–92
Environment, 5–32
environment, vnd.oracle.last-verdict value of
redirect, 5–49
ereject, 5–33
extlists, 5–34
extlists, max_redirect_addresses MTA option,
52–243
extlists, redirect action, 5–49
extracttext, 5–44
foreverypart, 5–44
foreverypart, break, 5–44
foreverypart, continue, 5–44
hold, 5–23, 5–59
ihave, 5–43, 5–86
imap4flags, 5–43
imap4flags, :regex match type not supported
with hasflag, 5–76
Importance operations, 5–23
importanceadjust, 5–60
importancetest, 5–60
index, 5–28
jettison, 5–23, 5–27

loop construct, Compared to foreverypart,
5–44
Loop structure, 5–23
memcache, 5–61
memcache, enable_sieve_memcache MTA
option, 52–245
Message capture, 5–23
metermaid, 5–67
metermaid, enable_sieve_metermaid MTA
option, 52–246
mime, 5–44
monitor, 5–23
nonotify, 5–23, 5–47
notify, 5–46
novacation, 5–23, 5–52
override, 5–23
random, 5–23
redirect-dsn, 5–49
redis, 5–70
redis, enable_sieve_redis MTA option, 52–246
refuse, 5–33
refuse, Sieve hierarchy, 5–83
regex, 5–23, 5–75
regex, Variables, 5–76
reject, 5–33
Relational, 5–49
setenvelopefrom, 5–23, 5–76
setenvelopefrom, Syntax, 5–10
setmtpriority, 5–23, 5–77
setnotify, 5–23, 5–76
setoperation, 5–23, 5–77
setpriority, 5–77
setreturn, 5–23, 5–76
spamadjust, 5–23, 5–50
spamtest, 5–50
spamtestplus, 5–50
strongrandom, 5–23
subaddress, 5–51
Subaddress, address test, 5–26
Transaction log annotations, 5–77
transactionlog, 5–23
translate, 5–77
Use of require, strict_require MTA option,
52–247
vacation, 5–51
vacation, Error logging, 5–78
vacation, Why a vacation message was not
generated, 5–53
vacation-seconds, 5–51
Variables, 5–54
variables, :regex match type, 5–76
Variables, Properties of external lists, 5–36,
5–55

Index–162 Messaging Server Reference

Variables, Substitutions not allowed in body
arguments, 5–55
virusset, 5–23, 5–50
virustest, 5–50
warn, 5–78

External lists, 5–34
Example, max_redirect_addresses MTA
option, 5–38
ldap_ext_* MTA options, 52–192
Properties, 5–36, 5–40
spamtest and virustest tests, 5–50
Testing, 5–42

File access error for user Sieve file
error_text_sieve_access MTA option, 52–171

fileinto action, 5–42
:copy, 5–27, 5–43
:flags, 5–43, 5–43
ims-ms channel, 64–2

fileinto channel option, 46–121
fileinto vs. redirect, 5–43
filter_discard channel, 65–7
filter_discard MTA option, 65–7
filter_jettison MTA option, 65–7
Force via address access mapping tables, 57–10
foreverypart extension, 5–44
Forwarding via mailForwardingAddress

sieve_user_carryover MTA option, 52–106,
52–241

hasflag test, 5–43
:regex match type not supported, 5–76

Head-of-household, 5–89
fileinto, :owner, 5–43
ldap_filter_reference MTA option, 52–138
ldap_hoh_filter MTA option, 52–102, 52–150
ldap_hoh_owner MTA option, 52–102, 52–150
ldap_parental_controls MTA option, 52–138

header test
:anychild, 5–44
:index, 5–28
:last, 5–28
:mime, 5–44
:raw, 5–23
:text, 5–23
defer_header_addition MTA option, 52–239

Hierarchy, 5–81
Evaluation, 5–83
override action, 5–23
Semantics, 5–82
Types of Sieve scripts, 5–81
Verdicts, Access to, 5–32

hold action, 5–60
Default for QUARANTINE_ACTION Milter
option, 58–6

Diagnosing .HELD files, 65–12
ihave test, 5–43

max_notifys MTA option, 52–242
Implementation internals, 5–88

mm_check_function MTA routine, 5–89
mm_eval_function MTA routine, 5–89
systemfilter, Compiled configuration, 5–88

index extension, 5–28
Integers

Signed, i;ascii-integer comparator, 5–60
jettison action, 5–27

deliveryflags channel option, 46–118, 46–135
Disabled on messages retrieved from
filter_discard channel, 65–9
filter_jettison MTA option, 52–240
Force via address access mapping tables,
57–10

keep action
:flags, 5–43
Implicit, filter :copy does not cancel implicit
keep, 5–43
Implicit, Not cancelled with copy extension,
5–27
Implicit, redirect :copy does not cancel
implicit keep, 5–48

Language elements, 5–3, 5–4
ldap_filter MTA option, 52–138
ldap_filter_reference MTA option, 52–138
Logging effect in MTA transaction log

log_filter MTA option, 52–249, 52–278
loop control structure, 5–61

-statement switch of calc utility, 71–14
-statement switch of imsimta test -expression,
71–94

loop structure, 5–23
Mailing lists

FILTER alias file named parameter, 48–35
ldap_filter MTA option, 52–138
mailSieveRuleSource LDAP attribute, 52–138
Owner of, mgrpErrorsTo LDAP attribute,
52–146

Mapping table tests, 5–78
Match tyes

:regex, enable_sieve_regex MTA option,
52–246

Match types
:aindex, 5–20, 5–26, 5–29
:contains, 5–20
:count, 5–20, 5–22
:index, 5–20
:is, 5–20
:last, 5–20
:list, 5–20, 5–34

Index–163

:matches, 5–20
:matches, Not supported in body tests, 5–26
:regex, 5–20, 5–23
:regex, Not supported in body tests, 5–26,
5–76
:regex, Variables, 5–76
:value, 5–20, 5–22
regex, 5–76

Message expiration rule sets, 31–3
Message Store expire rules

expiresieve Message Store expire option,
26–11

Mime extension
:contenttype, 5–20
:param, 5–20
:subtype, 5–20
:type, 5–20

monitor action
Synonym for capture, 5–59

MSHTTP
SSL, sslport MSHTTP sieve option, 42–26

MT-PRIORITY
Access to, 5–33

MTA options, 52–238
Caching of Sieves, 52–244
decode_encoded_words, 52–239
Duplicate recent messages, 52–247
Error text, 52–248
Interpretation of Sieves, 52–239
Language extensions, 52–245
Logging and debugging, 52–248
See also External filtering context MTA
options, 52–180
Size limits, 52–242

nextif, 5–61
nonotify action, 5–47
notify action, 5–46

Invalid recipient addresses,
notify_ignore_errors MTA option, 52–240
notify_ignore_errors MTA option, 52–240
notify_maximum_timeout MTA option, 52–70
notify_minimum_timeout MTA option, 52–71
Suppressed by nonotify, 5–47

notify_method_capability test, 5–47
novacation action, 5–52

Disables sending back a vacation message,
5–53

operation-type
Access to, 5–33

Operators
memcache, 5–61
memcache, :add, 5–63
memcache, :adjustdown, 5–63

memcache, :adjustup, 5–64
memcache, :append, 5–64
memcache, :fetch, 5–64
memcache, :prepend, 5–65
memcache, :release, 5–65
memcache, :remove, 5–65
memcache, :replace, 5–66
memcache, :reserve, 5–66
memcache, :store, 5–66
memcache, :throttle, 5–66
metermaid, 5–67
metermaid, :adjustdown, 5–67
metermaid, :adjustup, 5–68, 5–69
metermaid, :fetch, 5–68
metermaid, :remove, 5–69
metermaid, :store, 5–69
metermaid, :throttle, 5–70
redis, 5–70
redis, :add, 5–71
redis, :adjustdown, 5–72
redis, :adjustup, 5–72
redis, :append, 5–73
redis, :expire, 5–73
redis, :fetch, 5–73
redis, :release, 5–74
redis, :remove, 5–74
redis, :replace, 5–74
redis, :reserve, 5–74
redis, :store, 5–75
redis, :throttle, 5–75

override action, 5–23, 5–47
Owner of

:owner tag, 5–43
duplicate test, 5–30
Envelope From address in "capture :message"
copy, 67–11
ldap_hoh_owner MTA option, 5–89, 52–103,
52–150
mgrpErrorsTo LDAP attribute on mailing
lists, 52–146
Sieve syntax error notifications, 60–2
SIEVE_EXTLISTS mapping probes, 5–35

Performance
enable_sieve_regex MTA option, 52–246
filter_cache_* MTA options, 52–245, 69–2
Recipient-specific, vnd.oracle.last-verdict,
5–32

Processing error report
return_error.txt file, 60–13

Processing priority
Access to, vnd.oracle.mt-priority Sieve filter
environment item, 5–33

Random number generation

Index–164 Messaging Server Reference

random, 5–23
strongrandom, 5–23

redirect action
:copy, 5–27
:list, 5–34
:list syntax, 5–35
defer_header_addition MTA option, 52–239
max_redirects, 52–243
SIEVE_EXTLISTS mapping probes, 5–35
sieve_redirect_add_resent MTA option,
52–240

Reevaluation
vnd.oracle.reevaluate environment item, 5–19

refuse action
Recipient-specific, 5–83

regex extension, 5–76
Variables, 5–76

reject action
acceptalladdresses channel option, 46–34
Not recorded in log_filter field of MTA
transaction log file, 52–249, 52–279

relational extension
imexpire use, 58–22

removeconversiontag action, 5–56
Example, 5–57

removeflag action, 5–43
replaceheader action

Limiting emission of internal host names,
70–4

reqire control structure
-statement switch of imsimta test -expression,
71–94

require control structure
-require switch of imsimta test -expression,
71–93
enotify vs. notify, 5–46
Example, 5–38
Not needed after ihave, 5–43
strict_require MTA option, 52–247

scriptlimit channel option, 46–122
Server Side Rules (SSR) database storage

imta_ssr_database MTA option (DELETED),
53–9

set action, 5–54
:encodeurl, 5–47, 5–55
:length, 5–54
:lower, 5–54
:lowerfirst, 5–54
:quoteregex, 5–55
:quotewild, 5–55
:quotewildcard, 5–55
:upper, 5–54
:upperfirst, 5–54

setconversiontag action, 5–56
Example, 5–57
Executed unconditionally, 5–83

setdate action, 5–54
setflag action, 5–43
setmtpriority action

Job Controller delivery execution window,
55–17
Override MT-PRIORITY value, 52–233

setoperation extension, 46–132
setpriority action

Job Controller delivery execution window,
55–6, 55–17

sieve_user_carryover MTA option, 52–106,
52–241
size test

Operating on part vs. message, 5–44
Syntax of, 5–16
Units for value, 52–220

SMTP AUTH
Access to, 5–32

spamadjust action, 5–50
$, *_ACCESS flag, 5–50

spamtest test, 5–50
:list, 5–50
:percent, 5–50
imexpire use, 58–22

string test, 5–54
Strings

Encoded characters, 5–17
Length limit, -string switch of imsimta test -
expression, 71–94
text: syntax for entering long, multi-line
strings, 5–17
text: syntax for entering long, multi-line
strings, addprefix and addsuffix actions, 5–57
UTF-8, 5–17

subaddress extension, 5–51
:detail, 5–51
:user, 5–51
address test, 5–26

Subroutines, 5–23, 5–56, 5–79
-statement switch of calc utility, 71–14

Syntax, 5–4
ihave extension, 5–43
Lists, max_sieve_list_size, 52–243
Matching, max_sieve_match_iterations,
52–243
strict_require MTA option, 52–247
Strings, max_sieve_string_size, 52–244

Syntax errors
error_text_sieve_syntax MTA option, 52–171
Report message, 60–2

Index–165

Report message, Channel filters, 60–2
Report message, Head-of-household, 60–2
Report message, System filter, 60–2
Report message, Timing of generation of,
60–4
Report message, User Sieve filters, 60–2

System-level
destinationfilter channel option, 46–119
Sieve hierarchy, 5–81
sourcefilter channel option, 46–119
systemfilter MTA option, 52–238

systemfilter MTA option, 52–238
Testing of

test -expression utility, 71–87
Tests

address, 5–25
address, :aindex, 5–26
address, :anychild, 5–44
address, :comment, 5–26
address, :detail, 5–26
address, :display, 5–26
address, :index, 5–28
address, :last, 5–28
address, :mime, 5–44
address, :raw, 5–23, 5–26
address, :text, 5–23, 5–26
address, :user, 5–26
body, 5–26
body, :regex match type not supported, 5–76
currentdate, 5–28
Custom tests defined via mapping tables,
5–23
date, 5–28
duplicate, 5–23, 5–29
envelope, 5–31
envelope, conversiontag, 5–23, 5–32, 5–56
Environment, Custom items via $+E
*_ACCESS flag, 5–33
exists, :anychild, 5–44
exists, :mime, 5–44
hasflag, 5–43
hasflag, :regex match type not supported,
5–76
header, :anychild, 5–44
header, :index, 5–28
header, :last, 5–28
header, :mime, 5–44
header, :raw, 5–23
header, :text, 5–23
header, defer_header_addition MTA option,
52–239
ihave, 5–43
importancetest, 5–60

Mapping tables, 5–78
memcache, 5–61
Message Store message expiration, 5–1
metermaid, 5–67
notify_method_capability, 5–47
redis, 5–70
Relational extension, 5–49
size, Operating on part vs. message, 5–44
size, Syntax of, 5–16
size, Units for values, 52–219
spamtest, 5–50
spamtest, :list, 5–50
spamtest, :percent, 5–50
string, 5–54
valid_ext_list, 5–34
valid_notify_method, 5–47
virustest, 5–50
virustest, :list, 5–50

Timing of message discards and jettisons, 65–7
translate action, 5–78
URI encoding

:encodeurl, 5–47
User-level

filter channel option, 46–119
ldap_domain_attr_filter MTA option, 52–156
ldap_filter MTA option, 52–138
ldap_hoh_filter MTA option, 52–102, 52–150
mailDomainSieveRuleSource LDAP attribute,
52–156
mailSieveRuleSource LDAP attribute, 52–138
mailSieveRuleSource LDAP attribute in
Head-of-household entry, 52–102, 52–150
Sieve hierarchy, 5–81

UTF-8 strings, 5–78
vacation action

:addresses argument,
ldap_autoreply_addresses MTA option,
52–137
:addresses argument, Vacation message not
generated, 5–53
:days parameter, 5–54
:echo, 5–52
:echo argument, 60–9
:echo argument, mailAutoReplyMode
attribute, 52–134
:headers, 5–52
:hours, 5–52
:hours argument, ldap_autoreply_timeout
MTA option, 52–137
:noaddresses, 5–52
:noheaderchec, 5–52
:reply, 5–52
:reply argument, 60–9

Index–166 Messaging Server Reference

:reply argument, mailAutoReplyMode
attribute, 52–134
:reply, Character set conversion, 60–22
:subject argument, mailAutoReplySubject
attribute, 52–135
Disabling, Initial configuration
FROM_ACCESS mapping table, 5–52
Disabling, Via $! flag in FROM_ACCESS
mapping, 5–52
Disabling, Via address access mapping tables,
57–10
Disabling, Via system-level novacation, 5–52
Format of message, 60–9
Frequency of vacation messages,
autoreply_timeout_default MTA option,
52–70
Logging of, 5–53
max_vacations MTA option, 52–244
Timing of response message generation, 60–4
vacation_cleanup MTA option, 52–71
vacation_hash_algorithm MTA option, 52–71
vacation_maximum_timeout MTA option,
52–71, 52–108
vacation_minimum_timeout MTA option,
52–72, 52–107
vacation_template MTA option, 52–72

vacation extension, 5–51
vacation-seconds extension, 5–51
valid_ext_list test, 5–34
valid_notify_method test, 5–47
variables extension, 5–54

:regex, 5–76
:regex match type tests, 5–55
Example, 5–57
FILTER_testname test results returned in,
5–79
Integer and list variable values, 5–56
Local to subroutine, 5–80
max_variables MTA option, 52–244
Namespaces not supported, 5–56
Periods not allowed in variable name, 5–56
Properties of external lists, 5–36, 5–55
set action, :encodeurl modifier, 5–47
Substitutions not allowed in body arguments,
5–55
Substitutions not supported in body test
arguments, 5–26

virusset action, 5–50
virustest test, 5–50

:list, 5–50
warn action, 5–78

log_filter MTA option, 52–249, 52–279
Syntax, 5–11

sieve_received MTA option, 52–240
sieve_redirect_add_resent MTA option

Default for redirect action, 5–48
Signed certificate, G–10
silentetrn channel option, 46–127
single channel option, 46–66

Channel to a gateway system, 62–58
Effect via deliveryflags channel option, 46–118,
46–135
Pipe channels, 65–13, 65–17

singlesignoff MSHTTP option, 42–12
single_sys channel option, 46–66

Channel to a gateway system, 62–58
slave channel option, 46–111
slave_command Job Controller option, 55–14

-slave_job switch of cache -change, 71–7
slave_debug channel option, 46–94

$U flag in PORT_ACCESS mapping table, 57–4
Force effect from address access mapping tables,
57–10
os_debug MTA option, 52–79
RESETDEBUG Archive option, 58–10

smartsend bulk mail handler
Mapping table callout routines, 50–38

smartsend options
maxconnectionrateperdomain, 46–155
maxconnectionsperdomain, 46–156
maxmessagerateperdomain, 46–156

smartsend_use_redis smartsend option, 50–56
SMPP relay

See SMS smpp_relay, 66–2
SMPP server

See SMS smpp_server, 66–2
SMS

charset
smsc_default_charset SMS gateway_profile
option, 66–8

One-way
make_source_addresses_unique smpp_relay
option, 66–10

Priority
sms_use_priority SMS gateway_profile
option, 66–8

SMS channels
Addresses

Example, 49–14, 49–15
ignore*encoding channel options, 46–54

SMS gateway
Options, 66–2

debug, 66–2
enable, 66–2
foreground, 66–3
history_file_directory, 66–3

Index–167

history_file_flush_period, 66–3
history_file_flush_threshold, 66–3
history_file_mode, 66–3
history_file_rollover_period, 66–3
max_conns, 66–4
record_lifetime, 66–4
thread_count_initial, 66–4
thread_count_maximum, 66–4
thread_stack_size, 66–4
use_sms_priority, 66–8
use_sms_privacy, 66–9

Startup, 66–2
SMS gateway_profile

Options, 66–4
email_body_charset, 66–5
email_body_charset, SMS text message body
charset, 66–7
email_header_charset, 66–5
email_header_charset, Subject: header line,
66–7
from_domain, 66–5
in_re, 66–5
mta_channel, 66–5
parse_re_*, 66–6
route_to, 66–8
select_re, 66–8
smsc_default_charset, 66–8
text_to_subject, 66–4
text_to_subject, email_body_charset gets
ignored, 66–5
text_to_subject, Interaction with parse_re_0
gateway_profile option, 66–7

SMS options, 66–2
SMS smpp_relay

Options, 66–9
backlog, 66–9
listen_addresses, 66–9
listen_receive_timeout, 66–9, 66–13
listen_transmit_timeout, 66–9, 66–13
make_source_addresses_unique, 66–9
max_conns, 66–10
server_host, 66–10
server_port, 66–10
server_receive_timeout, 66–10, 66–10
tcp_ports, 66–10

SMS smpp_server
Options, 66–10

backlog, 66–10
esme_address_npi, 66–11
esme_address_range, 66–11
esme_address_ton, 66–11
esme_password, 66–12
esme_system_id, 66–12

esme_system_type, 66–12
listen_addresses, 66–12
listen_receive_timeout, 66–9, 66–13
listen_transmit_timeout, 66–9, 66–13
max_conns, 66–13
server_host, 66–13
server_port, 66–13
system_id, 66–13
tcp_ports, 66–13

smsc_default_charset SMS gateway_profile option,
66–8
SMTP, G–10

Access control
See PORT_ACCESS mapping table, 57–3

ATRN
Safer than TURN, 46–145

AUTH
$A input flag in AUTH_REWRITE mapping
table, 46–164
-saslused switch of test -rewrite, 71–127
235 2.7.0 <mechanism> authentication
successful, 52–178
Adding authenticated sender to headers,
57–16
alias_username_moderator_list alias option,
48–18
authpassword channel option, 46–162
authrewrite channel option, 46–39, 46–72,
46–162
authusername channel option, 46–162
AUTH_ACCESS mapping $Q flag, 62–44
AUTH_PASSWORD TCP/IP-channel-specific
option, 62–22
AUTH_REWRITE mapping table, 46–163
AUTH_USERNAME TCP/IP-channel-specific
option, 62–22
Channel switch with saslswitchchannel,
46–91, 46–174
Errors, 52–177
externalidentity channel option, 46–162
EXTERNAL_IDENTITY TCP/IP-channel-
specific option, 62–22
Flag test in address access mapping tables,
57–10
implicitsaslexternal channel option, 46–170
logging of and log_auth MTA option, 52–272
mail LDAP attribute, FROM_ACCESS
mapping probe, 57–15
mailAllowedServiceAccess effect, 62–63
mailUserStatus effect, 62–63
MSHTTP support for, 46–170
Requiring for mailing list postings, 52–140

Index–168 Messaging Server Reference

SASL error recorded in log_message_id field,
52–291
SASL library code used, 48–5, 52–109
SASL_ACCESS mapping table, 62–54
SMTP/LMTP client use, 46–162, 62–22
smtpauthpassword alarm option, 20–2
smtpauthpassword MSHTTP option, 42–12
smtpauthuser alarm option, 20–2
smtpauthuser MSHTTP option, 42–13
Success simulated via deliveryflags channnel
option, 46–119, 46–135

Banner
BANNER_ADDITION TCP/IP-channel-
specific option, 62–23
BANNER_PURGE_DELAY TCP/IP-channel-
specific option, 62–24
CUSTOM_VERSION_STRING TCP/IP-
channel-specific option, 62–26
fire away, 46–129
Host name, 46–89
Host name, BANNER_HOST TCP/IP-
channel-specific option, 62–23
Host name, BANNER_REVERSE_HOST TCP/
IP-channel-specific option, 62–23
Logging and LOG_BANNER TCP/IP-
channel-specific option, 62–30
MurkWorks, 46–129
STATUS_MAIL_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40

BDAT, 46–130
BURL interlaces with, 62–12

BURL, 62–12
imap_password MTA option, 52–73
imap_username MTA option, 52–73

Commands
ATRN, See SMTP, ATRN, 46–145
AUTH, See SMTP, AUTH, 48–5
BDAT, See SMTP, BDAT, 46–130
Beginning of SMTP session,
INITIAL_COMMAND TCP/IP-channel-
specific option, 62–30
BURL, See SMTP, BURL, 62–12
Channel options, 46–127
DATA, See SMTP, DATA, 62–26
Disabling probe commands, 70–1
EHLO, See SMTP, EHLO/HELO, 46–129
ETRN, See SMTP, ETRN, 46–128
EXPN, See SMTP, EXPN, 48–35
HELO, See SMTP, EHLO/HELO, 46–129
Logging bad commands, MAX_B_ENTRIES
TCP/IP-channel-specific option, 62–32
MAIL FROM, See SMTP, MAIL FROM,
52–173

RCPT TO, See SMTP, RCPT TO, 52–173
RSET, See SMTP, RSET, 62–40
SAML FROM, See SMTP, SAML FROM,
62–28
SAML, See SMTP, SAML, 52–168
SEND FROM, See SMTP, SEND FROM, 62–28
SOML FROM, See SMTP, SOML FROM,
62–28
STARTTLS, See SMTP, STARTTLS, 62–55
Timeouts, BANNER_RECEIVE_TIME TCP/
IP-channel-specific option, 62–23
Timeouts, COMMAND_RECEIVE_TIME
TCP/IP-channel-specific option, 62–25
Timeouts, COMMAND_TRANSMIT_TIME
TCP/IP-channel-specific option, 62–25
Timeouts, STATUS_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40
Timeouts, STATUS_TRANSMIT_TIME TCP/
IP-channel-specific option, 62–41
Timeouts, TLS_NEGOTIATION_TIME TCP/
IP-channel-specific option, 62–41
TURN, See SMTP, TURN, 46–145
VRFY, See SMTP, VRFY, 62–29
XADR, See SMTP, XADR, 62–26
XCIR, See SMTP, XCIR, 62–27
XCLIENT, See SMTP, XCLIENT, 46–84,
46–145, 46–172
XGEN, See SMTP, XGEN, 62–28
XPEHLO, See SMTP, XPEHLO, 52–232
XSTA, See SMTP, XSTA, 62–28
XUNAUTHENTICATE, See SMTP,
XUNAUTHENTICATE, 46–92, 46–175

Connection
Access control, 57–17
PORT_ACCESS mapping table, 57–3

DATA
BURL replaces, 62–12
DOT_TRANSMIT_TIME TCP/IP-channel-
specific option, 62–29
STATUS_DATA_RECEIVE_TIME TCP/IP-
channel-specific option, 62–39
STATUS_DATA_RECV_
PER_ADDR_PER_BLK_TIME TCP/IP-
channel-specific option, 62–40
STATUS_DATA_RECV_PER_ADDR_TIME
TCP/IP-channel-specific option, 62–39
STATUS_DATA_RECV_PER_BLOCK_TIME
TCP/IP-channel-specific option, 62–39
Timeout with DATA_RECEIVE_TIME TCP/
IP-channel-specific option, 62–26
Timeout with DATA_TRANSMIT_TIME TCP/
IP-channel-specific option, 62–26

Debugging

Index–169

$U flag in address *_ACCESS mapping table,
57–10
$U flag in PORT_ACCESS mapping table,
57–4
debug_flush MTA option, 52–78, 52–182
mm_debug MTA option, 52–78
slave_debug channel option, 46–94

Delays in responses
Force via address access mapping tables,
57–10

Delays on incoming SMTP sessions
DELAY TCP/IP-channel-specific options,
62–38

DELIVERBY
deliverbychannel channel option, 46–136
deliverbymin channel option, 46–136
log_deliver_by MTA option, 52–277

Disabling probe commands, 70–1
Disconnect

ALLOW_SESSION_BLOCKS TCP/IP channel
option, 62–21
ALLOW_TRANSACTION_BLOCKS TCP/IP
channel option, 62–21
BURL_ACCESS forced disconnect, 62–9
Forcing via disconnect* channel options,
46–96, 46–132
Forcing via disconnectransactionlimit channel
option, 46–137

DSN
Flag test in address access mapping tables,
57–10

EHLO/HELO, 5–33, 46–129
$E input flag in AUTH_REWRITE mapping
table, 46–164
-esmtpused switch of test -rewrite, 71–123
BANNER_HOST TCP/IP-channel-specific
option, 62–23
BANNER_REVERSE_HOST TCP/IP-channel-
specific option, 62–23
destinationnosolicit channel option, 46–136
HELLO_RECEIVE_TIME TCP/IP-channel-
specific option, 62–29
Host name, 46–89
MAX_HELO_DOMAIN_LENGTH TCP/IP-
channel-specific option, 62–33
Name claimed by sending system, *_ACCESS
mapping table probes, 57–8
Named claimed by sending system,
Obscuring via forcedreceivedfrom channel
option, 46–76
NO-SOLICITING announcement, 46–136
sourcenosolicit channel option, 46–136

SPF error and error_text_spf_ehlo_fail_4 MTA
option, 52–175
SPF error and error_text_spf_ehlo_fail_5 MTA
option, 52–175
SPF error and
error_text_spf_ehlo_permerror_4 MTA
option, 52–175
SPF error and
error_text_spf_ehlo_permerror_5 MTA
option, 52–175
SPF error and error_text_spf_ehlo_softfail_4
MTA option, 52–175
SPF error and error_text_spf_ehlo_softfail_5
MTA option, 52–176
SPF error and
error_text_spf_ehlo_temperror_4 MTA
option, 52–175
SPF error and
error_text_spf_ehlo_temperror_5 MTA
option, 52–175
STATUS_MAIL_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40
Streaming of, 46–147

Error type
Set via address access mapping tables, 57–10

Errors
(bad authentication limit reached;
disconnecting), 46–170
250 2.5.0 return address invalid/
unroutable but accepted anyway,
error_text_accepted_return_address MTA
option, 52–176
421 4.7.0 Session recipient limit reached;
disconnecting, 46–97, 46–133
421 4.7.0 Session rejection limit reached;
disconnecting, 46–98, 46–134
422 4.7.12 Try changing your password,
52–178
432 4.7.12 Try changing your password,
52–178
450 4.0.0 Cannot find DIRECTORY value in
options, At MAIL FROM in MS 6.0 or MS 6.1,
58–10
450 4.0.0 Cannot find style value in options,
At MAIL FROM in MS 6.0 or MS 6.1, 58–10
450 4.0.0 Error opening archive options file,
At MAIL FROM in MS 6.0 or MS 6.1, 58–10
450 4.0.0 Error reading archive options file, At
MAIL FROM in MS 6.0 or MS 6.1, 58–10
450 4.0.0 Error reading ClamAV options file,
At MAIL FROM in MS 6.0 or MS 6.1, 58–4
450 4.0.0 Error reading ICAP options file, At
MAIL FROM in MS 6.0 or MS 6.1, 58–5

Index–170 Messaging Server Reference

450 4.0.0 Error reading Milter options file, At
MAIL FROM in MS 6.0 or MS 6.1, 58–6
450 4.0.0 Error reading SpamAssassin options
file, At MAIL FROM in MS 6.0 or MS 6.1, 58–8
450 4.0.0 No host specified in ClamAV option
file, At MAIL FROM in MS 6.0 or MS 6.1, 58–5
450 4.0.0 No host specified in SpamAssassin
option file, At MAIL FROM in MS 6.0 or MS
6.1, 58–9
450 4.1.8 invalid/host-not-in-DNS return
address not allowed, 46–142, 46–155
450 4.1.8 invalid/host-not-in-
DNS return address not allowed,
error_text_mailfromdnsverify MTA option,
52–176
450 4.2.1 mailbox temporarily disabled,
52–179
450 4.3.0 Cannot find DIRECTORY value in
options, At MAIL FROM in MS 6.2 or later,
58–10
450 4.3.0 Cannot find style value in options,
At MAIL FROM in MS 6.2 or later, 58–10
450 4.3.0 Error opening archive options file,
At MAIL FROM in MS 6.2 or later, 58–10
450 4.3.0 Error reading archive options file, At
MAIL FROM in MS 6.2 or later, 58–10
450 4.3.0 Error reading ClamAV options file,
At MAIL FROM in MS 6.2 or later, 58–4
450 4.3.0 Error reading ICAP options file, At
MAIL FROM in MS 6.2 or later, 58–5
450 4.3.0 Error reading Milter options file, At
MAIL FROM in MS 6.2 or later, 58–6
450 4.3.0 Error reading SpamAssassin options
file, At MAIL FROM in MS 6.2 or later, 58–8
450 4.3.0 No host specified in ClamAV option
file, At MAIL FROM in MS 6.2 or later, 58–5
450 4.3.0 No host specified in SpamAssassin
option file, At MAIL FROM in MS 6.2 or later,
58–9
450 4.3.0 SASL initialization failed; server
unavailable, 52–177
450 4.3.0 source channel sieve filter access
error, error_text_source_sieve_access MTA
option, 52–176
450 4.3.0 source channel sieve
filter authorization error,
error_text_source_sieve_authorization MTA
option, 52–176
450 4.3.0 source channel sieve filter syntax
error:, error_text_source_sieve_syntax MTA
option, 52–176
450 4.3.1 insufficient free
queue space available,

error_text_insufficient_queue_space MTA
option, 52–176
450 4.5.1 permanent error in SPF verification
of MAIL FROM domain (domain-name),
46–160, 52–260
450 4.5.1 SPF verification of MAIL FROM
domain (domain-name) failed, 46–160
450 4.5.1 SPF verification of MAIL FROM
domain (domain-name) failed (soft), 46–160
450 4.5.1 SPF verification of MAIL FROM
domain (domain-name) failed: spf-
explanation, 46–160
450 4.5.1 temporary error in SPF verification
of MAIL FROM domain (domain-name),
46–160
450 4.5.3 number of transactions exceeds
allowed maximum, 46–137
450 4.5.3 number of transactions
exceeds allowed maximum,
error_text_transaction_limit_exceeded,
52–176
450 4.7.0 Maximum number of commands
exceeded, 46–98, 46–134
450 4.7.0 Maximum session time of <n>
minutes has been exceeded, 62–37
450 4.7.0 Maximum transaction time
of <n> minutes has been exceeded,
TRANSACTION_TIME TCP/IP-channel-
specific option, 62–42
450 4.7.0 Session bad recipient limit reached;
disconnecting, 46–97, 46–134
450 4.7.0 Session recipient limit reached;
disconnecting, Issued prior to MS 6.3, 46–97,
46–133
450 4.7.0 Session rejection limit reached;
disconnecting, Issued prior to MS 6.3, 46–98,
46–134
450 4.7.0 Session transaction limit reached;
disconnecting, 46–137
450 4.7.1 filtering/scanning error, 52–256,
52–270
451 4.0.0 Error '<milter-errstring>' [<milter-
errno>] reading <milter-command> response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read <milter-command>
response length [slot <n> name <spamfilter-
name>], 58–19
451 4.0.0 Unable to read BODY response
length [slot <n> name <spamfilter-name>],
58–19

Index–171

451 4.0.0 Unable to read BODYEOB response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read CONNECT response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read DATA response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read EOH response length
[slot <n> name <spamfilter-name>], 58–19
451 4.0.0 Unable to read HEADER response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read HELO response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read MAIL response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read OPTNEG response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read RCPT response
length [slot <n> name <spamfilter-name>],
58–19
451 4.0.0 Unable to read UNKNOWN
response length [slot <n> name <spamfilter-
name>], 58–19
451 4.2.2 user over quota; cannot receive new
mail, error_text_over_quota MTA option,
52–171
451 4.3.0 SPF verification failed, 46–158
451 4.3.0 SPF verification failed: explanation-
text, 46–158
451 4.4.3 Permanent error in SPF verification
of HELO domain, 46–158, 52–260
451 4.4.3 Permanent error in SPF verification
of MAIL FROM domain, 46–159
451 4.4.3 SPF verification failed, 46–159
451 4.4.3 SPF verification failed (soft), 46–160
451 4.4.3 SPF verification failed: explanation-
text, 46–159
451 4.4.3 Temporary error in SPF verification
of HELO domain, 46–158
451 4.4.3 Temporary error in SPF verification
of MAIL FROM domain, 46–159
451 4.4.5 Error ending envelope - Too many
recipients specified for this message, 46–97,
46–133
451 4.4.5 Error writing message temporaries,
52–177

451 4.4.5 error writing message temporary
file, error_text_temporary_write_error MTA
option, 52–177
451 4.5.2 Verification blocked; too many
operations performed, 62–20
451 4.5.3 No more transactions allowed,
62–22, 62–42
451 4.5.3 too many recipients specified, 46–97,
46–133
451 4.5.3 Too many recipients specified,
62–20, 62–36
451 4.5.3 Too many rejections; try again later,
46–97, 46–133, 62–21
451 4.5.3 Transaction blocked; too many
recipients specified, 62–21, 62–36
451 4.5.3 Verification blocked; too many
operations performed, 62–36
451 4.5.3 Verification blocked; too many
rejections, 62–21
451 4.7.1 filtering/scanning error, 52–256,
52–270
451 4.7.1 filtering/scanning error,
error_text_spamfilter<N>_error MTA options,
52–173
451 4.7.23 SPF verification of
EHLO/HELO domain soft failed,
error_text_spf_ehlo_softfail_4 MTA option,
52–175
451 4.7.23 SPF verification of MAIL
FROM domain soft failed (<domain>),
error_text_spf_softfail_4 MTA option, 52–174
451 4.7.24 temporary error in SPF
verification of EHLO/HELO domain,
error_text_spf_ehlo_temperror_4 MTA
option, 52–175
451 4.7.24 temporary error in SPF verification
of MAIL FROM domain (<domain>),
error_text_spf_temperror_4 MTA option,
52–173
451 5.7.23 SPF verification of EHLO/HELO
domain failed, error_text_spf_ehlo_fail_4
MTA option, 52–175
451 5.7.23 SPF verification of MAIL
FROM domain failed (<domain>),
error_text_spf_fail_4 MTA option, 52–174
451 5.7.24 permanent error in SPF
verification of EHLO/HELO domain,
error_text_spf_ehlo_permerror_4 MTA
option, 52–175
451 5.7.24 permanent error in SPF verification
of MAIL FROM domain (<domain>),
error_text_spf_permerror_4 MTA option,
52–173

Index–172 Messaging Server Reference

452 4.0.0 temporary error returned by alias
expansion, error_text_alias_temp MTA
option, 52–168
452 4.0.0 temporary error returned by alias
expansion: address, 52–132
452 4.2.0 list is currently reserved and locked,
error_text_alias_locked MTA option, 52–168
452 4.2.1 cannot reenqueue while still held,
65–11
452 4.2.1 cannot reenqueue while still held,
error_text_still_held MTA option, 52–173
452 4.2.1 group temporarily disabled,
error_text_inactive_group MTA option,
52–172
452 4.2.1 mailbox temporarily disabled,
error_text_inactive_user MTA option, 52–172
452 4.2.3 too many recipients specified,
error_text_recipient_over MTA option, 52–171
452 4.2.3 too many recipients specified, Issued
prior to MS 6.3, 46–97, 46–133
452 4.2.4 Insufficient space for verification,
Shortage of MTA queue disk space, 46–148
452 4.3.0 filtering/scanning error, 52–256,
52–270
452 4.3.4 message exceeds disk
space available at this time,
error_text_insufficient_disk MTA option,
52–171
452 4.5.0 error opening file/URL referenced by
alias, error_text_alias_fileerror MTA option,
52–168
452 4.5.0 nonexistant file referenced by alias,
error_text_alias_fileexist MTA option, 52–168
452 4.5.1 permanent error in SPF verification
of MAIL FROM domain (domain-name),
52–261
452 4.5.1 Verification blocked; too many
rejections, 46–98, 46–134
452 4.5.2 Verification blocked; too many bad
addresses., Issued prior to MS 6.3, 46–98,
46–135
452 4.5.2 Verification blockedl too many
operations performed, Issued prior to MS 6.3,
62–20
452 4.5.3 No more transactions allowed.,
Issued prior to MS 6.3, 62–22, 62–42
452 4.5.3 Too many recipients specified,
Issued prior to MS 6.3, 62–20
452 4.5.3 Too many recipients specified.,
Issued prior to MS 6.3, 62–36
452 4.5.3 Too many rejections; try again later,
Issued prior to MS 6.3, 46–97, 46–133

452 4.5.3 Too many rejections; try again later.,
Issued prior to MS 6.3, 62–21
452 4.5.3 Transaction blocked; too many
recipients specified., Issued prior to MS 6.3,
62–21, 62–36
452 4.5.3 Verification blocked; too many bad
addresses., Issued prior to MS 6.3, 62–21
452 4.5.3 Verification blocked; too many
operations performed., Issued prior to MS 6.3,
62–36
452 4.5.3 Verification blocked; too many
rejections., Issued prior to MS 6.3, 46–97,
46–133
452 4.7.1 Cannot find DIRECTORY value in
options, At RCPT TO, 58–10
452 4.7.1 Cannot find style value in options,
At RCPT TO, 58–10
452 4.7.1 Error opening archive options file,
At RCPT TO, 58–10
452 4.7.1 Error reading archive options file, At
RCPT TO, 58–10
452 4.7.1 Error reading ClamAV options file,
At RCPT TO, 58–4
452 4.7.1 Error reading ICAP options file, At
RCPT TO, 58–5
452 4.7.1 Error reading Milter options file, At
RCPT TO, 58–6
452 4.7.1 Error reading SpamAssassin options
file, At RCPT TO, 58–8
452 4.7.1 filtering/scanning error, 52–256,
52–270
452 4.7.1 No host specified in ClamAV option
file, At RCPT TO, 58–5
452 4.7.1 No host specified in SpamAssassin
option file, At RCPT TO, 58–9
452 4.7.1 sieve filter access error,
error_text_sieve_access MTA option, 52–171
452 4.7.1 sieve filter syntax error,
error_text_sieve_syntax MTA option, 52–171
452 unknown host or domain,
error_text_temporary_failure MTA option,
52–171
454 4.7.0 Authentication server unavailable,
52–178, 52–178, 62–64
454 4.7.0 Try again later, 52–178
458 4.5.0 Cannot start delivery on channel -
job controller submission failed, 46–127
458 4.7.1 ETRN session limit reached.,
ALLOW_ETRNS_PER_SESSION TCP/IP-
channel-specific option, 62–20
459 4.5.0 Cannot start delivery on channel -
access denied, 46–128, 62–63
459 4.5.0 site-supplied-error-text, 62–63

Index–173

459 4.5.2 Cannot resolve name to SMTP
channel, 46–127, 46–128
5.7.0 invalid originator address used, 46–164
5.7.1, 5–34
500 5.5.2 Permanent error in SPF verification
of HELO domain, 46–158, 52–260
500 5.5.2 Temporary error in SPF verification
of HELO domain, 46–158
500 5.6.7 Message rejected; internationalized
addresses not supported, 46–60, 46–138
500 5.7.0 Unknown AUTH error <sasl-errno>,
52–178
500 5.7.0 Unknown authentication error,
52–178
501 5.1.3 Doubled dot in VRFY, 46–148
501 5.1.3 Leading dot in VRFY, 46–148
501 5.1.3 No parameter found in VRFY,
46–148
501 5.1.3 Open literal/quote in VRFY, 46–148
501 5.1.3 Trailing dot in VRFY, 46–148
501 5.1.3 Unquoted special character "<chr>"
in VRFY, 46–148
501 5.5.0 Argument to EHLO is too long.,
MAX_HELO_DOMAIN_LENGTH TCP/IP-
channel-specific option, 62–34
501 5.5.0 Argument to HELO is too long.,
MAX_HELO_DOMAIN_LENGTH TCP/IP-
channel-specific option, 62–33
501 5.5.0 Argument to LHLO is too long.,
MAX_HELO_DOMAIN_LENGTH TCP/IP-
channel-specific option, 62–34
501 5.5.0 Invalid input, 52–178, 62–64
501 5.5.4 ADDR parameter already given,
46–84, 46–145, 46–173
501 5.5.4 ADDR parameter appears twice,
46–84, 46–145, 46–173
501 5.5.4 By-time exceeded by release time,
46–114, 46–139
501 5.5.4 Cannot decode value of XCLIENT
parameter <param-name>, 46–84, 46–145,
46–173
501 5.5.4 DESTADDR parameter already
given, 46–84, 46–145, 46–173
501 5.5.4 DESTADDR parameter appears
twice, 46–84, 46–145, 46–173
501 5.5.4 DESTPORT parameter already
given, 46–84, 46–145, 46–173
501 5.5.4 DESTPORT parameter appears
twice, 46–84, 46–145, 46–173
501 5.5.4 Future RRVS value is not allowed,
46–41, 46–130
501 5.5.4 HELO parameter already given,
XCLIENT, 46–84, 46–145, 46–173

501 5.5.4 HELO parameter appears twice,
XCLIENT, 46–84, 46–145, 46–173
501 5.5.4 HOLDFOR limit exceeded, 46–114,
46–139
501 5.5.4 HOLDFOR/HOLDUNTIL can only
appear once, 46–114, 46–139
501 5.5.4 HOLDUNTIL in the past not
allowed, 46–114, 46–139
501 5.5.4 HOLDUNTIL limit exceeded,
46–114, 46–139
501 5.5.4 LOGIN parameter already given,
46–84, 46–145, 46–173
501 5.5.4 LOGIN parameter appears twice,
46–84, 46–145, 46–173
501 5.5.4 Mandatory HOLDFOR parameter is
missing, 46–114, 46–139
501 5.5.4 Mandatory MT-PRIORITY
parameter is missing, 46–116, 46–144
501 5.5.4 MT-PRIORITY can only appear
once, 46–116, 46–143
501 5.5.4 MT-PRIORITY value out of range,
46–116, 46–144
501 5.5.4 NAME parameter already given,
46–84, 46–145, 46–173
501 5.5.4 NAME parameter appears twice,
46–84, 46–145, 46–173
501 5.5.4 Negative HOLDFOR is illegal,
46–114, 46–139
501 5.5.4 No value supplied for XCLIENT
parameter <param-name*gt;, 46–84, 46–145,
46–173
501 5.5.4 Parameter name is too long,
XCLIENT, 46–84, 46–145, 46–173
501 5.5.4 Parameter value is too long,
XCLIENT, 46–84, 46–145, 46–173
501 5.5.4 PORT parameter already given,
46–84, 46–145, 46–173
501 5.5.4 PORT parameter appears twice,
46–84, 46–145, 46–173
501 5.5.4 PROTO parameter already given,
46–84, 46–145, 46–173
501 5.5.4 PROTO parameter appears twice,
46–84, 46–145, 46–173
501 5.5.4 RRVS can only appear once, 46–41,
46–130
501 5.5.4 SMTPUTF8 parameter cannot
appear twice, 46–60, 46–138
501 5.5.4 System name parameter is missing,
46–127
501 5.5.4 Unknown XCLIENT parameter
<string>, 46–84, 46–145, 46–173
501 5.7.0 AUTH operation aborted by client,
52–178

Index–174 Messaging Server Reference

501 5.7.0 Cannot decode BASE64, 52–178,
62–64
503 5.5.0 BURL illegal on LMTP port., 62–8
503 5.5.0 Proxy not possible after XCLIENT,
52–232
503 5.5.0 Proxy support is not enabled.,
52–232, 62–35
503 5.5.0 Repeated XCLIENT commands have
been disabled, 46–84, 46–145, 46–172
503 5.5.0 XCLIENT used after XPEHLO,
46–84, 46–145, 46–172
503 5.5.0 XCLIENT used while transaction is
in progress, 46–84, 46–145, 46–172
503 5.5.0 XUNAUTHENTICATE illegal on
LMTP port, 46–92, 46–175
503 5.5.0 XUNAUTHENTICATE used while
transaction is in progress, 46–92, 46–175
503 5.5.0 XUNAUTHENTICATE used while
unauthenticated, 46–92, 46–175
503 5.5.1 BURL has not been enabled., 62–8
503 5.5.1 BURL only allowed on submission
port., 62–8
503 5.5.1 ETRN not allowed on submission
port, 46–127
503 5.7.0 AUTH command already issued,
52–178
503 5.7.1 FUTURERELEASE extension not
available, 46–114, 46–139
503 5.7.1 FUTURERELEASE extension not
available., 62–12, 62–13
503 5.7.1 Mail transaction already in progress,
52–178
503 5.7.1 RRVS extension not available, 46–41,
46–130
504 5.5.4 Unrecognized authentication type,
52–178, 62–64
504 5.7.4 FUTURERELEASE extension not
available, 46–114, 46–139
504 5.7.4 FUTURERELEASE extension not
available., 62–12
504 5.7.4 FUTURERELEASE is a SUBMIT
extension; it cannot be used in SMTP, 46–114,
46–139
504 5.7.4 FUTURERELEASE is a SUBMIT
extension; it cannot be used in SMTP., 62–13
504 5.7.4 MT-PRIORITY extension not
available, 46–116, 46–144
504 5.7.4 SMTPUTF8 extension not available,
46–60, 46–138
521 5.1.10 host/domain does not accept mail,
52–176
523 5.7.10 Encryption needed to use
mechanism, 52–178, 62–64

524 5.7.11 Password expired, has to be reset,
52–178, 62–64
525 5.7.13 Account disabled, 62–63
525 5.7.13 Account disabled, mailUserStatus:
hold, 52–178
525 5.7.13 Account disabled, mailUserStatus:
inactive, 52–178
530 5.7.0 Authentication required prior to
EXPAND, 46–169
530 5.7.0 Authentication required prior to
MAIL/SAML/SEND/SOML, 46–169
530 5.7.0 No AUTH command has been
given., EXPN prior to MS 8.0, 46–169
530 5.7.0 No AUTH command has been
given., MAIL FROM prior to MS 8.0, 46–169
530 5.7.0 No STARTTLS command has been
given., 46–93, 46–172
530 5.7.1 solicitations of this type are not
allowed, error_text_nosolicit MTA option,
52–173
530 5.7.1 you are not allowed to use this list,
error_text_alias_auth MTA option, 52–168
530 unknown host or domain,
error_text_permanent_failure MTA option,
52–171
533 5.7.1 Access denied to specified URL.,
62–9
533 5.7.1 AUTH command is not enabled,
52–178
534 5.7.8 Bad username or password,
Password locked, 52–178
534 5.7.9 Password is too weak, 52–178
535 5.7.8 Authorization failure, 52–178, 62–63
535 5.7.8 Bad username or password, 62–63
535 5.7.8 Bad username or password, Bad
password, 52–178
535 5.7.8 Bad username or password,
Mechanism too weak, 52–178
535 5.7.8 Bad username or password, No such
user, 52–178
535 5.7.8 SMTP proxy authentication check
failed., 52–232, 62–35
538 5.7.11 Encryption needed to use
mechanism, 52–178
550 4.2.1 group temporarily disabled,
error_text_inactive_group MTA option,
52–172
550 4.2.1 mailbox temporarily disabled,
52–179
550 4.2.1 mailbox temporarily disabled,
error_text_inactive_user MTA option, 52–172

Index–175

550 4.2.2 user over quota; cannot receive new
mail, error_text_over_quota MTA option,
52–171
550 4.2.3 too many recipients specified, Issued
prior to MS 6.3, 46–97, 46–133
550 4.5.0 error opening file/URL referenced by
alias, error_text_alias_fileerror MTA option,
52–168
550 4.5.0 nonexistant file referenced by alias,
error_text_alias_fileexist MTA option, 52–168
550 4.5.3 too many recipients specified, 46–97,
46–133
550 4.7.23 SPF verification of
EHLO/HELO domain soft failed,
error_text_spf_ehlo_softfail_5 MTA option,
52–176
550 4.7.23 SPF verification of MAIL
FROM domain soft failed (<domain>),
error_text_spf_softfail_5 MTA option, 52–174
550 4.7.24 temporary error in SPF
verification of EHLO/HELO domain,
error_text_spf_ehlo_temperror_5 MTA
option, 52–175
550 4.7.24 temporary error in SPF verification
of MAIL FROM domain (<domain>),
error_text_spf_temperror_5 MTA option,
52–173
550 5.1.1 String does not match anything,
46–148
550 5.1.1 unknown or illegal alias,
error_text_unknown_alias MTA option,
52–168
550 5.1.1 unknown or illegal user,
error_text_unknown_user MTA option,
52–168
550 5.1.2 Bad destination system, 57–15
550 5.1.2 unknown host or domain,
error_text_unknown_host MTA option,
52–168
550 5.1.6 group no longer on server,
error_text_deleted_group MTA option,
52–172
550 5.1.6 recipient no longer on server,
error_text_deleted_user MTA option, 52–172
550 5.1.7 invalid/unroutable
return address not allowed,
error_text_invalid_return_address MTA
option, 52–176
550 5.1.8 invalid/host-not-in-DNS return
address not allowed, 46–142, 46–155
550 5.1.8 invalid/host-not-in-
DNS return address not allowed,

error_text_mailfromdnsverify MTA option,
52–176
550 5.1.8 invalid/no-such-user return address,
error_text_unknown_return_address MTA
option, 52–176
550 5.2.1 alias disabled; cannot receive new
mail, error_text_disabled_alias MTA option,
52–171
550 5.2.1 group disabled; cannot receive new
mail, error_text_disabled_group MTA option,
52–172
550 5.2.1 user disabled; cannot receive
newmail, error_text_disabled_user MTA
option, 52–171
550 5.2.3 channel limit of <n> kilobytes on
message size exceeded, error_text_block_over
MTA option, 52–169
550 5.2.3 channel limit of <n> lines
on message length exceeded,
error_text_line_over MTA option, 52–169
550 5.2.3 list limit of <n> kilobytes on message
size exceeded, error_text_list_block_over
MTA option, 52–169
550 5.2.3 list limit of <n> lines on message
length exceeded, error_text_list_line_over
MTA option, 52–170
550 5.2.3 user limit of <n> kilobytes
on message size exceeded,
error_text_user_block_over MTA option,
52–170
550 5.2.3 user limit of <n> lines on message
length exceeded, error_text_user_line_over
MTA option, 52–170
550 5.2.4 alias failed to expand to any valid
addresses, error_text_empty_alias MTA
option, 52–173
550 5.3.4 a message <n> lines long exceeds
the line limit of <x> lines computed for this
transaction, error_text_message_too_long,
52–170
550 5.3.4 a message size of <n>
kilobytes exceeds the size limit of <x>
kilobytes computed for this transaction,
error_text_message_too_large MTA option,
52–170
550 5.5.0 permanent error in SPF verification
of MAIL FROM domain (domain-name),
46–160, 52–260
550 5.5.0 SPF verification of MAIL FROM
domain (domain-name) failed, 46–160
550 5.5.0 SPF verification of MAIL FROM
domain (domain-name) failed (soft), 46–160

Index–176 Messaging Server Reference

550 5.5.0 SPF verification of MAIL FROM
domain (domain-name) failed: spf-
explanation, 46–160
550 5.5.0 temporary error in SPF verification
of MAIL FROM domain (domain-name),
46–160
550 5.5.0 XCLIENT command has been
disabled, 46–84, 46–145, 46–173
550 5.5.1 ETRN has been disabled, 46–128
550 5.5.1 ETRN not allowed on submission
port, 46–131
550 5.5.2 Permanent error in SPF verification
of MAIL FROM domain, 46–159
550 5.5.2 Temporary error in SPF verification
of MAIL FROM domain, 46–159
550 5.5.5 do not know how to SEND/SAML,
error_text_send_remote_error MTA option,
52–169
550 5.6.0 lines longer than SMTP allows
encountered; message rejected, 46–146
550 5.6.1 no protocol to SEND/SAML,
error_text_send_remote_error MTA option,
52–168
550 5.7.0 LOGIN XCLIENT option has been
disabled, 46–84, 46–145, 46–173
550 5.7.0 Message priority outside curretly
allowed range, 46–116, 46–144
550 5.7.0 XADR command has been disabled.,
DISABLE_ADDRESS TCP/IP-channel-specific
option, 62–26
550 5.7.0 XCIR command has been disabled.,
DISABLE_CIRCUIT TCP/IP-channel-specific
option, 62–27
550 5.7.0 XGEN command has been disabled.,
DISABLE_GENERAL TCP/IP-channel-
specific option, 62–28
550 5.7.0 XSTA command has been disabled.,
62–28
550 5.7.1 ETRN session limit reached.,
ALLOW_ETRNS_PER_SESSION TCP/IP-
channel-specific option, 62–20
550 5.7.1 Initial access check failure, 57–16
550 5.7.1 Solicitation check failure on
SOLICIT=, 48–20
550 5.7.1 solicitations of this type are not
allowed, error_text_nosolicit MTA option,
52–173
550 5.7.1 SPF verification failed, 46–158,
46–159
550 5.7.1 SPF verification failed (soft), 46–160
550 5.7.1 SPF verification failed: explanation-
text, 46–158, 46–159

550 5.7.1 SRS/MUL address has a bad hash
value, error_text_srs_badhash MTA option,
52–173
550 5.7.1 SRS/MUL address has timed out,
error_text_srs_timeout MTA option, 52–173
550 5.7.1 unknown host or domain, Recipient
*_ACCESS mapping tables, 57–9
550 5.7.1 you are not allowed to use this
address, error_text_access_failure MTA
option, 52–168
550 5.7.1 you are not allowed to use this
address, Recipient *_ACCESS mapping
tables, 57–9
550 5.7.1 you are not allowed to use this list,
error_text_alias_auth MTA option, 52–168
550 5.7.15 account information on file is older
than actual user account, 46–41, 46–130
550 5.7.17 account information on
file is older than actual user account,
error_text_wrong_account, 52–171
550 5.7.18 domain owner has changed, 46–41,
46–130
550 5.7.18 domain owner has changed,
error_text_wrong_domain MTA option,
52–171
550 5.7.2 EXPN command has been disabled,
46–139
550 5.7.2 EXPN command has been disabled,
DISABLE_EXPAND TCP/IP-channel-specific
option, 62–27
550 5.7.2 SEND/SAML/SOML commands
have been disabled., 62–28
550 5.7.23 SPF verification of EHLO/HELO
domain failed, error_text_spf_ehlo_fail_5
MTA option, 52–175
550 5.7.23 SPF verification of MAIL
FROM domain failed (<domain>),
error_text_spf_fail_5 MTA option, 52–174
550 5.7.24 permanent error in SPF
verification of EHLO/HELO domain,
error_text_spf_ehlo_permerror_5 MTA
option, 52–175
550 5.7.24 permanent error in SPF verification
of MAIL FROM domain (<domain>),
error_text_spf_permerror_5 MTA option,
52–173
550 5.7.26 host/domain does not accept mail,
52–176
550 unknown host or domain,
error_text_permanent_failure MTA option,
52–171
552, 552_PERMANENT_ERROR_STRING
TCP/IP-channel-specific option, 62–19

Index–177

553 5.1.0 8bit characters in address
not allowed in this context,
error_text_disallowed_8bit MTA option,
52–172
553 5.1.0 8bit characters in return
address not allowed in this context,
error_text_disallowed_8bit_from MTA
option, 52–172
553 5.1.3 illegal 8bit characters in address,
error_text_illegal_8bit MTA option, 52–171
553 5.1.3 illegal 8bit characters in return
address, error_text_illegal_8bit_from MTA
option, 52–172
553 5.1.3 invalid material in localpart of
address: <address>, 52–63
553 5.1.3 Syntax error in SRS/MUL address,
error_text_srs_syntax MTA option, 52–173
553 5.1.4 duplicate/ambiguous directory
match, error_text_duplicate_addrs MTA
option, 52–172
554 5.6.0 Error writing message - message
is missing required recipient header fields,
52–64
554 5.6.0 Error writing message - message is
missing required recipient header files, 46–46,
46–83
554 5.6.0 lines longer than SMTP
allowed encountered; message rejected,
error_text_smtp_lines_too_long MTA option,
52–177
554 5.6.0 message contains unnegotiated 8bit,
46–60, 46–138
554 5.6.0 message contains unnegotiated
8bit, error_text_unnegotiated_eightbit MTA
option, 52–177
554 5.6.0 message is missing required Date:
header field, 46–131
555 5.5.2 Unrecognized MT-PRIORITY
parameter value, 46–116, 46–144
555 5.5.4 Mandatory HOLDUNTIL parameter
is missing, 46–114, 46–139
555 5.5.4 Mandatory RRVS parameter is
missing, 46–41, 46–130
555 5.5.4 Parameter given to SMTPUTF8,
46–60, 46–138
555 5.5.4 Unrecognized HOLDFOR parameter
value <value>, 46–114, 46–139
555 5.5.4 Unrecognized HOLDUNTIL
parameter value <value>, 46–114, 46–139
555 5.5.4 Unrecognized RRVS parameter
value , 46–41, 46–130
5yz error response at end of DATA due to
Sieve refuse, 5–83

Localization of text, 60–16
Maximum session data limit of <x>K octets
has been exceeded, 62–21
Maximum transaction data limit of <x>K
octets has been exceeded, 62–21
Notification messages generated by remote
clients, 60–2
See also error_text_* MTA options, 52–167
Syntax of, 52–167
Syntax of, ldap_reject_text MTA option,
52–140
Text of, error_text_* MTA options, 52–167
Text of, Recipient access mapping table
rejections, 57–9
Text of, Set via address access mapping
tables, 57–10
US-ASCII character set, 52–167

ETRN
*etrn channel options, 46–127, 62–62
*sendetrn channel options, 46–144
allowetrn channel option, 62–62
ALLOW_ETRNS_PER_SESSION TCP/IP-
channel-specific option, 62–20
Client's host name recorded in
log_message_id field, 52–291
Disabled for SMTP SUBMIT, 46–131
ETRN_ACCESS mapping table, 46–128,
62–62, 62–62
Logging and the log_connection MTA option,
52–275
Logging and the LOG_CONNECTION TCP/
IP-channel-specific option, 62–31
Sending to trigger message transfer from
remote systems, 62–62

EXPN
alias_nonexpandable alias option, 48–16
Default handling for lists, 52–196
DISABLE_EXPAND TCP/IP-channel-specific
option, 62–27
expandable LDAP attribute, 52–149
expandable_default channel option, 52–15
expandable_default MTA option, 52–196
expnallow channel option, 46–139
expndefault channel option, 46–139
expndisable channel option, 46–139
ldap_expandable MTA option, 52–149
Limited by posting access controls, 49–20
mgmanMemberVisibility LDAP attribute,
52–149
NONEXPANDABLE alias file named
parameter, 48–35

Extended error code
Set via address access mapping tables, 57–10

Index–178 Messaging Server Reference

Extensions
ALTRECIP, alternate_recipient_mode MTA
option, 52–61, 52–195
AUTH, A modifier in MTA message
transaction log entries, 68–5
AUTH, Sieve filter access to, 5–32
BDAT, Enabled by binaryserver even in
absence of chunkingserver, 46–129
BINARYMIME, 46–129
BINARYMIME, B modifier in MTA message
transaction log entries, 68–5
BURL, submituser IMAP option, 34–18
CHUNKING, 46–130
CHUNKING, BURL, 62–12
CHUNKING, C modifier in MTA message
transaction log entries, 68–5
DELIVERBY, -by switch of test -rewrite utility,
71–121
DELIVERBY, deliverbychannel channel
option, 46–136
DELIVERBY, deliverbymin channel option,
46–136
DELIVERBY, log_deliver_by MTA option,
52–277
DSN, 46–106, 46–144
DSN, Sieve filter redirect-dsn extension, 5–49
DSN, Sieve filter setnotify and setreturn
extensions, 5–76
EHLO, 46–129
EHLO, E modifier in MTA message
transaction log entries, 68–5
ETRN, Disabled for SMTP SUBMIT, 46–131
ETRN, Sending to trigger message transfer
from remote systems, 62–62
FUTURERELEASE, 62–12
FUTURERELEASE, Compared to Deferred-
delivery: header line, 46–112
FUTURERELEASE, log_futurerelease MTA
option, 52–285
Message Tracking, tracking* channel options,
46–101
MT-PRIORITY, *backoff channel options,
46–110
MT-PRIORITY, -mtpriority switch of calc
utility, 71–13
MT-PRIORITY, Effect on delivery retry
frequency, 46–111
MT-PRIORITY, Effect on MTA processing,
55–2
MT-PRIORITY, Effect on timing of generation
of notification messages, 46–106
MT-PRIORITY, include_mtpriority MTA
option, 52–203

MT-PRIORITY, Job Controller delivery
execution window, 55–16
MT-PRIORITY, Mapping table probes, 52–203
MT-PRIORITY, message_save_copy_flags
MTA option, 52–210
MT-PRIORITY, mtpriorities* channel options,
46–115, 46–143
MT-PRIORITY, mtpriority_policy MTA
option, 52–233
MT-PRIORITY, Overrides size-based priority
adjustment MTA options, 46–125, 52–223,
52–233
MT-PRIORITY, Rewrite rule access to, 47–35
MT-PRIORITY, setmtpriority Sieve action,
5–23
MT-PRIORITY, Sieve filter access to, 5–33
MT-PRIORITY, vnd.oracle.mt-priority Sieve
filter environment item, 5–33
NO-SOLICITING, alias_nosolicit alias option,
48–20
NO-SOLICITING, destinationnosolicit
channel option, 46–136
NO-SOLICITING, error_text_nosolicit MTA
option, 52–173, 52–173
NO-SOLICITING,
ldap_domain_attr_nosolicit MTA option,
52–155
NO-SOLICITING, ldap_nosolicit MTA
option, 52–127
NO-SOLICITING, NOSOLICIT alias file
named parameter, 48–38
NO-SOLICITING, sourcenosolicit channel
option, 46–136
NOTARY, Groups vs. mailing lists, 49–19
NOTARY, log_notary MTA option, 52–291
NOTIFY, mailDomainMsgMaxBlocks effect,
52–154
Operation Type, Sieve filter access to, 5–33
Operation Type, vnd.oracle.operation-type
Sieve filter environment item, 5–33
PIPELINING, Q modifier in MTA message
transaction log entries, 68–5
PIPELINING, streaming channel option,
46–147
RRVS, -rrvs switch of test -rewrite utility,
71–127
RRVS, alias_creation_date alias option, 48–12
RRVS, checkrrvs channel option, 46–41,
46–130
RRVS, CREATION_DATE alias file named
parameter, 48–32
RRVS, ldap_creation_date MTA option,
52–160

Index–179

RRVS, ldap_domain_attr_creation_date MTA
option, 52–160
SIZE, 46–123
SIZE, error_text_block_over MTA option,
52–169
SIZE, include_mtpriority MTA option, 52–204
SIZE, Interaction with MT-PRIORITY, 52–204
SIZE, Mapping table probes, 52–204
SMTPUTF8, -utf8 switch of imsimta test -
expression, 71–95
SMTPUTF8, utf8* channel options, 46–60,
46–138
STARTTLS, CLIENT_CERT_NICKNAME
TCP/IP-channel-specific option, 62–25
STARTTLS, msexchange channel option,
46–55, 46–143, 46–172
STARTTLS, S modifier in MTA message
transaction log entries, 68–5
XADR, $V flag in PORT_ACCESS mapping
table, 57–4
XCIR, $V flag in PORT_ACCESS mapping
table, 57–4
XCLIENT, *xclient* channel options, 46–84,
46–145, 46–172
XGEN, $V flag in PORT_ACCESS mapping
table, 57–4
XLOOP, 46–141
XPEHLO, PROXY_PASSWORD TCP/IP-
channel-specific option, 62–35
XSTA, $V flag in PORT_ACCESS mapping
table, 57–4
XUNAUTHENTICATE, Undoes
saslswitchchannel effect, 46–92, 46–175

Illegally long lines, 46–146
Line length, 46–54
Line terminators, 46–141

Channel options, 46–127
MAIL FROM

*_ACCESS mapping table probes, 57–8
552_PERMANENT_ERROR_STRING TCP/IP-
channel-specific option, 62–19
Access control, 57–17
access_auth MTA option causes AUTH
inclusion in FROM_ACCESS probe, 52–200,
57–16
ALLOW_TRANSACTIONS_PER_SESSION
TCP/IP-channel-specific option, 62–22
AUTH parameter and AUTH_REWRITE
mapping table, 46–163, 46–164
AUTH parameter and sasl*auth channel
options, 46–173
AUTH value in AUTH_ACCESS probe, 62–43

AUTH value in DEQUEUE_ACCESS probe,
62–42
AUTH value override via $A in
AUTH_ACCESS, 62–44, 62–44
AUTH_REWRITE mapping table probe,
46–163
DNS lookups, 46–142, 46–154
ENVID parameter, 46–106, 46–144
ENVID parameter, Logging of, 52–278
FROM_ACCESS mapping table, 57–2, 57–15,
57–17
implicitsaslexternal channel option, 46–170
Limiting transactions accepted, 46–137
mailDomainMsgMaxBlocks effect, 52–154
MAIL_TRANSMIT_TIME TCP/IP-channel-
specific option, 62–32
MT-PRIORITY effect on notification
generation, 46–106
MTRK parameter, 46–101
Null MX check with returnenvelope channel
option, 46–109
Null MX check with return_envelope MTA
option, 52–166, 52–229
ORCPT parameter recorded Original-
recipient: header field, 46–72
redirect Sieve action, 5–48
RET parameter, 46–106, 46–144, 52–220,
52–227
RET=HDRS, 52–220, 52–227
RET=HDRS, Postmaster manual message
bounce, 71–55
Return-path: header field, 46–72
Sieve filter evaluation, 5–83
SOLICIT parameter, 46–136
Spamfilter early verdict, 58–12
SPF error and error_text_spf_fail_4 MTA
option, 52–174
SPF error and error_text_spf_fail_5 MTA
option, 52–174
SPF error and error_text_spf_permerror_4
MTA option, 52–173
SPF error and error_text_spf_permerror_5
MTA option, 52–173
SPF error and error_text_spf_softfail_4 MTA
option, 52–174
SPF error and error_text_spf_softfail_5 MTA
option, 52–174
SPF error and error_text_spf_temperror_4
MTA option, 52–173
SPF error and error_text_spf_temperror_5
MTA option, 52–173
STATUS_MAIL_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40

Index–180 Messaging Server Reference

Streaming of, 46–147
TRANSACTION_LIMIT_RCPT_TO TCP/IP-
channel-specific option, 62–41

msprobe probe of, 19–2
MTPRIORITY

-mtpriority switch of test -rewrite, 71–126
FORWARD mapping table probes, 48–61
Received: header line, 46–116, 46–143

Options
See also TCP/IP channels, Options, 62–18

ORCPT
*notary channel options, 46–106, 46–144
*_ACCESS mapping table probes, 57–8, 57–8
access_orcpt MTA option, 52–200, 57–8
Diagnosing .HELD files, 65–12
Original-recipient: header line, 46–72
Sieve filter access to, 5–19
Value included in DSNs, 46–105, 60–17

Performance
REUSE_TIMED_OUT_TRANSFERS TCP/IP-
channel-specific option, 62–36

Pipelining and streaming
streaming channel option, 46–147

Polling for messages, 62–62
RCPT TO

552_PERMANENT_ERROR_STRING TCP/IP-
channel-specific option, 62–19
Access control, 57–2, 57–17
ALLOW_RECIPIENTS_PER_TRANSACTION
TCP/IP-channel-specific option, 62–20
ALLOW_REJECTIONS_BEFORE_DEFERRAL
TCP/IP-channel-specific option, 62–21
Limiting recipients accepted, 46–96, 46–132
MAIL_ACCESS mapping table, 57–2, 57–7,
57–17
NOTIFY parameter, 46–106, 46–144
NOTIFY parameter, Postmaster manual
message bounce, 71–55
ORCPT parameter, 46–106, 46–144
ORIG_MAIL_ACCESS mapping table, 57–2,
57–7, 57–17
ORIG_SEND_ACCESS mapping table, 57–2,
57–7, 57–17
RCPT_TRANSMIT_TIME TCP/IP-channel-
specific option, 62–36
REJECT_RECIPIENTS_PER_TRANSACTION
TCP/IP-channel-specific option, 62–36
RRVS parameter and alias_creation_date alias
option, 48–12
RRVS parameter and checkrrvs channel
option, 46–41, 46–130
RRVS parameter and ldap_creation_date
MTA option, 52–160

RRVS parameter and
ldap_domain_attr_creation_date MTA option,
52–160
SEND_ACCESS mapping table, 57–2, 57–7,
57–17
Sieve filter evaluation, 5–83
Sieve filter redirect-dsn extension, 5–49
Spamfilter early verdict, 58–12
SPF error and error_text_spf_fail_4 MTA
option, 52–174
SPF error and error_text_spf_fail_5 MTA
option, 52–174
SPF error and error_text_spf_permerror_4
MTA option, 52–173
SPF error and error_text_spf_permerror_5
MTA option, 52–173
SPF error and error_text_spf_softfail_4 MTA
option, 52–174
SPF error and error_text_spf_softfail_5 MTA
option, 52–174
SPF error and error_text_spf_temperror_4
MTA option, 52–173
SPF error and error_text_spf_temperror_5
MTA option, 52–173
STATUS_RCPT_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40
Streaming of, 46–147
TIMEOUT_MULTIPLIER TCP/IP-channel-
specific option, 62–41
TRANSACTION_LIMIT_RCPT_TO TCP/IP-
channel-specific option, 62–41
XAFLG parameter, 46–119, 46–136
XCONVTAG parameter, 46–119, 46–136
XDFLG parameter, 46–119, 46–136

Relay blocking
See SMTP relay blocking, 62–59

RSET
Limiting transactions accepted, 46–137
STATUS_MAIL_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40
Streaming of, 46–147

SAML FROM
*_ACCESS mapping table probes, 57–8
DISABLE_SEND TCP/IP-channel-specific
option, 62–28
error_text_send_remote_error MTA option,
52–168
error_text_send_unknown_error MTA option,
52–169

SEND FROM
*_ACCESS mapping table probes, 57–8
DISABLE_SEND TCP/IP-channel-specific
option, 62–28

Index–181

error_text_send_remote_error MTA option,
52–168
error_text_send_unknown_error MTA option,
52–169

Server
See TCP/IP channels, 62–3

Server log file name
logfilename Dispatcher service option, 54–7

SIZE
-size switch of test -rewrite, 71–128

SOML FROM
*_ACCESS mapping table probes, 57–8
DISABLE_SEND TCP/IP-channel-specific
option, 62–28

SSL without STARTTLS
SSL_CLIENT TCP/IP-channel-specific option,
62–38

STARTTLS
tls channel options, 46–92, 46–171
CLIENT_CERT_NICKNAME TCP/IP-
channel-specific option, 62–25
Flag test in address access mapping tables,
57–10
msexchange channel option, 46–55, 46–143,
46–172
Reattempting connection without TLS after
failure, 62–39
smtptls Alarm options, 20–4
smtptls MSHTTP option, 42–13
TLS_ACCESS mapping table, 62–55

Startup
Dispatcher startup, 71–61

Success responses
220 2.5.0 Go ahead with TLS negotiation,
46–92, 46–171
220 2.5.0 Session unauthenticated, 46–92,
46–175
220 2.5.0 XCLIENT information accepted,
46–84, 46–145, 46–172
235 2.7.0 Authentication successful, 52–178
250 2.0.0 Delivery started, 46–128
250 2.0.0 Delivery started on channel, 46–127
250 2.0.0 message accepted for list expansion
processing, error_text_receipt_it MTA option,
52–172
250 2.3.0 <actual-mtpriority> MT-PRIORITY
value used; original value <requested-
mtpriority>, 46–116, 46–143
250 2.5.0 <expansion-result>, EXPN
command, 46–139
250 2.5.0 Local BBOARD <address>, 46–148
250 2.5.0 Local file <file-spec>, 46–148
250 2.5.0 Local user <address>, 46–148

250 2.5.0 Prior aborted transfer used, 62–37
251 2.5.0 Local alias matched by <address>,
46–148
251 2.5.0 Local forwarding address <address>,
46–148
252 2.5.0 Possible local address <address>,
HIDE_VERIFY TCP/IP-channel-specific
option, 62–29
252 2.5.0 Possible local address <address>,
vrfyhide channel option , 46–148
252 2.5.0 Possible remote address not
checked, 46–148, 62–30
253 2.5.0 Moderated list, 46–148

TURN, 46–145
VRFY

*vrfy channel options, 46–137
552_PERMANENT_ERROR_STRING TCP/IP-
channel-specific option, 62–19
ALLOW_RECIPIENTS_PER_TRANSACTION
TCP/IP-channel-specific option, 62–20
ALLOW_REJECTIONS_BEFORE_DEFERRAL
TCP/IP-channel-specific option, 62–21
HIDE_VERIFY TCP/IP-channel-specific
option, 62–29
REJECT_RECIPIENTS_PER_TRANSACTION
TCP/IP-channel-specific option, 62–36
vrfy* channel options, 46–148

XADR
$V flag in PORT_ACCESS mapping table,
57–4
DISABLE_ADDRESS TCP/IP-channel-specific
option, 62–26

XCIR
$V flag in PORT_ACCESS mapping table,
57–4
DISABLE_CIRCUIT TCP/IP-channel-specific
option, 62–27

XCLIENT
xclient* channel options, 46–84, 46–145,
46–172

XGEN
$V flag in PORT_ACCESS mapping table,
57–4
DISABLE_GENERAL TCP/IP-channel-
specific option, 62–28

XPEHLO
PORT_ACCESS mapping probe, 57–18
PROXY_PASSWORD legacy configuration
TCP/IP-channel-specific option, 62–35
PROXY_PASSWORD TCP/IP-channel-specific
option, 62–35
smtpproxypassword option, 52–232

XSTA

Index–182 Messaging Server Reference

$V flag in PORT_ACCESS mapping table,
57–4
552_PERMANENT_ERROR_STRING TCP/IP-
channel-specific option, 62–19
DISABLE_STATUS TCP/IP-channel-specific
option, 62–28

XUNAUTHENTICATE
Undoes saslswitchchannel effect, 46–92,
46–175

smtp channel option, 46–140
SMTP extensions

8BITMIME
utf8header channel option, 46–60, 46–138
utf8negotiate channel option, 46–60, 46–138
utf8strict channel option, 46–61, 46–139

SMTP over TCP/IP channels
See TCP/IP channels, 62–3

SMTP relay blocking, 62–59
SRS, 62–61

SMTP SUBMIT
BURL extension

MTA options, 52–73
BURL Extension

U modifier in MTA message transaction log
entries, 68–5

Connection
PORT_ACCESS mapping table, 57–3

Date: header, 46–131
ETRN disabled, 46–131
Extensions

BURL, 62–7
BURL, U modifier in MTA message
transaction log entries, 68–5
FUTURERELEASE, futurerelease channel
option, 46–114, 46–139

msprobe probe of, 19–2
Options

See also TCP/IP channels, Options, 62–18
See also SMTP, 62–7
Server, 62–7
Server log file name

logfilename Dispatcher service option, 54–7
Startup

Dispatcher startup, 71–61
Third party submission

AUTH_ACCESS mapping, 62–48, 62–49
smtpauthpassword alarm option, 20–2
smtpauthpassword MSHTTP option, 42–12

Attempt SMTP AUTH, 46–170
smtpauthuser alarm option, 20–2
smtpauthuser MSHTTP option, 42–13

Attempt SMTP AUTH, 46–170
smtphost MSHTTP option, 42–13

smtpport MSHTTP option, 42–13
smtptls Alarm options, 20–4
smtptls MSHTTP option, 42–13
smtp_cr channel option, 46–140
smtp_crlf channel option, 46–140
smtp_crorlf channel option, 46–140
smtp_lf channel option, 46–140
snapshot

Enable scheduling of, 17–6
snapshot Message Store

crontab Scheduler task option, 17–6
update

crontab Scheduler task option, 17–6
snapshot task

Options, 17–6
crontab, 17–6
enable, 17–6

snapshotdirs Message Store option, 26–17
snapshotpath Message Store option, 26–17
snapshotverify

Enable scheduling of, 17–6
snapshotverify task

Options, 17–6
crontab, 17–6
enable, 17–6

sndopr_prefix MTA option, 52–269
sndopr_priority MTA option, 52–270

Effect on log_sndopr MTA option, 52–76, 52–269
held_sndopr MTA option, 52–235, 52–266
MTA configuration reload errors, 71–50

SNMP, 1
SNMP master agent, 73–1
SNMP options, 73–1

cachettl, 73–2
contextname, 73–2
directoryscan, 73–2
enable, 73–1
enablecontextname, 73–3
listenaddr, 73–1
port, 73–1
registerindices, 73–3
servertimeout, 73–3
standalone, 73–3

SNMP subagent, 73–1
snmpd, 73–1

standalone SNMP option, 73–3
Socket Secure

See SOCKS, 46–156
SOCKS

Milter
Support removed in Messaging Server 8.0,
58–8, 58–15

sockshost channel option, 46–157

Index–183

sockspassword channel option, 46–157
socksport channel option, 46–157
socksusername channel option, 46–157
socksuserpassword channel option, 46–156

sockshost channel option, 46–157
socksnoauth channel option, 46–156
sockspassword channel option, 46–157
socksport channel option, 46–157
socksusername channel option, 46–157
socksuserpassword channel option, 46–156
softtokendir base option, 16–14
Solaris system parameters, 69–4

datasize, 69–4
rlim_fd_max, 69–4, 69–5
siffp_fd_max, 69–4

solrconnectpoints message store option, 26–6
source Message Store elasticsearch option, 32–7
sourceblocklimit channel option, 46–123

acceptalladdresses channel option, 46–34
sourcecommentinc channel option, 46–73
sourcecommentmap channel option, 46–73

use_comment_strings MTA option, 52–211
sourcecommentomit channel option, 46–73
sourcecommentstrip channel option, 46–73
sourcecommenttotal channel option, 46–73
sourceconversiontag channel option, 46–62
sourcedkimidentityN channel option, 46–64
sourcedkimselectorN channel option, 46–64
sourcefilter channel option, 46–119

error_text_source_sieve_access MTA option,
52–176
error_text_source_sieve_authorization MTA
option, 52–176
error_text_source_sieve_syntax MTA option,
52–176
Message capture example, 5–41
Performance impact, 69–3
Sieve hierarchy, 5–81

sourcenosolicit channel option, 46–136
sourcepersonalinc channel option, 46–47, 46–85
sourcepersonalmap channel option, 46–47, 46–85

use_personal_names MTA option, 52–214
sourcepersonalomit channel option, 46–47, 46–85
sourcepersonalstrip channel option, 46–47, 46–85
sourceroute channel option, 46–40
sourcespamfilter* channel options, 46–126
sourcesrs channel option, 46–36
sourceurl MSHTTP option, 42–13
source_channel Message Store archive option,
26–19
Spam (Unsolicited Bulk E-mail), G–10
spam MSHTTP feedback option, 42–16
Spam/virus filter package integration, 58–1, 58–21

access_errors MTA option, 52–167
Address format

spamfilter*_final, 52–256
Address reversal, 48–52
aliasoptindetourhost channel option

aliasdetourhost_null_optin MTA option,
52–97

Archive
Library image location, 52–252

Archiving
See Archive package integration, 58–10

Brightmail
Default verdict, 52–255
Library image location, 52–251
spamfilterN_config_file options, 58–3
spamfilterN_config_file options, Case
insensitivity of option names, 58–3
spamfilterN_config_file options, Case
sensitivity of values, 58–3

Channel options, 46–126
ClamAV

Configuration file location, 58–4
DEBUG ClamAV option, 58–5
FIELD ClamAV option, 58–5
HOST ClamAV option, 58–5
MESSAGE_BUFFER_SIZE ClamAV option,
58–5
MODE ClamAV option, 58–5
PORT ClamAV option, 58–5
SOCKS_HOST ClamAV option, 58–5
SOCKS_PASSWORD ClamAV option, 58–5
SOCKS_PORT ClamAV option, 58–5
SOCKS_USERNAME ClamAV option, 58–5
spamfilterN_config_file options, 58–4
TIMEOUT ClamAV option, 58–5
USE_INSTREAM ClamAV option, 58–5
VERDICT ClamAV option, 58–5

Comparison of approaches, 58–2
Configuration file format, 52–10
Configuration file location

spamfilter*_config_file, 52–252
Debugging

mm_debug MTA option, 52–79
Early verdicts, 58–12
Errors

access_errors MTA option, 52–167
Headers passed to package

spamfilter*_includeheaders, 52–256
spamfilter*_received, 52–257
spamfilter*_returnpath, 52–258

ICAP
Configuration file location, 58–5
Configuration options, 58–5

Index–184 Messaging Server Reference

DEBUG ICAP option, 58–5
Debugging, 58–5
FIELD ICAP option, 58–5
HOST ICAP option, 58–5
Library image location, 52–252
MODE ICAP option, 58–5
PORT ICAP option, 58–5
SOCKS_HOST ICAP option, 58–5
SOCKS_PORT ICAP option, 58–5
SOCKS_USERNAME ICAP option, 58–5
spamfilterN_config_file options, 58–5
TIMEOUT ICAP option, 58–5
VERDICT ICAP option, 58–5

IP reputation checks, 58–12
Library location

spamfilter*_library, 52–251
Milter, 58–12

.HELD files, 58–6
Actions supported, 58–13
Capabilities supported, 58–12
Configuration file location, 58–6
Configuration options, 58–6
CONNECT_TIMEOUT Milter option, 58–6
CONTEXT_EDITS, 58–6
DEBUG Milter option, 58–6
Debugging, 58–6
DEFER_MESSAGE_TRANSFER, 58–6
HOST Milter option, 58–6
IGNORE_BAD_CERT Milter option, 58–6
IMMEDIATE_HEADER_MODIFICATIONS,
58–6
Library image location, 52–252
Macros supported, 58–13
Macros supported, SMFIF_SETSYMLIST
milter action, 58–13
MAX_PREPEND_INDEX Milter option, 58–6
MILTER_ACTIONS mapping table, 58–16
MILTER_MACROS mapping table, 58–17
NO_DATA_IN_BODYEOB Milter option,
58–6
OpenDKIM, MAX_PREPEND_INDEX milter
spamfilter option, 58–14
OpenDKIM, Sieve counters, 5–59, 5–59
Per-recipient modification actions, 58–18
PER_RECIPIENT_ACTIONS, 58–6
PER_RECIPIENT_ACTIONS Milter option,
58–19
PORT Milter option, 58–6
PRESERVE_BREAKS Milter option, 58–6
QUARANTINE_ACTION Milter option, 58–6
QUARANTINE_ACTION Milter option,
Diagnosing .HELD files, 65–12

REPROCESS_CONNECT_TIMEOUT Milter
option, 58–6
REPROCESS_TIMEOUT Milter option, 58–6
RESETDEBUG Milter option, 58–6
Session reuse, 58–14
SESSION_INACTIVITY_TIMEOUT Milter
option, 58–6, 58–15
SESSION_TIME Milter option, 58–15
SESSION_TIMEOUT Milter option, 58–6
Single recipient extension, 58–17
SMFIC_CONNECT, Early verdict, 58–12
SMFIF_SPECRCPT, 58–18
Socks connections, Options removed in
Messaging Server 8.0, 58–15
SOCKS_HOST Milter option, Support
removed in Messaging Server 8.0, 58–8, 58–15
SOCKS_PASSWORD Milter option, Support
removed in Messaging Server 8.0, 58–8, 58–15
SOCKS_PORT Milter option, Support
removed in Messaging Server 8.0, 58–8, 58–15
SOCKS_USERNAME Milter option, Support
removed in Messaging Server 8.0, 58–8, 58–15
spamfilterN_config_file options, 58–6
spamfilterN_string_action MTA option,
52–258, 58–15
TCP_NODELAY Milter option, 58–6
TIMEOUT Milter option, 58–6
TRANSACTIONS_PER_SESSION Milter
option, 58–6, 58–15
USE_JETTISON Milter option, 58–6
USE_QUIT_NC Milter option, 58–6, 58–15
USE_SSL Milter option, 58–6

MILTER_ACTIONS mapping table, 58–16
MILTER_MACROS mapping table, 58–17
MTA options, 52–250

access_errors, 52–166, 52–167
discard_disables_capture, 52–241
error_text_spamfilter*_error, 52–173
ldap_domain_attr_optin* MTA option, 52–155
ldap_optin*, 52–129
ldap_optout*, 52–130
ldap_source_optin*, 52–126
optin_user_carryover, 52–105, 52–251
reject_disables_capture, 52–241
scan_channel, 52–180
scan_originator, 52–180
scan_recipient, 52–180
See also External filtering context MTA
options, 52–180
spamfilter*_action_*, 52–253
spamfilter*_config_file, 52–252
spamfilter*_final, 52–256
spamfilter*_includeheaders, 52–256

Index–185

spamfilter*_library, 52–251
spamfilter*_null_action, 52–256
spamfilter*_null_optin, 52–253
spamfilter*_received, 52–257
spamfilter*_returnpath, 52–258
spamfilter*_string_action, 52–258
spamfilter*_verdict_*, 52–253

Opt-in
-soptin switch of test -rewrite utility, 71–128
alias_optin* alias options, 48–20
destinationspamfilterNoptin channel option,
46–126
ldap_domain_attr_optinN MTA option,
52–155
ldap_optin*, 52–129
ldap_source_optin*, 52–126
OPTIN* alias file named parameter, 48–38
optin_user_carryover MTA option, 52–105,
52–251
sourcespamfilterNoptin channel option,
46–126
spamfilter*_null_optin, 52–253

Opt-out
alias_optout* alias options, 48–20
ldap_optout*, 52–130

Parallelization of processing and serialization of
results, 58–1
Performance impact, 69–3
Sieve filters, 5–50, 58–1
Sieve hierarchy, 5–81
SMTP routing

aliasdetourhost channel option, 46–37, 46–68
Alternate conversion channel, 51–5

spamadjust via $, *_ACCESS flag, 5–50
SpamAssassin

Configuration file location, 58–8
Configuration options, 58–9
CONNECT_TIMEOUT SpamAssassin option,
58–9
DEBUG SpamAssassin option, 58–9
Debugging, 58–9
Example settings for MTA options, 5–50
FIELD SpamAssassin option, 58–9
HOST SpamAssassin option, 58–9
Library image location, 52–252
MAIL FROM, 52–258
MESSAGE_BUFFER_SIZE SpamAssassin
option, 58–9
MODE SpamAssassin option, 58–9
PORT SpamAssassin option, 58–9
Received: header line, spamfilterN_received
MTA option, 52–257
SOCKS_HOST SpamAssassin option, 58–9

SOCKS_PASSWORD SpamAssassin option,
58–9
SOCKS_PORT SpamAssassin option, 58–9
SOCKS_USERNAME SpamAssassin option,
58–9
spamfilterN_config_file options, 58–8
spamfilterN_received MTA option, 52–257
TIMEOUT SpamAssassin option, 58–9
USERNAME SpamAssassin option, 58–9
USERNAME_MAPPING SpamAssassin
option, 58–9
USE_CHECK SpamAssassin option, 58–9
VERDICT SpamAssassin option, 58–9

Timeouts
ClamAV, TIMEOUT ClamAV config file
option, 58–5

Timing of activation of spam/virus filter package
sourcespamfilter* vs. destinationspamfilter*
channel options, 46–127

Spam/virus filtering
"blow back" spam, 60–24
"blow-back" spam

acceptvalidaddresses channel option, 46–35
"joe-job" spam, 60–24

acceptalladdresses channel option, 46–35
acceptvalidaddresses channel option, 46–35
Notification channel, 60–23
notificationchannel channel option, 46–105

$D flag in PORT_ACCESS mapping table, 57–4
BANNER_PURGE_DELAY TCP/IP-channel-
specific option, 62–24
imexpire utility

Removing messages post-delivery, 58–21
Message return policy

Sieve filter setnotify and setreturn extensions,
5–76

MSHTTP feedback options, 42–16
spam, 42–16, 42–16

qclean utility, 71–43
qtop utility, 71–46
Removal from the Message Store post-delivery,
58–21
See also Spam/virus filter package integration,
58–1
Sieve filter spamtest and virustest extensions,
5–50
Sieve spamtest and virustext extensions, 5–50
Spam level

Set via address access mapping tables, 57–10
SpamAssassin

See Spam/virus filter package integration,
SpamAssassin, 58–8

spamfilter2_string_action MTA option

Index–186 Messaging Server Reference

Example, 58–10
spamfilterN_action_M MTA options, 52–253

Diagnosing .HELD files, 65–12
spamfilterN_config_file MTA option

Brightmail, 58–3
ClamAV, 58–4
ICAP, 58–5
Milter, 58–6
SpamAssassin, 58–8

spamfilterN_config_file MTA options, 52–252
spamfilterN_final MTA options, 52–256
spamfilterN_includeheaders MTA option, 52–256
spamfilterN_library MTA options, 52–251

libarch.so, 52–252
libbmiclient.so, 52–251
libicap.so, 52–252
libmilter.so, 52–252
libmilters.so, 58–19
libspamass.so, 52–252

spamfilterN_name MTA options, 52–253
spamfilterN_null_action MTA options, 52–256

Compared to spamfilterN_verdict/
spamfilterN_action pairs, 52–255

spamfilterN_null_optin MTA options, 52–253
spamfilterN_optional MTA options, 52–256, 52–270

Defer spam/virus callout through reprocess
channel, 65–20

spamfilterN_received MTA options, 52–257
spamfilterN_returnpath MTA options, 52–258
spamfilterN_string_action MTA option

Diagnosing .HELD files, 65–12
spamfilterN_string_action MTA options, 52–258

Compared to spamfilterN_verdict/
spamfilterN_action pairs, 52–255

spamfilterN_verdict_M MTA options, 52–253
spare* channel options, 46–48
spare_*_separator MTA options, 52–107
Special symbolic names, 3–1
SPF lookups

Debugging
mm_debug MTA option, 52–79

Fail
error_text_spf_ehlo_fail_4 MTA option,
52–175
error_text_spf_ehlo_fail_5 MTA option,
52–175
error_text_spf_fail_4 MTA option, 52–174
error_text_spf_fail_5 MTA option, 52–174
error_text_spf_softfail_5 MTA option, 52–174

Fail (soft)
error_text_spf_ehlo_softfail_4 MTA option,
52–175

error_text_spf_ehlo_softfail_5 MTA option,
52–176
error_text_spf_softfail_4 MTA option, 52–174

Forwarded messages, 52–263
MTA options, 52–259
Permanent DNS error

error_text_spf_ehlo_permerror_4 MTA
option, 52–175
error_text_spf_ehlo_permerror_5 MTA
option, 52–175
error_text_spf_permerror_4 MTA option,
52–173
error_text_spf_permerror_5 MTA option,
52–173

spf* channel options, 46–158
SPF_LOCAL mapping table avoids actual DNS
lookups, 46–160
Temporary DNS error

error_text_spf_ehlo_temperror_4 MTA
option, 52–175
error_text_spf_ehlo_temperror_5 MTA
option, 52–175
error_text_spf_temperror_4 MTA option,
52–173
error_text_spf_temperror_5 MTA option,
52–173

spfhelo channel option, 46–158
spfmailfrom channel option, 46–158
spfnone channel option, 46–158
spfrcptto channel option, 46–158
spf_max_dns_queries MTA option, 52–263
spf_max_recursion MTA option, 52–263
spf_max_time MTA option, 52–263
spf_smtp_status_fail MTA option, 52–259

spf* channel options, 46–159
spf_smtp_status_fail_all MTA option, 52–259

spf* channel options, 46–159
spf_smtp_status_permerror MTA option, 52–260

spf* channel options, 46–158
spfmailfrom channel option, 46–159

spf_smtp_status_softfail MTA option, 52–261
spf* channel options, 46–160

spf_smtp_status_softfail_all MTA option, 52–261
spf_smtp_status_temperror MTA option, 52–261

spf* channel options, 46–158
spfmailfrom channel option, 46–159

spoofemptymailbox POP Proxy option, 41–21
spoofmessagefile POP Proxy option, 41–21
spooftempfail POP Proxy option, 41–21
spooldir MSHTTP option, 42–13
SRS (Sender Rewriting Schema)

Syntax errors
error_text_srs_syntax MTA option, 52–173

Index–187

SRS (Sender Rewriting Scheme)
*headerdecodesrs channel options, 46–45, 46–77
srs channel options, 46–36
Address decoding

Debugging of, mm_debug MTA option, 52–79
Bad hash

error_text_srs_badhash MTA option, 52–173
MTA options, 52–263, 52–265

token_char, 52–65, 52–265
Relay blocking, 62–61
Testing via test -rewrite, 71–119
Time out

error_text_srs_timeout MTA option, 52–173
Used to work around SPF-caused problems in
autoforwarding, 46–160

srs_domain MTA option, 52–265
srs_hash_algorithm MTA option, 52–265
srs_maxage MTA option, 52–265

error_text_srs_timeout MTA option, 52–173
srs_secrets MTA option, 52–265
SSL

checkoverssl S/MIME option, 43–5
LDAP

ugldapport, 16–22
ugldapusessl, 16–23

PAB
ldapusessl PAB option, 72–2

proxyimapssl base option, 16–13
sslcachesize IMAP option, 34–18
sslcachesize MSHTTP option, 42–14
sslcachesize POP option, 35–7
sslsourceurl MSHTTP option, 42–14
uwcsslport MSHTTP option, 42–16

SSL (Security Sockets Layer), G–10
SSL/TLS

$T input flag in AUTH_REWRITE mapping
table, 46–164
capability_starttls Deploymap option, 23–1
capability_starttls IMAP option, 34–10
Certificate

sslnicknames base option, 16–19
sslnicknames MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–28

Channel options, 46–92, 46–171
Cipher suites

ssladjustciphersuites base option, 16–14,
41–22
tlsv12enable base option, 16–21
tlsv13enable base option, 16–21

Client certificates
storeadmin mmp/imapproxy/popproxy/
vdomain option, 41–28

storeadminpass mmp/imapproxy/popproxy/
vdomain option, 41–28

Compression option
sslcompress base option, 16–19

Debugging
tls keyword in debugkeys option, 41–12

Deployment Map
sslusessl Deployment Map option, 23–2

Directory storing certificate and key files
ssldbpath option, 16–19

enablesslport ENS option, 74–1
ENS

sslport ENS option, 74–2
ensusessl notifytarget ms-internal option, 37–3
ensusessl notifytarget remote server option, 37–3
HTTP

plaintextmincipher MSHTTP option, 42–11
IMAP

enablesslport IMAP option, 34–14
plaintextmincipher POP option, 34–17
sslport IMAP option, 34–18
sslusessl IMAP option, 34–18

Indexer
sslusessl Indexer option, 32–10

LDAP
ldaprequiretls, 16–11
ldapurl MMP option, 41–16

ldapurl MMP option
ldaps: URL pointing to subtree of DIT, 41–16

MeterMaid
sslusessl MeterMaid option, 59–5

MeterMaid client
sslusessl MeterMaid client option, 59–6

MeterMaid remote server
sslusessl MeterMaid remote server option,
59–7

MSHTTP
enablesslport MSHTTP option, 42–3
sslport MSHTTP option, 42–14
sslport MSHTTP sieve option, 42–26
sslusessl MSHTTP option, 42–14

MTA options, 46–161, 52–231
plaintextmincipher, 52–231

notifytarget ms-internal server
ensusessl notifytarget ms-internal option,
37–3

notifytarget remote server
ensusessl notifytarget remote server option,
37–3

PKIX verifiation of client certificates
sslpkix base option, 16–20

plaintextmincipher IMAP option, 34–17

Index–188 Messaging Server Reference

plaintextmincipher IMAP Proxy/POP Proxy
option, 41–18
plaintextmincipher MSHTTP option, 42–11
plaintextmincipher MTA option, 52–231
plaintextmincipher POP option, 35–6
POP

enablesslport POP option, 35–5
plaintextmincipher POP option, 35–6
sslport POP option, 35–7
sslusessl POP option, 35–7

Renegotiation
sslrenegotiate base option, 16–20
sslrequiresafenegotiate base option, 16–20

restrictplainpasswords mmp/imapproxy/
popproxy/vdomain option, 41–20
Session cache directory

sslcachedir option, 16–18, 41–27
SMTP

plaintextmincipher MTA option, 52–231
smtptls Alarm options, 20–4
smtptls MSHTTP option, 42–13
sslbacksideport IMAP Proxy and POP Proxy
option, 41–26
sslcertprefix option

DEPRECATED: see ssldbprefix instead, 41–27
ssldblegacy base option, 16–19
ssldbprefix base option, 16–19
sslenable option, 41–27
sslnicknames ENS option, 74–2
sslnicknames MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–28
sslnicknames POP option, 35–7
sslport ENS option, 74–2
sslport IMAP option, 34–18
sslport MSHTTP option, 42–14
sslport MSHTTP sieve option, 42–26
sslport POP option, 35–7
sslrenegotiate base option, 16–20
sslrequiresafenegotiate base option, 16–20
sslrootcacertsurl S/MIME option, 43–2
sslusessl Deployment Map option, 23–2
sslusessl Indexer option, 32–10
sslusessl ISC option, 32–11
sslusessl MeterMaid client option, 59–6
sslusessl MeterMaid option, 59–5
sslusessl MeterMaid remote server option, 59–7
sslusessl option, 42–14
SSL_CLIENT TCP/IP-channel-specific option,
62–38
ssl_ports Dispatcher option, 54–11
ssl_ports tcp_listen option, 41–29
STARTTLS_FAILURE_RECONNECT_DELAY
TCP/IP-channel-specific option, 62–39

tlsmaxversion channel option, 46–175
tlsminversion base option, 16–21
tlsv12enable base option, 16–21
tlsv13enable base option, 16–21
TLS_ACCESS mapping table, 62–55
tokenpass sectoken option, 22–1

ssladjustciphersuites base option, 16–14, 41–22
ssladjustciphersuites MMP/IMAP Proxy/POP
Proxy/vdomain option, 16–14, 41–22
sslbacksideport IMAP Proxy and POP Proxy
option, 41–26
sslcachedir option, 16–18, 41–27
sslcachesize IMAP option, 34–18
sslcachesize MeterMaid option, 59–5
sslcachesize MSHTTP option, 42–14
sslcachesize POP option, 35–7
sslcertprefix MMP/IMAP Proxy/POP Proxy option

DEPRECATED: see ssldbprefix instead, 41–27
sslcompress base option, 16–19
ssldblegacy base option, 16–19
ssldbpath base option, 16–19
ssldbpath option

Precedence over sslcachedir option, 16–19, 41–27
ssldbprefix base option, 16–19
sslenable option, 41–27
sslkeypasswdfile MMP/IMAP Proxy/POP Proxy
option

DELETED, 41–27
sslnicknames base option, 16–19
sslnicknames ENS option, 74–2
sslnicknames IMAP option, 34–18
sslnicknames MSHTTP option, 42–14
sslnicknames MTA option, 52–232
sslnicknames POP option, 35–7
sslpkix base option, 16–20
sslport ENS option, 74–2
sslport IMAP option, 34–18
sslport MSHTTP option, 42–14
sslport MSHTTP sieve option, 42–26
sslport POP option, 35–7
sslrenegotiate base option, 16–20
sslrequiresafenegotiate base option, 16–20
sslrootcacertsurl smime option, 43–2
sslsecmodfile MMP option

DELETED, 41–28
sslsourceurl MSHTTP option, 42–14
sslusessl elasticsearch option, 32–7
sslusessl IMAP option, 34–18
sslusessl ISC option, 32–11
sslusessl MSHTTP option, 42–14
sslusessl POP option, 35–7
ssl_ports Dispatcher service option, 54–11
ssl_ports option

Index–189

Compared to maytls* channel options, 46–93,
46–172

ssl_ports tcp_listen option, 41–29
SSO options, 44–1

verifyurl, 44–1
sso_enable MSHTTP option, 42–14
sso_id MSHTTP option, 42–14
sso_prefix MSHTTP option, 42–15
ssrd: URLs

MTA URL types, 1–4
stacksize Dispatcher service option, 54–11
standalone SNMP option, 73–3
Standards

Accept-language: header line
See RFC 2068 (HTTP), 60–9

draft-degener-sieve-editheader-00
replaceheader Sieve action, 5–30

draft-delany-nullmx-01.txt, 46–109, 52–166,
52–229
draft-ietf-appsawg-email-auth-codes-07, 46–159
draft-melnikov-altrecip-on-error-01.txt, 52–61,
52–195
ISO 8601 duration format, 1–3
ISO 8601 format, 1–3
ISO 8601 P format, 1–3

alias_deferred* alias options, 48–13
Message tracking

See RFCs 3885-3887, 61–1
Null MX record entry

draft-delany-nullmx-01.txt, 46–109, 52–166,
52–229

RFC 1123 (Requirements for Internet Hosts)
Postmaster mailbox, 60–26

RFC 1137 (Mapping Between Full RFC 822 and
RFC 822 with Restricted Encoding, 46–46
RFC 1154 (Encoding header field for internet
messages)

Encoding: header line, 46–53
RFC 1413 (IDENT), 46–151
RFC 1738 (Uniform Resource Locators (URL)),
48–7

Alias file LDAP URL alias encoding, 48–43
URL character encoding issues, 50–15

RFC 1766 (Tags for the Identification of
Languages)

See RFC 3066 (Tags for the Identification of
Languages), 60–9

RFC 1870 (ESMTP message size extension)
Message size limits, 46–123

RFC 1891-1894 (NOTARY)
content_return_block_limit MTA option,
52–220, 52–227

RFC 1928 (SOCKS V5), 46–156

RFC 1929 (Username/Password Authentication
for SOCKS V5), 46–156
RFC 2068 (Hypertext Transfer Protocol --
HTTP/1.1), 60–9

Accept-Language: definition,
installedlanguages base option, 16–6

RFC 2087 (IMAP4 QUOTA extension), 26–26,
38–3, 64–10
RFC 2156 (MIXER: Mapping between X.400 and
RFC 822/MIME)

Deferred-delivery: header, 46–112
Influence on MTA's Priority Assignment
Policy, 52–233

RFC 2197 (SMTP Service Extension for
Command Pipelining)

streaming channel option, 46–147
RFC 2231 (MIME Parameter Value and Encoded
Word Extensions: Character sets, Languages,
and Continuations), 46–57, 46–61

parameterformat* channel options, 46–57,
46–61
rfc2231compliant MSHTTP option, 42–12

RFC 2254 (The String Representation of LDAP
Search Filters)

String search filter definition, 50–15
RFC 2255 (LDAP URL Format), 48–7

Alias file syntax, 48–43
alias_urlN MTA option syntax, 48–6

RFC 2369, 48–16, 48–35
RFC 2369 (URLs for Mail List Commands
through Message Headers), 52–147
RFC 2595 (Using TLS with IMAP, POP3, and
ACAP)

storeadmin mmp/imapproxy/popproxy/
vdomain option, 41–28
storeadminpass mmp/imapproxy/popproxy/
vdomain option, 41–28

RFC 2645 (On-demand Mail Relay), 46–145
RFC 2798 (Definition of the inetOrgPerson
LDAP Object Class), 52–108

allow_unquoted_addrs_violate_rfc2798 MTA
option, 52–97

RFC 2852 (Deliver By SMTP service extension)
deliverbymin channel option, 46–136

RFC 3028 (Sieve: A Mail Filtering Language)
Obsoleted by RFC 5228, 5–3
See RFC 5228 (Sieve), 5–1

RFC 3030 (SMTP Service Extensions for
Transmission of Large and Binary MIME
Messages), 46–129, 46–146
RFC 3066 (Tags for the Identification of
Languages), 60–9
RFC 3280

Index–190 Messaging Server Reference

sslpkix base option, 16–20
RFC 3339 (Date and Time on the Internet:
Timestamps), 48–12

ISO 8601 format, 1–3
Value of LDAP attribute named by
ldap_group_last_access_time, 52–143

RFC 3461 (NOTARY)
Section 5.2.7.1 mailing lists, Respond
to delivery receipt requests during list
expansion, 52–172

RFC 3461 (SMTP DSN Extension), 46–106,
46–144
RFC 3461-3464 (NOTARY), 60–1
RFC 3598 (Sieve Email Filtering -- Subaddress
Extension), 5–26, 5–51
RFC 3749 (Transport Layer Security Protocol
Compression Methods)

sslcompress base option, 16–19
RFC 3798 (Message Disposition Notification),
60–1
RFC 3834 (Recommendations for Automatic
Responses to Electronic Mail)

Auto-submitted: header line on MDNs, 60–19
Section 2. When (not) to send automatic
responses, Address matching and the
generation of vacation messages, 5–53

RFC 3834 (Recommendations for Automatic
Responses to Electronic MAIL), 5–54
RFC 3865 (A No Soliciting SMTP Service
Extension)

destinationnosolicit and sourcenosolicit
channel options, 46–136
ldap_domain_attr_nosolicit MTA option,
52–155
ldap_nosolicit MTA option, 52–127

RFC 3885 (SMTP Service Extension for Message
Tracking), 61–1

tracking* channel options, 46–101
RFC 3886 (An Extensible Message Format for
Message Tracking Responses), 61–1
RFC 3887 (Message Tracking Query Protocol),
46–101, 61–1
RFC 3894 (Sieve Extension: Copying Without
Side Effects), 5–27
RFC 4314 (IMAP4 Access Control (ACL)
Extension)

capability_acl IMAP option, 34–5
RFC 4314 (IMAP4 Access Control List (ACL)
Extension), 46–49
RFC 4408 (Sender Policy Framework)

MTA options, 52–259
Section 10.1. Processing Limits,
spf_max_dns_queries MTA option, 52–263

Section 10.1. Processing Limits, spf_max_time
MTA option, 52–263

RFC 4467 (IMAP - URLAUTH Extension), 62–7
RFC 4468 (Message Submission BURL
Extension), 62–7
RFC 4511 (LDAP)

Broken client authentication, 21–2
RFC 4790 (Internet Application Protocol
Collation Registry)

Sieve comparators, 5–60
RFC 4865 (SMTP Submission Service Extension
for Future Message Release), 46–114, 46–139
RFC 4954 (SMTP Service Extension for
Authentication), 46–173
RFC 5173 (Sieve Body Extension), 5–26
RFC 5183 (Sieve Email Filtering: Environment
Extension), 5–32
RFC 5228 (Sieve: A Mail Filtering Language),
5–1
RFC 5228 (Sieve: An Email Filtering Language),
5–3
RFC 5229 (Sieve Email Filtering: Variables
Extension), 5–54
RFC 5230 (Sieve Email Filtering: Vacation
Extension, 5–51
RFC 5230 (Sieve Email Filtering: Vacation
Extension)

Section 4.2. Previous Response Tracking, 5–54
Section 4.5. Address Parameter and Limiting
Replies to Personal Messages, 5–53
Section 4.6. Restricting Replies to Automated
Processes and Mailing Lists, 5–53, 5–53, 57–17
Section 4.7. Interaction with Other Sieve
actions, 5–54

RFC 5231 (Sieve Email Filtering: Relational
Extension), 5–22, 5–49
RFC 5232 (Sieve Email Filtering: Imap4flags
Extension), 5–43
RFC 5233 (Sieve: Subaddress Extension)

subaddress* channel options, 46–49
RFC 5235 (Sieve Email Filtering: Spamtest and
Virustest Extensions), 5–50
RFC 5256 (IMAP - SORT and THREAD
Extensions)

capability_sort IMAP option, 34–9
RFC 5258 (IMAPv4 LIST Command Extensions),
34–7
RFC 5260 (Sieve Email Filtering: Date and Index
Extensions), 5–28
RFC 5293 (Sieve Email Filtering: Editheader
Extension), 5–30
RFC 5322 (Internet Message Format)

Index–191

Message header and line containing solely
white space, 46–81

RFC 5424 (The Syslog Protocol), 52–268
RFC 5429 (Sieve Email Filtering: Reject and
Extended Reject Extensions), 5–33, 52–245
RFC 5435 (Sieve Email Filtering: Extension for
Notifications, 5–46
RFC 5436 (Sieve Notification Mechanism:
mailto), 5–46

Auto-submitted: header line on MDNs, 60–19
RFC 5463 (Sieve Email Filtering: Ihave
Extension), 5–43
RFC 5703 (Sieve Email Filtering: MIME Part
Tests, Iteration, Extraction, Replacement, and
Enclosure), 5–44
RFC 5746 (TLS Renegotiation Indication
Extension)

sslrequiresafenegotiate base option, 16–20
RFC 5957 (Display-Based Address Sorting for
the IMAP4 SORT Extension)

capability_sort_display IMAP option, 34–9
RFC 6009 (Sieve Email Filtering: Delivery Status
Notifications and Deliver-By Extensions), 5–49

envelope-dsn Sieve extension, 5–31
RFC 6131 (Sieve Vacation Extension: "Seconds"
Parameter), 5–51
RFC 6134 (Sieve Extension: Externally Stored
Lists), 5–34
RFC 6154 (IMAP LIST Extension for Special-Use
Mailboxes)

capability_create_special_use IMAP option,
34–6
capability_special_use IMAP option, 34–9

RFC 6237 (IMAP4 Multimailbox SEARCH
Extension)

capability_multisearch IMAP option, 34–8
RFC 6409 (Message Submission for Mail), 46–131
RFC 6530 (Overview and Framework for
Internationalized Email), G–4
RFC 6710 (SMTP Extension for Message Transfer
Priorities)

Job Controller priority-based processing, 55–5
mtpriorities* channel options, 46–115, 46–143

RFC 6729 (Indicating Email Handling States in
Trace Fields)

receivedstate channel option, 46–86
RFC 6758 (Tunneling of SMTP Message Transfer
Priorities), 46–76
RFC 7293 (The Require-Recipient-Valid-Since
Header Field and SMTP Service Extension),
46–41, 46–130
RFC 7352 (Sieve Email Filtering: Detecting
Duplicate Deliveries), 5–29

RFC 822 (Internet Text Messages)
Postmaster case insensitive local-part, 60–27

RFC 976 (UUCP Mail Interchange Format
Standard), 46–41
RFC 976 (UUCP), 47–4
Sieve

draft-degener-sieve-editheader-00,
replaceheader Sieve action, 5–30
draft-murchison-sieve-regex-08, 5–76
refuse extension, draft-elvey-refuse-
sieve-01.text, 5–33
RFC 3028, 5–3
RFC 3598 (Sieve Email Filtering -- Subaddress
Extension), 5–51
RFC 3894 (Sieve Extension: Copying Without
Side Effects), 5–27
RFC 5173 (Sieve Body Extension), 5–26
RFC 5183 (Sieve Email Filtering: Environment
Extension), 5–32
RFC 5228, 5–3
RFC 5229 (Sieve Email Filtering: Variables
Extension), 5–54
RFC 5230 (Sieve Email Filtering: Vacation
Extension, 5–51
RFC 5231 (Sieve Email Filtering: Relational
Extension), 5–49
RFC 5232 (Sieve Email Filtering: Imap4flags
Extension), 5–43
RFC 5235 (Sieve Email Filtering: Spamtest
and Virustest Extensions), 5–50
RFC 5260 (Sieve Email Filtering: Date and
Index Extensions), 5–28
RFC 5293 (Sieve Email Filtering: Editheader
Extension), 5–30
RFC 5429 (Sieve Email Filtering: Reject and
Extended Reject Extensions), 5–33
RFC 5435 (Sieve Email Filtering: Extension for
Notifications, 5–46
RFC 5436 (Sieve Notification Mechanism:
mailto), 5–46
RFC 5463 (Sieve Email Filtering: Ihave
Extension), 5–43
RFC 5703 (Sieve Email Filtering: MIME Part
Tests, Iteration, Extraction, Replacement, and
Enclosure), 5–44
RFC 6009 (Sieve Email Filtering: Delivery
Status Notifications and Deliver-By
Extensions), 5–31
RFC 6131 (Sieve Vacation Extension:
"Seconds" Parameter), 5–51
RFC 7352 (Sieve Email Filtering: Detecting
Duplicate Deliveries), 5–29

URL

Index–192 Messaging Server Reference

See Standards, RFC 1738 (Uniform Resource
Locators (URL)), 48–43

starttls
deploymap capability option, 23–2

statinterval alarm.system:diskavail option, 20–3
statinterval alarm.system:serverresponse option,
20–3
stop-msg command

Multiple IMAP server processes, 34–17
Multiple MMP processes, 41–18
Multiple MSHTTPD processes, 42–10
Multiple POP server processes, 35–6

storage local_table MeterMaid option, 59–4
Store options

See Message Store options, 26–4
store.expirerule files

Attributes within, 31–2
action, 31–2
channel, 31–3
deleted, 31–3
exclusive, 31–3
expires, 31–3
expiry-date, 31–3
folderpattern, 31–3
foldersizebytes, 31–3
join, 31–3
messagecount, 31–3
messagedays, 31–3
messageheader.<field-name>, 31–3
messagesize, 31–3
messagesizedays, 31–3
regexp, 31–3
regexp, Folder pattern interpretation, 31–3
rescanhours, 31–3
savedays, 31–3
seen, 31–3
sieve, 31–3
userflag.<flag-name>, 31–3

storeadmin mmp/imapproxy/popproxy/vdomain
option, 41–28
storeadminpass mmp/imapproxy/popproxy/
vdomain option, 41–28
storehostlist proxy option, 40–2
streaming channel option, 46–147
stressblackout Job Controller option, 55–15
stressfactor Job Controller option, 55–15
stressfdwait base option, 16–21
stressjobs Job Controller option, 55–15
stresslimit Message Store checkpoint option, 26–20
stressperiod base option, 16–20
stresstime Job Controller option, 55–15
strict_require MTA option

-statement switch of imsimta test -expression,
71–94
Sieve extensions, 5–23

string_pool_size_3 MTA option
General database, 50–25

style Message Store archive option, 26–19
Subaddresses, G–11

Alias match, 48–46
alias_domains MTA option, 52–60
Configuration for folder delivery, 5–43
deliveryflags channel option, 46–118, 46–135
fileinto channel option, 46–121
ims-ms channel interpretation of

FILEINTO ims-ms-channel-specific option,
64–6

In aliases, 48–46
Mailing list members, 49–22
Meta-groups, 52–106
Sieve subaddress extension, 5–51
subaddress* channel options, 46–49
subaddress_char MTA option, 52–65

subaddressexact channel option, 46–49
Address reversal, 48–56

subaddressrelaxed channel option, 46–49
Address reversal, 48–56
Subaddresses on aliases, 48–46

subaddresswild channel option, 46–49
Address reversal, 48–56

subaddress_char MTA option, 52–65
subdirs channel option, 46–68
submit channel option, 46–130
submituser IMAP option, 34–18, 52–73

BURL usage, 62–11
subscribesynclevel Message Store option, 26–17
substring_search indexer option, 32–9
suffix_search indexer option, 32–9
supportedlanguages base option, 16–21
suppressfinal channel option, 46–105

Recipient address reported in notifications, 60–6,
60–17

suppressreceivedip channel option, 46–80
switchchannel channel option, 46–90

CHECK_SOURCE TCP/IP-channel-specific
option, 62–25
Effectively disabled if CHECK_SOURCE=0,
62–25
INTERNAL_IP mapping table, 57–6

Symantec Corp.
Certificate Authority, G–1

Symmetric encryption, G–11
synch_time Job Controller option, 55–16

Operation, 55–3

Index–193

syncldap IMAP Proxy and POP Proxy option,
41–28
synclevel Message Store option, 26–17
Syslog notices

$< flag in PORT_ACCESS mapping table, 57–4
$> flag in PORT_ACCESS mapping table, 57–4
.HELD messages, 52–234, 52–266
BADCONFIG, Attempt to map new
configuration failed., 71–50
BADCONFIGLOAD, Attempt to load new
configuration failed., 71–50
Brightmail

blCommonDebugFilename Brightmail option,
58–4

COUNTASSOCCREFAIL, Attempt to create
associate counters failed, status = <err-code>

log_sndopr MTA option, 52–76, 52–269
COUNTASSOCVERMIS, Association counter
section version mismatch: Expected <version-
str>

log_sndopr MTA option, 52–76, 52–269
COUNTCHANCREFAIL, Attempt to create
channel counters failed, status = <err-code>

log_sndopr MTA option, 52–76, 52–269
COUNTCHANVERMIS, Channel counter
section version mismatch: Expected <version-
str>

log_sndopr MTA option, 52–76, 52–269
COUNTLOCKERR, detail-text

log_sndopr MTA option, 52–76, 52–269
ERRMAKELOG, Error making log entries: <err-
no>

log_sndopr MTA option, 52–76, 52–269
From ims-ms channels, 64–6
Generated by address access mapping tables,
57–10
HELDMSG, Header count exceeded; message
has been marked .HELD automatically

Diagnosing .HELD files, 65–12
HELDMSG, Header count exceeded; message
has been marked .HELD automatically., 52–234,
52–266
HELDMSG, Max MIME part/level limit
exceeded; message has been marked .HELD
automatically., 52–235, 52–266
HELDMSG, Max recipient count exceeded;
message has been marked .HELD automatically.,
52–234, 52–266
LOGASSOCCRE, Failed to create association
entry <detail>

log_sndopr MTA option, 52–76, 52–269
LOGOPENFAIL, Cannot open IMTA log file:
<detail-text>

log_sndopr MTA option, 52–76, 52–269
MTA options, 52–266

held_sndopr, 52–234, 52–266
log_connections_syslog, 52–266
log_messages_syslog, 52–267
log_sndopr, 52–76, 52–269
log_syslog_prefix, 52–269
sndopr_prefix, 52–269
sndopr_priority, 52–270
spamfilterN_optional, 52–256, 52–270

MTA transaction entries
Line length maximum, 52–267, 52–269

PORT_ACCESS mapping table, 57–3
SPAMFILTER<n>, <detail>

spamfilter*_optional MTA options, 52–257,
52–271

SPAMFILTERn, Cannot find DIRECTORY value
in options, 58–10
SPAMFILTERn, Cannot find style value in
options, 58–10
SPAMFILTERn, Error opening archive options
file, 58–10
SPAMFILTERn, Error reading archive options
file, 58–10
SPAMFILTERn, Error reading ClamAV options
file, 58–4
SPAMFILTERn, Error reading ICAP options file,
58–5
SPAMFILTERn, Error reading Milter options
file, 58–6
SPAMFILTERn, Error reading SpamAssassin
options file, 58–8
SPAMFILTERn, No host specified in ClamAV
option file, 58–5
SPAMFILTERn, No host specified in
SpamAssassin option file, 58–9
TLS_ACCESS mapping table, 62–55

syslogfacility logfile option, 16–25
syslogfacility option

ims-ms channels, 64–6
System information

Access within recipe language
get_system_info recipe function, 4–13

Recipe language access to
get_system_info recipe function, 4–13

systemfilter MTA option, 52–238, 60–2
-system_filter switch of test -rewrite, 71–128
Performance impact, 69–3
Sieve hierarchy, 5–81

system_id SMS smpp_server option, 66–13

T
table_options local_table MeterMaid option, 59–4

Index–194 Messaging Server Reference

table_type local_table MeterMaid option, 59–4
Tar-pitting, G–11
Task options

See Scheduler task options, 17–2
TCP wrappers, 6–1

dnsresolveclient option, 16–5
domainallowed IMAP Proxy/POP Proxy option,
6–8, 41–14
domainallowed option, 6–8
domainallowed POP Proxy option, 6–8
domainnotallowed IMAP Proxy/POP Proxy
option, 6–9, 41–14
domainnotallowed option, 6–9
Examples, 6–6

Restricting access to require use of POPS and
IMAPS, 6–4

Filter creation, 6–7
Filter syntax, 6–2

EXCEPT operator, 6–5
http vs. mshttpd service-name, altservice
MSHTTP option, 42–4
server-host specification, 6–5
Wildcard names, 6–4
Wildcard patterns, 6–4

tcpaccess MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–29
tcpaccessattr MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–30

TCP/IP channels, 62–3
Authentication errors, 62–63
AUTH_ACCESS mapping table, 62–43
Connection history caching, 46–148
Debug log files, 46–95
DEQUEUE_ACCESS mapping table, 62–42
Dial up connections

SMTP ETRN extension, 62–62
DKIM_SIGN_DOMAINS mapping table, 46–65
DNS lookups

Channel options, 46–148
Incoming connections, forwardcheck* channel
options, 46–153
Incoming connections, ident* channel
options, 46–151
Outgoing connections, 46–150, 46–151

Examples, 62–4
Fast disconnect flag

SO_LINGER, $/ flag in address *_ACCESS
mapping tables, 57–10
SO_LINGER, $/ flag in PORT_ACCESS
mapping table, 57–4

Job Controller shutdown, 71–59
Local host table name lookups, 46–151
MX records, 46–150, 46–151

Nameserver selection, 46–150
Options, 62–18

552_PERMANENT_ERROR_STRING, 62–19
ALLOW_ETRNS_PER_SESSION, 62–20
ALLOW_RECIPIENTS_PER_TRANSACTION,
62–20, 62–20
ALLOW_RECIPIENTS_PER_TRANSACTION,
Compared to channel options, 46–96, 46–132
ALLOW_REJECTIONS_BEFORE_DEFERRAL,
62–21
ALLOW_REJECTIONS_BEFORE_DEFERRAL,
Compared to channel options, 46–96, 46–132
ALLOW_SESSION_BLOCKS, 62–21
ALLOW_TRANSACTIONS_PER_SESSION,
62–22
ALLOW_TRANSACTION_BLOCKS, 62–21
ATTEMPT_TRANSACTIONS_PER_SESSION,
62–22
ATTEMPT_TRANSACTIONS_PER_SESSION,
BSMTP channels, 63–3
AUTH_DEBUG, 62–22
AUTH_DEBUG, $A flag in PORT_ACCESS
mapping table, 57–4
AUTH_PASSWORD, 62–22
AUTH_PASSWORD, *saslclient channel
options, 46–169
AUTH_USERNAME, 62–22
AUTH_USERNAME, *saslclient channel
options, 46–169
BANNER_ADDITION, 62–23
BANNER_HOST, 46–89, 62–23
BANNER_HOST, Local channel
official_host_name, 65–2
BANNER_PURGE_DELAY, 62–24
BANNER_PURGE_DELAY, $D flag in
PORT_ACCESS mapping table, 57–4
BANNER_PURGE_DELAY, Example setting,
62–18
BANNER_RECEIVE_TIME, 62–23
BANNER_REVERSE_HOST, 62–23
BUFFER_SIZE, 52–183, 62–24
BUFFER_SIZE, Performance impact, 69–1
CHECK_SOURCE, 62–24
CLIENT_CERT_NICKNAME, 62–25
CLIENT_STACK_SIZE, 62–25
COMMAND_RECEIVE_TIME, 62–25
COMMAND_TRANSMIT_TIME, 62–25
CONTINUATION_CHARS, 62–25
CUSTOM_VERSION_STRING, 62–26
DATA_RECEIVE_TIME, 62–26
DATA_TRANSMIT_TIME, 62–26
DISABLE_ADDRESS, 62–26

Index–195

DISABLE_ADDRESS, $V flag in
PORT_ACCESS mapping table, 57–4
DISABLE_CIRCUIT, 62–27
DISABLE_CIRCUIT, $V flag in
PORT_ACCESS mapping table, 57–4
DISABLE_EXPAND, 62–27
DISABLE_EXPAND, expn* channel options,
46–139
DISABLE_GENERAL, 62–28
DISABLE_GENERAL, $V flag in
PORT_ACCESS mapping table, 57–4
DISABLE_SEND, 62–28
DISABLE_STATUS, 62–28
DISABLE_STATUS, $V flag in
PORT_ACCESS mapping table, 57–4
DOT_TRANSMIT_TIME, 62–29
EXTERNAL_IDENTITY, 62–22
EXTERNAL_IDENTITY, *saslclient channel
options, 46–169
FAST_SMTP_SESSION_TIME_LIMIT, 62–29
HELLO_RECEIVE_TIME, 62–29
HIDE_VERIFY, 62–29
IGNORE_BAD_CERT, 62–30
INITIAL_COMMAND, 62–30
KILLED_IP_TIMEOUT, 62–30
KILLED_USER_TIMEOUT, 62–30
LOG_BANNER, 62–30
LOG_BANNER, MTA logging, 52–271
LOG_CONNECTION, 62–31
LOG_CONNECTION, MTA logging, 52–271
LOG_TRANSPORTINFO, 62–31
LOG_TRANSPORTINFO, MTA logging,
52–271
MAILBOX_BUSY_FAST_RETRY, 62–32
MAIL_TRANSMIT_TIME, 62–32
MAX_A_RECORDS, 62–32
MAX_B_ENTRIES, 62–32
MAX_B_ENTRIES, MTA logging, 52–271
MAX_CLIENT_THREADS, 62–33
MAX_HELO_DOMAIN_LENGTH, 62–33
MAX_H_ENTRIES, 62–33
MAX_H_ENTRIES, MTA logging, 52–271
MAX_J_ENTRIES, 62–34
MAX_J_ENTRIES, Diagnostic text in MTA
transaction log entries, 68–22
MAX_J_ENTRIES, MTA logging, 52–271
MAX_MX_RECORDS, 62–34
MAX_SERVER_THREADS, 62–34
OPEN_CONNECTION_TIME, 62–35
PACKET_SIZE_LIMIT, 62–35
PROXY_PASSWORD, 62–35
RCPT_TRANSMIT_TIME, 62–36
RECIPIENT_DELAY_AMOUNTS, 62–38

RECIPIENT_DELAY_THRESHHOLDS, 62–38
REJECT_RECIPIENTS_PER_TRANSACTION,
62–36
REJECT_RECIPIENTS_PER_TRANSACTION,
Compared to channel options, 46–96, 46–132
REUSE_TIMED_OUT_TRANSFERS, 62–36
REUSE_TIMED_OUT_TRANSFERS,
Performance impact, 69–2
SESSION_TIME, 62–37
SIZE_DELAY_AMOUNTS, 62–38
SIZE_DELAY_THRESHHOLDS, 62–38
SSL_CLIENT, 62–38
SSL_CLIENT, AUTH_ACCESS mapping table
$D flag, 62–44
STARTTLS_FAILURE_RECONNECT_DELAY,
62–39
STATUS_DATA_RECEIVE_TIME, 62–39
STATUS_DATA_RECV_
PER_ADDR_PER_BLK_TIME, 62–40
STATUS_DATA_RECV_PER_ADDR_TIME,
62–39
STATUS_DATA_RECV_PER_BLOCK_TIME,
62–39
STATUS_MAIL_RECEIVE_TIME, 62–40
STATUS_RCPT_RECEIVE_TIME, 62–40
STATUS_RECEIVE_TIME, 62–40
STATUS_TRANSMIT_TIME, 62–41
TIMEOUT_MULTIPLIER, 62–41
TLS_NEGOTIATION_TIME, 62–41
TRACE_LEVEL, 62–41
TRANSACTION_DELAY_AMOUNTS, 62–38
TRANSACTION_DELAY_THRESHHOLDS,
62–38
TRANSACTION_LIMIT_RCPT_TO, 62–41
TRANSACTION_TIME, 62–42
WINDDOWN_TIMEOUT, 62–42
WINDDOWN_TIMEOUT, imsimta restart,
71–52

Performance, 69–1
Dispatcher options, 69–1
MAX_CLIENT_THREADS TCP/IP-channel-
specific option, 62–33

Routing
Gateway systems, 62–57
Mailhubs, 62–58

SMTP_ACTIONS mapping table, 62–56
Typical basic configuration, 62–4

tcpaccess MMP/IMAP Proxy/POP Proxy/vdomain
option, 6–7, 41–29
tcpaccess option

TCP wrapper syntax, 6–4
tcpaccessattr MMP/IMAP Proxy/POP Proxy/
vdomain option, 6–7, 6–8, 41–30

Index–196 Messaging Server Reference

Alternate LDAP attribute in place of
mailAllowedServiceAccess, 52–109
TCP wrapper access filters, 6–2

tcp_listen options, 41–28
backlog, 41–29
listen_addresses, 41–29
ssl_ports, 41–29
tcp_ports, 41–29

tcp_lmtp_server options
See LMTP channels, Server, Options, 62–17

tcp_ports Dispatcher service option, 54–11
tcp_ports Job Controller option, 55–16
tcp_ports SMS smpp_relay option, 66–10
tcp_ports SMS smpp_server option, 66–13
tcp_ports tcp_listen option, 41–29
Text attachments

Character set, 51–17
Text messaging

SMS, 66–2
text_to_subject gateway_profile option, 66–4

email_body_charset gets ignored, 66–5
Thawte Consulting

Certificate Authority, G–1
Third party submission

AUTH_ACCESS mapping, 62–47
thirdclassafter channel option, 46–110
threaddepth channel option, 46–116, 46–161

-thread_depth switch of cache -change, 71–8
Channel to a gateway system, 62–58
ims-ms channel, 64–2
Job Controller operation, 55–3

threadholddelay base option, 16–21
thread_count_initial sms_gateway option, 66–4
thread_count_maximum sms_gateway option, 66–4
thread_stack_size sms_gateway option, 66–4
threshold alarm.system:diskavail option, 20–3
threshold alarm.system:serverresponse option,
20–3
thresholddirection alarm.system:diskavail option,
20–3
thresholddirection alarm.system:serverresponse
option, 20–3
thurman channel option, 46–56

-thurman switch of test -mime, 71–115
tick channel option, 46–58
Time

ISO 8601 format, 1–3
ISO 8601 P format, 1–3
Sieve filter date and currentdate tests, 5–28
test -time utility, 71–134

Time zone
ISO 8601 format, 1–3
Sieve filter date and currentdate tests, 5–29

Testing name of, 71–139
timeout Autorestart option, 16–26
timeout IMAP Proxy option, 41–30
timeout indexer option, 32–9
timeout MeterMaid Client option, 59–6
timeout MMP option, 41–30
timeout msprobe option, 19–1
timeout POP Proxy option, 41–30
Timeouts

acktimeout Message Store dbreplicate option,
26–22
alias_entry_cache_timeout MTA option, 52–162
Archived message retrieval

retrievetimeout Message Store archive option,
26–20

authcachettl base option, 16–3
Authentication

preauthtimeout IMAP Proxy/POP Proxy
option, 41–19

authservicettl POP Proxy/vdomain option, 41–6
Cassandra writes

cascasopretrycount Message Store option,
26–7
cascasopretryintervalinms Message Store
option, 26–7

Channel jobs
max_life_time Job Controller channel_class
option, 55–13
WINDDOWN_TIMEOUT TCP/IP-channel-
specific option, 62–42
WINDDOWN_TIMEOUT TCP/IP-channel-
specific option, imsimta restart, 71–52

Channel stress
stressblackout Job Controller option, 55–15
stresstime Job Controller option, 55–15

ClamAV responses
TIMEOUT ClamAV config file option, 58–5

Client submitting SMTP message
alias_reprocess alias option, 48–22

Connection to latency server
latency_timeout MTA option, 52–192

Connection to memcached
memcache_timeout MTA option, 52–215

connecttimeout imapproxy option, 41–10
connecttimeout indexer option, 32–9
connecttimeout metermaid_client option, 59–6
connecttimeout mmp option, 41–9
connecttimeout popproxy option, 41–10
Direct LDAP lookups

Caching, 52–161
Domain map cache

ldap_timeout MTA option, 16–7, 52–88,
52–163

Index–197

domain_match_cache_timeout MTA option,
52–162
duplicate_maximum_timeout MTA option,
52–247
duplicate_minimum_timeout MTA option,
52–247
duplicate_timeout_default MTA option, 52–248
filter_cache_timeout MTA option, 52–245
ICAP responses

TIMEOUT ICAP option, 58–5
idletimeout http option, 42–9
IMAP

Connection to ISS, connecttimeout indexer
option, 32–9
idletimeout IMAP option, 34–15
ISS reads and writes, timeout indexer option,
32–9
timeout IMAP Proxy option, 41–30
timeout MMP option, 41–30

Incoming SMTP sessions
COMMAND_RECEIVE_TIME TCP/IP-
channel-specific option, 62–25
DATA_RECEIVE_TIME TCP/IP-channel-
specific option, 62–26
Expansion of multiple recipient address,
65–20
Expansion of multiple recipient address,
alias_reprocess alias option, 48–22
HELLO_RECEIVE_TIME TCP/IP-channel-
specific option, 62–29
REUSE_TIMED_OUT_TRANSFERS TCP/IP-
channel-specific option, 62–36
SESSION_TIME TCP/IP-channel-specific
option, 62–37
STATUS_TRANSMIT_TIME TCP/IP-channel-
specific option, 62–41
TRANSACTION_TIME TCP/IP-channel-
specific option, 62–42

ISS
IMAP connection to, connecttimeout indexer
option, 32–9
timeout indexer option, 32–9

JMQ messages
ttl notifytarget option, 37–6

LDAP connections
ldapconnecttimeout base option, 16–10
ldappoolrefreshinterval base option, 16–10

LDAP modify operations
ldapmodifytimeout base option, 16–10

LDAP operations
ldaptimeout MMP/IMAP Proxy/POP Proxy
option (DEPRECATED), 41–16

LDAP queries

ADMLDAP_TIMEOUT environment
variable, 52–82
Caching, 52–161
ldapsearchtimeout base option, 16–11, 52–82
ldaptimeout mmp/imapproxy/popproxy
option (DEPRECATED), 41–16
ldap_timeout MTA option, 52–82
local.ldapsearchtimeout configutil parameter,
52–82

ldapcachettl MMP option, 41–16
Logfile retention

expirytime logfile option, 16–23
memcache REMOVE operation lockout of new
ADD, 50–31
Message Store

IMAP Proxy connection to, connecttimeout
imapproxy option, 41–10
MMP connection to, connecttimeout mmp
option, 41–9
POP Proxy connection to, connecttimeout
popproxy option, 41–10

Message Store relinker repository
maxage Message Store relinker option, 26–29

Message tracking
trackingtimeout* channel options, 46–101

MeterMaid
connecttimeout metermaid_client option,
59–6
metermaid_timeout MTA option, 52–225
timeout metermaid_client option, 59–6

Milter connections
CONNECT_TIMEOUT Milter option, 58–6
REPROCESS_CONNECT_TIMEOUT Milter
option, 58–6
REPROCESS_TIMEOUT Milter option, 58–6

Milter responses
TIMEOUT Milter option, 58–6

MMP connection to LDAP
ldaprefreshinterval MMP/IMAP Proxy/POP
Proxy option, 41–16

MSHTTP sessions
sessiontimeout MSHTTP option, 42–12

msprobe
timeout msprobe option, 19–1

MTQP connections
mtqp_timeout MTA option, 52–226

Outgoing SMTP sessions
Banner line, lastresort channel option does
not apply, 46–71, 46–154
BANNER_RECEIVE_TIME TCP/IP-channel-
specific option, 62–23
COMMAND_TRANSMIT_TIME TCP/IP-
channel-specific option, 62–25

Index–198 Messaging Server Reference

DATA_TRANSMIT_TIME TCP/IP-channel-
specific option, 62–26
DOT_TRANSMIT_TIME TCP/IP-channel-
specific option, 62–29
MAIL_TRANSMIT_TIME TCP/IP-channel-
specific option, 62–32
RCPT_TRANSMIT_TIME TCP/IP-channel-
specific option, 62–36
STATUS_DATA_RECEIVE_TIME TCP/IP-
channel-specific option, 62–39
STATUS_DATA_RECV_
PER_ADDR_PER_BLK_TIME TCP/IP-
channel-specific option, 62–40
STATUS_DATA_RECV_PER_ADDR_TIME
TCP/IP-channel-specific option, 62–39
STATUS_DATA_RECV_PER_BLOCK_TIME
TCP/IP-channel-specific option, 62–39
STATUS_MAIL_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40
STATUS_RCPT_RECEIVE_TIME TCP/IP-
channel-specific option, 62–40
STATUS_RECEIVE_TIME TCP/IP-channel-
specific option, 62–40
TIMEOUT_MULTIPLIER TCP/IP-channel-
specific option, 62–41
WINDDOWN_TIMEOUT TCP/IP-channel-
specific option, 62–42

POP
idletimeout POP option, 35–5
timeout MMP option, 41–30
timeout POP Proxy option, 41–30

POP before SMTP
authservicettl POP Proxy/vdomain option,
41–6

preauthtimeout IMAP Proxy/POP Proxy option,
41–19
Purging of deleted Message Storemailboxes

mailboxpurgedelay Message Store option,
26–13

Purging of messages
cleanupage Message Store option, 26–8

resourcetimeout MSHTTP option, 42–12
Reversal cache

reverse_address_cache_timeout MTA option,
52–163

reverse_address_cache_timeout MTA option,
52–163
Server failures

timeout autorestart option, 16–26
Server processes under the Dispatcher

max_life_time Dispatcher option, 54–9
Sieve notify messages

notify_maximum_timeout MTA option, 52–70

notify_minimum_timeout MTA option, 52–71
notify_timeout_default MTA option, 52–71

SMPP client
listen_receive_timeout option, 66–9, 66–13
listen_transmit_timeout option, 66–9, 66–13

SMPP server
server_receive_timeout SMPP Relay option,
66–10
server_transmit_timeout SMPP Relay option,
66–10

SMTP
timeout MMP option, 41–30

SMTP server
See also Timeouts, Incoming SMTP sessions,
62–25

SMTP sessions
TLS_NEGOTIATION_TIME TCP/IP-channel-
specific option, 62–41

SNMP
servertimeout SNMP option, 73–3

Spam/virus filter package integration
Milter, CONNECT_TIMEOUT Milter option,
58–6
Milter, IGNORE_BAD_CERT Milter option,
58–6
Milter, REPROCESS_CONNECT_TIMEOUT
Milter option, 58–6
Milter, REPROCESS_TIMEOUT Milter
option, 58–6
Milter, SESSION_INACTIVITY_TIMEOUT
Milter option, 58–6
Milter, TCP_NODELAY Milter option, 58–6
Milter, TIMEOUT Milter option, 58–6
Milter, USE_SSL Milter option, 58–6
SpamAssassin, CONNECT_TIMEOUT
SpamAssassin option, 58–9
SpamAssassin, TIMEOUT SpamAssassin
option, 58–9

Spam/virus filter package responses
ClamAV, TIMEOUT ClamAV config file
option, 58–5
ICAP, 58–5

SpamAssassin connections
CONNECT_TIMEOUT SpamAssassin option,
58–9

SpamAssassin responses
TIMEOUT SpamAssassin option, 58–9

SRS address
error_text_srs_timeout MTA option, 52–173
srs_maxage MTA option, 52–265

stressblackout Job Controller option, 55–15
stresstime Job Controller option, 55–15
url_result_cache_timeout MTA option, 52–163

Index–199

User authentication cache
authcachettl base option, 16–3
authcachettl MMP/IMAP Proxy/POP Proxy/
vdomain option, 41–5

User entry cache (MMP)
ldapcachettl option, 41–16

Vacation message repetition
autoreply_timeout_default MTA option,
52–70

Vacation messages
ldap_autoreply_timeout MTA option, 52–137
ldap_domain_attr_autoreply_timeout MTA
option, 52–155
vacation_hash_algorithm MTA option, 52–71
vacation_maximum_timeout MTA option,
52–71, 52–108
vacation_minimum_timeout MTA option,
52–72, 52–107

Watcher
stressperiod base option, 16–20

WINDDOWN_TIMEOUT TCP/IP-channel-
specific option, 62–42

imsimta restart, 71–52
timestampdelta smime option, 43–5
TLDs

See Top Level Domains, G–11
TLS, G–11

*_ACCESS mapping table probes, 57–8
-tlsused switch of test -rewrite utility, 71–129
Dispatcher initialization

Debugging, 54–14
Microsoft® Exchange

msexchange channel option, 46–55, 46–143,
46–172

MTA options
sslnicknames, 52–232

S modifier in MTA message transaction log
entries, 68–5
SMTP

Required for implicitsaslexternal to take
effect, 46–170

Testing for use in *_ACCESS mapping table
entries, 57–14
tls_bits_reject_msg Dispatcher service option,
54–12
tls_min_bits Dispatcher service option, 54–12

tlsmaxversion channel option, 46–175
tlsminversion option, 16–21
tlsswitchchannel channel option, 46–92, 46–171
tlsv12enable base option, 16–21
tlsv13enable base option, 16–21
tls_bits_reject_msg Dispatcher service option,
54–12

tls_min_bits Dispatcher service option, 54–12
tmpdir base option, 16–22
tmpdir Message Store archive option, 26–18
tmpdir MTA option, 52–164

Effect on location of MTA database temp files,
53–4
Performance, 69–4

tokenpass sectoken option, 22–1
Top Level Domains (TLDs), G–11

error_text_unknown_host MTA option, 52–168
Informing MTA of updated list, 71–16
Rewrite rule check, 47–34
tlds.txt file, 47–10, 47–34

tracking* channel options, 46–101
trackinggenerate channel option, 46–102, 46–102
tracking_debug MTA option, 52–80
tracking_hash_algorithm MTA option, 52–224
tracking_mode MTA option, 52–224
tracking_retries MTA option, 52–224
tracking_retry_delay MTA option, 52–224
Traffic analysis, G–11
transactionlimit channel option, 46–137

error_text_transaction_limit_exceeded MTA
option, 52–176
Reprocess channel, 65–21

transactlog file
rollover manager, 24–1

Transport information
-transportinfo switch of test -rewrite utility,
71–129
alias_deferred_mapping option's mapping table
probes

include_connectioninfo MTA option, 48–14
DEFERRED_MAPPING named parameter's
mapping table probe, 48–33
ETRN_ACCESS mapping table probes, 46–128,
62–63
include_connectioninfo MTA option, 52–201
LOG_ACTION mapping table probes

Example, 68–17, 68–17
log_connection MTA option, 68–11

log_connection MTA option, 52–275
LOG_CONNECTION TCP/IP-channel-specific
option, 62–31
Mapping probe prefix, 50–18
MESSAGE-SAVE-COPY mapping table probes

message_save_copy_flags MTA option, 67–4
MTA connection transaction log entries, 68–12
PORT_ACCESS mapping table, 57–3
remote-ip Sieve environment item, 5–32
Reprocess channel *_ACCESS mapping table
probes, 65–21
Rewrite rule mapping probe prefix, 47–25

Index–200 Messaging Server Reference

Rewrite rule template substitutions, 47–27
Syntax of, 68–9
TLS_ACCESS mapping table probes, 62–55
TRANSPORTINFO environment variable

test_smtp channels, 65–9
XCLIENT SMTP extension, 46–85, 46–146,
46–173

TRANSPORTINFO environment variable
test_smtp_master and test_smtp_slave use of,
65–9

Troubleshooting
.HELD files, 65–11
DSNs that are "incomplete", 60–10

truncatesmtplonglines channel option, 46–146
trustedurl smime option, 43–2
tspecials (from RFC 2045), 46–86
ttl notifytarget option, 37–6
Tunnelling messages between MTAs, 63–1
turn channel option, 46–145
turn_in channel option, 46–145
turn_out channel option, 46–145

U
UBE (Unsolicited Bulk E-mail), G–11

See also Spam/virus filter package integration,
58–1

ugldapbasedn base option, 16–22
Direct LDAP alias lookups, 48–6

ugldapbindcred base option, 16–22
Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Recipes

ldap_init function, 4–14, 4–35
ugldapbinddn base option, 16–22

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Recipes

ldap_init function, 4–14, 4–35
ugldaphost base option, 16–22

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Recipes

ldap_init function, 4–14, 4–35
ugldapport base option, 16–22

Direct LDAP alias lookups, 48–5
Direct LDAP domain lookups, 47–31
Recipes

ldap_init function, 4–14, 4–35
ugldapusessl base option, 16–23

Direct LDAP alias lookups, 48–5
Recipes

ldap_init function, 4–14, 4–35
umask Message Store option, 26–18

undeleteflag Message Store option, 26–18
underquota notifytarget option, 37–7
Unified Configuration, 1
unique_id_template MTA option

Message identifier generation (for archiving),
67–19

Unmonitored mailbox
nomail value of mailDeliveryOption, 49–23,
52–99

unrestricted channel option, 46–46
unstressfactor Job Controller option, 55–15
unstressjobs Job Controller option, 55–15
updatemsg notifytarget option, 37–7
urgentafter channel option, 46–110
urgentbackoff channel option, 46–110
urgentblocklimit channel option, 46–125

Job Controller delivery execution window, 55–17
urgentnotices channel option, 46–106
urgent_block_limit MTA option, 52–223, 52–234
urgent_delivery Job Controller job_pool option,
55–16
url_result_cache_case MTA option, 52–163
url_result_cache_size MTA option, 52–163
url_result_cache_timeout MTA option, 52–163
usedomainmap auth option, 21–4
useheaderrecipients Message Store archive option,
26–20
useintermediate channel option, 46–105

Recipient address reported in notifications, 60–6,
60–17

usepermanenterror channel option, 46–65
User Agent (UA), G–11
user channel option, 46–71, 46–117

Pipe channels, 65–15
See also pipeuser option in restricted.cnf, 46–71,
46–117

user Dispatcher option, 54–12
user Dispatcher service option, 54–12
user Message Store publicsharedfolders option,
26–30
user option in restricted.cnf, 1

imsimta test -expression utility's output, 71–87
user option in restricted.cnf file, 15–1
usercertfilter smime option, 43–1
usereplyto channel option, 46–87
useresent channel option, 46–87
usereversedatabase channel option, 46–50
userflag.<flag-name> attribute in store.expirerule
files, 31–3
usergroupdn MMP/IMAP Proxy/POP Proxy option

DEPRECATED: see ugldapbasedn instead, 41–30
userid Deployment Map option, 23–2
Users

Index–201

Duplicate/ambiguous LDAP entries
error_text_duplicate_addrs MTA option,
52–172

Forwarding, 48–59
ldap_forwarding_address MTA option,
52–138
Techniques, 48–60

Head-of-household controls, 5–89
ldap_filter_reference MTA option, 52–138
ldap_parental_controls MTA option, 52–138

LDAP attributes
Auto-secretary use, 52–130
Capture trigger, 52–124
expandable, 52–149
inetUserStatus, 52–120
mail, 52–128
mail, Fetched during head of household Sieve
filter lookups, 52–138
mailAlternateAddress, 52–129
mailConversionTag, 52–131
mailDeliveryFile, 52–133
mailDeliveryFileURL, 52–133
mailDeliveryOption, 52–127
mailDeliveryOption, Forwarding mail, 48–60
mailEquivalentAddress, 52–129
mailForwardingAddress, Forwarding mail,
48–60
mailHost, 52–132
mailHost,
ldap_domain_attr_default_mailhost MTA
option, 52–156
mailMsgMaxBlocks, 52–132
mailMsgQuota, 52–133
mailProgramDeliveryInfo, 52–133
mailQuota, 52–133
mailRoutingAddress, 52–127
mailSieveRuleSource, Fetched during head of
household Sieve filter lookups, 52–138
mailUserStatus, 52–121
mgmanMemberVisibility, 52–149
MLS range, 52–124
NO-SOLICITING values, 52–127
objectClass, 52–120
Opt-in to detour routing, 52–131
Opt-in to spam package N, 52–129
Opt-out of spam package N, 52–130
Personal name, 52–128
Preferred country labelling, 52–127
preferredLanguage, 52–126
Presence flag, 52–130
Recipient cutoff, 52–125
Recipient limit, 52–124
rfc822mailalias, 52–129

Source block limit, 52–125
Source channel switch, 52–126
Source conversion tag, 52–128
Source opt-in to spam package N, 52–126
Spare N attribute, 52–133
uid, 52–123
vacationEndDate, 52–131
vacationStartDate, 52–130

Parental controls, 5–89
ldap_filter_reference MTA option, 52–138
ldap_parental_controls MTA option, 52–138

Passwords
Expiration warnings, 34–19
Plaintext, Forbidden unless SSL/TLS is active,
41–20
Plaintext, has_plain_passwords Auth option,
21–3
userPassword LDAP attribute, 52–109

Quota
defaultmailboxquota Message Store option,
26–10
defaultmessagequota Message Store option,
26–10
ldap_disk_quota MTA option, 52–133
ldap_message_quota MTA option, 52–133
Over quota status, Customizing MTA error
text, 52–167
Over quota status, error_text_over_quota
MTA option, 52–171
Over quota status, IMAP ALERT message,
60–3
Over quota status, Notification message from
Message Store, 60–3
Over quota status, overquotastatus Message
Store option, 26–13
Over quota status, quotaexceeded Message
Store option, 26–14
Over quota status, quotaexceededmsginterval
Message Store option, 26–15
Over quota status, quotagraceperiod Message
Store option, 26–15
Over quota status, quotanotification Message
Store option, 26–15
Over quota status, Reported to entire group
membership, 49–17
Over quota status, SMTP rejection text,
52–171
quotaenforcement Message Store option,
26–14
quotaoverdraft Message Store option, 26–15
See also Message Store folderquota options,
26–24

Index–202 Messaging Server Reference

See also Message Store messagetype and
typequota options, 26–25
subdirs channel option on ims-ms channel,
64–2
Warning that user is nearing limit, quotawarn
Message Store option, 26–16

Sieve filters
-filter switch of test -rewrite, 71–123
filter channel option, 46–119
ldap_filter MTA option, 52–138
ldap_filter_reference MTA option, 52–138

Testing of LDAP entries
test -rewrite utility, 71–117

Vacation
ldap_autoreply_addresses MTA option,
52–137
ldap_autoreply_mode MTA option, 52–134
ldap_autoreply_subject MTA option, 52–134
ldap_autoreply_text MTA option, 52–135
ldap_autoreply_text_internal MTA option,
52–136
ldap_autoreply_timeout MTA option, 52–137
vnd.sun.autoreply-internal envelope item in
Sieve filters, 5–32

userswitchchannel channel option, 46–90
Address reversal, 48–52

usesentdate MSHTTP option, 42–15
usetemporaryerror channel option, 46–65
use_alias_database MTA option, 52–65
use_auth_return MTA option, 52–206

Effect on FORWARD mapping table probe,
48–61
Effect on use_moderator_url attribute's value,
52–142

use_canonical_return MTA option, 52–206
Effect on FORWARD mapping table probe,
48–61
Effect on use_moderator_url attribute's value,
52–142

use_comment_strings MTA option, 52–211
use_domain_database MTA option, 52–65
use_forward_database MTA option, 52–66, 52–211

Effect on FORWARD mapping table probe,
48–61, 48–61

use_ip_access MTA option, 52–206
use_mail_delivery MTA option, 52–302
use_nslog Dispatcher option, 54–12
use_nslog Job Controller option, 55–17
use_nslog MMP option

Causing loglevel to be ignored, 41–17
use_nslog MMP/IMAP Proxy/POP Proxy option,
41–30
use_orig_return MTA option, 52–206

Effect on FORWARD mapping table probe,
48–61
Effect on use_moderator_url attribute's value,
52–142

use_permanent_error MTA option, 52–178
recipientlimit channel option, 46–96, 46–133

use_personal_names MTA option, 52–214
use_precedence MTA option, 52–231
use_reverse_database MTA option, 52–67, 52–212

Limiting emission of internal host names, 70–3
Message-id: modification, 70–3

use_sms_priority SMS gateway option, 66–8
use_sms_privacy SMS gateway option, 66–9
use_temporary_error MTA option, 52–179
use_text_databases MTA option, 52–185

Forward database, 48–63
Reverse database, 48–54
Rewrite rule general database substitutions,
47–24

use_warnings_to MTA option, 52–231
utf8header channel option, 46–60, 46–138
utf8negotiate channel option, 46–60, 46–138
utf8strict channel option, 46–60, 46–138

acceptalladdresses channel option, 46–34
error_text_unnegotiated_eightbit MTA option,
52–177

Utilities, 71–5
cache -change, 71–6
cache -sync, 71–9

synch_time Job Controller option, 55–16
cache -view, 71–10
cache -walk, 71–11
calc, 71–12
chbuild, 71–16

charset options file, option_charset.dat, 53–9
imta_charset_data MTA tailor option, 53–6

clbuild, 71–19
imta_command_data MTA tailor option, 53–6

cnbuild, 71–22
imta_config_data MTA tailor option, 53–6

configtoxml, 7–1
configure, 8–1
counters -clear, 71–31
counters -show, 71–32

Example of Sieve counters, 5–59
crdb, 71–35

Use with the alias database, 48–45
find, 71–38
imarchive, 67–20
imcheck

Message Store cache efficiency, 26–9
imexpire, 31–1

Archiving, 67–20

Index–203

channel, 58–21
IMAP user flags, 5–44
rescanhours, 58–22
Sieve body extension, 5–27
Spam/virus filter package integration, 58–2,
58–21
Spam/virus filter packages, sourcespamfilter*
and sourcespamfilter*optin channel options,
46–126
Spamfilter integration, scan_channel MTA
option, 52–180
Spamfilter integration, scan_originator MTA
option, 52–180
Spamfilter integration, scan_recipient MTA
option, 52–180

imquotacheck
Notification that a Message Store user is
overquota, 60–3
quotanotification Message Store option, 26–15
Warning that a Message Store user is nearly
overquota, 60–3
Warning that a Message Store user is nearly
overquota, Quota overdraft operation, 26–16

ims_svc_*
softtokendir base option, 16–14

inetuser, 9–1
init-config, 10–1
msconfig, 11–1

EDIT CONVERSIONS, 52–74
EDIT LOG_HEADER_OPTIONS, 52–287
EDIT MAPPINGS, 50–4
EDIT MAPPINGS, CONVERSIONS mapping
table, 51–2
EDIT REWRITES, 47–2
Macro substitutions, 52–228
Recipe language, 4–1
Used to configure Messaging Server, 1

process, 71–40
profile

Example, 65–17
purge, 71–41
qclean, 71–43
qm

alias_username alias option, 48–24
Commands, release and the Hold channel,
65–11
Commands, unstress, 55–4
Notification message generation, 60–4
stop, hold_list file, 53–10
stress, 55–4
USERNAME alias file named parameter,
48–42

qtop, 71–46

refresh, 12–1
reload, 71–50
restart, 71–51
return, 71–55

Notification message generation, 60–4
return_bounced.txt, 60–13

run, 71–56
shutdown, 71–58
start-msg, 13–1
startup, 71–61
stop-msg, 14–1
submit_master, 71–63
test -domain_map, 71–66
test -eightbit, 71–85
test -expression, 71–87

Sieve external lists, 5–42
test -hash, 71–97
test -header, 71–99
test -mapping, 71–104

Testing of mapping tables, 50–27
test -match, 71–109

Testing mapping table patterns, Wildcards,
50–6
Testing of mapping tables, 50–27

test -mime, 71–111
Content-transfer-encoding: testing, 46–54

test -rewrite, 71–117
Access control testing, 71–120
Caret quoting of input, 71–119
DNS verification, 71–125
Input characters by ASCII code, 71–119
Testing address access mapping tables, 50–27
Testing of mapping tables, 50–27

test -time, 71–134
test -translation, 71–136

Use in conversion scripts, 51–31
test -zone, 71–139
version, 71–140
view, 71–141

uwccontexturi MSHTTP option, 42–15
uwcenabled MSHTTP option, 42–15
uwchome MSHTTP option, 42–15
uwclogouturl MSHTTP option, 42–15
uwcport MSHTTP option, 42–16
uwcsslport MSHTTP option, 42–16

V
Vacation messages

Format of
ldap_autoreply_mode MTA option, 52–134
mailAutoReplyMode LDAP attribute, 52–134
See Sieve filters, vacation action, :echo
or :reply, 5–51

Index–204 Messaging Server Reference

List-* header checks
See Sieve filters, vacation
action, :noheadercheck, 5–51

MTA options
ldap_autoreply_addresses, 52–137
ldap_autoreply_mode, 52–134
ldap_autoreply_subject, 52–134
ldap_autoreply_text, 52–135
ldap_autoreply_text_internal, 52–136, 52–136
ldap_autoreply_timeout, 52–137
ldap_domain_attr_autoreply_timeout, 52–155
ldap_end_date, 52–131
ldap_start_date, 52–130
max_vacations, 52–244
vacation_cleanup, 52–71
vacation_hash_algorithm, 52–71
vacation_maximum_timeout, 52–71, 52–108
vacation_minimum_timeout, 52–72, 52–107
vacation_template, 52–72

Own addresses recognized
ldap_autoreply_addresses MTA option,
52–137
See Sieve filters, vacation action, :addresses
or :noaddresses, 5–51

Previous response database
Error accessing means vacation message not
generated, 5–54
MTA options, 52–69

Repeat of
autoreply_timeout_default MTA option,
52–70
ldap_autoreply_timeout MTA option, 52–137
ldap_domain_attr_autoreply_timeout MTA
option, 52–155
mailAutoReplyTimeout LDAP attribute,
52–137
See Sieve filters, vacation action, :days
or :hours or :seconds, 5–51
vacation_maximum_timeout MTA option,
52–71, 52–108
vacation_minimum_timeout MTA option,
52–72, 52–107
vacation_template MTA option, 52–72

Sieve filter vacation extension, 5–51
Subject of

ldap_autoreply_subject MTA option, 52–134
mailAutoReplySubject LDAP attribute,
52–134
See Sieve filters, vacation action, :subject, 5–51

Text of
ldap_autoreply_text MTA option, 52–135
ldap_autoreply_text_internal MTA option,
52–136

mailAutoReplyText LDAP attribute, 52–135
mailAutoReplyTextInternal LDAP attribute,
52–136
See Sieve filters, vacation action, 5–51

Time range
ldap_end_date MTA option, 52–131
ldap_start_date MTA option, 52–130
See Sieve filters, date test, 5–51
vacationEndDate LDAP attribute, 52–131
vacationStartDate LDAP attribute, 52–130

vacation_cleanup MTA option, 52–71
vacation_hash_algorithm MTA option, 52–71
vacation_maximum_timeout MTA option,
52–71, 52–108
vacation_minimum_timeout MTA option, 52–72,
52–107
vacation_template MTA option, 52–72
Why not generated, 5–53

Domain not properly defined in LDAP or not
found, 5–53
Domain, user or group status, 5–53
Incompatible other Sieve action performed,
5–54
mailAutoreplyText LDAP attribute or value
missing, 5–54
Original message a list post per header lines,
5–53
Original message disabled all notifications,
5–53
Original message's From address suggests list
post, 5–53
Outside vacationStartDate-vacationEndDate
range, 5–53
Recipient address not present in original
message header, 5–53
Recipient not properly defined in LDAP or
not found, 5–53
Same vacation response already sent recently,
5–54
Sieve novacation or FROM_ACCESS $!
applied, 5–53
Sieve vacation action syntax error, 5–54
Too many vacation actions already performed
in Sieve script, 5–54
Trouble accessing vacation-previous-response
database, 5–54
Vacation action not supported in system
Sieves, 5–54

vacation_cleanup MTA option, 52–71
vacation_maximum_timeout MTA option, 52–71,
52–108
vacation_minimum_timeout MTA option

Vacation message not generated, 5–54

Index–205

vacation_template MTA option, 52–72
value_type local_table MeterMaid option, 59–4
Vanity domains, G–12

Direct LDAP lookups
domain_match_url MTA option, 47–32

domain_match_url MTA option, 52–85
Example, 48–8

Venema, Wietse
Unix Tcpd access-control, 6–1

verb_never channel option, 46–58
verb_none channel option, 46–58
verb_off channel option, 46–58
verb_on channel option, 46–58
verifycert Base certmap option, 16–27
verifycert certmap option, 16–27
verifyurl SSO option, 44–1
Verisign, Inc.

Certificate Authority, G–1
VERP (Variable Envelope Return Path), G–12

Mailing lists, 48–15, 52–146
viaaliasoptional channel option, 46–51
viaaliasrequired channel option, 46–51, 65–2

Error text if user not found, 52–168
ims-ms channels, 64–3
Success simulated via deliveryflags channel
option, 46–119, 46–136

viametermaid pwexpirealert option, 34–19
Virtual domain (vdomain) options, 41–3

authcachettl, 41–5
authenticationldapattributes, 21–1, 41–6
authservice, 41–6
authservicettl, 41–6
crams, 41–11
debugkeys, 41–11
defaultdomain, 41–13
domainsearchformat, 41–14
hosteddomains, 41–14
ldapcachesize, 41–15
ldapcachettl, 41–16
mailhostattrs, 41–18
preauth, 41–19
replayformat, 41–19
restrictplainpasswords, 41–20
searchformat, 41–20
ssladjustciphersuites, 16–14, 41–22
sslnicknames, 41–28
storeadmin, 41–28
storeadminpass, 41–28
tcpaccess, 41–29
tcpaccessattr, 41–30
virtualdomaindelim, 41–31

Virtual domains, G–12

virtualdomaindelim MMP/IMAP Proxy/POP
Proxy/vdomain option, 41–31
virtualdomainfile MMP/IMAP Proxy/POP Proxy
option

DELETED; see vdomain options instead, 41–31
VMS MAIL user agent

header* channel options, 46–77
vms_mail_exclusive MTA option, 52–302
vrfyallow channel option, 46–148
vrfydefault channel option, 46–148
vrfyhide channel option, 46–148

W
warninginterval alarm.system:diskavail option,
20–4
warninginterval alarm.system:serverresponse
option, 20–4
Warnings

local.store.dbnumcaches too big, lowered to 32,
26–9
store.dbcachesize too big, lowered to 1G, 26–9

warningthreshold msprobe option, 19–1
warnpost channel option, 46–104, 60–1
Watcher

Messaging Server infrastructure, 1
msprobe informs of possible problems, 19–1
Options, 18–1

enable, 18–1
port, 18–1
secret, 18–1

Startup, 18–1
stressperiod base option, 16–20

welcomemsg base option, 16–23
welcomemsg message_language option, 27–1
withinresolution IMAP option, 34–18
wrapsmtplonglines channel option, 46–146

X
xclient channel option, 46–84, 46–145, 46–172
xclientrepeat channel option, 46–84, 46–145, 46–172
xclientsasl channel option, 46–84, 46–145, 46–172
xclientsaslrepeat channel option, 46–84, 46–145,
46–172
xmailer MSHTTP option, 42–16
x_env_to channel option, 46–84

Index–206 Messaging Server Reference

Colophon
This manual was automatically generated from Messaging Server source code. A series of custom
stylesheets were used to produce DocBook 5 source, which was then processed using the DocBook XSL
stylesheets to produce XSL:FO source. Finally, the XSL:FO source was processed using Apache FOP to
produce a Portable Document Format file.

The titles in this document are typeset in Helvetica; the body text is in Palatino.

	Oracle Communications Messaging Server Reference
	Contents
	Preface
	1.1 Audience
	1.2 Documentation Accessibility
	1.3 Access to Oracle Support
	1.4 Related Documents

	Part I Configuration syntax
	Chapter 1 Option value syntax
	1.1 Available Types
	1.2 ISO 8601 P format
	1.3 ISO 8601 format
	1.4 MTA URL types
	1.4.1 LDAP URL substitution sequences

	Chapter 2 Options for migrating to Unified Configuration
	2.1 instancename Option
	2.2 rolename Option
	2.3 plugins Option

	Chapter 3 Special symbolic names
	Chapter 4 Recipe language
	4.1 Comments
	4.2 Integer values
	4.3 String values and list values
	4.3.1 Optlists

	4.4 Variables
	4.4.1 Variable indices

	4.5 Statements
	4.6 Operators
	4.7 Functions
	4.7.1 Configuration option access
	4.7.1.1 Configuration group access

	4.7.2 System information
	4.7.3 msconfig information
	4.7.4 Environment access
	4.7.5 msconfig information operations
	4.7.6 File operations
	4.7.7 Terminal I/O operations
	4.7.8 Statefile operations
	4.7.9 Alias creation and manipulation operations
	4.7.10 Channel creation and manipulation operations
	4.7.11 Rewrite rule creation and manipulation operations
	4.7.12 Mapping creation and manipulation operations
	4.7.13 Deployment map operations
	4.7.13.1 Add operations
	4.7.13.2 Create operations
	4.7.13.3 Delete operations
	4.7.13.4 Dump operation
	4.7.13.5 List operations
	4.7.13.6 Read operations
	4.7.13.7 Rename operations
	4.7.13.8 Set operations
	4.7.13.9 Write operations

	4.7.14 Optlist manipulation operations
	4.7.15 LDAP operations
	4.7.16 Random value generation
	4.7.17 Call-out to routine in external library

	4.8 User-defined routines
	4.9 Preprocessing Directives
	4.10 Random number generation

	Chapter 5 Sieve filters
	5.1 Sieve language
	5.1.1 Brief overview of Sieve language elements
	5.1.2 Sieve supported extensions
	5.1.2.1 Sieve address test
	5.1.2.2 Sieve body extension
	5.1.2.3 Sieve copy extension
	5.1.2.4 Sieve discard and jettison actions
	5.1.2.5 Sieve date and index extensions
	5.1.2.6 Sieve duplicate extension
	5.1.2.7 Sieve editheader extension
	5.1.2.8 Sieve envelope extension
	5.1.2.9 Sieve environment extension
	5.1.2.10 Sieve ereject and reject and refuse extensions
	5.1.2.11 Sieve external lists
	5.1.2.11.1 Example Sieve external lists with properties
	5.1.2.11.2 Testing Sieve external lists

	5.1.2.12 Sieve fileinto action
	5.1.2.13 Sieve ihave extension
	5.1.2.14 Sieve imap4flags extension
	5.1.2.15 Sieve mime extension
	5.1.2.16 Sieve notify extension
	5.1.2.16.1 The notify extension
	5.1.2.16.2 The notify_method_capability and valid_notify_method tests
	5.1.2.16.3 The nonotify action
	5.1.2.16.4 The :mime nonpositional parameter
	5.1.2.16.5 The fcc extension

	5.1.2.17 Sieve override extension
	5.1.2.18 Sieve redirect action
	5.1.2.19 Sieve relational extension
	5.1.2.20 Sieve spamtest and virustest extensions
	5.1.2.21 Sieve subaddress extension
	5.1.2.22 Sieve vacation extension
	5.1.2.22.1 Why a vacation message was not generated

	5.1.2.23 Sieve variables extension
	5.1.2.24 Sieve conversiontag extensions
	5.1.2.24.1 Sieve filter manipulation of conversion tags

	5.1.2.25 Sieve addprefix and addsuffix extensions
	5.1.2.26 Sieve addtag extension
	5.1.2.27 Sieve adjustcounter extension
	5.1.2.28 Sieve capture extension
	5.1.2.29 Sieve hold extension
	5.1.2.30 Sieve comparators
	5.1.2.31 Sieve importance extension
	5.1.2.32 Sieve loop extension
	5.1.2.33 Sieve memcache extension
	5.1.2.34 Sieve metermaid extension
	5.1.2.35 Sieve redis extension
	5.1.2.36 Sieve regex extension
	5.1.2.37 Sieve setenvelopefrom extension
	5.1.2.38 Sieve setnotify and setreturn extensions
	5.1.2.39 Sieve setoperation extension
	5.1.2.40 Sieve setpriority and setmtpriority extensions
	5.1.2.41 Sieve transactionlog extension
	5.1.2.42 Sieve translate extension
	5.1.2.43 Sieve warn extension
	5.1.2.44 Sieve custom tests via mappings
	5.1.2.45 Sieve subroutines
	5.1.2.46 Sieve expressions

	5.2 Sieve hierarchy
	5.2.1 Sieve filters: types of scripts
	5.2.2 Sieve filters: semantics of multiple scripts
	5.2.3 Sieve filters: evaluation of multiple scripts

	5.3 Sieve filters: implementation internals
	5.4 Head of household Sieve filters

	Chapter 6 TCP wrappers
	6.1 TCP wrapper filter syntax
	6.1.1 TCP wrapper filter wildcard names
	6.1.2 TCP wrapper filter wildcard patterns
	6.1.3 TCP wrapper filter EXCEPT operator
	6.1.4 TCP wrapper filter server-host specification

	6.2 TCP wrapper filter examples
	6.3 TCP wrapper filter creation
	6.4 Component domainallowed and domainnotallowed options
	6.4.1 domainallowed Option
	6.4.1.1 Use with the IMAP proxy
	6.4.1.2 Use with the POP proxy
	6.4.1.3 Use with http
	6.4.1.4 Use with imap
	6.4.1.5 Use with pop
	6.4.1.6 Use with ens
	6.4.1.7 Use with eval_ldapd

	6.4.2 domainnotallowed Option
	6.4.2.1 Use with the IMAP proxy
	6.4.2.2 Use with the POP proxy
	6.4.2.3 Use with eval_ldapd
	6.4.2.4 Use with http
	6.4.2.5 Use with imap
	6.4.2.6 Use with pop
	6.4.2.7 Use with ens

	Part II Messaging Server command line utilities
	Chapter 7 configtoxml_utility
	7.1 Syntax
	7.1.1 Restrictions

	7.2 Description
	7.3 Switches
	7.3.1 -32|-64
	7.3.2 --force, -f
	7.3.3 --help, -h
	7.3.4 --instance INSTANCE, -i INSTANCE
	7.3.5 --location DIR, -l DIR
	7.3.6 --noactive, -n
	7.3.7 --output CONFIG-FILE PASSWORD-FILE RESTRICTED-FILE, -o CONFIG-FILE PASSWORD-FILE RESTRICTED-FILE
	7.3.8 --role ROLE, -r ROLE
	7.3.9 --yes, -y
	7.3.10 --undo, -u

	7.4 Usage Notes
	7.5 Example

	Chapter 8 configure_utility
	Chapter 9 inetuser utility
	9.1 Syntax
	9.1.1 Restrictions

	9.2 Parameters
	9.3 Description
	9.4 Examples
	9.5 Switches
	9.5.1 --command-file=file, -f file
	9.5.2 --help, -?
	9.5.3 --version, -V
	9.5.4 --admin=type, -a type
	9.5.5 --attrlist=attrs, -A attrs
	9.5.6 --autocreate, -c
	9.5.7 --bind-dn=binddn, -D binddn
	9.5.8 --bind-pwfile=file, -j file
	9.5.9 --default-domain=domain, -d domain
	9.5.10 --dry-run, -n
	9.5.11 --hostlist=host, -h host
	9.5.12 --ldapattrval=avl, -p avl
	9.5.13 --ldif=file, -l file
	9.5.14 --logfile=file, -L file
	9.5.15 --myhost=host, -H host
	9.5.16 --novalidate
	9.5.17 --orgdn=dn, -O dn
	9.5.18 --postmaster=mailaddr, -M mailaddr
	9.5.19 --port=port, -P port
	9.5.20 --preserveCritical
	9.5.21 --pwfile=file, -J file
	9.5.22 --quiet, -q
	9.5.23 --require-ssl, -Z
	9.5.24 --verbose, -v

	Chapter 10 init-config utility
	10.1 Syntax
	10.1.1 Restrictions

	10.2 Parameters
	10.3 Description
	10.4 Switches
	10.4.1 --cassandra
	10.4.2 --dataroot=dataroot
	10.4.3 --debug
	10.4.4 --help, -?
	10.4.5 --ignoreSendmail
	10.4.6 --ldapport=ldapPort
	10.4.7 --ldif
	10.4.8 --list-recipes
	10.4.9 --noldap
	10.4.10 --novalidate
	10.4.11 --noxml
	10.4.12 --preserveCritical
	10.4.13 --quiet, -q
	10.4.14 --recipes=recipe-list, -r recipe-list
	10.4.15 --saveState=statefile
	10.4.16 --ssl
	10.4.17 --state=statefile
	10.4.18 --version, -V
	10.4.19 --xml

	10.5 Examples

	Chapter 11 msconfig utility
	11.1 Syntax
	11.2 Parameters
	11.2.1 Switches
	11.2.1.1 -directory=config-directory
	11.2.1.2 -help
	11.2.1.3 -input=input-file
	11.2.1.4 -multiple
	11.2.1.5 -novalidate
	11.2.1.6 -output=output-file
	11.2.1.7 -page
	11.2.1.8 -prompt
	11.2.1.9 -readonly
	11.2.1.10 -remark=remark-string
	11.2.1.11 -require=conditions

	11.2.2 Commands
	11.2.2.1 DEFAULT
	11.2.2.2 DEPLOYMAP operation
	11.2.2.3 DIRECTORY [filter]
	11.2.2.4 DIFFERENCES [m [n]]
	11.2.2.5 EDIT object
	11.2.2.6 EXECUTE string
	11.2.2.7 EXIT
	11.2.2.8 HELP [topic[subtopic...]]
	11.2.2.9 HISTORY
	11.2.2.10 INSTANCE
	11.2.2.11 IMPORT config
	11.2.2.12 LOG
	11.2.2.13 QUIT
	11.2.2.14 REVERT [n]
	11.2.2.15 ROLE
	11.2.2.16 RUN recipe [arg1 [arg2....]]
	11.2.2.17 SET option [value1 [value2....]]
	11.2.2.18 SHOW option [namefilter [valuefilter]]
	11.2.2.19 UNSET option
	11.2.2.20 WRITE

	11.3 Description
	11.4 Prompts
	11.5 Return status
	11.6 Some Useful Commands
	11.6.1 Help Command
	11.6.2 Show Command
	11.6.3 Set Command
	11.6.4 Edit Command
	11.6.5 List and Compare Configurations Commands

	Chapter 12 refresh utility
	12.1 Syntax
	12.1.1 Restrictions

	12.2 Parameters
	12.2.1 component

	12.3 Description
	12.4 Example

	Chapter 13 start-msg utility
	13.1 Syntax
	13.1.1 Restrictions

	13.2 Parameters
	13.2.1 ha
	13.2.2 component

	13.3 Description
	13.4 Switches
	13.4.1 -l
	13.4.2 -L
	13.4.3 -m

	13.5 Examples

	Chapter 14 stop-msg utility
	14.1 Syntax
	14.1.1 Restrictions

	14.2 Parameters
	14.2.1 ha
	14.2.2 component

	14.3 Description
	14.4 Switches
	14.4.1 -f

	14.5 Examples

	Part III Infrastructure
	Chapter 15 restricted.cnf file
	Chapter 16 Base options
	16.1 accounturl Option
	16.2 authcachesize Option
	16.3 authcachettl Option Under base
	16.4 bgmax Option
	16.5 bgpenalty Option
	16.6 bgmaxbadness Option
	16.7 bgdecay Option
	16.8 bglinear Option
	16.9 bgexcluded Option
	16.10 dblockcount Option
	16.11 dbtxnsync Option
	16.12 dcroot Option
	16.13 debugkeys Option Under base
	16.14 defaultdomain Option Under base
	16.15 dnsresolveclient Option
	16.16 enablelastaccess Option
	16.17 filterurl Option
	16.18 folderurl Option
	16.19 hostname Option Under base
	16.20 installedlanguages Option
	16.21 ipv6in Option
	16.22 ipv6out Option
	16.23 ipv6usegethostbyname Option
	16.24 ipv6sortorder Option
	16.25 LDAP bind and connect options: ldap_schemalevel (1 or 2)
	16.26 LDAP lookup cache MTA options: ldap_domain_timeout (integer)
	16.27 ldap_domain_known_attributes Option
	16.28 Direct LDAP attribute name MTA options: ldap_domain_attr_basedn (LDAP attribute name)
	16.29 Direct LDAP attribute name MTA options: ldap_domain_attr_alias (LDAP attribute name)
	16.30 Direct LDAP attribute name MTA options: ldap_domain_attr_uid_separator (LDAP attribute name)
	16.31 Direct LDAP attribute name MTA options: ldap_domain_attr_status (LDAP attribute name)
	16.32 Direct LDAP attribute name MTA options: ldap_domain_attr_mail_status (LDAP attribute name)
	16.33 Direct LDAP schema MTA options: ldap_basedn_filter_schema1 (LDAP URL filter), ldap_basedn_filter_schema2 (LDAP URL filter elements)
	16.34 Direct LDAP schema MTA options: ldap_domain_filter_schema1 (LDAP URL filter), ldap_domain_filter_schema2 (LDAP URL filter)
	16.35 ldap_host_alias_list Option Under base
	16.36 ldapconnecttimeout Option
	16.37 ldapmodifytimeout Option
	16.38 ldappoolrefreshinterval Option
	16.39 ldaprequiretls Option
	16.40 ldapsearchtimeout Option
	16.41 ldaptrace Option
	16.42 listenaddr Option Under base
	16.43 listurl Option
	16.44 lockdir Option
	16.45 loginseparator Option
	16.46 obsoleteimap Option
	16.47 preferpoll Option
	16.48 projectid Option Under base
	16.49 properties Option
	16.50 proxyadmin Option
	16.51 proxyadminpass Option
	16.52 proxyimapport Option
	16.53 proxyimapssl Option
	16.54 proxyserverlist Option
	16.55 proxytrustmailhost Option
	16.56 pwchangeurl Option
	16.57 rbac Option
	16.58 rfc822headerallow8bit Option
	16.59 secret Option Under base
	16.60 serveruid Option
	16.61 sitelanguage Option
	16.62 softtokendir Option
	16.63 ssladjustciphersuites Option
	16.64 sslcachedir Option
	16.65 ssldbpath Option
	16.66 ssldblegacy Option
	16.67 ssldbprefix Option
	16.68 sslcompress Option
	16.69 sslnicknames Option Under base
	16.70 sslpkix Option
	16.71 sslrequiresafenegotiate Option
	16.72 sslrenegotiate Option
	16.73 sslconnlimit Option
	16.74 stressperiod Option
	16.75 stressfdwait Option
	16.76 supportedlanguages Option
	16.77 threadholddelay Option
	16.78 tlsminversion Option
	16.78.1 Use with base
	16.78.2 Use with channel

	16.79 tlsv12enable Option
	16.80 tlsv13enable Option
	16.81 tmpdir Option Under base
	16.82 ugldapbasedn Option
	16.83 ugldapbindcred Option
	16.84 ugldapbinddn Option
	16.85 ugldaphost Option
	16.86 ugldapport Option
	16.87 ugldapusessl Option
	16.88 welcomemsg Option Under base
	16.89 logfile options
	16.89.1 expirytime Option
	16.89.2 flushinterval Option
	16.89.3 filemode Option
	16.89.4 logmillisecond Option
	16.89.5 loglevel Option Under logfile
	16.89.6 maxlogfiles Option
	16.89.6.1 Use with mmp Under logfile

	16.89.7 maxlogfilesize Option
	16.89.7.1 Use with mmp Under logfile

	16.89.8 maxlogsize Option
	16.89.8.1 Use with mmp Under logfile

	16.89.9 rollovertime Option
	16.89.9.1 Use with mmp Under logfile

	16.89.10 rolloverpolicy Option
	16.89.11 syslogfacility Option
	16.89.11.1 Use with mmp Under logfile

	16.90 Base autorestart options
	16.90.1 enable Option Under autorestart
	16.90.2 timeout Option Under autorestart

	16.91 Base certmap options
	16.91.1 dncomps Option
	16.91.2 filtercomps Option
	16.91.3 verifycert Option
	16.91.4 cmapldapattr Option

	16.92 Base domainmap options
	16.92.1 debug Option Under domainmap

	Chapter 17 Scheduler options
	17.1 enable Option Under schedule
	17.2 enablelog Option
	17.3 Scheduler task options
	17.3.1 enable Option Under task
	17.3.2 expire task options
	17.3.2.1 enable Option Use With expire Under task
	17.3.2.2 crontab Option Use With expire Under task

	17.3.3 msprobe task options
	17.3.3.1 enable Option Use With msprobe Under task
	17.3.3.2 crontab Option Use With msprobe Under task

	17.3.4 purge task options
	17.3.4.1 enable Option Use With purge Under task
	17.3.4.2 crontab Option Use With purge Under task

	17.3.5 return_job options
	17.3.5.1 enable Option Use With return_job Under task
	17.3.5.2 crontab Option Use With return_job Under task

	17.3.6 snapshot task options
	17.3.6.1 enable Option Use With snapshot Under task
	17.3.6.2 crontab Option Use With snapshot Under task

	17.3.7 snapshotverify task options
	17.3.7.1 enable Option Use With snapshotverify Under task
	17.3.7.2 crontab Option Use With snapshotverify Under task

	Chapter 18 Watcher options
	18.1 enable Option Under watcher
	18.2 port Option Under watcher
	18.3 secret Option Under watcher

	Chapter 19 msprobe options
	19.1 queuedir Option
	19.2 timeout Option Under msprobe
	19.3 warningthreshold Option Under msprobe
	19.4 Probe options

	Chapter 20 Alarm options
	20.1 noticehost Option
	20.2 noticeport Option
	20.3 noticercpt Option
	20.4 noticesender Option
	20.5 noticetemplate Option
	20.6 smtpauthpassword Option Under alarm
	20.7 smtpauthuser Option Under alarm
	20.8 Alarm system options
	20.8.1 description Option Use With diskavail Under system
	20.8.2 description Option Use With serverresponse Under system
	20.8.3 statinterval Option
	20.8.3.1 Use with diskavail Under system
	20.8.3.2 Use with serverresponse Under system

	20.8.4 threshold Option
	20.8.4.1 Use with diskavail Under system
	20.8.4.2 Use with serverresponse Under system

	20.8.5 thresholddirection Option
	20.8.5.1 Use with diskavail Under system
	20.8.5.2 Use with serverresponse Under system

	20.8.6 warninginterval Option
	20.8.6.1 Use with diskavail Under system
	20.8.6.2 Use with serverresponse Under system

	20.9 smtptls Option Under alarm

	Chapter 21 Auth options
	21.1 authenticationldapattributes Option
	21.2 authenticationserver Option
	21.3 auto_transition Option
	21.4 broken_client_login_charset Option
	21.5 canonicalsearchfilter Option
	21.6 has_plain_passwords Option
	21.7 requireauthenticationserver Option
	21.8 searchfilter Option
	21.9 searchfordomain Option
	21.10 usedomainmap Option

	Chapter 22 sectoken options
	22.1 tokenpass Option

	Chapter 23 Deployment Map options
	23.1 enable Option Under deploymap
	23.2 capability_starttls Option Under deploymap
	23.3 debug Option Under deploymap
	23.4 heartbeat Option
	23.5 port Option Under deploymap
	23.6 properties Option
	23.7 run_as_server Option
	23.8 server_host Option Under deploymap
	23.9 sslusessl Option Under deploymap
	23.10 userid and passwd Options

	Chapter 24 rollovermanager options
	24.1 enable Option Under rollovermanager

	Chapter 25 Messaging Server Ports

	Part IV The Message Store
	Chapter 26 Message Store options
	26.1 enable Option Under store
	26.2 admins Option
	26.3 allowbadmailbox Option
	26.4 autounsubscribe Option
	26.5 autorepair Option
	26.6 autorepairdebug Option
	26.7 backupdir Option
	26.8 backupexclude Option
	26.9 cachepreviewlen Option
	26.10 cachesynclevel Option
	26.11 casconnectpoints Option
	26.12 solrconnectpoints Option
	26.13 msgconnectpoints Option
	26.14 cacheconnectpoints Option
	26.15 casusername Option
	26.16 caspassword Option
	26.17 casmetarf Option
	26.18 casmsgrf Option
	26.19 cassolrrf Option
	26.20 cascacherf Option
	26.21 casmaxconnectionsperhost Option
	26.22 casnumthreadsio Option
	26.23 cascasopretrycount Option
	26.24 cascasopretryintervalinms Option
	26.25 caskeyspaceprefix Option
	26.26 cascachedc Option
	26.27 casmetadc Option
	26.28 casmsgdc Option
	26.29 cassolrdc Option
	26.30 checkdiskusage Option
	26.31 checkmailhost Option
	26.32 cleanupage Option
	26.33 cleanupsize Option
	26.34 dbcachesize Option Under store
	26.35 dblogregionmax Option
	26.36 dbnumcaches Option
	26.37 dbregionmax Option
	26.38 dbsync Option
	26.39 dbtmpdir Option
	26.40 dbtype Option
	26.41 deadlockaggressive Option
	26.42 defaultmailboxquota Option
	26.43 defaultmessagequota Option
	26.44 defaultpartition Option
	26.45 diskusagethreshold Option
	26.46 encryptnew Option
	26.47 ensureownerrights Option
	26.48 expiresieve Option
	26.49 expungesynclevel Option
	26.50 finalcheckpoint Option
	26.51 folderlockcount Option
	26.52 indexeradmins Option
	26.53 indexmapreadonly Option
	26.54 indexsynclevel Option
	26.55 keypass Option
	26.56 keylabel Option
	26.57 listimplicit Option
	26.58 logexpungedetails Option
	26.59 mailboxpurgedelay Option
	26.60 maxcachefilesize Option
	26.61 maxfolders Option
	26.62 maxlog Option
	26.63 maxmessages Option
	26.64 messagesynclevel Option
	26.65 overquotastatus Option
	26.66 perusersynclevel Option
	26.67 pin Option
	26.68 quotaenforcement Option
	26.69 quotaexceededmsg Option Under store
	26.70 quotaexceededmsginterval Option
	26.71 quotagraceperiod Option
	26.72 quotanotification Option
	26.73 quotaoverdraft Option
	26.74 quotawarn Option
	26.75 rollingdbbackup Option
	26.76 searchengine Option
	26.77 seenckpinterval Option
	26.78 seenckpstart Option
	26.79 serviceadmingroupdn Option
	26.80 sharedfolders Option
	26.81 snapshotdirs Option
	26.82 snapshotpath Option
	26.83 subscribesynclevel Option
	26.84 synclevel Option
	26.85 undeleteflag Option
	26.86 umask Option
	26.87 Message Store archive options
	26.87.1 tmpdir Option Under archive
	26.87.2 compliance Option
	26.87.3 operational Option
	26.87.4 source_channel Option
	26.87.5 destination Option
	26.87.6 style Option
	26.87.7 reportdir Option
	26.87.8 intext Option
	26.87.9 posteddatemode Option
	26.87.10 useheaderrecipients Option
	26.87.11 retrieveport Option
	26.87.12 retrieveserver Option
	26.87.13 retrievetimeout Option
	26.87.14 path Option Under archive

	26.88 Message Store checkpoint options
	26.88.1 stresslimit Option
	26.88.2 debug Option Under checkpoint

	26.89 Message Store dbreplicate options
	26.89.1 enable Option Under dbreplicate
	26.89.2 port Option Under dbreplicate
	26.89.3 dbremotehost Option
	26.89.4 dbpriority Option
	26.89.5 twosites Option
	26.89.6 queuemax Option
	26.89.7 ackpolicy Option
	26.89.8 acktimeout Option

	26.90 Message Store deadlock options
	26.90.1 autodetect Option
	26.90.2 checkinterval Option

	26.91 Message Store expire options
	26.91.1 exploglevel Option

	26.92 Message Store expirerule options
	26.92.1 deleted Option
	26.92.2 exclusive Option
	26.92.3 folderpattern Option
	26.92.4 foldersizebytes Option
	26.92.5 messagecount Option
	26.92.6 messagedays Option
	26.92.7 messagesize Option
	26.92.8 messagesizedays Option
	26.92.9 seen Option

	26.93 Message Store folderquota options
	26.93.1 enable Option Under folderquota

	26.94 Message Store messagetype and typequota options
	26.94.1 enable Option Under messagetype
	26.94.2 enable Option Under typequota
	26.94.3 header Option
	26.94.4 contenttype Option
	26.94.5 flagname Option
	26.94.6 quotaroot Option

	26.95 Message Store msghash options
	26.95.1 enable Option Under msghash
	26.95.2 dbcachesize Option Under msghash
	26.95.3 nummsgs Option

	26.96 Message Store purge options
	26.96.1 enable Option Under purge
	26.96.2 count Option
	26.96.3 maxthreads Option Under purge
	26.96.4 percentage Option
	26.96.5 crontab Option Use With purge Under task

	26.97 Message Store relinker options
	26.97.1 enable Option Under relinker
	26.97.2 maxage Option
	26.97.3 minsize Option
	26.97.4 purgecycle Option

	26.98 Message Store shared folder options
	26.98.1 restrictanyone Option
	26.98.2 restrictdomain Option
	26.98.3 shareflags Option
	26.98.4 user Option Under publicsharedfolders

	Chapter 27 message_language options
	27.1 quotaexceededmsg Option Under message_language
	27.2 welcomemsg Option Under message_language

	Chapter 28 Partition options
	28.1 messagepath Option
	28.2 cachepath Option
	28.3 path Option Under partition
	28.4 path Option Use With primary Under partition

	Chapter 29 backup_group options
	29.1 re_pattern Option

	Chapter 30 Store Transaction Log Format
	30.1 XML Log Attributes Always Present in Store Transaction log
	30.2 XML Log Common Attributes
	30.3 XML Log Entity Names and Specific Attributes:

	Chapter 31 Message expiration
	31.1 store.expirerule files
	31.1.1 store.expirerule file rulesets

	31.2 imexpire folder patterns
	31.3 imexpire and localized mailbox names

	Chapter 32 Store Index and search
	32.1 Migrating from ISS to Elasticsearch
	32.2 Migrating from DSE SOLR to Elasticsearch
	32.3 Search Technology Comparison
	32.3.1 Substring vs. Indexed Search
	32.3.2 Search Complexity
	32.3.3 Index Storage
	32.3.4 Search Host Failures
	32.3.5 High Availability
	32.3.6 Data Growth
	32.3.7 Reindexing
	32.3.8 Stop Words
	32.3.9 Whitespace
	32.3.10 Punctuation
	32.3.11 Diacritical Sensitivity
	32.3.12 Convergence/ISS Attachment Search
	32.3.13 Non-IMAP Search API

	32.4 Elasticsearch options
	32.4.1 hostlist Option Under elasticsearch
	32.4.2 port Option Under elasticsearch
	32.4.3 authusername Option Under elasticsearch
	32.4.4 authpassword Option Under elasticsearch
	32.4.5 sslusessl Option Under elasticsearch
	32.4.6 storesource Option
	32.4.7 numshards Option
	32.4.8 numreplicas Option

	32.5 Indexer options
	32.5.1 enable Option Under indexer
	32.5.2 port Option Under indexer
	32.5.3 server_host Option Under indexer
	32.5.4 timeout Option Under indexer
	32.5.5 connecttimeout Option Under indexer
	32.5.6 bodytextonly Option
	32.5.7 substring_search Option
	32.5.8 suffix_search Option
	32.5.9 prefix_search Option
	32.5.10 sslusessl Option Under indexer

	32.6 ISC options
	32.6.1 enable Option Under isc
	32.6.2 authpassword Option Under isc
	32.6.3 basicjavaswitches Option
	32.6.4 cachettl Option Under isc
	32.6.5 extrajavaswitches Option
	32.6.6 sslusessl Option Under isc
	32.6.7 authusername Option Under isc
	32.6.8 server_port Option Under isc
	32.6.9 maxthreads Option Under isc
	32.6.10 logdir Option Under isc
	32.6.11 authusername Option Under isc_client
	32.6.12 authpassword Option Under isc_client
	32.6.13 ischosts Option Under isc_client
	32.6.14 max_conns Option Under isc_client
	32.6.15 sslusessl Option Under isc_client
	32.6.16 server_port Option Under isc_client

	32.7 FIT options
	32.7.1 logdir Option Under fit
	32.7.2 jloglevel Option Under fit

	Chapter 33 Client access to Message Store servers
	Chapter 34 IMAP options
	34.1 enable Option Under imap
	34.2 actions Option
	34.3 actionattributes Option
	34.4 adminbypassquota Option
	34.5 allowanonymouslogin Option Under imap
	34.6 authfaildelay Option
	34.7 banner Option Under imap
	34.8 bgmax Option
	34.9 bgpenalty Option
	34.10 bgmaxbadness Option
	34.11 bgdecay Option
	34.12 bglinear Option
	34.13 bgexcluded Option
	34.14 broken_client_defer_exists Option
	34.15 capability_acl Option
	34.16 capability_annotate Option
	34.17 capability_binary Option
	34.18 capability_catenate Option
	34.19 capability_children Option
	34.20 capability_condstore Option
	34.21 capability_context_search Option
	34.22 capability_context_sort Option
	34.23 capability_create_special_use Option
	34.24 capability_enable Option
	34.25 capability_esearch Option
	34.26 capability_esort Option
	34.27 capability_id Option
	34.28 capability_idle Option
	34.29 capability_imap4 Option
	34.30 capability_imap4rev1 Option
	34.31 capability_language Option
	34.32 capability_list_status Option
	34.33 capability_literal Option
	34.34 capability_login_referrals Option
	34.35 capability_metadata Option
	34.36 capability_multisearch Option
	34.37 capability_namespace Option
	34.38 capability_notify Option
	34.39 capability_qresync Option
	34.40 capability_quota Option
	34.41 capability_savedate Option
	34.42 capability_sasl_ir Option
	34.43 capability_searchres Option
	34.44 capability_sort Option
	34.45 capability_sort_display Option
	34.46 capability_special_use Option
	34.47 capability_starttls Option Under imap
	34.48 capability_status_size Option
	34.49 capability_thread_references Option
	34.50 capability_thread_subject Option
	34.51 capability_uidplus Option
	34.52 capability_unselect Option
	34.53 capability_url_partial Option
	34.54 capability_urlauth Option
	34.55 capability_utf8_accept Option
	34.56 capability_within Option
	34.57 capability_x_netscape Option
	34.58 capability_x_orcl_as Option
	34.59 capability_x_sun_imap Option
	34.60 capability_x_sun_sort Option
	34.61 capability_x_unauthenticate Option
	34.62 capability_unauthenticate Option
	34.63 capability_xrefresh Option
	34.64 capability_xsender Option
	34.65 capability_xserverinfo Option
	34.66 capability_xsnippet Option
	34.67 capability_xum1 Option
	34.68 connlimits Option
	34.68.1 Use with isc_client

	34.69 diacritical_sensitive_languages Option
	34.70 domainallowed Option Under imap
	34.71 domainnotallowed Option Under imap
	34.72 enablesslport Option Under imap
	34.73 enableuserlist Option Under imap
	34.74 extra_capabilities Option
	34.75 fixinternaldate Option
	34.76 forcetelemetry Option Under imap
	34.77 idletimeout Option Under imap
	34.78 immediateflagupdate Option
	34.79 legacy_proxyauth Option
	34.80 logauthsessionid Option
	34.81 logcommands Option
	34.82 logprotocolerrors Option Under imap
	34.83 logunauthsession Option Under imap
	34.84 maxmessagesize Option Under imap
	34.85 maxnoops Option
	34.86 maxprotocolerrors Option Under imap
	34.87 maxsearchmailboxes Option
	34.88 maxsearchnest Option
	34.89 maxsessions Option Under imap
	34.90 maxthreads Option Under imap
	34.91 numprocesses Option Under imap
	34.92 plaintextmincipher Option Under imap
	34.93 polldelay Option
	34.94 port Option Under imap
	34.95 sslcachesize Option Under imap
	34.96 sslnicknames Option Under imap
	34.97 sslport Option Under imap
	34.98 sslusessl Option Under imap
	34.99 submituser Option
	34.100 withinresolution Option
	34.101 IMAP password expiration alert options
	34.101.1 firstwarn Option
	34.101.2 viametermaid Option
	34.101.3 metermaidtable Option

	Chapter 35 POP options
	35.1 enable Option Under pop
	35.2 actions Option
	35.3 actionattributes Option
	35.4 allowanonymouslogin Option Under pop
	35.5 authfaildelay Option
	35.6 banner Option Under pop
	35.7 bgmax Option
	35.8 bgpenalty Option
	35.9 bgmaxbadness Option
	35.10 bgdecay Option
	35.11 bglinear Option
	35.12 bgexcluded Option
	35.13 connlimits Option
	35.13.1 connlimits Option Under isc_client

	35.14 domainallowed Option Under pop
	35.15 domainnotallowed Option Under pop
	35.16 emulateqpopper Option
	35.17 enablesslport Option Under pop
	35.18 forcetelemetry Option Under pop
	35.19 idletimeout Option Under pop
	35.20 lockmailbox Option
	35.21 logprotocolerrors Option Under pop
	35.22 logunauthsession Option Under pop
	35.23 maxprotocolerrors Option Under pop
	35.24 maxsessions Option Under pop
	35.25 maxthreads Option Under pop
	35.26 numprocesses Option Under pop
	35.27 plaintextmincipher Option Under pop
	35.28 poplogmboxstat Option
	35.29 popstatuskludge Option
	35.30 port Option Under pop
	35.31 sslcachesize Option Under pop
	35.32 sslnicknames Option Under pop
	35.33 sslport Option Under pop
	35.34 sslusessl Option Under pop

	Chapter 36 Message Trace options
	36.1 activate Option
	36.2 actions Option
	36.3 actionattributes Option
	36.4 loglevel Option Under messagetrace

	Chapter 37 notifytarget options
	37.1 enable Option Under notifytarget
	37.2 notifytype Option
	37.3 enseventkey Option Under notifytarget
	37.4 enshost Option Under notifytarget
	37.5 ensport Option Under notifytarget
	37.6 enspwd Option
	37.7 ensuser Option
	37.8 ensusessl Option
	37.8.1 Use with notifytarget
	37.8.2 Use with ms-internal Under notifytarget

	37.9 jmqhost Option Under notifytarget
	37.10 jmqport Option Under notifytarget
	37.11 jmqpwd Option Under notifytarget
	37.12 jmqtopic Option Under notifytarget
	37.13 jmquser Option Under notifytarget
	37.14 jmqqueue Option
	37.15 maxbodysize Option Under notifytarget
	37.16 maxheadersize Option Under notifytarget
	37.17 msgflags Option Under notifytarget
	37.18 destinationtype Option
	37.19 ldapdestination Option
	37.20 persistent Option
	37.21 priority Option
	37.22 ttl Option
	37.23 deletemsg Option Under notifytarget
	37.24 loguser Option Under notifytarget
	37.25 newmsg Option Under notifytarget
	37.26 overquota Option Under notifytarget
	37.27 underquota Option Under notifytarget
	37.28 setacl Option
	37.29 noninbox Option Under notifytarget
	37.30 msgtypes Option
	37.31 purgemsg Option Under notifytarget
	37.32 readmsg Option Under notifytarget
	37.33 updatemsg Option Under notifytarget
	37.34 expungemsg Option
	37.35 annotatemsg Option
	37.36 changeflag Option
	37.37 copymsg Option

	Chapter 38 IMAP error statuses
	Chapter 39 User identifiers

	Part V Proxies and the MMP
	Chapter 40 Proxy options
	40.1 httpadmin Option
	40.2 httpadminpass Option
	40.3 imapadmin Option
	40.4 imapadminpass Option
	40.5 imapport Option
	40.6 storehostlist Option
	40.7 hostselect Option

	Chapter 41 MMP and IMAP Proxy and POP Proxy and vdomain options
	41.1 enable Option Under the MMP
	41.2 adminpolicy Option
	41.3 memcached_enable Option
	41.4 memcached_host Option
	41.5 memcached_port Option
	41.6 authcachettl Option Under the MMP
	41.7 authenticationldapattributes Option
	41.8 authenticationserver Option
	41.9 authservice Option
	41.10 authservicettl Option
	41.11 backsideport Option
	41.12 banner Option Under the MMP
	41.13 banner Option Under the IMAP proxy
	41.14 banner Option Under the POP proxy
	41.15 bethegroup Option
	41.16 betheuser Option
	41.17 bgmax Option
	41.18 bgpenalty Option
	41.19 bgmaxbadness Option
	41.20 bgdecay Option
	41.21 bglinear Option
	41.22 bgexcluded Option
	41.23 binddn Option
	41.24 bindpass Option
	41.25 canonicalvirtualdomaindelim Option
	41.26 capability Option
	41.27 certmapdn Option
	41.28 certmapfile Option
	41.29 connecttimeout Option Under the MMP
	41.30 connecttimeout Option Under the IMAP proxy
	41.31 connecttimeout Option Under the POP proxy
	41.32 connlimits Option
	41.32.1 connlimits Option Under isc_client

	41.33 connrejectthreshold Option
	41.34 crams Option
	41.35 debugkeys Option
	41.35.1 Use with base

	41.36 defaultdomain Option
	41.36.1 Use with base

	41.37 dnsrbl Option
	41.38 domainallowed Option Under the IMAP proxy
	41.39 domainnotallowed Option Under the IMAP proxy
	41.40 domainsearchformat Option
	41.41 hosteddomains Option
	41.42 ipv6in Option
	41.43 ipv6out Option
	41.44 langlist Option
	41.45 ldapcachesize Option
	41.46 ldapcachettl Option
	41.47 ldappendingoplimit Option
	41.48 ldaprefreshinterval Option
	41.49 ldaptimeout Option
	41.50 ldapurl Option
	41.51 logdir Option
	41.51.1 Use with isc
	41.51.2 Use with fit

	41.52 loglevel Option Under the MMP
	41.53 loglevel Option Under the IMAP proxy
	41.54 loglevel Option Under the POP proxy
	41.55 mailhostattrs Option
	41.56 maxconcurrentconnectionattempts Option
	41.57 maxthreads Option Under the MMP
	41.58 numprocesses Option Under the MMP
	41.59 numthreads Option
	41.60 plaintextmincipher Option Under the IMAP proxy
	41.61 polldelay Option
	41.62 preauth Option
	41.63 preauthtimeout Option
	41.64 preferpoll Option
	41.65 replayformat Option Under the MMP
	41.66 replaypass Option
	41.67 requireauthenticationserver Option
	41.68 restrictplainpasswords Option
	41.69 searchformat Option
	41.70 serverdownalert Option
	41.71 servicelist Option
	41.72 spoofemptymailbox Option
	41.73 spooftempfail Option
	41.74 spoofmessagefile Option
	41.75 ssladjustciphersuites Option
	41.76 sslbacksideport Option
	41.77 sslcachedir Option
	41.78 sslcertprefix Option
	41.79 sslenable Option
	41.80 sslkeypasswdfile Option
	41.81 sslkeyprefix Option
	41.82 sslnicknames Option Under the MMP
	41.83 sslsecmodfile Option
	41.84 storeadmin Option
	41.85 storeadminpass Option
	41.86 syncldap Option
	41.87 tcp_listen options
	41.87.1 tcp_ports Option Under tcp_listen
	41.87.2 ssl_ports Option Under tcp_listen
	41.87.3 listen_addresses Option Under tcp_listen
	41.87.4 backlog Option Under tcp_listen

	41.88 tcpaccess Option
	41.89 tcpaccessattr Option
	41.90 timeout Option Under the MMP
	41.91 timeout Option Under the IMAP proxy
	41.92 timeout Option Under the POP proxy
	41.93 use_nslog Option Under the MMP
	41.94 usenslog Option
	41.95 usergroupdn Option
	41.96 virtualdomaindelim Option
	41.97 virtualdomainfile Option

	Part VI Convergence webmail
	Chapter 42 MSHTTP options
	42.1 enable Option Under http
	42.2 enablesslport Option Under http
	42.3 allowanonymouslogin Option Under http
	42.4 allowcollect Option
	42.5 allowldapaddresssearch Option
	42.6 altservice Option
	42.7 cert_enable Option
	42.8 cert_port Option
	42.9 charsetvalidation Option
	42.10 connlimits Option
	42.10.1 connlimits Option Under isc_client

	42.11 convergencefilterenabled Option
	42.12 cookiedomain Option
	42.13 cookiename Option
	42.14 da_host Option
	42.15 da_port Option
	42.16 detectcharset Option
	42.17 domainallowed Option Under http
	42.18 domainnotallowed Option Under http
	42.19 enableblacklistfilter Option
	42.20 enableuserlist Option Under http
	42.21 extrauserldapattrs Option
	42.22 filterhiddenmailinglists Option
	42.23 forcenbsptospace Option
	42.24 forcetelemetry Option Under http
	42.25 fullfromheader Option
	42.26 generatereceivedheader Option
	42.27 gzipattach Option
	42.28 gzipdynamic Option
	42.29 gzipstatic Option
	42.30 htmlprocessor Option
	42.31 httpproxyadmin Option
	42.32 httpproxyadminpass Option
	42.33 idletimeout Option Under http
	42.34 ims5compat Option
	42.35 ipsecurity Option
	42.36 ldapaddresssearchattrs Option
	42.37 logunauthsession Option Under http
	42.38 maxcollectmsglen Option
	42.39 maxldaplimit Option
	42.40 maxmessagesize Option Under http
	42.41 maxpostsize Option
	42.42 maxsessions Option Under http
	42.43 maxthreads Option Under http
	42.44 nofilecache Option
	42.45 numprocesses Option Under http
	42.46 plaintextconvspace Option
	42.47 plaintextmincipher Option Under http
	42.48 plaintexttabsize Option
	42.49 popbindaddr Option
	42.50 port Option Under http
	42.51 proxyport Option
	42.52 replayformat Option Under http
	42.53 resourcetimeout Option
	42.54 rfc2231compliant Option
	42.55 sessiontimeout Option
	42.56 showunreadcounts Option
	42.57 singlesignoff Option
	42.58 smtpauthpassword Option Under http
	42.59 smtpauthuser Option Under http
	42.60 smtphost Option
	42.61 smtpport Option
	42.62 smtptls Option Under http
	42.63 sourceurl Option
	42.64 spooldir Option
	42.65 sslcachesize Option Under http
	42.66 sslnicknames Option Under http
	42.67 sslport Option Under http
	42.68 sslsourceurl Option
	42.69 sslusessl Option Under http
	42.70 sso_enable Option
	42.71 sso_id Option
	42.72 sso_prefix Option
	42.73 usesentdate Option
	42.74 uwcenabled Option
	42.75 uwccontexturi Option
	42.76 uwchome Option
	42.77 uwclogouturl Option
	42.78 uwcport Option
	42.79 uwcsslport Option
	42.80 xmailer Option
	42.81 MSHTTP errors
	42.82 MSHTTP feedback options
	42.82.1 spam Option
	42.82.2 notspam Option

	42.83 MSHTTP httpcharset and mailcharset options
	42.83.1 af Option
	42.83.1.1 Use with httpcharset
	42.83.1.2 Use with mailcharset

	42.83.2 ar Option
	42.83.2.1 Use with httpcharset
	42.83.2.2 Use with mailcharset

	42.83.3 be Option
	42.83.3.1 Use with httpcharset
	42.83.3.2 Use with mailcharset

	42.83.4 bg Option
	42.83.4.1 Use with httpcharset
	42.83.4.2 Use with mailcharset

	42.83.5 ca Option
	42.83.5.1 Use with httpcharset
	42.83.5.2 Use with mailcharset

	42.83.6 cs Option
	42.83.6.1 Use with httpcharset
	42.83.6.2 Use with mailcharset

	42.83.7 da Option
	42.83.7.1 Use with httpcharset
	42.83.7.2 Use with mailcharset

	42.83.8 de Option
	42.83.8.1 Use with httpcharset
	42.83.8.2 Use with mailcharset

	42.83.9 el Option
	42.83.9.1 Use with httpcharset
	42.83.9.2 Use with mailcharset

	42.83.10 en Option
	42.83.10.1 Use with httpcharset
	42.83.10.2 Use with mailcharset

	42.83.11 es Option
	42.83.11.1 Use with httpcharset
	42.83.11.2 Use with mailcharset

	42.83.12 et Option
	42.83.12.1 Use with httpcharset
	42.83.12.2 Use with mailcharset

	42.83.13 eu Option
	42.83.13.1 Use with httpcharset
	42.83.13.2 Use with mailcharset

	42.83.14 fi Option
	42.83.14.1 Use with httpcharset
	42.83.14.2 Use with mailcharset

	42.83.15 fr Option
	42.83.15.1 Use with httpcharset
	42.83.15.2 Use with mailcharset

	42.83.16 ga Option
	42.83.16.1 Use with httpcharset
	42.83.16.2 Use with mailcharset

	42.83.17 gl Option
	42.83.17.1 Use with httpcharset
	42.83.17.2 Use with mailcharset

	42.83.18 he Option
	42.83.18.1 Use with httpcharset
	42.83.18.2 Use with mailcharset

	42.83.19 hr Option
	42.83.19.1 Use with httpcharset
	42.83.19.2 Use with mailcharset

	42.83.20 hu Option
	42.83.20.1 Use with httpcharset
	42.83.20.2 Use with mailcharset

	42.83.21 is Option
	42.83.21.1 Use with httpcharset
	42.83.21.2 Use with mailcharset

	42.83.22 it Option
	42.83.22.1 Use with httpcharset
	42.83.22.2 Use with mailcharset

	42.83.23 ja Option
	42.83.23.1 Use with httpcharset
	42.83.23.2 Use with mailcharset

	42.83.24 ko Option
	42.83.24.1 Use with httpcharset
	42.83.24.2 Use with mailcharset

	42.83.25 lt Option
	42.83.25.1 Use with httpcharset
	42.83.25.2 Use with mailcharset

	42.83.26 lv Option
	42.83.26.1 Use with httpcharset
	42.83.26.2 Use with mailcharset

	42.83.27 mk Option
	42.83.27.1 Use with httpcharset
	42.83.27.2 Use with mailcharset

	42.83.28 nl Option
	42.83.28.1 Use with httpcharset
	42.83.28.2 Use with mailcharset

	42.83.29 no Option
	42.83.29.1 Use with httpcharset
	42.83.29.2 Use with mailcharset

	42.83.30 pl Option
	42.83.30.1 Use with httpcharset
	42.83.30.2 Use with mailcharset

	42.83.31 pt Option
	42.83.31.1 Use with httpcharset
	42.83.31.2 Use with mailcharset

	42.83.32 ro Option
	42.83.32.1 Use with httpcharset
	42.83.32.2 Use with mailcharset

	42.83.33 ru Option
	42.83.33.1 Use with httpcharset
	42.83.33.2 Use with mailcharset

	42.83.34 sk Option
	42.83.34.1 Use with httpcharset
	42.83.34.2 Use with mailcharset

	42.83.35 sl Option
	42.83.35.1 Use with httpcharset
	42.83.35.2 Use with mailcharset

	42.83.36 sq Option
	42.83.36.1 Use with httpcharset
	42.83.36.2 Use with mailcharset

	42.83.37 sr Option
	42.83.37.1 Use with httpcharset
	42.83.37.2 Use with mailcharset

	42.83.38 sv Option
	42.83.38.1 Use with httpcharset
	42.83.38.2 Use with mailcharset

	42.83.39 th Option
	42.83.39.1 Use with httpcharset
	42.83.39.2 Use with mailcharset

	42.83.40 tr Option
	42.83.40.1 Use with httpcharset
	42.83.40.2 Use with mailcharset

	42.83.41 uk Option
	42.83.41.1 Use with httpcharset
	42.83.41.2 Use with mailcharset

	42.83.42 yi Option
	42.83.42.1 Use with httpcharset
	42.83.42.2 Use with mailcharset

	42.83.43 zh-cn Option
	42.83.43.1 Use with httpcharset
	42.83.43.2 Use with mailcharset

	42.83.44 zh-tw Option
	42.83.44.1 Use with httpcharset
	42.83.44.2 Use with mailcharset

	42.84 MSHTTP sieve options
	42.84.1 port Option Under sieve
	42.84.2 sslport Option Under sieve

	Chapter 43 SMIME options
	43.1 enable Option Under smime
	43.2 usercertfilter Option
	43.3 trustedurl Option
	43.4 certurl Option
	43.5 sslrootcacertsurl Option
	43.6 logindn Option
	43.7 loginpw Option
	43.8 platformwin Option
	43.9 platformmac Option
	43.10 platformlinuxx86 Option
	43.11 platformhpux Option
	43.12 platformsolarissparc Option
	43.13 alwaysencrypt Option
	43.14 alwayssign Option
	43.15 crlenable Option
	43.16 crldir Option
	43.17 crlurllogindn Option
	43.18 crlurlloginpw Option
	43.19 crlmappingurl Option
	43.20 timestampdelta Option
	43.21 crlaccessfail Option
	43.22 checkoverssl Option
	43.23 readsigncert Option
	43.24 revocationunknown Option
	43.25 sendencryptcert Option
	43.26 sendencryptcertrevoked Option
	43.27 sendsigncert Option
	43.28 sendsigncertrevoked Option
	43.29 crlusepastnextupdate Option
	43.30 appletlogging Option

	Chapter 44 SSO options
	44.1 verifyurl Option

	Chapter 45 icapservice options
	45.1 forcetelemetry Option Under icapservice
	45.2 service_name Option
	45.3 server_host Option Under icapservice
	45.4 server_port Option Under icapservice

	Part VII The MTA
	Chapter 46 Channels
	46.1 Available channels
	46.2 Channel configuration
	46.2.1 defaults and nodefaults pseudo-channels

	46.3 Channel options
	46.3.1 Alphabetic list of channel options
	46.3.2 Functional group list of channel options
	46.3.3 Addresses channel options
	46.3.3.1 _733 Option
	46.3.3.2 _822 Option
	46.3.3.3 Envelope recipient validity checks (acceptalladdresses, acceptvalidaddresses)
	46.3.3.4 Envelope recipient error handling (accepttemporaryfailures, defertemporaryfailures)
	46.3.3.5 Filling in missing header addresses (addlineaddrs, noaddlineaddrs)
	46.3.3.6 Controlling Sender Rewriting Scheme (SRS) rewriting (addresssrs, noaddresssrs, destinationsrs, nodestinationsrs, sourcesrs, nosourcesrs)
	46.3.3.7 Address type flags (addrtypescan, addrtypescanbccdefault, noaddrtypescan)
	46.3.3.8 Force "detour" routing of hosted users (aliasdetourhost, aliasoptindetourhost)
	46.3.3.9 Local address processing control (aliaslocal)
	46.3.3.10 Sources of alias information (aliasmagic)
	46.3.3.11 Wildcard alias lookups (aliaswild)
	46.3.3.12 Authenticated originator information processing (authrewrite)
	46.3.3.13 Interpretation of local parts (bangoverpercent, nobangoverpercent, bangonly, percentonly, nobangorpercent)
	46.3.3.14 Address types and conventions (sourceroute, percents, bangstyle, header_822, header_733, header_uucp)
	46.3.3.15 Recipient validity date check (checkrrvs, ignorerrvs)
	46.3.3.16 Clone messages to alternate destination (clonehosts)
	46.3.3.17 Host name to use when correcting incomplete addresses (auththost, noauthhost,defaulthost, nodefaulthost, remotehost, noremotehost)
	46.3.3.18 dequeue_removeroute Option
	46.3.3.19 Removing source routes (dequeueremoveroute, enqueueremoveroute)
	46.3.3.20 enqueue_removeroute Option
	46.3.3.21 Routing information in addresses (exproute, noexproute, improute, noimproute)
	46.3.3.22 Controlling Sender Rewriting Scheme (SRS) rewriting in header lines (headerdecodesrs, noheaderdecodesrs)
	46.3.3.23 Local-channel-like behavior (localbehavior, nolocalbehavior)
	46.3.3.24 Handling messages that lack any recipient headers (missingrecipientpolicy)
	46.3.3.25 Restricted mailbox encoding (restricted, unrestricted, norestricted)
	46.3.3.26 Channel-specific use of address reversal (reverse, noreverse)
	46.3.3.27 Channel-specific rewrite rules (rules, norules
	46.3.3.28 Personal names in address message headers (personalinc, personalmap, personalomit, personalstrip, sourcepersonalinc, sourcepersonalmap, sourcepersonalomit, sourcepersonalstrip)
	46.3.3.29 Short circuiting rewriting of routing addresses (routelocal)
	46.3.3.30 Extra value channel options: spare* (string)
	46.3.3.31 Subaddresses and alias matching (subaddressexact, subaddressrelaxed, subaddresswild)
	46.3.3.32 Alias and address channel options: usereversedatabase (bitmask)
	46.3.3.33 uucp Option
	46.3.3.34 Validating local part of address (validatelocalnone, validatelocalsystem, validatelocalexternal, validatelocalpopstore, validatelocalmsgstore, validatelocalprofile)
	46.3.3.35 Require use of aliases (viaaliasrequired, viaaliasoptional)

	46.3.4 Attachments and MIME processing channel options
	46.3.4.1 Processing within security multiparts (conditionalsecuritymultiparts, processsecuritymultiparts, retainsecuritymultiparts)
	46.3.4.2 convert_octet_stream Option
	46.3.4.3 Conversion of application/octet-stream material (convertoctetstream, noconvertoctetstream)
	46.3.4.4 Automatic defragmentation of message/partial messages (defragment, nodefragment)
	46.3.4.5 Encoding header interpretation (ignorencoding, ignoremessageencoding, ignoremultipartencoding, interpretencoding, interpretmessageencoding, interpretmultipartencoding)
	46.3.4.6 Soft wrap (encode) long lines in messages (linelength)
	46.3.4.7 Automatic fragmentation of large messages (maxblocks, maxlines)
	46.3.4.8 Microsoft Exchange gateway channels (msexchange, nomsexchange)
	46.3.4.9 MIME Content-type: and Content-disposition: header line parameter lengths (nameparameterlengthlimit, parameterlengthlimit)
	46.3.4.10 noconvert_octet_stream Option
	46.3.4.11 Convert some non-standard "attachments" to MIME format (thurman, nothurman, uma, nouma)
	46.3.4.12 MIME Content-type: and Content-disposition: header line parameter RFC 2231 encoding (parameterformatdefault, parameterformatminimizeencoded, parameterformatstripencoded)

	46.3.5 BSMTP-specific channel options
	46.3.5.1 Batch SMTP Continuation Lines (contchar, contposition)
	46.3.5.2 Generation of TICKet BSMTP Commands (tick, notick)
	46.3.5.3 Generation of VERBose BSMTP Commands (verb_on, verb_off, verb_none, verb_never)

	46.3.6 Character sets and eight bit data channel options
	46.3.6.1 Automatic character set labelling (charset7, charset8, charsetesc)
	46.3.6.2 Eight bit SMTP capability and EAI capability (eightbit, eightnegotiate, eightstrict, sevenbit, utf8header, utf8negotiate, utf8strict)
	46.3.6.3 Unencoded non-ASCII headers (headerset7, headerset8, headersetesc)
	46.3.6.4 MIME Content-type: and Content-disposition: header line parameter RFC 2231 encoding (parameterformatdefault, parameterformatminimizeencoded, parameterformatstripencoded)

	46.3.7 Conversion tag and service conversion channel options
	46.3.7.1 Channel-based conversion tags (destinationconversiontag, sourceconversiontag)
	46.3.7.2 Source channel trigger for service conversions (serviceconversion, noserviceconversion)

	46.3.8 Display label channel options
	46.3.8.1 Channel caption and description fields (caption, description)

	46.3.9 DKIM channel options
	46.3.9.1 DKIM channel options: (destinationdkimignore, destinationdkimpreserve, destinationdkimremove)
	46.3.9.2 Source channel handling of DKIM-Signature: header fields (dkimignore, dkimpreserve, dkimremove)
	46.3.9.3 Channel-based DKIM signing (destinationdkimidentityN, destinationdkimselectorN, sourcedkimidentityN, sourcedkimselectorN)

	46.3.10 Error interpretation channel options
	46.3.10.1 Error interpretation (usepermanenterror, usetemporaryerror)

	46.3.11 File creation in the MTA queue area channel options
	46.3.11.1 Addresses per message copy (multiple, addrsperfile, single, single_sys)
	46.3.11.2 Expansion of multiple addresses (expandlimit, expandchannel, holdlimit)
	46.3.11.3 Using multiple subdirectories to store queued messages (subdirs)

	46.3.12 Gateway or firewall or mailhub channel options
	46.3.12.1 Force "detour" routing of hosted users (aliasdetourhost, aliasoptindetourhost)
	46.3.12.2 Clone messages to alternate destination (clonehosts)
	46.3.12.3 Forced routing to gateways (daemon)
	46.3.12.4 Specify a last resort host for delivery (lastresort)
	46.3.12.5 Multiple gateways on a single channel (multigate, nomultigate)
	46.3.12.6 user Option Under channel

	46.3.13 Headers channel options
	46.3.13.1 Adding Return-path: header fields (addreturnpath, noaddreturnpath)
	46.3.13.2 Authenticated originator information processing (authrewrite)
	46.3.13.3 Comments in address message headers (commentinc, commentmap, commentomit, commentstrip, commenttotal, sourcecommentinc, sourcecommentmap, sourcecommentomit, sourcecommentstrip, sourcecommenttotal)
	46.3.13.4 Two or four digit date conversion (datefour, datetwo)
	46.3.13.5 Day of week in date specifications (dayofweek, nodayofweek)
	46.3.13.6 Host name to use when correcting incomplete addresses (auththost, noauthhost,defaulthost, nodefaulthost, remotehost, noremotehost)
	46.3.13.7 Strip illegal blank recipient headers (dropblank, nodropblank)
	46.3.13.8 Envelope tunneling via header fields (envelopetunnel))
	46.3.13.9 Header-based message expiration(expirysource, expirysource)
	46.3.13.10 Syntax Error Fixup (fixsyntaxerrors, passsyntaxerrors)
	46.3.13.11 Received: from clause content (forcedreceivedfrom))
	46.3.13.12 Location of message header (headerbottom, headerinc, headeromit)
	46.3.13.13 Cutting header to fit (headercut)
	46.3.13.14 Controlling Sender Rewriting Scheme (SRS) rewriting in header lines (headerdecodesrs, noheaderdecodesrs)
	46.3.13.15 Header alignment and folding (headerfoldpreserve, headerfoldremove, headerlabelalignment, headerlineincrement, headerlinelength)
	46.3.13.16 Trimming message header lines (headertrim, noheadertrim, headerkeeporder, headerread, noheaderread, innertrim, noinnertrim)
	46.3.13.17 Limiting header storage (headerlimit)
	46.3.13.18 Trailing spaces on header lines (headertrailingpreserve, headertrailingremove)
	46.3.13.19 Received: from clause content (includereceivedip, suppressreceivedip))
	46.3.13.20 Inner header rewriting (inner, noinner, sourceinner, nosourceinner)
	46.3.13.21 Default language tag (language)
	46.3.13.22 Detecting the end of the message header (limitheadertermination, relaxheadertermination)
	46.3.13.23 Automatic splitting of long header lines (maxheaderaddrs, maxheaderchars)
	46.3.13.24 Handling messages that lack any recipient headers (missingrecipientpolicy)
	46.3.13.25 Envelope to address in Received: header (receivedfor, noreceivedfor, receivedfrom, noreceivedfrom)
	46.3.13.26 XBCC SMTP Extension Support (bccserver, nobccserver)
	46.3.13.27 Generation of X-Envelope-to: header lines (x_env_to, nox_env_to)
	46.3.13.28 XCLIENT SMTP Extension Support (noxclient, xclient, xclientsasl, xclientrepeat, xclientsaslrepeat)
	46.3.13.29 Personal names in address message headers (personalinc, personalmap, personalomit, personalstrip, sourcepersonalinc, sourcepersonalmap, sourcepersonalomit, sourcepersonalstrip)
	46.3.13.30 State clause in Received: header field (receivedstate)
	46.3.13.31 Mapping Reply-to: header when gatewaying to non RFC 822 environments (usereplyto)
	46.3.13.32 Mapping Resent- headers when gatewaying to non RFC 822 environments (useresent)

	46.3.14 Host name channel options
	46.3.14.1 official_host_name Option
	46.3.14.2 local_host_alias Option
	46.3.14.3 additional_host_names Option

	46.3.15 Incoming channel match and switch channel options
	46.3.15.1 Selection of alternate source channels (switchchannel, allowswitchchannel, noswitchchannel, userswitchchannel)
	46.3.15.2 Channel switching based on SMTP authentication (saslswitchchannel, nosaslswitchchannel)
	46.3.15.3 Transport Layer Security (maytls, maytlsclient, maytlsserver, musttls, musttlsclient, musttlsserver, notls, notlsclient, notlsserver, tlsswitchchannel)

	46.3.16 ISC channel options
	46.3.17 Logging and debugging channel options
	46.3.17.1 Message transaction logging (logging, nologging, logheader)
	46.3.17.2 Debugging channel master and slave programs (master_debug, nomaster_debug, slave_debug, noslave_debug)

	46.3.18 Long address lists or headers channel options
	46.3.18.1 Triggering alternate channel processing (alternatechannel, alternateblocklimit, alternatelinelimit, alternaterecipientlimit)
	46.3.18.2 Maximum allowed recipients or bad commands (recipientlimit, recipientcutoff, deferralrejectlimit, disconnectrecipientlimit, disconnectrejectlimit, disconnectbadcommandlimit, disconnectbadburllimit, disconnectcommandlimit)
	46.3.18.3 Expansion of multiple addresses (expandlimit, expandchannel, holdlimit)
	46.3.18.4 Specify maximum length header line that the MTA will rewrite (maxprocchars)

	46.3.19 Message hash channel options
	46.3.19.1 Message hashes (deletemessagehash, generatemessagehash, keepmessagehash)

	46.3.20 Message tracking channel options
	46.3.20.1 Message Tracking and Recall Channel Options (notrackingclient, notrackingserver, trackingclient, trackingdelivered, trackingfirst, trackinginternal, trackingmultiple, trackingrelayed, trackingserver, trackingsingle, trackingtimeoutdefault, trackingtimeoutmax, trackingtimeoutmin)
	46.3.20.2 Automatic Tracking ID Generation (trackinggenerate)

	46.3.21 MLS channel options
	46.3.21.1 MLS (Multi Layer Security) Channel options: mlslabel (string), mlsrange (string)

	46.3.22 Notification messages and postmaster messages channel options
	46.3.22.1 Postmaster address recognition (aliaspostmaster)
	46.3.22.2 Returned messages (sendpost, nosendpost, copysendpost, errsendpost)
	46.3.22.3 Warning messages (warnpost, nowarnpost, copywarnpost, errwarnpost)
	46.3.22.4 Notification and disposition channels (dispositionchannel, notificationchannel)
	46.3.22.5 Including altered addresses in notification messages (includefinal, suppressfinal, useintermediate)
	46.3.22.6 Default language tag (language)
	46.3.22.7 SMTP DSN extension support (notary, refusenotary, nonotary
	46.3.22.8 Undeliverable message notification times (notices, nonurgentnotices, normalnotices, urgentnotices)
	46.3.22.9 Postmaster address (returnaddress, noreturnaddress, returnpersonal, noreturnpersonal)
	46.3.22.10 Postmaster returned message content (postheadonly, postheadbody)
	46.3.22.11 Delivery receipt request style (reportboth, reportheader, reportnotary, reportsuppress)
	46.3.22.12 Blank envelope return addresses (returnenvelope)

	46.3.23 Processing control and job submission channel options
	46.3.23.1 Number of message files or addresses to handle per service job or file (addrsperjob, filesperjob)
	46.3.23.2 Service job execution deferral (after, urgentafter, normalafter, nonurgentafter, secondclassafter, thirdclassafter)
	46.3.23.3 Delivery retry intervals (backoff, urgentbackoff, normalbackoff, nonurgentbackoff, ipbackoff)
	46.3.23.4 Initiating delivery processing (bidirectional, master, slave)
	46.3.23.5 Deferred delivery dates (deferredsource, nodeferredsource, deferreddestination, nodeferreddestination)
	46.3.23.6 Expansion of multiple addresses (expandlimit, expandchannel, holdlimit)
	46.3.23.7 SMTP Future Release Extension (futurerelease)
	46.3.23.8 Header-based message expiration(expirysource, expirysource)
	46.3.23.9 Maximum number of simultaneous jobs for this channel (maxjobs)
	46.3.23.10 Priority of messages to be handled by periodic jobs (minperiodicnonurgent, minperiodicnormal, minperiodicurgent, maxperiodicnonurgent, maxperiodicnormal, maxperiodicurgent)
	46.3.23.11 Per-channel MT-PRIORITY control (mtprioritiesallowed, mtprioritiesrequired)
	46.3.23.12 Service job pool usage (pool)
	46.3.23.13 Triggering new jobs (threaddepth)
	46.3.23.14 user Option Under channel

	46.3.24 Sensitivity limits channel options
	46.3.24.1 Sensitivity checking (sensitivitynormal, sensitivitypersonal, sensitivityprivate, sensitivitycompanyconfidential)

	46.3.25 Sieve filters and delivery flags channel options
	46.3.25.1 Address type flags (addrtypescan, addrtypescanbccdefault, noaddrtypescan)
	46.3.25.2 Delivery flags (deliveryflags, flagtransfer, noflagtransfer)
	46.3.25.3 Filter file location (filter, nofilter, destinationfilter, nodestinationfilter, sourcefilter, nosourcefilter, disablesourcefilter, disabledestinationfilter)
	46.3.25.4 Sieve filter fileinto action channel options (fileinto, nofileinto)
	46.3.25.5 Sieve filter and delivery flags channel options: scriptlimit (integer), sievelimit (integer), sizelimit (integer)

	46.3.26 Size limits on messages channel options
	46.3.26.1 Triggering alternate channel processing (alternatechannel, alternateblocklimit, alternatelinelimit, alternaterecipientlimit)
	46.3.26.2 Message size limits (blocklimit, linelimit, sourceblocklimit, noblocklimit, nolinelimit)
	46.3.26.3 Expansion of multiple addresses (expandlimit, expandchannel, holdlimit)
	46.3.26.4 Message size affecting priority (urgentblocklimit, normalblocklimit, nonurgentblocklimit, secondclassblocklimit)

	46.3.27 Spamfilter channel options
	46.3.27.1 destinationspamfilterN, destinationspamfilterNoptin, sourcespamfilterN, sourcespamfilterNoptin, disabledestinationspamfilterN, disablesourcespamfilterN Channel Options

	46.3.28 SMTP and LMTP protocol channel options
	46.3.28.1 Receiving an SMTP ETRN command (allowetrn, blocketrn, disableetrn, domainetrn, silentetrn)
	46.3.28.1.1 ETRN_ACCESS mapping table

	46.3.28.2 XBCC SMTP Extension Support (bccserver, nobccserver)
	46.3.28.3 Binary SMTP (binaryclient, nobinaryclient, binaryserver, nobinaryserver)
	46.3.28.4 SMTP EHLO command (ehlo, checkehlo, noehlo, refuseehlo)
	46.3.28.5 Recipient validity date check (checkrrvs, ignorerrvs)
	46.3.28.6 Chunking SMTP (chunkingclient, nochunkingclient, chunkingserver, nochunkingserver)
	46.3.28.7 Channel operation type (submit, relay, passthrough, conditionalpassthrough, conditionalrelay, destinationpassthrough, destinationrelay)
	46.3.28.8 Maximum allowed recipients or bad commands (recipientlimit, recipientcutoff, deferralrejectlimit, disconnectrecipientlimit, disconnectrejectlimit, disconnectbadcommandlimit, disconnectbadburllimit, disconnectcommandlimit)
	46.3.28.9 Delivery flags (deliveryflags, flagtransfer, noflagtransfer)
	46.3.28.10 Limiting time to deliver (deliverbychannel))
	46.3.28.11 Limiting time to deliver (deliverbymin))
	46.3.28.12 Solicitation control (destinationnosolicit, sourcenosolicit)
	46.3.28.13 SMTP transaction limit (transactionlimit, disconnecttransactionlimit)
	46.3.28.14 Sending an SMTP VRFY command (domainvrfy, localvrfy, novrfy)
	46.3.28.15 Eight bit SMTP capability and EAI capability (eightbit, eightnegotiate, eightstrict, sevenbit, utf8header, utf8negotiate, utf8strict)
	46.3.28.16 Responding to SMTP EXPN commands (expnallow, expndefault, expndisable)
	46.3.28.17 SMTP Future Release Extension (futurerelease)
	46.3.28.18 Channel protocol selection (smtp, smtp_cr, smtp_crlf, smtp_crorlf, smtp_lf, nosmtp, lmtp, lmtp_cr, lmtp_crlf, lmtp_crorlf, lmtp_lf)
	46.3.28.19 The XLOOP SMTP extension for blocking message loops (loopcheck, noloopcheck)
	46.3.28.20 Verify that the domain on the MAIL FROM: line is in the DNS (mailfromdnsverify, nomailfromdnsverify)
	46.3.28.21 Microsoft Exchange gateway channels (msexchange, nomsexchange)
	46.3.28.22 Per-channel MT-PRIORITY control (mtprioritiesallowed, mtprioritiesrequired)
	46.3.28.23 SMTP DSN extension support (notary, refusenotary, nonotary
	46.3.28.24 Proxy protocol support
	46.3.28.25 Sending an SMTP ETRN command (sendetrn, nosendetrn)
	46.3.28.26 SMTP TURN command channel options (noturn, turn, turn_in, turn_out)
	46.3.28.27 XCLIENT SMTP Extension Support (noxclient, xclient, xclientsasl, xclientrepeat, xclientsaslrepeat)
	46.3.28.28 SMTP long line handling (rejectsmtplonglines, truncatesmtplonglines, wrapsmtplonglines)
	46.3.28.29 Protocol streaming (streaming)
	46.3.28.30 Responding to SMTP VRFY commands (vrfyallow, vrfydefault, vrfyhide)

	46.3.29 TCP/IP connections and DNS lookups channel options
	46.3.29.1 Channel connection information caching (cacheeverything, cachesuccesses, cachefailures, nocache)
	46.3.29.2 Envelope address rewriting upon message dequeue (connectalias, connectcanonical)
	46.3.29.3 Forced routing to gateways (daemon)
	46.3.29.4 TCP/IP nameserver and MX record support (mx, nomx, nodns, defaultmx, randommx, nonrandommx, affinitylist, nameservers, defaultnameservers)
	46.3.29.5 Name lookup failure handling(dnsforcetemporary, nodnsforcetemporary)
	46.3.29.6 Reverse DNS and IDENT lookups on incoming SMTP connections (identtcp, identtcplimited, identtcpnumeric, identtcpsymbolic, identnone, identnonelimited, identnonenumeric, identnonesymbolic, forwardchecknone, forwardchecktag, forwardcheckdelete)
	46.3.29.7 TCP/IP interface address (interfaceaddress)
	46.3.29.8 Specify a last resort host for delivery (lastresort)
	46.3.29.9 Verify that the domain on the MAIL FROM: line is in the DNS (mailfromdnsverify, nomailfromdnsverify)
	46.3.29.10 Maximum rate to connect to a domain (maxconnectionrateperdomain)
	46.3.29.11 Maximum number of connections from an IP to a domain (maxconnectionsperdomain)
	46.3.29.12 Maximum rate to send to a domain (maxmessagerateperdomain)
	46.3.29.13 SOCKS connections (nosocks, socksnoauth, socksuserpassword)
	46.3.29.14 port Option Under channel
	46.3.29.15 SOCKS connections channel options: sockshost (host), socksport (port), socksusername (string) sockspassword (string)
	46.3.29.16 SPF DNS lookups (spfhelo, spfmailfrom, spfnone, spfrcptto)
	46.3.29.16.1 SPF_LOCAL mapping table

	46.3.29.17 Triggering new jobs (threaddepth)

	46.3.30 TLS and SASL channel options
	46.3.30.1 authusername Option Under channel
	46.3.30.2 authpassword Option Under channel
	46.3.30.3 Credentials for client SMTP AUTH use channel options: authpassword, acceptvalidaddresses, externalidentity
	46.3.30.4 Authenticated originator information processing (authrewrite)
	46.3.30.4.1 AUTH_REWRITE mapping table
	46.3.30.4.2 Additional fields in AUTH_REWRITE probe (authrewrite_extra_headers)

	46.3.30.5 SMTP authentication and SASL (maysasl, maysaslclient, maysaslserver, mustsasl, mustsaslclient, mustsaslserver, nosasl, nosaslclient, nosaslserver, disconnectbadauthlimit)
	46.3.30.6 Automatic use of AUTH EXTERNAL at MAIL FROM (explicitsaslexternal, implicitsaslexternal)
	46.3.30.7 Transport Layer Security (maytls, maytlsclient, maytlsserver, musttls, musttlsclient, musttlsserver, notls, notlsclient, notlsserver, tlsswitchchannel)
	46.3.30.8 Microsoft Exchange gateway channels (msexchange, nomsexchange)
	46.3.30.9 XCLIENT SMTP Extension Support (noxclient, xclient, xclientsasl, xclientrepeat, xclientsaslrepeat)
	46.3.30.10 AUTH parameter handling (saslpassauth, nosaslpassauth, sasltrustauth, nosasltrustauth)
	46.3.30.11 saslruleset Option
	46.3.30.12 Channel switching based on SMTP authentication (saslswitchchannel, nosaslswitchchannel)
	46.3.30.13 tlsmaxversion Option

	46.4 Header option files
	46.4.1 Header option file location
	46.4.2 Header option file format
	46.4.2.1 ADD (quoted string)
	46.4.2.2 FILL (quoted string)
	46.4.2.3 FOLDITEMS (integer)
	46.4.2.4 GROUP (integer 0 or 1)
	46.4.2.5 LINELENGTH (integer)
	46.4.2.6 MAXCHARS (integer)
	46.4.2.7 MAXIMUM (integer)
	46.4.2.8 MAXLINES (integer)
	46.4.2.9 PRECEDENCE (integer)
	46.4.2.10 RELABEL (header name)

	46.4.3 Header Fields Known to the MTA

	Chapter 47 Rewrite rules
	47.1 The rewrite group
	47.2 Application of rewrite rules to addresses
	47.2.1 Rewriting: extraction of the first host or domain specification
	47.2.2 Rewriting: scanning for a domain match
	47.2.3 Rewriting: applying the rewrite rule template
	47.2.4 Rewriting: finishing the rewriting process
	47.2.5 Rewriting: rewrite rule failure
	47.2.6 Syntax checks after rewriting
	47.2.7 Rewriting: domain literals

	47.3 Rewrite rule patterns and tags
	47.3.1 Initial match-all rule
	47.3.2 A rule to match percent hacks
	47.3.3 A rule to match bang-style addresses
	47.3.4 A rule to match any domain literal
	47.3.5 Rules to match domains containing exact numbers of components
	47.3.6 A rule to match any address
	47.3.7 Tagged rewrite rule sets

	47.4 Rewrite rule templates
	47.4.1 Rewrite rule template formats
	47.4.1.1 Ordinary rewriting templates, A@B or A%B@C
	47.4.1.2 Repeated rewriting template, A%B
	47.4.1.3 Specified route rewriting templates, A@B@C or A@B@C@D

	47.4.2 Rewrite rule template substitutions and control sequences
	47.4.2.1 Rewrite username and subaddress substitutions, $U, $0U, $1U
	47.4.2.2 Rewrite host/domain and IP literal substitutions, $D, $H, $nD, $nH, $L
	47.4.2.3 Rewrite subdomain single field substitutions, $&n, $!n, $*n, $#n
	47.4.2.4 Rewrite default host substitutions, $G, $nG
	47.4.2.5 Rewrite literal character substitutions, $$, $%, $@
	47.4.2.6 Rewrite case control substitutions, $\, $^, $_
	47.4.2.7 Rewrite LDAP query URL substitutions, $]...[, $=
	47.4.2.8 Rewrite general database substitutions, $(...)
	47.4.2.9 Rewrite apply specified mapping substitutions, ${...}, $n{...}
	47.4.2.10 Rewrite routine substitutions, $[...]
	47.4.2.11 Rewrite temporary failure handling, $.text., $..
	47.4.2.12 Rewrite unique string substitution, $W
	47.4.2.13 Rewrite hash substitutions, $<...>, $n<...>
	47.4.2.14 Rewrite transport substitutions, $Y, $nY
	47.4.2.15 Source channel-specific rewrites, $M, $N, $1M, $1N
	47.4.2.16 Destination channel-specific rewrites, $C, $Q
	47.4.2.17 Address direction and location-specific rewrites, $B, $E, $F, $R
	47.4.2.18 Host location-specific rewrites, $A, $P, $S, $X
	47.4.2.19 Deployment map role-specific rewrites, $/, $|
	47.4.2.20 Domain LDAP lookup rewrites, $V, $Z
	47.4.2.21 Channel match force truncation rewrite, $1~
	47.4.2.22 TLD comparison rewrites, $, and $>
	47.4.2.23 alias_magic override rewrite, $nT
	47.4.2.24 Alias-sensitive rewrites, $: and $;
	47.4.2.25 List-name-sensitive rewrites, $I, $O
	47.4.2.26 Message size or priority comparison rewrites
	47.4.2.27 Changing the current tag value, $T
	47.4.2.28 Controlling error messages associated with rewriting, $?, $nxxxyyy?

	47.5 Domain database

	Chapter 48 Aliases
	48.1 Overview of Direct LDAP configuration
	48.2 Aliases in LDAP
	48.3 Aliases in Unified Configuration
	48.3.1 The alias group

	48.4 Alias options
	48.4.1 Alias options: alias_entry (alias or address)
	48.4.2 alias_alternate_recipient Option
	48.4.3 Alias options: alias_and and alias_or
	48.4.4 Alias options: alias_auth_channel and alias_cant_channel
	48.4.5 Alias options: alias_auth_list, alias_cant_list, alias_username_auth_list, and alias_username_cant_list
	48.4.6 Alias options: alias_auth_mapping and alias_cant_mapping
	48.4.7 Alias options: alias_auth_username and alias_cant_username
	48.4.8 Alias options: alias_autosecretary
	48.4.9 Alias options: alias_blocklimit and alias_linelimit
	48.4.10 Alias options: alias_capture and alias_journal
	48.4.11 Alias options: alias_capture_header and alias_journal_header
	48.4.12 Alias options: alias_conversion_tag
	48.4.13 Alias options: alias_creation_date
	48.4.14 Alias options: alias_deferred (ISO 8601 P time duration string), alias_deferred_list (filepath or MTA URL), alias_deferred_mapping (MTA mapping name)
	48.4.15 Alias options: alias_delay_notifications and alias_nodelay_notifications
	48.4.16 alias_description Option
	48.4.17 Alias options: alias_digest_recurrence
	48.4.18 Alias options: alias_direct_list and alias_direct_mapping
	48.4.19 Alias options: alias_envelope_from
	48.4.20 Alias options: alias_error_text
	48.4.21 Alias options: alias_expandable and alias_nonexpandable
	48.4.22 Alias options: alias_expiry
	48.4.23 Alias options: alias_filter
	48.4.24 Alias options: alias_header_addition and alias_header_trim
	48.4.25 Alias options: alias_header_alias and alias_header_expansion
	48.4.26 Alias options: alias_header_check
	48.4.27 Alias options: alias_hold_list, alias_nohold_list, alias_hold_mapping, alias_nohold_mapping
	48.4.28 Alias options: alias_importance, alias_precedence, alias_priority, and alias_keep_read
	48.4.29 Alias options: alias_keep_delivery and alias_keep_read
	48.4.30 Alias options: alias_list_name
	48.4.31 Alias options: alias_moderator_address, alias_moderator_list, alias_moderator_mapping, alias_username_moderator_list
	48.4.32 Alias options: alias_originator_reply, alias_nooriginator_reply
	48.4.33 Alias options: alias_receivedfor, alias_noreceivedfor, alias_receivedfrom, alias_noreceivedfrom
	48.4.34 Alias options: alias_nosolicit
	48.4.35 Alias options: alias_optin
	48.4.36 Spam/virus filter "opt in" alias options: alias_optinN (string)
	48.4.37 Spam/virus filter "opt out" alias options: alias_optoutN (string)
	48.4.38 Password protection for postings: alias_password (string)
	48.4.39 Disclaimer/text addition alias options: alias_prefix_text (string), alias_suffix_text (string)
	48.4.40 Alias options: alias_presence
	48.4.41 Alias options: alias_private and alias_public
	48.4.42 Deferred expansion alias option: alias_reprocess (string)
	48.4.43 SASL-based access alias options: alias_sasl_auth_list (file or URL), alias_sasl_auth_mapping (MTA mapping name), alias_sasl_cant_list (file or URL), alias_sasl_cant_mapping (MTA mapping name), alias_sasl_moderator_list (file or URL), alias_sasl_moderator_mapping (MTA mapping name)
	48.4.44 Alias options: alias_sequence_prefix (file-path), alias_sequence_suffix (file-path), alias_sequence_strip (string)
	48.4.45 Per-recipient message copy alias option: alias_single (string)
	48.4.46 Extra value alias options: alias_spare* (string)
	48.4.47 Tag inserted on Subject: header line alias option: alias_tag (string)
	48.4.48 To: header line alias option: alias_to (string)
	48.4.49 Alias options: alias_username (string)

	48.5 Alias file
	48.5.1 Alias file format
	48.5.1.1 Alias file include files
	48.5.1.2 Alias file named parameters
	48.5.1.2.1 AND, OR
	48.5.1.2.2 AUTH_CHANNEL, CANT_CHANNEL
	48.5.1.2.3 AUTH_LIST, CANT_LIST, USERNAME_AUTH_LIST, USERNAME_CANT_LIST
	48.5.1.2.4 AUTH_MAPPING, CANT_MAPPING
	48.5.1.2.5 AUTH_USERNAME, CANT_USERNAME
	48.5.1.2.6 BLOCKLIMIT, LINELIMIT
	48.5.1.2.7 CAPTURE, JOURNAL
	48.5.1.2.8 CAPTURE_HEADER, JOURNAL_HEADER
	48.5.1.2.9 CONVERSION_TAG
	48.5.1.2.10 CREATION_DATE
	48.5.1.2.11 DEFERRED, DEFERRED_LIST, DEFERRED_MAPPING
	48.5.1.2.12 DELAY_NOTIFICATIONS, NODELAY_NOTIFICATIONS
	48.5.1.2.13 DIGEST_RECURRENCE
	48.5.1.2.14 DIRECT_LIST, DIRECT_MAPPING
	48.5.1.2.15 ENVELOPE_FROM
	48.5.1.2.16 ERROR_TEXT (string)
	48.5.1.2.17 EXPANDABLE, NONEXPANDABLE
	48.5.1.2.18 EXPIRY
	48.5.1.2.19 FILTER
	48.5.1.2.20 HEADER_ADDITION, HEADER_TRIM
	48.5.1.2.21 HEADER_ALIAS, HEADER_EXPANSION
	48.5.1.2.22 HEADER_CHECK
	48.5.1.2.23 HOLD_LIST, NOHOLD_LIST, HOLD_MAPPING, NOHOLD_MAPPING
	48.5.1.2.24 IMPORTANCE, PRECEDENCE, PRIORITY, SENSITIVITY
	48.5.1.2.25 KEEP_DELIVERY, KEEP_READ
	48.5.1.2.26 LIST_NAME
	48.5.1.2.27 MODERATOR_ADDRESS, MODERATOR_LIST, MODERATOR_MAPPING, USERNAME_MODERATOR_LIST
	48.5.1.2.28 NOSOLICIT (comma-separated list of strings)
	48.5.1.2.29 OPTIN, OPTIN1, OPTIN2, OPTIN3, OPTIN4, OPTIN5, OPTIN6, OPTIN7, OPTIN8
	48.5.1.2.30 ORIGINATOR_REPLY, NOORIGINATOR_REPLY
	48.5.1.2.31 PASSWORD
	48.5.1.2.32 PREFIX_TEXT, SUFFIX_TEXT
	48.5.1.2.33 PUBLIC, PRIVATE
	48.5.1.2.34 RECEIVEDFOR, NORECEIVEDFOR, RECEIVEDFROM, NORECEIVEDFROM
	48.5.1.2.35 REPROCESS
	48.5.1.2.36 SASL_AUTH_LIST, SASL_AUTH_MAPPING, SASL_CANT_LIST, SASL_CANT_MAPPING, SASL_MODERATOR_LIST, SASL_MODERATOR_MAPPING
	48.5.1.2.37 SEQUENCE_PREFIX, SEQUENCE_SUFFIX, SEQUENCE_STRIP
	48.5.1.2.38 SINGLE
	48.5.1.2.39 SPARE1,...,SPARE18
	48.5.1.2.40 TAG
	48.5.1.2.41 TO
	48.5.1.2.42 USERNAME

	48.5.1.3 Alias file mailing list aliases
	48.5.1.3.1 Alias file LDAP URL alias values

	48.6 Alias database
	48.6.1 Using another alias source and the alias database
	48.6.2 Alias database format

	48.7 Subaddresses in aliases
	48.8 Alias special formats
	48.9 Alias header addition modifiers
	48.10 Alias recursion and nested list definitions
	48.11 Alias restrictions
	48.11.1 General alias restrictions
	48.11.2 Additional LDAP alias restrictions
	48.11.3 Additional alias file (or database) restrictions

	48.12 Address reversal
	48.12.1 LDAP lookups for address reversal
	48.12.1.1 Intended side effects of LDAP address reversal

	48.12.2 Reverse database
	48.12.3 REVERSE mapping table
	48.12.4 Subaddresses and address reversal
	48.12.5 RFC 822 comment strings and personal name modification

	48.13 Forwarding mail
	48.13.1 Forwarding via user LDAP attributes
	48.13.2 FORWARD mapping table
	48.13.3 Forward database

	Chapter 49 Mailing lists
	49.1 Mailing list addresses
	49.1.1 Mailing list multiple access control interpretation
	49.1.2 Password-protected mailing lists
	49.1.3 Moderated mailing lists

	49.2 Mass mailings
	49.2.1 Defining membership of large lists
	49.2.1.1 Indirect or alternate criteria for list membership
	49.2.1.1.1 Constructing list member addresses
	49.2.1.1.1.1 Meta-group list definitions

	49.2.1.1.2 GROUP_TEMPLATES mapping table

	49.2.2 Proper use of lists rather than groups
	49.2.2.1 Nested groups and nested mailing lists

	49.2.3 Restricting posting access to large lists
	49.2.3.1 GROUP_AUTH mapping table

	49.2.4 Performance submitting mass mail messages

	49.3 Special address formats for list members

	Chapter 50 Mapping tables
	50.1 Mapping table format
	50.1.1 Mapping table format in legacy configuration
	50.1.1.1 Including other files in the mapping file

	50.1.2 Mapping table format in Unified Configuration
	50.1.3 Mapping entry patterns
	50.1.3.1 Back matching with $n*
	50.1.3.2 The $_ modifier: minimal vs. maximal matching
	50.1.3.3 Controlling saving of wildcard or globs with $@ and $^
	50.1.3.4 IP matching

	50.1.4 Mapping entry templates
	50.1.4.1 Wildcard field substitutions, $n, $'n'
	50.1.4.2 Controlling text case, $\, $^, $_
	50.1.4.3 Processing control, $C, $+1C, $L, $R, $+1R, $E, $+1E
	50.1.4.4 Check for special flags
	50.1.4.5 Entry randomly succeeds or fails, $?x?
	50.1.4.6 Load average substitutions, #%...%
	50.1.4.7 Select random entry from list, $?a,b,c...?
	50.1.4.8 Sequence number substitutions, $#...#
	50.1.4.9 Hash substitutions, $+n#...#
	50.1.4.10 Character value substitutions, $&...&
	50.1.4.11 LDAP query URL substitutions, $]...[, $]$]...[, $]$]$]...[, $=
	50.1.4.12 LDAP domain map attribute substitutions, $}...{
	50.1.4.13 General database substitutions, ${...}
	50.1.4.14 Mapping table substitutions, $|...|
	50.1.4.15 Expression substitutions, $`..'
	50.1.4.16 Mapping routine callout substitutions, $[...]
	50.1.4.17 Temporary failure handling, $.text., $..

	50.2 The mapping group
	50.3 Mapping operation
	50.4 Handling large numbers of mapping table entries
	50.4.1 General database
	50.4.1.1 Database case sensitivity option (general_case)

	50.5 When mapping table changes take effect
	50.6 Pre-defined mapping tables
	50.7 Testing mapping tables
	50.7.1 Testing address access mapping tables

	50.8 Callout routines
	50.8.1 check_memcache.so callout
	50.8.2 check_metermaid callouts
	50.8.3 dns_verify callouts
	50.8.3.1 The dns_verify routine
	50.8.3.2 The dns_verify_ipv4 routine
	50.8.3.3 The dns_verify_ipv6 routine
	50.8.3.4 The dns_verify_ptr routine
	50.8.3.5 The dns_verify_domain and dns_verify_domain_port routines
	50.8.3.6 dns_verify_domain_warn
	50.8.3.7 dns_get_first_mx

	50.8.4 smartsend callouts
	50.8.4.1 Database entry formats
	50.8.4.2 auth_access callout
	50.8.4.2.1 backoff - Retry frequency for messages
	50.8.4.2.2 banner_host - Override banner host
	50.8.4.2.3 chunking - Control use of SMTP CHUNKING
	50.8.4.2.4 debug - Enable smartsend/channel debugging
	50.8.4.2.5 ipbackoff - Retry frequency for messages in IP backoff mode
	50.8.4.2.6 ipbackofftimeout - Timeout for IP backoff entries
	50.8.4.2.7 log_headers - Header fields to log in transaction record
	50.8.4.2.8 maxconnectionrateperdomain - Maximum connection rate to a domain
	50.8.4.2.9 maxconnectionsperdomain - Maximum connection to a domain
	50.8.4.2.10 maxmessagerateperdomain - Maximum message rate to a domain
	50.8.4.2.11 maxmessagesperconnection - Maximum messages per connection
	50.8.4.2.12 max_mx_records - Maximum MX attempts
	50.8.4.2.13 override_host - Override destination host
	50.8.4.2.14 status - Force hold, return of messages
	50.8.4.2.15 tls - Control use of TLS

	50.8.4.3 auth_deaccess callout
	50.8.4.4 conversions callout
	50.8.4.4.1 dkimidentity-N, dkimselector-N - DKIM parameters

	50.8.4.5 ip_backoff callout
	50.8.4.6 auth_rewrite callout
	50.8.4.7 send_access callout
	50.8.4.8 forward callout
	50.8.4.8.1 Setting up an MX rollup

	50.8.4.9 mx_access callout
	50.8.4.10 mta_startup and mta_shutdown callouts
	50.8.4.11 log_action callout
	50.8.4.11.1 Open SMTP Connection Aggregation (bit 3, value 8)
	50.8.4.11.2 Queue Count Aggregations in Redis (bit 4, value 16)
	50.8.4.11.3 Success/Error Count Aggregations in Redis (bit 5, value 32)

	50.8.4.12 dequeue_access callout
	50.8.4.13 MTA identity option: id (string)
	50.8.4.14 smartsend options: smartsend_use_redis (0 or 1)
	50.8.4.15 Timeout for IP backoff entries (ipbackofftimeout)

	Chapter 51 Message conversions
	51.1 Conversion channel
	51.1.1 CONVERSIONS mapping table
	51.1.1.1 Alternate channel routing via the CONVERSIONS mapping
	51.1.1.2 Mapping table MTA options: include_domain (bitmask)

	51.1.2 Conversion channel definition
	51.1.3 Conversion control
	51.1.3.1 Conversion entry scanning and application
	51.1.3.2 Conversion entry parameters
	51.1.3.3 Conversion entry parameter value wildcard matching
	51.1.3.4 Conversion predefined symbols and environment variables
	51.1.3.5 Conversion entry mapping table callouts
	51.1.3.6 Conversion script header access
	51.1.3.7 Conversion script exit statuses

	51.2 Conversion tags
	51.3 Character set conversion and message reformatting
	51.3.1 CHARSET-CONVERSION mapping table
	51.3.1.1 Character set conversion
	51.3.1.1.1 Converting ISO-2022-JP to UTF-8 and back

	51.3.2 Message reformatting
	51.3.2.1 Non-MIME binary attachment conversion
	51.3.2.2 MacMIME format conversions
	51.3.2.2.1 MAC-TO-MIME-CONTENT-TYPES mapping table
	51.3.2.2.1.1 Sample MacMIME entries

	51.3.3 Relabelling MIME header lines
	51.3.4 Service conversions

	51.4 Interactions between conversions and character set conversions

	Chapter 52 MTA options
	52.1 MTA option naming in Unified Configuration
	52.2 Legacy configuration MTA option file
	52.2.1 Option value syntax in legacy configuration

	52.3 Getting option changes to take effect on the MTA
	52.4 MTA options listed alphabetically
	52.5 MTA options listed by functional group
	52.6 enable Option Under mta
	52.7 Alias and address MTA options
	52.7.1 Alias and address case sensitivity option (alias_case)
	52.7.2 Domains in alias lookups (alias_domains)
	52.7.3 Alias lookup control: alias_magic (integer)
	52.7.4 Alias and address MTA options: alternate_recipient (string)
	52.7.5 alternate_recipient_mode Option
	52.7.6 Alias and address MTA options: delimiter_char (1-127)
	52.7.7 Alias and address MTA options: exproute_forward (0 or 1)
	52.7.8 idn_config_file Option
	52.7.9 Alias and address MTA options: improute_forward (0 or 1)
	52.7.10 Alias and address MTA options: local_format_restrictions (bitmask)
	52.7.11 Alias and address MTA options: max_alias_levels (integer)
	52.7.12 Alias and address MTA options: missing_recipient_group_text (string)
	52.7.13 Alias and address MTA options: missing_recipient_policy (0-6)
	52.7.14 Alias and address MTA options: name_table_name (string; OpenVMS only)
	52.7.15 Alias and address MTA options: reverse_envelope (0 or 1)
	52.7.16 Alias and address MTA options: subaddress_char (list of integers)
	52.7.17 SRS MTA options: token_char (integer position of ASCII character)
	52.7.18 Alias and address MTA options: use_alias_database (0 or 1)
	52.7.19 Alias and address MTA options: use_domain_database (0 or 1)
	52.7.20 Alias and address MTA options: use_forward_database (bitmask)
	52.7.21 Alias and address MTA options: use_personal_aliases (0 or 1)
	52.7.22 Alias and address MTA options: use_reverse_database (bitmask)
	52.7.23 Alias and address MTA options: user_case (0 or 1)

	52.8 Autoresponse periodicity MTA options
	52.8.1 Autoresponse periodicity MTA options: autoreply_timeout_default (non-negative integer)
	52.8.2 Autoresponse periodicity MTA options: notify_maximum_timeout (integer)
	52.8.3 Autoresponse periodicity MTA options: notify_minimum_timeout (integer)
	52.8.4 Autoresponse periodicity MTA options: notify_timeout_default (non-negative integer)
	52.8.5 Autoresponse periodicity MTA options: vacation_cleanup (non-negative integer)
	52.8.6 Autoresponse periodicity MTA options: vacation_hash_algorithm (hash algorithm name)
	52.8.7 Autoresponse periodicity MTA options: vacation_maximum_timeout (integer)
	52.8.8 Autoresponse periodicity MTA options: vacation_minimum_timeout (integer)
	52.8.9 Autoresponse periodicity MTA options: vacation_template (file or memcache URL)

	52.9 BURL MTA options
	52.9.1 BURL MTA options: imap_password (string)
	52.9.2 BURL MTA options: imap_username (string)

	52.10 Configutil override MTA options
	52.11 Conversions MTA options
	52.11.1 conversions Option

	52.12 Counters MTA options
	52.12.1 Counters MTA options: circuitcheck_completed_bins (comma-separated list of up to eight integers)
	52.12.2 Counters MTA options: enable_delay_timers (0 or 1)
	52.12.3 Counters MTA options: log_delay_bins (comma-separated list of up to five integers)
	52.12.4 Counters MTA options: log_frustration_limit (integer)
	52.12.5 Counters MTA options: log_size_bins (comma-separated list of up to five integers)
	52.12.6 Syslog MTA options: log_sndopr (bitmask)
	52.12.7 Counters MTA options: log_statistics (0, 1, or 2)

	52.13 Database MTA options
	52.14 Debug MTA options
	52.14.1 Debug MTA options: ap_debug (integer)
	52.14.2 Debug MTA options: cache_debug (0 or 1)
	52.14.3 Debug MTA options: config_debug (integer)
	52.14.4 Debug MTA options: debug_flush (0 or 1)
	52.14.5 Debug MTA options: dequeue_debug (0 or 1)
	52.14.6 Debug MTA options: filter_debug (0 or 1)
	52.14.7 Debug MTA options: log_debug (0 or 1)
	52.14.8 Debug MTA options: mm_debug (integer)
	52.14.9 Debug MTA options: os_debug (0 or 1)
	52.14.10 Debug MTA options: post_debug (0 or 1)
	52.14.11 Debug MTA options: return_debug (0 or 1)
	52.14.12 Debug MTA options: return_verify (0 or 1)
	52.14.13 symbiont_debug Option
	52.14.14 Debug MTA options: tracking_debug (0-10)

	52.15 Direct LDAP MTA options
	52.15.1 LDAP bind and connect MTA options
	52.15.1.1 LDAP bind and connect MTA options: ldap_host (host)
	52.15.1.2 LDAP bind and connect MTA options: ldap_max_connections (non-negative integer)
	52.15.1.3 LDAP bind and connect MTA options: ldap_password (string)
	52.15.1.4 LDAP bind and connect MTA options: ldap_port (integer)
	52.15.1.5 LDAP bind and connect MTA options: ldap_timeout (integer)
	52.15.1.6 LDAP bind and connect MTA options: ldap_use_async (bitmask)
	52.15.1.7 LDAP bind and connect MTA options: ldap_username (ldap-dn)
	52.15.1.8 LDAP bind and connect MTA options: max_urls (integer)

	52.15.2 Direct LDAP domain lookup MTA options
	52.15.2.1 Domain lookup failures (domain_failure)
	52.15.2.2 Direct LDAP domain lookup URL (domain_match_url)
	52.15.2.3 Subdomain handling in domain lookups (domain_uplevel)
	52.15.2.4 Direct LDAP attribute name MTA options: ldap_attr_domain1_schema2 (LDAP attribute name)
	52.15.2.5 Direct LDAP attribute name MTA options: ldap_attr_domain2_schema2 (LDAP attribute name)
	52.15.2.6 Direct LDAP attribute name MTA options: ldap_attr_domain_search_filter (LDAP attribute name)
	52.15.2.7 Direct LDAP schema MTA options: ldap_basedn_filter_schema1 (LDAP URL filter), ldap_basedn_filter_schema2 (LDAP URL filter elements)
	52.15.2.8 Direct LDAP attribute interpretation options: ldap_default_domain (string)
	52.15.2.9 Direct LDAP schema MTA options: ldap_domain_filter_schema1 (LDAP URL filter), ldap_domain_filter_schema2 (LDAP URL filter)
	52.15.2.10 ldap_domain_known_attributes Option
	52.15.2.11 Direct LDAP schema MTA options: ldap_domain_root (DN)
	52.15.2.12 LDAP lookup cache MTA options: ldap_domain_timeout (integer)
	52.15.2.13 ldap_host_alias_list Option Under mta
	52.15.2.14 Direct LDAP attribute interpretation MTA options: ldap_local_host (string)

	52.15.3 Direct LDAP usergroup lookup MTA options
	52.15.3.1 Alias and address reversal MTA options: alias_urlN (URL)
	52.15.3.2 Direct LDAP usergroup lookup MTA options: ldap_default_attr (attribute name)
	52.15.3.3 Direct LDAP usergroup lookup MTA options: ldap_mail_aliases (comma-separated list of attribute names)
	52.15.3.4 Direct LDAP usergroup lookup MTA options: ldap_mail_reverses (comma-separated list of attribute names)
	52.15.3.5 Direct LDAP schema MTA options: ldap_user_root (DN)
	52.15.3.6 Direct LDAP usergroup lookup MTA options: reverse_url (URL)

	52.15.4 Direct LDAP schema MTA options
	52.15.4.1 Direct LDAP attribute name MTA options: ldap_attr_domain_search_filter (LDAP attribute name)
	52.15.4.2 Direct LDAP schema MTA options: ldap_basedn_filter_schema1 (LDAP URL filter), ldap_basedn_filter_schema2 (LDAP URL filter elements)
	52.15.4.3 Direct LDAP schema MTA options: ldap_domain_filter_schema1 (LDAP URL filter), ldap_domain_filter_schema2 (LDAP URL filter)
	52.15.4.4 Direct LDAP schema MTA options: ldap_domain_root (DN)
	52.15.4.5 Direct LDAP schema MTA options: ldap_global_config_templates (DN)
	52.15.4.6 Direct LDAP schema MTA options: ldap_group_object_classes (list of plus-separated list of objectclass names)
	52.15.4.7 LDAP bind and connect options: ldap_schemalevel (1 or 2)
	52.15.4.8 Direct LDAP schema MTA options: ldap_schematag (list of schema tags)
	52.15.4.9 Direct LDAP schema MTA options: ldap_user_object_classes (list of plus-separated list of objectclass names)
	52.15.4.10 Direct LDAP schema MTA options: ldap_user_root (DN)

	52.15.5 Direct LDAP attribute interpretation MTA options
	52.15.5.1 User/group LDAP attribute validity and interpretation options: aliasdetourhost_null_optin (string)
	52.15.5.2 Direct LDAP usergroup lookup MTA options: allow_unquoted_addrs_violate_rfc2798 (0 or 1)
	52.15.5.3 Direct LDAP attribute interpretation MTA options: capture_format_default (0 or 1)
	52.15.5.4 Direct LDAP attribute interpretation MTA options: delivery_options (list of strings)
	52.15.5.5 Direct LDAP attribute interpretation MTA options: group_dn_template (URL template)
	52.15.5.6 Archive message format control: journal_format (bitmask)
	52.15.5.7 Direct LDAP attribute interpretation options: ldap_default_domain (string)
	52.15.5.8 Head of household LDAP attribute MTA options: ldap_hoh_filter (LDAP attribute name), ldap_hoh_owner (LDAP attribute name)
	52.15.5.9 ldap_host_alias_list Option Under mta
	52.15.5.10 Direct LDAP attribute interpretation MTA options: ldap_local_host (string)
	52.15.5.11 Direct LDAP attribute interpretation MTA options: ldap_uid_invalid_chars (list of integers)
	52.15.5.12 Spamfilter MTA options: optin_user_carryover (bitmask)
	52.15.5.13 Direct LDAP attribute interpretation MTA options: process_substitutions (bit-encoded integer)
	52.15.5.14 Direct LDAP attribute interpretation MTA options: route_to_routing_host (-1, 0 or 1)
	52.15.5.15 Sieve filter MTA options: sieve_user_carryover (0 or 1)
	52.15.5.16 Handling of multiple spare LDAP attributes: spare_N_separator (bit-encoded integer)
	52.15.5.17 Autoresponse periodicity MTA options: vacation_minimum_timeout (integer)
	52.15.5.18 Autoresponse periodicity MTA options: vacation_maximum_timeout (integer)
	52.15.5.19 Direct LDAP MTA options: prefix_text_attr (HTML attribute list)
	52.15.5.20 Direct LDAP MTA options: suffix_text_attr (HTML attribute list)

	52.15.6 Direct LDAP attribute name MTA options
	52.15.6.1 Access controls on LDAP attributes
	52.15.6.2 Direct LDAP attribute name MTA options: ldap_objectclass (LDAP attribute name)
	52.15.6.3 Direct LDAP attribute name MTA options: ldap_user_status (LDAP attribute name)
	52.15.6.4 Direct LDAP attribute name MTA options: ldap_user_mail_status (LDAP attribute name)
	52.15.6.5 Direct LDAP attribute name MTA options: ldap_group_status (LDAP attribute name)
	52.15.6.6 Direct LDAP attribute name MTA options: ldap_group_mail_status (LDAP attribute name)
	52.15.6.7 Direct LDAP attribute name Base options: ldap_permid (LDAP attribute name)
	52.15.6.8 ldap_extid Option
	52.15.6.9 Direct LDAP attribute name MTA options: ldap_uid (LDAP attribute name)
	52.15.6.10 Direct LDAP attribute name MTA options: ldap_mlsrange (LDAP attribute name)
	52.15.6.11 Direct LDAP attribute name MTA options: ldap_capture (LDAP attribute name)
	52.15.6.12 Direct LDAP attribute name MTA options: ldap_recipientlimit (LDAP attribute name)
	52.15.6.13 Direct LDAP attribute name MTA options: ldap_recipientcutoff (LDAP attribute name)
	52.15.6.14 Direct LDAP attribute name MTA options: ldap_sourceblocklimit (LDAP attribute name)
	52.15.6.15 Direct LDAP attribute name MTA options: ldap_source_channel (LDAP attribute name)
	52.15.6.16 Direct LDAP attribute name MTA options: ldap_source_optinN for N=1--8 (LDAP attribute name)
	52.15.6.17 Direct LDAP attribute name MTA options: ldap_preferred_language (LDAP attribute name)
	52.15.6.18 Direct LDAP attribute name MTA options: ldap_preferred_country (LDAP attribute name)
	52.15.6.19 Direct LDAP attribute name MTA options: ldap_nosolicit (LDAP attribute name)
	52.15.6.20 Direct LDAP attribute name MTA options: ldap_routing_address (LDAP attribute name)
	52.15.6.21 Direct LDAP attribute name MTA options: ldap_delivery_option (LDAP attribute name)
	52.15.6.22 Direct LDAP attribute name MTA options: ldap_personal_name (LDAP attribute name)
	52.15.6.23 Direct LDAP attribute name MTA options: ldap_source_conversion_tag (LDAP attribute name)
	52.15.6.24 Direct LDAP attribute name MTA options: ldap_sender_sieve (LDAP attribute name(s))
	52.15.6.25 Direct LDAP attribute name MTA options: ldap_primary_address (LDAP attribute name)
	52.15.6.26 Direct LDAP attribute name options: ldap_alias_addresses (list of LDAP attribute names)
	52.15.6.27 Direct LDAP attribute name options: ldap_equivalence_addresses (list of LDAP attribute names)
	52.15.6.28 Direct LDAP attribute name options: ldap_optinN (list of LDAP attribute names)
	52.15.6.29 Direct LDAP attribute name options: ldap_optoutN (list of LDAP attribute names)
	52.15.6.30 Direct LDAP attribute name MTA options: ldap_presence (LDAP attribute name)
	52.15.6.31 Direct LDAP attribute name MTA options: ldap_autosecretary (LDAP attribute name)
	52.15.6.32 Direct LDAP attribute name MTA options: ldap_alternate_recipient (list of LDAP attribute names)
	52.15.6.33 Direct LDAP attribute name MTA options: ldap_start_date (LDAP attribute name)
	52.15.6.34 Direct LDAP attribute name MTA options: ldap_end_date (LDAP attribute name)
	52.15.6.35 Direct LDAP attribute name MTA options: ldap_conversion_tag (LDAP attribute name)
	52.15.6.36 Direct LDAP attribute name MTA options: ldap_detourhost_optin (LDAP attribute name)
	52.15.6.37 Direct LDAP attribute name MTA options: ldap_blocklimit (LDAP attribute name)
	52.15.6.38 Direct LDAP attribute name MTA options: ldap_mailhost (list of LDAP attribute names)
	52.15.6.39 Direct LDAP attribute name MTA options: ldap_disk_quota (LDAP attribute name)
	52.15.6.40 Direct LDAP attribute name MTA options: ldap_message_quota (LDAP attribute name)
	52.15.6.41 Direct LDAP attribute name MTA options: ldap_program_info (LDAP attribute name)
	52.15.6.42 Direct LDAP attribute name MTA options: ldap_delivery_file (LDAP attribute name list)
	52.15.6.43 Direct LDAP attribute name MTA options: ldap_spare_N (LDAP attribute name)
	52.15.6.44 Direct LDAP attribute name MTA options: ldap_autoreply_mode (LDAP attribute name)
	52.15.6.45 Direct LDAP attribute name MTA options: ldap_autoreply_subject (LDAP attribute name)
	52.15.6.46 Direct LDAP attribute name MTA options: ldap_autoreply_text (LDAP attribute name)
	52.15.6.47 Direct LDAP attribute name MTA options: ldap_autoreply_text_internal (LDAP attribute name)
	52.15.6.48 Direct LDAP attribute name MTA options: ldap_autoreply_addresses (LDAP attribute name)
	52.15.6.49 Direct LDAP attribute name MTA options: ldap_autoreply_timeout (LDAP attribute name)
	52.15.6.50 Direct LDAP attribute name MTA options: ldap_filter (LDAP attribute name)
	52.15.6.51 Direct LDAP attribute name MTA options: ldap_parental_controls (LDAP attribute name)
	52.15.6.52 Direct LDAP attribute name MTA options: ldap_filter_reference (LDAP attribute name)
	52.15.6.53 Direct LDAP attribute name MTA options: ldap_forwarding_address (LDAP attribute name)
	52.15.6.54 Direct LDAP attribute name MTA option: ldap_reprocess (LDAP attribute name)
	52.15.6.55 Direct LDAP attribute name MTA option: ldap_jettison_domain (LDAP attribute name list)
	52.15.6.56 Direct LDAP attribute name MTA option: ldap_jettison_url (LDAP attribute name list)
	52.15.6.57 Direct LDAP attribute name MTA options: ldap_list_id (LDAP attribute name)
	52.15.6.58 Direct LDAP attribute name MTA options: ldap_reject_action (LDAP attribute name)
	52.15.6.59 Direct LDAP attribute name MTA options: ldap_reject_text (LDAP attribute name list)
	52.15.6.60 Direct LDAP attribute name MTA options: ldap_auth_policy (LDAP attribute name)
	52.15.6.61 Direct LDAP attribute name MTA options: ldap_cant_url (LDAP attribute name)
	52.15.6.62 Direct LDAP attribute name MTA options: ldap_auth_url (LDAP attribute name)
	52.15.6.63 Direct LDAP attribute name MTA options: ldap_cant_domain (LDAP attribute name)
	52.15.6.64 Direct LDAP attribute name MTA options: ldap_auth_domain (LDAP attribute name)
	52.15.6.65 Direct LDAP attribute name MTA options: ldap_maximum_message_size (LDAP attribute name)
	52.15.6.66 Direct LDAP attribute name MTA options: ldap_maximum_messages_per_day (LDAP attribute name)
	52.15.6.67 Direct LDAP attribute name MTA options: ldap_auth_password (LDAP attribute name list)
	52.15.6.68 Direct LDAP attribute name MTA options: ldap_moderator_url (LDAP attribute name list)
	52.15.6.69 Direct LDAP attribute name MTA options: ldap_group_last_access_time (LDAP attribute name)
	52.15.6.70 Direct LDAP attribute name MTA options: ldap_group_url1 (LDAP attribute name)
	52.15.6.71 Direct LDAP attribute name MTA options: ldap_group_url2 (LDAP attribute name)
	52.15.6.72 Direct LDAP attribute name MTA options: ldap_group_dn (LDAP attribute name)
	52.15.6.73 ldap_group_dn2 Option
	52.15.6.74 Direct LDAP attribute name MTA options: ldap_group_rfc822 (LDAP attribute name list)
	52.15.6.75 Direct LDAP attribute name MTA options: ldap_url_result_mapping (LDAP attribute name)
	52.15.6.76 Direct LDAP attribute name MTA options: ldap_errors_to (LDAP attribute name)
	52.15.6.77 Direct LDAP attribute name MTA options: ldap_delay_notifications (LDAP attribute name)
	52.15.6.78 Direct LDAP attribute name MTA options: ldap_digest_interval (LDAP attribute name)
	52.15.6.79 Direct LDAP attribute name MTA options: ldap_add_header (LDAP attribute name)
	52.15.6.80 Direct LDAP attribute name MTA options: ldap_remove_header (LDAP attribute name)
	52.15.6.81 Direct LDAP attribute name MTA options: ldap_add_tag (LDAP attribute name)
	52.15.6.82 Direct LDAP attribute name MTA options: ldap_prefix_text (LDAP attribute name)
	52.15.6.83 Direct LDAP attribute name MTA options: ldap_suffix_text (LDAP attribute name)
	52.15.6.84 Direct LDAP attribute name MTA options: ldap_expandable (LDAP attribute name)
	52.15.6.85 Direct LDAP attribute name MTA options: ldap_auth_mapping1 (LDAP attribute name), ldap_auth_mapping2 (LDAP attribute name), ldap_auth_mapping3 (LDAP attribute name), ldap_auth_mapping4 (LDAP attribute name)
	52.15.6.86 Direct LDAP attribute name MTA options: ldap_check_header (LDAP attribute name)
	52.15.6.87 Head of household LDAP attribute MTA options: ldap_hoh_filter (LDAP attribute name), ldap_hoh_owner (LDAP attribute name)
	52.15.6.88 Direct LDAP attribute name MTA options: ldap_attr_domain1_schema2 (LDAP attribute name)
	52.15.6.89 Direct LDAP attribute name MTA options: ldap_attr_domain2_schema2 (LDAP attribute name)
	52.15.6.90 Direct LDAP attribute name MTA options: ldap_attr_domain_search_filter (LDAP attribute name)
	52.15.6.91 Direct LDAP attribute name MTA options: ldap_domain_attr_basedn (LDAP attribute name)
	52.15.6.92 Direct LDAP attribute name MTA options: ldap_domain_attr_alias (LDAP attribute name)
	52.15.6.93 Direct LDAP attribute name MTA options: ldap_domain_attr_uplevel (LDAP attribute name)
	52.15.6.94 ldap_domain_attr_mailserv Option
	52.15.6.95 Direct LDAP attribute name MTA options: ldap_domain_attr_canonical (LDAP attribute name)
	52.15.6.96 Direct LDAP attribute name MTA options: ldap_domain_attr_uid_separator (LDAP attribute name)
	52.15.6.97 Direct LDAP attribute name MTA options: ldap_domain_attr_subaddress (LDAP attribute name)
	52.15.6.98 Direct LDAP attribute name MTA options: ldap_domain_attr_routing_hosts (LDAP attribute name)
	52.15.6.99 Direct LDAP attribute name MTA options: ldap_domain_attr_smarthost (LDAP attribute name)
	52.15.6.100 Direct LDAP attribute name MTA options: ldap_domain_attr_status (LDAP attribute name)
	52.15.6.101 Direct LDAP attribute name MTA options: ldap_domain_attr_mail_status (LDAP attribute name)
	52.15.6.102 Direct LDAP attribute name MTA options: ldap_domain_attr_blocklimit (LDAP attribute name(s))
	52.15.6.103 Direct LDAP attribute name MTA options: ldap_domain_attr_conversion_tag (LDAP attribute name(s))
	52.15.6.104 Direct LDAP attribute name MTA options: ldap_domain_attr_source_conversion_tag (LDAP attribute name(s))
	52.15.6.105 Direct LDAP attribute name MTA options: ldap_domain_attr_optinN (LDAP attribute name list)
	52.15.6.106 Direct LDAP attribute name MTA options: ldap_domain_attr_presence (LDAP attribute name)
	52.15.6.107 Direct LDAP attribute name MTA options: ldap_domain_attr_autosecretary (LDAP attribute name)
	52.15.6.108 Direct LDAP attribute name MTA options: ldap_domain_attr_nosolicit (LDAP attribute name)
	52.15.6.109 Direct LDAP attribute name MTA options: ldap_domain_attr_autoreply_timeout (LDAP attribute name)
	52.15.6.110 Direct LDAP attribute name MTA options: ldap_domain_attr_default_mailhost (LDAP attribute name)
	52.15.6.111 Direct LDAP attribute name MTA options: ldap_domain_attr_disk_quota (LDAP attribute name(s))
	52.15.6.112 Direct LDAP attribute name MTA options: ldap_domain_attr_message_quota (LDAP attribute name(s))
	52.15.6.113 Direct LDAP attribute name MTA options: ldap_domain_attr_filter (LDAP attribute name(s))
	52.15.6.114 Direct LDAP attribute name MTA options: ldap_domain_attr_sender_sieve (LDAP attribute name(s))
	52.15.6.115 Direct LDAP attribute name MTA options: ldap_domain_attr_capture (LDAP attribute name(s))
	52.15.6.116 Direct LDAP attribute name MTA options: ldap_domain_attr_report_address (LDAP attribute name(s))
	52.15.6.117 Direct LDAP attribute name MTA options: ldap_domain_attr_catchall_address (LDAP attribute name(s))
	52.15.6.118 Direct LDAP attribute name MTA options: ldap_domain_attr_catchall_mapping (LDAP attribute name(s))
	52.15.6.119 Direct LDAP attribute name MTA options: ldap_domain_attr_sourceblocklimit (LDAP attribute name(s))
	52.15.6.120 Direct LDAP attribute name MTA options: ldap_domain_attr_source_channel (LDAP attribute name)
	52.15.6.121 Direct LDAP attribute name MTA options: ldap_domain_attr_prefix_text (LDAP attribute name(s))
	52.15.6.122 Direct LDAP attribute name MTA options: ldap_domain_attr_suffix_text (LDAP attribute name(s))
	52.15.6.123 Direct LDAP attribute name MTA options: ldap_domain_attr_recipientlimit (LDAP attribute name)
	52.15.6.124 Direct LDAP attribute name MTA options: ldap_domain_attr_recipientcutoff (LDAP attribute name)
	52.15.6.125 Direct LDAP attribute name MTA options: ldap_domain_attr_detourhostoptin (LDAP attribute name)
	52.15.6.126 Direct LDAP attribute name MTA options: ldap_creation_date (LDAP attribute name)
	52.15.6.127 Direct LDAP attribute name MTA options: ldap_domain_attr_creation_date (LDAP attribute name)

	52.15.7 Direct LDAP attributes returned upon authentication MTA options
	52.15.7.1 LDAP attributes returned upon authentication MTA options: ldap_auth_attr_mail_host (LDAP attribute name)
	52.15.7.2 LDAP attributes returned upon authentication MTA options: ldap_auth_attr_sender (LDAP attribute name)
	52.15.7.3 LDAP attributes returned upon authentication MTA options: ldap_auth_attr_submit_channel (LDAP attribute name)
	52.15.7.4 LDAP attributes returned upon authentication MTA options: ldap_auth_attr_recall_secret (LDAP attribute name)
	52.15.7.5 LDAP attributes returned upon authentication MTA options: ldap_auth_attr_hold_for (LDAP attribute name)

	52.15.8 LDAP lookup cache MTA options
	52.15.8.1 LDAP and URL lookup cache options: alias_entry_cache_negative (0 or 1), alias_entry_cache_size (integer), alias_entry_cache_timeout (integer)
	52.15.8.2 Domain match cache control (domain_match_cache_size, domain_match_cache_timeout)
	52.15.8.3 LDAP lookup cache MTA options: ldap_domain_timeout (integer)
	52.15.8.4 LDAP lookup cache MTA options: reverse_address_cache_size (integer) and reverse_address_cache_timeout (integer)
	52.15.8.5 URL result case sensitivity option (url_result_cache_case)
	52.15.8.6 LDAP lookup cache MTA options: url_result_cache_size (integer) and url_result_cache_timeout (integer)

	52.16 Directory location MTA options
	52.16.1 Directory location MTA options: tmpdir (directory path)
	52.16.2 Directory location MTA options: langdir (dir-path or list of dir-paths)

	52.17 DKIM MTA options
	52.17.1 DKIM MTA options: dkim_ignore_domains (list of domain names)
	52.17.2 DKIM MTA options: dkim_preserve_domains (list of domain names)
	52.17.3 DKIM MTA options: dkim_remove_domains (list of domain names)

	52.18 DNS lookup MTA options
	52.18.1 MAIL FROM domain blocking by IP address (blocked_mail_from_ips)
	52.18.2 Notification message MTA options: return_envelope (bitmask)

	52.19 Error text and error interpretation MTA options
	52.19.1 Error text and error interpretation MTA options: access_errors (0 or 1)
	52.19.2 error_text MTA options
	52.19.3 Error text and error interpretation MTA options: use_permanent_error (bitmask)
	52.19.4 Error text and error interpretation MTA options: use_temporary_error (bitmask)

	52.20 External filtering context MTA options
	52.20.1 External filtering context MTA options: scan_channel (MTA channel name)
	52.20.2 External filtering context MTA options: scan_originator (address)
	52.20.3 External filtering context MTA options: scan_recipient (address)

	52.21 File format MTA options
	52.21.1 MTA enqueue buffering (buffer_size)
	52.21.2 File format MTA options: cache_magic (integer)
	52.21.3 File format MTA options: cbt (0 or 1; OpenVMS only)
	52.21.4 File format and file handling options (comment_chars)
	52.21.5 Debug MTA options: debug_flush (0 or 1)
	52.21.6 File reading during dequeue (dequeue_map)
	52.21.7 File format MTA options: fdirectory (0 or 1; OpenVMS only)
	52.21.8 File format MTA options: fsync (0 or 1)
	52.21.9 File format MTA options: log_alq (integer)
	52.21.10 File format MTA options: log_deq (integer)
	52.21.11 File format MTA options: max_internal_blocks (integer)
	52.21.12 File format MTA options: mm_mbc (0-255)
	52.21.13 File format MTA options: mm_mbf (0-255)
	52.21.14 Notification message MTA options: notary_quote (1-127)
	52.21.15 File format MTA options: osync (0 or 1)
	52.21.16 projectid Option Under mta
	52.21.17 File format MTA options: queue_cache_mode (integer)
	52.21.18 File format MTA options: queue_cache_mode_3_files (list of file paths)
	52.21.19 File format MTA options: use_text_databases (bitmask)

	52.22 Internal size MTA options
	52.22.1 Internal size MTA options: alias_hash_size (1-1000000)
	52.22.2 Internal size MTA options: alias_member_size (0-40000)
	52.22.3 Internal size MTA options: channel_table_size (1-8192)
	52.22.4 Internal size MTA options: chunk_cache_limit (non-negative integer)
	52.22.5 Internal size MTA options: circuitcheck_paths_size (0-256)
	52.22.6 Internal size MTA options: conversion_size (1-2000)
	52.22.7 File format and file handling (describe_cache_limit)
	52.22.8 Internal size MTA options: domain_hash_size (1-1000000)
	52.22.9 Internal size MTA options: file_member_size (1-8192)
	52.22.10 Internal size MTA options: forward_data_size (1-1000000)
	52.22.11 Internal size MTA options: fruits_size (1-20000)
	52.22.12 Internal size MTA options: general_data_size (1-2000000)
	52.22.13 Internal size MTA options: host_hash_size (1-1000000)
	52.22.14 Internal size MTA options: ldap_attr_name_hash_size (1-1000000)
	52.22.15 Internal size MTA options: ldap_object_class_hash_size (1-1000000)
	52.22.16 Internal size MTA options: map_names_size (1-1000000)
	52.22.17 Internal size MTA options: options_hash_size (1-1000000)
	52.22.18 Internal size MTA options: personal_conversion_size(1-2000)
	52.22.19 Internal size MTA options: reverse_data_size (1-1000000)
	52.22.20 Internal size MTA options: string_pool_size_n (1-5000000)
	52.22.21 Internal size MTA options: wild_pool_size (1-20000)

	52.23 Latency server MTA options
	52.23.1 Latency server options: latency_host (host)
	52.23.2 Latency server options: latency_port (port)
	52.23.3 Latency server options: latency_expire (integer)
	52.23.4 Latency server options: latency_timeout (integer)
	52.23.5 Latency server options: latency_max_failures (integer)

	52.24 LDAP external directory lookup MTA options
	52.24.1 LDAP external directory lookup MTA options: ldap_ext_host (host-name)
	52.24.2 LDAP external directory lookup MTA options: ldap_ext_max_connections (non-negative integer)
	52.24.3 LDAP external directory lookup MTA options: ldap_ext_password (string)
	52.24.4 LDAP external directory lookup MTA options: ldap_ext_port (port)
	52.24.5 LDAP external directory lookup MTA options: ldap_ext_username (DN)

	52.25 LDAP PAB MTA options
	52.25.1 LDAP PAB MTA options: ldap_pab_host (hostname)
	52.25.2 LDAP PAB MTA options: ldap_pab_max_connections (integer)
	52.25.3 LDAP PAB MTA options: ldap_pab_password (string)
	52.25.4 LDAP PAB MTA options: ldap_pab_port (integer)
	52.25.5 LDAP PAB MTA options: ldap_pab_username (dn)

	52.26 Mailing list MTA options
	52.26.1 Alias and address MTA options: alternate_recipient (string)
	52.26.2 alternate_recipient_mode Option
	52.26.3 Mailing list controls (defer_group_processing)
	52.26.4 Mailing list and group MTA options: digest_on (string)
	52.26.5 Mailing list and group MTA options: expandable_default (0 or 1)
	52.26.6 Mailing list and group MTA options: mail_off (string)
	52.26.7 Mailing list and group MTA options: or_clauses (0 or 1)
	52.26.8 Mailing list and group MTA options: post_off (string)

	52.27 MAILSERV MTA options
	52.27.1 MAILSERV moderator MTA options
	52.27.1.1 MAILSERV moderator user MTA options: mailserv_moderator_mail (RFC 822 address)
	52.27.1.2 MAILSERV moderator user MTA options: mailserv_moderator_uid (uid)
	52.27.1.3 MAILSERV moderator MTA options: mailserv_secret (string)

	52.27.2 MAILSERV LDAP schema MTA options
	52.27.3 MAILSERV user LDAP attribute name MTA options
	52.27.4 MAILSERV list subscription LDAP attribute name MTA options
	52.27.5 MAILSERV list LDAP attribute name MTA options

	52.28 Mapping table MTA options
	52.28.1 Access mapping table MTA options
	52.28.1.1 Access mapping table MTA options: access_auth (bitmask)
	52.28.1.2 Access mapping table MTA options: access_counts (bitmask)
	52.28.1.3 Access mapping table MTA options: access_orcpt (bitmask)
	52.28.1.4 Access mapping table MTA options: include_connectioninfo (bitmask)
	52.28.1.5 Access mapping table MTA options: include_conversiontag (bitmask)
	52.28.1.6 Mapping table MTA options: include_mtpriority (bitmask)
	52.28.1.7 Access mapping table MTA options: include_retries (bitmask)
	52.28.1.8 Access mapping table MTA options: include_spares1 (bitmask)
	52.28.1.9 Miscellaneous mapping table MTA options: include_spares (bitmask)
	52.28.1.10 Access mapping table MTA options: mapping_paranoia (integer)
	52.28.1.11 Access mapping table MTA options: use_ip_access (bitmask)
	52.28.1.12 Return address type used in checks MTA options: use_auth_return, use_canonical_return, use_orig_return

	52.28.2 Miscellaneous mapping table MTA options
	52.28.2.1 averages_cache_size Option
	52.28.2.2 averages_cache_timeout Option
	52.28.2.3 Miscellaneous mapping table MTA options: include_spares2 (bitmask)
	52.28.2.4 Internal size MTA options: map_names_size (1-1000000)
	52.28.2.5 Miscellaneous mapping table MTA options: message_save_copy_flags (bitmask)
	52.28.2.6 Miscellaneous mapping table MTA options: original_channel_probe (0 or 1)
	52.28.2.7 Miscellaneous mapping table MTA options: use_comment_strings (bitmask)
	52.28.2.8 Alias and address MTA options: use_forward_database (bitmask)
	52.28.2.9 Alias and address MTA options: use_reverse_database (bitmask)
	52.28.2.10 Miscellaneous mapping table MTA options: use_personal_names (bitmask)

	52.29 Memcache MTA options
	52.29.1 Memcache MTA/channel options: memcache_host (host)
	52.29.2 Memcache MTA/channel options: memcache_port (port)
	52.29.3 Memcache MTA options: memcache_expire (integer)
	52.29.4 Memcache MTA options: memcache_timeout (integer)
	52.29.5 Hashing memcache keys: memcache_hash_algorithm (hash algorithm name)
	52.29.6 Memcache/Redis MTA options: alias_database_url (memcache:/redis: URL)
	52.29.7 Memcache/Redis MTA options: domain_database_url (memcache:/redis: URL)
	52.29.8 Memcache/Redis MTA options: forward_database_url (memcache:/redis: URL)
	52.29.9 Memcache/Redis MTA options: general_database_url (memcache:/redis: URL)
	52.29.10 Memcache/Redis MTA options: reverse_database_url (memcache:/redis: URL)

	52.30 Message archival and hashing MTA options
	52.30.1 Archive message format control: journal_format (bitmask)
	52.30.2 Direct LDAP MTA options: capture_domain_replace (0-2)
	52.30.3 Message archiving and hashing options: message_hash_algorithm (hash algorithm name)
	52.30.4 Message archiving and hashing MTA options: message_hash_fields (list of header names)
	52.30.5 Message archiving and hashing MTA options: unique_id_template (string)

	52.31 Message size MTA options
	52.31.1 Message size MTA options: block_limit (integer)
	52.31.2 Message size MTA options: block_size (integer > 0)
	52.31.3 Notification message and return job options (bounce_block_limit)
	52.31.4 Notification message MTA options: content_return_block_limit (non-negative integer)
	52.31.5 Message size MTA options: header_limit (integer)
	52.31.6 Message size MTA options: line_limit (integer)
	52.31.7 Message size MTA options: local_quota_checks (integer)
	52.31.8 Message fragmentation size limit MTA options: max_header_block_use (real number strictlybetween 0 and 1), max_header_line_use (real number strictly between 0 and 1)
	52.31.8.1 max_header_block_use
	52.31.8.2 max_header_line_use

	52.31.9 Message size MTA options: max_header_blocks (integer)
	52.31.10 Message size MTA options: max_header_lines (integer)
	52.31.11 Maximum message levels/parts to process MTA options: max_mime_levels (integer), max_mime_parts (integer)
	52.31.11.1 max_mime_levels
	52.31.11.2 max_mime_parts

	52.31.12 Size effects of message priority MTA options: non_urgent_block_limit (integer), normal_block_limit (integer), second_class_block_limit (integer), urgent_block_limit (integer)
	52.31.12.1 non_urgent_block_limit
	52.31.12.2 normal_block_limit
	52.31.12.3 second_class_block_limit
	52.31.12.4 urgent_block_limit

	52.32 Message tracking MTA options
	52.32.1 Tracking hash function usage: tracking_hash_algorithm (hash algorithm name)
	52.32.2 Tracking Information Storage (tracking_mode)
	52.32.3 Tracking Update Retry Control (tracking_retries, tracking_retry_delay)

	52.33 MeterMaid MTA options
	52.33.1 MeterMaid MTA options: metermaid_backoff (integer)
	52.33.2 MeterMaid MTA options: metermaid_expire (integer)
	52.33.3 MeterMaid MTA options: metermaid_host (hostname)
	52.33.4 MeterMaid MTA options: metermaid_port (port)
	52.33.5 MeterMaid MTA options: metermaid_secret (string)
	52.33.6 MeterMaid MTA options: metermaid_timeout (integer)

	52.34 MLS MTA options
	52.34.1 mls Option

	52.35 MTQP MTA options
	52.35.1 MTQP MTA options: mtqp_port (port)
	52.35.2 MTQP MTA options: mtqp_timeout (integer)
	52.35.3 MTQP MTA options: mtqp_expire (integer)

	52.36 Notification message MTA options
	52.36.1 Notification message and return job options (bounce_block_limit)
	52.36.2 Notification message MTA options: content_return_block_limit (non-negative integer)
	52.36.3 Notification message MTA options: history_to_return (1-200)
	52.36.4 Notification message MTA options: lines_to_return (integer)
	52.36.5 Notification message MTA options: notary_decode (-1, 0, or 1)
	52.36.6 Notification message MTA options: notary_quote (1-127)
	52.36.7 Notification message MTA options: return_address (address)
	52.36.8 Notification message MTA options: return_delivery_history (0 or 1)
	52.36.9 Notification message MTA options: return_envelope (bitmask)
	52.36.10 Notification message MTA options: return_personal (RFC 2047 encoded string)
	52.36.11 Notification message MTA options: return_units (0 or 1)
	52.36.12 Notification message MTA options: use_precedence (0 or 1)
	52.36.13 Notification message MTA options: use_warnings_to (0 or 1)

	52.37 Password and TLS MTA options
	52.37.1 plaintextmincipher Option Under mta
	52.37.2 smtpproxypassword Option
	52.37.3 sslnicknames Option Under mta

	52.38 Processing priority MTA options
	52.38.1 Message Transfer Priority Policy: mtpriority_policy (string)
	52.38.2 Size effects of message priority MTA options: non_urgent_block_limit (integer), normal_block_limit (integer), second_class_block_limit (integer), urgent_block_limit (integer)
	52.38.2.1 non_urgent_block_limit
	52.38.2.2 normal_block_limit
	52.38.2.3 second_class_block_limit
	52.38.2.4 urgent_block_limit

	52.39 Received header line MTA options
	52.39.1 Syslog MTA options: held_sndopr (0 or 1)
	52.39.2 Message-id: domain name MTA option: id_domain (string)
	52.39.3 Received header line MTA options: max_local_received_lines (integer)
	52.39.4 Received header line MTA options: max_mr_received_lines (integer)
	52.39.5 Received header line MTA options: max_received_lines (integer)
	52.39.6 Received header line MTA options: max_total_received_lines (integer)
	52.39.7 Received header line MTA options: max_x400_received_lines (integer)
	52.39.8 Received header line MTA options: received_domain (string)
	52.39.9 Received header line MTA options: received_version (string)

	52.40 Redis MTA options
	52.40.1 hostlist Option Under redis_client
	52.40.2 port Option Under redis_client
	52.40.3 authpassword Option Under redis_client
	52.40.4 hostlist Option Under sentinel_client
	52.40.5 port Option Under sentinel_client
	52.40.6 authpassword Option Under sentinel_client
	52.40.7 hostlist Option Under redis
	52.40.8 port Option Under redis
	52.40.9 authpassword Option Under redis
	52.40.10 hostlist Option Under sentinel
	52.40.11 port Option Under sentinel
	52.40.12 authpassword Option Under sentinel

	52.41 Sieve filter MTA options
	52.41.1 systemfilter Option
	52.41.2 Sieve filter interpretation MTA options
	52.41.2.1 Sieve filter interpretation MTA options: decode_encoded_words (integer)
	52.41.2.2 Sieve filter interpretation MTA options: defer_header_addition (0 or 1)
	52.41.2.3 Sieve filter interpretation MTA options: filter_discard (1 or 2)
	52.41.2.4 Sieve filter interpretation MTA options: filter_jettison (1 or 2)
	52.41.2.5 Sieve filter interpretation MTA options: notify_ignore_errors (0 or 1)
	52.41.2.6 Sieve access to local Received: field sieve_received
	52.41.2.7 Sieve filter interpretation MTA options: sieve_redirect_add_resent (0 or 1)
	52.41.2.8 Sieve filter MTA options: reject_disables_capture (0-2)
	52.41.2.9 Sieve filter MTA options: discard_disables_capture (0-2)
	52.41.2.10 Sieve filter MTA options: sieve_user_carryover (0 or 1)
	52.41.2.11 Sieve filter MTA options: sieve_mime_needed (0 or 1)
	52.41.2.12 Sieve filter MTA options: sieve_body_needed (0 or 1)

	52.41.3 Sieve filter limit MTA options
	52.41.3.1 Sieve filter limit MTA options: max_addheaders (integer >= 0)
	52.41.3.2 Sieve filter limit MTA options: max_duplicates (integer >= 0)
	52.41.3.3 Sieve filter limit MTA options: max_fileintos (integer >= 0)
	52.41.3.4 Sieve filter limit MTA options: max_notifys (integer >= 0)
	52.41.3.5 Sieve filter limit MTA options: max_redirect_addresses (non-negative integer)
	52.41.3.6 Sieve filter limit MTA options: max_redirects (integer >= 0)
	52.41.3.7 Sieve filter limit MTA options: max_sieve_list_size (0 < integer <= 16,384)
	52.41.3.8 Sieve filter limit MTA options: max_sieve_match_iterations (0 < integer <= 2147483647)
	52.41.3.9 Sieve filter limit MTA options: max_sieve_string_size (0 < integer <= 10,000,000)
	52.41.3.10 Sieve filter limit MTA options: max_vacations (integer >= 0)
	52.41.3.11 Sieve filter limit MTA options: max_variables (integer >= 0)

	52.41.4 Sieve filter caching MTA options
	52.41.4.1 LDAP lookup cache MTA options: filter_cache_size (integer) and filter_cache_timeout (integer)

	52.41.5 Sieve language extension MTA options
	52.41.5.1 Sieve language extension MTA options: enable_sieve_body (0-2)
	52.41.5.2 Sieve language extension MTA options: enable_sieve_ereject (0-2)
	52.41.5.3 Sieve language extension MTA options: enable_sieve_memcache (0-2)
	52.41.5.4 Sieve language extension MTA options: enable_sieve_metermaid (0-2)
	52.41.5.5 Sieve language extension MTA options: enable_sieve_redis (0-2)
	52.41.5.6 Sieve language extension MTA options: enable_sieve_regex (0-2)
	52.41.5.7 Sieve language extension MTA options: strict_require (0 or 1)

	52.41.6 Sieve filter duplicate extension MTA options
	52.41.6.1 Duplicate test storage timeout minimum: duplicate_minimum_timeout (integer)
	52.41.6.2 Duplicate test storage timeout maximum: duplicate_maximum_timeout (integer)
	52.41.6.3 Duplicate test storage timeout default: duplicate_timeout_default (non-negative integer)
	52.41.6.4 Sieve duplicate detection: duplicate_tracking_url (memcache URL)
	52.41.6.5 Sieve filter limit MTA options: max_duplicates (integer >= 0)

	52.41.7 Sieve filter error text MTA options
	52.41.8 Sieve filter log and debug MTA options
	52.41.8.1 Debug MTA options: filter_debug (0 or 1)
	52.41.8.2 Transaction logging MTA options: log_filter (0-7)
	52.41.8.3 Transaction logging MTA options: log_transactionlog (0-3)

	52.42 Spamfilter MTA options
	52.42.1 Spamfilter MTA options: optin_user_carryover (bitmask)
	52.42.2 Spamfilter MTA options: spamfilterN_library (filepath)
	52.42.3 Spamfilter MTA options: spamfilterN_config_file (filepath)
	52.42.4 Spamfilter MTA options: spamfilterN_name (string)
	52.42.5 Spamfilter MTA options: spamfilterN_null_optin (string)
	52.42.6 Spamfilter MTA options: spamfilterN_action_M (URL) spamfilterN_verdict_M (string)
	52.42.7 Spamfilter MTA options: spamfilterN_final (bitmask)
	52.42.8 Spamfilter MTA options: spamfilterN_includeheaders (0 or 1)
	52.42.9 Spamfilter MTA options: spamfilterN_null_action (URL)
	52.42.10 Spamfilter MTA options: spamfilterN_optional (-2, -1, 0, 1, 2, 3, 4)
	52.42.11 Spamfilter MTA options: spamfilterN_received (0-7)
	52.42.12 Spamfilter MTA options: spamfilterN_returnpath (0 or 1)
	52.42.13 Spamfilter MTA options: spamfilterN_string_action (URL)

	52.43 SPF MTA options
	52.43.1 SPF MTA options: spf_smtp_status_fail (2, 4, or 5)
	52.43.2 SPF MTA options: spf_smtp_status_fail_all (2, 4, or 5)
	52.43.3 SPF MTA options: spf_smtp_status_permerror (2, 4, or 5)
	52.43.4 SPF MTA options: spf_smtp_status_softfail (2, 4, or 5)
	52.43.5 SPF MTA options: spf_smtp_status_softfail_all (2, 4, or 5)
	52.43.6 SPF MTA options: spf_smtp_status_temperror (2, 4, or 5)
	52.43.7 SPF MTA options: spf_max_dns_queries (integer)
	52.43.8 SPF MTA options: spf_max_recursion (integer)
	52.43.9 SPF MTA options: spf_max_time (integer)

	52.44 SRS MTA options
	52.44.1 Sender Rewriting Scheme (SRS) controls (srs_domain, srs_hash_algorithmsrs_maxage, srs_secrets)
	52.44.1.1 srs_domain (domain-name)
	52.44.1.2 srs_maxage (integer)
	52.44.1.3 srs_secrets (comma-separated list of strings)
	52.44.1.4 srs_hash_algorithm (hash-algorithm)

	52.44.2 SRS MTA options: token_char (integer position of ASCII character)

	52.45 Syslog MTA options
	52.45.1 Syslog MTA options: held_sndopr (0 or 1)
	52.45.2 Syslog MTA options: log_connections_syslog (integer)
	52.45.3 Syslog MTA options: log_messages_syslog (integer)
	52.45.4 Syslog MTA options: log_sndopr (bitmask)
	52.45.5 Syslog MTA options: log_syslog_prefix (bitmask)
	52.45.6 Syslog MTA options: sndopr_prefix (string)
	52.45.7 Syslog MTA options: sndopr_priority (0-127)
	52.45.8 Spamfilter MTA options: spamfilterN_optional (-2, -1, 0, 1, 2, 3, 4)

	52.46 Transaction logging MTA options
	52.46.1 Transaction logging MTA options: log_alternate_recipient (0-3)
	52.46.2 Transaction logging MTA options: log_auth (0-7)
	52.46.3 Transaction logging MTA options: log_callout_delays (0-3)
	52.46.4 Transaction logging MTA options: log_connection (0-1023)
	52.46.5 Logging Conversion Tags: log_conversion_tag (bitmask)
	52.46.6 Transaction logging MTA options: log_deliver_by (0-3)
	52.46.7 Transaction logging MTA options: log_diagnostics (0-3)
	52.46.8 Transaction logging MTA options: log_dkim (0-7)
	52.46.9 Transaction logging MTA options: log_envelope_id (0-7)
	52.46.10 Transaction logging MTA options: log_filename (0-7)
	52.46.11 Transaction logging MTA options: log_filter (0-7)
	52.46.12 Transaction logging MTA options: log_format (1-6)
	52.46.12.1 Transaction entries
	52.46.12.2 Connection entries
	52.46.12.3 Header entries

	52.46.13 Transaction logging MTA options: log_from (0-7)
	52.46.14 Transaction logging MTA options: log_futurerelease (0-3)
	52.46.15 Transaction logging MTA options: log_header (0-7)
	52.46.16 log_header_options Option
	52.46.17 log_headers_maxchars Option
	52.46.18 Logging IMAP flags: log_imap_flags (bitmask)
	52.46.19 Transaction logging MTA options: log_delivery_flags (bitmask)
	52.46.20 Transaction logging MTA options: log_intermediate (0-63)
	52.46.21 Transaction logging MTA options: log_local (0 or 1)
	52.46.22 Logging Indexed Search Converter status: log_isc_status (bitmask)
	52.46.23 Transaction logging MTA options: log_mailbox_uid (0-3)
	52.46.24 Transaction logging MTA options: log_message_id (0-7)
	52.46.25 Logging message transfer priorities: log_mtpriority (bitmask)
	52.46.26 Transaction logging MTA options: log_node (0 or 1; OpenVMS only until MS 6.3)
	52.46.27 Transaction logging MTA options: log_notary (0-3)
	52.46.28 Transaction logging MTA options: log_priority (0-3)
	52.46.29 Transaction logging MTA options: log_process (0 or 1)
	52.46.30 Transaction logging MTA options: log_queue_time (0-3)
	52.46.31 Transaction logging MTA options: log_reason (0-3)
	52.46.32 Transaction logging MTA options: log_remote_mta (0-3)
	52.46.33 Transaction logging MTA options: log_sensitivity (0-3)
	52.46.34 Transaction logging MTA options: log_smartsend (0-7)
	52.46.35 Transaction logging MTA options: log_times (0-63)
	52.46.36 Log Tracking Information (log_tracking)
	52.46.37 Transaction logging MTA options: log_transactionlog (0-3)
	52.46.38 Transaction logging MTA options: log_uid (0-7)
	52.46.39 Transaction logging MTA options: log_use_xtext (bitmask)
	52.46.40 Transaction logging MTA options: log_username (0-511)
	52.46.41 Transaction logging MTA options: log_8bit_encode 0 or 1)
	52.46.42 Transaction logging MTA options: separate_connection_log (0 or 1)
	52.46.43 Transaction logging MTA options: return_split_period (integer)
	52.46.44 Transaction logging MTA options: return_cleanup_period (integer)

	52.47 OpenVMS user agent MTA options
	52.47.1 delivery_receipt_off Option
	52.47.2 delivery_receipt_on Option
	52.47.3 OpenVMS user agent MTA options: dis_nesting (non-negative integer)
	52.47.4 OpenVMS user agent MTA options: form_names (string; OpenVMS only)
	52.47.5 mail_delivery_filename Option
	52.47.6 missing_address Option
	52.47.7 multinet_mm_exclusive Option
	52.47.8 OpenVMS user agent MTA options: read_receipt_off (string)
	52.47.9 OpenVMS user agent MTA options: read_receipt_on (string)
	52.47.10 OpenVMS user agent MTA options: safe_tcl_mode (bitmask)
	52.47.11 use_mail_delivery Option
	52.47.12 vms_mail_exclusive Option

	Chapter 53 MTA Tailor options
	53.1 Directory location MTA Tailor options
	53.1.1 MTA Tailor options: imta_root (directory path)
	53.1.2 MTA Tailor options: imta_lib (MTA directory path)
	53.1.3 MTA Tailor options: imta_bin (MTA directory path)
	53.1.4 MTA Tailor options: imta_table (MTA directory path)
	53.1.5 MTA Tailor options: imta_dl (MTA directory path)
	53.1.6 MTA Tailor options: imta_log (MTA directory path)
	53.1.7 imta_tmp Option
	53.1.8 imta_db_tmp Option
	53.1.9 imta_queue Option
	53.1.10 imta_help Option
	53.1.11 imta_lang Option
	53.1.12 MTA Tailor options: imta_program (MTA directory path)

	53.2 File name MTA Tailor options
	53.2.1 MTA Tailor options: imta_option_file (MTA file path)
	53.2.2 MTA Tailor options: imta_system_filter_file (MTA file path)
	53.2.3 MTA Tailor options: imta_config_file (MTA file path)
	53.2.4 MTA Tailor options: imta_xml_config_file (MTA file path)
	53.2.5 MTA Tailor options: imta_command_data (MTA file path)
	53.2.6 MTA Tailor options: imta_config_data (MTA file path)
	53.2.7 MTA Tailor options: imta_charset_data (MTA file path)
	53.2.8 MTA Tailor options: imta_alias_file (MTA file path)
	53.2.9 MTA Tailor options: imta_primary_log (MTA file path)
	53.2.10 MTA Tailor options: imta_secondary_log (MTA file path)
	53.2.11 MTA Tailor options: imta_tertiary_log (MTA file path)
	53.2.12 imta_primary_connection_log Option
	53.2.13 imta_secondary_connection_log Option
	53.2.14 imta_tertiary_connection_log Option
	53.2.15 imta_name_content_file Option
	53.2.16 imta_forward_data Option
	53.2.17 imta_reverse_data Option
	53.2.18 imta_general_data Option
	53.2.19 imta_alias_database Option
	53.2.20 imta_reverse_database Option
	53.2.21 imta_forward_database Option
	53.2.22 imta_general_database Option
	53.2.23 imta_domain_database Option
	53.2.24 imta_ssr_database Option
	53.2.25 imta_dn_to_id_database Option
	53.2.26 imta_user_profile_database Option
	53.2.27 imta_charset_option_file Option
	53.2.28 imta_mapping_file Option
	53.2.29 imta_conversion_file Option
	53.2.30 imta_hold Option
	53.2.31 imta_jbc_config_file Option
	53.2.32 imta_dispatcher_config Option
	53.2.33 imta_libutil Option
	53.2.34 imta_libmap Option
	53.2.35 imta_security_config_file Option

	53.3 User MTA Tailor options
	53.3.1 Tailor file options: imta_user (string)
	53.3.2 Tailor file options: imta_user_username (string)
	53.3.3 Tailor file options: imta_world_group (string)

	53.4 Scheduling MTA Tailor options
	53.4.1 imta_version_limit Option
	53.4.2 imta_version_limit_period Option
	53.4.3 imta_return_period Option
	53.4.4 imta_return_synch_period Option
	53.4.5 imta_return_split_period Option
	53.4.6 imta_return_cleanup_period Option
	53.4.7 imta_verify_return Option
	53.4.8 imta_synch_cache_period Option

	Chapter 54 Dispatcher
	54.1 Dispatcher operation
	54.1.1 Creation and expiration of Dispatcher Worker Processes

	54.2 Dispatcher options
	54.2.1 enable Option Under dispatcher
	54.2.2 enable Option Under service
	54.2.3 backlog Option Under service
	54.2.4 debug Option Under dispatcher
	54.2.5 dns_verify_domain Option
	54.2.6 historical_time Option
	54.2.7 image Option
	54.2.8 interface_address Option
	54.2.9 listenaddr Option Under dispatcher
	54.2.10 listenaddr Option Under service
	54.2.11 logfilename Option
	54.2.12 max_conns Option Under dispatcher
	54.2.13 max_conns Option Under service
	54.2.14 min_conns Option
	54.2.15 max_handoffs Option
	54.2.16 max_idle_time Option
	54.2.17 max_life_conns Option Under dispatcher
	54.2.18 max_life_time Option Under dispatcher
	54.2.19 max_procs Option
	54.2.20 max_shutdown Option
	54.2.21 min_procs Option
	54.2.22 parameter Option
	54.2.23 port Option Under dispatcher
	54.2.24 Service group
	54.2.25 stacksize Option
	54.2.26 ssl_ports Option Under service
	54.2.27 tcp_ports Option Under service
	54.2.28 tls_min_bits Option
	54.2.29 tls_bits_reject_msg Option
	54.2.30 user Option Under dispatcher
	54.2.31 user Option Under service
	54.2.32 use_nslog Option Under dispatcher
	54.2.33 loglevel Option Under mta
	54.2.34 Old Dispatcher options

	54.3 Dispatcher debugging and log files

	Chapter 55 Job Controller
	55.1 Job Controller operation
	55.1.1 Job Controller operation under stress
	55.1.2 Job Controller priority-based processing

	55.2 Job Controller default configuration
	55.3 Job Controller options
	55.3.1 enable Option Under job controller
	55.3.2 debug Option Under job controller
	55.3.3 listenaddr Option Under job controller
	55.3.4 job_limit Option
	55.3.5 master_command Option
	55.3.6 max_cache_messages Option
	55.3.7 max_life_askwork Option
	55.3.8 max_life_conns Option Use With max_life_conns Under job controller
	55.3.9 max_life_time Option Under job controller
	55.3.10 notice_time Option
	55.3.11 port Option Under job controller
	55.3.12 rebuild_parallel_channels Option
	55.3.13 secret Option Under job controller
	55.3.14 slave_command Option
	55.3.15 stressblackout Option
	55.3.16 stresstime Option
	55.3.17 stressfactor Option
	55.3.18 unstressfactor Option
	55.3.19 stressjobs Option
	55.3.20 unstressjobs Option
	55.3.21 synch_time Option
	55.3.22 tcp_ports Option Under job controller
	55.3.23 Job Controller job pool options: nonurgent_delivery (execution-window string), normal_delivery (execution-window-string), urgent_delivery (execution-window-string)
	55.3.24 use_nslog Option Under job controller
	55.3.25 loglevel Option Under mta
	55.3.26 job_pool
	55.3.27 channel_class

	55.4 Checking that the Job Controller is running

	Chapter 56 Compiling the MTA configuration
	Chapter 57 Mail filtering and access control
	57.1 Access mapping tables
	57.1.1 PORT_ACCESS mapping table
	57.1.1.1 Initial PORT_ACCESS mapping table

	57.1.2 INTERNAL_IP mapping table
	57.1.3 Recipient access mapping tables
	57.1.3.1 Initial SEND_ACCESS mapping table

	57.1.4 FROM_ACCESS mapping table
	57.1.4.1 Initial FROM_ACCESS mapping table

	57.1.5 When access mapping table controls are applied

	57.2 Defending against denial of service attacks

	Chapter 58 Spam and virus filtering
	58.1 Brightmail spamfilterN_config_file
	58.2 ClamAV spamfilterN_config_file
	58.3 ICAP spamfilterN_config_file
	58.4 Milter spamfilterN_config_file
	58.5 SpamAssassin spamfilterN_config_file
	58.6 Archive spamfilterN_config_file
	58.7 Sieve spamfilterN_config_file
	58.8 Spamfilter early verdicts
	58.9 Milter implementation
	58.9.1 MILTER_ACTIONS mapping table
	58.9.2 MILTER_MACROS mapping table
	58.9.3 Milter single recipient extension
	58.9.4 Milter errors

	58.10 Milter operation
	58.11 imexpire invoking spamfilter packages

	Chapter 59 MeterMaid
	59.1 metermaid options
	59.1.1 enable Option Under metermaid
	59.1.2 async Option
	59.1.3 backlog Option Under metermaid
	59.1.4 listenaddr Option Under metermaid
	59.1.5 local_table
	59.1.5.1 data_type Option
	59.1.5.2 block_time Option
	59.1.5.3 resubmit_time Option
	59.1.5.4 inactivity_time Option
	59.1.5.5 max_entries Option
	59.1.5.6 table_options Option
	59.1.5.7 quota Option
	59.1.5.8 quota_time Option
	59.1.5.9 storage Option
	59.1.5.10 table_type Option
	59.1.5.11 value_type Option

	59.1.6 maxthreads Option Under metermaid
	59.1.7 port Option Under metermaid
	59.1.8 secret Option Under metermaid
	59.1.9 sslcachesize Option Under metermaid
	59.1.10 sslusessl Option Under metermaid

	59.2 metermaid_client options
	59.2.1 debug Option Under metermaid_client
	59.2.2 connectfrequency Option Under metermaid_client
	59.2.3 connecttimeout Option Under metermaid_client
	59.2.4 max_conns Option Under metermaid_client
	59.2.5 server_host Option Under metermaid_client
	59.2.6 server_port Option Under metermaid_client
	59.2.7 sslusessl Option Under metermaid_client
	59.2.8 timeout Option Under metermaid_client
	59.2.9 remote_server
	59.2.9.1 max_conns Option Under remote_server
	59.2.9.2 server_host Option Under remote_server
	59.2.9.3 server_port Option Under remote_server
	59.2.9.4 sslusessl Option Under remote_server

	59.2.10 remote_table
	59.2.10.1 server_nickname Option

	Chapter 60 Notification messages
	60.1 Notification message types
	60.1.1 Message Store notifications that a user himself is overquota

	60.2 Notification message generation timing
	60.3 Notification message format
	60.3.1 DSN language and customization
	60.3.1.1 Customizing DSNs via the return_*.* files
	60.3.1.1.1 The sample header lines in DSNs: the return_header.opt file
	60.3.1.1.2 The required full set of DSN type-specific return_*.txt files
	60.3.1.1.3 The optional return_option.opt file
	60.3.1.1.3.1 DAY (string), HOUR (string)
	60.3.1.1.3.2 DIAGNOSTIC_CODE (string)
	60.3.1.1.3.3 ORIGINAL_ADDRESS (string)
	60.3.1.1.3.4 RETURN_PERSONAL (RFC 2047-encoded string)
	60.3.1.1.3.5 SUBJECT (RFC 2047-encoded string)
	60.3.1.1.3.6 REASON (string)
	60.3.1.1.3.7 RECIPIENT_ADDRESS (string)
	60.3.1.1.3.8 REMOTE_SYSTEM (string)
	60.3.1.1.3.9 x.y.z (string)
	60.3.1.1.3.10 Option usage

	60.3.2 MDN language and customization
	60.3.2.1 Customizing MDNs via the disposition_*.* files
	60.3.2.1.1 The disposition_*.txt files
	60.3.2.1.2 The disposition_option.opt file
	60.3.2.1.2.1 SUBJECT
	60.3.2.1.2.2 RETURN_PERSONAL
	60.3.2.1.2.3 TEXT_CHARSET

	60.3.3 NOTIFICATION_LANGUAGE and DISPOSITION_LANGUAGE sample mapping tables

	60.4 Notification message routing
	60.5 Bounces of spam messages
	60.6 Notification message logging
	60.7 Message size limits and notification messages
	60.8 Postmaster addresses

	Chapter 61 Message tracking and recall
	61.1 Message tracking and recall setup and configuration
	61.1.1 Memcache server setup
	61.1.2 MTA channel setup for message tracking and recall
	61.1.3 MTQP server setup

	Chapter 62 TCP/IP channels
	62.1 Typical TCP/IP channels and servers
	62.2 SMTP SUBMIT servers
	62.2.1 BURL_ACCESS mapping table
	62.2.2 SMTP SUBMIT FUTURERELEASE support

	62.3 LMTP channels
	62.3.1 LMTP client TCP/IP channels
	62.3.2 LMTP back end TCP/IP channel
	62.3.2.1 LMTP server options

	62.4 TCP/IP-channel-specific options
	62.4.1 TCP/IP-channel-specific options: PERMANENT_ERROR_STRING_552 (string)
	62.4.2 TCP/IP-channel-specific options: ALLOW_ETRNS_PER_SESSION (integer)
	62.4.3 TCP/IP-channel-specific options: ALLOW_RECIPIENTS_PER_TRANSACTION (integer)
	62.4.4 TCP/IP-channel-specific options: ALLOW_REJECTIONS_BEFORE_DEFERRAL (integer)
	62.4.5 TCP/IP-channel-specific options: ALLOW_SESSION_BLOCKS (integer)
	62.4.6 TCP/IP-channel-specific options: ALLOW_TRANSACTION_BLOCKS (integer)
	62.4.7 TCP/IP-channel-specific options: ALLOW_TRANSACTIONS_PER_SESSION (integer)
	62.4.8 TCP/IP-channel-specific options: ATTEMPT_TRANSACTIONS_PER_SESSION (integer)
	62.4.9 TCP/IP-channel-specific options: AUTH_DEBUG (string)
	62.4.10 TCP/IP-channel-specific options: AUTH_PASSWORD (string), AUTH_USERNAME (string), EXTERNAL_IDENTITY (string)
	62.4.11 TCP/IP-channel-specific options: BANNER_ADDITION (string)
	62.4.12 TCP/IP-channel-specific options: BANNER_HOST (string)
	62.4.13 TCP/IP-channel-specific options: BANNER_RECEIVE_TIME (integer)
	62.4.14 TCP/IP-channel-specific options: BANNER_REVERSE_HOST (boolean)
	62.4.15 TCP/IP-channel-specific options: BANNER_PURGE_DELAY (integer)
	62.4.16 TCP/IP-channel-specific options: BUFFER_SIZE (integer)
	62.4.17 TCP/IP-channel-specific options: CHECK_SOURCE (0 or 1)
	62.4.18 TCP/IP-channel-specific options: CLIENT_CERT_NICKNAME (string)
	62.4.19 TCP/IP-channel-specific options: CLIENT_STACK_SIZE (integer)
	62.4.20 TCP/IP-channel-specific options: COMMAND_RECEIVE_TIME (integer)
	62.4.21 TCP/IP-channel-specific options: COMMAND_TRANSMIT_TIME (integer)
	62.4.22 TCP/IP-channel-specific options: CONTINUATION_CHARS (string)
	62.4.23 TCP/IP-channel-specific options: CUSTOM_VERSION_STRING (string)
	62.4.24 TCP/IP-channel-specific options: DATA_RECEIVE_TIME (integer)
	62.4.25 TCP/IP-channel-specific options: DATA_TRANSMIT_TIME (integer)
	62.4.26 TCP/IP-channel-specific options: DISABLE_ADDRESS (0 or 1)
	62.4.27 TCP/IP-channel-specific options: DISABLE_CIRCUIT (0 or 1)
	62.4.28 TCP/IP-channel-specific options: DISABLE_EXPAND (0 or 1)
	62.4.29 TCP/IP-channel-specific options: DISABLE_GENERAL (0 or 1)
	62.4.30 TCP/IP-channel-specific options: DISABLE_SEND (0 or 1)
	62.4.31 TCP/IP-channel-specific options: DISABLE_STATUS (0 or 1)
	62.4.32 TCP/IP-channel-specific options: DOT_TRANSMIT_TIME (integer)
	62.4.33 TCP/IP-channel-specific options: FAST_SMTP_SESSION_TIME_LIMIT (integer)
	62.4.34 TCP/IP-channel-specific options: HELLO_RECEIVE_TIME (integer)
	62.4.35 TCP/IP-channel-specific options: HIDE_VERIFY (0 or 1)
	62.4.36 TCP/IP-channel-specific options: IGNORE_BAD_CERT (bit-encoded integer)
	62.4.37 TCP/IP-channel-specific options: INITIAL_COMMAND (string)
	62.4.38 TCP/IP-channel-specific options: KILLED_IP_TIMEOUT (integer seconds)
	62.4.39 TCP/IP-channel-specific options: KILLED_USER_TIMEOUT (integer seconds)
	62.4.40 TCP/IP-channel-specific options: LOG_BANNER (0 or 1)
	62.4.41 TCP/IP-channel-specific options: LOG_CONNECTION (integer)
	62.4.42 TCP/IP-channel-specific options: LOG_TRANSPORTINFO (0 or 1)
	62.4.43 TCP/IP-channel-specific options: MAIL_TRANSMIT_TIME (integer)
	62.4.44 TCP/IP-channel-specific options: MAILBOX_BUSY_FAST_RETRY (integer)
	62.4.45 TCP/IP-channel-specific options: MAX_A_RECORDS (integer)
	62.4.46 TCP/IP-channel-specific options: MAX_B_ENTRIES (integer)
	62.4.47 TCP/IP-channel-specific options: MAX_CLIENT_THREADS (integer)
	62.4.48 TCP/IP-channel-specific options: MAX_H_ENTRIES (integer)
	62.4.49 TCP/IP-channel-specific options: MAX_HELO_DOMAIN_LENGTH (integer)
	62.4.50 TCP/IP-channel-specific options: MAX_J_ENTRIES (integer)
	62.4.51 TCP/IP-channel-specific options: MAX_MX_RECORDS (integer <= 32)
	62.4.52 TCP/IP-channel-specific options: MAX_SERVER_THREADS (integer; <= 47 on Solaris)
	62.4.53 TCP/IP-channel-specific options: OPEN_CONNECTION_TIME (integer)
	62.4.54 TCP/IP-channel-specific options: PACKET_SIZE_LIMIT (integer)
	62.4.55 TCP/IP-channel-specific options: PROXY_PASSWORD (string)
	62.4.55.1 XPEHLO proxy validation: proxy_hash_algorithm (hash algorithm name)

	62.4.56 TCP/IP-channel-specific options: RCPT_TRANSMIT_TIME (integer)
	62.4.57 TCP/IP-channel-specific options: REJECT_RECIPIENTS_PER_TRANSACTION (integer)
	62.4.58 TCP/IP-channel-specific options: REUSE_TIMED_OUT_TRANSFERS (0 or 1)
	62.4.59 TCP/IP-channel-specific options: SESSION_TIME (integer)
	62.4.60 TCP/IP-channel-specific options: SIZE_DELAY_THRESHHOLDS, SIZE_DELAY_AMOUNTS, RECIPIENT_DELAY_THRESHHOLDS, RECIPIENT_DELAY_AMOUNTS, TRANSACTION_DELAY_THRESHHOLDS, TRANSACTION_DELAY_AMOUNTS (comma-separated list of integers)
	62.4.61 TCP/IP-channel-specific options: SSL_CLIENT (0 or 1)
	62.4.62 TCP/IP-channel-specific options: STARTTLS_FAILURE_RECONNECT_DELAY (integer)
	62.4.63 TCP/IP-channel-specific options: STATUS_DATA_RECEIVE_TIME (integer)
	62.4.64 TCP/IP-channel-specific options: STATUS_DATA_RECV_PER_ADDR_TIME (floating point value)
	62.4.65 TCP/IP-channel-specific options: STATUS_DATA_RECV_PER_BLOCK_TIME (floating point value)
	62.4.66 TCP/IP-channel-specific options: STATUS_DATA_RECV_PER_ADDR_PER_BLK_TIME (floating point value)
	62.4.67 TCP/IP-channel-specific options: STATUS_MAIL_RECEIVE_TIME (integer)
	62.4.68 TCP/IP-channel-specific options: STATUS_RCPT_RECEIVE_TIME (integer)
	62.4.69 TCP/IP-channel-specific options: STATUS_RECEIVE_TIME (integer)
	62.4.70 TCP/IP-channel-specific options: STATUS_TRANSMIT_TIME (integer)
	62.4.71 TCP/IP-channel-specific options: TLS_NEGOTIATION_TIME (integer)
	62.4.72 TCP/IP-channel-specific options: TIMEOUT_MULTIPLIER (integer)
	62.4.73 TCP/IP-channel-specific options: TRACE_LEVEL (0, 1, or 2)
	62.4.74 TCP/IP-channel-specific options: TRANSACTION_LIMIT_RCPT_TO (0 or 1)
	62.4.75 TCP/IP-channel-specific options: TRANSACTION_TIME (integer)
	62.4.76 TCP/IP-channel-specific options: WINDDOWN_TIMEOUT (integer)

	62.5 DEQUEUE_ACCESS mapping table
	62.6 AUTH_ACCESS mapping table
	62.6.1 AUTH_ACCESS mapping example: Excerpt of local user entry in user/group LDAP
	62.6.2 AUTH_ACCESS mapping example: Excerpt of remote identity entries in alternate (external) LDAP
	62.6.3 AUTH_ACCESS mapping example: third party submission

	62.7 AUTH_DEACCESS mapping table
	62.8 MX_ACCESS mapping table
	62.9 IP_ACCESS mapping table
	62.10 SASL_ACCESS mapping table
	62.11 TLS_ACCESS mapping table
	62.12 SMTP_ACTIONS mapping table
	62.13 Routing via gateway systems
	62.13.1 Routing non-local mail to a mailhub

	62.14 Blocking SMTP relaying
	62.14.1 SRS and Relay Blocking

	62.15 Triggering message transfer with remote SMTP systems
	62.16 Authentication errors and resultant SMTP errors
	62.17 Authentication errors

	Chapter 63 BSMTP channels
	63.1 Configuring the BSMTP channels
	63.2 BSMTP service conversions

	Chapter 64 ims-ms channels
	64.1 ims-ms channel configuration
	64.1.1 Additional ims-ms channels

	64.2 ims-ms-channel-specific options
	64.2.1 ims-ms-channel-specific options: DEBUG (integer)
	64.2.2 ims-ms-channel-specific options: DELIVER_THREADS (integer)
	64.2.3 ims-ms-channel-specific options: FILEINTO (0 or 1)
	64.2.4 ims-ms-channel-specific options: LIFETIME_CAPACITY (integer)
	64.2.5 ims-ms-channel-specific options: LOG_DEQUEUE_RATE (0 or 1)

	64.3 ims-ms channel program switches
	64.4 ims-ms channel debugging and error logging
	64.5 ims-ms channel error messages

	Chapter 65 Other channels
	65.1 Local channel
	65.2 Bitbucket channel
	65.2.1 Bitbucket channel configuration

	65.3 Defragmentation channel
	65.3.1 Defragmentation channel configuration
	65.3.2 Defragmentation-channel-specific option: MAX_PARTS (10 <= integer <= 100,000)
	65.3.3 Defragmentation channel message retention time
	65.3.4 Multi-host defragmentation channel operation
	65.3.4.1 Multi-host defragmentation channel operation example

	65.4 filter_discard channel
	65.4.1 Retrieving messages from the filter_discard channel

	65.5 Generic SMTP channels
	65.6 Hold channel
	65.6.1 Hold channel configuration
	65.6.2 Releasing messages from the hold channel
	65.6.3 Diagnosing .HELD files

	65.7 Pipe channels
	65.7.1 Setting up a pipe channel
	65.7.1.1 Adding a pipe channel to the configuration
	65.7.1.2 Pipe channel addressees and their handling
	65.7.1.2.1 User LDAP attributes for pipe channel processing
	65.7.1.2.1.1 Pipe options
	65.7.1.2.1.1.1 params Option
	65.7.1.2.1.1.2 perms Option
	65.7.1.2.1.1.3 command Option

	65.7.1.2.2 Profile database
	65.7.1.2.3 Profile database entries for pipe channel addressees
	65.7.1.2.4 Pipe database
	65.7.1.2.5 Pipe channel option file
	65.7.1.2.5.1 SHELL_TIMEOUT (integer; UNIX only)
	65.7.1.2.5.2 SHELL_TMPDIR (directory-specification)
	65.7.1.2.5.3 ADDRESS_TYPES (0-7)
	65.7.1.2.5.4 UNIX_STYLE (0 or 1)

	65.7.2 Pipe entry match order

	65.8 Process and Reprocess channels
	65.8.1 Reprocess channel operation as prior channel
	65.8.1.1 Reprocess channel transaction log entries

	Chapter 66 SMS options
	66.1 SMS gateway options
	66.1.1 enable Option Under sms_gateway
	66.1.2 debug Option Under sms_gateway
	66.1.3 foreground Option
	66.1.4 history_file_directory Option
	66.1.5 history_file_mode Option
	66.1.6 history_file_flush_period Option
	66.1.7 history_file_flush_threshold Option
	66.1.8 history_file_rollover_period Option
	66.1.9 max_conns Option Under sms_gateway
	66.1.10 record_lifetime Option
	66.1.11 thread_count_initial Option
	66.1.12 thread_count_maximum Option
	66.1.13 thread_stack_size Option

	66.2 SMS gateway_profile options
	66.2.1 text_to_subject Option
	66.2.2 mta_channel Option
	66.2.3 email_body_charset Option
	66.2.4 email_header_charset Option
	66.2.5 from_domain Option
	66.2.6 in_re Option
	66.2.7 Address extraction SMS options: parse_re_N (regular expression)
	66.2.8 profile Option
	66.2.9 route_to Option
	66.2.10 select_re Option
	66.2.11 smsc_default_charset Option
	66.2.12 use_sms_priority Option
	66.2.13 use_sms_privacy Option

	66.3 SMS smpp_relay options
	66.3.1 backlog Option Under smpp_relay
	66.3.2 listen_addresses Option Under smpp_relay
	66.3.3 listen_receive_timeout Option
	66.3.4 listen_transmit_timeout Option
	66.3.5 make_source_addresses_unique Option
	66.3.6 max_conns Option Under smpp_relay
	66.3.7 server_host Option Under smpp_relay
	66.3.8 server_port Option Under smpp_relay
	66.3.9 server_receive_timeout Option
	66.3.10 server_transmit_timeout Option
	66.3.11 tcp_ports Option Under smpp_relay

	66.4 SMS smpp_server options
	66.4.1 backlog Option Under smpp_server
	66.4.2 esme_address_npi Option
	66.4.3 esme_address_range Option
	66.4.4 esme_address_ton Option
	66.4.5 esme_password Option
	66.4.6 esme_system_id Option
	66.4.7 esme_system_type Option
	66.4.8 listen_addresses Option Under smpp_server
	66.4.9 listen_receive_timeout Option
	66.4.10 listen_transmit_timeout Option
	66.4.11 max_conns Option Under smpp_server
	66.4.12 server_host Option Under smpp_server
	66.4.13 server_port Option Under smpp_server
	66.4.14 system_id Option
	66.4.15 tcp_ports Option Under smpp_server

	Chapter 67 Message capture
	67.1 MESSAGE-SAVE-COPY mapping table
	67.1.1 MESSAGE-SAVE-COPY mapping table format and examples
	67.1.2 Message replay of captured message copies

	67.2 Capture triggered via LDAP attributes
	67.3 Capturing messages via Sieve scripts
	67.4 Format of captured message copies
	67.5 Archiving messages
	67.5.1 Choosing which messages to archive
	67.5.2 Message identifier generation
	67.5.3 AXS:One archive integration
	67.5.3.1 Architecture of the AXS:One integration
	67.5.3.2 MTA support for AXS:One archiving
	67.5.3.3 MTA configuration for AXS:One archiving
	67.5.3.3.1 Example message archiving configuration

	Chapter 68 Monitoring the MTA
	68.1 MTA transaction logging
	68.1.1 Managing the MTA transaction log files
	68.1.2 MTA transaction log entry format
	68.1.3 Triggering effects from transaction logging with LOG_ACTION
	68.1.3.1 LOG_ACTION operation
	68.1.3.2 Probe format
	68.1.3.3 Examples of LOG_ACTION use
	68.1.3.3.1 Disabling logging of connections from a periodic monitoring source
	68.1.3.3.2 Syslog notices after SMTP AUTH attempts with bad password
	68.1.3.3.3 Syslog notices after SMTP AUTH attempts with bad username
	68.1.3.3.4 Syslog notices after failing SMTP AUTH attempts, resetting after success
	68.1.3.3.5 Syslog notices when time-in-queue becomes "high", ceasing after any quick delivery
	68.1.3.3.6 Blocking submissions of local senders who may be spammers
	68.1.3.3.7 Blocking dictionary attack on user name space (botnet attack)
	68.1.3.3.8 Delay after bad username and password specified in SUBMIT

	68.2 MTA counters
	68.2.1 MTA channel counters
	68.2.2 Purpose and design of MTA counters
	68.2.3 MTA counters implementation
	68.2.4 SNMP subagents
	68.2.4.1 MIB variables served

	Chapter 69 MTA performance tuning
	69.1 MTA performance: CPU and resources
	69.2 MTA performance: Disks and files
	69.3 System parameters on Solaris
	69.3.1 For the Dispatcher:
	69.3.2 For the Job Controller:

	Chapter 70 Restricting information emitted
	70.1 SMTP probe commands
	70.2 Internal host names in Received: and Message-Id: header lines
	70.3 Extra concerns for address canonicalization

	Chapter 71 MTA command line utilities
	71.1 cache -change utility
	71.1.1 Syntax
	71.1.2 Parameters
	71.1.3 Description
	71.1.4 Switches
	71.1.4.1 -channel=name
	71.1.4.2 -debug=n
	71.1.4.3 -global
	71.1.4.4 -inorder_rebuild, -noinorder_rebuild
	71.1.4.5 -job_limit=n
	71.1.4.6 -max_messages=n
	71.1.4.7 -master_job=command
	71.1.4.8 -slave_job=command
	71.1.4.9 -parallel_rebuild=n
	71.1.4.10 -template=channel-pattern
	71.1.4.11 -thread_depth=n

	71.1.5 Examples

	71.2 cache -sync utility
	71.2.1 Syntax
	71.2.2 Parameters
	71.2.3 Description
	71.2.4 Switches
	71.2.4.1 -debug=n, -nodebug (default)
	71.2.4.2 -recipient (default), -norecipient

	71.2.5 Examples

	71.3 cache -view utility
	71.3.1 Syntax
	71.3.1.1 Restrictions

	71.3.2 Parameters
	71.3.2.1 channel-name

	71.3.3 Description
	71.3.4 Examples

	71.4 cache -walk utility
	71.4.1 Syntax
	71.4.2 Parameters
	71.4.3 Description
	71.4.4 Switches
	71.4.4.1 -debug=n, -nodebug (default)

	71.4.5 Examples

	71.5 calc utility
	71.5.1 Syntax
	71.5.1.1 Restrictions
	71.5.1.2 Prompts

	71.5.2 Parameters
	71.5.2.1 expression

	71.5.3 Description
	71.5.4 Switches
	71.5.4.1 -debug=n, -nodebug (default)
	71.5.4.2 -from=address, -to=address
	71.5.4.3 -input=filename, -noinput (default)
	71.5.4.4 -message=filename, -nomessage (default)
	71.5.4.5 -mm, -nomm (default)
	71.5.4.6 -mtpriority=n, -nomtpriority
	71.5.4.7 -multiple (default), -nomultiple
	71.5.4.8 -output=filename, -nooutput (default)
	71.5.4.9 -required (default), -norequired
	71.5.4.10 -rsecret=recall-secret
	71.5.4.11 -source=source-channel-name
	71.5.4.12 -statement=n
	71.5.4.13 -symbols, -nosymbols (default)
	71.5.4.14 -system, -nosystem (default)
	71.5.4.15 -uav=n

	71.6 chbuild utility
	71.6.1 Syntax
	71.6.1.1 Restrictions

	71.6.2 Parameters
	71.6.3 Description
	71.6.4 Switches
	71.6.4.1 -image_file[=file-spec], -noimage_file
	71.6.4.2 -maximum, -nomaximum (default)
	71.6.4.3 -option_file[=file-spec], -nooption_file (default)
	71.6.4.4 -remove
	71.6.4.5 -sizes, -nosizes (default)
	71.6.4.6 -statistics, -nostatistics (default)

	71.6.5 Examples

	71.7 clbuild utility
	71.7.1 Syntax
	71.7.1.1 Restrictions

	71.7.2 Parameters
	71.7.2.1 cld-file-spec

	71.7.3 Description
	71.7.4 Switches
	71.7.4.1 -debug, -nodebug (default)
	71.7.4.2 -image_file=file-spec, -noimage_file (default)
	71.7.4.3 -maximum, -nomaximum (default)
	71.7.4.4 -option_file[=file-spec], -nooption_file (default)
	71.7.4.5 -remove
	71.7.4.6 -sizes, -nosizes (default)
	71.7.4.7 -statistics, -nostatistics (default)

	71.7.5 Examples

	71.8 cnbuild utility
	71.8.1 Syntax
	71.8.1.1 Restrictions

	71.8.2 Description
	71.8.3 Switches
	71.8.3.1 -check, -nocheck (default)
	71.8.3.2 -image_file[=file-spec], -noimage_file
	71.8.3.3 -maximum, -nomaximum (default)
	71.8.3.4 -option_file[=file-spec], -nooption_file (default)
	71.8.3.5 -remove, -noremove (default)
	71.8.3.6 -sizes, -nosizes (default)
	71.8.3.7 -statistics, -nostatistics (default)
	71.8.3.8 -synonyms, -nosynonyms (default)
	71.8.3.9 -xml_config, -noxml_config (default)

	71.8.4 Examples

	71.9 connkill utility
	71.9.1 Syntax
	71.9.1.1 Restrictions

	71.9.2 Description

	71.10 counters -clear utility
	71.10.1 Syntax
	71.10.1.1 Restrictions

	71.10.2 Parameters
	71.10.3 Description

	71.11 counters -show utility
	71.11.1 Syntax
	71.11.1.1 Restrictions

	71.11.2 Description
	71.11.3 Switches
	71.11.3.1 -associations (default), -noassociations
	71.11.3.2 -channels[=channel-name] (default), -nochannels
	71.11.3.3 -debug, -nodebug (default)
	71.11.3.4 -format=0 (default=0)
	71.11.3.5 -headers (default), -noheaders
	71.11.3.6 -output=file-spec

	71.11.4 Examples

	71.12 crdb utility
	71.12.1 Syntax
	71.12.2 Parameters
	71.12.2.1 input-file-spec
	71.12.2.2 output-database-spec

	71.12.3 Description
	71.12.4 Switches
	71.12.4.1 -append, -noappend (default)
	71.12.4.2 -count (default), -nocount
	71.12.4.3 -dump
	71.12.4.4 -duplicates, -noduplicates (default)
	71.12.4.5 -exception_file=file-spec, -noexception_file (default)
	71.12.4.6 -long_records, -nolong_records (default), -huge_records, -nohuge_records
	71.12.4.7 -quoted, -noquoted (default)
	71.12.4.8 -remove, -noremove (default)
	71.12.4.9 -statistics (default), -nostatistics
	71.12.4.10 -strip_colons, -nostrip_colons (default)

	71.12.5 Examples

	71.13 find utility
	71.13.1 Syntax
	71.13.1.1 Restrictions

	71.13.2 Parameters
	71.13.2.1 file-pattern

	71.13.3 Description
	71.13.4 Switches
	71.13.4.1 -debug
	71.13.4.2 -f=offset-from-first, -first=offset-from-first
	71.13.4.3 -l=offset-from-last, -last=offset-from-last

	71.13.5 Examples

	71.14 process utility
	71.14.1 Syntax
	71.14.2 Parameters
	71.14.3 Description
	71.14.4 Examples

	71.15 purge utility
	71.15.1 Syntax
	71.15.2 Parameters
	71.15.2.1 file-pattern

	71.15.3 Description
	71.15.4 Switches
	71.15.4.1 -day=d
	71.15.4.2 -debug
	71.15.4.3 -hour=h
	71.15.4.4 -num=n

	71.15.5 Examples

	71.16 qclean utility
	71.16.1 Syntax
	71.16.1.1 Restrictions

	71.16.2 Parameters
	71.16.2.1 channel

	71.16.3 Description
	71.16.4 Switches
	71.16.4.1 -content=substring, -domain_to=substring, -env_from=substring, -env_to=substring, -subject=substring, -to=substring
	71.16.4.2 -database (default), -directory_tree
	71.16.4.3 -delete, -hold (default)
	71.16.4.4 -match=keyword
	71.16.4.5 -min_length=n
	71.16.4.6 -threads=n, -nothreads (default)
	71.16.4.7 -verbose, -noverbose (default)

	71.16.5 Examples

	71.17 qtop utility
	71.17.1 Syntax
	71.17.1.1 Restrictions

	71.17.2 Parameters
	71.17.2.1 channel

	71.17.3 Description
	71.17.4 Switches
	71.17.4.1 -content[=offset-specifier], -domain_to[=offset-specifier], -env_from[=offset-specifier], -env_to[=offset-specifier], -from[=offset-specifier], -subject[=offset-specifier], -to[=offset-specifier]
	71.17.4.2 -database (default), -directory_tree
	71.17.4.3 -ignore_zz, -noignore_zz (default)
	71.17.4.4 -min_count=n
	71.17.4.5 -output=file-spec
	71.17.4.6 -threads=n, -nothreads (default)
	71.17.4.7 -top=n
	71.17.4.8 -verbose, -noverbose (default)

	71.17.5 Examples

	71.18 reload utility
	71.18.1 Syntax
	71.18.2 Parameters
	71.18.3 Description
	71.18.4 Error messages

	71.19 restart utility
	71.19.1 Syntax
	71.19.1.1 Restrictions

	71.19.2 Parameters
	71.19.2.1 component

	71.19.3 Description
	71.19.4 Examples
	71.19.5 Error messages

	71.20 return utility
	71.20.1 Syntax
	71.20.1.1 Restrictions

	71.20.2 Parameters
	71.20.2.1 message-file-spec

	71.20.3 Description
	71.20.4 Examples

	71.21 run utility
	71.21.1 Syntax
	71.21.1.1 Restrictions

	71.21.2 Parameters
	71.21.2.1 channel
	71.21.2.2 poll-flag
	71.21.2.3 queuename
	71.21.2.4 start-time
	71.21.2.5 start-id
	71.21.2.6 channel-specific-argument
	71.21.2.7 name-filter
	71.21.2.8 min-priority:max-priority

	71.21.3 Description
	71.21.4 Examples

	71.22 shutdown utility
	71.22.1 Syntax
	71.22.1.1 Restrictions

	71.22.2 Parameters
	71.22.2.1 component

	71.22.3 Description
	71.22.4 Examples
	71.22.5 Error messages

	71.23 startup utility
	71.23.1 Syntax
	71.23.1.1 Restrictions

	71.23.2 Parameters
	71.23.2.1 component

	71.23.3 Description
	71.23.4 Examples
	71.23.5 Error messages

	71.24 submit_master utility
	71.24.1 Syntax
	71.24.1.1 Restrictions

	71.24.2 Parameters
	71.24.2.1 channel
	71.24.2.2 poll-flag
	71.24.2.3 host-pattern

	71.24.3 Description
	71.24.4 Switches
	71.24.4.1 -delayed, -nodelayed (default)

	71.24.5 Examples

	71.25 submit utility
	71.26 test -domain_map utility
	71.26.1 Syntax
	71.26.2 Description
	71.26.3 Commands
	71.26.4 Error messages

	71.27 test -eightbit utility
	71.27.1 Syntax
	71.27.2 Parameters
	71.27.2.1 filename

	71.27.3 Description
	71.27.4 Switches
	71.27.4.1 -performance, -noperformance (default)
	71.27.4.2 -summary, -nosummary (default)
	71.27.4.3 -number (default), -nonumber
	71.27.4.4 -mode=n

	71.27.5 Examples

	71.28 test -expression utility
	71.28.1 Syntax
	71.28.1.1 Restrictions
	71.28.1.2 Prompts

	71.28.2 Description
	71.28.3 Switches
	71.28.3.1 -block, -noblock (default)
	71.28.3.2 -debug[=n], -nodebug (default)
	71.28.3.3 -envid=id, -noenvid (default)
	71.28.3.4 -from=return-address, -to=recipient-address, -noto (default)
	71.28.3.5 -input=filename
	71.28.3.6 -iterations=n
	71.28.3.7 -list=n
	71.28.3.8 -message=filename
	71.28.3.9 -mm, -xc
	71.28.3.10 -mtpriority=n, -nomtpriority (default)
	71.28.3.11 -multiple (default), -nomultiple
	71.28.3.12 -output=filename
	71.28.3.13 -required (default), -norequired
	71.28.3.14 -rsecret=recall-secret, -norsecret (default)
	71.28.3.15 -sender=sender-address, -nosender (default)
	71.28.3.16 -source=source-channel-name, -nosource
	71.28.3.17 -statement=n
	71.28.3.18 -string=n
	71.28.3.19 -symbols, -nosymbols (default)
	71.28.3.20 -system, -nosystem (default)
	71.28.3.21 -uav=n
	71.28.3.22 -username=username, -nousername (default)
	71.28.3.23 -utf8, -noutf8 (default)

	71.28.4 Examples

	71.29 test -hash utility
	71.29.1 Syntax
	71.29.2 Parameters
	71.29.2.1 hash-name
	71.29.2.2 file-name

	71.29.3 Description
	71.29.4 Switches
	71.29.4.1 -string=string, -nostring (default)
	71.29.4.2 -key=key
	71.29.4.3 -repetitions=n

	71.29.5 Examples

	71.30 test -header utility
	71.30.1 Syntax
	71.30.2 Parameters
	71.30.3 Description
	71.30.4 Switches
	71.30.4.1 -alignment=n
	71.30.4.2 -apply, -noapply (default)
	71.30.4.3 -blank, -noblank (default)
	71.30.4.4 -digits, -nodigits (default)
	71.30.4.5 -dump, -nodump (default)
	71.30.4.6 -folds, -nofolds (default)
	71.30.4.7 -increment=n
	71.30.4.8 -keeporder, -nokeeporder (default)
	71.30.4.9 -linelength=n
	71.30.4.10 -options=filename, -nooptions (default)
	71.30.4.11 -postscript, -nopostscript (default)
	71.30.4.12 -push, -nopush (default)
	71.30.4.13 -trim (default), -notrim

	71.30.5 Examples

	71.31 test -mapping utility
	71.31.1 Syntax
	71.31.1.1 Prompts

	71.31.2 Parameters
	71.31.2.1 input-string

	71.31.3 Description
	71.31.4 Switches
	71.31.4.1 -context (default), -nocontext
	71.31.4.2 -debug, -nodebug (default)
	71.31.4.3 -destination_channel=channel
	71.31.4.4 -flags=list-of-characters, -noflags (default)
	71.31.4.5 -image_file (default), -noimage_file
	71.31.4.6 -input=filename
	71.31.4.7 -mapping_file=filename
	71.31.4.8 -option_file=filename, -nooption_file
	71.31.4.9 -originator=address
	71.31.4.10 -output=output_file_spec
	71.31.4.11 -reload, -noreload (default)
	71.31.4.12 -source_channel=channel
	71.31.4.13 -sources (default), -nosources
	71.31.4.14 -table=table-name

	71.31.5 Examples

	71.32 test -match utility
	71.32.1 Syntax
	71.32.2 Parameters
	71.32.3 Description
	71.32.4 Examples

	71.33 test -mime utility
	71.33.1 Syntax
	71.33.1.1 Restrictions
	71.33.1.2 Prompts

	71.33.2 Parameters
	71.33.2.1 input-file
	71.33.2.2 output-file

	71.33.3 Description
	71.33.4 Switches
	71.33.4.1 -archive=archive-channel-name, -noarchive (default)
	71.33.4.2 -channel=channel-name, -nochannel (default)
	71.33.4.3 -convert, -noconvert (default)
	71.33.4.4 -describe, -nodescribe
	71.33.4.5 -eightbit, -noeightbit
	71.33.4.6 -encoding=keyword
	71.33.4.7 -format=keyword
	71.33.4.8 -iencoding (default), -noiencoding
	71.33.4.9 -iemessage (default), -noiemessage
	71.33.4.10 -iemultipart (default), -noiemultipart
	71.33.4.11 -line, -noline (default)
	71.33.4.12 -message_handling=keyword
	71.33.4.13 -mode=keyword
	71.33.4.14 -number (default), -nonumber
	71.33.4.15 -rotate=n, -norotate (default)
	71.33.4.16 -nmaximum=n
	71.33.4.17 -number (default), -nonumber
	71.33.4.18 -pformat=n
	71.33.4.19 -pmaximum=n
	71.33.4.20 -scan=sieve-expression, -noscan (default)
	71.33.4.21 -thurman, -nothurman (default)

	71.33.5 Examples

	71.34 test -rewrite utility
	71.34.1 Syntax
	71.34.1.1 Restrictions
	71.34.1.2 Prompts

	71.34.2 Parameters
	71.34.2.1 test-address

	71.34.3 Description
	71.34.4 Switches
	71.34.4.1 -aby=value, -noaby (default)
	71.34.4.2 -additions, -noadditions (default)
	71.34.4.3 -alias_file=filename
	71.34.4.4 -alternate_recipient=address
	71.34.4.5 -applicationinfo=string
	71.34.4.6 -by=value, -noby (default)
	71.34.4.7 -channel[=type] (default), -nochannel
	71.34.4.8 -check_expansions, -nocheck_expansions (default)
	71.34.4.9 -configuration_file=filename
	71.34.4.10 -conversion_file=filename, -noconversion_file
	71.34.4.11 -database=database-list
	71.34.4.12 -debug, -nodebug (default)
	71.34.4.13 -delivery_receipt, -nodelivery_receipt
	71.34.4.14 -destination_channel=channel
	71.34.4.15 -esmtpused, -noesmtpused (default)
	71.34.4.16 -expandlimit=n
	71.34.4.17 -extra_local_channel=channel
	71.34.4.18 -filter, -nofilter (default)
	71.34.4.19 -from=address, -nofrom
	71.34.4.20 -header, -noheader (default)
	71.34.4.21 -identifiers, -noidentifiers (default)
	71.34.4.22 -image_file (default), -noimage_file
	71.34.4.23 -input=input-file-spec
	71.34.4.24 -jacket, -nojacket (default)
	71.34.4.25 -lmtpused, -nolmtpused (default)
	71.34.4.26 -local_alias=value, -nolocal_alias (default)
	71.34.4.27 -multiple, -nomultiple
	71.34.4.28 -mapping_file[=file-spec], -nomapping_file
	71.34.4.29 -mtpriority=n, -nomtpriority (default)
	71.34.4.30 -option_file[=filename], -nooption_file
	71.34.4.31 -output=output-file-spec
	71.34.4.32 -password=
	71.34.4.33 -proxyused, -noproxyused (default)
	71.34.4.34 -quotacheck (default), -noquotacheck
	71.34.4.35 -read_receipt, -noread_receipt
	71.34.4.36 -reprocessing (default), -noreprocessing
	71.34.4.37 -restricted=setting
	71.34.4.38 -rrvs=ISO8601-value, -norrvs
	71.34.4.39 -saslused, -nosaslused (default)
	71.34.4.40 -sender=address, -nosender (default)
	71.34.4.41 -size=n, -nosize (default)
	71.34.4.42 -soptin, -nosoptin (default)
	71.34.4.43 -source_channel=channel
	71.34.4.44 -spares, -nospares (default)
	71.34.4.45 -statistics, -nostatistics (default)
	71.34.4.46 -srs=([domain=domain],[secrets=secrets],[maxage=maxage])
	71.34.4.47 -system_filter=filename, -nosystem_filter
	71.34.4.48 -tag=tag-list, -notag (default)
	71.34.4.49 -tlsused, -notlsused (default)
	71.34.4.50 -transportinfo=string
	71.34.4.51 -xml_config[=file-path]

	71.34.5 Examples
	71.34.6 Error messages

	71.35 test -time utility
	71.35.1 Syntax
	71.35.2 Parameters
	71.35.2.1 string

	71.35.3 Description
	71.35.4 Switches
	71.35.4.1 -iso8601, -rfc822, -stamp
	71.35.4.2 -periodic, -noperiodic

	71.35.5 Examples

	71.36 test -translation utility
	71.36.1 Syntax
	71.36.1.1 Prompts

	71.36.2 Parameters
	71.36.2.1 input-string

	71.36.3 Description
	71.36.4 Switches
	71.36.4.1 -image_file=filename
	71.36.4.2 -source=charset-name
	71.36.4.3 -destination=charset-name
	71.36.4.4 -input=filename
	71.36.4.5 -output=filename
	71.36.4.6 -strip_accent, -nostrip_accent (default)
	71.36.4.7 -call_reset, -nocall_reset (default)
	71.36.4.8 -generate, -nogenerate (default)
	71.36.4.9 -mnemonic_input, -nomnemonic_input (default)
	71.36.4.10 -utf8_input, -noutf8_input (default)

	71.36.5 Examples

	71.37 test -zone utility
	71.37.1 Syntax
	71.37.2 Parameters
	71.37.2.1 string

	71.37.3 Description
	71.37.4 Examples

	71.38 version utility
	71.38.1 Syntax
	71.38.2 Parameters
	71.38.3 Description
	71.38.4 Example

	71.39 view utility
	71.39.1 Syntax
	71.39.1.1 Restrictions

	71.39.2 Parameters
	71.39.2.1 file-pattern

	71.39.3 Description
	71.39.4 Switches
	71.39.4.1 -f=offset-from-first
	71.39.4.2 -l=offset-from-last

	71.39.5 Examples

	Part VIII Additional components
	Chapter 72 PAB options
	72.1 enable Option Under pab
	72.2 defaulthostindex Option
	72.3 active Option
	72.4 alwaysusedefaulthost Option
	72.5 attributelist Option
	72.6 ldapbasedn Option
	72.7 ldapbinddn Option
	72.8 ldaphost Option
	72.9 ldappasswd Option
	72.10 ldapport Option
	72.11 ldapusessl Option
	72.12 maxnumberofentries Option
	72.13 migrate415 Option
	72.14 numberofhosts Option

	Chapter 73 SNMP options
	73.1 enable Option Under snmp
	73.2 listenaddr Option Under snmp
	73.3 port Option Under snmp
	73.4 cachettl Option Under snmp
	73.5 contextname Option
	73.6 directoryscan Option
	73.7 enablecontextname Option
	73.8 registerindices Option
	73.9 servertimeout Option
	73.10 standalone Option

	Chapter 74 ENS options
	74.1 enable Option Under ens
	74.2 port Option Under ens
	74.3 enablesslport Option Under ens
	74.4 sslport Option Under ens
	74.5 secret Option Under ens
	74.6 loglevel Option Under ens
	74.7 domainallowed Option Under ens
	74.8 domainnotallowed Option Under ens
	74.9 sslnicknames Option Under ens
	74.10 mustauthenticate Option

	Chapter 75 eval_ldapd options
	75.1 domainallowed Option Under eval_ldapd
	75.2 domainnotallowed Option Under eval_ldapd

	Appendix A Supported Standards
	Glossary
	Index

