List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Acronyms</td>
<td>1-1</td>
</tr>
<tr>
<td>2-1</td>
<td>Docker Image Name</td>
<td>2-6</td>
</tr>
<tr>
<td>2-2</td>
<td>Service Category</td>
<td>2-6</td>
</tr>
<tr>
<td>2-3</td>
<td>Variable Details</td>
<td>2-7</td>
</tr>
<tr>
<td>2-4</td>
<td>PCRF Service Deployment Service Type</td>
<td>2-8</td>
</tr>
<tr>
<td>3-1</td>
<td>Variables</td>
<td>3-1</td>
</tr>
<tr>
<td>4-1</td>
<td>Parameters</td>
<td>4-1</td>
</tr>
</tbody>
</table>
Introduction

The Oracle Communications Cloud Native Policy and Charging Rules Function (PCRF) solution incorporates new architecture with spring micro-service framework as backend support technology stack and Kubernetes Cloud Native Environment as running environment. The PCRF core service is the main functionality among PCRF micro services with the following enhancements when compared to legacy PCRF:

- Remove the MIA module from MPE, and let the MPE talks to with configuration server to save/load related data
- PCRF core service have integrated the MPE functionalities which are under legacy PCRF
- When PCRF Core needs to talk with any data source, these traffic shall go with the Diameter connector rather than from the PCRF core itself

For more information, see Oracle Communications Policy and Charging Rules Function User's Guide.

References

Refer to the following documents for more information about 5G cloud native Policy and Charging Rules Function.

- Cloud Native Environment Installation Document
- Policy and Charging Rules Function Cloud Native User's Guide

Acronyms

The following table provides information about the acronyms used in the document.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5GC</td>
<td>5G Core Network</td>
</tr>
<tr>
<td>5GS</td>
<td>5G System</td>
</tr>
<tr>
<td>5G-AN</td>
<td>5G Access Network</td>
</tr>
<tr>
<td>5G-EIR</td>
<td>5G-Equipment Identity Register</td>
</tr>
<tr>
<td>5G-GUTI</td>
<td>5G Globally Unique Temporary Identifier</td>
</tr>
<tr>
<td>5G-S-TMSI</td>
<td>5G S-Temporary Mobile Subscription Identifier</td>
</tr>
<tr>
<td>5QI</td>
<td>5G QoS Identifier</td>
</tr>
<tr>
<td>AF</td>
<td>Application Function</td>
</tr>
<tr>
<td>AMF</td>
<td>Access and Mobility Management Function</td>
</tr>
<tr>
<td>AS</td>
<td>Access Stratum</td>
</tr>
<tr>
<td>AUSF</td>
<td>Authentication Server Function</td>
</tr>
<tr>
<td>BSF</td>
<td>Binding Support Function</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>CAPIF</td>
<td>Common API Framework for 3GPP northbound APIs</td>
</tr>
<tr>
<td>CUSTOMER_REPO</td>
<td>The docker registry address in customer side, plus Port No. if registry has port attached</td>
</tr>
<tr>
<td>IMAGE_TAG</td>
<td>The image tag from release tar file is 1.1.0, You can decide to use any tag No. Then push related docker image with that specific tag to their registry</td>
</tr>
<tr>
<td>METALLB_ADDRESS_POOL</td>
<td>The address pool which configured on metallb to provide external IPs</td>
</tr>
<tr>
<td>MPS</td>
<td>Multimedia Priority Service</td>
</tr>
<tr>
<td>N3IWF</td>
<td>Non-3GPP InterWorking Function</td>
</tr>
<tr>
<td>NAI</td>
<td>Network Access Identifier</td>
</tr>
<tr>
<td>NEF</td>
<td>Network Exposure Function</td>
</tr>
<tr>
<td>NF</td>
<td>Network Function</td>
</tr>
<tr>
<td>NGAP</td>
<td>Next Generation Application Protocol</td>
</tr>
<tr>
<td>NR</td>
<td>New Radio</td>
</tr>
<tr>
<td>NRF</td>
<td>Network Repository Function</td>
</tr>
<tr>
<td>NSI ID</td>
<td>Network Slice Instance Identifier</td>
</tr>
<tr>
<td>NSSAI</td>
<td>Network Slice Selection Assistance Information</td>
</tr>
<tr>
<td>NSSF</td>
<td>Network Slice Selection Function</td>
</tr>
<tr>
<td>NSSP</td>
<td>Network Slice Selection Policy</td>
</tr>
<tr>
<td>NWDAF</td>
<td>Network Data Analytics Function</td>
</tr>
<tr>
<td>PCF</td>
<td>Policy Control Function</td>
</tr>
<tr>
<td>PDR</td>
<td>Packet Detection Rule</td>
</tr>
<tr>
<td>PEI</td>
<td>Permanent Equipment Identifier</td>
</tr>
<tr>
<td>PER</td>
<td>Packet Error Rate</td>
</tr>
<tr>
<td>PFD</td>
<td>Packet Flow Description</td>
</tr>
<tr>
<td>PPD</td>
<td>Paging Policy Differentiation</td>
</tr>
<tr>
<td>PPF</td>
<td>Paging Proceed Flag</td>
</tr>
<tr>
<td>PPI</td>
<td>Paging Policy Indicator</td>
</tr>
<tr>
<td>PSA</td>
<td>PDU Session Anchor</td>
</tr>
<tr>
<td>QFI</td>
<td>QoS Flow Identifier</td>
</tr>
<tr>
<td>QoE</td>
<td>Quality of Experience</td>
</tr>
<tr>
<td>(R)AN</td>
<td>(Radio) Access Network</td>
</tr>
<tr>
<td>RQA</td>
<td>Reflective QoS Attribute</td>
</tr>
<tr>
<td>RQI</td>
<td>Reflective QoS Indication</td>
</tr>
<tr>
<td>SA NR</td>
<td>Standalone New Radio</td>
</tr>
<tr>
<td>SBA</td>
<td>Service Based Architecture</td>
</tr>
<tr>
<td>SBI</td>
<td>Service Based Interface</td>
</tr>
<tr>
<td>SD</td>
<td>Slice Differentiator</td>
</tr>
<tr>
<td>SEAF</td>
<td>Security Anchor Functionality</td>
</tr>
<tr>
<td>SEPP</td>
<td>Security Edge Protection Proxy</td>
</tr>
<tr>
<td>SMF</td>
<td>Session Management Function</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>SMSF</td>
<td>Short Message Service Function</td>
</tr>
<tr>
<td>S-NSSAI</td>
<td>Single Network Slice Selection Assistance Information</td>
</tr>
<tr>
<td>SSC</td>
<td>Session and Service Continuity</td>
</tr>
<tr>
<td>SSCMSP</td>
<td>Session and Service Continuity Mode Selection Policy</td>
</tr>
<tr>
<td>UDM</td>
<td>Unified Data Management</td>
</tr>
<tr>
<td>UDR</td>
<td>Unified Data Repository</td>
</tr>
<tr>
<td>UDSF</td>
<td>Unstructured Data Storage Function</td>
</tr>
</tbody>
</table>

Locate Product Documentation on the Oracle Help Center Site

Oracle Communications customer documentation is available on the web at the Oracle Help Center (OHC) site, http://docs.oracle.com. You do not have to register to access these documents. Viewing these files requires Adobe Acrobat Reader, which can be downloaded at http://www.adobe.com.

1. Access the Oracle Help Center site at http://docs.oracle.com.
2. Click Industries.
3. Under the Oracle Communications subheading, click the Oracle Communications documentation link.

 The Communications Documentation page appears. Most products covered by these documentation sets will appear under the headings "Network Session Delivery and Control Infrastructure" or "Platforms."
4. Click on your Product and then the Release Number.

 A list of the entire documentation set for the selected product and release appears.
5. To download a file to your location, right-click the PDF link, select Save target as (or similar command based on your browser), and save to a local folder.

My Oracle Support

My Oracle Support (https://support.oracle.com) is your initial point of contact for all product support and training needs. A representative at Customer Access Support can assist you with My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the US), or call the Oracle Support hotline for your local country from the list at http://www.oracle.com/us/support/contact/index.html. When calling, make the selections in the sequence shown below on the Support telephone menu:

1. Select 2 for New Service Request.
2. Select 3 for Hardware, Networking and Solaris Operating System Support.
3. Select one of the following options:
• For Technical issues such as creating a new Service Request (SR), select 1.
• For Non-technical issues such as registration or assistance with My Oracle Support, select 2.

You are connected to a live agent who can assist you with My Oracle Support registration and opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

Customer Training

Oracle University offers training for service providers and enterprises. Visit our web site to view, and register for, Oracle Communications training at http://education.oracle.com/communication.

To obtain contact phone numbers for countries or regions, visit the Oracle University Education web site at www.oracle.com/education/contacts.

Emergency Response

In the event of a critical service situation, emergency response is offered by the Customer Access Support (CAS) main number at 1-800-223-1711 (toll-free in the US), or by calling the Oracle Support hotline for your local country from the list at http://www.oracle.com/us/support/contact/index.html. The emergency response provides immediate coverage, automatic escalation, and other features to ensure that the critical situation is resolved as rapidly as possible.

A critical situation is defined as a problem with the installed equipment that severely affects service, traffic, or maintenance capabilities, and requires immediate corrective action. Critical situations affect service and/or system operation resulting in one or several of these situations:

• A total system failure that results in loss of all transaction processing capability
• Significant reduction in system capacity or traffic handling capability
• Loss of the system’s ability to perform automatic system reconfiguration
• Inability to restart a processor or the system
• Corruption of system databases that requires service affecting corrective actions
• Loss of access for maintenance or recovery operations
• Loss of the system ability to provide any required critical or major trouble notification

Any other problem severely affecting service, capacity/traffic, billing, and maintenance capabilities may be defined as critical by prior discussion and agreement with Oracle.
Installing Policy and Charging Rules Function (PCRF)

This section provides instruction for installing Policy and Charging Rules Function.

Installation Sequence

This section provides the order in which you shall perform the PCRF installation.

1. Create MySQL database. See Creating Database Account on MySQL Database
2. Download PCF package files and load them to the system. See Installation Preparation
3. Prepare all variables for Helm install command. See Variable Details
4. PCRF Deployment using Helm command. See Deploying Policy and Charging Rules Function
5. Verify PCRF Deployment. See Verifying PCRF Installation
6. Configure PCF. See Configuring Policy and Charging Rules Function (PCRF)
7. Verify PCRF configuration.

Pre-requisites

Following are the pre-requisites required for installing Policy and Charging Rules Function.

PCRF Software

PCRF software package includes:

- PCRF Helm Charts
- PCRF Docker Images

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kubernetes</td>
<td>v1.12.5</td>
</tr>
<tr>
<td>HELM</td>
<td>v2.11.0</td>
</tr>
<tr>
<td>MySQL</td>
<td>5.7 or later</td>
</tr>
</tbody>
</table>

Additional software that needs to be deployed as per the requirement of the services:

<table>
<thead>
<tr>
<th>Software</th>
<th>Chart Version</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>elasticsearch</td>
<td>1.21.1</td>
<td>Needed for Logging Area</td>
</tr>
<tr>
<td>elastic-curator</td>
<td>1.2.1</td>
<td>Needed for Logging Area</td>
</tr>
<tr>
<td>elastic-exporter</td>
<td>1.1.2</td>
<td>Needed for Logging Area</td>
</tr>
<tr>
<td>logs</td>
<td>2.0.7</td>
<td>Needed for Logging Area</td>
</tr>
</tbody>
</table>
Chapter 2

Pre-requisites

<table>
<thead>
<tr>
<th>Software</th>
<th>Chart Version</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>kibana</td>
<td>1.5.2</td>
<td>Needed for Logging Area</td>
</tr>
<tr>
<td>grafana</td>
<td>2.2.0</td>
<td>Needed for Metrics Area</td>
</tr>
<tr>
<td>prometheus</td>
<td>8.8.0</td>
<td>Needed for Metrics Area</td>
</tr>
<tr>
<td>prometheus-node-exporter</td>
<td>1.3.0</td>
<td>Needed for Metrics Area</td>
</tr>
<tr>
<td>metallb</td>
<td>0.8.4</td>
<td>Needed for External IP</td>
</tr>
<tr>
<td>metrics-server</td>
<td>2.4.0</td>
<td>Needed for Metric Server</td>
</tr>
<tr>
<td>tracer</td>
<td>0.8.3</td>
<td>Needed for Tracing Area</td>
</tr>
</tbody>
</table>

Note:

In case any of the above services are needed and the respective software is not installed in CNE. Please install software before proceeding.

Note:

If you are using NRF, install it before proceeding with the PCRF installation.

Network access

The Kubernetes cluster hosts must have network access to:

- quay.io/datawire/ambassador docker image repository
- Local helm repository where the PCRF helm charts are available
- Local docker image repository where the PCRF images are available

Laptop/Desktop Client software

Following are the requirements for the laptop/desktop where the deployment commands shall be executed:

- Network access to the helm repository and docker image repository
- Network access to the Kubernetes cluster
- Necessary environment settings to run the 'kubectl' commands. The environment should have privileges to create namespace in the Kubernetes cluster.
- Helm client installed with the **push** plugin. The environment should be configured so that the `helm install` command deploys the software in the Kubernetes cluster.

Browser Support

It is recommend to use Firefox browser to access Kubernetes dashboard. The Configuration Management GUI page is accessed from different browsers.

Server or space requirements

For server and space requirements, refer to *Oracle Communications Cloud Native Environment Installation Guide.*
Creating Database Account on MySQL Database

To create a database account on MySQL database,

1. Navigate from SSH to MySQL database.
2. Login to database using the command,

   ```bash
   mysql -h<mysqlhost> -u<user> -p<password>
   ```
3. Execute the following command. The username and password is only provided as an example:

   ```sql
   CREATE USER 'pcrfusr'@'%' IDENTIFIED BY 'pcrfpasswd';
   GRANT ALL PRIVILEGES ON *.* TO 'pcrfusr'@'%;
   ```

Execute the following script to initial PCRF databases with the created database user. At first login to MySQL console via new user created above, `mysql -h<mysqlhost> -u<pcrfuser> -p<pcrfpassword>`

```sql
CREATE DATABASE IF NOT EXISTS `ocpm_config_server_pcrf`;

CREATE TABLE IF NOT EXISTS `ocpm_config_server_pcrf`.`topic_info` (  
'id' bigint(20) NOT NULL AUTO_INCREMENT,  
'description' varchar(255) COLLATE utf8_unicode_ci DEFAULT 'Default Topics.',  
'name' varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,  
'modify_date' datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,  
'version' int(11) NOT NULL,  
PRIMARY KEY ('id'),  
UNIQUE KEY 'UK_gd6b0a6mdpxc55qbibre2cldc' ('name')  
) AUTO_INCREMENT=3 DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE TABLE IF NOT EXISTS `ocpm_config_server_pcrf`.`configuration_item` (  
'id' bigint(20) NOT NULL AUTO_INCREMENT,  
'cfg_key' varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,  
'md5sum' varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,  
'cfg_value' mediumtext COLLATE utf8_unicode_ci,  
'version' int(11) NOT NULL,  
'topic_info_id' bigint(20) NOT NULL,  
PRIMARY KEY ('id'),  
KEY 'FKdue8drxn6acrdt63iacirekyl' ('topic_info_id')  
) DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE DATABASE IF NOT EXISTS `pcrf`;

insert into `ocpm_config_server_pcrf`.`topic_info` (name, version) values  
('policy', 1);  
insert into `ocpm_config_server_pcrf`.`topic_info` (name, version) values  
('polcyschema', 1);  
insert into `ocpm_config_server_pcrf`.`topic_info` (name, version) values  
('policyelement', 1);  
insert into `ocpm_config_server_pcrf`.`topic_info` (name, version) values  
('policyparam', 1);  
insert into `ocpm_config_server_pcrf`.`topic_info` (name, version) values  
('policygui', 1);

insert into `ocpm_config_server_pcrf`.`topic_info` (name, version) values  
('amservice.system', 1);  
insert into `ocpm_config_server_pcrf`.`topic_info` (name, version) values  
('public.matchlist', 1);

insert into `ocpm_config_server_pcrf`.`topic_info` (name, version) values
```
Installation Preparation

The following procedure describes the steps to download the PCRF Images and Helm files from OSDC.

1. Download the PCRF package file from Oracle Software Delivery Cloud (OSDC). Package is named as follows:
 `<nfname>-pkg-<marketing-release-number>.tgz`

 For example, `ocpcrf-pkg-12.5.2.0.0_1.0.0.tgz`

2. Extract the PCRF Package File via "tar".
 `tar -xvf <<nfname>-pkg-<<marketing-releasenumber>>.tgz`

 This command results into `<<nfname>-pkg-<marketingrelease-number>>` directory.

 The directory consists of following:

 - **PCF Docker Images File**: `ocpcf-images-12.5.2.0.0_1.0.0.tar`
 - **Helm File**: `ocpcrf-<marketingrelease-number>.helm`
Deploying Policy and Charging Rules Function

The Policy and Charging Rules Function requires a MySQL database to store the configuration and run time data.

PCRF Software components as mentioned in pre-requisites section, can be extracted following the below steps.

1. Download the file, `ocpcrf-pkg-12.5.2.0.0_1.0.0.tgz`.
2. Untar `ocpcrf-pkg-12.5.2.0.0_1.0.0.tgz` to get PCRF docker image tar file then push it to customer docker registry.
3. Untar displays the following files:
   ```
   ocpcrf-pkg-12.5.2.0.0_1.0.0.tgz
   ├── ocpcrf-images-12.5.2.0.0_1.0.0.tar
   ├── ocpcrf-12.5.2.0.0_1.0.0.tgz
   ├── README.txt
   ```
4. Run the following command to load `ocpcrf-images-12.5.2.0.0_1.0.0.tgz` to docker:
   ```
   docker load --input /<IMAGE_PATH>/ocpcrf-images-12.5.2.0.0_1.0.0.tar
   ```

After executing above command, run "docker images" to view imported PCRF docker images, then create a new tag for each imported image and push it to customer docker registry.

```python
docker tag ocpcrf/diam-gateway:12.5.2.0.0_1.0.0 <CUSTOMER_REPO>/diam-gateway:<IMAGE_TAG>
docker push <CUSTOMER_REPO>/diam-gateway:<IMAGE_TAG>

docker tag ocpcrf/pcrf_core:12.5.2.0.0_1.0.0 <CUSTOMER_REPO>/pcrf_core:<IMAGE_TAG>
docker push <CUSTOMER_REPO>/pcrf_core:<IMAGE_TAG>

docker tag ocpcrf/ocpm_cm_service:12.5.2.0.0_1.0.0 <CUSTOMER_REPO>/ocpm_cm_service:<IMAGE_TAG>
docker push <CUSTOMER_REPO>/ocpm_cm_service:<IMAGE_TAG>

docker tag ocpcrf/ocpm_config_server:12.5.2.0.0_1.0.0 <CUSTOMER_REPO>/ocpm_config_server:<IMAGE_TAG>
docker push <CUSTOMER_REPO>/ocpm_config_server:<IMAGE_TAG>

docker tag ocpcrf/ocpm_pre:12.5.2.0.0_1.0.0 <CUSTOMER_REPO>/ocpm_pre:<IMAGE_TAG>
docker push <CUSTOMER_REPO>/ocpm_pre:<IMAGE_TAG>

docker tag ocpcrf/diam-sim-server:12.5.2.0.0_1.0.0 <CUSTOMER_REPO>/diam-sim-server:<IMAGE_TAG>
docker push <CUSTOMER_REPO>/diam-sim-server:<IMAGE_TAG>
```
docker tag ocpcrf/readiness-detector:latest <CUSTOMER_REPO>/diam-gateway:latest
docker push <CUSTOMER_REPO>/diam-gateway:latest

Note:
User may need to configure docker certificate to access customer registry via HTTPS. Configure the certificate before executing the docker push command or the command may fail to execute.

After executing the above commands, below docker images should available for PCRF.

Table 2-1 Docker Image Name

<table>
<thead>
<tr>
<th>Service Name</th>
<th>Docker Image Name</th>
<th>Service Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pcrf core Service</td>
<td>pcrf_core</td>
<td>PCRF</td>
</tr>
<tr>
<td>Diameter Gateway</td>
<td>diam-gateway</td>
<td>PCRF</td>
</tr>
<tr>
<td>Diameter Simulator</td>
<td>diam-sim-server</td>
<td>PCRF</td>
</tr>
<tr>
<td>Readiness check</td>
<td>readiness-detector</td>
<td>Common</td>
</tr>
<tr>
<td>CM Service</td>
<td>ocpm_cm_service</td>
<td>Common</td>
</tr>
<tr>
<td>Config Server Service</td>
<td>ocpm_config_server</td>
<td>Common</td>
</tr>
<tr>
<td>Policy Runtime Service</td>
<td>ocpm_pre</td>
<td>Common</td>
</tr>
</tbody>
</table>

Following table provides description of the Service Category:

Table 2-2 Service Category

<table>
<thead>
<tr>
<th>Service Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>Common service module which would be consumed by PCRF as supporting service, such as GUI, policy engine</td>
</tr>
<tr>
<td>PCRF</td>
<td>Define PCRF services</td>
</tr>
</tbody>
</table>

5. Navigate to helm chart folder (refer to step 2 to get helm chart), and execute the following command to install PCRF:

```
helm install --namespace=<PCRF_NAMESPACE>-pcrf --name=<PCRF_NAME>-pcrf --set global.envMysqlHost=<MYSQL_HOST>,global.envMysqlUser=pcrfusr,global.envMysqlPassword=pcrfpasswd
```

Note:
It is mandatory to run following command under helm chart folder as the last line, ./<HELM_CHART_NAME_WITH_EXTENSION> specifies that helm chart path is the current working path. If you want to run the command in another server, copy the helm chart file to that server folder, before executing the command from that server.

```
helm install --namespace=<PCRF_NAMESPACE>-pcrf --name=<PCRF_NAME>-pcrf --set global.envMysqlHost=<MYSQL_HOST>,global.envMysqlUser=pcrfusr,global.envMysqlPassword=pcrfpasswd
```
```
--set global.envJaegerAgentHost=<JAEGER_SERVICE>.<JAEGER_SERVICE_NAMESPAC E> \
--set global.envManageNF=PCF,global.envSystemName=PCRF \
--set global.imageTag=<IMAGE_TAG>,global.dockerRegistry=<CUSTOMER_REPO> \
--set common.deploymentPcrfConfig.envMysqlDatabase=ocpm_config_server_pcrf \
./<HELM_CHART_NAME_WITH_EXTENSION>
```

Note:

Before proceeding with the installation, setup the variables. See [Variable Details](#).

Table 2-3 Variable Details

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><PCRF_NAMESPACE></code></td>
<td>Indicates deployment PCRF namespace used by helm command</td>
<td>Variable name can include uppercase and lower case alphabets, numbers, and special characters _, and -. Maximum allowed character length is 10.</td>
</tr>
<tr>
<td><code><PCRF_NAME></code></td>
<td>Indicates deployment PCRF name used by helm command</td>
<td></td>
</tr>
<tr>
<td><code><MYSQL_HOST></code></td>
<td>MySQL host name or IP address</td>
<td>global.envMysqlUser and global.envMysqlPassword variables in above command from database section configured in previous step</td>
</tr>
<tr>
<td><code><JAEGER_SERVICE></code></td>
<td>Both parameters could be found in same Kubernetes cluster.</td>
<td>Use the following format "<JAEGER_AGENT_SERVICE_NAME>.<JAEGER_NAMESPACE>". Such as "occne-tracer-jaeger-agent.occne-infra", occne-tracer-jaeger-agent is jaeger agent service name under jaeger deployment</td>
</tr>
<tr>
<td><code><JAEGER_SERVICE_NAME SPACE></code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3 (Cont.) Variable Details

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><IMAGE_TAG></td>
<td>The image tag used in customer docker registry. It is recommended to use the same image tag when pulling docker image to registry. If followed above steps to push docker image to customer docker registry then the <IMAGE_TAG> value should be 12.5.2.0.0_1.0.0</td>
<td>Each service deployment yaml file would use global.imageTag as image tag to fetch related docker image per helm chart design, if one service cannot use global image tag then please edit that service part under values.yaml, such as below: Before update: image: bsf_management_service imageTag: " After update: image: bsf_management_service imageTag: <IMAGE_TAG></td>
</tr>
<tr>
<td><CUSTOMER_REPO ></td>
<td>Indicates the docker registry address and the Port Number, if registry has port attached</td>
<td>If registry has port value, add port as well, such as "reg-1:5000"</td>
</tr>
<tr>
<td><METALLB_ADDRESS_POOL></td>
<td>The address pool which configured on metallb to provide external IPs</td>
<td></td>
</tr>
</tbody>
</table>

Kubernetes provides the following three deployment types:

Table 2-4 PCRF Service Deployment Service Type

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClusterIP</td>
<td>Exposes the service on a cluster-internal IP. Choosing this value makes the service only reachable from within the cluster. This is the default ServiceType</td>
</tr>
<tr>
<td>NodePort</td>
<td>Exposes the service on each Node's IP at a static port (the NodePort). A ClusterIP service, to which the NodePort service routes, is automatically created. User will be able to contact the NodePort service, from outside the cluster, by requesting <NodeIP>:<NodePort>. Most PCRF service use NodePort to deploy.</td>
</tr>
<tr>
<td>LoadBalancer</td>
<td>Exposes the service externally using a cloud provider's load balancer. NodePort and ClusterIP services, to which the external load balancer will route, are automatically created. For GUI page and API gateway service, For GUI page and API gateway service, it is mandatory to use loadBalancer type. Given latest OCCNE already integrated METALLB, configure IP address to METALLB on OCCNE.</td>
</tr>
</tbody>
</table>
Verifying PCRF Installation

Run the following command to verify the PCRF installation:

```
kubectl get svc -n <PCRF-Namespace>
kubectl get pod -n <PCRF-Namespace>
```

If the installation is successful, all the pods should be in Running/Completed status. If any pod is found with error status, you can check pod log to view the error details.
Configuring Policy and Charging Rules Function (PCRF)

Note:
Before configuring, verify the installation.

Click the PODS to ensure all ports are active and running.

The following subsections provides the information for configuring PCRF.

Enabling LoadBalancer with MetalLB

Cloud Native Network already have MetalLB installed, and free external IPs are already configured under MetalLB.

Perform the following steps to enable LoadBalancer to specific services.

Note:
In PCRF namespace, only diam-Gateway service and cm service with GUI page requires load-balancer setting with accessible external IP.

Updating diam-gateway Service

To update diam-gateway service:

1. Login to Kubernetes cluster master node using ssh command.
2. Run the following command to edit svc yaml file for diam-gateway:

 kubectl edit svc <PCRF_NAME>-diam-gateway-service -n <PCRF_NAME_SPACE>

Table 3-1 Variables

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCRF_NAME</td>
<td>The --name value used in helm install command</td>
</tr>
<tr>
<td>PCRF_NAME_SPACE</td>
<td>The --namespace value used in helm install command</td>
</tr>
</tbody>
</table>

Following is an sample content that displays in diam-gateway edit window.

1 # Please edit the object below. Lines beginning with a '#' will be ignored, 2 # and an empty file will abort the edit. If an error occurs while saving this file will be
3 # reopened with the relevant failures.
4 #
5 apiVersion: v1
6 kind: Service
7 metadata:
8 creationTimestamp: 2019-06-02T13:06:11Z
9 labels:
10 category: common
11 io.kompose.service: <PCRF_NAME>-pcrf-diam-gateway-service
12 name: <PCRF_NAME>-pcrf-diam-gateway-service
13 namespace: <PCRF_NAME_SPACE>
14 resourceVersion: "21624671"
15 selfLink: /api/v1/namespaces/<PCRF_NAME_SPACE>/services/<PCRF_NAME>-pcrf-diam-gateway-service
16 uid: 31a4b13f-8537-11e9-81c8-0010e08b3a8e
17 spec:
18 clusterIP: 10.20.37.37
19 externalTrafficPolicy: Cluster
20 ports:
21 - name: diameter
22 nodePort: 32592
23 port: 3868
24 protocol: TCP
25 targetPort: 3868
26 - name: http
27 nodePort: 31301
28 port: 8080
29 protocol: TCP
30 targetPort: 8080
31 selector:
32 io.kompose.service: <PCRF_NAME>-pcrf-diam-gateway-service
33 sessionAffinity: None
34 type: NodePort
35 status:
36 loadBalancer: {}

3. Add two new lines after line 7, after "metadata":

 annotations:

 metallb.universe.tf/address-pool: <ADDRESS_POOL_NAME>

 Note:

 - As per user MetalLB setting, you should select an appropriate pool name to replace the variable, <ADDRESS_POOL_NAME>

 • annotation: line must be kept vertical align with line 16, while following line, metallb.universe.tf/address-pool: <ADDRESS_POOL_NAME> must be kept vertical align with line 10. If vertical align restriction failed to follow this rule, the svc yaml file update may fail.

4. Replace line 34 text, type: NodePort with type: LoadBalancer.
 Following is the sample content after replacing the line 29:

 1 # Please edit the object below. Lines beginning with a "#" will be ignored, 2 # and an empty file will abort the edit. If an error occurs while saving this file will be 3 # reopened with the relevant failures.
4 #
5 apiVersion: v1
6 kind: Service
7 metadata:
8 creationTimestamp: 2019-06-02T13:06:11Z
9 labels:
10 category: common
11 io.kompose.service: <PCRF_NAME>-pcrf-diam-gateway-service
12 name: <PCRF_NAME>-pcrf-diam-gateway-service
13 namespace: <PCRF_NAME_SPACE>
14 resourceVersion: "21624671"
15 selfLink: /api/v1/namespaces/<PCRF_NAME_SPACE>/services/<PCRF_NAME>-pcrf-diam-gateway-service
16 uid: 31a4b13f-8537-11e9-81c8-0010e08b3a8e
17 spec:
18 clusterIP: 10.20.37.37
19 externalTrafficPolicy: Cluster
20 ports:
21 - name: diameter
22 nodePort: 32592
23 port: 3868
24 protocol: TCP
25 targetPort: 3868
26 - name: http
27 nodePort: 31301
28 port: 8080
29 protocol: TCP
30 targetPort: 8080
31 selector:
32 io.kompose.service: <PCRF_NAME>-pcrf-diam-gateway-service
33 sessionAffinity: None
34 type: LoadBalancer
35 status:
36 loadBalancer: {}

5. Quit vim editor and save changes. A new diam-gateway pod starts up.

 a. In the new pod, following sample content displays. Note that if the EXTERNAL-IP is available, then the load balancer setting for diam-gateway service works.

<table>
<thead>
<tr>
<th>NAME</th>
<th>TYPE</th>
<th>CLUSTER-IP</th>
<th>EXTERNAL-IP</th>
</tr>
</thead>
<tbody>
<tr>
<td><PCRF_NAME>-diam-gateway-service</td>
<td>LoadBalancer</td>
<td>10.xxx.xx.xx</td>
<td>10.xxx.xxx.xx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3868:32592/TCP,8080</td>
<td>31301/TCP,4d</td>
</tr>
</tbody>
</table>

Updating cm-service

Follow the same process to update svc yaml for `<PCRF_NAME> -pcrf-cm-service`.
Upgrading Policy and Charging Rules Function (PCRF)

User can perform the helm upgrade command in the following scenarios.

- Update an existing parameter settings.
- Add more parameters as per the requirement

To upgrade PCRF:

```bash
helm upgrade <PCRF_NAME>-pcrf \
  --set
global.envMysqlHost=<MYSQL_HOST>,global.envMysqlUser=pcrfusr,global.envMysqlPassword=pcrfpasswd \
  --set global.envJaegerAgentHost=<JAEGGER_SERVICE>.<JAEGGER_SERVICE_NAMESPACE> \
  --set global.envManageNF=PCRF,global.envSystemName=PCRF \
  --set global.imageTag=<IMAGE_TAG>,global.dockerRegistry=<CUSTOMER_REPO> \
  --set common.deploymentPcrfConfig.envMysqlDatabase=ocpm_config_server_pcrf \
  ./<HELM_CHART_NAME_WITH_EXTENSION>
```

Note:

<PCRF_NAME> must be same as helm install command

Note:

The upgrade command is similar to install command, because, if user do not specify the same parameters for both upgrade and install, then the settings applied by install command may lost and use default settings from `values.yaml` file for missing parameters in upgrade command.

For specific deployment, few parameters cannot be updated. Following table provides details of the parameters which cannot be updated.

Table 4-1 Parameters

<table>
<thead>
<tr>
<th>Deployment</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCRF</td>
<td>global.envManageNF=PCRF,global.envSystemName=PCRF</td>
<td>Since GUI service is a common service which defined under common module, it requires to startup parameters to show which NF should be showed under specific deployment.</td>
</tr>
</tbody>
</table>
MetalLB Settings for Upgrade

After executing the helm upgrade command, the configured MetalLB settings may lost. User is required to update the settings manually by following the procedure in the Enabling LoadBalancer with MetalLB.

Verifying PCRF Upgrade

Run the following command to verify the PCRF upgrade:

```bash
cubectl get pod -n <PCRF-Namespace>
```

You can verify the below items from the output of above command:

- All pods under PCRF namespace should either in Running status or in Completed status. If any pod with error status found, check pod log to view the error details.
- For updated service per helm upgrade setting, check its RESTART output and AGE output, if specific had been updated then the old pod should be killed and a new pod should bring up. So, the related RESTART value should be 0 and AGE value should be 3-4 seconds if you check upgrade result with above command soon after helm upgrade.
- diam-gateway service and CM service should support metalLB setting.
5

Uninstalling Policy and Charging Rules Function (PCRF)

To uninstall or completely delete the Policy and Charging Rules Function deployment, execute the following command:

```
helm delete --purge <PCRF-Name>
kubectl delete namespace <PCRF-Namespace>
```

After executing the above commands, no PCRF deployment would be found under below commands output:

- helm list
- kubectl get namespace