Oracle® Communications
Convergent Charging Controller

Charging Control Services Technical
Guide

ﬁ Release 12.0.6

September 2022

Copyright

Copyright © 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

il Charging Control Services Technical Guide

Contents

P Y o To 0L I e Lo Yo 0 o = o | PSPPSR Vii
DOCUMENT CONVENTIONS ...eiiiiiiiiiieeiiieiee e sttie e e sttt e sttt e e e sbbeeesssbbeeessntbeeeesnbaeeeesnbeeeesanbeeeeeansbeeeeanes viii

Chapter 1

SYSTEM OVEIVIEW .euiiiiiiiiiii ettt e e e e e e e e eaeeaneees 1
L@ YT T PR RPPRRRP 1
Introduction to Charging CONtrol SEIVICES.coiuiiiiiiiiii e 1
HOW CCS Fits INt0 the NEIWOIK......cooi et a e e e eneee s 3
CCS COMPONENLS OVEIVIEWuvviiiiieeeeeeiiiiieieeeaeessseteteeeeeaesssssstataeeeaaeasssatasreeeaaesssansrsaeeseeessaans 4
Voucher and Wallet Server and CCSot 10
CCS on a Clustered platform ... 14
CONFIQUIING SEIVICES ... 15
Subscriber Accounts and Wallet Management ..o, 16
S CUNIEY et ————————— 23
About Secure SSL Connection to the Databasecc.eveiiiiiiiiiiiie e 25
CalliNg CArd SEIVICES ...ttt e e sttt e e st e e e st b e e e e abb e e e e sbbeeaeabreeeean 26
R] o =T o @1 g F= Yo 1 oo [PP P PP PPPTON 28
PEriOTIC CRAIGESoeeiiiiiiii ettt e ettt e et e e s aabne e e e e 31
RECNAITES ...ttt e e st e e e e a b et e e e e a b et e e e et bt e e e et b e e e e aba e e e aeee 37
PrOMOLIONS ...ttt e e e e e sttt e e e e e s nb b e et et e e e s s e annbbeeeeeeeesaannnrreee 38
(o] 1 To=14[o] o IS PP PPPUPT RPN 39
E D RS .ttt ettt e e e e bt e e e et e e e e e b et e e e e b et e e e e b ae e e e e bee e e e anbeeeeeanrneeeeanees 43

Chapter 2

(70T o) {To [U] =11 Lo o T 47
L@ YT 11 PSR a7
CONFIGUIALION OVEIVIEWeeiiiiiiiie ettt e ettt et e e e s bb e e e sabb e e e e snbaeeeesbreeeean a7
Configuring the ENVIFONMENT........ooiiiiiiiiie ettt e e e e e ee e 49
€SerV.CONfig CONTIGUIALION..........oiii ettt sbreee e 50
Configuring acs.confforthe SLC ..., 53
SEettiNg UP the SCIEENSo 60
(DY il gl TaTo I LT IRS Yo (=T=T o T I= T o U = Vo [64
Defining the Help SCreen LanQUAGEccoooieeiiiiiiie e 65
Configuration Through the ACS SCIreeNSccooii i 66
User Interface-Based Configuration TASKScccooiiiiiiiiiiii i 67
Configuring VWS procesSes fOr CCS... ..ttt sttt e et e e naeee e 68
Configuring CCS MACIO NOUESuveieiiiiiiee ettt ettt e et e ettt e e e bae e e e snreeeeans 69
Switch Configuration for the UATB NOEeeiiiiiiiiiiiii e 71
Voucher Status Report CONfIQUIAtIoN.............ueieiiiiie i 73
L6101 = ©70] o) {0 U=V i o] o F PP UTPPPTTPRPN 74

Chapter 3

Background Processes onthe SMS ..o, 87
L@ YT V1 PP PPRUPUPRTP 87
CHECK_PC_DELETIONoviiiteeeeeeete e e e s s es s s s s sttt es s eseseassnsnananans 88
Yo O]] o] (= 4D = =] gL o IR UTPPPTTPRRN 88
o1 =TT 1 o PSR 89
CCSCBLOHRNAES ... 108

CCSCBILOHRNSHA ...ttt et e e s e e s e e s e e s e s 108

(o{o1 O B 2 A i1 [€ =T g =T =1 (o | TN 108

(1ot {01 B] o =T [T ST SPUPPPRRPTRN 111
(oTot= @I BT I 0 1] 2 PSPPI 129
(oTot=T O BT I 0 4 1= PP 130
[odots {01 g =T g o [7= T=T 4o T o ISR 131
CCSEXPINYMESSAGELOAUETuiiiiiiie e e it c et e e e e s e e e e s s st e e e e e e s e snnnteeeeeeeeesannne 137
CCSEXtErnalProCedUIrEDABIMON.ueii it itieee et ee ettt sttt e et e e s nnb e e s nnbaeeesnnnaeee s 141
(oToXs] I =To T= 103 Y/ | PO PPPPTPR PPNt 142
CCSPENOTICCCRECNAIGEcoiiiiiiiiiiei ettt e e 142
CCSPEMHOTICCRNAIGEceiiiiiiiee ittt e et e e st e e s snneee s 144
[odots] (o] 11T B =TT 4T o USRS PPUPRRPT 152
(o101 LT o L] TP PO TP PPPPPPPRRTTRI 163
CCSWANIETEXPIIY .ttt ettt ettt e sttt e st e s bbb e e e e anb e e e e e annneee s 166
o ToTot{ @ o212 o] o R UTT PP PPRRTTN 169
VoucherRedeemERail FileS ... 169

Chapter 4

Background Processes onthe SLCccocooiiiiiiiiiiiciiieceeeeeee, 171
OVBIVIBW...ceeet e ettt e e ettt et e e e e e sttt et e eeeessana et e e e e eeeeeeanssbeaeeeeeeeasanssbeeaeaaeeesaansnbenenaaeeesannsnes 171
2 7T 1= o SRR SRS 171
PICHENLIF ...ttt ettt e e eeeeeeaeaeee s aseseseaesssassassasssssesesssssssssssnssresnnenes 177
o1 AN 1T 1SS PPRRRR 178
CCSCBLOHRNAES ... ittt e e e e et e e e e e e e et e e s ta bt e eeeeeaestnnaaaaaaaees 182
CCSCBLOHRNSHA ...ttt ettt e e st e e e s bbbt e e s ab e e e e sasbeeeeeanseeeeeannaeeeas 182
[odet] 1Y = Tod fo] N (oo {2 PP PT TP OPPPPPPUPTRN 182
CCS SV CLIDIANY .. ————— 193
DCCSCHENIPIUGINS ...uiiiiiiiiiiiiiiiiiiiii s 203
DCCSCOMIMON ...ttt ettt e e e e e s e s bbb ettt e e e e e e e e nnbbeneeaeeeeaannne 204

Chapter 5

Background Processes onthe VWS ..., 205
L@ Y= 1 PP 205
DEVWARS ..ottt e st e e e et e e e et b e e e e et e e e e e e ta e e e e e tre e e e e taeeeeataeeeearaaaaeann 206
CCSACHVALIONCNAIGE ... s 208
CCSBAAPINPIUGIN. ... s 209
CCSBRAVM. ...ttt e e oo ettt e e e e e e bbb e et e e e e e e e anbeeee e e e e e e aaanae 210
CCSCBLOHRNAEScoiiitiiee ettt ettt e sttt e e sttt e e s tbe e e e s sbe e e e s nbeeeesasbaeeeeansbeeesannaeeens 211
CCSCBLOHRNSHA ...ttt et e ettt e e sttt e e s tbb e e e s e abe e e e snnbaeeeeansbeeesannaeeenn 211
CCSEXPINYMESSAQEGENEIALON 211
CCSLEGACYPIN ... s 212
(oledY Y | 1 (=10] o 1] o1 (=] SO PSPPSR 212
o210} 1)o7 11T o SO 216
CCSSLEECNANGEDAEMON.....itiiiii ittt ettt et ettt e e ab e e s nbb e e e s nnbe e e e s anneeee s 219
CCSPDSIMSPIUGIN ...ttt sttt ekttt e e sttt e e s ab et e e s nbbe e e e e nnbneeesanneeeens 228
CCSREWAIASPIUGIN ...ttt ettt e e e e e s bbb e e e e e e e s e annbbseeaaaeeeaannnes 230
CCSPIMIXPIUGIN ...ttt ettt e e e e e e ettt et e e e e e s nnbebe e e e e e e e e aannbbeaeeaaeeeaannnes 234
CCSVWARSACHVALION ..ottt ettt e ettt e e e s e s bbb e e e e e e e e s nnbeeeeeaaeeeaannne 237
CCSVWARSAMOUNTHANAIET ...ttt e e e st re e e e e e e nae 239
CCSVWV AR SEXPITY ..ttt e e e ettt ettt et e oottt e e e e e e abe et e e e e e e e s nnbebaeeaaaesesnnbbsaeeaeeeeaannnes 240
CCSVWARSNamMedEVENTHANAIET ... 248
CCSVWARSPENOUICCNAIGEeeeeieiieiie ettt sttt st e e s nnneeee s 253
CCSVWARSQUOTA ... s e 258
CCSVWARSREChAIrGEHANAIET ...t 258
CCSVWARSRESEIVAtIONHANAIETeeiiiiiiiii e 259

iv. Charging Control Services Technical Guide

CCSVWARSYVOUCHEIHANAIET ...t e e e et e e et e e e et s e e eaaeeeseaas 265

CCSVWARSWaIEtHANIET ..., 269
o2\ VAT O (¥ T[] o USRS 271
CIMNPUSKNFIIES ... e et e e e s e et e e e e e e e s s saatae e e e eaeesaannntaneeeeeeesanns 271
T o ToT ot o 3 11 o] o I PRSRR 276
HDCCSVWARSULIS ...uveiiiiie it e e e e e s e e e e e s e st ae e e e e e e s s snnnnnanaeeeeenaaans 287

Chapter 6

ToOls and ULHHTIES ... 291
OV BIVIBW ... e 291
o7 01S7 Yo o011 | | USRS 291
CCSBERESYINC ...ttt ettt e e st e s e e et a e e e 316
LoTods] = -1 (o] 0[O g T T (o - PSSR 335
CCSDOMAINMIGIAtION ... ——— 338
COSMFIIEDUMIP . 343
CCSPIOfileBUIKUPDAALE ... 346
CCSVOUCNEISIAIUP.SN .o 347
CCS Balance TOP UP SUILEccoe i 347
CCS Balance Top Up MSISDN FlEScouuiiiiiiiiiieiiiee ettt 349
CCS Balance TOPUP RUIE SCHPLSuveiiiiiiiiie ittt 351
AWSUDIIST. SN ... 355
Example Balance Top Up RUIE EXECULIONccoiiuiieiiiiiiiiiiiiiee ettt 357

Chapter 7

Real-Time NOLIfICAtIONSccouiiiii e, 361
O BV W .. ———— 361
Real-Time NOUFICALIONS ... 361
Lo] 1) ToF=1d T g @Fo T 4 1S3 1 (1 [1o] o T 363

Chapter 8

About Installation and Removalcccooeiiiiiiiiiiiie e, 367
O BV W .. ———— 367
Installation and REMOVAl OVEIVIEWuuueiiiiiiiiieiiieieieieieeeieirieiereersraree ... 367

Checking the INStallation ... 367

About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the

Charging Control Services (CCS) application.

Audience

This guide was written primarily for system administrators and persons configuring and administering
the CCS application and the VWS. However, sections of the document may be useful to anyone
requiring an introduction to the application.

Prerequisites

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to configure or otherwise alter the
described system without the appropriate background skills, could cause damage to the system;
including temporary or permanent incorrect operation, loss of service, and may render your system
beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

The following documents are related to this document:

e Charging Control Services Alarms Guide

e Voucher and Wallet Server Technical Guide

e Charging Control Services User's Guide

e Subscriber Profile Manager User's Guide

e Voucher Manager User's Guide

e Advanced Control Services User's Guide

e Advanced Control Services Technical Guide

o Feature Nodes Reference Guide

e Service Management System Technical Guide
e Service Management System User's Guide

e Service Logic Execution Environment Technical Guide

Vi

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Convergent
Charging Controller documentation.

Formatting Convention Type of Information
Special Bold Items you must select, such as names of tabs.
Names of database tables and fields.
Italics Name of a document, chapter, topic or other publication.
Emphasis within text.
Button The name of a button to click or a key to press.
Example: To close the window, either click Close, or press Esc.
Key+Key Key combinations for which the user must press and hold down one

key and then press another.
Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.

Monospace Bold Text that you must enter.

variable Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions
Used to indicate a hypertext link.

viii Charging Control Services Technical Guide

Chapter 1
System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Convergent Charging Controller
network or service implications of the product.

In this Chapter

This chapter contains the following topics.

Introduction to Charging CONLIOl SEIVICESuuuuuiuueiuieiririeirieieieirierrrrrerreree——————————. 1
HOW CCS FitS INt0 the NETWOTK ... e e e e e es 3
CCS COMPONENES OVEIVIEW ... s s s s s s s s s s s s e s s s s s s s s e s s s s s s e s s s s s e e s e e e s s e n s s s e e e e e a e e e aeaeaeaenas 4
Voucher and Wallet Server and CCS.... .. e e e 10
CCS 0n a Clustered PlatfOrmM ... 14
(7o) oo TU T To ST Vo =1 15
Subscriber Accounts and Wallet Managementcoooiiiioiiiireiiiee e 16
1= 0 1 PP TP OTPRPO 23
About Secure SSL Connection t0 the Databaseuueiveeiiiiiiiiiieee e 25
CalliNg CArd SEIVICESeeeiiiiiei ittt e et e s e b e e e e bt e e e e abe e e e e nbaeeeeaene 26
i lo = T (o [@1 s F=T o oo TS PP UPUPPOPT 28
=T Lo T [T @ g =T o T 31
T =T (0T PP 37
PrOMOLIONS ...ttt e e e ettt e e e e e o e bbb et e e e e e e e s a bbbt e e e e e e e e e annbrneeeaeens 38
[N\ o] 1] {ToF=1{o] £ £ TP PTTT PP 39
D LSRR 43

Introduction to Charging Control Services

Description

The Charging Control Services (CCS) is a prepaid and post-paid service, which allows customers
greater flexibility and control over their billing methods and telephony services in general. It provides
options for customers with low credit ratings, at the same time as furnishing all customers with a high-
quality and adaptable range of services. This allows the service provider to customize call-processing
functionality according to factors such as:

e Geography

e Demographics

e Resources

e User preference

Chapter 1, System Overview 1

How It Works

CCsS s installed and run as a network service by a Telecommunications Provider (telco). This service
allows the telco to create:

e Subscriber accounts and wallets

e Product types to be associated with the subscriber wallet

Each product type may be linked to a rate table, each of which may have many tariff options. CCS uses
a three-tier tariff scheme.

1 Basic tariffs use the flexible geography sets to determine calling areas.

2 Weekly tariffs are available to override the basic tariffs where applicable.

3 Holiday tariffs may be set to override both basic and weekly tariffs.

Subscriber Access

CCS supports several possible access points for subscriber, including:

o Fixed line

e Mobile line

e |P connection

e Carrier pre-select charging
e Home Zone / Office Zone

Business Process Logic

CCS provides the facility to define Business Process Logic (BPL) tasks. Each BPL task defines a set of
actions that, when executed, perform a specific business process for a subscriber, for which the
subscriber may optionally be charged.

BPL tasks are defined by the service provider. Each BPL task has an associated control plan that can
be started through one of the following:

e CCSscreens
e Provisioning Interface (PI)

For more information about BPL task definition, see the Task Management chapter in Charging Control
Services User's Guide.

Periodic Charges

Periodic charges enable the telco to set regular subscriber charges. For example, you can define
periodic charges for providing a phone service, or for rental of services and equipment. Periodic charges
can also be configured for sending notifications and for performing voucher type recharges.

Periodic charges are associated with product types, and must be subscribed to by subscribers.
Notes:

e Each time a periodic charge occurs, it is logged in an EDR.

e This functionality is available only if you purchase the Periodic Charges license. For more

information about the screens configuration, see Charging Control Services User's Guide.

Vouchers

CCS provides voucher functionality. This functionality is described in Voucher Manager Technical
Guide.

2 Charging Control Services Technical Guide

How CCS Fits Into the Network

Introduction

There are four major functional layers in the Oracle Communications Convergent Charging Controller:

1 Service Management
2 Service Applications
3 Context Management
4 IN Control

Service Management

Centralized management and an extensive set of service reporting and alarm management functionality
is provided to ease the administration of the entire platform.

Service Applications

This layer provides a graphical control plan management and provisioning interface for users. A rich set
of service features and powerful call routing functionality is available.

Context Management

This layer manages each (message) call event coming into and going from the service application layer.
Every message represents an event happening during a call; the message must be received from the
underlying network and passed to the service application, and vice versa.

This layer is designed to maintain integrity, simplify management, and ensure high performance when
managing multiple messages from multiple underlying networks to multiple applications.

IN Control

This layer enables the service application layer to be available on networks with multiple different
communications protocols (for example, INAP, ISUP, H.323). Convergent Charging Controller provides
generic interfaces for H.323, ISUP and INAP.

Depending on the underlying network protocol, these interfaces translate call events and messages
from the network into INAP messages that can then be sent through the context management layer to
the service application layer. The reverse happens for messages coming the other way.

Chapter 1, System Overview 3

Diagram

Here is an example showing how CCS fits into the application layer.

Service Management SMS
Service Applications RGS, FN, LGS
Call Context Management SLEE
3rd Party
INAP and
IN Control Layer: TCAP IF runtime
message encode/decode environment
network protocol interfaces V.55F TCAP
Metwork Switching Layer ISUF S57 3rd Party SST
ff—th Network -:::ﬁ}
--___\._ -l ____'g

CCS Components Overview

Platform components

This table describes the main components in CCS.

Note: CCS is installed on all three machines.

Component

Role

SMS

The central management system of the platform. It hosts the authoritative
configuration and subscriber database (SMF), and provides access to the
external world using provisioning interfaces and using a graphical user
interface (SMS screens). It is responsible for keeping all platforms in sync,
and acts as a central collection point for alarms and statistics of the entire
platform.

SLC

Performs all actual call switching. It interfaces with the telephony network
and executes the service logic for each service. It also interfaces with the
Voucher and Wallet Servers to ensure that calls are charged in real-time.

VWS

The Voucher and Wallet Server hosts the subscriber balances and acts as
the rating engine. It processes incoming rating and charging requests and
maintains wallet data.

For more information about Voucher and Wallet Servers, see Voucher and
Wallet Server and CCS (on page 10).

4 Charging Control Services Technical Guide

System diagram

Here is an example of how CCS fits into a standard install of Convergent Charging Controller software.

SMS Configuration .
"' -

CCs Reports .

and EDRS__"""'-.._/

SMF
] SMS Java
ACS

Screens
EDRs

SMS A
| FTP

_LF{eplmaliﬂn

‘ |)

SLC [l VWSs
p— cCs
scP
ccs l‘ ACS E2BE
T 1 VWS
slee_acs W ;lh
SLEE —} SLEE +
{ ¥ 'T
TCAP IF BeClient IF >
F 3
Network

Supporting applications

Some of the components of CCS are supplied by the other applications.

Application Role Further information
SMS Provides the base system management Service Management
functionality including the SMS Java System User's Guide
administration screens and centralized data Service Management
storage and replication, including: System Technical Guide
e EDRs
e Alarms

e Statistics

Chapter 1, System Overview 5

Application Role Further information

ACS Provides call and SMS processing and control, Advanced Control Services
customer/service provider management and User's Guide
control plan creation. Advanced Control Services

ACS functionality is extended by CCS plug-ins Technical Guide
(macro nodes, configuration and libraries).

VWS Provides billing facilities. May be replaced by a Voucher and Wallet Server
third-party billing engine. Technical Guide

VWS database is the VWS database, it also
holds CCS data.

Subsystems used by CCS

The main subsystems used by CCS are:

e Replication (provided by SMS)

e ACS and CPE (for call processing)

e EDR generation and file transfer

e SMS Java administration screens and optional PI commands

e VWS (for charging, and subscriber account and wallet management)

Note: Each subsystem (except the SMS administration screens) must be configured to support CCS. The
SMS administration screens are automatically configured when CCS is installed.

CCS and ACS

Some aspects of the Advanced Control Services (ACS) service are available to the CCS operator,
providing call-processing functionality to the CCS base service.

The core ACS functionality may be used by operators or service providers in conjunction with the CCS
service. This provides additional value and adds processing capability. For example, personal or global
barring lists, special PIN accessed functionality, or speed dial codes.

ACS requires some configuration to enable CCS to operate correctly.
For more information about:

e Configuring ACS for CCS, see Configuration (on page 47)
e ACS, see Advanced Control Services Technical Guide

CCS Control Plans

Calls using the CCS service are routed to a terminating point using a control plan. A control plan is a
service-logic flowchart that consists of a collection of feature nodes that are used to define the call flow.
Each feature node defines a particular decision point or action that determines where next to route a
call.

Note: Credit transfers require a special control plan called CREDIT_TRANSFER. This control plan is
installed by default, and is required to process credit transfer commit requests. For more information
about credit transfers, see the Transfer Management chapter in Charging Control Services User's
Guide.

For more information about CCS feature nodes, see Feature Nodes Reference Guide.

You can also create global CCS control plans. Global control plans enable the operator to screen calls
before the customer's control plans are applied. Global control plans are owned only by the operator and
are automatically assigned to the default operator customer.

6 Charging Control Services Technical Guide

Global control plans are associated with a specific service. If you create a global control plan and
associate it with the CCS service, the control plans' service logic is applied to calls for all customers who
use the CCS service.

For more information about managing control plans, see Control Plan Editor User's Guide.

CCS and VWS

The CCS base service uses a fault-tolerant Voucher and Wallet Server, known as VWS. Keeping the
Voucher and Wallet Server logically separate from the call-processing engine allows it to be used by
multiple clients.

CCS provides call control and business rules. It handles:

e Subscribers

e Tariffing
e Vouchers
e Money

e Provisioning
e Credit cards
¢ Relationship between subscriber accounts and wallets

CCS uses the VWS for executing financial functions for CCS and managing wallets and balances.
Familiarity with the VWS design and structure is assumed. For more information about the VWS, see
Voucher and Wallet Server Technical Guide.

Note: A third party domain may be used instead of the VWS to service billing requirements.

CCS components

CCS has these types of components:

e Data (subscribers, charges, vouchers, promotions)

e CCS Java administration screens (enables users to manage data)

e CCS plug-ins to Voucher and Wallet Server (execute tariffing and business rules)

e CCS plug-ins to ACS for call control (includes CCS feature nodes for charging control plans)
e Command-line tools and utilities

Chapter 1, System Overview 7

Component diagram

Here is an example showing the main components of CCS.

SMS
ccs SMF «
Charging Details
Control Plans Sgﬂc?eiila
Subscribers
cesCDR
EDRs Loader FORs
.‘_
™y
SMS
Replication .
, - \ VWS (Primary)
SLC Y L EDRs
SCP - » EZBE
ACS + CCsS VIS +
slee acs CCs ey FCS
jservice logic beVWARS | and Handiers
+ A '
SLEE - 3 SLEE
¥
TCAP IF BeClient Msg Routing
beServer Flugins
k. T - L * s
B J—% - queries,
Qb e

Component description

This table describes the main components in CCS.

Component Role

Further information

SMS Java
Administration screens

These administration screens provide a GUI for
configuring CCS.

Convergent Charging
Controller Charging
Control Services User's
Guide

SMF database The main database on the SMS. This database
holds data for CCS and the other applications

installed alongside it.

Convergent Charging
Controller Service
Management System
Technical Guide

SCP database The databases on the SLCs. They hold a subset

of the data in the SMF database.

8 Charging Control Services Technical Guide

Component

Role

Further information

E2BE database

The databases on the Voucher and Wallet
Servers. They hold a subset of the data on the
SMF. They primarily hold VWS and CCS data.

Convergent Charging
Controller Voucher and
Wallet Server Technical
Guide

the SLC. Compiled control plans provide the call
process configuration.

ccsCDRLoader Inserts EDRs into the SMF so the SMS screens |ccsCDRLoader (on
can be used to view call and system activity. page 111)
slee_acs The slee_acs process handles call processing on | Convergent Charging

Controller Advanced
Control Services
Technical Guide

CCS Service Logic

slee_acs is extended by CCS-specific
functionality which enables charging control
plans.

Convergent Charging
Controller Control Plan
Editor User's Guide

vouchers, wallets and accounts. beVWARS is
extended using CCS plug-ins.

SLEE The Service Logic Execution Environment routes | Convergent Charging
calls to the slee_acs and to other machines Controller Service Logic
through the SLEE interfaces (TCAP IF and Execution Environment
BeClient IF). Technical Guide

TCAP IF The TCAP IF is the interface between the SLEE | Convergent Charging
and the TCAP stack. Controller XML TCAP

Interface Technical
Guide

BeClient IF The BeClient interface processes requests from | Voucher and Wallet
the call processor to the Voucher and Wallet Server Technical Guide
Servers.

beServer The beServer handles all incoming requests to Convergent Charging
the Voucher and Wallet Servers. Controller Voucher and

Wallet Server Technical
Guide
beVWARS The beVWARS handles all actions involving Convergent Charging

Controller Voucher and
Wallet Server Technical
Guide

CCS service logic

The CCS service logic is provided to extend the ACS slee_acs process to provide charging and billing
functions. This table describes the plug-in libraries which provide the CCS service logic.

Plug-in Library

Purpose

ccsSvclibrary (on page
193)

The CCS service library handles the initial call setup for calls which will use
CCS functionality. It determines which control plan to use, and populates

any necessary profile data.

ccsMacroNodes (on
page 182)

The CCS macro nodes library provides the CCS macro nodes which are

used in control plans which use CCS.

ccsActions (on page
178)

The CCS chassis action library provides functions which are used when
ccsSvclibrary requires an action outside slee_acs. This library is primarily
used for hilling actions which are completed by the VWS.

For more information about how these libraries are included in slee_acs, see Configuring acs.conf for

the SLC (on page 53).

Chapter 1, System Overview 9

Note: If a third-party VWS is used, a different chassis action library will be provided. For more information
about these chassis action libraries, see the technical guide for the application which provides
connectivity to the third-party Voucher and Wallet Server.

Replication

Replication is the main method used to transfer relevant data from the main SMF database on the SMS
to the databases which are used for specific functions. Each replication point (node) must be configured
in SMS before it can be used in CCS.

For more information about replication, see Service Management System Technical Guide.

CCS replication

For CCS, replication forwards data from the SMF to the SCP and E2BE databases.
The data replicated to the SCP are:

e Subscriber data
e ACS compiled control plans
The data replicated to the E2BE are:

e Tariffs and tariff rate tables
e CCS Mfile data
e Subscriber and wallet data

Note: Some of the CCS plug-ins for VWS require additional data from the SMF database on the SMS.
These tables and their replication configuration are installed with the ccsSms package.

CCS-VWS Protocol overview

The new CCS-VWS protocol is built upon an extensible self-describing message format called Escher.
The new protocol is easily extensible, versioned, and allows additions without breaking backward
compatibility. The CCS-VWS protocol definition is defined for internal use only.

Voucher and Wallet Server and CCS

Domains

CCS provides the facility to control which service is provided by which network element using domains.

A domain defines what functionality CCS uses a set of one or more domain nodes for. Domain nodes
are network elements which provide one or more of the following functions:

e Rating

e Billing

e Wallet management

e Voucher management

An example of a domain would be a pair of Convergent Charging Controller Voucher and Wallet
Servers.

Domains enable CCS to separate traffic for a dedicated service such as voucher redemption.

For more information about configuring domains, see Charging Control Services User's Guide.

10 Charging Control Services Technical Guide

Distributed Wallet Management

You can distribute wallet management across two domains. The wallet management functionality is split
between the following two elements:

¢ Charging management

e Tracking management

A domain can be configured to support one or both of these elements. This allows chargeable balances
to be held on the charging domain, and fraud and expense balances to be held separately on a tracking
domain.

Note: Tracking domains can only be configured for a VWS domain type. Charging domains can be
configured for any domain type.

Domain Types

Domain types enable CCS to handle groups of domain nodes that share a common technology. This
can reflect the communication protocol, and/or make and model of the node.

Examples: The following are domain types:

e VWS
e DIAMETER
e |Intec

For more information about configuring these domain types, see Domain.

Default domain type

The default domain type for a call is set by the service loader library which loads the control plan for the
call. For example: ccsSvcLibrary sets the default domain to 1.

Overriding default domain types

The default domain type for ccsSvcLibrary can be overridden using one of the following:

e The eserv.config parameters are one of the following:

» SubscriberDomainType
* VoucherDomainType

e The Domain drop down list on the Wallet option on the Edit Subscriber screen.
Notes:

e These overrides only work for the ccsSvcLibrary. If the call is being processed using a different
service loader library, see the application's technical guide for details of how the domain type is set.

o If the call is being processed by ccsSvcLibrary using a service loader plug-in, see the plug-in
application's technical guide for details of any default domain type setting and overriding.

Changing domains during call processing

The Set Active Domain feature node enables the domain type to be changed at any point within a
control plan.

For example, if TUS is installed with the default Voucher Domain type as '2' (for TUS), then the domain
can be changed mid call to VWS and vice versa using the Set Active Domain feature node.

For more information about the Set Active Domain feature node, see Feature Nodes Reference Guide.

Chapter 1, System Overview 11

CCS and VWS

The CCS base service uses a fault-tolerant Voucher and Wallet Server, known as VWS. Keeping the
Voucher and Wallet Server logically separate from the call-processing engine allows it to be used by
multiple clients.

CCS provides call control and business rules. It handles:

Subscribers

Tariffing

Vouchers

Money

Provisioning

Credit cards

Relationship between subscriber accounts and wallets

CCS uses the VWS for executing financial functions for CCS and managing wallets and balances.
Familiarity with the VWS design and structure is assumed. For more information about the VWS, see
Voucher and Wallet Server Technical Guide.

Note: A third party domain may be used instead of the VWS to service billing requirements.

Subscribers and wallet management

CCS provides a humber of services with VWS. They include:

Balance check

Subscriber management and wallet charging
Business process logic

Merge wallets facility

Wallet grace periods

Voucher and credit card recharges

Automatic deletion of redeemed vouchers

Wallet and balance expiry and subscriber notification
Product type updates and notifications

EDR generation

12 Charging Control Services Technical Guide

Chapter 1

Diagram
Here is an example of how the VWS handles requests from CCS on an SLC to a VWS.

sSMs

cCcs

Requesting
Process

SMF SMS Java
Screans

SMS
Replication
-

___Queries,)

reservations
updates

Diagram - Third party Voucher and Wallet Servers (VWS)

This diagram shows the CCS components involved in interaction with third party Voucher and Wallet
Servers.

Chapter 1, System Overview 13

Note: For each type of third party VWS, a different extension will be installed to work with CCS.

—————

SMS Java
sLC v SCreens
SCP
ACS CCS
¥
slee_acs ccs
senvice logic
APP Chassls | APP
e Actions
SLEE I - ~
¥ 3" Party
TGAP IF wAPEE L
Client Engine
F 3 F Y

queries,

a ~ T reservations
— Network {j” updates
___h__h_ — -

Starting and stopping the VWS

The VWS runs on top of the SLEE, so the normal SLEE start/stop commands should be used on the
VWS machine using the ebe_oper user, to start and stop it.

The VWS will go through several phases before making itself available for calls, the duration of these
phases depends on the speed of the network link to the other Voucher and Wallet Server in the pair and
the length of time the Voucher and Wallet Server has been down. The VWS will not enable itself until it
is closely synchronized with the other Voucher and Wallet Server (which will be acting as primary) so as
to minimize the problems caused by timing delays in the synchronization process when a swap from
secondary to primary occurs. If the partner Voucher and Wallet Server cannot be contacted then the
recovering Voucher and Wallet Server will enable after a configurable number of connection attempts.

For more detail about the VWS design, implementation and operation see Voucher and Wallet Server
Technical Guide.

CCS on a Clustered platform

Introduction

CCS can be integrated with SMS 3.0 which introduces support for a clustered SMS configuration. Using
a clustered configuration means that critical management processes can be executed on multiple
machines minimizing the amount of downtime of the overall system.

CCS/VWS management processes are split into three categories of availability:

14 Charging Control Services Technical Guide

1 Single node services with automated failover
2 Multi-node services
3 Single node services with manual restart

Single Node Services with Automated Failover

The EDR management process is only executed on a single node, even when the SMS is in a clustered
configuration. The process fails over to an alternate node within 20 seconds.

Multi-Node Services

The following CCS/VWS processes operate concurrently on all nodes in a cluster:

Process Description

CLI-DN Daemon This allows calling and called numbers to be cross-referenced in order to
begin determining the rate for a call.

ccsBeOrb This is the CCS CORBA gateway to the Voucher and Wallet Server.

ccsCDRLoader Loads EDR files into the SMF database.

ccsRewardsBatch Processes rewards requests from the VWS.

Single Node, Manual re-start services

The following processes require a manual restart in case the node executing the process fails.

e ccsAccount
e ccsVoucher
e ccsBeResync

Configuring Services

Introduction

CCS can support more than one service at the same time. Consequently, each service must be
defined so CCS can determine which service to apply to each call.

Configuration overview

Configuring services involves:

e SLEE and slee_acs routing

¢ Defining capabilities

e Defining tariffs

¢ Defining product types

e Creating appropriate control plans

SLEE and slee_acs routing

Calls are routed to slee_acs over the SLEE. Each call has:

e Aservice key
e An originating number (CLI or MSISDN)

Chapter 1, System Overview 15

e Aterminating number (DN or MSISDN).
The service triggers to different service loaders within slee_acs depending on:

e Service key
e Terminating number
The relationship is defined in acs.conf.

Capabilities

Capabilities enable calls sent to the same service key to be handled differently depending on the bearer
capability in their IDP. For example, Voice and Video for same service key can have different control
plans and tariff plans.

CCS screens configure IDP to capability routing. You can set up a global capability which applies to all
product types or a capability can have a specific control plan (and tariff plan if specified).

Services are defined in acs.conf using the ServiceEntry configuration. The first argument in the
ServiceEntry matches to Service field in a capability. Default control plan is invoked if a subscriber
cannot be loaded.

Example:

ServiceEntry (CCS,ccsSvclibrary.so)
For more information about ServiceEntry configuration, see Advanced Control Services Technical
Guide.

Note: Default control plan is used if no subscriber can be loaded (and therefore CCS cannot locate a
control plan by product type).

Bearer capabilities

Bearer capability specifies a requested service: packet or circuit mode, data rate, type of information
content. The bearer capability is made up of a number of different bits, but the number you enter in the
capability screen is actually the InitialDP itc field (information transfer capability).

This table shows some capabilities and their general uses.

Capability Description

0 Speech

8 Unrestricted Digital Information

9 Restricted Digital Information

16 3.1 Khz Audio

17 Unrestricted Digital Information with Tones/Announcements
24 Video

Note: These capabilities are shown in decimal.

Subscriber Accounts and Wallet Management

Introduction

Actions regarding subscriber accounts and wallets can be completed by either CCS processes or
Voucher and Wallet Server processes. The CCS processes complete actions in the following areas:

e Sending wallet and voucher requests to the Voucher and Wallet Server
e Updating subscriber account and wallet expiry and activation details in the SMF

16 Charging Control Services Technical Guide

e Updating subscriber's account and product type details

e Generating short messages which are sent to subscribers reminding them that their wallet or
balance will shortly run out, or informing them of any balance or product type changes

For more overview information about subscriber accounts and wallets, see Charging Control Services

User's Guide.

CCS plug-ins for the VWS

If the platform uses a Voucher and Wallet Server, the VWS processes handle the VWS-end of wallet or
voucher related actions. CCS functionality is provided by adding plug-in libraries to the VWS processes
on the VWS. The message and wallet handler plug-ins on the VWS are installed by the ccsBe package.
These are explained in detail in Background Processes on the VWS (on page 205).

For more information about the VWS processes involved in subscriber account and wallet management,
see Voucher and Wallet Server Technical Guide.

Diagram

This diagram shows some elements relating to subscriber account, wallet and bucket creation and
expiry/removal.

SMS
CCS
cesAccount ccsAccount |
WithPrivacy.sh | Startup.sh =
L)
new account reqs
SMS Java
cosAccount Screens
CCS Tables updates,
Subscribar accounts queries
Wallats L : ccsBaOrb
Balances, Buckets -4—— DGSW?”EI
Expiry
Replication Lists of charges,
expiries queries
A J
Service charges applied,
. harges, LS .
logic SLC PR LN expiries triggered

S— queries

For more information about:

Chapter 1, System Overview 17

e Charging, see Rating and Charging (on page 28)
e Expiry, see Voucher and Wallet Server Technical Guide

Subscriber accounts and wallet processes

This table describes the main processes involved in subscriber and wallet management.

Process Role Further information

ccsAccount Generates batches of subscriber accounts. ccsAccount (on page
291)

ccsAccountStartup.sh Startup script for ccsAccount. Startup -

ccsAccountStartup.sh
(on page 292)

ccsAccountWithPrivacy.
sh

Startup script for ccsAccount with encryption. Startup -
ccsAccountWithPrivacy.

sh (on page 292)

Security modules Used by ccsAccount when started by

ccsAccountWithPrivacy.sh.

Authenticating modules
(on page 23)

ccsBeOrb Handles communication between SMS screens ccsBeOrb (on page 89)
and VWSs.
libBeClientlF This library provides common functions for the Voucher and Wallet

connection with the VWS VWSs. Server Technical Guide

ccsExpiryMessage
Generator

ccsExpiryMessageGenerator generates a list of
wallets or balances which will expire shortly and
writes it to a file on the VWS VWS.

ccsExpiryMessageGen
erator (on page 211)

cmnPushFiles cmnPushFiles forwards the expiry list file to the

SMS.

cmnPushFiles (on page
271)

cmnReceiveFiles cmnReceiveFiles accepts the expiry list file from
cmnPushFiles and writes it to the directory

indicated by cmnPushFiles.

Service Management
System Technical
Guide

ccsExpiryMessage
Loader

ccsExpiryMessagelLoader sends short messages
to subscribers to warn them that their wallet or
balance will expire shortly.

ccsExpiryMessagelLoad
er (on page 137)

ccsWalletExpiry

ccsWalletExpiry processes CCS updates to the
subscriber and wallet expiry tables on the SMF.

ccsWalletExpiry (on
page 166)

Wallets and VWS VWSs

If CCS is using Voucher and Wallet Servers (VWSs), each wallet is created on a specific VWS. To
perform an action on a wallet or its balances and buckets, the requesting process must know which
VWS to send the message to. This information is stored in a reference table which is stored on the
SMS and replicated to the SLC.

Generating Accounts

This table describes the process ccsAccount follows to create CCS subscribers and wallets by batch.

Stage Description
1 On the SMS, ccsAccount logs into the SMF database using Oracle user ID ccs_admin
and creates rows in the following tables:
e CCS_ACCT

18 Charging Control Services Technical Guide

Stage Description
e CCS_ACCT_REFERENCE
e CCS_ACCT_ACCT_REFERENCES
e CCS_ACCT_HIST_INFO
The rows are entered by calling the methods of packages on the SMS.

2 ccsAccount then requests that the Voucher and Wallet Server make the Wallets for the
Subscribers by making rows in:
e BE_WALLET

e BE BALANCE

e BE_BUCKET
3 The CCS_* rows are replicated out to the VWSs and SLCs by replication.
Notes:

e ccsAccount may also create accounts using the privacy setting. For more information about this
process, see Generating account numbers (on page 26).

e ccsAccount must be able to contact the Voucher and Wallet Servers at all times. If the connection
drops to one of the pair it will switch over to the secondary. If the secondary also goes down,
ccsAccount will try to re-send its request a configurable number of times before giving up.

e All the wallets are created on one VWS only. If the VWS pair ID is not specified, it will pick the VWS
with the lowest ratio of 'Maximum Accounts' (java screens, Subscriber Management->Domain) to
the actual number of wallets on a VWS.

Wallet migration diagram

This diagram shows the elements involved in migrating wallets from one Voucher and Wallet Server to
another.

SMS
CCs SME migration
report
CCS Tables § P
Migration #—— cesDomain migration
Wallels . Migration request
SMS Java
Screens
_—
Wallets Wallets
removed created
¥
e — p——
Source Destination
Domain Domain

Chapter 1, System Overview 19

Wallet migration process descriptions

This table describes the main processes involved in migrating wallets from one Voucher and Wallet
Server pair to another.

Process Role Further information
ccsDomainMigration ccsDomainMigration manages the migration of ccsDomainMigration
wallets from one VWS to another. (on page 338)

It connects to beServer on the Voucher and
Wallet Servers.

libBeClientlF This library provides common functions for the Voucher and Wallet
connection with the VWSs. Server Technical Guide

Wallet migration process

This table describes how wallets are migrated from one Voucher and Wallet Server pair to another using
wallet migration.
Stage Description

1 The user configures a migration using the UBE Account Balancing tab on the Subscriber
Management screen and clicks Confirm on the Confirmation Dialog prompt.

For more information about the UBE Account Balancing tab, see Charging Control Services

User's Guide.

2 The screens trigger the ccsDomainMigration daemon using its startup script:
ccsDomainMigrationStartup.sh

3 ccsDomainMigration reads configuration from eserv.config.

4 ccsDomainMigration checks for a lockfile (the lockfile is specified by the lockFile (on page

342) parameter or the default is used).
If the lockfile is present, ccsDomainMigration will log an error and exit.
Otherwise, ccsDomainMigration will create a lockfile.

5 ccsDomainMigration will use libBeClientlF to connect to the source and destination VWS
Voucher and Wallet Server pairs.
6 ccsDomainMigration starts processing the wallets specified in the migration record stored

in the SMF database.

The migration's state is updated to R in the SMF database and can be viewed from the
screens after the data is refreshed (for example by using the Refresh button).

7 For each wallet, ccsDomainMigration:
e Checks the wallet is on the source VWS using a wallet information request
(WI_Req)

e Sends a create wallet request (WC_Req) to the destination VWS with a copy of
the details and buckets of the wallet

e Updates the SMF database by adding new wallet record for the wallet on the
destination VWS and deleting the wallet record for the wallet on the source VWS

e Sends a delete wallet request (WD_Req) to the source VWS.

8 ccsDomainMigration constructs the migration report and updates the SMF database with
the migration status.

For more information about the migration report, see Charging Control Services User's
Guide.

9 ccsDomainMigration removes the lockfile.

20 Charging Control Services Technical Guide

Inactive wallet and bucket expiry

This table describes how wallets and buckets are expired due to inactivity.

Note: This is not the same as being expired due to their expiry date being passed.

Step Action
1 beVWARS loads a wallet. The wallet loaded event triggers ccsVWARSEXpiry (on page
240).

For more information about how beVWARS triggers beVWARS plug-ins, see Voucher
and Wallet Server Technical Guide.

2 ccsVWARSEXxpiry checks the wallet state. Go to the appropriate step for the wallet state.
3 If the wallet is currently in the Pre-use state, ccsVWARSEXpiry checks the wallet's
subscriber batch status.
If the batch status is expired, ccsVWARSEXpiry sets the wallet status to Terminated.
4 If the wallet is currently in the Active state, ccsVWARSEXpiry checks the current date

against the wallet's Date Last Used + the Active to Dormant period for the applicable
product type.

If the current date is later than the wallet's Date Last Used + Active to Dormant period, the
wallet is stale. ccsVWARSEXpiry:

e Writes an EDR detailing the wallet expiry

e Sets the wallet state to Dormant

For more information about Date Last Used and Active to Dormant, see Charging Control
Services User's Guide.

5 If the wallet is currently in the Dormant state, ccsVWARSEXpiry checks whether the wallet
was activated or used. If it was, ccsVWARSEXxpiry checks the Date Last Used + Active to
Dormant period + Dormant to Terminated Period for the applicable product type.
If the current date is later than the wallet's Date Last Used + Active to Dormant + Dormant
to Terminated, the wallet is stale. ccSVWARSEXpiry:

e Writes an EDR detailing the wallet termination

e Sets the wallet state to Terminated

Expiry event handling

If ccsVWARSEXpiry (on page 240) is triggered by a wallet expiry event (usually sent by
beVWARSEXxpiry), ccsVWARSEXpiry:

e Checks the wallet's expiry date and, if there is none, sets expiry date to now
e Writes an EDR detailing the wallet expiry
e Writes the wallet ID to expired list

The name and location of the expired list is specified by: expiredPrefix (on page 168), expiredSuffix (on
page 243), and expiredDirectory (on page 167).

If ccsVWARSEXpiry is triggered by a bucket expiry event (usually sent by be VWARSEXpiry) and
produceCDRForWalletExpiredBucket (On page 245) is set to true, ccsVWARSEXxpiry logs an EDR
for the bucket. It does nothing if produceCDRForWalletExpiredBucket is false.

If ccsVWARSPeriodicCharge (on page 253) is triggered by a bucket expiry event, it processes expiring
periodic charge buckets. It keeps the periodic charge bucket and sets the expiry date to a point in the
future. For more information about how expiry dates are calculated, see Charging Control Services
User's Guide.

Chapter 1, System Overview 21

Wallet removal

This table describes how wallets are removed.

Step
1

10

Action
beVWARS loads a wallet. The wallet loaded event triggers ccsVWARSEXxpiry (on page
240).

For more information about how beVWARS triggers beVWARS plug-ins, see Voucher
and Wallet Server Technical Guide.

If the wallet is currently in the Terminated state, ccsVWARSEXxpiry checks whether the
wallet is passed its wallet expiry date + the Terminated to Removed period for the
applicable product type.

If the current date is later than the wallet's expiry date + Terminated to Removed,
ccsVWARSEXxpiry checks logNotRemoveWallet (on page 244).

If logNotRemoveWallet is set to false, ccsSVWARSEXpiry:
e Logs an EDR detailing the wallet removal

e Removes all the buckets associated with the wallet
e Logs an EDR for each removed bucket
e Removes the wallet from the E2BE

e The wallet removed event triggers ccsVWARSEXpiry again and it logs the wallet
removal to the remove list.
If logNotRemoveWallet is set to true, ccsVWARSEXpiry logs the wallet ID to the remove
list.

The name and location of the removed list is specified by: removedPrefix (on page 169),
removedSuffix (on page 247), and removedDirectory (on page 168).

Exception: If removeAtMidnightTZ (on page 245) is set, ccsVWARSEXxpiry will take these
actions the next time the wallet is loaded after the midnight in the specified timezone
which follows the expiry date.

If logNotRemoveWallet was set to true, cmnPushFiles (on page 271) picks up the remove
list from its configured input directory and pushes it to the SMS.

cmnReceiveFiles receives the files from cmnPushFiles. For more information about
cmnReceiveFiles, see SMS Technical Guide.

ccsWalletExpiry (on page 166) reads files which match the name and location details
specified by these parameters:
e removedPrefix (on page 169)

e removedDirectory (on page 168).
ccsWalletExpiry deletes the wallets from the remove list from the SMF database.

ccsWalletExpiry sends a wallet delete request to ccsBeOrb (on page 89) for the wallet
which was deleted in step 7.

ccsBeOrb (on page 89) passes the request to beVWARS via beServer.
beVWARS attempts to delete the wallet.

Note: If logNotRemoveWallet was set to false, the wallet will already have been deleted
and an error will be returned to ccsWalletExpiry via beServer and ccsBeOrb.

Note: Wallets can also be deleted through the SMS screens. For more information, see Charging Control
Services User's Guide.

Grace Periods

Wallets can be configured to have a grace state. A grace state provides limited functionality to a wallet
which would otherwise be in the terminated state.

22 Charging Control Services Technical Guide

A wallet can be in more than one grace period. In this case the functionality is limited to functions
allowed by all the applicable grace periods. If a wallet is in more than one grace period, the allowed
named events are limited to those events enabled by all the applicable grace periods. Grace periods
can only allow named events if the wallet is in Active, Dormant or Terminated states.

Security

Authenticating modules

To provide security over account and voucher generation, CCS contains authentication modules.

These modules contain information uniquely related to the account or voucher number, which is not
stored (directly) in the database, but which must be supplied in order to make use of the account or
voucher.

Each module has a pair of functions.

1 The first function (the hash generation function) is called at subscriber account- or voucher-
generation time.

2 The second (the hash validation function) is called every time a subscriber account- or voucher
number is presented to the system during call processing.

Note: Once a batch is created, the authentication module associated with that batch may not be
changed.

Modules and security plug-ins

This table describes when security plug-in libraries are used and which authentication module binary
they are used by.

Authentication Binary Use

ccsAccount (on page 291) |Used to generate subscriber account PINs (which are used to secure
self-management systems).

ccsVoucherStartup.sh Used to generate voucher PINs (that is, a string of digits to be printed
on the calling card (or similar).
beVWARS Used to check PIN numbers for validity (for example, to validate a string

ccsVWARSVoucherHandle | of digits entered by the user indicating a subscriber account to use or a
r plug-in voucher to redeem).

For more information about the ccsVoucherStartup.sh and ccsVWARSVoucherHandler binaries, see
Voucher Manager Technical Guide.

Security libraries

Security libraries are used to provide flexibility in how the PINs are generated by ccsAccount (on page
291) and ccsVoucher_CCS3. This table describes the function of each security library.

Library Description

ccslLegacyPIN (on Provides the DES authentication rule (DES crypt()ed n-digit PINSs) for
page 142) subscriber account and voucher security. The plug-in library is not applicable
to new voucher batches.

Note: The output file is sent directly to the third-party tool gpg, so the resulting
printer file is encrypted. The printer file is never created on the SMS in an
unencrypted format.

Chapter 1, System Overview 23

Library Description
ccsCB10HRNSHA Provides the CB10 HRN SHA256 and CB10 HRN SHA512 authentication
(on page 108) rules for voucher security.

CcSCB10OHRNAES Provides the CB10 HRN AES256 authentication rules for voucher security.
(on page 108)

Tip: Subscriber account PINs and vouchers are validated using the same security library as they were
generated with.

For information about how the authentication rule is selected during:

e Subscriber account generation, see Charging Control Services User's Guide
e Voucher generation, see Voucher Manager User's Guide

GPG keys

GPG Public keys are used to increase security when creating subscriber account and voucher batch
export files for printing.

To use GPG public keys, you must use the Voucher Management screen to:

e Import new GPG public keys

e Verify the imported keys.

Note: You cannot use a key until you verify it.

When a GPG Public Key is imported, it is added to the SMF database by smf_oper. When verified, they
are marked as verified. These keys are then available when creating a voucher or account batch. You
cannot remove public keys from the database or from the GPG key-ring store on the SMS.

When a voucher batch is created a required key or UID will be supplied. The UID is used to determine
which GnuPG key to use within the keyring to encrypt the export file. The key UID is a hexadecimal
number up to 10 digits in length.

For more information about the Voucher Management screen, see Voucher Manager User's Guide.

Verification of a user-supplied Subscriber Number

The CCS Compatibility Authentication Module is used for subscribers using a PIN. In this case, the CCS
Compatibility option is selected from the Encryption Key field of the New Subscriber Batch screen or the -
m option to the batch generation utilities.

The example below illustrates authentication of a subscriber number using subscriber-number-plus-PIN
authentication - that is, using the CCS Compatibility authentication module.

Example subscriber account verification
This table shows how a subscriber's account and PIN are verified.

Stage Description

User dials into the gateway.

User dials his/her subscriber number and PIN, followed by #.

User is presented with a dial tone.

User dials destination number.

The gatekeeper forwards the subscriber-number/pin and the dialed number to CCS.
Result: The CCS service logic is invoked.

a b~ 0N

24 Charging Control Services Technical Guide

Stage Description

6 The subscriber-ID, is looked up in CCS_ACCT_REFERENCE, and the ID of the
subscriber-batch is determined. If there is no subscriber-batch for the subscriber, a zero-
length hash-digit-string is assumed. Otherwise, the authentication module corresponding
to the subscriber-batch is looked up.

7 The subscriber-ID and PIN are sent to the hash validation function, with the private secret
retrieved from the CCS_ACCT_REFERENCE row which corresponds to the subscriber's
account.

8 If all three pieces of data match, the hash function returns true.

In the case of the CCS1 Compatibility security module, it encrypts the secret and
compares it to the private secret (which is the PIN encrypted the last time the PIN was set
for that subscriber) and returns true if the two encrypted strings match.

Example: The dialed subscriber number and PIN {1033331234 (dialed digit string)} is split into a
subscriber-1D (as stored in the database) and a remainder, by using the per service-provider account-
number-length parameter.

Note: The TOTAL length of subscriber-ID PLUS ‘secret’ or ‘PIN’ may not exceed 20 digits (for example:
103333 + 1234 (key)+(secret)).

The subscriber-ID, 103333, is looked up in CCS_ACCT_REFERENCE, and the ID of the subscriber-
batch is determined. If there is no subscriber-batch for the subscriber, a zero-length hash-digit-string is
assumed. Otherwise, the authentication module corresponding to the subscriber-batch is looked up.

At this point, the strings 103333 and 1234 are sent to the hash validation function, along with the private
secret retrieved from the appropriate CCS_ACCT_REFERENCE row.

About Secure SSL Connection to the Database

Enabling Secure SSL Connection to the Database

Convergent Charging Controller supports secure network logins through Secure Socket Layer (SSL)
connections from the Convergent Charging Controller Ul to the database. SSL is the default method for
connecting to the database when you install Convergent Charging Controller. You can also enable SSL
after installing Convergent Charging Controller.

For information about enabling SSL connections to the database, see SMS Technical Guide.

Enabling SSL for the CCP

The Customer Care Portal (CCP) provides a customizable user interface (Ul) to CCS that allows
customer service representatives (CSRs) to perform the tasks required to manage their subscribers.
You can access the CCP through the Services menu in the SMS UI, or you can access it directly from:
e Your Web browser by using the appropriate URL

e A Java WebStart URL

e The desktop or Start menu by using the CCP shortcut

If you access the CCP through the SMS Ul and SSL is already enabled, no further action is required to
enable SSL for the CCP. For information about enabling SSL on the SMS, see SMS Technical Guide.

If you access the CCP directly, enable SSL connections to the database by:

e Creating the Oracle wallet that identifies the database server on the SMS node. Its location must be
specified in the listener.ora and sqlnet.ora files.

Chapter 1, System Overview 25

e Modifying the listener.ora file to additionally listen on port 2484. Use the TCPS protocol for secure
SSL connections to the database.

Note: The standard Oracle listener TCP port is 1521. However, SSL connections use the standard port
for the TCPS protocol, port 2484, instead. If there is a firewall between screen clients and the SMS, you
must open port 2484 in the firewall.

For more information about enabling SSL by configuring the Oracle wallet and updating the listener.ora
and sqlnet.ora files, see SMS Technical Guide.

The following additional configuration must be set in the ccp.jnlp file:

e The jnlp.sms.secureConnectionDatabaseHost Java application property (on non-clustered
systems) or the jnlp.sms.secureConnectionClusterDatabaseHost Java application
property (on clustered systems) must specify the database connection in the CONNECT_DATA
part. In addition, the PROTOCOL part must be set to TCPS and the PORT part must be set to 2484.

o If present, setthe jnlp.EncryptedSSLConnection Java application property to true. The
Convergent Charging Controller Ul connects to the database by using encrypted SSL connections
by default.

Note: If you are using non-SSL connections to the database, you must set
jnlp.EncryptedSSLConnection to false. When jnlp.EncrtyptedSSLConnection is set to
false, the ynlp.sms.secureConnectionbDatabaseHost and
jnlp.sms.secureConnectionClusterDatabaseHost properties are ignored.

See CCP Application Properties for SSL and Non-SSL Database Connections (on page 80) for more
information.

Calling Card Services

Introduction

The calling card service allows operators to offer a card-based service where a subscriber's calls are
charged, not to the CLI or the telephone number of the caller, but to the wallet linked to the subscriber's
calling card. The card user dials a predefined service number and security code provided by the telco.
This connects them to an IVR system which prompts the caller to enter the destination number to which
they wish to transfer the call.

The cost of this call is deducted from the wallet associated with the calling card.

Service features

The calling card service allows the telco operator to:

e Generate large numbers of CCS card/subscriber account numbers randomly in a batch (within the
specified range).

e Assign serial numbers to the accounts for customer care purposes.

e Encrypt the output files sent to the print shop and used for producing the printed cards.

Generating account numbers

The ccsAccount command line tool can be used to generate:

e Batches of subscriber/card accounts
e Subscriber/card account PINs (which are used to secure self-management systems)
When the ccsAccount tool is run by ccsAccountWithPrivacy.sh:

e It runs ccsAccount with the -P (privacy) parameter

26 Charging Control Services Technical Guide

e Account numbers are allocated randomly within the batch, with gaps between the sequences to
ensure fraud control (true while the batch is not approaching full)

e A sequential serial number is allocated which is stored in the CLI field, while the card number is
stored in the Account Number field

Note: For more information about ccsAccount, see ccsAccount (on page 291).

Setting initial card balance

After the subscriber/card account is generated by ccsAccount, the amount specified in the Initial Value
field on the New Product Type or the Edit Product Type screen will be credited to the account.

For more information about the Product Type screens, see Charging Control Services User's Guide.

Encrypting print shop file

The ccsAccount tool, when run with the -p parameter, causes the exported print shop file to be
encrypted. The shell script, ccsAccountWithPrivacy.sh, is used to extract the GPG key specified on the
command line and directs the encrypted output to the print shop filename.

Example: ccsAccountWithPrivacy.sh key file ccsAccount parameters
The output is passed onto the ccsAccount binary which then executes with additional parameters:

Example: ccsAccount -P -m encryption module ccsAccount parameters

Example
Here is an example ccsAccount command and the resulting account batch output file:

Command: ccsAccount -P -t "World" -m "DES" -s 8815000000 -e 8820990000 -n 10 -
b debit -C 7 -c USD -d 2>&1

Output:

Account Batch Output File
Generated Wed Dec 31 01:24:29 2008
#

AccountBatchID=59
ServiceProviderID=1
AccountTypeID=7
maxConcurrent=1
BatchSize=10
RangeStart=8815000000
RangeEnd=8819990000
AuthenticationModuleID=4
BillingEngineID=2
CurrencyID=2

LimitType=DEBT
BalanceType=1

Dec 31 01:24:29.861203 ccsAccount (15179) NOTICE: Beginning account generation.
16309877,3415992,7,G8.H3zCjoKzbY, 8800127
19052821,0363266,7,G8fRbQy015unk, 8800128
18627603,5447142,7,G82efn9Gh2gSY, 8800129
16635167,9003194,7,G8nkF67M0zS59g, 8800130
19498256,8441931,7,G8tfZtbQvb0Ig, 8800131
18758105,8744644,7,G8CSYLULMZtww, 8800132
17349265,3517347,7,G8GH/BM14HHzs, 8800133
16223817,0064708,7,G8MbgIle4gP0.U, 8800134
16089674,7771756,7,G81Xd7ySSzsVw, 8800135
16405822,1207166,7,G8Jug0Sguxjqgg, 8800136

Chapter 1, System Overview 27

Dec 31 01:24:35.514685 ccsAccount (15179) NOTICE: Progress 10/10 (100.0%) Complete
Dec 31 01:24:35.515578 ccsAccount (15179) NOTICE: Account generation complete.

Rating and Charging

Introduction

CCS supports different types of charges:

1 Call charging (from the SLC)
2 Named events (from either the SLC or the SMS)
A wallet can also be debited using one of the following:

e A credit transfer (when they pass funds to another wallet)
e A periodic charge (which applies a named event charge on a regular basis)
All charges are calculated and applied by CCS plug-ins on the Voucher and Wallet Servers.

For information about:

e The processing done on the VWS servers, see Voucher and Wallet Server Technical Guide.
e How to configure the charges, see Charging Control Services User's Guide.

Charging for calls
This table describes how CCS handles call rating and charging for a VWS.
Stage Description

1 Call arrives from network over the SLEE to slee_acs with a service key that triggers the
CCS Service Library (ccsSvclLibrary (on page 193)). The service to use is determined
using the service key, the configuration in the SLEE.cfg, and capabilities configuration.

For more information about slee_acs, see Advanced Control Services Technical Guide.

2 The CCS service library determines the control plan to initiate using the:
Primary wallet of the subscriber's account

Product type of the primary wallet

Capability in the product type that matches the SLEE service key
Control plan matched to the product type capability

The control plan which applies to the subscriber is initiated.

For more information about configuring capabilities and product types, see Charging
Control Services User's Guide.

3 Service logic checks for a valid subscriber account to charge by querying beVWARS
through BeClient and beServer.

Tips:
e Avalid account has a primary wallet. It may also have a secondary wallet.

e To use the secondary wallet, you must use the Set Wallet Type feature node in the
originating control plan.

e The product type's capabilities must be supported by the domain the wallet is on.

4 CCS service library processes the call according to control plan. When the Universal
Attempt Billing node is reached, CCS service library sends an Initial Reservation Request
(IR_Req) to beVWARS through BeClient and beServer.

28 Charging Control Services Technical Guide

Stage

Description

beVWARS checks for IR message handlers. CCS provides
ccsVWARSReservationHandler (on page 259) for IR messages, so beVWARS passes
the message to that handler. ccsVWARSReservationHandler uses rating tables to
calculate the minimum charge to be reserved from a particular balance type to pay for the
call. The amount which can be reserved is determined per request, based on:

e The balance of the subscriber's account

e The value of outstanding reservations
e Pending updates.
The balances that funds are reserved and charged against are specified in the service's

rate table. The rate table can specify more than one balance type by using a balance
cascade.

Note: Reservations may fail due to too many subscribers attempting to access a wallet at
the same time.

beVWARS checks the wallet. This triggers any beVWARS event plug-ins and they
perform any configured actions on the wallet (for details about VWS plug-ins which fire,
see Voucher and Wallet Server Technical Guide). The only CCS event plug-in which is
likely to trigger is ccsWLCPIugin (on page 271), which will handle wallets which:

¢ Do not have enough to cover the charge

e Have a life cycle period configured

If the wallet is still valid, ccsVWARSReservationHandler reserves the charge amount and
sends a reservation acknowledgment (IR_Ack) back to the service logic.

Stages 4-6 repeat until the final charge is established by CCS service library. After the
first reservation is successfully processed, CCS will use subsequent reservation request
(SR_Req) messages to reserve additional blocks of time.

7

10

CCS service library finalizes charge (using the Universal Attempt Terminate with Billing
node), and sends a commit reservation (CR_Req) request to beVWARS through BeClient
and beServer.

beVWARS checks for CR message handlers. CCS provides
ccsVWARSReservationHandler (on page 259) for CR messages, so beVWARS passes
the message to that handler. ccsVWARSReservationHandler uses rating tables to
calculate the final charge and charges the wallet.

Note: beVWARS event plug-ins are triggered when the final charge is applied. CCS does
not provide any plug-ins which are specifically designed to fire at this point (though
ccsWLCPIlugin may fire again).

beVWARS sends the acknowledgment back to the service logic through beServer and
BeClient.
The CCS service logic passes the response back to the control plan. If the reservation
was successful, the control plan would:
e Connect the call.
e Continue processing the control plan until an Exit node is reached, then release
the call using standard slee_acs release.

Chapter 1, System Overview 29

Call charging message flow

This diagram shows the message flows involved in charging for a standard voice call.

[sLc/sMms [vws
slee_acs Bethent beServer | Plugins beVWARS | Plugins E2BE sync EDRs
= | Process
Wallet
Reservation »l
llet ti
(IR_Req) ,W?%F’;esgg;? “"»] Wallet Reservation |
= (IR_Req) e Update cache
I Kk
Rack oA
IR_Ack ;
& Reservation
[More reservations{
may be made
using SR_Req
Commit
Reservation
(CR_Req) Commit Reservation
(CR_Req) " Commit Reservation
(CR_Req) Update
>
Update L
CR_Ack
CR_Ack < =
CR_Ack < Update COMMIT

Charging for Named Events

Named events are predefined events on the system that incur a charge.

This table describes how CCS handles charging for named events for a VWS server.

Stage Description
1 Named event occurs.
Examples:

e The Named Event feature node is triggered in a control plan.
e A periodic charge is triggered.

For more information about the Named Event feature node, see Feature Nodes
Reference Guide.

2 The triggering process (ccsPeriodicCharge on the SMS or slee_acs using the
ccsMacroNodes plug-in on the SLC) sends a Named Event (NE) request to the local
BeClient process.

3 BeClient process receives the request and sends a NE_Req request to beServer on a
Voucher and Wallet Server.
4 beServer on the Voucher and Wallet Server receives the request, calculates the charge,

and forwards the request to beVWARS.

Note: If there are any beServer message handlers configured for NE messages, beServer
will pass the request to them before it passes the messages to beVWARS. CCS does not
provide beServer message handlers for NE messages described in this process.

30 Charging Control Services Technical Guide

Stage Description

5 beVWARS checks for NE message handlers. CCS provides
ccsVWARSNamedEventHandler (on page 248) for NE messages, so beVWARS passes
the message to that handler. ccsVWARSNamedEventHandler uses Named Event
definitions to calculate the named event charge and charges the wallet.

Note: beVWARS event plug-ins are triggered when the charge is applied. CCS does not
provide any plug-ins that are specifically designed to fire at this point (though
ccsWLCPIlugin may fire).

6 beVWARS sends an acknowledgment back to the service logic through beServer and
BeClient.
7 CCS service logic continues processing the control plan until an Exit node is reached,

when the call is released using standard slee_acs release.

Note: Named events can also use a reservation process similar to that used in the charging for calls
process. In this case three messages are used:

e INER
e SNER
e CNER

For information about how the VWS processes apply the named event charge, see Voucher and Wallet
Server Technical Guide.

Wallets with multiple concurrent access

Where a wallet has its maximum concurrent accesses field configured to more than 1, charges have
special requirements when they are reserved. They can also be applied differently, depending on the
application of the alwaysUsePreferred parameter.

Terminated State and Wallet Life Cycle periods

Normally, named events and charges cannot be charged against wallets which are pre-use, frozen,
suspended, terminated.

However, if a wallet is in a WLC period that allows specific named events, as well as session charges,
general charges and general recharges, while being in a terminated state, these will be allowed.

Periodic Charges

Introduction

Periodic charges enable a telco to apply regular charges or recharges to a subscriber's wallet. They
can also send notifications on specific events. Periodic charges are configured and populated on the
SMS and are run on VWS Voucher and Wallet Servers.

For more information about the configuration available for periodic charges, see CCS User's Guide.

Chapter 1, System Overview 31

Periodic charge processes

This table describes the main processes involved in executing periodic charges.

Process

Role Further information

beVWARS

Main VWS process. Supports the beVWARS (on page
ccsVWARSPeriodicCharging plug-in and handles | 206)
interaction with the E2BE database.

rge

ccsVWARSPeriodicCha | This beVWARS plug-in handles periodic charge- | ccsVWARSPeriodicCha

specific tasks associated with periodic charge rge (on page 253)
bucket changes.

ccsSLEEChangeDaem |ccsSLEEChangeDaemon updates assignment of | ccsSLEEChangeDaem

on periodic charges to wallets. on (on page 219)
ccsVWARSWalletHandl | This beVWARS message handler performs the ccsVWARSWalletHandl
er VWS side processing of all messages relating er (on page 269)
directly to wallets.
ccsPeriodicCharge ccsPeriodicCharge applies periodic charges ccsPeriodicCharge (on
defined for wallets. Only processes periodic page 144)
charges configured in versions earlier than CCS
3.1.4.

Periodic charge processing

This table describes how periodic charges are applied.

Step
1

Action

A wallet is queried. This can be from a normal operation, or because beGroveller passes
the wallet ID to beVWARS for groveling. For each bucket that is past its expiry date, an
expiry event is generated.

For more information about how wallets are groveled, see Voucher and Wallet Server
Technical Guide.

Expiry event triggers ccsVWARSPeriodicCharge (on page 253).
ccsVWARSPeriodicCharge processes the periodic charge.
A periodic charge can apply a charge and/or a credit. According to the periodic charge's
configuration, ccsVWARSPeriodicCharge executes:

¢ A named event request (NE_Req), then/or

o A wallet general recharge request (WGR_Req for a credit, or VTR_Req for a
credit plan (that is, voucher type)).

Note: Recharges are only applied if the charge was successful. If the debit is
unsuccessful, the periodic charge is moved directly to grace or (if the periodic charge has
a Loss of Service period of zero) to terminated.

EDRs are generated for each operation, unless ccsVWARSPeriodicCharge is processing
backlogged charges, in which case an EDR will only be generated if a charge fails and
the periodic charge moves to Grace.

If the periodic charge should change state (for example, due to a failed charge),
ccsVWARSPeriodicCharge:

e Applies the state change

e Logs an EDR of type 52
For more information about the state transitions and what happens when a periodic
charge is applied to a wallet with a disallowed state, see Charging Control Services
User's Guide.

32 Charging Control Services Technical Guide

Periodic charge triggering

The time periodic charges are processed by ccsVWARSPeriodicCharge is based on the following logic:

The periodic charge must have passed its expiry date (this is set based on the details configured in

the When option for the periodic charge and where in the periodic charge life cycle the charge is)

Note: You can adjust when periodic charge processing triggers for a specific time zone by setting the
renewPCAtMidnightTZ (on page 247) parameter in the ccsVWARSEXxpiry section of the

eserv.config file.

The wallet must have been queried (either from normal activity, or because beVWARS's groveller

processed the wallet from work sent from beGroveller)

For more information about:

Services User's Guide.

Server Technical Guide.

For fixed date charges, the value set in chargeTimeGMTHours (on page 255)
The processing of the wallet can be delayed by retryTimeoutMinutes (on page 256)

‘When' configuration for a periodic charge and the periodic charge life cycle, see Charging Control

When the beGroveller will send a wallet to be groveled by beVWARS, see Voucher and Wallet

Periodic charge association maintenance diagram

This diagram shows how periodic charge to wallet associations are maintained.

-

SMS .
BPL CCS = -
(" tasks SMF y Cont
CCSTables | cesChange T~
Daemaon SMS Java
A Screens
| J
N -~
~ sSMs)
Replication VWS (Primary) v
EDRs
E2BE
SLC ¢ CCS - Fy
IbBe | ccsSLEEChange i VWS
scP CliantlF Daemon |
Fy I
res | ces T~ | beVWARS
3 | PeriodicCharge (- & Walle
slee_acs ccs [ccsVIWARS | cache
- service logic mt:ﬁ;:MHS
[andler ﬁ
SLEE +
—_— * SLEE
xmiTclf BeClient beSarver
FY &
4

| subscriptions,

" unsubscriptions,

terminations

Chapter 1, System Overview 33

Processing Periodic Charge Subscription Changes
This table describes how changes to periodic charge states are processed.

Step Action

1 Periodic charge subscriptions are triggered when:
e A customer service representative or subscriber triggers a periodic charge
subscribe, unsubscribe or terminate BPL task using the Periodic Charge
Subscription feature node.

e A customer service representative or subscriber triggers a periodic charge
transfer using the Periodic Charge Transfer feature node in a control plan.

e A periodic charge configuration change is made through the SMS screens
(ccsSLEEChangeDaemon (on page 219) or ccsVWARSACctivation (on page 237)
sends WU_Req with state change (see Periodic charge assignment (on page 35)
for more information) to beVWARS).

e ccsVWARSPeriodicCharge (on page 253) calculates and applies a final charge.

2 If the trigger is a periodic charge subscription, unsubscription or termination of a
subscription to a service, a wallet update request (WU_Req) is sent from the BPL control
plan's Periodic Charge Subscription feature node with the:

e Subscriber's ID

e Change value (that is, Subscribe (103), Unsubscribe (102), or Terminate (101))
e Periodic charge ID

For more information about BPL tasks, see the Task Management chapter in Charging
Control Services User's Guide. For more information about the Periodic Charge
Subscription feature node, see Feature Nodes Reference Guide.

If the trigger is a periodic charge transfer, a wallet information query (WIl_Req) is
completed against the subscriber's wallet. The query returns information about the
subscriber's current subscription balances. If the subscriber has a subscription which is
not in an Unsubscribed or Terminated state, the Periodic Charge Transfer feature node
sends a wallet update request (WU_Req):

e Changing the existing subscription balance to terminated

e Creating a new subscription balance and buckets for the target periodic charge
(copying the expiry date to the new balance).

3 The WU_Req is received by beVWARS (on page 206) on the VWS server and
ccsVWARSWalletHandler (on page 269) is triggered.

When ccsVWARSWalletHandler receives a periodic charge subscription request
(WU_Req 103), it checks for the presence of a periodic charge balance type for this
periodic charge in the wallet (that is, whether the periodic charge is assigned to the
subscriber's product type). If the wallet does not have the relevant periodic charge
balance type, ccsVWARSWalletHandler creates the balance type which correlates to the
periodic charge ID sent in the WU_Req and creates a bucket for the new subscription
with an initial value of 103.

If the request is unsubscribe or terminate (WU_Req 102 or 101), and the required
balance type does not exist, ccsVWARSWalletHandler returns a Not Subscribed error.

The WU_Reqs from the periodic charge transfer are treated as normal balance updates.
Note: The EXPIRY value is not changed. If the expiry has been changed by a WU request

(in error), then it will be reset back to the original EXPIRY value before applying the state
machine logic.

34 Charging Control Services Technical Guide

Step Action
4 ccsVWARSWalletHandler triggers bucket and/or a balance value changed events as
necessary to reflect changes.

Exception: If the bucket or balance value is due to a periodic charge transfer,
ccsVWARSWalletHandler does not trigger a bucket and/or balance changed event (and
step 5 and 6 are skipped).

Note: If no action is described in step 3, the balance type change event is the only action
ccsVWARSWalletHandler will take.

5 Any bucket or balance changed event triggers the ccsVWARSPeriodicCharge (on page
253) plug-in.

Note: ccsVWARSPeriodicCharge is triggered on all bucket or balance changed events, but
only processes periodic charge balances.

6 ccsVWARSPeriodicCharge checks for periodic charge balances and buckets.

For periodic charge balances and buckets, ccsVWARSPeriodicCharge:
e Changes the state value to reflect the new state (that is, subscribed,
unsubscribed or terminated)

¢ Recalculates and updates the bucket's expiry date
e Triggers any configured notifications

For more information about configuring periodic charge expiries and notifications, see
Charging Control Services User's Guide.

Periodic charge assignment

This table describes how periodic charge to wallet relationships are updated.

Step Action

1 The periodic charge is configured on the SMS screens and is saved to the SMF
database.

2 When a periodic charge is changed so it is assigned to a product type and 'Apply to

Existing' is selected, the change to the CCS_AT_PERIODIC_CHARGE table triggers
adding a new record to CCS_PC_QUEUE. This change is also replicated to the E2BE
database on the VWS using SMS replication.

Note: If the periodic charge has 'Apply to Activating Subscribers' selected, an entry is
also added to CCS_PROMOTION, and the relationship is handled by
ccsVWARSActivation. For more information, about this process, see Periodic charges
and wallet activation (on page 36).

3 ccsChangeDaemon (on page 131) on SMS and ccsSLEEChangeDaemon (on page 219)
on VWS polls the CCS_PC_QUEUE table and picks up the new record.

Note: Polling frequency is controlled by pollPeriod. The frequency records are processed
at is controlled by throttle (on page 133).

4 If the CCS_PC_QUEUE record has a change type of A (that is, a periodic charge has
been associated with or removed from a product type), ccsSLEEChangeDaemon on the
VWS sends a wallet inquiry request (WI_Req) to check subscriber's subscription status.

Chapter 1, System Overview 35

Step

Action

Note: This query will be processed as a normal WI_Req on the VWS VWS. That is, it will
trigger the WI message handler, and any event plug-ins which are triggered by wallet
query events. For more information about event plug-ins, see Background Processes on
the VWS (on page 205).

e If the change action = I, and the wallet inquiry reports the balance type and
bucket do not exist or they do exist but are set to Terminated, sends beVWARS
(on page 206) a wallet update request (WU_Req) which sets the periodic
charge's state to subscribed.

o If the change action = D, and the wallet inquiry reports the balance type and
bucket for this subscriber exist and are not set to Terminated, sends beVWARS a
wallet update request (WU_Req) which sets the periodic charge's state to
terminated.

If the CCS_PC_QUEUE record has a change type of W (that is, a single wallet has been
associated with a periodic charge), ccsChangeDaemon on the SMS loops through each
periodic charge. For each periodic charge which is associated with the wallet's product
type and has "marked as apply to existing subscribers":

e If the change action = | (association), ccsChangeDaemon sends beVWARS a
wallet update request (WU_Req) which sets the periodic charge's state to
Subscribed.

e If the change action = D (removal), ccsChangeDaemon sends beVWARS a wallet
update request (WU_Req) which sets the periodic charge's state to Terminated.

If the CCS_PC_QUEUE record has a change type P (that is, a wallet has swapped
product types), ccsChangeDaemon on the SMS loops through the wallet's periodic
charges checking for periodic charges that are no longer relevant and for new periodic
charges from the new product type being swapped to.
e For the periodic charges associated with the old product type and not associated
with the new product type, ccsChangeDaemon sends beVWARS a wallet update
request (WU_Req) which sets the periodic charge's state to Terminated.

e For the periodic charges associated with both the old and the new product types
the ccsChangeDaemon does nothing, regardless of the state of the subscription
to that periodic charge.

e For the periodic charges which are associated with the new product and "marked
as apply to existing subscribers" and for which the subscriber has no
subscription, ccsChangeDaemon sends beVWARS a wallet update request
(WU_Req) which sets the periodic charge's state to subscription.

When ccsSLEEChangeDaemon receives confirmation of the update, it removes the
CCS_PC_QUEUE record.

Periodic charges and wallet activation

In addition to the operations normally performed when a subscriber's subscription to a periodic charge
changes, operations may be performed when a subscriber:

e Activates a wallet or resubscribes when their periodic charge is in a terminated state

e One or more of the periodic charges associated with the wallet's product type have 'Apply to
Activating Subscribers' ticked

36 Charging Control Services Technical Guide

If the change is a wallet state change from PreUse to Active, ccsVWARSActivation (on page 237)
applies any activation credits (CCS_PROMOTION entries) as per standard behavior. For any periodic
charge which has 'Apply to Activating Subscribers' ticked, an activation credit is defined which includes
the periodic charge's balance type and a bonus which has a value of 103 (subscribe). When the credit is
applied and ccsVWARSActivation attempts to created the relevant subscription bucket,
ccsVWARSPeriodicCharge (on page 253) is triggered and creates the appropriate periodic charge
balance in the wallet.

Note: When a periodic charge is subscribed-to an immediate charge (Named Event) is not taken (unless
one is specified in the control plan executed by the BPL task which changes the subscriber's periodic
charge state. This enables any issues with sequencing of activation credits to be avoided.

If a wallet state is changed from Terminated to Active, ccsVWARSPeriodicCharge (on page 253)
searches for periodic charges in Terminated state. Any periodic charges that are configured to ‘Apply to
Activating Subscribers’ are changed to Subscribed. Any other periodic charges are left in the
Terminated state.

For more information about 'Apply to Activating Subscribers' field, see Charging Control Services User's
Guide.

Sending periodic charge notifications
This table describes how notifications generated by periodic charges are sent.

Step Action
1 When ccsVWARSPeriodicCharge (on page 253) executes a transition which sends a
notification, it writes a notification request to the notification batch file.

Exception: No natifications will be sent if either:
o ccsVWARSPeriodicCharge is processing backlogged PreCharge transitions

e The state of the affected wallet is not allowed
The time the notification is written is controlled by notificationMidnightTZ (on page 255).

For more information about which transitions send notifications and how to configure
them, see Charging Control Services User's Guide.

2 From there, the standard real-time notifications subsystem processes the notifications as
usual.

For more information about how real-time notifications are processed, see step 3 in the
Real-time wallet notifications process.

Recharges

Recharge methods

CCS supports either off-the-shelf or customized recharge mechanisms depending on which interfaces
are available. This table describes the available recharge mechanisms.

Recharge method Description

Voucher / Scratch A voucher creation, management and replenishment system is provided with
Card recharge the VWS which a subscriber can use to recharge their wallets. Vouchers can
be redeemed using any of the following interfaces:

¢ |VR interaction

e USSD interaction
e Pl-integrated web portals

Chapter 1, System Overview 37

Recharge method Description

SMS GUI Telco operators can recharge subscriber accounts using the SMS
administration screens:
o Free Form Recharge tab on the Wallet Management screen

e Voucher Recharge tab on the Voucher Management screen

Credit Card Prepaid Charging stores credit card information so a subscriber can be
Recharge recharged against a credit card number previously provided by the subscriber
(when authorized by PIN entry).

Credit cards can also be charged periodically (for example, one account
charge per month).

Web The PI can support command execution from a range of sources (for example:
websites).
Electronic refill Systems have been deployed that use ISO 8583-based interfaces to recharge

subscriber accounts directly from:
e Bank accounts

e ATMs
e Other banking mechanisms

Tip: Wallets can also have credit added as part of a promotion or bonus.

Subscriber interaction

CCS handles recharges by using subscriber interaction:

¢ IVR feature nodes in a control plan

e Customer care service staff using SMS screens
e (with MM) Short Messages

e (with USSD GW) menus and fast access

Promotions

Introduction

Promotions can be used to increase subscriber activity by rewarding subscribers with more attractive
packages for specific behavior. Promotional bonuses can be implemented using one of the following:

e In-built rewards and bonus schemes
e Free form configuration such as control plans and/or profile fields

In-built reward and bonus types

This table describes the types of in-built rewards and bonuses provided to CCS.

Type Description

Tracker threshold Awarded to subscribers whose total usage exceeds a set threshold.

promotions Promotional reward can change the subscriber's product type (and applicable
tariff), and/or award one or more bonus credits.

Promotion notifications can be sent to subscribers specifying how much more
they need to spend to upgrade.

38 Charging Control Services Technical Guide

Type Description
Wallet activation Triggered when a subscriber activates their account.
promotions Defines a time period from subscriber creation to activation.
If a subscriber activates their account in this period, they are given free SMS
messages.
Balance recharge Awards a promotional cash bonus to subscribers if they recharge their account
promotions and the recharge is above a specified threshold.

Promotions process

Balance changes due to promotions are handled by the ccsPMXPlugin on the VWS. For details, see
ccsPMXPlugin (on page 234).

Notifications

Introduction

Notifications are any short message sent by CCS to a subscriber's handset.

CCS sets up natifications which are delivered by other applications. Different delivery applications are
used depending on the type of network and destination.

ACS Notification Templates

You define the content to include in notifications by configuring ACS notification templates. For more
information, see ACS User's Guide.

Examples of CCS activities that can use ACS notification templates are:

e Feature nodes in control plans

e Business process logic (BPL) tasks
e Credit transfers

e Periodic charges

e Profile updates

e Real-time notifications

e Promotions

Notification Languages

Notifications can use any language configured on the system. They are sent in the subscriber's
preferred language (if set) or in the system's default language.

For more information about configuring:

e Languages, see ACS User's Guide
e Notification translations, see CCS User's Guide

Chapter 1, System Overview 39

Events Triggering Notifications

This table lists the events triggering notifications sent by CCS.

notifications

VWS, including:
e Balance or wallet expiry warning
e Balance charge
e Balance recharge
e Wallet state change

Promotions, including:
e Heavy user rewards

Notification Triggering Events Delivery by
Control plan Requested by a feature node in a control plan; for Notifications
notifications example, to send: DAP template

e Account Status SMS

e Call Information SMS

e SMS Low Balance

Note: This includes control plans used by BPL tasks.

Real-time wallet A specific change in wallet and balance details on the Notifications

DAP template

e Entry to, or exit from, a wallet grace period

Periodic charge Successful or unsuccessful periodic charges Notifications
notifications

CCS System A specific event in CCS including: Notifications
notifications e Periodic charge success or failure

DAP template

Credit Transfer Credit transfer success or failure Notifications
notifications
Profile notifications | A defined event in a subscriber's profile Notifications

DAP template

For more information about:

e ACS notifications, see ACS User's Guide
o DAP templates, see DAP User's Guide
¢ Profile notifications, see Charging Control Services User's Guide

About Notification Delivery

Notifications can be delivered by:

e slee_acs process (called by feature nodes in control plans)
e SMSC IF (smsinterface)
e Messaging Manager (xmsTrigger)

e The ccsProfileDaemon or xmlIF processes (through DAP XML templates)

For more information about:

e smsinterface, see SMSC Technical Guide
e XmsTrigger, see MM Technical Guide
e DAP XML templates, see Data Access Pack User's & Technical Guide

40 Charging Control Services Technical Guide

Chapter 1

Notification Flows

This diagram shows the various notification flows across the Convergent Charging Controller platform.

Voucher and Wallet Servers

2 SMS ACS
MNotification
Provisioning

Screens
Pl and Screens
(BPL)
-
SLC
ACS
New CPL Old CPL
Molification Lans Mg
8 10
r ¥
6
SLEE

L 4
QB

Chapter 1, System Overview 41

Flow 1
The beVWARS plug-ins send SMS information to the beServiceTrigger.

Flow 2

Notification XML messages from the beServiceTrigger to the OSD interface on the SLC.

Flow 3

If a natification cannot be delivered immediately, either because it has an associated time period when it
can be delivered, or because the delivery attempt failed, then persistent storage of the notification is
provided in a database table.

Flow 4

The beEventStoragelF process looks for, and retrieves, the notification entries in the database that can
be sent now, either because their allowable delivery time has been met, or because the notification is a
message retry.

Flow 5

The beEventStoragelF deletes the active notification entries from the database and sends delivery
request messages to the beServiceTrigger for each one.

Flow 6

The OSD interface triggers ACS, which then loads the control plan containing the notification feature
node that will perform delivery of the notification.

Flow 7

The notification template to use is determined by the notification feature node, based on:

e lLanguage ID
e Template ID
e Customer ID

Flow 8

The notification feature node delivers a USSD notification through the TCAP interface.

If the message class is "USSD push", then an internal message is sent through the USSD push action
handler to the TCAP interface after the notification feature node has performed all the parameter
substitutions.

Flow 9

Chassis action to construct message from template.

Flow 10

Other send message feature nodes use new chassis actions to deliver notifications using Messaging
Manager.

42 Charging Control Services Technical Guide

EDRs

Introduction

This topic explains how EDRs are used in CCS. Most of the information relates to processing of the
EDRs after they are written. For more information about how EDRs are generated, see VWS Technical
Guide and Event Detail Record Reference Guide.

Viewing active rules for a subscriber

Follow these steps to view the active rules for a subscriber.

Step Action

1 Open the Subscriber Management screen for the Prepaid Charging service.

2 On the Subscriber tab, select the subscriber record and click Edit.

3 In the left pane of the Edit Subscriber screen, select the Balance Topup Rules option.

Result: The Balance Topup Rules screen appears. The rules that apply to this subscriber
are displayed on the screen. You see the name of the rule and the date for the last time it
will be executed.

Note: This information is read only.

Dataflow
This table shows the process by which EDRs are written and collected to the SMF database.

Stage Description

1 The SLC is the originator of all events that cause Voucher and Wallet Servers to perform
tasks during call processing, as the SLC controls how the service responds to network
events. The SLC signals events to the VWS Voucher and Wallet Server using the CCS
Billing Engine Protocol. The service sends messages to the Voucher and Wallet Servers
through the ccsBeClient interface.

2 EDRs are written out to disk as ASCII files on the VWS.

3 The files are transfered to the SMS.

4 The files are indexed and made available to the Java User Screens and external EDR
post-processing tools.

5 CCS screens created EDRs are written by the ccsCDRGenerator process to the same
directory the VWS flat files are transfered into. The ccsCDRLoader then loads both the
same way.

CCS EDR processing

This process shows how EDRs are processed on the SMS by CCS components.

Step Action

1 If configured to, ccsCDRTrimFiles processes the EDRs from the VWS.

2 ccsCDRLoader inserts the details from the EDR files into the CCS_BE_CDR table in the
SMF database.

3 If configured to, ccsCDRTrimDB processes the EDRSs.

4 EDRs can be viewed on the EDR Details screen in CCS.

Chapter 1, System Overview 43

Diagram

Here is an example showing EDR creation, transfer to the SMS and processing.

CDR
SMS f" _ s Screen Recharge
ces g Requests
i ccsCDRFile
SMF | Generator write ccsCDR
CCS Tables TrimFiles
CCS Accounts cesCORLoader Y
libCORSiore -
CCS_BE COR_ #—— o) ioin f
EDRs PENDING SMS Java
—5 CCS_BE_CDR EDRs Screens
4T__ ccsCOR libFilaWriterCDOR #
cmnReceive TrimDB LoaderPlugin cmnReceive
Files Files
A L
N
~ i .
SLCs Vwss cmnPush ‘
EDRs cmnPush Flles
Files T
VWS
ACS ccs " FORe
slee_acs mmlm beVWARS
SLEE T l A sLtee |
v
TCAP IF BeClient beServer
A &

Process descriptions
This table describes the processes involved in Voucher and Wallet Server EDR creation, transfer and
processing in CCS.

Note: EDRs are also created on the SLC to record the details of the call processing through the control
plan and slee_acs.

Process Role Further information

beVWARS beVWARS writes EDRs on the VWS based on VWS Technical Guide
VWS account, wallet and balance transactions.

cmnPushFiles cmnPushFiles reads EDRs on the VWS and cmnPushFiles (on page

sends them to a configured directory on the SMS. | 271)
Once the files have been sent, the read files on
the VWS are archived by cmnPushFiles.

44 Charging Control Services Technical Guide

Process Role Further information

cmnReceiveFiles cmnReceiveFiles accepts EDRs sent from SMS Technical Guide
cmnPushFiles and writes them to the directory on
the SMS specified by cmnReceiveFiles.

ccsCDRLoader ccsCDRLoader scans the input directory written | ccsCDRLoader (on
to by cmnReceiveFiles and loads any EDRs into | page 111)
the CCS BE CDRS table in the SMF database.

ccsCDRFileGenerator | ccsCDRFileGenerator creates EDRs recording ccsCDRFileGenerator

relevant actions taken in the CCS Ul screens. (on page 108)
Relevant actions include changes to the balances
or wallets.

ccsCDRTrimDB ccsCDRTrimDB periodically scans the ccsCDRTrimDB (on

CCS_BE_CDR table in the SMF and removes page 129)
records past a specified age.

ccsCDRTrimFiles ccsCDRTrimFiles periodically scans the EDR ccsCDRTrimFiles (on
archive directory on the SMS and removes files page 130)
over a specified age.

CCS Ul screens The CCS screens enable: Charging Control
e Subscriber details and wallets to be Services User's Guide
updated through EDRs created by
ccsCDRGenerator

e EDRsin CCS_BE_CDR to be viewed

EDR triggers

EDRs are written on the Voucher and Wallet Servers when a wallet or voucher is modified. The
following messages, among others, cause the beVWARS to write EDRSs:

e Call End Notification

¢ Wallet Recharge Request

e Named Event

Chapter 1, System Overview 45

Chapter 2
Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Convergent Charging Controller
application.

In this chapter

This chapter contains the following topics.

CONfIGUIALION OVEIVIEWeiiiiiiiiie ittt ettt e bt e ek e e e e b e e e e bt e e e e e nbneeeeneee 47
Configuring the ENVIFONMENT........ouuiiiiiii ettt 49
€serv.config ConfigUIAtION..........ccoo i ————— 50
Configuring acs.Conf fOr the SLC ... 53
SEttiNG UP the SCIEENSeee e aa e 60
DefiniNg the SCre@N LANQUAGEuueereieeeieiiieieieieieeeeeteaeaseeeeeeeeeeesrarseerersrsrerererersrererererernrnrnrnnrnnn 64
Defining the Help SCreen LANQUAGEuuuuieiiieiiieieieieieieieiseeieesinrsenenrersrnrnrerernre———.. 65
Configuration Through the ACS SCIrEENSii i 66
User Interface-Based Configuration TASKScuuiiiiiiiiiiiiiiiieieee e 67
Configuring VWS proCesSSES fOr CCS......uuiiiiiiiiieiitiie ettt 68
Configuring CCS MACIO NOUESueiieiiiiiieiitie ettt e e e e e e e e 69
Switch Configuration for the UATB NOGEoiiiiiiiiiiii e 71
Voucher Status Report CONfIQUIALION.ciiiiiiiii ittt 73
(L@ 0] oo 1] > 4o o1 74

Configuration Overview

Introduction

This topic provides a high level overview of how the CCS application is configured.

There are configuration options which are added to the configuration files that are not explained in this
chapter. These configuration options are required by the application and should not be changed.

Chapter 2, Configuration 47

Configuration process overview

This table describes the steps involved in configuring CCS for the first time.

Stage
1

Description

The environment CCS will run in must be configured correctly. This includes:
If a the directory CCS was installed into was not the recommended directory,
setting the root directory

Setting the Oracle variables
Configuring the location of the EDR directories
Configuring the ccs_oper profile

Configuring the web server

Configuring CCS Balance Top Up Suite

The eserv.config file must be configured for CCS. The example file should be copied into
the main eserv.config, and any required details configured. For more information, see
eserv.config Configuration (on page 50).

acs.conf must be configured to include CCS on all SMSs and SLCs.

If the default language for the CCS graphical user interface need changing, the new
default language must be configured.

The CCS screen-based configuration must be completed.
If the VWS has been installed, the VWS processes must be configured.

Configuration components

CCS is configured by the following components:

Component Locations Description Further Information
eserv.config All machines The most important is eserv.config, |eserv.config Configuration
because it configures most (on page 50).
Convergent Charging Controller
applications, including the VWS
processes used by CCS.
CCS is configured by the CCS
section of eserv.config.
acs.conf All SMS and SLC [The acs.conf file configures the: Configuring acs.conf for
nodes e acsChassis which the SLC (on page 53)
processes calls on the Advanced Control
SLC Services Technical Guide
e acsCompilerDaemon
which compiles control
plans, geography trees
and CLI-DN files on the
SMS.
CCs Ul SMF database The CCS Ul allows you to User Interface-Based
configure many parts of CCS. Configuration Tasks (on
page 67) and Charging
Control Services User's
Guide
SLC nodes Voucher Status Report
Configuration (on page 73)

48 Charging Control Services Technical Guide

Configuring the Environment

Oracle variables

The CCS Unix system accounts ccs_oper and ebe_oper require the standard ORACLE environment
variables to be present.

Configuring EDR log directories

Because most systems will generate a large number of EDRs, it is recommended that the EDR log
directories are changed from the default install values.

A link should be created between the default logging directories and the actual location on separate
physical disk, apart from the main application installations.

You must create links from the following directory on the VWS:

¢ [IN/service_packages/BE/logs/CDR
You must create links from the following directories on the SMS:

¢ [IN/service_packages/CCS/logs/CDR
o [IN/service_packages/CCS/sync/tmp

Procedure

Follow these steps to configure the location of the EDR log directories.

Note: These steps assume /volD is the mount point for the disk that EDRs are to be stored on.

Step Action

1 Change to the volume where the EDRs should be kept.
Example command: cd /volD

2 Create a EDR directory.

Example command: mkdir CDR
Result: This creates the EDR directory.

3 Change to the CCS log directory.
Example command: cd /IN/service packages/CCS/logs
4 Move the EDR directory's contents to the EDR directory on the alternative volume.

Example command: mv CDR/* /volD/CDR

Note: The move command may fail, if so repeat.

5 Delete the EDR directory.
Example command: rmdir CDR

6 Create a link from the application's EDR directory to the new EDR directory on the
alternative volume.

Example command: 1s -s /volD/CDR /IN/service packages/CCS/logs/CDR

Result: This links the new location to the old name. CCS will write all EDRs to the new
location.

Chapter 2, Configuration 49

Configuring the .profile

If ACS and CCS are installed, follow these steps to edit the .profile file to set the path correctly.

Step Action
1 Open the .profile file for editing.
Example command: vi <ACS ROOT>/.profile-scp
2 Add the following line:
export LD LIBRARY PATH=<CCS ROOT>/lib:$LD LIBRARY PATH
3 Save and close the file.

Configuring CCS Balance Top Up Suite

The UTL_FILE DIR parameter defines the directories the utl_file package, used by CCS Balance Top
Up Suite, needs for writing files. You must add this parameter to the initSMF.ora file.

Procedure - adding UTL_FILE_DIR

Follow these steps to add the UTL,. FILE DIR parameter to the initSMF.ora file. This enables access to
the file system.

Step Action
1 Log in to the SMF server as the Oracle unix user:
Type su - oracle
password
2 Locate the oracle parameter file initSMF.ora in the $SORACLE_BASE/admin/SMF/pfile/ directory.
3 Add both the following UTL_FILE DIR parameters to initSMF.ora on the SMF server:

UTL FILE DIR=/IN/service packages/CCS/tmp
UTL_FILE DIR=/IN/service packages/CCS/tmp

Result: The utl_file package now has access to the file system.
4 Restart the SMF Oracle instance.

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many Oracle Communications Convergent
Charging Controller applications read their configuration. Each Convergent Charging Controller machine
(SMS, SLC, and VWS) has its own version of this configuration file, containing configuration relevant to
that machine. The eserv.config file contains different sections; each application reads the sections of the
file that contains data relevant to it.

The eserv.config file is located in the /IN/service_packages/ directory.
The eserv.config file format uses hierarchical groupings, and most applications make use of this to divide
the options into logical groupings.

Example eserv.config detail

This configuration sample shows an example of a part of an eserv.config file showing a CCS wallet
handler:

CCs = {

50 Charging Control Services Technical Guide

reservationHandler = ({
reservationLengthTolerance = 60 # in milliseconds
}
}

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other
sections. Configuration details are opened and closed using either {} or [].

e Groups of parameters are enclosed with curly brackets — { }

e An array of parameters is enclosed in square brackets — []

¢ Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats can be used, as in this example:

{ name="routeo6", id = 3, prefixes = ["00000148", "0000473"] }
{ name="route7", id = 4, prefixes = ["000001049"] }
or
{ name="routeob"
id = 3
prefixes = [
"00000148"
"0000473"
1
}
{ name="route7"
id = 4
prefixes = [
"000001049"
1
}
or
{ name="routeo6"
id = 3
prefixes = ["00000148", "0000473"]
}
{ name="route7", id = 4
prefixes = ["000001049"]

}

eserv.config Files Delivered

Most applications come with an example eserv.config configuration in a file called eserv.config.example in
the root of the application directory, for example, /IN/service_packages/eserv.config.example.

CCS eserv.config example file

CCS delivers a cut-down eserv.config file that only contains non-default parameters; it is not a full list of
all parameters that are available. This file will normally be installed as eserv.config, except in the case
that another application has already installed eserv.config.

Some specific parameters (for example host names) will need to be amended in the installed eserv.config
file; these are clearly marked with "Change Me" markers. Once amended, CCS will run with no further
changes to eserv.config. Where additional implementation changes need to be made to eserv.config, refer
to the Background Processes chapters for full descriptions of all parameters for the processes.

In addition, a full example file containing examples of all parameters and parameter descriptions is also
delivered. This example file is called eserv.config.ccs_example.

Chapter 2, Configuration 51

Parameters

Listed below are the parameters in the CCs section that are common to all machines.

accountNumberLength

Syntax: accountNumberLength = int

Description: The number of digits in card number in a subscriber account. If
accountNumberLength is set to zero (0) then the account number can be any
length.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes: Used by ccsAccount when generating subscriber accounts.

Example: accountNumberLength = 14

oracleUserAndPassword

Syntax: oracleUserAndPassword =
"user/pwd[@db _sid]|/@connection string"

Description: The user credentials that CCS uses for connections to the database on a local or
remote SMS node when the oracleUser or oraclePassword parameters are
not defined.

Type: String

Optionality: Optional (default used if not set)

Allowed: For connections to a:

e Local database, specify the user and password, or specify '/' for
passwordless connections

¢ Remote database, specify the user, password and database SID

e Local or a remote database by using the Oracle wallet secure external
password store, specify only the TNS connection string where the TNS
connection string is the alias defined for the username and password
credentials in the external password store. This alias can be either a TNS
name or a service name from tnsnames.ora.

Default: /

Notes: You can specify the user credentials for connecting to the database in the
oracleUser Or oraclePassword parameters for some CCS processes. In this
case, the oracleUserAndPassword parameter is ignored.

Example: oracleUserAndPassword = "smf/smf"
suppressedEDRTags

Syntax: suppressedEDRTags = ["EDRtags"]

Description: Some EDR tags can be optionally hidden when creating an EDR.
Type: Array

Optionality: Optional

Allowed: Optional tags are:

e END_CALL_REASON

e BALANCE_NAMES

e EXCEEDED_BALANCE_NAMES
e FAILED_BALANCE_NAMES

52 Charging Control Services Technical Guide

Default:
Notes: Any tag listed in the following section will be suppressed.

Example: suppressedEDRTags = [
"END_CALL_REASON ",
"BALANCE NAMES",
"EXCEEDED BALANCE NAMES",
"FAILED BALANCE NAMES"

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text editors, such as
Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows
line termination characters (for example, *M), which are not visible to the user, at the end of each row.
This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working
copy to which you can return.

Loading eserv.config Changes

If you change the configuration file, you must restart the appropriate parts of the service to enable the
new options to take effect.

Configuring acs.conf for the SLC

Introduction

CCS runs on the ACS subsystem by providing CCS-specific libraries and plug-ins for slee_acs. The
configuration options for slee_acs on the SLC are contained in the acs.conf file.

When CCS is installed, it automatically configures entries in acs.conf to include the plug-in libraries which
run basic functionality. This configuration is required in the acsChassis section for the CCS system to
run successfully, though it can be changed by qualified engineers under some circumstances.

The following pages contain a description of the acs.conf parameters that are specifically relevant to
CCs.

For more information about acs.conf and plug-in libraries in general, see ACS Technical Guide.

acsChassis

The acsChassis section defines how to handle traffic coming in to slee_acs. It defines the traffic
processed by a specified service and service loader plug-in library combination. It also defines how
slee_acs processes the traffic to each service.

The available parameters are:
ChassisPlugin

Syntax:

Description: Chassis plug-ins provide the ACS Control Plan Editor with an expanded interface
to its environment.
The ChassisPlugin lines are required to define which chassis action libraries will

be available to slee_acs. The CCS chassis action library (ccsActions (on page
178)) must be included here.

Chapter 2, Configuration 53

Type:

Optionality: Required (must be set to include the required CCS library)

Allowed:

Default:

Notes: The interface between the CPE and the Voucher and Wallet Server is
implemented using chassis plug-ins. Other uses include external database
operations or network access.

One shared library may implement more than one chassis action.
No further configuration is needed to allow the Chassis to load the plug-ins at
startup. However, individual plug-ins may have configuration requirements of their
own.
For more information about the slee_acs, see ACS Technical Guide.
Example: acsChassis
ChassisPlugin ccsActions.so
MacroNodePluginFile

Syntax: MacroNodePluginFile Iibraryname

Description: The MacroNodePluginFile lines are required to define which feature node libraries
will be available in the control plans used by slee_acs. The CCS feature node
library (ccsMacroNodes (on page 182)) must be included here.

Type:

Optionality: Required (must be set to include the required CCS library)

Allowed:

Default:

Notes: Some plug-in-based feature nodes distributed with CCS are:

e Attempt Termination with Billing node

e Language Select node

e Voucher Recharge node
Example: MacroNodePluginFile ccsMacroNodes.so
ServiceEntry

Syntax: ServiceEntry (ServiceName, NetworkCPSource, LogicalCPSource,
PendingTNSource, ConnectCLISource, RedirectingPartyID,
OriginalCalledPartyID, 1ibname)

Description: The ServiceEntry lines are needed to define which services defined in the
SLEE.cfg are handled by the CCS service loader library (ccsSvcLibrary (on page
193)).

Type:

Optionality: Mandatory (must be set to include the required CCS library).

Allowed: For more information about the structure of this configuration option, see
acsChassis ServiceEntry Configuration (SCP) in the ACS Technical Guide. For
more information about the values which can be used in the service element of
this configuration, see Services (on page 55) in the Configuration chapter in CCS
Technical Guide.

Default:

Notes: Any service defined in SLEE.cfg must have a corresponding ServiceEntry line
configured in acs.conf.

Example: ServiceEntry (CCS,ccsSvclibrary.so)

54 Charging Control Services Technical Guide

srf

Syntax:

Description:

Notes:

Example:

Services

srf (srfName, UseETC=Y|N, Address=IP|nothing, NOA=0|1|2|3|4
typeOfSrf=NAP|other)

The name and number of the Specialized Resource Function (or Intelligent
Peripheral) is required for each IP on the network.

Parsing should continue until no new IPs can be found in the configuration file.
This will eliminate the need for a count to be specified in the configuration file for
the number of resources available.

srf (napl,UseETC=N,Address=,NOA=3)

This table describes the valid values for the ServiceName array parameter of the ServiceEntry

parameter.

acs.conf String

Description

CCS Use for CCS voice mobile originating.
CCS ROAM Use for CCS voice mobile terminating.
CCS_SM_MO Use for CCS SMS mobile originating.

CCS SM MT Use for CCS SMS mobile terminating.

REVERSE CCS SM MT |Use for CCS SMS mobile terminating with reverse.

CCS_DATA Use for CCS DATA.
CCS_BPL Use exact string for BPL task triggers from the SMS.
CCS_BPL* Use CCS_BPL prefix for services which should trigger xmITclf from a

third-party interface.

Note: The CCS Service Loader must trigger one of the following service names before it can extract the
XMS, MM, or SMS information from the InitialDP:

e CCS_SM_MO
e CCS_SM_MT

e REVERSE_CCS_SM_MT

Example service entries

Here are some example service entries for CCS services in the acsChassis section in acs.conf.

acsChassis

ServiceEntry (
ServiceEntry (
ServiceEntry (
ServiceEntry (CCS _SM MT,dD,cC,dD,E,ccsSvcLibrary.so)
ServiceEntry (
ServiceEntry (
ServiceEntry (

CCS,GgNnFf, ILcCaAnN, ccsSvclibrary.so)
CCs_ROAM, cCoOnN, dDfF, dDfF, E, ccsSvcLibrary.so)
CCsS_SM MO, nN,cC,dD, E, ccsSvcLibrary.so)

REVERSE CCS SM MT, cC,dD,dD,E, ccsSvcLibrary.so)
CCS_BPL, ccsSvcLibrary.so)
CCS_BPL*,ccsSvclLibrary.so)

Note: For more information about service entry configuration, see acsChassis ServiceEntry Configuration
(SLC) in ACS Technical Guide.

Chapter 2, Configuration 55

acsChassis - optional parameters

The parameters in this portion of the acsChassis section are optional and may be added when
required. Only one entry per parameter is allowed.

UnknownNOA

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

NormalRule

Syntax:

Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

This value is the NOA to be used, to denormalize an outgoing number.
Integer

65535

(incoming NOA, incoming prefix,outgoing NOA,outgoing #digits
to strip,prefix to add)

Enter a conversion rule for each incoming NOA.

Array

Incoming prefix can be 'E' to specify the global rule for a given NOA, which will
map anything not matched by a prefix.
Outgoing prefix can be 'E' to specify no digits to add to the digit string.
If a minimum parameter is present and a maximum parameter is not provided
then only the minimum check is carried out. If a maximum parameter is provided
a minimum parameter must be present.

e (2,E53,E)

e (2,E53,E19)
The second example includes two optional parameters, which denote a size that

a number has to be to trigger a rule. The first parameter is the minimum number
of digits, and the second the maximum.

acsChassis - variables

The remaining topics explain the variables described in the acsChassis section of the acs.conf file.

srf_SLEE

Usage:

srf (IP name,

Where:

UseETC=Y/N, Address=address, NOA=noa, TypeOfSrf=type)

Parameter Description

IP_name The IP name to use as a resource hame when specifying announcement
entries.

UseETC Y or N. Use Y if an external IP is contacted directly from the SLC. This
establishes a temporary connection to that IP.

56 Charging Control Services Technical Guide

Parameter Description

Address Contains the IP address if an external IP is used or nothing if internal
NOA The nature of address indicator. The indicator is a digit from 0 — 4, as
follows:
e (O spare

e 1 subscriber number

e 2 unknown

e 3 national significant number

¢ 4 international significant number

TypeOfSrf Describes the type of SRF identified by the SRF name. Currently, the only
supported value is "NAP”. If you do not specify an SRF type then no SRF-
type-specific extensions will be activated.

Example: If you have the UseLanguageExtensions parameter setto Y

and you are using a Unisys speaking NAP for announcements, then
TypeOfSrf should be NAP, otherwise it should be Other.

Example: srf (NAP1,UseETC=N,Address=,NOA=3)

Explanation
There are three ways in which this configuration works, depending on the parameters set:

1 The SLC communicates with the SSP through CTR (Connect to Resource) and using an internal
IP.No IP address is required for this option. UseETC is not required (select N). The IP name is
required. NOA is required.

—

——e.

SSP

P

2 The SLC communicates with the SSP through the CTR and IP address. The SSP then uses the IP
address to communicate with an external IP. The IP address is required for this option. UseETC is
not required (select N). The IP name is required. NOA is required.

CTR +IP
address

SSP - P

3 The SLC communicates with the SSP through the ETC (EstablishTemporaryConnection) and IP
address. The SSP then uses the IP address to communicate with an external IP.

Chapter 2, Configuration 57

The IP address is required for this option. The SLC also communicates directly with the IP, using an
ARI (AssistRequestinstructions). UseETC is required (select Y). The IP name is required. NOA is
required.

—

A
' A

5
\
ETC +IP ~

I
I
I
| address 5
I

NOA and Normal rules

The NOA (nature of address, also known as NOC and NON) is a classification to determine in what
realm (local, national or international) a given phone number resides, for the purposes of routing and
billing.

Details vary between different implementations of telephone systems, but the following table is
representative:

Dialed Digits NOA Definition

477 9425 1 ==> subscriber | Number within local telephone exchange

4 477 9425 3 ==> national Number within country telephone exchange
64 4 477 9425 4 ==> international | Number within world telephone exchange
477 9425 2 ==> UNKNOWN | Numbering scheme rule ==> subscriber
04 477 9425 2 ==> UNKNOWN | Numbering scheme rule ==> national
006444779425 |2 ==> UNKNOWN | Numbering scheme rule ==> international

In essence, the subscriber's telephone system may try to ascertain the nature by examining the dialed
digits. If they can be understood by "built-in" mechanisms, the NOA can unambiguously be one of the
values subscriber, national, international, or a finer classification determined by the protocol variant.

Otherwise the NOA is Unknown and the dialed digits must be clarified by a set of (usually simple) rules
specified by a numbering scheme.

Leading zeros are used in New Zealand among other places, but the leading characters could be any
arbitrary sequence that the numbering scheme could specify.

Ultimately the usage of NOA is determined by the phone network itself which may classify and possibly
modify a phone number while it is being transmitted between the service logic and the switch.

People deal with (and database usually store) telephone numbers in their normalized form (for example,
00441918666223). The network gives and receives number in a denormalized form (that is, where the
type of number (the Nature of Address) is known explicitly), (for example: [International, 441918666223]
from the previous example).

Example:

Normalized number: 049393434

De-Normalized number: Nature of Address: National

Digits: 49393434

58 Charging Control Services Technical Guide

Possible Natures of Addresses:

An address can be of the following natures:

Nature of Address Description

Subscriber (local) (is 1 with ITU/ETSI CS-1)
Unknown (is 2 with ITU/ETSI CS-1)
National (is 3 with ITU/ETSI CS-1)
International (is 4 with ITU/ETSI CS-1)

Each individual service decides what numbers need to be normalized, however, ACS provides the
conversion functionality. The mapping is created through the acs.conf file using the following parameters:

Parameter Description

UnknownNOA IntegerValue This value is the NOA to be used in the code to denormalize a
number. The same function is used to normalize as is used to
denormalize.

NormalRule ConversionRule This rule determines how to convert between the normal and
denormalized number.

The rule is of the following format:

incoming NOA ,incoming prefix ,outgoing NOA, outgoing #digits to strip,prefix to add
Notes:

e There are NO spaces within the rule.

e Incoming prefix can be 'E' to specify the global rule for a given NOA, which will map anything not
matched by a prefix.

¢ Outgoing prefix can be 'E' to specify no digits to add to the digit string.

e Incoming prefix can be 'E' to specify the global rule for a given NOA, which will map anything not
matched by a prefix.

¢ Outgoing prefix can be 'E' to specify no digits to add to the digit string.

Example 1:

UnknownNOA 9999
NormalRule (4,E,9999,0,00)

Result:
¢ Will normalize international Nature Of Address (4) with any prefix(E)
¢ Will not strip any digits (0), but will prefix 00 to the number

e Value 9999 for the outgoing NOA is ignored as normalized numbers do not have a Nature of
Address

e This rule would normalize [International, "6449391234"] to "006449391234".

Example 2:

NormalRule (9999,0,3,1,E)

Result:

o Will de-normalize (9999 - this must match our UnknownNOA value) numbers beginning with 0.
e Set the Nature of Address to National (3)

e Strip one digit (1) but will not prefix anything (E).

e This rule would de-normalize "049391234" to [National, "49391234"].

Chapter 2, Configuration 59

Setting up the Screens

About Customizing the Ul

You can customize the CCS user interface (Ul) by setting Java application properties in the sms.jnlp file
located in the /IN/html/ directory. You set JNLP application properties by using the following syntax:

<property name="property" value="value" />

Where:

e property is the name of the application property

e value is the value to which that property is set

For more information about the sms.jnlp file, see SMS Technical Guide.

Java Application Properties

The following application properties are available to customize the Ul:

jnlp.ccs.BeORBTimeoutms

Syntax: <property name=jnlp.ccs.BeORBTimeoutms value="num" />

Description: Specifies the length of time, in milliseconds, after which an ORB request from the
screen operator's terminal to the Convergent Charging Controller server times out.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 20000 (that is, 20 seconds)

Notes:

Example: <property name=jnlp.ccs.BeORBTimeoutms value="5000" />

jnlp.ccs.defaultEDRSearchAge

Syntax: <property name="jnlp.ccs.defaultEDRSearchAge" value="num" />

Description: Used to calculate the default start date that is shown in the EDR Viewer. The
default start date is equal to the current date and time minus
jnlp.ccs.defaultEDRSearchAge.

The default end date is the current date and time.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 2

Notes:

Example: <property name="jnlp.ccs.defaultEDRSearchAge" value="5" />

jnlp.ccs.defaultEDRSearchCategories

Syntax: <property name="jnlp.ccs.defaultEDRSearchCategories"
value="1ist of categories" />
Description: Specifies the default EDR categories to search for when viewing EDRSs in the

CCS View EDRs for Subscriber screen.

Use a comma-separated string of EDR sub-types.
Type: String
Optionality: Optional (default used if not set)

60 Charging Control Services Technical Guide

Allowed:

Default: All
Notes: The list of categories must be comma-separated and enclosed in single quotes.
Example: <property name="jnlp.ccs.defaultEDRSearchCategories"

value=""'Amount Charge', 'Bad Pin'" />

Jjnlp.ccs.defaultSubscriberSearchType

Syntax: <property name="jnlp.ccs.defaultSubscriberSearchType"
value="exact |prefix" />
Description: Sets the default search type for subscribers in the following locations in the CCS UI:

e The Subscriber tab
e The Register Subscriber to Credit Card dialog box

Type: String
Optionality: Optional (default used if not set)
Allowed: e exact — Searches for the matching subscriber.
o prefix — Searches for all subscribers with IDs that match the entered prefix.
Default: prefix
Notes:
Example: <property name="jnlp.ccs.defaultSubscriberSearchType"

value="exact" />

jnlp.acs.ProfileN

Syntax: <property name="Jjnlp.acs.Profilenumber" value="new name"/>
Description: Specifies to suppress or change the name of any of the 20 profile blocks.

Type: String

Optionality: Optional

Allowed: 1 < number £ 20

new_name is one of the following:
e — (dash): The profile block is not displayed in screens.
e String comprising any printable characters.

Chapter 2, Configuration 61

Default: The following table lists default profile block names in the order in which they
appear in feature node drop-down lists.

Profilel |VPN Network Profile
Profile2 | VPN Station Profile
Profile3 | Customer Profile
Profile4 | Control Plan Profile
Profile5 | Global Profile

Profile6 | CLI Subscriber Profile
Profile7 | Service Number Profile
Profile8 | App Specific 1
Profile9 | App Specific 2
Profile10 | App Specific 3
Profilell |App Specific 4
Profilel2 | App Specific 5
Profilel3 | App Specific 6
Profilel4 | App Specific 7
Profilel5 |App Specific 8
Profilel6 |Any Valid Profile
Profilel7 | Temporary Storage
Profile18 | Call Context

Profile19 | Outgoing Extensions
Profile20 |Incoming Extensions

Notes: e If VPN is not installed, Profilel and Profile2 are suppressed by default.

e If Charging Control Services is installed, profile block names associated
with Profile8 through Profile15 are changed automatically. For more
information, see CCS Technical Guide.

e If RCA s notinstalled, Profile19 and Profile20 are suppressed by default.
You can make them available by installing RCA or by appending them to
the sms.jnlp file.

e Feature nodes with writable fields cannot write into Profile16.
Examples: <property name="Profilel" value="-" />
<property name="Profile6" value="Originating CLI" />

jnlp.ccs.MaxProductTypePeriodicCharges

Syntax: <property name="jnlp.ccs.MaxProductTypePeriodicCharges"
value="int"/>

Description: Specifies the maximum number of periodic charges that may be assigned to a
product type.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 15

Notes:

Example: <property name="jnlp.ccs.MaxProductTypePeriodicCharges"

value="15"/>

62 Charging Control Services Technical Guide

jnlp.ccs.ShowEmptyEDRTags

Syntax: <property name="jnlp.ccs.ShowEmptyEDRTags" value= "taglist"
/>

Description: Lists the CCS EDR tags that must be displayed in EDR Viewer or CCP
Dashboard when they are empty.

Type: String

Optionality: Optional (default used if not set)

Allowed: Comma separated list of the tags to include.

Default: Empty tags are not displayed in EDR Viewer.

Notes: Do not insert spaces in the list of tags.

Example: <property name="jnlp.ccs.ShowEmptyEDRTags"

value="ACS CUST ID,PI,WALLET TYPE" />

jnlp.ccs.showSecondaryBE

Syntax: <property name="jnlp.ccs.showSecondaryBE" value="value" />
Description: The number of seconds

Type: Integer, Decimal, Array, Parameter list, String, Boolean

Optionality: Optional (default used if not set)

Allowed:

Default:

Notes:

Example: <property name="jnlp.ccs.showSecondaryBE" value="value" />

jnlp.ccs.voucherManagement

Syntax: <property name="jnlp.ccs.voucherManagement" value="2?" />
Description: The number of seconds

Type: Integer, Decimal, Array, Parameter list, String, Boolean

Optionality: Optional (default used if not set)

Allowed:

Default:

Notes:

Example: <property name="jnlp.ccs.voucherManagement" value="2?" />

jnlp.ccs.VRRedeemMaxVoucherLength

Syntax: <property name="jnlp.ccs.VRRedeemMaxVoucherLength"
value="int" />

Description: Specifies the maximum number of digits in a voucher number.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Must be equal to or larger than VRRedeemMinVoucherLength.

Default: 18

Example: <property name="jnlp.ccs.VRRedeemMaxVoucherLength"

value="18" />

Chapter 2, Configuration

63

jnlp.ccs.VRRedeemMinVoucherLength

Syntax: <property name="jnlp.ccs.VRRedeemMinVoucherlength"
value="int" />

Description: Specifies the minimum number of digits in a voucher number.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Must be equal to or smaller than VRRedeemMaxVoucherLength.

Default: 10

Example: <property name="jnlp.ccs.VRRedeemMinVoucherlength"

value="10" />

Defining the Screen Language

Introduction

The default language file sets the language that the Java administration screens start in. The user can
change to another language after logging in.

The default language can be changed by the system administrator.

By default, the language is set to English. If English is your preferred language, you can skip this step
and proceed to the next configuration task, Defining the Help Screen Language (on page 65).

Default.lang

When CCS is installed, a file called Default.lang is created in the application's language directory in the
screens module. This contains a soft-link to the language file which defines the language which will be
used by the screens.

If a Default.lang file is not present, the English.lang file will be used.

The CCS Default.lang file is /IN/html/Ccs_Service/language/Default.lang

Example Screen Language

If Dutch is the language you want to set as the default, create a soft-link from the Default.lang file to the
Dutch.lang file.

Procedure
Follow these steps to set the default language for your CCS Java Administration screens.

Step Action
1 Change to the following directory:
[IN/html/Ccs_Service/language
Example command: cd /IN/html/Ccs_Service/language
2 Ensure the Default.lang file exists in this directory.
3 If the required file does not exist, create an empty file called Default.lang.

64 Charging Control Services Technical Guide

Step Action

4 Ensure that the language file for your language exists in this directory. The file should be

in the format:
language.lang

Where:
language = your language.

Example:
Spanish.lang

5 If the required language file does not exist, either:
e create a new one with your language preferences, or

e contact Oracle support.

To create a language file, you will need a list of the phrases and words used in the

screens. These should appear in a list with the translated phrase in the following format:
original phrase=translated phrase

Any existing language file should have the full set of phrases. If you do not have an
existing file to work from, contact Oracle support with details.

6 Create a soft link between the Default.lang file, and the language file you want to use as
the default language for the CCS Java Administration screens.

Example command: 1n -s Dutch.lang Default.lang

Defining the Help Screen Language

Introduction

The default Helpset file sets the language that the help system for the Java Administration screens start
in. The user can change to another language after logging in.

The default language can be changed by the system administrator. By default, the language is set to
English.

Default_Ccs_Service.hs

When CCS is installed, a file called Default_Ccs_Service.hs is created in the application's language
directory in the screens module. This contains a soft-link to the language file which defines the language
which will be used by the screens.

If a Default_Ccs_Service.hs file is:

¢ Not present, the English_Ccs_Service.hs file will be used.
e Present, the default language will be used.
The Default_Ccs_Service.hs file is /IN/html/Acs_Service/helptext/Default_Ccs_Service.hs.

Example helpset language

If Dutch is the language you want to set as the default, create a soft-link from the Default_Ccs_Service.hs
file to the Dutch_Ccs_Service.hs file.

Chapter 2, Configuration 65

Setting the default language for your CCS graphical user interface
Follow these steps to set the default language for your CCS graphical user interface.

Step Action

1 Change to the following directory:
[IN/html/Ccs_Service/helptext
Example command: cd /IN/html/Ccs_Service/helptext

2 Ensure the Default_Ccs_Service.hs file exists in this directory.
3 If the required file does not exist, create an empty file called Default_Ccs_Service.hs.
4 Ensure that the language file for your language exists in this directory. The file should be

in the format:
language Ccs Service.hs

Where:

language = your language.
Example:
Dutch_Ccs_Service.hs

5 If the required language file does not exist, perform one of the following actions:
e Create a new one with your language preferences

e Contact Oracle support

To create a language file, you will need a list of the phrases and words used in the UI.

These should appear in a list with the translated phrase in the following format:
original phrase=translated phrase

Any existing language file should have the full set of phrases. If you do not have an
existing file to work from, contact Oracle support with details.

6 Create a soft link between the Default_Ccs_Service.hs file, and the language file you want to
use as the default language for the SMS UI.

Example command: 1n -s Dutch Ccs Service.hs Default Ccs Service.hs

Configuration Through the ACS Screens

Introduction

Some CCS functions rely on resources which are configured through the ACS UI.

ACS resources

This table lists the resources which may need to be configured through the ACS Ul in order to be able to
configure CCS.

Resource ACS Screen

ACS customers, including resource limits. ACS Customer
Sets, including geography, holiday, announcement, ACS Configuration
VARS, VARS mapping and feature sets.

Notification templates. ACS Configuration
Control plans Control Plan Editor

66 Charging Control Services Technical Guide

Adding announcement sets automatically

Convergent Charging Controller can provide a customized SQL script that adds an entire announcement

set.
This script is run once at installation, from SMS as sms_oper.

If you wish to use this script then contact your Oracle account manager.

User Interface-Based Configuration Tasks

Introduction

Some of the configuration for CCS must be completed through the SMS, ACS and CCS Ul windows.

For more information about using the CCS UI, see Charging Control Services User's Guide.

SMS Ul configuration

This table lists elements of the system which you may need to configure through the SMS UI.

Element Description of Configuration

Replication Ensure CCS tables will be correctly replicated to the appropriate nodes in the
IN.

Users Setting up different levels of access for system administrators.

Alarms Setting up filtering and monitoring systems for CCS alarms.

Statistics Setting up statistics which relate to the nodes which CCS runs on.

For more information about using the SMS Ul, see SMS User's Guide.

ACS Ul configuration

This table lists elements that you may need to configure through the ACS UlI.

Element Description of Configuration

used to manage control plans and resources.

ACS customers All calls are processed in relation to an ACS customer. ACS customers are

In particular, resource sets define:
e Geographic regions

Holidays

e Announcements

e Feature node sets

Resource sets Resource sets are required for much of the functionality used in control plans.

Control plans Call processing logic is defined in control plans.

Statistics Setting up statistics for the control plans used in CCS.

For more information about:

e Using the ACS UI, see Advanced Control Services User's Guide.
e The Control Plan Editor, see CPE User's Guide.
e The available feature nodes, see Feature Nodes Reference Guide.

Chapter 2, Configuration 67

CCS Ul configuration

This table lists elements of the system which you may need to configure through the CCS UlI.

Element Description of Configuration

Currencies Currencies must be set up for financial processes.

For more information about using the CCS Ul, see Charging Control Services User's Guide.

Configuring VWS processes for CCS

VWS processes used by CCS

There are a number of VWS processes which must be configured correctly for CCS to use the VWS
functionality:
e BeClient interface on the SLC must be configured to include CCS plug-ins

e beVWARS on the VWS must be configured to include the CCS beVWARS plug-ins and message
handlers

e beServer VWS must be configured to include the CCS beServer plug-ins
For more information about configuring these processes, see:

e Background Processes on the SLC (on page 171)
e Background Processes on the VWS (on page 205)

Message handlers and event plug-ins

Message handlers provide functionality which is specifically related to messages passed between
BeClient and the VWS. Plug-ins are designed to handle specific events such as a balance expiry date
being passed.

Message handlers

CCS installs a number of message handlers and plug-ins into the VWS for handling the CCS-specific
messages and functionality. This table lists the main message handlers installed for beVWARS (on
page 206).

Message Handler Description

ccsVWARSWalletHandler (on This beVWARS plug-in handles inquiries/updates to wallets and
page 269) balances.

ccsVWARSReservationHandler | This beVWARS plug-in handles call-related messages.
(on page 259)

ccsVWARSNamedEventHandler | This beVWARS plug-in handles named event-related messages.
(on page 248)

These handlers, and their respective configuration items, are described in Background Processes on the
VWS (on page 205).

The ccsVWARSVoucherHandler is described in Voucher Manager Technical Guide.

BeClient IF

The BeClient is covered in more detail in VWS Technical Guide. However it needs to be configured for
CCS to allow functions such as wallet interaction.

For more information about configuring BeClient for CCS, see BeClient (on page 171).

68 Charging Control Services Technical Guide

Configuring CCS Macro Nodes

Introduction

Macro nodes are feature nodes that are used by CCS using the ACS Control Plan Editor. Macro nodes
are supplied by many Oracle applications and require the presence of ACS for use.

Macro nodes require some configuration to be entered into the eserv.config file. The following sections
will detail the configuration that is necessary for the CCS macro nodes.

The macro node reads the global configuration file (eserv.config) on initialization. Should the
configuration of a macro node be changed, the configuration files must be re-read.

Macro Node location

Macro nodes are delivered as shared libraries, and are located on installation in:
/IN/service_packages/CCS/lib/
Node icons are installed in:

[IN/html/Acs_Servicel/images/

Macro Node icons

Node icons are delivered as gif files and are named according to the following standard:

Filename Description

FNmacroNodeNamfor The icon that appears on the node in the CPE.

exampleif

LFNmacroNodeName.gif The icon that appears in the edit dialog for the specific feature
node.

PFNmacroNodeName.gif The icon that appears in the CPE feature node palette.

eserv.config Macro Node configuration

This is a high level view of the ccsMacroNodes configuration section of eserv.config.

CCS = {
ccsMacroNodes =
general macro node config
macro node config for specific node
MacroNodeName = {
configuration for specific macro node
}
}
}
See ccsMacroNodes (on page 182) for specific macro node configuration.

Introduction

To calculate the caller's wallet balance a configurable list of balance types will be checked. The list of
balance types to be checked for each customer is configured in the SLC's eserv.config file. If the list of
balance types for the balance status feature node is omitted from the eserv.config, only the default
balance type will be checked. If included, the default balance type will only be checked if it appears in
the list.

A section like the one below must be placed in the CCS section of the file:

Chapter 2, Configuration 69

CCS = {

ccsMacroNodes = {
BSBCheckBalanceTypes = [

}

acsCustomerId

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

balTypelds

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

{ acsCustomerId =

}

{ acsCustomerId =

customer id 1
balTypelds = [

balancetype id 1, balancetype id 2, balancetype id 3
]

customer id 2
balTypelds = [

balancetype id 4, balancetype id 5
]

See the Balance Status Branch Introduction.
This is the ID of the ACS customer in the database.

The acsCustomerld must exist in the ACS_CUSTOMER database table.

1

See the Balance Status Branch Introduction.
The database ids of the balance types that are to be checked for each customer.

None
The balTypelds listed must exist in the CCS_BALANCE_TYPE database table.

BSBCheckBalanceTypes

Syntax:
Description:
Type:
Optionality:

Allowed:
Default:
Notes:
Example:

See the Balance Status Branch Introduction.
The specific balance types that are to be checked for each customer.
Array

Optional. If there is no BSBCheckBalanceTypes section for the current
customer then only the default balance type is used to determine if the caller has
credit. If there is a BSBCheckBalanceTypes section for the current customer
then the total of all of the balance types specified is used to determine if the caller
has credit.

None
The balance types must all have the same balance unit.

70 Charging Control Services Technical Guide

Switch Configuration for the UATB Node

Switch configuration

The switch types used to control the switch communication flows for the UATB feature node are defined
inthe acsCharging.switchConfiguration section of the eserv.config configuration file.

acsCharging.switchConfiguration

Several switch types may be defined and the chassis action GetSwitchParameters determines which
switch is in use for a particular call.
Example:
acsCharging = {
switchConfiguration = [

{
switchType = "cap3"
addDisconnectOrRelease = false

INTERNAL switch type
default IDP appContext {1,3,6,1,4,1,3512,10,100}

switchType = "internal"
addDisconnectOrRelease = true
}
{
switchType = "internal”
addDisconnectOrRelease = true
extended = {
extended IDP appContext {1,3,6,1,4,1,3512,10,100,2}
oid = 2

allowZeroSecondsApplyCharge = true

}
]
The available parameters are:

addContinue
Syntax: addContinue = true|false
Description: Defines whether the UATB feature node should enable send responses, add

responses, and continue responses to the TCAP to enable charging for a
successful subsequent reservation on the Voucher and Wallet Server.

Type: Boolean

Optionality: Optional (default used if not set)
Allowed: true, false

Default: false

Example: addContinue = false

addDisconnectOrRelease

Syntax: addDisconnectOrRelease = truel false

Description: Defines whether the UATB node can release or disconnect calls during billing
scenarios. For example, where the call is still active but the calling party has
exhausted their funds or the maximum call limit has been reached.

Chapter 2, Configuration 71

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

allowZeroS

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

oid
Syntax:
Description:
Type:
Optionality:
Allowed:
Default:

Notes:
Example:

switchType
Syntax:
Description:
Type:

Optionality:
Allowed:

Default:
Notes:

Example:

Boolean

true, false
false

addDisconnectOrRelease = false

econdsApplyCharge

allowZeroSecondsApplyCharge = value

The chassis that the switch can handle time grants of zero deciseconds.
Integer, Decimal, Array, Parameter list, String, Boolean

Optional (default used if not set)

true, false

true

allowZeroSecondsApplyCharge = true

oid = value

The extension digit number {1,3,6,1,4,1,3512,10,100,2}.
Integer

Optional (default used if not set)

oid = 2

switchType = "type"
Specifies a switch type for a UATB node.
String
Optional
One of:
e cap2
e cap3
e internal
e nokia

Not set

Use the internal switch type to support the extra information passed by the
Diameter Control Agent (DCA) to ACS in the IDP extension fields in Continue and
Release Call operations.

switchType = "internal"

72 Charging Control Services Technical Guide

Voucher Status Report Configuration

Introduction

voucherStatusReport.env provides configuration for the Voucher Status report in addition to the
configuration available at VoucherStatus (on page 165).

For more information about the Voucher Status report, see Charging Control Services User's Guide.

Parameters

The following parameters can be used in voucherStatusReport.env.

T%_ CODE

Syntax:

Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

TZ CODE="TZ"

export TZ CODE

The timezone to use when calculating the dates to print in the report.
String

Optional (default used if not set).

Any valid Unix timezone code.

GMT

Used for converting date in GMT to an appropriate timezone.
TZ CODE="GMT"

export TZ CODE

VR MSISDN LENGTH

Syntax:

Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

VR_STATUS

Syntax:

Description:

Type:
Optionality:

VR MSISDN LENGTH=int

export VR MSISDN LENGTH

The maximum number of characters in an MSISDN printed in the report.
Integer

Optional (default used if not set).

20

Any MSISDN longer than this number will have the final digits removed.
VR _MSISDN LENGTH=20
export VR MSISDN LENGTH

VR STATUS="NORMAL| SPECIAL"

export VR STATUS

How the voucher status should be presented in the report.
String

Optional (default used if not set).

Chapter 2, Configuration 73

Allowed: NORMAL Use the normal status letters:
¢ R -Redeemed

e A-Active
e F-Frozen
e C-Created

SPECIAL Use alternative status letters:
e R ->A-Acredita
e A ->D - Disponsible
e F->B - Bloqueado
e C->G-Generada

Default: NORMAL
Notes:
Example: VR_STATUS="SPECIAL"

export VR STATUS

Example

This text shows an example of the voucherStatusReport.env configuration file.
#!/bin/sh

VR_MSISDN_LENGTH=20
export VR MSISDN LENGTH

VR STATUS="NORMAL"
export VR STATUS

TZ CODE="GMT"
export TZ CODE

CCP Configuration

Introduction

The Customer Care Portal (CCP) is a WebStart application that provides a customized view of CCS
subscribers.

ccp.jnlp File

The ccp.jnlp file is used to start the CCP. It contains the following properties that can be configured for a
specific customer:

e The customer logo displayed in the CCP Login screen

e Whether to cache user names and passwords or to force users to login fresh each time

e If caching is allowed, the port on which to start a listening service

e The service provider initially displayed in the Service Provider selection box in the CCP Dashboard
screen

e The maximum number of entries on the History panel of the CCP Dashboard

Application properties use the following format:

<property name= "property" value="value"/>

Where:

e property is the name of the Java application property

74 Charging Control Services Technical Guide

¢ value is the value of the Java application property
Jnlp.ccs.AllowDeletedVouchers

Syntax: <property name="jnlp.ccs.allowDeletedVouchers" value="value" />
Description: Specifies whether you can set a voucher status or a voucher range state to Deleted.

This parameter is used by the following in the Voucher Manager screens:
e The Vouchers tab

e The Voucher Ranges tab

Type: Boolean
Optionality: Optional (default used if not set)
Allowed: e True

o t(rue)

e Yes

e y(es)

o 1

All other values are considered to be false.

Default: True
Notes: If set to:

e True — You can set a voucher range state or a voucher status to Deleted.
e False — You cannot set a voucher range state or a voucher status to Deleted.

Example: <property name="jnlp.ccs.allowDeletedVouchers" value="true" />

ccp.CustomerLogo

Syntax: <property name="ccp.CustomerLogo" value = "filename" />

Description: Use to display a different graphic in the CCP login screen to the one installed with
the system.

Type: String

Optionality: Optional (default used if not set).

Allowed: gif or jpeg files.

Default: ccp/oracle.gif

Notes: If the specified file does not exist, then the default is used.

Example: <property name="ccp.CustomerLogo" value = "ccp/oracle.gif"
/>

jnlp.ccp.dashboardPort

Syntax: <property name="jnlp.ccp.dashboardPort" value="address" />
Description: When caching is allowed, specifies the port on which to start a listening service.
Type: String

Optionality: Required when jnlp.ccp.ForceLogin is true.

Allowed:

Default: 7007

Notes:

Example: <property name="jnlp.ccp.dashboardPort" value="1234" />

Chapter 2, Configuration 75

jnlp.sms.dbPassword

SyMan <property name="jnlp.sms.dbPassword" value="password" />

Description: Specifies the database password. This password is for a special database user
that the ACS Logon screen uses before the user logs in. This property is set
during installation and is then not changed.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: acs_public

Notes: Do not change this value.

Example: <property name="jnlp.sms.dbPassword" value="acs public" />

jnlp.sms.dBUser

Syntax: <property name="jnlp.sms.dBUser" value="user" />

Description: Specifies the database user name. This is a special database user that the ACS
Logon screen uses before the user logs in. This property is set during installation
and is then not changed.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: acs_public

Notes: Do not change this value.

Example: <property name="jnlp.sms.dBUser" value="acs public" />

jnlp.ccs.defaultEDRSearchAge

Syntax: <property name="jnlp.ccs.defaultEDRSearchAge" value="num" />

Description: Used to calculate the default start date that is shown in the EDR Viewer. The
default start date is equal to the current date and time minus
jnlp.ccs.defaultEDRSearchAge.

The default end date is the current date and time.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 2

Notes:

Example: <property name="jnlp.ccs.defaultEDRSearchAge" value="5" />

jnlp.ccs.defaultEDRSearchCategories

Syntax: <property name="jnlp.ccs.defaultEDRSearchCategories"
value="1ist of categories" />
Description: Specifies the default EDR categories to search for when viewing EDRs in the

CCS View EDRs for Subscriber screen.
Use a comma-separated string of EDR sub-types.

Type: String
Optionality: Optional (default used if not set)
Allowed:

76 Charging Control Services Technical Guide

Default:
Notes:

Example:

All
The list of categories must be comma-separated and enclosed in single quotes.

<property name="jnlp.ccs.defaultEDRSearchCategories"
value=""'Amount Charge', 'Bad Pin'" />

jnlp.ccp.Forcelogin

Syntax:
Description:

Type:
Optionality:
Allowed:

Default:
Notes:
Example:

jnlp.sms.host

Syntax:
Description:

Type:
Optionality:
Allowed:

Default:

Notes:

Examples:

<property name="jnlp.ccp.ForceLogin" value="Y|N" />
Specifies whether to allow caching of user names and passwords or to force
users to login fresh each time.
Boolean
Optional (default used if not set).

e Y —The user must log on each time to start a new session.

¢ N -— A small window running on the user's machine starts the screens by
using the jnlp.ccp.dashboardPort resource to request each new
session.

N

<property name="jnlp.ccp.ForceLogin" value="N" />

<property name="jnlp.sms.host" value="IPaddress" />

Specifies the Internet Protocol (IP) address for the SMS host machine that is set
at installation.

String
Required
e |P version 4 (IPv4) addresses
e IP version 6 (IPv6) addresses
No default
You can use the industry standard for omitting zeros when specifying IP
addresses.
<property name="jnlp.sms.host" value="192.0.2.0" />

<property name="jnlp.sms.host"
value="2001:db8:0000:1050:0005:0600:300c:326b" />

<property name="jnlp.sms.host"
value="2001:db8:0:0:0:500:300a:326f" />

<property name="jnlp.sms.host" value="2001:db8::c3" />

jnlp.ccp.maxHistory

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

<property name="jnlp.ccp.maxHistory" value="number" />

Sets the maximum number of items that can be listed on the History panel in the
CCP Dashboard.

Integer
Optional (default used if not set).

20

Chapter 2, Configuration

77

Example: <property name="jnlp.ccp.maxHistory" value = "20" />

jnlp.sms.namingServerPort

Syntax: <property name="jnlp.sms.namingServerPort" value="port" />

Description: Tells the Dashboard screens how to contact the naming server.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: 5556

Notes: The value in this field should be the same as the value set in the -p parameter in
/IN/service_packages/SMS/bin/smsNamingServerStartup.sh.

Example: <property name="jnlp.sms.namingServerPort" value="5556" />

jnlp.ccp.normaliseFile

Syntax: <property name="jnlp.ccp.normaliseFile" value = "filename"
/>

Description: Specifies the location and name of the file that contains the set of CCP
normalization rules.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: ccp/normalise.config

Notes:

Example: <property name="jnlp.ccp.normaliseFile"

value="ccp/normalise.config" />

jnlp.ORB_HOST

Syntax: <property name="jnlp.ORB_HOST" value="hostsms" />

Description: Specifies the host name of the machine running the ccsBeOrb background process.
Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: The SMS machine host name.

Notes:

Example: <property name="jnlp.ORB HOST" value="hostname" />

jnlp.sms.port

Syntax: <property name="jnlp.sms.port" value="num" />
Description: Specifies the SQL*Net port for connecting to the SMS host machine.
Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1521

Notes: Set at installation

Example: <property name="jnlp.sms.port" value="1521" />

78 Charging Control Services Technical Guide

ccp.ServiceProvider

Syntax: <property name="ccp.ServiceProvider" value = "name" />

Description: The initial service provider to display in the Service Provider selection box in the
CCP Dashboard screen.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: Boss

Notes:

Example: <property name="ccp.ServiceProvider" value = "Boss" />

jnlp.sms.sslCipherSuites

Syntax: <property name = "jnlp.sms.sslCipherSuites"
value="(TLS RSA WITH AES 128 CBC_SHA)" />

Description: Specifies the cipher suites to use for SSL encryption. You must set this property if you
are using encrypted SSL for connecting to the SMS database.

Type: String

Optionality: Optional (default used if not set)

Allowed: (TLS_RSA WITH_AES_128 CBC_SHA)

Default: (TLS_RSA_WITH_AES_128 CBC_SHA)

Notes: You must also set the SSL_CIPHER_SUITES property to
(TLS_RSA_WITH_AES_128 CBC_SHA) in the listener.ora and sqlnet.ora files.

Example: <property name = "Jjnlp.sms.sslCipherSuites"

value="(TLS RSA WITH AES 128 CBC SHA)" />

jnlp.trace

Syntax: <property name="jnlp.trace" value="value" />

Description: Specifies whether to enable tracing for the Control Plan Editor. The output is displayed
in the Java Console.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: on | off, true | false, yes | no, 1 | 0, enabled | disabled

Default: Off

Notes:

Example: <property name="jnlp.trace" value="on" />

jnlp.sms.TZ

Syntax: <property name="jnlp.sms.TZ" value="timezone" />

Description: Specifies the time zone used for all time and date values displayed in Convergent
Charging Controller Ul windows.

Type: String

Optionality: Optional (default used if not set)

Allowed: Any Java supported time zone.

Default: GMT

Notes: For a full list of Java supported time zones, see Time Zones.

Chapter 2, Configuration 79

Example: <property name="jnlp.sms.TZ" value="GMT" />

Example ccp.jnlp Resource Properties

The following example configuration shows CCP resources in the ccp.jnlp file.

Note: The ccp.jnlp file is located in the /IN/html/ccp/cgi-bin/ directory on the SMS.

<resources>
<j2se version="1.8.0+" href="http://java.sun.com/products/autodl/j2se" />
<property name="jnlp.packEnabled" value="true" />
<jar href="ccs.sig.jar" main="true" />
<jar href="ojdbc6.sig.jar" />
<jar href="acs.sig.jar" />
<jar href="sms.sig.jar" />
<jar href="common.sig.jar" />
<property name="ccp.ServiceProvider" value="Boss" />
<property name="jnlp.sms.namingServerPort" value="5556" />
<property name="ccp.CustomerLogo" value="SMS/images/oracleNCC.png" />
<property name="jnlp.ccp.maxHistory" value="20" />
<property name="ccp.normaliseFile" value="ccp/normalise.config" />
<property name="jnlp.sms.host" value="IPADDR" />
<property name="7jnlp.sms.databaseID" value="port:SMF" />
<property name="jnlp.sms.TZ" value="GMT" />
<property name="dashboardPort" wvalue="7007" />
<property name="jnlp.ccp.ForceLogin" value="N" />
<extension name="Java Help" href="ohj.Jjnlp" />
</resources>

The following application properties, defined in the ccp.jnlp file, are defined in the sms.jnlp file. You must
set the application properties in the ccp.jnlp file and the sms.jnlp file to the same value.

Note: For more information about the sms.jnlp application properties, see SMS Technical Guide.

<resources>

<property name="jnlp.ORB HOST" value="hostsmp" />

<property name="jnlp.sms.host" value="192.168.26.22" />

<property name="jnlp.sms.databaseID" value="1533:SMF" />

<property name="jnlp.sms.TZ" value="GMT" />

<property name="jnlp.ccs.defaultEDRSearchAge" value="20"/>

<property name="jnlp.ccs.defaultEDRSearchCategories" value="'Amount Charge', 'Bad Pin'" />
<resources/>

CCP Application Properties for SSL and Non-SSL Database Connections

The following Java application properties in the ccp.jnlp file are used for SSL and non-SSL connections
to the database:

jnlp.sms.database

Syntax: <property name="jnlp.sms.database" value="SMF" />
Description: Specifies the Oracle SID for the SMF database.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: SMF

Notes: Set at installation.

Example: <property name="jnlp.sms.database"™ value="SMF" />

80 Charging Control Services Technical Guide

jnlp.sms.databaseHost

Syntax: <property name="jnlp.sms.databaseHost" value = "ip:port:sid"
/>
Description: Sets the IP address and port to use for non-SSL connections to the SMF

database, and the database SID.
e To use non-SSL connections to the database, set port to 1524 and the
jnlp.sms.EncryptedSSLConnection property to false.

e To use SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to true and set either
the ynlp.sms.secureConnectionDatabaseHost property or the
jnlp.sms.secureConnectionClusterDatatbaseHost property
appropriately. When the ynlp.sms.EncryptedSSLConnection
property is set to true or is undefined, jnlp.sms.databaseHost is

ignored.
Type: String
Optionality: Optional
Allowed:
Default: Not set. Secure SSL connection is enabled at installation by default.
Notes: Internet Protocol version 6 (IPv6) addresses must be enclosed in square brackets

[; for example: [2001:db8:n:n:n:n:n:n] where nis a group of 4
hexadecimal digits. The industry standard for omitting zeros is also allowed when
specifying IP addresses.

Examples: <property name="jnlp.sms.databaseHost" value =
"192.0.2.1:2484:SMF" />

<property name="jnlp.sms.databaseHost" value =
"[2001:db8:0000:1050:0005:0600:300c:326b]:2484:SMF" />

<property name="jnlp.sms.databaseHost" value
"[2001:db8:0:0:0:500:300a:326£]:2484:3SMF" />

<property name="jnlp.sms.databaseHost" value
"[2001:db8::c3]:2484:SMF" />

jnlp.sms.databaseID

Syntax: <property name="jnlp.sms.databaseID" value="port:sid" />
Description: Specifies the SQL*Net port for connecting to the database, and the database SID.
Type: String

Optionality: Required

Allowed:

Default: 1521:SMF

Notes: e To use non-SSL connections to the database, set port to 1521 and the

jnlp.sms.EncryptedSSLConnection property to false.

e To use SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to true and set either
the jnlp.sms.secureConnectionDatabaseHost property or the
jnlp.sms.secureConnectionClusterDatatbaseHost property
appropriately. When the inlp.sms.EncryptedSSLConnection
property is set to true or is undefined, jnlp.sms.databaselIDis
ignored.

Example: <property name="jnlp.sms.databaseID" value="1521:SMF" />

Chapter 2, Configuration 81

jnlp.sms.clusterDatabaseHost

Syntax: <property name="jnlp.sms.clusterDatabaseHost" value =
" (DESCRIPTION=

(LOAD BALANCE=YES) (FAILOVER=ON) (ENABLE=BROKEN)

(ADDRESS LIST= (ADDRESS=(PROTOCOL=type) (HOST=name) (PORT=port))
(ADDRESS= (PROTOCOL=type) (HOST=name) (PORT=port)))

(CONNECT_ DATA=(SERVICE NAME=SMF) (FAILOVER MODE= (TYPE=SESSION)
(METHOD=BASIC) (RETRIES=5) (DELAY=3))))" />

Description: Specifies the connection string (including a host and an alternative host address,
in case the first IP address is unavailable) for non-SSL cluster-aware connection to
the database.

To use non-SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to false.

Type: String
Optionality: Optional
Allowed:
Default: By default, port is set to 1521.
Notes: If present, this property is used instead of the jnlp.sms.databaseID property.
Example: <property name="jnlp.sms.clusterDatabaseHost" value =
" (DESCRIPTION=

(LOAD_BALANCE=YES)(FAILOVER=ON)(ENABLE=BROKEN)
(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=smsphysnodel)
(PORT=1521))

(ADDRESS= (PROTOCOL=TCP) (HOST=smsphysnode2) (PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=SMF)(FAILOVER_MODE=(TYPE=SESSION)
(METHOD=BASIC) (RETRIES=5) (DELAY=3))))" />

jnlp.sms.EncryptedSSLConnection

Syntax: <property name="jnlp.sms.EncryptedSSLConnection" value = "value"
/>

Description: Specifies whether connections to the client Ul use encrypted SSL.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true — Use encrypted SSL connections to access the client Ul.
false — Use non-SSL connections to access the client Ul.

Default: true

Notes: e To use SSL connections to the database, set the

jnlp.sms.EncryptedSSLConnection property to true and set either the
jnlp.sms.secureConnectionDatabaseHost property or the
jnlp.sms.secureConnectionClusterDatatbaseHost property
appropriately.

e To use non-SSL connections to the database, set the
jnlp.sms.EncryptedSSLConnection property to false.

Example: <property name="jnlp.sms.EncryptedSSLConnection”" wvalue = "true"

/>

82 Charging Control Services Technical Guide

jnlp.sms.sslCipherSuites

Syntax: <property name = "Jjnlp.sms.sslCipherSuites"
value="(TLS RSA WITH AES 128 CBC SHA)" />

Description: Specifies the cipher suites to use for SSL encryption. You must set this property if you
are using encrypted SSL for connecting to the SMS database.

Type: String

Optionality: Optional (default used if not set)

Allowed: (TLS_RSA_WITH_AES 128 CBC_SHA)

Default: (TLS_RSA_WITH_AES_128 CBC_SHA)

Notes: You must also set the SSL_CIPHER_SUITES property to
(TLS_RSA_WITH_AES_128_CBC_SHA) in the listener.ora and sqlnet.ora files.

Example: <property name = "jnlp.sms.sslCipherSuites"

value=" (TLS_RSA WITH AES 128 CBC_SHA)" />

Jjnlp.sms.secureConnectionbDatabaseHost

Syntax: <property name="jnlp.sms.secureConnectionDatabaseHost" value =
" (DESCRIPTION=
(ADDRESS LIST= (ADDRESS=(PROTOCOL=type) (HOST=IPaddress)
(PORT=port)))) (CONNECT DATA=(SERVICE NAME=servicename)))" />
Description: Specifies the connection string (including host address and port) for encrypted SSL

connections to the SMF database on a non-clustered system.

To use SSL connections to the database, set port to 2484 and set the
jnlp.sms.EncryptedSSLConnection property to true.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default:

Notes: If present, this property is used instead of the jnlp.sms.databaseID property.

Example: <property name="jnlp.sms.secureConnectionDatabaseHost" value =
" (DESCRIPTION=

(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCPS) (HOST=192.0.1.1)
(PORT=2484)))) (CONNECT DATA=(SERVICE NAME=SMF)))" />

jnlp.sms.secureConnectionClusterDatabaseHost

Syntax: <property name="jnlp.sms.secureConnectionClusterDatabaseHost"
value = " (DESCRIPTION=
(ADDRESS LIST= (ADDRESS=(PROTOCOL=type) (HOST=IPaddress)
(PORT=port))
(ADDRESS= (PROTOCOL=type) (HOST=IPaddress) (PORT=port)))
(CONNECT DATA=(SERVICE NAME=servicename)))" />

Description: Specifies the connection string (including host address and port) for encrypted SSL

connections to the SMF database on a clustered system.

To enable secure SSL connections to the database, set port to 2484 and set the
jnlp.sms.EncryptedSSLConnection property to true.

Type: String

Optionality: Optional (default used if not set)
Allowed:

Default:

Chapter 2, Configuration 83

Notes: If present, this property is used instead of the
jnlp.sms.secureConnectionDatabaseHost property.

Example: <property name="jnlp.sms.secureConnectionClusterDatabaseHost"
value = " (DESCRIPTION=
(ADDRESS LIST=(ADDRESS=(PROTOCOL=TCPS) (HOST=192.0.1.1)
(PORT=2484))
(ADDRESS= (PROTOCOL=TCP) (HOST=192.0.2.1) (PORT=2484)))
(CONNECT_ DATA= (SERVICE NAME=SMF)))" />

Setting the Initial Service Provider

Follow these steps to set the initial service provider displayed in the Service Provider selection box in the
CCP Dashboard screen.

Step Action

1 Log in to the SMS as the root user.

2 Open the /IN/html/ccplegi-bin/cep.jnlp file in a text editor.

3 Enter the name of the initial service provide in the ccp.ServiceProvider application

property. For example:
<property name="ccp.ServiceProvider" value="Boss" />
4 Save and close the file.

Customizing the CCP Login Screen

Follow these steps to change the image displayed in the CCP Login screen.

Step Action

1 Log in to the SMS as the root user.

2 Open the /IN/html/ccplegi-bin/cep.jnlp file in a text editor.

3 Add the name of the new image file to the ccp.CustomerLogo application property. For
example:

<property name="ccp.CustomerLogo" value="ccp/company.gif" />

Note: The image can be either a JPEG or a GIF file.

4 Save and close the file

Setting the Maximum History Shown

Follow these steps to set the maximum number of items shown in the History panel of the CCP
Dashboard.

Step Action

1 Log in to the SMS as the root user.

2 Open the /IN/html/ccp/cgi-bin/cep.jnip file in a text editor.

3 Enter the maximum number of history items to display. For example:

<property name="jnlp.ccp.maxHistory" value="20" />
Note: The value specified applies to both subscriber and voucher histories.

4 Save and close the file.

84 Charging Control Services Technical Guide

normalise.config Configuration File

The normalise.config file contains the set of normalization rules for prefixes used in the CCP Dashboard.
The file is located in the IN/html/ccp directory on the SMS.

Normalization rules in the file use the following format:
PREFIX NUM-STRIP, DIGITS-ADD MIN-LENGTH, MAX-LENGTH
Here is an example normalise.config file:

44 2,0

00 2,01
000 3,21
21 2,00

For example, rule "44 2,0" specifies to replace the prefix '44' with '0".

Apache Configuration

As part of the "login once" for accessing the dashboard, the APACHE server requires additional
configuration (see SMS Technical Guide for more information about Apache server installation and
configuration).

Follow these steps to configure the Apache daemon for the dashboard:

Step Action

1 Open the httpd.conf configuration file in a text editor. The location of this file depends on
your installation. For example, it could be located in one of these places:
e Jusr/locallapache/conf/httpd.conf

o Jetc/apache/httpd.conf

2 Locate the following text:
<Directory "/var/apache/cgi-bin">
3 After the <Directory "/var/apache/cgi-bin"> line, add the following text:

ScriptAlias /ccp/ccp.jnlp "/IN/html/ccp/cgi-bin/ccp.jnlp"
<Directory "/IN/html/ccp/cgi-bin">
AllowOverride None
Options None
Order allow,deny
Allow from all

</Directory>
4 Save and close the file.
5 Restart the apache daemon with either command, depending on where the .conf

configuration file is located, for example:
/usr/apache/bin/apachectl restart

Multiple Customers

If multiple customers are using the same platform, you can start the CCP by using a separate JNLP file
for each customer.

Creating a Customer JNLP File
Follow these steps to create a separate customer JNLP file.

Step Action
1 Log in to the SMS as the root user.

Chapter 2, Configuration 85

Step Action

2 Copy the /IN/html/ccpl/egi-bin/cep.jnlp file and save it with a different name.
Example:
cp ccp.jnlp customer.jnlp

Where customer is the customer name you want to use.

3 Open the customer file in a text editor.

Example:

vi /IN/html/ccp/cgi-bin/customer.jnlp
4 Add to the apache config:

ScriptAlias /ccp/customer.jnlp "/IN/html/ccp/cgi-
bin/customer.jnlp"

5 Save and close the file.

86 Charging Control Services Technical Guide

Chapter 3
Background Processes on the SMS

Overview

Introduction

This chapter provides a description of the programs or executables used by CCS as background
processes on the SMS.

Executables are located in the /IN/service_packages/CCS/bin directory.

Some executables have accompanying scripts that run the executables after performing certain cleanup
functions. All scripts should be located in the same directory as the executable.

For more information about the processes and systems that use these programs and executables, see
System Overview (on page 1).

Warning: It is a prerequisite for managing these core service functions that the operator is familiar with
the basics of Unix process scheduling and management. Specifically, the following Unix commands:

e init (and inittab)

e cron (and crontab)
° ps

o Kill

In this chapter

This chapter contains the following topics.

CHECK _PC_DELETION ...ttt ittt ettt e e e e e e e 88
ACSCOMPIIEIDAEIMON ...ttt ettt ettt e e e st e e e eabe e e e e aa b et e e e sabb e e e e anbaeeeeneee 88
{021 == o USSR 89
CCSCBILOHRNAES ...ttt ettt e e ettt e e st e e e et bt e e e aabb e e e e s bbeeeeabneeeeans 108
CCSCBILOHRNSHA ...ttt ettt e e ettt e e bt e e e e aabb e e e e s abbeeeeabneeeeans 108
CCSCDRFIEGENEIALONveeiiiitieee ettt et et e st e e s r e e s s e e e e s nae e e e snnreeeean 108
CCSCDRLOAET ...ttt et e e s e e e et e e e s n e e e s anr e e e e s nne e e e snreeeeaa 111
CCSCDRTIIMDB ... ettt ettt ettt e e e e s e e b bbbttt e e e e e e e sbbbeeeeeaeeeeaanbabneeeaaeaeaanns 129
CCSCDRTHIIMEIIES. ...ttt e e e ettt e e e e e ettt e et e e e e e e e anbbbreeeaaeaeanns 130
(olor {0 =T g o [T =TT 4o o] o W PP TT P TUTRUPUPPPP 131
CCSEXPINYMESSAGELOAUET ...ttt e e e e e et e e e e e e s enbnbe e e e e e e e e anns 137
CCSEXIErNaAlPIrOCEAUIEDAEMION. ... uiiiiee e i e ceieiie et e e e e s ettt e e e e e e s ss et eeeaeeessnsenteneeeeessannnsnnnneeeeesnannns 141
CCSLEGACYPIN 142
CCSPENOICCCRECNAIGEcoiiiiiiiii ettt e et e et e e e s nbeeeean 142
CCSPEMHOTICCRNAIGEeeiiiiieiie ettt ettt e e e sbb e e e e nbae e e e abreeeeans 144
Lodots] md T0] 110> T=T o T o TSP 152
CCS R B POIES . 163
CCSWAIIBTEXDINY ..ttt ettt e e e e e e et bttt e e e e e e e sb bbb et e e e e e e e anbbbneeeaaeeeanns 166
DCCSCOMIMON ...ttt e e e e ettt et e e e e e et bt e e e e e e e e e s annbbeeeeeaeesaannnbeees 169
VoUCherRedEEeMFAIl FlEScooiiiieiii e eeeeas 169

Chapter 3, Background Processes on the SMS 87

CHECK_PC_DELETION

Overview

This procedure is run once a day through a script /IN/service_packages/CCS/bin/ccs_pc_delete.sh launched
through the crontab of the ccs_oper user.

Do a crontab —e as ccs_oper to see the related entry in the crontab or to change the date of
occurrence.

This procedure will fully delete any periodic charges that are ready for final deletion. This includes all
references to the periodic charge in other tables and also all references to the associated balance type.
Deletion of a periodic charge will include any references to the charge by the Subscriber Profile
Manager.

Deletion criteria

A periodic charges that is ready for final deletion has the following criteria:

e DELETION_DATE is not null and is earlier than (<) sysdate.

acsCompilerDaemon

Purpose

The acsCompilerDaemon generates the fast-lookup binary compiled control plan data which is then
used by the ACS service logic to process calls at execution time.

The acsCompilerDaemon runs continuously, polling the database to look for newly written control plans
and control plan structures (for example, indicated by database field ACS_CALL PLAN.BUILD = B). It
polls the database every “alertTimeout” seconds. Due to the way Oracle reacts to signals, signals are
masked during the time the process is both waiting for an alert to occur and the time spent compiling
control plans.

You need to configure acsCompilerDaemon for the CCS system to run successfully because CCS runs
as an ACS service.

It is run by acs_oper in the acs.conf file.

For more information about ACS, control plans and the acs.conf file, see ACS Technical Guide.

Startup - nonclustered

In a non clustered environment this task is started automatically by entry acs0 in the inittab, through the
/IN/service_packages/ACS/bin/acsComplierDaemonStartup.sh shell script.

You can check if the process is running by using the Unix ps command. We assume that you are
familiar with Unix processes and with the Unix commands to manage them.

To check the process, enter:

ps -ef | grep acsCompilerDaemon

Result: If the acsCompilerDaemon is running, you should see output like the following:
acs 23857 23853 49 14:33:20 pts/5 0:00 acsCompilerDaemon

When ACS is installed, the startup inittab entry is added by the install process. The inittab entry waits
until Oracle has started and then executes.

88 Charging Control Services Technical Guide

Startup - clustered

In a clustered environment this task is started automatically by the Sun Plex manager. The files required
by the Sun Plex manager are located in the /opt/ESERVAcsCompilerDaemon directory.

This is configured by the acsCluster package, and will set up the use of the Sun Plex manager to start,
stop, restart and move the failover processes to other nodes as required.

Location

This binary is located on the SMS node.

Parameters

The acsCompilerDaemon does not support any command line parameters; it is completely configured in
the acs.conf file. For more information about the acs.conf file, see ACS Technical Guide.

Failure

If the acsCompilerDaemon has failed, then control plans will not be compiled. This can be detected by
executing the following SQL statement on the SMF database instance:

SELECT ID from ACS_CALL PLAN where BUILD='B';
Under normal operation, control plans will only remain in the B state for a few seconds at most.

Output

The acsCompilerDaemon writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/ACS/tmp/acsCompilerDaemon.log.

ccsBeOrb

Purpose

The ccsBeOrb interface is responsible for updating and retrieving subscriber account states for other
processes. Updates to an account are also made from this ORB interface to the other Voucher and
Wallet Server in the pair.

About Configuring CORBA Connections for ccsBeOrb

The CorbaServices section in the eserv.config configuration file on the SMS node defines common
connection parameters for CORBA services for ccsBeOrb. The CorbaServices configuration overrides
the default and command-line values specified for CORBA listen ports and addresses. If you are using
IP version 6 addresses, then you must include the CorbaServices section in the eserv.config file.
However, this section is optional if you are using only IP version 4 addresses.

You configure the CorbaServices section of the eserv.config configuration file on the SMS by using the
following syntax:

CorbaServices = {
AddressInIOR = "hostname"
ccsBeOrbListenPort = port
OrbListenAddresses = [

"ip addressl",
"ip address2",

Chapter 3, Background Processes on the SMS 89

}

Where:
e hostname is the hostname or IP address to place in the IOR (Interoperable Object Reference) for
the CORBA service.

e port is the number of the port on which ccsBeOrb will listen. The ccsBeOrbListenPort
parameter overrides the port number set by the 1istenPort parameter.

e ip addressl,ip addressZ lists the IP addresses on which CORBA services listen for incoming
requests. The list of IP addresses in the OrbListenAddresses parameter can include both IP
version 6, and IP version 4 addresses. The OrbListenAddresses parameter overrides the IP
address set by the 1istenHost parameter.

For more information about configuring CORBA services, see Service Management System Technical
Guide.

Startup - non clustered

This task is started by entry ccs3 in the inittab, through the /IN/service_packages/CCS/bin/ccsBeOrbStartup.sh
shell script.

You can check if the process is running by using the Unix ps command.

To check the process, enter:

ps —ef | grep ccsBeOrb
Result: The listed process is the compiler process.

ccsBeOrb Start-up for Operational Implementation
The ccsBeOrb process is started automatically by placing it in the Unix Initialization table, inittab.

To start the compiler manually, enter:
CCS_ROOT/bin/ccsBeORB

Result: Placing the ccsBeOrb startup script in the inittab file ensures that if ccsBeOrb should die, it will be
automatically restarted by the operating system within a few seconds.

Startup - clustered

In a clustered environment this task is started automatically by the Sun Plex manager. The files required
by the Sun Plex manager are located in the /opt/ESERVCcsBeOrb directory.

This is configured by the ccsCluster package, and will set up the use of the Sun Plex manager to start,
stop, restart and move the failover processes to other nodes as required.

Location

This binary is located on the SMS node.

Restart

Under certain circumstances, it is desirable to restart ccsBeOrb in order to pick up some configuration
changes with minimal interruption to service. The most likely reasons for this would be:

e A new ccsBeOrb program has been compiled and linked
e Configuration file eserv.config has been modified

In this case, you can use ps to determine the process ID of the ccsBeOrb process, and use kill -
TERM to terminate the process.

90 Charging Control Services Technical Guide

Shutdown

To terminate the ccsBeOrb, use the Unix command ps to identify the process number and kill it
manually. Or, you can use the provided shell script, kill_CCS_be_orb to simplify the task.

Configuration - eserv.config

ccsBeOrb is configured by the ccsBeOrb section of the eserv.config file. The structure of the section is

shown below.

Note: For more information about the configuration for the BeClient provided by the libBeClientlF library,

see VWS Technical Guide.

ccsBeOrb = {

belocationPlugin = "1ib"
oracleUserPass = "usr/pwd"
clientName = "name"

heartbeatPeriod = microsecs
messageTimeoutSeconds = seconds
maxOutstandingMessages = int
reportPeriodSeconds = seconds
connectionRetryTime = seconds

plugins = [
{
config="confStr",
library="1ib",
function="str"

]
confStr = {
plugin configuration

}

notEndActions = [

{type="str", action="[ACK

[...]
1

plugin configuration - see plug-in-specific

stateConversions = ({
<A|P|ID|F|S|T> = "str"[,
.1
}
voucherStateConversions = {
<A|F|IR|C|D|H> = "str" [,
.1
}
namingServer = ({
host = "host",
port = port,
name = "str"

addHostPrefix = true| false

}
billingEngines = [
{
id = id,

primary = { ip="ip",

port=port 1},

config

Chapter 3, Background Processes on the SMS 91

}

secondary = { ip="ip", port=port }

eserv.config parameters

The ccsBeOrb supports the following parameters in the ccsBeOrb section of the eserv.config file.

Note: This configuration section is also used by the ccsVWARSEXpiry service library.

billingEngines

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

id
Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

ip
Syntax:

Description:

Type:
Optionality:
Allowed:
Default:

billingEngines = [
{ id = int
primary = { ip="ip", port=port },
secondary = { ip="ip", port=port }
}
[...]

]

Overrides connection details that beLocationPlugin (on page 135) obtains
from the database.

Parameter array.
Optional (beLocationPlugin finds connection details if not set).

Identifies the Voucher and Wallet Servers and assigns their Internet connection
details.
billingEngines = [

{ id = 1,

primary = { ip="192.0.2.0", port=1500 },

secondary = { ip="192.0.2.1", port=1500 }

}

id = int

This unique identifier for this Voucher and Wallet Server configuration.
Integer

Required, if this section is used

This parameter is part of the billingEngines parameter array.
id = 1

ip = "ip"

The Internet Protocol (IP) address of the Voucher and Wallet Server.
String

Required

IP version 4 (IPv4) addresses, IP version 6 (IPv6) addresses

None

92 Charging Control Services Technical Guide

Notes: This parameter is part of either the primary, or the secondary parameter group of
the billingEngines parameter array.
You can use the industry standard for omitting zeros when specifying IPv6

addresses.

Examples: ip = "192.0.2.0"
ip = "2001:db8:0000:1050:0005:0600:300c:326b"
ip = "2001:db8:0:0:0:500:300a:326f"

ip = "2001:db8::c3"

port

Syntax: port = port

Description: The port number associated with the address of the Voucher and Wallet Server.

Type: Integer

Optionality: Required

Allowed:

Default: None

Notes: This parameter is part of either the primary or secondary parameter group of the
billingEngines parameter array.

Example: port = 1500

primary

Syntax: primary = { ip="ip", port=port }

Description: The primary parameter group defines the Internet Protocol (IP) address and
associated port number of the primary Voucher and Wallet Server.

Type: Parameter array

Optionality: Required if this section is used

Allowed:

Default:

Notes: This parameter is part of the billingEngines parameter array.

Examples: primary = { ip="192.0.2.0", port=1500 }
primary = { ip = "2001:db8:0000:1050:0005:0600:300c:326b",
port=1500 }
primary = {ip = "2001:db8:0:0:0:500:300a:326£f", port=1500 }
primary = { ip = "2001:db8::c3", port=1500 }

secondary

Syntax: secondary = { ip="ip", port=port }

Description: The secondary parameter group defines the Internet Protocol (IP) address and
associated port number of the secondary Voucher and Wallet Server.

Type: Array

Optionality: Required, if this section is used

Allowed:

Default:

Notes: This parameter is part of the billingEngines parameter array.

Chapter 3, Background Processes on the SMS 93

Examples: secondary = { ip="192.0.2.1", port=1500 }
secondary = { ip = "2001:db8:0000:1050:0005:0600:300c:326b",
port=1500
secondary = {ip = "2001:db8:0:0:0:500:300a:326£f", port=1500
}
secondary = { ip = "2001:db8::c3", port=1500 }

broadcastOptions

Syntax: broadcastOptions = {

aggregateNAckCodes = [config]
}

Description: Name of configuration section for the BeClient Broadcast plug-in libclientBcast.

Type: Parameter array

Optionality:

Allowed:

Default:

Notes: libclientBcast is used by a range of processes which connect to the beServer,
including:

e BeClient
e PlbeClient
e ccsBeOrb
For more information about libclientBcast, see 1ibclientBcast.
Example: broadcastOptions = {
aggregateNAckCodes = []
}
aggregateNAckCodes
Syntax: aggregateNAckCodes = [
"NVOU"
]

Description: When this parameter is set, the BeClient waits for a response from all the VWS
pairs in use and filters the responses from the broadcast request using the
configured NAck codes.

Type: Parameter array

Optionality:

Allowed: NVOU

Default:

Notes: When a voucher recharge request is broadcast, this ensures that all the available
VWS pairs are checked for the required voucher before a voucher not found
message is returned to the requesting process.

Example:

clientName

Symam clientName = "name"

Description: The unique client name of the process.

Type: String

Optionality: Required

Allowed: Must be unique.

94 Charging Control Services Technical Guide

Default:
Notes:

Example:

The host name of the local machine.
The server generates clientld from a hash of str.

If more than one client attempts to connect with the same name, then some
connections will be lost.

This parameter is used by libBeClientlF.
clientName = "scpClient"

connectionRetryTime

Syntax: connectionRetryTime = seconds

Description: The maximum number of seconds the client process will wait for a connection to

succeed before attempting a new connection.

Type: Integer

Optionality: Required

Allowed:

Default: 5

Notes: This parameter is used by libBeClientlF.

Example: connectionRetryTime = 2

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The number of microseconds during which a Voucher and Wallet Server

heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer

Optionality: Required

Allowed: 0 Disable heartbeat detection.

positive integer Heartbeat period.

Default: 3000000

Notes: 1 000 000 microseconds = 1 second.

If no heartbeat message is detected during the specified time, client process
switches to the other Voucher and Wallet Server in the pair.
This parameter is used by libBeClientIF.

Example: heartbeatPeriod = 10000000

listenHost

Syntax: listenHost = "hostname"

Description: The name of the host or the IP address on which ccsBeOrb will listen for incoming
CORBA requests. An empty string implies all addresses.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: If listenHost is not set, then it defaults to the IP address corresponding to the result of
the hostname UNIX command. If both an IP version 4 (IPv4) and an IP version 6 (IPv6)
address exists for the hostname, then the IPv6 address will be used.

Notes:

Example: listenHost = ""

Chapter 3, Background Processes on the SMS 95

listenPort

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

listenPort = port

The number of the port on which ccsBeOrb will listen for incoming CORBA
requests.

Integer

0

The default (listenPort = 0) sets a random port.
listenPort = 10024

maxOutstandingMessages

SyMam maxOutstandingMessages = num
Description: The maximum number of messages allowed to be waiting for a response from the
Voucher and Wallet Server.
Type: Integer
Optionality: Required
Allowed:
Default: If this parameter is not set, the maximum is unlimited.
Notes: If more than this number of messages are waiting for a response from the
Voucher and Wallet Server, the client process assumes the Voucher and Wallet
Server is overloaded. In this event, the client process refuses to start new calls
but continues to service existing calls.
The messages are queued until the Voucher and Wallet Server has reduced its
outstanding load.
This parameter is used by libBeClientlF.
Example: maxOutstandingMessages = 100
mergeWalletsOptions
Syntax: mergeWalletsOptions = {
oraclelLogin = "name/password"
mergeBucketExpiryPolicy = "outcome"
mergeWalletExpiryPolicy = "outcome"
allowedSourceWalletStates = "states"
mergeWalletsTriggers = ["MGW "]
}
Description: Configuration for the beClientlF plug-in.
Type: Parameter group
Optionality:
Allowed:
Default:
Notes:
Example:

96 Charging Control Services Technical Guide

allowedSourceWalletStates

Syntax:
Description:

Type:
Optionality:
Allowed:

Default:
Notes:
Example:

oraclelLogin

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

allowedSourceWalletStates = "str[...]"

The states the source wallet must be in to allow it to be merged with another
wallet.

String
Required

P Pre-use

A Active

D Dormant

S Suspended
F Frozen

T Terminated
None

At least one state must be included, or all merged will be disallowed.
allowedSourceWalletStates = "PA"

oracleLogin = "usr/pwd"

The login details the BeClient should use to log in to the SMF database, when
performing merge wallet functions.

String
Optional

oraclelogin = "smf/smf"

mergeBucketExpiryPolicy

Syntax:
Description:

Type:
Optionality:
Allowed:

Default:
Notes:
Example:

mergeBucketExpiryPolicy = "str"

Determines what happens when the source wallet and destination wallet have
buckets of the same balance type.
String
Optional (default used if not set).
merge Update the bucket in the destination wallet. The
updated bucket will have the:
e combined value of the two buckets, and
e expiry of whichever bucket has the latest
expiry date.

Create a new bucket in the destination wallet. The
new bucket will have the same balance type, value
and expiry date as the bucket from the source
wallet.

move

merge

mergeBucketExpiryPolicy = "move"

Chapter 3, Background Processes on the SMS

97

mergeWalletExpiryPolicy

Syntax:
Description:
Type:
Optionality:
Allowed:

Default:
Notes:
Example:

mergeWalletExpiryPolicy = "str"
Determines the way expiry dates for merged wallets are managed.
String
Optional
best The expiry date of the wallet with the most time
left is used.
ignore The expiry date of the source wallet is ignored.
best
mergeWalletExpiryPolicy = "best"

mergeWalletsTriggers

Syntax:

Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

mergeWalletsTriggers = [
"str [...]"

]
Wallets of this type starts the merge wallets plug-in.
Array of strings.

messageTimeoutSeconds

Syntax:
Description:

Type:
Units:
Optionality:
Allowed:

Default:
Notes:

Example:

namingServer

Syntax:

Description:

Type:
Optionality:

Required

MGW

None

The syntax must be typed exactly as shown in the example.
mergeWalletsTriggers = ["MGW "]
messageTimeoutSeconds = seconds

The time that the client process will wait for the server to respond to a request.
Integer

Seconds

Required

1-604800 Number of seconds to wait.

0 Do not time out.

2

After the specified number of seconds, the client process will generate an
exception and discard the message associated with the request.

This parameter is used by libBeClientlF.

messageTimeoutSeconds = 2

namingServer = {
host = "hostName",
port = portNumber,
name "clientName"

}
Registers with smsNamingServer so that screens can find the ccsBeOrb service.
Parameter group.

98 Charging Control Services Technical Guide

Allowed:

Default:

Notes:

Example:

addHostPrefix

Syntax: addHostPrefix = true|false

Description: Whether or not to add the hostname as a prefix to the BeClient name when
connecting to the beServer.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Add the prefix.
false Do not add the prefix.

Default: true

Notes: Must be set to true.

Example: addHostPrefix = false

host

Syntax: host = "hostName"

Description: The hostname of the machine ccsBeOrb is running on.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: localhost

Notes: The host parameter is part of the namingServer parameter group.

Example: host = "produsms01"

name

Syntax: name = "clientName"

Description: The name of the client.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: ccsBeClientOrb

Notes: The name parameter is provided for backwards compatibility with old screens.
The name parameter is part of the namingServer parameter group.

Example: name = "ccsBeClientOrb"

port

Syntax: port = portNumber

Description: The number of the port on which the client listens.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Chapter 3, Background Processes on the SMS 99

Default: 5556

Notes:

Example: port = 5556

notEndActions

Syntax: notEndActions = [

{type="str", action="[ACK|NACK]"}
[...]
]

Description: The notEndActions parameter array is used to define the messages
associated with dialogs that should not have their dialog closes, because the
dialog is closed by default. This facilitates failover.

Type: Parameter array.

Optionality: Required

Allowed:

Default:

Notes: If the incoming dialog for a call closes and the last response received was of the

notEndActions type, the client process sends an ABRT message. The ABRT
message allows the VWS to remove the reservation. An example of this situation
would be where slee_acs has stopped working.

This parameter is used by libBeClientlF.
For more information about slee_acs, see ACS Technical Guide.

Example: notEndActions = [
{type="IR ", action="ACK "}
{type="SR ", action="ACK "}
{type="SR ", action="NACK"}
{type="INER", action="ACK "}
{type="SNER", action="ACK "}
{type="SNER", action="NACK"}

plugins
Syntax: plugins = [
{
config=""
library="1ib"
function="str"
}
1
Description: Defines any client process plug-ins to run. Also defines the string which maps to
their configuration section.
Type: Parameter array
Optionality: Optional (as plug-ins will not be loaded if they are not configured here, this
parameter must include any plug-ins which are needed to supply application
functions; for more information about which plug-ins to load, see the BeClient
section for the application which provides the BeClient plug-ins).
Allowed:
Default: Empty (that is, do not load any plug-ins).

100 Charging Control Services Technical Guide

Notes:

Example:

config

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

function

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

library

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

The libclientBcast plug-in must be placed last in the plug-ins configuration list.
For more information about the libclientBcast plug-in, see VWS Technical Guide.
This parameter is used by libBeClientlF.

plugins = [
{
config="broadcastOptions"
library="1libclientBcast.so"
function="makeBroadcastPlugin"

config="name"

The name of the configuration section for this plug-in. This corresponds to a
configuration section within the p1ugins section in the eserv.config file.

String
Required (must be present to load the plug-in)

No default

config="voucherRechargeOptions"

function="str"
The function the plug-in should perform.
String

Required (must be present to load the plug-in)
No default
function="makeVoucherRechargePlugin"
library="1ib"

The filename of the plug-in library.

String

Required (must be present to load the plug-in)

No default

library="1libccsClientPlugins.so"

Voucher and wallet plugins

There are four plug-ins which provide functionality for the PlbeClient:
1 Voucher recharge (VRW)

2 Voucher type recharge (VTR)

Chapter 3, Background Processes on the SMS

101

3 Merge wallets (MGW)
4 Broadcast (on page 106)

Note: The broadcast plug-in configuration must be placed last in the plugins configuration section.

Each plug-in can have a configuration section. The name of this subsection will match the string
provided for the config parameter in the plugins subsection.

Example: The Voucher Recharge plug-in has config set to voucherRechargeOptions. So the
configuration section for this plug-in is:

voucherRechargeOptions = {

}

reportPeriodSeconds

Syntax: reportPeriodSeconds = seconds

Description: The number of seconds separating reports of failed messages.
Type: Integer

Units: Seconds

Optionality: Required

Allowed:

Default: 10

Notes: BeClient issues a failed message report:

e For timed-out messages

e For unrequested responses

e For new calls rejected because of congestion

e For messages with invalid Voucher and Wallet Server identifiers

¢ If new and subsequent requests fail because both Voucher and Wallet
Servers have stopped working

VWS heartbeat detection must be enabled for the parameter to work. Set
reportPeriodSeconds to more than heartbeatPeriod.

This parameter is used by libBeClientlF.

Example: reportPeriodSeconds = 10

stateConversions

Syntax: stateConversions = {
A = "ACTV",
P = "PREU",
D = "DORM"
F = "FROZ",
S = "SUsp",
T = "TERM"
H = "RSVD"
}
Description: Converts from ESCHER encoding to a single character and back.
Type: Array
Optionality:
Allowed:
Default:
Notes:
Example:

102 Charging Control Services Technical Guide

voucherRechargeOptions

Syntax: voucherRechargeOptions = ({
y ' srasActivatesPreuseAccount = truel false
voucherRechargeTriggers = [
"VRW
]
sendBadPin = truel false
}
Description: Configures the voucher recharge plug-in.
Type: Array
Optionality:
Allowed:
Default:
Notes:
Example:
sendBadPin
Syntax: sendBadPin = true|false
Description: Whether or not to increment the Bad PIN count for a failed voucher redeem.
Type: Boolean
Optionality: Optional
Allowed: e true — Increment Bad PIN count for each failed attempt to recharge a
voucher.
o false — Do not increment Bad PIN count for failed attempts to recharge a
voucher.
Default: false
Notes: This parameter:
e applies only to an invalid voucher number or voucher PIN. It does not
apply to failed wallet recharges
e s part of the voucherRechargeOptions parameter group
Example: sendBadPin = false

srasActivatesPreuseAccount

Syntax: srasActivatesPreuseAccount = truelfalse
Description: Sets whether or not alternate subscribers can activate subscriber accounts which
are in a pre-use state.
Type: Boolean
Optionality: Optional
Allowed: e true — A scratch card alternate subscriber can activate a pre-use account.
o false — A scratch card alternate subscriber cannot activate a pre-use
account.
Default: true
Notes: This parameter is:

e Not used by ccsBeOrb
e Part of the voucherRechargeOptions parameter group

Example: srasActivatesPreuseAccount = false

Chapter 3, Background Processes on the SMS 103

voucherRechargeTriggers

Syntax: voucherRechargeTriggers = [
"VRW "
]
Description: This message triggers the voucher recharge plug-in.
Type: Array
Optionality: Required
Allowed: VRW
Default:
Notes: This parameter array is part of the voucherRechargeOptions parameter
group.
Example:

voucherServerCachelLifetime

Syntax: voucherServerCachelLifetime = seconds

Description: Time in seconds to hold items in the voucher server ID cache.
Type: Integer

Optionality: Optional

Allowed: Any positive decimal integer.

Default: 600 (seconds)

Notes:

Example: voucherServerCachelLifetime = 600

voucherServerCacheCleanupInterval

Syntax: voucherServerCacheCleanupInterval = seconds
Description: Time in seconds between purges of the voucher server id cache.
Type: Integer

Optionality: Optional

Allowed: Any positive decimal integer.

Default: 60 (seconds)

Notes:

Example: voucherServerCacheCleanupInterval = 60

voucherTypeRechargeOptions

Syntax: voucherTypeRechargeOptions = {
srasActivatesPreuseAccount = truel|false
voucherTypeRechargeTriggers = ["VTR "]

}

Description: Configures the voucher type recharge plug-in.

Type: Parameter group.

Optionality:

Allowed:

Default:

Notes:

Example:

104 Charging Control Services Technical Guide

srasActivatesPreuseAccount

Syntax: srasActivatesPreuseAccount = truel|false
Description: Sets whether or not alternate subscribers can activate subscriber accounts which
are in a pre-use state.
Type: Boolean
Optionality: Optional
Allowed: e true — A scratch card alternate subscriber can activate a pre-use account.
o false — A scratch card alternate subscriber cannot activate a pre-use
account.
Default: true
Notes: This parameter is:

e Not used by ccsBeOrb
e Part of the voucherRechargeOptions parameter group

Example: srasActivatesPreuseAccount = false

voucherTypeRechargeTriggers

Syntax: voucherTypeRechargeTriggers = [
str [...1"
]
Description: Starts the voucher type recharge plug-in.
Type: Array
Optionality: Required
Allowed: VRW
Default:
Notes: This parameter array is part of the voucherTypeRechargeOptions parameter
group.
Example: voucherTypeRechargeTriggers = ["VTR "]

voucherStateConversions

Syntax: voucherStateConversions = {
str = "ESCHER" [,
-]
}
Description: Converts from ESCHER encoding to a single character and back.
Type: Array
Optionality: Required.
Allowed: Value Description
A="ACTV" Active
F ="FRZN" Frozen
R = "RDMD" Redeemed
C ="CRTD" Created
D ="DLTD" Deleted
H ="RSVD" Held
Default:
Notes:

Chapter 3, Background Processes on the SMS 105

Example: voucherStateConversions = {

A = "ACTV",
F = "FRZN",
R = "RDMD",
C = "CRTD"
D = "DLTD"
H = "RSVD"

Broadcast plug-in

The Broadcast PlbeClient plug-in overrides the belLocationPlugin that would normally load connection
details from the database.

The plugins section must include the following configuration to load this plug-in.
{

config="",
library="1libccsClientPlugins.so",
function="makeBroadcastPlugin"
Notes:
e This plug-in must be the last in the plugins subsection.
e This plug-in has no configuration.

e The broadcast plug-in is required by the VRW and VTR plug-ins.

Example eserv.config

Here is an example ccsBeOrb section of the CCS section of the eserv.config.

Usage:

ccsBeOrb = {
listenHost = ""
listenPort = 10024
clientName = "usmsprod0l-ccsBeOrb"
heartbeatPeriod = 10000000
maxOutstandingMessages = 100
connectionRetryTime = 2
requestTimeoutSeconds = 0
plugins = [

{ # Voucher recharge (VRW) plugin
config="voucherRechargeOptions",
library="1libccsClientPlugins.so",
function="makeVoucherRechargePlugin"

}

{ # Voucher Type recharge (VTR) plugin
config="voucherTypeRechargeOptions",
library="1libccsClientPlugins.so"
function"makeVoucherTypeRechargePlugin"

}

{ # Merge Wallets plugin
config="mergeWalletsOptions",
library="1libccsClientPlugins.so",
function="makeMergeWalletsPlugin"
}

{ # Broadcast plugin needed by VRW
config="broadcastOptions",
library="1libclientBcast.so",
function="makeBroadcastPlugin"

106 Charging Control Services Technical Guide

broadcastOptions = {
aggregateNAckCodes
"NVOU"

=1
]

voucherRechargeOptions = ({

srasActivatesPreuseAccount = false
voucherRechargeTriggers = [
HVRW "
]
voucherServerCacheLifetime = 600

voucherServerCacheCleanupInterval 60

sendBadPin false

}

voucherTypeRechargeOptions = {
srasActivatesPreuseAccount=false
voucherTypeRechargeTriggers ["VTR

mergeWalletsOptions = {
oraclelogin AV
mergeBucketExpiryPolicy
mergeWalletExpiryPolicy "best"
allowedSourceWalletStates = "PADS"
mergeWalletsTriggers = ["MGW "]

nmergen

}

notEndActions = [
{type="IR ", action="ACK "}
{type="SR ", action="ACK "}
{type="SR ", action="NACK"}

{type="INER",
{type="SNER",
{type="SNER",

action="ACK "}
action="ACK "}
action="NACK"}
]
stateConversions
A "ACTV",
"PREU",
"DORM"
"FROZ",
"susp",
"TERM"

= {

H wn T o Jg

}
voucherStateConversions
"ACTV",

"FRZN",

" RDMD "

"CRTD"

" DLTD "

"RSVD"

= {

=™ o Q®© AP

}
namingServer
host
port
name

= {
"usmsprod0l",
5556,
"ccsBeClientOrb"

}
billingEngines
{ id 1,

=1

Chapter 3, Background Processes on the SMS 107

primary = { ip="190.0.2.0", port=1500 },
secondary = { ip="190.0.2.1", port=1500 }
}

}

Failure

If the ccsBeORB fails, updates to accounts will fail.

Output

The ccsBeORB writes error messages to the system messages file, and also writes additional output to
/IN/service_packages/CCS/tmp/ccsBeOrb.log.

CCSCB10HRNAES

License

The ccsCB1OHRNAES library is available only if you have purchased the Voucher Management license.

For more information about this library, see Voucher Manager Technical Guide.

ccSCB10HRNSHA

License

The ccsCB10HRNSHA library is available only if you have purchased the Voucher Management license.

For more information about this library, see Voucher Manager Technical Guide.

ccsCDRFileGenerator

Purpose

ccsCDRFileGenerator takes EDRs created through the CCS Ul and writes them to a flat file equivalent.
This file of EDRs is then get loaded into CCS_BE_CDR by ccsCDRLoader.

Startup - non clustered

This task is started by entry ccs7 in the inittab, through the
/IN/service_packages/CCS/bin/ccsCDRFileGeneratorStartup.sh shell script.

Startup - clustered

In a clustered environment this task is started automatically by the Sun Plex manager. The files required
by the Sun Plex manager are located in the /opt/ESERVCcsCDRFileGenerator directory.

This is configured by the ccsCluster package, and will set up the use of the Sun Plex manager to start,
stop, restart and move the failover processes to other nodes as required.

108 Charging Control Services Technical Guide

Parameters

The ccsCDRFileGenerator section includes the following parameters from the cCs section of
eserv.config:

Usage:

ccsCDRFileGenerator = {
OutputDirectory = "/IN/service packages/CCS/logs/CDR"
BaseName = "ccsCDRFileGenerator"
OracleUsernamePassword = "smf/smf"
SleepDuration = 60
BillingEngineID = 0
SCPID = 0

}

The available parameters are:

BaseName

Syntax: BaseName = "name"
Description: Base name of the output files
Type: String

Optionality: Mandatory

Allowed:

Default: None

Notes:

Example:

BillingEnginelID

Syntax: BillingEngineID = id
Description: Billing Engine ID.

Type: Integer

Optionality: Optional (default used if not set)
Allowed:

Default: 0

Notes: This should not match any actually installed BEID.
Example:

OracleUsernamePassword

Syntax: OracleUsernamePassword = "usr/pwd"

Description: Username and password used to connect to SMF database.
Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: "

Notes:

Example:

Chapter 3, Background Processes on the SMS 109

OutputDirectory

Syntax: OutputDirectory = "dir"

Description: Directory name where ccsCDRFileGenerator will write output files.

Type: String

Optionality: Mandatory

Allowed:

Default: None

Notes:

Example:

SCPID

Syntax: SCPID = id

Description: ID of the SLC.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 0

Notes:

Example:

SleepDuration

Syntax: SleepDuration = secs

Description: The number of seconds ccsCDRFileGenerator will pause before generating a
new file.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 60

Notes:

Example:

TempOutputDirectory

Syntax: TempOutputDirectory = "dir"

Description: The directory where the temporary files will be generated.

Type: String

Optionality: Mandatory

Allowed:

Default: None

Notes:

Example:

Failure

If ccsCDRFileGenerator fails, any EDRs generated through the CCS Ul will fail.

110 Charging Control Services Technical Guide

Output

The ccsCDRFileGenerator writes error messages to the system messages file, and also writes
additional output to /IN/service_packages/CCS/tmp/ccsCDRFileGenerator.log.

ccsCDRLoader

Purpose

The EDR loader (ccsCDRLoader) process periodically scans its input directory for EDR files. To the
information it finds in these files, the process adds extra information derived from its plug-in libraries. It
then writes the lot to the CCS_BE_CDR table in the database.

Some customers want to retain event data records outside the Convergent Charging Controller system.
The FileWriterCDRLoaderPlugin therefore rewrites each EDR so that it contains the same information
as the database. Rewritten EDRs are placed in an output directory. See overview Diagram (on page
44).

Reprocessing Failed EDRs

If a CDR loader plug-in fails to process a particular EDR, then the ccsCDRLoader process carries out
the following actions:

1 Save the EDR to a file for reprocessing. Any processing changes prior to the plug-in that failed are
retained.

2 Add a special FAILED_PLUGIN tag holding the name of the plug-in which failed to the EDR.

3 Report the plug-in error in the log file.

When reprocessing EDRs, the ccsCdrLoader carries out the following actions:

1 Ifitfinds an EDR that contains the FAILED_PLUGIN tag, then it iterates through the plug-in list until
it finds the plug-in held in the FAILED_PLUGIN tag.

2 ccsCDRLoader then processes the EDR starting from the failed plug-in.

Note: You configure the location and maximum size of files that contain the failed EDRs by setting the
errDir (on page 117) and maxPluginFailFileSize (on page 118) parameters in eserv.config.

Oracle Configuration

ccsCDRLoader requires an SMF entry in the Oracle file tnsnames.ora. The entry should be in the
following format:

SMF =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = hostname) (PORT = 1521))
(CONNECT DATA = (SID = SMF)))

Where:

hostname is the host name of the SMS machine.

If required, this entry may be modified depending on the individual platform and connection
requirements.

Note: For more information about configuring tnsnames.ora, see Oracle Net8 Admin Guide.
Startup - Non Clustered

In a non clustered installation the ccsCDRLoader is started by an entry in the inittab, through the
/IN/service_packages/CCS/bin/ccsCDRLoaderStartup.sh shell script.

Chapter 3, Background Processes on the SMS 111

Multiple Loaders

To allow multiple instances of the CDRLoader to run in parallel, two environment variables can be
specified in the startup script for each CDRLoader to override the eserv.config parameters, for example:

Script 1:

/IN/service packages/CCS/.profile-sms
CCSCDRLOADER_INDIR=/IN/service packages/CCS/tmp/CDR1/CDR-in
export CCSCDRLOADER INDIR
CCSCDRLOADER OUTDIR=/IN/service_ packages/CCS/tmp/CDR1/CDR-store
export CCSCDRLOADER OUTDIR
exec /IN/service packages/CCS/bin/ccsCDRLoader

Script 2:

/IN/service packages/CCS/.profile-sms
CCSCDRLOADER_INDIR=/IN/service packages/CCS/tmp/CDR2/CDR-in
export CCSCDRLOADER INDIR
CCSCDRLOADER OUTDIR=/IN/service_ packages/CCS/tmp/CDR2/CDR-store
export CCSCDRLOADER OUTDIR
exec /IN/service packages/CCS/bin/ccsCDRLoader

Note: To define a TZ that the NOTICE messages by ccsCDRLoader are logged in, add DEBUG_TZ
environment variable in the ccsCDRLoaderStartupStartup.sh script before the exec statement. For example:
export DEBUG TZ=Asia/Kolkata

Startup - clustered

In a clustered environment the ccsCDRLoader is started automatically by the Sun Plex manager. The
files required by the Sun Plex manager are located in the /opt/ESERVCcsCDRLoader directory.

This is configured by the ccsCluster package at installation, and will set up the use of the Sun Plex
manager to start, stop, restart and move the failover processes to other nodes as required.

ccsCDRLoader Command Line Parameters

The ccsCDRLoader process supports the following optional command line parameters:

ccsCDRLoader [--vwars range vwars num[-vwars num] [--serverID ID] [--inDir
dir] [--outDir dir]

Where:

e --vwars range vwars num[-vwars_ num] specifies the beVWARS number or number range
for which EDR files will be processed. You must specify non-negative numbers for the vwars_num
values.

The EDR filenames must include the string "beVWARS-" followed by a beVWARS number within the
specified range. EDR files with filenames that do not include this string are skipped. In addition,
EDRs that are generated by the ccsCDRFileGenerator process will be matched only if the
ccsCDRFileGenerator output filename contains the "beVWARS-" string. You configure the
ccsCDRFileGenerator output filename to include this string by setting its BaseName (on page 109)

parameter.
Example syntax: ccsCDRLoader --vwars range 0-2
e —-serverID ID (string) specifies the unique server ID for the input files that will be processed by

this instance of ccsCDRLoader. ccsCDRLoader matches the server ID against any part of the EDR
input filename, and not just the hostname of the server that generated the EDR file.

Example syntax: ccsCDRLoader --serverID vws01

e —-inDir dir specifies the path and directory location of the input files. This value overrides the
input directory configured for ccsCDRLoader in the eserv.config configuration file.
Example syntax: ccsCDRLoader --inDir /IN/service packages/CCS/logs/CDR-in

112 Charging Control Services Technical Guide

e -—-outDir dir specifies the path and directory location of the output files. This value overrides the
output directory configured for ccsCDRLoader in the eserv.config configuration file.

Example syntax: ccsCDRLoader --outDir /IN/service packages/CCS/logs/CDR-
store/vws-0-2

ccsCDRLoader Plug-in Libraries

The ccsCDRLoader can be extended by installing plug-in libraries. This section lists the ccsCDRLoader
plug-in libraries that are available as a standard. Other plug-in libraries may also be installed as
required.

The plug-ins are included in the pluginLibs (on page 118) array.

AcsCustldPlugin

This plug-in library checks the EDR for the presence of the ACS_CUST _ID tag. If it is not present, the
plug-in looks up ACS_CUST_ID in the ACS_ACCT table on the VWS, using the ACCT_ID tag from the
EDR to identify the correct record in the table.

This function is contained within the libAcsCustldPlugin.so library, and is used if this library is referenced
within the pluginLibs (on page 118) array.

Note: This plug-in library does not accept any parameters.

AcctHistPlugin

This plug-in library updates the CCS_ACCT_HIST_INFO table with account details, such as expiry date,
when processing relevant EDRs.

This function is contained within the libAcctHistPlugin.so library.

See AcctHistPlugin Parameters for configuration details.

CDRStoreDBPlugin
This plug-in library updates the CCS_BE_CDR table with EDR details.
This function is contained within the libCDRStoreDBPIlugin.so.

Note: This plug-in library does not accept any parameters.

CreditCardDetailsPlugin

This plug-in library, for CC_Recharge EDRs (type 9), updates the CCS_CREDIT_CARD_DETAILS table
with the last recharge date.

This function is contained within the libCreditCardDetailsPlugin.so library.

Note: This plug-in library does not accept any parameters.

FileWriterCDRLoaderPlugin
The plug-in has two functions:

o FileWriterCDRLoaderPlugin rewrites each EDR file with the same information that
CDRStoreDBPIugin writes to the database.

After the EDR loader process reads an EDR file, other EDR loader plug-in libraries may add
extra information. All of this information is then written to the database. Some customers want
to extract event data records from the Oracle system and retain them elsewhere. The
FileWriterCDRLoaderPlugin therefore rewrites each EDR so that it contains the same

Chapter 3, Background Processes on the SMS 113

information as the database. Rewritten EDRSs are placed in an output directory.

e Optionally, FileWriterCDRLoaderPlugin converts time events recorded in the EDR source files to
the equivalent time in a configured time zone. It uses the converted time events when it
rewrites the EDRs.

The Oracle system manages all time events as if they occurred in the Coordinated Universal
Time (UTC) zone. When an EDR file is rewritten, you can have FileWriterCDRLoaderPlugin
use a different time zone. To do that you set up FileWriterCDRLoaderPlugin's cdrTimeZone
configuration parameter. If cdrTimeZone is not configured or is configured incorrectly, time
events will be written for the UTC time zone.

MsisdnCDRLoaderPlugin

This plug-in is optionally loaded based on the presence of the libMsisdnCDRLoaderPlugin.so in the
pluginLibs (on page 118) configuration array.

The purpose of this plug-in is to look up the MSISDN (CLI) corresponding to the ACCT_REF_ID in the
EDR tag. For type 3 (expiration) EDRSs, if the ACCT_REF_ID is '0' then the ACCT_ID field will be used
to look up the MSISDN instead.

MsisdnCDRLoaderPlugin is configured in the MsisdnCDRLoader (on page 128) section of eserv.config.

RechargeSMSPIlugin

This plug-in library sends notifications to subscribers after a recharge, for the following EDR types:
e Recharge

e Freeform Recharge

e CC Recharge

e Voucher Freeform Recharge
This function is contained within the libRechargeSMSPlugin.so library.

See RechargeSMSPIlugin Parameters for configuration details.

VoucherRedeemFailPlugin

This plug-in is optionally loaded based on the presence of the libVoucherRedeemFailPlugin.so in the
pluginLibs (on page 118) configuration array.

The purpose of this plug-in is to trap and report on all non successful EDR type 15 records.

VoucherRedeemFailPlugin is configured in the VoucherRedeemFail (on page 122) section of
eserv.config.

Part of the reporting is the inclusion of the MSISDN, which is only available when the
libMsisdnCDRLoaderPlugin.so is loaded. To ensure this, eserv.config must have the
libMsisdnCDRLoaderPlugin.so plug-in entry before this libVoucherRedeemFailPlugin.so plug-in entry on the
pluginLibs (on page 118) array.

VoucherRedeemPlugin

This plug-in library, for recharge EDRs, updates the CCS_VOUCHER_REFERENCE table with the
account reference id and redemption date.

This function is contained within the libVoucherRedeemPlugin.so library and is only required if the
Voucher Management module is installed.

This plug-in library is configured in the voucherRedeemPlugin (on page 121) section of eserv.config.

114 Charging Control Services Technical Guide

CDR Loader Plug-in Parameters

The ccsCDRLoader process, and its plug-ins, are configured by the parameters in the ccsCDRLoader

section of the eserv.config file.

CDR Loader Configuration Example

The following configuration shows example configuration for the ccsCDRLoader process in the
eserv.config file.

ccsCDRLoader = {

inDir = "/IN/service packages/CCS/logs/CDR-in"
inDirType = "HASH"

outDir = "/IN/service packages/CCS/logs/CDR-store"
outDirType = "HASH"

outDirExpectedFiles = 65536
outDirBucketSize = 128
readAheadNumFiles = 25
cdrBufferSize = 4096
scanInterval = 1
statisticsInterval 60
loadZeroLenthCalls = true

dbUserPass = "/"

suffixToIgnore = ".tmp"

commitInterval = 500

filePocessing = "DELETE"

maxPluginFailFileSize = 5000

errDir = "/IN/service packages/CCS/logs/CDR-err"
pluginLibs = [

"libAcsCustIdPlugin.so"
"libVoucherRedeemPlugin.so"
"libAcctHistPlugin.so"
"libCreditCardDetailsPlugin.so"
"1ibCDRStoreDBPlugin.so"
"libFileWriterCDRLoaderPlugin.so"
"libResetWaitForRechargePlugin.so"
"1libMsisdnCDRLoaderPlugin.so"
"libVoucherRedeemFailPlugin.so"

]

VoucherRedeemFail = {
tempReportDirectory = "/IN/service packages/CCS/tmp"
archiveDirectory = "/IN/service packages/CCS/logs/voucherRedeemFail"
maxEDRs = 2000
maxOpenDuration = 300
}
voucherRedeemPlugin = {
useVoucherRedeemCDR = true
additionalCdrTypes = [95,96]
}
AcctHistPlugin = {
prodTypeSwapEventClass = "Product Type"
prodTypeSwapEventName = "Product Type Swap"
reasonChangeConfig = "/IN/service packages/CCS/etc/changeReason.conf”

acsCustomerIdData = [

{

acsCustomerId = 1
promoCascade = "NE Test Promo Cascade"

Chapter 3, Background Processes on the SMS

115

}

FileWriterCDRLoaderPlugin = {
cdrTimeZone = "EST"
ccsCDRFieldsTZ = [

"RECORD_ DATE"
"TCS"

"TCE"
"ACTIVATION DATE"

}

CDR Loader Parameters

The ccsCDRLoader process supports the following parameters in the ccsCDRLoader section of the

eserv.config file:

cdrBufferSize

Syntax: cdrBufferSize = int

Description: The size of the cache used by ccsCDRLoader and FileWriterCDRLoaderPlugin.

Type: Integer

Units: Kilobyte

Optionality: Optional

Allowed:

Default: 2048

Notes: If you set readAheadNumFiles to be greater than O (zero), then set
cdrBufferSize to a value that is large enough to cache input files by using the
following formula:
cdrBufferSize = ((average_busy_ period_input_file_size multiplied by
readAheadNumFiles) plus buffer)
For example; if the average input file is 180 kilobytes and readAheadNumFiles
is set to 20, then cdrBufferSize should be set to 4096. (cdrBufferSize = ((180 * 20)
+ 500) = 4100K)

Example: cdrBufferSize = 4096

commitInterval

Syntax: commitInterval = num

Description: The number of EDRs to process before writing them to the database.

Type: Integer

Optionality: Optional

Allowed:

Default: 200

Notes:

Example: commitInterval = 200

dbUserPass

Syntax: dbUserPass = "name/password"

Description: Contains the user name and password required to log on to the database.

Type: String

Optionality: Optional

116 Charging Control Services Technical Guide

Allowed:

Default: "
Notes:
Example: dbUserPass = "/"
errDir
Syntax: errDir = "dir"
Description: The path for the directory where the files containing EDRs which have failed due
to a plug-in problem will be moved.
Type: String
Optionality: Optional (default used if not set).
Allowed: The directory path for an existing directory.
Default: "/IN/service_packages/CCS/logs/CDR"
Notes:
Example: errDir = "/IN/service packages/CCS/logs/CDR-err"
fileProcessing
Syntax: fileProcessing = "type"
Description: Determines the file process.
Type: String
Optionality: Optional
Allowed: DELETE Time zone conversion is enabled.
MOVE Time zone conversion is disabled
Default: "MOVE"
Notes: The time conversion feature of FileWriterCDRLoaderPlugin is affected by the
fileProcessing parameter.
Example: fileProcessing = "DELETE"
inDir
Syntax: inDir = "dir"
Description: The directory from which EDRs are read.
Type: String
Optionality: Optional (default used if not set)
Allowed:
Default: "/IN/service_packages/CCS/logs/CDR/in"
Notes:
Example: inDir = "/IN/service packages/CCS/logs/CDR-in"
inDirType
Syntax: inDirType = "storeType"
Description: Determines whether the input directory will be treated as a flat file store or a hash
file store.
Type: String
Optionality: Optional

Chapter 3, Background Processes on the SMS 117

Allowed: FLAT Sub-directories are not searched.

HASH All files, including those in sub-directories,
are processed.

Default: "FLAT"

Notes: Can be set to HASH even if the directory is a flat file store, but not the other way
around.

Example: inDirType = "FLAT"

loadZeroLengthCalls

Syntax: loadZerolLengthCalls = true| false

Description: Defines whether zero-duration calls will be processed or skipped.

Type: Boolean

Optionality: Optional

Allowed: true Zero-duration calls are processed.
false Zero-duration calls are skipped.

Default: true

Notes:

Example: loadZeroLengthCalls = true

maxPluginFailFileSize

Syntax: maxPluginFailFileSize = size

Description: The maximum size in KBs for files containing EDRs that have failed to process
due to a plug-in problem. When a file containing failed EDRs reaches the
maximum size, it is zipped and archived.

Type: Integer
Optionality: Optional (default used if not set).
Allowed: A numeric value.
Default: 0 (zero)
Notes: If the default is used then the file will not be archived.
Example: maxPluginFailFileSize = 5000
pluginlibs
. pluginLibs = [

Syntax: "lstLibrary"

"2ndLibrary"

.'.'.n thLibrary"

1

Description: List of plug-in libraries to load.
Type: Parameter array.
Optionality: Optional
Allowed:
Default: Ii')luginLibs = [
Notes:

118 Charging Control Services Technical Guide

pluginlLibs = [

Example: "libAcsCustIdPlugin.so"
"libVoucherRedeemPlugin.so"
"libAcctHistPlugin.so"
"libCreditCardDetailsPlugin.so"
"1ibCDRStoreDBPlugin.so"
"libFileWriterCDRLoaderPlugin.so"
]
outDir
Syntax: outDir = "dir"
Description: The directory to which EDRs are moved after they have been processed.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: "/IN/service_packages/CCS/logs/CDR/out"
Notes:
Example: outDir = "/IN/service packages/CCS/logs/CDR-store"
outDirBucketSize
Syntax: outDirBucketSize = filesPerLeaf
Description: The number of files per leaf directory when the output directory contains the
number of files specified by the outDirExpectedFiles parameter.
Type: Integer
Optionality: Optional
Allowed:
Default: 10
Notes: This parameter is ignored if outDirType = "FLAT".
Example: outDirBucketSize = 128
outDirExpectedFiles
Syntax: outDirExpectedFiles = numberOfFiles
Description: The number of EDR files expected in the directory defined by the outDir
parameter.
Type: Integer
Optionality: Optional
Allowed:
Default: outDirExpectedFiles = 100000
Notes: If outDirType = "FLAT", this parameter is ignored.
Example: outDirExpectedFiles = 65536
outDirType
Syntax: outDirType = "storeType"
Description: Sets the structure of the output directory defined by the outDir parameter.
Type: String
Optionality: Optional
Allowed: May be either FLAT or HASH.

Chapter 3, Background Processes on the SMS

119

Default: "FLAT"

Notes:
Example: outDirType = "FLAT"
readAheadNumFiles
Syntax: readAheadNumFiles = int
Description: Sets the maximum number of EDR input files to load into cache per scanInterval.
When set to O (zero), the ccsCDRLoader queues all the EDR input files in the inDir
directory for processing. The processed files are moved to the outDir directory only
after ccsCDRLoader has finished loading all of them.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: 0 or a positive integer
Default: 0
Notes: When you set readAheadNumFiles to a value that is greater than zero, then the
recommended value for the scanInterval (on page 120) parameter is 1 (one). This
ensures timely processing of the input files.
Example: readAheadNumFiles = 25
scanInterval
Syntax: scanlnterval = secs
Description: The number of seconds between scans of the directory specified in the inDir (on
page 117) parameter.
Type: Integer
Units: Seconds
Optionality: Optional
Allowed:
Default: 600
Notes: e If the time taken to process the EDR input files is longer than the number
of seconds specified for scanInterval, then the next scan occurs after
processing has finished.
e If you expect the queue of EDR input files to be large, then to prevent
input file backlogs, set scanInterval to a low value; for example, 1.
Example: scanInterval = 1

statisticsInterval

Syntax: statisticsInterval = seconds

Description: The number of seconds between statistical output.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: Defaults to the value set for the scanInterval parameter.
Notes: When set to:

e Lessthan or equal to scanInterval, statistics are output on every scan

e Greater than scanInterval, statistics are output following the next
scan after statisticsInterval has expired

120 Charging Control Services Technical Guide

Example: statisticsInterval = 60

suffixToIgnore

Syntax: suffixToIgnore = "suffix"

Description: The suffix of files in the CDR in directory that should be ignored.

Type: String

Optionality: Optional.

Allowed:

Default: ".tmp"

Notes: For CDR files larger than the internal buffer size, ensures ccsCDRLoader is
prevented from processing temporary files until the whole source CDR file has
been processed.

Example: suffixToIgnore = ".tmp"

voucherRedeemPlugin

Syntax: voucherRedeemPlugin = {
useVoucherRedeemCDR = truel| false
additionalCdrTypes = [cdr type]

}

Description: The configuration for VoucherRedeemPlugin (on page 114) plug-in.

Type:

Optionality:

Allowed:

Default:

Notes:

Example: voucherRedeemPlugin = {
useVoucherRedeemCDR = true
additionalCdrTypes = [95,96]

}

additionalCdrTypes

Syntax: additionalCdrTypes = [cdr type]

Description: Allows additional CDR types to be added to the REDEEMED_DATE column of the

BE_VOUCHER table.

Type: Array

Optionality: Optional

Allowed: A CDR type greater than 66 as per MAX value in ccsCDR.txt

Default: Empty

Notes:

Example: additionalCdrTypes = [95,96]

useVoucherRedeemCDR

Syntax:
Description:

Type:

useVoucherRedeemCDR = truel false

Indicates that the Voucher Redeem CDR should be used instead of the Recharge
CDR.

Boolean

Chapter 3, Background Processes on the SMS 121

Optionality: Optional (default used if not set).

Allowed:

Default: false

Notes: Needed for split billing environments.
Example: voucherRedeemCDR = true

VoucherRedeemFail

Syntax: VoucherRedeemFail = {
parameters
}
Description: Configuration for the VoucherRedeemFailPlugin (on page 114) plug-in.
Type:
Optionality: Optional (defaults used if not present).
Allowed:
Default:
Notes:
Example:
archiveDirectory
Syntax: archiveDirectory = "dir"
Description: The location of the redeemed fail EDR file.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: "/IN/service_packages/CCS/logs/voucherRedeemFail"
Notes: This directory and tempReportDirectory (on page 123) should be in the same file
system otherwise archiving will fail.
Example: archiveDirectory =

"/IN/service packages/CCS/logs/voucherRedeemFail"

maxEDRs

Syntax: maxEDRs = num

Description: The maximum number of EDR records in the file.
Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 2000

Notes:

Example: maxEDRs = 3000

maxOpenDuration

Syntax: maxOpenDuration = seconds

Description: The maximum amount of time in seconds the report file will be kept open.
Type: Integer

Optionality: Optional (default used if not set).

Allowed:

122 Charging Control Services Technical Guide

Default: 300

Notes:

Example: maxOpenDuration = 500

tempReportDirectory

Syntax: tempReportDirectory = "dir"

Description: The directory where temporary report with failed voucher redeem records is

stored.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/CCS/tmp"

Notes: This directory and archiveDirectory (on page 122) should be in the same file

system otherwise archiving will fail.

Example: tempReportDirectory = "/IN/service packages/CCS/tmp"
AcctHistPlugin

Syntax: AcctHistPlugin = {

parameters
}

Description: Configures the account history plug-in.

Type: Parameter group.

Optionality:

Allowed:

Default:

Notes:

Example: AcctHistPlugin = {

prodTypeSwapEventClass = "Product Type"
prodTypeSwapEventName = "Product Type Swap"
reasonChangeConfig =
"/IN/service packages/CCS/
etc/changeReason.conf"
acsCustomerIdData = [

{

acsCustomerId = 1

promoCascade = "NE Test Promo Cascade"
}

]

Chapter 3, Background Processes on the SMS

123

acsCustomerIdData

Syntax:

Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

acsCustomerId

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

promoCascade

Syntax:
Description:

Type:
Optionality:
Allowed:

Default:
Notes:
Example:

acsCustomerIdData = [

{
acsCustomerId = IstIdentifier
promoCascade = "IstName"

acsCustomerId = 2ndIdentifier
promoCascade = "2ZndName"

acsCustomerId = nthIdentifier
promoCascade = "nthName"

]

Lists data specific to each ACS customer ID.
Parameter array.

Optional

This parameter array is part of the AcctHistPlugin parameter group.

acsCustomerId = identifier

The number identifying the customer to whom this set of balances applies.
Integer

Mandatory

This parameter is part of the acsCustomerIdData parameter array.

acsCustomerId = 1

promoCascade = "name"

The name of the promotional cascade that is saved in the CASCADE field of the
EDR.

String
Mandatory

This value must match an entry name in the Balance Type Cascades list, see
Charging Control Services User's Guide, Balance Type Cascades topic.

None
This parameter is part of the acsCustomerIdData parameter array.

promoCascade = "NE Test Promo Cascade"

124 Charging Control Services Technical Guide

prodTypeSwapEventClass

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

prodTypeSwapEventClass = "class"
The content of the EVENT_CLASS field of product type swap EDRs.
String

Optional

"Product Type"

This parameter is part of the AcctHistPlugin parameter group.
prodTypeSwapEventClass = "Product Type"

prodTypeSwapEventName

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

prodTypeSwapEventName = "name"

The content of the EVENT_NAME field of product type swap EDRs.
String

Optional

"Product Type Swap"
This parameter is part of the AcctHistPlugin parameter group.
prodTypeSwapEventName = "Product Type Swap"

reasonChangeConfig

Syntax: reasonChangeConfig = "dir"
Description: The path to, and name of, the reason change configuration file.
Type: String
Optionality:
Allowed:
Default:
Notes: o changeReason.conf lists available state changes and reasons for the
changes. Information listed in is arranged in the following format:
OldState; NewState; Reason
For example:
A;D;Active to Dormant
D;A;Dormant to Active
P;A;Active from Pre-Use
The maximum reason length is 24 characters. If a longer reason is
specified it will be truncated.
e This parameter is part of the AcctHistPlugin parameter group.
Example: reasonChangeConfig = "/IN/service packages/
CCS/etc/changeReason.conf"
RechargeSMSPlugin
Syntax: RechargeSMSPlugin = {
yntax. parameters
}
Description: Configuration for the recharge SMS plug-in.
Type: Parameter group.
Optionality: Optional

Chapter 3, Background Processes on the SMS

125

Allowed:

Default:

Notes:

Example:

smsFifoName

Syntax: smsFifoName = "dir"

Description: The path to and the name of the FIFO file to which SMS requests are written.
Type: String

Optionality: Optional

Allowed:

Default: "tmp/ccsSSMRequest.fifo"

Notes: This parameter is part of the RechargeSMSPlugin parameter array.
Example: smsFifoName = "/tmp/ccsSSMRequest.fifo"
smsQueueSize

Syntax: smsQueueSize = num

Description: The maximum number of short messages to buffer.

Type: Integer

Optionality: Optional

Allowed:

Default: 1000

Notes: This parameter is part of the RechargeSMSPlugin parameter array.
Example: smsQueueSize = 1000

smsTTL

Syntax: smsTTL = seconds

Description: The maximum time that messages will be buffered.

Type: Integer

Units: Seconds

Optionality: Optional

Allowed:

Default: 600

Notes: This parameter is part of the RechargeSMSP1lugin parameter array.
Example: smsTTL = 600

126 Charging Control Services Technical Guide

FileWriterCDRLoaderPlugin

Syntax: FileWriterCDRLoaderPlugin = {
cdrTimeZone = "zone"
ccsCDRFieldsTZz = [

"IstTag"
"2ndTag"
"nthTag"
]

}

Description: Configuration for the file writer plug-in.

Type: Parameter group.

Optionality:

Allowed:

Default:

Notes:

Example:

ccsCDRFieldsTZ

Syntax: ccsCDRFieldsTZ = [

"IstTag"

"2ndTag"

"nthTag"
]

Description: The time event field in the EDR file that will be converted to the time zone defined
by the cdrTimeZone parameter.

Type: Array

Optionality:

Allowed:

Default:

Notes: This parameter is part of the FileWriterCDRLoaderPlugin parameter group.

. ccsCDRFieldsTZ = [

Example: "RECORD DATE"

IITCSII
" TCE "

"ACTIVATION DATE"
"NEW ACCT EXPIRY"
"NEW BALANCE EXPIRES"
"OLD ACCT EXPIRY"
"OLD_ BALANCE EXPIRES"

cdrTimeZone

Syntax: cdrTimeZone = "tz"

Description: The time zone for time events written to EDR files.
Type: String

Chapter 3, Background Processes on the SMS 127

Optionality: Mandatory

Allowed: A UNIX time zone name.
Default:
Notes: e You can see UNIX time zone names in the

/usr/share/lib/zoneinfo
directory. Type 1s to see the high-level time zones. To see the sub-zones
for say Asia, enter

ls Asia/
e This parameter is part of the FileWriterCDRLoaderPlugin parameter
group.
Example: cdrTimeZone = "Dubai"
MsisdnCDRLoader
Syntax: MsisdnCDRLoader = {
parameters
}
Description: Configuration for the msisdn plug-in.
. MsisdnCDRLoader = {
Example: CopyCliToMsisdn = true
CopyCliToMsisdnRegExp =
" (\\ICDR_TYPE=13\\| | \\ | SERVICE=WIFIS$|\\|SERVICE=WIFI|\\|)"
}
CopyCliToMsisdn
Syntax: CopyCliToMsisdn = true| false
Description: Sets whether or not to copy the CLI value to the MSISDN tag when processing an
EDR.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Copy the CLI value to the MSISDN tag
false Do not copy the CLI to the MSISDN
Default: false
Notes: If set to true and copyCLiToMsisdnRegEXxp is also set, then the CLI will not be
copied to the MSISDN if a match is found for the expression defined in the
copyCliToMsisdnRegExp parameter.
Example: CopyCliToMsisdn = true

CopyCliToMsisdnRegExp

Syntax: CopyCliToMsisdnRegExp = " (\\|exp\\|)"

Description: Defines the expression to match. When a match occurs the CopyCliToMsisdn
parameter is ignored and the EDR processing does not copy the CLI value to the
MSISDN tag.

Type: String

Optionality: Optional.

Allowed: A valid regular expression. Double \\ (escapes) are required.

Default:

Notes: In the example below, the WIFI service will be matched for type 13 EDRSs if the

SERVICE tag appears in the middle or the end of the EDR. The CLI copy to
MSISDN will not take place.

128 Charging Control Services Technical Guide

Example: CopyCliToMsisdnRegExp =
" (\\|<CRD_TYPE=13>\\| [\\|SERVICE=WIFI$\\|SERVICE=WIFI\\|)"

Failure

If the ccsCDRLoader fails, updates from the EDR files will not be completed. The EDR files will
accumulate in the input directory.

Output

The ccsCDRLoader writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/CCS/tmp/ccsCDRLoader.log.

ccSCDRTrimDB

Purpose

The ccsCDRTrimDB process trims excess EDR records from the database. The excess records can be
defined by one of the following:

e Wallet or subscriber ID
e The size of the cached records

This process modifies the CCS_BE_CDR table in the SMF. It gets the wallet/subscriber ID information
from CCS_ACCT_ID. Rows are ordered by ID and RECORD_DATE.

The ccsCDRTrimDB process is not a daemon. It needs to be run manually or by cron.
Startup

The ccsCDRTrimDB process is run in the crontab for ccs_oper. By default it runs each night. It is
scheduled by the /IN/service_packages/CCS/bin/ccsCDRTrimDBStartup.sh shell script.

Usage

ccsCDRTrimDB [-n int] [-c int]
[-h|--help]

Parameters

The ccsCDRTrimDB process supports the following command-line options.

-c
Syntax: -c int
Description: Sets the size of a buffer that will cache the records to be deleted. Records will be
deleted when the:
o Bufferis full
e Lastrecord in the table is reached
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: 196
Notes:

Chapter 3, Background Processes on the SMS 129

Example: -c 64

-n

Syntax: -n int

Description: The maximum number of EDRs a subscriber can have.
Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 196

Notes:

Example: -n 256

-h or --help
Displays the help text file.

Example

This text shows an example of a command line startup for ccsCDRTrimDB.

ccsCDRTrimDB -n 256 -c 64
Note: This text may also be put in a startup shell script, such as ccsCDRTrimDBStartup.sh.
Failure

If the ccsCDRTrimDB process fails, records will accumulate in the SMF database.

Output

The ccsCDRTrimDB process writes error messages to the system messages file. It also writes
additional output to the /IN/service_packages/CCS/tmp/ccsCDRTrimDBStartup.sh.log file.

ccSCDRTrimFiles

Purpose

The ccsCDRTrimFiles process deletes EDR files that have reached a nominated maximum age.
The ccsCDRTrimFiles process is not a daemon; it needs to be run manually or by cron.

Startup

This task is run in the crontab for ccs_oper. By default it runs each night. It is scheduled by the
/IN/service_packages/CCS/bin/ccsCDRTrimFilesStartup.sh shell script:

Usage

ccsCDRTrimFiles [-d dir] [-a age]l [-h| --help]

Parameters

The ccsCDRTrimFiles process supports the following command-line options.

130 Charging Control Services Technical Guide

—a

Syntax: -a age
Description: Maximum age allowed in days. Files older than this value will be removed.
Type:

Optionality: Optional (default used if not set).

Allowed:

Default: 1

Notes:

Example: -a 1l

-d

Syntax: -d dir

Description: Directory containing EDR files.

Type:

Optionality: Optional (default used if not set).

Allowed:

Default: /logs/CDR/indexed

Notes:

Example: -d /logs/CDR/indexed

-h or --help
Displays the help text file.

Output

The ccsCDRTrimFiles process writes error messages to the system messages file. It also writes
additional output to the /IN/service packages/CCS/tmp/ccsCDRTrimFilesStartup.sh.log

file.

Failure

If the ccsCDRTrimFiles process fails, EDRs will collect in the indexed directory.

ccsChangeDaemon

Purpose

ccsChangeDaemon updates assignment of periodic charges to wallets. On the SMS
ccsChangeDaemon handles periodic charge changes when a subscriber:

e |s associated with a new wallet
e Changes product type for a wallet

The daemon receives its tasks by reading CCS_PC_QUEUE table, which is hosted on the SMS and is
replicated to the VWS.

Note: A ccsSLEEChangeDaemon also runs on the VWS. For more information, see Purpose (on page
219) for the ccsSLEEChangeDaemon.

Chapter 3, Background Processes on the SMS 131

Startup

On start-up, the daemon will check for the -r flag, if it does not find it, it will run in SMS mode.

On a non clustered SMS environment this task is started automatically by an entry in the inittab, through
the /IN/service_packages/CCS/bin/ccsChangeDaemonStartup.sh shell script.

On a clustered SMS, startup is controlled by a failover resource group.

Configuration

ccsChangeDaemon supports parameters from the ccsChangeDaemon parameter group in the
eserv.config file on the SMS. It contains parameters arranged in the structure shown in the example
below.

ccsChangeDaemon = {
PollPeriod = seconds
suppressCcsPcQueueMessage = true | false

throttle = int

beClient = {

clientName = "name"
heartbeatPeriod = microsecs
connectionRetryTime = seconds
messageTimeoutSeconds = seconds
billingEngines = [

{ id = 1int,

primary = { ip="ip", port=port },
secondary = { ip="ip'", port=port }

}

}

eserv.config parameters

ccsChangeDaemon supports the following parameters from the cCs section of the eserv.config file on
SMS.

pollPeriod

Syntax: pollPeriod = seconds

Description: Period in seconds between database reads.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 60

Notes: The CCS_PC_QUEUE table lists all outstanding work for the ccsChangeDaemon.
Example: pollPeriod = 60

132 Charging Control Services Technical Guide

ptsUnsubscribeFromPCsForNonApplyPCs

Syntax: ptsUnsubscribeFromPCsForNonApplyPCs = boolean

Description: Controls if periodic charges (PCs) are unsubscribed when the account type is
changed and the new account type is allowed the periodic charge, but it doesn't
have Apply to existing set. When set to true (the default), and when the account
type is changed for a wallet, all periodic charges for the service provider that
aren't marked as Apply to existing and allowed for the new product type will be
unsubscribed from.

Type: Boolean
Optionality: Optional (default used if not set).
Allowed:
Default: true
Notes:
Example: ptsUnsubscribeFromPCsForNonApplyPCs = true
throttle
Syntax: throttle = num
Description: The maximum number of Voucher and Wallet Server updates per second.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: 0 Disable throttling (no limit).
positive integer Update limit.
Default: 1000
Notes:
Example: throttle = 1000
beClient
Syntax: beClient = [{ config }]
Description: The configuration for the connection to the beServer on the VWS.
Type: Parameter array
Optionality: Mandatory
Allowed:
Default:
Notes: This configuration is for the libBeClientlF library which ccsChangeDaemon uses

to manage the connection.
For more information about this library, see VWS Technical Guide.

Example:
billingEngines
Syntax: billingEngines = [
{ id = id
primary = { ip="ip", port=port },
secondary = { ip="ip", port=port }
}
]
Description: Overrides connection details that beLocationPlugin obtains from the database.

Chapter 3, Background Processes on the SMS 133

For more information about the parameters included in the array, see
billingEngines (on page 92) configuration for the ccsBeOrb process.

Type: Array.

Optionality: Optional.

Allowed:

Default:

Notes: Identifies the Voucher and Wallet Servers and assigns their Internet connection
details.

Include this section to ensure that ccsChangeDaemon only connects to the local
domain. If omitted, ccsChangeDaemon will connect to all VWS domains.
Example: billingEngines = [
{ id = CHANGE ME,
primary = { ip="PRIMARY BE IP", port=1500 },
secondary = { ip="SECONDARY BE IP", port=1500 }
}

clientName

Syntax: clientName = "name"

Description: The unique client name of the process.

Type: String

Optionality: Mandatory

Allowed: Must be unique.

Default: "ccsChangeDaemon”

Notes: If more than one client connects with the same name the BE server will drop the
other, therefore name must be unique.

Example: clientName = "bel ccsSLEEChangeDaemon"

connectionRetryTime

Syntax: connectionRetryTime = seconds

Description: The maximum number of seconds the client process will wait for a connection to
succeed before attempting a new connection.

Type: Integer

Optionality: Required

Allowed:

Default: 5

Notes: This parameter is used by libBeClientIF.

Example: connectionRetryTime = 2

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The number of microseconds during which a Voucher and Wallet Server

heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer
Optionality: Optional (Default used if not present)
Allowed: 0 Disable heartbeat detection.

positive integer Heartbeat period.

134 Charging Control Services Technical Guide

Default:
Notes:
Example:

30000000
1 000 000 microseconds = 1 second.
heartbeatPeriod = 30000000

messageTimeoutSeconds

Syntax:
Description:
Type:

Units:
Optionality:
Allowed:

Default:
Notes:

Example:

messageTimeoutSeconds = seconds

The time that the client process will wait for the server to respond to a request.
Integer

Seconds

Required

1-604800 Number of seconds to wait.

0 Do not time out.

2

After the specified humber of seconds, the client process will generate an
exception and discard the message associated with the request.

This parameter is used by libBeClientlF.
messageTimeoutSeconds = 2

BE eserv.config parameters

The following parameters are available in the BE section of the eserv.config.

amPrimary

Syntax: amPrimary = true|false

Description: True if this is the primary VWS in the pair.

Type: Boolean

Optionality: Optional, default used if not set

Allowed:

Default: true

Notes:

Example: amPrimary = false

belLocationPlugin

Syntax: belocationPlugin = "1ib"

Description: The plug-in library that finds the Voucher and Wallet Server details of the Voucher
and Wallet Servers to connect to.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: libGetccsBelLocation.so

Notes: This library must be in the LD_LIBRARY_PATH.

Example: beLocationPlugin = "libGetccsBeLocation.so"

Chapter 3, Background Processes on the SMS 135

serverId

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Failure

serverId = id

The ID of the VWS pair.
Integer

1

Set to 1 if this is not a VWS
serverId = 11

While ccsChangeDaemon is down, periodic charge assignment updates will not be executed on the
local machine.

This table describes the recovery and failure files used by ccsChangeDaemon to attempt to recover
after a failure.

File Details
failed These files are written on both the SMS. They have the following naming convention:
.failed.ACSCustomerID.CCS PC QUEUE.ID

An entry is written to this file for each wallet update which initially fails. They contain a line

for each failure:
SubscriberId|WalletId|PeriodicChargeBalanceTypeld|ProductId|ChangeTyp
e|ChangeAction|DomainId|NumberOfBalanceTypes| [|BalanceTypelId|BucketId
| BucketValuel|...]]

Each time ccsChangeDaemon adds an entry to this file, it will also raise an Error level

alarm. ccsChangeDaemon reads the entries in this file and attempts to reprocess them.

Once all the entries in the file have been reprocessed, the ccsChangeDaemon deletes

them.

failed These files are written on the SMS. They have the following nhaming convention:
failed.ACSCustomerID.CCS PC QUEUE.ID

An entry is written to this file every time an entry in the .failed file is re-sent, and fails a

second time. This file's first two lines are:

Periodic Charge Change Daemon: failed updates

SubscriberId|WalletId|PeriodicChargeBalanceTypeId]|

ChangeType| ChangeAction| DomainId|NumberOfBalanceTypes| [|BalanceTypeld
| BucketId|BucketValuel]...]]

Then there is an entry for each wallet update which fails a second time:
SubscriberId|WalletId|PeriodicChargeBalanceTypeld|ChangeType|ChangeAc
tion|DomainId|NumberOfBalanceTypes| [|BalanceTypeld|BucketId|BucketVal
uell...]]

Each time ccsChangeDaemon writes an entry to this file, it will raise an Error level alarm.

Failure files are left for manual recovery.

Note: If an operation fails due to a "No Connection" error, ccsChangeDaemon will raise a

LOGGED_WARNING and stop processing the row.

Output

ccsChangeDaemon writes recovery and failure logs to
/IN/service_packages/CCS/logs/ccsSLEEChangeDaemon/ccsPCChangel.

136 Charging Control Services Technical Guide

If one of these files cannot be written to, the ccsChangeDaemon will exit with a critical error (for alarm
details, see CCS Alarms Reference Guide).

ccsChangeDaemon writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/CCS/tmp/ccsChange.log.

ccsExpiryMessagelLoader

Purpose

Sends short messages to subscribers to warn them that their wallet or balance will expire shortly. The
list of subscribers is generated by ccsExpiryMessageGenerator on the VWSs and transferred to the
SMS.

Startup

This task is run in the crontab for ccs_oper. By default it runs at 9 am each morning. It is scheduled
directly through /IN/service_packages/CCS/bin/ccsExpiryMessageLoader.

Example

ExpiryMessages = {

walletExpiryPeriod = 15

numberOfWalletWarnings = 3

balanceExpiryPeriod = 10

numberOfBalanceWarnings = 3

balanceTypes = [1, 2]

onlyForLatestBucketExpiry = false

oracleUsername = ""

oraclePassword = ""

generatorFilename = "ccsExpiryMessages"

generatorFiledir = "/IN/service packages/CCS/logs/expiryMessageWrite/"

inputDirectory = "/IN/service packages/CCS/logs/expiryMessageRead/"

cmnPushFiles = [
"-d", "/IN/service packages/CCS/logs/expiryMessage/"
"-r", "/IN/service packages/CCS/logs/expiryMessage/"
"-h", "SMF HOST"
"-p", "2027"
"_F"

]

pauseTime = 1

batchSize 2048

}

Note: This section is also used by ccsExpiryMessageGenerator.

Parameters

The ccsExpiryMessagelLoader supports the following parameters from the CCs section of eserv.config.

Chapter 3, Background Processes on the SMS 137

balanceExpiryPeriod

Syntax: balanceExpiryPeriod = days
Description: Number of days before a Balance expires.

Before the Balance expires, three expiry warning messages are sent, each at
different times.

The first message is sent balanceExpiryPeriod days before the wallet expires.

The second and third messages are sent at two-thirds and one-third of
balanceExpiryPeriod, respectively.

Type:

Optionality:

Allowed:

Default: 10

Notes: This parameter is optional. If it is omitted, no messages will be sent.
Example: balanceExpiryPeriod = 10

balanceTypes = []

Syntax: balanceTypes = [num]
Description: Specifies the balance types that should have expiry warning messages.

When a new ACS customer is added, any balance types requiring expiry
notifications should be added here.

Type: Array

Optionality: Optional

Allowed:

Default: No messages are sent

Notes: Balance types are not split up for different ACS customers even though balance
type identifiers belong to ACS customers.

Example: balanceTypes = [1, 2]

batchSize

Syntax: batchSize = num

Description: The number of lines read from a file before a pause.

Type:

Optionality: Optional

Allowed:

Default: 2048

Notes: If it is not used:

e Pauses will occur only between files
e Throttling will not occur

Example: batchSize = 2048

cmnPushFiles = []

For the eserv.config on the VWS, use the cmnPushFiles configuration to transfer files to the SMS. There
they will be ready for processing by ccsExpiryMessagelLoader. Include the —F option to detect the file in
use. See cmnPushFiles (on page 271) for all parameters.

Note: These directories must match those set by the generatorFiledir parameter.

138 Charging Control Services Technical Guide

generatorFiledir

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

generatorFiledir = "dir"

Directory for newly created expiry message files.
String

Optional (Default used if not specified)

"/IN/service_packages/CCS/logs/expiryMessage/"

This value required on both SMS and VWS machines. This value may be different
on the two machines as long as cmnPushFiles has been configured to send and
receive the appropriate directories.

generatorFiledir =

"/IN/service packages/CCS/logs/expiryMessageWrite/"

generatorFilename

Syntax: generatorFilename = "filename"

Description: Prefix for the file read by ccsExpiryMessagelLoader.

Type:

Optionality: Optional.

Allowed:

Default: "ccsExpiryMessages"

Notes: This parameter must be the same as that for the VWSs as the
ccsExpiryMessageGenerator writes to this directory.

Example: generatorFilename = "ccsExpiryMessages"

inputDirectory

Syntax: inputDirectory = "dir"

Description: Directory for newly created expiry message files.

Type: String

Optionality: Optional (Default used if not specified)

Allowed:

Default: "/IN/service_packages/CCS/logs/expiryMessage/"

Notes: This value required on both SMS and VWS machines. This value may be different
on the two machines as long as cmnPushFiles has been configured to send and
receive the appropriate directories.

Example: inputDirectory =

"/IN/service packages/CCS/logs/expiryMessageRead/"

numberOfBalanceWarnings

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:

numberOfBalanceWarnings = num

The number of pending balance expiry messages to be sent. The messages will
be equally spaced during the period set by the walletExpiryPeriod
parameter.

Integer

Optional (default used if not set).
12,3

3

Chapter 3, Background Processes on the SMS 139

Notes:
Example: numberOfBalanceWarnings = 3

numberOfWalletWarnings

Syntax: numberOfWalletWarnings = num

Description: The number of pending wallet expiry messages to be sent. The messages will be
equally spaced during the period set by the walletExpiryPeriod parameter.

Type: Integer

Optionality: Optional (default used if not set).
Allowed: 1,2,3

Default: 3

Notes:

Example: numberOfWalletWarnings = 3

onlyForLatestBucketExpiry

Syntax: onlyForLatestBucketExpiry = truel|false

Description: Whether to send expiry messages for all buckets that are going to expire or just
the last bucket to expire.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: e true - only send notifications for the latest bucket to expire for the

configured balance types, or
e false - send notifications for all expiring buckets.

Default: false

Notes: Does not include buckets with no expiry date.
Example: onlyForLatestBucketExpiry = true
oraclePassword

Syntax: oraclePassword = "password"
Description: Oracle password.

Type:

Optionality:

Allowed:

Default:

Notes: Required on VWS.

Example:
oracleUsername

Syntax: oracleUsername = "name"
Description: Oracle user name

Type:

Optionality: Mandatory

Allowed:

Default:

Notes: Required on VWS.

Example:

140 Charging Control Services Technical Guide

pauseTime

Syntax: pauseTime = time

Description: The time separating the loading of individual files.

Type:

Optionality:

Allowed:

Default: 1

Notes: Optionally, if batchSize is also set, pauseTime defines the time between
batches from an individual file.

Example: pauseTime = 1

walletExpiryPeriod

Syntax: walletExpiryPeriod = days

Description: Number of days before the wallet expires.

Before the wallet expires, three expiry warning messages are sent, each at
different times.

The first message is sent walletExpiryPeriod days before the wallet expires.

The second and third messages are sent at two-thirds and one-third of
walletExpiryPeriod, respectively.

Type:

Optionality:

Allowed:

Default: 15

Notes: This parameter is optional. If it is omitted, no messages will be sent.
Example: walletExpiryPeriod = 15

Failure

If ccsExpiryMessagelLoader fails, no notifications will be sent.

Output

The ccsExpiryMessagelLoader writes error messages to the system messages file, and also writes
additional output to the /IN/service_packages/CCS/tmp/ccsExpiryMessageLoader.log file.

ccsExternalProcedureDaemon

Purpose

ccsExternalProcedureDaemon is used to call CB10 C code from within a database trigger when adding
a new ACS customer.

Startup - non clustered

In a non clustered environment this task is started automatically by entry cc11 in the inittab, by the
/IN/service_packages/CCS/bin/ccsExternalProcedureDaemon.sh shell script.

Chapter 3, Background Processes on the SMS 141

Startup - clustered

In a clustered environment this task is started automatically by the Sun Plex manager and runs on one
half of the cluster. It uses the CcsExternalProcedureDaemon failover resource to fail over to other nodes
as required. The files required by the Sun Plex manager are located in the
lopt/ESERVCcsExternalProcedureDaemon directory.

Location

The binary for the ccsExternalProcedureDaemon process is located at
/IN/service_packages/CCS/bin/ccsExternalProcedureDaemon on the SMS.

Configuration

The ccsExternalProcedureDaemon does not require any specific configuration and it does not support
any command line parameters.

Failure

If the ccsExternalProcedureDaemon fails then the CCS_CB10_CONFIG table will not be updated when
you add an ACS customer.

Output

The ccsExternalProcedureDaemon writes error messages to the system messages file and writes
additional output to /IN/service_packages/CCS/tmp/ccsExternalProcedureDaemon.log.

ccsLegacyPIN

Purpose

ccsLegacyPIN plug-in library is used by ccsAccount (on page 291) and the ccsVoucher_CCS3 voucher
tool to encrypt the PINs using the DES authentication rule. For more information about authentication
rules, see Security libraries. ccsLegacyPIN library is not available for new voucher batches.

Note: The ccs3Encryption plug-in is a symbolic link to the ccsLegacyPIN (on page 142) plug-in, but in the
ccs3Encryption mode it uses different parameters.

Startup

ccsLegacyPIN is used by ccsVoucher_CCS3 as necessary. No startup configuration is required for this
library to be used.

Configuration
ccslLegacyPIN has no specific configuration. It does accept some parameters from ccsVoucher CCS3

for voucher encryption which are configured in the CCS Voucher Management and Service
Management screens.

ccsPeriodicCCRecharge

Purpose

Executes periodic credit card recharges on the SMS.

142 Charging Control Services Technical Guide

o Periodic credit card recharges are stored in the CCS_CC_RECHARGE_PENDING table in the SMF
db.

e Can remove rows from the pending queue if the rows are:

= No longer pending
= Past configurable age limit

Start up

This task is run in the crontab for ccs_oper. By default it runs on the second day of each month. It is
scheduled directly through /IN/service_packages/CCS/bin/ccsPeriodicCCRecharge.

Example

ccsPeriodicCCRecharge = {
numRowsPerCommit = 100
oracleUserAndPassword = "/"
purgeOldEntriesAge = 0
purgePendingRows = false

}

Parameters

ccsPeriodicCCRecharge supports the following parameters from the CCS.ccsPeriodicCCRecharge
section of eserv.config.

numRowsPerCommit

Syntax: numRowsPerCommit = num
Description: Number of rows to insert before commit.
Type: Integer

Optionality: Optional (default used if not set).
Allowed:

Default: 100

Notes:

Example: numRowsPerCommit = 500

oracleUserAndPassword

Syntax: oracleUserAndPassword = "usr/pwd"

Description: Overrides userid and password for the Oracle SMF database connection set in
oracleUserAndPassword (on page 52).

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: A

Notes:

Example:

purgeOldEntriesAge

Syntax: purgeOldEntriesAge = days

Description: Number of days before a row will be removed from

CCS_CC_RECHARGE_PENDING.

Chapter 3, Background Processes on the SMS 143

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0 (off)

Notes: Entries with both pending and verified states will be removed.

Example: purgeOldEntriesAge = 14

purgePendingRows

Syntax: purgePendingRows = true|false

Description: Whether or not to purge rows that are pending recharge from the
CCS_CC_RECHARGE_PENDING table in SMF.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Purge rows that are pending recharge.
false Do not purge rows that are pending recharge.

Default: false

Notes: Only effective when purgeOIdEntriesAge (on page 143) has a value > 0.

Example: purgePendingRows = true

Failure

If ccsPeriodicCCRecharge fails, automatic credit card recharges will fail.

Note: Individual recharges through the PI will not be affected.

Output

The ccsPeriodicCCRecharge writes error messages to the system messages file. It also writes
additional output to /IN/service_packages/CCS/tmpl/ccsPeriodicCCRecharge.log.

ccsPeriodicCharge

Purpose

ccsPeriodicCharge applies periodic charges defined for wallets. The following types of periodic charge
are supported:

e Credit

e Debit

e Voucher type recharge

ccsPeriodicCharge sends notifications to the subscriber informing them whether or not the charge was
successful.

Note: This process only applies to periodic charges which were configured in CCS 3.1.4 or earlier.

Startup

ccsPeriodicCharge runs in either a solo mode or a parent and children mode.

The ccsPeriodicCharge solo process is run in the crontab for ccs_oper. By default it runs on an hourly
basis. ccsPeriodicCharge is started automatically with the ccsPeriodicCharge command.

144 Charging Control Services Technical Guide

If the Daemon field is set to 2 or more in any product type, ccsPeriodicCharge will operate as a parent
process, and will start a ccsPeriodicCharge child process for each id in the Daemon fields. The
ccsPeriodicCharge parent process will remain active until all child processes have completed.

Note: If the service takes over an hour to run, it will examine all wallets and scheduling to ensure that the

charges for the next hour are applied.

For more information about how product types assign periodic charges to ccsPeriodicCharge daemons,
see Subscriber Management - Product Types, in Charging Control Services User's Guide.

Configuration - eserv.config

ccsPeriodicCharge is also configured by the ccsPeriodicCharge section of the eserv.config file. The
structure of the ccsPeriodicCharge section is shown below.

ccsPeriodicCharge = {

BatchSize = size
OracleUserAndPassword = "usr/pwd"
LockFile = "dir"
profileTagCacheValidityPeriod int
BeQueueSize = int
belocationPlugin = "1ib"
oracleUserPass = "usr/pwd"
clientName = "name"
heartbeatPeriod = microsecs
messageTimeoutSeconds = seconds
maxOutstandingMessages = int
reportPeriodSeconds = seconds
connectionRetryTime = seconds
plugins = [
{
config="confStr",
library="11ib",
function="str"
}
[...]
]
confStr = {
plugin configuration
}
notEndActions = [
{type="str", action="[ACK |NACK]"}
[...]
]
plugins configuration - see plugin-specific config

eserv.config parameters

ccsPeriodicCharge supports the following parameters from the ccsPeriodicCharge section of

eserv.config.

Chapter 3, Background Processes on the SMS 145

BeQueueSize

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

clientName

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

BeQueueSize = num

The maximum number of VWS charging requests waiting for a response. If this
limit is reached, no requests are sent until the number of outstanding requests
drops below this number.

Integer
Optional (default used if not set).

500

BeQueueSize = 250

clientName = "name"
The client name for the process.
String

Optional (default used if not set).

ccsPeriodicCharge
The server generates clientld from a hash of name.

This parameter is used by libBeClientlF. However, ccsAccount uses a different
default.

clientName = "ccsPeriodicCharge"

connectionRetryTime

Syntax: connectionRetryTime = seconds

Description: The maximum number of seconds the client process will wait for a connection to
succeed before attempting a new connection.

Type: Integer

Optionality: Required

Allowed:

Default: 5

Notes: This parameter is used by libBeClientlF.

Example: connectionRetryTime = 2

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The number of microseconds during which a Voucher and Wallet Server
heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer

Optionality: Required

Allowed: 0 Disable heartbeat detection.
positive integer Heartbeat period.

Default: 3000000

146 Charging Control Services Technical Guide

Notes:

Example:

LockFile

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

1 000 000 microseconds = 1 second.

If no heartbeat message is detected during the specified time, client process
switches to the other Voucher and Wallet Server in the pair.

This parameter is used by libBeClientlF.
heartbeatPeriod = 10000000

LockFile = "dir"

The location of the lock file used to prevent multiple instances of the
ccsPeriodicCharge process.

String
Optional (default used if not set)

"/IN/service_packages/CCS/logs/.ccsPeriodicCharge”

If ccsPeriodicCharge is running in parent and child mode, only the parent process
will use the lock file.

LockFile =
"/IN/service packages/CCS/logs/.ccsPeriodicCharge"

maxOutstandingMessages

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

maxOutstandingMessages = num

The maximum number of messages allowed to be waiting for a response from the
Voucher and Wallet Server.

Integer
Required

If this parameter is not set, the maximum is unlimited.

If more than this number of messages are waiting for a response from the
Voucher and Wallet Server, the client process assumes the Voucher and Wallet
Server is overloaded. In this event, the client process refuses to start new calls
but continues to service existing calls.

The messages are queued until the Voucher and Wallet Server has reduced its
outstanding load.

This parameter is used by libBeClientlF.
maxOutstandingMessages = 100

messageTimeoutSeconds

Syntax:
Description:
Type:

Units:
Optionality:
Allowed:

Default:

messageTimeoutSeconds = seconds

The time that the client process will wait for the server to respond to a request.
Integer

Seconds

Required

1-604800 Number of seconds to wait.

0 Do not time out.

2

Chapter 3, Background Processes on the SMS 147

Notes: After the specified number of seconds, the client process will generate an
exception and discard the message associated with the request.

This parameter is used by libBeClientIF.

Example: messageTimeoutSeconds = 2
notEndActions
Syntax: notEndActions = [

{type="str", action="[ACK|NACK]"}
[...]
]

Description: The notEndActions parameter array is used to define the messages
associated with dialogs that should not have their dialog closes, because the
dialog is closed by default. This facilitates failover.

Type: Parameter array.

Optionality: Required

Allowed:

Default:

Notes: If the incoming dialog for a call closes and the last response received was of the

notEndActions type, the client process sends an ABRT message. The ABRT
message allows the VWS to remove the reservation. An example of this situation
would be where slee_acs has stopped working.

This parameter is used by libBeClientlF.

For more information about slee_acs, see ACS Technical Guide.

Example: notEndActions = [
{type="IR ", action="ACK "}
{type="SR ", action="ACK "}
{type="SR ", action="NACK"}
{type="INER", action="ACK "}
{type="SNER", action="ACK "}
{type="SNER", action="NACK"}

OracleUserAndPassword

Syntax: oracleUserAndPassword = "usr/pwd"

Description: The user and password combination ccsPeriodicCharge should use to log into the
SMF database.

Type: String

Optionality: Optional

Allowed:

Default: e

Notes: Overrides CCS.oracleUserAndPassword. For more information about this
parameter, see oracleUserAndPassword (on page 52).

Example: oracleUserAndPassword = "/"

148 Charging Control Services Technical Guide

plugins

Syntax: plugins = [
{
config=""
library="1ib"
function="str"

]

Description: Defines any client process plug-ins to run. Also defines the string which maps to
their configuration section.

Type: Parameter array

Optionality: Mandatory

Allowed:

Default:

Notes: The voucherTypeRechargeOptions (VTR) plug-in needs the libclientBcast plug-in

to function properly. It must be placed last in the plugins configuration list.
For more information about the libclientBcast plug-in, see VWS Technical Guide.

Example: plugins = [
{
config="voucherTypeRechargeOptions",
library="1libccsClientPlugins.so",
function="makeVoucherTypeRechargePlugin"

config="",
library="libclientBcast.so",
function="makeBroadcastPlugin"

config

Syntax: config="name"

Description: The name of the configuration section for this plug-in. This corresponds to a
configuration section within the p1ugins section in the eserv.config file.

Type: String

Optionality: Required (must be present to load the plug-in)

Allowed:

Default: No default

Notes:

Example: config="voucherRechargeOptions"

function

Syntax: function="str"

Description: The function the plug-in should perform.

Type: String

Optionality: Required (must be present to load the plug-in)

Allowed:

Default: No default

Notes:

Chapter 3, Background Processes on the SMS 149

Example:

library

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

function="makeVoucherRechargePlugin"

library="1ib"

The filename of the plug-in library.

String

Required (must be present to load the plug-in)

No default

library="1libccsClientPlugins.so"

profileTagCacheValidityPeriod

Syntax:
Description:
Type:3
Optionality:
Allowed:
Default:
Notes:
Example:

profileTagCacheValidityPeriod = seconds
Timeout value in seconds for the profile tag cache.
Integer

Optional

Any positive decimal integer.

600

profileTagCacheValidityPeriod = 800

reportPeriodSeconds

Syntax:
Description:
Type:

Units:
Optionality:
Allowed:
Default:
Notes:

Example:

reportPeriodSeconds = seconds

The number of seconds separating reports of failed messages.
Integer

Seconds

Required

10

BeClient issues a failed message report:
e Fortimed-out messages

e For unrequested responses
e For new calls rejected because of congestion
e For messages with invalid Voucher and Wallet Server identifiers

e If new and subsequent requests fail because both Voucher and Wallet
Servers have stopped working

VWS heartbeat detection must be enabled for the parameter to work. Set
reportPeriodSeconds to more than heartbeatPeriod

This parameter is used by libBeClientlF.

reportPeriodSeconds = 10

Command line parameters

ccsPeriodicCharge supports the following command line parameters.

150 Charging Control Services Technical Guide

ccsPeriodicCharge [-d] [-1 log]

Note: These parameters can be set in a cronjob entry or startup script, or be set directly at the command
line.

-d

Syntax: -d

Description: Display the configuration of ccsPeriodicCharge at start up.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default: Do not display configuration at startup.

Notes:

Example:

-1

Syntax: -1 log

Description: The name of the file to log this child ccsPeriodicCharge daemon's debug output
to.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: no default

Notes:

Example: -1 ccsPeriodicChargeDebug.log
This configuration will produce a log called ccsPeriodicChargeDebug2.log for a
ccsPeriodicCharge daemon with an ID of 2.

Example

This text shows an example ccsPeriodicCharge eserv.config section.

ccsPeriodicCharge = {

OracleUserAndPassword = "/"
LockFile = "/IN/service packages/CCS/logs/.ccsPeriodicCharge"
clientName = "ccsPeriodicCharge"

profileTagCacheValidityPeriod = 600
BeQueueSize = 500

plugins = [
{
Voucher Type recharge plugin (VTR)
config="voucherTypeRechargeOptions",
library="1libccsClientPlugins.so",
function="makeVoucherTypeRechargePlugin"

Broadcast plugin needed by VTR
config="",
library="libclientBcast.so",
function="makeBroadcastPlugin"

Chapter 3, Background Processes on the SMS 151

voucherTypeRechargeOptions = ({
srasActivatesPreuseAccount=false
voucherTypeRechargeTriggers = ["VTR "]

}

Failure

If ccsPeriodicCharge fails, the regular charges that are due will not be applied. However they will be
applied retrospectively the next time ccsPeriodicCharge is run.

Output

The ccsPeriodicCharge writes error messages to the system messages file. It also writes additional
output to /IN/service_packages/CCS/tmpl/ccsPeriodicCharge.log.

ccsProfileDaemon

Purpose

ccsProfileDaemon performs the following:

e Processes profile change events
o Creates requests
¢ Sends requests to a third party ASP or customer care management platform

Profile change events are generated through changes to the subscriber's profile
(ccs_acct_reference.PROFILE). For example, a profile change event is generated when a subscriber
adds a new 'Friends and Family' number or subscribes to a voice mail service.

Startup - nonclustered

In a non-clustered environment, ccsProfileDaemon is started automatically by entry ccs8 in the inittab,
through the /IN/service_packages/CCS/bin/ccsProfileDaemonStartup.sh shell script.

When CCS is installed, the startup inittab entry is added by the install process.

Disabling - ccsProfileDaemon

ccsProfileDaemon performs database cleanup of tables altered by subscriber profile creations and
changes.

If you disable the ccsProfileDaemon task in your environment, you must also disable related triggers in
your database to prevent your database from malfunctioning due to uncontrolled growth.

To disable the triggers used by ccsProfileDaemon in your database:

Step Action

1 Log on the USMS node as the ccs_oper user.

2 Connect to the database as ccs_admin using SQLPlus.
3 Execute the following SQL statements:

SQL> alter trigger CCS_ACCT REFERENCE BUOPFER disable;
SQL> alter trigger CCS ACCT REFERENCE BIFER disable;

4 Exit SQLPIlus.

152 Charging Control Services Technical Guide

Example config section

ccsProfileDaemon = {
PollInterval = 500
LockFileName = "IN/service packages/CCS/logs/.ccsProfileDaemon-lock"
DisableConcurrencyLock = false
AuditDirectory = "/IN/service packages/CCS/logs/ccsProfileDaemon-logs"
AuditFields = [1310806, 2829001, 2812014, 1310730]
AuditFileName = "ccsProfileDaemon"
AuditType = "IGNORE"
CdrConcatenation = true
MaxAgeSeconds = 60
MaxSizeEntries = 100
NotificationCacheAgeSeconds = 60
AdditionalSpFields = []

PeriodicChargeTagCacheAge = 600
SpFieldCacheAge = 600

DateTimeFormat = "YYYY-MM-DDThh:mm:ss"
allowLegacyServerConnect= true
allowBugWorkArounds = true
triggering = {
DefaultOverrides = {
CCSNamespace = "http://customer-smp/wsdls/ON/some.wsdl"
Username = "username"
Password = "password"
OperationName = "NotificationRequest"
ArbitraryParameters = "possible"
}
Operations = [
{
name = "CCSNotification"
type = "OSD"
overrides = {
CCSNamespace = "http://eng-prf-zonell-
z1/wsdls/ON/CCSNotifications.wsdl"
Username = ""
Password = ""
OperationName = "NotificationRequest"
}
}
]
scps = ["cmxdevscpl:3072", "cmxdevscp2:3072"]
osd_scps = ["cmxdevscpl:3072", "cmxdevscp2:3072"]

eserv.config parameters

ccsProfileDaemon supports the following parameters from the ccsProfileDaemon section of

eserv.config.

AdditionalSpFields

Syntax: AdditionalSpFields = [tagvall, tagval2,,,, tagvalN]

Description: Allows additional profile tags to be added to the ccs_sp_field table array of
integers.

Type: Decimal integer for tagval x values

Optionality: Optional

Allowed: Any valid profile tag location values in decimal format.

Default: Empty

Chapter 3, Background Processes on the SMS

153

Notes:

Example: AdditionalSpFields = [100,120,140]

allowBugWorkArounds

Syntax: allowBugWorkArounds = true | false

Description: Whether or not ccsProfileDaemon supports bug workarounds to cope with faulty SSL
implementations on the ASP.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true — Bug workarounds are supported
false — Bug workarounds are not supported

Default: false

Notes: Set this parameter to true only if it is required for ccsProfileDaemon to make successful
SSL connections to an ASP.

Example: allowBugWorkArounds = true

allowLegacyServerConnect

Syntax: allowLegacyServerConnect = true | false
Description: Whether or not ccsProfileDaemon allows connections to legacy servers that do not
support secure renegotiation.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true — Allows connections to legacy servers that do not support secure renegotiation.
false — Prohibits connections to legacy servers that do not support secure renegotiation.
Default: false
Notes: Set this parameter to true only if it is required for ccsProfileDaemon to make successful
SSL connections to an ASP.
Example: allowLegacyServerConnect = true
AuditDirectory
Syntax: AuditDirectory = "dir"
Description: Directory where we will write the audit logs.
Type: string
Optionality:
Allowed:
Default: "IN/service_packages/CCS/logs/ccsProfileDaemon-logs"
Notes:
Example:

154 Charging Control Services Technical Guide

AuditFields

Syntax: AuditFields = [profiletagID, ...]

Description: An array of comma-separated profile tag IDs that identify subscriber profile fields that
have changed and are being audited. Only values listed in the array will be audited.
The produced EDR has the following format:
USER=<value>|MSISDN=<value>ACS CUST ID=<value>|DATE=<value>|TERM
_IP_ADDR=<value>|CHANGED TAGS=<value>
Where the format of CHANGED _TAGS is:

PROFILE TAG NAME=<value>:0LD VALUE=<value>:NEW VALUE=<value>
Example EDR:

USER=SU|MSISDN=321449000001 |ACS_CUST_ID=11||DATE=20131218111933]
TERM IP ADDR=010167088183|CHANGED TAGS=PROFILE TAG NAME=FD
Number:0LD VALUE='123456789"':NEW VALUE='999888777666",
PROFILE TAG NAME=Acct Activation

Yearly:0LD VALUE='20131202111824':NEW VALUE='20131225111824", PRO
FILE TAG NAME=FF List, PROFILE TAG NAME=LO

Subscription:0LD VALUE=:NEW VALUE=True

See CdrConcatenation (on page 156) for additional information.

Type: Array of integers

Optionality: Optional (default used if not set)

Allowed: array of integers

Default: AuditFields =[] (disabled)

Notes: Only the profile tag name will be present for data that cannot be directly printed in an
EDR, for example Prefix Tree content. You can view all EDR content through the
subscriber screens.

Example: AuditFields = [1310806, 2829001, 2812014]

AuditFileName

Syntax: AuditFileName = "name"

Description: Base file name for the audit log — start and end times will be appended.

Type: string

Optionality:

Allowed:

Default: "ccsProfileDaemon”

Notes:

Example: AuditFileName = "ccsProfileDaemon"

AuditType

Syntax: AuditType = "type"

Description: Type of auditing.

Type: string

Optionality:

Allowed: o "IGNORE" - regardless of response type, audit logs will not be generated

e "ERROR" - only create audit log for failure and error responses
e "ALL" - create audit log for all responses (successful, failure and error)
Default: "IGNORE"

Chapter 3, Background Processes on the SMS 155

Notes:

Example: AuditType = "IGNORE"

CdrConcatenation

Syntax: CdrConcatenation = true | false

Description: Specifies whether multiple changes to a profile should be concatenated into the same
EDR. See AuditFields (on page 155) for additional information.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes:

Example: CdrConcatenation = false

DateTimeFormat

Syntax: DateTimeFormat = "dateformat"

Description: Indicates the format for date and time variables that are sent in a DAP natification.

Type: String

Optionality: Optional (default used if not set)

Allowed: Only the following formats are accepted:

e YYYY-MM-DDThh:mm:ss
e YYYY-MM-DDThh:mm:ssZ
e -YYYY-MM-DDThh:mm:ss
e YYYYMMDDhhmmss

Default: YYYYMMDDhhmmss
Notes:
Example: DateTimeFormat = "YYYY-MM-DDThh:mm:ss"

DisableConcurrencyLock

Syntax: DisableConcurrencyLock = truel|false

Description: Whether to disable concurrency locking.

Type:

Optionality:

Allowed: true, false

Default: false

Notes:

Example: DisableConcurrencylLock = false

LockFileName

Syntax: LockFileName = "file"

Description: The lock file name to determine if we have multiple profile daemon processes
running on the same SMS node.

Type: string

Optionality:

Allowed:

Default: "IN/service_packages/CCS/logs/.ccsProfileDaemon-lock"

156 Charging Control Services Technical Guide

Notes:

Example:

MaxAgeSeconds

Syntax: MaxAgeSeconds = seconds

Description: Maximum age, in seconds, after which all audit entries will be written to disk.
Type: integer

Optionality:

Allowed:

Default: 60

Notes:

Example: MaxAgeSeconds = 60

MaxSizeEntries

Syntax: MaxSizeEntries = size

Description: Maximum size (number) after which all audit entries will be written to disk.
Type: Integer

Optionality:

Allowed:

Default: 100

Notes:

Example: MaxSizeEntries = 100

NotificationCacheAgeSeconds

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

NotificationCacheAgeSeconds = seconds

Maximum age, in seconds, before the natification definitions cache will be reread
from the database.

Integer

60

NotificationCacheAgeSeconds = 60

PeriodicChargeTagCacheAge

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

PeriodicChargeTagCacheAge = seconds

Timeout value, in seconds, for data in the periodic charge tag cache.
Integer

Optional

Any positive decimal integer value.

600 (seconds)

PeriodicChargeTagCacheAge = 600

Chapter 3, Background Processes on the SMS 157

PollInterval

Syntax: PollInterval = milliseconds
Description: How long, in milliseconds, that we should sleep before processing profile change
events.
Type: integer
Optionality:
Allowed:
Default: 500
Notes:
Example: PollInterval = 500
SpFieldCacheAge
Syntax: SpFieldCacheAge = seconds
Description: Timeout value in seconds for data in the SpField tag cache.
Type: Decimal integer
Optionality: Optional
Allowed: Any positive decimal integer.
Default: 600
Notes:
Example: SpFieldCacheAge = 600
triggering
Syntax: triggering = {parameter list}
Description: The configuration of the individual XmlTcap or OSD operations that can be
recieved.
Optionality: Mandatory
Allowed:
Default: For operations that are not configured, these Operations > overrides defaults are
applied:
e CCSNamespace="http://eng-prf-zone01-
z1/wsdls/ON/CCSNotifications.wsdl"
e name = "CCSNotification", type = "OSD"
e Username =""
e Password ="
Notes:
DefaultOverrides
Syntax: DefaultOverrides = {global parameter 1ist}
Description: The list of global default parameter values for each of the overrides parameters in
the individual trigger Operations configured.
Type: List
Optionality: Mandatory.

158 Charging Control Services Technical Guide

Allowed: Must be all of these:
e CCSNamespace

e Username

e Password

e OperationName

e ArbitraryParameters

Default:
Notes: These parameters are inserted into the Operations > overrides section when the
parameter is omitted from the overrides list.
Example: DefaultOverrides = {
CCSNamespace = "http://customer-smp/wsdls/ON/some.wsdl"
Username = "username"
Password = "password"
OperationName = "NotificationRequest"
ArbitraryParameters = "possible"

ArbitaryParameters

Syntax: ArbitraryParameters = "value"
Description:

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: None

Notes:

Example: ArbitraryParameters = "possible"
CCSNamespace

Syntax: CCSNamespace = "namespace"
Description: The name space used for the WSDL request.
Type: String

Optionality: Mandatory

Allowed:

Default:

Notes:

Example: CCSNamespace = "http://customer-smp/wsdls/ON/some.wsdl"
OperationName

Syntax: OperationName = "name"

Description: The name of the OSD request.

Type: String

Optionality: Mandatory

Allowed:

Default:

Notes:

Example: OperationName = "NotificationRequest"

Chapter 3, Background Processes on the SMS

159

Password

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Username

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Operations

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

name

Syntax:
Description:
Type:
Optionality
Allowed:
Default:
Notes:
Example

Password = "password"
The HTTP password to use.
String

Mandatory.

Password = "password"
Username = "name"

The HTTP user name to use.
String

Mandatory

Username = "username"

Operations = [opl], [op2]

Maps of individual operations for the trigger.
Array

Mandatory.

Operations = [
{
name = "CCSNotification"
type = "OSD"
overrides = {
OperationName = "NotificationRequest"

}

name = "operation name"

The name of the operation as received from the VWARS.
String

Mandatory

name = "CCSNotification"

160 Charging Control Services Technical Guide

overrides

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

type
Syntax:
Description:
Type:
Optionality:
Allowed:

Default:
Notes:
Example:

scps

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

overrides = {override list}

Set of override parameters for this operation that are added to/override the values

received from the beVWARS.
List
Optional (default used if not set).

The values that are defined by DefaultOverrides for any missing parameter.

If all of an operation's overrides parameters values are the same as the
DefaultOverrides, it is not necessary to specify this parameter.
For OSD, it is expected to set:

e CCSNamespace : the namespace used for the wsdl request.

e Username : the HTTP username to use

e Password : the HTTP password to use

e OperationName : The name of the OSD request, that is,
"NotificationRequest"
For XmlITcap, it is expected to set:
e Control_Plan: The control plan to trigger
e Service_Handle: The service handle to use to do the triggering
overrides = {
Username "

Password =
OperationName = "NotificationRequest"

nn

type = "protocol"
The protocol for the operation.
String

Mandatory
e OSD

o XmlTcap

type = "OSD"

scps [SLC1,SLCZ2]

An array of xmlITcaplnterface SLCs, in the format:
HOSTNAME:PORT

Array

PORT is optional (default used if not set).

A list of existing SLC host names and ports

3072

scps = ["cmxdevscpl:3072", "cmxdevscp2:3072"]

Chapter 3, Background Processes on the SMS 161

osd _scps

Syntax: osd_scps = [SLCI1, SLCZ2>]
Description: An array of OSD SLCs, in the format:
HOSTNAME:PORT
Type: Array
Optionality: PORT is optional (default used if not set).
Allowed: A list of existing SLC host names and ports
Default: 3072
Notes:
Example: osd scps = ["cmxdevscpl:3072", "cmxdevscp2:3072"]

Command line parameters

The ccsProfileDaemon accepts the following command line parameters.
Usage:
ccsProfileDaemon [-1i | --node_ id node_id] [-n | ~—number number]

Example:

ccsProfileDaemon -1 2 -n 2

-1 or --node id

Syntax: -i | --node_id node_id

Description: The SMS node id that this ccsProfileDaemon instance is running on.

Type: integer

Optionality:

Allowed: Cannot be greater than the number of nodes specified and must be greater than
0.

Default: 1

Notes: This value will be used in conjunction with the number of nodes specified to limit

the range of subscriber’s that are processed by a specific ccsProfileDaemon.
Example: -1 2

-n or —--number

Syntax: -n int
—--number int

Description: The number of ccsProfileDaemon instances running across all
SMS nodes.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Must be greater than ‘0.

Default: 1

Notes: This value will be used in conjunction with the node id

specified to limit the range of subscriber’s that are processed
by a specific ccsProfileDaemon.

Examples: -n 2
—--number 2

162 Charging Control Services Technical Guide

ccsReports

Purpose

The ccsReports section specifies the parameters for CCS SMS reports.

Note: Reports use CCS.oracleUserAndPassword as the Oracle login.

Example

Here is an example of the ccsReports section in the eserv.config file.

ccsReports = {

accountLogDir = ""
accountPrefixName = ""

cdrDir = ""
cdrPrefix =

nu

voucherLogDir = ""
voucherPrefixName = "pre"

VoucherStatus = {
outputDirectory =
"/IN/service packages/SMS/output/Ccs_Service/Summary/VoucherStatus”
archiveDirectory =
"/IN/service packages/SMS/output/Ccs_Service/Summary/VoucherStatus/archive”
archiveAfterDays = 10
deleteAfterDays = 60

Parameters

ccsReports accepts the following parameters.

accountLogDir

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

accountLogDir = "dir"
The account log directory.
String

None

accountPrefixName

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

accountPrefixName = "name"
The account prefix name.
String

None

Chapter 3, Background Processes on the SMS 163

cdrDir

Syntax: cdrDir = "dir"
Description: The EDR directory.

Type: String

Optionality:

Allowed:

Default: None

Notes:

Example:

cdrPrefix

Syntax: cdrPrefix = "pre"
Description: The EDR prefix.

Type: String

Optionality:

Allowed:

Default: None

Notes:

Example:

voucherLogDir

Syntax: voucherLogDir = "dir"
Description: The voucher log directory.
Type: String

Optionality:

Allowed:

Default: None

Notes:

Example: voucherLogDir = "/var/logs/voucher"

voucherPrefixName

Syntax: voucherPrefixName = "pre"
Description: The voucher prefix name.

Type: String

Optionality:

Allowed:

Default: None

Notes:

Example: voucherPrefixName = "voucher "

164 Charging Control Services Technical Guide

VoucherStatus

Syntax:

Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

VoucherStatus = {
outputDirectory = "dir"
archiveDirectory = "dir"

archiveAfterDays = days
deleteAfterDays = days
}

Configuration for voucher status reports.
Parameter group

Additional configuration for the Voucher Status Report is available in the
voucherStatusReport.env file. For more information about this file, see Voucher
Status Report Configuration (on page 73).

archiveAfterDays

Syntax: archiveAfterDays = days

Description: How old reports should be before being archived

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes:

Example: archiveAfterDays = 10

archiveDirectory

Syntax: archiveDirectory = "dir"

Description: Where archived reports are moved to.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: "/IN/service_packages/SMS/output/Ccs_Service/Summary/VoucherStatus/archive

Notes:

Example: archiveDirectory =
"/IN/service packages/SMS/output/Ccs_Service/Summary/Voucher
Status/archive"

deleteAfterDays

Syntax: deleteAfterDays = days

Description: How many days old reports can be before they are removed by the system.

Type: Integer

Chapter 3, Background Processes on the SMS 165

Optionality: Optional (default used if not set)

Allowed:

Default: 60

Notes:

Example: deleteAfterDays = 60

outputDirectory

Syntax: outputDirectory = "dir"

Description: The location of the voucher status reports.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: "/[IN/service_packages/SMS/output/Ccs_Service/Summary/VoucherStatus”

Notes:

Example: outputDirectory =
"/IN/service packages/SMS/output/Ccs_Service/Summary/Voucher
Status"

ccsWalletExpiry

Purpose

ccsWalletExpiry processes CCS updates to the SMF database from the VWSs. There are two types of
update.

e Expiry requests cause wallets to be set to Terminated in the SMF database.
¢ Removal requests cause wallets to be removed from the SMF database.

If ccsWalletExpiry removes all the wallets associated with a subscriber account and will also remove the
subscriber account.

Startup

This task is run in the crontab for ccs_oper. By default it runs every 10 minutes. It is scheduled directly
through /IN/service_packages/CCS/bin/ccsWalletExpiry.

Example

An example of a configuration for the ccsWalletExpiry process and cssVWARSEXxpiry plug-in follows.

ccsVWARSExpiry = {
expiredPrefix = "expiredWallet"
expiredDirectory = "/IN/service packages/CCS/logs/wallet"
removedDirectory = "/IN/service packages/CCS/logs/wallet"
removedPrefix = "removedWallet"

expiredMsisdnPath="/IN/service packages/CCS/logs/MSISDNExpiry"
expiredMsisdnPrefix="MSISDNExpiry"
expiredMsisdnMaxAge = 120

cmnPushFiles = [
"-d", "/IN/service packages/CCS/logs/wallet™"
"-r", "/IN/service packages/CCS/logs/wallet"
"-h", "produsmsOl"
"_p"’ "2027"

166 Charging Control Services Technical Guide

n_gn

}
Note: This configuration section is also used by ccsVWARSEXxpiry (on page 240) on the VWS.

Parameters

ccsWalletExpiry supports the following parameters from the cCS section of eserv.config.

cmnPushFiles = []

Syntax: cmnPushFiles = []

Description: For the eserv.config on the VWS, use the cmnPushFiles configuration to transfer
files to the SMS ready for processing by ccsExpiryMessageloader.

Type: Parameter array

Optionality: Mandatory

Allowed:

Default:

Notes: Include the -F option to detect the file in use. See cmnPushFiles (on page 271)

for all parameters.
These directories must match the respective directories set in

generatorFiledir.

Example:

expiredDirectory

Syntax: expiredDirectory = "dir"

Description: Defines the location of files listing wallets moving to terminated state.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/CCS/logs/wallet”

Notes: The file is generated by ccsVWARSEXpiry on the VWS and read by
ccsWalletExpiry on the SMS.

Example: expiredDirectory = "/var/CCS/expiredWallets"

expiredMsisdnMaxAge

Syntax: expiredMsisdnMaxAge = seconds
Description: The maximum age of export file in seconds.
Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 120

Notes:

Example: expiredMsisdnMaxAge = 180

Chapter 3, Background Processes on the SMS 167

expiredMsisdnPath

Syntax: expiredMsisdnPath = "dir"

Description: Location for the output file on the SMS for sending to the HLR. The output file is
written by the ccsWalletExpiry (cronjob).

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/CCS/tmp"

Notes:

Example: expiredMsisdnPath = "/var/CCS/expiredMsisdns"

expiredMsisdnPrefix

Syntax: expiredMsisdnPrefix = "pre"

Description: Prefix of output file.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "MSISDNEXxpiry"

Notes: The filename format is: expiredMsisdnPrefixYYYYMMDDHHMMSS . export.
Example: expiredMsisdnPrefix = "prodube0l msisdnsExp"
expiredPrefix

Syntax: expiredPrefix = "prefix"

Description: The prefix of files listing wallets moving to terminated state.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "expiredWallet"

Notes: The file is generated by ccsVWARSEXxpiry on the VWS and read by

ccsWalletExpiry on the SMS.
The filename format is: expiredPrefix_YYYYMMDDHHMMSSexpiredSuffix
Example: expiredPrefix = "prodube(Ol termWallets"

removedDirectory

Syntax: removedDirectory = "dir"

Description: Defines the location of files listing wallets being removed.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/CCS/logs/wallet”

Notes: The file is generated by ccsVWARSEXpiry on the VWS and read by
ccsWalletExpiry on the SMS.

Example: removedDirectory = "/var/CCS/removedWallets"

168 Charging Control Services Technical Guide

removedPrefix

Syntax: removedPrefix = "prefix"

Description: The prefix of files listing wallets being removed from the system.
Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "removedWallet"

Notes: The file is generated by ccsVWARSEXpiry on the VWS and read by

ccsWalletExpiry on the SMS.

Whether ccsVWARSEXpiry or ccsWalletExpiry removes the wallet depends on
logNotRemoveWallet (on page 244).

The filename format is: removedPrefix_YYYYMMDDHHMMSSremovedSuffix
Example: removedPrefix = "produbeOl removeWallets"

Failure

If ccsWalletExpiry fails, wallet expiry updates from the VWS will fail.

Output

The ccsWalletExpiry writes error messages to the system messages file. It also writes additional output
to /IN/service_packages/CCS/tmp/ccsWalletExpiry.log.

libccsCommon

Purpose

libccsCommon provides common functions to various CCS processes.

Startup

libccsCommon is used by a number of CCS processes. No startup configuration is required for this
library to be used.

Configuration

The libccsCommon library supports parameters from the common parameter group in the eserv.config file
on all machines. For more information, see Configuration.

VoucherRedeemFail Files

Purpose

The VoucherRedeemkFail files are used as an aid to fraud detection by providing a list of all redeem
failures for post processing by a third party.

All type 15 ("Voucher Redeem") EDRs with a result of anything other than "success" cause a record to
be written to the current fail file.

Before being added to, each fail file is archived when the maxEDRs number has been reached, or the
file has been open longer than the maxOpenDuration time and there is at least one record in the file

Chapter 3, Background Processes on the SMS 169

Record format

The pipe separated file format is follows:

VoucherNumber | MSISDN| RedemptionDate| FailureReason
The field are taken from the type 15 EDR record as follows:

Field EDR Tag

VoucherNumber VOUCHER NUMBER

MSISDN MSISDN when MSISDN plug-in is active, otherwise
REDEEMING _ACCT_REF

RedemptionDate RECORD DATE

FailureReason RESULT

Note: If any information is not available, the corresponding column will be left blank.

File name format

The naming convention for the current/temporary file is:

tmp failed Voucher PID file-open-time.log

The naming convention of the current/temporary file when it is archived for third party processing is:
failed Voucher PID datetime.log'

170 Charging Control Services Technical Guide

Chapter 4
Background Processes on the SLC

Overview

Introduction

This chapter provides a description of the programs or executables used by CCS as background
processes on the SLCs.

Executables are located in the /IN/service packages/CCS/bin directory.

Some executables have accompanying scripts that run the executables after performing certain cleanup
functions. All scripts should be located in the same directory as the executable.

For more information about the processes and systems that use these programs and executables, see
System Overview (on page 1).

Warning: It is a pre-requisite for managing these core service functions that the operator is familiar with
the basics of Unix process scheduling and management. Specifically, the following Unix commands:

e init (and inittab)

e cron (and crontab)

e ps
o Kill
e top

e Vi (or other editing tool)

In this chapter

This chapter contains the following topics.

S TST O 1= o | AT 171
Pl NI ... e 177
(07037 AYox 1[0 o F- 3T 178
CCSCBLOHRINAES ... ettt 182
COSC B AOHRIN SH A ..ot 182
(oo3] 1Y, E= Yol {01 N\ Lo o <13 182
(ol ot 1)Vl o] = Y PP TP UPPRPTRN 193
DCCSCIENIPIUGINS. ...ttt e e et e e e e e e s e aab e e e e e e e e e e nnneeees 203
1] JoZo1={ @] 1 1] 12 o] o 204
BeClient
Purpose

The BeClient is a SLEE interface which handles connections to the beServer process on the VWS for
SLEE applications running on the SLC.

Chapter 4, Background Processes on the SLC 171

The BeClient needs to be configured for CCS so functions such as voucher recharge can be completed.
This is implemented as a CCS specific plug-in that is described further below.

For more information about the BeClient, see VWS Technical Guide.

BeClient plugins

The BeClient can be extended by installing plug-ins. This section lists the available BeClient plug-ins
which are provided with CCS.

Voucher plugin

This plug-in controls the voucher recharge process. It splits the voucher recharge wallet message into
three messages:

e Voucher reserve

e Wallet recharge

e Voucher commit

If the voucher reserve or wallet recharge operation fails, the whole process stops. This allows for the
possibility that the vouchers and wallets are on different VWS pairs and provides for an automatic
voucher redeem process that does not require post-process reversals.

This function is contained within the libccsClientPlugins.so library.

Note: For this plug-in to function properly, the Broadcast plug-in (libclientBcast.so) must also be installed
and configured. For more information about the Broadcast plug-in, see VWS Technical Guide.

Merge wallets plug-in

The plug-in manages the merging of two wallets. It:

e Receives merge wallets requests.
¢ Obtains identifiers for the wallets involved.
e Determines whether a link or a merge is required.
e If alink is required, the plug-in relinks the wallets and subscribers.
e If amerge is required, the plug-in:
= Locks the source wallet for 30 seconds,

= Merges the source and destination wallets
= Relinks the wallets and subscribers.

The merge wallets function is contained in the libcesClientPlugins.so library.

Location

This binary is located on SLCs.

Startup

The BeClient is a SLEE interface and is started during SLEE initialization. The line in the SLEE.cfg which
starts the BeClient is:

INTERFACE=ccsBeClient BeClientStartup.sh /IN/service packages/CCS/bin/ 1 EVENT
Note: The above settings are defaults and may vary.

For instructions about starting and stopping BeClient, see SLEE Technical Guide.

172 Charging Control Services Technical Guide

Configuration

In order to load and operate, BeClient plug-ins read the BeClient section of the eserv.config file. The
BeClient section is listed below, showing the configuration for the plug-ins provided with CCS.

Note: This text does not show the full configuration for BeClient. For more information about the full
configuration for the BeClient, see VWS Technical Guide.

BeClient = {
standard BeClient configuration

plugins = [
{
Voucher recharge plugin (VRW)
config="voucherRechargeOptions",
library="1libccsClientPlugins.sl",
function="makeVoucherRechargePlugin"

Broadcast plugin needed by VRW
config="broadcastOptions",
library="libclientBcast.so",
function="makeBroadcastPlugin"

Voucher Type recharge plugin (VTR)
config="voucherTypeRechargeOptions",
library="1libccsClientPlugins.so",
function="makeVoucherTypeRechargePlugin"

]

voucherRechargeOptions = {
voucherRechargeTriggers = [
"VRW "
1
srasActivatesPreuseAccount = false
srActivatesPreuseAccount = true
sendBadPin = false

}

broadcastOptions = {
aggregateNAckCodes = [
"NVOU"
]
}

voucherTypeRechargeOptions = {

srasActivatesPreuseAccount=false
voucherTypeRechargeTriggers = ["VTR "]

Parameters

BeClient has no command line parameters.

The BeClient supports the following parameters from the BE section of eserv.config.

Chapter 4, Background Processes on the SLC 173

plugins
Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

config

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

function
Syntax:
Description:
Type:
Optionality:

plugins = [

config=""
library="1ib"
function="str"

[...]
]

Defines any client process plug-ins to run. Also defines the string which maps to
their configuration section.

Parameter array
Mandatory

The VRW needs the libclientBcast plug-in to function properly. It must be placed
last in the plugins configuration list.

For more information about the libclientBcast plug-in, see VWS Technical Guide.

plugins = [
{
Voucher recharge plugin (VRW)
config="voucherRechargeOptions",
library="1libccsClientPlugins.so",
function="makeVoucherRechargePlugin" }

Broadcast plugin needed by VRW
config="broadcastOptions",
library="libclientBcast.so",
function="makeBroadcastPlugin" }

Voucher Type recharge plugin (VTR)
config="voucherTypeRechargeOptions",
library="1libccsClientPlugins.so",
function="makeVoucherTypeRechargePlugin"}

config="name"

The name of the configuration section for this plug-in. This corresponds to a
configuration section within the plugins section in the eserv.config file.

String
Required (must be present to load the plug-in)

No default

config="voucherRechargeOptions"

function="str"
The function the plug-in should perform.
String

Required (must be present to load the plug-in)

174 Charging Control Services Technical Guide

Allowed:

Default: No default

Notes:

Example: function="makeVoucherRechargePlugin"

library

Syntax: library="1ib"

Description: The filename of the plug-in library.

Type: String

Optionality: Required (must be present to load the plug-in)

Allowed:

Default: No default

Notes:

Example: library="1libccsClientPlugins.so"

broadcastOptions

Syntax: broadcastOptions = {

aggregateNAckCodes = [config]
}

Description: Name of configuration section for the BeClient Broadcast plug-in libclientBcast.

Type: Parameter array

Optionality:

Allowed:

Default:

Notes: libclientBcast is used by a range of processes which connect to the beServer,
including:

e BeClient
e PlbeClient
e ccsBeOrb
For more information about libclientBcast, see 1ibclientBcast.
Example: broadcastOptions = {
aggregateNAckCodes = []
}
aggregateNAckCodes
Syntax: aggregateNAckCodes = [
"NVOU"
]

Description: When this parameter is set, the BeClient waits for a response from all the VWS
pairs in use and filters the responses from the broadcast request using the
configured NAck codes.

Type: Parameter array

Optionality:

Allowed: NVOU

Default:

Chapter 4, Background Processes on the SLC

175

Notes: When a voucher recharge request is broadcast, this ensures that all the available
VWS pairs are checked for the required voucher before a voucher not found
message is returned to the requesting process.

Example:

Example

BeClient = {
clientName = "scpClientl"
heartbeatPeriod = 3000000
maxOutstandingMessages = 100
connectionRetryTime = 5
plugins = [

{
Voucher recharge plugin (VRW)

config="voucherRechargeOptions",
library="1libccsClientPlugins.sl",
function="makeVoucherRechargePlugin"}

Broadcast plugin needed by VRW
config="broadcastOptions",
library="1libclientBcast.so",
function="makeBroadcastPlugin" }

Voucher Type recharge plugin (VTR)
config="voucherTypeRechargeOptions",
library="1libccsClientPlugins.so",
function="makeVoucherTypeRechargePlugin"}

]

voucherRechargeOptions = {
voucherRechargeTriggers = [
HVRW "
]
srasActivatesPreuseAccount = false
srActivatesPreuseAccount = true

sendBadPin = false

}

broadcastOptions = {

aggregateNAckCodes = [
"NVOU"
]
}
voucherTypeRechargeOptions = {
srasActivatesPreuseAccount=false
voucherTypeRechargeTriggers = ["VTR "]
}
notEndActions = [{type="IR ", action="ACK "}
{type="SR ", action="ACK "}

{type="SR ", action="NACK"}
{type="INER", action="ACK "}
{type="SNER", action="ACK "}
{type="SNER", action="NACK"}

176 Charging Control Services Technical Guide

Output

The BeClient writes error messages to the system messages file.

PIClientIF

Purpose

The PI Client Interface is a TCP client interface that runs on the SLC and communicates with one or
more PIProcesses running on the SMS.

Pl commands are received from the Service Logic Execution Environment (SLEE) and forwarded to any
available PI process with the appropriate synstamp. Pl responses are sent back to the SLEE on the
appropriate dialog.

Add subscriber (CCSCD1=ADD) and delete subscriber (CCSCD1=DEL) commands are both supported.
Add subscriber can be configured to override or add additional parameters to those provided in the
incoming message, but delete subscriber does not require additional configuration, which is why there is
no CCSCD1.DEL section in the example configuration file.

Startup

The PIClientlF is a SLEE interface and is started during SLEE initialization. The line in the SLEE.cfg
which starts the PIClientlF is:

INTERFACE=ccsPiClientIF ccsPiClientIF.sh /IN/service packages/CCS/bin 1 EVENT
Note: The above settings are defaults and may vary.

For instructions about starting and stopping PIClientlF, see SLEE Technical Guide.

Output

The PIClientIF writes error messages to the system messages file.

Example
piClientIF = {
Hostname or IP address of the PI
(Mandatory)
Default: None
host = "usms"

Ports on which the PI processes are listening
(Mandatory)

Default: None

ports = [2999 , 3000]

Username for the PI login
(Optional)

Default: "admin"

username = "admin"

Password for the PI login
(Optional)

Default: "admin"

password = "admin"

Chapter 4, Background Processes on the SLC 177

Time (in milliseconds) to wait for a response
from the PI.

(Optional)

Default: 2000

timeoutInterval = 2000

Maximum number of timed-out PI requests on

a connection before that connection is closed
where "0" indicates that the connection will
be immediately closed after a timeout occurs.
It is recommended that maxTimeouts is set to
the default (0), the connection will be
re-opened after connectionRetryTimeout has
expired.

(Optional)

Default: O

maxTimeouts = 0

S e S HE e o S S 3

Time (in milliseconds) to wait before re-trying
a failed connection.

(Optional)

Default: 1000

connectionRetryTimeout = 1000

Maximum number of outstanding PI requests.

New requests will be rejected if this limit
is reached.
#
#

(Optional)
Default: 50
maxQueueSize = 50
Period (in milliseconds) to log statistics for
debugging. Information such as pending request
queue length, number of available connections
and notifications of dialog closed events will
be logged. A value of "0" indicates this feature
is disabled. Note: some PI requests (eg CCSCD1=DEL)
will not be sent on more than 1 connection at a time.
(Optional)
Default: O
statsTimer = 0
}
ccsActions
Purpose

ccsActions provides the functions which enable the CCS Feature Nodes to interact with other elements
in the system, including:

e acsChassis
e the VWS (via the BeClient and beServer), and
e other elements on the network (such as the VPU).

Startup

If ccsActions is included in the acs.conf, ccsActions will be started by slee_acs when the SLEE is started.

For more information about how this included in acs.conf, see ChassisPlugin (on page 53).

178 Charging Control Services Technical Guide

Configuration

In order to load and operate, ccsActions reads the ccsActions section of the eserv.config file. The
ccsActions section is listed below.

ccsActions = {
maxOutstandingBeClientMsgs = int
loggedNotificationPeriod = int
loggedInvalidPeriod = int
exceptionLogPeriod = int
configuredVolumeITC = int

volumeReservationLength = int
accumulateChargeInfoCosts = truel|false
allowNegativeNofundsPolicyOnCommit = true|false
}
Parameters

ccsActions supports the following parameters from the CCs section of eserv.config.

accumulateChargeInfoCosts

Syntax: accumulateChargeInfoCosts = truel false
Description: Determines if charge costs are allowed to accumulate.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: e true - will allow to accumulate

o false - will reset the cost for each charge
Default: true
Notes:
Example: accumulateChargeInfoCosts = true

allowNegativeNoFundsPolicyOnCommit

Syntax: allowNegativeNoFundsPolicyOnCommit = true|false

Description: If funds have been depleted during a reservation request, sets whether or not to allow
the overall balance to go negative when committing the reservation.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true (allow the overall balance to go negative)
false (do not allow the overall balance to go negative)

Default: false

Notes:

Example: allowNegativeNoFundsPolicyOnCommit = true

configuredvVolumeITC

Syntax: configuredvolumeITC = val

Description: Sets the bearer capability - Information Transfer Capability value for a data
charging session.

Type:

Optionality:

Allowed: Valid values (in decimal) are:

Chapter 4, Background Processes on the SLC 179

e 0 =speech

e 8 =UDI (unrestricted digital information)

e 9 =RDI (restricted digital information)

e 16 =3.1 kHz Audio

e 17 = UDI with tones / announcements (Q.931 1998)

e 24 =Video

Default: 8

Notes:

Example: configuredvolumeITC = 8
loggedInvalidPeriod

Syntax: loggedInvalidPeriod = seconds
Description: Interval separating the writing of each summary of ccsActions errors to the

syslog.

Type:

Optionality: Optional

Allowed:

Default: 10

Notes:

Example: loggedInvalidPeriod = 10
loggedNotificationPeriod

Syntax: loggedNotificationPeriod = int
Description: The logged notification period.

Type: Integer

Optionality:

Allowed:

Default:

Notes:

Example: loggedNotificationPeriod = 10
maxOutstandingBeClientMsgs

Syntax: maxOutstandingBeClientMsgs = number
Description: The maximum number of outstanding BeClient messages.
Type: Integer

Optionality: Optional (default used if missing)

Allowed:

Default: 1000

Notes: Too small a value may result in calls being dropped.
Example: maxOutstandingBeClientMsgs = 2000

180 Charging Control Services Technical Guide

quotaProfileBlock

Syntax: quotaProfileBlock = int

Description: The profile block number to use for retrieving quota related profile fields. Five pairs of
quota value and quota opt-out tags are looked up in this block:
e Quota value tags (numbers 0x140511 to 0x140515)

e Quota opt-out tags (humbers 0x140521 to 0x140525)

Type: Integer

Optionality: Optional (default used if not set)

Allowed: An integer in the range 8 to 15 for the APP1 to APP8 profile blocks, or 16 for the
ANY_VALID profile block.

Default: 8 — This is the subscriber profile block

Notes:

Example: quotaProfileBlock = 16

volumeReservationLength

Syntax: volumeReservationLength = days

Description: The reservation length, in days, for data charging sessions such as Radius
Control Agent.

Type:

Optionality:

Allowed:

Default: 5

Notes: The UBE parameter noExpectedKeep should be set to the same value (in
seconds) as this parameter. See VWS Technical Guide.

Example: volumeReservationLength = 5

Example

ccsActions = {

maxOutstandingBeClientMsgs = 1000
loggedNotificationPeriod = 10
loggedInvalidPeriod = 10
configuredvVolumeITC = 8
volumeReservationLength = 5

}

Failure

If ccsActions fails, the CCS feature node functionality will fail. This will usually result in call processing
becoming unstable or failing.

Output

ccsActions writes summaries of its error messages to the system messages file.

Chapter 4, Background Processes on the SLC 181

ccSCB10HRNAES

License

The ccsCB10HRNAES library is available only if you have purchased the Voucher Management license.

For more information about this library, see Voucher Manager Technical Guide.

cCSCB10HRNSHA

License

The ccsCB10HRNSHA library is available only if you have purchased the Voucher Management license.

For more information about this library, see Voucher Manager Technical Guide.

ccsMacroNodes

Purpose

The CCS service library handles initial call setup for calls that use CCS functionality and configures any
necessary profile data used in CCS feature node parameters. For information about the available CCS
feature nodes, see Feature Nodes Reference Guide.

Startup

If ccsMacroNodes is configured in acs.conf, it is made available to slee_acs when slee_acs is initialized.
Itis included in the acsChassis section of acs.conf in a MacroNodePluginFile entry as follows:

acsChassis
MacroNodePluginFile ccsMacroNodes.so

Configuration
ccsMacroNodes accepts the following parameters.

Example ccsMacroNodes config

Here is an example of the CCS. ccsMacroNodes section of the eserv.config file.

ccsMacroNodes = {
expireAtMidnightTZ="GMT"
MaximumMenuRetries = 2

MaximumBadCodeRetries = 3
MaxCreditCardNumberLength = 20
MinCreditCardNumberLength = 20
PromptAndCollectMaxAnnouncements = 10
PromptAndCollectInterMenuBlockTimeout = 1
ATBNoAnswerTimeout = 10
PAVRBalancesUseSystemCurrency = true
NoChargeEventClass = "FnF FnD Events"
NoChargeEventName = "FnF Config Change"
FFDiscountRule = "EXPLICIT"
HomeCountryNationalPrefix = ""
UseDisconnectlLeg = false

182 Charging Control Services Technical Guide

BFTGracePeriodLength = 0

BSPlayAllExpiriesAtEnd false
BSAnnBalanceTypes = [
{
acsCustomerId = 1
balTypelds = [6, 7, 10]

}
]
DOCCRAnnBalanceTypes = [

{

acsCustomerId = 1

balTypelds = [6, 7]

}
]
VRRedeemMinVoucherLength=9
VRRedeemMaxVoucherLength=15
VRRedeemAcctFrozenCheck=true
SMSCIIncludeZeroBalances = true
SMSCIExcludeZeroBalanceTypes = [78,79]
SMSABUseFormattedExpiryDate=true
SMSABExpiryFormat = "%d/%m/%y"

UATB Node:

If vws returns IR Nack with INSF -

[1] create a zero-value reservation
[2] enable SR Ack grants of 0

[3] grant 0 deciseconds in AC

Optional.

holdReservationOpen = false

UATB Node
Enable UATB macronode loopback

Optional.
macronodeLoopbackBranchl = false #IR Ack no funds
macronodeLoopbackBranchl5 = false #SR Nack no funds

macronodeLoopbackBranchl6 false #SR Ack with funds
UATB Node

Reroute IR Nack failures to alternative exits

Optional.

IR Nack = {

The following are default settings:

PROC = 2 # Route IR Nack[PROC] (UnknownWallet) to exit 2: BFT
INSF = 1 # Route IR Nack[INSF] (InsufficientFunds) to exit 1: Declined(No Funds)
TMNY = 1 # Route IR Nack[TMNY] (MaxConcurrent) to exit 1: Declined(No Funds)
CRIS = 1 # Route IR Nack[CRIS] (CallRestricted) to exit 1: Declined(No Funds)
COM = 2 # Route IR Nack[COM] (CommunicationError) to exit 2: BFT
NACK = 2 # Route IR Nack[NACK] (SystemError) to exit 2: BFT
WDIS = 1 # Route IR Nack[WDIS] (WalletDisabled) to exit 1: Declined(No Funds)

}

ATBNoAnswerTimeout

Syntax:

Description:

Type:

Optionality:

Allowed:

Default: 10

Notes: This parameter is not used.

Chapter 4, Background Processes on the SLC 183

Example:

HomeCountryNationalPrefix

Syntax: HomeCountryNationalPrefix = "prefix"
Description: Defines the prefix for the home country.

Type: String

Optionality:

Allowed:

Default:

Notes:

Example: HomeCountryNationalPrefix = ""

MaxCreditCardNumberLength

Syntax: MaxCreditCardNumberLength = lIen

Description: Defines the maximum length allowed for credit card numbers.
Type: Integer

Optionality:

Allowed:

Default: 20

Notes: Applies to the Credit Card Starter Menu node only.

Example: MaxCreditCardNumberLength = 20

MaximumBadCodeRetries

Syntax:

Description:

Type: integer

Optionality:

Allowed:

Default:

Notes: This parameter is not used currently.
Example:

MaximumMenuRetries

Syntax: MaximumMenuRetries = num

Description: Defines the maximum number of times the subscriber can attempt to enter
voucher numbers, PINs, and other menu options correctly, before they are
blacklisted.

Type: Integer

Optionality:

Allowed:

Default: 2

Notes: Applies to all nodes which limit subscriber retry attempts.

Example: MaximumMenuRetries = 2

184 Charging Control Services Technical Guide

MinCreditCardNumberLength

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

MinCreditCardNumberLength = len
Defines the minimum length allowed for credit card numbers.
Integer

20
Applies to the Credit Card Starter Menu node only.
MinCreditCardNumberLength = 20

PromptAndCollectInterMenuBlockTimeout

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

PromptAndCollectInterMenuBlockTimeout = seconds

Defines the timeout in seconds, after playing all the announcements for the
current menu.

Integer

1

Applies to the Account Type Swap, Dynamic Menu, and Credit Card Recharge
nodes.

PromptAndCollectInterMenuBlockTimeout = 1

PromptAndCollectMaxAnnouncements

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

PromptAndCollectMaxAnnouncements = num
Defines the maximum number of announcements to play at one time.
Integer

10
Applies to the Account Type Swap and Dynamic Menu nodes only.
PromptAndCollectMaxAnnouncements = 10

Node specific parameters

Additional node-specific parameters follow.

Balance Status

BSAnnBalanceTypes = [{}{}]
The list of balance types to be announced in the node. This parameter is mandatory.

acsCustomerId

Default:

balTypelds

[n,n,n]

Chapter 4, Background Processes on the SLC

185

BSPlayAllExpiriesAtEnd

Syntax: BSPlayAllExpiriesAtEnd = true| false
Description: Determines if each expiry is played after its corresponding balance
announcement.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: e true - Play all expiry limits after all balance announcements are played.
o false - Play each expiry to be after its corresponding balance
announcement.
Default:
Notes:
Example: BSPlayAllExpiriesAtEnd = false

RetryReserveOnNoFunds

Syntax: RetryReserveOnNoFunds = true| false

Description: When true, the UATB node will try a second reservation
attempt when:
e Only the duration withheld from the IRR remains

e We have received a NAck from the BE on our final
reservation

This is intended for use with configurations where a low credit
notification may be triggered by the reservation attempt, which
recharges the account or frees other funds. The second
attempt may then succeed.

Type: Boolean

Optionality: Optional (default used if not set).
Allowed: true, false

Default: false

Notes:

Example: RetryReserveOnNoFunds = false

Balance Status Branch

BSBCheckBalance

The list of balance types to check for each customer. The balance types must all have the same
balance unit. For more information, see Introduction (on page 69). This parameter is optional.

acsCustomerId

Default: 1

balTypelds

[n,n,n]

expireAtMidnightTZ

Syntax: expireAtMidnightTz = "tz"

Description: Sets wallets and buckets to expire at midnight for the time zone specified.
Type: String

Optionality: Optional (default used if not set).

186 Charging Control Services Technical Guide

Allowed:

Default:
Notes:

Example:

Call Info

The time zone part of the parameter must be typed in a form that the operating
system recognizes.

Alternatively you can select a time zone from the operating system's list. To view
top-level time zone names, enter 1s /usr/share/lib/zoneinfo from a shell.
To see second-level time zone names enter 1s /usr/share/lib/zoneinfo
TopLevelName/. For example, to verify that the operating system recognizes a
time zone name for DeNoranha, in Brazil, you would enter 1s
/usr/share/lib/zoneinfo/Brazil/. DeNoranha is listed, so the time zone
name would be "Brazil/DeNoranha".

false (do not modify expiry calculation).

A list of time zones can be found in the Time Zones appendix of ACS Technical
Guide.

An account is created at 2 p.m. on 5 September 2006 and is set to have a life
span of 24 days.

If the parameter expireAtMidnightTz = "Asia/Vladivostok" isincluded,
the account will expire on 29 September 2006 at midnight, Vladivostok time.

If this parameter is omitted, the account will expire on 29 September 2006 at 2
p.m.

SMSCIIncludeZeroBalances

Syntax:
Description:

Type:

Optionality:
Allowed:

Default:
Notes:

Example:

SMSCIIncludeZeroBalances = truel| false

Controls the inclusion of zero balances in the final notification composed by the
Call Information SMS feature node.

Boolean

Optional (default used if not set).
true Include zero balances.
false Exclude zero balances.
false

This value determines the behavior of all instances of the Call Information SMS
feature node. For information about the Call Information SMS feature node, see
Feature Nodes Reference Guide.

SMSCIIncludeZeroBalances = true

SMSCIExcludeZeroBalanceTypes

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:

SMSCIExcludeZeroBalanceTypes = [n,n,n]
where, n = ccs_balance_type.ID

Controls the exclusion of balance types having value zero, in the final notification
composed by the Call Information SMS (SMSCI) feature node.

When sMSCIIncludeZeroBalances is set as true, then by default all the balance
types having value as zero, are included in the notification composed by SMSCI node.
In this case, SMSCIExcludeZeroBalanceTypes Will help in excluding the unwanted
balance types from the notification string.

Optional (default used if not set)
ccs_balance_type.ID

Chapter 4, Background Processes on the SLC 187

Notes:
Example: SMSCIExcludeZeroBalanceTypes = [78,79]

Do Credit Card Recharge

DOCCRAnnBalanceTypes = [{}{}]
The list of balance types (Cash only) to be announced in the node (mandatory).

acsCustomerId

Default: 1

balTypelds
[n,n,n]

Friends and Family config

FFDiscountRule
Syntax: FFDiscountRule = "rule"
Description: Determines how discount is applied for an individual call.
Type: string
Optionality:
Allowed: Valid values are:
e EXPLICIT = the discount is applied as configured
e DIVIDED = the discount applied is divided by the number of F+F
members configured for the subscriber.
Default: "EXPLICIT"
Notes:
Example: FFDiscountRule = "EXPLICIT"
NoChargeEventClass
Syntax: NoChargeEventClass = "class"
Description: The event class to use when sending named event requests to the Voucher and
Wallet Server.
Type: string
Optionality:
Allowed: A valid event class
Default: "FnF FnD Events"
Notes:
Example: NoChargeEventClass = "FnF FnD Events"

NoChargeEventName

Syntax: NoChargeEventName = "name"

Description: The event name to use when sending named event requests to the Voucher and
Wallet Server.

Type: string

Optionality:

Allowed: A valid event name

Default: "FnF Config Change"

188 Charging Control Services Technical Guide

Notes:
Example: NoChargeEventName = "FnF Config Change"

Play Voucher Redeemed Info config

PAVRBalancesUseSystemCurrency

Syntax: PAVRBalancesUseSystemCurrency = true| false

Description: Whether to force the use of the system currency for the Play Voucher Redeemed
Info feature node.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Use the system currency.
false Use the currency of the active wallet.

Default: false

Notes: In addition, the configuration item systemCurrencyIdAgeSeconds (on page

285) may be used to control the cache time applied to system currency ID.

For more information about the Play Voucher Redeemed Info feature node, see
Feature Nodes Reference Guide.

Example: PAVRBalancesUseSystemCurrency = false

SMS Account Balance

SMSABExpiryFormat

Syntax: SMSABExpiryFormat = "format"

Description: If SMSABUseFormattedExpiryDate (on page 190) is set to true, use this format.
Type: String

Optionality: Optional (default used if not set).

Allowed: Maximum format length is 49 characters

Default: "%d/%m/%y"

Notes:

Example: SMSABExpiryFormat = "%d/%m/%y"

SMSABIncludeZeroBalances

Syntax: SMSABIncludeZeroBalances = truel| false
Description: Whether to include zero balances when using SMS Account Balance node.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Include zero balances in the notification.
false Do not include zero balances in the notification.
Default: false
Notes:
Example: SMSABIncludeZeroBalances = true

Chapter 4, Background Processes on the SLC

189

SMSABUseFormattedExpiryDate

Syntax: SMSABUseFormattedExpiryDate = true|false
Description: Whether or not to format the expiry date.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Use SMSABEXxpiryFormat (on page 189) to define
how the expiry date is formatted.

false Do not alter the format of the expiry date.
Default: false
Notes: If set to true, the date variable should be included in the Balance Expiry Template

(for example, using "It will expire on %s."). For more information about the
Balance Expiry Template, see Charging Control Services User's Guide.

Example: SMSABUseFormattedExpiryDate = false

UATB
The following parameters are used for the UATB node.

Note: The UATB node may also require switch configuration. See Switch Configuration for the UATB
Node (on page 71).

BFTGracePeriodLength

Syntax: BFTGracePeriodLength = seconds

Description: How to handle grace periods for reservations under BFT.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: e -1 - No grace period on BFT (communication or system error) for

subsequent reservations. Node will branch disconnected (NSF) on
communication/system error.

e 0 - No grace period on BFT (communication or system error) for
subsequent reservations. Node will properly treat call as BFT, branching
disconnected (BFT) on communication/system error. Call length of O is
confirmed.

e Positive — The call is allowed to continue for the specified number of
seconds on communication/system error for subsequent reservations.
Node will properly treat call as BFT, branching disconnected (BFT) on
communication or system error. Call length of O is confirmed.

Default: -1

Notes: BFT is usually triggered when a Voucher and Wallet Server fails. Used with UATB
node.

Example: BFTGracePeriodLength = 30

continueIfAnnouncementFails

Syntax: continueIfAnnouncementFails = true| false

Description: If the UATB feature node fails to play the pre-announcement
and this flag is set to:
e true — The UATB feature node continues to try to
charge the subscriber.

o false — The UATB feature node follows the appropriate
failure branch.

190 Charging Control Services Technical Guide

Type:
Optionality:
Allowed:
Default:
Example:

Boolean

Optional (default used if not set).

true or false

false

continueIfAnnouncementFails = true

MinResRemainingBeforeSubReservation

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

Service

Syntax:
Description:

Type:
Optionality:
Notes:

MinResRemainingBeforeSubReservation = num

The value the UATB uses to decide if it should issue a subsequent reservation
(SR) request to the VWS.

An SR request is made if the remaining reservation is greater than this parameter
(read notes below).

Integer
Optional (default value used if not set)
-1 for no limit (that is, infinite), or any integer.
300
o When configured, if the time elapsed since the last SR was sent exceeds

the the "Requested Reservation Chunk" value on the SMS screens, then
UATB will send an SR, regardless of any value set for this parameter.

e The units will be in the units applicable for the service being processed.
For example for Camel voice, the units will be in deci-seconds. If the SLC
processes calls or sessions for more than one type of service or protocol,
then service-specific configuration will be required for each service (see
Service).

e This feature can be used to prevent the SLC from generating too many
reservation request messages to the VWS if the remaining reservation is
below the configured threshold.

e For Used Units Confirmation (UUC) functionality, configure this value to a
large value or -1 so an SR Request message will always be sent to the
VWS and reservations size can be controlled by the "Requested
Reservation Chunk" value on the SMS screens.

e The value configured at the ccsMacroNodes level will be the default or
global value used if no service-specific configuration exists (see

Service).
MinResRemainingBeforeSubReservation = 300
Service = [{servicel}{servicel}{servicen}]

Different MinResRemainingBeforeSubReservation values can be configured for
different services on the SLC. Each array element or sub-section in the Service
Array specifies the ACS service name and corresponding
MinResRemainingBeforeSubReservation value for that service.

Array
Optional (default used if not set).

If no service array exists or if no service-specific entry exists in the Service array
section for the specific service, the ccsUATB node will use the global value
described in the parent section.

Chapter 4, Background Processes on the SLC 191

Example:

Here is example array:

Service = [
{
ServiceName = "CCS DATA"
MinResRemainingBeforeSubReservation = -1
}
{
ServiceName = "CCS"
MinResRemainingBeforeSubReservation = 300
}
{
ServiceName = "CCS OTHER"
MinResRemainingBeforeSubReservation = 30
}
]
UseDisconnectlLeg
SyMam UseDisconnectlLeg = truel| false
Description: How to end BFT call.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: e true — Sends a TCAP Disconnect (2).
e false — Sends a TCAP release.
Default: false
Notes:
Example: UseDisconnectLeg = true

Voice Call Cost

VCCTimeAnnParts

Syntax: VCCTimeAnnParts = num

Description: Defines the number of variable parts to use for time balance announcements.
Type:

Optionality: Optional.

Allowed:

Default: 2

Notes:

Example: VCCTimeAnnParts = 2

Voucher Recharge

VRRedeemAcctFrozenCheck

Syntax:
Description:

Type:

Optionality:
Allowed:

Default:

VRRedeemAcctFrozenCheck = truel| false

Whether or not ccsMacroNodes should check whether the subscriber's account
state is frozen following voucher redeem failure.

Boolean

Optional (default used if not set).
e true — Use a WI request to check the subscriber's account state.

o false — Do not send a wallet information request.
true

192 Charging Control Services Technical Guide

Notes:

Example: VRRedeemAcctFrozenCheck = true

VRRedeemDefaultScenario

Syntax: VRRedeemDefaultScenario = truel| false

Description: Indicates if the voucher recharge node should attempt to use a default scenario.
Type: Boolean

Optionality: Optional

Allowed: true, false

Default: false

Notes: Needs to be set to true for VWS vouchers using default scenarios.

For Voucher Manager vouchers this parameter has no effect.

Example: VRRedeemDefaultScenario = true

VRRedeemMaxVoucherLength

Syntax: VRRedeemMaxVoucherLength = Ien

Description: The maximum number of digits in a voucher number.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Must be equal to or larger than VRRedeemMinVoucherLength (on page 193).
Default: 14

Notes: See also VRRedeemMaxVoucherLength.

Example: VRRedeemMaxVoucherLength = 15
VRRedeemMinVoucherLength

Syntax: VRRedeemMinVoucherLength = len

Description: The minimum number of digits in a voucher number.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Must be equal to or smaller than VRRedeemMaxVoucherLength (on page 193).
Default: 14

Notes: See also VRRedeemMinVoucherLength.

Example: VRRedeemMinVoucherLength = 9

ccsSvclibrary

Purpose

Based on the incoming call details, the ccsSvcLibrary loads up the relevant control plan and feature
nodes.

Startup

If ccsSvcLibrary is configured in acs.conf, it is made available to slee_acs when slee_acs is initialized. It
is included in the acsChassis section of acs.conf in a ServiceEntry.

Chapter 4, Background Processes on the SLC 193

acsChassis
ServiceEntry (CCS,ccsSvclibrary.so)

Configuration

ccsSvclibrary supports parameters from the ccsServiceLibrary parameter group in the eserv.config
file on a SLC. It contains parameters arranged in the structure shown below.

ccsServicelibrary = {
UnknownDataReleaseCause = int
callPlanAndDataCacheValidityTime = seconds
callPlanAndDataCacheFlushTime = seconds
callPlanAndDataCacheMaxAge = seconds
enableProfile6 = truel| false
AccountLength = int
IncomingCallBarEnable = "int"
IncomingCallBarDisable = "int"
MobileTerminatingHomeCli = "cli"
ContinueAsConnect = truel false
InterpretAccountNumberAsCLI = true|false
NoCallPlanError = "sev"
GlobalDefaultForAcctRefCallPlanName = "name"
GlobalDefaultForSMOrigCallPlanName = "name"
GlobalDefaultForSMTermCallPlanName = "name"
globalCapabilityFlushPeriod = 10
promptForAccountOnOriginatingSK

true| false

promptForAccountOnTerminatingSK = truel| false
productCapabilitiesCacheFlushTime = seconds
productCapabilitiesCacheMaxAge = seconds
productCapabilitiesCacheValidityTime = seconds
productTypeForExternalSub = "pt name"
SubscriberDomainType = id

VoucherDomainType = id

PreCallAnnouncementId = id
WithheldDuration = int
SingleReservation true| false

PreCallLowBalance = truel| false
RetrieveLCRNumbers = truel| false
ConvergedScenario = truel| false

}

AccountLength

Syntax: AccountLength = int

Description: Defines the length of the subscriber number, and is used when splitting the

subscriber number entered from the PIN.

Type: Integer

Optionality:

Allowed:

Default: 10

Notes:

Example: AccountLength = 10

callPlanAndDataCacheFlushTime

Syntax: callPlanAndDataCacheFlushTime = seconds
Description: How often a check is made for data older than its validity time.

194 Charging Control Services Technical Guide

Type: Integer

Optionality: Optional (default used if missing)

Allowed: Any positive integer

Default: 3600

Notes: Applies to control plans matched on originator or destination addresses only.

To reload the cache more frequently with the latest versions of control plans, set
the callPlanAndDataCacheFlushTime to a low value. For example, when set
to 60, the cache is flushed every 60 seconds.

Example: callPlanAndDataCacheFlushTime = 300

callPlanAndDataCacheMaxAge

Syntax: callPlanAndDataCacheMaxAge = seconds

Description: The time after which an unused or unchanged control plan is dropped from the
control plan cache.

Type: Integer

Optionality: Optional (default used if missing)

Allowed: Any positive integer

Default: 3600

Notes: Applies to control plans matched on originator or destination addresses only.

To reload the cache more frequently with the latest versions of control plans, set
the callPlanAndDataCacheMaxAge to a low value. For example, when set to
60, the cache is flushed every 60 seconds.

Example: callPlanAndDataCacheMaxAge = 300

callPlanAndDataCacheValidityTime

Syntax: callPlanAndDataCacheValidityTime = seconds

Description: The maximum age of the data before it is refreshed from the database.

Type: Integer

Optionality: Optional (default used if missing)

Allowed: Any positive integer

Default: 3600000

Notes: Applies to control plans matched on originator or destination addresses only.
Example: callPlanAndDataCachevValidityTime = 300

ContinueAsConnect

Syntax: ContinueAsConnect = true| false

Description: If this is a TCAP-CONTINUE, then replace the TCAP-CONTINUE with a TCAP-
CONNECT and send it to a switch.

Type: Boolean

Optionality:

Allowed: true, false

Default: false

Notes:

Example: ContinueAsConnect = false

Chapter 4, Background Processes on the SLC 195

ConvergedScenario

Syntax: ConvergedScenario = true| false

Description: This parameter is set to true in convergent charging deployments. When it is set to true,
it disables the functionality that is not required in converged billing scenarios. For
example, database subscriber lookup is not performed as converged deployments do
not have subscribers in the database.

Type: Boolean

Optionality:

Allowed: true, false

Default: false

Notes:

Example: ConvergedScenario = false

enableProfile6

Syntax: enableProfile6 = true|false

Description: Enable application profile block 6 for use with alternate subscriber data.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: Warnings will be output in the log file when voucher recharge calls are processed
if this is false.

Example: enableProfile6 = true

getCallPlanNumberFromProfile

Syntax: getCallPlanNameFromProfile = true|false
Description: Controls whether call plan name should be fetched from the subscriber's profile.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: e true - from subscriber's profile
o false - use normal control plan selection rules.
Default: false
Notes:
Example: getCallPlanNameFromProfile = true

GlobalDefaultForAcctRefCallPlanName

Syntax: GlobalDefaultForAcctRefCallPlanName = "name"

Description: This specifies the global default control plan for the account reference.

Type: string

Optionality:

Allowed:

Default: "E2 Global Prompt For Account Reference"

Notes:

Example: GlobalDefaultForAcctRefCallPlanName = "E2 Global Prompt For

Account Reference"

196 Charging Control Services Technical Guide

GlobalDefaultSMOrigCallPlanName

Syntax: GlobalDefaultForSMOrigCallPlanName = "name"
Description: This specifies the global default call plan for SM originating.

Type: string
Optionality:

Allowed:

Default:
Notes:

Example:

GlobalDefaultSMTermCallPlanName

Syntax: GlobalDefaultForSMTermCallPlanName = "name"
Description: This specifies the global default control plan for SM terminating.

Type: string
Optionality:

Allowed:

Default:
Notes:

Example:

globalCapabilityFlushPeriod

Syntax: globalCapabilityFlushPeriod = seconds

Description: Sets the flush period in seconds. This overrides the default (1 hour) CCS
capability cache flush period.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 3600 (1 hour)

Notes: Enables updates to the default control plan to be recognized by the service loader
more quickly.

Example: globalCapabilityFlushPeriod = 10

IncomingCallBarDisable

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:

Notes: This parameter is not used.

Example:

IncomingCallBarEnable

Syntax:
Description:

Chapter 4, Background Processes on the SLC 197

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

This parameter is not used.

InterpretAccountNumberAsCLI

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Whether to interpret the subscriber number as a CLI.

true, false
false
This parameter is not used.

MobileTerminatingHomeCli

Syntax: MobileTerminatingHomeCli = "cli"

Description: Defines the CLI to use to replace the normalized calling number in the ACS
Chassis when the service being used is 'Roaming'.

Type:

Optionality:

Allowed:

Default:

Notes:

Example: MobileTerminatingHomeCli = ""

NoCallPlanError

Syntax: NoCallPlanError = "sev"

Description: This is the severity of the syslog message when no control plan is found for the
CCS service.

Type: Integer

Optionality:

Allowed: notice, warning, error, critical

Default: warning

Notes:

Example: NoCallPlanError = "warning"

PreCallAnnouncementId

Syntax:
Description:
Type:
Optionality:

PreCallAnnouncementId = id

This is the ID of the pre call announcement as used by the UATB node.

198 Charging Control Services Technical Guide

Allowed: A valid pre call announcement ID. This can be any entry ID from the
announcements table.

Note: This ID cannot be viewed from any announcement configuration screen.

Default: 0
Notes: A zero setting indicates there is no pre call announcement.
Example: PreCallAnnouncementId = 0

PreCalllowBalance

Syntax: PreCalllowBalance = true|false

Description: Determines whether or not to enable pre-call low balance warnings.

Type: Boolean

Optionality:

Allowed: false, true

Default: false

Notes: This parameter is used by the UATB node in conjunction with the
WithheldDuration parameter.

Example: PreCalllLowBalance = false

productCapabilitiesCacheFlushTime

Syntax: productCapabilitiesCacheFlushTime = seconds

Description: How often a check is made for data older than its validity time.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 120

Notes: Applies to product capabilities matched on capability and product type. To reload the

cache more frequently with the latest versions of control plans, set
productCapabilitiesCacheFlushTime to alow value. For example, when set to
60, the cache is flushed every 60 seconds. The value should be less than or equal to
that of callPlanAndDataCacheFlushTime SO that a valid capability is used when
retrieving control plan data.

Example: productCapabilitiesCacheFlushTime = 60

productCapabilitiesCacheMaxAge

Syntax: productCapabilitiesCacheMaxAge = seconds

Description: The time after which an unused or unchanged product capability is dropped from cache.
Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any positive integer

Default: 3600

Chapter 4, Background Processes on the SLC 199

Notes:

Example:

Applies to product capabilities matched on capability and product type. To remove stale
entries from cache more frequently, set productCapabilitiesCacheMaxAge to a
low value. For example, when set to 900, ccsSvcLibrary removes entries that have been
unused/unchanged for 900 seconds.

The value should be greater than that of
productCapabilitiesCachevValidityTime and less than or equal to that of
callPlanAndDataCacheMaxAge

productCapabilitiesCacheMaxAge = 900

productCapabilitiesCacheValidityTime

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

productCapabilitiesCachevValidityTime = seconds

The maximum age of the data before it is refreshed from the database
Integer

Optional (default used if not set)

Any positive integer

600

Applies to product capabilities matched on capability and product type. To refresh
entries in the cache more frequently, set
productCapabilitiesCachevValidityTime to alow value. For example, when set
to 300, entries are refreshed after 300 seconds by the next flushing cycle.

The value should be greater than that of productCapabilitiesCacheFlushTime
and less than or equal to that of callPlanAndDataCachevValidityTime.

productCapabilitiesCacheValidityTime = 300

productTypeForExternalSub

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

productTypeForExternalSub = "pt name"

Specifies the name of the product type for external subscribers that do not exist on the
Convergent Charging Controller platform. Convergent Charging Controller uses the
product type for external subscribers when sending requests to update external
subscriber balances to Oracle Communications Billing and Revenue Management
(BRM) Elastic Charging Engine (ECE) through a Diameter interface.

String
Optional (default used if not set)

"EXTERNAL"

productTypeForExternalSub = "EXTERNAL"

promptForAccountOnOriginatingSK

Syntax:
Description:

Type:
Optionality:
Allowed:

promptForAccountOnOriginatingSK = true| false

When set to true, the service library will prompt the caller to enter the subscriber
number and PIN when:

e The ccsSvcLibrary cannot identify the subscriber who is calling

e The call was not triggered with an INAP service key associated with the
service handle of "CCS_ROAM" or "SM_MT" in the SLEE.cfg file.

Boolean

true, false

200 Charging Control Services Technical Guide

Default: true
Notes:
Example: promptForAccountOnOriginatingSK = true

promptForAccountOnTerminatingSK

Syntax: promptForAccountOnTerminatingSK = true| false
Description: When set to true, the service library will prompt the caller to enter the subscriber
number and PIN when the:
e ccsSvclLibrary cannot identify the subscriber who is calling

e Call was triggered with an INAP service key associated with the service
handle of "CCS_ROAM" or "SM_MT" in the SLEE.cfg file.

Type: Boolean

Optionality:

Allowed: true, false

Default: true

Notes:

Example: promptForAccountOnTerminatingSK = true

RetrievelLCRNumbers

Syntax: RetrieveLCRNumbers = truel| false

Description: Determines whether the UATB node can retrieve LCR numbers.
Type: Boolean

Optionality:

Allowed: true, false

Default: true

Notes:

Example: RetrieveLCRNumbers = true

SingleReservation

Syntax: SingleReservation = true|false
Description: Switches single reservation on or off.
Type: Boolean

Optionality:

Allowed: true, false

Default: false

Notes:

Example: SingleReservation = false

SubcriberDomainType

Syntax: SubscriberDomainType = id

Description: The ID of the domain type through which subscribers are stored (normally the
VWS).

Type: Integer

Optionality: Optional (default used if not set).

Chapter 4, Background Processes on the SLC 201

Allowed: A valid domain type ID, as defined in a CCS domain type on the Domain tab in the
Service Management screen.

Default: 1 (for VWS)
Notes: For more information about domains, see Domains (on page 10).

For more information about what ID corresponds to the domain type which is
used for an application, see the application's technical guide.

Example: SubscriberDomainType = 1

UnknownDataReleaseCause

Syntax: UnknownDataReleaseCause = int

Description: Defines the release cause to send back to the switch in the TCAP-CONNECT
when the service cannot be loaded.

Type: Integer

Optionality:

Allowed:

Default: 31

Notes:

Example: UnknownDataReleaseCause = 31

VoucherDomainType

Syntax: VoucherDomainType = id

Description: The ID of the domain type through which vouchers are redeemed (normally the
VWS).

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid domain type ID, as defined in a CCS domain type on the Domain tab in the
Service Management screen.

Default: 1 (for VWS)

Notes: 2 sets voucher redemptions to process through the Voucher Manager server.

When the CCS Balance Top Up Suite is installed, the VoucherDomainType iS
automatically set to "2".

You can manually change the value back to '1' to use the VWS even when the
CCS Balance Top Up Suite SLC package is installed.

For more information about domains, see Overriding default domain types.

For more information about what ID corresponds to the domain type which is
used for an application, see the application's technical guide.

Example: VoucherDomainType = 1

WithheldDuration

Syntax: WithheldDuration = seconds

Description: The length of time withheld for low balance warnings.
Type: Integer

Optionality:

Allowed:

Default: 0

Notes: This parameter is used by the UATB node.

Example: WithheldDuration = 0

202 Charging Control Services Technical Guide

libccsClientPlugins

Purpose

libccsClientPlugins is a library which provides CCS plug-ins to the beClient. The plug-ins include:

e VoucherRechargePlugin
e VoucherTypeRechargePlugin
e MergeWalletsPlugin

Startup

libccsClientPlugins is used if the library and one or more of its functions is included in a plugins
section in eserv.config. For an example of a process which uses this library, see plugins (on page 174).

Configuration

libccsClientPlugins is configured in the section specified in the config parameter in the plug-ins entry
which calls the related function and the libccsClientPlugins library.

For examples, see plugins (on page 174).
voucherRechargeOptions

Name of the configuration section required for the Voucher Recharge plug-in.

sendBadPin

Syntax: sendBadPin = true| false

Description: When true, increments the Bad PIN for a failed voucher recharge.

Type:

Optionality:

Allowed: true, false

Default: false

Notes: Used for invalid voucher number or voucher PIN only - does not apply to failed
wallet recharges.

Example: sendBadPin = false

singleBonusEdrs

Syntax: singleBonusEdrs = truel| false

Description: Whether to produce a single bonus EDR.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default: false

Notes:

Example: singleBonusEdrs = false

Chapter 4, Background Processes on the SLC 203

srActivatesPreuseAccount

Syntax: srActivatesPreuseAccount = true| false
Description: Weather or not SR (Voucher Recharge) activate wallets with a Pre-use state.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Voucher recharges can activate pre-use wallets.
false Voucher recharges cannot be used with pre-use
wallets.
Default: false
Notes: The application of this parameter is also affected by rechargePreUseAccounts
(on page 288).
Example: srActivatesPreuseAccount = false

srasActivatesPreuseAccount

Syntax: srasActivatesPreuseAccount = true|false
Description: When true, SRAS activates the wallet.

Type: Boolean

Optionality:

Allowed: true, false

Default: false

Notes:

Example: srasActivatesPreuseAccount = false

voucherRechargeTriggers

This configuration is required for the Voucher plug-in. It defines the type of message that triggers the
plug-in.

libccsCommon

Purpose
libccsCommon provides common functions to various CCS processes.

Startup

libccsCommon is used by a number of CCS processes. No startup configuration is required for this
library to be used.

Configuration

The libccsCommon library supports parameters from the common parameter group in the eserv.config file
on all machines. For more information, see Configuration.

204 Charging Control Services Technical Guide

Chapter 5
Background Processes on the VWS

Overview

Introduction

This chapter provides a description of the programs or executables used by CCS as background
processes on the VWSs.

Executables are located in the /IN/service_packages/CCS/bin directory.

Some executables have accompanying scripts that run the executables after performing certain cleanup
functions. All scripts should be located in the same directory as the executable.

For more information about the processes and systems that use these programs and executables, see
System Overview (on page 1).

Warning: It is a prerequisite for managing these core service functions that the operator is familiar with
the basics of Unix process scheduling and management. Specifically, the following Unix commands:

e init (and inittab)

e cron (and crontab)
° ps

o Kill

Chapter 5, Background Processes on the VWS 205

In this chapter

This chapter contains the following topics.

DEVWARS ..ttt a et e sttt e s e bt e e e b e e e e R b e e e e n b e e e e nbee e e e nres 206
(odot=Y AXox 11 V7 Vo] 11O o= T o - PSSR 208
(odot=Y == o | = 0] =d 1o 1o PSSR 209
LoT0t=] 2= Ao S 210
CCSCBLOHRNAES ...ttt e e e e e e s e bttt e e e e e e s e be e e e e e e e e e annreeeeeas 211
CCSCBLOHRNSHA ...ttt e e e e e e s e b ettt e e e e e s sa s babeeeeaeeeeannreeeeeas 211
CCSEXPINYMESSAGEGENEIALONitiiie ittt ettt e ettt e e et e e e e e e snbe e e e enees 211
(ofo1 I T =103/ o | PP PP PRPTR PP 212
CCSMFIIECOMPIIET ... et e et e e et e e et e e et e e e e e neeas 212
oot~ N [o] 1] o= 110] [PPSR 216
CCSSLEECNANQEDAGIMON.uuiiiiiiiiiiiiiiiiiiiiiiiiiiiaeeae s nan 219
Lod 0] I 1] S [T 1 228
CCSREWAIASPIUGIN ...uutiiiiiiiiiiiiiiiiii i nan 230
CCSPIMXPIUGIN L.ttt nan 234
CCSVWARSACHVALION ...ttt e e e e et e e e e e st et e e e e e e e e e e annnreneeas 237
CCSVWARSAMOUNTHANGIETuuiiiiiiiiiiiiiiit e nas 239
COSVWWARSEXDIIY ..t teeeittete ettt ettt ettt ettt e ettt e e e ettt e e e aa b et e e e eab et e e e anbe e e e e anbe e e e e anbeeeeennnas 240
CCSVWARSNaMEdEVENTHANAIEToeviiiiieeiice e e e 248
CCSVWARSPENOTICCNAIGEceoiiiiiieie et 253
CCSVWARSQUOTA ...ttt s 258
CCSVWARSREChArgEHANUIETuuuiiiiiiiiiiiiiii s 258
CCSVWARSRESErVAtiONHANAIET ... 259
CCSVWARSVOUCNEIHANAIETcciiiiiiee e e 265
CCSVWARSWaAIETHANAIETceiiiiiiiieee e 269
COSWVLCPIUQGIN ..ttt s 271
CIMNPUSHFIIES ...ttt e e e e et e e e e e e s bbb e e e e e e e e e snnbneeeeas 271
HDCCSCOMIMON ...ttt ettt e e e e e e eeaeeee e s e e eeeaeaassasasesssassssssasasssssesssesnsnsnnnnes 276
HDCCSVWARSULIS ...ttt e eeaeesaeaseaseaesasesasssssssasssesesasennnes 287
beVWARS

Purpose

beVWARS is the Vouchers Wallets Accounts Reserve System. It enables CCS to handle actions that
interact with the wallet, account, and voucher tables in the E2BE database on the VWS. Most
beVWARS functionality is provided by plug-ins and handlers as defined in the handlers and plugins (on
page 208) parameters. This section shows beVWARS configuration, which includes CCS plug-ins and
handlers.

Note: If the VWS is not used, the beVWARS handlers and plug-ins are not relevant.

Example

An example of the beVWARS parameter group of a Voucher and Wallet Server eserv.config file is listed
below. Comments have been removed.
beVWARS = {

other beVWARS configuration

handlers = [
VWS beVWARS handlers

"ccsVWARSReservationHandler.so"

206 Charging Control Services Technical Guide

"ccsVWARSNamedEventHandler.so"
"ccsVWARSRechargeHandler.so"
"ccsVWARSAmountHandler.so"
"ccsVWARSWalletHandler.so"
"ccsVWARSPolicyHandler.so"

]

plugins = [
VWS beVWARS plug-ins

"ccsVWARSExpiry.so"
"ccsRewardsPlugin.so"
"ccsVWARSActivation.so"
"ccsPDSMSPlugin.so"
"ccsNotification.so"
"ccsWLCPlugin.so"
"ccsBadPinPlugin.so"
"ccsPMXPlugin.so"
"ccsPolicyPlugin.so"

}

Note: Other handlers and plug-ins may be provided which extension features (for example the
ccsVWARSVoucherHandler is provided by the Voucher Manager feature). For more information about
those libraries, see the documentation provided with the feature.

Parameters

beVWARS has two parameters which are relevant to CCS configuration. They are documented below.
For more information about other beVWARS parameters, see VWS Technical Guide.

handlers
Syntax: handlers = [
" libll
[...]
]
Description: Lists the beVWARS message handler plug-ins to load.
Type: Array
Optionality: Required to load handlers which handle messages from CCS processes such as
ccsBeOrb (on page 89).
Allowed:
Default:
Notes: This array will also include the standard handlers provided by VWS.

For more information about the standard handlers provided with CCS including
their configuration, see the following:
o ccsVWARSReservationHandler (on page 259)
e ccsVWARSNamedEventHandler (on page 248)
e ccsVWARSRechargeHandler (on page 258)
e ccsVWARSAmountHandler (on page 239)
e ccsVWARSWalletHandler (on page 269)
Example: handlers = [
"ccsVWARSReservationHandler.so"
"ccsVWARSNamedEventHandler.so"
"ccsVWARSRechargeHandler.so"

"ccsVWARSAmountHandler.so"
"ccsVWARSWalletHandler.so"

Chapter 5, Background Processes on the VWS 207

plugins

Syntax: plugins = [

"lib"

[...]

]

Description: Lists the beVWARS event plug-ins to load.
Type: Array
Optionality: Required to load event plug-ins which perform functions needed by CCS.
Allowed:
Default:
Notes: Where plug-ins are triggered by the same event, they will operate in the order

they appear in this list.

This array will also include the standard plug-ins provided by VWS, and may also
include plug-ins from other applications such as Promotion Manager.

For more information about the standard plug-ins provided with CCS including
their configuration, see the following:
e CcCcsVWARSExpiry (on page 240)
e ccsRewardsPlugin (on page 230)
e ccsVWARSActivation (on page 237)
e ccsPDSMSPlugin (on page 228)
e ccsNotification (on page 216)
e CcCSWLCPIugin (on page 271)
e ccsBadPinPlugin (on page 209)
e ccsPMXPlugin (on page 234)
e ccsPolicyPlugin
Example: plugins = [
"ccsVWARSExpiry.so"
"ccsRewardsPlugin.so"
"ccsVWARSActivation.so"
"ccsPDSMSPlugin.so"
"ccsNotification.so"
"ccsWLCPlugin.so"
"ccsBadPinPlugin.so"

"ccsPMXPlugin.so"
"ccsPolicyPlugin.so"

ccsActivationCharge

Purpose

ccsActivationCharge is a beVWARS plug-in which:

e Processes wallets as they activate (triggers on a wallet activated event)
e Applies any periodic charges which apply to the wallet and have Charge on Activation set to true.
For more information about periodic charge configuration, see Charging Control Services User's Guide.

Note: This process only applies to periodic charges which were configured in CCS 3.1.4 or earlier.

208 Charging Control Services Technical Guide

Startup

If ccsActivationCharge is included in the beVWARS plugins array in eserv.config, it is loaded by
beVWARS when beVWARS is initialized.

Itis included in the following lines:

plugins = [
"ccsActivationCharge.so"
]
For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other event plug-ins may also be included in the plugins array.

Parameters

The ccsActivationCharge supports the following parameter in the ccsActivationCharge section of
eserv.config.

periodicChargeCacheValidityPeriod

Syntax: periodicChargeCacheValidityPeriod = seconds
Description: Time out value in seconds for the periodic charge cache.
Type: Integer

Optionality: Optional

Allowed: Any positive decimal integer.

Default: 600

Notes:

Example: periodicChargeCachevValidityPeriod = 600
Example

An example of the ccsActivationCharge parameter group of a Voucher and Wallet Server
eserv.config file is listed below. Comments have been removed.

ccsActivationCharge = {
periodicChargeCacheValidityPeriod = 600
}

ccsBadPinPlugin

Purpose

ccsBadPinPlugin is a beVWARS event plug-in that checks for bad PIN thresholds. It is triggered by a
balance value changed event.

Startup
If ccsBadPinPlugin is included in the beVWARS plugins array in eserv.config, it is loaded by beVWARS
when beVWARS is initialized.

It is included in the following lines:

plugins = [
"ccsBadPinPlugin.so"

]

Chapter 5, Background Processes on the VWS 209

For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other event plug-ins may also be included in the plugins array.

Configuration

ccsBadPinPlugin supports the parameters from the badPinPlugin section of eserv.config.
Note: Some of the ccsVWARSVoucherHandler parameters are also used by ccsBadPinPlugin:
e clearConsecutivePin (on page 266)

e dailyBadPinExpiryHours (on page 267)

e weeklyBadPinExpiryHours (on page 267)

e monthlyBadPinExpiryHours (on page 267)

e consecutiveBadPinExpiryHours (on page 266)

e vomslinstalled (on page 268)

cacheFlushPeriod

Syntax: cacheFlushPeriod = seconds

Description: The number of seconds before refreshing the balance type cache used by
ccsBadPinPlugin.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 200

Notes:

Example: cacheFlushPeriod = 300

cacheValidityTime

Syntax: cacheValidityTime = seconds

Description: The number of seconds an entry is kept before the entry's record is re-read.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10

Notes:

Example: cacheValidityTime = 30

ccsBeAvd

License

The ccsBeAvd binary is only available if you have purchased the Voucher Management license.

For more information about this library, see Voucher Manager Technical Guide.

210 Charging Control Services Technical Guide

cCcSCB10HRNAES

License

The ccsCB10HRNAES library is available only if you have purchased the Voucher Management license.

For more information about this library, see Voucher Manager Technical Guide.

cCSCB10HRNSHA

License

The ccsCB10HRNSHA library is available only if you have purchased the Voucher Management license.

For more information about this library, see Voucher Manager Technical Guide.

ccsExpiryMessageGenerator

Purpose

ccsExpiryMessageGenerator generates a list of wallets or balances which will expire shortly. The list of
subscribers is generated on the VWSs and transfered to the SMS, where they are actioned by
ccsExpiryMessageLoader.

Startup

The CCS install process adds the ccsExpiryMessageGenerator process to the crontab, running at 9 am
on each day of month for ccs_oper by default.

It is scheduled as /IN/service_packages/CCS/bin/ccsExpiryMessageGenerator by the following line:

02 * * * . /IN/service packages/CCS/.profile ;

/IN/service packages/CCS/.profile-be ;

/IN/service packages/CCS/bin/ccsExpiryMessageGenerator >>
/IN/service packages/CCS/tmp/ccsExpiryMessageGenerator.log 2>&1

Parameters

Available parameters are detailed in ccsExpiryMessageLoader (on page 137).

Example

CCS = {
ExpiryMessages = {

walletExpiryPeriod = 15
balanceExpiryPeriod = 10

balanceTypes = [1]

oracleUsername = ""

oraclePassword = ""

generatorFilename = "ccsExpiryMessages"

generatorFiledir = "/IN/service packages/CCS/logs/expiryMessageWrite/"
inputDirectory = "/IN/service packages/CCS/logs/expiryMessageRead/"

cmnPushFiles = [

Chapter 5, Background Processes on the VWS 211

"-d", "/IN/service packages/CCS/logs/expiryMessageWrite/"

"-r", "/IN/service packages/CCS/logs/expiryMessageRead/"
"-h", "produsmsO01l"

"_p", "2027"

w_En

}
}

This section of the eserv.config must be set up on the SMS and VWS for expiry notification short
messages sent from the ccsExpiryMessageGenerator and ccsExpiryMessagelLoader processes. If this
section is not present, then no expiry notifications will be sent at all.

Failure

If ccsExpiryMessageGenerator fails, no expiry notifications will be sent at all.

Output

The notification request files produced by ccsExpiryMessageGenerator are in the format:

notif id lang id MSISDN num params paraml|[|paramZ|...]
ccsExpiryMessageGenerator writes error messages to the system messages file, and also writes
additional output to /IN/service_packages/CCS/tmpl/ccsExpiryMessageGenerator.log.

ccsLegacyPIN

Purpose

ccsLegacyPIN plug-in library is used by ccsAccount (on page 291) and the ccsVoucher_CCS3 voucher
tool to encrypt the PINs using the DES authentication rule. For more information about authentication
rules, see Security libraries.

Note: The ccs3Encryption plug-in is a symbolic link to the ccsLegacyPIN (on page 142) plug-in, but in the
ccs3Encryption mode it uses different parameters.

Startup

ccsLegacyPIN is used by ccsVoucher CCS3 as necessary. No startup configuration is required for this
library to be used.

Configuration

ccslLegacyPIN has no specific configuration. It does accept some parameters from ccsVoucher CCS3
for voucher encryption which are configured in the CCS Voucher Management and Service
Management screens.

ccsMFileCompiler

Purpose

MFiles store data that is not updated very often (for example, tariffing data). ccsMFlleCompiler compiles
MFiles on the Voucher and Wallet Server to provide a fast lookup for the stored data.

When a new row is replicated into the CCS_MFILE table on the E2BE database, ccsMFileCompiler
processes the tariffing or named event catalogue data in the E2BE database and creates an MFile for
the VWS processes to use.

212 Charging Control Services Technical Guide

For more information about MFile processing, see the discussion on MFile updates in VWS Technical
Guide. For information about MFile configuration, see the section on MFile generation in Charging
Control Services User's Guide.

MFile filenames

ccsMFileCompiler generates MFile filenames based on the service provider ID and the date and time
that the MFile is created. For rating MFiles, ccsMFileComplier use the following format:

acs_Cust_IDDtimestamp
For named event catalogue MFiles, ccsMFileCompiler uses the following format:
Pacs_Cust_IDDtimestamp

where acs_Cust_ID is the ID of the service provider in the ACS_CUST_ID field of the CCS_MFILE
table, and timestamp is the date and time when ccsMFileCompiler created the file. For example, the
following rating MFile would be for a service provider with ID 11:

11Dp20150330110120

Note: For backward compatibility, if acs_Cust_ID is 0 (zero), then ccsMfileCompiler generates the
filename using only the timestamp. For example, the filename format is "timestamp" for rating MFlles or
"Ptimestamp. for named event catalogue MFiles. For example, the following rating MFlle would be for a
service provider with ID 0:

20150330110120

Startup

ccsMFileCompiler is started by entry ccs9 in the inittab, through the
/IN/service_packages/CCS/bin/ccsMFileCompilerStartup.sh shell script.

Configuration

ccsMFileCompiler reads the following configuration from the CCS and BE sections of the eserv.config file:

CCs = {
oracleUserAndPassword = "user/pwd"
MFile = {
path = "dir"
numberOfErrors = int
timeout = int
}
BE = {

serverId = int
amPrimary = truelfalse
beLocationPlugin = "1ib"

}

Parameters

This section describes the ccsMFileCompiler configuration parameters in the CCS section of the
eserv.config file.

ccsMFileCompiler uses the oracleUserAndPassword parameter from the CCS section of eserv.config
to retrieve Oracle database login details. For more information, see oracleUserAndPassword (on page
52).

Chapter 5, Background Processes on the VWS 213

MFile Configuration Parameters
ccsMFileCompiler supports the following parameters from the CCS, MFile section of eserv.config:
path

Syntax: path = "dir"

Description: The location of compiled MFiles.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: "/IN/service_packages/CCS/MFile"

Notes:

Example: path = "/var/CCS/MFile"

numberOfErrors

Syntax: numberOfErrors = int

Description: The number of compile errors that can occur before the ccsMFileCompiler
process will stop.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1

Notes:

Example: numberOfErrors = 1

timeout

Syntax: timeout = microsecs

Description: The number of microseconds to wait to successfully connect to the beServer
before timing out.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 20000

Notes:

Example: timeout = 5000

Example MFile Configuration

The following shows an example MFile configuration section of a eserv.config file on the Voucher and
Wallet Server.

MFile = {
path = "/IN/service packages/CCS/MFile"
numberOfErrors = 1

timeout = 20000
}

Shared Configuration Parameters

ccsMFileCompiler uses the following shared parameters defined in the BE section of eserv.config to
retrieve details of the Voucher and Wallet Server to which it should connect, and to reload the MFile
data:

214 Charging Control Services Technical Guide

e amPrimary

e serverld

e DbelocationPlugin

For information about configuring BE shared parameters, see BE eserv.config parameters (on page 135).

ccsMFileCompiler Command Line Parameters

ccsMFileCompiler supports the following optional command line parameters:

ccsMFileCompiler [-r row id] [-1 be location plugin] [-a true|false] [-i
be server id] [-d debug flag]

Parameters

-r

Syntax: -r row_ id

D3escription: Runs the ccsMFileCompiler process for a specific row in the CCS_MFILE table,
where row id identifies the row for which the the process should be run.

Type: Integer

Optionality: Optional

Allowed:

Default: None

Notes: Runs ccsMFileCompiler once and then exits.

Example: -r 10

-1

Syntax: -1 be location plugin

Description: Specifies the location of the BE plug-in. This value overrides the value configured
for the beLocationPlugin parameter in the BE section of eserv.config.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: libGetccsBelLocation.so

Notes:

Example: -1 "libGetccsBelLocation.so"

-a

Syntax: -a truel false

Description: Set to true if this is the primary VWS. Otherwise set to false.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true
false

Default: true

Notes: Overrides the value configured for amPrimary in the BE section of eserv.config.

Example: -a true

Chapter 5, Background Processes on the VWS 215

-1

Syntax: -i be server id

Description: Sets the ID of the VWS pair where be server idis the ID of the VWS.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 1

Notes: Overrides the value configured in the serverId parameter in the BE section of
eserv.config.

Example: -i1

-d

Syntax: -d debug flag

Description: Defines which flag you want to use for debugging.

Type: String

Optionality: Optional

Allowed: all — full debugging

ccsMFileCompiler — component only debugging
none — no debug

Default: None
Notes:

Example: -d all
Failure

If ccsMFileCompiler fails, MFile updates will stop.

MFile entries will still be replicated to the CCS_MFILE table in the E2BE database, but they will not be
processed. The corresponding MFile will not be created for the unprocessed entries and therefore
beVWARS will not use any rating or named event catalogue changes made since the last MFile was
created.

Output

ccsMfileCompiler writes error messages to the system messages file, and also writes additional output
to /IN/service_packages/CCS/tmp/ccsMFileCompiler.log.

ccsNotification

Purpose

ccsNotification is a beVWARS event plug-in that generates a list of real-time wallet notifications for
delivery. Notifications can be triggered on the following events:

e Wallet expiry

e Wallet state change

e Balance value changed

e Bucket expiry

216 Charging Control Services Technical Guide

Note: Other plug-ins, such as ccsVWARSPeriodicCharge, can write notifications. For more information
about notifications and events that trigger notifications, see Notifications (on page 39).

Real-time Wallet Notifications Delivery Process

The following high-level process describes how the ccsNotification process delivers real-time wallet
notifications. For more information, see Real-Time Notifications (on page 361).

1 When a wallet or bucket is triggered through beVWARS on a primary VWS, ccsNotification checks
whether a real-time wallet notification should be sent.

The criteria for sending real-time wallet notifications and the templates they are based on are
defined in the Prepaid Charging, Wallet Management window in the CCS user interface (Ul), and
replicated to the VWS. For more information about configuring real-time wallet notifications, see
Charging Control Services User's Guide.

2 ccsNotification checks the E2BE database to establish whether the real-time notification uses an
ACS template or a DAP template. For information about how real-time wallet notifications which are
based on DAP templates are delivered, see DAP Notification Delivery (on page 362).

3 ccsNotification looks up the text configured for the template in the database and creates the final
notification text by substituting values for any variables. For information about configuring ACS
notification templates, see Advanced Control Services User's Guide.

4 ccsNotification delivers the notification through the beServiceTrigger process.

Processes Used to Deliver Real-time Wallet Notifications

This table lists the main processes involved in sending real-time wallet notifications for delivery.

Process Role Further information
ccsNotification ccsNotification is a beVWARS event plug-in that
generates a list of real-time wallet notifications for
delivery.
beVWARS beVWARS is the main VWS process that VWS Technical Guide
supports the ccsNotification plug-in and handles
interaction with the E2BE database.
beServiceTrigger Delivers the notification to the subscriber. VWS Technical Guide
Startup

If ccsNatification is included in the beVWARS plugins array in eserv.config, beVWARS loads it during
initialization.

To include ccsNotification in the beVWARS plugins configuration, use the following syntax:

plugins = [

"ccsNotification.so"

]
For more information about the beVWARS plugins section, see plugins (on page 208).

Configuration

The ccsNaotification beVWARS plug-in is configured by the notificationPlugin parameter group in
the eserv.config file on the VWS:
notificationPlugin =

xmlInterfaceName
cacheFlushPeriod

"name"
seconds

-~

Chapter 5, Background Processes on the VWS 217

cacheValidityTime = seconds
useOldestExpiry = true|false
UTCOffsetHours = hours

Parameters

ccsNotification plugin supports these parameters in the notificationPlugin section of eserv.config.

xmlInterfaceName

Syntax: xmlInterfaceName = "name"
Description: The name of the SLEE xml interface.
Type: String

Optionality: Required

Allowed:

Default: xmilF

Notes:

Example: xmlInterfaceName = "xmlIF"

cacheFlushPeriod

Syntax: cacheFlushPeriod = seconds

Description: Sets the number of seconds between each clearance of the notification caches.

Type: Integer

Units: Seconds

Optionality: Required

Allowed:

Default: 200

Notes:

Example: cacheFlushPeriod = 200

cacheValidityTime

Syntax: cacheValidityTime = seconds

Description: The length of time, in seconds, an entry is kept before the entry's record is re-
read.

Type: Integer

Optionality: Required

Allowed:

Default: 10

Notes:

Example: cacheValidityTime = 10

useOldestuseOldestExpiry

Syntax:
Description:

Type:
Optionality:

useOldestExpiry = true|false

When a subscriber's balance contains multiple buckets, this parameter specifies which
bucket's expiration date to include in the real-time wallet notification.

Boolean
Optional (default used if not set)

218 Charging Control Services Technical Guide

Allowed: true - Uses the bucket with the expiration date set the furthest in the future. For
example, if Bucket A expires 1 Jan 2016, and Bucket B expires 1 Sep 2016, the real-
time wallet notification includes Bucket B's expiration date.
false - Uses the bucket that expires first. For example, if Bucket A expires 1 Jan 2016,
and Bucket B expires 1 Sep 2016, the real-time wallet notification includes Bucket A's
expiration date.

Default: true

Notes:

Example: useOldestExpiry = true

UTCOffsetHours

Syntax: UTCOffsetHours = hours

Description: For use in non-GMT/UTC time zones. The number of hours offset from Universal

Coordinated Time (UTC) that are applied to wallet and balance expiry notifications.

The CCSNotification plug-in converts this parameter to seconds and applies the offset
to all timestamp variables in wallet and balance expiry notifications.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: + or - the number of hours. For example, +5 or -5.
Default: 0

Notes:

Example: UTCOffsetHours = +4

Example

This text shows an example ccsNotification configuration.
{

notificationPlugin =
xmlInterfaceName "xmlIF"
cacheFlushPeriod 200
cacheValidityTime = 10
useOldestExpiry = true
UTCOffsetHours = +3

ccsSLEEChangeDaemon

Purpose

The ccsSLEEChangeDaemon has three main functional areas:

e Update assignment of periodic charges to wallets. The ccsSLEEChangeDaemon handles periodic
charge changes such as a periodic charge being:
= Added to CCS or being assigned to a product type
= Removed from a product type or from CCS

o Update assignment of Wallet Life Cycle Plans to wallets. The ccsSLEEChangeDaemon handles
WLC changes such as a WLC plan being:
= Added to CCS or being assigned to a product type
= Removed from a product type or from CCS

Chapter 5, Background Processes on the VWS 219

e It also handles balance expiry extensions, updating the balance types in the affected wallets by the
defined extension configuration.

ccsSLEEChangeDaemon is a SLEE process which runs on the primary VWS node.

The daemon receives its tasks by reading CCS_PC_QUEUE table, which is hosted in the SMF
database on the SMS and is replicated to the E2BE database on the VWS.

Startup

On start-up, ccsSLEEChangeDaemon finds the —r flag and will check for a node ID and run in primary
VWS mode.

In order to start, ccsSLEEChangeDaemon must be referenced in the SLEE.cfg file. See Editing the
SLEE.cfg.

Note: If the daemon is started on a secondary VWS VWS it will immediately shut down.

Configuration

ccsSLEEChangeDaemon supports parameters from the ccsSLEEChangeDaemon parameter group in
the eserv.config file on a Voucher and Wallet Server. It contains parameters arranged in the structure
shown in the example below.

ccsSLEEChangeDaemon = {
BE Client section. Mandatory.
beClient = {
pollPeriod = 300
throttle = 1000
numCursorRows = 1000

clientName = "bel ccsSLEEChangeDaemon"

heartbeatPeriod = 30000000

connectionRetryTime = 5

messageTimeoutSeconds = 2

billingEngines = [

{ id = 1, # pair ID

primary = { ip="PRIMARY BE IP", port=1500 },
secondary = { ip="SECONDARY BE IP", port=1500 }
}

]

serviceTriggerTimeout = 5

} # beClient
} # ccsSLEEChangeDaemon

eserv.config parameters

ccsSLEEChangeDaemon supports the following parameters from the CCs section of eserv.config.

beClient
Syntax: beClient = { config }
Description: The configuration for the connection to the beServer on the VWS.

220 Charging Control Services Technical Guide

Type: Parameter group

Optionality: Mandatory

Allowed:

Default:

Notes: This configuration is for the libBeClientIF library which ccsSLEEChangeDaemon

uses to manage the connection.
For more information about this library, see VWS Technical Guide.

Example:
billingEngines
Syntax: billingEngines = [
{ id = id
primary = { ip="ip", port=port },
secondary = { ip="ip", port=port }
}
]

Description: Overrides connection details that beLocationPlugin obtains from the database.
For more information about the parameters included in the array, see
billingEngines (on page 92) configuration for the ccsBeOrb process.

Type: Array.

Optionality: Optional.

Allowed:

Default:

Notes: Identifies the Voucher and Wallet Servers and assigns their Internet connection
details.

Include this section to ensure that ccsSLEEChangeDaemon only connects to the
local domain. If omitted, ccsSLEEChangeDaemon will connect to all VWS
domains.

Example: billingEngines = [

{ id = CHANGE_ME,
primary = { ip="PRIMARY BE IP", port=1500 },
secondary = { ip="SECONDARY BE IP", port=1500 }
}
]

clientName

Syntax: clientName = "name"

Description: The unique client name of the process.

Type: String

Optionality: Mandatory

Allowed: Must be unique.

Default: ccsSLEEChangeDaemon

Notes: If more than one client connects with the same name the BE server will drop the
other, therefore name must be unique.

Example: clientName = "bel ccsSLEEChangeDaemon"

Chapter 5, Background Processes on the VWS 221

connectionRetryTime

Syntax: connectionRetryTime = seconds

Description: The maximum number of seconds the client process will wait for a connection to
succeed before attempting a new connection.

Type: Integer

Optionality: Required

Allowed:

Default: 5

Notes: This parameter is used by libBeClientlF.

Example: connectionRetryTime = 2

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The number of microseconds during which a Voucher and Wallet Server

heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer

Optionality: Optional (Default used if not present)

Allowed: 0 Disable heartbeat detection.
positive integer Heartbeat period.

Default: 30000000

Notes: 1 000 000 microseconds = 1 second.

Example: heartbeatPeriod = 30000000

throttle

Syntax: throttle = num

Description: The maximum number of Voucher and Wallet Server updates per second.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 0 Disable throttling (no limit).
positive integer Update limit.

Default: 1000

Notes:

Example: throttle = 1000

maxOutstandingMessages

Syntax: maxOutstandingMessages = num

Description: The maximum number of messages allowed to be waiting for a response from the
Voucher and Wallet Server.

Type: Integer

Optionality: Required

Allowed:

Default: If this parameter is not set, the maximum is unlimited.

222 Charging Control Services Technical Guide

Notes: If more than this number of messages are waiting for a response from the
Voucher and Wallet Server, the client process assumes the Voucher and Wallet
Server is overloaded. In this event, the client process refuses to start new calls
but continues to service existing calls.

The messages are queued until the Voucher and Wallet Server has reduced its
outstanding load.

This parameter is used by libBeClientIF.
Example: maxOutstandingMessages = 100

messageTimeoutSeconds

SyMam messageTimeoutSeconds = seconds
Description: The time that the client process will wait for the server to respond to a request.
Type: Integer
Units: Seconds
Optionality: Required
Allowed: 1-604800 Number of seconds to wait.
0 Do not time out.
Default: 2
Notes: After the specified humber of seconds, the client process will generate an

exception and discard the message associated with the request.
This parameter is used by libBeClientlF.

Example: messageTimeoutSeconds = 2
numCursorRows
Syntax: numCursorRows = num
Description: The maximum number of cursor rows processed on the VWS when doing
balance extensions.
Type: Integer
Optionality: Optional (default used if not set).
Allowed: Any number between 100 and 1000000. The closest number divisible by 100 will
be used.
Default: 1000
Notes:
Example: numCursorRows = 1000
plugins
Syntax: plugins = [
{
config=""

library="1ib"
function="str"

]

Description: Defines any client process plug-ins to run. Also defines the string which maps to
their configuration section.
Type: Parameter array

Chapter 5, Background Processes on the VWS 223

Optionality:

Allowed:
Default:
Notes:

Example:

config

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

function

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

library

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Optional (as plug-ins will not be loaded if they are not configured here, this
parameter must include any plug-ins which are needed to supply application
functions; for more information about which plug-ins to load, see the BeClient
section for the application which provides the BeClient plug-ins).

Empty (that is, do not load any plug-ins).

The libclientBcast plug-in must be placed last in the plug-ins configuration list.
For more information about the libclientBcast plug-in, see VWS Technical Guide.
This parameter is used by libBeClientlF.

plugins = [
{
config="broadcastOptions"
library="1libclientBcast.so"
function="makeBroadcastPlugin"

config="name"

The name of the configuration section for this plug-in. This corresponds to a
configuration section within the p1ugins section in the eserv.config file.

String
Required (must be present to load the plug-in)

No default

config="voucherRechargeOptions"

function="str"

The function the plug-in should perform.
String

Required (must be present to load the plug-in)
No default
function="makeVoucherRechargePlugin"
library="1ib"

The filename of the plug-in library.

String

Required (must be present to load the plug-in)

No default

library="1libccsClientPlugins.so"

224 Charging Control Services Technical Guide

reportPeriodSeconds

Syntax:
Description:
Type:

Units:
Optionality:
Allowed:
Default:
Notes:

Example:

reportPeriodSeconds = seconds

The number of seconds separating reports of failed messages.
Integer

Seconds

Required

10

BeClient issues a failed message report:
e For timed-out messages

e For unrequested responses
e For new calls rejected because of congestion
e For messages with invalid Voucher and Wallet Server identifiers

¢ If new and subsequent requests fail because both Voucher and Wallet
Servers have stopped working

VWS heartbeat detection must be enabled for the parameter to work. Set
reportPeriodSeconds to more than heartbeatPeriod.

This parameter is used by libBeClientlF.

reportPeriodSeconds = 10

serviceTriggerTimeout

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

serviceTriggerTimeout = seconds

The maximum duration, in seconds, the change daemon waits for
beServiceTrigger response when control plans are triggered through the OSD
interface

Integer
Optional (default used if not set).

serviceTriggerTimeout = 5

BE eserv.config parameters

The following parameters are available in the BE section of the eserv.config.

amPrimary

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

amPrimary = true|false

True if this is the primary VWS in the pair.
Boolean

Optional, default used if not set

true

amPrimary = false

Chapter 5, Background Processes on the VWS 225

belocationPlugin

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

serverId

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

beLocationPlugin = "1ib"

The plug-in library that finds the Voucher and Wallet Server details of the Voucher
and Wallet Servers to connect to.

String
Optional (default used if not set)

libGetccsBelocation.so
This library must be in the LD_LIBRARY_PATH.
belLocationPlugin = "libGetccsBelLocation.so"

serverId = id
The ID of the VWS pair.
Integer

1
Set to 1 if this is not a VWS
serverId = 11

Command line parameter

ccsSLEEChangeDaemon supports the following command-line switch.

ccsSLEEChangeDaemon -r id

-r

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Failure

-r id

The node ID of the VWS node on which the ccsSLEEChangeDaemon is running.
Integer

Optional (default used if not set).

If not set, will not start.

Node number must be between 512 and 1023.
-r 531

While ccsSLEEChangeDaemon is down, periodic charge assignment updates will not be executed on
the local machine. In addition, wallet updates for balance expiry extensions will not be processed.

226 Charging Control Services Technical Guide

This table describes the recovery and failure files used by ccsSLEEChangeDaemon to attempt to
recover after a failure.

File Details

.recovery | These files are only written on the VWS VWS. They have the following naming
convention:

.recovery.ACSCustomerID.CCS PC QUEUE.ID
These files are written for a every 100th row processed and also on VWS "No
Connection"” error.

The file should contain one line. For periodic charge updates it will contain:
SubscriberId|WalletId

For balance expiry extensions it will contain:

walletId
Each time ccsSLEEChangeDaemon writes one of these files, it will also raise a Warning
level alarm.

If ccsSLEEChangeDaemon fails while processing a batch, it will reprocess
CCS_PC_QUEUE from the point recorded in the .recovery file.

These files are automatically deleted by ccsSLEEChangeDaemon.

failed These files are written on both the SMS and the VWS. They have the following naming
convention:

.failed.<ACS Customer ID>.<CCS_PC QUEUE.ID>
An entry is written to this file for each wallet update which initially fails. They contain a line
for each failure:

e For periodic charge and WLC updates:
SubscriberId|WalletId|PeriodicChargeBalanceTypelId| ProductId|ChangeAct
ion

e For balance expiry extensions:
SubscriberId|WalletId|PeriodicChargeBalanceTypelId| PCOProductId|PCONum
Months | PCONumDay s

Each time ccsSLEEChangeDaemon adds an entry to this file, it will also raise an Error
level alarm. ccsSLEEChangeDaemon reads the entries in this file and attempts to
reprocess them. Once all the entries in the file have been reprocessed, the
ccsSLEEChangeDaemon deletes them.

failed These files are written on both the SMS and the VWS. They have the following haming

convention:
failed.<ACS Customer ID>.<CCS_PC QUEUE.ID>

An entry is written to this file every time an entry in the .failed file is resent, and fails a
second time. This file's first two lines are:

Periodic Charge Change Daemon: failed updates

#
SubscriberId|WalletId|PeriodicChargeBalanceTypelId|ChangeType|ChangeAction
| DomainId|NumberofBalanceTypes||BalanceTypeld|BucketId|BucketValuell|...]]

Then there is an entry for each wallet update which fails a second time:

SubscriberId|WalletId|PeriodicChargeBalanceTypelId|ChangeType|ChangeAction
| DomainId|NumberofBalanceTypes||BalanceTypeld|BucketId|BucketValuell|...]]

For balance expiry extensions on the VWS VWS the entry is:
SubscriberId|WalletId|PeriodicChargeBalanceTypelId| PCQProductId| PCQONumMont
hs| PCONumDays

Each time ccsSLEEChangeDaemon writes an entry to this file, it will raise an Error level
alarm.

failure files are left for manual recovery.

Chapter 5, Background Processes on the VWS 227

Note: If an operation fails due to a "No Connection" error, ccsSLEEChangeDaemon will raise a
LOGGED_WARNING and stop processing the row.

Output

ccsSLEEChangeDaemon writes recovery and failure logs for period charge updates to
/IN/service_packages/CCS/logs/ccsSLEEChangeDaemon/ccsPCChangel.

ccsSLEEChangeDaemon writes recovery and failure logs for balance expiry extensions to
/IN/service_packages/CCS/logs/ccsSLEEChangeDaemon/ccsBalExtension/.

If one of these files cannot be written to, the ccsSLEEChangeDaemon will exit with a critical error (for
alarm details, see CCS Alarms Reference Guide).

ccsSLEEChangeDaemon writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/CCS/tmp/ccsSLEEChangeDaemon.log.

ccsPDSMSPIlugin

Purpose

ccsPDSMSPIugin handles the promotional destination of notifications. The configuration identifies the
balance type that holds the number of promotional notifications sent by the customer.

It is triggered by wallet activated and bucket expiry events.

Startup

If ccsPDSMSPIugin is included in the beVWARS plugins array in eserv.config, it is loaded by
beVWARS when beVWARS is initialized.

It is included in the following lines:

plugins = [
"ccsPDSMSPlugin.so"
]
For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other event plug-ins may also be included in the plugins array.
Parameters

Parameters for ccsPDSMSPIugin are contained in the ccsPromotionalDestinationSMS section of
the eserv.config file. The following parameters are supported.

balanceTypes
Syntax: balanceTypes = [config]
Description: A list parameter containing identifiers for service providers. For each service

provider (ACS customer) configure parameters for the PDSMS balance type.
Type: Array
Optionality: Mandatory
Allowed:
Default:
Notes:
Example:

228 Charging Control Services Technical Guide

ServiceProviderID

Syntax: ServiceProviderID = id

Description: The identification number of an ACS customer.
Type: Integer

Optionality: Mandatory. At least one ID must be mapped.
Allowed:

Default: 1

Notes:

Example: ServiceProviderID = 1

ThresholdCacheValidityPeriod

Syntax: ThresholdCacheValidityPeriod = minutes

Description: The number of minutes between threshold table refreshes from DB.

Type: Integer

Optionality: Mandatory

Allowed:

Default: 10

Notes: Each threshold table is cached for performance reasons. This period indicates

how long each cached table remains valid before being flushed and repopulated
from the database.

Example: ThresholdCachevValidityPeriod = 10
TypelD

Syntax: TypelD = id

Description: The PDSMS balance type number for the ACS customer.
Type: Integer

Optionality: Mandatory

Allowed:

Default:

Notes:

Example: TypelD = 7

Example

An example of the ccsPromotionalDestinationSMS parameter group of a Voucher and Wallet
Server eserv.config file is listed below. Comments have been removed.
ccsPromotionalDestinationSMS = {

balanceTypes = [
{

Il
[

ServiceProviderID
TypeID = 7

Il
N

ServiceProviderID
TypeID = 8

ServiceProviderID = 3

Chapter 5, Background Processes on the VWS 229

TypeID = 5
}

]
ThresholdCacheValidityPeriod = 10

ccsRewardsPlugin

Purpose

ccsRewardsPlugin handles the balance changes due to heavy use rewards. For more information about
heavy user rewards, see Recharges (on page 37).

This plug-in triggers on wallet activated, bucket value changed and bucket expiry events.

Startup
If ccsRewardsPlugin is included in the beVWARS plugins array in eserv.config,it is loaded by
beVWARS when beVWARS is initialized.

It is included in the following lines:

plugins = [
"ccsRewardsPlugin.so"

]
For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other event plug-ins may also be included in the plugins array.
Parameters

The ccsRewardsPlugin supports the following parameters from the CCS.ccsRewards section of
eserv.config.

balanceTypes
Syntax: balanceTypes = [config]
Description: This section configures which the balance types can be used for rewards for each
service provider.
Type: Parameter array
Optionality: Mandatory for ccsRewardsPlugin.
Allowed:
Default: None
Notes: You need to add a new service provider in this config file each time one is added
in the database.
. balanceTypes = [{
Example: id =1
allowed = [1]
expenditure = 4
notification = [1
}
{
id = 2
allowed = [5,6]
expenditure = 7

230 Charging Control Services Technical Guide

allowed

Syntax: allowed = [<id>,...]
Description: Lists the balance types that can contribute towards monthly expenditure.
Type: Array
Optionality: Mandatory if expenditure rewards are used.
Allowed:
Default: None
Notes: Must match balance type ids in E2BE database.
This is part of the balanceTypes (on page 230) parameter array.
Example: allowed = [1,2,8]
expenditure
Syntax: expenditure = [id, ...]
Description: The balance type for the monthly expenditure.
Type: Array
Optionality: Mandatory if monthly expenditure is used.
Allowed:
Default:
Notes: Must match balance type IDs in E2BE database.
This parameter is part of the balanceTypes (on page 230) array.
Example: expenditure = [4]
id
Syntax: id = id
Description: The service provider ID for the balance types.
Type: Integer
Optionality: Required
Allowed:
Default:
Notes: Must match service provider ID in E2BE database.

This parameter is part of the balanceTypes (on page 230) array.
Example: id = 1

notification
Syntax: notification = [id,...]
Description: Lists the balance types to go in notification short message.
Type: Array
Optionality: Mandatory if notifications are to report any balance types.
Allowed:
Default: None
Notes: Must match balance type ids in E2BE database.
This parameter is part of the balanceTypes (on page 230) array.
Example: notification = [1,8]

Chapter 5, Background Processes on the VWS 231

cacheFlushPeriod

Syntax: cacheFlushPeriod = seconds

Description: The number of seconds before the reward definition caches are cleared and
reloaded.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 600

Default:

Notes:

Example: cacheFlushPeriod = 600

cacheValidityTime

Syntax: cacheValidityTime = seconds

Description: The number of seconds entries are valid for, before a re-read for that reward
definition record is required.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 30

Notes: When ccsRewardsPlugin needs to look up a reward definition, it will check

whether the reward definition in the cache is older than this number of seconds. If
it is, ccsRewardsPlugin will refresh the cache entry for that reward definition.

Example: cacheValidityTime = 30

cmnPushFiles = []

For the eserv.config on the VWS, use the cmnPushFiles configuration to transfer files to the SMS ready
for processing by ccsRewardsBatch. Include the -F option to detect the file in use.

Note: These directories must match the respective directories set in writeDirectoryName (on page 233)
and readDirectoryName.

For more information about configuring cmnPushFiles, see cmnPushFiles (on page 271).

fileIdleTime

Syntax: fileIdleTime = seconds

Description: The maximum number of seconds an output file from the ccsRewardsPlugin can
be idle before the plug-in will close it.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10

Notes:

Example: fileIdleTime = 30

filePrefix

Syntax: filePrefix = "prefix"

Description: The prefix for files:

e Written by ccsRewardsPlugin to writeDirectoryName (on page 233)
e Read by ccsRewardsBatch from readDirectoryName

232 Charging Control Services Technical Guide

Type:

String

Optionality: Optional (default used if not set).

Allowed:

Default: "ccsRewards"

Notes:

Example: filePrefix = "ubeprodOl-rewards-"

fileSuffix

Syntax: fileSuffix = "suffix"

Description: The suffix for files:
e Written by ccsRewardsPlugin to writeDirectoryName (on page 233)
¢ Read from ccsRewardsBatch from readDirectoryName

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: " ixt"

Notes:

Example: filesuffix = ".txt"

maxLinesInFile

Syntax: maxLinesInFile = num

Description: The maximum number of lines in an output file before it is closed.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 100

Notes:

Example: maxLinesInFile = 500

oracleUserPass

Syntax:

Description: User name and password for connecting to local database (SMF).

Type:

Optionality: This parameter is optional.

Allowed:

Default: "

Notes:

Example:

writeDirectoryName

Syntax:
Description:
Type:
Optionality:

writeDirectoryName = "dir"

Name of the directory where ccsRewardsPlugin writes its output files.
String

Optional (default used if not set).

Chapter 5, Background Processes on the VWS 233

Allowed:

Default: "/IN/service_packages/CCS/logs/ccsRewardsWrite/"
Notes:

Example: writeDirectoryName = "/var/logs/Rewards/"
Example

This text shows an example of the ccsRewards section of eserv.config.

ccsRewards = {
oracleUserPass =
fileIdleTime = 10
maxLinesInFile =

writeDirectoryName = "/IN/service packages/CCS/logs/ccsRewards/"
readDirectoryName = "/IN/service packages/CCS/logs/ccsRewards/"
filePrefix = "ccsRewards"

fileSuffix = ".txt"

cmnPushFiles = [
"-d", "/IN/service packages/CCS/logs/ccsRewards/"
"-r", "/IN/service packages/CCS/logs/ccsRewards/"
"_h", "ctelsmp"
"_p", "2027"
II_F"

]

balanceTypes = [

{
id =1
allowed = [1]
expenditure = 4
notification = [1]

id = 2
allowed = [5,6]
expenditure = 7

]

cacheFlushPeriod = 600
cacheValidityPeriod = 30
}

Note: This section is also used by ccsRewardsBatch on the SMS and ccsMacroNodes on the SLC.

ccsPMXPlugin

Purpose

ccsPMXPlugin handles the balance changes due to promotions. This plug-in triggers on wallet and
balance events, for example:

e Wallet activation

o Wallet expiry

e Balance expiry

e Balance charge

e Balance recharge

234 Charging Control Services Technical Guide

e Tracker threshold
e Tracker expiry

This plug-in receives an event and attempts to apply the promotion definitions that match the event type.
Matching promotions will be applied providing the conditions configured in the promotion definition are
met.

Note: Promotions are configured in the Promotion Manager screen.

Licence

ccsPMXPlugin is only available if the Promotion Manager license has been purchased.

Startup

If ccsPMXPlugin is included in the beVWARS plugins array in eserv.config, it is loaded by beVWARS
when beVWARS is initialized.

Itis included in the following lines:

plugins = [
"ccsPMXPlugin.so"
]
For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other event plug-ins may also be included in the plugins array.
Parameters

The ccsPMXPlugin supports the following parameters from the CCS.ccsPMxXPlugin section of
eserv.config.

cacheValidityTime

Syntax: cachevValidityTime = seconds

Description: The length of time in seconds that an entry will be valid for, before the promotion
definition record must be reloaded.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Numerical value

Default: 30

Notes: When ccsPMXPIugin needs to look up a promotion definition, it will check

whether the promotion definition in the cache is older than this number of
seconds. If it is, ccsPMXPlugin will refresh the cache entry for that promotion
definition.

Example: cacheValidityTime = 30

ccsBplServiceHandle

Syntax: ccsBplServiceHandle = "service name"

Description: The service name to use when triggering a control plan to recharge third-party
balance types.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "CCS_BPL"

Chapter 5, Background Processes on the VWS 235

Notes: For the control plan to trigger ACS and the SLEE must be configured with this
service name mapped to the CCS service loader.

Example: ccsBplServiceHandle = "CCS_BPL"
dapInterfaceName

Syntax: dapInterfaceName = "name"

Description: The name of the DAP interface running on the VWS
Type: String

Optionality: Optional (default used if not set).

Allowed: A valid DAP interface name

Default: daplF

Notes:

Example: dapInterfaceName = "daplF"

rechargeControlPlan

Syntax: rechargeControlPlan = "name"

Description: The name of the control plan to use for recharging third-party balance types.

Type: String

Optionality: Optional (default used if not set).

Allowed: Either a predefined Promotion Manager control plan or an Open Notifications
eRetail control plan.

Default: "CCS_WebService_Recharge"

Notes: The Promotion Manager control plan must contain a Voucher Type Recharge
node to recharge the third party balance type.

Example: rechargeControlPlan = "CCS WebService Recharge"

rechargeOperationName

Syntax: rechargeOperationName = "name"

Description: The name of the OSD operation to use when triggering a control plan to recharge
a third-party.

Type: String

Optionality: Optional (default used if not set).

Allowed: A valid OSD operation name.

Default: "applyReward"

Notes:

Example: rechargeOperationName = "applyReward"

Example

This text shows an example of the ccsPMXP1lugin section of eserv.config.

ccsPMXPlugin =
cacheValidityTime = 30
rechargeControlPlan = "CCS WebService Recharge"
ccsBplServiceHandler = "CCS BPL"
rechargeOperationName = "applyReward"
dapInterfaceName = "dapIF"

236 Charging Control Services Technical Guide

ccsVWARSActivation

Purpose

This beVWARS plug-in activates wallets, and optionally credits them with the appropriate balances
(from the product type).

Note: If the VWS is defined as a tracking domain only, then only tracking domain balances (fraud and
expense balance types) will be updated.

On activation of a wallet (wallet activation event, state change from PreUse to Active), from:

e The product type (CCS_ACCT_TYPE): set the wallet expiry date to the current time +
INIT_ACCT_EXPIRY_PERIOD

e CCS_PROMOTION: give the Wallet the promotional amount for the selected balance type and set
the expiry date

e The product type (CCS_ACCT_TYPE): set the bucket expiry dates to the current time +
EXPIRATION

Note: This can include free SMS buckets.

For more information about wallet states, see VWS Technical Guide.

Startup

If ccsVWARSActivation is included in the beVWARS plugins array in eserv.config, it is loaded by
beVWARS when beVWARS is initialized.

It is included in the following lines:

plugins = [
"ccsVWARSActivation.so"
]
For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other event plug-ins may also be included in the plugins array.
Parameters

The ccsVWARSActivation handler supports the following parameters in the CCS section of eserv.config.

accountBatchCachevalidityPeriod

Syntax: accountBatchCacheValidityPeriod = seconds
Description: Time to leave entries in the CCS_ACCT_BATCH cache.
Type: Integer

Optionality: Optional.

Allowed:

Default: 60

Notes:

Example: accountBatchCachevValidityPeriod = 60

alwaysOverwriteBucketExpiry

Syntax: alwaysOverwriteBucketExpiry = truel|false

Description: If true, always set the wallet's buckets' expiry dates, even if these are earlier than
the existing bucket's expiry dates.

Chapter 5, Background Processes on the VWS 237

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Boolean
Optional.

true, false
false

alwaysOverwriteBucketExpiry = false

alwaysOverwriteNonExpiringBucketExpiry

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

alwaysOverwriteNonExpiringBucketExpiry = true|false
If the existing bucket never expires, overwrite the expiry date.
Boolean

This parameter is optional.
true, false
true

alwaysOverwriteNonExpiringBucketExpiry = true

alwaysOverwriteNonExpiringWalletExpiry

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

alwaysOverwriteNonExpiringWalletExpiry = true|false
If the existing wallet never expires, overwrite the expiry date.

Boolean

Optional.

true, false

true

alwaysOverwriteNonExpiringWalletExpiry = true

alwaysOverwriteWalletExpiry

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Example

alwaysOverwriteWalletExpiry = truel false

If true, always set the wallet expiry date, even if this is earlier than the existing
wallet expiry date.

Boolean
Optional.
true, false
false

alwaysOverwriteWalletExpiry = false

An example of the ccsVWARSActivation parameter group of a Voucher and Wallet Server eserv.config
file is listed below. Comments have been removed.

ccsVWARSActivation = {
accountBatchCacheValidityPeriod = 60
alwaysOverwriteWalletExpiry = false
alwaysOverwriteNonExpiringWalletExpiry = true
alwaysOverwriteBucketExpiry = false

238 Charging Control Services Technical Guide

alwaysOverwriteNonExpiringBucketExpiry = true

ccsVWARSAmountHandler

Purpose

beVWARS handler for handling messages relating to rate requests (seconds and named events) and
OSA CHAM amounts.

Startup

If ccsVWARSAmountHandler is included in the beVWARS handlers array in eserv.config, it is loaded
by beVWARS when beVWARS is initialized.
handlers = [
"ccsVWARSAmountHandler.so"
1
For more information about the beVWARS handlers section, see handlers.

Note: Other handlers may also be included in the handlers array.

Configuration

ccsVWARSAmountHandler is configured by the amountHandler section of eserv.config. This text
shows an example of the section.

amountHandler = {
syslogErrors = truel|false
}
ccsVWARSAmountHandler must also have the appropriate not end actions configured in the beServer
section.

{type="IARR", action="ACK "}
{type="SARR", action="ACK "}
{type="SARR", action="NACK"}

syslogErrors

Syntax: syslogErrors = truel| false

Description: Whether or not to log unspecified wallet errors for IARR and
DA messages.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Log the errors to the syslog.
false Do not log the errors to the syslog.

Default: false

Notes: The logging of specific wallet errors is not be affected by this
parameter.

Example: syslogErrors = false

Chapter 5, Background Processes on the VWS 239

ccsVWARSEXxpiry

Purpose

ccsVWARSEXxpiry is a beVWARS event plug-in which maintains wallet states. This includes:

e Triggering on wallet queries to:

= Expire PreUse wallets if their subscriber account batch has expired (it also stops actions being
taken on PreUse wallets with inactive subscriber account batches)

= Move wallets from Dormant to Active if they have been used

= Move wallets from Active to Dormant or Dormant to Terminated if they have not been used for a
configurable period of time

= Remove wallets which have been in a Terminated state for a configurable period of time

= |f expiryAtMidnightTZ is set to true, expire periodic charge buckets

e Triggering on wallet expiry to remove wallets
e Logging wallet removals (this can also be sent to the HLR to update HLR MSISDN records)
e Writing EDRs for most changes (including state changes and removals and bucket removals).

For more information about how ccsVWARSEXxpiry works with ccsWalletExpiry to manage wallet expiry
and removal, see Subscriber Accounts and Wallet Management (on page 16).

For more information about subscriber account batches, see Charging Control Services User's Guide.

Note: Wallets and buckets can also be expired by the VWS beVWARS plug-in beVWARSEXpiry. For
more information about be VWARSEXpiry, see VWS Technical Guide.

Startup

If ccsVWARSEXxpiry is included in the beVWARS plugins array in eserv.config, it is loaded by
beVWARS when beVWARS is initialized.

Itis included in the following lines:

plugins = [
"ccsVWARSExpiry.so"

]
For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other event plug-ins may also be included in the plugins array.

Configuration

The ccsVWARSEXxpiry beVWARS plug-in supports parameters from the notificationPlugin parameter
group in the eserv.config file on a VWS. It contains parameters arranged in the structure shown below.

Note: This configuration is also used by ccsWalletExpiry on the SMS.

ccsVWARSExpiry = {

expiredPrefix = "prefix"
expiredDirectory = "dir"
expiredSuffix = "suffix"
expiredMaxAge = seconds
expiryWalletStates = "str[...]"
produceCDRForWalletExpiredBucket = truel false
removedDirectory = "dir"
removedPrefix = "prefix"
removedSuffix = "suffix"
removedMaxAge = seconds

accountBatchCacheValidityPeriod = seconds
logNotRemoveWallet = true| false

240 Charging Control Services Technical Guide

removeAtMi

cmnPushFil
"_d" ,
"_r" ,
"_h" ,
"_p" ,
w_gn

]

deleteEmpt

}

dnightTz = "tz"
es = [

" dir"

" dir"

"host"

"host"

yBalances = truel| false

Note: ccsVWARSEXxpiry also uses the expireAtMidnightTz parameter which is set in the

BE .beVWARSExp

iry section.

Parameters - CCS section

ccsVWARSEXxpiry supports the following parameters from the cCs section of eserv.config.

accountBatchCacheValidityPeriod

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

cmnPushFiles

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

accountBatchCacheValidityPeriod = seconds

The number of seconds an item may stay in the subscriber account batch
(CCS_ACCT_BATCH) cache before being re-read from the E2BE database.

Integer
Optional (default used if not set).

60

accountBatchCachevValidityPeriod = 120

[]

cmnPushFiles = []

For the eserv.config on the VWS, use the cmnPushFiles configuration to transfer
files to the SMS ready for processing by ccsExpiryMessagelLoader.

Parameter array
Mandatory

Include the —F option to detect the file in use. See cmnPushFiles (on page 271)
for all parameters.

These directories must match the respective directories set in
generatorFiledir.

Chapter 5, Background Processes on the VWS 241

createEdrForExpiredvalue

Syntax: createEdrForExpiredvValue = "nonzero"|"all"
Description: Sets whether or not to create an EDR for expired balances with 0 (zero) value. When
createEdrForExpiredvalue is set to:
o "all", ccsVWARSEXxpiry creates an EDR for all expired balances including those
with 0 value
e "nonzero", ccsVWARSEXpiry creates an EDR only for expired balances that are
greater than O
Type: String
Optionality: Optional (default used if not set)
Allowed: all, nonzero
Default: nonzero
Notes:
Example: createEdrForExpiredValue = "all"
deleteEmptyBalances
Syntax: deleteEmptyBalances = true|false
Description: If set, ccsVWARSExpiry will delete balances that have both no buckets
remaining and the "delete"” flag set.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true, false
Default: false
Notes:
Example: deleteEmptyBalances = false
expiredDirectory
Syntax: expiredDirectory = "dir"
Description: Defines the location of files listing wallets moving to terminated state.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: "/IN/service_packages/CCS/logs/wallet"
Notes: The file is generated by ccsVWARSEXpiry on the VWS and read by
ccsWalletExpiry on the SMS.
Example: expiredDirectory = "/var/CCS/expiredWallets"
expiredMaxAge
Syntax: expiredMaxAge = seconds
Description: The number of seconds before closing file listing wallets moving to terminated
state and creating a hew one.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: 60

242 Charging Control Services Technical Guide

Notes: The file is generated by ccsVWARSEXpiry on the VWS and read by
ccsWalletExpiry on the SMS.

Example: expiredMaxAge = 120

expiredPrefix

Syntax: expiredPrefix = "prefix"

Description: The prefix of files listing wallets moving to terminated state.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "expiredWallet"

Notes: The file is generated by ccsVWARSEXxpiry on the VWS and read by

ccsWalletExpiry on the SMS.
The filename format is: expiredPrefix_YYYYMMDDHHMMS SexpiredSuffix

Example: expiredPrefix = "produbeOl termWallets"
expiredSuffix

Syntax: expiredSuffix = "suffix"

Description: The suffix of files listing wallets moving to Terminated state.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: Jlog

Notes: The file is generated by ccsVWARSEXpiry on the VWS and read by

ccsWalletExpiry on the SMS.
The filename format is: expiredPrefix_YYYYMMDDHHMMSSexpiredSuffix
Example: expiredSuffix = ".log"

expireNegativeExpenditureBuckets

Syntax: expireNegativeExpenditureBuckets = true|false
Description: If set, ccsVWARSEXxpiry will expire negative expenditure buckets.
Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: expireNegativeExpenditureBuckets = false
expiryWalletStates

Syntax: expiryWalletStates = "str[...]"

Description: Specifies the valid wallet states when ccsVWARSEXpiry processes bucket expirations.
Type: String

Optionality: Optional (default used if not set)

Chapter 5, Background Processes on the VWS 243

Allowed: * A-Active
e D - Dormant
e F —Frozen
e P —Pre-use
e S -—Suspended
e T - Terminated

Default: Active and Dormant
Notes:
Example: expiryWalletStates = "AD"

includeExpiredBalanceNames

Syntax: includeExpiredBalanceNames = true|false

Description: Whether or not to output the expired balance names in the
BALANCE_TYPE_NAMES field in EDRs.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: includeExpiredBalanceNames = false

logNotRemoveWallet

Syntax: logNotRemoveWallet = true|false

Description: ccsVWARSEXxpiry plugin will log, and not remove the wallet, so that screen

queries will still succeed (they will fail if they have CCS rows but no wallet).
Type: Boolean
Optionality: Optional (default used if not set).

Allowed: true If ccsVWARSEXpiry is processing a wallet which
has been queried and is in the Terminated state, it
will log the wallet's ID to the remove List.

If ccsVWARSEXpiry is processing a wallet which
has been removed, no action will be taken.

false If ccsVWARSEXpiry is processing a wallet which
has been queried and is in the Terminated state, it
will:
e Log an EDR detailing the wallet removal
¢ Remove all the buckets associated with
the wallet

e Log EDRs for each bucket which is being
removed

¢ Remove the wallet

If ccsVWARSEXpiry is processing a wallet which
has been removed, it will log the wallet's ID to the

remove List.
Default: true
Notes: If ccsVWARSEXxpiry does not remove the wallet, ccsWalletExpiry will remove the
wallet when it processes the list of wallets to be removed from ccsVWARSEXxpiry.
Example: logNotRemoveWallet = false

244 Charging Control Services Technical Guide

produceCDRForWalletExpiredBucket

Syntax: produceCDRForWalletExpiredBucket = true|false

Description: Whether or not to produce an EDR for buckets which are expired because they
are attached to a wallet which has expired.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: false The plug-in will not produce an EDR for a bucket

which has been expired and has an expiry date in
the future or no expire date (as can happen when
it is expired as part of a wallet expiry). An EDR
will still be produced if the bucket does have an
expiry date in the past (so both the bucket and
the wallet were due to expire)

true A bucket expiry EDR will always be produced if
the bucket is expired, whether the expiry date is
past, present, or future, or it has no expiry date at

all.
Default: false
Notes: For more information about when buckets are expired due to their wallet expiring,
see VWS Technical Guide.
Example: produceCDRForWalletExpiredBucket = true
removeAtMidnightTZ
Syntax: removeAtMidnightTz = "tz"
Description: Sets wallets and buckets to be removed at midnight for the time zone specified:

e Midnight GMT (UTC) following the expiry trigger from beVWARSEXpiry

¢ Midnight in the specified timezone after the expiry trigger from
beVWARSEXpiry

e The time specified by the expiry date

Type: String
Optionality: Optional (default used if not set).
Allowed: The time zone part of the parameter must be typed in a form that the operating

system recognizes.

Alternatively you can select a time zone from the operating system's list. To view
top-level time zone names, enter 1s /usr/share/lib/zoneinfo from a shell.
To see second-level time zone names, enter 1s /usr/share/lib/zoneinfo
TopLevelName/. For example, to verify that the operating system recognizes a
time zone name for DeNoranha, in Brazil, you would enter 1s
/usr/share/lib/zoneinfo/Brazil/. DeNoranha is listed, so the time zone
name would be "Brazil/DeNoranha".

Default: Use time specified by the expiry date.

Chapter 5, Background Processes on the VWS 245

Notes:

Example 1:
Example 2:

The wallet is expired by beVWARSEXxpiry depending on its configuration.
However, will be expired when the wallet is next processed by beVWARSEXpiry.
The timing of the beVWARSEXpiry processing depends on the activity on the
VWS. Generally, beGroveller will process the wallet To remove the wallets during
the night, the groveller must be set to start after midnight, but before any other
access is likely to happen.

A list of time zones can be found in the Time Zones appendix of ACS Technical
Guide.

removedDirectory

Syntax:

Description:

Type:

Optionality:

Allowed:
Default:
Notes:

Example:

removedMaxAge

Syntax:

Description:

Type:

Optionality:

Allowed:
Default:
Notes:

Example:

removedPrefix

Syntax:

Description:

Type:

Optionality:

Allowed:
Default:
Notes:

removeAtMidnightTZ = "GMTO"
removeAtMidnightTZ = "Brazil/DeNoranha"
removedDirectory = "dir"

Defines the location of files listing wallets being removed.
String
Optional (default used if not set).

"/IN/service_packages/CCS/logs/wallet"

The file is generated by ccsVWARSEXpiry on the VWS and read by
ccsWalletExpiry on the SMS.

removedDirectory = "/var/CCS/removedWallets"

removedMaxAge = seconds

The number of seconds before closing file listing wallets being removed and
creating a new one.

Integer
Optional (default used if not set).

60

The file is generated by ccsVWARSEXpiry on the VWS and read by
ccsWalletExpiry on the SMS.

Whether ccsVWARSEXpiry or ccsWalletExpiry removes the wallet depends on
logNotRemoveWallet (on page 244).

removedMaxAge = 120

removedPrefix = "prefix"

The prefix of files listing wallets being removed from the system.
String

Optional (default used if not set).

"removedWallet"

The file is generated by ccsVWARSEXxpiry on the VWS and read by
ccsWalletExpiry on the SMS.

Whether ccsVWARSEXpiry or ccsWalletExpiry removes the wallet depends on
logNotRemoveWallet (on page 244).

The filename format is: removedPrefix_YYYYMMDDHHMMSSremovedSuffix

246 Charging Control Services Technical Guide

Example: removedPrefix = "produbeOl removeWallets"
removedSuffix
Syntax: removedSuffix = "suffix"
Description: The suffix of files listing wallets being removed from the system.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: Jlog
Notes: The file is generated by ccsVWARSEXpiry on the VWS and read by
ccsWalletExpiry on the SMS.
Whether ccsVWARSEXpiry or ccsWalletExpiry removes the wallet depends on
logNotRemoveWallet (on page 244).
The filename format is: removedPrefix_YYYYMMDDHHMMSSremovedSuffix
Example: removedSuffix = ".log"
renewPCAtMidnightTZ
Syntax: renewPCAtMidnightTZ = "tz"
Description: If specified, sets periodic charge balances to expired from midnight (00:00 hrs; the
beginning of the day) on the expiry date for the time zone specified.
Type: String
Optionality: Optional (default used if not set)
Allowed: A valid time zone. For more information, see the Time Zones appendix of ACS
Technical Guide.
Default: Not set
Notes:
Example: renewPCAtMidnightTZ = "NZ"

Parameters - BE section

ccsVWARSEXxpiry supports the following parameters from the BE section of eserv.config.

expireAtMidnightTZ

Syntax: expireAtMidnightTz = "tz"

Description: Sets wallets and buckets to expire at midnight for the time zone specified.

Type: String

Optionality: Optional (default used if not set).

Allowed: The time zone part of the parameter must be typed in a form that the operating
system recognizes.
Alternatively you can select a time zone from the operating system's list. To view
top-level time zone names, enter 1s /usr/share/lib/zoneinfo from a shell.
To see second-level time zone names enter 1s /usr/share/lib/zoneinfo
TopLevelName/. For example, to verify that the operating system recognizes a
time zone name for DeNoranha, in Brazil, you would enter 1s
/usr/share/lib/zoneinfo/Brazil/. DeNoranha is listed, so the time zone
name would be "Brazil/DeNoranha".

Default: false (do not modify expiry calculation).

Chapter 5, Background Processes on the VWS 247

Notes: A list of time zones can be found in the Time Zones appendix of ACS Technical

Guide.

Example: An account is created at 2 p.m. on 5 September 2006 and is set to have a life
span of 24 days.
If the parameter expireAtMidnightTZz = "Asia/Vladivostok" is included,

the account will expire on 29 September 2006 at midnight, Vladivostok time.
If this parameter is omitted, the account will expire on 29 September 2006 at 2

p.m.
Example

An example of the ccsVWARSEXxpiry parameter group of a Voucher and Wallet Server eserv.config file is
listed below. Comments have been removed.

ccsVWARSExpiry = {
expiredPrefix = "prodube0l expWallet"
expiredDirectory = "/IN/service packages/CCS/logs/wallet"
expiredSuffix = ".log"
expiredMaxAge = 60
removedDirectory = "/IN/service packages/CCS/logs/wallet"
removedPrefix = "produbeOl rmvWallet"
removedSuffix = ".log"
removedMaxAge = 60

accountBatchCacheValidityPeriod = 60
logNotRemoveWallet = true
expiredMsisdnPath="/IN/service packages/CCS/tmp"

expiredMsisdnPrefix="prodube0l MSISDNExp"
expiredMsisdnMaxAge = 120

removeAtMidnightTZ = "GMTO"
cmnPushFiles = [
"-d", "/IN/service packages/CCS/logs/wallet"
"-h", "SMF_HOST"
"_p", "2027"
"-P", "HOST NAME"

ccsVWARSNamedEventHandler

Purpose

This beVWARS message handler performs the VW S-side processing of messages relating to named
events. This includes:

e Returning the desired cost for an event class and event name combination (discounts will be applied
to the rates returned)

e Generating named event EDRs

Tariffs are based on the information replicated to the CCS part of the E2BE database.

Named events include GSM notifications, product type swaps, and other discrete billing events. Named
events can be performed as either a single-shot or a reserve/commit pair. The type of transaction used
will depend on the service's requirement to reverse the charge from the customer based on other
events.

248 Charging Control Services Technical Guide

Startup

If ccsVWARSNamedEventHandler is included in the beVWARS handlers array in eserv.config, it is
loaded by beVWARS when beVWARS is initialized.

handlers = [
"ccsVWARSNamedEventHandler.so"
]
For more information about the beVWARS handlers section, see handlers.

Note: Other handlers may also be included in the handlers array.

Configuration

The ccsVWARSNamedEventHandler beVWARS handler supports parameters from the
namedEventHandler parameter group in the eserv.config file on a Voucher and Wallet Server. It
contains parameters arranged in the structure shown below.

namedEventHandler = {
maxWalletLockLength = millisecs

cascade to use for non promotional Named Events
CascadeNamesByAcsId = [
{
acsCustomerId = IDI
cascade = "name"
}
{
acsCustomerId = ID2
cascade = "name"
}
]

cascade to use for promotional Named Events

PromoCascadeNamesByAcsId = [
{
acsCustomerId = IDI
promo cascade = "promo name"
}

{
acsCustomerId = ID2

promo cascade = "promo name"
}
1
reservationPeriod = millisecs
reservationPeriodTolerance = seconds
eventCacheAgeSeconds = seconds
activatePreuseAccount = truel| false
roundingRuleType = "type"
}
Parameters

The ccsVWARSNamedEventHandler supports the following parameters in the namedEventHandler
section of eserv.config.

Chapter 5, Background Processes on the VWS 249

activatePreuseAccount

Syntax: activatePreuseAccount = truel| false
Description: When true, activate pre-use wallets for NE and INER requests.
Type: Boolean

Optionality:

Allowed: true, false

Default: true

Notes:

Example: activatePreuseAccount = true
acsCustomerId

Syntax: acsCustomerID = ID

Description: The ID of the ACS customer.

Type: Integer

Optionality: Required

Allowed: A valid ID for an existing ACS customer.

Default:

Notes:

Example: acsCustomerID = 12
CascadeNamesByAcsId

SyMam CascadeNamesByAcsId = [

{

acsCustomerId = IDI
cascade = "name"

}

[{

acsCustomerId = ID2

cascade = "name"
1]
]
Description: Defines the default balance type cascades for non-promotional named events on a per
ACS customer basis.
Type: Array
Optionality:
Allowed:
Default:
Notes:
Example: See Example (on page 253) configuration.
cascade
Syntax: cascade = "name"
Description: The name of the default balance type cascade for non-promotional named events
for the ACS customer specified in acsCustomerld (on page 250).
Type: String
Optionality:
Allowed:
Default: "EventCascade"

250 Charging Control Services Technical Guide

Notes:
Example: cascade = "NE Test Cascade""

eventCacheAgeSeconds

Syntax: eventCacheAgeSeconds = seconds

Description: How long to keep named events CCS_EVENT_CLASS, CCS_EVENT_CHARGE,
CCS_ACCT_EVENT_CHANGE entries in the cache.

Type: Integer

Optionality:

Allowed:

Default: 600

Notes:

Example: eventCacheAgeSeconds = 600

maxWalletLockLength

Syntax: maxWalletLockLength = millisecs

Description: How long to lock the wallet for.

Type: Integer

Optionality:

Allowed:

Default: 10000

Notes:

Example: maxWalletLockLength = 10000

PromoCascadeNamesByAcsId

PromoCascadeNamesByAcsId = [

Syntax: ;
acsCustomerId = IDI
promo cascade = "name"
}
(o
acsCustomerId = ID2
promo cascade = "name"
}H
]
Description: Defines the default balance type cascades for promotional named events on a per ACS
customer basis.
Type: Array
Optionality:
Allowed:
Default:
Notes:
Example: See Example (on page 253) configuration.
promo_cascade
Syntax: promo cascade = "name"
Description: The name of the default balance type cascade for promotional named events for

the ACS customer specified in acsCustomerld (on page 250).

Chapter 5, Background Processes on the VWS 251

Type: String

Optionality:

Allowed:

Default: "EventPromoCascade”

Notes:

Example: promo_cascade = "NE Test Promo Cascade""

reservationPeriod

Syntax: reservationPeriod = millisecs

Description: How long to reserve monies for named events in milliseconds.
Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 3600

Notes:

Example: reservationPeriod = 3600

reservationPeriodTolerance

Syntax: reservationPeriodTolerance = seconds

Description: The number of seconds to tolerate a delay for named events reservations before
reporting timeout.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes:

Example: reservationPeriodTolerance = 30

roundingRuleType

Syntax: roundingRuleType = "type"

Description: How to round charging list.

Type: String

Optionality: Optional (default used if not set).

Allowed: e Dbankers — Apply banker's rounding

(0.000x to 0.499x rounded down to whole integer 0.5 -> 0.999x - round
up to whole integer)

e ceiling— Apply ceiling rounding
(0.000x to 0.999x - round up to whole integer)
e floor — Apply floor rounding
(0.000x to 0.999x - round down to whole integer)
Default:
Notes:
Example: roundingRuleType = "floor"

252 Charging Control Services Technical Guide

Example

An example of the namedEventHandler parameter group of a Voucher and Wallet Server eserv.config
file is listed below. Comments have been removed.

namedEventHandler = {
maxWalletLockLength = 10000
CascadeNamesByAcsId = [
{
acsCustomerId = 12
cascade = "Cascadel"
}
{
acsCustomerId = 32
cascade = "Cascade2"
}
]

PromoCascadeNamesByAcsId = [
{
acsCustomerId = 12
promo cascade = "Promo Cascade 1"
}
{
acsCustomerId = 32
promo cascade = "Promo Cascade 2"
}
]

reservationPeriod = 3600
reservationPeriodTolerance
eventCacheAgeSeconds = 600

30

activatePreuseAccount = true
roundingRuleType = "floor"

}

Failure

If ccsVWARSNamedEventHandler fails, interaction with the wallets from the SLC involving updates to
named events will fail.

Output

The ccsVWARSNamedEventHandler writes error messages to the system messages file, and also
writes additional output to the beVWARS log. For more information about the beVWARS log, see VWS
Technical Guide.

ccsVWARSPeriodicCharge

Purpose

This beVWARS plug-in handles periodic charge-specific tasks associated with periodic charge bucket
changes.

ccsVWARSPeriodicCharge performs these tasks:

e Triggers on bucket expiry event and handles periodic charge logic when the periodic charge expires
(that is, when it triggers the next stage in the periodic charge cycle). For more information about the
periodic charge life cycle, see Charging Control Services User's Guide.

Chapter 5, Background Processes on the VWS 253

e Triggers on bucket value changed event (set by ccsVWARSWalletHandler when it processes a
WU_Req) and handles updating the periodic charge bucket for a new periodic charge state. For
subscriptions, creates new balance type and bucket.

e Triggers on wallet state change event or a balance value change event and checks for periodic
charges which are in the grace state. For each one it finds it attempts the charge (NE_Req).
= If successful, all backlogged charges will be applied for the current periodic charge.
= If one charge fails, the periodic charge will be moved back to the current grace state.
= If all backlogged charges are successful, move to an active state.

Notes:
e ccsVWARSPeriodicCharge only acts on periodic charge balances and buckets.

e ccsVWARSWalletHandler handles the initial WU_Req messages and bucket updates (except new
subscriptions). These updates trigger extra tasks performed by ccsVWARSPeriodicCharge.

For more information about how these tasks fit into the overall periodic charging functionality, see
Periodic Charges (on page 31).

Startup

If ccsVWARSPeriodicCharge is included in the beVWARS plugins array in eserv.config, it is loaded by
beVWARS when beVWARS is initialized.

It is included in the following lines:

plugins = [
"ccsVWARSPeriodicCharge.so"
]
For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other event plug-ins may also be included in the plugins array.

Configuration

The ccsVWARSPeriodicCharge beVWARS event plug-in supports parameters from the
ccsVWARSPeriodicCharge parameter group in the eserv.config file on a Voucher and Wallet Server. It
contains parameters arranged in the structure shown below.

ccsVWARSPeriodicCharge = {
retryTimeoutMinutes = mins
chargeTimeGMTHours = HH
cacheTimeoutSeconds = seconds
notificationMidnightTz = "tz"
noNotifsInvalidWallet = true|false
useNonGMTTimezoneOfTriggeringSource = true|false
alwaysWrite52EDR = true|false
subscribeExtendsPCExpiryDate = true|false

Parameters

The ccsVWARSPeriodicCharge supports the following parameters in the ccsVWARSPeriodicCharge
section of eserv.config.

alwaysWrite52EDR
Syntax: alwaysWrte52EDR = true| false
Description: Whether or not to write a type 52 EDR record for every state change and every

expiry date change. When set to false, a type 52 EDR will not be generated if the
state remains the same but the expiry date changes.

254 Charging Control Services Technical Guide

Type:
Optionality:
Allowed:

Default:
Notes:
Example:

Boolean

Optional (default used if not set).

true Write type 52 EDR for every state change
including expiry date changes

false Do not write type 52 EDR when the state
remains the same but the expiry date changes

true

alwaysWrite52EDR = true

cacheTimeoutSeconds

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

cacheTimeoutSeconds = seconds

The number of seconds to store entries in the beVWARS periodic charge cache.
Integer

Optional (default used if not set).

Integer, 1-3600.

300

cacheTimeoutSeconds = 450

chargeTimeGMTHours

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

chargeTimeGMTHours = HH

The time of day (in GMT) that a charge attempt will be made for fixed-date charges.
Integer

Optional (default used if not set).

Integer, 0-23

0

The hours correspond to the hours in a 24 hour clock. For example, specify 10 pm
(2200 hours) as 22. Midnight is 0.

This parameter has no affect on the first charge date other than to set the hour. For
example, if there is a fixed periodic charge on the 14th day of each month and this
parameter specifies an offset for the charge of 12 hours, the first charge will be in
the next month, even if the subscriber subscribes in the time lapse between 0:00
and the offset specified by this parameter, or between 0:00 and 12:00 in this case.

For more information about fixed-date configuration, see Charging Control Services
User's Guide.

chargeTimeGMTHours = 22

notificationMidnightTZ

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:

notificationMidnightTZ = "tz"

The timezone to use when calculating when a notification should be sent.
String
Optional (default used if not set).

"UTC"

Chapter 5, Background Processes on the VWS 255

Notes: This parameter controls the timezone the naotification send time is calculated in.
The time is 00:00 by default, but can be specified in the periodic charge
configuration on the Wallet Management screen. For more information, see
Charging Control Services User's Guide.

Example: notificationMidnightTZz = "GMT"

noNotifsInvalidWallet

Syntax: noNotifsInvalidWallet = true | false
Description: For wallets in an invalid state, specifies whether ccsVWARSPeriodicCharge suppresses
all Periodic Charge (PC) notifications or just the Pre-Charge natifications.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: e true — Suppresses all PC notifications
o false — Suppresses only the PreCharge notifications
Default: false
Notes:
Example: noNotifsInvalidWallet = true

useNonGMTTimezoneOfTriggeringSource

Syntax: useNonGMTTimezoneOfTriggeringSource = true|false

Description: Sets whether to use the timezone defined in the Timezone field in the Periodic Charge,
When configuration screen in the SMS UI. Set to:
e true — To use the timezone supplied by the source triggering the periodic
charge if the supplied timezone is not GMT or UTC.

o false — To use the timezone defined in the periodic charge Timezone field or UTC
if the periodic charge definition does not specify a time zone.

Regardless of the value of this parameter, the time zone supplied by the triggering
source is always used when there are no periodic charge definitions for the balance
type being processed.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes: When set to true, this parameter provides support for periodic charges based on the

subscriber's actual timezone. Because there is limited support for, or lack of capability
of the various triggering sources, setting this parameter to true can lead to inaccurate
or erroneous calculations, and inconsistencies in time when notifications are sent, and
when periodic charges are applied. Therefore, you are recommended to always set this
parameter to false.

Example: useNonGMTTimezoneOfTriggeringSource = false

retryTimeoutMinutes

Syntax: retryTimeoutMinutes = mins

Description: The number of minutes before reattempting a charge after a VWS error.
Type: Integer

Optionality: Optional (default used if not set).

Allowed: 1-1440

Default: 10

256 Charging Control Services Technical Guide

Notes:
Example: retryTimeoutMinutes = 30

subscribeExtendsPCExpiryDate

Syntax: subscribeExtendsPCExpiryDate = truel| false

Description: Controls whether a SUBSCRIBE event changes the expiry date of a periodic charge in
pre-charge and grace states.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: truelfalse

true - extend the periodic change expiry date
false - do not extend the expiry date

Default: True

Notes:

Example: subscribeExtendsPCExpiryDate = true
Example

An example of the ccsVWARSPeriodicCharge parameter group of a Voucher and Wallet Server
eserv.config file is listed below. Comments have been removed.

ccsVWARSPeriodicCharge = {

cacheTimeoutSeconds = 300
notificationMidnightTZ = "UTC"
chargeTimeGMTHours = 0
useNonGMTTimezoneOfTriggeringSource = false
retryTimeoutSeconds = 10

}

Failure

If ccsVWARSPeriodicCharge fails, periodic charges will not be processed. When
ccsVWARSPeriodicCharge recovers, it will process the failed periodic charges the next time they are
queried.

Output

ccsVWARSPeriodicCharge writes:

e Notifications to notification batch file

e Error messages to the system messages file

e Additional output to the beVWARS log

For more information about the beVWARS log, see VWS Technical Guide.

Chapter 5, Background Processes on the VWS 257

ccsVWARSQuota

About the ccsCWARSQuota Plugin

The ccsVWARSQuota plugin sends a notification to the subscriber each time that updates to the
subscriber's quota balance type cause a threshold configured for the subscriber's quota balance type to
be breached. You configure the quota thresholds for quota balance types by determining the quota
value in a profile field, and then by specifying the threshold as a percentage of the quota value.

For more information about configuring quota balance types and thresholds, see the discussion on
configuring balance types in Convergent Charging Controller Charging Control Services User's Guide.

Startup

To enable ccsVWARSQuota to send quota notifications to the subscriber you must include the
ccsVWARSQuota plugin in the beVWARS plugins array in eserv.config. The ccsVWARSQuota plugin
is loaded by beVWARS when beVWARS is initialized.

You include the ccsVWARSQuota plugin by using the following sytax:

beVWARS = [
plugins = [
"ccsVWARSQuota.so"
]
]
There are no additional configuration parameters for ccsVWARSQuota in the eserv.config file, and
ccsVARSQuota does not accept any command line parameters.

Note: Other event plug-ins may also be included in the plugins array. For more information about the
beVWARS plugins section, see plugins (on page 208).

Failure

If ccsVWARSQuota fails, then the quota notifications configured in the Wallet Management screens in
the Prepaid Charging Ul will not be sent.

ccsVWARSRechargeHandler

Purpose

ccsVWARSRechargeHandler is a beVWARS message handler which handles general wallet recharges

(WGR).

Startup

If ccsVWARSRechargeHandler is included in the beVWARS handlers array in eserv.config, it is loaded
by beVWARS when beVWARS s initialized.

Itis included in the following lines:

handlers = [
"ccsVWARSRechargeHandler.so"
1
For more information about the beVWARS handlers section, see handlers.

Note: Other handlers may also be included in the handlers array.

258 Charging Control Services Technical Guide

Parameters

The ccsVWARSRechargeHandler supports parameters from the ccsvWARSUti1s section of
eserv.config. For more information, see Parameters (on page 287).

ccsVWARSReservationHandler

Purpose

This beVWARS message handler performs the VW S-side processing of all messages relating to
chargeable call processing including calculating tariffs for CLI-DN combinations. Discounts are applied
after the rate is returned. These messages are the reservation messages, and include:

Initial Reservation (IR)
Subsequent Reservation (SR)
¢ Commit Reservation (CR)
Revoke Reservation (RR)

Startup

If ccsVWARSReservationHandler is included in the beVWARS handler array in eserv.config, it is loaded
by beVWARS when beVWARS is initialized.

Itis included in the following lines:

handlers = [
"ccsVWARSReservationHandler.so"

]
For more information about the beVWARS handlers section, see handlers.

Note: Other handlers may also be included in the handlers array.

Parameters

The ccsVWARSReservationHandler supports the following parameters in the reservationHandler
section of eserv.config.

addDisplaySpendRatio

Syntax: addDisplaySpendRatio = truel| false

Description: Enable if display spend ratio is required in the EDR.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: e true - Add spend ratio in the EDR.
e false - Do not add spend ratio in the EDR.

Default: false

Notes: Setting this parameter to true adds a comma delimited (per balance) spend ratio in the
EDR. e.g. DISPLAY_SPEND_RATI0=1.0,2.0,1.0 etc

Example: addDisplaySpendRatio = false

addGeoSetID

Syntax: addGeoSetID = truelfalse

Description: Log the geo set entry IDs for CLI and DN into EDR.

Chapter 5, Background Processes on the VWS 259

Type: Boolean

Optionality: Optional (default used if not set).
Allowed:

Default: false

Notes:

Example: addGeoSetID = true

alwaysContributeToXBTDTimeBalance

Syntax: alwaysContributeToXBTDTimeBalance = <truel|false>
Description: Indicates how to do handle cross balance duration.

Type: Boolean

Optionality: Optional

Allowed: true Always debit the duration of the current rate from

the Cross balance type Time balance (if applicable
in the current Cross balance type cascade)
regardless of whether a wallet discount is being
applied to the resulting cost of this rate.

false
Default: false
Notes:
Example: alwaysContributeToXBTDTimeBalance = false

createEDRForMidSessionCommit

Syntax: createEDRForMidSessionCommit = <truel|false>
Description: Flag to generate a partial EDR for each mid-session commit.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: e true - generate partial EDR, or
e false - do not generate any partial EDRs

Default: false
Notes:
Example: createEDRForMidSessionCommit = false
discountData
Syntax: discountData = true|false
Description: Whether or not to discount charges on data balances.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Apply discounts.

false Do not apply discounts.
Default: true
Notes: For example, if discountData is set to true and you have 40 free data units and a

discount of 50%, you will actually get 80 data units of call time.

If discountData is set to false, you will get 40 free data units regardless of
applicable discounts.

Example: discountData = true

260 Charging Control Services Technical Guide

discountRuleType

Syntax:
Description:

Type:
Optionality:
Allowed:

Default:
Notes:

Example:

discountTime
Syntax:

Description:

Type:

Optionality:

Allowed:

Default:
Notes:

Example:

discountRuleType = "<rule>"

How to factor service discounts from the IR_Req, SR_Req or CR_Req into the
discounts to be applied from the rating and the wallet.

String
Optional (default used if not set).
ServiceOverri override service discounts

de

s*r*w compound service, rating and wallet
discounts

SHr+W cumulate service, rating and wallet
discounts

S+rrw cumulate service and rating discounts then
compound the result to the wallet discount

S*r+w compound service and rating discounts
then cumulate the result to the wallet
discount

S+WHr cumulate service and wallet discounts then
compound the result to the rating discount

S*W+r compound service and wallet discounts
then cumulate the result to the rating
discount

r+w*s cumulate rating and wallet discounts then
compound the result to the service discount

r*w+s compound rating and wallet discounts then
cumulate the result to the service discount

S*W*r

s = service. The incoming discounts from the SLC as specified in the IR_Req,
SR_Reqg and CR_Req messages.

r = rating. Holiday or weekly discounts that may be applicable during the call.

w = wallet. The discounts that are based on specific 'Cross Balance Type
Discount' wallet balances being present when the call charge is being calculated.

discountRuleType = "s*r*w"

discountTime = <true|false>

Whether or not to discount charges on time balances.

Boolean

Optional (default used if not set).
true Apply discounts.

false Don't apply discounts.
false

For example, if discountTime is set to true and you have 40 free minutes and a
discount of 50%, you will actually get 80 minutes of call time.

If discountTime is set to false, you will get 40 free minutes regardless of
applicable discounts.

discountTime = true

Chapter 5, Background Processes on the VWS 261

greedyReservationLengthLimit

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

greedyReservationLengthLimit = <secs>

The number of seconds reservation of funds should aim to be.
Integer

Optional (default used if not set).

60

If this number of seconds cannot be reserved, the wallet is treated as if it has a
Maximum Concurrent Accesses of 1. For more information about Maximum
Concurrent Accesses settings, see Charging Control Services User's Guide.

This parameter does not affect charging for named events.

maxReservationLength

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

maxReservationLength = <secs>
The number of seconds to attempt to reserve for an IR or SR.
Integer64

Optional (default used if not set).

3600
This is what will be reserved if the wallet has infinite funds.

reservationLengthTolerance

Syntax:
Description:

Type:
Optionality:
Allowed:

Default:
Notes:

Example:

reservationlLengthTolerance = <secs>

The number of seconds the reservation length should exceed the length of time
which can be paid for out of the funds available to the wallet.

Integer
Optional (default used if not set).

350

This does not give free call time but allows the application of a CR or SR to be
delayed slightly.

reservationLengthTolerance = 350

showCostsEDRScaledByDisplaySpendRatio

Syntax:
Description:
Type:
Optionality:
Allowed:

Default:
Notes:

showCostsEDRScaledByDisplaySpendRatio = truel| false
Whether to show COSTS scaled by the display spend ratio in EDR.
Boolean

true - Show COSTS scaled by the display spend ratio.
false - Do not show COSTS scaled by the display spend ratio.
false

COSTS added to the EDR remove the scaling due to the display spend ratio by default.
In order to see the COSTS scaled by the display spend ratio, set
showCostsEDRScaledByDisplaySpendRatio to true.

262 Charging Control Services Technical Guide

Example: SshowCostsEDRScaledByDisplaySpendRatio = false

suppressEDRRatingDetails

Syntax: suppressEDRRatingDetails = <true|false>

Description: Whether to suppress some rating fields in the EDRs written for midcall rating
change (FMC) and/or multi tariff rating calls.

Single tariff calls are not affected by this parameter.

Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Suppressing the fields listed above for FMC
and/or MTR calls.
false Use normal approach to writing fields.

Default: true
Notes: The suppressed fields are:

e RATES

e LENGTHS

e MAX_CHARGE
e DISCOUNTS
e CASCADE_ID
e CBTD_DISCOUNTS, and
e CBTD_CASCADE_ID.
For more information about these EDR fields, see EDR Reference Guide.

Example:
syslogErrors
Syntax: syslogErrors = <truel|false>
Description: Whether or not to log some NACKs to the syslog.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Log all NACKs except MaxConcurrentExceeded, InsufficientFunds,
and WalletDisabled to the syslog.
false Do not log any NACKSs to the syslog.
Default: false
Notes: These errors include some detail about why the action failed.
Example:

useWorstCaseBalances

Syntax: useWorstCaseBalances = <truelfalse>

Description: For new calls during initial reservations, whether to use worst case balances only
or all available balances.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Use worst case balances only.
false Use all available balances.

Default: true

Chapter 5, Background Processes on the VWS 263

Notes:

Worst case balances are those which are having a start date and an expiry date.
Balances having expiry date, without any start date are considered as worst case
balance, only if it is not going to expire within the call start time and a calculated
expected call finish time.

Example: useWorstCaseBalances = false

zeroLengthFreeCalls

Syntax: zeroLengthFreeCalls = {}

Description: How successful, free, zero-length calls should be handled. For example, where
the caller hangs up before the call is answered.

Type: Array

Optionality: Optional (not used if not set).

Allowed:

Default:

Notes: These settings can be used to reduce the amount of resources used for
successfully placed free calls, which are unanswered.

Example:

updatelLastUseDate

Syntax: updatelastUseDate = <truel|false>

Description: Whether successful, free, zero-length calls should change the wallet's last use
date in the database. For example, where the caller hangs up before the call is
answered.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Update the wallet's last use date in the database
false Do not update the wallet last use date.

Default: true

Notes: This settings can be used to reduce the amount of resources used for
successfully placed free calls, which are unanswered.
For more information about Last Use Date, see Charging Control Services User's
Guide.

Example:

writeCDR

Syntax: updatelastUseDate = <truel|false>

Description: Whether successful, free, zero-length calls should generate an EDR. For
example, where the caller hangs up before the call is answered.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Write an EDR for the call.
false Do not write an EDR for the call.

Default: true

Notes: This settings can be used to reduce the amount of resources used for
successfully placed free calls, which are unanswered.
For more information about EDRs, see EDR Reference Guide.

Example:

264 Charging Control Services Technical Guide

Example

An example of the reservationHandler parameter group of a Voucher and Wallet Server eserv.config file
is listed below. Comments have been removed.

reservationHandler = {
syslogErrors = false
maxReservationLength = 3600
reservationLengthTolerance = 30
greedyReservationLengthLimit = 60
discountRuleType = "s*w*r"
alwaysContributeToXBTDTimeBalance = false
suppressEDRRatingDetails = true
discountTime = false
discountData = true
addGeoSetID = true
createEDRForMidSessionCommit = false
addDisplaySpendRatio = false
showCostsEDRScaledByDisplaySpendRatio = false

useWorstCaseBalances = false
zeroLengthFreeCalls = {
updatelastUseDate = true

writeCDR = true

Failure

If ccsVWARSReservationHandler fails, interaction with the subscriber accounts from the SLC involving
call charging will fail.

Output

The ccsVWARSReservationHandler writes error messages to the system messages file, and also writes
additional output to:

/IN/service packages/E2BE/tmp/beVWARS.log

ccsVWARSVoucherHandler

Purpose

This beVWARS message handler performs the Voucher and Wallet Server side processing of
messages directly relating to vouchers. This includes voucher reservation/commit, alteration and
deletion. It does not perform the wallet recharge; this is done by the ccsVWARSWalletHandler (on
page 269). The message handler only controls the Voucher and Wallet Server side of the CCS
voucher tables, not the main body of data about vouchers that is replicated from the SMS.

This handler validates incoming voucher reserve (for example, scratch or redeem) requests, and refers
to the replicated CCS voucher tables for all information except the current redeemed/unredeemed state
of the voucher.

It is important to remember that the BE_VOUCHER record will in all probability not exist unless the
voucher has had a previous successful (or almost successful) redeem performed upon it. This state is
hidden from the client process, a non-existent BE_VOUCHER record is proof that the voucher has not
been redeemed.

Chapter 5, Background Processes on the VWS 265

Startup

If ccsVWARSVoucherHandler is included in the beVWARS handlers array in eserv.config, it is loaded
by beVWARS when beVWARS is initialized.

Itis included in the following lines:

handlers = [
"ccsVWARSVoucherHandler.so"
]
For more information about the beVWARS handlers section, see handlers.

Note: Other handlers may also be included in the handlers array.

Parameters

The ccsVWARSVoucherHandler supports the following parameters in the beVWARS section of
eserv.config .

Note: It also required the BE . serverId parameter. For more information about setting serverId, see
VWS Technical Guide.

badPinExpiryHours
Syntax: badPinExpiryHours = hours
Description: The number of hours before the bucket storing the bad PIN expires.
Type: Integer
Optionality: Optional (default used if not set)
Allowed: negative integer Does not expire
positive integer Number of hours before expiry
Default: 24
Notes:
Example: badPinExpiryHours = 48

clearConsecutivePin

Syntax: clearConsecutivePin = Boolean

Description: If true, then a successful voucher recharge will set the number of consecutive bad
pin attempts for an account to zero.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed:

Default: false

Notes:

Example: clearConsecutivePin = true

consecutiveBadPinExpiryHours

Syntax: consecutiveBadPinExpiryHours = hours

Description: The number of hours before the bucket storing the consecutive bad PIN expires.
Type: Integer

Optionality: Optional (default used if not set)

Allowed: negative integer Does not expire

positive integer Number of hours before expiry

266 Charging Control Services Technical Guide

Default:
Notes:
Example:

24

consecutiveBadPinExpiryHours = 48

createRechargeCDRInactiveAccount

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

createRechargeCDRInactiveAccount = true|false
When true, failed voucher recharges generate an EDR.
Boolean

Optional (default used if not set)

true, false

true

createRechargeCDRInactiveAccount = true

dailyBadPinExpiryHours

Syntax:
Description:
Type:
Optionality:
Allowed:

Default:
Notes:
Example:

dailyBadPinExpiryHours = hours

The number of hours before the bucket storing the daily bad PIN expires.
Integer

Optional (default used if not set)

negative integer Does not expire

positive integer Number of hours before expiry

24

dailyBadPinExpiryHours = 48

monthlyBadPinExpiryHours

Syntax:
Description:
Type:
Optionality:
Allowed:

Default:
Notes:
Example:

monthlyBadPinExpiryHours = hours

The number of hours before the bucket storing the monthly bad PIN expires.
Integer

Optional (default used if not set)

negative integer Does not expire

positive integer Number of hours before expiry

744

monthlyBadPinExpiryHours = 744

weeklyBadPinExpiryHours

Syntax:
Description:
Type:
Optionality:
Allowed:

Default:

weeklyBadPinExpiryHours = hours

The number of hours before the bucket storing the weekly bad PIN expires.
Integer

Optional (default used if not set)

negative integer Does not expire

positive integer Number of hours before expiry

744

Chapter 5, Background Processes on the VWS 267

Notes:
Example: weeklyBadPinExpiryHours = 744

replicationInterface

Syntax: replicationInterface = "if"

Description: The handle of the SLEE replication interface.

Type: String

Optionality: Optional (default used if not set)

Allowed: Must match the Interface name in SLEE.cfg.

Default: "replicationlF"

Notes: For more information about SLEE.cfg, see SLEE Technical Guide.
Example: replicationInterface = "replicationIF"
requireBonusRow

Syntax: requireBonusRow = true|false

Description: When true, vouchers will fail if there is no entry in CCS_BONUS_VALUES.
Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: true

Notes:

Example: requireBonusRow = true

updatelastUseVoucherRecharge

Syntax: updatelastUseVoucherRecharge = truel|false
Description: When true, voucher recharges update the 'last use date' field.
Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: true

Notes:

Example: updatelLastUseVoucherRecharge = true
vomsInstalled

Syntax: vomsInstalled = truel|false

Description: Define if you are using:

e Voucher Manager-type bad PIN balances (true)
e Just a single, VWS bad PIN (false)

Type: Boolean

Optionality: Optional (default used if not set)
Allowed: true, false

Default: false

Notes:

Example: vomsInstalled = true

268 Charging Control Services Technical Guide

Example

An example of the voucherHandler parameter group of a Voucher and Wallet Server eserv.config file
is listed below. Comments have been removed.

voucherHandler = {
requireBonusRow = true
updatelLastUseVoucherRecharge = true
createRechargeCDRInactiveAccount = true

badPinExpiryHours = 24
dailyBadPinExpiryHours = 24
monthlyBadPinExpiryHours = 744
consecutiveBadPinExpiryHours = -1

vomsInstalled = true
replicationInterface = "replicationIF"

}

Failure

If ccsVWARSVoucherHandler fails, interaction with the wallets from the SLC involving vouchers will fail.

Output

The ccsVWARSVoucherHandler writes error messages to the system messages file, and also writes
additional output to /IN/service_packages/E2BE/tmp/beVWARS.log.

ccsVWARSWalletHandler

Purpose

This beVWARS message handler performs the VWS side processing of all messages relating directly to
wallets. This includes:

o Wallet information (W1I) - responds with wallet information

e Wallet create (WC) - creates new wallets

o Wallet update (WU) - updates wallets and possibly adds reload bonuses and writes an EDR.

o Wallet delete (WD) - deletes existing wallets and corresponding buckets

e Bad PIN updates (BPIN) - updates bad PIN balance if the wallet has one.

EDRs are produced for all Wallet updates (create/modify/delete/recharge) with the details of the change.
Note: ccsVWARSWalletHandler only performs some updates for periodic charge balances and buckets.

For more information about how ccsVWARSWalletHandler handles WU _Req messages which relate to
periodic charges, see Processing periodic charge subscription changes.

For more information about wallet messages, see VWS Technical Guide.

Startup

If ccsVWARSWalletHandler is included in the beVWARS handlers array in eserv.config, it is loaded by
beVWARS when beVWARS is initialized.

It is included in the following lines:

handlers = [
"ccsVWARSWalletHandler.so"
]
For more information about the beVWARS handlers section, see handlers.

Chapter 5, Background Processes on the VWS 269

Note: Other handlers may also be included in the handlers array.

Configuration

The ccsVWARSWalletHandler library accepts the following configuration parameter for the
ccsWalletUpdateHandler plug-in:

walletUpdateHandler = {

createEmptyBuckets = truel false
deleteEmptyBuckets = truel|false
maxReservationsPerSLEEMessage = 5
}
createEmptyBuckets
Syntax: createEmptyBuckets = true | false
Description: Specifies whether ccsVWARSWalletHandler creates empty buckets for subscribers that
are added through Pl commands or the User Interface (Ul).
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: e true — Empty buckets are created
o false — No empty buckets are created
Default: true
Notes:
Example: createEmptyBuckets = false
deleteEmptyBuckets
Syntax: deleteEmptyBuckets = truel|false
Description: Controls whether beServer deletes empty buckets or whether it is done by
beVWARSEXpiry (and controlled by its configuration).
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Empty buckets will be removed by the beServer.
false Empty buckets will be removed by the
beVWARSEXpiry plug-in.
Default: true
Notes: For more information about beServer and beVWARSEXxpiry, see VWS Technical
Guide.
Example: deleteEmptyBuckets = false

maxReservationsPerSLEEMessage

Syntax: maxReservationsPerSLEEMessage = Int

Description: Specifies the maximum number of reservations returned by the VWS when querying for
wallet reservation details.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 5

Notes: Do not set this parameter higher than the maximum SLEE event size (MAXEVENTS).

See About Configuring MAXEVENTS. Otherwise, the CCSRM1=QRY Pl command time
outs, and the VWS generates a no free events error.

270 Charging Control Services Technical Guide

Example: maxReservationsPerSLEEMessage = 3

Failure

If ccsVWARSWalletHandler fails, interaction with the wallets from the SLC will fail.

Output

The ccsVWARSWalletHandler writes error messages to the system messages file.

ccSWLCPIlugin

Purpose

ccsWLCPIlugin is a beVWARS plug-in that handles wallet life cycle periods. It is triggered by a wallet
query event and provides the following services:

e Processes wallet life cycle plan and periods transitions
e Triggers on entry and on backout control plans
e Triggers on entry and on backout notifications

Startup

If ccsWLCPIugin is included in the beVWARS plugin array in eserv.config, it is loaded by beVWARS
when beVWARS is initialized.

It is included in the following lines:

plugins = [
"ccsWLCPlugin.so"

]
For more information about the beVWARS plugins section, see plugins (on page 208).

Note: Other plug-ins may also be included in the plugins array.

cmnPushFiles

Purpose

cmnPushFiles is responsible for pushing files to other machines including, but not limited to, log files to
the SMS.

Warning: You must install the xinetd daemon as a prerequisite to running cmnPushFiles. You install the
daemon by entering the following command:

yum install xinetd

Startup

Each instance of the cmnPushFiles daemon should be started with a separate entry in the inittab of the
machine where it will run. It runs under the control of inetd.

Before adding an entry to the inittab, you must decide the following:

1 User you wish to have cmnReceiveFiles write incoming files as (for example, ccs_oper)

Chapter 5, Background Processes on the VWS 271

4
5

File names you wish to transfer (for example, file names starting with "ccsCDR")

Directories on each host you want to transfer files between (for example,BE/logs/CDR and
CCSl/logs/CDR)

Host name of the receiving side of the connection (for example, hp3)
Port number the two programs will use to communicate (for example, 2027)

Receiving machine

You must also ensure a matching cmnReceiveFiles is available on the destination machine.

On the receiving machine, add an entry to /etc/services like this:

ccsoperFiles 2027/tcp

and to /etc/inetd.conf, add an entry like this:

ccsoperFiles stream tcp nowait root /IN/service packages/CCS/bin/cmnReceiveFiles
cmnReceiveFiles -u ccs_oper.

Parameters

cmnPushFiles supports the following parameters.

—a

Syntax:

Description: How old transferred files must be before they are removed.
Type:

Optionality:

Allowed:

Default: Never clean

Notes: This parameter is only relevant if the —o parameter is specified.
Example:

-C

Syntax:

Description: Clean up period.
Type:

Optionality: Optional

Allowed:

Default: 1800

Notes: In seconds
Example:

-d

Syntax:

Description: Scan Directory. The directory to search for files to transfer to the receiving side.

cmnPushFiles will only transfer those files matching a pattern. See -p.

Type:
Optionality:
Allowed:
Default:
Notes:

272 Charging Control Services Technical Guide

Example:

-f
Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-F

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-h

Retry directory.

Optional.

none

Use fuser to not move files in use.

Optional.

Do not use

The host name of the cmnReceiveFiles listener.

-M

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-0

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

Maximum retry period.

Optional.

900

Transferred directory. What to do with files that have been transferred.

Optional.

File deleted

Chapter 5, Background Processes on the VWS 273

P

Syntax:

Description: The port number of the cmnReceiveFiles listener.

Type:

Optionality: This parameter is optional.

Allowed:

Default: 2027

Notes:

Example:

-P

Syntax:

Description: Match Pattern. Specify a filename prefix that must be matched in order to qualify
a file for transfer to the remote side.

Type:

Optionality: This parameter is optional.

Allowed:

Default:

Notes:

Example: -P ccsCDR will cause all files matching ccsCDR* in the source directory to be
transferred.

-R

Syntax:

Description: Initial retry period.

Type:

Optionality: Optional

Allowed:

Default: 15

Notes: In seconds.

Example:

-r

Remote directory prefix.
e Ifthe —r parameter is omitted, files will be written to the target machine using the path used by
the source machine.
e If the -r parameter is included, the remote directory prefix is added to the front of all matching
file names in the source directory.
e If the —-d parameter is used and if it specifies a relative directory (one that starts with a /), the -¢
parameter must be specified. Otherwise, this parameter is optional.

-s

Syntax:

Description: The re-scan interval. After cmnPushFiles has scanned its input directory and
found no files to transfer, it goes to sleep for a configurable interval. To change
this interval, specify the number of seconds to sleep after the -s.

Type:

274 Charging Control Services Technical Guide

Optionality:
Allowed:
Default:
Notes:
Example:

-S
Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-t

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

=T

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

—-X

Optional

15
In seconds

File suffix.

Optional

-t int
Throttle. Controls the maximum transmission speed the application will use when
transferring data.

Integer
Optional.

Specify the number of bits per second to use after the option.

Tree move. Recursively moves the directory tree.

Optional

off

No host name prefix. By default, cmnPushFiles adds the sending host name to file names sent to the
receiving side using the convention: hostName_fileName. To prevent the host name being added, use
the —x switch. This parameter is optional.

Failure

If cmnPushFiles fails, files will collect in the input directory. When the process starts up again, the
unprocessed files will be processed.

Chapter 5, Background Processes on the VWS 275

If cmnPushFiles fails to copy a file to the remote location, it will move the files into a failed directory.

Output

cmnPushFiles will transfer files to the configured target machine and will move the local files to a
completed transfer directory.

The cmnPushFiles writes error messages to the system messages file.

libccsCommon

Purpose

libccsCommon provides common functions to various CCS processes.

Startup

libccsCommon is used by a number of CCS processes. No startup configuration is required for this
library to be used.

Configuration

The libccsCommon library supports parameters from the common parameter group in the eserv.config file
on all machines. It contains parameters arranged in the structure shown below. The value types for each
parameter are displayed as placeholders.

common = {

how long entries should remain in the various caches
balanceTypeCascadeIdCacheAgeSeconds = seconds
balanceTypeCascadeCacheAgeSeconds = seconds
balanceTypeUnitCacheAgeSeconds = seconds
balanceTypelIdCacheAgeSeconds = seconds
defaultBalanceTypeCacheAgeSeconds = seconds
systemCurrencyBalanceUnitCacheAgeSeconds = seconds
accountCacheAgeSeconds = seconds
accountTypeBestPeriodsCacheAgeSeconds = seconds
tariffPlanIdCacheAgeSeconds = seconds
walletTypeCacheAgeSeconds = seconds
profileDetailsSubtagsCacheAgeSeconds = seconds
domainsCacheAgeSeconds = seconds
lowCreditDapDisableCacheAgeSeconds = seconds
ccsAcctReferenceCacheAgeSeconds = seconds
productTypelIdCacheAgeSeconds = seconds
creditCardCacheAgeSeconds = seconds
creditCardCacheRepIntervalSeconds = seconds

#the following should go into eserv.config.be
acsCustIdAgeSeconds = seconds
ccsBalanceExpiryRoundUp = boolean

If set, the timezone in which to set the expiry date of an expenditure
balance to the next midnight.

default: GMT

expenditureBalanceMidnightExpiryTZ = "timezone"

mode for CB10 HRN wvalidation.

true = force HRN to be validated against seed

false = no validation of HRN against seed

default: true
authCBl0ValidateSeed = boolean

oS o H o o S

276 Charging Control Services Technical Guide

Name of xmlIF used when sending low credit DAP notifications (default xmlIF)
xmlInterfaceName = "interface name"

The length of time in seconds between syslog messages about

not being able to send to a SLEE Interface. (BE only)

Default 60 (seconds)

rateLimitIFSendErrors = seconds

Parameters

libccsCommon library supports these parameters in the common section of eserv.config.

accountCacheAgeSeconds

Syntax: accountCacheAgeSeconds = seconds

Description: The maximum number of seconds that account data remains cached.
Type: Integer

Optionality:

Allowed:

Default: 600

Notes:

Example: accountCacheAgeSeconds = 600

accountNumberLength

Syntax: accountNumberLength = len

Description: The number of digits in a card account number generated by ccsAccount tool.

Type: Integer

Optionality: Optional

Allowed:

Default: 10

Notes: If you set accountNumberLength to O (zero), the account numbers that the
ccsAccount tool generates can be any length.

Example: accountNumberLength = 10

Chapter 5, Background Processes on the VWS 277

accountTypeBestPeriodsCacheAgeSeconds

Syntax: accountTypeBestPeriodsCacheAgeSeconds = seconds

Description: The value specified in the accountTypeBestPeriodsCacheAgeSeconds parameter
indicate the maximum validity time for data stored in the
accountTypeBestPeriodcache.

The accountTypeBestPeriodcache caches the best (that is longest) value of each of
the four items listed below from the CCS_ACCT TYPE table, for each wallet. That
is, for each item, it caches the longest value across all account types using the
wallet.
e ACTIVE_DORMANT - Number of days an account in the active state can be
inactive before it is deemed dormant.
o DORMANT_TERMINATED - Number of days an account in the dormant state
can be inactive before it is deemed terminated.
e PRE_USE_EXPIRY - Number of days an account in the pre-use state can be
inactive before it is deemed terminated.
e TERMINATED_REMOVED - Number of days an account in the terminated
state can be inactive before it is removed from the database.
Each row in the CCS_ACCT TYPE table represents a product type. It is possible
to have a wallet which is shared by more than one account, each of which has a
different product type.

Type: Integer
Optionality:
Allowed:
Default: 600
Notes:
Example: accountTypeBestPeriodsCacheAgeSeconds = 600
authCBl0OValidateSeed
Syntax: authCBl0ValidateSeed = true| false
Description: The mode for CB10 HRN validation.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Force incoming HRN to be validated against
originating seed (voucher number).
false Do not validate of HRN against originating seed.
Default: true
Notes: This parameter is only needed if the system is using ccsCB10HRNSHA (on page

211) or ccsCB10HRNAES (on page 108).

This setting may be useful where:
e Vouchers have been imported from another system and the original
voucher number seeds are not available

e Validation performance gains are needed.
Example: authCBl0ValidateSeed = false

balanceTypeCascadeCacheAgeSeconds

Syntax: balanceTypeCascadeCacheAgeSeconds = seconds
Description: The maximum number of seconds that data of the cascade balance type remains
cached.

278 Charging Control Services Technical Guide

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 600

Notes:

Example: balanceTypeCascadeCacheAgeSeconds = 600

balanceTypeCascadeIdCacheAgeSeconds

Syntax: balanceTypeCascadeIdCacheAgeSeconds = seconds

Description: The maximum number of seconds that data of the cascade identifier balance type
remains cached.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 600

Notes:

Example: balanceTypeCascadeIdCacheAgeSeconds = 600

balanceTypeDetailedCascadeCacheAgeSeconds

Syntax: balanceTypeDetailedCascadeCacheAgeSeconds = seconds

Description: The maximum number of seconds that data of the cascade detailed balance type
remains cached.

Type: Integer

Optionality:

Allowed:

Default: 600

Notes:

Example: balanceTypeDetailedCascadeCacheAgeSeconds = 600

balanceTypeIdCacheAgeSeconds

Syntax: balanceTypeIdCacheAgeSeconds = seconds

Description: The maximum number of seconds that data of the identifier balance type remains
cached.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 600

Notes:

Example: balanceTypeIdCacheAgeSeconds = 600

balanceTypeUnitCacheAgeSeconds

Syntax: balanceTypeUnitCacheAgeSeconds = seconds

Description: The maximum number of seconds that data of the unit balance type remains
cached.

Type: Integer

Chapter 5, Background Processes on the VWS 279

Optionality:
Allowed:
Default:
Notes:
Example:

600

balanceTypeUnitCacheAgeSeconds = 600

balanceUnitTypeCacheAgeSeconds

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

seconds

balanceUnitTypeCacheAgeSeconds

The number of seconds before the balance unit cache is refreshed from the
database.

Integer
Optional (default used if not set).

600

The balance unit type configuration is used by the rating engine for determining
how a balance type should be treated, (that is, is is cash, time or other). This
configuration is based on the name of the unit.

balanceUnitTypeCacheAgeSeconds = 600

ccsAcctReferenceCacheAgeSeconds

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

ccsAcctReferenceCacheAgeSeconds = seconds

The maximum number of seconds data from the CCS_ACCT REEFERENCE table
is cached.

Integer
Optional (default used if not set)

600

ccsAcctReferenceCacheAgeSeconds = 600

ccsBalancekExpiryRoundUp

Syntax:
Description:

Type:

Optionality:
Allowed:

Default:
Notes:

Example

ccsBalanceExpiryRoundUp = boolean

Used when calculating the expiry time of the balance in days, to present to the
customer.

Boolean

Optional (default used if not set).

true Round up when calculating expiry time.

false Do not round up when calculating expiry time.
false

Sample scenarios:
e If the balance expires 3.25 days from now, the expiry time will always be
given as 3 days.
e If the balance expires 3.75 days from now, and this parameter is true, it
will be given as 4 days.
e If the balance expires 3.25 days from now, and this parameter is true, it
will be given as 3 days.

ccsBalanceExpiryRoundUp = true

280 Charging Control Services Technical Guide

ccsBonusTypeAgeSeconds

Syntax: ccsBonusTypeAgeSeconds = seconds

Description: The number of seconds before refreshing the bonus type cache from the E2BE
database.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 600

Notes: This cache holds the balance type ID to apply the bonus to for a given bonus.

Example: ccsBonusTypeAgeSeconds = 600

ccsBonusValuesAgeSeconds

Syntax: ccsBonusValuesAgeSeconds = seconds

Description: The number of seconds before refreshing the bonus value cache from the E2BE
database.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 600

Notes: This cache holds the range of valid values and the bonus percentage to give for a
given bonus.

Example: ccsBonusValuesAgeSeconds = 600

ccsWlcAgeSeconds

Syntax: ccsWlcAgeSeconds = seconds

Description: The maximum number of seconds that wallet life cycle data remains in the CCS
common cache.

Type: Integer

Optionality:

Allowed:

Default: 600

Notes:

Example: ccsWlcAgeSeconds = 600

ccsRewardTranslationAgeSeconds

Syntax: ccsRewardTranslationAgeSeconds = seconds

Description: The maximum number of seconds that CCS reward translation data remains
cached.

Type: Integer

Optionality:

Allowed:

Default:

Notes:

Example: ccsRewardTranslationAgeSeconds = 600

Chapter 5, Background Processes on the VWS 281

ccsWalletNameTranslationAgeSeconds

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

ccsWalletNameTranslationAgeSeconds = seconds

The maximum number of seconds that CCS wallet name translation data remains
cached.

Integer

ccsWalletNameTranslationAgeSeconds = 600

ccsLanguageDetailsAgeSeconds

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

ccsLanguageDetailsAgeSeconds = seconds

The maximum number of seconds that CCS language details data remains
cached.

Integer

ccsLanguageDetailsAgeSeconds = 600

ccsBalanceTypeTranslationAgeSeconds

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

ccsBalanceTypeTranslationAgeSeconds = seconds

The maximum number of seconds that CCS balance translation data remains
cached.

Integer

ccsBalanceTypeTranslationAgeSeconds = 600

creditCardCacheAgeSeconds

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

creditCardCacheAgeSeconds = seconds

The maximum number of seconds data from the CCS_CREDIT CARD DETAILS
table is cached.

Integer
Optional (default used if not set)

600

creditCardCacheAgeSeconds = 600

282 Charging Control Services Technical Guide

creditCardCacheRepIntervalSeconds

Syntax: creditCardCacheRepIntervalSeconds = seconds
Description: The refresh interval (in seconds) of cached credit card data.
Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 6

Notes:

Example: creditCardCacheRepIntervalSeconds = 6

defaultBalanceTypeCacheAgeSeconds

Syntax: defaultBalanceTypeCacheAgeSeconds = seconds

Description: The maximum number of seconds that data of the default balance type remains
cached.

Type: Integer

Optionality:

Allowed:

Default: 600

Notes:

Example: defaultBalanceTypeCacheAgeSeconds = 600

domainsCacheAgeSeconds

Syntax: domainsCacheAgeSeconds = seconds

Description: The maximum number of seconds data from the CCS_DOMAIN table is cached.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 600

Notes:

Example: domainsCacheAgeSeconds = 600

expenditureBalanceMidnightExpiryTZ

Syntax: expenditureBalanceMidnightExpiryTZ = "timezone"

Description: Daily, monthly, and yearly expenditure balances have an expiry time of midnight
in the specified time zone.

Type: String

Optionality: Optional (default used if not set).

Allowed: Solaris-compliant time zone values. To view a list of accepted time zone values,

see Appendix A Time Zones in the Advanced Control Services Technical Guide.
If this parameter is not set, expenditure balances have an expiry time of GMT

midnight.
Default: GMT
Notes:
Example: expenditureBalanceMidnightExpiryTZ = "timezone"

Chapter 5, Background Processes on the VWS 283

ignoreBTs

Syntax: ignoreBTs = [type, ...]

Description: The balance types which are not required in wallet request messages.
Type: Array

Optionality: Optional

Allowed:

Default:

Notes:

Example: ignoreBTs = [201]

lowCreditDapDisableCacheAgeSecondss

Syntax: lowCreditDapDisableCacheAgeSeconds = seconds

Description: The maximum number of seconds boolean profile tags within the
CCS_ACCT REFERENCE.PROFILE table are cached.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 600

Notes:

Example: lowCreditDapDisableCacheAgeSeconds = 600

maxConcurrentChargingSessions

Syntax: maxConcurrentChargingSessions = num

Description: Overrides the maximum number of concurrent transactions configured for all
wallets.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Values greater than or equal to 1 are valid.

Default: The value specified for the wallet is used.

Notes:

Example: maxConcurrentChargingSessions = 50

productTypeldCacheAgeSeconds

Syntax: productTypeldCacheAgeSeconds = seconds

Description: The maximum number of seconds product type id data from the CCS_ACCT TYPE
table is cached.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 600

Notes:

Example: productTypeIdCacheAgeSeconds = 600

284 Charging Control Services Technical Guide

profileDetailsSubtagsCacheAgeSeconds

Syntax: profileDetailsSubtagsCacheAgeSeconds = seconds

Description: The maximum number of seconds product type data from the CCS_ACCT TYPE
table is cached.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 600

Notes:

Example: profileDetailsSubtagsCacheAgeSeconds = 600

ratelLimitIFSendErrors

Syntax: rateLimitIFSendErrors = seconds

Description: The length of time in seconds between syslog messages about not being able to
send to a SLEE Interface. (BE only)

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 60

Notes:

Example: ratelLlimitIFSendErrors = 600

systemCurrencyBalanceUnitCacheAgeSeconds

Syntax: systemCurrencyBalanceUnitCacheAgeSeconds = seconds

Description: The maximum number of seconds that data of the system currency balance unit
remains cached.

Type: Integer

Optionality:

Allowed:

Default: 600

Notes:

Example: systemCurrencyBalanceUnitCacheAgeSeconds = 600

systemCurrencyIdAgeSeconds

Syntax: systemCurrencyIdAgeSeconds = seconds

Description: The number of seconds the system currency ID will stay in the cache before
being refreshed.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 600

Notes:

Example: systemCurrencyIdAgeSeconds = 300

Chapter 5, Background Processes on the VWS 285

tariffPlanIdCacheAgeSeconds

Syntax: tariffPlanIdCacheAgeSeconds = seconds

Description: The maximum number of seconds tariff plan Id data from the CCS_ TARIFF PLAN
table is cached.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 600

Notes:

Example: tariffPlanIdCacheAgeSeconds = 600

walletTypeCacheAgeSeconds

Syntax: walletTypeCacheAgeSeconds = seconds

Description: The maximum number of seconds data from the CCS WALLET TYPE table is
cached.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 600

Notes:

Example: walletTypeCacheAgeSeconds = 600

xmlInterfaceName

Syntax: xmlInterfaceName = "name"

Description: The name of xml interface used when sending low credit DAP notifications.
Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "xmllF"

Notes:

Example: xmlInterfaceName = "xmlIF"

Example

An example of the common parameter group of an eserv.config file that is used by the libccsCommon
library is listed below. Comments have been removed.

common = {
balanceTypeCascadeIdCacheAgeSeconds = 600
balanceTypeCascadeCacheAgeSeconds = 600
balanceTypeDetailedCascadeCacheAgeSeconds = 600
balanceTypeUnitCacheAgeSeconds = 600
balanceTypeIdCacheAgeSeconds = 600
defaultBalanceTypeCacheAgeSeconds = 600
systemCurrencyBalanceUnitCacheAgeSeconds = 600

accountCacheAgeSeconds = 600
accountTypeBestPeriodsCacheAgeSeconds = 600
ccsWlcAgeSeconds = 600

ccsRewardTranslationAgeSeconds = 600

286 Charging Control Services Technical Guide

ccsWalletNameTranslationAgeSeconds = 600
ccsLanguageDetailsAgeSeconds = 600
ccsBalanceTypeTranslationAgeSeconds = 600

acsCustIdAgeSeconds = 600

ignoreBTs = [201]
authCBl0ValidateSeed = false
xmlInterfaceName = "xmlIF"

libccsVWARSUtils

Purpose

libccsVWARSUtils is used by beVWARS handlers and plug-ins to perform common tasks such as
charges and recharges.

Example

The following example configuration shows the ccsVWARSUti1ls parameter group in the eserv.config file
on the Voucher and Wallet Server node. Comments have been removed.

ccsVWARSUtils = {
createAdditionalExpiryEdr = true
createNonExpiringBuckets = false
rechargePreUseAccounts = true
rechargeTerminatedAccounts = false
perBalanceEDRs = true
raiseAlarmForMissingTemplates = false

setNonExpiringBucketExpiryFromToday = false
canReduceBucketExpiryFromToday = true
earliestBucketExpiryPolicyFromToday = false

Parameters

libccsVWARSULtils accepts the following parameters from the ccsVWARSUti1s section in eserv.config.
Note: These parameters affect the common functions used by beVWARS handlers and plug-ins.

createAdditionalExpiryEdr

Syntax: createAdditionalExpiryEdr = true| false

Description: How to log EDRs when 'replace balance' is specified for any balance type defined
for a voucher or voucher type recharge and is used in a WGR operation.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true Two EDRs are generated:

e An expiry EDR (type 3) for the balance
which is being replaced, and

e Arecharge EDR (type 4) for the new
bucket which is being created with the new
value.

false One recharge EDR is logged which records the old
and new bucket values.

Chapter 5, Background Processes on the VWS 287

Default: false

Notes: The recharge EDR type may be overridden depending on calling mechanism.
For more information about WGR operations, see VWS Technical Guide.
Example: createAdditionalExpiryEdr = true

createNonExpiringBuckets

Syntax: createNonExpiringBuckets = true| false

Description: What to do if a wallet recharge includes setting up a new bucket, but doesn't
provide details of how to set the bucket's expiry date.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true If the recharge does not provide bucket expiry

details, create the bucket without an expiry date.
false If the recharge does not provide bucket expiry
details, do not create the bucket.

Default: true

Notes:

Example: createNonExpiringBuckets = false

perBalanceEDRs

Syntax: perBalanceEDRs = truel| false

Description: Split multiple balance voucher recharge EDRs into several single balance
voucher recharge EDRs.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes:

Example: perBalanceEDRs = true

raiseAlarmForMissingTemplates

Syntax: raiseAlarmForMissingTemplates = truel|false

Description: Specifies whether beVWARS raises an alarm when a recharge notification template is
not found.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes:

Example: raiseAlarmForMissingTemplates = false

rechargePreUseAccounts

Syntax: rechargePreUseAccounts = truel| false
Description: Whether to allow wallets with a PreUse to be recharged.
Type: Boolean

Optionality: Optional (default used if not set).

288 Charging Control Services Technical Guide

Allowed: true, false

Default: true
Notes: Recharging a PreUse wallet will also activate it.
Example: rechargePreUseAccounts = false

rechargeTerminatedAccounts

Syntax: rechargeTerminatedAccounts = true| false
Description: Whether or not to allow wallets with a terminated state to be recharged.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Allow recharges of wallets with a terminated state

to be recharged.

false Do no allow recharges of wallets with a terminated

state to be recharged.
Default: false
Notes: If this parameter is set to true, the recharge must set a wallet expiry extension

value, or the wallet will expire immediately after the recharge is performed.

For more information about setting wallet expiry extension periods, see Charging
Control Services User's Guide.

Example: rechargeTerminatedAccounts = true

setNonExpiringBucketExpiryFromToday

Syntax: setNonExpiringBucketExpiryFromToday = true]false

Description: Allows the bucket expiry date to be set for non-expiring buckets following a recharge
that sets an expiry date and has an expiry extension policy of "From Today".
The expiry date is set if setNonExpiringBucketExpiryFromToday IS setto true.
If setNonExpiringBucketExpiryFromToday is setto false, then the expiry date

is not set.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true or false
Default: false
Notes:
Example: setNonExpiringBucketExpiryFromToday = true

canReduceBucketExpiryFromToday

Syntax: BucketExpiryFromToday = true | false

Description: Whether or not libccsVWARutils overwrites a bucket's expiration date when the bucket
is recharged and uses the "From Today" policy. This can be used to shorten
expirations.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: e true — Overwrites the bucket's expiration date

o false — Does not overwrite the bucket's expiration date
Default: false
Notes:

Chapter 5, Background Processes on the VWS 289

Example: canReduceBucketExpiryFromToday = true

earliestBucketExpiryPolicyFromToday
Syntax: earliestBucketExpiryPolicyFromToday = true | false

Description: Whether or not libccsVWARSutils updates all buckets in the balance when applying logic from either o
these parameters:

e setNonExpiringBucketExpiryFromToday

e canReduceBucketExpiryFromToday

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes:

Example: earliestBucketExpiryPolicyFromToday = True

290 Charging Control Services Technical Guide

Chapter 6
Tools and Utilities

Overview

Introduction

This chapter provides a description of the operational programs or executables which are used to
administer CCS. All of these processes are performed when needed.

Executables are located in the /IN/service_packages/CCS/bin directory.

Some executables have accompanying scripts that run the executables after performing certain cleanup
functions. All scripts should be located in the same directory as the executable.

Note: Most processes can be re-started using the UNIX kill command.

Using SLP Trace log files

Processes started by the inittab and cronjobs produce logdfiles that are stored in the tmp folder of each
service directory, that is /IN/service_packages/CCS/tmp/.

Voucher tools

The voucher-related tools are documented in Voucher Manager Technical Guide.

In this chapter

This chapter contains the following topics.

(1027 o] oT0 1 U | AT 291
CCSBERESYNC ... 316
CCSBAICNCRNAIGE ...ttt et e e st et e e bb e e e anreeeeaa 335
CCSDOMAINMIGIALION ...ceiiiiiiie ittt e et e e e st bt e e e sabb e e e e sbbeeeesbneeeean 338
COSMIFIIEDUIMIP ..ttt e et e e e sttt e e eatb e e e e st bt e e e ettt e e e sbbeeeesbneeeean 343
CCSPIOfIIEBUIKUPAALE ...ttt e et e et e e nneeeean 346
CCSVOUCNEISIANUP.SN ... 347
CCS BalanCe TOP UP SUILE ... e s e e e aeaeae s 347
CCS Balance TOop Up MSISDN FlESeiiiiiiiiiiiiiiie et 349
CCS Balance TOPUP RUIE SCIPLS ...ttt e e e e 351
AWSUDIIST.SI ..ttt e e e s s b e e s st e e e e snreeeea 355
Example Balance Top Up RUI& EXECULIONuiiiiiiiiiiiiiiiiii et 357
ccsAccount

Purpose

ccsAccount enables you to generate large numbers of CCS subscribers and wallets by batch. This is a
good way to create thousands of subscribers and wallets with minimal effort.

The ccsAccount tool has two modes of running:

1 Generating subscribers and wallets

Chapter 6, Tools and Utilities 291

2 Rolling back an unsuccessful or interrupted run

Note: This program is signal aware:

e Use SIGHUP to reload the configuration (throttling and so on)

e Citrl+C once will stop new account generation and finish the current ones
e Ctrl+C twice will completely stop the tool

ccsAccount, when run with the -P (privacy) option, enables you to:

e Generate large numbers of CCS card or subscriber accounts (and corresponding wallets if none
exist) randomly in a batch

e Ensure a sequential serial number is allocated and stored into the CLI

e Encrypt the print shop output file

Rollback

This tool will usually ensure that the system is not left in an inconsistent state. The rollback will remove
any rows that ccsAccount cannot verify were created successfully. It will not rollback the whole batch, or
even the CCS_ACCOUNT_BATCH row. Rollbacks are done by re-running the tool with the -R option
(see Command line parameters).

Startup - ccsAccountStartup.sh

ccsAccountStartup.sh runs ccsAccount to generate subscriber accounts normally or to rollback account
generation. ccsAccountStartup.sh is usually started by smsReportsDaemon when a user clicks a button on
the CCS Ul. However, it can be run directly from the command line by ccs_oper. On a standard
installation, it runs from /IN/service_packages/CCS/bin/.

Startup - ccsAccountWithPrivacy.sh

ccsAccountWithPrivacy.sh can be run directly from the command line. It must be run by the user who
imported the GPG key that will be used. If the key was imported using the Public Keys tab, it must be
run by smf_oper. On a standard installation, it runs from /IN/service_packages/CCS/bin/.

Run the program in privacy mode:
ccsAccountWithPrivacy.sh GPG key output filename other ccsAccount parameters

Where:
other_ccsAccount_parameters are defined in the table in Command line parameters.
Result:

ccsAccountWithPrivacy.sh will extract the GPG key and direct the encrypted output to the print shop
filename. The rest of the parameters are passed through to the ccsAccount binary as follows:

Command:
ccsAccount -P -m encryption module other ccsAccount parameters

Result: The account batch output file is generated.

eserv.config parameters

The ccsAccount supports the following parameters from the cCsS section of eserv.config.
Note: Some of the CCS shared parameters are also used by ccsAccount:
e oracleUserAndPassword (on page 52)

e accountNumberLength

292 Charging Control Services Technical Guide

accountNumberLength

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

batchFullness

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

accountNumberLength = int

The number of digits in card number in a subscriber account. If
accountNumberLength is set to zero (0) then the account number can be any
length.

Integer
Optional (default used if not set)

10
Used by ccsAccount when generating subscriber accounts.
accountNumberLength = 14

batchFullness = percentage

Sets a limit (expressed as a percentage) to control how full ccsAccount can allow
the batch to become during the run.

Percentage
Required when ccsAccount is run in privacy mode.

50
This parameter is only applicable when the -P option is used.
batchFullness = 90

cardNumberIncludesServiceProviderPrefix

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

cardNumberIncludesServiceProviderPrefix = true| false

Determines if the service provider prefix should be included or not when writing
out card numbers to the print shop file.

Boolean
Optional
true, false
true

cardNumberIncludesServiceProviderPrefix = false

ccsAccount section

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

ccsAccount = { }

This section contains the parameters defining ccsAccount generation config.

Chapter 6, Tools and Utilities 293

checkAccountNumbers

Syntax: checkAccountNumbers = true|false

Description: Whether to check that the supplied subscriber numbers (or generated from the
CLIs with the -a option) do not already exist.

Type: boolean

Optionality:

Allowed: true, false

Default: true

Notes:

Example: checkAccountNumbers = true

checkCLIs

Syntax: checkCLIs = true|false

Description: Whether to check that the supplied CLIs do not already exist.

Type: boolean

Optionality:

Allowed: true, false

Default: true

Notes:

Example: checkCLIs = true

doSMFChallenge

Syntax: doSMFChallenge = truel| false

Description: Determines whether to do the SMF authentication challenge that allows the
process to update the SMF database.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: true

Notes:

Example: doSMFChallenge = true

maximumRetries

Syntax: maximumRetries = int

Description: Determines the number of times the ccsAccount tool will accept, in succession, a
match to an existing account number, while generating random card/account
numbers.

Type: Integer

Optionality: Required when ccsAccount is run in privacy mode.

Allowed:

Default: 15

Notes: e This parameter is only applicable when the -P option is used.

e On exhausting this value, the tool will abort the attempt, even if a unique
number has not been found, thus avoiding infinite execution. This is more
likely to occur as the batch approaches 100% of it's capacity.

Example: maximumRetries = 100

294 Charging Control Services Technical Guide

maximumSendAttempts

Syntax: maximumSendAttempts = int

Description: This defines the maximum number of attempts to send the wallet create request
to the VWS.

Type: Integer

Optionality:

Allowed:

Default: 3

Notes:

Example: maximumSendAttempts = 3

noAbortOnException

Syntax: noAbortOnException = true | false

Description: Specifies whether ccsAccount continues to generate accounts or fails and creates a
core file when an unknown SQL exception occurs during account creation.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: e true — ccsAccount continues to generate accounts after an unknown SQL
exception occurs

o false — ccsAccount fails and creates a core file when an unknown SQL
exception occurs

Default: false
Notes:
Example: noAbortOnException = true

progressUpdateInterval

Syntax: progressUpdateInterval = seconds

Description: The number of seconds ccsAccount should wait between writing syslog
messages monitoring progress.

Type: Integer

Optionality:

Allowed:

Default: 60

Notes:

Example: progressUpdateInterval = 60

rollbackFilename

Syntax: rollbackFilename = "dir"

Description: The location of the persistent store of the wallet creation status to allow rollback
of incomplete/inconsistent wallets.

Type: String

Optionality:

Allowed:

Default: "tmp/ccsAccount-rollbackCache"

Notes:

Chapter 6, Tools and Utilities 295

Example: rollbackFilename = "/tmp/ccsAccount-rollbackCache"

sendRetryDelay

Syntax: sendRetryDelay = seconds

Description: The number of seconds ccsAccount should wait between retry attempts.
Type: Integer

Optionality:

Allowed:

Default: 16

Notes:

Example: sendRetryDelay = 16

serialNumberLength

Syntax: serialNumberLength = int

Description: Determines the length of the generated card serial numbers (CLIS).

Type: Integer

Optionality: Optional

Allowed: Within the range from 5 to 19

Default: 11

Notes: This includes the 2 digit service provider prefix number in its length, so a value of
11 will include # nn000000000.

Example: serialNumberLength = 7

suppressCreateWalletMes - Oberth

Syntax: suppressCreateWalletMes = true | false
Description: Specifies whether ccsAccount prints out the create wallet message.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: true Does not print out the create wallet message.
false Prints out the create wallet message.
Default: false
Notes:
Example: suppressCreateWalletMes = false

wantReplicationLogging

Syntax: wantReplicationlLogging = truel false

Description: Determines whether to tell the replication subsystem that there are changes to
replicate out.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: true

Notes:

Example: wantReplicationLogging = true

296 Charging Control Services Technical Guide

ClientIF s

ection

Syntax: ClientIF {}

Description: Section containing the parameters for the libBeClientIF.

Type: Parameter array

Optionality: Optional

Allowed: Any parameter which is supported by the libBeClientlF.

Default: Empty

Notes: For more information about the libBeClientlF, see VWS

Technical Guide.

Example:

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The number of microseconds during which a Voucher and Wallet Server
heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer

Optionality: Required

Allowed: 0 Disable heartbeat detection.
positive integer Heartbeat period.

Default: 3000000

Notes: 1 000 000 microseconds = 1 second.
If no heartbeat message is detected during the specified time, client process
switches to the other Voucher and Wallet Server in the pair.
This parameter is used by libBeClientIF.

Example: heartbeatPeriod = 10000000

clientName

Syntax: clientName = "name"

Description: The unique client name of ccsAccount.

Type: String

Optionality: Mandatory

Allowed:

Default: "ccsAccount”

Notes: The server generates clientld from a hash of the value.
If more than one client attempts to connect with the same name, then some
connections will be lost.
This parameter is used by libBeClientlF. However, ccsAccount uses a different
default.

Example: clientName = "ccsAccount-uasprod0l"

connectionRetryTime

Syntax: connectionRetryTime = seconds

Description: The maximum number of seconds the client process will wait for a connection to
succeed before attempting a new connection.

Type: Integer

Chapter 6, Tools and Utilities 297

Optionality:
Allowed:
Default:
Notes:
Example:

Required

5

This parameter is used by libBeClientIF.
connectionRetryTime = 2

maxOutstandingMessages

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

maxOutstandingMessages = num

The maximum number of messages allowed to be waiting for a response from the
Voucher and Wallet Server.

Integer
Required

If this parameter is not set, the maximum is unlimited.

If more than this number of messages are waiting for a response from the
Voucher and Wallet Server, the client process assumes the Voucher and Wallet
Server is overloaded. In this event, the client process refuses to start new calls
but continues to service existing calls.

The messages are queued until the Voucher and Wallet Server has reduced its
outstanding load.

This parameter is used by libBeClientlF.

maxOutstandingMessages = 100

messageTimeoutSeconds

Syntax:
Description:

Type:
Units:
Optionality:
Allowed:

Default:
Notes:

Example:

notEndActions

Syntax:

Description:

Type:
Optionality:

messageTimeoutSeconds = seconds

The time that the client process will wait for the server to respond to a request.
Integer

Seconds

Required

1-604800 Number of seconds to wait.

0 Do not time out.

2

After the specified number of seconds, the client process will generate an
exception and discard the message associated with the request.

This parameter is used by libBeClientlF.

2

messageTimeoutSeconds

notEndActions = [

{type="str", action="[ACK|NACK]"}

[...]
]
The notEndActions parameter array is used to define the messages
associated with dialogs that should not have their dialog closes, because the
dialog is closed by default. This facilitates failover.
Parameter array.

Required

298 Charging Control Services Technical Guide

Allowed:
Default:

Notes: If the incoming dialog for a call closes and the last response received was of the
notEndActions type, the client process sends an ABRT message. The ABRT
message allows the VWS to remove the reservation. An example of this situation
would be where slee_acs has stopped working.

This parameter is used by libBeClientlF.
For more information about slee_acs, see ACS Technical Guide.

Example: notEndActions = [
{type="IR ", action="ACK "}
{type="SR ", action="ACK "}
{type="SR ", action="NACK"}
{type="INER", action="ACK "}
{type="SNER", action="ACK "}
{type="SNER", action="NACK"}

action
Syntax:
Description: Action to take with a message.
Type:
Optionality:
Allowed: o "NACK
e "ACK"
Default:
Notes:
Example:
type
The type of message.
plugins
Syntax: plugins = [
{
config=""
library="1ib"
function="str"
}
]
Description: Defines any client process plug-ins to run. Also defines the string which maps to
their configuration section.
Type: Parameter array
Optionality: Optional (as plug-ins will not be loaded if they are not configured here, this
parameter must include any plug-ins which are needed to supply application
functions; for more information about which plug-ins to load, see the BeClient
section for the application which provides the BeClient plug-ins).
Allowed:
Default: Empty (that is, do not load any plug-ins).

Chapter 6, Tools and Utilities 299

Notes:

Example:

config

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

function

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

library

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

The libclientBcast plug-in must be placed last in the plug-ins configuration list.
For more information about the libclientBcast plug-in, see VWS Technical Guide.

This parameter is used by libBeClientlF.

plugins = [
{
config="broadcastOptions"
library="1libclientBcast.so"
function="makeBroadcastPlugin"

config="name"

The name of the configuration section for this plug-in. This corresponds to a
configuration section within the p1ugins section in the eserv.config file.

String
Required (must be present to load the plug-in)

No default

config="voucherRechargeOptions"

function="str"
The function the plug-in should perform.
String

Required (must be present to load the plug-in)
No default
function="makeVoucherRechargePlugin"
library="1ib"

The filename of the plug-in library.

String

Required (must be present to load the plug-in)

No default

library="1libccsClientPlugins.so"

reportPeriodSeconds

Syntax:
Description:
Type:

Units:

reportPeriodSeconds = seconds

The number of seconds separating reports of failed messages.

Integer
Seconds

300 Charging Control Services Technical Guide

Optionality: Required
Allowed:
Default: 10

Notes: BeClient issues a failed message report:
e For timed-out messages

e For unrequested responses
e For new calls rejected because of congestion
e For messages with invalid Voucher and Wallet Server identifiers

¢ If new and subsequent requests fail because both Voucher and Wallet
Servers have stopped working

VWS heartbeat detection must be enabled for the parameter to work. Set
reportPeriodSeconds to more than heartbeatPeriod.

This parameter is used by libBeClientlF.

Example: reportPeriodSeconds = 10

throttling section

Syntax: throttling = { }

Description: This section contains the parameters used to minimize impact on the SMF
databases and the VWSs.

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

maxAccountsPerMinute

Syntax:

Description: This sets the unit wallet create requests per minute. Maximum rate of requests to
VWSs.

Type: integer

Optionality:

Allowed:

Default: 60

Notes:

Example:

preAllocDebug

Syntax: preAllocDebug = true | false

Description: Specifies whether ccsAccount and its stored procedures create additional debug logs.

Type: Boolean

Optionality: Optional (default used if not set)

Chapter 6, Tools and Utilities 301

Allowed:

Default:
Notes:
Example:

e true — ccsAccount and its associated stored procedures create additional debug
logs

o false — ccsAccount and its associated stored procedures do not create
additional debug logs

false

preAllocDebug = true

preVerifyAccountNumber

Syntax:
Description:

Type:
Optionality:

Allowed:

Default:
Notes:
Example:

queueSize

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

preVerifyAccountNumber = true | false

Specifies whether ccsAccount validates that an account number does not already exist
in the database before it uses the account number.

Boolean
Optional (default used if not set)

e true — Validates that an account number does not already exist in the database
before it uses the account number. When it finds a duplicate account number
during validation, ccsAccount uses the next free account number.

o false — Does not perform account number validation.
false

preVerifyAccountNumber = true

Unit wallet requests to VWS. Maximum wallet creations in progress at once.
integer

10

BE eserv.config parameters

The following parameters are available in the BE section of the eserv.config.

belocationPlugin

Syntax: beLocationPlugin = "1ib"

Description: The plug-in library that finds the Voucher and Wallet Server details of the Voucher
and Wallet Servers to connect to.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: libGetccsBeLocation.so

Notes: This library must be in the LD_LIBRARY_PATH.

Example: belLocationPlugin = "libGetccsBeLocation.so"

302 Charging Control Services Technical Guide

Example ccsAccount section parameters

An example of the parameters of a SLC eserv.config file which configures ccsAccount. Comments have
been removed.

CCs = {
accountNumberLength = 10

ccsAccount = {
maximumSendAttempts = 3
sendRetryDelay = 16
progressUpdateInterval = 60
rollbackFilename = "/tmp/ccsAccount-rollbackCache"
doSMFChallenge = true
wantReplicationLogging = true
serialNumberLength = 7

maximumRetries = 100

batchFullness = 90
cardNumberIncludesServiceProviderPrefix = false
checkAccountNumbers = true

checkCLIs = true

suppressCreateWalletMes = true

noAbortOnException = true

ClientIF = {
clientName = "ccsAccount"
plugins = []

}

throttling = {
queueSize = 10
maxAccountsPerMinute = 60
preAllocDebug = true
preVerifyAccountNumber = true

}
Note: ccsAccount also uses the global parameters:
e oracleUserAndPassword (on page 52)
e accountNumberLength (on page 52)

e belocationPlugin (on page 135).

Seeing the configuration

You can see the configuration that the tool is running, when not in privacy mode, by setting the debug
flag ccsAccount_config:

export DEBUG=ccsAccount config

The recommended debug flags are:

export DEBUG=ccsAccount,ccsAccount config
Normal running should not require debug flags set.

Command line parameters

ccsAccount supports the following command-line switches and parameters.

Chapter 6, Tools and Utilities 303

—a

Syntax:

Description:

Type:
Optionality:
Allowed:

Default:
Notes:

Example:

-A

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-b
Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:
-B

Syntax:

Description:

Type:
Optionality:

—a

If specified, uses the service provider prefix + CLI provided in CLI file as the
account number.

Boolean

Optional (default used if not set)

Set (true)

Not set (false)

Not set (false)

A CLI file must be specified and the account number range is ignored. Account
numbers are made up of <Service Provider prefix + CLI>.

-a and -P commands are mutually exclusive. If -a specified the -P option cannot
be specified.

-A
Adds the alternate number provided to accounts and activates it.

Boolean
Optional (default used if not set)

Not set

-b 1imitType
Specifies that one of the following limit types should be used:
e Credit
e Debit
e Limited_credit
e Single_debit

single_debit

-b Debit

-B BEId

If set, specifies the Voucher and Wallet Server ID for the Voucher and Wallet
Server pair the accounts will be generated to on the charging domain.

Integer
Optional

304 Charging Control Services Technical Guide

Allowed:

Default:

Notes: The charging domain can be on a VWS or a third party domain.

Example:

-C

Syntax: -c cur

Description: The three-letter currency code.

Type: String

Optionality:

Allowed: This code is checked against a list of allowable currency codes stored in the
database. Must be a valid currency abbreviation, for example: NZD.

Default:

Notes:

Example:

-C

Syntax: -C PINDigits

Description: The context string for authentication type. Defines the number of digits in the PIN

if the CCS1 Compatible module is used. Either —C or —-F can be used, depending
on the authentication module. -C is used where the same context string is to be
used for all generated accounts. When using the CCS1 authentication module,
the user may enter a specific string to indicate a specific PIN length.

Type: PIN digits

Optionality:

Allowed:

Default:

Notes:

Example: —-C 4 [indicates a four-digit PIN.]

-d

Syntax: -d

Description: Specifies direct database storage should be used.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: Set (true) Accounts generated will be written to the
database and the Voucher and Wallet
Server.

Not set (false) If omitted, does not touch the database

and the VWS.

Default: Not set (false)

Notes:

Example:

Chapter 6, Tools and Utilities 305

-e

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

-F

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-h
Syntax:

Description:

Type:
Optionality:
Allowed:

Default:
Notes:
Example:
-1

Syntax:
Description:

Type:
Optionality:

-e endOfRange
The end account number for the account number range.

Optional (default used if not specified.)

e The end of range indicates the number after the last account number of
the range.

e The number of digits in account numbers must match the AccountLength
entry in ccsSms.conf and ccsScp.conf.

e The end of range number must be prefixed with the service provider
prefix. The service provider prefix can be found by checking the
CCS_RESOURCE_LIMITATION table.

e -e and -s parameters must both be present or both be absent.
-e 1000020000

-F context file

Specifies the context file in which authentication information is stored. -F is used

where a potentially different context string is to be used for each generated
account. The system checks the file indicated.

String
Optional

-h

Whether to display the usage for ccsAccount.

Boolean

Optional (default used if not set)

Set (true) A help message will be printed to stdout.
Not set (false) The message will not be generated.

Not set

-1 batch file

Specifies the location and name of the batch input file. Checks for import
accounts previously exported by the ccsAccount utility.

306 Charging Control Services Technical Guide

Allowed:

Default:

Notes:

Example:

-1

Syntax: -1 CLIListFileName

Description: The CLI list file name. The program refers to this file in order to allocate CLlIs to
the accounts of this batch. ccsAccount looks in the file specified and allocates
CLls to the individual accounts created.

Type:

Optionality:

Allowed:

Default:

Notes:

Example:

—-m

Syntax: -m pam

Description: The authentication module name.

Type: String

Optionality: Mandatory

Allowed: DES

Default: none

Notes: Populated by the Authentication Name field in the New Subscriber Batch screen.
Provided by ccsVoucher_CCS3 using ccsLegacyPIN, where account number +
PIN is to be used.

Example: -m DES

-M

Syntax: -M int

Description: The maximum number of concurrent accesses.

Type: Integer

Optionality:

Allowed:

Default: 1

Notes:

Example:

-n

Syntax: -n numberOfAccounts

Description: The number of accounts to generate.

Type: Integer

Optionality:

Chapter 6, Tools and Utilities 307

Allowed:

Default:
Notes:

Example:

-0

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-0

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-p
Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

The number to generate is checked to make sure it does not overflow the 32 hit
unsigned integer.

If specified, the -s and -e switches are checked to make sure the account
number range is large enough to cover the number of accounts to generate.
-n 5000

-0 file

The file to which generated accounts are written. Can be used with the -d switch.
If the —d switch is used, only accounts successfully created in the database will
be inserted into the file. The rest will go to the exceptions file.

-0 CLI offset

Sets

the CLI offset to use to avoid creating duplicate CLIs in parallel; for example, if the

first instance of ccsAccount creates 100 accounts (-n is set to 100), then for the
second instance of ccsAccount set -0 to 100 to ensure there is no overlap.

String
Optional (default used if not set)

-0 250

-p previous wallet state

Spec

ifies the previous wallet state for the account. Must be one of:
active

dormant
frozen
preuse
suspended
terminated

String
Required when using the -U option

active, dormant, frozen, preuse, suspended, or terminated

-p active

308 Charging Control Services Technical Guide

-P

Syntax: -P

Description: Privacy mode. Using privacy mode causes:
e Account numbers to be allocated randomly within the batch

e A serial number to be generated into CLI
e The exported print shop file to be encrypted

Type: Boolean

Optionality: Optional (default used if not set)

Allowed:

Default: Not set (do not use privacy mode)

Notes: e You must also set -n, -s and -e.

e Do not use with -1.

e -aand -p commands are mutually exclusive. If —p specified the -a
option cannot be specified.

Example:
-r
Syntax: -r
Description: Turn off replication logging.
Type: Boolean
Optionality: Optional (default used if not set)
Allowed:
Default: Log replication
Notes:
Example:
-R
Syntax: -R
Description: Performs a Voucher and Wallet Server rollback (cleanup).
Type: Boolean
Optionality: Optional (default used if not set)
Allowed: Set (true) Perform rollback.
Not set (false) Do not perform rollback.
Default: Not set (false)
Notes: This is only for subscriber accounts that could be inconsistent - not the whole
batch.
This option can only be specified on its own.
Example:
-s
Syntax: -s startOfRange
Description: Starting account number for the account number range.
Type:

Chapter 6, Tools and Utilities 309

Optionality: Optional (default used if not specified)

Allowed:
Default:
Notes: e The start of range indicates the first number of the range.

e The number of digits in the account numbers must match the
<AccountLength> entry in ccsSms.conf and ccsScp.conf.

e The start of range number must be prefixed with the service provider
prefix. The service provider prefix can be found by checking the
CCS_RESOURCE_LIMITATION table.

e -e and -s parameters must both be present or both be absent.

Example: -e 1000010000

-S

Syntax: -S ServiceProviderName

Description: The service provider's name.

Type:

Optionality:

Allowed:

Default:

Notes: The -3 option takes as its argument the service provider's name, not the service
provider's ID.

Example:

-t

Syntax: -t type

Description: The product type name.

Type: String

Optionality:

Allowed:

Default:

Notes: The product type is checked for validity against existing product types in the
database.

Example: -t PTS

=T

Syntax: -T trackerDomainID

Description: Specifies the Voucher and Wallet Server ID for the Voucher and Wallet Server

pair the accounts will be generated to on the tracking domain.
Type: Integer

Optionality: Optional.

Allowed:

Default:

Notes: Must be a VWS domain type.
Example:

310 Charging Control Services Technical Guide

—u
Syntax: -u

Description: When the -u option is specified, this informs ccsAccount that a VWS Voucher and
Wallet Server is being used and therefore wallets can be created.

Type: Boolean

Optionality: Optional
Allowed: Set (true)
Not set (false)
Default: Not set
Notes:
Example:
-U
Syntax: -U
Description: If set, perform an update to the wallet state for a range of CLIs.
Type: Boolean
Optionality: Optional
Allowed:
Default:
Notes: Use the -p, -w, -x, -y, and -B options in conjuction with the -U option to define the

CLI range, the old and new wallet states, and the Voucher and Wallet Server pair on
which to perform the updates. When you use the -U option, the -p and -w options that
specify the old and new wallet states, and the -x and -y options that define the CLI
range, are required.

Example: The following example ccsAccount command sets all the accounts that have phone
numbers in the range 01473640000 to 01473649999, and that are currently frozen, to
active:
ccsAccount -U -x 01473640000 -y 01473650000 -p frozen -w active

-V
Syntax: -v
Description: Turns on the voice mail/alternate number generator.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: Set (true) Use voice mail/alternate number
generator.
Not set (false) Do not generate alternate numbers.
Default: Not set (false)
Notes:
Example:
-V
Syntax: -V
Description: Generates a voice mail number and activates it.
Type: Boolean
Optionality: Optional (default used if not set).

Chapter 6, Tools and Utilities 311

Allowed:

Default: Not set.

Notes:

Example:

W

Syntax: -w wallet state

Description: Specifies the wallet state for a newly created wallet. Specifies the new wallet
state for wallets updated by using the -U option.

Type: String

Optionality: Required when using the -U option to update the wallet state

Allowed: active, dormant, frozen, preuse, suspended, or terminated

Default: preuse

Notes: Use in conjuction with the -U option to update the wallet state.

Example: -w dormant

-X

Syntax: -x CLI

Description: Specifies the starting Calling Line Identifier (CLI) in a range of CLIs.

Type: String

Optionality: Required when using the -U option

Allowed:

Default: Not set

Notes: Use in conjunction with the —U option to specify the start of the update range.

Example: -x 01247640000

-y

Syntax: -y CLT

Description: Specifies the ending Calling Line Identifier (CLI) in a range of CLIs.

Type: String

Optionality: Required when using the -U option

Allowed:

Default: Not set

Notes: Use in conjunction with the -U option to specify the end of the update range.

Example: -y 01473650000

Example usage

ccsAccount -B BE Id -t prod type [-s start -e end] -n number -b limit type -C
PIN digits -c currency [-d] -o file [-a] -1 CLI 1list filename -m auth module name [-
u]

312 Charging Control Services Technical Guide

Exported card/account batch files

Subscriber account/calling card batch file format is controlled by the account writer plug-in used to

generate the batch. Which libraries are used is defined by the authentication name specified in the New

Subscriber Batch screen.

Header fields are in the format "Key_field_name=value". Key field names always start with an alphabetic

character. This makes it easy to distinguish them from voucher records (which always start with a

number).

The following header fields are used in the voucher batch file header, (although downstream processors

should detect any "Key_field_name=value" lines).

Header field

Description

AccountBatchID=int

The ID of the subscriber account batch.

ServiceProviderID=int

The ID number of the service provider the subscriber batch belongs
to.

When ccsAccount is started by the screens the value of this field is
populated by the id of the service provider which is selected in the
Service Provider field of the Subscriber Management screen when the
New button is clicked.

AccountTypelD=int

The product type the subscriber batch has.

When ccsAccount is started by the screens the value of this field is
populated by the Product Type field on the New Subscriber Batch
screen.

maxConcurrent=int

The maximum number of concurrent connections wallets generated
with this subscriber batch can have.

When ccsAccount is started by the screens the value of this field is
populated by the Maximum Concurrent Accesses field on the New
Subscriber Batch screen.

BatchSize=int

The number of subscriber accounts in this batch.

When ccsAccount is started by the screens the value of this field is
populated by the Batch Size field on the New Subscriber Batch
screen.

RangeStart=int

Beginning of the range of subscriber account numbers. When
ccsAccount is started by the screens the value of this field is
populated by the Card Number Start Range field on the New Subscriber
Batch screen.

RangeEnd=int

End of the range of subscriber account numbers. When ccsAccount
is started by the screens the value of this field is populated by the
Card Number End Range field on the New Subscriber Batch screen.

AuthenticationModulelD=int

The ID of the authentication module used for:
e Encryption and/or random generation of PINs for this batch
o (optionally) sends the output file for encryption by gpg.
When ccsAccount is started by the screens the value of this field is

populated by the PAM Name field on the New Subscriber Batch
screen.

BillingEnginelD=int

The ID number of the Voucher and Wallet Servers .

CurrencylD=int

The ID of the currency the wallets generated with this subscriber
batch will use. When ccsAccount is started by the screens the value
of this field is populated by the Wallet Currency field on the New
Subscriber Batch screen.

Chapter 6, Tools and Utilities 313

Header field Description

LimitType=str The type of limit the wallets generated with this subscriber batch will
use.
BalanceType=int The balance type ID of the balance type this wallet will have any

initial value stored in.

A line consisting of a single equal sign (=) terminates the header lines. All subsequent lines are voucher
detail records.

ccsAccount example

This table gives an example of how to use ccsAccount to generate a batch of subscriber accounts.

Stage Description

1 User telnets to the SMS on which the CCS application is installed and logs in as
CCs_oper.

2 User navigates to the directory in which ccsAccount is located. In a standard installation,
this will be /IN/service_packages/CCS/bin.

3 User starts the subscriber account batch generation with the following command:

$ ccsAccount -t PTS -s 141000 -e 141100 -n 10 -b debit -C 4 -c EUR -d -o
/tmp/AcctGenDemo.txt -1 Sample CLI file

4 ccsAccount generates 10 subscribers and wallets of "PTS" product type.
Subscriber numbers start at 141000 and end at 141100. PIN length limit is 4. The

subscribers and wallets are stored in the database, the output file is /tmp/AcctGenDemo.txt,
the EUR currency will be used and the wallets will have debit balances.

Note: AccountLength must be configured to be “6” for this to succeed.

The -1 cli filename parameter specifies the CLI file to which the ccsAccount
program will refer. The CLI file you specify contains lines which are either:
e Comments (start with #)

e Blank
e Single CLI (may not start with 0, must be a number)

e Range of CLIs (neither beginning nor end may start with 0, beginning and end
separated by '-)
Example:
Sample CLI file#
95551212
95550000-95550050
955500595559999
95053333

The ccsAccount program goes through the lines one at a time. If a range is given, it goes
through the range in order. Both the beginning and end of a range are available for use as
ClLls for a subscriber.

Tip: Information may appear on the screen in DEBUG builds of ccsAccount to show the progress of the
subscriber/wallet generation. However, if this information is not displayed during the generation process,
a summary of it may be viewed by using the output command. A subset of this information will appear
when using a non-debug build.

Example card/account output file

Here is an example ccsAccount command and the resulting account batch output file:

314 Charging Control Services Technical Guide

Command

ccsAccount -P -t "World" -m "DES" -s 8815000000 -e 8820990000 -n 10 -b debit
-C 7 -c USD -d 2>&l

Card/account output file

This text shows an example export subscriber account/calling card output file.

Account Batch Output File
Generated Wed Dec 31 01:24:29 2008
#

AccountBatchID=59
ServiceProviderID=1
AccountTypeID=7
maxConcurrent=1
BatchSize=10
RangeStart=8815000000
RangeEnd=8819990000
AuthenticationModuleID=4
BillingEngineID=2
CurrencyID=2

LimitType=DEBT
BalanceType=1

Dec 31 01:24:29.861203 ccsAccount (15179) NOTICE: Beginning account generation.
16309877,3415992,7,G8.H3zCjoKzbY, 8800127
19052821,0363266,7,G8fRbQy015unk, 8800128
18627603,5447142,7,G82efn9Gh2gSY, 8800129
16635167,9003194,7,G8nkF67M0zS9g, 8800130
19498256,8441931,7,G8t£ZtbQvbOIg, 8800131
18758105,8744644,7,G8CSYLULMZtww, 8800132
17349265,3517347,7,G8GH/BM14HHzs, 8800133
16223817,0064708,7,G8Mbgle4gPO.U, 8800134
16089674,7771756,7,G81Xd7ySSzsVw, 8800135
16405822,1207166,7,G8Jug0Sguxjqg, 8800136

Dec 31 01:24:35.514685 ccsAccount (15179) NOTICE: Progress 10/10 (100.0%) Complete
Dec 31 01:24:35.515578 ccsAccount (15179) NOTICE: Account generation complete.

Failure

If ccsAccount fails, the accounts may not have been created correctly. Use the rollback function to tidy
up the miscreated accounts. Rerun the tool.

Output

ccsAccount writes a log of all created subscriber accounts to /IN/service_packages/CCS/account/export/.
ccsAccount inserts data into the following tables in the SMF:

e CCS_ACCT

e CCS_ACCT_REFERENCE

e CCS_ACCT_ACCT_REFERENCES
e CCS_ACCT_HIST_INFO

Other ccsAccount commands
The following file allows the user to view the actual output of the file, whether or not that information was
displayed during the Account generation.

$ cat /tmp/AccountDemo.txt
This allows the user to take input from a file and insert it into the database.

Chapter 6, Tools and Utilities 315

Note: When a limited credit account is created, the minimum credit balance is set by default to = 0. The
minimum credit balance must then be reset manually to the required amount, using the SMS Java
administration screens.

Example

Account Batch Output File
Generated Mon Aug 28 01:15:52 2000
#

AccountBatchID=0
ServiceProviderID=22
AccountTypeID=35
BatchSize=10
RangeStart=141500
RangeEnd=141520
AuthenticationModuleID=1
BillingEngineID=1
CurrencyID=1

BalanceType=2

141500,0801,4,G8bVdVSGtI.9.
141501,4742,4,G8WI1B6IHASQI
141502,6891,4,G8ACBmfc.cYGg
141503, 9394, 4,G80OV1G4MDKtmQ
141504,4904,4,G8iigqCNLGD. /k
141505,9709, 4, G8JoxdWtg¥Ymkk
141506,0158,4,G8uGhZ4LG59gfE
141507,2641,4,G806Lc/./1/uw
141508,1468,4,G8/wyTezM1x9U
141509,9023,4,G8JMbJcWiemlE
$ ccsAccount-d -i filename -c EUR

ccsBeResync

Purpose

The ccsBeResync is a tool that will resolve and/or report differences between Voucher and Wallet
Servers in a logical pair for wallet and voucher tables that may be caused by a software or hardware
fault. It does not replace the beSync, which is used to keep the pair synchronized during normal
operation.

The tool has two primary operational modes:

1 Resynchronizing wallets

2 Resynchronizing vouchers

Without a command line option specifying vouchers it will default to resynchronizing wallets. In addition,

the tool can be run to one of the following:

e Use one specified Voucher and Wallet Server in a pair as the model data source (that is, when the
data on the other Voucher and Wallet Server has been corrupted or is out of date)

e Use configurable business rules to make updates on both Voucher and Wallet Servers

A range of wallet or voucher IDs can be specified, so as to limit the range of voucher/wallets it

processes as described in the configuration section.

The ccsBeResync tool can be configured with both:

e Command line arguments
e Entries in the ccsBeResync section of the eserv.config file

316 Charging Control Services Technical Guide

Data transferred

This table lists the E2BE database columns for which the ccsBeResync tool will resynchronize E2BE

data.
Table Column
BE_WALLET .NEVER_EXPIRES
.EXPIRY
.MAX_CONCURRENT
.STATE

.NEVER_ACTIVATED
ACTIVATION_DATE

BE_BALANCE LIMIT_TYPE
.MINIMUM_CREDIT

BE_BUCKET EXPIRY
NEVER_EXPIRES
VALUE
LAST_USE
.NEVER_USED
START_DATE
.REFERENCE

BE_VOUCHER |.REDEEMED
.REDEEMED_DATE
.REDEEMING_WALLET_ID

Startup

It is recommended that ccsBeResync is run from the SMS but it can be run from anywhere so long as it

is able to connect to the SMF and E2BE databases.

Command Line parameters

Running ccsBeResync from the command line with the -h flag will print out a list of the command line

parameters.

Usage:

ccsBeResync -u username/password [-b id] [-m primary|secondary]
e 1d] [-o filename] [-h] [-7?]

The available parameters are:

-u

Syntax: -u usernamelpassword

Description: VWS database username and password.
Type: String

Optionality:

Allowed:

Default:
Notes:

[-r]

[-v]

[-s 1id]

Chapter 6, Tools and Utilities 317

Example: -u e2be admin/manager

-b

Syntax: -b id

Description: The ID of the Voucher and Wallet Server pair to synchronize.

Type:

Optionality:

Allowed:

Default:

Notes: This should be the same as the entry from CCS_BE_LOCATION.BE_ACCT _
ENGINE_ID for logical Voucher and Wallet Server pair.

Example:

-e

Syntax: -e id

Description: End of range, using one of the following:

e CCS_ACCT.BE_ACCT_ID if synchronizing wallets (default)
¢ CCS_VOUCHER_REFERENCE.ID when synchronizing vouchers (-v).
Defaults to 0.

-h/-7

Display syntax help.

-m

Syntax: -m primary|secondary

Description: Master [primary|secondary]. The Voucher and Wallet Server which will be the
master data source.

Type:

Optionality:

Allowed: e primary

e secondary

Default:

Notes: If specified, will only make changes to the slave Voucher and Wallet Server
regardless of the nature of the differences that ccsBeResync identifies. Records
that only exist on the slave will not be recreated on the master and all updates
resulting from differences will be resolved in favor of the master.

Example:

-0

Syntax: o filename

Description: When specified, ccsBeResync will redirect individual difference and overall
statistics output to the nominated file.

Type:

Optionality:

Allowed:

Default: stdout

Notes:

318 Charging Control Services Technical Guide

Example:

-r

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

-S

Syntax:

Description:

-V

Syntax:

Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

Report mode.

Wallet/voucher information requests are sent and differences reported either as
standard output or in the output file (-o parameter).

No updates will be made to either Voucher and Wallet Server.

-s id
Start of range, using one of the following:
e CCS_ACCT.BE_ACCT_ID if synchronizing wallets (default)

¢ CCS_VOUCHER_REFERENCE.ID when synchronizing vouchers (-v).
Defaults to 0.

Vouchers. Will cause ccsBeResync to perform synchronization updates/reporting
to be performed on vouchers instead of wallets.

If this is not set it will default to performing the synchronization on wallets only.
The tool will not attempt doing both.

Configuration - eserv.config

ccsBeResync supports these parameters from the ccsBeResync section of the eserv.config file.

ccsBeResync =
belD

syncSequenceDifference = int
maxQueueSize = int

pollTime

seconds

recheckDelay = seconds
maxInfoRechecks = int

maxUpdatesPerRequest = int
beRequestTimeout = seconds
notificationInterval = seconds

bucketValueHighest = truel| false
bucketExpiryLatest = true| false

Chapter 6, Tools and Utilities 319

balanceMinCreditHighest = true|false
balancelLimitTypeHighest = true|false
walletMaxConHighest = true| false
walletExpiryLatest = truel false
walletActivationLatest = true|false
bucketReferencePrimary = true|false
skipLastUseFieldCheckAtWallet = true|false

belLocationPlugin = "1ib"
oracleUserPass = "usr/pwd"
clientName = "name"

heartbeatPeriod = microsecs
messageTimeoutSeconds = seconds
maxOutstandingMessages = int
reportPeriodSeconds = seconds
connectionRetryTime = seconds

plugins = [
{

config="confStr",
library="1ib",
function="str"

]

confStr = {

plugin configuration

}

notEndActions = [
{type="str", action="[ACK |NACK]"}

[...]

Parameters

The ccsBeResync supports the following general parameters from the CCS section of eserv.config.

beID

Syntax: beID = id

Description: ID of the Voucher and Wallet Server pair to resynchronize.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1

Notes: This value can be found in the database table CCS_DOMAIN.DOMAIN_ID.
Only one pair can be re-synchronized at a time.

Example: beID = 3

beRequestTimeout

Syntax: beRequestTimeout = seconds

Description: The number of seconds to wait before timing out a message and giving up on that
particular wallet/voucher.

Type: integer

320 Charging Control Services Technical Guide

Optionality: Optional

Allowed:
Default: 60
Notes: This will produce syslog messages.
Example: beRequestTimeout = 60
maxInfoRechecks
Syntax: maxInfoRechecks = int
Description: If when the wallet/voucher is rechecked for differences, it has changed; it will wait
recheckDelay and try again.
Type: integer
Optionality: Optional
Allowed:
Default: 5
Notes: If it is a heavy use wallet, ccsBeResync will give up after maxinfoRechecks.
Example: maxInfoRechecks = 5
maxQueueSize
Syntax: maxQueueSize = int
Description: Maximum number of wallets/ vouchers being checked simultaneously.
Type: Integer
Optionality: Optional
Allowed:
Default: 10
Notes: Increasing this setting will have an impact on the VWSs, but in turn will make
resynchronization faster.
The count:
e Includes all wallets/vouchers with outstanding W1/VI and updates
e Excludes the wallets/vouchers sleeping/waiting to do another WI/VI in
order to confirm the differences before correction
Example: maxQueueSize = 10

maxUpdatesPerRequest

Syntax: maxUpdatesPerRequest = int

Description: Maximum size of updates for VWSs.
If an update is larger than this maximum, the message will be split into more than
one part.

Type: integer

Optionality: Optional

Allowed:

Default: 10

Notes: Large updates sent to the Voucher and Wallet Server may cause problems with

the size of a SLEE event. Instead, send maxUpdatesPerRequest each time, and
send more than one request if we have more than that many updates to send.

ccsBeResync will log alarms if timeouts are occurring because updates are too
large.

Chapter 6, Tools and Utilities 321

Example:

maxUpdatesPerRequest 10

notificationInterval

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

pollTime

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

recheckDelay

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

notificationInterval = seconds
How often, in seconds, to print out the progress of the ccsBeResync tool.
integer

300
notificationInterval = 300
pollTime = seconds

Maximum number of seconds to poll VWS connections before attempting to start
another request or check sleeping requests.

integer
Optional

pollTime = 1

recheckDelay = seconds

Number of seconds wait before rechecking an inconsistent wallet/voucher record.
integer

Optional

120

Setting this too low will cause transactions to be applied twice; once by this tool,
and again by the transaction from the other VWS.

This should be at least the time it takes for a transaction to make it from one VWS
to the other.

Inconsistent records are/can be caused when a record has been updated on one
VWS, but not synced with the other by beSync yet.

recheckDelay = 120

skipLastUseFieldCheckAtWallet

Syntax:
Description:

Type:
Optionality:
Allowed:

skipLastUseFieldCheckAtWallet = truel|false

If this parameter is set to true, ccsBeResync tool synchronizes the wallets with
active reservation where commits are not happening during recheckDelay
interval for that reservation.

Boolean
Optional

322 Charging Control Services Technical Guide

Default: false

Notes: Only those wallets are synchronized whose LUSE field is changing between two
WI_Ack responses received for the requests sent recheckDelay seconds apart
to a particular VWS node.

Example: skipLastUseFieldCheckAtWallet = true

syncSequenceDifference

Syntax: syncSequenceDifference = int

Description: The maximum allowable difference between sequence numbers on the Voucher
and Wallet Servers. If this amount is exceeded, the tool will abort the
resynchronization. This prevents ccsBeResync from applying transactions twice
(once itself, and once by the beSync).

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Negative Ignore any different between sequence numbers. This is useful if
integer (for example) you are recreating the entire database after hardware

failure.

Positive Maximum allowable difference before aborting the resync
integer

Default: 10

Example: syncSequenceDifference = 10

eserv.config business rules parameters

The ccsBeResync tool recreates any rows deemed missing in BE_WALLET, BE_BALANCE,
BE_BUCKET on either VWS. Therefore, the following parameters are set to determine the resolution of
differences between rows that exist on both Voucher and Wallet Servers.

Note: If the following parameters are not defined, the defaults will be applied to the row, that is, even if
the parameter is not set, the row will be updated with the default behavior.

balancelLimitTypeHighest

Syntax: balancelLimitTypeHighest = truel| false
Description: Make both balances have the same value by taking the highest (true)/ lowest
(false) value. Defined (lowest->highest) order is:
e SingleUse
e Debit
e LimitedCredit
e Credit
Type: boolean
Optionality: Optional, default will be used if not specified.
Allowed: true, false
Default: false
Notes: Alters BE_ BALANCE.LIMIT_ TYPE.
Example: balanceLimitTypeHighest = false

Chapter 6, Tools and Utilities 323

balanceMinCreditHighest

Syntax: balanceMinCreditHighest = truel| false

Description: Make both balances have the same minimum credit limit by taking the highest
(true)/ lowest (false) value.

Type: boolean

Optionality: Optional, default will be used if not specified.

Allowed: true, false

Default: false

Notes: Alters BE_BALANCE.MINIMUM_ CREDIT.

Example: balanceMinCreditHighest = false

bucketExpiryLatest

Syntax: bucketExpirylLatest = true| false

Description: Makes both buckets have the same expiry by taking the earliest (true)/ latest
(false) expiry.

Type: boolean

Optionality: Optional, default will be used if not specified.

Allowed: true, false

Default: true

Notes: The latest possible expiry is 'never expires'.
Alters BE_BUCKET.EXPIRY and BE_BUCKET.NEVER_EXPIRES.

Example: bucketExpirylLatest = true

bucketReferencePrimary

Syntax: bucketReferencePrimary = truel|false
Description: Which VWS Voucher and Wallet Server to use as the master data when
resynchronizing buckets (BE_BUCKET) which have a reference and start date.
Type: Boolean
Optionality: Optional (default used if not set).
Allowed: true Use the values from the primary VWS Voucher
and Wallet Server to set the periodic charges.
false Use the values from the secondary VWS Voucher
and Wallet Server to set the periodic charges.
Default: true
Notes: Applies to periodic charge buckets (that is, periodic charges).
Example: bucketReferencePrimary = false
bucketValueHighest
Syntax: bucketValueHighest = true| false
Description: Makes both buckets have the same value by taking the highest (true)/ lowest
(false) value.
Type: boolean
Optionality: Optional, default will be used if not specified
Allowed: true, false
Default: true
Notes: Alters BE_BUCKET.VALUE

324 Charging Control Services Technical Guide

Example:

bucketValueHighest = true

walletActivationLatest

Syntax: walletActivationLatest = true|false
Description: Make both wallet have the same activation date by taking the earliest (true)/ latest
(false) expiry.
Type:
Optionality: Optional, default will be used if not specified.
Allowed: true, false
Default: true
Notes: The latest possible expiry is 'never expires'.
Alters BE_WALLET. ACTIVATION_ DATE.
Example: walletActivationlLatest = true
walletExpiryLatest
Syntax: walletExpiryLatest = truel|false
Description: Make both wallet have the same expiry by taking the earliest (true)/ latest (false)
expiry.
Type: boolean
Optionality: Optional, default will be used if not specified.
Allowed: true, false
Default: true
Notes: The latest possible expiry is 'never expires'.
Alters BE_WALLET.EXPIRY and BE_WALLET.NEVER_EXPIRES.
Example: walletExpiryLatest = true
walletMaxConHighest
Syntax: walletMaxConHighest = truel| false
Description: Make both wallets have the same maximum concurrent users by taking the
highest (true)/ lowest (false) value.
Type: boolean
Optionality: Optional, default will be used if not specified.
Allowed: true, false
Default: true
Notes: Alters BE_WALLET.MAX_ CONCURRENT.
Example: walletMaxConHighest = true

libBeClientlF parameters

The ccsBeResync tool may use the libBeClientlF to connect to the Voucher and Wallet Server. The
standard configuration is available in the parameters described below.

clientName

Syntax:

Description:

Type:

clientName = "name"
The unique client name of the process.
String

Chapter 6, Tools and Utilities 325

Optionality: Required

Allowed: Must be unique.
Default: The host name of the local machine.
Notes: The server generates clientld from a hash of str.

If more than one client attempts to connect with the same name, then some
connections will be lost.

This parameter is used by libBeClientlF.
Example: clientName = "scpClient"

connectionRetryTime

Syntax: connectionRetryTime = seconds

Description: The maximum number of seconds the client process will wait for a connection to
succeed before attempting a new connection.

Type: Integer

Optionality: Required

Allowed:

Default: 5

Notes: This parameter is used by libBeClientlF.

Example: connectionRetryTime = 2

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The number of microseconds during which a Voucher and Wallet Server

heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer

Optionality: Required

Allowed: 0 Disable heartbeat detection.
positive integer Heartbeat period.

Default: 3000000

Notes: 1 000 000 microseconds = 1 second.

If no heartbeat message is detected during the specified time, client process
switches to the other Voucher and Wallet Server in the pair.

This parameter is used by libBeClientlF.
Example: heartbeatPeriod = 10000000

maxOutstandingMessages

Syntax: maxOutstandingMessages = num

Description: The maximum number of messages allowed to be waiting for a response from the
Voucher and Wallet Server.

Type: Integer

Optionality: Required

Allowed:

Default: If this parameter is not set, the maximum is unlimited.

326 Charging Control Services Technical Guide

Notes: If more than this number of messages are waiting for a response from the
Voucher and Wallet Server, the client process assumes the Voucher and Wallet
Server is overloaded. In this event, the client process refuses to start new calls
but continues to service existing calls.

The messages are queued until the Voucher and Wallet Server has reduced its
outstanding load.

This parameter is used by libBeClientIF.
Example: maxOutstandingMessages = 100

messageTimeoutSeconds

SyMam messageTimeoutSeconds = seconds
Description: The time that the client process will wait for the server to respond to a request.
Type: Integer
Units: Seconds
Optionality: Required
Allowed: 1-604800 Number of seconds to wait.
0 Do not time out.
Default: 2
Notes: After the specified number of seconds, the client process will generate an

exception and discard the message associated with the request.
This parameter is used by libBeClientlF.

Example: messageTimeoutSeconds = 2
notEndActions
Syntax: notEndActions = [

{type="str", action="[ACK|NACK]"}
[...]
]
Description: The notEndActions parameter array is used to define the messages
associated with dialogs that should not have their dialog closes, because the
dialog is closed by default. This facilitates failover.

Type: Parameter array.

Optionality: Required

Allowed:

Default:

Notes: If the incoming dialog for a call closes and the last response received was of the

notEndActions type, the client process sends an ABRT message. The ABRT
message allows the VWS to remove the reservation. An example of this situation
would be where slee_acs has stopped working.

This parameter is used by libBeClientIF.
For more information about slee_acs, see ACS Technical Guide.

Chapter 6, Tools and Utilities 327

Example:

notEndActions = [
{type="IR ", action="ACK "}
{type="SR ", action="ACK "}
{type="SR ", action="NACK"}
{type="INER", action="ACK "}
{type="SNER", action="ACK "}
{type="SNER", action="NACK"}

action
Syntax:
Description: Action to take with a message.
Type:
Optionality:
Allowed: e "NACK"
e "ACK"
Default:
Notes:
Example:
type
The type of message.
plugins
Syntax: plugins = [
{
config=""
library="1ib"
function="str"
}
]
Description: Defines any client process plug-ins to run. Also defines the string which maps to
their configuration section.
Type: Parameter array
Optionality: Optional (as plug-ins will not be loaded if they are not configured here, this
parameter must include any plug-ins which are needed to supply application
functions; for more information about which plug-ins to load, see the BeClient
section for the application which provides the BeClient plug-ins).
Allowed:
Default: Empty (that is, do not load any plug-ins).
Notes: The libclientBcast plug-in must be placed last in the plug-ins configuration list.
For more information about the libclientBcast plug-in, see libclientBcast.
This parameter is used by libBeClientlF.
Example: plugins = [

{
config="broadcastOptions"
library="1libclientBcast.so"
function="makeBroadcastPlugin"

328 Charging Control Services Technical Guide

config

Syntax: config="name"

Description: The name of the configuration section for this plug-in. This corresponds to a
configuration section within the p1ugins section in the eserv.config file.

Type: String

Optionality: Required (must be present to load the plug-in)

Allowed:

Default: No default

Notes:

Example: config="voucherRechargeOptions"

function

Syntax: function="str"

Description: The function the plug-in should perform.

Type: String

Optionality: Required (must be present to load the plug-in)

Allowed:

Default: No default

Notes:

Example: function="makeVoucherRechargePlugin"

library

Syntax: library="1ib"

Description: The filename of the plug-in library.

Type: String

Optionality: Required (must be present to load the plug-in)

Allowed:

Default: No default

Notes:

Example: library="1libccsClientPlugins.so"

reportPeriodSeconds

Syntax: reportPeriodSeconds = seconds

Description: The number of seconds separating reports of failed messages.
Type: Integer

Units: Seconds

Optionality: Required

Allowed:

Default: 10

Chapter 6, Tools and Utilities 329

Notes: BeClient issues a failed message report:
e For timed-out messages

e For unrequested responses
e For new calls rejected because of congestion
e For messages with invalid Voucher and Wallet Server identifiers

e If new and subsequent requests fail because both Voucher and Wallet
Servers have stopped working

VWS heartbeat detection must be enabled for the parameter to work. Set
reportPeriodSeconds to more than heartbeatPeriod.

This parameter is used by libBeClientlF.

Example: reportPeriodSeconds = 10

Example configuration

An example of the ccsBeResync parameter group of a SLC eserv.config file is listed below. Comments
have been removed.

ccsBeResync = {
beID =1
syncSequenceDifference = 10
maxQueueSize = 10

pollTime = 1

recheckDelay = 120
maxInfoRechecks = 5
maxUpdatesPerRequest = 10
beRequestTimeout = 60
notificationInterval = 300

bucketValueHighest = true
bucketExpiryLatest = true
balanceMinCreditHighest = false
balancelLimitTypeHighest = false
walletMaxConHighest = true
walletExpiryLatest = true
walletActivationLatest = true
bucketReferencePrimary = true
skipLastUseFieldCheckAtWallet = false

Failure

Re-synchronization between the data in the source E2BE database and the data in the destination
E2BE database will fail. Any discrepancies between the databases may remain. Rerun the tool.

Output

Rows that do not exist on one VWS will be created on the other (only on the slave if performing a
master/slave resynchronization).

The ccsBeResync tool will first establish a connection to the Voucher and Wallet Servers in the specified
VWS pair. It will then send wallet/voucher information requests to both Voucher and Wallet Servers.

e If the responses do not match it will wait for a configurable number of seconds and send requests
again. This is to determine whether the data it is querying is currently in use and waiting for normal
synchronization processing to complete.

330 Charging Control Services Technical Guide

o If the responses from the first and second queries do not match (that is, the differences between the
wallets have changed since the first information request), it keeps trying until it receives a matching
response from subsequent requests.

e If no master has been specified it then creates updates according to the business rules set in the
eserv.config file and sends them to the appropriate Voucher and Wallet Servers.

o If a master has been specified (‘primary'/'secondary’), it will only create updates that will force the
slave Voucher and Wallet Server data to become a duplicate of the master.

Note: The updates are a special message that will not be subject to the normal synchronization process,
that is, after being sent to one or the other Voucher and Wallet Server they will not be duplicated across
the pair after they have been applied.

Resynchronizing in Normal Operation

The tool is installed in /IN/service_packages/CCS/bin. To run the ccsBeResync tool you must ensure that
the ccsBeResync section is present in the eserv.config file that you are using. The tool should be run by
ccs_oper. Output of differences found between the Voucher and Wallet Servers when using business
rule definitions will be sent to the system log in the form of a NOTICE entry as well as to the tool's
standard output. When performing master/slave resynchronizations the differences will only be sent to
standard output or the output file.

Examples of normal operation:

$/IN/service packages/CCS/bin/ccsBeResync
With no command line options selected the ccsBeResync tool will:

e Use the Voucher and Wallet Server pair specified in the eserv.config file
e Use business rules to resynchronize records

e Process wallets only

e Output to stdout (no report file will be created)

e Check and update wallet-related database columns specified below for all records in those tables
(no start or end range defined).

Table Column
BE_WALLET .NEVER_EXPIRES
EXPIRY

BE_BALANCE LIMIT_TYPE
.MINIMUM_CREDIT

BE_BUCKET .MAX_CONCURRENT
STATE
.NEVER_EXPIRES
.EXPIRY
.NEVER_ACTIVATED
ACTIVATION_DATE
.VALUE

$/IN/service packages/CCS/bin/ccsBeResync -r -m secondary -o
/tmp/Wallet Resync_ Report.txt

With the above command line options the ccsBeResync tool will:

e Use the Voucher and Wallet Server pair specified in the eserv.config file

e Create a report only. No updates to the databases on either VWS will be performed
e Process wallets only

Chapter 6, Tools and Utilities 331

e Create and write output to /tmp/Resync_Report.txt (note: this file will be overwritten by re-running the
ccsBeResync tool unless another filename is specified)

e Check and report on wallet-related database column differences for ALL records in those tables (no
start or end range defined)

$/IN/service packages/CCS/bin/ccsBeResync -v -s 1000 -e 5000 -o

/tmp/Voucher Resync.txt

With the above command line options the ccsBeResync tool will:

e Use the Voucher and Wallet Server pair specified in the eserv.config file
e Process vouchers only

e Check and update the BE_VOUCHER.REDEEMED database column according to business rules in
the eserv.config file for records with IDs between BE_VOUCHER.ID 1000 and BE_VOUCHER.ID
5000

e Create and write output to /tmp/Voucher_Resync.txt

Normal error conditions

The ccsBeResync tool will exit on certain error conditions before it has been able to process all records.
These include:

e ccsBeResync process killed during processing

e Configuration file parsing errors

e Command line parsing errors

e Unable to connect to one or both Voucher and Wallet Servers:

= Database unavailable

= Voucher and Wallet Server not running or disabled

= Connection to database or Voucher and Wallet Server broken

= Voucher and Wallet Servers too far out of sync (configurable with override)

When the ccsBeResync has been interrupted during processing the statistics output will report how far
through the selected list of records the tool had reached, for example:

Statistics:

e Completed IDs = 3579

e Insync vouchers = 3579

e LastID processed = 280525

e Total IDs = 100020

e Voucher info acks = 3579

e Voucher info requests sent to primary VWS = 3589

e Voucher info requests sent to secondary VWS = 3589

Note: Statistics not listed were equal to zero.

Resynchronization Reports

The standard report will contain configuration information used by the ccsBeResync tool, any
differences between the specified E2BE databases that were found and a statistics summary for all
actions taken by the tool during processing.

Example:

ccsBeResync starting on Fri Oct 3 11:03:55 2003

ccsBeResync Configuration

belD : 1
masterBE : not defined
syncSequenceDifference : -1

332 Charging Control Services Technical Guide

startRange
endRange
smfUserPass
Primary BE IP
Primary BE Port
Secondary BE IP
Secondary BE Port
BE Oracle SID

BE Oracle logon
Max Queue size
Poll Time

Recheck Delay

Max Info Rechecks
BE Request Timeout
Notification Interval
Output filename

0

0

/
192.168.0.191
1700
192.168.0.190
1700

E2BE

e2be admin/e2be admin
10

2

10

5

60

3
syncWallet.out

No master defined, using business rules

Config map for first BE beClientIF = ({
billingEngines = [
{
id =1
primary = {
ip = "192.168.0.191"
port = 1700

]

clientName = "ccsBeResync"
plugins = []
}

Config map for second BE beClientIF = {
billingEngines = [
{
id =1
primary = {
ip = "192.168.0.190"
port = 1700

]

clientName = "ccsBeResync"
plugins = []

Process wallets
Report and fix inconsistencies

Business rules

Highest Bucket Value : true
Highest Bucket Expiry Date : true
Highest Min Credit Value : true
Highest Limit Type ¢ true
Highest Wallet Max Concurrent ¢ true
Highest Wallet Expiry Date : true
Highest Wallet Activation Date : true

Chapter 6, Tools and Utilities 333

Updating primary BE wallet 144 maxCon:1->1 state:PREU->ACTV neverExpires:1->1
expiryDate:0->0 neverActivated:1->1 activationDate=0->0

Wallet 282 Updating secondary bucket 90080 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Wallet 284 Updating secondary bucket 90084 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Wallet 286 Updating secondary bucket 90088 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Wallet 288 Updating secondary bucket 90092 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Wallet 290 Updating secondary bucket 90096 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Updating primary BE wallet 281 maxCon:1->3 state:ACTV->ACTV neverExpires:1->1
expiryDate:0->0 neverActivated:0->0 activationDate=1064964017->1064964017
Wallet 281 Updating secondary bucket 90078 Value 102530100->105291100 Expiry
neverExpires->neverExpires

Wallet 283 Updating secondary bucket 90082 Value 102420000->105181000 Expiry
neverExpires->neverExpires

Wallet 285 Updating secondary bucket 90086 Value 102420000->105181000 Expiry
neverExpires->neverExpires

Wallet 287 Updating secondary bucket 90090 Value 102420000->105181000 Expiry
neverExpires->neverExpires

Wallet 292 Updating secondary bucket 90100 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Wallet 294 Updating secondary bucket 90102 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Wallet 296 Updating secondary bucket 90106 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Wallet 298 Updating secondary bucket 90112 Value 102442000->105181000 Expiry
neverExpires->neverExpires

Wallet 291 Updating secondary bucket 90098 Value 102420000->105181000 Expiry
neverExpires->neverExpires

Wallet 293 Updating secondary bucket 90104 Value 102420000->105181000 Expiry
neverExpires->neverExpires

Wallet 295 Updating secondary bucket 90108 Value 102420000->105181000 Expiry
neverExpires->neverExpires

Wallet 297 Updating secondary bucket 90110 Value 102420000->105181000 Expiry
neverExpires->neverExpires

Wallet 299 Updating secondary bucket 90116 Value 102420000->105181000 Expiry
neverExpires->neverExpires

Wallet 300 Updating secondary bucket 90114 Value 102442000->105192000 Expiry
neverExpires->neverExpires

Statistics:
BE WALLET rows updated = 2
Completed IDs = 5027
In sync wallets = 5000
Last ID processed = 5280
Secondary BE BUCKET rows updated = 19
Total IDs = 5027
Update Acks = 21
Update responses received = 21
Updates sent = 21
Updates sent to primary =
Updates sent to secondary = 19
Wallet Info Acks = 5027
Wallet Info Requests sent to primary BE = 5060
Wallet Info Requests sent to secondary BE = 5060
Wallet diffs without updates = 7
Wallet that changed, and required checking again = 6
Wallets checked second time = 33

[\

334 Charging Control Services Technical Guide

ccsBeResync stopped at Fri Oct 3 11:05:19 2003

ccsBatchCharge

Purpose

The ccsBatchCharge tool applies batches of updates to subscriber wallets.

ccsBatchCharge permits the activation, execution and deactivation of rules that are used to allocate
additional items to a specified balance type for selected subscribers.

Example

ccsBatchCharge supports the following command line parameters:
ccsBatchCharge [-1 file] [-o file] [-c str] [-h] [-7?]

Parameters

ccsBatchCharge accepts the following command line parameters.

-b
Syntax: -b bucket
Description: Default bucket (if not specified in input).
Type: integer
Optionality:
Allowed:
Default: -1
Notes:
Example:
-c
Syntax: -Cc str
Description: The section of the eserv.config file to get configuration for bePlugin.
Type: String
Optionality: Optional (default used if not set).
Allowed:
Default: BE
Notes:
Example: -c
-d
Syntax: -d debitstrategy
Description: Debit strategy rule selection.
Type: integer
Optionality:
Allowed: 1 =SINGLE_NO_NEG
2 = SINGLE_NEG
3 =MULTIPLE

Chapter 6, Tools and Utilities 335

Default: 1

Notes:

Example:

-e

Syntax: -e CDRextrainfovalue
Description: Extra information to put into EDR in cdrExtralnfoTag.
Type: string

Optionality:

Allowed:

Default: CCSBC

Notes:

Example:

-h

Displays the help file.

-i

Syntax: -1 file

Description: File to read batch information from.
Type: String

Optionality: Optional (default used if not set).
Allowed:

Default: stdin

Notes:

Example: -i ChargeBatch.txt

-m

Syntax: -m maxpending

Description: Maximum number of requests pending at any time.
Type: integer

Optionality:

Allowed:

Default: 10

Notes:

Example:

-0

Syntax: -o file

Description: The file to write error output to.
Type: String

Optionality: Optional (default used if not set).
Allowed:

Default: stdout

Notes:

Example: -0 ChargeBatch.log

336 Charging Control Services Technical Guide

-p

Syntax: -p seconds

Description: Default poll time for beClient.
Type: integer

Optionality:

Allowed:

Default: 1

Notes: in seconds.

Example:

-r

Syntax: —-r num

Description: Number of times to poll a request before timing it out.
Type: integer

Optionality:

Allowed:

Default: 30

Notes:

Example:

-t

Syntax: -t balancetype

Description: Default balance type (if not specified in input).
Type: string

Optionality:

Allowed:

Default: ‘General Cash'

Notes:

Example:

—-W

Syntax: -w wallettype
Description: Wallet type.

Type:3 string

Optionality:

Allowed:

Default: 'Personal’

Notes:

Example:

bePlugin

Syntax:
Description: Override the default config section used to get information about bePlugin.

Chapter 6, Tools and Utilities 337

Type: string

Optionality:

Allowed:

Default: beLocationPlugin
Notes:

Example:

cdrExtraInfoTag

Syntax:

Description: Name of the tag added to the EDR which holds extra information configured in
cdrExtralnfoValue.

Type: string
Optionality:

Allowed:

Default: CCSBC
Notes:

Example:

-7

Displays the help file.

ccsDomainMigration

Purpose

ccsDomainMigration takes details from the SMS screens and migrates wallets between VWS Voucher
and Wallet Servers. For more information about migrating wallets, see VWS Technical Guide.

Startup

Start ccsDomainMigration from the Service Management System (SMS) by selecting the Services-
>Prepaid Charging->Subscriber Management screen and clicking Restart on the UBE Account Balancing tab.
When you push the Restart button, SMS passes parameters to ccsDomainMigration which is
started by the ccsDomainMigrationStartup. sh script.

For more information about the UBE Account Balancing tab, see Charging Control Services User's Guide.

You can also invoke the ccsDomainMigrationStartup.sh scriptin test mode to test connectivity to
the VWS servers that are involved in a migration. In this case, the script does not actually perform a
migration.

Note: Invoke ccsDomainMigrationStartup.sh as a command only if wish to run a connectivity test.
Use the Restart button in the UBE Account Balancing tab to perform an actual migration.

To run ccsDomainMigration in test mode, invoke it from the command line with the -t parameter. In
test mode, ccsbomainMigration reports to the log file whether it successfully connects to the VWS
servers.

You can also specify the -p pollTime option in conjunction with the -t option to set the poll time to
use in the connection test. The pol1ltime parameter value overrides the value of the polltime
parameter in the eserv.config file. After connecting to a VWS, ccsDomainMigration sends four polls
before sending the first wallet migration request. The -p polltime option specifies the number of
seconds that ccsDomainMigration waits after sending each poll.

338 Charging Control Services Technical Guide

The —p option allows you to test different poll time values to determine which ones are best suited for
connecting to the VWS. You then can use those values for the pol1time parameter in the eserv.config
file.

Configuration

ccsDomainMigration supports parameters from the ccsDomainMigration parameter group in the
eserv.config file on a SMS. It contains parameters arranged in the structure shown below.

ccsDomainMigration = {
ClientIF = {

heartbeatPeriod = microsecs

messageTimeoutSeconds = secs
maximumSendAttempts = int
pollTime = secs
progressTimeout = secs
sendRetryDelay = secs

}

lockFile = "dir"

commitInterval = int

commitVolume = int

throttle = int
}

Note: ccsDomainMigration also uses the global parameters:
e belocationPlugin (on page 135)

e oracleUserAndPassword (on page 52)

Parameters

ccsDomainMigration supports the following parameters in the ccsDomainMigration section of
eserv.config.

ClientIF section

Syntax: ClientIF {}

Description: Section containing the parameters for the libBeClientlF.

Type: Parameter group

Optionality: Required

Allowed: Any parameter which is supported by the libBeClientIF.

Default: Empty

Notes: For more information about the libBeClientlF, see VWS Technical Guide.
Example:

heartbeatPeriod

Syntax: heartbeatPeriod = microsecs

Description: The number of microseconds during which a Voucher and Wallet Server

heartbeat message must be detected, or the BeClient process will switch to the
other VWS in the pair.

Type: Integer
Optionality: Required
Allowed: 0 Disable heartbeat detection.

positive integer Heartbeat period.

Chapter 6, Tools and Utilities 339

Default:
Notes:

Example:

3000000
1 000 000 microseconds = 1 second.

If no heartbeat message is detected during the specified time, client process
switches to the other Voucher and Wallet Server in the pair.
This parameter is used by libBeClientIF.

heartbeatPeriod = 10000000

messageTimeoutSeconds

Syntax:
Description:
Type:

Units:
Optionality:
Allowed:

Default:
Notes:

Example:

messageTimeoutSeconds = seconds

The time that the client process will wait for the server to respond to a request.
Integer

Seconds

Required

1-604800 Number of seconds to wait.

0 Do not time out.

2

After the specified number of seconds, the client process will generate an
exception and discard the message associated with the request.

This parameter is used by libBeClientIF.
messageTimeoutSeconds = 2

maximumSendAttempts

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:

Notes:

Example:

pollTime

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

maximumSendAttempts = num

The number of times that a particular wallet request will be sent to a VWS. A request is
resent if either an unrecoverable error occurs or the request times out. The first request
sent is counted as attempt number one.

Integer
Optional (default used if not set)

3

If you specify a value that is lower than the default, ccsDomainMigration uses the
default value instead.

maximumSendAttempts = 5

pollTime = seconds

The number of seconds between the four Voucher and Wallet Server polls
ccsDomainMigration makes after it has made a connection to the Voucher and
Wallet Server before sending the first wallet migration request.

Integer
Optional (default used if not set).

1

The time spent polling enables the beServer and ccsDomainMigration to establish
a confirmed connection.

If errors appear in the syslog indicating a connection has been established and
request sending is failing, this value should be increased.

340 Charging Control Services Technical Guide

Example: pollTime = 2

progressTimeout

Syntax: progressTimeout = seconds

Description: The number of seconds between checks to ensure that a migration is making progress,
that is, that wallet requests are being processed.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 120

Notes: If you specify a value that is lower than the default, ccsDomainMigration uses the
default value instead.

Example: progressTimeout = 180

sendRetryDelay

Syntax: sendRetryDelay = seconds

Description: The number of seconds between attempts to send a wallet request. The limit on the
number of attempts is specified by the maximumSendAttempts parameter.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 16

Notes: If you specify a value that is lower than the default, ccsDomainMigration uses the
default value instead.

Example: sendRetryDelay = 20

commitInterval

Syntax: commitInterval = seconds

Description: The maximum number of seconds between wallet update commits to the SMF.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Positive integers

Default: 15

Notes: Wallet update commits may also be triggered by the number of commits

exceeding commitVolume (on page 341).

Example: commitInterval = 15

commitVolume

Syntax: commitVolume = int

Description: The number of records to commit in one batch.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 200

Chapter 6, Tools and Utilities 341

Notes:

Wallet update commits may also be triggered by the number of seconds between
commits exceeding commitinterval (on page 341).

Example: commitVolume = 200

lockFile

Syntax: lockFile = "path"

Description: The directory path and filename of the lockfile.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/CCS/tmp/ccsDomainMigration.lock"

Notes: On a clustered SMS this must be on the global file system.
On a clustered SMS this should be set to the same value on all nodes.

Example: lockFile =
"/IN/service packages/CCS/tmp/ccsDomainMigration.lock"

throttle

Syntax: throttle = int

Description: The maximum number of wallet migration requests to send to the VWS each
second.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: positive integer maximum requests
0 no limit (disable throttling)

Default: 0

Notes: For each migration, the lowest value of this setting and the setting in the Throttle
field for the migration is used.

Example: throttle = 2

walletLockMilliSec

Syntax: walletLockMilliSec = milliseconds

Description: The number of milliseconds during which the migrating subscriber's wallets

will be locked on the source VWS while being migrated to the destination
VWS.

Type: Integer 32 bit integer value (signed)

Optionality: Optional

Default: 30000

Example: walletLockMilliSec = 30000

Example

An example of the ccsDomainMigration parameter group of a Voucher and Wallet Server eserv.config

file is listed below. Comments have been removed.

ccsDomainMigration = {
ClientIF = {
heartbeatPeriod = 10000000
messageTimeoutSeconds = 2
maximumSendAttempts = 5

342 Charging Control Services Technical Guide

pollTime = 1
progressTimeout = 180
sendRetryDelay = 20
}
lockFile = "/IN/service packages/CCS/tmp/ccsDM.lock"
commitInterval = 10
commitVolume = 100
throttle = 2
}

Failure

If ccsDomainMigration fails on startup, the UBE Account Balancing tab will report an error and no changes
will be made.

If ccsDomainMigration fails or is stopped while processing a migration, ccsDomainMigration will exit and
attempt to commit any pending successful transactions to the SMF database. However, it is likely that
some wallets will have been migrated on the Voucher and Wallet Server, but the confirmation has not
been returned to the ccsDomainMigration process so the SMF database will not reflect those changes.
ccsDomainMigration should not be stopped manually. Instead, the migration should be stopped using
the Cancel or Pause buttons on the UBE Account Balancing tab. For more information about the UBE
Account Balancing tab, see Charging Control Services User's Guide.

Output

ccsDomainMigration updates wallet location and migration details in the following tables in the SMF
database.

Note: You can use the UBE Account Balancing tab in the Subscriber Management screen to export the
migration report to a flat file. For more information, see Charging Control Services User's Guide.

The ccsDomainMigration writes error messages to the system messages file, and also writes additional
output to /IN/service_packages/CCS/tmp/ccsDomainMigration.log.

ccsMFileDump
Purpose
ccsMFileDump writes data from a specified binary MFile into formatted text or html.

Startup

ccsMFileDump is started from the command line.

Configuration

ccsMFileDump supports the following command-line switches and parameters.

ccsMFileDump [-h|-H prefix] [-c CLI -d DN [-t timestamp] [-p str]] file

file

Syntax: file

Description: The name of the CCS MFile to validate and dump. For named event catalogue
MFiles the filename must begin with 'P".

Type: String

Optionality: Mandatory

Chapter 6, Tools and Utilities 343

Allowed:

Default:

Notes:

Example: 001160095644

e

Syntax: -c CLT

Description: Dump a portion of the MFile only for the specified CLI and DN.
Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: Dump information for all CLI.

Notes: If —c is specified, -d should also be specified.
Example: -c 03

-d

Syntax: -d DN

Description: Dump a portion of the MFile only for the specified CLI and DN.
Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: Dump information for all destination numbers.
Notes: If -d is specified, -c should also be specified.
Example: -d 06

-h

Syntax: -h

Description: Output the dump in an HTML file with links.
Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default: Dump to raw text.

Notes:

Example:

-H

Syntax: -H prefix

Description: Dump output to multiple HTML files.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: Dump to raw files.

Notes: Format of file will start with:

prefix-1234.html
The numbers correspond to the offsets into the MFile.

344 Charging Control Services Technical Guide

Example: -H MFileDump

P

SyMam -p product|named event catalogue

Description: Dump a portion of the MFile for the specified product or named event catalogue.
The internal ID for the product type/named event catalogue must be specified.
product is also equal to the Account Type ID in the account type section in the
MFile.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: Dump data for all product types.

Notes: For rating Mfiles, if —p is specified, -c and -d should also be specified.

For named event catalogue Mfiles, -p is the only optional parameter.
Example: -p 4

-t

Syntax: -t timestamp

Description: Dump a portion of the MFile for the given timestamp.

Type: String

Optionality: Optional (default used if not set).

Allowed: The timestamp can be specified in any of the following formats:
e YYYYMMDDHHMMSS, YYYYMMDDHHMM or YYYYMMDD
e YYMMDDHHMMSS, YYMMDDHHMM or YYMMDD

Default: Dump all Dates and Times for the specified CLI and DN.

Notes: If -t is specified, -c and -d should also be specified.

Example: -t 20061225132500

Rating example

These lines show examples of the command line configuration for a rating MFile (where the MFile
filename is 1001160095644)\):

ccsMFileDump 001160095644"

ccsMFileDump -h 001160095644"

ccsMFileDump -H out 001160095644"

ccsMFileDump -c 03 -d 06 001160095644"

ccsMFileDump -c 03 -d 06 -t 20061225132500 001160095644"
ccsMFileDump -c 03 -d 06 -t 20061225132500 -p 4 001160095644"

Named event catalogue example

These lines show examples of the command line configuration for a named event catalogue MFile
(where the MFile filename is \P001160095644\):

ccsMFileDump P001160095644
ccsMFileDump -h P001160095644
ccsMFileDump -H out 001160095644
ccsMFileDump -p 55 001160095644

Chapter 6, Tools and Utilities 345

Output

The ccsMFileDump writes error messages to the system messages file, and writes the content of the
MFile to stdout.

ccsProfileBulkUpdate

Purpose

The ccsProfileBulkUpdate tool applies bulk updates to CCS subscriber profile field tags. It is used to
update tags for integer and date profile fields. Multiple tags may be processed at the same time.

When a profile field tag is updated for a subscriber, the old profile tag is removed from the subscriber's
profile and the new tag is added. The value previously associated with the old tag is assigned to the new
tag.

Note: If the new tag is already present in the subscriber's profile then no changes are made to the tag.

Startup

Follow these steps to run the Profile Tags Bulk Update tool.

Step Action

1 Login to the SMS as ccs_oper.

2 Navigate to the directory in which ccsProfileBulkUpdate is located. In a standard
installation, this will be /IN/service_packages/CCS/bin.

3 Run the program:
ccsProfileBulkUpdate parameters
Where:
The available parameters are defined in the table in Command line parameters (on
page 346).

Note: The profileTags.cfg configuration file is located in /IN/service_packages/CCS/etc .

Example

ccsProfileBulkUpdate [-f "filename'"] [-7]

Command line parameters

-f

Syntax: -f "filename"

Description: The name of the input file containing the profile tag updates.

Type: String

Optionality:

Allowed:

Default: profileTags.cfg

Notes: The profileTags.cfg configuration file is located in /IN/service_packages/CCS/etc.
Example: -f "profileTags.cfg"

346 Charging Control Services Technical Guide

-u <user>/<password>

Syntax: -u "user/password"

Description: The Oracle username and password.
Type: String

Optionality:

Allowed:

Default: "

Notes:

Example: -u'"

-7

Displays the help file.

Profile tags input file

The profile tags input file (profileTags.cfg) lists the profile tags to be updated. Each line in the file contains
two decimal numbers separated by a space. These are the number for the tag to be changed followed
by the number for its new tag.

Example profileTags.cfg

This is an example profileTags.cfg file.

3146497 3146498
3146511 3146512
1310724 1310725

ccsVoucherStartup.sh

License

The ccsVoucherStartup.sh script is only available if you have purchased the Voucher Management
license. For more information about this tool, see Voucher Manager Technical Guide.

CCS Balance Top Up Suite

Introduction

CCS Balance Top Up Suite uses rules to increment balances on a regular basis. The additional
balances are used in the same way as normal funds when the customer makes calls. Updates are
applied to a specified balance type of the nominated subscriber wallets by the ccsBatchCharge tool.

Each promotion has associated with it:

e Arule that defines the balance to update, the frequency, the first execution date
e An MSISDN file that defines which subscriber wallets are impacted by the rule

Possible uses of ccsBatchCharge

You can use the CCSBT when you want to give a list of subscribers one of the following:

Chapter 6, Tools and Utilities 347

e Five notifications every week for six months and the notifications would expire one week after being
added if not used

e A one-off increase of 30 units of currency that would expire one month after being added if not used

Rule definition

A rule is used to decide:

e What balance type to add to

When to add to the balance

How often to add to the balance (for a recurrent rule)
How long the addition will last

Column definition

The columns allowed in the definition of a balance topup rule are detailed in the following table.

Column Definition

Name Name of the rule.

Item count Number of items (or amount) to add to the balance for every execution of
the rule.

Valid values are * and positive and negative integers.
Where the value is *, the value will be taken from an MSISDN list file.

When the rule relates to non-cash balances, the value to be added is
absolute (for example, for a value of 10, the number of items to be added
will be 10).

When the rule relates to cash balances, the value to be added is expressed
as 'littles' (for example, adding a value of 15023 will result in a currency
amount of 150.23).

First execution date Date from which the rule begins execution.

Valid values are:
*

e Any valid date in the format DD/MM/YYYY.
Where the value is *, the value is defaulted to the current date. In this case,
the execution mode must be set to IMM. A rule with this value will fire at the
next rules execution cycle.
Cycle period The frequency that the rule fires.
The cycle period value has the format nu, where:

e nis a positive integer

e uis the time unit. (This can be either d (days) or m (months).)
Examples: 13d (13 days), 1d (1 day), 1m (1 month).
A value of zero is allowable when iteration count is equal to 1.

Expiry period The length of time the newly added bucket lasts. The bucket expiry date
will be set, and the bucket will be removed when this date is reached.

The expiry period value has the format nu, where:

e nis a positive integer

e uis the unit. (This can be either d (days) or m (months).)
Examples: 13d (13 days), 1d (1 day), 1m (1 month).

The expiry date on the added bucket will be date the rule is executed plus
the expiry period.

348 Charging Control Services Technical Guide

Column Definition

Iteration count The number of times the rule is executed. This value must be 1 or more.

Execution mode Determines whether the rule is to be executed immediately, or is to be
scheduled for nightly processing. Valid values are:
¢ IMM for immediate execution

e REC for recurrent execution

Wallet type This is the type of wallet in which the balance is incremented.
This value must match a value from CCS_WALLET_TYPE.NAME
Examples: 'Primary', 'Secondary'

Balance type This is the type of balance that is incremented.

The balance type must be a free SMS balance type and must match a
value from CCS BALANCE TYPE.NAME.

The four functions

There are four types of basic function related to balance top-up rules.

e Activate rule

e Deactivate rule

e Deactivation cleanup
e Execute rule

Each of these functions is implemented as a separate Unix shell script on the SMS platform. The shell
scripts invoke PL/SQL scripts and the Pl (Plbatch) to implement the rule. For details on these rules see
CCS Balance Topup Rules scripts (on page 351).

CCS Balance Top Up MSISDN Files

Introduction

MSISDN files contain lists of MSISDN numbers or ranges, and are used in the activation and
deactivation of Balance Top Up rules.

The MSISDN file structure for activation and deactivation are the same, except that activation files must
have a header record.

Note: The header record is not required for deactivation files.

Record types

There are two record types for the MSISDN file:

e Header record
e MSISDN detail record

Header record

This record type can occur only once in the file. It must be the first record in the file and it must have the
following format:

M; text

Chapter 6, Tools and Utilities 349

This table describes MSISDN header records.

Field Description

M This is the amount or value to be added to the specified balance of each MSISDN
account for every execution of the rule.

text The first character of this item indicates the format of the content. The format can be:

Fixed (f): where the amount added by the rule is fixed and determined by the field M.

Variable (v): where the amount added by the rule is variable and determined by the input
file content for each MSISDN in the command line. If the variable amount is blank for the
MSISDN, then the amount is determined by the field M.

MSISDN detail record

This record type can occur multiple times. It must have the following format:

L M

This table describes MSISDN detail records.

Field Description

L This is either a single MSISDN or a range of MSISDNs. A range of MSISDNSs is
represented by two MSISDNS separated by a hyphen.

M This is the amount or value to be added to the specified balance of the MSISDN

account for every execution of the rule.

This can only be used if the format specified in the header record is variable (v). It is
only relevant where the file is used for rule activation.

Example MSISDN files for activations

Hereare example MSISDN files for activations:

7; £PROM56

32496556500
32496556509
32496550000-32496550020

0; vPROM90

32496556500 5
32496556509 10
32496550000-32496550020 4
32496560000-32496560020 8

Example MSISDN files for deactivations

Here are example MSISDN files for deactivations:

32496556500
32496556509
32496550000-32496550020

32496556500
32496556509
32496550000-32496550010
32496560000-32496560010

350 Charging Control Services Technical Guide

CCS Balance Topup Rule Scripts

Purpose

The CCS balance topup rule scripts are used to apply balance topup rules to balances. There are four
scripts that are installed into /IN/service_packages/CCS/bin and are used in the following ways:

Use Script
Activate rule ccsbt_activate_rule.sh
Deactivate rule ccsbt_deactivate_rule.sh

Deactivation Cleanup ccsbt_deactivate_cleanup.sh
Execute rule ccsht_execute.sh

Activate rule

Before a rule can be executed, the operator must activate it by initiating the Activate rule script. The
activation checks that the rule definition and subscriber list (MSISDN file) are valid. If they are valid, the
details are stored. All rules being activated must have an associated MSISDN file.

Activation is required for rules of both immediate execution and recurrent execution modes.

A recurrent (REC) rule can only be activated once. The activation process automatically schedules the
execution of the rule.

An immediate (IMM) rule where the first execution date is “*’ can be activated multiple times.
Reactivation of an Immediate rule replaces all MSISDNSs that are currently associated with the rule with
those contained in the associated MSISDN file.

ccsbt_activate _rule.sh

Use the ccsbt_activate_rule.sh shell script to activate CCS balance topup rules. Before running the script,
log on to the SMS as ccs_oper and change to the shell script's directory.

The script must be run using the following parameters:
Usage:

ccsbt_activate rule.sh RuleParameters MSISDNFile [user/password]
The available parameters are:

Rule Parameters

Syntax:

Description: The parameter definition of the rule to be activated.

Type:

Optionality:

Allowed: For more information, see Column definition (on page 348).

Default:

Notes: Rule parameters must be specified in the order that they appear in the rule
definition table. They must be comma separated and enclosed within single quote
marks.

Example:

Chapter 6, Tools and Utilities 351

MSISDN file
Syntax:
Description: The name of the file that holds the subscriber list.
Type:
Optionality:
Allowed:
Default:
Notes:
Example:

user/password

Syntax: oracleuser/password

Description: The Oracle user name and password to be used when running the script.
Type:

Optionality: Optional (default used if not specified).

Allowed:

Default: e

Notes:

Example:

Example ccsbt_activate_rule.sh

ccsbt activate rule.sh 'PROMO1,1,20/03/2005,1d,1m,2,REC,Personal,Free SMS'
PROMO1MSISDNfile

Note: It is recommended that you review the log file generated by the rule activation process.

Deactivate rule

Deactivating a rule lets you remove MSISDNs that are associated with it.

Depending on the MSISDNSs specified, the rule can be totally deactivated, or can become non-active for
certain MSISDNSs to which it previously applied.

To deactivate a rule, the operator initiates the deactivate rule script. This checks that the rule name and
a subscriber list (MSISDN file) are valid. If they are valid, the specified MSISDN associations are
removed from the rule details.

The deactivation of a rule can only take place where the rule has already been activated.

If the deactivation of a rule removes all associations between a rule and any subscribers, then the rule
record is removed from the SMF database.

ccsbt_deactivate _rule.sh

Use the ccsbt_deactivate_rule.sh shell script to deactivate a rule.
Before running the script, log on to the SMS as ccs_oper and change to the shell script's directory.
The script must be run using the following parameters:

Usage:

ccsbt _deactivate rule.sh RuleName MSISDNFile [user/password]
The available parameters are:

352 Charging Control Services Technical Guide

Rule Name
The unique name of the rule to be deactivated.
Default: -

MSISDN file
The name of the file that holds the subscriber list to be deactivated.

Default: -

Note: You specify the name only. The system assumes that the file is in the ../input
directory.

user/password

Syntax: oracleuser/password

Description: The Oracle user name and password to be used when running the script.

Type:

Optionality: Optional (default used if not specified).

Allowed:

Default: "

Notes:

Example:

Example ccsbt_deactivate rule.sh
This text shows an example of the ccsbt_deactivate_rule.sh being used.

ccsbt deactivate rule.sh PROMOl PROMOldeactivate

Note: It is recommended that you review the log file generated by the rule. activation process.

Execute rules

The execute rule function adds an amount or value to subscriber balances for active rules. The rules are
assessed for execution based on the first execution date, the cycle period and the iteration count.

The execute rule function is initiated automatically by two scheduled tasks:

1 The first scheduled task processes recurrent rules. This is initiated once per day, at a configurable
time (the default time is 02.00 hrs). The task invokes a process that applies the rules of execution
mode ‘REC’ to the relevant balances.

2 The second scheduled task processes Immediate rules. This is initiated once per hour, configurable
after installation (the default is between 10:00 hrs and 17:00 hrs). The task invokes a process that
applies the rules of execution mode ‘IMM’ to the relevant balances.

Immediate rules

Immediate rules only execute once after each activation.

An Immediate rule, where the first execution date is *’, can be re-activated multiple times with different
subscriber lists (MSISDN files). Reactivating this sort of rule replaces all MSISDNs that are currently
associated with the rule, with the rules contained in the new MSISDN file. Reactivation of this sort of rule
more than once per day is not supported. The execution applies to one activation that day only.

Output files

Each rule execution scheduled task generates several output files. These are:

Chapter 6, Tools and Utilities 353

e Logfile - a log file is created for each rule execution scheduled task. You are recommended to
review this file

o Daily result file - a separate daily result file is created for each execution of each rule
e Daily error file - a separate daily error file is created for each execution of each rule

Execution log file

A log file is created for each execution of all the current rules. This usually happens hourly.
The file name has the following format:

execute_rule_rundate runtime machine node.log

where:

e rundate is the run date of the execution in DDMMYY format
e runtime is the run time of the execution in HHMM format
¢ machine_node is the machine node where the execution took place

The file is written to by the CCSBT software and by the ccsBatchCharge program. All activation output
and ccsBatchCharge normal and error output is written to this file. After the CCSBT header information,
there will be some ccsBatchCharge header information, and then one line for each MSISDN being
recharged.

A successful recharge consists of the line number, the word "SUCCESS" and then the input that was
used for ccsBatchCharge.

Example: 1, SUCCESS, 1231, -50, Free SMS,-2,,AD

Daily error file

A separate daily error file is created for each execution of each rule.
The file name has the following format:
ccsbt_error_machine_node_rundate_rul ename.err

where:

¢ machine_node is the machine node where the execution took place
e rundate is the run date of the execution in DDMMYY format
e rulename is the name of the rule to which the error file pertains

Deactivation Cleanup

Deactivation cleanup provides the ability to:

1 Remove the association with a rule where the subscriber has been terminated.

2 Remove rules where the final execution date (last active date) has passed. The final execution date
is the last date on which a rule executes.

The deactivation cleanup function is initiated automatically by a scheduled task.

The deactivation of a rule for a subscriber can only take place where the rule has already been activated
for the subscriber.

The deactivation determines the subscribers that have been terminated and disassociates all rules from
the subscriber.

354 Charging Control Services Technical Guide

REC execution mode

Rules which have the recurrent (REC) execution mode are executed in chronological order based on
their first execution date. They are executed when they meet the following conditions:

Execution Test Conditions

First execution When the first execution date is equal to the current date.

Subsequent When the:
executions e |teration count is greater than 1

e Current date is an iteration anniversary

The rule executes ‘iteration count' times, with the interval between executions
determined by the cycle period. This means the rule executes if the current date
is one of the dates calculated as:

(first execution date + (cycle period * (1.. Iteration count - 1)))
Final execution When the current date is equal to the following anniversary date:
(first execution date + (cycle period * (Iteration count)))

IMM execution mode

Rules which have the immediate (IMM) execution mode are executed when they meet the following
conditions:

Execution Test Conditions

First execution When the first execution date is:
e Equalto ™, or the current date

e The rule has not been executed since activation

Final execution When the current date is equal to the following anniversary date:
(first execution date + (cycle period * (iteration count)))

Note: This only applies where the first execution date is a valid date.

dwsublist.sh

Purpose

The script dwsublist.sh is a report generating tool used to collate the account balances of each
subscriber. To generate report data from your Oracle database the script uses the configurable
parameters in the dwsublist.cfg file to connect and extract subscriber balance information. See
Parameters (on page 356) for more information about configuring the tool.

The script is located in the /IN/service_packages/SMS/input/Ccs_Service/Summary/dwsublist.Errors from the
tool are written to the dwsublist.log.

Process
Here is a description of process that dwsublist.sh performs.

Stage Description
1 Create links to each primary E2BE database.
2 Extract and merge SMF and E2BE data for each VWS.

Chapter 6, Tools and Utilities 355

Stage Description

3 Process data extracted into temporary global table.

4 Fix date inconsistencies in extracted data.

5 Update CCS_ACCT_HIST_INFO.LAST_CHANGE_STATE_REASON to simulate state
changes if account is dormant for a configurable period.

6 Make CCARD and PCARD temporary files (.tmp).

7 Process data.

8 Change CCARD and PCARD filenames from .tmp to real name for the system to pick up.

Reports

The dwsublist is used to collate data which can be presented in the following reports:

e Account Balance in text format
e Account Balance in CSV format
Refer to Charging Control Services User's Guide for details.

Parameters

The dwsublist.sh supports the following parameters from the dwsublist.cfg configuration file.

pcardOutputDir

Syntax: balancesOutputDir="path'

Description: The path for the balance output.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: 'lIN/service_packages/SMS/output/Ccs_Service/Summary'

Notes:

Example: balancesOutputDir="'/IN/service packages/SMS/output/Ccs_ Servi
ce/Summary'

ccardOutputDir

Syntax: ccardOutputDir="'path'

Description: The path to output the CCARD file.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: '/IN/service_packages/SMS/output/Ccs_Service/Summary/ccard'

Notes:

Example: ccardOutputDir="'/IN/service packages/SMS/output/Ccs_Service/
Summary/ccard'

pcardOutputDir

Syntax: pccardOutputDir="path'

Description: The path to output the PCARD file.

Type: String

Optionality: Optional (default used if not set).

356 Charging Control Services Technical Guide

Allowed:

Default:

Notes:

Example:

Summary/pcard'’

Example configuration

Here is an example dwsublist.cfg file.

'/IN/service_packages/SMS/output/Ccs_Service/Summary/pcard'

ccardOutputDir="'/IN/service packages/SMS/output/Ccs_Service/

ccardOutputDir="'/IN/service packages/SMS/output/Ccs Service/Summary/ccard'
pcardOutputDir="'/IN/service packages/SMS/output/Ccs_Service/Summary/pcard'
balancesOutputDir="'/IN/service packages/SMS/output/Ccs Service/Summary'

Example Balance Top Up Rule Execution

Introduction

The following topics provide some examples of valid and invalid rule executions.

The comma separated rule consists of these components:

Rule name

No of SMS (n)

First execution date (a)

Cycle period

Expiry period (e)

Iteration count

Execution mode (IMM or REC)
Wallet type (w)

Balance type (b)

In the examples the acceptable values for the following variables are:

p must be an integer greater than 0
t must be an integer greater than 0
n must be an integer greater than 0

a must be a date in the format DD/MM/YYYY, and it must be equal to or greater than the date of

activation

Note: The parameters for each example rule are specified in the order that they appear in the rule
definition table. For details, see Column definition (on page 348).

Valid IMM rule examples

The following table provides examples of valid immediate (IMM) rule executions.

Rule

Description

PROM_01,n,*,0,eM,1,IMM,w,b

Execute once after activation.

(b) bucket added to (w) wallet with value (n) for each valid
MSISDN, and is valid for (e) months.

Chapter 6, Tools and Utilities 357

Rule

Description

PROM_02,**,0,eM,1,IMM,w,b

Execute once after activation.

(b) bucket added to (w) wallet with value determined from the
MSISDN file for each valid MSISDN, and is valid for (e)
months.

PROM_03,n,a,0,eM,1,IMM,w,b

Execute once on date (a).

(b) bucket added to (w) wallet with value(n) for each valid
MSISDN, and is valid for (€) months.

PROM_04,*,a,0,eM,1,IMM,w,b

Execute once on date (a).

(b) bucket added to (w) wallet with value determined from the
MSISDN file for each valid MSISDN, and is valid for (e)
months.

PROM_05,n,*,0,eM,1,IMM,w,b

Execute once after activation.

(b) bucket added to (w) wallet with value(n) for each valid
MSISDN, and is valid for (e) days.

PROM_06,**,0,eM,1,IMM,w,b

Execute once after activation.

(b) bucket added to (w) wallet with value determined from the
MSISDN file for each valid MSISDN, and is valid for (e) days.

PROM_07,n,a,0,eM,1,IMM,w,b

Execute once on date (a).

(b) bucket added to (w) wallet with value(n) for each valid
MSISDN, and is valid for (e) days.

PROM_08,*,a,0,eM,1,IMM,w,b

Execute once on date (a).

(b) bucket added to (w) wallet with value determined from the
MSISDN file for each valid MSISDN, and is valid for (e) days.

PROM_09,n,*tD,eM,1,IMM,w,b

Execute once after activation.

(b) bucket added to (w) wallet with value(n) for each valid
MSISDN, and is valid for (e) months.

Cycle period is ignored.

PROM_10,**tM,eM,1,IMM,w,b

Execute once on date (a).

(b) bucket added to (w) wallet with value determined from
MSISDN file for each valid MSISDN, and is valid for (e)
months.

Cycle period is ignored.

PROM_11,n,a,tD,eM,1,IMM,w,b

Execute once after date (a).

(b) bucket added to (w) wallet with value (n) for each valid
MSISDN, and is valid for (e) months.

Cycle period is ignored.

PROM_12,*a,tM,eM,1,IMM,w,b

Execute once on date (a).

(b) bucket added to (w) wallet with value determined from
MSISDN file for each valid MSISDN, and is valid for (e)
months.

Cycle period is ignored.

PROM_13,n,*tD,eD,1,IMM,w,b

Execute once after activation.

(b) bucket added to (w) wallet with value(n) for each valid
MSISDN, and is valid for (e) days.

Cycle period is ignored.

358 Charging Control Services Technical Guide

Rule Description

PROM_14,**tM,eD,1,IMM,w,b Execute once after activation.

(b) bucket added to (w) wallet with value determined from
MSISDN file for each valid MSISDN, and is valid for (e) days.

Cycle period is ignored.

PROM_15,n,a,tD,eD,1,IMM,w,b Execute once on date (a).

(b) bucket added to (w) wallet with value (n) for each valid
MSISDN, and is valid for (e)days.

Cycle period is ignored.

PROM_16,*a,tM,eD,1,IMM,w,b Execute once on date (a).

(b) bucket added to (w) wallet with value determined from
MSISDN file for each valid MSISDN, and is valid for (e) days.

Cycle period is ignored.

Chapter 6, Tools and Utilities 359

Chapter 7
Real-Time Notifications

Overview

Introduction

This chapter explains how the delivery of a real-time notification is initiated and what a real-time
notification can contain.

For more information about real-time notifications and how you configure them, see the discussion on
real-time notifications in Charging Control Services User's Guide.

In this chapter

This chapter contains the following topics.

Real-Time NOUTICALIONSvviiiiii et e e et e et e e s et e e e sab e s saba e e ssbaeaeesanaeees 361
NLo)u1[o%= 11 o] g MO0] g 1] 1 (0 [1 o] o T 363

Real-Time Notifications

Wallet notification types

This table lists the events which will trigger a real-time wallet notification request.

Type of notification Criteria

Charging e Bucket value changes

¢ Balance type matches balance changes

e Value decreases

¢ Old total balance value is strictly above threshold

e New total balance is equal to or below threshold
Recharging e Bucket value changes

e Value increases

e Old total balance value is strictly below threshold

e New total balance value is equal to or above the threshold
Balance expiry » Bucket expires

e Balance type matches bucket expired

e Old total balance value was strictly above threshold

o New total balance value is equal to or below threshold

Wallet expiry Wallet expires

Chapter 7, Real-Time Notifications 361

Type of notification Criteria

Wallet state change » Wallet state changes

e Old state different from new state

e Old state matches notification old state field. (See note)

¢ New state matches notification new state field. (See note)

Note: If the notification field is configured as 'any state' (null), the compared
wallet state (old or new) is considered to be the same.

For more information about configuring the different wallet notifications, see Charging Control Services
User's Guide.

Additional SMS Notifications

An SMS noatification can also be triggered when a real-time event occurs. The SMS natification is
delivered as a SleeNotificationEvent through the notificationlF interface. It is sent to the destination
MSISDN using the transport method defined in the SMS notification template. This will be one of the
following:

¢ smsinterface (from SMSCIF)
e xmsTrigger (from MM)

Notes:

e SMS notification types and the associated message templates are configured in ACS, for further
information see the ACS Configuration chapter in the Advanced Control Services User's Guide.

e For more information about smsinterface and notificationlF, see Short Message Charging Bundle
User's and Technical Guide.

e For more information about xmsTrigger, see Messaging Manager Technical Guide.

DAP Notification Delivery

Each notification is delivered as a SleeDapXmlEvent event to the xmlIF interface. The name is
configurable but if omitted will default to 'xmlIF'.

After a notification is sent, no check is made to verify that it was received.

Notification Export

Real-time notifications can be exported to external, custom software tailored to a user's specific
requirement.

Scenario Notifications
If the VWS completes a successful voucher recharge using a scenario other than default, it will record
the scenario ID in the voucher recharge EDR.

If you have configured real-time wallet notifications to provide recharge notifications, you must set up a
notification template for each scenario.

The notification template to use is based upon the scenario provided in the notification request from the
ccsCDRLoader plug-in. The scenario is not a variable part of the notification itself.

The notification templates must be named using this format:

ACS.VOUCHER TYPE SCENARIO
Where:

362 Charging Control Services Technical Guide

¢ VOUCHER_TYPE is the name of the voucher type (from the Name field on the New or the Edit
Voucher Type screen

e SCENARIO is the ID of the scenario from the ID column on the New or the Edit Voucher Type
screen.

Example: If a subscriber recharges a voucher of Basic Recharge type, using Scenario 1, the template
name should be:

ACS.Basic Rechargel

Example: When no scenario or the default scenario was used the template would be:

Your account has been recharged successfully with $2 Your new credit balance is $3
To check your balance(s), please dial *135#

When scenario 9 was used:

Your account has been recharged successfully using Power Charge Gold with $2 Your
new credit balance is $3 To check your balance(s), please dial *135#

Note: These templates are configured in addition to the existing SMS recharge template (ACS.
AccountRecharge).

Notification Construction

Notification Templates

Notifications are constructed from a template. The template contains variables which are replaced with
data supplied by the requesting process when the notification is constructed.

There are two main types of templates:

e ACS natifications. For more information, see Advanced Control Services User's Guide.
o DAP templates. For more information, see Data Access Pack User's & Technical Guide.

Fields Used in Notification Templates

A list of fields you can use in notification templates follows.

AMOUNT

The difference in the change to the balance. Used when there is a change to the balance value.
BALANCE TYPE

The name of the balance type associated with this billing event. The BALANCE_TYPE field is delivered
only for the charging and recharging notification types.

BALANCE UNIT

The units of the balance associated with this billing event. The BALANCE_UNIT field is delivered only
for the charging and recharging notification types.

CLI

The caller line identifier of the reference associated with this update. This field is delivered for all five
notification types.

COST

The total cost associated with this billing event. The COST field delivers any one of the following three
variable types.

Type Format

Cash Integer

Chapter 7, Real-Time Notifications 363

Type

Format

Time String in the format SS:HH; where SS is the seconds part and HH is the hundredths of
seconds part.
Unit Integer

Note: The COST field is delivered only for the charging notification type.
EXPIRED AMOUNT

The expired amount associated with this billing event. The EXPIRED_AMOUNT field delivers any one of

the following three variable types.

Type Format

Cash Integer

Time String in the format SS:HH; where SS is the seconds part and HH is the hundredths of
seconds part.

Unit Integer

Note: The EXPIRED_AMOUNT field is delivered only for the balance expiry notification type.

NEW BALANCE
The new total balance value of the balance associated with this billing event. The NEW-BALANCE field

delivers any one of the following three variable types.

Type Format

Cash Integer

Time String in the format SS:HH; where SS is the seconds part and HH is the hundredths of
seconds part.

Unit Integer

Note: The NEW-BALANCE field is delivered only for the charging and recharging notification types.

NEW STATE
The new state of the wallet. The NEW_STATE field contains any one of the letters shown in this table.

Letter Wallet State
A Active

D Dormant

F Frozen

P Pre-use

S Suspended
T Terminated

Note: The NEW_STATE field is delivered only for the wallet expiry and wallet state change notification

types.

NOTIFICATION NAME

The name of the notification being delivered. This field is delivered for all five naotification types.
OLD_ BALANCE

The old total balance value of the balance associated with this billing event. The OLD_BALANCE field

delivers any one of the following three variable types.

Type Format

Cash Integer

Time String in the format SS:HH; where SS is the seconds part and HH is the hundredths of
seconds part.

364 Charging Control Services Technical Guide

Unit Integer

Note: The OLD_BALANCE field is delivered only for the charging and recharging notification types.
OLD STATE

The old state of the wallet. The OLD_STATE field contains any one of the letters shown in this table.
Letter Wallet State

Active

Dormant

Frozen

Pre-use
Suspended
T Terminated

m|o|(m|o (>

Note: The OLD_STATE field is delivered only for the wallet expiry and wallet state change notification
types.

PRODUCT TYPE

The name of the product type associated with this wallet. This field is delivered for all five notification
types.

RECHARGE AMOUNT

The total recharge amount associated with this billing event. The RECHARGE_AMOUNT field delivers
any one of the following three variable types.

Type Format

Cash Integer

Time String in the format SS:HH; where SS is the seconds part and HH is the hundredths of
seconds part.

Unit Integer

Note: The RECHARGE_AMOUNT field is delivered only for the recharging notification type.

TIME STAMP

The date and time the billing event was generated. This field is delivered for all five notification types.
WALLET NAME

The name of the wallet type. Typical names are 'Business' or 'Personal’. This field is delivered for all
five notification types.

Chapter 7, Real-Time Notifications 365

Chapter 8
About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Convergent Charging Controller application described in this guide. It also lists the files installed by the
application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and REMOVAI OVEIVIEWcoevueiiiiiie ettt e e et e e e e e s e s e e e e e estaeeeeesaaeees 367
ChecKing the INSTAIIAtIONe e 367

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:
e Convergent Charging Controller system requirements

e Pre-installation tasks
e Installing and removing Convergent Charging Controller packages

CCS packages

An installation of Charging Control Services includes the following packages, on the:

e SMS:
= ccsSms
= ccsCluster (for clustered SMS
= ccsDapSms

e SLC:

= ccsScp
e VWS

= ccsBe

= ccsVoucherBe

Checking the Installation

Introduction

Refer to these checklists to ensure that CCS has installed correctly.

Chapter 8, About Installation and Removal 367

The end of the package installation process specifies a script designed to check the installation just
performed. They must be run from the command line.

Check SMS procedure

Follow these steps in this checklist to ensure CCS has been installed on an SMS machine correctly.

Step Action
1 Log in to SMS machine as root.
2 Check the following directory structure exists with subdirectories:

¢ [IN/service_packages/CCS
e [IN/ntml/Ccs_Service
e [IN/ntml/Ccs_FeatureNodes

3 Check the directories contain subdirectories and that all are owned by:
e CCS_oper user (group esg)

4 Check for obvious errors in log files:
o [IN/service_packages/CCS/ccsSms.install.log

¢ [IN/service_packages/CCS/ccsScp.install.log
5 Log into the system as ccs_oper.

Note: This step is to check that the ccs_oper user is valid.

6 Enter sqlplus /
No password is required.

Note: This step is to check that the ccs_oper user has valid access to the database.

7 Ensure that the required CCS tables have been added to the database. For a list of the
tables which should have been added, see CCS database tables.
8 Check the entries of following file:
letclinittab
Inittab Entries Reserved for CCS on SMS:
a. ccs3 /IN/service packages/CCS/bin/ccsBeOrbStartup.sh
(runs ccsBeOrb)
b. ccs4 /IN/service packages/CCS/bin/ccsCDRLoaderStartup.sh
(runs ccsCDRLoader)
(o} ccs5 /IN/service packages/CCS/bin/ccsSSMDispatcherStartup.sh
(runs ccsSSMDispatcher)
d. ccs7

/IN/service packages/CCS/bin/ccsCDRFileGeneratorStartup.sh
(runs ccsCDRFileGenerator)
e. ccs8 /IN/service packages/CCS/bin/ccsProfileDaemonStartup.sh
(runs ccsProfileDaemon)
f. ccl0 /IN/service packages/CCS/bin/ccsChangeDaemonStartup.sh
(runs ccsChangeDaemon)
9 Check that the processes listed in the process lists are running on the relevant machine.

For a list of the processes which should be running, see Process list - SMS (on page
370).

10 Tail logs for the processes listed in process list to ensure there are no errors.

368 Charging Control Services Technical Guide

Check SLC procedure

Follow these steps in this checklist to ensure CCS has been installed on an SLC machine correctly.

Step Action

1 Log in to SLC machine as root.

2 Check the following directory structure exists with subdirectories:
/IN/service_packages/CCS

3 Check the directory contains subdirectories and that all are owned by:

e cCs_oper user (group oracle)
4 Log into the system as ccs_oper.
Note: This step is to check that the ccs_oper user is valid.
5 Type sglplus /
No password is required.

Note: This step is to check that the ccs_oper user has valid access to the database.

6 Ensure that the required CCS tables have been added to the database. For a list of the
tables which should have been added, see CCS database tables - SCP.

Check VWS procedure

Follow the steps in this checklist to ensure CCS has been installed on a VWS machine correctly.

Step Action

1 Log in to VWS machine as root.

2 Check the following directory structure exists with subdirectories:
/IN/service_packages/CCS

3 Check the directory contains subdirectories and that all are owned by:

e cCS_oper user (group esg)

4 Check for obvious errors in log file:
/IN/service_packages/CCS/ccsBe.install.log

5 Log into the system as ccs_oper.

Note: This step is to check that the ccs_oper user is valid.

6 Type sglplus /
No password is required.

Note: This step is to check that the ccs_oper user has valid access to the database.

7 Ensure that the required CCS tables have been added to the database. For a list of the
tables which should have been added, see CCS database tables.

8 Check the entries of the /etc/inittab file.
Inittab Entries Reserved for CCS on VWS:
a. ccs8 /IN/service packages/CCS/bin/updateloaderWrapper.sh

(only used if smsExtras is installed to run an instance of updateLoader. For more
information about updateLoader, see Service Management System Technical Guide)
Note: To define a TZ that the NOTICE messages by updateLoader are logged in, add
DEBUG_TZ environment variable in the updateLoaderWrapper.sh script before the exec
statement. For example: export DEBUG TZ=Asia/Kolkata

Chapter 8, About Installation and Removal 369

b. ccs9 /IN/service packages/CCS/bin/ccsMFileCompilerStartup.sh
(runs ccsMFileCompiler)

C. cclo /IN/service packages/CCS/bin/cmnPushFiles-
ccsVWARSExpiry.sh

(runs an instance of cmnPushFiles for ccsVWARSEXpiry)

d. ccll
/IN/service packages/CCS/bin/cmnPushFiles-ccsRewards.sh
(runs an instance of cmnPushFiles for ccsRewards)

e. ccl2
/IN/service packages/CCS/bin/cmnPushFiles-ccsExpiryMsgs.sh
(runs an instance of cmnPushFiles for ccsExpiryMessageGenerator)

f. ccld /IN/service packages/CCS/bin/ccsChangeDaemon
(runs ccsChangeDaemon)

9 Check that the processes listed in the process lists are running on the relevant machine.

For a list of the processes which should be running, see Process list - VWS (on page
370).

Adding announcement sets automatically

Convergent Charging Controller can provide a customized SQL script that adds an entire announcement
set.

This script is run once at installation, from SMS as sms_oper.

If you wish to use this script then contact your Oracle account manager.

Process list - SMS

If the application is running correctly, the following processes should be running on each SMS, started
from the inittab:

e ccsBeOrb

e ccsCDRLoader

e ccsSSMDispatcher

e ccsCDRFileGenerator

e ccsProfileDaemon

Process list - SLC

If the application is running correctly, the following processes should be running on each SLC, started
during SLEE startup:

e BeClient
e ccsSSMMaster (runs on the SSMMaster SLC only)

Process list - VWS

If the application is running correctly, the following processes should be running on each VWS, started
from the inittab:

e ccsMFileCompiler

e ccsChangeDaemon

e cmnPushFiles

370 Charging Control Services Technical Guide

	Contents
	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions

	System Overview
	Overview
	Introduction
	In this Chapter

	Introduction to Charging Control Services
	Description
	How It Works
	Subscriber Access
	Business Process Logic
	Periodic Charges
	Vouchers

	How CCS Fits Into the Network
	Introduction
	Service Management
	Service Applications
	Context Management
	IN Control
	Diagram

	CCS Components Overview
	Platform components
	System diagram
	Supporting applications
	Subsystems used by CCS
	CCS and ACS
	CCS Control Plans
	CCS and VWS
	CCS components
	Component diagram
	Component description
	CCS service logic
	Replication
	CCS replication
	CCS-VWS Protocol overview

	Voucher and Wallet Server and CCS
	Domains
	Distributed Wallet Management
	Domain Types
	Default domain type
	Overriding default domain types
	Changing domains during call processing
	CCS and VWS
	Subscribers and wallet management
	Diagram
	Diagram - Third party Voucher and Wallet Servers (VWS)
	Starting and stopping the VWS

	CCS on a Clustered platform
	Introduction
	Single Node Services with Automated Failover
	Multi-Node Services
	Single Node, Manual re-start services

	Configuring Services
	Introduction
	Configuration overview
	SLEE and slee_acs routing
	Capabilities
	Bearer capabilities

	Subscriber Accounts and Wallet Management
	Introduction
	CCS plug-ins for the VWS
	Diagram
	Subscriber accounts and wallet processes
	Wallets and VWS VWSs
	Generating Accounts
	Wallet migration diagram
	Wallet migration process descriptions
	Wallet migration process
	Inactive wallet and bucket expiry
	Expiry event handling
	Wallet removal
	Grace Periods

	Security
	Authenticating modules
	Modules and security plug-ins
	Security libraries
	GPG keys
	Verification of a user-supplied Subscriber Number
	Example subscriber account verification

	About Secure SSL Connection to the Database
	Enabling Secure SSL Connection to the Database
	Enabling SSL for the CCP

	Calling Card Services
	Introduction
	Service features
	Generating account numbers
	Setting initial card balance
	Encrypting print shop file
	Example

	Rating and Charging
	Introduction
	Charging for calls
	Call charging message flow
	Charging for Named Events
	Wallets with multiple concurrent access
	Terminated State and Wallet Life Cycle periods

	Periodic Charges
	Introduction
	Periodic charge processes
	Periodic charge processing
	Periodic charge triggering
	Periodic charge association maintenance diagram
	Processing Periodic Charge Subscription Changes
	Periodic charge assignment
	Periodic charges and wallet activation
	Sending periodic charge notifications

	Recharges
	Recharge methods
	Subscriber interaction

	Promotions
	Introduction
	In-built reward and bonus types
	Promotions process

	Notifications
	Introduction
	ACS Notification Templates
	Notification Languages
	Events Triggering Notifications
	About Notification Delivery
	Notification Flows
	Flow 1
	Flow 2
	Flow 3
	Flow 4
	Flow 5
	Flow 6
	Flow 7
	Flow 8
	Flow 9
	Flow 10

	EDRs
	Introduction
	Viewing active rules for a subscriber
	Dataflow
	CCS EDR processing
	Diagram
	Process descriptions
	EDR triggers

	Configuration
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introduction
	Configuration process overview
	Configuration components

	Configuring the Environment
	Oracle variables
	Configuring EDR log directories
	Procedure
	Configuring the .profile
	Configuring CCS Balance Top Up Suite
	Procedure - adding UTL_FILE_DIR

	eserv.config Configuration
	Introduction
	Example eserv.config detail
	Configuration File Format
	eserv.config Files Delivered
	CCS eserv.config example file
	Parameters
	accountNumberLength
	oracleUserAndPassword
	suppressedEDRTags
	Editing the File
	Loading eserv.config Changes

	Configuring acs.conf for the SLC
	Introduction
	acsChassis
	ChassisPlugin
	MacroNodePluginFile
	ServiceEntry
	srf
	Services
	Example service entries
	acsChassis - optional parameters
	UnknownNOA
	NormalRule
	acsChassis - variables
	srf_SLEE
	Explanation

	NOA and Normal rules
	Example:
	Possible Natures of Addresses:
	Example 1:
	Example 2:

	Setting up the Screens
	About Customizing the UI
	Java Application Properties
	jnlp.ccs.BeORBTimeoutms
	jnlp.ccs.defaultEDRSearchAge
	jnlp.ccs.defaultEDRSearchCategories
	jnlp.ccs.defaultSubscriberSearchType
	jnlp.acs.ProfileN
	jnlp.ccs.MaxProductTypePeriodicCharges
	jnlp.ccs.ShowEmptyEDRTags
	jnlp.ccs.showSecondaryBE
	jnlp.ccs.voucherManagement
	jnlp.ccs.VRRedeemMaxVoucherLength
	jnlp.ccs.VRRedeemMinVoucherLength

	Defining the Screen Language
	Introduction
	Default.lang
	Example Screen Language
	Procedure

	Defining the Help Screen Language
	Introduction
	Default_Ccs_Service.hs
	Example helpset language
	Setting the default language for your CCS graphical user interface

	Configuration Through the ACS Screens
	Introduction
	ACS resources
	Adding announcement sets automatically

	User Interface-Based Configuration Tasks
	Introduction
	SMS UI configuration
	ACS UI configuration
	CCS UI configuration

	Configuring VWS processes for CCS
	VWS processes used by CCS
	Message handlers and event plug-ins
	Message handlers
	BeClient IF

	Configuring CCS Macro Nodes
	Introduction
	Macro Node location
	Macro Node icons
	eserv.config Macro Node configuration
	Introduction
	acsCustomerId
	balTypeIds
	BSBCheckBalanceTypes

	Switch Configuration for the UATB Node
	Switch configuration
	acsCharging.switchConfiguration

	addContinue
	addDisconnectOrRelease
	allowZeroSecondsApplyCharge
	oid
	switchType

	Voucher Status Report Configuration
	Introduction
	Parameters
	TZ_CODE
	VR_MSISDN_LENGTH
	VR_STATUS
	Example

	CCP Configuration
	Introduction
	ccp.jnlp File
	jnlp.ccs.AllowDeletedVouchers
	ccp.CustomerLogo
	jnlp.ccp.dashboardPort
	jnlp.sms.dbPassword
	jnlp.sms.dBUser
	jnlp.ccs.defaultEDRSearchAge
	jnlp.ccs.defaultEDRSearchCategories
	jnlp.ccp.ForceLogin
	jnlp.sms.host
	jnlp.ccp.maxHistory
	jnlp.sms.namingServerPort
	jnlp.ccp.normaliseFile
	jnlp.ORB_HOST
	jnlp.sms.port
	ccp.ServiceProvider
	jnlp.sms.sslCipherSuites
	jnlp.trace
	jnlp.sms.TZ
	Example ccp.jnlp Resource Properties
	CCP Application Properties for SSL and Non-SSL Database Connections
	jnlp.sms.database
	jnlp.sms.databaseHost
	jnlp.sms.databaseID
	jnlp.sms.clusterDatabaseHost
	jnlp.sms.EncryptedSSLConnection
	jnlp.sms.sslCipherSuites
	jnlp.sms.secureConnectionDatabaseHost
	jnlp.sms.secureConnectionClusterDatabaseHost
	Setting the Initial Service Provider
	Customizing the CCP Login Screen
	Setting the Maximum History Shown
	normalise.config Configuration File
	Apache Configuration
	Multiple Customers
	Creating a Customer JNLP File

	Background Processes on the SMS
	Overview
	Introduction
	In this chapter

	CHECK_PC_DELETION
	Overview
	Deletion criteria

	acsCompilerDaemon
	Purpose
	Startup - nonclustered
	Startup - clustered
	Location
	Parameters
	Failure
	Output

	ccsBeOrb
	Purpose
	About Configuring CORBA Connections for ccsBeOrb
	Startup - non clustered
	ccsBeOrb Start-up for Operational Implementation

	Startup - clustered
	Location
	Restart
	Shutdown
	Configuration - eserv.config
	eserv.config parameters
	billingEngines
	id
	ip
	port
	primary
	secondary
	broadcastOptions
	aggregateNAckCodes
	clientName
	connectionRetryTime
	heartbeatPeriod
	listenHost
	listenPort
	maxOutstandingMessages
	mergeWalletsOptions
	allowedSourceWalletStates
	oracleLogin
	mergeBucketExpiryPolicy
	mergeWalletExpiryPolicy
	mergeWalletsTriggers
	messageTimeoutSeconds
	namingServer
	addHostPrefix
	host
	name
	port
	notEndActions
	plugins
	config
	function
	library
	Voucher and wallet plugins

	reportPeriodSeconds
	stateConversions
	voucherRechargeOptions
	sendBadPin
	srasActivatesPreuseAccount
	voucherRechargeTriggers
	voucherServerCacheLifetime
	voucherServerCacheCleanupInterval
	voucherTypeRechargeOptions
	srasActivatesPreuseAccount
	voucherTypeRechargeTriggers
	voucherStateConversions
	Broadcast plug-in
	Example eserv.config
	Failure
	Output

	ccsCB10HRNAES
	License

	ccsCB10HRNSHA
	License

	ccsCDRFileGenerator
	Purpose
	Startup - non clustered
	Startup - clustered
	Parameters
	BaseName
	BillingEngineID
	OracleUsernamePassword
	OutputDirectory
	SCPID
	SleepDuration
	TempOutputDirectory
	Failure
	Output

	ccsCDRLoader
	Purpose
	Reprocessing Failed EDRs
	Oracle Configuration
	Startup - Non Clustered
	Multiple Loaders
	Startup - clustered
	ccsCDRLoader Command Line Parameters
	ccsCDRLoader Plug-in Libraries
	AcsCustIdPlugin
	AcctHistPlugin
	CDRStoreDBPlugin
	CreditCardDetailsPlugin
	FileWriterCDRLoaderPlugin

	MsisdnCDRLoaderPlugin
	RechargeSMSPlugin
	VoucherRedeemFailPlugin
	VoucherRedeemPlugin

	CDR Loader Plug-in Parameters
	CDR Loader Configuration Example
	CDR Loader Parameters
	cdrBufferSize
	commitInterval
	dbUserPass
	errDir
	fileProcessing
	inDir
	inDirType
	loadZeroLengthCalls
	maxPluginFailFileSize
	pluginLibs
	outDir
	outDirBucketSize
	outDirExpectedFiles
	outDirType
	readAheadNumFiles
	scanInterval
	statisticsInterval
	suffixToIgnore
	voucherRedeemPlugin
	additionalCdrTypes
	useVoucherRedeemCDR
	VoucherRedeemFail
	archiveDirectory
	maxEDRs
	maxOpenDuration
	tempReportDirectory
	AcctHistPlugin
	acsCustomerIdData
	acsCustomerId
	promoCascade
	prodTypeSwapEventClass
	prodTypeSwapEventName
	reasonChangeConfig
	RechargeSMSPlugin
	smsFifoName
	smsQueueSize
	smsTTL
	FileWriterCDRLoaderPlugin
	ccsCDRFieldsTZ
	cdrTimeZone
	MsisdnCDRLoader
	CopyCliToMsisdn
	CopyCliToMsisdnRegExp
	Failure
	Output

	ccsCDRTrimDB
	Purpose
	Startup
	Usage
	Parameters
	-c
	-n
	-h or --help
	Example
	Failure
	Output

	ccsCDRTrimFiles
	Purpose
	Startup
	Usage
	Parameters
	-a
	-d
	-h or --help
	Output
	Failure

	ccsChangeDaemon
	Purpose
	Startup
	Configuration
	eserv.config parameters
	pollPeriod
	ptsUnsubscribeFromPCsForNonApplyPCs
	throttle
	beClient
	billingEngines
	clientName
	connectionRetryTime
	heartbeatPeriod
	messageTimeoutSeconds
	BE eserv.config parameters
	amPrimary
	beLocationPlugin
	serverId
	Failure
	Output

	ccsExpiryMessageLoader
	Purpose
	Startup
	Example
	Parameters
	balanceExpiryPeriod
	balanceTypes = []
	batchSize
	cmnPushFiles = []
	generatorFiledir
	generatorFilename
	inputDirectory
	numberOfBalanceWarnings
	numberOfWalletWarnings
	onlyForLatestBucketExpiry
	oraclePassword
	oracleUsername
	pauseTime
	walletExpiryPeriod
	Failure
	Output

	ccsExternalProcedureDaemon
	Purpose
	Startup - non clustered
	Startup - clustered
	Location
	Configuration
	Failure
	Output

	ccsLegacyPIN
	Purpose
	Startup
	Configuration

	ccsPeriodicCCRecharge
	Purpose
	Start up
	Example
	Parameters
	numRowsPerCommit
	oracleUserAndPassword
	purgeOldEntriesAge
	purgePendingRows
	Failure
	Output

	ccsPeriodicCharge
	Purpose
	Startup
	Configuration - eserv.config
	eserv.config parameters
	BeQueueSize
	clientName
	connectionRetryTime
	heartbeatPeriod
	LockFile
	maxOutstandingMessages
	messageTimeoutSeconds
	notEndActions
	OracleUserAndPassword
	plugins
	config
	function
	library
	profileTagCacheValidityPeriod
	reportPeriodSeconds
	Command line parameters
	-d
	-l
	Example
	Failure
	Output

	ccsProfileDaemon
	Purpose
	Startup - nonclustered
	Disabling - ccsProfileDaemon
	Example config section
	eserv.config parameters
	AdditionalSpFields
	allowBugWorkArounds
	allowLegacyServerConnect
	AuditDirectory
	AuditFields
	AuditFileName
	AuditType
	CdrConcatenation
	DateTimeFormat
	DisableConcurrencyLock
	LockFileName
	MaxAgeSeconds
	MaxSizeEntries
	NotificationCacheAgeSeconds
	PeriodicChargeTagCacheAge
	PollInterval
	SpFieldCacheAge
	triggering
	DefaultOverrides
	ArbitaryParameters
	CCSNamespace
	OperationName
	Password
	Username
	Operations
	name
	overrides
	type
	scps
	osd_scps
	Command line parameters
	-i or --node_id
	-n or --number

	ccsReports
	Purpose
	Example
	Parameters
	accountLogDir
	accountPrefixName
	cdrDir
	cdrPrefix
	voucherLogDir
	voucherPrefixName
	VoucherStatus
	archiveAfterDays
	archiveDirectory
	deleteAfterDays
	outputDirectory

	ccsWalletExpiry
	Purpose
	Startup
	Example
	Parameters
	cmnPushFiles = []
	expiredDirectory
	expiredMsisdnMaxAge
	expiredMsisdnPath
	expiredMsisdnPrefix
	expiredPrefix
	removedDirectory
	removedPrefix
	Failure
	Output

	libccsCommon
	Purpose
	Startup
	Configuration

	VoucherRedeemFail Files
	Purpose
	Record format
	File name format

	Background Processes on the SLC
	Overview
	Introduction
	In this chapter

	BeClient
	Purpose
	BeClient plugins
	Voucher plugin
	Merge wallets plug-in

	Location
	Startup
	Configuration
	Parameters
	plugins
	config
	function
	library
	broadcastOptions
	aggregateNAckCodes
	Example
	Output

	PIClientIF
	Purpose
	Startup
	Output
	Example

	ccsActions
	Purpose
	Startup
	Configuration
	Parameters
	accumulateChargeInfoCosts
	allowNegativeNoFundsPolicyOnCommit
	configuredVolumeITC
	loggedInvalidPeriod
	loggedNotificationPeriod
	maxOutstandingBeClientMsgs
	quotaProfileBlock
	volumeReservationLength
	Example
	Failure
	Output

	ccsCB10HRNAES
	License

	ccsCB10HRNSHA
	License

	ccsMacroNodes
	Purpose
	Startup
	Configuration
	Example ccsMacroNodes config

	ATBNoAnswerTimeout
	HomeCountryNationalPrefix
	MaxCreditCardNumberLength
	MaximumBadCodeRetries
	MaximumMenuRetries
	MinCreditCardNumberLength
	PromptAndCollectInterMenuBlockTimeout
	PromptAndCollectMaxAnnouncements
	Node specific parameters
	Balance Status

	BSAnnBalanceTypes = [{}{}]
	acsCustomerId
	balTypeIds
	BSPlayAllExpiriesAtEnd
	RetryReserveOnNoFunds
	Balance Status Branch

	BSBCheckBalance
	acsCustomerId
	balTypeIds
	expireAtMidnightTZ
	Call Info

	SMSCIIncludeZeroBalances
	SMSCIExcludeZeroBalanceTypes
	Do Credit Card Recharge

	DOCCRAnnBalanceTypes = [{}{}]
	acsCustomerId
	balTypeIds
	Friends and Family config

	FFDiscountRule
	NoChargeEventClass
	NoChargeEventName
	Play Voucher Redeemed Info config

	PAVRBalancesUseSystemCurrency
	SMS Account Balance

	SMSABExpiryFormat
	SMSABIncludeZeroBalances
	SMSABUseFormattedExpiryDate
	UATB

	BFTGracePeriodLength
	continueIfAnnouncementFails
	MinResRemainingBeforeSubReservation
	Service
	UseDisconnectLeg
	Voice Call Cost

	VCCTimeAnnParts
	Voucher Recharge

	VRRedeemAcctFrozenCheck
	VRRedeemDefaultScenario
	VRRedeemMaxVoucherLength
	VRRedeemMinVoucherLength

	ccsSvcLibrary
	Purpose
	Startup
	Configuration
	AccountLength
	callPlanAndDataCacheFlushTime
	callPlanAndDataCacheMaxAge
	callPlanAndDataCacheValidityTime
	ContinueAsConnect
	ConvergedScenario
	enableProfile6
	getCallPlanNumberFromProfile
	GlobalDefaultForAcctRefCallPlanName
	GlobalDefaultSMOrigCallPlanName
	GlobalDefaultSMTermCallPlanName
	globalCapabilityFlushPeriod
	IncomingCallBarDisable
	IncomingCallBarEnable
	InterpretAccountNumberAsCLI
	MobileTerminatingHomeCli
	NoCallPlanError
	PreCallAnnouncementId
	PreCallLowBalance
	productCapabilitiesCacheFlushTime
	productCapabilitiesCacheMaxAge
	productCapabilitiesCacheValidityTime
	productTypeForExternalSub
	promptForAccountOnOriginatingSK
	promptForAccountOnTerminatingSK
	RetrieveLCRNumbers
	SingleReservation
	SubcriberDomainType
	UnknownDataReleaseCause
	VoucherDomainType
	WithheldDuration

	libccsClientPlugins
	Purpose
	Startup
	Configuration
	voucherRechargeOptions
	sendBadPin
	singleBonusEdrs
	srActivatesPreuseAccount
	srasActivatesPreuseAccount
	voucherRechargeTriggers

	libccsCommon
	Purpose
	Startup
	Configuration

	Background Processes on the VWS
	Overview
	Introduction
	In this chapter

	beVWARS
	Purpose
	Example
	Parameters
	handlers
	plugins

	ccsActivationCharge
	Purpose
	Startup
	Parameters
	periodicChargeCacheValidityPeriod
	Example

	ccsBadPinPlugin
	Purpose
	Startup
	Configuration
	cacheFlushPeriod
	cacheValidityTime

	ccsBeAvd
	License

	ccsCB10HRNAES
	License

	ccsCB10HRNSHA
	License

	ccsExpiryMessageGenerator
	Purpose
	Startup
	Parameters
	Example
	Failure
	Output

	ccsLegacyPIN
	Purpose
	Startup
	Configuration

	ccsMFileCompiler
	Purpose
	MFile filenames
	Startup
	Configuration
	Parameters
	MFile Configuration Parameters

	path
	numberOfErrors
	timeout
	Example MFile Configuration
	Shared Configuration Parameters

	ccsMFileCompiler Command Line Parameters
	Parameters

	-r
	-l
	-a
	-i
	-d
	Failure
	Output

	ccsNotification
	Purpose
	Real-time Wallet Notifications Delivery Process
	Processes Used to Deliver Real-time Wallet Notifications
	Startup
	Configuration
	Parameters
	xmlInterfaceName
	cacheFlushPeriod
	cacheValidityTime
	useOldestuseOldestExpiry
	UTCOffsetHours
	Example

	ccsSLEEChangeDaemon
	Purpose
	Startup
	Configuration
	eserv.config parameters
	beClient
	billingEngines
	clientName
	connectionRetryTime
	heartbeatPeriod
	throttle
	maxOutstandingMessages
	messageTimeoutSeconds
	numCursorRows
	plugins
	config
	function
	library
	reportPeriodSeconds
	serviceTriggerTimeout
	BE eserv.config parameters
	amPrimary
	beLocationPlugin
	serverId
	Command line parameter
	-r
	Failure
	Output

	ccsPDSMSPlugin
	Purpose
	Startup
	Parameters
	balanceTypes
	ServiceProviderID
	ThresholdCacheValidityPeriod
	TypeID
	Example

	ccsRewardsPlugin
	Purpose
	Startup
	Parameters
	balanceTypes
	allowed
	expenditure
	id
	notification
	cacheFlushPeriod
	cacheValidityTime
	cmnPushFiles = []
	fileIdleTime
	filePrefix
	fileSuffix
	maxLinesInFile
	oracleUserPass
	writeDirectoryName
	Example

	ccsPMXPlugin
	Purpose
	Licence
	Startup
	Parameters
	cacheValidityTime
	ccsBplServiceHandle
	dapInterfaceName
	rechargeControlPlan
	rechargeOperationName
	Example

	ccsVWARSActivation
	Purpose
	Startup
	Parameters
	accountBatchCacheValidityPeriod
	alwaysOverwriteBucketExpiry
	alwaysOverwriteNonExpiringBucketExpiry
	alwaysOverwriteNonExpiringWalletExpiry
	alwaysOverwriteWalletExpiry
	Example

	ccsVWARSAmountHandler
	Purpose
	Startup
	Configuration
	syslogErrors

	ccsVWARSExpiry
	Purpose
	Startup
	Configuration
	Parameters - CCS section
	accountBatchCacheValidityPeriod
	cmnPushFiles = []
	createEdrForExpiredValue
	deleteEmptyBalances
	expiredDirectory
	expiredMaxAge
	expiredPrefix
	expiredSuffix
	expireNegativeExpenditureBuckets
	expiryWalletStates
	includeExpiredBalanceNames
	logNotRemoveWallet
	produceCDRForWalletExpiredBucket
	removeAtMidnightTZ
	removedDirectory
	removedMaxAge
	removedPrefix
	removedSuffix
	renewPCAtMidnightTZ
	Parameters - BE section
	expireAtMidnightTZ
	Example

	ccsVWARSNamedEventHandler
	Purpose
	Startup
	Configuration
	Parameters
	activatePreuseAccount
	acsCustomerId
	CascadeNamesByAcsId
	cascade
	eventCacheAgeSeconds
	maxWalletLockLength
	PromoCascadeNamesByAcsId
	promo_cascade
	reservationPeriod
	reservationPeriodTolerance
	roundingRuleType
	Example
	Failure
	Output

	ccsVWARSPeriodicCharge
	Purpose
	Startup
	Configuration
	Parameters
	alwaysWrite52EDR
	cacheTimeoutSeconds
	chargeTimeGMTHours
	notificationMidnightTZ
	noNotifsInvalidWallet
	useNonGMTTimezoneOfTriggeringSource
	retryTimeoutMinutes
	subscribeExtendsPCExpiryDate
	Example
	Failure
	Output

	ccsVWARSQuota
	About the ccsCWARSQuota Plugin
	Startup
	Failure

	ccsVWARSRechargeHandler
	Purpose
	Startup
	Parameters

	ccsVWARSReservationHandler
	Purpose
	Startup
	Parameters
	addDisplaySpendRatio
	addGeoSetID
	alwaysContributeToXBTDTimeBalance
	createEDRForMidSessionCommit
	discountData
	discountRuleType
	discountTime
	greedyReservationLengthLimit
	maxReservationLength
	reservationLengthTolerance
	showCostsEDRScaledByDisplaySpendRatio
	suppressEDRRatingDetails
	syslogErrors
	useWorstCaseBalances
	zeroLengthFreeCalls
	updateLastUseDate
	writeCDR
	Example
	Failure
	Output

	ccsVWARSVoucherHandler
	Purpose
	Startup
	Parameters
	badPinExpiryHours
	clearConsecutivePin
	consecutiveBadPinExpiryHours
	createRechargeCDRInactiveAccount
	dailyBadPinExpiryHours
	monthlyBadPinExpiryHours
	weeklyBadPinExpiryHours
	replicationInterface
	requireBonusRow
	updateLastUseVoucherRecharge
	vomsInstalled
	Example
	Failure
	Output

	ccsVWARSWalletHandler
	Purpose
	Startup
	Configuration
	createEmptyBuckets
	deleteEmptyBuckets
	maxReservationsPerSLEEMessage
	Failure
	Output

	ccsWLCPlugin
	Purpose
	Startup

	cmnPushFiles
	Purpose
	Startup
	Receiving machine
	Parameters
	-a
	-C
	-d
	-f
	-F
	-h
	-M
	-o
	-p
	-P
	-R
	-r
	-s
	-S
	-t
	-T
	-x
	Failure
	Output

	libccsCommon
	Purpose
	Startup
	Configuration
	Parameters
	accountCacheAgeSeconds
	accountNumberLength
	accountTypeBestPeriodsCacheAgeSeconds
	authCB10ValidateSeed
	balanceTypeCascadeCacheAgeSeconds
	balanceTypeCascadeIdCacheAgeSeconds
	balanceTypeDetailedCascadeCacheAgeSeconds
	balanceTypeIdCacheAgeSeconds
	balanceTypeUnitCacheAgeSeconds
	balanceUnitTypeCacheAgeSeconds
	ccsAcctReferenceCacheAgeSeconds
	ccsBalanceExpiryRoundUp
	ccsBonusTypeAgeSeconds
	ccsBonusValuesAgeSeconds
	ccsWlcAgeSeconds
	ccsRewardTranslationAgeSeconds
	ccsWalletNameTranslationAgeSeconds
	ccsLanguageDetailsAgeSeconds
	ccsBalanceTypeTranslationAgeSeconds
	creditCardCacheAgeSeconds
	creditCardCacheRepIntervalSeconds
	defaultBalanceTypeCacheAgeSeconds
	domainsCacheAgeSeconds
	expenditureBalanceMidnightExpiryTZ
	ignoreBTs
	lowCreditDapDisableCacheAgeSecondss
	maxConcurrentChargingSessions
	productTypeIdCacheAgeSeconds
	profileDetailsSubtagsCacheAgeSeconds
	rateLimitIFSendErrors
	systemCurrencyBalanceUnitCacheAgeSeconds
	systemCurrencyIdAgeSeconds
	tariffPlanIdCacheAgeSeconds
	walletTypeCacheAgeSeconds
	xmlInterfaceName
	Example

	libccsVWARSUtils
	Purpose
	Example
	Parameters
	createAdditionalExpiryEdr
	createNonExpiringBuckets
	perBalanceEDRs
	raiseAlarmForMissingTemplates
	rechargePreUseAccounts
	rechargeTerminatedAccounts
	setNonExpiringBucketExpiryFromToday
	canReduceBucketExpiryFromToday
	earliestBucketExpiryPolicyFromToday

	Tools and Utilities
	Overview
	Introduction
	Using SLP Trace log files
	Voucher tools
	In this chapter

	ccsAccount
	Purpose
	Rollback
	Startup - ccsAccountStartup.sh
	Startup - ccsAccountWithPrivacy.sh
	eserv.config parameters
	accountNumberLength
	batchFullness
	cardNumberIncludesServiceProviderPrefix
	ccsAccount section

	checkAccountNumbers
	checkCLIs
	doSMFChallenge
	maximumRetries
	maximumSendAttempts
	noAbortOnException
	progressUpdateInterval
	rollbackFilename
	sendRetryDelay
	serialNumberLength
	suppressCreateWalletMes - Oberth
	wantReplicationLogging
	ClientIF section
	heartbeatPeriod
	clientName
	connectionRetryTime
	maxOutstandingMessages
	messageTimeoutSeconds
	notEndActions
	action
	type
	plugins
	config
	function
	library
	reportPeriodSeconds
	throttling section

	maxAccountsPerMinute
	preAllocDebug
	preVerifyAccountNumber
	queueSize
	BE eserv.config parameters
	beLocationPlugin
	Example ccsAccount section parameters

	Seeing the configuration
	Command line parameters
	-a
	-A
	-b
	-B
	-c
	-C
	-d
	-e
	-F
	-h
	-i
	-l
	-m
	-M
	-n
	-o
	-O
	-p
	-P
	-r
	-R
	-s
	-S
	-t
	-T
	-u
	-U
	-v
	-V
	-w
	-x
	-y
	Example usage
	Exported card/account batch files
	ccsAccount example
	Example card/account output file
	Command
	Card/account output file

	Failure
	Output
	Other ccsAccount commands

	ccsBeResync
	Purpose
	Data transferred
	Startup
	Command Line parameters
	-u
	-b
	-e
	-h/-?
	-m
	-o
	-r
	-s
	-v
	Configuration - eserv.config
	Parameters
	beID
	beRequestTimeout
	maxInfoRechecks
	maxQueueSize
	maxUpdatesPerRequest
	notificationInterval
	pollTime
	recheckDelay
	skipLastUseFieldCheckAtWallet
	syncSequenceDifference
	eserv.config business rules parameters
	balanceLimitTypeHighest
	balanceMinCreditHighest
	bucketExpiryLatest
	bucketReferencePrimary
	bucketValueHighest
	walletActivationLatest
	walletExpiryLatest
	walletMaxConHighest
	libBeClientIF parameters
	clientName
	connectionRetryTime
	heartbeatPeriod
	maxOutstandingMessages
	messageTimeoutSeconds
	notEndActions
	action
	type
	plugins
	config
	function
	library
	reportPeriodSeconds
	Example configuration
	Failure
	Output
	Resynchronizing in Normal Operation
	Examples of normal operation:
	Normal error conditions

	Resynchronization Reports

	ccsBatchCharge
	Purpose
	Example
	Parameters
	-b
	-c
	-d
	-e
	-h
	-i
	-m
	-o
	-p
	-r
	-t
	-w
	bePlugin
	cdrExtraInfoTag
	-?

	ccsDomainMigration
	Purpose
	Startup
	Configuration
	Parameters
	ClientIF section
	heartbeatPeriod
	messageTimeoutSeconds
	maximumSendAttempts
	pollTime
	progressTimeout
	sendRetryDelay
	commitInterval
	commitVolume
	lockFile
	throttle
	walletLockMilliSec
	Example
	Failure
	Output

	ccsMFileDump
	Purpose
	Startup
	Configuration
	file
	-c
	-d
	-h
	-H
	-p
	-t
	Rating example
	Named event catalogue example
	Output

	ccsProfileBulkUpdate
	Purpose
	Startup
	Example
	Command line parameters
	-f
	-u <user>/<password>
	-?
	Profile tags input file
	Example profileTags.cfg

	ccsVoucherStartup.sh
	License

	CCS Balance Top Up Suite
	Introduction
	Possible uses of ccsBatchCharge
	Rule definition
	Column definition
	The four functions

	CCS Balance Top Up MSISDN Files
	Introduction
	Record types
	Header record
	MSISDN detail record

	Example MSISDN files for activations
	Example MSISDN files for deactivations

	CCS Balance Topup Rule Scripts
	Purpose
	Activate rule
	ccsbt_activate_rule.sh
	Rule Parameters
	MSISDN file
	user/password
	Example ccsbt_activate_rule.sh

	Deactivate rule
	ccsbt_deactivate_rule.sh
	Rule Name
	MSISDN file
	user/password
	Example ccsbt_deactivate_rule.sh

	Execute rules
	Immediate rules
	Output files

	Execution log file
	Daily error file
	Deactivation Cleanup
	REC execution mode
	IMM execution mode

	dwsublist.sh
	Purpose
	Process
	Reports
	Parameters
	pcardOutputDir
	ccardOutputDir
	pcardOutputDir
	Example configuration

	Example Balance Top Up Rule Execution
	Introduction
	Valid IMM rule examples

	Real-Time Notifications
	Overview
	Introduction
	In this chapter

	Real-Time Notifications
	Wallet notification types
	Additional SMS Notifications
	DAP Notification Delivery
	Notification Export
	Scenario Notifications

	Notification Construction
	Notification Templates
	Fields Used in Notification Templates
	AMOUNT
	BALANCE_TYPE
	BALANCE_UNIT
	CLI
	COST
	EXPIRED_AMOUNT
	NEW_BALANCE
	NEW_STATE
	NOTIFICATION_NAME
	OLD_BALANCE
	OLD_STATE
	PRODUCT_TYPE
	RECHARGE_AMOUNT
	TIME_STAMP
	WALLET_NAME

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction
	CCS packages

	Checking the Installation
	Introduction
	Check SMS procedure
	Check SLC procedure
	Check VWS procedure
	Adding announcement sets automatically
	Process list - SMS
	Process list - SLC
	Process list - VWS

