
Oracle® Communications Convergent
Charging Controller
REST Technical Guide

Release 12.0.6
F61349-01
September 2022

Oracle Communications Convergent Charging Controller REST Technical Guide, Release 12.0.6

F61349-01

Copyright © 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Part I REST Client

1 System Overview

What is RESTClient? 1-1

2 Configuration

RESTClient Configuration 2-1

Wallet Management for oAuth 2-1

3 Background Processes

RESTClient 3-1

Parameters 3-2

4 About Installation

Installation Overview 4-1

Checking the Installation 4-1

RESTClient Directories and Files 4-1

5 RESTClient Call Flows

Request Flow 5-1

iii

6 Supported Request Type

BalanceTransfer 6-1

ApplyLoan 6-6

GenericRequest 6-8

Part II REST Server

7 What is RESTServer?

8 Configuration

RESTServer Configuration 8-1

9 Background Processes

RESTServer 9-1

Parameters 9-2

10

About Installation

Installation Overview 10-1

Checking the Installation 10-1

RESTServer Directories and Files 10-1

11

RESTServer Call Flows

Request Flow 11-1

12

Supported Endpoints

GET Location 12-1

GET Token (only for OAM) 12-2

13

Configuring OAuth Services

iv

14

Configuring SOAP Services

v

Preface

The scope of this document includes all the information required to install, configure
and administer the RESTClient and RESTServer application.

Audience
This document is intended for system administrators and persons installing,
configuring and administering the RESTClient and RESTServer application. However,
sections of the document may be useful to anyone requiring an introduction to the
application.

Prerequisites

A solid understanding of UNIX and a familiarity with IN concepts are an essential
prerequisite for safely using the information contained in this technical guide.
Attempting to install, remove, configure or otherwise alter the described system
without the appropriate background skills, could cause damage to the system;
including temporary or permanent incorrect operation, loss of service, and may render
your system beyond recovery.

Although it is not a prerequisite to using this guide, familiarity with the target platform
would be an advantage.

This manual describes system tasks that should only be carried out by suitably trained
operators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

products and documentation. We are also mindful of the necessity to maintain compatibility
with our customers' existing technologies and the need to ensure continuity of service as
Oracle's offerings and industry standards evolve. Because of these technical constraints, our
effort to remove insensitive terms is ongoing and will take time and external cooperation.

Preface

vii

Part I
REST Client

This part provides the REST Client related information. It contains the following chapters:

• System Overview

• Configuration

• Background Processes

• About Installation

• RESTClient Call Flows

• Supported Request Type

1
System Overview

This chapter provides a high-level overview of the application. It explains the basic
functionality of the system and lists the main components.

It is not intended to advise on any specific Oracle Communications Convergent Charging
Controller network or service implications of the product.

What is RESTClient?
The RESTClient (REST) interface is used to send REST requests from Convergent Charging
Controller to REST server endpoints.

Request Processing

RESTClient accepts the requests in xml format on a specific port that is configured and
translates the xml request to JSON format. RESTClient then forwards the JSON request to
REST server, which is accepted at the REST server endpoint.

Response Handling

RESTClient encapsulates response received from the REST server, transforms it to xml, and
sends it back to the requesting process (DAP) with a response code of 200. The actual result
code or error code is encoded in the response xml.

Features

• RESTClient supports requests to Balance Transfer and Apply Loan endpoints in the
Oracle Communications Billing and Revenue Management (BRM) REST server.

• RESTClient also supports generic request types, which can be forwarded towards any
REST server endpoints with required design time customizations.

1-1

2
Configuration

This chapter explains how to configure the Oracle Communications Convergent Charging
Controller application.

RESTClient Configuration
RESTClient reads its configuration from the config.json file. The config.json file is located
in the /IN/service_packages/REST/etc directory.

RESTClient config.json Section

To organize the configuration data within the config file, some sections are nested within
other sections. Configuration details are opened and closed using { }.

• Groups of parameters are enclosed with curly brackets – { }

• Comments are prefaced with a “//” at the beginning of the line

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text
editors, such as Microsoft Word, that attach control characters. These can be, for example,
Microsoft DOS or Windows line termination characters (for example, ^M), which are not
visible to the user, at the end of each row. This causes file errors when the application tries to
read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a
working copy to which you can return.

Loading Config Changes

If you change the configuration file, you must restart the service to enable the new options to
take effect.

Wallet Management for oAuth
You need to create an Oracle wallet to store and manage OAM server clientId and
clientSecrets, after installing the REST client (and before triggering any Auth requests).
Wallets are created using /u01/app/oracle/product/12.2.0/bin/mkstore tool.

Perform the following steps:

1. Create an empty Oracle wallet.

2. Store the credentials of OAM server for Auth requests.

2-1

Example

mkstore -wrl /IN/service_packages/REST/etc/wallet -createCredential
REST username password

mkstore -wrl /IN/service_packages/REST/etc/wallet -createCredential
connect_string username password

Note:

connect_string should be different for different credentials.

Configuration

1. Configure location of the wallet in config.json file. For example, /IN/
service_packages/REST/etc/wallet.

2. Generate the base64 encoded value of the wallet password and configure it in
config.json file. For example, to generate the base64 encoded wallet password,
run the following command:

echo -n "wallet_password" | base64

3. Configure the clientId in config.json file.

SSL Configuration

When endpoint contains https, SSL configuration is used for certification validation.
SSL configuration is taken from default java configuration. Default truststore is present
in java/bin directory.

To import the certificate, run the keytool command as an administrator or root user.
For example:

keytool -importcert -alias cert_alias_name -file ./ssl_cert.pem -
keystore /usr/java/jdk1.8.0_261/jre/lib/security/cacerts

Chapter 2
Wallet Management for oAuth

2-2

3
Background Processes

This chapter explains the process which runs automatically as part of the Oracle
Communications Convergent Charging Controller application. This process is started
automatically by the system services (/IN/bin/OUI_systemctl.sh) in the SLC node.

RESTClient
Purpose

The RESTClient (REST) interface is used to trigger REST requests towards REST server
endpoints.

Startup

This task is started by the system services, by the following line in the service files:

/IN/service_packages/REST/bin/RestClientStartup.sh config.json

Configuration

The high-level structure of the REST client is shown below:

{
 "maxthreadcount": 1000,
 "port": 4050,
 "webroot": "/tmp",
 "walletlocation": "Location",
 "walletkey": "key",

 "restendpoint": {
 "BalanceTransfer" : {
 "endpoint" : "BalanceTransferEndpoint",
 "servergroupid" : "BRM",
 "resourceid": 840,
 "chargesource": false,
 "chargedestination": false
 },
 "ApplyLoan" : {
 "endpoint" : "ApplyLoanEndpoint",
 "serviceType" : "/service",
 "servergroupid" : "BillingCare",
 "resourceid": 840
 },
 "GenericRequest" : {
 "endpoint" : "GenericRequestEndpoint",
 "type" : "POST",
 "servergroupid" : "BillingCare"
 }
 },

3-1

 "serverlist": {
 "BRM": {
 "tokenendpoint":"BRMOAuthEndpoint",
 "clientid":"username"
 },
 "BillingCare": {
 "tokenendpoint":"BCOAuthEndpoint",
 "clientid":"username"
 }
 }
}

Parameters
Parameters of the REST client are listed below.

maxthreadcount

Syntax: maxthreadcount: "value"
Description: Maximum number of thread the java process can have.

Type: Integer

Optionality: Optional

Allowed: NA

Default: 1000

Example: maxthreadcount: "1000"

port

Syntax: port: "value"
Description: Port on which REST client is listening to DAP requests.

Type: Integer

Optionality: Optional

Allowed: NA

Default: 4050

Example: port: "4050"

webroot

Syntax: webroot: "value"
Description: Path to which client will be listening. When “/” is specified, the

client will be listening to “http://localhost:port/”. In API, “/” should
be present at the end in the DAP configuration screen.

Type: String

Optionality: Optional

Allowed:: NA

Default: "/"

Example: webroot: "/tmp"

Chapter 3
Parameters

3-2

walletlocation

Syntax: walletlocation: "value"
Description: Location where the wallet is created, which stores the REST endpoint

username and password.

Type: String

Optionality: Optional

Allowed: NA

Default: "/IN/service_packages/REST/etc/wallet"

Example: walletlocation: "/IN/service_packages/REST/etc/wallet"

walletkey

Syntax: walletkey= "value"
Description: Base64 encrypted password for the wallet.

Type: String

Optionality: Mandatory

Allowed: NA

Default: “”

Example: walletkey: "key”

restendpoint

Syntax:
"value" : {
 "endpoint" : "value",
 "type" : "value",
 "servergroupid" : "value"
 }

Description: Group of REST operations.

Type: JSON

Optionality: Optional

Allowed: NA

Default: NA

Example:
{ "BalanceTransfer" : {
 "endpoint" : "BalanceTransferEndpoint"
 "servergroupid" : "BillingCare"
 }
 "ApplyLoan" : {
 "endpoint" : "ApplyLoanEndpoint",
 "servergroupid" : "BRM"
 }
}

endpoint

Chapter 3
Parameters

3-3

Syntax: endpoint: "value"
Description: Endpoint to which the request is triggered.

Type: String

Optionality: Optional

Allowed: NA

Default: “”

Example: endpoint: "http:localhost:restopertion/"

type

Syntax: type: "value"
Description: The type of request. This applies to GenericRequest handler only.

Type: String

Optionality: Optional

Allowed: The allowed values are:
• GET: Request will be triggered without body.
• POST: XML Request body will be converted to JSON body

and triggered.

Default: POST

Example: type: "POST"

servergroupid

Syntax: servergroupid: "value"
Description: ID of the oauth credential present in serverlist.

Type: String

Optionality: Optional

Allowed: Servergroupid should be present in the serverlist, so that
corresponding oAuth endpoint and clientid is used to generate the
token.

Default: “”

Example: servergroupid: "BRM"

resourceid

Syntax: resourceid: "value"
Description: Resourceid used for requesting BalanceTransfer and

ApplyLoan.

Type: Integer

Optionality: Optional

Allowed: Only used in BalanceTransfer and ApplyLoan.

Default: 840

Example: resourceid: "840"

chargesource

Syntax: chargesource: "Boolean"

Chapter 3
Parameters

3-4

Description: This is a boolean flag to indicate whether the source account to
be charged for balance transfer. The <chargeSource> xml input
field will hold this value. If xml does not carry this information,
then a default value is taken from the config.json file.

Type: Boolean

Optionality: Optional

Allowed: Only used in BalanceTransfer.

Default: false

Example: chargesource: "false"

chargedestination

Syntax: chargedestination: "Boolean"
Description: This is a boolean flag to indicate whether the target/destination account

to be charged for balance transfer. The <chargeDestination> xml
input field will hold this value. If xml does not carry this information,
then a default value is taken from the config.json file.

Type: Integer

Optionality: Optional

Allowed: Only used in BalanceTransfer.

Default: false

Example: chargedestination: "false"

serviceType

Syntax: serviceType : "value"
Description: This is the MSISDN Service type for which apply loan details are

requested. The <serviceType> xml input field will hold this value. If
xml does not carry this information, then a default value is taken from
the config.json file

Type: String

Optionality: Optional

Allowed: Only used in ApplyLoan.

Default: /service

Example: serviceType : "/service"

serverlist

Syntax:
"value": {
 "tokenendpoint":"value",
 "clientid":"value"
 }

Description: Group of OAuth credentials.

Type: JSON

Optionality: Mandatory

Allowed: NA

Chapter 3
Parameters

3-5

Default: NA

Example:
"BRM": {
 "tokenendpoint":"OAuthendpoint",
 "clientid":"username"
 }

tokenendpoint

Syntax: tokenendpoint: "value"
Description: Endpoint to which token request will be triggered.

Type: String

Optionality: Mandatory

Allowed: NA

Default: “”

Example: tokenendpoint: "OAuthendpoint"

clientid

Syntax: clientid: "value"
Description: Username used for OAuth token request. Corresponding

password should be added in the wallet.

Type: String

Optionality: Mandatory

Allowed: NA

Default: NA

Example: clientid: "username"

Chapter 3
Parameters

3-6

4
About Installation

This chapter provides information about the installed components for the Oracle
Communications Convergent Charging Controller application described in this guide. It also
lists the files installed by the application that you can check for, to ensure that the application
is installed successfully.

Installation Overview
For information about the following requirements and tasks, see Installation Guide:

• Convergent Charging Controller system requirements

• Pre-installation tasks

• Installing and removing Convergent Charging Controller packages

RESTClient Package

Installation of Oracle Communications Convergent Charging Controller RESTClient includes
restScp package on SLC.

Checking the Installation
Refer to the following checklist to ensure that RESTClient is installed correctly.

Checklist - SLC

Follow the steps in this checklist to ensure RESTClient is installed correctly on an SLC
machine.

1. Log in to the SLC machine as root.

2. Check that the following directory structure exists, with subdirectories:
/IN/service_packages/REST

3. Check that directories contain subdirectories and that all are owned by:
smf_oper user (group esg)

Process list - SLC

If the application is running correctly, RESTClient.jar process should be running on each
SLC, started during OUI_systemctl startup.

RESTClient Directories and Files
The RESTClient installation on SLC creates the following directories:

• /IN/services_packages/REST/bin

• /IN/services_packages/REST/lib

• /IN/services_packages/REST/etc

4-1

• /IN/services_packages/REST/tmp

Installing RESTClient installs the following interface:

/IN/services_packages/REST/bin/RESTClient.jar

Installing RESTClient installs the following configuration file:

/IN/services_packages/REST/etc/config.json.example

Note:

You need to create the config.json file with actual values required during
runtime.

Chapter 4
RESTClient Directories and Files

4-2

5
RESTClient Call Flows

This chapter provides a sample REST request flow.

Request Flow
Figure 5-1 shows the request and response exchange between USSDGW, DAP, RESTClient,
and REST server. The flow depicts a simple scenario where RESTClient receives an xml
request from DAP. RESTClient converts the incoming xml request from DAP to a JSON
request and that JSON request is sent to the REST server (BRM). RESTClient then receives
a response from the REST server. The response is sent back to DAP and a message will be
sent to the subscriber based on the response from the REST server.

Figure 5-1 REST Request Flow

5-1

6
Supported Request Type

RESTClient supports three types of requests:

• BalanceTransfer

• ApplyLoan

• GenericRequest

Note:

If the location fetch fails during BalanceTransfer or ApplyLoan APIs, Convergent
Charging Controller does not send any location attributes to BRM. In such cases,
taxes are applied based on how it is configured in the BRM system.

BalanceTransfer
BalanceTransfer request is triggered when the following parameter is present in the input xml
request:

<operation>BalanceTransfer</operation>

Note:

• Configure BalanceTransfer under restendpoint in config.json file.

• The output request will be always POST.

Input Request

Table 6-1 describes the parameters accepted in the XML <requestDetails> tag.

Table 6-1 Input Request Parameters

Notification Type Mandatory/
Optional

Description

sourceMSISDN Mandatory Source MSISDN for BalanceTransfer.

destinationMSISDN Mandatory Destination MSISDN for BalanceTransfer.

transferAmount Mandatory Amount to be transferred from source to
destination.

transferAmountType Optional ResourceId of the amount passed.

If not present in the input request, default value of
resourceid from the config file is used.

6-1

Table 6-1 (Cont.) Input Request Parameters

Notification Type Mandatory/
Optional

Description

chargeSource Optional Boolean flag to indicate whether the source
account will be charged.

If not present in the input request, default value of
chargesource from the config file is used.

chargeDestination Optional Boolean flag to indicate whether the target or
destination account will be charged.

If not present in the input request, default value of
chargedestination from the config file is used.

sourceZoneMapTarget Optional Cellid for source MSISDN.

If not present in the input request, location will not
be sent to the REST server.

targetZoneMapTarget Optional Cellid for destination MSISDN.

If not present in the input request, location will not
be sent to the REST server.

Sample XML Input Request

Following is a sample XML input request sent out from DAP module.

<operation>BalanceTransfer</operation>
<requestDetails>
<sourceMSISDN>90989098</sourceMSISDN>
<destinationMSISDN>89878987</destinationMSISDN>
<transferAmount>10</transferAmount>
<transferAmountType>840</transferAmountType>
<chargeSource>true</chargeSource>
<chargeDestination>false</chargeDestination>
<sourceZoneMapTarget>52021005DC03EA</sourceZoneMapTarget>
<targetZoneMapTarget>52121005DC03EA</targetZoneMapTarget>
</requestDetails>

REST Request Parameters

Table 6-2 lists the parameters sent to the REST server.

Table 6-2 REST Request Parameters

Notification Type Mapping From Input Request

sourceRef.id From sourceMSISDN.

sourceRef.type Always set as service.

targetRef.id From destinationMSISDN.

targetRef.type Always set as service.

transferAmount From transferAmount.

Chapter 6
BalanceTransfer

6-2

Table 6-2 (Cont.) REST Request Parameters

Notification Type Mapping From Input Request

transferAmountType From transferAmountType.
If not present in the input request,
restendpoint.BalanceTransfer.resourceid from the
config file is used.

chargeSource From transferAmountType.
If not present in the input request,
restendpoint.BalanceTransfer.chargesource from the
config file is used.

chargeDestination From transferAmountType.
If not present in the input request,
restendpoint.BalanceTransfer.chargedestination
from the config file is used.

description Same as operation name.

sourceLocation. zoneMapTarget From sourceZoneMapTarget.

targetLocation. zoneMapTarget From targetZoneMapTarget.

Sample REST API Request

Following is a sample REST API request sent out from RESTClient towards REST endpoint.

{
 "description" : "BalanceTransfer",
 "sourceRef" : {
 "id" : "90989098",
 "type" : "service"
 },
 "targetRef" : {
 "id" : "89878987",
 "type" : "service"
 },
 "transferAmount" : 10,
 "transferAmountType" : 840,
 "chargeSource" : true,
 "chargeDestination" : false,
 "sourceLocation" : {
 "zoneMapTarget" : "52021005DC03EA"
 },
 "targetLocation" : {
 "zoneMapTarget" : "52121005DC03EA"
 }
}

REST API Response

Tags present in the response will not be validated. JSON message will be directly converted
to XML.

Sample REST API Response

Chapter 6
BalanceTransfer

6-3

Following is the snippet of response received from the REST endpoint.

{
 "extension": null,
 "id": "0.0.0.1+-event-audit-transfer_balance+335711686285720131",
 "uri": "http://hostname:port/bcws/webresources/v1.0/billunits/
balancegroups/transferbalance/0.0.0.1+-event-audit-
transfer_balance+335711686285720131",
 "transferAmount": 10,
 "transferAmountType": 840,
 "sourceRef": {
 "id": "90989098",
 "type": "service"
 },
 "targetRef": {
 "id": "89878987",
 "type": "service"
 },
 "sourceBucket": [
 {
 "validFrom": 1647993600000,
 "validTo": 0,
 "currentBalance": 2147485311.57
 }
],
 "targetBucket": [
 {
 "validFrom": 1647993600000,
 "validTo": 0,
 "currentBalance": -2147483808.93
 },
 {
 "validFrom": 1632230093000,
 "validTo": 1703164493000,
 "currentBalance": 0
 }
],
 "sourceTransferFee": {
 "amount": 3.00,
 "feeTax": 0.30,
 "resourceId": 840
 },
 "targetTransferFee": {
 "amount": 3.00,
 "feeTax": 0.60,
 "resourceId": 840
 }
}

where, hostname and port is the hostname and port of the machine where REST
server is running.

Chapter 6
BalanceTransfer

6-4

XML Response

XML response will have extra tag <rest_result_code> containing the status code from
REST response header. The status code from RESTClient to DAP will always will be 200.
<rest_status_code> can be used for checking the status code from REST server.

Sample XML Response

Following is the XML response received by DAP for a particular request.

<targetRef>
 <id>89878987</id>
 <type>service</type>
</targetRef>
<extension>null</extension>
<targetBucket>
 <currentBalance>-2.14748380893E9</currentBalance>
 <validFrom>1647993600000</validFrom>
 <validTo>0</validTo>
</targetBucket>
<targetBucket>
 <currentBalance>0</currentBalance>
 <validFrom>1632230093000</validFrom>
 <validTo>1703164493000</validTo>
</targetBucket>
<targetTransferFee>
 <amount>3.0</amount>
 <resourceId>840</resourceId>
 <feeTax>0.6</feeTax>
</targetTransferFee>
<transferAmount>10</transferAmount>
<sourceTransferFee>
 <amount>3.0</amount>
 <resourceId>840</resourceId>
 <feeTax>0.3</feeTax>
</sourceTransferFee>
<transferAmountType>840</transferAmountType>
<id>0.0.0.1+-event-audit-transfer_balance+335711686285720131</id>
<sourceRef>
 <id>90989098</id>
 <type>service</type>
</sourceRef>
<sourceBucket>
 <currentBalance>2.14748531157E9</currentBalance>
 <validFrom>1647993600000</validFrom>
 <validTo>0</validTo>
</sourceBucket>
<uri>http://hostname:port/bcws/webresources/v1.0/billunits/balancegroups/
transferbalance/0.0.0.1+-event-audit-transfer_balance+335711686285720131</
uri>
<rest_status_code>201</rest_status_code>

Chapter 6
BalanceTransfer

6-5

ApplyLoan
ApplyLoan request is triggered when the following parameter is present in the input
request.

<operation>ApplyLoan</operation>

Note:

• Configure ApplyLoan under restendpoint in config.json file.

• The output request will be always POST.

Input Request

Table 6-3 describes the parameters accepted in the XML <requestDetails> tag.

Table 6-3 Input Request Parameters

Notification Type Mandatory Description

sourceMSISDN Mandatory Source MSISDN for ApplyLoan.

loanAmount Mandatory Amount for loan.

loanResourceId Optional ResourceId of the amount passed.

If not present in the input request, default
value of resourceid from the config file is
used.

sourceZoneMapTarget Optional Cellid for source MSISDN.

If not present in the input request, location will
not be sent to the REST server.

Sample XML Input Request

Following is a sample XML input request sent out from DAP module.

<operation>ApplyLoan</operation>
<requestDetails>
<sourceMSISDN>635495522</sourceMSISDN>
<loanAmount>5</loanAmount>
<loanResourceId>840</loanResourceId>
<serviceType>/service</serviceType>
<sourceZoneMapTarget>52021005DC03EA</sourceZoneMapTarget>
</requestDetails>

REST Request Parameters

Table 6-4 lists the parameters sent to the REST server.

Chapter 6
ApplyLoan

6-6

Table 6-4 REST Request Parameters

Notification Type Mapping From Input Request

accountRef.id Always set as "0.0.0.1+-account+1".

service.id From sourceMSISDN.

service.type From serviceType.

If not present in the input request, restendpoint.ApplyLoan.
serviceType from the config file is used.

amount From loanAmount.

resourceId From loanResourceId.

If not present in the input request,
restendpoint.ApplyLoan.resourceid from the config file is used.

zoneMapTarget From userLocation.

If not present in the input request, this parameter will not be sent.

Sample REST API Request

Following is a sample REST API request sent out from RESTClient towards REST endpoint.

{
 "accountRef": {
 "id": "0.0.0.1+-account+1"
 },
 "service": {
 "id" : "635495522",
 "type" : "/service"
 },
 "amount": 5,
 "resourceId": 840,
 "zoneMapTarget": "52021005DC03EA"
}

REST API Response

Tags present in the response will not be validated. JSON message will be directly converted
to XML.

Sample REST API Response

Following is the snippet of response received from the REST endpoint.

{
 "extension": null,
 "availableLoanBalance": 172,
 "currentBalance": 800,
 "amount": 122,
 "loanFee": 10,
 "tax": 8.54,
 "balances": [],
 "availableLoanLimit": 9510.91,
 "creditLimit": 10000,
 "loanObj": {

Chapter 6
ApplyLoan

6-7

 "id": "0.0.0.1+-event-billing-loan_debit+335782055029906029",
 "uri": null
 },
 "loanFeeObj": {
 "id": "0.0.0.1+-event-billing-loan_fee+335782055029904493",
 "uri": null
 }
}

XML Response

XML response will have extra tag <rest_result_code> containing the status code
from REST response header. The status code from RESTClient to DAP will always will
be 200. <rest_status_code> can be used for checking the status code from REST
server.

Sample XML Response

Following is the XML response received by DAP for a particular request.

<extension>null</extension>
<amount>122</amount>
<loanFee>10</loanFee>
<loanObj>
 <id>0.0.0.1+-event-billing-loan_debit+335782055029906029</id>
 <uri>null</uri>
</loanObj>
<currentBalance>800</currentBalance>
<creditLimit>10000</creditLimit>
<loanFeeObj>
 <id>0.0.0.1+-event-billing-loan_fee+335782055029904493</id>
 <uri>null</uri>
</loanFeeObj>
<tax>8.54</tax>
<availableLoanLimit>9510.91</availableLoanLimit>
<availableLoanBalance>172</availableLoanBalance>
<rest_status_code>201</rest_status_code>

GenericRequest
For sending any request (other than BalanceTransfer and ApplyLoan) to a third party
REST endpoint, generic request option can be used. You can configure the required
operation with the corresponding endpoint in the config.json file and then use the
same operation name in the input xml triggered from DAP to REST client.

Configure the new operation in the config.json file as follows:

"restendpoint": {
 "OperationName" : {
 "endpoint" : "restendpoint",
 "type" : "POST",
 "servergroupid" : "BRM"
 }
 }

Chapter 6
GenericRequest

6-8

Note:

• Generic request Handler supports POST and GET requests.

• servergroupid and endpoint can be custom configurations.

Sample Configuration

"restendpoint": {
 "GenericBalanceTransferDetails" : {
 "servergroupid" : "BillingCare"
 }
}

Input Request

Table 6-5 describes the parameters accepted in the XML input request.

Table 6-5 Input Request Parameters

Notification Type Mandatory/Optional Description

operation Mandatory Operation name for the request which is
configured.

type Optional If present, it will override the type present in the
config for the operation.

endPoint Optional If present, it will override the endpoint present in
the config for the operation.

requestDetails Mandatory for POST For GET, requestDetails will not be sent to the
REST server.

For POST, XML request will be converted to
JSON and sent as body in the OUTPUT request.

Sample XML Input Request

This example shows a GET request for balance transfer audit object using Generic request
Handler.

<operation>GenericBalanceTransferDetails</operation>
<endPoint>http://hostname:port/bcws/webresources/v1.0/billunits/
balancegroups/transferbalance/0.0.0.1+-event-audit-
transfer_balance+335887608146194890</endPoint>
<type>GET</type>

where, hostname and port is the hostname and port of the machine where REST server is
running.

REST Request Parameters

{
 "endPoint": "http://hostname:port/bcws/webresources/v1.0/billunits/
balancegroups/transferbalance/0.0.0.1+-event-audit-

Chapter 6
GenericRequest

6-9

transfer_balance+335887608146194890",
 "type": "GET",
 "operation": "GenericBalanceTransferDetails"
}

REST API Response

Tags present in the response will not be validated. JSON message will be directly
converted to XML.

Sample REST API Response

{
"extension":null,
"id":"0.0.0.1+-event-audit-transfer_balance+335887608146194890",
"sourceAccountRef":{
"id":"0.0.0.1+-account+37201",
"uri":"http://hostname:port/bcws/webresources/v1.0/accounts/0.0.0.1+-
account+37201"
},
"targetAccountRef":{
"id":"0.0.0.1+-account+34057",
"uri":"http://hostname:port/bcws/webresources/v1.0/accounts/0.0.0.1+-
account+34057"
},
"transferDate":1649681472000,
"sourceRef":{
"id":"0.0.0.1+-balance_group+40785",
"type":"balanceGroup"
},
"targetRef":{
"id":"0.0.0.1+-balance_group+34953",
"type":"balanceGroup"
},
"transferAmount":11,
"transferAmountType":840,
"chargeSource":false,
"chargeDestination":true,
"sourceImpactedBucket":
[{"validFrom":1647993600000,"validTo":0,"amount":11}],
"targetImpactedBucket":
[{"validFrom":1647993600000,"validTo":0,"amount":-11}],
"sourceTransferFee":null,
"targetTransferFee":{
"amount":3,
"feeTax":0.6,
"resourceId":840
}
}

XML Response

XML response will have extra tag <rest_result_code> containing the status code
from REST response header. The status code from RESTClient to DAP will always will

Chapter 6
GenericRequest

6-10

be 200. <rest_status_code> can be used for checking the status code from REST server.

Sample XML Response

<targetRef>
<id>0.0.0.1+-balance_group+34953</id>
<type>balanceGroup</type>
</targetRef>
<extension>null</extension>
<targetImpactedBucket>
<amount>-11</amount>
<validFrom>1647993600000</validFrom>
<validTo>0</validTo>
</targetImpactedBucket>
<chargeSource>false</chargeSource>
<targetTransferFee>
<amount>3</amount>
<resourceId>840</resourceId>
<feeTax>0.6</feeTax>
</targetTransferFee>
<transferAmount>11</transferAmount>
<sourceTransferFee>null</sourceTransferFee>
<targetAccountRef>
<id>0.0.0.1+-account+34057</id>
<uri>http://hostname:port/bcws/webresources/v1.0/accounts/0.0.0.1+-
account+34057</uri>
</targetAccountRef>
<transferAmountType>840</transferAmountType>
<transferDate>1649681472000</transferDate>
<chargeDestination>true</chargeDestination>
<id>0.0.0.1+-event-audit-transfer_balance+335887608146194890</id>
<sourceAccountRef>
<id>0.0.0.1+-account+37201</id>
<uri>http://hostname:port/bcws/webresources/v1.0/accounts/0.0.0.1+-
account+37201</uri>
</sourceAccountRef>
<sourceRef>
<id>0.0.0.1+-balance_group+40785</id>
<type>balanceGroup</type>
</sourceRef>
<sourceImpactedBucket>
<amount>11</amount>
<validFrom>1647993600000</validFrom>
<validTo>0</validTo>
</sourceImpactedBucket>
<rest_status_code>200</rest_status_code>

Chapter 6
GenericRequest

6-11

Part II
REST Server

This part provides the REST Server related information. It contains the following chapters:

• What is RESTServer?

• Configuration

• Background Processes

• About Installation

• RESTServer Call Flows

• Supported Endpoints

• Configuring OAuth Services

• Configuring SOAP Services

7
What is RESTServer?

RESTServer is designed to accept subscriber MSISDN from client applications and in
response returns the real time location of the subscriber (as fetched from HLR).

Request Processing

RESTServer accepts the GET request on a specific port that is configured. RESTServer then
transforms input JSON request into SOAP request format with subscriber number in the body.
RESTServer then forwards the SOAP request to OSD application end point.

Response Handling

RESTServer checks whether UserLocation is present in the OSD application response. If
present, then UserLocation is sent in JSON response to the client. If any OSD error is
reported, it is as well forwarded to the client.

Features

• RESTServer supports GET requests to LocationInfo.

• For OAM, additional token retrieval endpoint is supported.

7-1

8
Configuration

This chapter explains how to configure the RESTServer.

RESTServer Configuration
RESTServer reads its configuration from the application.yaml file. The application.yaml file
is located in the /IN/service_packages/REST/etc directory.

RESTServer application.yaml Section

To organize the configuration data within the config file:

• Some sections are nested within other sections.

• Comments are prefaced with a “#” at the beginning of the line.

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text
editors, such as Microsoft Word, that attach control characters. These can be, for example,
Microsoft DOS or Windows line termination characters (for example, ^M), which are not
visible to the user, at the end of each row. This causes file errors when the application tries to
read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a
working copy to which you can return.

Loading Config Changes

If you change the configuration file, you must restart the service to enable the new options to
take effect.

SSL Configuration

When endpoint is https, SSL configuration is used for certification. You need to configure SSL
in the application.yaml file under ssl section in server. PKCS12 keystore should also be
created.

Create new certificate if required:

openssl req -newkey rsa:4096 -x509 -sha256 -days 365 -nodes -out
Certificate.crt -keyout Certifcate.key

To import the certificate, run the openssl command as an administrator or root user.

Create txt file from key and certificate:

cat Certificate.key Certifcate.crt > Certifcate.pem.txt

8-1

Create keystore with openssl:

openssl pkcs12 -export -in Certifcate.pem.txt -out keystore.pkcs12

For example:

cat example.key example.crt > example.pem.txt
openssl pkcs12 -export -in example.pem.txt -out mykeystore.pkcs12

Chapter 8
RESTServer Configuration

8-2

9
Background Processes

This chapter explains the process which runs automatically as part of the Oracle
Communications Convergent Charging Controller application. This process is started
automatically by the system services (/IN/bin/OUI_systemctl.sh) in the SLC node.

RESTServer
Purpose

The RESTServer (REST) interface accepts REST requests for location information.

Startup

This task is started by the system services, by the following line in the service files:

/IN/service_packages/REST/bin/RestServerStartup.sh application.yaml

Configuration

The high-level structure of the RESTServer is shown below:

server:
 port: 8080
 ssl :
 private-key :
 keystore-path : "<keystore-path>"
 keystore-passphrase : "<keystore-passphrase>"

soap :
 endpoint : "<osd_endpoint:port>"
 username : "<username>"
 password : "<base64password>"
 #retryinterval : 1000
 #retrycount : 2

oamoidc:
 validate_with_jwk: false
 token-endpoint-uri: "http://oam-endpoint:port/oauth2/rest/token"
 authorization-endpoint-uri: "http://oam-endpoint:port/oauth2/rest/token"
 audience: "<audience>"
 cookie-name: "<cookie-name>"
 cookie-same-site: "<cookie-same-site>"
 header-use: true
 query-param-use: true
 redirect: true
 oidc-metadata-well-known: false
 oauth-identity-domain-name: "<domain>"

security:
 providers:

9-1

 - oidc:
 validate-with-jwk: false
 client-id: ""
 client-secret: ""
 identity-uri: ""
 realm: ""
 audience: ""
 proxy-host: ""
 redirect: false
 cookie-use: false
 header-use: true

Parameters
Parameters of the RESTServer are listed below.

In server block:

port

Syntax: port : "value"
Description: Port on which REST Server will be listening to requests.

Type: Integer

Optionality: Optional

Example: port : "8080"

In ssl > private-key block:

keystore-path

Syntax: keystore-path : "value"
Description: PKCS12 keystore path. It should be placed in Classpath (/IN/

service_packages/REST/etc/).

Type: String

Example: keystore-path : “mykeystore.pkcs12"

keystore-passphrase

Syntax: keystore-passphrase : "value"
Description: Password for the keystore.

Type: String

Example: keystore-passphrase : "password"

In soap block:

endpoint

Syntax: endpoint : "value"
Description: IP address of the OSD where OSDLocation is configured.

Type: String

Chapter 9
Parameters

9-2

Example: endpoint : "osd_endpoint:port"

username

Syntax: username : "value"
Description: Username of the ASP client for accessing SOAP request.

Type: String

Example: username : "notif"

password

Syntax: password : "value"
Description: Base64 encrypted password of ASP client for accessing SOAP request.

Type: String

Example: password : "<base64password>"

retryinterval

Syntax: retryinterval : number
Description: Retry interval for SOAP request if failed.

Type: Integer

Default 1000

Example: retryinterval : 1000

retrycount

Syntax: retrycount : number
Description: Retry times for SOAP request if failed.

Type: Integer

Default 0

Example: retrycount : 2

In oamoidc block:

Note:

oamoidc and security > providers are mutually exclusive blocks. If oamoidc
block is present in the configuration, then security > providers block will be
ignored.

validate_with_jwk

Syntax: validate_with_jwk : "value"
Description: Valid values are:

true: Validate against jwk defined by "sign-jwk".

false: Validate JWT through OIDC Server endpoint.

Chapter 9
Parameters

9-3

Type: Boolean

Default true

Example: validate_with_jwk : "false"

token-endpoint-uri

Syntax: token-endpoint-uri : "value"
Description: URI of the token endpoint used to obtain the JWT based on the

authentication code.

Type: String

Example: token-endpoint-uri : "http://oam-endpoint:port/
oauth2/rest/token"

authorization-endpoint-uri

Syntax: authorization-endpoint-uri : "value"
Description: URI of an authorization endpoint.

Type: String

Example: authorization-endpoint-uri : "http://oam-
endpoint:port/oauth2/rest/token"

audience

Syntax: audience : "value"
Description: Audience URI of custom scopes.

Type: String

Example: audience : "<audience>"

cookie-name

Syntax: cookie-name : "value"
Description: Name of the cookie.

Type: String

Default JSESSIONID

Example: cookie-name : "<cookie-name>"

cookie-same-site

Syntax: cookie-same-site : "value"
Description: Used to set the SameSite cookie value when using cookie. The

value can be Strict or Lax. Setting this to Strict will result in infinite
redirects when calling OIDC on a different host.

Type: String

Default Lax

Example: cookie-same-site : "<cookie-same-site>"

Chapter 9
Parameters

9-4

header-use

Syntax: header-use : "value"
Description: Whether to expect JWT in the header field.

Type: Boolean

Default false

Example: header-use : "true"

query-param-use

Syntax: query-param-use : "value"
Description: Whether to expect JWT in the query parameter.

Type: Boolean

Default false

Example: query-param-use : "true"

redirect

Syntax: redirect : "value"
Description: Whether to redirect to identity server when authentication failed.

Type: Boolean

Default true

Example: redirect : "true"

oidc-metadata-well-known

Syntax: oidc-metadata-well-known : "value"
Description: If set to true, metadata will be loaded from default (well known) location,

unless it is explicitly defined using oidc-metadata-resource. If set to false,
it would not be loaded even if oidc-metadata-resource is not defined. In
such cases, all URIs must be explicitly defined (Example: token-endpoint-
uri).

Type: Boolean

Default true

Example: oidc-metadata-well-known : "false"

oauth-identity-domain-name

Syntax: oauth-identity-domain-name : "value"
Description: This is used to access token from OAM server. oauth-identity-

domain-name is added to the header “X-OAUTH-IDENTITY-DOMAIN-
NAME” in the access token request sent to OAM.

Type: String

Example: oauth-identity-domain-name : "<domain>"

For security > providers > oidc block, check the following link for information on
configurations:

Chapter 9
Parameters

9-5

https://helidon.io/docs/v1/apidocs/index.html?io/helidon/security/providers/oidc/
common/OidcConfig.html

Chapter 9
Parameters

9-6

https://helidon.io/docs/v1/apidocs/index.html?io/helidon/security/providers/oidc/common/OidcConfig.html
https://helidon.io/docs/v1/apidocs/index.html?io/helidon/security/providers/oidc/common/OidcConfig.html

10
About Installation

This chapter provides information about the installed components for the Oracle
Communications Convergent Charging Controller application described in this guide. It also
lists the files installed by the application that you can check for, to ensure that the application
is installed successfully.

Installation Overview
For information about the following requirements and tasks, see Installation Guide:

• Convergent Charging Controller system requirements

• Pre-installation tasks

• Installing and removing Convergent Charging Controller packages

RESTServer Package

Installation of Oracle Communications Convergent Charging Controller RESTServer includes
restScp package on SLC.

Checking the Installation
Refer to the following checklist to ensure that RESTServer is installed correctly.

Checklist - SLC

Follow the steps in this checklist to ensure RESTServer is installed correctly on an SLC
machine.

1. Log in to the SLC machine as root.

2. Check that the following directory structure exists, with subdirectories:

/IN/service_packages/REST

3. Check that directories contain subdirectories and that all are owned by:

smf_oper user (group esg)

Process list - SLC

If the application is running correctly, RESTServer.jar process should be running on each
SLC, started during OUI_systemctl startup.

RESTServer Directories and Files
The RESTServer installation on SLC creates the following directories:

• /IN/services_packages/REST/bin

• /IN/services_packages/REST/lib

• /IN/services_packages/REST/etc

10-1

• /IN/services_packages/REST/tmp

Installing RESTServer installs the following interface:

/IN/services_packages/REST/bin/RESTServer.jar

Installing RESTServer installs the following configuration file:

/IN/services_packages/REST/etc/application.yaml.example

Note:

You need to create the application.yaml file with actual values required
during runtime.

Chapter 10
RESTServer Directories and Files

10-2

11
RESTServer Call Flows

This chapter provides a sample REST request flow.

Request Flow
RestServer gets the token and the subscriber number from the request. Based on the
configuration, it checks the validity of the token. If the token is valid, then it creates a SOAP
request with body containing the subscriber number. SOAP request is then sent to the
configured OSD endpoint. Based on the response from OSD, a JSON response is created
and sent back to the client.

Figure 11-1 RESTServer Call Flow

11-1

12
Supported Endpoints

RESTServer supports two types of requests:

• GET Location

https://hostname:port/LocationInfo/{service-number}

• GET Token (only for OAM)

https://hostname:port/LocationInfo/token

GET Location
To request a Location, use cURL to send an HTTP/HTTPS request to the REST location
endpoint.

curl -i
 -H "Authorization: Bearer "
 -H "Content-Type: application/json"
 -H "Accept: application/json"
 -X GET https://hostname:port/LocationInfo/{service-number}

Supported Method: GET

Request

Path Parameter

• service-number(required): string

There's no request body for this operation.

Response

Supported Media Types: application/json

1. 200 Response

Success

2. 400 Response

The request isn't valid.

3. 500 Response

An internal server error occurred.

Examples

Request:

curl -X -H "Authorization: Bearer accessToken"
 GET 'http://hostname:port/LocationInfo/257531'

12-1

Response:

Success Case:
{
"Location": "52121005DC03EA"
}

Error Case:
{
"error": "Unable to get subscriber Location"
}

Note:

Decoding Location: 52121005DC03EA

• MCC = 521

• MNC = 210

• LAC = 05DC

• CID = 03EA

GET Token (only for OAM)
To request an OAuth access token, use cURL to send an HTTP/HTTPS request to the
Convergent Charging Controller REST API authorization endpoint. For example:

curl -i
 -H "Authorization: Basic client_id:client_secret"
 -H "Content-Type: application/json"
 -H "Accept: application/json"
 -X GET https://hostname:port/LocationInfo/token

where:

• client_id:client_secret is the Base64-encoded credentials for your REST client.

• hostname:port is the IP address or host name and port of the Convergent
Charging Controller REST API server.

If the request is successful, the token type, expiry time, and the access token are
returned. For example:

{
 "expires_in": 3600,
 "token_type": "Bearer",
 "access_token": "accessToken"
}

Chapter 12
GET Token (only for OAM)

12-2

The token expires after the number of seconds shown in expires_in. This value is set while
setting up the OAuth identity domain as described in Configuring OAuth Services. After the
token expires, you must request a new one.

You use the token in the Authorization header for each REST request with the following
format:

-H "Authorization: Bearer accessToken"

Chapter 12
GET Token (only for OAM)

12-3

13
Configuring OAuth Services

To use OAuth 2.0 for authentication, configure your REST API services and then register your
client application as a trusted client on Oracle Access Manager.

To configure OAuth services using Oracle Access Manager:

1. Create an identity domain, which controls the authentication and authorization of your
client applications. It also controls which features your client application can access in
relation to the service.

To create an identity domain, use cURL to send an HTTP/HTTPS request to the Oracle
Access Management URL. For example:

curl -i
 -H "Content-Type: application/json"
 -H "Accept: application/json"
 -H "Authorization:Basic credentials"
 -X POST
 http(s)://hostname:port/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/oauthidentitydomain
 -d '{
 "name": "identityDomain",
 "description": "Description for Convergent Charging
 Controller REST API Identity Domain",
 "tokenSettings":[
 {
 "tokenType": "ACCESS_TOKEN",
 "tokenExpiry": tokenExpiry
 }
]
 }'

where:

• credentials is the Base64-encoded value of your Oracle Access Manager
administrator user name and password joined by a single colon
(username:password).

• hostname:port is the host and port of the Oracle Access Manager Administration
Server.

• identityDomain is the name of the Oracle Access Manager identity domain that you
want to create.

• tokenExpiry is the number of seconds before the token expires, such as 3600 for one
hour.

For more information, see "Add a new OAuth Identity Domain" in REST API for OAuth in
Oracle Access Manager.

2. Create a resource server, which hosts protected resources and accepts and responds to
protected resource requests using access tokens.

13-1

To create and configure your resource server, use cURL to send an HTTP/HTTPS
request to the Oracle Access Management URL. For example:

curl -i
 -H "Content-Type: application/json"
 -H "Authorization:Basic credentials"
 -X POST
 http(s)://hostname:port/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/application
 -d '{
 "name": "resourceServer",
 "idDomain": "identityDomain",
 "description": "Convergent Charging
 Controller REST API Resource Server",
 "scopes":[
 {
 "scopeName":"scopeName",
 "description":"All Access"
 }
]
 }'

where:

• resourceServer is the name of your resource server, such as Convergent
Charging Controller.

• scopeName is the name of the scope, such as All.

For more information, see "Add a new Resource Server" in REST API for OAuth in
Oracle Access Manager.

3. Create a client application that makes protected resource requests on behalf of the
resource owner and with the resource owner's authorization. Convergent Charging
Controller REST API clients are web applications with an OAuth 2.0 client type of
Confidential Client. Clients must use a grant type of Client Credentials for
requesting access to Convergent Charging Controller REST API resources.

To create a client application, use cURL to send an HTTP/HTTPS request to the
Oracle Access Management URL. For example:

curl -i
 -H "Content-Type:application/json"
 -H "Authorization:Basic credentials"
 -X POST
 http(s)://hostname:port/oam/services/rest/ssa/api/v1/
oauthpolicyadmin/client
 -d '{
 "secret": "client_secret",
 "id": "client_id",
 "name": "clientName",
 "scopes": [
 "resourceServer.scopeName"
],
 "clientType": "CONFIDENTIAL_CLIENT",
 "idDomain": "identityDomain",
 "description": "Description of client of Convergent

Chapter 13

13-2

Charging
 Controller REST API Server",
 "grantTypes":[
 "CLIENT_CREDENTIALS"
],
 "defaultScope": "resourceServer.scopeName",
 "redirectURIs": [
 {
 "url":"http(s)://Convergent Charging
 ControllerHost:Convergent Charging
 ControllerPort",
 "isHttps": isHttps
 }
]
 }'

where:

• client_secret is the password for your client.

• client_id is the client ID for your client. It will be generated automatically if not
specified.

• clientName is the name of your client.

• Convergent Charging ControllerHost:Convergent Charging ControllerPort is the host
and port of the Convergent Charging Controller REST API Server.

• isHttps is a Boolean value that specifies whether the URL is accessed over HTTPS
(true) or HTTP (false).

For more information, see "Add a new OAuth Client" in REST API for OAuth in Oracle
Access Manager.

For more information about OAuth 2.0, see "Understanding the OAuth Service" in Oracle
Fusion Middleware Administrator's Guide for Oracle Access Management.

Chapter 13

13-3

14
Configuring SOAP Services

RESTServer sends SOAP request to OSD client present in the SLC machine.

Operations and Operation Sets used by RESTServer is OSDLocation. The following are
the mandatory configurations that should be present in the Open Services Development
(OSD) screen:

1. Configure OSDLocation in Operations and Operation Sets tab in the Open Services
Development screen.

2. Create Control plan with StoreMyLocation and Copy node and link it to the
OSDLocation operation.

a. In StoreMyLocation node, set CC Calling Party id (Incoming Session Data) in
MSISDN Source Field. Location is copied to the profile tag set in Store to Buffer
field. For example, Additional Calling Party Number.

14-1

b. In Copy node, set UseLocation (Outgoing Session Data) in Target Field.
Copy node copies Location from buffer to profile tag UserLocation . If
UserLocation profile tag is not present, then UserLocation profile tag needs to
be created and mapped to the Outgoing Session Data.

Chapter 14

14-2

c. Save the control plan to link it with OSDLocation operation.

3. Configure the RESTServer hostname with username and password in Client ASPs tab in
the Open Services Development screen. OSDLocation operation should be added to
this client ASP.

Chapter 14

14-3

Chapter 14

14-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion

	Part I REST Client
	1 System Overview
	What is RESTClient?

	2 Configuration
	RESTClient Configuration
	Wallet Management for oAuth

	3 Background Processes
	RESTClient
	Parameters

	4 About Installation
	Installation Overview
	Checking the Installation
	RESTClient Directories and Files

	5 RESTClient Call Flows
	Request Flow

	6 Supported Request Type
	BalanceTransfer
	ApplyLoan
	GenericRequest

	Part II REST Server
	7 What is RESTServer?
	8 Configuration
	RESTServer Configuration

	9 Background Processes
	RESTServer
	Parameters

	10 About Installation
	Installation Overview
	Checking the Installation
	RESTServer Directories and Files

	11 RESTServer Call Flows
	Request Flow

	12 Supported Endpoints
	GET Location
	GET Token (only for OAM)

	13 Configuring OAuth Services
	14 Configuring SOAP Services

