
Oracle® Communications Convergent
Charging Controller
SDK Developer's Guide

Release 15.0.0
F83450-01
October 2023

Oracle Communications Convergent Charging Controller SDK Developer's Guide, Release 15.0.0

F83450-01

Copyright © 2018, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Diversity and Inclusion viii

Conventions viii

1 About Customizing Convergent Charging Controller

Understanding the SDK Development Environment 1-1

Developing Convergent Charging Controller Components and Features with the SDK 1-3

About the SDK API 1-5

2 Getting Started

Prerequisites 2-1

Building gcc 4.8.2 on Oracle Solaris with GNU Linker LD 2-2

Building binutils 2.23.2 on Oracle Solaris 2-3

Installing the SDK 2-3

Setting Environment Variables 2-3

SDK Contents 2-4

Building Examples 2-5

Installing the Examples 2-6

Accessing the API Documentation 2-8

Using Debugging, Alarms, Statistics, and Configuration 2-8

Using Debugging Statements 2-8

Using Debug Sections 2-9

Creating Debug Output 2-10

Using Display Options 2-11

Logging Alarms 2-11

Recording Statistics 2-14

Accessing the Configuration File 2-15

iii

3 Creating Service Loaders

About Service Loaders 3-1

Creating a Custom Service Loader 3-2

acsChassisInitSL() 3-3

acsChassisLoadService() 3-3

acsChassisPreCTR() and acsChassisPreETC() 3-6

acsChassisPreCTR() 3-6

acsChassisPreETC() 3-7

acsChassisPrePOR() 3-7

Denormalization 3-8

Setting up Service-Specific Data 3-8

Setting up Extension Information 3-9

General Setup of Outgoing Information 3-9

Sending FurnishChargingInformation or SendChargingInformation 3-9

acsChassisCallTerminated() 3-10

Defining a Custom Service Loader Extender 3-10

4 Creating a Custom Feature Node

About Feature Nodes 4-1

About Creating Custom Feature Nodes 4-2

Defining a Feature Node 4-2

Creating a Feature Node Definition 4-2

Example: Feature Node Definition File 4-4

Loading Feature Node Definitions 4-4

Adding the Feature Node to a Feature Set 4-5

Creating the Shared Library 4-5

Initialization 4-5

Processing 4-6

Tracking the State 4-7

Making a Chassis Action Request 4-8

Exiting 4-9

Using the Node Context Block 4-9

Specifying the Location of the Shared Library 4-10

Creating the Feature Node Image Files 4-11

5 Creating a Custom Control Agent

About Control Agents 5-1

SLEE Dispatcher 5-1

The SDK TCAP API 5-2

iv

The SDK INAP API 5-3

6 Creating Provisioning Interface Commands

About Provisioning Interface Commands 6-1

The PI Function 6-1

PI Command Actions 6-1

PI Function Return 6-2

Adding a PI Command to the Database 6-2

Creating a PI Commands File 6-3

Example: PI Command Definition File 6-3

Running the PICommandInstaller Utility 6-4

7 Creating Provisioning Screens

About Creating Provisioning Screens 7-1

Creating Screens Using KFramework 7-1

Using the Service Screens 7-2

Find Mode 7-2

Display Mode 7-4

The Results Display Table 7-5

The Find Button Bar 7-6

The Modify All Selection Dialog Box 7-6

Data Entry Mode 7-7

Help Screen 7-7

Table Monitor 7-7

Creating a New Service Screen 7-8

The ABC Example 7-11

Creating DataEntryFrame Classes 7-11

Creating DataEntryPanels Classes 7-12

Language Translation 7-20

8 Creating Memory-Mapped Files

About Memory-Mapped Files 8-1

About Creating Memory-Mapped Files 8-1

Data Replication 8-2

Creating Alerts When Data Changes Occur 8-2

The Mfile Daemon 8-2

The Mfile Daemon API 8-3

enum AwaitResult{...} 8-3

initGPNA() 8-3

v

awaitGPNAChange() 8-4

startGPNAChange() 8-4

mallocGPNAEntry() 8-4

addGPNAEntry() 8-5

addGPNAIntEntry() 8-5

finishedGPNA() 8-5

finishedSingleEntry() 8-6

An Mfile Daemon Example 8-6

The Mfile Application 8-6

The Mfile Application API 8-6

setupGPNA() 8-6

genericGPNA() 8-7

An Mfile Application Example 8-8

9 Creating and Replicating Database Tables

About Creating and Replicating Database Tables 9-1

Defining a Database Table 9-1

The TableDefinition Element 9-1

The TableColumnData Element 9-2

The TableConstraint Element 9-3

The IndexDefinition Element 9-3

The IndexColumnData Element 9-4

A Table Definition Example 9-4

Running the Database Table Installer 9-5

Defining the tableClientFile 9-5

The ClientTableDefinition Element 9-6

The ClientIndexDefinition Element 9-7

A tableClientFile Example 9-9

Replicating Tables 9-9

The Replication Element 9-10

The Platforms Element 9-10

The Platform Element 9-11

The Groups Element 9-11

The Group Element 9-11

The Dependency Element 9-11

A Table Replication Example 9-12

10

Creating an EDR Loader Plugin

About EDR Loader Plugins 10-1

vi

The EDR Loader Plugin Shared Library 10-1

The EDR Loader Plugin 10-2

11

Creating a CcsAuth Voucher PAM Plugin

About CcsAuth PAM Plugins 11-1

The CcsAuth Plugin Shared Libraries 11-1

SDK Voucher PAM Plugins 11-2

ccsAuthPluginInstaller 11-4

vii

Preface

This guide describes how to use the software development kit (SDK) for the Oracle
Communications Convergent Charging Controller software. The SDK is based on the
Convergent Charging Controller application programming interface (API) and allows
you to create Convergent Charging Controller components that satisfy customer-
specific requirements that the Convergent Charging Controller software does not
address.

Audience
This document is intended for software developers who are consultants or system
integrators tasked with addressing customer requirements within the Convergent
Charging Controller framework.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Conventions
The following text conventions are used in this document:

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

ix

1
About Customizing Convergent Charging
Controller

This chapter gives an overview of the Oracle Communications Convergent Charging
Controller Software Development Kit (SDK).

Understanding the SDK Development Environment
The Oracle Communications Convergent Charging Controller Software Development Kit
(SDK) provides C++ Application Programming Interfaces (APIs) and supporting files and
tools that enable you to develop custom Convergent Charging Controller components and
features and integrate them into the core Convergent Charging Controller product.

Figure 1-1 illustrates the major elements of the Convergent Charging Controller system.

1-1

Figure 1-1 Convergent Charging Controller System Elements

The three major Convergent Charging Controller components are the Service
Management System (SMS), the Service Logic Controller (SLC), and the Voucher and
Wallet Server (VWS).

The SMS performs these tasks:

• System management, including centralized management of alarms, logs, and
reporting

• Service management, including centralized configuration of products, control
plans, and rates

• Customer relationship management (CRM) and provisioning, including centralized
management of subscribers and wallets

Chapter 1
Understanding the SDK Development Environment

1-2

• Voucher management, including provisioning and management of vouchers and voucher
batches

• Replication management, including replication of service, subscriber, wallet and voucher
information to other nodes in the Convergent Charging Controller platform, including the
SLC and the Voucher and Wallet Server (VWS).

The SLC includes the following components:

• The Service Logic Execution Environment (SLEE), which manages a group of
applications that can communicate with each other and share resources efficiently

• The Advanced Control Services (ACS), which is the real-time engine for control plan
execution

• Charging drivers, which are SLEE interfaces that provide connectivity to the VWS, Billing
and Revenue Management (BRM), or third-party online charging systems

• The Control Agent layer, which is a framework for SLEE interfaces that connect the SLC
to the core network

Control agents communicate with ACS using the Intelligent Network Application Part
(INAP) language. In doing so, they translate network protocols such as SIP, MAP, or
Diameter into INAP so that a common service logic is possible, independent of the
network protocol.

A control agent issues an InitialDP request to initiate a dialog for a particular event or
session.

• Service Logic Layer, which includes feature nodes, chassis actions and service loaders
for charging, messaging and number services

The VWS handles prepaid rating, balance management, voucher management, and
promotion management. It includes the following key components:

• The beSync component, which synchronizes reservations, wallets, and vouchers
between VWS nodes.

• The beServer component, which handles incoming requests and distributes them to
beVWARS processes.

• The beVWARS component, which performs all business logic in the VWS, including
rating, recharging, promotions and voucher redemption. The beVWARS process is the
engine of the VWS.

Developing Convergent Charging Controller Components and
Features with the SDK

The SDK enables you to develop the following types of components and features to satisfy
your specific Convergent Charging Controller requirements:

• Service loaders

Developing a custom service loader allows you to manipulate information contained in
the InitialDP according to your requirements and allows you to load a control plan
according to your own business rules. The InitialDP is the INAP request that a control
agent, or external network element, sends to slee_acs to trigger processing for a new
event or session – for example, for a call, SMS, or data session. The slee_acs is the
Advanced Control Service process that runs on the Service Logic Controller and
processes service logic, generally by executing a control plan.

Chapter 1
Developing Convergent Charging Controller Components and Features with the SDK

1-3

The purpose of a service loader is to prepare slee_acs for the execution of service
logic for the service associated with a new event or session. For example, for a
chargeable mobile voice call, the service loader typically would:

– Lookup the calling party number in the subscriber database

– Retrieve the subscriber profile for use in the control plan

– Retrieve all service configuration data for that subscriber, including the
product, tariff plans, and so on.

– Determine the details of wallets associated with the subscriber for charging
and tracking

– Set slee_acs up for execution of the control plan for charging a mobile
originating voice call

Furthermore, you can use a service loader to closely control the information
returned by the CONNECT operation.

You can also develop a custom service loader that extends an existing product-
based service by supplying one or more functions that are called after the ones in
the standard product library. This is known as a service loader extender.

For more information, see "Creating Service Loaders ".

• Feature nodes

You can create a custom feature node, which is invoked by a control plan, to
perform customer-specific processing that is not included by the Convergent
Charging Controller system feature nodes. A custom feature node can retrieve
information from a specific database table, read from and write to profiles, set up
charging information in a vendor-specific form, and perform various Intelligent
Network Application Part (INAP) operations.

For more information, see "Creating a Custom Feature Node ".

• Control agents

A control agent provides a bridge between a particular protocol and the service
logic being run by slee_acs. A custom control agent allows you to interface the
SLC with network elements that use protocols that are not supported by the SLC.

For more information, see "Creating a Custom Control Agent ".

• Provisioning interface (PI) commands

Allow you to provision information that is stored in custom tables. Such tables
could contain routing data that is specific to the topology of your network. You can
develop Man-Machine Language (MML), Extensible Markup Language (XML), and
Simple Object Access Protocol (SOAP)-based PI commands.

For more information, see "Creating Provisioning Interface Commands ".

• Provisioning screens

Allow you to create screens to enter and maintain data in new database tables that
you create.

For more information, see "Creating Provisioning Screens ".

• Memory-mapped files (Mfiles)

Allow you to cache in memory, information from database tables that could contain
routing data specific to your topology. Mfiles are binary files that contain a copy of
the database table information. Processes access the Mfile information by

Chapter 1
Developing Convergent Charging Controller Components and Features with the SDK

1-4

mapping the Mfile into their address space and reading it using memory-mapped input or
output. This is useful, for example, when directly accessing these tables could have a
negative impact on performance. Mfiles provide rapid data retrieval through the runtime
service flow with negligible impact on performance.

For more information, see "Creating Memory-Mapped Files ".

• Event Detail Record plugins

An event data record (EDR) loader plugin processes an EDR produced by a VWS. The
VWS produces an EDR for every change to a wallet or voucher. An EDR loader process
on the SMS processes each EDR. The core purpose of the EDR loader is to load EDRs
into the database so customer care agents can read them in the screens. You can
develop custom plugins, for example, to format an EDR specifically for a third party billing
system, or convert an EDR into Oracle's Billing and Revenue Management (BRM) SQL42
format.

For more information, see "Creating an EDR Loader Plugin ".

• CcsAuth Voucher PAM plugins

A CcsAuth Voucher PAM plugin provides an implementation of a Voucher Pluggable
Authentication Module. This handles generation of the voucher secret (HRN) which is
written to the voucher print file and how the hashed or encrypted HRN (private secret) is
then created and stored in the database.

For more information, see "Creating a CcsAuth Voucher PAM Plugin".

About the SDK API
The Convergent Charging Controller SDK is built on the Convergent Charging Controller API,
which provides a library of classes and files that enable you to create Convergent Charging
Controller components and features to meet your specific Convergent Charging Controller
system requirements.

The Convergent Charging Controller API consists of global classes and classes that are
grouped namespaces listed in Table 1-1, which provide scope for them and their member
functions and definitions:

Table 1-1 Convergent Charging Controller API Namespaces

Namespace Description

acs Contains all APIs related to the ACS software. See ncc and ncc:acs
namespaces also.

acsActionsAPI Contains classes that interact with the Advanced Control Service to
request discreet actions associated with making a call and processing
results. Actions include getting the wallet, requesting an initial
reservation, getting rates, setting the discount, getting subscriber
credit card details, and so on.

ccs Contains all APIs for the CCS software component.

ccs:cdr Contains classes and the interface for CDR loader plugins.

ccs::auth Contains classes and the interface for CCS Voucher PAM plugins.

cmn Contains the common, or generally-applicable, functions and classes
related to supporting features and functions.

cmn::cfg Defines configuration information object and values.

Chapter 1
About the SDK API

1-5

Table 1-1 (Cont.) Convergent Charging Controller API Namespaces

Namespace Description

ncc Contains acs, inap, slee, and tcap namespaces.

ncc::acs: Stores ACR charging flags; throws unknown language exception;
creates and handles ACS notifications; defines a single slee_acs
transaction; gets a generic request and returns a generic response

ncc::inap Creates INAP operation, indication, and request primitives.

ncc::slee In general, provides functionality for passing messages across the
SLEE, between applications and interfaces. In particular, provides a
layer of abstraction, so that custom code can pass information
between processes without having to worry about handling the SLEE
transport layer.

ncc::tcap Contains classes that define the TCAP standard primitives.

sms Contains the APIs for the SMS software component.

sms::pi Contains the APIs for the Provisioning Interface.

sms::pi::common Contains classes that define error codes related to logging on and
session startup, request processing, XML, and internal errors.

For information on accessing the Convergent Charging Controller API documentation,
see "Accessing the API Documentation".

Chapter 1
About the SDK API

1-6

2
Getting Started

This chapter explains how to install and get started with the Oracle Communications
Convergent Charging Controller Software Development Kit (SDK) and describes the
prerequisites.

Prerequisites
The Convergent Charging Controller SDK is delivered in a zip file that also includes this
guide. The general platform requirements for the SDK are the same as they are for
Convergent Charging Controller. For more information on the general platform requirements
for Convergent Charging Controller, see Convergent Charging Controller Installation Guide.

Before using the SDK, you should have working knowledge and skills in the following areas:

• The C, C++, and Java programming languages

• The UNIX operating system, including system programming and system administration

• Structured Query Language (SQL) for managing databases in a relational database
management system, particularly Oracle Database 12c

• The following Convergent Charging Controller concepts:

– Advanced Control Services (ACS) system architecture

– The role of ACS in a service flow

– The configuration of the Service Management System (SMS) product features

In addition, the SDK requires the following software and tools for building components:

• For Oracle Linux:

– Linux 7 update 1

The Convergent Charging Controller build environment must support the minimum
version of the environment on which the software will be deployed and run.

– Oracle Database 12c Release 1 (Oracle Database 12.1.0), including client libraries

Requires installing 32-bit client libraries. The client libraries are installed in
ORACLE_HOME/lib32, where ORACLE_HOME is the directory in which Oracle
Database 12c is installed.

– Oracle Java 1.8.0_161

– GNU Compiler Collection (gcc) 4.8.3, included with C++

– GNU Binary Utilities (binutils) 2.23.2; binutils are ported to most major UNIX versions

– GNU make (gmake) 3.82, included with C++

– GNU Bison (bison) 2.7, included with C++

• For Oracle Solaris:

– Solaris 11.3

2-1

The Convergent Charging Controller build environment must support the
minimum version of the environment on which the software will be deployed
and run. For more information, see the following web page regarding Oracle's
binary guarantee:

http://www.oracle.com/technetwork/server-storage/solaris/overview/
guarantee-jsp-135402.html

– Oracle Database 12c Release 1 (Oracle Database 12.1.0), including client
libraries

Requires installing 32 bit client libraries. The client libraries are installed in
ORACLE_HOME/lib32

– Oracle Java 1.8.0_161

– GNU Compiler Collection (gcc) 4.8.2, built from source with GNU linker lD.
See "Building gcc 4.8.2 on Oracle Solaris with GNU Linker LD".

– GNU Binary Utilities (binutils) 2.23.2; built from source. See "Building binutils
2.23.2 on Oracle Solaris".

– GNU make (gmake) 3.82, included with C++

– GNU Bison (bison) 2.3, included with C++

See the product documentation for these tools for information on installing and using
them.

Building gcc 4.8.2 on Oracle Solaris with GNU Linker LD
To build gcc 4.8.2 on Solaris with GNU linker LD:

1. Run the following commands, which set the environment variables:

export PATH=/opt/ccctools/bin:${PATH}
export LD_LIBRARY_PATH=/opt/ccctools/lib:${LD_LIBRARY_PATH}

2. Run the following commands:

sudo mkdir /scratch/username
sudo chown username:dba /scratch/username
sudo mkdir /opt/ccctools

where username is the user name with the relevant permissions.

3. Create a temporary directory (gcc).

4. Download gcc-4.8.2.tar.gz for Solaris from https://ftp.gnu.org/gnu/gcc/
gcc-4.8.2/ to gcc.

5. Run the following command, which unzips the gcc-4.8.2.tar.gz file.

tar zxvf ../gcc-4.8.2.tar.gz
6. Go to gcc and run the following commands, which builds gcc 4.8.2:

export AR=/usr/gnu/bin/ar
export AS=/usr/gnu/bin/as
export LD=/usr/gnu/bin/ld
export NM=/usr/gnu/bin/nm
mkdir gcc-4.8.2-obj
cd gcc-4.8.2-obj
../gcc-4.8.2/configure --prefix=/opt/ccctools --with-gnu-ar --with-ar=/opt/
ccctools/bin/ar --with-gnu-as --with-as=/opt/ccctools/bin/as --with-gnu-ld --

Chapter 2
Building gcc 4.8.2 on Oracle Solaris with GNU Linker LD

2-2

http://www.oracle.com/technetwork/server-storage/solaris/overview/guarantee-jsp-135402.html
http://www.oracle.com/technetwork/server-storage/solaris/overview/guarantee-jsp-135402.html
https://ftp.gnu.org/gnu/gcc/gcc-4.8.2/
https://ftp.gnu.org/gnu/gcc/gcc-4.8.2/

with-ld=/opt/ccctools/bin/ld --with-gnu-nm --with-nm=/opt/ccctools/bin/nm --enable-
languages=c,c++,fortran,objc --enable-shared --with-gmp-include=/usr/include/gmp --
with-mpfr-include=/usr/include/mpfr CFLAGS='-g -O2 -mtune=ultrasparc -
mcpu=ultrasparc -mno-unaligned-doubles' CXXFLAGS='-g -O2 -mtune=ultrasparc -
mcpu=ultrasparc -mno-unaligned-doubles'
gmake bootstrap
sudo gmake install
unset AR
unset AS
unset LD
unset NM

Building binutils 2.23.2 on Oracle Solaris
To build binutils 2.23.2 on Solaris:

1. Run the following commands, which sets the environment variables:

export PATH=/opt/ccctools/bin:${PATH}
export LD_LIBRARY_PATH=/opt/ccctools/lib:${LD_LIBRARY_PATH}

2. Run the following commands:

sudo mkdir /scratch/username
mkdir binutils
cd binutils

where username is the user name with the relevant permissions.

3. Download binutils-2.23.2.tar.gz for Solaris from https://ftp.gnu.org/gnu/binutils/
to binutils.

4. Run the following command, which unzips the binutils-2.23.2.tar.gz file.

tar zxvf ../binutils-2.23.2.tar.gz
5. Run the following commands, which builds binutils 2.23.2:

mkdir binutils-2.23.2-obj
cd binutils-2.23.2-obj
../binutils-2.23.2/configure --prefix=/opt/ccctools --disable-werror
gmake
sudo gmake install

Installing the SDK
To install the SDK, you must extract the package to a directory and use the UNIX tar
command to extract the contents of the .tar file into the specified directory. For example, the
following commands unzip the package and extract the contents of the .tar file into the
current directory.

gunzip SDK-12.0.2.0.0.tar.gz
tar -xf SDK-12.0.2.0.0.tar

Setting Environment Variables
You must specify the location of the SDK files by adding commands to your .profile file to set
the CCC_SDK_HOME environment variable and then export it. For example, the following lines
specify the location of the SDK as being /home/username/sdk, where username varies and
represents the name of a user's home directory.

Chapter 2
Building binutils 2.23.2 on Oracle Solaris

2-3

https://ftp.gnu.org/gnu/binutils/

CCC_SDK_HOME=/home/username/sdk
export CCC_SDK_HOME

In addition, you should set the environment variables described in Table 2-1:

Table 2-1 Environment Variable Settings for SDK

Environment Variables Value

LD_LIBRARY_PATH Specify the /lib directory for binutils and gcc before anything
else.

For example:

• On Solaris, /opt/ccctools
• On Linux, /usr/local/lib

PATH Specify the /bin directory for binutils and gcc before anything
else.

For example:

• On Solaris, /opt/ccctools
• On Linux, /usr/local/lib

ORACLE_HOME Specify the absolute path to Oracle 12c home. For
example: /u01/app/oracle/product/12.1.0

SDK Contents
The SDK installation process creates the following set of directories:

• bin: Contains utility programs such as the database table installer, the feature
node installer, and the PI command installer.

• doc: Contains the HTML files that document the application. For more information
on the contents of this folder, see "Accessing the API Documentation".

• example: Contains example files for each of the components that you can build
with the SDK. For more information on the contents of this folder, see "Building
Examples".

• include: Contains the SDK header files that you will need to include in your
applications.

For information about which files to include to have access to a particular function
or class, see the examples or the API reference. For information on accessing the
API reference, see "Accessing the API Documentation".

• jar: Contains SDK Java archive files that contain the classes to develop custom
screens.

• lib: Contains a collection of static and dynamically linked libraries for use in the
applications that you develop. The following list indicates which libraries need to
be linked for each type of custom component:

– libcmnUtils.so - any process that requires access to the Oracle database

– libcmnUtilsNoOra.so - any process that does not require access to the
Oracle database

– libcmnConfig.a - any component that reads configuration files

– libcmnConfigFileImpl.a - any component that reads configuration files

Chapter 2
SDK Contents

2-4

– libsmsStats.a - any component that records statistics

– libSleeApiCallContext.so - service loaders or macro nodes that use service-specific
data

– libPI_common.so - PI commands

– ibsleeDispatcher.so - control agents and call-out interfaces

– libSLEE.so - control agents and call-out interfaces

– libacsSleeTransaction.so - control agents

– libtcapSleeTransaction.so - TCAP control agents

– libgenericEvent.so - call-out interfaces

– libgenericSleeTransaction.so - call-out interfaces

– libcmnMfile.a - an Mfile daemon or component that uses Mfile API

– libshare.a - an Mfile daemon or component that uses Mfile API

– libccsAuthPluginSDK.so - Ccs Auth Voucher PAM plugins

• make: Contains the makefile file, which defines the generic rules for creating each of the
example components. Use it to compile the examples. The additional files, such as
install, install.sh, and env.mk, are used by makefile. The install.sh file, for example,
copies custom libraries, once they are built, to $CCC_SDK_HOME/lib.

Building Examples
Follow these steps to build the examples that are provided with the SDK:

1. Change location to directory $CCC_SDK_HOME/example/example_dir where
example_dir is the name of the directory that holds the particular examples that you want
to build.

2. Enter the following command to build the examples:

gmake install
The gmake install command builds all of the examples in the specified directory.

The SDK includes the examples listed in Table 2-2:

Table 2-2 SDK Examples

Example Directory Examples

ABC/java Sample SMS screen, built into abc.jar

ABC/db Definitions for sample database tables, which can be
used with cmnTableInstaller.sh

sdkCDRLoaderPlugin Sample EDR loader plugin, which is built into the
sdkCDRLoaderPlugin.so shared library. Also contains
sdkCDRLoaderPlugin.h and Makefile files

sdkCallout Sample call-out SLEE interface, sdkCallout

sdkCommon Common utilities used by feature nodes and service
loaders

Chapter 2
Building Examples

2-5

Table 2-2 (Cont.) SDK Examples

Example Directory Examples

sdkMacroNodes Sample macro nodes, which are built into the
sdkMacroNodes.so shared library file and loaded by
slee_acs. Also contains feature node database
definitions in sdkMacroNodes.xml, which can be used
with acsMacroNodeInstaller

sdkMfileAPI Sample Mfile access library, which is build into
libsdkMfileAPI.a

sdkMfileDaemon Sample Mfile daemon, sdkMfileDaemon

sdkPiCommands/SDK_ABCNOA Sample PI command, built into
libPI_SDK_ABCNOA.so, loaded by PImanager.
Definitions for sample PI commands, which can be used
with PICommandInstaller.

sdkServiceLoader/generalExample Sample generic service loader, built into
libsdkServiceLoader.so, loaded by slee_acs

sdkServiceLoader/example1 Sample service loader, built into
libsdkServiceExample1.so, loaded by slee_acs

sdkServiceLoader/example2 Sample service loader, built into
libsdkServiceExample2.so, loaded by slee_acs

sdkServiceLoader/example3 Sample service loader, built into
libsdkServiceExample3.so, loaded by slee_acs

sdkServiceLoader/example4 Sample service loader, built into
libsdkServiceExample4.so, loaded by slee_acs

sdkTcapAgent Sample TCAP control agent, sdkTcapAgent

sdkccsAuthPlugin Sample CCS Auth plugin, which is built into the
libsdkCcsAuthPlugin.so shared library.

Also contains sdkCcsAuthPlugin.hh and Makefile files.

Installing the Examples
After building the examples, follow these steps to install them:

1. On the SLC, create the following directory:

/IN/service_packages/SDK

2. Copy the example applications in Table 2-3 to the specified directory on the SLC:

Table 2-3 SLC Install Locations for Examples

Files in Build Location Install Location

$CCC_SDK_HOME/lib/*.so /IN/service_packages/SDK/lib

$CCC_SDK_HOME/bin/
sdkCallout $CCC_SDK_HOME/bin/
sdkTcapAgent $CCC_SDK_HOME/bin/
sdkMfileDaemon

/IN/service_packages/SDK/bin

3. Copy the example applications listed in Table 2-4 to the specified directory on the
SMS:

Chapter 2
Building Examples

2-6

Table 2-4 SMS Install Locations for Examples

Files in Build Location Install Location

$CCC_SDK_HOME/bin/abc.jar.sig /IN/html

$CCC_SDK_HOME/bin/acsMacroNodeinstaller /IN/service_packages/ACS/bin

$CCC_SDK_HOME/bin/ccsAuthPluginInstaller /IN/service_packages/CCS/bin

$CCC_SDK_HOME/bin/pluginschema.dtd /IN/service_packages/SDK/etc

$CCC_SDK_HOME/bin/nodeschema.dtd /IN/service_packages/SDK/etc

$CCC_SDK_HOME/example/sdkMacroNodes/
sdkMacroNodes.xml

/IN/service_packages/SDK/etc

$CCC_SDK_HOME/bin/
cmnTableInstaller.sh $CCC_SDK_HOME/bin/
cmnTableInstaller_temp_install.sh $CCC_SDK_HO
ME/bin/cmnTableInstaller_temp_uninstall.sh
schema.dtd client.dtd

/IN/service_packages/SDK/bin

$CCC_SDK_HOME/example/ABC/db/
SDK.xml $CCC_SDK_HOME/example/ABC/db/
SDK_Client.xml

/IN/service_packages/SDK/bin

$CCC_SDK_HOME/bin/
PICommandInstaller $CCC_SDK_HOME/bin/
CommandsSchema.dtd

/IN/service_packages/SDK/bin

$CCC_SDK_HOME/example/ sdkPiCommands/
SDK_ABCNOA/SDK_PI.xml

/IN/service_packages/SDK/bin

4. With the SDK mounted on the SMS via NFS at $CCC_SDK_HOME, run the following
commands:

cd /IN/service_packages
mkdir SDK
mkdir SDK/bin
mkdir SDK/etc
chgrp -R esg /IN/service_packages/SDK
chmod -R 750 /IN/service_packages/SDK

cp $CCC_SDK_HOME/bin/cmnTableInstaller*.sh SMS/bin
cp $CCC_SDK_HOME/bin/cmnDBInstallGenerator.jar SMS/bin
cp $CCC_SDK_HOME/bin/schema.dtd SDK/etc
cp $CCC_SDK_HOME/bin/client.dtd SDK/etc
cp $CCC_SDK_HOME/example/ABC/db/SDK.xml SDK/etc
cp $CCC_SDK_HOME/example/ABC/db/SDK_Client.xml SDK/etc

cp $CCC_SDK_HOME/bin/acsMacroNodeInstaller ACS/bin
cp $CCC_SDK_HOME/bin/ccsAuthPluginInstaller CCS/bin
cp $CCC_SDK_HOME/bin/nodeschema.dtd SDK/etc
cp $CCC_SDK_HOME/bin/pluginschema.dtd SDK/etc
cp $CCC_SDK_HOME/example/sdkMacroNodes/sdkMacroNodes.xml SDK/etc

5. Run the following commands to create the custom database tables and replication on the
SMS:

$ su - smf_oper
$ cmnTableInstaller.sh -U smf -D ../SDK/install -S ../SDK/etc/SDK.xml -
C ../SDK/etc/SDK_Client.xml
$../SDK/install/SMS/scripts/install.sh

Chapter 2
Building Examples

2-7

Note:

The XML file either needs to be in the same directory as the DTD file, or
you must modify it to specify the DTD file location.

6. Run the following commands to define the custom nodes on the SMS:

su - acs_oper
acsMacroNodeInstaller -install ../SDK/etc/sdkMacroNodes.xml

Note:

The XML file either needs to be in the same directory as the DTD file, or
you must modify it to specify the DTD file location.

7. Run the following commands to define the custom Voucher PAM plugins on the
SMS:

su - ccs_oper
ccsAuthPluginInstaller -i -f ../SDK/etc/sdkCcsAuthPlugin.xml

Note:

The XML file either needs to be in the same directory as the DTD file, or
you must modify it to specify the DTD file location.

See "Creating a New Service Screen" for information on installing the example
screens.

Accessing the API Documentation
The SDK API is described in a set of HTML files in the doc folder
under $CCC_SDK_HOME.

To access the API reference documentation, which describes the Convergent
Charging Controller SDK classes and their members, open the following file using the
browser of your choice:

$CCC_SDK_HOME/doc/html/index.html

Using Debugging, Alarms, Statistics, and Configuration
The Convergent Charging Controller SDK includes supporting functions that enable
you to add debug statements to your code, define and raise alarms, define and record
statistics, and access the configuration file.

Using Debugging Statements
To turn on all of the debugging output for any program, run the following commands
before starting the program:

Chapter 2
Accessing the API Documentation

2-8

DEBUG=all
export DEBUG

For slightly less output, you can run the following commands instead. The std flag sets all
debug flags except for those having the highest volume.

DEBUG=std
export DEBUG

You can add debug statements throughout your code to assist in tracing and debugging.

To implement debugging in your code, do the following:

1. Include the cmnDebugSDK.h file.

2. Choose a debug section by defining the DEBUG_SECTION variable in the Makefile.

3. Call the cmnDebug_SECTION_FLAG() function to make this debug section available.

4. Add IDOUT and DOUT statements to write debug output. The IDOUT statement indents
the subsequent output stream until the end of the current scope.

The following code illustrates these steps and writes out the name of the function and a line
of debug output:

#include <cmnDebugSDK.h>

cmnDebug_SECTION_FLAG();

someFunction() {
 IDOUT << "someFunction()" << std::endl;

 // Do something
 ...

 // Log some debug output
 DOUT << "Did something" << std::endl;
}

SDK debug output is distinguished from Convergent Charging Controller product output with
a prefix of SDK, as shown in the following example:

acsEngine.c 503 [PID] Engine acsEngineProcessCall: Call macro node processor
customFile.cc 4 [PID] SDKsection someFunction()
customFile.cc 20 [PID] SDKsection Did something

The two lines output from SDKsection require that the following line has been added to the
Makefile:

DEBUG_SECTION=section

The following sections provide additional details.

Using Debug Sections
The SDK API implements the concept of debug sections, which marks all debug messages,
either explicitly or implicitly, with a DEBUG_SECTION flag. The DEBUG_SECTION flag
allows you to turn on or turn off debug output at runtime by debug sections. For example, you
could turn on debug output only for the section ACS_Chassis.

The software writes each line of debug to a particular section, which you have either defined
explicitly or else using the DEBUG_SECTION make variable by default. At runtime, the

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-9

operator can control which lines of debug are actually output by setting the DEBUG
environment variable. Each line of code that generates debug output will only write it
out if the relevant section is switched on by way of the DEBUG environment variable.

The DEBUG environment variable is always read before programs start, that is, before
the function main() is called. Consequently, you can set $DEBUG to a comma
separated list of debug section names to turn on debug output for those sections. The
following line shows an example:

DEBUG=misc, myDebugSection

When assigning debug section names, it is a good practice to use the format
PROGRAM_SUBSYSTEM for the flag. For example, for the program ACS and the
subsystem Chassis, use the flag ACS_Chassis, as in DEBUG_SECTION=ACS_Chassis.

If you want multiple subsections, you can append to the name, for example,
ACS_Chassis_Config. For programs, use the program name, such as
acsStatsMaster.

The macros in Table 2-5 might be of interest.

Table 2-5 Debug Macros

Macro Description

cmnDebug_SECTION_INIT(); You must initialize C debug flags by hand because C does not
allow global variables to be initialized to the results of a
function call. Place this in main() or another function.

cmnDebug_INIT(name) Use this (or cmnDebug_SECTION_INIT()) on HP-UX to
initialize debug flags by hand. Global variables in shared
libraries are not initialized when the initializer is a function call.
Also use to initialize a debug section inside a function that
gets called at startup time or in a shared library. Running
cmnDebug_INIT(name) on a flag that is already initialized has
no effect.

cmnDebug_FLAG(name) Initialize a debug section inside C++ source files in global
scope.

cmnDebug_USE() To use another debug flag that is not declared in the current
file. If you use this inside a C++ namespace, the flag must
also be defined inside the same namespace.

You can override DEBUG_SECTION in a C or C++ source file as shown in the
following example:

#undef DEBUG_SECTION
#define DEBUG_SECTION SMS_Replication_filenames

You can discover the debug sections declared in an executable or library by searching
for the string cmnDebug_FLAG. The following commands show how to do this.

strings ./myApp | grep cmnDebug_FLAG

Creating Debug Output
To create debug output using the C++ cout style interface, use the DOUT and IDOUT
statements as shown in the following example.

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-10

DOUT << "read " << numBytes << " bytes from " << myName << std::endl;
IDOUT << "Entering new code chunk: " << name << std::endl;

IDOUT indents all output lines until the end of scope. All output goes to the same place.

The following output statements allow you to override the DEBUG_SECTION.

SDOUT(ACS_Chassis_details) << "read " << numBytes << " bytes from " << myName <<
std::endl;
SIDOUT(ACS_Chassis_details) << "Entering new code chunk: " << name << std::endl;

Like IDOUT, SIDOUT indents all output lines until the end of scope.

Use these statements to produce hex dumps of memory.

DBGMEM(pointer, length);
SDBGMEM(ACS_INAP_Messages)(pointer, length);

SDBGMEM allows you to override the DEBUG_SECTION flag.

Using Display Options
By default, the debugging output statements prefix each line with the current date and time,
the source filename, the source file line number, and the process ID.

You can use the pseudo debug flags shown in Table 2-6 to specify which values to include.

Table 2-6 Pseudo Debug Display Flags

Pseudo Debug Flag Description

display:name Displays the program name registered with the
cmnErrorSetProgram() function, which is off by default

display:date Displays the date in YYYY/MM/DD HH:MM:SS format

display:file Displays the source filename

display:line Displays the source file line number

display:pid Displays the process ID

display:section Displays the debug section flag name

display:all Displays all of the above

You can prefix the display value with '-' to turn the value off. The following example keeps the
process ID from being displayed by myApp.

DEBUG=display:-pid
./myApp

Logging Alarms
The SDK provides the functions shown in Table 2-7 to use in conjunction with logging alarms.

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-11

Table 2-7 Logging Alarm Functions

Function Description

cmnErrorSetProgram(const char * name) Registers the program name to use when
logging alarms.

const char* cmnErrorGetProgram() Returns the name of the program previously
registered by cmnErrorSetProgram() or
cmnError if no name has been registered.

int cmnAlarmSDK (int severity, unsigned char
appID, unsigned alarmTypeID, const char
*const format ...

)

Logs an error with alarmTypeID using variable
parameter format.

The cmnAlarmSDK() function prefixes the error text with the value of alarmTypeID,
which is associated with a specific error. The alarmTypeID parameter is the last four
digits of the full alarm type ID , the value of which is in the range allocated for SDK
applications, and is generated based on the application ID (appId) and the
alarmTypeID parameter. It is in the form <SMS Application ID><alarmTypeId>. The
SMS Application ID is specified by the appId argument, and will be 9xx where xx is the
application ID. Custom applications use application IDs in the range 900-999.

For example, the following call to cmnAlarmSDK():

cmnAlarmSDK(LOGGED_ERROR, 7, 1234, "There was a problem");

produces an error message like the one in the following example.

ERROR: {9071234} SDK: There was a problem

Note that alarms generated from custom SDK components are distinguished from
product alarms with the string "SDK".

The severity argument specifies the severity of the error message using one of the
following enumerators: LOGGED_NOTICE, LOGGED_WARNING, LOGGED_ERROR,
LOGGED_CRITICAL, LOGGED_CLEAR.

You must also define alarms in the SMF_ALARM_DEFN table, which is a database
table that describes all the different types of alarms that can be generated by the
system and gives information about the cause and what to do. The
SMF_ALARM_DEFN table definition is shown in Table 2-8:

Table 2-8 SMF_ALARM_DEFN Table Definition

Column Name Data Type Description

ALARM_TYPE_ID NUMBER(9) The unique identifier for the
alarm

DEFAULT_EVENT_TYPE NUMBER(2) Default value of EVENT_TYPE
column.

DEFAULT_PROBABLE_CAUSE NUMBER(4) Default value of
PROBABLE_CAUSE column.

DEFAULT_SEVERITY NUMBER(1) Default value of SEVERITY
column.

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-12

Table 2-8 (Cont.) SMF_ALARM_DEFN Table Definition

Column Name Data Type Description

DEFAULT_SPECIFIC_PROBLEM VARCHAR2(256) Default value of
SPECIFIC_PROBLEM column.

DEFAULT_RECOMMENDED_ACTION VARCHAR2(1000) Default value of
RECOMMENDED_ACTION
column.

DEFAULT_ADDITIONAL_TEXT VARCHAR2(1000) Default value of
ADDITIONAL_TEXT column.

EVENT_TYPE NUMBER(2) Helps categorize the alarm,
allowing quicker identification
of the probable cause and
recommended action.The
Event Type is attached to alarm
instances by the alarm
definition and may be changed
as required.

PROBABLE_CAUSE NUMBER(4) Displays the TMN standard
probable causes. It is
congruent with the association
between event type and
probable cause specified in the
TMN recommendations (see
ITU-T M.3100).

SEVERITY NUMBER(1) X.733 EFM severity:

0 (undefined) (only used by
alarm_type_id 0 and -1)

1 Cleared

2 Indeterminate

3 Critical

4 Major

5 Minor

6 Warning

SPECIFIC_PROBLEM VARCHAR2(256) The specific identification of
the fault.

RECOMMENDED_ACTION VARCHAR2(1000) The recommended action to
resolve all instances of this
type of alarm.

ADDITIONAL_TEXT VARCHAR2(1000) Any additional information
about this type of alarm

PRESENT_TO_AM NUMBER(1) Indicates whether or not the
alarm can be viewed in the
SMS alarm management
screens (viewable)

PRESENT_TO_AR NUMBER(1) Indicates whether or not the
alarm can be presented to the
alarm relay daemon (relayable)

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-13

Table 2-8 (Cont.) SMF_ALARM_DEFN Table Definition

Column Name Data Type Description

AUTOCLEAR_PERIOD NUMBER(10) The auto clear period
determines how long (in
minutes) an alarm will be
available in the Alarm tab,
before it is automatically
cleared by smsAlarmManager.

REGULAR_EXPRESSION VARCHAR2(512) Regular expression for this
alarm, if any.

NOTES VARCHAR2(1000) Any additional notes about this
type of alarm.

The DEFAULT_... columns are only used when you edit an alarm definition in the
screens and then press the Reset button. This resets the alarm definition back to the
original values, as specified by the DEFAULT_... columns.

You can find additional information about alarms in the Service Management System
User's Guide and the Service Management System Technical Guide.

Recording Statistics
To record statistics in your code, do the following:

1. Include the smsStatsSDK.h file in your code.

2. Call the smsRecordStats() function to record statistics for a given event.

The following example illustrates these steps:

#include <smsStatsSDK.h>

someFunction() {
 // Do something
 ...

 // Record the event
 smsRecordStats("APP", "NEW TRANSACTION", 1);

}

The smsRecordStats() function has the following parameters

• application is the name of the application recording the statistics

• measurement is the name of the measurement or statistic to increment

• delta is the increment that is being added to the measurement

You must first define the statistic in the SMS_STATISTICS_DEFN table, which has the
columns described in Table 2-9:

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-14

Table 2-9 The SMS_STATISTICS_DEFN Table

Column Name Description

STATISTIC_ID A string that specifies the name for the statistic

APPLICATION_ID The name of the application that generates the statistic

DESCRIPTION A description of the statistic. For example, total calls to feature node
ABC.

PERIOD The measurement period in seconds. This is the interval at which the
measurement will be collected.

COM A short code name for the statistic. For example, sdkCall.

Accessing the Configuration File
The SDK enables you to access and read values from the configuration file, which defaults
to /IN/service_packages/eserv.config.

Configuration is accessed using a Config object, which contains a hierarchical tree of
ConfigValue objects.

The following example shows how to access the configuration file from the command line,
using the Config::standard() function.

#include <cmnConfigSDK.h>

main(int argc, char **argv) {
 cmn::cfg::Config *configFile
 = cmn::cfg::Config::standard(argc, argv);

 std::unique_ptr<cmn::cfg::Value> ourSection;
 try {
 ourSection = std::unique_ptr<cmn::cfg::Value>(
 configFile->get("CustomApp.controlAgent"));
 } catch (cmn::cfg::Exception &e) {
 cmnAlarmSDK(LOGGED_ERROR, 0, 1005, "Cannot read config");
 }

 config.serviceKey = ourSection->get("serviceKey", 123);
 cmnAlarmSDK(LOGGED_NOTICE, 0, 1002, "serviceKey = %lld",
 config.serviceKey);

 ...

}

This shows how the configuration file is first read into a Config object using the
Config::standard() function, then individual ConfigValue objects are extracted using the
get(path) function.

For the discussion below, assume a sample section in the configuration file as follows:

customApp = {
 serviceKey = 123

 plugins = [
 "library1"

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-15

 "library2"
 "library3"
]

 controlAgent = {
 timeout = 10
 serviceKey = 45
 }
}

Once this configuration file has been read, elements of the configuration can be
retrieved using the get() function, for example:

ConfigValue &controlAgent = config.get("customApp.controlAgent");

It is possible that the requested setting is not configured in the eserv.config file, in
which case an exception will be thrown, which the code should take into account, for
example:

try {
 ConfigValue &controlAgent = config.get("customApp.controlAgent");
 } catch (cmn::cfg::NotFound &e) {
 cmnAlarmSDK(LOGGED_ERROR, 0, 1001, "No customApp.controlAgent configuration
section");
 return false;
 }

Each ConfigValue is either a single configuration setting in the eserv.config file, such
as the following example:

serviceKey = 123

or an array of values like this one:

plugins = [
 "library1"
 "library2"
 "library3"
]

or a map, such as the one in this example:

controlAgent = {
 timeout = 10
 serviceKey = 45
}

An array of values is represented as a cmn::cfg::ArrayValue. Each of the elements of
the array can be accessed using the [] operator, for example:

ConfigValue &firstPlugin = plugins[0];

A map of values is represented as a cmn::cfg::MapValue. Each of the elements in the
map can be accessed using the [] operator, for example:

ConfigValue &timeout = controlAgent["timeout"];

The get() function can also be used to select a particular setting from a map.

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-16

Once a ConfigValue has been retrieved, it needs to be converted to the expected type using
the to<Type>() functions. Because the operator may have configured a configuration setting
to be the wrong type, it is possible that an exception will be thrown when doing this
conversion, so the code needs to take this into account, as shown in the following example:

 try {
 int timeoutValue = timeout.toInt();
 } catch (cmn::cfg::WrongType &e) {
 cmnAlarmSDK(LOGGED_ERROR, 0, 1002, "The customApp.controlAgent.timeout setting is
not an integer");
 return false;
 }

If a configuration setting has a default value, it is not necessary to check for its presence or to
specify the conversion explicitly, for example:

int timeoutValue = controlAgent.get("timeout", 10);

Note that a WrongType exception will still be thrown if the setting has been configured with a
value of the wrong type.

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

2-17

3
Creating Service Loaders

This chapter describes how to create a custom service loader using the Oracle
Communications Convergent Charging Controller Software Development Kit (SDK).

About Service Loaders
A service loader, which physically is a shared library that is loaded by slee_acs, is the part of
Advanced Control Services (ACS) that is responsible for initializing the right service for a call
and loading its control plan, profiles, and so on, if they are required. A service loader,
however, is not required to execute a control plan; it can perform all of the service control
logic itself.

A service loader also acts as a mediation layer between the inbound SLEE interface and the
service. The service loader also performs the final manipulation of data that is returned to the
network interface when a triggering interface sends back a network event.

Convergent Charging Controller includes the following set of system service loaders that
cannot be modified:

• Advanced Control Services (ACS)

Allows service providers to define enhanced call interaction and is able to provide a
variety of common call routing services. For more information, see Advanced Control
Services Technical Guide.

• Virtual Private Network (VPN)

Provides a virtual private network with user interfaces on industry-standard platforms. For
more information, see Virtual Private Network Technical Guide.

• Charging Control Services (CCS)

A pre-paid and post-paid service that allows customers greater flexibility and control over
their billing methods and furnishes customers with an adaptable range of services. For
more information, see Charging Control Services Technical Guide.

• Messaging Manager Service (XMS)

A service library that specializes in handling short messages.

• Subscriber Event Service (SES)

Enables service providers to send text messages to roaming subscribers when they roam
in and out of their networks. For more information, see the Subscriber Event Service
User's and Technical Guide.

Although you cannot modify these system service loaders, you can extend their functionality
by defining custom service loader extenders. A service loader extender extends an existing
product-based service loader by supplying one or more functions that are called after those in
the product-based service loader.

Furthermore, you can create your own custom service loaders to manipulate information
contained within the InitialDP according to your specific requirements, or to load a control
plan according to your own business rules.

3-1

The InitialDP is the Intelligent Networking Application Part (INAP) request that a
control agent, or external network element, sends to slee_acs to trigger processing for
a new session or event, such as a voice call, data session, or SMS message.

Creating a Custom Service Loader
Service loaders are dynamically loaded libraries that are configured into a slee_acs
instance at execution time. Use the SLEE configuration to steer a network originated
session towards the service loader that has been written to deal with that network
trigger.

Follow these steps to create a new service loader for slee_acs:

1. Determine the service key values in InitialDPs that will trigger the service loader.
These values can come either directly from the network by way of the TCAP
interface or through a control agent.

2. Configure the service key values within the SLEE configuration file in /IN/
service_packages/SLEE/etc/SLEE.cfg.

Note that comments at the beginning of the SLEE.cfg file describe how to
configure its entries.

3. Assign service key values to a new service name within the SLEE configuration:

The following line in SLEE.cfg, for example, maps service key 70 to a service
called SDK_SERVICE:

SERVICEKEY=INTEGER 70 SDK_SERVICE
4. Map the service name to the name of a specific slee_acs application name that

will have the new service loader configured to link with it. For example, the
following line specifies that the SDK_SERVICE is handled by the slee_acs
application.

SERVICE=SDK_SERVICE 1 slee_acs SDK_SERVICE

5. Map the service name to the name of the service loader's shared library in the
file /IN/service_packages/eserv.config, which allows you to specify multiple
functions to call.

Note:

You can also use the legacy method of mapping the service name to the
service loader's shared library in the /IN/service_packages/ACS/etc/
acs.conf file. This method is still supported but it does not allow you to
specify multiple functions to call.

6. From the shell that is executing the slee_acs instance, enter the following
command to set the LD_LIBRARY_PATH environment variable:

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/IN/service_packages/SLEE/lib:/IN/
service_packages/ACS/lib:directory
export LD_LIBRARY_PATH

where directory is the directory where the custom service loader library has been
installed.

Chapter 3
Creating a Custom Service Loader

3-2

7. Develop a shared library that includes the appropriate function entry points.

The following sections describe the functions that you can implement within a custom service
loader. The ACS chassis invokes these functions at appropriate times during initialization and
during the call flow. The subsections within each entry point function represent the processing
steps that the service loader can perform at that point.

You can implement the following functions within your custom service loader for the ACS
chassis to invoke:

• acsChassisInitSL()

• acsChassisLoadService()

• acsChassisPreCTR()

• acsChassisPreETC()

• acsChassisPrePOR()

• acsChassisCallTerminated()

acsChassisInitSL()
The ACS chassis invokes acsChassisInitSL() when it loads the shared library at startup time.
You can use this function to initialize global variables and read configuration tables and files.

In the following example, the acsChassisInitSL() function simply displays a message,
indicating the function has been called, and returns a value of true:

extern "C" u_int32 acsChassisInitSL() {
 DOUT << "sdkService: acsChassisInitSL(): Initial method called by service load
er" << std::endl;

 return true;
}

acsChassisLoadService()
The ACS chassis invokes the acsChassisLoadService() function at the beginning of a new
session, call, or event, that the network starts. You can use this function to perform the
following tasks in your service loader:

• Perform processing that is specific to the service name, which is set in the SLEE
configuration.

For an example of the acsChassisLoadService() function, see the
file, $CCC_SDK_HOME/example/sdkServiceLoader/example1/
sdkServiceExample1.cc

• Normalize numbers.

The numbers that you receive from the network interface, contained within the InitialDP,
are not normalized; they are identified by a Nature of Address (NoA) field and a digits
field. During control plan processing, numbers are normalized; only the digits are used so
these must contain sufficient information to fully identify the number. Usually this will be
an E.164 number, which is generally an international telephone number.

Normalization and denormalization rules can be configured per service name within the
ACS configuration file. For information on configuring these rules, see the Advanced
Control Services Technical Guide.

Chapter 3
Creating a Custom Service Loader

3-3

The following example shows how to extract a number and normalize it:

char inCalled[DNODE_TN_MAX_SIZE];
char outCalled[DNODE_TN_MAX_SIZE];
u_int16 inNoA, outNoA;
ctd_getDigits(callInfo, ctd_called_num, inCalled);
inNoA = ctd_getNoA(callInfo, ctd_called_num);
if (acsNOANormalise(inNoA, inCalled, &outNoA, outCalled, DNODE_TN_MAX_SIZE))
{
 // Store the normalised number in the Normalised Called Number buffer
 ctd_setDigits(callInfo, ctd_normCalled_num, outCalled);
 ctd_setNoA(callInfo, ctd_normCalled_num, outNoA);
} else {
 cmnAlarmSDK(LOGGED_ERROR, 0, 2002, "Unable to normalise called
number");
}

You must decide which number fields your service will normalize and use the
same principle for each one, or omit normalization altogether.

• Set up service-specific data.

Depending on the operation, you might want to store service-specific data in an
ACS memory area and access it later when this or another service loader is
invoked again.

Follow these steps to store service-specific data in an ACS memory area:

1. Define a service-specific structure. The following code provides an example:

class CommonServiceData : public ccc::slee::ServiceDataAPI {
public:
 CommonServiceData();

 u_int32 status1;
 u_int32 status2;
 char data[100];
};

2. Call the storeServiceDataAPI() function to register an instance of the object as
shown here:

CommonServiceData *commonData = new CommonServiceData;
ccc::slee::storeServiceDataAPI(commonData);

3. Update the object as required. The following code provides an example:

customSLInfo->status1 = 1;
customSLInfo->status2 = 2;
strncpy(customSLInfo->data, “demo", 4);

See the acsChassisPrePOR() function for an example of retrieving the service-
specific data using retrieveServiceDataAPI().

• Check whether an emergency number is being dialed.

Use the acsChassisIsEmergencyNumber() function to check whether a dialed
number is an emergency number, as shown in the following example:

char toCheckForEN[DNODE_TN_MAX_SIZE];
ctd_getDigits(callInfo, ctd_called_num, toCheckForEN);
if (acsChassisIsEmergencyNumber(toCheckForEN)) {
 // Handle emergency number
}

Chapter 3
Creating a Custom Service Loader

3-4

• Extract values from extension fields in the InitialDP.

In some cases, you need to extract the extension parameters from the extension field of
the InitialDP to use in subsequent processing or to store for later use by another
component, such as a feature node. You can use the acsChassisGetGenericExtension()
function to retrieve the value of a given extension field from the InitialDP.

For an example of the acsChassisGetGenericExtension() function, see the file
sdkServiceExample1.cc in the following location:

$CCC_SDK_HOME/example/sdkServiceLoader/example1

• Set up profile fields that feature nodes can use or share.

A profile is an area of memory used to store data that is derived or retrieved by a service
loader.

ACS provides temporary storage that you can use in a custom service loader to store
information for use in a control plan.You can use ACS temporary-storage profile blocks to
store in memory the subscriber information, or any other information, that you retrieve
from the database.

The sample code below shows how to set up such a profile block:

setProfileField(0x09040101, myString);
setProfileField(0x09040102, myInteger);
setProfileField(0x09040103, (const void*)&myCustomData, sizeof(myCustomData));

You must allocate profile tags for custom applications as hexadecimal numbers in the
range 0x0aaa0000 to 0x0aaaFFFF where aaa is the hexadecimal representation of the
application ID. You can choose custom application IDs from the range 900 - 999, which is
0x384 - 0x3E7 in hexadecimal.

For more information, see the setProfileField() function in the acsChassisProfileSDK.h
file in the API reference documentation.

Note:

The master database for profiles is only updated at session end and not in mid-
session. This is a built-in performance feature. Therefore, if you update a tag
within the control plan, be aware that the tag will not be updated and replicated
in the database in mid-session.

You must determine the profile tag, which is the first parameter passed to
setProfileField(), and it must not conflict with any other profile tags that you need to
create. Oracle recommends that you define the profile tag within a header file that is
available to both the custom service loader and any custom feature node that might need
to retrieve the data from the profile. You also need to configure these profile tags in the
ACS configuration screens to make them available to control plans.

• Load the control plan based on name.

The acsGetControlPlan() function allows you to load a control plan to be executed by
ACS. For example:

std::string controlPlanName = "MyControlPlan";
if (not acsGetControlPlan(controlPlanName.c_str(), dbData, callInfo)) {
 // Set some release cause chosen to indicate "no control plan"
 con_setReleaseCause(outData, 1);

Chapter 3
Creating a Custom Service Loader

3-5

 return RELEASE;
}

acsChassisPreCTR() and acsChassisPreETC()
The acsChassisPreCTR() function enables you to control FurnishChargingInformation
(FCI) and SendChargingInformation (SCI) that is sent with outbound Connect To
Resource (CTR) or ReleaseCall operations. The acsChassisPreETC() function
enables you to control FurnishChargingInformation and SendChargingInformation that
is sent with outbound EstablishTemporaryConnect (ETC) operations.

FurnishChargingInformation and SendChargingInformation are INAP operations that
you can send from the SLC to the service switching point (SSP). You define the
content of the data depending on the customer's requirements. It is defined as an
operator-specific octet string.

The FurnishChargingInformation operation allows you to control call data records that
the SSP produces. One example could be a customer who has a custom service
loader that requires adding a list of played announcements and the number of
connection attempts made to the AMA record that the SSP produces.

The SendChargingInformation operation mainly influences how much the SSP
charges, if the SSP is doing the charging. For example, for a customer who has a
friends and family service, SLC responds to the InitialDP operation for a normal call
with Continue, but for a friends and family call, it responds with
SendChargingInformation.

You can also call the acsChassisPrePOR() function to send FCI and SCI. See
"acsChassisPrePOR()" for more information.

acsChassisPreCTR()
The acsChassisPreCTR() function is defined in the service-loader.h file and allows
you to specify the FCI contents in the outgoingCallInfo_t structure.

The function is called by slee_acs in the following way before sending CTR operations:

1. The slee_acs process calls acsChassisPreCTR() when it needs to send a Connect
or ReleaseCall operation.

2. The acsChassisPreCTR() function calls one or both of the following sets of
functions:

• The con_setDoWeFCI() and con_setFCI() functions to specify FCI contents

• The con_setDoWeSCI() and con_setSCI() functions to specify SCI contents

3. When the acsChassisPreCTR() function returns, the slee_acs process sends
either the FCI or SCI operation or both. Then slee_acs sends the CTR operation.

You declare the acsChassisPreCTR() function in the following way:

extern "C" void acsChassisPreCTR (
 callTelephonyData_t *callInfo,
 outgoingCallInfo_t *outData,
 acsEngineContext *engineFields);

The parameters have the following definitions:

Chapter 3
Creating a Custom Service Loader

3-6

• The callInfo parameter stores chassis information about the call, which is derived from
the IDP. The callinfo parameter is a pointer to an instance of the callTelephonyData_t
class. You can obtain access to this information through the callTelephonyData_t getter
and setter functions.

• The outData parameter sets the information to return to the network. The outData
parameter is a pointer to an instance of the outgoingCallInfo_t class. You can obtain
access to this information through the outgoingCallInfo_t getter and setter functions.

• The engineFields parameter stores information about the state of an individual call while
it is being processed by the engine.

acsChassisPreETC()
The acsChassisPreETC() function is defined in the service-loader.h file and allows you to
specify the FCI contents in the outgoingCallInfo_t structure.

The function is called by slee_acs in the following way before sending ETC operations:

1. The slee_acs process calls acsChassisPreETC() when it needs to send an
EstablishTemporaryConnect operation.

2. The acsChassisPreETC() function calls one or both of the following sets of functions:

• The con_setDoWeFCI() and con_setFCI() functions to specify FCI contents

• The con_setDoWeSCI() and con_setSCI() functions to specify SCI contents

3. When the acsChassisPreETC() function returns, the slee_acs process sends either the
FCI or SCI operation or both. Then slee_acs sends the ETC operation.

You declare the acsChassisPreETC() function in the following way:

extern "C" void acsChassisPreETC (
 callTelephonyData_t *callInfo,
 outgoingCallInfo_t *outData,
 acsEngineContext *engineFields);

The parameters have the following definitions:

• The callInfo parameter stores chassis information about the call, which is derived from
the IDP. The callinfo parameter is a pointer to an instance of the callTelephonyData_t
class. You can obtain access to this information through the callTelephonyData_t getter
and setter functions.

• The outData parameter sets the information to return to the network. The outData
parameter is a pointer to an instance of the outgoingCallInfo_t class. You can obtain
access to this information through the outgoingCallInfo_t getter and setter functions.

• The engineFields parameter stores information about the state of an individual call while
it is being processed by the engine.

acsChassisPrePOR()
The prePOR part of this function's name stands for pre-point-of-return, indicating that it allows
the service loader to do something at the last minute, such as denormalize a number, or add
an additional bit of information to the outgoing message or event.

ACS calls acsChassisPrePOR() when a feature node within the control plan requests a
specific network action or when acsChassisLoadService() returns a response that causes a
specific network action.

Chapter 3
Creating a Custom Service Loader

3-7

You can use the con_getPORToAttempt(outData) function to see which type of INAP/
TCAP action the feature node sends to the network.

You can override the control plan request by setting the acsChassisPrePOR()
function's return value. See acsPrePostProcessingReturn_t in the
acsServiceEntryAccessSDK.h file in the SDK API reference documentation for
possible return values.

For an example of the acsChassisPrePOR() function, see the file $CCC_SDK_HOME/
example/sdkServiceLoader/example1/sdkServiceExample1.cc.

The following sections describe some of the tasks that you might perform in the
acsChassisPrePOR() function.

Denormalization
If a CONNECT request is to be sent back to the network, it is standard practice to first
denormalize the numbers in the operation. This does not have to be done if other
feature nodes have previously denormalized the numbers or if the service loader
performs service-specific processing on the numbers.

Denormalization is usually required because the ACS control plan engine expects
numbers in normalized form, but INAP operations expect numbers in denormalized
form; that is, NoA and digits. Typically, a normalized number would be in the full E.164
international format while a denormalized number might be in the form it's used within
an area code. For example, 447880555555 would be the normalized format of a
United Kingdom phone number, while an NoA value of 2 (unknown) and the digits
07880555555 could be the denormalized version of the number.

You can denormalize numbers by using functions on the outData argument that
acsChassisPrePOR() receives, as seen in the following example:

// Denormalise Destination Routing Address
 char inDRA[DNODE_TN_MAX_SIZE];
 char outDRA[DNODE_TN_MAX_SIZE];
 u_int16 outNoA;
 con_getDigits(outData, con_normDRA_num, inDRA);
 acsNOADenormalise(acsNOANotApplicable(),
 inDRA,
 &outNoA,
 outDRA,
 DNODE_TN_MAX_SIZE);
 con_setDigits(outData, con_DRA_num, outDRA);
 if (outNoA != acsNOANotApplicable()) {
 con_setNoA(outData, con_DRA_num, outNoA);
 }

Setting up Service-Specific Data
In the acsChassisPrePOR() function you can also examine or access data that was
previously set up by the acsChassisLoadService() function. Likely you will access
rather than store service-specific data because you will most likely populate a custom
field or extension in the outgoing request based on data that you have already set up.

The following code shows how to examine and modify data using the service-specific
type CommonServiceData as shown in the acsChassisLoadService() example. The
code sets the somefield element, which commonData points to, to a value of 99.

Chapter 3
Creating a Custom Service Loader

3-8

CommonServiceData *commonData =
 dynamic_cast<CommonServiceData*>(ccc::slee::retrieveServiceDataAPI());
if (commonData) {
 commonData->someField = 99;
}

Setting up Extension Information
Typically, the information you populate an extension with corresponds with information you
got from service-specific data, or from temporary storage or profile tags that the service
loader or a feature node previously populated.

For some network interfaces, the service loader can use the extension field that is sent as
part of the INAP or TCAP CONNECT operation to transport information that the interface can
use to govern functionality or to send information back to the network in a protocol-specific
form. Similar to retrieving information within the InitialDP, to use this functionality, you must
know the tag values and types that the interface uses. You can obtain these tag values and
types in the acsChassisLoadService() function.

The following example sets up an extension field to contain a string value of "50" for a
parameter with the tag value of 100.

// Find an empty extension
for (int32 j = 0; j != MAX_OUTGOING_EXTENSIONS; ++j) {
 int bLength = 2048;
 unsigned char buffer[bLength];
 unsigned int tag = 0;
 if (acsChassisGetGenericExtension(outData, j, tag, buffer, bLength)) {
 if (tag == 0) {
 // ... and write the new extension to it
 acsChassisSetGenericExtension(outData, j, 100, "50");
 }
 }
}

General Setup of Outgoing Information
You can set up the cause of a release operation by calling the con_setReleaseCause()
function.

You can setup the destination routing address for a CONNECT operation by using the
con_setDigits() and con_setNoA() functions as shown in the following example:

con_setDigits(outData, con_normDRA_num, "12345678");
con_setNoA(outData, con_normDRA_num, 3);

You can set up cut-and-paste parameters using the con_setCutAndPasteFlag() and
con_setCutAndPasteNumDigits() functions.

Sending FurnishChargingInformation or SendChargingInformation
You can call the con_setDoWeFCI() and con_setFCI() functions to specify
FurnishChargingInformation or call the con_setDoWeSCI() and con_setSCI() functions to
specify SendChargingInformation contents. If so, the FurnishChargingInformation or
SendChargingInformation, or both, is sent before the Connect operation.

Chapter 3
Creating a Custom Service Loader

3-9

Note:

To have the functions send an FCI, you must also set the
sendFciWithReleaseCall parameter to 1 in the acs.conf file. For more
information, see Advanced Control Services Technical Guide.

See "acsChassisPreCTR() and acsChassisPreETC()" for more information on
FurnishChargingInformation and SendChargingInformation.

acsChassisCallTerminated()
You can call acsChassisCallTerminated() from within a service loader to perform post-
call cleanup when a call has been terminated.

Any service-specific data that was created within the acsChassisLoadService()
function is available for you to use, for example, to generate a custom Event Detail
Record.

For an example of the acsChassisCallTerminated() function, see the following file:

$CCC_SDK_HOME/example/sdkServiceLoader/example1/
sdkServiceExample1.cc

Defining a Custom Service Loader Extender
You can use the example service loaders as service loader extenders by configuring a
service as follows in the eserv.config file:

ACS = {
 ServiceEntries = [
 {
 AddressSources = { }
 MinSleeEventSize = 2048
 ServiceName = "SDK_SERVICE"
 Methods = {
 acsChassisCallTerminated = [
 "libsdkServiceExample1.so"
]
 acsChassisPrePOR = [
 "libsdkServiceExample1.so"
]
 acsChassisInitSL = [
 "ccsSvcLibrary.so"
 "libsdkServiceExample1.so"
]
 acsChassisLoadService = [
 "ccsSvcLibrary.so"
 "libsdkServiceExample1.so"
]
 }
 }
]
}

These entries cause ACS to do the following:

Chapter 3
Defining a Custom Service Loader Extender

3-10

• Run the standard CCS service loader's acsChassisLoadService() function, which does
the standard CCS product processing, such as looking up a subscriber, loading the
subscriber profile, determining a control plan, and so on

• Run the example service loader's acsChassisLoadService() function, which gets some
extension information out of the received InitialDP and then overrides the control plan

The example service loader, libsdkServiceExample1.so, is available in the SDK in
the $CCC_SDK_HOME/lib directory.

Chapter 3
Defining a Custom Service Loader Extender

3-11

4
Creating a Custom Feature Node

This chapter describes how to create custom feature nodes using the Oracle
Communications Convergent Charging Controller Software Development Kit (SDK).

About Feature Nodes
A feature node represents a unit of functional logic that you can include within an Convergent
Charging Controller control plan to implement a portion of the plan's overall logic flow.

The Advanced Control Services (ACS) component of Convergent Charging Controller
includes a set of default feature nodes that you can access to build a control plan within the
Convergent Charging Controller Control Plan Editor.

Other Convergent Charging Controller components such as Prepaid Charging, Messaging
Manager, and Number Manager also include feature nodes that you use to perform specific
operations. These operations include charging for a data session, sending an SMS or USSD
message, and performing a database lookup, for example.

The following are some Convergent Charging Controller components that include feature
nodes. You cannot modify these system feature nodes, but you can use them to build a
control plan:

• Subscriber Event Service (SES) enables service providers, or network operators, to send
text messages to roaming subscribers when they roam in or out of their network.

• Data Access Pack (DAP) provides the ability to send requests to external application
service providers (ASPs) and receive responses for further processing by the Service
Logic Controller.

• Open Services Development (OSD) enables Convergent Charging Controller to provide
control plans as a web service. Convergent Charging Controller supports generation of
WSDL (web services description language) files automatically based on control plans.
Convergent Charging Controller provides the WSDL to third parties such that the third
party platform knows how to generate and invoke a web services operation and,
consequently, a control plan on the Convergent Charging Controller system.

• Advanced Control Services (ACS) allows service providers to define enhanced call
interaction that is triggered when one or more of the following calls occur:

– Calls to specific dialed numbers (Service Numbers)

– Calls from specific calling numbers (CLI numbers)

– All calls triggered to a specified INAP service key

• Virtual Private Network (VPN) connects multiple locations with each network having its
own private numbering plan or mapping numbers in the private plan to the numbers
required to correctly route the call via the public switched telephone network (PSTN) or
mobile network. Additional processing can be done to further add value to the service

• Charging Control Services (CCS), which handles online charging

• Messaging Manager (XMS)

4-1

• Location Capability Pack (LCP), which provides location services that identify
where the mobile subscriber is

• Unstructured Supplementary Services Gateway (USSD GW), which is a control
agent that handles a mobile-initiated USSD conversation. For example, when a
mobile subscriber enters *200# on the phone and receives a menu and then
enters a number to select a menu option, the USSD Gateway handles this
interaction. It sends INAP requests to slee_acs to trigger control plan processing,
which defines the service logic.

You can also create a custom feature node to implement functional logic that is
specific to your business requirements.

About Creating Custom Feature Nodes
The process of creating a custom feature node consists of the following steps:

1. Defining the feature node and loading the definition into database tables.

2. Adding it to an ACS feature node set.

3. Creating the shared library.

4. Specifying the location of the shared library.

5. Creating the feature node image files.

Defining a Feature Node
Before you can use a feature node within the Control Plan Editor, you must first define
it and the parameters and functional branches that it offers.

You define your feature node in an XML file and load the definitions into the Service
Management System (SMS) database by running the acsMacroNodeInstaller utility.

Creating a Feature Node Definition
To define a feature node you create an XML file using the XML elements that Table 4-1
describes:

Table 4-1 Feature Node Definition Elements

XML Element Description

<MacroNodeDefinitions> The top-level element that contains all other elements.

<Nodes> Contains a <Node> element for each feature node you want to
define.

<Node> Contains the elements that define a specific feature node.

<Name> Specify a unique name for the feature node, which is stored
internally.

<FastKey> Specify the three character fast key identifier associated with
this node

<DefaultNodeName> Optional. Specify a default name for the node, such as an
abbreviated version of the value for <Name>. Defaults to the
value of the <Name> element, if not specified.

Chapter 4
About Creating Custom Feature Nodes

4-2

Table 4-1 (Cont.) Feature Node Definition Elements

XML Element Description

<DisplayName> Specify a user-friendly name, which can include spaces, that
is displayed in the Control Panel Editor in the Advanced
Control Services UI.

<Permission> The permission level required for a user to use this feature
node. Users and their permission levels are defined on the
Users tab of the ACS Customer screen in the ACS UI.

<Description> A description of the feature node

<Group> The name of the feature palette to which the feature node
belongs. The feature palette is the area of the Control Plan
Editor in the ACS UI that displays the feature node sets that
are available to the user.

<NodeVersion> Numeric version number, which allows multiple versions to be
supported. For example, if you add a parameter to the feature
node and assign the node version number 2, the code should
check the version number and substitute a default value for the
new parameter if it's an old version of the node.

<UsesTelephony> Specifies whether the node does any telephony operations.
More accurately, it specifies whether it requires that the main
dialog is still active. Value can be true or false and is case
sensitive. Defaults to false.

The Control Plan Editor imposes the rule that you cannot
connect an exit branch with TelephonyAllowed=false to a
subsequent feature node that has UsesTelephony=true.

<Parameters> Contains the <Parameter> elements for each parameter you
want to define.

<Parameter> Contains the <Name>, <Group>, <Type>, and <DefaultData>
elements that define a specific parameter.

<Name> The label attached to the parameter in the node GUI

<Group> The label or name of the parameter group in the GUI to which
this parameter belongs

<Type> Values: radiobutton; table; checkbox; integerfield; stringfield;
profilefield.

<DefaultData> The default data to assign to the parameter, if none is
specified.

<ExitBranch> Contains the <Name> and <TelephonyAllowed> elements that
define a specific exit branch for the feature node.

<Name> Name of the exit branch.

<TelephonyAllowed> Specifies whether the next feature node called can be one that
performs a telephony action. A value of true allows a
telephony action; false does not. The Control Plan Editor does
not allow you to follow a "no telephony" exit branch with a node
that implements a telephony action. For example, if you add a
branch that indicates the caller has hung up, you would specify
false for TelephonyAllowed. After that, you can't use a node
that performs telephony because the call has ended, but you
can still use nodes to complete the charging or send a
notification.

Chapter 4
Defining a Feature Node

4-3

Example: Feature Node Definition File
The following statements define a feature node named ExampleAttemptTerminate:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE MacroNodeDefinitions SYSTEM "nodeschema.dtd"[]>

<MacroNodeDefinitions>
<Nodes>
 <Node>
 <Name>ExampleAttemptTerminate</Name>
 <FastKey>EAT</FastKey>
 <DefaultNodeName>ExampleAT</DefaultNodeName>
 <DisplayName>Example Attempt Terminate</DisplayName>
 <Permission>1</Permission>
 <Description>Attempt to terminate call to either dialled number or
configured parameter</Description>
 <Group>Example</Group>
 <NodeVersion>1</NodeVersion>
 <Parameters>
 <Parameter>
 <Name>Number</Name>
 <Group>Number</Group>
 <Type>stringfield</Type>
 <DefaultData></DefaultData>
 </Parameter>
 </Parameters>
 <ExitBranches>
 <ExitBranch><Name>Success</Name><TelephonyAllowed>false</TelephonyAllowed></
ExitBranch>
 <ExitBranch><Name>Busy</Name><TelephonyAllowed>true</TelephonyAllowed></
ExitBranch>
 <ExitBranch><Name>RouteSelectFailure</Name><TelephonyAllowed>true</
TelephonyAllowed></ExitBranch>
 <ExitBranch><Name>Abort</Name><TelephonyAllowed>false</TelephonyAllowed></
ExitBranch>
 <ExitBranch><Name>Abandoned</Name><TelephonyAllowed>false</
TelephonyAllowed></ExitBranch>
 <ExitBranch><Name>NoAnswer</Name><TelephonyAllowed>true</TelephonyAllowed>
 </ExitBranch>
 <ExitBranch><Name>DisconnectLeg1</Name><TelephonyAllowed>false</
TelephonyAllowed>
</ExitBranch>
 <ExitBranch><Name>DisconnectLeg2</Name><TelephonyAllowed>false</
TelephonyAllowed></ExitBranch>
 <ExitBranch><Name>Error</Name><TelephonyAllowed>false</TelephonyAllowed></
ExitBranch>
 </ExitBranches>
 </Node>

Loading Feature Node Definitions
You load feature node definitions into the database by running the
acsMacroNodeInstaller utility. The acsMacroNodeInstaller command-line utility
reads a set of feature node definition parameters from the XML file that you created
and loads the definitions into the SMS database.

Chapter 4
Defining a Feature Node

4-4

The utility can create and delete feature node definitions, and update the definitions of
existing feature nodes.

Run the acsMacroNodeInstaller utility by using the following syntax:

acsMacroNodeInstaller {-install | -update | -uninstall}
 [-D destination_file] [-v] [-h | ?] XML_file

Where:

• -install installs the feature nodes defined in the XML file

• -update updates the feature nodes defined in the XML file

• -uninstall uninstalls the feature nodes defined in the XML file

• -D destination_file is the path and name of the debug file; for SQL only

• -v verbose mode

• -h or ? shows help for this command

• XML_file is the path and name of the XML feature node definition file that you created.

Adding the Feature Node to a Feature Set
For the procedure to add a feature node to a feature set, see the discussion on ACS
configuration in Advanced Control Services User's Guide. Only the ACS system administrator
can access the ACS Feature Sets screen.

Creating the Shared Library
You implement the logic of the custom feature node in a C++ shared library. The logic of the
feature node is implemented within a framework that enforces certain predictable interactions
with ACS and the Control Plan Editor. This framework is constructed through the use of
particular API functions. From a functional standpoint, the framework consists of the following
tasks:

• Initialization, in which the shared library registers any nodes that can be called within it

• Processing, which is managed through the implementation of a processor function that is
of type acsEngineFNProcessor.

This function can be called multiple times during control plan processing. The multiple
entries are typically handled by implementing what's called a state machine. A state
machine is an abstract model in which a computer program records its current state as
an integer and later uses the value of the integer to branch to a particular function to
perform the processing that's required at that point. For an example of this type of
processing, see "Tracking the State".

• Exit branches

A feature node normally exits through one of its branches so the next node in the control
plan can begin executing.

Initialization
All feature nodes must be part of a shared library that is configured to be loaded by slee_acs.
Initialization occurs when slee_acs starts up and calls the shared library's
sharedLibraryInit() function, which you implement to register the feature nodes that the

Chapter 4
Adding the Feature Node to a Feature Set

4-5

shared library contains. You register a feature node by calling the
acsEngineRegisterFNType() function. This function has two parameters, the first
identifies the node being registered by its fast key value, and the second specifies the
name of the callback function that is the node's entry point when it's invoked by the
control plan and also when a requested action has been completed.

If the node uses a node context, you must call the acsEngineRegisterFNTypeSize()
function to register its size. For more information about a node context, see "Using the
Node Context Block".

The following example, which you can find in the API reference documentation
(see $CCC_SDK_HOME/doc/html/index.html) implements the sharedLibraryInit()
function, which registers a feature node that has a fast key value of _NOD and a
callback function named processFunction(). Note that the underscore prefix for the
fast key is required. The sharedLibraryInit() function also calls
acsEngineRegisterFNTypeSize()to register the size of the node context. The
registration functions are called inside if statements to determine whether registration
occurred successfully. The sharedLibraryInit() function returns a value of 1 on
successful completion. Otherwise, it returns 0

extern "C" u_int32 sharedLibraryInit() {
 // Register first node
 if (not acsEngineRegisterFNType(acsEngineFastKey("_NOD"), processFunction)) {
 return 0;
 }
 // Register the node's context data size
 if (not acsEngineRegisterFNTypeSize(acsEngineFastKey("_NOD"),
sizeof(NodeContext))) {
 return 0;
 }

 // Register other nodes
 // ...

 return 1;
}

Processing
The callback function that a feature node registers against its fast key value must be of
type acsEngineFNProcessor. The ACS engine calls this function each time it
determines that the feature node has processing to perform. The following steps
summarize a typical interaction between the ACS engine and the feature node's
callback function:

1. The ACS engine enters the node for the first time, calling the node's processing
function.

2. The node requires an external action, sets up the action, and returns from the
processing function with the ACS_ENGINE_MACRO_STAY_HERE result.

3. The ACS chassis executes the action and passes control back to the node by
calling the process function again with the result of the action.

4. The node continues processing, performing more actions in the same way until it
finishes processing.

5. The node specifies an exit branch and returns ACS_ENGINE_MACRO_FOLLOW_BRANCH.

Chapter 4
Creating the Shared Library

4-6

Note:

As slee_acs processes only one call at a time, all other calls must wait while a
node's process() function is running. You must ensure, therefore, that you do not
perform any blocking actions or excessive calculations that would unnecessarily
delay returning execution to the ACS engine. Instead, you should perform such
processing by invoking a chassis action. For more information, see "Making a
Chassis Action Request".

Tracking the State
During interaction with the ACS engine, the feature node must keep track of its current state.
You can accomplish this by implementing a state machine, which is a mechanism that stores
the state of an operation at a particular point in time in an event-driven workflow.

To implement a state machine, use the acsEngineContext structure, defined in
acsEngineSDK.h, to store the node's current state. Use aec_setNodeState() and
aec_getNodeState()to access the state.

The following example illustrates how the main processing callback function can access
acsEngineContext to determine the node's current state.

// State functions
acsEngineFNProcessor nodeProcessStep1;
acsEngineFNProcessor nodeProcessStep2;
acsEngineFNProcessor nodeProcessStep3;

acsEngineFNProcessor *nodeStateFunctions [] = {
 nodeProcessStep1,
 nodeProcessStep2,
 nodeProcessStep3
};

u_int32 mainNodeProcessFunction(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 // Lookup and call the function appropriate to the current state
 return nodeStateFunctions[aec_getNodeState(context)](context,
 result,
 action,
 nodeContext,
 branch);
}

Here the return statement looks up the function appropriate to the current state in the
nodeStateFunctions array. The return statement could also be divided into three separate
statements as shown in the following example:

acsEngineFNProcessor *stateFn = nodeStateFunctions[aec_getNodeState(context)];
u_int32 processResult = (*stateFn)(context, result, action, nodeContext, branch);
return processResult;

Chapter 4
Creating the Shared Library

4-7

The following example shows the type of processing that would be done by one of the
functions that's called by the main processing callback function.

u_int32 nodeProcessStep1(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 // Do some processing and set up an external action
 // ...

 aec_setNodeState(context, acsEngineState2);
 return ACS_ENGINE_MACRO_STAY_HERE;
}

The last two lines here set the next processing state and return a result that indicates
that a chassis action is required. The processing state determines which function will
be called when control is returned to the node after the external action.

Making a Chassis Action Request
When a feature node performs an external action, it requests it from the ACS Chassis
and suspends execution until the Chassis returns the result. Table 4-2 lists the actions
that a node can request from the Chassis and also lists the files where the actions are
defined:

Table 4-2 ACS Chassis Actions

Actions Files

Charging acsActionsSDK.hh
Telephony acsChassisActionSDK.h for requests

acsChassisStatusSDK.h for responses

Notification acsNotificationProcessorSDK.h
Replication acsChassisActionSDK.h
Call-out GenericSendActionHandlerSDK.h

To invoke an action, the node sets up the request in the argument of the action's
function and returns a value of ACS_ENGINE_MACRO_STAY_HERE.

The Chassis executes the requested action and then calls the node's callback function
with the result.

For example, the node might want to request a retrieve-profile action and then move to
the next state to receive the result. In the following example, the code stores the state
that it has reached and then returns control to the part of ACS that called the process
function. Once ACS completes the chassis action, it calls the node's main process
function again, which looks at the current state to determine which function among
nodeStateFunctions to call.

// ...

 doRetrieveProfileAction(action, context);
 addRetrieveProfileTag(action, PROFILE_TEMPORARY_STORAGE, 0x3E90001);

Chapter 4
Creating the Shared Library

4-8

 aec_setNodeState(context, acsEngineState2);
 return ACS_ENGINE_MACRO_STAY_HERE;
}

When the callback function, mainNodeProcessFunction(), is called for the second time, it
calls nodeProcessState2(), which interprets the result of the action using the result
argument.

u_int32 nodeProcessStep2(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 if (getRetrieveProfileResultValid(result)) {
 acsProfileField *fieldPtr = aec_getProfileField(context, 0);
 if (fieldPtr) {
 std::string fieldValue;
 if (cmnBufferGetValue(fieldPtr->buffer, fieldPtr->length, fieldValue)){
 // Do something with the retrieved field
 }
 }
 }

Exiting
When the feature node finishes its operations, it exits and returns control to the control plan
by taking one of its defined branches.

The following example illustrates how to do this, setting branch returning the constant
ACS_ENGINE_MACRO_FOLLOW_BRANCH:

#define NODE_BRANCH_SUCCESS 0
#define NODE_BRANCH_FAILURE 1

u_int32 nodeProcessStep3(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 // Determine the outcome of the node processing
 // ...

 *branch = NODE_BRANCH_SUCCESS;
 return ACS_ENGINE_MACRO_FOLLOW_BRANCH;
}

Using the Node Context Block
At initialization time, the feature node can request the ACS engine to allocate a block of
memory that the node can use to keep track of its context between calls. The node requests
the block of memory and specifies its size by calling the acsEngineRegisterFNTypeSize()
function in sharedLibraryInit().

The ACS engine manages the context memory block so the node does not need to free it
when it has finished with it. The node does need to cast the memory block to the type that it
requires, however.

Chapter 4
Creating the Shared Library

4-9

In the following example, the node defines the context memory as a struct that is
made up of an integer and an array of ten characters. It then calls
acsEngineRegisterFNTypeSize() in sharedLibraryInit() to ask the ACS engine to
allocate the context block as sizeof(NodeContext).

struct NodeContext {
 int field1;
 char field2[10];
};

extern "C" u_int32 sharedLibraryInit () {
 ...
 // Register the node's context data size
 if (not acsEngineRegisterFNTypeSize(acsEngineFastKey("_NOD"),
sizeof(NodeContext))) {
 return 0;
 }
 ...
}

In the first processing function, nodeProcessStep1() defines context as a pointer of
type NodeContext and sets it to the value of nodeContext, a function parameter that
points to the node's context memory block. It then defines two local variables,
std::string param2 and paramOffset, which it uses to access the block's content.
The getMacroNodeParameter() function retrieves data from the block at the offset
specified by paramOffset into the location specified by the second parameter. The first
call loads field1 of NodeContext, while the second call and the following call to
strlcpy() load field2. Note that the first call to getMacroNodeParameter() also
increments paramOffset by the length of field1.

u_int32 nodeProcessStep1(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 NodeContext *context = (NodeContext *) nodeContext;

 std::string param2;
 u_int32 paramOffset = 0;
 getMacroNodeParameter(paramOffset, context->field1);
 getMacroNodeParameter(paramOffset, param2);
 strlcpy(context->field2, param2.c_str());

 ...
}

Specifying the Location of the Shared Library
After creating the shared library that contains the feature node's functional logic, you
must update the LD_LIBRARY_PATH environment variable to identify its location.
Usually, you start slee_acs using the following script or one like it:

/IN/service_packages/ACS/bin/slee_acs.sh

To add the location of a custom feature node library, modify the script to add the
library's location to LD_LIBRARY_PATH, as shown in the following example:

Chapter 4
Specifying the Location of the Shared Library

4-10

LD_LIBRARY_PATH=${LD_LIBRARY_PATH:}:<path to shared library>MyMacroNode.so

Creating the Feature Node Image Files
Feature nodes are represented in the Control Panel Editor by a graphic image. You must
create a graphic image to represent your new feature node and add it to the image folder
where the Control Panel Editor can access it. You can use the graphic tool of your choice to
create the image.

To create the graphic image and make it available to the Control Plan Editor:

1. Create an image that represents your feature node. The image must be 64 pixels high by
40 pixels wide. Name the image file FNnodename.png. The image will be used in the
main Control Plan Editor panel.

2. (Optional) Create a tooltip file in HTML format that describes the feature node. Name the
file TTfeatureNodeType.htm. This text will be displayed in the CPE feature node palette
when the cursor hovers over the node's image.

3. Place the image file in the following location on the Service Management System (SMS):

/IN/html/Acs_Service/images/

4. If you create a tooltip file, place it in the following location on the Service Management
System (SMS):

/IN/html/Acs_Service/helptext/Default/

Chapter 4
Creating the Feature Node Image Files

4-11

5
Creating a Custom Control Agent

This chapter describes how to create a custom control agent using the Oracle
Communications Convergent Charging Controller Software Development Kit (SDK).

About Control Agents
A control agent is a process that provides a bridge between a particular protocol and the
service logic being run by slee_acs. To provide the bridge, the control agent must maintain a
protocol-specific dialogue with some network component on one side while handling the
INAP interaction with slee_acs on the other side.

The SIP control agent (SCA) is a good example. SIP is a TCP/IP based, HTTP-like, protocol
for handling multi-media session control. The SCA provides the translation layer between the
SIP protocol and the native INAP protocol that the SLC supports internally. This allows the
SLC to act as an SIP proxy and implement complex services for VOIP applications, such as
VPN or prepaid charging.

The TCAP API provides the interface for a TCAP-based control agent to communicate with
another network element.

The INAP API provides the interface that the control agent needs to trigger ACS, by sending
and receiving the required INAP operations.

For TCAP-based protocols, the control agent receives a TCAP payload and uses its routines
to decode the payload before triggering ACS using an API. The agent receives messages
from ACS through an API and it can use these messages to build the payload to return in a
TCAP response; an appropriate API retrieves the TCAP payload and sends it. You can use
this to support specific versions of INAP, for example.

Assume, for example, that you want to integrate with a service switching function that does
not support a standard INAP protocol because it has custom or non-standard message flows
and parameters. The protocol is still encapsulated in standard TCAP. To support it you can
develop a custom control agent that extracts, interprets, and translates the non-standard
INAP protocol. Then you can use the Convergent Charging Controller INAP API to
communicate with ACS.

For non-TCAP-based protocols, you are responsible for writing the network facing transport
or code. However, you will still use the INAP API to send and receive messages to ACS as in
the case of the TCAP-based control agent.

SLEE Dispatcher
Both the INAP API and the TCAP API use the Service Logic Execution Environment (SLEE)
to communicate with other processes.

The slee::Dispatcher class and its associated slee::Transaction objects handle all
interaction with the SLEE. The slee::Dispatcher class checks for events when the Control
Agent's main loop requests it and passes them to the appropriate slee::Transaction
handler, or if necessary, creates a new transaction.

5-1

The slee::Dispatcher has a poll() function that checks for any new events and
needs to be called explicitly by the custom program. Each handler is an instance of the
slee::Transaction class and is associated with a particular SLEE dialog. A factory
object can create a new transaction for a new dialog.

The slee::TransactionFactory interface defines a factory for creating transactions of
a particular type. This factory can then be registered with the dispatcher as the factory
to use for a particular event type. Whenever the dispatcher receives an event on a
new dialog, it creates an inbound transaction using the associated factory.

The SDK provides the following base transaction types:

• acs::AcsSleeTransaction
• tcap::TcapSleeTransaction
• GenericSleeTransaction
As a control agent or call-out interface developer, you are responsible for deriving your
own transaction classes from one of these transaction types. Then call the
slee::Dispatcher::poll() function periodically to check for events and pass them to the
associated transaction instance.

The SDK TCAP API
For a description of the TCAP protocol, see the website:

http://www.itu.int/rec/T-REC-Q.771-199706-I/en
The SDK TCAP API provides the component and transaction sub-layers of the
protocol.

The tcap::TcapSleeTransaction object manages an incoming TCAP dialogue. To
provide behavior that is specific to your application, you must implement a class that is
derived from the tcap::TcapSleeTransaction class.

The control agent registers its transaction class using the
registerTransactionFractory() method, as shown in the following example.

using namespace ccc;

slee::Dispatcher dispatcher;
slee::TransactionFactory<CustomTcapTransaction> factory;
dispatcher.registerTransactionFactory(&factory);

Whenever the slee::Dispatcher receives a TC-BEGIN message on a new SLEE
dialogue, it creates an instance of this transaction class and passes all incoming
tcap::Primitives to it. The transaction class can send back its own primitives using
the tcap::TcapSleeTransaction::sendTcapPrimitive() function.

The TC-user communicates with the component sub-layer using primitives. The API
models this communication. Each primitive can be a request from the TC-user telling
the component sub-layer to perform some function, or it can be an indication from the
component sub-layer.

For example, the control agent can use the API to send an Invoke request primitive to
request an operation on the remote system. Once the remote system has performed
the operation, the control agent then receives a Result indication primitive.

Chapter 5
The SDK TCAP API

5-2

http://www.itu.int/rec/T-REC-Q.771-199706-I/en

Alternatively, the remote system might ask the control agent to invoke an operation, in which
case the control agent will receive an Invoke indication from the API and send back a Result
request.

The TCAP data classes provide the developer an interface that models the interaction
between a TC-user, the application that is using TCAP, and the component sub-layer defined
in ITU Q.771 or ANSI T1.114.1, the European and American versions of the TCAP protocol,
respectively.

For more information on ITU Q.771 see:

http://www.itu.int/rec/T-REC-Q.771-199706-I/en
Both dialogue and component-handling primitives are derived from a common
tcap::Primitive base class, that contains the following information:

• ITU / ANSI flag (type TcapProtocolVersion)

• Dialogue ID

Primitives can be either requests from the TC-user or indications to the TC-user. Any
parameter that is available in the request primitive has a setter and any parameter that is
available in the indication primitive has a getter. Use the setter functions when constructing a
request primitive. They let you set the various parameters of the primitive. Use the getter
functions to extract parameters from an indication primitive that the control agent receives.

The dialogue primitives request or indicate facilities of the underlying transport layer in
conjunction with controlling the dialogue or message flow. The component primitives handle
operations and replies, which are the content of the dialogue. These component primitives do
not require facilities from the underlying transport layer.

The SDK INAP API
For a description of the Intelligent Network Application Part (INAP) protocol standard, see the
following website:

http://www.telecomspace.com/ss7-in.html
Within the SDK API, the interaction with ACS for a single call is abstracted into the
ACSSleeTransaction interface class, which you implement to provide any behavior specific to
your application. The control agent creates an instance of this class when it wants to trigger
ACS. The Dispatcher then invokes the handleEvent() function of ACSSleeTransaction when
it receives an operation from slee_acs.

The ACSSleeTransaction class handles the dialogue primitives TC-BEGIN and TC-CONTINUE
transparently. It also passes each TC-INVOKE, TC-RESULT-L and TC-U-ERROR component
primitive to the corresponding receive function.

Your implementation of ACSSleeTransaction needs to define the following functions:

• acs::ACSSleeTransaction::receiveOperation()
• acs::ACSSleeTransaction::receiveResult()
• acs::ACSSleeTransaction::receiveError()
Similarly, it also can call these ACSSleeTransaction functions:

• acs::ACSSleeTransaction::queueOperation()

Chapter 5
The SDK INAP API

5-3

http://www.itu.int/rec/T-REC-Q.771-199706-I/en
http://www.telecomspace.com/ss7-in.html

Passes a TC-INVOKE primitive to the TC component sub-layer

• acs::ACSSleeTransaction::send(bool last)
Sends all outstanding components as a TC-CONTINUE or TC-END operation.

When you call the send() function, the AcsSleeTransaction object sends a TCAP
message containing any queued operations to slee_acs.

The transaction can finish the dialogue by calling slee::Transaction::end() or by
sending the operations with the last flag set to true.

The slee::Transaction::dialogClosed() function, which the derived transaction
class must implement, notifies the transaction when the dialogue finishes.

Chapter 5
The SDK INAP API

5-4

6
Creating Provisioning Interface Commands

This chapter describes how to create and install new Provisioning Interface commands using
the Oracle Communications Convergent Charging Controller Software Development Kit
(SDK).

About Provisioning Interface Commands
The Provisioning Interface (PI) runs on the Service Management System (SMS) and runs
provisioning commands that it receives from a remote source, such as a SOAP request, for
example.

The available PI commands and their arguments are defined in the database. You can add
new commands using the PI Command Installer utility. For more information, see "Adding a
PI Command to the Database".

Each package of PI commands is implemented as a shared library, with one function for each
command. Each plugin can contain multiple commands. Using the SDK API, you can create
a new plugin that is a package of related commands that the PIprocess process loads on the
SMS. Each command in the package is implemented by a function in the shared library.

The PI Function
You must implement each PI command with a function that has the same name as the
command. The function's signature must be as shown in the following example:

int command_name(char *output, PIinfo *piInfo)

where:

• command_name the name of the function and matches the name of the command

• output is a pointer to a string that stores the output from the command or, alternatively,
the name of a file that stores the commands output

• piInfo contains the request information being passed to the PI command function

PI Command Actions
Each PI command, and function, can have multiple actions associated with it. For example:

COMMAND=Action1
COMMAND=Action2

The command function determines which action to execute with code like this:

int COMMAND(char *output, PIinfo *piInfo) {

 ...

 if (PIcommonInfo_getAction(piInfo) == "Action1") {

6-1

 // Handle Action1
 } else if (PIcommonInfo_getAction(piInfo) == "Action2") {
 // Handle Action2
 }

 ...
}

The PIinfo structure is defined in the PIcommonInfoSDK.h file and can be accessed
by the functions that are defined there.You can find the PIcommonInfoSDK.h file in
the $CCC_SDK_HOME/include directory.

The PIcommonInfoSDK.h file is also documented in the SDK API documentation in
the $CCC_SDK_HOME/doc/html directory.

PI Function Return
The command function should return 0 (zero) if it executes successfully, or an integer
code, if it results in an error. You can use the output argument to store the commands
output. Alternatively, you can store the name of a file that contains the command's
output.

You can use the PIcCommands_success() and PIcCommands_error() helper functions
to set up the response.

The following example illustrates a successful outcome:

int COMMAND(char *output, PIinfo *piInfo) {

 std::string cmd_name = "COMMAND=" + PIcommonInfo_getAction(piInfo);

 // Processing is successful
 // ...

 std::string responseText = ":Success";

 return PIcCommands_success(output, cmd_name.c_str(), responseText.c_str());
}

This example illustrates an error outcome:

int COMMAND(char *output, PIinfo *piInfo) {

 std::string cmd_name = "COMMAND=" + PIcommonInfo_getAction(piInfo);

 sms::pi::common::Errors piError;
 sms::pi::common::Errors::codes code;

 // Processing sets an error code
 // ...

 std::string errorText = piError.getText(code);
 return PIcCommands_error(output, cmd_name.c_str(), static_cast<int>(code),
 errorText.c_str());
}

Adding a PI Command to the Database
Follow these steps to define one or more PI commands and add them to the database:

Chapter 6
Adding a PI Command to the Database

6-2

1. Create an XML file that describes the PI commands.

2. Run the PICommandInstaller utility, found in the $CCC_SDK_HOME/bin directory, to
add the file to the database on the SMS.

The utility will prompt you for the database username and password.

Creating a PI Commands File
You define a PI Commands file by creating an XML file using the XML elements shown in
Table 6-1:

Table 6-1 PI Command Definition Elements

XML Element Description

<PICommandDefinition> The top level element that contains all other elements.

<Commands> Contains a <Command> element for each command that you want to
define.

<Command> Contains the elements that define a specific command and action. For
example, if a command has three actions like Add, Change, and
Delete, then the XML has three corresponding <Command>
elements.

<Name> A string that specifies the PI command (and action) name.

<Package> A string that specifies a package for the PI command.

<Security> Optional. An integer that specifies the security level for the PI
command. Default value is 1.

<Type> Optional. A string that specifies the command type. Default value is C.

<Parameters> Contains a <Parameter> element for each parameter that you want to
define.

<Parameter> Contains the elements that define a specific parameter.

<Name> A string that defines the parameter name.

<Required> Specifies whether the parameter is required or not. Possible values
are True and False.

<Domain> A string that specifies the domain for the parameter.

Example: PI Command Definition File
The following statements define several PI command examples:

<PICommandDefinitions>
 <Commands>
 <Command>
 <Name>MY_CMD1=ADD</name>
 <Package>SDK_MY_CMD1</Package>
 <Security>1</Security>
 <Type>C</Type>
 <Parameters>
 <Parameter>
 <Name>PRODUCT</Name> <Required>True</Require> <Domain>S</Domain>
 </Parameter>
 <Parameter>
 <Name>STATUS</Name> <Required>False</Require> <Domain>S</Domain>
 </Parameter>

Chapter 6
Adding a PI Command to the Database

6-3

 </Parameters>
 </Command>
 <Command>
 <Name>MY_CMD1=CHG</name>
 <Package>SDK_MY_CMD1</Package>
 <Security>1</Security>
 <Type>C</Type>
 <Parameters>
 </Parameter>
 <Name>PRODUCT</Name> <Required>True</Require> <Domain>S</Domain>
 </Parameter>
 <Parameter>
 <Name>STATUS</Name> <Required>True</Require> <Domain>S</Domain>
 </Parameter>
 </Parameters>
 </Command>
 <Command>
 <Name>MY_CMD1=DEL</name>
 <Package>SDK_MY_CMD1</Package>
 <Parameters>
 <Parameter>
 <Name>PRODUCT</Name> <Required>True</Require> <Domain>S</Domain>
 </Parameter>
 </Parameters>
 </Command>
 </Commands>
</PICommandDefinitions>

Running the PICommandInstaller Utility
You load PI Command definitions into the database by running the
PICommandInstaller command-line utility, which is in the $CCC_SDK_HOME/bin
directory. The utility reads a set of PI command definition parameters from the XML file
that you created and loads the definitions into the SMS database.

The utility can create and delete PI command definitions, and update the definitions of
existing commands.

The PICommandInstaller utility has the following syntax:

PICommandInstaller -I=<InstallMode(true/false)> [options] <XML file>

Where:

• InstallMode is either true to install to install the commands in the input file or false
to uninstall the commands.

• options are:

– -F Optional. Upgrade flag; true to upgrade commands or false otherwise.
Default is false.

– -v verbose mode

– -h or ? for command line help

• XML file is the name of the PI command definition file

Chapter 6
Adding a PI Command to the Database

6-4

7
Creating Provisioning Screens

This chapter describes how to create provisioning screens using the Oracle Communications
Convergent Charging Controller Software Development Kit (SDK).

About Creating Provisioning Screens
You can create new screens with minimal use of Convergent Charging Controllerclasses You
can use the UserScreens.Session class to create an instance of java.sql.Connection.
Having created this object, you can create new screens using the Java JDBC and Swing
libraries, independent of any Convergent Charging Controller code.

Creating Screens Using KFramework
Create new Java screens by following the general look and feel that is used by existing
services that are based on KFramework in the core SMS system. You can access the
compiled KFramework classes here:

$CCC_SDK_HOME/jar/sms.jar

The classes belong to the UserScreens.KFramework package, of which the main classes
are:

• DataEntryFrame: The main window

• DataEntryPanel: A tabbed panel placed into DataEntryFrame. For example, the sample
WindowA, which you can see in Figure 7-1, has two tabs, each of which is a
DataEntryPanel.

• FindDisplayPanel: A panel that displays the results of find operations

These three classes provide most of the required capabilities and you can extend them
through inheritance as necessary.

Follow these steps to make the new service available in the SMS, Services menu.

1. Provide a class named service_name.service_name that implements the SMS
UserScreens.ServiceScreen interface.

The interface contains the following two methods:

public abstract MenuItem getMenuItem();
public abstract void KillAll();

The getMenuItem() method creates the menu item on the Services menu. The class
must implement an ActionListener for the menu item to activate the screen when the user
clicks on the menu item.

Use the killAll() method to close down the screens.

2. Configure the following SMS database tables related to screen permissions:

• SMF_APPLICATION_PART

7-1

• SMF_APPLICATION_ACCESS

• SMF_TEMPLATE

• SMF_TEMPLATE_ACCESS

Note:

the database installer, cmnTableInstaller.sh configures the
SMF_APPLICATION and SMF_APPLICATION_TABLE tables.

For more information on configuring screen permissions, see "Creating a New
Service Screen".

Using the Service Screens
The following sections describe the existing service screens. The base classes provide
much of the capabilities described. You can override a significant portion, however, if
necessary.

The SMS system integrates the service-specific user screens and they use the SMS
security model to provide access to the various onscreen components.

Each database table that a service uses is normally associated with a data entry
screen that allows you to create, view, search, modify, and delete entries in the table.

Each data entry screen has the following three modes of operation:

• Find, in which the user can enter query criteria. For more information, see "Find
Mode".

• Display, in which the screen displays the results of a query. For more information,
see "Display Mode".

• Data Entry, in which the user can create a new record or modify an existing one.
For more information, see "Data Entry Mode".

Note:

Oracle recommends that you design screens to be compatible with a screen
resolution of 1024 x 768.

Find Mode
The find mode is the initial mode for a screen. The screen layout is similar to data
entry mode and allows the user to specify criteria to query the database. For
components where the user can select from a limited range of values, the user can
select an Any or a Don't Care option to specify the values to be matched as follows:

• Combo boxes and List components have an additional selection for the Any value.

• Checkboxes are implemented as tri-state components where the third state
indicates the Any value. The three checkbox states are:

Chapter 7
Using the Service Screens

7-2

1. White background and unchecked equals not selected

2. White background and checked equals selected

3. Grey background and checked equals Any or Don't Care value, which is different
than disabled and greyed out.

In this mode, each data entry panel contains the following two fields, located at the bottom of
the panel, which the user can use to query:

• Last Change User: The user who last modified the selected record

• Last Change Date: The date that the record was last changed

There is also an Order By drop-down box that contains the names of fields that the user can
use to specify the criteria for the query. The value that is currently selected determines the
initial sorting order for the results. The first entry in the list is the default value, which is
always the primary key.

Note:

The Last Change Data fields - Last User, Last Date, and Order By - are
automatically generated by the base class.

Figure 7-1 illustrates Window A, Tab 1, in find mode.

Figure 7-1 ABC Window A Find Mode

Chapter 7
Using the Service Screens

7-3

Display Mode
The result panel displays the results of a query when it returns more than one record.
It consists of the following two components:

• Results display table

• Find button bar

The result panel is automatically generated and is associated with a specific data entry
panel. The results panel maintains a local variable that holds a Java JDBC ResultSet
object. This variable is defined as an input parameter when the panel is created or
updated by its associated data entry panel. It is scrollable to facilitate the
implementation of the Next and Previous buttons on the Find button bar.

The column widths of the result display table will be one of the following standard
values:

• Narrow column, 50 pixels

• Small Column, 150 pixels

• Wide Column, 250 pixels

• Widest Column, 400 pixels

The custom panel determines which value is used by calling the
findDisplayPanel.setHeadersAndColumnWidths() function from its initGUI() function.
The following example shows the syntax of
findDisplayPanel.setHeadersAndColumnWidths():

findDisplayPanel.setHeadersAndColumnWidths(namesArray, columnWidths,
valuesArray);

The results display panel does not update automatically to display changes to the
database that other users make. The results panel automatically refreshes, using the
existing query criteria, after returning from the following operations: modifying a record,
deleting a record, a modify-all action, or a delete-all action.

Figure 7-2 illustrates Window A, Tab 1, in display mode.

Chapter 7
Using the Service Screens

7-4

Figure 7-2 ABC Window A Display Mode

The Results Display Table
The results display table is a sub-class of the Java Swing JTable component and is
configured to display a maximum of 100 rows. If the query returns more than 100 rows, the
table displays the first 100 rows and also displays a message that indicates the current page
position and the total records found, for example, "Displaying records 301-400 of 1234."

If the number of rows exceeds the available space to display them, a vertical scroll bar
displays to allow you to display the rows that are hidden.

If the width of the table is greater than the viewing area, a horizontal scroll bar appears to
allow you to display the columns that are hidden. Each column in the table has the same
width as its related component in the Data Entry panel and the column's name is the same as
the component's label.

The component extends the capabilities of the JTable class to add the ability to sort the result
records by clicking the column header. Clicking a second time reverses the sorting order.
Sorting only applies to the currently displayed data and does not affect any data that could be
obtained through the Next and Previous buttons.

You can change the order of a column by clicking on its header and dragging the column to
its new position. The ability to auto-resize columns is disabled.

Chapter 7
Using the Service Screens

7-5

The Find Button Bar
The results display panel has a button bar that displays whenever the panel is visible.
The bar is a fixed height and the width of the display area. It contains the buttons listed
in Table 7-1:

Table 7-1 Button Bar Buttons

Button Description

Previous Enabled if the result set contains more than 100 rows. Displays the
previous page of records. Disabled on the first page of the result set.

Next Enabled if the result set contains more than 100 rows. Displays the next
page of records. Disabled on the last page of the result set.

Select Transitions to data entry mode and replaces the results panel with the data
entry panel, which it populates with the data from the currently selected
row in the result set.

Note: Double-clicking a row in the results table has the same effect.

Modify All Updates records returned by the current query. Displays a dialog box from
which you can select fields that you want to modify. Takes you to data entry
panel to enter new values for selected fields. Pressing the Save button
displays a confirmation message in a popup window, indicating how many
records will be modified. The window has Modify-All and Cancel (default)
buttons. If any record cannot be modified, any modified record is rolled
back and all records are unchanged.

Delete All Deletes all records returned by the query. Displays a confirmation message
in a popup window, indicating how many records will be deleted. The
window has Delete-All and Cancel (default) buttons.

Export Writes the records found by the query to a file. Displays a standard Java
JFileChooser dialog box from which you can select a file location. The
location defaults to C:\TEMP. Record fields are exported in comma-
separated format with records separated by Carriage Return / Line Feed
(CR/LF).

Print Prints the records found by the query.

Return Closes the results display panel and releases any resources used by the
screen. Reverts to find mode and leaves the search criteria unchanged.

You cannot add or delete buttons from the button bar.

The Modify All Selection Dialog Box
The Modify-All Selection dialog box displays when the user presses the Modify-All
button in the Find button bar. In the Available list, the dialog box initially displays the
names of each data entry field that you can change with the Modify-All command.
The Selected list is initially empty.

You can move entries between the Available and the Selected lists, which are mutually
exclusive, using the following four buttons:

• > to move the selected item from the Available list to the Selected list

• >> to move all items from the Available list to the Selected list

• < to move the selected item from the Selected list to the Available list

Chapter 7
Using the Service Screens

7-6

• << to move all items from the Selected list to the Available list

Pressing Cancel aborts the Modify-All command and closes the dialog box, leaving the
database unchanged. The results panel remains visible and displays the same data that it
contained prior to pressing the Modify-All button.

Pressing OK updates any changes you have made and closes the dialog box.

Data Entry Mode
Use data entry mode to create a new record or to modify an existing one. The screen layout
is the same as it is in find mode, except for the following differences:

• The Order By field is not present

• The Last Change User and the Last Change Date fields are greyed out

• Combo boxes, list components, check-boxes, and radio buttons do not have an Any or
Don't Care option

Help Screen
The query screens use the existing help mechanism that is part of the of the SMS system.
This mechanism uses the Java Help System and incorporates simple help pages in Hyper
Text Markup Language (HTML).

Each service screen has its own help screen, which is a single, simply formatted page of
HTML text that describes how that screen behaves.

Table Monitor
You can use a simple notification system to enable a data entry screen to notify other screens
when a change has been made. Using the table monitor, a data entry screen simply registers
its interest in being informed when specific database tables are modified. When a user uses a
data entry screen to modify data in the associated database table, the screen simply passes
a tableChanged message to the table monitor. The table monitor then informs any data entry
screens that have registered interest in that table that it has changed.

For example, assume that a screen has a dropdown box that is populated with data from
database table Y and registers its interest in the table using the table monitor. If a user
subsequently uses screen Y to modify table Y, the table monitor simply informs the original
screen that the table has changed. Screen X can then update the contents of the dropdown
box to ensure that the contents match the data in database table Y.

Note:

The system only handles changes made by a user in that session. If users use
separate instances of the SMS screens, the table monitor is not able to inform one
user of changes made by the other. The table monitor is also not aware of changes
made to the database through SQL scripts such as SQLPlus.

Using the TableMonitor

Chapter 7
Using the Service Screens

7-7

There is only one TableMonitor object for each SMS session. This object maintains a
hashtable where the key is a database table name and the value is a vector of data
entry screens that have registered interest in that table.

The TableMonitor class does not have a public constructor. It has the following public
interface:

• public static TableMonitor getTableMonitor();

• public void addTableMonitorListener(TableMonitorListener listener, String
tableName);

• public void removeTableMonitorListener(TableMonitorListener listener, String
tableName);

• public void tableChanged(String tableName);

Use the getTableMonitor() method to obtain an instance of TableMonitor. This method
always returns the same TableMonitor instance.

Use the addTableMonitorListener() method to register interest in a database table. Use
the removeTableMonitorListener() method to remove an entry for a specific database
table. When TableMonitor receives a message from one of these methods, it updates
its internal hash table accordingly.

Use the tableChanged() method to inform the TableMonitor that the table specified by
the input parameter has changed. When TableMonitor receives a message from
tableChanged(), it obtains the vector of TableMonitorListener objects that have
registered interest in that table and relays the message to all of the objects within that
vector.

A data entry screen must implement the TableMonitorListener interface to be informed
by TableMonitor when a database table changes. The TableMonitorListener
interface has the following definition:

public interface TableMonitorListener() {
 public void tableChanged(String tableName);
}

Creating a New Service Screen
This section describes how to create a new service screen for data entry using
KFramework. To describe the process, it uses an example in the SDK called ABC. The
example adds a new ABC menu to the SMS Services menu. The menu contains two
sub-menus, Window A, which has two tabbed panels, and Window B, which has one
tabbed panel. The service adds three new database tables.

Note:

Attempting to use the abc.jar file without signing it results in a warning
message when you log in to the SMS screens. The procedures that follow
describe how to sign the JAR file.

To create a new service screen:

1. Design the database schema for the new service.

Chapter 7
Creating a New Service Screen

7-8

2. Determine the application name and application ID for the new service.

The application name should not contain spaces and should be a valid Java variable
name. This example uses the name ABC.

The value for application ID should be between 900 and 999, which is the range allocated
to custom applications.

3. Configure the screen permissions for the new service by running the following
commands:

sqlplus user/password
@$CCC_SDK_HOME/example/ABC/db/addPermissions

4. Create a new Java class called ABC.ABC.

This class must implement the UserScreens.ServiceScreen interface that adds the new
service to the core SMS Services menu. The name must match the value of the
APPLICATION column in the SMF_APPLICATION database table, which is ABC in this
example.

5. Create a new screen for the service.

This class is inherited from the UserScreens.KFramework.DataEntryFrame class. Each
instance of DataEntryFrame can contain one or more panels (DataEntryPanel instances),
which are managed in a JTabbedPane component. The parent class does the majority of
the work and usually requires some additional code. It primarily creates instances of
panels to be added to the JTabbedPane component.

6. Design and create the panels that need to be added to each instance of DataEntryFrame.

Each panel should extend the UserScreens.KFramework.DataEntryPanel class. Data
aware components that read and write to the database should belong to the
UserScreens.KFramework.DataEntryPanel class. The base class does a large portion of
the work required by the panel but you can override many of the DataEntryPanel
methods to provide customized behavior. For more information, see "Creating
DataEntryPanels Classes".

7. Build the custom app_name.jar file by running the following commands:

cd $CCC_SDK_HOME/app_name/java
gmake install

8. Create a SHA-256 signed version of the JAR file by running the following commands:

cd $CCC_SDK_HOME/bin
keytool -genkeypair -keyalg RSA -keysize 2048 -alias SDK
jarsigner -signedjar app_name.jar.sig app_name.jar SDK

9. Copy the signed JAR file from $CCC_SDK_HOME/bin to /IN/html on the SMS machine.

10. Create a /IN/html/sdk.jnlp file and add the following text to it to describe the custom
screens:

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+" codebase="http://xx.xxx.xxx.xxx/" href="sdk.jnlp">

 <information>
 <title>ABC</title>
 <vendor>Custom</vendor>
 </information>

 <resources>
 <j2se version="1.8.0+" href="http://java.sun.com/products/autodl/j2se"/>

Chapter 7
Creating a New Service Screen

7-9

 <jar href="app_name.jar.sig"/>
 </resources>
 <component-desc/>
</jnlp>

11. Save and close the file.

12. Open the /IN/html/sms.jnlp file and add a reference to the new sdk.jnlp file:

<extension name="ABC Service" href="sdk.jnlp"/>
13. Save and close the file.

14. Register the service with SMS by logging into the SMS database as the SMF user
and running the following command:

$CCC_SDK_HOME/example/ABC/db/addPermissions.sql
15. Create Oracle error translation and language translation files as needed. For more

information, see "Language Translation".

16. Create and install a deployment rule for the SHA-256 signed version of the JAR
file that you created by doing the following:

a. Obtain the SHA-256 hash from the app_name.jar.sig file:

keytool -printcert -jarfile app_name.jar.sig

The hash is the 32-pair hexadecimal digit in the line that starts with SHA256.

b. Create a rule set file with the name ruleset.xml. See Oracle Java Platform,
Standard Edition Deployment Guide for instructions.

c. Open ruleset.xml and replace the certificate hash with the hash that you
obtained in Step 14. a:

<ruleset version="1.0+">
 <rule>
 <id location="http://xx.xxx.xxx.xxx/">
 <certificate algorithm="SHA-256"
hash="00:01:02:03:04:05:06:07:08:09:0A:0B:0C:0D:0E:0F:10:11:12:13:14:15:1
6:17:18:19:1A:1B:1C:1D:1E:1F" />
 </id>
 <action permission="run" version="1.8.0+" />
 </rule>
</ruleset>

d. Create a deployment JAR file with the name DeploymentRuleSet.jar and
include the ruleset.xml file in the DeploymentRuleSet.jar file:

jar cf DeploymentRuleSet.jar ruleset.xml
e. Sign the DeploymentRuleSet.jar file with a valid certificate from a trusted

certificate authority.

f. On each client machine, install the signed DeploymentRuleSet.jar file in the
following location:

Linux: /etc/.java/deployment/DeploymentRuleSet.jar

Microsoft Windows:
C:\Windows\Sun\Java\Deployment\DeploymentRuleSet.jar

OS X: /Library/Application Support/Oracle/Java/Deployment/
DeploymentRuleSet.jar

Solaris: /etc/.java/deployment/DeploymentRuleSet.jar

Chapter 7
Creating a New Service Screen

7-10

17. Verify that the deployment rule set is installed and signed correctly:

a. On each client machine, open the Java control panel.

b. On the Security tab, the appearance of the "View the active Deployment Rule Set"
link indicates that the deployment rule is installed correctly.

To verify the validity of the signing certificate, click the "View the active Deployment
Rule Set" link.

The ABC Example
You can find the source files for the ABC screens example at $CCC_SDK_HOME/
example/ABC/java. The ABC.java file defines the ABC package, which contains the ABC
class. The ABC class implements the ServiceScreen interface.

The package name and class name must match the name in the APPLICATION column of
the SMF_APPLICATION database table because the core SMS system obtains the value
when the main applet starts and then uses the Java Reflection API to create an instance with
that package name and class name.

Once the ABC object has been created, the example calls the public MenuItem
getMenuItem() method to obtain a reference to the new menu object that provides access to
the service. If the current user does not have sufficient access permission, the method
returns null and the service is not available.

When the main applet closes, it calls the killAll() method, which releases any resources that
the service opened.

This example creates a new menu named ABC, with two sub-menus, Window A and
Window B. Each window can contain one or two panels. The getMenuItem() method creates
a sub-menu only if the user has permission to access at least one of the panels.

Each sub-menu is associated with an ActionListener object, which calls a static start()
method on a class that implements the UserScreens.DataEntryFrame class. The start()
method creates an instance of the class and makes it visible to the user.

As mentioned previously, you can create new service screens without using KFramework.
Once you create the database connection using UserScreens.Session.database.connection,
you can create new service screens using any of the standard Java, JDBC, AWT and Swing
libraries.

Use the UserScreens.General.trace() method to send output messages to the Java console.
These messages are visible in the console only if TRACE has been turned on using the SMS
Operator Functions / User Management screen to edit the user and set the Configuration
field to TRACE=ON. This method provides a simple but useful debugging facility.

The UserScreens.Language.getTranslatedString() method looks for a translated version for
the message in the input parameter. If found, it returns the translated value; otherwise, it
returns the original input message.

Creating DataEntryFrame Classes
Each frame for the service extends the UserScreens.KFramework.DataEntryFrame class.
This is a relatively simple subclass to implement because the parent class does most of the
work. For the ABC example, you can find these classes in the com.oracle.abc.screens
package.

Please refer to the $CCC_SDK_HOME/example/ABC/java files for the actual source code.

Chapter 7
Creating a New Service Screen

7-11

There are two subclasses, AScreen and BScreen. Because each of these is virtually
identical, only AScreen will be described here.

The class needs to override the following two methods in the parent class:

public static void start();
public static void stop();

The ABC.ABC class calls these methods. It calls start() when the user selects the
menu item for this service. It creates the actual frame and its associated data entry
panels. The ABC class calls stop() in response to the main applet being closed and
releases any resources held by the screen.

Most of the remaining code consists of basic Swing library calls that create the
required user interface.

The canAddTab() method, which the parent class defines, checks to see if the current
user has sufficient permission to access a particular data entry panel.

Creating DataEntryPanels Classes
Each data entry panel for the service must extend the
UserScreens.KFramework.DataEntryPanel class. Again, the parent class does most of
the work. However, the majority of the work to implement the service screens takes
place here.

The DataEntryPanel class contains a large number of methods, many of which you
can override, if necessary. For example, the parent class auto-generates the SQL
search query, but provides hooks so that you can override parts of the query, such as
the WHERE clause, for example, without rewriting the whole query.

The AbcPanelOne example provides a data entry screen for a database table with the
columns described in Table 7-2. This table is partly described in the following SDK file:

$CCC_SDK_HOME/example/ABC/db/SDK.xml

Table 7-2 Database Table for AbcPanelOne

Column Name Data Type

NOA NUMBER (3) (Primary Key)

DESCRIPTION VARCHAR2 (50)

CHANGE_REF VARCHAR2(50)

CHANGE_TERM VARCHAR2 (12)

CHANGE_USER CHAR (50)

CHANGE_DATE DATE

Figure 7-3 shows the Window A, Tab1, screen for entering the data described in
Table 7-2.

Chapter 7
Creating a New Service Screen

7-12

Figure 7-3 Window A Tab1 Data Entry Screen

You can find the source code for this panel at this location:

$CCC_SDK_HOME/example/ABC/java/AbcPanelOne.java

This class is meant to use with components on the panel that are mapped to a single
database table.

The Constructor

The example uses the main constructor with four parameters:

public AbcPanelOne(DataEntryFrame parent, String newTableName, String
appName, String appPart);

The newTableName parameter is the name of the database table to which the screen panel
maps. The appName parameter is required to obtain access to the correct error and
language translations. The appPart parameter is required for the access permissions.

TableMonitor

The TableMonitor class has been described earlier in this document. This panel registers
itself with TableMonitor and then informs it when any changes are made. This requires the
save(), delete() and deleteAll() methods of the parent class to be overriden. The example
shows how this is done.

Help

Chapter 7
Creating a New Service Screen

7-13

The help() method calls the help(String section) method of the parent class. The
section parameter provides the key into the Help system.

Validation

The focusGained() and focusLost() methods place a simple message into the
message display area whenever the noaField has focus. The message displays the
range of permissible values.

The addDocuments() method adds DocumentListeners to the two main text fields to
restrict the input to a range of valid values. In the case of noaField, these values are
numeric digits in the range of 0 - 127 only. The descriptionField field can have any
characters up to a maximum length of 50.

The GUI
The initGUI() method creates the user interface:

The parent class displays the Find Display Panel. The parent class could obtain the
database table metadata automatically, but it needs to know what names to use for the
column headings and the column widths. Assigning a display name can sometimes be
more descriptive than the column name. The
findDisplayPanel.setHeadersAndColumnWidths() method allows you to do this.

The parent class automatically generates the Change Reference, Change User and
Change Date components.

Place the non auto-generated components into the customPanel variable;

You can use data-aware components for optional or mandatory values. If a field is
mandatory, you can call the setNotNullFlag(true) method on that component. In this
case, the parent class checks that a value has been provided before saving. If a value
has not been provided, a warning dialog displays.

The auto-generated Order By component allows the user to choose how to display
the results of a query. Use the commonPanel.setOrderByComboBoxValues() method
to populate the component. The selected component requires two arrays - one for
database column names and the other for the associated display name.

Call the customPanelModified() method after making any changes to customPanel.

The final line of the initGUI() method ensures that the panel is in the correct starting
state

Some database tables are replicated and some are not. This has an impact on the
data entry screens. For tables that are replicated, you are not allowed to update their
primary keys. In this example, the table is not replicated. If a table is replicated, call the
setReplicated(true) method, which causes the parent class to disable the primary key
fields when updates occur, and the Check Consistency button becomes enabled.
This button is only enabled for replicated tables.

There are no foreign key fields in this example. Foreign key fields cause some
complications for the print and export mechanisms. Often the foreign key column
contains an ID value such as a number. This is not particularly meaningful for the user,
so it is possible to map the ID value to a more descriptive display value. You can do
this with a simple array or through a database join.

The Tab 2 panel, AbcPanelTwo.java, for the same window is a slightly more
complicated example. Figure 7-4 illustrates the display mode for the Tab 2 panel of
Window A.

Chapter 7
Creating a New Service Screen

7-14

Figure 7-4 Window A, Tab2 in Display Mode

You can find the source code for this panel at this location:

$CCC_SDK_HOME/example/ABC/java/AbcPanelTwo.java

Table 7-3 shows the database table for this screen:

Table 7-3 Database Table for AbcPanelTwo

Column Description

NR_NOA NUMBER (3) (Primary Key)

NR_NUMBER VARCHAR2 (20) (Primary Key)

NR_DATE VARCHAR2 (50)

CHANGE_REF VARCHAR2 (50)

CHANGE_USER CHAR (50)

CHANGE_DATE DATE

While this screen does not look much different from the previous one, there are some
differences in the code. The NR_NOA column is a foreign key into the SDK_ABC_NOA
database table. Therefore, the component associated with this column provides a mapping
between the actual foreign key (NR_NOA) and the SDK_ABC_NOA.DESCRIPTION value.

Note that this time the class implements the TableMonitorListener interface. This allows the
panel to update the Nature of Address component whenever the panel in Tab 1 creates,
modifies or deletes an entry. The constructors make an additional call to register interest in
the SDK_ABC_NOA table with tableMonitor.

Chapter 7
Creating a New Service Screen

7-15

tableMonitor.addTableMonitorListener(this, NOA_TABLE_NAME);

The TableMonitorListener interface has just one method, which is shown here:

public void tableChanged(String tableName);

This method updates the Nature of Address component whenever it is called. The
following line of code does the update, forcing the component to refresh itself with the
latest database information:

noaComboBox.reReadDataBase();

Because we have registered an interest in another table, we must de-register when we
close the window frame. Do this by overriding the public void close() method.

The createCustomInnerPanel() method is straightforward.

The noaComboBox component is implemented within a try and catch block as a
database query is required to populate the component. This time a simple
GridBagLayout is used to layout the components.

The initGUI() method is virtually the same as in the previous example except that it
has the following additional line:

setSupplementaryQuery(supplementaryQueryArray);

This line is part of a mechanism that allows the screen to map a foreign key value to a
more meaningful value, in this case mapping the noa number to its description. This
allows the Find Display Panel to show the NoA description, which is probably more
meaningful to the user, instead of a number.

The following figure shows the final tab, on the Window B frame, which has some
additional differences.

Chapter 7
Creating a New Service Screen

7-16

Figure 7-5 Window B in Find Mode

The full source code for this example is available in the following location:

$CCC_SDK_HOME/example/ABC/java/AbcPanelThree.java

This time the Output Type, Input Type and Charging Flag components map to database
columns that are of type CHAR(1)and have the following values.

• Input Type: Has valid values of I and E which represent Internal and External respectively

• Output Type: Has valid values of A, B and C which represent Output A, Output B and
Output C. This employs the technique of using the component to map to an array as
opposed to a foreign key table relationship

• Charging Flag: Has valid values of T and F which represent true or false

The source code shows how you can use an instance of
ScreenComponentFilteredComboBox to create a set of key value pairs that map the
database values to the values that are displayed to the user.

You can create instances of ScreenComponentTriStateCheckBox to provide a mapping to
various database values. This is done using the constructor as shown in the following
example:

flagCheckBox = new ScreenComponentTriStateCheckBox("CHARGING_FLAG", false, true,
 true, CHARGING_FLAG_STRING, TriStateCheckBox.NOT_SELECTED, "T", "F", null,
 "Active", "Not Active", "Don't Care");

Chapter 7
Creating a New Service Screen

7-17

In this case, the component is mapped to T when the checkbox is selected, and to F
when it is not selected. Note that these values could also be Y or N for yes or no.

The component also has a third state ("Any" or "Don't Care") for when the panel is in
find mode. It allows the search facility to match against any value.

Another difference in this screen is that the underlying database table uses an ID
column as the primary key, which is auto-generated by an Oracle sequence. Normally
this value is of little importance to the user so it is not usually displayed. This does
have a couple of consequences, the main one being whether the CheckConsistency()
method needs to be overridden. In the following code, the Name and NoA fields are
unique so they are used to obtain the primary key value (the ID) for this entry. Note
that the CheckConsistency button is only available when a database entry has been
selected for update.

This time, the initGUI() method uses a slightly different setSupplementaryQuery()
method call:

setSupplementaryQuery(supplementaryQueryArray, supplementaryDataArray,
 supplementaryDisplayArray);

The supplementaryDataArray and supplementaryDisplayArray parameters provide
mapping information to the Find Display Panel for the components that have hard-
coded lists (arrays), for example the Input and Output Type components.

Other useful methods in the parent class that you can override with subclasses are:

• The search mechanism comprises multiple methods and is used to automatically
generate the SQL search query, the main one being shown here:

protected String createFindQueryString(ScreenComponent[] screenComponents)

The input parameter is an array of components that contain search values. This
method makes use of a number of helper methods to generate the different parts
of the query, for example, the SELECt clause, FROM clause, WHERE clause and
ORDER BY clause.

The helper methods are:

– getSelectionList(): To add columns from a join or add an Oracle hint

– getFromClause(): To include extra join information

– getWhereClause(): To exclude certain values, for example where ID > -1

– getOrderByClause(): To restrict to a subset all the fields that can be used in
the ORDER BY clause

– getFindableDateWhereClause (ScreenComponentIndentedFindableDate
comp): A findable date uses two parts, for example date >= ? and date <= ?.
Normally the find query performs an exact match, for example start_date = ?

– getExportFindQueryString(): By default, returns the same value as a call to
createFindQueryString(). You can override it, though, if that is required for
exporting data

– getExportFindQueryString() : The default implementation returns the same
value as a call to createFindQueryString(), but can be overridden if this is
required for exporting data

– protected PreparedStatement getExportStatement (): To return the a prepared
statement that performs the same query as a find that returns a scrollable

Chapter 7
Creating a New Service Screen

7-18

result set but instead uses a non-scrollable result set for use in exporting tables with
a large number of entries.

The save mechanism also consists of a number of methods that you can be override as
required:

• public boolean save() : This is the main entry point for the save mechanism

• protected boolean canSave(): This method is called from the save() method and provides
verification and validation of input data. The method should return true, if all of the data
entry fields contain valid data. Typical examples are mandatory fields that have a value
and data that is within specified limits. This often needs to be overridden when one field
is used in conjunction with another field, such as using minimum and maximum pairs to
check that the minimum value is less than the maximum value. Another common reason
to override this method is when a field is only mandatory when the value of another field
is set to a particular value (for example, a check box is selected).

• protected int doInsert(): This method performs the actual INSERT statement required to
create a new database record. It returns the number of rows inserted, which will normally
be 0 or 1, but it is conceivable that other values could be valid in some circumstances.

• protected int doUpdate (): Similar to the doInsert() method, but this updates existing
records in the database rather than create new records.

• protected String getUpdateSetClause(): This method generates the SET clause for the
UPDATE statement. By default this includes all onscreen components that implement the
ScreenComponent interface, are enabled and can be saved.

• protected int doModifyAllSave(): This method performs the actual UPDATE statement
required by a Modify All operation where the same updates are performed on multiple
rows.

• public Vector getModifyFields(): This method is used by the Modify All mechanism. It
contains a list of the fields that a user may modify. This would typically exclude any
primary key fields. Otherwise the result would be a UNIQUE constraint violation.

• protected String getUpdateSetClause(): This method generates the SET clause for the
UPDATE statement. Again, by default, it includes all on-screen components that
implement the ScreenComponent interface and are enabled and can be saved.

• delete() and deleteAll() : If the subclass needs to use these methods, they can be
overridden. This is usually done when the class needs to work with the TableMonitor
class.

• public void dispose(): The default implementation is an empty stub, but this can be used
to free any held resources, if required.

• public void close(): In the default implementation this closes any open result sets or FIND
statements. As the results sets are scrollable, they are not closed immediately. You must
ensure that they are closed when the screen is no longer required.

• public boolean canClose(): This method determines whether a screen can close. The
default implementation checks to see if the panel data has been modified but not saved.
The method returns true if it is alright for the panel or window to close, and false
otherwise.

• public void setStatusMessage (String) and public String getStatusMessage(): These two
methods set and retrieve the contents of the message display area.

• public void focusGained(FocusEvent) and public void focusLost(FocusEvent): The default
implementation for these two methods does nothing. However, you can override them to

Chapter 7
Creating a New Service Screen

7-19

specify any behaviour that needs to occur when the panel gains or loses focus on
the screen.

• protected void setSupplementaryQuery(): Part of a very complicated mechanism
that ensures that the findDisplayPanel shows descriptive key data in the display
table. This is also used by the export operation.

Language Translation
The ABC example uses the SMS language translation mechanism. Statements similar
to the one shown in the following example appear at various points in the source code:

String translatedMsg = Language.getTranslatedString(String application, String
message);

In this example, application will have a value of ABC and the message parameter is
the text that needs to be translated. The SMS system searches for a translated version
of the message text and, if found, returns it. Otherwise, it returns the original message.

The mechanism uses a flat, plain text file containing a list of key value pairs with the
format:

<key>=<translated value>

where key is the message in the default language on the left-hand side and the
translated version is on the right-hand side. For example:

Hello=Bonjour

The file must reside in the directory /IN/html/<Application Name>/language and the
name must have the format <language name>.lang as shown in the following
examples:

/IN/html/ABC/language/English.lang
/IN/html/ABC/language/Dutch.lang

In the English.lang file the key value pairs would be identical.

For the ABC example, a strings.txt file contains a list of all the strings that need to be
translated. You can find the strings.txt file in $CCC_SDK_HOME/example/ABC/
html/.

You can use the Unix shell script, regen-lang to generate the English.lang file with
the following command:

$./regen-lang > English.lang

The regen-lang script can also generate a useful dummy language file by using the
d_ parameter, as shown in the following example:

$./regen-lang d_ > Dutch.lang

This form of the command produces a new Dutch.lang file in which the right-hand
side of each key value pair is the same as the left-hand side, but is prefixed by d_. For
example:

hello=d_hello

Chapter 7
Creating a New Service Screen

7-20

You can use this option to quickly see if any translations have been missed. Simply set the
SMS language configuration to Dutch and every visible string in the service should be
prefixed by d_. If not, then you need to add that string to the file.

SQL Error Translation Files

The service screens can generate an SQLException, for example, when trying to create a
new record that results in a non-unique constraint error. If the SQL error message that is
produced by JDBC and the Oracle drivers is not descriptive enough, you can provide a more
descriptive message. If a new service introduces new database constraints that users are
likely to encounter, then you must provide an error message and translation.

The translation files go in the directory /IN/html/<ApplicationName>/error/<language
name>. For example, for an application named ABC and the English language, the files
would go in /IN/html/ABC/error/English.

The name of the file that contains the text for the error code must be either <error_code> or
<error_code>.<detail>. The <detail> part allows you to have different messages for the
same error code. For example, error code 1, a unique constraint violation, indicates a
different problem for each constraint that might be violated.

In this case, the SQL error is parsed and the part in brackets after the first dot is taken as the
detail field. For example, given the SQL error "ORA-00001: unique constraint
(SMF.SMF_APP_PK) violated", the detail part will be "SMF_APP_PK", so the error file should
be named 1.SMF_APP_PK.

The ABC example contains several examples of message files in the $CCC_SDK_HOME/
example/ABC/html directory.

Service Help Files

The SMS system and the services that its supports use the Oracle Help for Java system. For
details on using the system, please refer to the official Oracle Help for Java documentation.

The help file name should be <language>_<application>.hs.

For the ABC example, you must create the following directory on the SMS server.

/IN/html/ABC/helptext

This directory must contain the file /IN/html/ABC/helptext/English_ABC.hs

This file tells the Help system where to find the rest of the help files, in particular the map.jhm
and toc.xml files.

The following example shows the English_ABC.hs file. For a new service, all that you would
need to change is the title and the homeID value.

<?xml version='1.0' ?>
<helpset version="1.1">

<!-- title -->
<title>ABC Helpset</title>

<!-- maps -->
<maps>
 <homeID>O56789</homeID>
 <mapref location="English/map.jhm" />
</maps>

<!-- views -->

Chapter 7
Creating a New Service Screen

7-21

<view>
 <name>TOC</name>
 <label>Contents</label>
 <type>oracle.help.navigator.tocNavigator.TOCNavigator</type>
 <data engine="oracle.help.engine.XMLTOCEngine">English/toc.xml</data>
</view>

<view>
 <name>Index</name>
 <label>Index</label>
 <type>oracle.help.navigator.keywordNavigator.KeywordNavigator</type>
 <data engine="oracle.help.engine.XMLIndexEngine">English/index.xml</data>
</view>

</helpset>

For details on how to create the actual help content, including the map.jhm and
toc.xml files, refer to the Java Help documentation.

Chapter 7
Creating a New Service Screen

7-22

8
Creating Memory-Mapped Files

This chapter describes how to create memory-mapped files using the Oracle
Communications Convergent Charging Controller Software Development Kit (SDK).

About Memory-Mapped Files
The Convergent Charging Controller SDK enables you to create memory-mapped files, which
you can use to increase application performance. Memory mapped files are disk flles that
contain a copy of database table information. A process accesses the file data via memory
operations. This provides fast database access for components that reside on Service Logic
Controllers (SLCs), such as feature nodes and service loaders. Applications that have the
following characteristics can benefit from using memory-mapped files:

• Require total data availability

• Require high rates of random reading

• Have data that rarely changes, such as routing tables and product-related tables

About Creating Memory-Mapped Files
The creation of memory-mapped files consists of the following processes:

• Data must be transferred from the Service Management System (SMS), where the
master database resides, to the Service Logic Controller.

The data is transferred using the SMS replication facility.

• Changed data must be detected

This includes detecting the absence of change in the data and also the signalling of an
alert on each SLC to indicate when the data has changed.

• Providing the data to the application

The following steps describe the process in more detail:

1. Table X in the Oracle database is updated on the SMS.

2. The SMS replicates the table to the SLC.

3. When the updates are complete, an insert is done to the SMF_APPLICATION_ALERT
table on the SMS.

4. SMS replicates the change to the SMF_APPLICATION_ALERT table on the SLC

5. An Oracle alert triggers an Mfile daemon

6. The Mfile daemon reads the entries from Table X, formats them, and writes them to a file.

7. The file is mapped and read by the application.

8-1

Data Replication
SMS replicates data changes to the SLC just as it normally does. SMS replicates
changes to the database and updates to the SMF_APPLICATION_ALERT table
automatically. No development is required to accomplish the replication of data
changes and alerts to the SLCs. The cmnTableInstaller.sh utility allows you to
configure the replication and create the replication triggers.

For information on using the cmnTableInstaller.sh utility, see "Running the Database
Table Installer".

Creating Alerts When Data Changes Occur
On the SMS, inserts to the SMF_APPLICATION_ALERT table will be deleted
automatically and the insert and delete are replicated to all SLCs. Only inserts are
audited; updates are not permitted.

On the SLC, each insert causes an alert to be signalled.

For an application named myApp and a table named SDK_ANUMBER_BARRED the
following SQL code must be executed on the SMS to ensure any change within the
data produces an insert-and-delete cycle on the SMF_APPLICATION_ALERT table,
which signals the associated Mfile daemon to detect the change and rebuild the Mfile.

create or replace trigger smf.SDK_ANUMBER_BARRED_mf_auid
after insert or update or delete on smf.SDK_ANUMBER_BARRED
referencing new as r for each row
begin
 insert into smf_application_alert (application, item) values ('SDK',
'SDK_ANUMBER_BARRED');
 delete from smf_application_alert where APPLICATION='SDK' and
ITEM='SDK_ANUMBER_BARRED';
end;

An Mfile daemon can register for these alerts and respond by regenerating the data or
following other instructions.

The Mfile Daemon
The daemon that creates the memory-mapped file runs on each SLC. It takes the
following parameters:

• mapped file name

• application and item

• date query

• data regeneration function

The SDK provides classes and functions that allow you to create the Mfile daemon
and organize the Mfile data in a number tree fashion. You can have multiple trees with
each tree referenced by an index. You can elect to store three integers or a block of
data at each leaf on the tree. Typically, each block of data is derived from a row in a
specific database table. Leaves in containing data blocks are referenced by a unique
string.

Chapter 8
Data Replication

8-2

The SDK provides functions to build the tree and to add to it, as well as to search the tree.
The type of storage and searching that is used is referred to as General Purpose Number
Analysis (GPNA). Each block of data typically is derived from a row in an application-specific
database.

The Mfile Daemon API
The SDK provides functions that allow you to create daemons to retrieve information from
database tables and create an Mfile.

The cmnMfileSDK.h and cmnMfileDaemonAPI.h files define the prototypes for these
functions. The static library libcmnMfile.a implements them.

The cmnMfileDaemonAPI.h file includes the functions described in the following sections.

enum AwaitResult{...}
Several of the functions in cmnMfileDaemonAPI.h return enum AwaitResult{...}, which is
defined as follows:

enum AwaitResult(...)

where the possible values are:

• AWAIT_FAILED = -1 if a catastrophic error occurred

• AWAIT_CHANGED if the data has changed, or the file is invalid

• AWAIT_EXIT if the daemon was asked to exit

initGPNA()
The initGPNA() function initializes the specified Mfile for the specified database file. You call it
once at the start of an Mfile daemon.

This function has the following syntax parameters, and return value:

int initGPNA(char *userpass, char *dbtable, char *app_name, char *filename,
 int init_sz)

Parameters

• userpass is the Oracle username and password

• dbtable is the name of the database table to map to the Mfile

• app_name is the application name

• filename is the Mfile file name, including the full path

• init_sz is the initial size to make the Mfile

Return

• 0 if successful

• -1 if creation of the Mfile fails

Chapter 8
The Mfile Daemon

8-3

awaitGPNAChange()
The awaitGPNAChange() function checks to see if a file is up to date and waits for an
appropriate alert or exit request through the Mfile API. This function blocks until there
is a change on the database table that was initialized by initGPNA().

This function has the following syntax and return values:

enum AwaitResult awaitGPNAChange()

Return

• 0 if successful

• -1 if failure

startGPNAChange()
The startGPNAChange() function forces reload of the Mfile but does not depend on a
change in the database. It is a non-blocking function.

This function has the following syntax and return value:

enum AwaitResult startGPNAChange()

Return

• 0 if successful

• -1 if failure

mallocGPNAEntry()
The mallocGPNAEntry() function retrieves the next available memory position at which
to write the next GPNA entry, returning a pointer to this location. You can then write a
block of data there, not to exceed the limit specified by the max_entry_size parameter.

This function has the following syntax, parameters, and return value:

void *mallocGPNAEntry(int max_entry_size)

Parameters

• max_entry_size is the maximum size of the memory block to allocate

Return

• pointer to available memory block for leaf data, if successful

• NULL, if failure

Chapter 8
The Mfile Daemon

8-4

addGPNAEntry()
The addGPNAEntry() function adds a leaf entry at the location returned by the call to the
mallocGPNAEntry() function.

This function has the following syntax, and parameters.

void addGPNAEntry(int size_of_entry, unsigned char *nature, char *number)

Parameters

• size_of_entry is the actual size of the entry, which must be the same as allocated
through mallocGPNAentry()

• nature is a pointer to the Nature of Address value, an integer that describes the type of
number, for example, national or international.

• number is a pointer to a string that contains the digits of the address

addGPNAIntEntry()
Adds a GPNAResult_t value element to the uncompressed tree.

This function has the following syntax and parameters:

void addGPNAIntEntry(GPNAResult_t res, unsigned char *nature, char *number)

Parameters

• res is the GPNAResult_t value element to add to the uncompressed tree. GPNAResult_t
is the result of the genericGPNA() function.

• nature is a pointer to the Nature of Address value, an integer that describes the type of
number, for example, national or international

• number is a pointer to a string that contains the digits of the address

finishedGPNA()
Call the finishedGPNA() function after all entries have been added to the uncompressed tree.
This function compresses the GPNA tree, frees up memory, and replaces the shared memory
version of the table with the version just created.

This function has the following syntax and return value:

int finishedGPNA(void)

Return

• 0 on success

• -1 on failure

Chapter 8
The Mfile Daemon

8-5

finishedSingleEntry()
Call the finishedSingleEntry() function after adding a single entry to the uncompressed
tree. This function compresses the tree, and frees up memory.

This function has the following syntax and return value:

int finishedSingleEntry(void);

Return

• 0 on success

• -1 on failure

You can find an Mfile daemon example in the following SDK file:

$CCC_SDK_HOME/example/sdkMfileDaemon/sdkMfileDaemon.cc

An Mfile Daemon Example
You can find an Mfile daemon example in the following SDK file:

$CCC_SDK_HOME/example/sdkMfileDaemon/sdkMfileDaemon.cc

The Mfile Application
The SDK also provides functions to allow you to create your own APIs to retrieve
information from memory-mapped files. You can use these APIs in service
components to retrieve information as rapidly as possible.

Before you access an Mfile from your application, you must create a global mapping of
the memory table identifiers to the shared memory files. You must include code in your
application that calls the setupGPNA() function to set up the application's global
mapping.

The Mfile Application API
The cmnMfileSDK.h file defines prototypes for the Mfile application functions, which
are implemented in the static library libcmnMfile.a.

setupGPNA()
The setupGPNA() function associates a GPNA memory-mapped file with an identifier
that the service uses to reference it. Call this function only once from the function that
performs the query.

This function has the following syntax and parameters:

void setupGPNA(int id, char *app_name, char *mfilename)

Parameters

• id is the identifier for the Mfile.

Chapter 8
The Mfile Application

8-6

• app_name is the application name (NULL => GENERIC)

• mfilename is the Mfile filename, including the full path

genericGPNA()
The genericGPNA() function allows you to query the memory-mapped file. It returns the entry
that has the longest number of matching digits against the digits for the given nature.

This function has the following syntax and parameters and return value:

int genericGPNA(unsigned long memtableID, unsigned char nature, char *number,
 unsigned long start, unsigned long_minmatch,
 unsigned long maxmatch, GPNAresult_t *result, void **userdata,
 unsigned long *nummatched)

Parameters

• memtableID is the memory table ID, the index of the memory table as defined in the call
to setupGPNA(). Value can be from 1 to MAX_GPNA_MEM_TABLES.

• nature is the nature of number (225=>no nature). Identifies a specific nature for the
following number. For example, you can use this to specify the NOA of a number. In
cases where raw digits should be analyzed, a pseudo nature (NULL = 0) should be used.
Values can be from 0 to 254.

• number is a pointer to the number to find (NULL=>pointer to first word of singleEntry is
returned in userdata). Maximum length is 28.

• start is the starting digit of that number from which the search will begin. Values can be
from 1 to 28.

• minmatch is the minimum number of digits to match. A value of 0 indicates there is no
minimum. Values can be from 0 to 28.

• maxmatch is the maximum number of digits to match. A value of 0 indicates there is no
maximum. Values can be from 0 to 28.

• result is a pointer to the GPNAResult_t value. GPNAResult_t is the result of the
genericGPNA() function.

userdata is a pointer to the indexed value. Returns a pointer to the user-defined Mfile
data associated with the search number.

• nummatched is the number of digits matched. A value of 0 indicates that no match was
found. Values can be from 0 to 28.

Return

• 0 if successful

• -1 if a system or setup error occurred

• -2 if input parameters are invalid; for example, if maxmatch is less than minmatch.

• -3 if no entry is found that matches the set criteria

Chapter 8
The Mfile Application

8-7

An Mfile Application Example
You can find an Mfile application example in the following SDK file:

$CCC_SDK_HOME/example/sdkMfileDaemon/sdkMfileAPI.cc

Chapter 8
The Mfile Application

8-8

9
Creating and Replicating Database Tables

This chapter describes how to create and replicate database tables using the Oracle
Communications Convergent Charging Controller Software Development Kit (SDK).

About Creating and Replicating Database Tables
The Convergent Charging Controller SDK enables you to create database tables on the
Service Management System (SMS) and replicate them to Service Logic Controllers (SLCs)
for use in custom feature nodes. You could define tables, for example, to store information
such as routing data that is specific to the topology of your network, allowing you to tailor
services based on that information.

Creating and replicating custom database tables consists of the following tasks, which are
described in the sections that follow:

1. Defining the database table.

2. Running the database table installer, cmnTableInstaller.sh, to create the database table
and configure replication for it.

Defining a Database Table
You define your database table by creating an XML file using the XML elements shown in
Table 9-1:

Table 9-1 Table Definition XML Elements

XML Element Description

<TableDefinition> Specifies the table name, as well replication and auditing information.

<TableColumnData> Specifies the definition of a column in the table, including the column
name, data type, and so on.

<TableConstraint> Specifies constraints on the table such as what action to take when
an event occurs on a column that references a column in another
table.

<IndexDefinition> Specifies the name and type of an index on the table.

<IndexColumnData> Specifies the name of the column on which to create the index.

Each of these tags has attributes, which the following sections describe.

The TableDefinition Element
The <TableDefinition> element has the following format:

<TableDefinition TableName="MMX_ROUTING_SCHEME" RepBaseName="MMX_ROUTING_SCHEME"
RepPkgName="MMX_REP_INTERNAL" AuditBaseName="MMX_ROUTING_SCHEME" Comment="Models a
Routing Scheme" >

9-1

Table 9-2 describes the attributes of the <TableDefinition> element:

Table 9-2 TableDefinition Attributes

Attribute Value

TableName A string that contains the name of the table.

RepBaseName A string that specifies the replication base name. It's used to
create the names of the triggers that invoke the replication
process. Four triggers are created with the following
names:REP_<RepBaseName>_AIUREP_<RepBaseName>_AD
REP_<RepBaseName>_BFRREP_<RepBaseName>_UPK

RepPkgName A string that specifies the name of replication package. Leave
this as the default, which is SMS.REP_INTERNAL.

AuditBaseName A string that specifies the base name of the audit log.
Determines the names of the triggers that invoke the audit
process. Two triggers are created with
names:<AuditBaseName>_ABT<AuditBaseName>_AATIf the
AuditBaseName is empty, no audit triggers are created and
changes to the table are not audited.

Comment A string that provides an explanatory comment about the table,
such as its purpose.

The TableColumnData Element
The <TableColumnData> element tag has the following format:

<TableColumnData ColumnName="ID" ReplicKey="T" Audited="T"
ColumnDataType="NUMBER" ColumnLength="28" ColumnPrecision="28" ColumnScale="0"
AllowNull="F" SeqBaseName="MMX_ROUTING_SCHEME" SeqMax="nomaxvalue"
Comment="Primary key" />

Table 9-3 describes the attributes of the <TableColumnData> element:

Table 9-3 TableColumnData Attributes

Attribute Value

ColumnName A string that specifies the name of the column.

ReplicKey A value of T for true or F for false that indicates whether this
column forms part of the key for replication.

Audited A value of T for true or F for false that indicates whether changes
to this column are included in the audit log.

ColumnDataType A string that specifies the column's data type.

ColumnLength A string that specifies the maximum length of the column

ColumnPrecision A string that specifies the decimal position for numeric values

ColumnScale A string that specifies the maximum number of digits to the right
of the decimal place

AllowNull A value of T for true or F for false that indicates whether the
column can have a value of NULL

Chapter 9
Defining a Database Table

9-2

Table 9-3 (Cont.) TableColumnData Attributes

Attribute Value

SeqBaseName A string that defines the name of a sequence to populate this
column. A sequence called <SeqBaseName>_SEQ will be
created by the installer and used by a trigger called
<SeqBaseName>_MT.

SeqMax A string that indicates sequence maximum.

Comment A string that describes the column.

The TableConstraint Element
The <TableConstraint> element has the following format:

<TableConstraint ConstraintType="P" State="ENABLED" ReferencedSchema=""
ReferencedTable="" CascadeOnDelete="" CheckCondition="" ConstraintName="RT_SC_PK">

Table 9-4 describes the attributes of the <TableConstraint> element:

Table 9-4 TableConstraint Attributes

Attribute Value

ConstraintType A string that specifies the type of constraint in force. Possible values
are:P - Primary keyU - UniqueR - Reference (foreign key)C - Check
(uses the CheckCondition element)

State A string that has a value of ENABLED to indicate that the constraint is
in force.

ReferencedSchema A string that specifies the name of the schema that the constraint
references. This element applies only to a constraint type of R.

ReferencedTable A string that specifies the name of the table that the constraint
references. This element applies only to a constraint type of R.

CascadeOnDelete A string that specifies the cascading action to take when a delete
occurs on a row in the table. A value of CASCADE specifies that
associated rows in a child table should be deleted when a row in this
table is deleted. A value of NO ACTION indicates no action will be
taken. This element applies only to a constraint type of R.

CheckCondition A string that indicates a particular condition exists.

The IndexDefinition Element
The <IndexDefinition> element has the following format:

<IndexDefinition IndexName="RT_SC_PK" Unique="T">

Table 9-5 describes the attributes of the <IndexDefinition> element:

Chapter 9
Defining a Database Table

9-3

Table 9-5 IndexDefinition Attributes

Attribute Value

IndexName A string that specifies the name of the index.

Unique A value of T for true or F for false that indicates whether the
index is unique.

The IndexColumnData Element
The <IndexColumnData> element has the following format:

<IndexColumnData ColumnName="ID" />

Table 9-6 describes the attribute of the <IndexColumnData> element:

Table 9-6 IndexColumnData Attribute

Attribute Value

ColumnName A string that specifies that name of the column that is being
indexed.

A Table Definition Example
You can find several instances of XML table definitions in the following SDK files:

$CCC_SDK_HOME/example/ABC/db/SDK.xml

$CCC_SDK_HOME/example/ABC/db/SDK_Client.xml

The following example shows the XML elements and attributes that define the
SDK_ABC_NOA database table in the SDK.xml file:

 <TableDefinition TableName="SDK_ABC_NOA" RepBaseName="SDK_ABC_NOA" AuditBase
Name="SDK_ABC_NOA" Comment="Sample table for SDK PI commands, screens etc.">
 <TableColumnData ColumnName="NOA" ReplicKey="T" Audited="T" Col
umnDataType="NUMBER" ColumnLength="3" ColumnPrecision="3" ColumnScale="0" AllowN
ull="F" Comment="Primary key" />
 <TableColumnData ColumnName="DESCRIPTION" Replicated="T" Audited="T" Col
umnDataType="VARCHAR2" ColumnLength="50" ColumnPrecision="0" ColumnScale="0" Al
lowNull="T" Comment="Optional free text" />
 <TableColumnData ColumnName="CHANGE_USER" ColumnDataType="CHAR" Colu
mnLength="50" ColumnPrecision="0" ColumnScale="0" AllowNull="F" />
 <TableColumnData ColumnName="CHANGE_DATE" ColumnDataType="DATE" Colu
mnLength="7" ColumnPrecision="0" ColumnScale="0" AllowNull="F" />
 <TableColumnData ColumnName="CHANGE_TERM" ColumnDataType="VARCHAR2" Colu
mnLength="12" ColumnPrecision="0" ColumnScale="0" AllowNull="F" />
 <TableColumnData ColumnName="CHANGE_REF" ColumnDataType="VARCHAR2" Colu
mnLength="50" ColumnPrecision="0" ColumnScale="0" AllowNull="T" />

 <TableConstraint ConstraintType="P" State="ENABLED" ConstraintName="SDK_
ABC_NOA__PK" UseIndex="True">
 <ReferenceColumns TableColumn="NOA" />
 </TableConstraint>
 </TableDefinition>

Chapter 9
Defining a Database Table

9-4

Running the Database Table Installer
The database table installer, cmnTableInstaller.sh, creates the database table from the
supplied XML file and configures replication for it. You can find the database installer in the
following location:

$CCC_SDK_HOME/bin

The installer has the following command line options:

cmnTableInstaller.sh -U <ora_username> -D <OutputDir> -S <tableSchemaFile> -C
<tableClientFile> [-options]

Table 9-7 describes the command line options for cmnTableInstaller.sh:

Table 9-7 cmnTableInstaller.sh Command Line Options

Parameter Description

ora_username The name of the owner of the table to be installed.

OutputDir The output directory for the script.

tableSchemaFile The name of the XML file that contains the table's schema

tableClientFile The name of an XML file that defines storage information for tables
and indexes (sizing, tablespaces etc.). This is generally specific to a
particular installation.

options: NA

-t Node type of SMS (default) or Other.

-p Output prefix (describing the component being installed)

-n New install - abort installation if any of the tables already exists

-v Verbose mode for debugging output

-h Print command line help message

Defining the tableClientFile
The tableClientFile is an XML file that specifies storage information, such as sizing,
tablespaces, and so on, for tables and indexes that are generally specific to a particular
installation.

You define the tableClientFile by creating an XML file using the XML elements shown in
Table 9-8.

Table 9-8 tableClientFile XML Elements

Element Description

<ClientTableDefinition> Specifies the storage attributes for a table

<ClientIndexDefinition> Specifies the storage attributes for an index

Chapter 9
Running the Database Table Installer

9-5

The ClientTableDefinition Element
The <ClientTableDefinition> element has the following format:

<ClientTableDefinition PCTINCREASE="0" INITRANS="1" MAXEXTENTS="UNLIMITED" M
INEXTENTS="1" NEXTEXTENT="1M" INITIAL="1M" BUFFER_POOL="KEEP" PCTFREE="10" PCTU
SED="80" TABLESPACE="SDK_DATA" TableName="SDK_ABC_NOA" MAXTRANS="255" CACHE="Fal
se" />

Table 9-9 describes the attributes of the <ClientTableDefinition> element:

Table 9-9 ClientTableDefinition Attributes

Attribute Value

PCTINCREASE In locally managed tablespaces, Oracle Database uses
PCTINCREASE to determine the initial segment size during
segment creation. It ignores the parameter during subsequent
space allocation. In dictionary-managed tablespaces, specify the
percent by which the third and subsequent extents grow over the
preceding extent. The default value is 50, which means that
each subsequent extent is 50% larger than the preceding extent.
The minimum value is 0, meaning all extents after the first are
the same size. The maximum value depends on your operating
system.

INITRANS Specifies the initial number of concurrent transaction entries that
will be allocated within each data block that is allocated to the
database object. Value can range from 1 to 255 and defaults to
1, or, for a cluster, 2 or the default INITRANS value of the
tablespace in which the cluster resides, whichever is greater.

MAXEXTENTS For objects in dictionary-managed tablespaces, specifies the
total number of extents, including the first, that Oracle can
allocate for the object. The minimum value is 1; rollback
segments have a minimum of 2. Default value depends on your
data block size. Oracle ignores MAXEXTENTS for objects in a
locally managed tablespace. Specify UNLIMITED to
automatically allocate extents as needed. Oracle recommends
UNLIMITED to minimize fragmentation.

MINEXTENTS In a locally managed tablespace, Oracle uses MINEXTENTS to
compute the initial amount of space to allocate, which is equal to
INITIAL * MINEXTENTS. Subsequently, Oracle sets the value to
1. In a dictionary-managed tablespace, MINEXTENTS is the
minimum number of extents that must be allocated to the
segment.

In dictionary-managed tablespaces, specify the total number of
extents to allocate when the object is created. The minimum and
default value is 1, in which case Oracle allocates only the initial
extent. For rollback segments, the minimum and default value is
2. The maximum value depends on your operating system.

Chapter 9
Running the Database Table Installer

9-6

Table 9-9 (Cont.) ClientTableDefinition Attributes

Attribute Value

NEXTEXTENTS Specifies the size in bytes of the next extent to allocate to the
object. In locally managed tablespaces, if the tablespace is set
for automatically allocate extent management Oracle determines
the size. In UNIFORM tablespaces, the size of NEXTEXTENT is
the uniform extent size specified when the tablespace was
created. In a dictionary-managed tablespace, the default value is
the size of 5 data blocks. Minimum value is the size of 1 data
block. Maximum value depends on your operating system. For
values less than 5 data blocks, Oracle rounds the value up to the
next multiple of the data block size. For values greater than 5
data blocks, Oracle rounds up to a value that minimizes
fragmentation.

INITIAL Specify the size of the first extent of the object. Oracle allocates
space for this extent when you create the schema object. In
locally managed tablespaces, the value of INITIAL, in
conjunction with the values of MINEXTENTS, NEXT and
PCTINCREASE, determines the initial size of the segment

BUFFER_POOL Lets you specify a default buffer pool for a schema object. All
blocks for the object are stored in the specified cache.

PCTFREE A number that represents the percentage of space in each data
block of the database object that Oracle reserves for future
updates to the object. Specified as a value from 0 to 99. A value
of 0 means that the entire block can be filled by inserts of new
rows. Defaults to 10. Total of PCTUSED and PCTFREE cannot
be greater than 100.

PCTUSED A number that represents the minimum percentage of used
space that Oracle maintains for each data block of the database
object. Specified as a positive integer from 0 to 99 and defaults
to 40. Total of PCTUSED and PCTFREE cannot be greater than
100.

TABLESPACE Specifies the name of the tablespace in which Oracle Database
will create the table. Tablespace represents an allocation of
space in the database to store schema objects. See the SQL
CREATE TABLESPACE statement for more information.

TableName Specifies the name of the database table to which this definition
applies.

MAXTRANS Determines the maximum number of concurrent update
transactions allowed for each data block in the segment.

CACHE When a full table scan is performed, CACHE specifies that you
want the blocks retrieved for this cluster to be placed at the most
recently used end of the least recently used (LRU) list in the
buffer cache. Useful for small lookup tables.

The ClientIndexDefinition Element
The <ClientIndexDefinition> element has the following format:

<ClientIndexDefinition IndexName="SDK_ABC_EXAMPLE__PK" TABLESPACE="SDK_DATA"
 INITIAL="1M" NEXTEXTENT="1M" MINEXTENTS="1" MAXEXTENTS="UNLIMITED" BUFFER_POOL=
"KEEP" PCTFREE="10" PCTINCREASE="0" INITRANS="2" MAXTRANS="255" />

Chapter 9
Running the Database Table Installer

9-7

Table 9-10 describes the attributes of the <ClientIndexDefinition> element:

Table 9-10 ClientIndexDefinition Attributes

Attribute Value

IndexName Specifies the name of the index.

TABLESPACE Specifies the name of the tablespace in which Oracle Database
will create the table. Tablespace represents an allocation of
space in the database to store schema objects. See the SQL
CREATE TABLESPACE statement for more information.

INITIAL Specify the size of the first extent of the object. Oracle allocates
space for this extent when you create the schema object. In
locally managed tablespaces, the value of INITIAL, in
conjunction with the values of MINEXTENTS, NEXT and
PCTINCREASE, determines the initial size of the segment

NEXTEXTENT Specifies the size in bytes of the next extent to allocate to the
object. In locally managed tablespaces, if the tablespace is set
for automatically allocate extent managementOracle determines
the size. In UNIFORM tablespaces, the size of NEXTEXTENT is
the uniform extent size specified when the tablespace was
created. In a dictionary-managed tablespace, the default value is
the size of 5 data blocks. Minimum value is the size of 1 data
block. Maximum value depends on your operating system. For
values less than 5 data blocks, Oracle rounds the value up to the
next multiple of the data block size. For values greater than 5
data blocks, Oracle rounds up to a value that minimizes
fragmentation.

MINEXTENTS In dictionary-managed tablespaces, specify the total number of
extents to allocate when the object is created. The minimum and
default value is 1, in which case Oracle allocates only the initial
extent. For rollback segments, the minimum and default value is
2. The maximum value depends on your operating system.

In a locally managed tablespace, Oracle uses MINEXTENTS to
compute the initial amount of space to allocate, which is equal to
INITIAL * MINEXTENTS. Subsequently, Oracle sets the value to
1. In a dictionary-managed tablespace, MINEXTENTS is the
minimum number of extents that must be allocated to the
segment.

MAXEXTENTS For objects in dictionary-managed tablespaces, specifies the
total number of extents, including the first, that Oracle can
allocate for the object. The minimum value is 1; rollback
segments have a minimum of 2. Default value depends on your
data block size. Oracle ignores MAXEXTENTS for objects in a
locally managed tablespace. Specify UNLIMITED to
automatically allocate extents as needed. Oracle recommends
UNLIMITED to minimize fragmentation.

BUFFER_POOL Lets you specify a default buffer pool for a schema object. All
blocks for the object are stored in the specified cache.

PCTFREE A number that represents the percentage of space in each index
block that Oracle reserves for future updates to the object.
Specified as a value from 0 to 99. A value of 0 means that the
entire block can be filled by inserts. Defaults to 10.

Chapter 9
Running the Database Table Installer

9-8

Table 9-10 (Cont.) ClientIndexDefinition Attributes

Attribute Value

PCTINCREASE In locally managed tablespaces, Oracle Database uses
PCTINCREASE to determine the initial segment size during
segment creation. It ignores the parameter during subsequent
space allocation. In dictionary-managed tablespaces, specify the
percent by which the third and subsequent extents grow over the
preceding extent. The default value is 50, which means that
each subsequent extent is 50% larger than the preceding extent.
The minimum value is 0, meaning all extents after the first are
the same size. The maximum value depends on your operating
system.

INITRANS Specifies the initial number of concurrent transaction entries that
will be allocated within each data block that is allocated to the
index. Value can range from 1 to 255 and defaults to 2.

MAXTRANS Determines the maximum number of concurrent update
transactions allowed for each data block in the segment.

A tableClientFile Example
The following example shows a sample definition of a tableClientFile file.

<?xml version="1.0"?>
<!DOCTYPE client SYSTEM "../../../bin/client.dtd">
<client>

 <ClientTableDefinition PCTINCREASE="0" INITRANS="1" MAXEXTENTS="UNLIMITED" M
INEXTENTS="1" NEXTEXTENT="1M" INITIAL="1M" BUFFER_POOL="KEEP" PCTFREE="10" PCTU
SED="80" TABLESPACE="SDK_DATA" TableName="SDK_ABC_NOA" MAXTRANS="255" CACHE="Fal
se" />
 <ClientTableDefinition PCTINCREASE="0" INITRANS="1" MAXEXTENTS="UNLIMITED" M
INEXTENTS="1" NEXTEXTENT="1M" INITIAL="1M" BUFFER_POOL="KEEP" PCTFREE="10" PCTU
SED="80" TABLESPACE="SDK_DATA" TableName="SDK_ABC_NUMBER_BARRED" MAXTRANS="255"
CACHE="False" />
 <ClientTableDefinition PCTINCREASE="0" INITRANS="1" MAXEXTENTS="UNLIMITED" M
INEXTENTS="1" NEXTEXTENT="1M" INITIAL="1M" BUFFER_POOL="KEEP" PCTFREE="10" PCTU
SED="80" TABLESPACE="SDK_DATA" TableName="SDK_ABC_EXAMPLE" MAXTRANS="255" CACHE=
"False" />

 <ClientIndexDefinition IndexName="SDK_ABC_EXAMPLE__PK" TABLESPACE="SDK_DATA"
 INITIAL="1M" NEXTEXTENT="1M" MINEXTENTS="1" MAXEXTENTS="UNLIMITED" BUFFER_POOL=
"KEEP" PCTFREE="10" PCTINCREASE="0" INITRANS="2" MAXTRANS="255" />
 <ClientIndexDefinition IndexName="SDK_ABC_NOA__PK" TABLESPACE="SDK_DATA" INI
TIAL="1M" NEXTEXTENT="1M" MINEXTENTS="1" MAXEXTENTS="UNLIMITED" BUFFER_POOL="KEE
P" PCTFREE="10" PCTINCREASE="0" INITRANS="2" MAXTRANS="255" />

</client>

Replicating Tables
When you run the database table installer, you register all of the tables with SMS. You can
then select which elements you want replicated, and to which nodes, through the standard
SMS Node Management screen. For more information, see the Service Management System
User's Guide.

Chapter 9
Running the Database Table Installer

9-9

To replicate tables, you must include the XML elements for replication in the table
schema file (tableSchemaFile parameter) that you submit to the database installer.
The replication section of the XML uses the elements shown in Table 9-11.

Table 9-11 XML Elements for Replication

XML Element Description

<Replication> Specifies the application name and the application ID.

<Platforms> Contains the <Platform> elements.

<Platform> Specifies the names of the platforms on which the tables for this
application will be replicated.

<Groups> Contains <TableReference> and <Group> elements.

<TableReference> Specifies the name of a table defined in a <TableDefinition>
element.

<Group> Specifies the name of a group of tables to be replicated. You can
specify </Group> following a <TableReference> element to
create a default group with the same name as the table.

<Dependency> Specifies a dependency relationship between tables to control
the order in which data is replicated.

You can find additional information about these elements in the following file:

$CCC_SDK_HOME/bin/schema.dtd

The Replication Element
The <Replication> element has the following format:

<Replication ApplicationID="901" ApplicationName="ABC" Description="Test Install
Table" Status="4" DisplayName="TEST" Version="1.0">

Table 9-12 describes the attributes of the <Replication> element:

Table 9-12 Replication Attributes

Attribute Description

ApplicationID Specifies the application ID. Custom applications use IDs in the
range of 900-999.

ApplicationName A string that specifies the name of the application.

Description A description of the replication.

Status A string that specifies the status.

DisplayName The name to display in screens.

Version A string that specifies the version.

The Platforms Element
The <Platforms> element contains <Platform> elements and has no attributes. It has
the following format.

Chapter 9
Running the Database Table Installer

9-10

<Platforms>
 <Platform Type="SLC"></Platform>
</Platforms>

The Platform Element
The <Platform> Element is used to specify the types of platforms to which the tables for this
application need to be replicated. It has the following format:

<Platform Type="SLC"></Platform>

The <Platform> element has only the Type attribute, which is a string that specifies the type
of platform to which the tables needs to be replicated.

The Groups Element
The <Groups> element contains <Group> elements and has no attributes. It has the following
format:

<Groups>
 <TableReference Name="TABLE1">
 <Group/>
 ...
</Groups>

The Group Element
The <Group> element allows you to group tables for replication and to reference a group of
tables when defining dependency relationships. It has the following format:

<Group Name="SDK_ABC_MAIN" />

The <Group> element has only the Name attribute, which is a string that specifies the name
of the table group. If you don't include the Name attribute, as shown in the following example,
the name of the group defaults to the name of the table in the preceding <TableReference>
element.

<Groups>
 <TableReference Name="TABLE1">
 <Group/>

Once you have defined groups, you can define dependency relationships for replication.

The Dependency Element
The <Dependency> element allows you to define dependency relationships to control the
order in which data is replicated. The <Dependency> element has the following format:

<Dependency Dependent="Group1" DependsOn="Group2" />

Table 9-13 describes the attributes of the <Dependency> element:

Chapter 9
Running the Database Table Installer

9-11

Table 9-13 Dependency Attributes

Attribute Description

Dependent A string that specifies the name of a group (not a table) that has
a dependency.

DependsOn A string that specifies the name of a table on which the
dependent group depends.

A Table Replication Example
The following example illustrates a table replication definition:

 <Replication ApplicationID="901" ApplicationName="ABC" Description="Test Ins
tall Table" Status="4" DisplayName="TEST" Version="1.0">
 <Platforms>
 <Platform Type="SLC"></Platform>
 <Platform Type="VWS"></Platform>
 </Platforms>

 <Groups>
 <TableReference Name="SDK_ABC_NOA">
 <!-- The group name defaults to the table name -->
 <Group />
 </TableReference>
 <TableReference Name="SDK_ABC_NUMBER_BARRED">
 <!-- You can also specify the group name explicitly -->
 <Group Name="SDK_ABC_MAIN" />
 </TableReference>
 <TableReference Name="SDK_ABC_EXAMPLE">
 <!-- And groups can be replicated without being part of a
 dependency relationship -->
 <Group />
 </TableReference>
 </Groups>

 <Dependency Dependent="SDK_ABC_MAIN" DependsOn="SDK_ABC_NOA" />
 <!-- A new replication group can also depend on an existing (e.g. produc
t) group -->
 <Dependency Dependent="SDK_ABC_MAIN" DependsOn="ACS_CUSTOMER" />
 </Replication>

Chapter 9
Running the Database Table Installer

9-12

10
Creating an EDR Loader Plugin

This chapter describes how to create Event Detail Record (EDR) loader plugins using the
Oracle Communications Convergent Charging Controller Software Development Kit (SDK).

About EDR Loader Plugins
The Voucher and Wallet Server produces an EDR for every change to a wallet or voucher. An
EDR loader process on the SMS processes each EDR. The SDK includes an API that allows
you to create a custom EDR loader plugin.

Note:

Some of the EDR function names and file names still refer to CDR (Call Detail
Record) for legacy reasons, but they are actually EDRs and not specific to calls.

A plugin could add more information to the EDR. For example, if an EDR contains a numeric
ID, you might write a plugin that replaces the ID with a more descriptive name. A plugin also
might filter some EDRs that must be passed to an external billing system, for post-paid billing
perhaps. In this case, the plugin would select the relevant EDRs based on the values in its
fields, then write a new EDR in the format required by the external system.

The EDR Loader Plugin Shared Library
You must make all EDR loader plugins part of a shared library that is configured to be loaded
by the EDR loader. When it starts up, the EDR Loader calls the shared library's initialization
function, ccsCDRLoaderPluginLibInit(). You must implement this function and also register
any plugins that are in the library using the registerCDRLoaderPlugin() function.

In the following example, ccsCDRLoaderPluginLibInit() registers two plugins:

extern "C" ccs::cdr::CDRLoaderPluginLib *ccsCDRLoaderPluginLibInit() {
 // Register first plugin
 ccs::cdr::CDRLoaderPluginLib *lib =
ccs::cdr::registerCDRLoaderPlugin(myLibraryName, new FirstPlugin());

 // Register other plugins
 ccs::cdr::registerCDRLoaderPlugin(myLibraryName, new SecondPlugin());
 // ...

 return lib;
}

As with service loaders and macro nodes, you must place the shared library in a directory
that you have specified in the LD_LIBRARY_PATH environment variable.The ccsCDRLoader
section of the eserv.config file lists the shared libraries that will be loaded. For more

10-1

information about using the ccsCDRLoader, see the Charging Control Services
Technical Guide.

The EDR Loader Plugin
An EDR loader plugin implements and derives from the
ccs::cdr::CDRLoaderSDKPlugin class and must implement the process() and
flush() functions.

The EDR loader calls the process() function for every EDR and flush() when the
whole file has been processed.

In the following example, the process() function identifies the EDR that it's currently
processing, totals costs, if present, and records the processing time.

bool sdkCDRLoaderPlugin::process(ccs::cdr::CDRInterface &cdr) {
 DOUT << "Plugin " << getName() << " processing CDR with sequence number " <<
 cdr.getSeqNum() << std::endl;

 // ACCOUNT_TYPE=1|ACCT_ID=4|ACCT_REF_ID=4|ACS_CUST_ID=1|BALANCES=66076|BALAN
CE_TYPES=9|
 // BILLING_ENGINE_ID=1|CDR_TYPE=9|CLI=094454600|COSTS=-3000|CS=S|NEW_BALANCE
_EXPIRIES=|
 // OLD_BALANCE_EXPIRIES=|RECORD_DATE=20110328185229|RESULT=Success|SCP_ID=12
4153970|
 // SEQUENCE_NUMBER=2365233167|TERMINAL=192.168.10.229|USER=SU|WALLET_TYPE=3

 if (cdr.hasTag("COSTS")) {
 // Record the consumption of costs and update our running total
 const std::string &costs = cdr.getValue("COSTS");
 DOUT << "Has some costs: " << costs << std::endl;
 }

 // Record the fact that we were processed by this plugin, and when
 cdr.addExtraField("SDK","Y");
 time_t now = time(NULL);
 cdr.addExtraField("SDK_WHEN", ccs::cdr::CDRInterface::getGMTTimeString(now))
;

 return true;
}

Here the flush() function simply records that it is being called and returns a value of
true:

bool sdkCDRLoaderPlugin::flush() {
 DOUT << "Plugin " << getName() << " is being flushed" << std::endl;
 return true;
}

You can find the complete example in the file in the $CCC_SDK_HOME/example/
sdkCDRLoaderPlugin/sdkCDRLoaderPlugin.cc file.

Chapter 10
The EDR Loader Plugin

10-2

11
Creating a CcsAuth Voucher PAM Plugin

This chapter describes how to create a custom CcsAuth Voucher PAM plugin using the
Oracle Communications Convergent Charging Controller Software Development Kit (SDK).

About CcsAuth PAM Plugins
Generating a voucher secret HRN and a hashed/encrypted version of the HRN, and then
validating an input HRN is handled by CcsAuth PAM plugin libraries in CCS. The SDK
includes an API that allows you to create a custom CcsAuth PAM plugin.

With a custom PAM plugin, you can define custom solutions for the following actions:

• generating an HRN (secret) from voucher number and seed information.

• encrypting a secret to produce a private secret.

• decrypting a private secret to recover the HRN (secret).

A plugin can change how the HRN is generated. Five inputs are available to use when
generating a custom HRN: the voucher number, a sequence derived from the CB10 HRN,
and three integer parameters. One possible custom HRN might be to generate an
alphanumeric HRN instead of the numeric HRN created by CB10. Apart from HRN
generation, a plugin can also specify its own custom method for encrypting/hashing the
secret (HRN) to produce the private secret which is the entity stored in the database against
the voucher.

You can also specify whether the private secret so produced is decryptable (as would be the
case if the method that produced the private secret used symmetric encryption instead of
one-way hashing).

You can define and install up to three different custom voucher PAM plugins with the SDK.

Once a custom SDK plugin is installed it is available as a selection from the PAM drop-down
menu when creating new CCS Authentication Rules in the Voucher Security screen. Installed
SDK plugins also have their own button for key generation in the Voucher Security Screen.

A SDK voucher PAM plugin is installed or uninstalled from the database on the SMS by using
the provided ccsAuthPluginInstaller command line utility, which takes an input XML
directive file describing the SDK voucher PAM plugin to be installed or uninstalled.

The CcsAuth Plugin Shared Libraries
Each defined SDK voucher PAM plugin is a different shared library. The shared library is
created by sub classing a SDK delivered abstract class defined by header file
ccsAuthPluginSDK.hh, providing definitions for pure virtual methods and overriding virtual
methods with default implementations as required. When the shared library is loaded by the
Ccs Auth subsystem, a factory routine is called to create an instance of the derived class that
the library defines. Similarly a factory routine must be defined to delete an instance of the
derived class.

11-1

If for example the plugin derived class is MyVoucherAuth, then these two routines
need to be implemented globally and declared extern "C" in the plugin class:

extern "C" ccs::auth::ccsAuthPluginSDK* createPluginInstance() {
 return new MyVoucherAuth;
}
extern "C" void destroyPluginInstance(ccs::auth::ccsAuthPluginSDK* p) {
 delete p;
}

As with service loaders and macro nodes, you must place the shared library in a
directory that you have specified in the LD_LIBRARY_PATH environment variable.

SDK Voucher PAM plugin shared libraries must be installed on all CCC nodes (SMS,
SLC, and VWS).

SDK Voucher PAM Plugins
A voucher PAM plugin implements and derives from the ccs::auth::CcsAuthPluginSDK
abstract class and must implement these pure virtual methods from that class:

const bool usingCB10ForSecret()
const bool usingSHA256ForPrivateSecret()
const bool usingSHA512ForPrivateSecret()
const bool usingAES256ForPrivateSecret()

Method usingCB10ForSecret() should be defined to return true if the CB10 algorithm
only is being used to create the secret (HRN) for a voucher. If a custom secret creation
is required then define usingCB10ForSecret() to return false and provide a definition of
the custom secret method by redefining virtual method makeSecret (see below).

The three using*ForPrivateSecret() methods are used to define which product
supported method of producing the private secret (encrypted/hashed HRN) from the
secret is required. To use a specific product method, e.g. SHA512, define the
corresponding routine (usingSHA512ForPrivateSecret()) to return true and define the
other two using*ForPrivateSecret() methods to return false. To use a custom method
for creating the private secret, define all three using*ForPrivateSecret() methods to
return false and then provide an implementation for method makePrivateSecret().

These following methods are virtual in ccs::auth::CcsAuthPluginSDK and may be
overridden if desired in the SDK subclass:

int makeSecret(const std::string& key, const int sdk_p1, const int sdk_p2, const
int sdk_p3, std::string& secret)
bool makePrivateSecret(const std::string& secret, std::string& private_secret)
bool canDecryptPrivateSecret()
bool regenerateSecretFromPrivateSecret()

These methods are called as required by the application framework.

Method makeSecret is called by the application framework if usingCB10ForSecret() is
defined to return false.

These arguments to makeSecret are then available to produce the secret which
should be returned in the final argument parameter, std::string& secret.

The makeSecret input parameters are:

const std::string& key - the input key (voucher number).

Chapter 11
SDK Voucher PAM Plugins

11-2

const std::seed_seq& seedSeq - a seed sequence initialized with the CB10 produced HRN.

const int sdk_s_length - the SDK Custom Secret Length value specified by the
Authentication Rule being used. This value allows the length of the custom HRN (in
characters) to be specified. This feature is used if the plugin is installed on the SMS with the
CustomHRN value specified as Y in the specification XML file for the plugin See section
"ccsAuthPluginInstaller".

const int sdk_p1
const int sdk_p2
const int sdk_p3
These values can be optionally defined in the Authentication Rule screen (fields SDK P1,
SDK P2, and SDK P3) and can be used as part of the makeSecret implementation. If they
are left blank in the Authentication Rule screen, then their values are 0 in the makeSecret
call.

The output parameter for makeSecret is

std::string& secret

which should contain the created secret string of length sdk_s_length characters.

The return value of method makeSecret is int.

If makeSecret is successful, return the value 1 from the method. If there is an error, return
the value 0.

Method makePrivateSecret is called when all using*ForPrivateSecret() methods are defined
as returning false. In this case, the implementation for creating a private secret from an input
secret (HRN) should be supplied by redefining makePrivateSecret.

The input parameters for makePrivateSecret are secret and key.

const std::string& secret - the input sequence (HRN) to produce a private secret from.

const std::string& key - a custom encryption key generated for this plugin. This is a
random string of 256 hexadecimal characters created when the Generate button for the
plugin is used on the Service Management > Security > Voucher Security panel.

The output parameter for makePrivateSecret is private_secret.

std::string& private_secret - should contain the produced private secret as a
hexadecimal string.

The return value from makePrivateSecret is bool and should be true if the private secret was
created successfully and false otherwise.

Method canDecryptPrivateSecret is used to indicate whether the chosen private secret
production method uses a scheme that can be reversed to recover the secret from the private
secret. This will be possible if a form of symmetric encryption was used to produce the private
secret, but will not be possible if hashing is used as that is a one-way process only.

If makePrivateSecret is being used and the defined private secret production method is
reversible, define canDecryptPrivateSecret to return true. (The default version return false).

Method regenerateSecretFromPrivateSecret is used to implement the “regeneration"
method, the method that decrypts/reverses the private secret production method. This

Chapter 11
SDK Voucher PAM Plugins

11-3

method is called by the application framework if canDecryptPrivateSecret returns
true. regenerateSecretFromPrivateSecret takes as input private_secret and key.

const std::string& private_secret - private secret to be decrypted, hexadecimal
string.

const std::string& key - custom encryption key for the plugin, 256 character
hexadecimal string, same value is provided to makePrivateSecret by its key
argument.

The output parameter is secret.

std::string& secret - should contain the decrypted secret string

regenerateSecretFromPrivateSecret should return a bool value, true if the secret
was recovered successfully from the private_secret and false otherwise.

The following utility methods are also provided:

const std::string& getName() - returns the name of the plugin.

static const size_t maxKeyLen() - returns the maximum supported input key length
(voucher number).

static const size_t maxKeyLenZ() - returns the maximum supported input key
length (null terminated).

static const maxSecretLen() - maximum supported length of a secret (not null
terminated).

static const maxPrivateSecretLen() - maximum supported length of a private
secret (hexadecimal string representation), not null terminated.

static const size_t maxSecretLenZ() - maximum length of a secret (null
terminated).

static const size_t maxPrivateSecretLenZ() - maximum length of a private secret
(hexadecimal string representation), null terminated.

You can find the complete example in $CCC_SDK_ HOME/example/
sdkCcsAuthPlugin/sdkCcsAuthPlugin.cc and .hh files.

ccsAuthPluginInstaller
This utility installs and uninstalls a SDK Voucher PAM plugin from the database on the
SMS. After a plugin has been developed, the definition of the plugin needs to be
installed in the database so that:

• The Ccs Auth subsystem knows the plugin's name, its properties, and the path to
the shared library implementing the plugin.

• The screens can display a Generate button for the plugin in the Voucher Security
tab.

• The screens can populate the PAM drop-down menu with the name of the plugin
as one of the available selections when defining a new Authentication Rule.

The ccsAuthPluginInstaller has the following usage:

ccsAuthPluginInstaller [-i | -u] -f specFile.xml

Chapter 11
ccsAuthPluginInstaller

11-4

where -i says to install the plugin definition in the database and -u says to uninstall an
existing plugin definition from the database. The plugin specification is supplied in a xml file
named with the -f option.

Here is a specification xml file for the example sdkCcsAuthPlugin:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE CcsAuthPluginDefinitions SYSTEM "pluginschema.dtd"[]>
<CcsAuthPluginDefinitions>
<CcsAuthPlugin>
<DisplayName>SDK ccsAuthPlugin</DisplayName>
<LibraryPath>/IN/service_packages/CCS/lib/libsdkCcsAuthPlugin.so</LibraryPath>
<CustomHRN>Y</CustomHRN>
<UsesIterations>N</UsesIterations>
<Description>SDK ccsAuthPlugin example</Description>
<SupportsDecryption>N</SupportsDecryption>
</CcsAuthPlugin>
</CcsAuthPluginDefinitions>
An xml file contains one <CcsAuthPluginDefinitions> element that can contain one or more
<CcsAuthPlugin> elements.

A <CcsAuthPlugin> should define these elements:

DisplayName - the name of the plugin as it presented to the user in the GUI on the label for
a Generate button or as a selection in a PAM drop-down box.

LibraryPath - the absolute path name to the location of the plugin shared library. Should
normally be a location in /IN/service_packages/CCS/lib.

CustomHRN - whether the plugin is implementing its own method for HRN generation as an
adjuct to CB10. If Y, then the Authentication Rule field SDK Custom Secret Length becomes
enabled.

UsesIterations - whether this plugin supports the specification of a number of iterations (> 1)
for producing the private secret from the secret (if hashing is being used for example).

Description - a longer form description for the plugin.

SupportsDecryption - whether this plugin supports decrypting the private secret to recover
the secret (HRN). This controls whether the decryption is attempted using the plugin, and
whether GUI buttons to decrypt the HRNs are present for authorised screens users.

Chapter 11
ccsAuthPluginInstaller

11-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	1 About Customizing Convergent Charging Controller
	Understanding the SDK Development Environment
	Developing Convergent Charging Controller Components and Features with the SDK
	About the SDK API

	2 Getting Started
	Prerequisites
	Building gcc 4.8.2 on Oracle Solaris with GNU Linker LD
	Building binutils 2.23.2 on Oracle Solaris
	Installing the SDK
	Setting Environment Variables

	SDK Contents
	Building Examples
	Installing the Examples

	Accessing the API Documentation
	Using Debugging, Alarms, Statistics, and Configuration
	Using Debugging Statements
	Using Debug Sections
	Creating Debug Output
	Using Display Options

	Logging Alarms
	Recording Statistics
	Accessing the Configuration File

	3 Creating Service Loaders
	About Service Loaders
	Creating a Custom Service Loader
	acsChassisInitSL()
	acsChassisLoadService()
	acsChassisPreCTR() and acsChassisPreETC()
	acsChassisPreCTR()
	acsChassisPreETC()

	acsChassisPrePOR()
	Denormalization
	Setting up Service-Specific Data
	Setting up Extension Information
	General Setup of Outgoing Information
	Sending FurnishChargingInformation or SendChargingInformation

	acsChassisCallTerminated()

	Defining a Custom Service Loader Extender

	4 Creating a Custom Feature Node
	About Feature Nodes
	About Creating Custom Feature Nodes
	Defining a Feature Node
	Creating a Feature Node Definition
	Example: Feature Node Definition File

	Loading Feature Node Definitions

	Adding the Feature Node to a Feature Set
	Creating the Shared Library
	Initialization
	Processing
	Tracking the State
	Making a Chassis Action Request

	Exiting
	Using the Node Context Block

	Specifying the Location of the Shared Library
	Creating the Feature Node Image Files

	5 Creating a Custom Control Agent
	About Control Agents
	SLEE Dispatcher
	The SDK TCAP API
	The SDK INAP API

	6 Creating Provisioning Interface Commands
	About Provisioning Interface Commands
	The PI Function
	PI Command Actions
	PI Function Return

	Adding a PI Command to the Database
	Creating a PI Commands File
	Example: PI Command Definition File

	Running the PICommandInstaller Utility

	7 Creating Provisioning Screens
	About Creating Provisioning Screens
	Creating Screens Using KFramework
	Using the Service Screens
	Find Mode
	Display Mode
	The Results Display Table
	The Find Button Bar
	The Modify All Selection Dialog Box

	Data Entry Mode
	Help Screen
	Table Monitor
	Using the TableMonitor

	Creating a New Service Screen
	The ABC Example
	Creating DataEntryFrame Classes
	Creating DataEntryPanels Classes
	The Constructor
	TableMonitor
	Help
	Validation
	The GUI

	Language Translation

	8 Creating Memory-Mapped Files
	About Memory-Mapped Files
	About Creating Memory-Mapped Files
	Data Replication
	Creating Alerts When Data Changes Occur
	The Mfile Daemon
	The Mfile Daemon API
	enum AwaitResult{...}
	initGPNA()
	Parameters
	Return

	awaitGPNAChange()
	Return

	startGPNAChange()
	Return

	mallocGPNAEntry()
	Parameters
	Return

	addGPNAEntry()
	Parameters

	addGPNAIntEntry()
	Parameters

	finishedGPNA()
	Return

	finishedSingleEntry()
	Return

	An Mfile Daemon Example

	The Mfile Application
	The Mfile Application API
	setupGPNA()
	Parameters

	genericGPNA()
	Parameters
	Return

	An Mfile Application Example

	9 Creating and Replicating Database Tables
	About Creating and Replicating Database Tables
	Defining a Database Table
	The TableDefinition Element
	The TableColumnData Element
	The TableConstraint Element
	The IndexDefinition Element
	The IndexColumnData Element
	A Table Definition Example

	Running the Database Table Installer
	Defining the tableClientFile
	The ClientTableDefinition Element
	The ClientIndexDefinition Element
	A tableClientFile Example

	Replicating Tables
	The Replication Element
	The Platforms Element
	The Platform Element
	The Groups Element
	The Group Element
	The Dependency Element
	A Table Replication Example

	10 Creating an EDR Loader Plugin
	About EDR Loader Plugins
	The EDR Loader Plugin Shared Library
	The EDR Loader Plugin

	11 Creating a CcsAuth Voucher PAM Plugin
	About CcsAuth PAM Plugins
	The CcsAuth Plugin Shared Libraries
	SDK Voucher PAM Plugins
	ccsAuthPluginInstaller

