

Oracle® Communications Network
Charging and Control
Data Access Pack User's and Technical
Guide

Release 15.2

January 2026

ii Data Access Pack User's and Technical Guide

Copyright

Copyright © 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

 iii

Contents

About This Document .. v
Document Conventions .. vi

Chapter 1

System Overview .. 1

Overview .. 1
What is Data Access Pack? .. 1
Introduction to LDAP interface for DAP ... 5
DAP Template Language .. 6
Profile Tag Formats ... 9
XML and SOAP over HTTP/HTTPS ..10
HP-SA ..14
XML Interface ..15
WSDL ..16
Statistics ..17
LDAP IF Reports ...19
Accessing the DAP application ...20

Chapter 2

Resources .. 21

Overview ..21
Resources Screen ...21
ASP..22
Operations ...26
Operation Sets ...35

Chapter 3

Import WSDL ... 37

Overview ..37
Import WSDL Screen ...37
Import WSDL Files ..38
Operation Request Configuration ..40
Operation Response Configuration ...43

Chapter 4

Configuration ... 45

Overview ..45
Configuration Overview ...45
eserv.config Configuration ...46
DAP eserv.config configuration ...47
SLEE.cfg Configuration ...70
Configuration for Optimal Performance ...71
LDAP IF Configuration...71
eserv.config Configuration ...72
Global Configuration ..74
SLEE.cfg ..79
DAP Resource Configuration ..79

iv Data Access Pack User's and Technical Guide

Chapter 5

Using LDAP with DAP .. 81

Defining a DAP ASP for LDAP .. 81
Defining a DAP Operation for LDAP ... 82
DAP Control Plan .. 88

Chapter 6

Background Processes .. 89

Overview .. 89
c_rehash .. 89
dapIF ... 90
dapMacroNodes .. 91
dapTypeConversion .. 91
ldapIF ... 92
libdapChassisActions .. 93
libDAPManager.so .. 94
openssl .. 94
sqlite3 .. 95

Chapter 7

Tools and Utilities ... 97

Overview .. 97
dapReadyCertificates.sh ... 97
dapSchemaTool .. 98

Chapter 8

About Installation and Removal .. 99

Overview .. 99
Installation and Removal Overview ... 99
Checking the Installation ... 99

 v

About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the
Oracle Communications Network Charging and Control Data Access Pack application.

Audience

This guide was written primarily for system administrators and persons installing and administering the
DAP application. The documentation assumes that the person using this guide has a good technical
knowledge of the system.

Prerequisites

Although there are no prerequisites for using this guide, familiarity with the target platform would be an
advantage.

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this guide. Attempting to install, remove, configure or otherwise alter
the described system without the appropriate background skills, could cause damage to the system;
including temporary or permanent incorrect operation, loss of service, and may render your system
beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related documents

The following documents are related to this document:

• Advanced Control Services User's Guide

• Control Plan Editor User's Guide

• Service Management System Technical Guide

• Service Management System User's Guide

• Service Logic Execution Environment Technical Guide

• Data Access Pack Protocol Implementation Conformance Statement

• RFC 2616: Hypertext Transfer Protocol – HTTP/1.1

vi Data Access Pack User's and Technical Guide

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network
Charging and Control (NCC) documentation.

Formatting Convention Type of Information

Special Bold Items you must select, such as names of tabs.

Names of database tables and fields.

Italics Name of a document, chapter, topic or other publication.

Emphasis within text.

Button The name of a button to click or a key to press.

Example: To close the window, either click Close, or press Esc.

Key+Key Key combinations for which the user must press and hold down one
key and then press another.

Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.

Monospace Bold Text that you must enter.

variable Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions

hypertext link Used to indicate a hypertext link.

Specialized terms and acronyms are defined in the glossary at the end of this guide.

 Chapter 1, System Overview 1

Chapter 1

System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control
(NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

What is Data Access Pack? .. 1
Introduction to LDAP interface for DAP ... 5
DAP Template Language .. 6
Profile Tag Formats ... 9
XML and SOAP over HTTP/HTTPS .. 10
HP-SA .. 14
XML Interface .. 15
WSDL .. 16
Statistics .. 17
LDAP IF Reports ... 19

What is Data Access Pack?

Introduction

Oracle Communications Network Charging and Control Data Access Pack (DAP) provides the capability
to send requests to external Application Service Providers (ASP) and optionally receive responses for
further processing by the IN platform. The protocol that the system uses is determined by the ACS
service library (libacsService).

Chapter 1

2 Data Access Pack User's and Technical Guide

Diagram

The following diagram shows the architecture of the DAP solution.

Synchronous and asynchronous connections

Responses over a connection are expected to be asynchronous if the <!--CORRELATE--> or <!--
CORRELATE-ID--> tag is included in the template which specifies the request. In this case, only the
ACK is checked in the (initial) synchronous response, and any later responses (using the same <!--
CORRELATE--> tag) are not checked. Asynchronous mode is not supported for HTTPS connections.
The listening port only supports HTTP connections.

Responses over a connection are expected to be synchronous if the <!--CORRELATE--> tag is not
included in the template which specifies the request. In this case, DAP parses the synchronous
response for component fields.

"Synchronous" mode for HTTPS is supported. This is done using openssl (on page 94) SSL sockets to
encrypt a request/response pair to a remote HTTPS server.

Note: The server does not request any client-side authentication.

For more information about:

• Configuring operations, see Operations (on page 26).

• The <!--CORRELATE--> tag, see Correlation (on page 27)

 Chapter 1

•

 Chapter 1, System Overview 3

Correlation

Correlation is a way to ensure that an asynchronous response is associated with an originating request.
Requests that require an asynchronous response are identified by the setting of a correlated flag in the
template.

HTTP and HTTPS Connections

DAP supports concurrent connections to multiple ASPs, using either HTTP or HTTPS. More than one
of each type of connection can be open at once, including multiple HTTPS connections.

Supported protocols

This table describes the function of each field.

Protocol Description

SOAP Over HTTP or HTTPS. For more information about this protocol, see SOAP (on
page 10).

XML Over HTTP or HTTPS.

HPSA HP-SA formatted XML messages over TCP. For more information about HP-SA
handling, see HP-SA (on page 14).

PIXML PI commands using XML. For more information about this protocol, see DAP
and the PI.

LDAP Enables DAP to send LDAP requests to the LDAP server and receive response.

Message flow

This table describes the message flow for a standard DAP message.

Stage Description

1 When run in a control plan, the DAP Send Request feature node (dapMacroNodes (on
page 91) and libdapChassisActions (on page 93)) sends a request over the SLEE to the
interface specified by the InterfaceHandle (on page 65) parameter for the specified
protocol (usually dapIF (on page 90)). The message is populated from the macro node
configuration with the:

• Protocol

• Template ID

• List and number of request parameters

• "Wait flag"

Note: FAST_KEY parameters are replaced with the actual run-time parameter. For
example, the value <aCN> is replaced with the calling number. Other parameters are
simply used "as is".

2 dapIF receives a DAP request event over the SLEE, and extracts the request template ID.
dapIF uses the ID to query its cache or the SLC database for the XML request template
details.

For each tag name/value pair found in the request, parameter substitution is performed.
If dapIF determines a response is required, it searches the script for a correlation
parameter. dapIF replaces the correlation tag with a unique ID. The correlation tag is
set in the XML template using the XML tag with the string defined by correlationTagName
(on page 54) (usually <!--CORRELATION-->). This id will be used to assign the
incoming response.

Chapter 1

4 Data Access Pack User's and Technical Guide

Stage Description

For more information about:

• Substitution, see Parameter Substitution (on page 10)

• Substitution for HP-SA connections, see Parameter substitution (on page 14)

3 If a primary TCP/IP connection is already established with the ASP but no ASP interaction
is associated with that socket (that is, dapIF is idle), then this connection can be re-used
immediately and dapIF sends the message.

If no connection is available (and the limit has not yet been reached), dapIF opens a
TCP/IP connection to the ASP specified by the host and (optional) port number found in
the destination URL.

4 dapIF wraps the XML in an HTTP header and footer. For more information about how
the headers and footers are constructed, see Message Header Construction (on page
11).

5 If the wait flag of the incoming DAP request event was set to false, dapIF immediately
sends a DAP response event to slee_acs. The DAP response has Operation Status set
to true to indicate success.

For HTTP and HTTPS connections, if no response is expected and the request was sent
on a secondary connection, it is closed unless there is no primary connection, in which
case it becomes the primary connection.

For HP-SA connections, the connection is closed.

6 dapIF starts a timer with the sooner of the value specified in either the template or the
socket timeout (connectionTimeout (on page 53)).

7 dapIF checks whether there is any incoming traffic on any of the TCP/IP sockets it has
previously opened with ASPs.

If a TCP/IP connection is already established with the ASP and there is an ASP
interaction currently associated with that socket (that is, we are waiting for a response),
then the new request from the ASP is queued.

If activity comes from an ASP connection and dapIF is waiting for a response from the
ASP, then the incoming TCP/IP traffic is accepted and data is read. The tags are parsed
and a DAP response request is constructed. For more information about parsing
messages from ASPs, see ASP Message Parsing (on page 12). For more information
about parsing HP-SA messages, see HP-SA response messages (on page 14).

dapIF sends the message back to libdapChassisActions over the SLEE.

8 When the DAP response event is received by libdapChassisActions, and the node exits
based on whether the response was a Success or an Error.

DAP and the PI

The DAP provides the ability to automatically log in to the PI when using the PIXML protocol. This
feature enables PI commands to be triggered from a control plan using the DAP Send Request feature
node. The DAP interface will process the PI response before returning it to the DAP Send Request
feature node.

For more information on DAP feature nodes, see Feature Nodes Reference Guide.

 Chapter 1

•

 Chapter 1, System Overview 5

Introduction to LDAP interface for DAP

Introduction

The LDAP interface for DAP (LDAP IF) is an extension to DAP that introduces support for the LDAP
protocol. Specifically, it provides the capability to send DAP requests to external ASPs that provide
their services using LDAP. This is an enhancement to DAP's existing ability to communicate with ASPs
using XML, SOAP, HSPA and PIXML.

LDAP requests are made from within ACS control plans by using the DAP Request macro node located
within the Data Access Pack feature node group.

Functionality

The LDAP IF is a protocol translator. The DAP Request node collects the configured request
parameters and passes them to the LDAP Interface via the Service Logic Execution Environment
(SLEE). The LDAP Interface embeds these per-request parameters into a standard template (stored in
XML format). Then the completed template is translated into an ASN.1 format LDAP v2 or v3 request.
The request is sent to the LDAP server, and the response is returned to ACS by the same mechanism.

The LDAP Interface then is responsible for:

• Managing LDAP connections (bind/unbind).

• Translating DAP requests into LDAP search requests.

• Relaying valid LDAP search requests to the appropriate LDAP ASP.

• Handling overdue responses.

• Translating LDAP search responses to DAP responses.

• Relaying valid ASP responses to SLEE ACS.

Diagram

Here is an example of the main components of the DAP service with LDAP Interface.

Chapter 1

6 Data Access Pack User's and Technical Guide

DAP Template Language

Introduction

DAP uses a template language to describe the format of the messages (requests) that are sent to ASPs.
This template language controls variable substitution and repetition of subtrees.

Variables

There are two formats that variables can take in the XML document.

1 An empty XML element:

<phone_number></phone_number>

This is interpreted as a variable called phone_number

2 A specific format of text string:

<<$phone_number>>

This is interpreted as a variable called $phone_number.

In addition to user defined variables, there are several other variables which are substituted
automatically by the DAP interface.

Variable Description

<!--CORRELATE--> This is substituted with the correlation ID wrapped with an element
specified by the correlationTagName (on page 54) configuration value.

<!--CORRELATION_ID-
->

This is substituted with the correlation ID. The value of the correlation ID
should be treated as an opaque, variable length string.

<!--TIMESTAMP--> This is substituted with the current time, in the format
YYYYMMDDHHmmSS, wrapped with an element specified by the
timestampTagName (on page 64).

Repetition of subtrees

Using profile fields contained in array profile fields, it is possible to repeat sections of a DAP request
template.

This is done through the use of the dap_main_key attribute. When a tree has the dap_main_key
specified in the root, the subtree will be duplicated for each instance of the variable in dap_main_key.

For example:

The variable FF_numbers is configured to point to an array of three elements (121, 122, 123), the
following template stub:

<number_list>

<phone_number dap_main_key="FF_numbers"><<$FF_numbers>></phone_number>

</number_list>

This will result in the following template being sent to the ASP:

<number_list>

<phone_number>121</phone_number>

<phone_number>122</phone_number>

<phone_number>123</phone_number>

</number_list>

Multiple variables

It is possible to have multiple variables in a repeated subtree. If there are not enough elements to
provide each subtree with a different value, the first value in the array will be repeated for the remaining
values.

 Chapter 1

•

 Chapter 1, System Overview 7

Example:

$FF_number = (121,122,123)

$FF_shortCode = (555,666)

$FF_enabled = "Yes"

<number_details dap_main_key="FF_number">

<phone_number><<$FF_number>></phone_number>

<short_code><<$FF_shortCode>></short_code>

<enabled><<$FF_enabled>></enabled>

</number_details>

Will result in the following:

<number_details>

<phone_number>121</phone_number>

<short_code>555</short_code>

<enabled>Yes</enabled>

</number_details>

<number_details>

<phone_number>122</phone_number>

<short_code>666</short_code>

<enabled>Yes</enabled>

</number_details>

<number_details>

<phone_number>123</phone_number>

<short_code>555</short_code>

<enabled>Yes</enabled>

</number_details>

Detailed example

This detailed example shows what is sent to the ASP given the variables and template used.

Variables:

CustomerName "Bill"

$CallTo "5551212"

$CallFrom "5557399"

$FF_list (5550000,5550001,5550002)

Template:

<ProvideDiscount>

<RequestType>Regular Call</RequestType>

<CustomerName></CustomerName>

<Destination><<$CallTo>></Destination>

<Source><<$CallFrom>></Source>

<FriendsAndFamily>

<PhoneNumber dap_main_key="$FF_list"><<$FF_list>></PhoneNumber>

</FriendsAndFamily>

</ProvideDiscount>

The following will be sent to the ASP:

<ProvideDiscount>

<RequestType>Regular Call</RequestType>

<CustomerName>Bill</CustomerName>

<Destination>5551212</Destination>

<Source>5557399</Source>

<FriendsAndFamily>

<PhoneNumber>5550000</PhoneNumber>

<PhoneNumber>5550001</PhoneNumber>

Chapter 1

8 Data Access Pack User's and Technical Guide

<PhoneNumber>5550002</PhoneNumber>

</FriendsAndFamily>

</ProvideDiscount>

Template contents

This is a list of the various DAP Templates used for real time notifications and their data contents:

Wallet Expiry

• TIMESTAMP

• NOTIFICATION_NAME

• WALLET_NAME

• CLI

• PRODUCT_TYPE

• OLD_STATE

• NEW_STATE

Wallet State Change

• TIMESTAMP

• NOTIFICATION_NAME

• WALLET_NAME

• CLI

• PRODUCT_TYPE

• OLD_STATE

• NEW_STATE

Charging

• TIMESTAMP

• NOTIFICATION_NAME

• WALLET_NAME

• CLI

• PRODUCT_TYPE

• BALANCE_TYPE

• BALANCE_UNIT

• COST

• OLD_BALANCE

• NEW_BALANCE

Recharging

• TIMESTAMP

• NOTIFICATION_NAME

• WALLET_NAME

• CLI

• PRODUCT_TYPE

• BALANCE_TYPE

• BALANCE_UNIT

• AMOUNT

• OLD_BALANCE

 Chapter 1

•

 Chapter 1, System Overview 9

• NEW_BALANCE

Balance Expiry

• TIMESTAMP

• NOTIFICATION_NAME

• WALLET_NAME

• CLI

• PRODUCT_TYPE

• BALANCE_TYPE

• BALANCE_UNIT

• EXPIRED_AMOUNT

• OLD_BALANCE

• NEW_BALANCE

RAR Detailed Example

<RAR>

 <instance></instance>

 <session></session>

 <origin_host></origin_host>

</RAR>

Profile Tag Formats

Introduction

The profile block values need to be converted to the receiving application's expected format, so that
requests can be transmitted to other systems, and for them to communicate back.

This is impossible without a set of supported types and detailed information about what format the data
is sent and received will be in.

Supported tag types

This table describes the formats and meanings of the supported ACS profile tags.

Format Description

STRING Any character string.

NSTRING String containing only digits, the letters A-F, and the characters # and *.

INTEGER Signed base 10 integer, range -2147483648 to 2147483647 inclusive.

UINTEGER Unsigned base 10 integer, 0 to 4294967295 inclusive.

Chapter 1

10 Data Access Pack User's and Technical Guide

Format Description

DATE Supported DATE formats include:

• ISO 8601 time date-time format (YYYYMMDDTHHHMMSS)

• Explicit UTC timezone specifier (YYYYMMDDTHHMMSSZ)

▪ Offset from UTC with : (YYYYMMDDTHHMMSS[+-]hh[:mm])
▪ Offset from UTC without : (YYYYMMDDTHHMMSS[+-]hh[mm])

• Extended ISO format with - and : delimiters (YYYY-MM-DDTHH:MM:SS)

• Explicit UTC timezone specifier (YYYY-MM-DDTHH:MM:SSZ)

▪ Offset from UTC timezone specifier with : (YYYY-MM-DDTHH:MM:SS[+-
]hh[:mm])

▪ Offset from UTC timezone specifier without : (YYYY-MM-DDTHH:MM:SS[+-
]hh[mm])

• Date only with midnight time of T000000 is added in all cases to make a date time
(YYYYMMDD and YYYY-MM-DD)

▪ Explicit UTC timezone (YYYYMMDDZ and YYYY-MM-DDZ)
▪ UTC offset with : (YYYYMMDD[+-]hh[:mm])
▪ UTC offset without : (YYYYMMDD[+-]hh[mm])

• Time only with current system date UTC added in all cases to make a date time
(HHMMSS)

▪ Explicit UTC timezone (HHMMSSZ)
▪ UTC offset with : (HHMMSS[+-]hh[:mm]
▪ UTC offset without : (HHMMSS[+-]hh[mm]

BOOLEAN String containing "1" for true or "0" for false.

DISCOUNT String of the following format: maxCharge,period1Discount,period2Discount

VXMLANN A plain text string, it is opaque to ACS.

ACS expects (but does not enforce) that it is a valid URL that can be used to retrieve a
VXML document. For example:

http://example.org/ExampleDocument.vxml

XML and SOAP over HTTP/HTTPS

SOAP

When creating an XML template through the Resources (on page 21), the XML is parsed at a simple
level for syntactical validity against the XML standard. Simple Object Access Protocol (SOAP)
messages are formatted XML messages. DAP does not use syntactical parsing to check for properly
formatted SOAP messages.

Parameter Substitution

When dapIF (on page 90) is requested to send a message to an ASP, it resolves any variables in the
template as follows:

• If the tag name starts with a \ and is then followed by a $, dapIF assumes the $ is part of an existing
expression that does not require substitution.

• If the tag name starts with a $, every occurrence of the tag name is replaced by the tag value.

• If the tag name does not start with a $, dapIF looks for XML tags with the given name and sets their
value accordingly.

• <date> fields are populated with the date in one of the supported formats listed in the table above.

 Chapter 1

•

 Chapter 1, System Overview 11

• If dapIF determines a response is required, it searches the script for a correlation parameter and
replaces it with a unique ID. This substitution results in a user-specific version of the template.
The correlation tag is set in the XML template using the XML tag defined by correlationTagName
(on page 54) (usually <!--CORRELATION-->). This ID is used to assign the incoming response.
The ID the CORRELATION takes place on has the form:
<CORRELATION>HHHHHHHHTTTTTTTTSSSSSSSS</CORRELATION>

Where:

▪ H is the hostID, 8 hex characters in length.
▪ T is the current time with accuracy of seconds, 8 hex characters in length.
▪ S is a sequence number from 0 to FFFFFFFF, generated by the macro node each time it is

invoked which ensures that the resulting string is unique.

Example: For a correlated message with tag/value pairs of: $1 and 999, and MSISDN and
00441473289900:

<!--CORRELATION-->

<emergencyNumber>$1</emergencyNumber>

<msisdn></msisdn>

This results in:

<CORRELATION>abcdef121234561212345678</CORRELATION>

<emergencyNumber>999</emergencyNumber>

<msisdn>00441473289900</msisdn>

For more information about overall message handling, see Message flow (on page 3).

Message Header Construction

When dapIF is constructing a message to send to an ASP it constructs a message from an initial HTTP
request line, followed by HTTP headers:

POST path HTTP/1.1

Host: host[:port]

SOAPAction: url

User-Agent: Oracle DAP

Cache-Control: no-cache

Pragma: no-cache

Content-Type: text/html; charset=utf-8

Content-Length: length

clientUrl: http://<listenHost>:<listenPort>/ACK

Where:

• path has been extracted from the destination URL

• host has been extracted from the destination URL.

• port (if any) has been extracted from the destination URL.

• url is the full destination URL.

• length is the length (in bytes) of the template body

Notes:

• The SOAPAction header line is only sent if the protocol associated with the ASP is set to S
(meaning SOAP).

• The clientUrl header is only sent if the listenHost (on page 55) parameter is configured.

• The request line and each of the above HTTP headers is terminated by a CRLF sequence as
specified in 5.1 of RFC 2616: Hypertext Transfer Protocol – HTTP/1.1.

The HTTP headers are followed by an empty line, consisting only of the CRLF sequence.

The HTTP body (that is, the request template body), is sent to the ASP.

If the protocol associated with the ASP is set to S (meaning SOAP), the body is surrounded by the
following SOAP header:

Chapter 1

12 Data Access Pack User's and Technical Guide

<?xml version="1.0" encoding="ISO-8859-1" standalone="no" ?><soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"><soapenv:Header/><soapenv:Body>

and the following SOAP footer:
</soapenv:Body></soapenv:Envelope>

For more information about overall message handling, see Message flow (on page 3).

ASP Message Parsing

The first line of the response buffer contains the HTTP response status line (as defined in 6.1 of RFC
2616: Hypertext Transfer Protocol – HTTP/1.1). The HTTP status code is extracted from the HTTP
response status line. If it is not 200 (indicating success), an alarm is raised and a DAP response event
is returned to libdapChassisActions (on page 93).

If the original DAP request event contained response tag names, these will have been stored in the ASP
queue. dapIF parses the HTTP response body to retrieve the value associated with these tags. The
DAP response event will have its Operation Status set to true to indicate success. The DAP response
event will be sent on the SLEE dialog which the original DAP request event arrived from.

If there is correlation and the response is the:

• First response, then the socket is still closed but the request is queued using the key of the
correlation ID and with a timeout of the timeout value for a response.

• Second response (that is, it contains a correlation ID), then that correlation ID is searched for in the
queue. If found, a response is generated using the parameters found in the response XML.

Note: Correlation data is received on a ‘listening’ socket (these are defined by listenPort (on page 56)).

For more information about overall message handling, see Message flow (on page 3).

HTTPS Connections

A new SSL connection is made whenever there is a queued request to be sent to the remote HTTPS
server (that is, whenever an ASP connection is made on a secure connection). New connections start
as HTTP, and are moved to HTTPS if a secure connection is established.

When the connection is opened:

• openssl (on page 94) (if not already initialized):

▪ Loads our keys
▪ Seeds the random number generator
▪ Verifies the location of the certificates directory

• An SSL socket is created

• An SSL handshake is performed

• Server Authentication (on page 13) is optionally performed

Note: An error is reported if a secure connection cannot be made, or server authentication fails.
However, dapIF (on page 90) does not terminate on these errors and continues to run for other
response/request pairs on other ASPs.

On a database cache reread (if the ASP has been deleted or modified) the secure socket is shut down,
and if needed, restarted.

When dapIF exits normally it sends close_notify messages to the server for each open socket.

 Chapter 1

•

 Chapter 1, System Overview 13

Certificate Checking

Certificate checking, when performed, is done by checking the hostname from the URL in the ASP
against the common name field in the public certificate from the remote server. This check ensures that
more than just the names match, by establishing that the server is who it says it is by encrypting
something with its private key that matches the locally-held public key in the public certificate. This
protects against spoofing-style attacks.

You can configure DAP to verify the full certificate chain. DAP can check ASP certificates against lists of
certificates that have been revoked by Certificate Authorities (CAs). These lists are called Certificate
Revocation Lists (CRLs). Each CA maintains their own CRL list and publishes it for customers as data
files.

When DAP verifies an ASP certificate, it checks whether the certificate appears in any CRL data file.
When a match is found, verification fails.

A CA can revoke a certificate for a variety of reasons, such as:

• The CA issued it in error

• The entity it certifies no longer exists

• The certificate is fraudulent

Verifying ASP Certificates

Follow these steps to configure DAP to check ASP certificates against CRLs:

Step Action

1 Set the CARevocationListChecking parameter to true in the eserv.config file. See

CARevocationListChecking (on page 51).

2 Establish a process to regularly obtain the CRL data file from each CA.

3 Load the CRL data files into the same directory as the ASP certificates. This directory is
specified in the certificatePath parameter. See certificatePath (on page 51).

4 Run the dapReadyCertificates.sh utility. See dapReadyCertificates.sh (on page 97).

Result: The utility processes the standard certificates and ASP certificates in the directory.

Server Authentication

Server authentication against a public certificate provided by the remote HTTPS server is available on a
per-ASP basis. If not configured, the SSL connection will only have handshaking performed which
ensures a minimum of session keys are used for encrypting the traffic to the HTTPS server. This
protects against snoop-style attacks.

Response Validation

Checking of the response from the HTTPS server is limited to checking whether the ACK is returned as
HTTP 200. Any further lines of the response are read, but are not parsed.

Certificate Management

The certificates are stored as *.pem files in the directory specified by certificatePath (on page 51).

The dapReadyCertificates.sh (on page 97) tool prepares the certificates into the form required by
openssl (on page 94).

Note: There is no need to have any certificates if server authentication is not turned on.

Chapter 1

14 Data Access Pack User's and Technical Guide

SOAP Support Over HTTP

DAP supports SOAP by allowing the use of HTTP 1.1 as a container protocol. The basic HTTP
implementation only accepts HTTP/200 as a success response, treating other success messages such
as "204 - No Content" as error conditions.

HP-SA

Introduction

HP-SA messages are generally handled the same way as XML and SOAP messages, though the
contents of the messages are different, and HP-SA is not supported over HTTPS.

For more information about overall message handling, see Message flow (on page 3).

Parameter substitution

When dapIF (on page 90) is requested to send a message to an ASP, it resolves any variables in the
template as follows:

• The message_id field (in the header of each request) will be generated as a number in the range 0
to MAXINT. The message_id field will be incremented for each successive request.

• The system time is used at the time of request construction to populate the date_time field.

• All other fields are either hard-coded in the message template, or populated using the profile field
values provided as DAP parameters. For more information about how these parameters are
populated, see Parameter Substitution (on page 10).

HP-SA response messages

Response messages will be received on a new connection to the port defined by listenPort (on page
56). Once received, the connection will be closed. Two responses will be received in the following
order for each request:

1 Command Received Acknowledgment

2 Command Processed Acknowledgment

Both have the same form (activation response).

Each response has a response ID that correlates with the request's message ID.

Response status/details command received

The following response status/details are possible for the command received acknowledgment:

OK/<no details>

NOK/Invalid XML

Response status/details command processed

The following response status/details are possible for the command processed acknowledgment:

OK/<no details>

NOK/Workload Failure

NOK/<platform name>:Network Problem

RB_OK/<platform name1>:OK | <error code>; …;<platform nameN>:OK | <error code>

RB_NOK/<platform name1>:OK | <error code>; …;<platform nameN>:OK | <error code>

 Chapter 1

•

 Chapter 1, System Overview 15

XML Interface

Description

The XML interface is a dedicated DAP interface that allows an XML script to be sent to an ASP as a
request and receive another XML script as a response in order to be parsed.

Synchronous request

This diagram shows a simple example of a synchronous message flow.

Synchronous message flow

The following table describes the message flow between the XML Interface and ASP.

Step Action

1 The XML interface sends a request to the ASP.

2 ASP returns an ACK and response on the same socket.

Note: In this example transaction, a response value is required, however a callback is not needed.

Asynchronous request

This diagram shows a simple example of an asynchronous message flow.

Chapter 1

16 Data Access Pack User's and Technical Guide

Asynchronous message flow

The following table describes the message flow between the XML Interface and ASP.

Step Action

1 The XML Interface sends the request to the ASP.

The request contains the clientUrl information.

2 The ASP returns an ACK on the same socket.

3 The ASP initiates a new request back to the XML Interface using the initial clientUrl

information, on a new socket.

4 The XML Interface returns an ACK on the same socket.

Message contents

The XML interface is responsible for issuing a TCP/IP based message to an ASP when it receives an
XML request message from a client. The message contains the specified XML string and any
substituted parameters.

The response from the ASP is parsed to retrieve any requested parameter strings and these are sent
back to the client in the form of an XML response.

WSDL

SOAP bindings

DAP supports WSDL 1.1 and Simple Object Access Protocol (SOAP) bindings. Since WSDL is a
complex specification, some parts of the specification do not match with the capabilities of the DAP
SOAP implementation.

The current SOAP implementation only allows templates to be created that make use of the soap:body

and the soap:fault element. Therefore, the soap:header and soap:headerfault elements in

the WSDL SOAP bindings are not supported. For more information on DAP support for SOAP
bindings, see Data Access Pack Protocol Implementation Conformance Statement.

Note: OSD will report an error when soap:header or soap:headerfault is encountered in the WSDL file.

XSD support

XSD is supported by DAP as a type definition language.

WSDL provides an extension format allowing several different type languages to be used to describe the
format of the messages used by the services, however it recommends the use of XSD. Since the XSD
standard is 300 pages long, DAP only supports the use of XSD as the type definition language.

Note: DAP will report an error if a type definition language other than XSD is encountered in the WSDL
file.

WSDL styles

Web Services Description Language <WSDL) allows several different encodings to be specified, each
resulting in the message being presented with a different style.

DAP attempts to be as permissive as possible with the style and use declarations in accordance with the
WSDL document.

DAP supports the following styles:

 Chapter 1

•

 Chapter 1, System Overview 17

• style=rpc

• style=document

DAP supports the following use declarations:

• use=literal

• use=encoded

Other encodings

Since the SOAP specification allows different encodings other than XML to be used to transfer the
information, it is necessary to specify which encodings DAP will support. DAP only supports the soap-
encoding.

However, even in soap-encoding, there are issues with the protocol. The portions of the standard that
define how low-level types are encoded are supported but encoding data as references is not
supported.

Note: DAP will report an error if an encodingStyle other than soap-encoding is encountered in the
WSDL file.

Transmission services

DAP supports the One-way transmission primitive as well as the Request-response transmission
primitive.

WSDL supports the definition of services where the view of the service is from the client. However,
SOAP does not typically support these definitions. To determine which side of the protocol is being
defined, DAP only supports WSDL files generated for a server in the following cases where the server
receives a request:

• With no response

• And provides a response

Statistics

Introduction

The DAP macro-node (dapMacroNodes (on page 91)) collects statistics using the standard Service
Management System statistic mechanism and stores them to the SMF database. Refer to SMS
Technical Guide for details on how the statistics are collected.

Statistics collected

This table describes the statistics that are collected.

Statistic Description

OP-SENT Count of the number of new requests sent to an ASP. This statistic is
incremented each time a new request is sent to an ASP. The name of the
template used is put in the statistics “details” field.

OP-SUCCESS This statistic is incremented each time an ASP returns a successful response.
The name of the template used is put in the statistics “details” field.

OP-FAIL This statistic is incremented each time an ASP returns a failure response. The
name of the template used is put in the statistics “details” field.

Note: These statistics have a period of 300 seconds.

Chapter 1

18 Data Access Pack User's and Technical Guide

ASP based statistics

ASP is recorded in the detail field for ASP based statistics.

The table describes the ASP statistic generated for each statistic, if the ASP column indicates "Y".

The error values shown here returned by the XML interface to the node.

ASP Statistic Error

Y Success -

Y Unable to connect to ASP connectconnect

Y Unable to send request to ASP cannotwrite

Y ASP Protocol Failure (HTTP Error or ASP closed the
connection prior to initial HTTP/ response)

asperror

Y ASP closed the connection while the response is being read noresponse

Y An operation has timed out waiting for a response responsetimeout

Y An expected parameter is missing from the response missingparam

Y A valid correlation ID is missing from the response malformeddata

Y A reply to the request has been received after the call back is
received

sequenceerror

Y A request has been resent retryattempt

Y Too many requests are waiting for callbacks from an ASP maxqueuesizereached

Notes:

• Only external errors will be reported as statistics.

• The total number of requests generated by the system are recorded as a statistic.

• The total number of requests for each ASP are recorded as a statistic.

LDAP IF Statistics

The following table lists and describes the statistics generated by the LDAP IF.

Note:

• These statistics are recorded under the “DAP” application.

• The LDAP IF generates only these LDAP-specific statistics. It does not generate any of the other
LDAP statistics.

• These statistics are included in the SMF_STDEF_DAP replication group. If DAP is installed and
configured for a SLC node, then these LDAP statistic definitions will automatically also be available
on that SLC node with no operation action required.

Statistic Description

MAX_LDAP_LATENCY Maximum latency of LDAP responses in
milliseconds during the period.

MEAN_LDAP_LATENCY Average latency of LDAP responses in milliseconds
during the period.

MIN_LDAP_LATENCY Minimum latency of LDAP responses in milliseconds
during the period.

NUM_LDAP_DAP_SEARCH_REQUESTS Total number of DAP search requests received from
ACS during the period.

 Chapter 1

•

 Chapter 1, System Overview 19

NUM_LDAP_MISMATCHED_RESPONSES Number of unmatched LDAP responses received.
These are responses for which we have no
matching request recorded. This will typically
indicate a late response, where we have timed-out,
returned failure to ACS, and discarded the original
request.

NUM_LDAP_NEGATIVE_RESPONSES Number of unsuccessful LDAP responses, where
the server has not returned subscriber data. This
may be due to a malformed request, or to a valid
request referencing a subscriber unknown to the
ASP.

NUM_LDAP_SUCCESS_REQUESTS Number of requests where processing was
successful.

NUM_LDAP_TIMED_OUT_RECEIVE Total time-outs waiting for message reply from the
ASP.

NUM_LDAP_TIMED_OUT_SEND Total time-outs received while sending messages.
This occurs when the connection set-up process
takes so long that the request has timed-out before
it is sent.

LDAP IF Reports

A single SMF report is installed for the LDAP IF. This is a text format report which counts the average
LDAP request rate grouped by hour.

Report Name: “DAP LDAP Requests per Second”
Parameter #1: Start Date (YYYYMMDD)
Parameter #2: End Date (YYYYMMDD)

Example Output:

AVERAGE NUMBER OF LDAP REQUESTS PER SECOND

==

20 August 2016, 21:16:00

Period: 01 January 2016 to 01 January 2017

Date/Time Requests/s

---------------- ----------

...

19/08/2016 05:00 0

19/08/2016 06:00 0

19/08/2016 07:00 0

19/08/2016 08:00 0

19/08/2016 09:00 < .01

19/08/2016 10:00 .01

19/08/2016 11:00 < .01

20/08/2016 12:00 < .01

20/08/2016 01:00 < .01

20/08/2016 02:00 < .01

20/08/2016 03:00 < .01

20/08/2016 04:00 0

20/08/2016 05:00 .87

20/08/2016 06:00 .33

20/08/2016 07:00 0

20/08/2016 08:00 0

20/08/2016 09:00 0

Chapter 1

20 Data Access Pack User's and Technical Guide

20/08/2016 10:00 0

...

Notes:

• For the period, the end date is up to midnight at the start of the day, so, for example, asking for
'2016-08-28' to '2016-08-28' will give you data for the whole day.

• The Requests/s number is the average requests per second for the hour up to the given hour, for
example 6:00, is for the hour between 5:00 and 6:00.

• The average is calculated by dividing the total for the hour by 3600. 0.01 means about 36 requests
were sent in that hour. < 0.01 means less than that number were sent (but more than 0 requests).

Accessing the DAP application

Introduction

You access the Data Access Pack (DAP) application screens from the Service Management System
(SMS) UI.

To begin configuring the DAP application, the SMS screens must first be configured and running. For
more information about how to set up the SMS screens, see Service Management System User's
Guide.

SMS main menu

Here is an example of the Service Management System main menu showing the DAP menu options.

DAP screens

There are two DAP screens:

• Resources (on page 21)

• Import WSDL (on page 37)

 Chapter 2, Resources 21

Chapter 2

Resources

Overview

Introduction

This chapter explains how to use the Resources screen to configure Application Service Providers
(ASP) and make operations available to DAP.

In this chapter

This chapter contains the following topics.

Resources Screen ... 21
ASP ... 22
Operations ... 26
Operation Sets ... 35

Resources Screen

Introduction

The DAP Resources screen is used to configure the Oracle Communications Network Charging and
Control Data Access Pack (DAP) application. It contains these tabs:

• ASP (on page 22)

• Operations (on page 26)

• Operation Sets (on page 35)

Accessing the Resources screen

Follow these steps to open the DAP Resources screen.

Step Action

1 Select the Services menu from the SMS main screen.

2 Select DAP.

3 Select Resources.

Chapter 2

22 Data Access Pack User's and Technical Guide

Step Action

Result: You see the Resources screen.

ASP

Introduction

You use the ASP tab to configure the ASPs that are available to the DAP application.

About Specifying URLs

When you configure an ASP you must specify the URL to which requests are sent. You can also specify
an URL as the file location to use for importing WSDLs. The URL can contain either the host name of
the ASP or its Internet Protocol (IP) address, and an optional port number. You can specify an IP
version 6 (IPv6) or an IP version 4 (IPv4) address.

If you specify an IPv6 address and port number in the URL, then you must enclose the IPv6 address in
square brackets []; for example: [2001:db8:n:n:n:n:n:n] where n is a group of 4 hexadecimal

digits. The industry standard for omitting zeros is also allowed when specifying IP addresses. Note that
square brackets are not required for IPv4 addresses or if the port number is not included in the URL.

Example IPv4 and IPv6 addresses

192.0.2.1:4000

[2001:db8:0000:1050:0005:0600:300c:326b]:3004

[2001:db8:0:0:0:500:300a:326f]:1234

2001:db8::c3

If the URL starts with "http:" or "https:", then you must append a trailing forward-slash, "/", after the host
name and port. For example:

http://domain_name:port/

http://domain_name:port/mydoc

Where:

• domain_name is the URL domain name or IP address.

 Chapter 2

•

 Chapter 2, Resources 23

• port is the port number to use.

ASP tab

The ASP tab gives a view of all the ASPs that have been created for the service. Here is an example.

ASP tab fields

This table describes the function of each field on the ASP tab. The records that display on the ASP tab
are sorted by the Name field.

Field Description

Name (Required) The unique name for this ASP connection. The ASP name can be up
to 64 alphanumeric characters in length.

Note: When you save a new ASP, this field becomes read only and may not be
edited.

Description (Required) A description of the ASP that can be up to 64 characters in length.

Destination URL (Required) The destination URL to which requests are sent. Specify either the
host name of the ASP or the IP address, and an optional port number. The
destination URL can be up to 256 characters in length.

For more information about specifying the destination URL, see About Specifying
URLs (on page 22).

Protocol The protocol field contains the protocol that should be used when interacting with
the ASP. The protocol can be one of: XML, SOAP, HPSA, PIXML, or LDAP.

Note: You define which protocols are available to ASPs in the Mapping
parameters (on page 65) configuration.

Connection The type of the connection (normal/HTTP or encrypted/HTTPS).

Note: This field is only available for the SOAP and XML protocols.

Authenticate Whether to check server authentication.

Note: This field is only available for HTTPS connectivity.

Chapter 2

24 Data Access Pack User's and Technical Guide

Field Description

For more information about server authentication, see HTTP and HTTPS
Connections (on page 3).

PI User The PI user for whom PI commands may be triggered by the DAP Send Request
feature node. The PI logs in the specified PI user automatically when a PI
command is first triggered.

Note: This field is only available for the PIXML protocol.

This field is populated by the PI Users tab in the PI Administration screen. For
more information, see PI User's Guide.

Destination Auth
User

The user name to authenticate with the ASP server using HTTP basic
authentication.

Note: This field is only available for the SOAP, XML, and LDAP protocols.

Max Secondary
Connections

This field contains the maximum number of secondary connections that can be
created by the DAP interface.

ASP configuration

The table on the ASP tab in the Resources screen displays the ASPs that are currently available to the
DAP. Follow these steps to edit or create an ASP.

For more information about the fields on this screen, see ASP tab fields (on page 23).

Step Action

1 On the ASP tab do one of the following:

• If you want to create a new ASP, click New.

• If you want to edit an existing ASP, select the ASP record in the table and click
Edit.

The ASP Configuration screen (See example on page 25) displays.

2 If you are creating a new ASP, enter the name of the ASP in the Name field.

Note: When you save a new ASP, this field becomes read only and may not be edited.

3 Enter a description for the ASP in the Description field.

4 Select the protocol to use when interacting with the ASP from the Protocol list. The
available protocols depend on the Mapping parameters (on page 65) configuration.

The following table lists the additional fields that become enabled if you select one of the
listed protocols.

Protocols Fields

XML, SOAP,
and LDAP

Connection

Do HTTP Authentication?

PIXML PI User

SLEE Destination Interface

5 Specify the destination URL to which requests should be sent in the Destination URL field.
You can specify the host name of the ASP or the IP address, and an optional port
number. For more information, see About Specifying URLs (on page 22).

6 If you selected SLEE in the Protocol field, then specify the SLEE interface that the DAP

should use when sending requests in the Destination Interface field.

 Chapter 2

•

 Chapter 2, Resources 25

Step Action

7 If the protocol is XML or SOAP, select whether the connection should use HTTP or
HTTPS.

8 If you selected an HTTPS connection and you want to ensure that it matches the server
name in the HTTPS certificate, select the Authenticate Server check box.

9 If the protocol is PIXML, select the required PI user from the PI User list.

10 If required, specify the maximum number of secondary connections that can be created
by the DAP interface in the Max Secondary Connections field.

11 If the protocol is XML or SOAP and you want to configure HTTP authentication then
perform the following steps:
a. Select the Do HTTP Authentication? check box.

b. In the Destination Auth User and the Destination Auth Password fields, enter the user
name and password to authenticate with, .

12 Click Save.

The ASP is saved to the database.

Note: When editing an ASP description, the Save button is disabled if the new
description is the same as the original description.

ASP Configuration screen

Here is an example ASP Configuration screen.

Chapter 2

26 Data Access Pack User's and Technical Guide

Deleting an ASP

Follow these steps to delete an ASP from the service.

Step Action

1 Select the ASP that you want to delete in the table on the ASP tab.

2 Click Delete.

The Delete Confirmation prompt displays.

Note: An error is raised if the ASP has any operations attached to it.

3 Click OK.

The ASP record is removed from the database.

Operations

Introduction

You use the Operations tab on the Resources screen to configure the operations that are available to the
DAP application. These operations are used by the Send Request or DAP Request feature nodes.

 Chapter 2

•

 Chapter 2, Resources 27

Operations tab

The Operations tab contains a view of all the operations created in the service. Here is an example.

Operations tab fields

This table describes the function of each field in the Operations tab.

Field Description

Name (Required) The name of the operation. The operation name can be up to 64
alphanumeric characters in length.

Note: When you save a new operation, this field becomes read only and may not
be edited.

Description (Required) A description of the operation. The description can be up to 64
characters in length.

ASP The ASP associated with the operation.

This field is populated by the records configured on the ASP (on page 22) tab.

Timeout The number of milliseconds that dapIF (on page 90) should wait for a response
from the ASP.

Correlate Indicates return parameters are expected. See Correlation (on page 27).

Correlation

When the correlation comment <!--CORRELATE-->, or <!--CORRELATE-ID--> is specified within

the request script, it is implied that return parameters will be sent back by the ASP. The return
parameters can be stored within ACS in a user defined profile block and field.

The correlation tag is only supported in asynchronous connections. For more information about
asynchronous connections, see Synchronous and asynchronous connections (on page 2).

Chapter 2

28 Data Access Pack User's and Technical Guide

New Operation screen - Request tab

Here is an example Request tab in the New Operation screen.

New Operation screen - Response tab

Here is an example Response tab in the New Operation screen.

 Chapter 2

•

 Chapter 2, Resources 29

Adding an operation

Follow these steps to add a new operation and the associated request and response templates.

For more information about the fields on the Operations tab, see Operations tab fields (on page 27).

Step Action

1 On the Operations tab, click New.

The Request tab in the New Operation screen (See example on page 28) displays.

2 Type the name of the new operation in the Name field.

Note: After you save an operation, the name is no longer editable.

3 Type the description for the operation template in the Description field.

4 Select the ASP to associate with the operation from the ASP Name list.

Chapter 2

30 Data Access Pack User's and Technical Guide

Step Action

5 (Optional) Change the timeout specified for a response to the DAP interface from the ASP
by selecting a different value in the Timeout field.

6 (Optional) Select the operation set for this operation from the Operation Set list. For more
information, see Operation Sets (on page 35).

7 If the ASP uses the SOAP protocol then you can optionally configure the following:

• To allow the SOAP action in the HTTP header field to be overridden, enter the
SOAP action override in the SOAP Action field. By default, the DAP sends the
destination URL that is configured for the ASP.

• To send the SOAP Header tag select the Send SOAP Header check box. The DAP
sends an empty SOAP Header tag that uses the form: <soapenv:Header/>.

Select to send the SOAP Header tag only if the ASP is able to accept an empty
SOAP Header tag.

• To define SOAP headers that will be used only by this template, enter the SOAP
header definitions in the SOAP Override header field. The specified SOAP header
overrides the standard XML and SOAP header tags, or the override header tags
defined for all DAP operations in the soapHeaderOverride parameter. See

soapHeaderOverride (on page 62) for details.

8 Select the Time Sensitive check box to discard SOAP requests after a certain period of time
if the destination ASP cannot be reached. By default, this check box is unchecked.

In the Discard if Not Sent After (sec) field, enter the total number of seconds which the
request will be retried for before it is discarded.

Note: The Discard if Not Sent After (sec) field is enabled only if the Time Sensitive check box is
selected.

If set, Discard if Not Sent After (sec) will take priority over
discardPendingQueueRequestsAfterSeconds (on page 55) parameter.

9 In the Request Template section create the template for the request by entering a valid
script in XML format. For more information about script formats, see Script Format (on
page 30).

10 Configure the variables listed in the Request Parameters area that have an error status and
corresponding message in the Error/Notice area. A variable is any item within an element
that is enclosed in double angle brackets <<>> and that has a $ prefix, or an empty
element.

For information about variable configuration, see Request Parameter Configuration (on
page 31). For more information about variables, see Variables (on page 6).

11 Add and configure the response parameters that you require on the Responses tab. See
Response Parameter Configuration (on page 32).

12 Click Save.

The Save button is available when there are no errors listed in the Error/Notice area.

Script Format

The script entered in the script text field of a template forms the body of the request template. The
expected format is XML.

A parameter is defined either by using the $ prefix or by using an empty element:

<voicemail>

<!--CORRELATE-->

<msisdn>$1</msisdn>

<language></Language>

<date>$time$date</date>

</voicemail>

 Chapter 2

•

 Chapter 2, Resources 31

The parameters specified in the example are $1, language, $date and $time.

DAP requests sent through the SLEE have a limitation of 10 parameters per script. This limit is enforced
at run time. A parameter can be up to 32 characters in length.

Note: The "$" character will not be treated as a parameter within the text of a tag if it is escaped, that is,
"\$".

Request Parameter Configuration

Follow these steps to configure operation request parameters.

Step Action

1 Click on the parameter to configure.

The parameter name is displayed in the Name field on the Request tab and the editable
parameter fields are made available. The Iterator For panel is populated with all the
request template elements.

2 In the Description field type a description for the parameter.

3 Select the feature node behavior for the parameter from the Node Disposition list.

Note: The option you select determines whether or not you are required to configure a run-
time parameter in a DAP feature node that sends XML requests.

Select one of the following options:

• Hidden – If the parameter will not be visible in the feature node configuration

window and the parameter must be configured in this screen

• Text – If the parameter will be completed in the feature node configuration

window as a text field

• Profile Block – If the parameter will be completed in the feature node

configuration as a profile block location

• Either – If the parameter will be completed in the feature node configuration

either as a text field or as a profile block location

• Transient – If you do not want to provide a run-time parameter and you also want
to send the text defined in the XML template without any further processing.

Note: The Transient option enables the DAP to process XML requests containing
attributes where the parameters are not recognized.

4 If you set Node Dispostition to Hidden, then specify a value for the parameter by

configuring either, or both, the following fields:

• (Optional) Enter the default value for the parameter in the Default Value field.

• (Optional) Select the parameter location from the following lists: Profile Field Type,
Profile Block and Profile Field.

Note: You can configure any missing profile fields in the ACS Configuration window in the
ACS UI. For information about configuring profile fields, see Advanced Control Services
User's Guide.

5 If you want to use this parameter as an iteration value for an element in a request
template, scroll through the Iterator For list to find the element, and select the Add check
box.

The parameter is added to the request template element as an iteration.

6 Repeat steps 1 to 5 for each parameter that you need to configure.

Chapter 2

32 Data Access Pack User's and Technical Guide

Response Parameter Configuration

Follow these steps to add and configure any required response parameters.

Step Action

1 Select the Response tab in the New Operation screen (See example on page 28).

2 To add a new parameter, click Add.

A new editable row is added to the table in the Response Parameters area.

3 Type the parameter name in the empty Name field.

4 Press Enter, or click on the Name field heading.

The status field displays error, and the parameter configuration fields are enabled. The

error is also listed in the Error/Notice area.

5 Type a description for the parameter in the Description field.

6 Type a valid XPath search expression in the Search Expression field.

7 If this parameter must be returned, select the Required check box.

8 If this parameter can be edited in the feature nodes, select the Node Editable check box.

9 If the return of this parameter is an error condition, select the Indicates Error check box.

Note: The Required and Indicates Error check boxes are mutually exclusive.

10 Select the profile field location for this parameter from the Profile Field Type, Profile Block
and Profile Field lists.

Note: If an expected profile field is missing, it can be added via the ACS Configuration
screens. For information about configuring profile fields, see Advanced Control Services
User's Guide.

11 Repeat steps 2 to 10 for all the response parameters that you want to add.

12 Click Save.

Note: The Save button is enabled when all errors indicated in the Error/Notice area are
resolved.

Editing an Operation

Follow these steps to edit an operation on the Operations tab.

For more information about the fields on the Operations tab, see Operations tab fields (on page 27).

Step Action

1 Select the operation that you want to edit on the Operations tab and click Edit.

The Request tab for the operation displays in the Edit Operation screen. The Name field for
the operation is read only.

2 (Optional) Change the description for the operation in the Description field.

3 (Optional) Select a different ASP to associate with the operation from the ASP list.

4 (Optional) Change the timeout specified for a response to the DAP interface from the ASP
by selecting a different value in the Timeout field.

5 (Optional) Select a different operation set from the Operation Set list.

 Chapter 2

•

 Chapter 2, Resources 33

Step Action

6 If the ASP uses the SOAP protocol then you can optionally configure the following:

• To allow the SOAP action in the HTTP header field to be overridden, enter the
SOAP action override in the SOAP Action field. By default, the DAP sends the
destination URL that is configured for the ASP.

• To send the SOAP Header tag select the Send SOAP Header check box. The DAP
sends an empty SOAP Header tag that uses the form: <soapenv:Header/>.

Select to send the SOAP Header tag only if the ASP is able to accept an empty
SOAP Header tag.

• To define SOAP headers that will be used only by this template, enter the SOAP
header definitions in the SOAP Override header field. The specified SOAP header
overrides the standard XML and SOAP header tags, or the override header tags
defined for all DAP operations in the soapHeaderOverride parameter. See

soapHeaderOverride (on page 62) for details.

7 (Optional) Change the Request Template script and update the configuration for any
parameters listed in the Error/Notice area. See Request Parameter Configuration (on page
31) for more information.

8 If required, select the Response tab and update the parameters configured on the tab by
adding, editing and deleting response parameters:

• To add a new response parameter or edit an existing response parameter, see
Response Parameter Configuration (on page 32).

• To delete a response parameter select the parameter you want to delete and
click Delete.

Tip: If you delete a parameter by mistake, then add a new parameter with the same
name as the deleted parameter.

9 Click Save.

Note: The Save button is enabled only when there are no errors listed in the Error/Notice
panel.

Finding a DAP template

Follow these steps to search for a DAP operation.

Step Action

1 On the Operations tab, click Find.

Result: You see the Find Operations screen (See example on page 33).

2 Enter the search criteria in one of the query fields using the drop down list and click Find.

Result: When you click Find a query is triggered and the first 100 records matching the
value in the query field will be returned. The results appear in the table on the
Operations tab.

Note: If you select a value in more than one query field then the Find button will be
disabled.

Find Operations screen

Here is an example Find Operations screen.

Chapter 2

34 Data Access Pack User's and Technical Guide

Copying DAP templates

Follow these steps to copy a defined DAP operation.

Step Action

1 On the Operations tab, select the operation to copy.

2 Click Copy.

Result: You see the Copy DAP Operation screen (See example on page 34).

3 In the Name field, type a unique name for the new operation.

4 Click Save.

Result: The operation will be saved to the database under the new name.

Note: This operation will have exactly the same details as the original operation. See
Editing an Operation (on page 32) to change the operation details.

Copy DAP Operation screen

Here is an example Copy DAP Operation screen.

Deleting an operation

Follow these steps to delete an Operation from the service.

Step Action

1 In the table on the Operations tab, select the operation to delete.

2 Click Delete.

Result: You see the Delete Confirmation prompt.

Note: An error is raised if the operation exists in an active control plan.

 Chapter 2

•

 Chapter 2, Resources 35

Step Action

3 Click OK.

Result: The operation is removed from the database.

Operation Sets

Introduction

Operation sets are used to limit the operations to selected users.

Operation Sets tab

Here is an example Operation Sets tab.

Add or edit an operation set

The table in the Resources screen Operation Sets tab displays the operation sets that are currently
available in the system.

Follow these steps to add a new operation set or edit an existing set.

Step Action

1 On the Operation Sets tab:

• To create a new set, click New

• To edit an existing set, select the set, then click Edit

Result: You see the Operation Set Configuration screen (See example on page 36).

2 In the Name field, enter or edit the name of the operation set.

3 Select the check box for all the listed users you want in this operation set.

4 Click Save.

Chapter 2

36 Data Access Pack User's and Technical Guide

Operation Set Configuration screen

Here is an example Operation Set Configuration screen.

Deleting an operation set

Follow these steps to delete an operation set.

Step Action

1 In the table on the Operation Sets tab, select the operation set to delete.

2 Click Delete.

Result: You see the Delete Confirmation prompt.

3 Click OK.

Result: The operation set is removed from the database.

 Chapter 3, Import WSDL 37

Chapter 3

Import WSDL

Overview

Introduction

This chapter explains how to use the DAP Import WSDL screen.

In this chapter

This chapter contains the following topics.

Import WSDL Screen... 37
Import WSDL Files .. 38
Operation Request Configuration .. 40
Operation Response Configuration ... 43

Import WSDL Screen

Introduction

The Oracle Communications Network Charging and Control Data Access Pack DAP Import WSDL
screen allows you to import and configure predefined web services from ASPs.

It contains these functions:

• Import WSDL files (on page 38)

• ASP Configuration (on page 22)

• Operation Request Configuration (on page 40)

• Operation Response Configuration (on page 43)

What is WSDL?

Web Services Description Language (WSDL) is a XML based language that provides a model for
describing web services.

The reason for using WSDL is to import predefined web services from ASPs, thereby speeding up
configuration of DAP messages.

For restrictions on what parts of the specification are supported, see NCC Data Access Pack PICS
Guide.

Accessing the Import WSDL screen

Follow these steps to open the DAP Import WSDL screen.

Step Action

1 Select the Services menu from the SMS main screen.

2 Select DAP.

3 Select Import WSDL.

Chapter 3

38 Data Access Pack User's and Technical Guide

Step Action

Result: You see the Import WSDL screen.

Import WSDL Files

Importing a WSDL file

Follow these steps to import a WSDL file.

Step Action

1 On the Import WSDL screen (See example on page 40), perform one of the following
actions to select a file:

• Enter the location and name of the .wsdl file in the File/URL field. The file location
can be an URL. For information about specifing URLs, see About Specifying
URLs (on page 22).

• Click Browse to find the file

The file has the suffix of .wsdl (for example DAP.wsdl)

 Result: The Import button becomes available.

2 Click Import.

Result: The WSDL file is imported, then:

• The Operation/Description panel is populated from the imported file

• The No operation has been added message is displayed in the Notice/Error box.

3 To add:

• All operations, select the Add check box

• Selected operations, select the check box for each of the required operations

Result:

• Any configuration requirements are displayed in the Notice/Error box.

• The configuration fields under the ASP, Request, and Response tabs are populated
with data from the WSDL and become available for editing.

• The Operation Set field becomes available.

 Chapter 3

•

 Chapter 3, Import WSDL 39

Step Action

Warning: If you select multiple operations, you must configure all of them before the Save
button is available. If there are any kind of fatal system problems, you will need to re-do
any unsaved configuration.

4 Select the Operation Set to use from the drop down list.

Note: See Operation Sets (on page 35) for details on configuring this list.

5 Click on the operation to configure.

6 Configure the ASP as required. See ASP (on page 22) for more information.

7 Configure the request as required. See Operation Request Configuration (on page 40) for
more information.

8 Configure the response as required. See Operation Response Configuration (on page
43) for more information.

9 Repeat steps 4 to 8 for each operation that you want to configure.

10 When there are no errors listed in the Error/Notice area, the Save button becomes
available.

Click Save.

The ASP and the configured operations are created. You can view and edit them on the
DAP Resources screen (on page 21).

Chapter 3

40 Data Access Pack User's and Technical Guide

Import WSDL screen

Here is an example Import WSDL screen.

Operation Request Configuration

Introduction

You use the Request tab on the Import WSDL screen to configure the request parameters that are within
the imported operation script. The imported operations are used by the DAP Request feature node.

 Chapter 3

•

 Chapter 3, Import WSDL 41

Request tab

Here is an example of the Request tab on the Import WSDL screen after a WSDL file has been imported.

Configuring requests

Follow these steps to configure operation request parameters.

Step Action

1 In the Request tab (See example on page 41), expand the parameter tree to see all the
elements that can be configured (click + signs).

Note: Each element is preceded by a C, a P, an O, or an E:

• C – For a complex parameter that has more than one sub parameters.

• P – For the last element down a branch. This is the parameter that can be
configured.

• O – For an optional parameter that may require configuration.

• E – For an empty sub-parameter within a complex parameter. This is not
configurable.

2 Select the parameters to configure by selecting the check box preceding the parameter.

Chapter 3

42 Data Access Pack User's and Technical Guide

Step Action

All the selected parameter names are colored red to indicate that the parameters require
configuration, and the error reasons appear in the Error/Notice area. Sometimes all
parameters under a selected complex parameter are automatically selected because they
are all required.

Tip: Hover over a parameter to get a tip if a box cannot be selected or deselected.

3 Click a parameter name to configure.

The parameter name appears in the Name field, the editable parameter fields are made
available, and the Iterator For table is populated with all the request elements.

4 If this parameter is to be used as a unique id, select the Correlation ID check box and then
start configuring a new parameter.

5 Type a description for the parameter in the Description field.

6 Select the feature node behavior for the parameter from the Node Disposition list.

Note: The option you select determines whether or not you are required to configure a run-
time parameter in a DAP feature node that sends XML requests.

Select one of the following options:

• Hidden – If the parameter will not be visible in the feature node configuration

window and the parameter must be configured in this screen.

• Text – If the parameter will be completed in the feature node configuration

window as a text field.

• Profile Block – If the parameter will be completed in the feature node

configuration as a profile block location.

• Either – If the parameter will be completed in the feature node configuration

either as a text field or as a profile block location.

• Transient – If you do not want to provide a run-time parameter and you also

want to send the text defined in the XML template without any further processing.

Note: The Transient option enables the DAP to process XML requests containing
attributes where the parameters are not recognized.

7 If you selected the Hidden disposition, perform one, or both, of the following steps:

a. Type the default value for the parameter in the Default Value field.

b. Select the location of the parameter from the Profile Field Type, Profile Block, and
Profile Field lists.

Tip: The Xsd Type field indicates what type of data is expected in the DAP message for
this parameter.

Note: If an expected profile field is missing, it can be added via the ACS Configuration
screens. For information about configuring profile fields, see Advanced Control Services
User's Guide.

8 If this parameter is being used as an iteration value for a request element, scroll to find
the element in the Iterator For list and select the Add check box.

The parameter will be added to the request template element as an iteration.

Tip: A parameter can be an iterator for more than one element, however one element
registers just one parameter as the iterator.

9 Repeat steps 3 to 8 for all the parameters that require configuration.

 Chapter 3

•

 Chapter 3, Import WSDL 43

Operation Response Configuration

Introduction

You need to configure any responses required by the imported script. You perform this on the Response
tab.

Response tab

Here is an example of the Response tab on the Import WSDL screen after a WSDL file has been
imported.

Configuring responses

Follow these steps to configure all response parameters.

Step Action

1 In the Response tab (See example on page 43), expand the parameter tree to see all the
elements that can be configured (click + signs).

Note: Each element is preceded by a C, a P, an O, or an E:

• C – For a complex parameter that has more than one sub parameters.

Chapter 3

44 Data Access Pack User's and Technical Guide

Step Action

• P – For the last element down a branch. This is the parameter that can be
configured.

• O – For an optional parameter that may require configuration.

• E – For an empty sub-parameter within a complex parameter. This is not
configurable.

2 Select the parameters to configure by selecting the check box that precedes each
parameter.

All the selected parameter names are colored red to indicate that the parameters require
configuration.

3 Click a parameter name to configure.

The parameter name appears in the Name field, the editable parameter fields are made
available

4 In the Description field, type what the response is expected to be.

5 If this parameter must be returned, select the Required check box.

6 If this parameter can be edited in feature nodes, select the Node Editable check box.

7 If the return of this parameter is an error condition, select the Indicates Error check box.

Note: The Required and Indicates Error check boxes are mutually exclusive.

8 Select the profile type and location for the parameter from the Profile Field Type, Profile
Block and Profile Field lists.

Note: If an expected profile field is missing, it can be added via the ACS Configuration
screens. For information about configuring profile fields, see Advanced Control Services
User's Guide.

Result: The last error message for this parameter will disappear from the Error/Notices
panel.

9 Repeat steps 3 to 8 to configure all the response parameters.

 Chapter 4, Configuration 45

Chapter 4

Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Network Charging and Control
(NCC) application.

In this chapter

This chapter contains the following topics.

Configuration Overview ... 45
eserv.config Configuration ... 46
DAP eserv.config configuration ... 47
SLEE.cfg Configuration ... 70
Configuration for Optimal Performance ... 71
LDAP IF Configuration .. 71

Configuration Overview

Introduction

This topic provides a high level overview of how the Oracle Communications Network Charging and
Control Data Access Pack (DAP) component is configured.

Configuration components

DAP is configured by the following components:

Component Locations Description Further Information

eserv.config All SLC
machines

The DAP is configured in the DAP section

of the eserv.config file.

eserv.config
Configuration (on
page 46)

SLEE.cfg All SLC
machines

This configures how the SLEE runs and
manages dapIF (on page 90). SLEE
configuration must include the DAP.

Startup (on page
90)

SLEE Technical
Guide

acs.conf All SLC
machines

The ACS framework must be configured to
accept DAP calls.

ACS Technical
Guide

SMF database SMS Statistics, profile block and EFM alarms
configuration for DAP. Configured
automatically when lcaSms is installed.

Statistics (on
page 17)

DAP screens SMS The Resources screen configures ASP and
DAP template records in SMF

Resources (on
page 21)

Chapter 4

46 Data Access Pack User's and Technical Guide

ACS control
plans

SMS Specific control plans must be developed
to handle DAP requests successfully.

CPE User's
Guide

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many Oracle Communications Network
Charging and Control (NCC) applications read their configuration. Each NCC machine (SMS, SLC, and
VWS) has its own version of this configuration file, containing configuration relevant to that machine.
The eserv.config file contains different sections; each application reads the sections of the file that
contains data relevant to it.

The eserv.config file is located in the /IN/service_packages/ directory.

The eserv.config file format uses hierarchical groupings, and most applications make use of this to divide
the options into logical groupings.

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other
sections. Configuration details are opened and closed using either { } or [].

• Groups of parameters are enclosed with curly brackets – { }

• An array of parameters is enclosed in square brackets – []

• Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats can be used, as in this example:

{ name="route6", id = 3, prefixes = ["00000148", "0000473"] }

{ name="route7", id = 4, prefixes = ["000001049"] }

or

{ name="route6"

id = 3

prefixes = [

"00000148"

"0000473"

]

}

{ name="route7"

id = 4

prefixes = [

"000001049"

]

}

or

{ name="route6"

id = 3

prefixes = ["00000148", "0000473"]

}

{ name="route7", id = 4

prefixes = ["000001049"]

}

 Chapter 4

•

 Chapter 4, Configuration 47

eserv.config Files Delivered

Most applications come with an example eserv.config configuration in a file called eserv.config.example in
the root of the application directory, for example, /IN/service_packages/eserv.config.example.

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text editors, such as
Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows
line termination characters (for example, ^M), which are not visible to the user, at the end of each row.
This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working
copy to which you can return.

Loading eserv.config Changes

If you change the configuration file, you must restart the appropriate parts of the service to enable the
new options to take effect.

DAP eserv.config configuration

Introduction

The DAP eserv.config file example is installed by dapSms, dapScp and dapExtras in
/IN/services_packages/DAP/etc.

The eserv.config file and DAP section is required on all nodes running a DAP client capable of sending

DAP requests.

Example eserv.config DAP Section

Here is an example of the DAP section of the eserv.config.

DAP = {

Mapping = [

XML protocol

{

Protocol = "H"

InterfaceHandle = "dapIF"

}

SOAP protocol

{

Protocol = "S"

InterfaceHandle = "dapIF"

}

HPSA protocol

{

Protocol = "A"

InterfaceHandle = "dapIF"

}

PIXML protocol

{

Protocol = "P"

InterfaceHandle = "dapIF"

}

LDAP protocol

Chapter 4

48 Data Access Pack User's and Technical Guide

{

Protocol = "L"

InterfaceHandle = "ldapIF"

}

]

templates = [

{

id = 83

prefix = "xmlData="

soapAction="PaymentService#OTPPayment"

sendHeaderTag=false

}

]

allowEmptyProfileValues = false

allowINSECURESSLv3 = false

allowLegacyServerConnect = false

allowBugWorkArounds = false

concatenate = false

listenHost = ""

listenPort = 4099

connectionTimeout = 0

disableTLS1_1 = false

correlationTagName = "CORRELATE"

uncorrelatedRequestDir = "/IN/service_packages/DAP/tmp/"

responseTagName = "CORRELATE"

hostnameInPost = true

timestampTagName = "TIMESTAMP"

DateTimeFormat = "YYYY-MM-DDThh:mm:ss"

sqlUseBusyHandler = true

sqlBusyWaitInteval = 20

sqlBusyRetryCount = 20

PollInterval = 500

PollCount = 100

PollServiceCounter = 2

cacheAgeSeconds = 60

maxRetries = 0

retryTimeout = 10

sessionTimeout = 86400

setNullInEmptyOptRespPT = true

pendingFilename = "/IN/service_packages/DAP/tmp/pendingRequests.db"

pendingQueueInMemory = false

nonBlockingConnections = true

persistentConnections = false

persistentConnectionCheckTimeout = 0

maxQueueLength=500

maxQueueCheckTimeout=100

enableRetries=true

appendCRLFAfterBody=true

 Chapter 4

•

 Chapter 4, Configuration 49

discardPendingQueueRequestsAfterSeconds = 60

timedConnectTimeout = 1

certificatePath = "/IN/service_packages/DAP/certificates/"

certificatesName = "CAfile.pem"

cipherList = "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-

AES128-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-CBC-SHA256:ECDHE-RSA-

AES256-CBC-SHA384:DHE-RSA-AES128-CBC-SHA256:DHE-RSA-AES256-CBC-SHA256:ECDH-RSA-

AES128-GCM-SHA256:ECDH-RSA-AES256-GCM-SHA384:RSA-AES128-GCM-SHA256:RSA-AES256-

GCM-SHA384:DH-RSA-AES128-GCM-SHA256:DH-RSA-AES256-GCM-SHA384:ECDH-RSA-AES128-CBC-

SHA256:ECDH-RSA-AES256-CBC-SHA384:RSA-AES128-CBC-SHA256:RSA-AES256-CBC-SHA256:DH-

RSA-AES128-CBC-SHA256:DH-RSA-AES256-CBC-SHA256"

clientCertificateFile="client.pem"

openSSLPath = "/usr/sfw/bin"

sendRequestDateFormat = "%Y-%m-%d"

sendRequestDateTZ = "US/Eastern"

prefixTagName = "CUSTOM_PREFIX"

suffixTagName = "CUSTOM_SUFFIX"

connectionFailureRetryTime = 10

soapHeaderOverride = "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"

standalone=\"no\" ?><soapenv:Envelope

xmlns:soapenv=\"http://schems.xmlsoap.org/soap/envelope/\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

<soapenv:Header/><soapenv:Body>"

useTemplateSOAPTags = false

tracing = {

enabled = true

templates = [

{

id = 83

msisdnParam = "$msisdn"

msisdns = [

"1234565"

]

}

]

}

}

DAP parameters

DAP accepts the following eserv.config parameters.

allowEmptyProfileValues

Syntax: allowEmptyProfileValues = true|false

Description: Whether or not the Send Request feature node should treat an empty or missing profile
value as a failure. By default the Send Request feature node treats empty or missing
profile values as a failure. Set to true to allow empty or missing values.

Type: Boolean

Optionality: Optional (default used if not set)

Chapter 4

50 Data Access Pack User's and Technical Guide

Allowed: true or false

Default: false

Notes:

Example: allowEmptyProfileValues = true

allowINSECURESSLv3

Syntax: allowINSECURESSLv3 = true|false

Description: Whether to allow use of SSLv3 in the SSL handshake for SSL enabled systems. For
example, set this parameter to true for customers with an ASP that must use the SSLv3
protocol version. Use of SSLv3 and SSLv2 is disabled by default.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • true – Use of SSLv3 protocol version enabled.

• false – Use of SSLv3 protocol version disabled.

Default: false

Notes: The allowINSECURESSLv3 parameter can be set for the DAP, PI and OSD

components. You should set allowINSECURESSLv3 to true if the ASP is able to use

only SSLv3 protocol version. Otherwise set allowINSECURESSLv3 to false.

Example: allowINSECURESSLv3 = true

allowBugWorkArounds

Syntax: allowBugWorkArounds = true | false

Description: Whether or not dapIF supports bug workarounds to cope with faulty SSL
implementations on the ASP.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true – Bug workarounds are supported

false – Bug workarounds are not supported

Default: false

Notes: Set this parameter to true only if it is required for dapIF to make successful SSL
connections to an ASP.

Example: allowBugWorkArounds = true

allowLegacyServerConnect

Syntax: allowLegacyServerConnect = true | false

Description: Whether or not dapIF allows connections to legacy servers that do not support secure
renegotiation.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true – Allows connections to legacy servers that do not support secure renegotiation.

false – Prohibits connections to legacy servers that do not support secure renegotiation.

Default: false

Notes: Set this parameter to true only if it is required for dapIF to make successful SSL
connections to an ASP.

Example: allowLegacyServerConnect = true

 Chapter 4

•

 Chapter 4, Configuration 51

appendCRLFAfterBody

Syntax: appendCRLFAfterBody = true|false

Description: Set to true to append "\r\n\" (carriage return, line feed) after
sending the message body.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true or false

Default: true

Example: appendCRLFAfterBody = true

cacheAgeSeconds

Syntax: cacheAgeSeconds = seconds

Description: The number of seconds before the template cache expires.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 60

Notes:

Example: cacheAgeSeconds = 60

CARevocationListChecking

Syntax: CARevocationListChecking = true | false

Description: Controls whether DAP checks ASP certificates against Certificate Revocation Lists
(CRLs). For more information, see Certificate Checking (on page 13).

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • true – DAP checks ASP certificates against CRLs.

• false – DAP does not verify ASP certificates against CRLs.

Default: false

Notes: You must perform additional steps to configure DAP to verify ASP certificates against
CRLs. For more information, see Verifying ASP Certificates (on page 13).

Example: CARevocationListChecking = true

certificatePath

Syntax: certificatePath = "dir"

Description: The location of:

• Server public certificates

• Concatenated certificates file produced by dapReadyCertificates.sh (on
page 97)

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/service_packages/DAP/certificates

Chapter 4

52 Data Access Pack User's and Technical Guide

Notes: The name of the file containing the concatenated certificates is defined by
certificatesName (on page 52). Any file in the certificatePath directory that

does not have a filename matching certificatesName will be concatenated

into the certificatesName file.

For an overview of how certificates are handled, see Certificate Management (on
page 13).

Example: certificatePath = "/IN/service_packages/DAP/certificates"

certificatesName

Syntax: certificatesName = "file"

Description: The name of the file containing the concatenated servers' public certificates
produced by dapReadyCertificates.sh (on page 97).

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: CAfile.pem

Notes: The directory location for the dapReadyCertificates.sh file is configured in the
certificatePath (on page 51) parameter.

For an overview of how certificates are handled, see Certificate Management (on
page 13).

Example: certificatesName = "CAfile.pem"

cipherList

Syntax: cipherList = "string"

Description: Specifies the ciphers allowed to be used for SSL. It is a list of one or more cipher names
separated by colons.

Type: String

Optionality: Optional (default used if not set)

Allowed: May always be specified

Default: Default cipher list used is (Oracle product security recommended):

"ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-

AES128-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-CBC-

SHA256:ECDHE-RSA-AES256-CBC-SHA384:DHE-RSA-AES128-CBC-SHA256:DHE-RSA-

AES256-CBC-SHA256:ECDH-RSA-AES128-GCM-SHA256:ECDH-RSA-AES256-GCM-

SHA384:RSA-AES128-GCM-SHA256:RSA-AES256-GCM-SHA384:DH-RSA-AES128-GCM-

SHA256:DH-RSA-AES256-GCM-SHA384:ECDH-RSA-AES128-CBC-SHA256:ECDH-RSA-

AES256-CBC-SHA384:RSA-AES128-CBC-SHA256:RSA-AES256-CBC-SHA256:DH-RSA-

AES128-CBC-SHA256:DH-RSA-AES256-CBC-SHA256"

Notes: The cipher that is actually used is the result of the SSL handshake negotiation with the
ASP. For the handshake to be successful, both DAP and the ASP must have a common
cipher in the list DAP offers (set by cipherList) and the list the ASP supports (controlled
by the ASP configuration). You can obtain the list of available ciphers for an OpenSSL
installation by running the openssl ciphers command.

Oracle recommends choosing the most secure cipher that the ASP supports.

Example:

cipherList = "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384"

 Chapter 4

•

 Chapter 4, Configuration 53

clientCertificateFile

Syntax: clientCertificateFile = "client_file"

Description: The name of the file that contains the ASP-provided X.509 client certificate on the SLC.
The DAP uses the specified file for SSL client authentication of dapIF on the ASP. If
clientCertificateFile is not defined in eserv.config, then client certificates are not

used for SSL client authentication. You configure the directory location of the certificate
file in the certificatePath (on page 51) parameter.

Type: String

Optionality: Optional

Allowed: A valid SSL client certificate filename.

Default: Not set

Notes: Use the certificatesName (on page 52) parameter when configuring the filename

for non-SSL client certificates.

For an overview of how certificates are handled, see Certificate Management (on page
13).

Example: clientCertificateFile = "client.pem"

concatenate

Syntax: concatenate = true|false

Description: Whether to concatenate the body of the XML requests.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: concatenate = false

connectionFailureRetryTime

Syntax: connectionFailureRetryTime = seconds

Description: How long to wait in seconds between connection attempts after a failed
connection attempt.

Type: Integer

Optionality: Optional (default used if missing)

Allowed:

Default: 10

Notes:

Example: connectionFailureRetryTime = 20

connectionTimeout

Syntax: connectionTimeout = mseconds

Description: The number of milliseconds before a connection to an ASP times out.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0 (wait indefinitely)

Chapter 4

54 Data Access Pack User's and Technical Guide

Notes: Can be overridden by the timeout for correlation objects.

Example: connectionTimeout = 0

correlationTagName

Syntax: correlationTagName = "name"

Description: The correlation tag in the XML messages.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: "CORRELATE"

Notes: For more information about correlation, see Correlation (on page 27).

Example: correlationTagName = "CORRELATE"

DateTimeFormat

Syntax: DateTimeFormat = "dateformat"

Description: Indicates the format for date variables sent in a DAP notification where the parameter
value has been read from a DATE type profile field.

Type: String

Optionality: Optional

Allowed: "YYYY-MM-DDThh:mm:ss"

"YYYY-MM-DDThh:mm:ssZ"

"-YYYY-MM-DDThh:mm:ss"

"YYYYMMDDThhmmss"

Default: YYYYMMDDThhmmss

Notes:

Example: DateTimeFormat = "YYYYMMDDThhmmss"

disableTLS1_1

Syntax: disableTLS1_1 = true|false

Description: Sets whether or not TLS (Transport Layer Security) 1.1 is enabled or disabled in the
SSL context options when dapIF connects. Disable TLS 1.1 for connections to ASPs
that do not support TLS 1.1 or that do not fully support SSL secure renegotiation.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: false (TLS 1.1 is enabled)

true (TLS 1.1 is disabled)

Default: false

Notes: Setting disableTLS1_1 to true also disables use of TLS 1.2. Because of the way

OpenSSL works, if there is an available lower version, such as TLS 1.0 (which is always
enabled), disabling a higher version also disables the version above that one. Because
of this behavior, do not set disableTLS1_1 to true if TLS 1.2 is supported by the ASP

and can be negotiated.

Example: disableTLS1_1 = true

 Chapter 4

•

 Chapter 4, Configuration 55

discardPendingQueueRequestsAfterSeconds

Syntax: discardPendingQueueRequestsAfterSeconds = value

Description: The number of seconds which the DAP request will be retried for before it is discarded.

Using this parameter, DAP is configured to discard requests after a certain period of
time if the destination ASP cannot be reached.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: -1 (no global discarding of old DAP requests)

Notes: Discard if Not Sent After (sec) field value if set will always take priority over
discardPendingQueueRequestsAfterSeconds parameter.

Example: discardPendingQueueRequestsAfterSeconds = 60

enableRetries

Syntax: enableRetries = true|false

Description: Sets if DAP will attempt to resend failed requests

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes:

Example: enableRetries = true

hostnameInPost

Syntax: hostnameInPost = true|false

Description: Include the full or shortened version of destination in the POST command in
requests.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes:

Example: hostnameInPost = true

listenHost

Syntax: listenHost = "host"

Description: Specifies the host name to put in the outgoing clientUrl HTTP header.

Type: String

Optionality: listenHost and listenPort are both required if the ASP returns parameters

in a separate request.

Allowed:

Default: "" (none)

Notes:

Example: listenHost = ""

Chapter 4

56 Data Access Pack User's and Technical Guide

listenPort

Syntax: listenPort = port

Description: Specifies the port to put in the outgoing clientUrl HTTP header.

Type: Integer

Optionality: listenHost and listenPort are both required if the ASP returns parameters

in a separate request.

Allowed:

Default: 4099

Notes: This allows for the situation when the ASP initiates requests to the XML Interface.

For more information about message flows, see Message flow (on page 3).

Example: listenPort = 4099

Mapping

Mapping between protocols and SLEE interface handles. Refer to Mapping parameters (on page 65).

maxQueueCheckTimeout

Syntax: maxQueueCheckTimeout = seconds

Description: The number of seconds between each diagnostic check of the pending queue
size for each ASP.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid number

Default: 100

Notes: A warning will be logged if an ASP queue size is larger than the value specified
for maxQueueLength.

Example: maxQueueCheckTimeout = 100

maxQueueLength

Syntax: maxQueueLength = size

Description: The maximum size for the message queue. When set to greater than zero, any
new requests to an ASP will be rejected if the request queue size for the ASP
exceeds the defined value.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid number

Default: 500

Notes: A warning will be logged if an ASP queue size is larger than maxQueueLength.

Example: maxQueueLength = 500

maxRetries

Syntax: maxRetries = number

Description: If a COMMAND_ACK is not received following a request, maxRetries defines the
number of subsequent requests to attempt before expiring the request.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 0

 Chapter 4

•

 Chapter 4, Configuration 57

Notes: This parameter applies only to HPSA.

Example: maxRetries = 0

nonBlockingConnections

Syntax: nonBlockingConnections = true|false

Description: Specifies whether or not to use non-blocking sockets for connections to ASPs.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes:

Example: nonBlockingConnections = false

openSSLPath

Syntax: openSSLPath = "path"

Description: The location of openssl (on page 94). openssl is used by dapReadyCertificates.sh to
concatenate and rehash certificate files to create fast lookup tables for DAP
certificates.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /usr/sfw/bin

Notes:

Example: openSSLPath = "/usr/sfw/bin"

pendingFilename

Syntax: pendingFilename = "path/file"

Description: Location in which to store pending requests in the event that redelivery is
required.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /IN/service_packages/DAP/tmp/pendingRequests.db

Notes: The pendingRequests file contains one line per message in the format:
<msg_id>::<asp_url>::<port>::<protocol>::<timeout>::<xml>::[return

_parameter_name::]+

Example: pendingFilename =

"/IN/service_packages/DAP/tmp/pendingRequests.db"

pendingQueueInMemory

Syntax: pendingQueueInMemory = true|false

Description: Sets whether or not to boost performance by holding the queue of pending DAP
requests in non-persistent memory.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Chapter 4

58 Data Access Pack User's and Technical Guide

Default: false

Notes: When set to true, then no persistent records are stored in the location defined in
the pendingFilename parameter.

Example: pendingQueueInMemory = true

persistentConnections

Syntax: persistentConnections = true|false

Description: Specifies whether the primary connection to an ASP will remain open, or persist,
between requests.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: When set to true, secondary connections will persist.

Example: persistentConnections = true

persistentConnectionCheckTimeout

Syntax: persistentConnectionCheckTimeout = seconds

Description: Specify whether to check persistent socket connection for closure before sending
new request on it.

Value is number of seconds connection has been idle before check is to be
performed. Zero value means no checking.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes:

Example: persistentConnectionCheckTimeout = 0

PollCount

Syntax: PollCount = number

Description: Defines the number of zero wait polls to perform during idle periods, after which
the PollInterval (on page 59) timeout is re-applied.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid number

Default: 5000

Notes: Enables tight polling in periods of high traffic

Example: PollCount = 2000

pollIdleFDs

Syntax: pollIdleFDs = true|false

Description: Specifies whether to poll idle ASP connections. Idle connections are those which
are not currently being used by DAP requests.

Type: Boolean

Optionality: Optional (default used if not set).

 Chapter 4

•

 Chapter 4, Configuration 59

Allowed: true, false

Default: false

Notes: When set to true, DAP will add idle connections to the fd set for polling. Once it is
added, the closure of the connection gets detected. This will prevent loss of DAP
request in case connection is already closed by ASP.

Example: pollIdleFDs = true

PollInterval

Syntax: PollInterval = mseconds

Description: Number of milliseconds that dapIF (on page 90) will sleep before processing
SLEE events.

Type:

Optionality: Optional (default used if not set)

Allowed:

Default: 500

Notes:

Example: PollInterval = 500

pollServiceCounter

Syntax: PollServiceCounter = number

Description: Defines when to process backlogged requests during idle periods. DAP waits the
specified number of idle polls before checking for pending timeout requests.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Positive integer

Default: 2

Notes:

Example: PollServiceCounter = 2

prefixTagName

Syntax: prefixTagName = "name"

Description: Identifies the tag encapsulating the custom prefix text.

Type: String

Optionality: Optional

Allowed:

Default: Not set

Notes: The tag itself is discarded before sending.

Example: prefixTagName = "CUSTOM_PREFIX"

responseTagName

Syntax: responseTagName = "name"

Description: The name of the expected correlation tag in the XML response.

Type: String

Optionality: Optional (default used if not set).

Allowed: A valid correlation tag name.

Chapter 4

60 Data Access Pack User's and Technical Guide

Default: correlationTagName (on page 54) value

Notes: If not set, then the value specified for the correlationTagName parameter will

be used.

Example: responseTagName = "CORRELATE"

retryTimeout

Syntax: retryTimeout = seconds

Description: After a request is issued, this defines the time to wait for a COMMAND_ACK
before it attempting a new request.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes: This parameter applies only to HPSA.

Example: retryTimeout = 10

sendRequestDateFormat

Syntax: sendRequestDateFormat = "dateformat"

Description: Indicates the date format to use for the System date (formatted) option while

setting variables.

Type: Date

Optionality: Optional (default used if not set).

Allowed:

Default: "%Y-%m-%d"

Notes:

Example: sendRequestDateFormat = "%Y-%m-%d"

sendRequestDateTZ

Syntax: sendRequestDateTZ = "name"

Description: Alternative timezone abbreviation when using the 'System date (formatted)'
("<fdt>") option. This calculates the <fdt> date from the specified timezone.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: GMT, NCC default TZ for SLC; otherwise the default system TZ

Notes:

Example: sendRequestDateTZ = "US/Eastern"

sendXRequestID

Syntax: sendXRequestID = true|false

Description: This parameter decide whether to send X-Request-Id in header. The value false
indicates that the feature is disabled.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

 Chapter 4

•

 Chapter 4, Configuration 61

Notes:

Example: sendXRequestID = true

sendXSrcSysID

Syntax: sendXSrcSysID = id

Description: This parameter holds the string value that needs to be sent in X-Source-System-
Id. If value is not configured, X-Source-System-Id will not be sent.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes:

Example: sendXSrcSysID = abc1234

sessionTimeout

Syntax: sessionTimeout = seconds

Description: The number of seconds to negotiate an open SSL session with a remote server
before it is reset by the server

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 86400 (24 hours)

Notes:

Example: sessionTimeout = 86400

setNullInEmptyOptRespPT

Syntax: setNullInEmptyOptRespPT = true|false

Description: This parameter decides how DAP Node will treat the optional response parameter
profile tag values, when they are not returned from ASP.

• true: Set the profile tag corresponding to the response parameter, to NULL.

• false: Don't set the profile tag corresponding to the response parameter as
NULL. Leave the existing value in the profile tag, as it is.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes:

Example: setNullInEmptyOptRespPT = true

sqlBusyRetryCount

Syntax: sqlBusyRetryCount = Num

Description: The maximum number of 10 millisecond waits that the SQL busy handler attempts when
a database query or update returns a BUSY status. To use this parameter, the
sqlUseBusyHandler parameter must be set to true.

Type: Integer

Chapter 4

62 Data Access Pack User's and Technical Guide

Optionality: Optional (default used if not set)

Allowed: Integer from 1 through 50

Default: 20

Notes: The database controls whether or not it calls the SQL busy handler.

Example: sqlBusyRetryCount = 20

sqlBusyWaitInterval

Syntax: sqlBusyWaitInterval = Num

Description: When a database query or update returns a BUSY status, this parameter specifies the
amount of time to wait (in milliseconds) before stopping the database query or update.
There is a delay of 1 millisecond between each query or update, repeating up to the
specified value in sqlBusyWaitInterval.

This parameter is used when one of the following is true:

• The SQL busy handler is in lock contention

• The sqlUseBusyHandler parameter is set to false.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: An integer from 0 through 100

Default: 20

Notes:

Example: sqlBusyWaitInterval = 20

sqlUseBusyHandler

Syntax: sqlUseBusyHandler = true|false

Description: Specifies whether to call the SQL busy handler or to wait a specified amount of time
after a database query or update returns a BUSY status.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true – Calls the SQL busy handler when a database query or update returns a BUSY
status. Use the sqlBusyRetryCount parameter to specify the maximum number of

waits before stopping the query or update.

false – Waits a specified amount of time when a database query or update returns a
BUSY status. Use the sqlBusyWaitInterval parameter to specify the maximum

amount of time to wait before stopping the query or update.

Default: true

Notes:

Example: sqlUseBusyHandler = true

soapHeaderOverride

Syntax: soapHeaderOverride = "<?xml version=\"version\"

encoding=\"encoding\" standalone=\"yes|no\"

?><soapenv:Envelope xmlns:soapenv=\"url\"

xmlns:xsd=\"url/XMLSchema\" xmlns:xsi=\"url/XMLSchema-

instance\" <soapenv:Header/><soapenv:Body>"

Description: Override the standard XML and SOAP header tags.

Type: String

Optionality: Optional

 Chapter 4

•

 Chapter 4, Configuration 63

Allowed:

Default: Not used

Notes: Applies to SOAP only.

Note this does not affect the close tags </soapenv:Body></soapenv:Envelope>,
which will still be added by DAP.

Example: soapHeaderOverride = "<?xml version=\"1.0\" encoding=\"ISO-

8859-1\" standalone=\"no\" ?><soapenv:Envelope

xmlns:soapenv=\"http://schems.xmlsoap.org/soap/envelope/\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

<soapenv:Header/><soapenv:Body>"

suffixTagName

Syntax: suffixTagName = "name"

Description: Identifies the tag encapsulating the custom suffix text.

Type: String

Optionality: Optional

Allowed:

Default: Not set

Notes: The tag itself is discarded before sending.

Example: suffixTagName = "CUSTOM_SUFFIX"

templates

Syntax: templates = [parameters]

Description: Allows overriding of certain values on a per template basis. See templates
parameters (on page 65).

Type: Array

Optionality:

Allowed:

Default:

Notes: Not used by default.

Example: templates = [
 {
 id = 83
 prefix = "xmlData="
 soapAction="PaymentService#OTPPayment"
 sendHeaderTag=false
 }
]

timedConnectTimeout

Syntax: timedConnectTimeout = seconds

Description: The number of seconds dapIF waits when connecting to an ASP. This connection
timeout is for the Network layer connection (TCP/IP).

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Integer

Chapter 4

64 Data Access Pack User's and Technical Guide

Default: 1

Notes:

Example: timedConnectTimeout = 2

timestampTagName

Syntax: timestampTagName = "tag"

Description: Expected time stamp tag in the XML message.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: "TIMESTAMP"

Notes:

Example: timestampTagName = "TIMESTAMP"

uncorrelatedRequestDir

Syntax: uncorrelatedRequestDir = "path"

Description: The ASPManager process writes to an uncorrelated log file at this path if it
receives a correlated response for which it cannot find a matching correlated
entry.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes:

Example: uncorrelatedRequestDir = "/IN/service_packages/DAP/tmp/"

useTemplateSOAPTags

Syntax: useTemplateSOAPTags = true|false

Description: Do not include any SOAP header tags in dapIF. Only use those from the
template.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: The close tags (</soapenv:Body></soapenv:Envelope>) will be added if not
already present at the end of the template.

Example: useTemplateSOAPTags = false

useDefaultAddress

Syntax: useDefaultAddress = true|false

Description: Specifies whether or not to populate SOAPAction field in message header with
destination URL.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true - SOAPAction field will be populated with destination URL.

false - SOAPAction field will be empty.

 Chapter 4

•

 Chapter 4, Configuration 65

Default: true

Notes:

Example: useDefaultAddress = true

Mapping parameters

The following parameters are valid for the Mapping section of the DAP configuration.

InterfaceHandle

Syntax: InterfaceHandle = "Dap_Interface"

Description: Specifies which SLEE Interface to connect to.

Type: String

Optionality: Optional (default used if not set).

Allowed: dapIF single SLEE handle for the DAP
Interface

["dapIF_1","dapIF_2",...
]

list of multiple SLEE handles

Default: ""

Notes: This must be the SLEE Handle for the DAP Interface as defined in the SLEE
config. Multiple SLEE handles can be defined in a list and requests will be load
balanced between them.

Example: InterfaceHandle = "dapIF"

Protocol

Syntax: Protocol = "H|S|A|P|L"

Description: The protocol to be used between the SLEE interface and the external ASP.

Type: String

Optionality:

Allowed: H XML

S SOAP

A HPSA

P PIXML

L LDAP

Default: -

Notes: For XML and SOAP, the ASP configuration defines whether it is over HTTP or
HTTPS. For more information about this configuration, see ASP tab fields (on
page 23).

LDAP is only available if LDAP interface for DAP has been installed and
configured. Refer to LDAP Interface for DAP Technical Guide for details.

Example: Protocol = "H"

templates parameters

The following parameters are valid for the templates section of the DAP configuration.

Chapter 4

66 Data Access Pack User's and Technical Guide

id

Syntax: id = id

Description: ID of the template ID to act on.

Type: Integer

Optionality: Optional

Allowed:

Default:

Notes:

Example: id = 83

prefix

Syntax: prefix = "pref"

Description: The prefix to add in front of XML or SOAP

Type: String

Optionality: Optional

Allowed:

Default: not added

Notes:

Example: prefix = "xmlData="

sendHeaderTag

Syntax: sendHeaderTag=true|false

Description: Send the soapenv:Header tag

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: Only applicable for SOAP

Example: sendHeaderTag=false

soapAction

Syntax: soapAction="action"

Description: SOAP action to specify in the header

Type: String

Optionality: Optional

Allowed:

Default: If not specified uses destination URL

Notes: Only applicable for SOAP

Example: soapAction="PaymentService#OTPPayment"

Tracing Configuration for Checking DAP Requests

The tracing configuration in the DAP section of the eserv.config configuration file enables optional trace
output to be recorded in the DapTracing section of the DAP log file. The trace checks DAP requests and
responses sent by dapIF for a specified list of MSISDNs or prefixes.

 Chapter 4

•

 Chapter 4, Configuration 67

Note: To enable writing trace output to the DAP log file, you must also enable debug in the DAP log file.
See Enabling DapTracing Debug (on page 68) for details.

The tracing configuration has the following syntax:

tracing = {

enabled = true|false

templates = [

{

id = int

msisdnParam = "$request_parameter"

msisdns = [

"msisdn_prefix"[,"msisdn_prefix"]

]

}

]

}

The tracing configuration supports the following parameters:

enabled

Syntax: enabled = true|false

Description: Enables or disables trace output in the DAP log file for the specified request or
response templates, and MSISDNs.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true or false

Default: false

Notes: The trace output is written to a special DapTracing debug section of the log file;
therefore to enable trace output, DAP debug must also be enabled in the log file. See
Enabling DapTracing Debug (on page 68) for details.

Example: enabled = true

templates

Syntax: templates = [templates_parameters]

Description: List of DAP template IDs and MSISDNs to trace.

Type: Array

Optionality: Required

Notes: A trace line is written to the DapTracing debug section in the DAP log file for each
request or response that is processed for the specified templates.

Example:
templates = [

{

id = 83

msisdnParam = "$msisdn"

msisdns = ["123456"]

}

]

id

Syntax: id = int

Description: The ID of the template to trace.

Type: Integer

Chapter 4

68 Data Access Pack User's and Technical Guide

Optionality: Required

Allowed: A valid template ID

Example: id = 83

msisdnParam

Syntax: msisdnParam = "$request_parameter"

Description: The name of the request parameter to trace. You must specify a request parameter for
a MSISDN value or MSISDN prefix value.

Type: String

Optionality: Required

Allowed: A valid request parameter

Default:

Notes:

Example: msisdnParam = "$msisdn"

msisdns

Syntax: msisdns = ["msisdn_prefix"[,"msisdn_prefix"]]

Description: The list of MSISDNs or MSISDN prefixes to trace. To trace all MSISDNs, specify an
empty list.

Type: Array

Optionality: Required

Example: msisdns = ["1234356"]

Enabling DapTracing Debug

To enable writing DapTracing debug content to the DAP log file:

Step Action

1 On the SLC, open the /IN/service_packages/DAP/bin/dapIF.sh file by using a text editor.

The dapIF.sh file should contain the following lines:
For a concise dapIF debug

#DEBUG=dapInterface,dapInterface_extraDetails,ASPManager,ASPConnection,DA

PSecureConnection,ConfigFileImpl,Config,DapFileWriter,DapTracing

For a verbose dapIF debug

#DEBUG=dapInterface,dapInterface_extraDetails,ASPManager,ASPConnection,DA

PSecureConnection,ConfigFileImpl,Config,DapFileWriter,DapReadWrite,DapPol

ling,DapTimeout,DapTracing

export DEBUG

2 If the dapIF.sh file:

• Already includes DEBUG lines, then enable debug output by removing the #
character from the beginning of one of the DEBUG lines, and make sure the
DapTracing option is included in the DEBUG line.

• Does not include a DEBUG line, then add a DEBUG line that includes the debug
options you want to enable, and make sure the DapTracing option is included in
the DEBUG line.

3 After the DEBUG line, add the following line if it does not exist already:
export DEBUG

4 Save and close the dapIF.sh file.

 Chapter 4

•

 Chapter 4, Configuration 69

Step Action

5 Restart the SLEE on the SLC to load the updated dapIF.sh file.

About DAP Notifications

DAP Manager logs all or failed notifications for the predetermined time and predetermined size to the
specified log directory for future processing.

The DAP notification configuration has the following syntax:

DAP = {

NotificationsLog = {

LogType = "String"

LogDirectory = "directory_path"

LogFileNamePrefix = "String"

MaxAgeSeconds = Seconds

MaxSizeEntries = Integer

}

}

The DAP notification configuration contains the following parameters:

LogType

Syntax: LogType = "String"

Description: Indicates the log type for the DAP notification dapIF to log failed or all notifications.

Type: String

Allowed: The following log types are allowed:

• IGNORE: No logging

• ERROR: Log failed notifications

• ALL: Log all notifications

Default: IGNORE

Example: LogType = IGNORE

LogDirectory

Syntax: LogDirectory = "directory_path"

Description: Indicates the name of the notifications log directory to which the notification log entries
are written.

Type: String

Allowed: Any existing directory path

Default: /IN/service_packages/DAP/tmp/notification-logs

Example: LogDirectory = "/IN/service_packages/DAP/tmp/notification-logs"

LogFileNamePrefix

Syntax: LogFileNamePRefix = "String"

Description: Indicates the base name of the log files. The complete log file name will be appended
with the start and stop times.

Example:dapNotifications_20150701081103-20150701081158

Type: String

Allowed: NA

Default: dapNotifications

Chapter 4

70 Data Access Pack User's and Technical Guide

Notes:

Example: LogFileNamePrefix = "dapNotifications"

MaxAgeSeconds

Syntax: MaxAgeSeconds = Seconds

Description: Indicates the seconds the log entries are cached before they are written to the log file.

Type: Integer

Allowed: > or = 1

Default: 60

Notes:

Example: MaxAgeSeconds = 60

MaxSizeEntries

Syntax: MaxSizeEntries = Integer

Description: Indicates maximum number of entries in the audit entry cache before the excess are
written to the log file.

Type: Integer

Allowed: > or = 1

Default: 100

Notes:

Example: MaxSizeEntries = 100

SLEE.cfg Configuration

Introduction

The SLEE.cfg file must be configured to enable the DAP to work. Because all necessary SLEE
configuration is done at installation time by the configuration script, this section is for information only.

The SLEE configuration file is located at /IN/service_packages/SLEE/etc/SLEE.cfg.

Refer to SLEE Technical Guide for details on SLEE configuration.

DAP SLEE configuration

During installation, the following line will be added to the SLEE.cfg file:

INTERFACE=dapIF dapIF.sh /IN/service_packages/DAP/bin EVENT

Usage:

INTERFACE=uniqueIdentifier interfaceName interfacePath interfaceType [eventCount

dialogCount]

Larger SLEE events

DAP requires that a pool of SLEE events of at least 3072 bytes is configured; for example:

MAXEVENTS=count 3072

Where count is the pool size.

For most efficient use of shared memory, a pool of SLEE events of 1024 bytes should also be
configured, for example:

 Chapter 4

•

 Chapter 4, Configuration 71

MAXEVENTS=count 1024

Configuration for Optimal Performance

Introduction

You can configure the DAP to optimize its performance. The optimal configuration settings will depend
on the capabilities of the ASP.

HTTP version 1.1

If the ASP supports HTTP version 1.1 then the following configuration is required to optimize DAP
performance. Set the DAP parameters:

• nonBlockingConnections = false

• persistentConnections = true

HTTP version 1.0

If the ASP supports HTTP version 1.0 then the following configuration is required to optimize DAP
performance. Set the DAP parameter:

• persistentConnections = false

Multiple instances

You can increase the speed of traffic through the DAP by using multiple instances of the DAP interface.
The speed will increase by the maximum speed of a single DAP interface multiplied by the number of
instances.

Multiple instances of the DAP interface can be started by adding more interface definitions to the DAP
SLEE configuration. See SLEE.cfg Configuration (on page 70) for details.

Note: If you add more interfaces to SLEE.cfg, then you must configure the list of interface handles in the
DAP section of eserv.config. See Mapping parameters (on page 65) for details.

General

You can increase the volume of traffic through the DAP interface by increasing the maximum secondary
connections allowed to the ASP. For details, see ASP configuration (on page 24).

DAP performance can also be improved by specifying the following configuration. Set the DAP

parameters:

• PollInterval = 10

• PollCount = 5000

• pendingQueueInMemory = true

For more information on configuring DAP parameters refer to DAP eserv.config configuration (on page
47).

Warning: If pendingQueueInMemory is set to true then the pending queue will not be stored in

persistent storage and therefore cannot be recovered following a failure and restart of the DAP process.

Chapter 4

72 Data Access Pack User's and Technical Guide

LDAP IF Configuration

This topic provides an overview of how the LDAP Interface for DAP is configured.

Configuration components

The LDAP interface for DAP is configured by the following mechanisms:

Component Locations Description Further Information

eserv.config All SLC machines The LDAP IF is configured in the
'DAP' section of the eserv.config file.

eserv.config
Configuration. See
Global Configuration (on
page 74).

SLEE.cfg All SLC machines The SLEE configuration is altered by
the ldapScp package install to start
the ldapIF. Default configuration
should be checked but should
generally not need to be modified.

SLEE Technical Guide

SMF GUI

(database)

USMS Statistics and EFM alarm
configuration is performed by the
ldapSms package install. Default
configuration should not generally
need to be modified.

Installing ldapSms on a
SMS.

DAP GUI

(database)

USMS LDAP Service Providers (LDAP
servers) must be defined using the
DAP GUI.

Data Access Pack
User's & Technical
Guide, plus LDAP
Interface specific details
in DAP Resource
Configuration (on page
79).

ACS control
plans

USMS Specific control plans must be
developed to perform LDAP requests
through the DAP framework.

ACS Technical Guide,
Data Access Pack
User's & Technical
Guide, plus LDAP
Interface specific details
in DAP Control Plan (on
page 88)

eserv.config Configuration

Introduction

This topic provides a high level overview of how the LDAP interface for DAP component is configured.

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other
sections. Configuration details are opened and closed using either { } or [].

• Groups of parameters are enclosed with curly brackets – { }

• An array of parameters is enclosed in square brackets – []

• Comments are prefaced with a # at the beginning of the line

 Chapter 4

•

 Chapter 4, Configuration 73

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats can be used, as in this example:

{ name="route6", id = 3, prefixes = ["00000148", "0000473"] }

{ name="route7", id = 4, prefixes = ["000001049"] }

or

{ name="route6"

id = 3

prefixes = [

"00000148"

"0000473"

]

}

{ name="route7"

id = 4

prefixes = [

"000001049"

]

}

or

{ name="route6"

id = 3

prefixes = ["00000148", "0000473"]

}

{ name="route7", id = 4

prefixes = ["000001049"]

}

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text editors, such as
Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows
line termination characters (for example, ^M), which are not visible to the user, at the end of each row.
This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working
copy to which you can return.

Loading eserv.config configuration changes

To cause LDAP interface for DAP to reread from its eserv.config configuration file, send a SIGHUP signal
to the ldapIF process. This will reload all configuration, including all connection configuration.

Existing connections will be dropped if the configuration has changed.

eserv.config files delivered

The ldapIF comes with an example eserv.config configuration fragment installed into the following file:

/IN/service_packages/DAP/etc/ldap.example.eserv.config

This fragment is not automatically installed into the live eserv.config. The system operator is expected to
copy the sample configuration manually and modify it to suit their site-specific requirements.

By default, ldapControlAgent (which runs LDAP on the SLC) will read its live run-time configuration from
the DAP section of:

/IN/service_packages/eserv.config

Chapter 4

74 Data Access Pack User's and Technical Guide

The ESERV_CONFIG_FILE variable can override the default location.

Global Configuration

Introduction

All additions to the eserv.config file to support the LDAP Interface for DAP can be found in the 'DAP'
section of the eserv.config file. The example eserv.config addition for the LDAP interface can be found
in the SLC (/IN/service_packages/DAP/etc/ldap.example.eserv.config). There are two areas in which
additional configuration can be made.

• A new mapping must be added to the DAP 'Mapping' section to ensure that DAP LDAP requests are
correctly forwarded to the LDAP Interface. If this Mapping is not present, then the ldapIF will still
start up, but the DAP macro node will be unable to send messages to the ldapIF.

• An 'LDAP' configuration section inside the top level 'DAP' section provides site-specific global
configuration parameters to overwrite the default. If this section is not present then the ldapIF will
start and will run using built-in default values.

Example eserv.config file section

Here is the example eserv.config DAP section.

DAP = {

Mapping = [

LDAP protocol

{

Protocol = "L"

InterfaceHandle = "ldapIF"

}

]

LDAP = {

requestSchema = “/IN/service_packages/DAP/etc/ldap_request_schema.xsd”

responseSchema = “/IN/service_packages/DAP/etc/ldap_response_schema.xsd”

validateRequestXML = true

disconnectWhenIdleTime = 600

connectionTimeout = 30

connectionRetryTime = 30

recordStatisticsEvery = 60

houseKeepingInterval = 30

maxRequestAge = 30

cacheTimeoutInterval = 60

noWorkSleepTime = 20000

}

}

 Chapter 4

•

 Chapter 4, Configuration 75

DAP Mapping

The available protocols are:

• “H”,

• “S”,

• “A” and

• "P”

With the installation of the LDAP interface for DAP, mapping “L” can be configured and used.

LDAP parameters

Here are the parameters that can be used in the LDAP section.

cacheTimeoutInterval

Syntax: cacheTimeoutInterval = <secs>

Description: The number of seconds after which a cached database record
expires.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Integers that are greater than zero.

Default: 60

Notes: The interface caches database information related to ASPs,
operations and operation response parameters. An entry in
the cache will be re-read if (when accessing the entry) the
entry has not been read directly from the database for more
than 'cacheTimeoutInterval' seconds.

Example:

If cacheTimeoutInterval is 30, attempting to read a cache entry
that was last reloaded (read from the database) more than 30
seconds ago will cause the entry to be reloaded. Attempting to
read an entry that was last reloaded 15 seconds ago will not
cause the entry to be reloaded.

Shorter values for this parameter will mean that operator
changes made in the USMS DAP GUI screens are more
quickly recognised by the LDAP Interface, and hence a short
value is appropriate for a testing environment. However,
setting this value higher may improve system performance in
a stable, production system.

Note: The cacheTimeoutInterval applies only to the ASP and
Operation configuration stored in the database. It does not
apply the configuration values in eserv.config, as those values
are not cached, and are reloaded only on receipt of a
SIGHUP.

Example: cacheTimeoutInterval = 300

Chapter 4

76 Data Access Pack User's and Technical Guide

connectionRetryTime

Syntax: connectionRetryTime = <secs>

Description: The number of seconds that the interface will wait after a
failed attempt to connect to an ASP, before reattempting to
connect.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Integers that are greater than zero.

Default: 30

Notes:

Example: connectionRetryTime = 30

connectionTimeout

Syntax: connectionTimeout = <secs>

Description: The number of seconds that the interface will wait for a
BindResponse message from an ASP (when attempting to
connect to that ASP) before assuming that the connection
attempt failed.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Integers that are greater than zero.

Default: 30

Notes: The interface will reattempt to connect after waiting for the
length of time specified by the 'connectionRetryTime'
parameter.

Example: connectionTimeout = 30

disconnectWhenIdleTime

Syntax: disconnectWhenIdleTime = <secs>

Description: The length of time (in seconds) that a connection with an ASP
can remain idle before the connection will be closed.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Integers that are greater than or equal to zero.

Default: 0

Notes: If the value of this parameter is '0' the interface will not close
idle connections.

Example: disconnectWhenIdleTime = 300

houseKeepingInterval

Syntax: houseKeepingInterval = <secs>

Description: The number of seconds that the interface will wait between
doing internal structure clean ups.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Integers that are greater than zero.

Default: 30

 Chapter 4

•

 Chapter 4, Configuration 77

Notes: The default value of this parameter should not generally need
to be changed.

Example: houseKeepingInterval = 300

maxRequestAge

Syntax: maxRequestAge = <secs>

Description: The number of seconds, after sending, before a timed out
request can safely be removed from internal structures.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Integers that are greater than zero.

Default: 30

Notes: Occasionally the interface needs to clean out its structures to
avoid gradually increasing memory usage over time. This
parameter defines when it is safe to clean up a request that
has timed out.

Example:

If maxRequestAge is 20, any messages that have timed out
and that were sent more than 20 seconds ago will be cleaned
up by the interface's housekeeping sweep. Messages that
have timed out and that were not sent more than 20 seconds
ago (and messages that have not yet timed out) will not be
cleaned up.

When a message is timed out, there is a chance that the
response is delayed, and may be received subsequently. If
the late response is received after the interface has cleaned
its reference, then an “unmatched ID” warning message will
be generated. By configuring an appropriate
maxRequestAge, these spurious warnings can be avoided.

Example: MaxRequestAge = 300

noWorkSleepTime

Syntax: noWorkSleepTime = <microseconds>

Description: The number of microseconds to sleep when there are no downstream requests to
process.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Integers that are greater than 0.

Default: 20000 (0.2 sec)

Notes:

Example: noWorkSleepTime = 30000

recordStatisticsEvery

Syntax: recordStatisticsEvery = <secs>

Description: The number of seconds over which the interface should
aggregate its non-peg-count statistics.

Type: Integer

Chapter 4

78 Data Access Pack User's and Technical Guide

Optionality: Optional (default used if not set).

Allowed: Integers that are greater than zero.

Default: 60

Notes: This applies only to the MIN, MAX and MEAN latency
statistics, which are computed over time. All other statistics
are peg-count statistics which are recorded as and when the
events occur. The value of recordStatisticsEvery should be
set to a period equal to or shorter than the collection period for
these statistics as defined in the SMF Statistics Management
GUI screen.

Example: recordStatisticsEvery = 300

requestSchema

Syntax: requestSchema = "<location>"

Description: The location of the file containing the XSD schema used to
validate requests before they are sent.

Type: String

Optionality: Optional (default used if not set).

Allowed: Any fully-qualified file containing a valid XSD schema

Default: /IN/service_packages/DAP/etc/ldap_request_schema.xsd

Notes: Although this parameter makes it possible to relocate the
schema, it is strongly recommended that you do not modify
the schema content because the schema is actually used by
the interface.

Setting this parameter incorrectly can affect the behaviour of
the 'validateRequestXML' parameter. Request validation will
be unconditionally turned off if any of the following is true:

• the parameter points to a file that does not exist

• the parameter points to a file that the interface does
not have permission to read the file pointed at by the
parameter contains XSD syntax errors

Example: requestSchema =

“/config/ldap_request_schema.xsd”

responseSchema

Syntax: responseSchema = “<location>”

Description: The location of the file containing the XSD schema that
describes the structure of the XML translation of LDAP search
response entries.

Type: String

Optionality: Optional (default used if not set).

Allowed: Any fully-qualified file containing a valid XSD schema.

Default: /IN/service_packages/DAP/etc/ldap_response_schema.xsd

Notes: This parameter makes it possible to relocate the schema. The
schema is not used for validation, but the information it
contains may be useful to an ACS service designer when
developing DAP response parameter XPath queries for a DAP
Request node in an ACS control plan.

Example: responseSchema =

“/config/ldap_response_schema.xsd”

 Chapter 4

•

 Chapter 4, Configuration 79

validateRequestXML

Syntax: validateRequestXML = <false|true>

Description: A switch that allows request validation to be turned on or off.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: True : The interface will attempt to perform request validation.

False: The interface will not perform request validation.

Default: true

Notes: When validation is on, each request (while in its XML form) will
be validated against the schema specified by the
'requestSchema' parameter.

Validation will not be performed even when the parameter is
'true' when the 'requestSchema' parameter is incorrectly
specified.

Request validation is strongly recommended during testing of
new DAP LDAP operations and new ASP operations. In a
stable, production system, disabling validation may result in
improvements in system performance if LDAP is frequently
used at high call rates.

Example: validateRequestXML = false

SLEE.cfg

Introduction

The SLEE must be configured to start the LDAP IF. The following line will be added to the SLEE
configuration file (/IN/service_packages/SLEE/SLEE.cfg) automatically during installation:

INTERFACE=ldapIF ldapIF.sh /IN/service_packages/DAP/bin EVENT

This default configuration should be appropriate for most environments. Refer to the SLEE Technical
Guide for further details.

DAP Resource Configuration

Introduction

An LDAP request is sent only when a DAP Request node is used in an ACS control plan. Correctly
configuring such a node requires DAP resources to be available first, specifically, the following must be
defined:

• A DAP ASP server. See Defining a DAP ASP for LDAP (on page 81).

• A DAP operation definition. See Defining a DAP Operation for LDAP (on page 82).

 Chapter 5, Using LDAP with DAP 81

Chapter 5

Using LDAP with DAP

Defining a DAP ASP for LDAP

Introduction

This topic provides additional configuration information related to the definition of a DAP ASP for LDAP.

ASP Configuration screen

This screen shot shows a typical dialog window to Create or Edit a DAP ASP.

ASP configuration fields

These comments apply specifically to defining an LDAP protocol ASP.

Field Notes

Name A unique name for this ASP.

Description An optional description field for this ASP.

Destination URL This field defines the “LDAP URL” which specifies the
location of the server against which LDAP requests
should be made. The URL full syntax is specified in
RFC2255. The LDAP server for DAP supports a subset
of the full field list. The supported syntax is:

Chapter 5

82 Data Access Pack User's and Technical Guide

ldap://<server-name>:<port>/x-auth-

method=simple,x-encryption=none,x-version=<LDAP

protocol version>,x-bind-user=<user-name>,x-

bind-password=<password>

Where:

• <server-name> = the host name or IP address of
the LDAP server

• <port> = the port number that the LDAP server is
running on (optional, default: 389)

• <user-name> = the name of the user account to
connect with

• <password> = the user account password
(optional)

• <LDAP protocol version> = the LDAP protocol
version that the LDAP server supports. Supported
versions are 2 and 3.

•

The x-auth-method, x-encryption and x-version
parameters are all optional, and if specified, should be set
only to the indicated values.

Protocol Choose LDAP for the LDAP Interface for LDAP.

Connection This field is not applicable to the LDAP protocol.

Authenticate Server This field is not used for the LDAP protocol.
Authentication is always used for LDAP.

PI User This field is not applicable to the LDAP protocol.

Max Secondary
Connections

This field is not used for the LDAP protocol. Only a
single connection per ASP is used for LDAP.

Defining a DAP Operation for LDAP

Introduction

The DAP framework defines the concept of an “Operation”. Operations may be grouped into
“Operation Sets”. The following discussion is primarily concerned with only those aspects of operation
configuration specifically related to the LDAP Interface for DAP.

The LDAP operation definition is effectively a template which describes how ACS parameters correlate
to the LDAP request. Every DAP Request node instance with an ACS control plan must specify the
operation it will use.

Specifically the operation defines:

• Which LDAP ASP will receive this request.

• What parameters are included in the LDAP request.

• What are the sources within the ACS control plan call context for these parameters.

• What parameters are expected in the associated LDAP response.

• Where are these parameters copied into the ACS control plan call context.

 Chapter 5

•

 Chapter 5, Using LDAP with DAP 83

Basic configuration

There as some basic configuration settings on the operation screen. In addition there are two tabs -
Request and Response which contain more detailed configuration.

Field Notes

Name A unique name for this operation.

Description An optional description field for this ASP.

ASP Name Each operation is associated with a specific ASP. Choose
your predefined LDAP ASP from the combo box.

Timeout Specify the time-out in milliseconds to use for requests
based on this operation. This must be strictly greater than
zero.

Operation Set Choose an operation set for this operation to belong to, or
an empty operation set.

Request configuration

The Request parameters tab defines the encoding of the LDAP request.

Chapter 5

84 Data Access Pack User's and Technical Guide

Request parameter tab fields

Here are the key fields on the Request parameter tab.

Field Notes

Request Template This is the XML definition of the LDAP request. The DAP
framework will determine the appropriate ACS control
plan parameters that the LDAP interface needs to insert
into the XML template, and will send these parameter
values to the LDAP interface for DAP.

The LDAP interface will substitute the parameters into the
XML request template, and then will translate the
complete XML request into LDAP, and finally will send it
to the configured ASP.

In addition, the LDAP-specific aspects of the Request
Template field are discussed in further detail below.

Request
Parameters

See descriptions about:

• how to define DAP request parameters.

• the use of the parameter detail fields: Name,
Description, Node Disposition, Default Value, Profile
Field Type, Profile Block, Profile Field and Iterarator.

Request template

The Request Template fields is (with one exception) a complete, well-formed XML document which
must match the LDAP interface for DAP Request Schema file:

/IN/service_packages/DAP/etc/ldap_request_schema.xsd

The exception to the well-formed XML is the use of “<< $var >>” within the XML document. These are
special place-holders which denote DAP substitution variables.

A DAP substitution variable is indicated by either:

• An element with empty content, and/or

• An element containing an explicit “<< $var >>” substitution variable.

For example:

<var1 this=”that”></var1>

<param me=”you”><< $var2 >></param>

<param he=”him” foo=”bar”><< $var3 >></param>

Examining the above, the DAP screen would determine that before sending this request, there are three
variable fields in this request which need to be filled from values in this control plan call context. The
variables are “var1” (empty content), “var2” and “var3” (explicit named).

LDAP Request template

A request template for an LDAP operation must have a specific syntax, as defined in the
ldap_request_schema.xsd schema file. In general, the fields of the LDAP operation are standardised.
The only significant area for flexibility is in the definition of the <filter> element, which represents the
“filter” attribute of the LDAP SearchRequest as per RFC1777. This is an arbitrary nesting of
comparisons, combined with a logical and/or test.

Please refer to RFC1777 and the request XSD file for the definitive definition. However, the following
“complete example” shows all possible LDAP schema elements in use.

<ldap_search>

 Chapter 5

•

 Chapter 5, Using LDAP with DAP 85

<base_dn>

<component key=”subscriber_msisdn”><<$msisdn>></component>

<component key=”ou”>subscribers</component>

<component key=”dc”>example</component>

<component key=”dc”>com</component>

</base_dn>

<filter>

<or>

<and>

<not>

<equals left=”vpnlevel” right=”NoAccess”>

</not>

<substring attribute=”yahooUsername”>

<initial value=”ax”>

<any value=”hot”>

<any value=”l33t”>

<final value=”zz”>

</substring>

<greater_or_equals left=“cashBalance” right=”1000”>

</or>

<less_or_equals left=”yearsToLive” right=”10”>

<present attribute=”royaltyFlag”>

<approximate_match left=”formOfAddress” right=”sir”>

</or>

</filter>

<scope type=”whole_subtree”>

<attributes>

<name>AllowList</name>

<name>BlockList</name>

<name>MotherMaidenName</name>

</attributes>

</ldap_search>

Elements

Here are the elements in the ldap_search Operation Request template.

Element Notes

ldap_search This is the outer level element which denotes the
template for an LDAP SearchRequest operation as
specified in RFC1777.

base_dn This defines the content of the baseObject parameter in
the LDAP SearchRequest. It consists of one or more
component sub-elements.

component This defines the components of the base in sequence
from the outermost level to the root of the DN. In the
example shown here, the subscriber's MSISDN is
included in the DN.

Alternatively, you might specify a base DN as a point in
the namespace tree further towards the root and request
the server to search the whole subtree. The base DN
and filter strategy is entirely dependent on the nature of
the application and the nature of the LDAP server's data
structure.

Chapter 5

86 Data Access Pack User's and Technical Guide

filter This element specifies the search filter. Before
designing a search filter, it is necessary first that you
understand the role and potential of the filter field as
defined in RFC1777. Secondly, it is necessary for you
to understand the structure of the user data stored in the
LDAP server.

Once you have designed the LDAP search filter, this
Operation Request Template allows you to specify an
XML template in a natural fashion with a direct mapping
into sub-elements.

Recall that the filter matching specified here is actually
performed by the LDAP server as part of its process for
locating the appropriate user object for which to return
the requested attributes. Refer to the documentation for
your LDAP server for the authoritative specification of
how filter elements will be interpreted.

and This element evaluates to “true” if all contained filter
elements evaluate to “true”.

or This element evaluates to “true” if one or more contained
filter elements evaluate to “true”.

not This element evaluates to “true” if the single filter element
it contains evaluates to “false”.

substring This elements evaluates to “true” if the attribute with
name specified by parameter “attribute” is determined to
substring match according to the sub-elements.

A substring element must contain at least one “initial”,
“any” or “final” attributes. If multiple “initial”, “any” or
“final” attributes are present, then all must match. E.g. in
the example given, the attribute of name
“yahooUserName” must match the pattern
“ax*hot*l33t*zz” where * indicates a sequence of zero or
more characters.

initial Within a substring element, determines that the element
must begin with the specified sequence in order for
substring to match.

any Within a substring element, determines that the element
must contain within it the specified sequence in order for
substring to match. If multiple “any” elements are
specified, the order may be significant.

final Within a substring element, determines that the element
must end with the specified sequence in order for
substring to match.

equals This elements evaluates to “true” if the attributed with
name specified by parameter “left” is determined to have
value equal to that specified by parameter “right”.

greater_or_equals This elements evaluates to “true” if the attributed with
name specified by parameter “left” is determined to have
value greater than or equal to that specified by parameter
“right”.

less_or_equals This elements evaluates to “true” if the attributed with
name specified by parameter “left” is determined to have
value less than or equal to that specified by parameter
“right”.

 Chapter 5

•

 Chapter 5, Using LDAP with DAP 87

present This elements evaluates to “true” if the attributed with
name specified by parameter “attribute” is present for the
object.

approximate_match This elements evaluates to “true” if the attributed with
name specified by parameter “left” is determined by the
ASP server to have value “approximately equal” to that
specified by parameter “right”. Refer to RFC1777 and
the documentation for the LDAP Server.

scope This should specify type=”whole_subtree”. Other values
may be supported in the future.

attributes The attributes element contains the names of all the
returned attributes which are to be requested from the
LDAP server and which are to copied from the LDAP
response into the ACS call context.

The configuration on the Response Tab defines where
these elements are to be placed within the call context.
Some elements may be multi-valued, in which case they
may be placed within sub-profiles. Refer to the Data
Access Pack User's & Technical Guide for further
information on configuring DAP nodes to receive multi-
valued fields.

name Each name element specifies one attribute name to be
requested from the LDAP server and written into the ACS
call context. Again, note that some attributes are multi-
valued. Refer to the Data Access Pack User's &
Technical Guide.

Note: The current behaviour in the DAP request template screen is that it treats all elements with empty
content as if they were variables. This can result in some element tags (e.g. “present” and “scope”, and
others) from always being incorrectly interpreted as variables.

When this occurs, you will need to simply configure this “ghost parameter” as having an empty string
default value.

Request parameters

The second and third columns in the Request tab for the Operation screen define the source and default
values for the per-invocation variables which are filled from the buffers in the ACS control plan call
context at run-time.

The use and interpretation of these fields is the same for LDAP as for other DAP protocols.

Response configuration

The Response tab contains the configuration allowing the operator to define the destination within the
ACS control plan call context where user data received in the LDAP response will be placed. When
specifying the XPATH for returned LDAP fields, use an XPATH such as:

//name[@key="userFieldName"]/text()

Note that the “text()” refers to the content of the returned value, not the final stored type in the profile.
Hence “text()” is used for when the returned value to be written to the call context is a string or an
integer.

Note that the double quotes around the returned user field name are required.

Otherwise, the use and interpretation of all configuration fields on this tab is the same for LDAP as for
other DAP protocols.

Chapter 5

88 Data Access Pack User's and Technical Guide

DAP Control Plan

Using the DAP LDAP operation

To use the DAP LDAP operation defined according to the previous sections, simply use the DAP
Request within an ACS control plan. The specific DAP Request node instance must be configured to
specify the Operation previous configured.

 Chapter 6, Background Processes 89

Chapter 6

Background Processes

Overview

Introduction

This chapter explains the processes that are started automatically by Service Logic Execution
Environment (SLEE).

Note: This chapter also includes some plug-ins to background processes which do not run
independently.

In this chapter

This chapter contains the following topics.

c_rehash .. 89
dapIF ... 90
dapMacroNodes .. 91
dapTypeConversion .. 91
ldapIF ... 92
libdapChassisActions .. 93
libDAPManager.so... 94
openssl .. 94
sqlite3 .. 95

c_rehash

Purpose

c_rehash is an openssl (on page 94) utility that takes a certificates directory as an argument. For each
certificate file in the directory c_rehash creates a symbolic link to the certificate file, where the symbolic
link name is the hash value of the certificates file. This enables fast certificate lookup for programs that
search using the certificate hash value.

Location

c_rehash is located in the following directory on SLC and VWS nodes:

/IN/services_packages/DAP/bin

Startup

c_rehash is run by the dapReadyCertificates.sh (on page 97) script.

Configuration

This binary has no specific configuration. dapReadyCertificates.sh uses the variable
DEFAULT_C_REHASH_PATH to define the location of c_rehash. The default value for the
DEFAULT_C_REHASH_PATH variable is /IN/service_packages/DAP/bin.

Chapter 6

90 Data Access Pack User's and Technical Guide

dapIF

Purpose

dapIF is a SLEE interface. It is the main Oracle Communications Network Charging and Control Data
Access Pack DAP client that sends and receives XML requests to external ASPs. It listens for SLEE
requests and messages from ASPs.

It can trigger a PI command from a control plan using the DAP Send Request feature node when
communicating with an ASP using the PIXML protocol.

Location

This binary is located on SLC and VWS nodes.

Startup

The interface is started by the SLEE, through the /IN/service_packages/DAP/bin/dapIF.sh shell script.

Configuration

dapIF is configured in the DAP section of eserv.config and the DAP Resources screen.

For more information about the:

• eserv.config parameters, see DAP eserv.config configuration (on page 47)

• DAP Resources screen, see Resources (on page 21)

Command line parameters

dapIF accepts the following command-line parameters at start up.

dapIF [-u usr/pwd|--user usr/pwd]

Note: Either the -u or the --user option can be used.

-u usr/pwd

Syntax: -u usr/pwd

Description: The userid and password combination to use to log into the local Oracle instance.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: /

Notes: Cannot be used with the --user /usr/pwd (on page 90) option.

Example: -u smf/smf

--user /usr/pwd

Syntax: --user usr/pwd

Description: The userid and password combination to use to log into the local Oracle instance.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: /

Notes: Cannot be used with the -u usr/pwd (on page 90) option.

 Chapter 6

•

 Chapter 6, Background Processes 91

Example: --user smf/smf

Failure

In case of failure alarms will be raised to the syslog.

Output

There is no output from this process.

dapMacroNodes

Purpose

This slee_acs plug-in provides the DAP macro nodes.

The nodes provided are:

• Send Request

• DAP Request

For more information about:

• Macro node libraries, see ACS Technical Guide

• The CPE, see CPE User's Guide

Location

This library is located on SLCs.

Startup

If dapMacroNodes is configured in acs.conf, it is made available to slee_acs when slee_acs is initialized.
It is included in the acsChassis section of acs.conf in a MacroNodePluginFile entry as follows:

acsChassis

 MacroNodePluginFile dapMacroNodes.so

Configuration

dapMacroNodes is configured in the DAP section of eserv.config. For more information, see DAP

eserv.config configuration (on page 47).

dapTypeConversion

Purpose

This SLEE-ACS plug-in provides conversions from ACS profile fields to types usable by DAP.

Location

Located on SLCs.

Chapter 6

92 Data Access Pack User's and Technical Guide

Startup

This library will be loaded based on configuration made by the packages on install.

Configuration

This library has no specific configuration.

ldapIF

Purpose

The ldapIF process is the main process in the LDAP IF component. It is a SLEE interface process. It
accepts SLEE request messages initiated from DAP Request nodes within slee_acs control plans and
translates them into LDAP requests to be sent over TCAP to waiting LDAP servers. The response is
returned via the reverse path back to the DAP Request node.

Location

This binary is located on SLC nodes.

Startup

This task is started by the SLEE, by the following lines (or similar) in SLEE.cfg:

INTERFACE=ldapIF ldapIF.sh /IN/service_packages/DAP/bin EVENT

Notes:

• ldapIF.sh is a shell script which starts the ldapIF process.

• The above are defaults and may vary.

• Only a single instance of the ldapIF process will be started.

Configuration

Global configuration for ldapIF is in eserv.config (or wherever the ESERV_CONFIG_FILE environment
variable indicates). The ldapIF can run without explicit configuration by using internal default
configuration settings. Sending a SIGHUP signal to the ldapIF will force it to reload the eserv.config
configuration.

For more information regarding ldapIF global configuration via eserv.config, see Global Configuration
(on page 74). For more information about causing ldapIF to reload its configuration, see Loading
eserv.config configuration changes (on page 73).

The ldapIF also uses per-ASP and per-operation settings. These are read from the SLC database
(which contains copies of data replicated from the primary configuration on the USMS nodes). This
database configuration is reloaded periodically as part of the normal ldapIF processing.

For more information regarding ldapIF service configuration via the DAP GUI, see DAP Resource
Configuration (on page 79).

Example configuration

For an example of an LDAP IF configuration section of an eserv.config file, see Example eserv.config
file section (on page 74).

 Chapter 6

•

 Chapter 6, Background Processes 93

Failure

The ldapIF will be monitored by the SLEE watchdog. The watchdog will restart ldapIF if it fails to
respond to regular heartbeat events. For more details about how the watchdog monitors SLEE
processes, see the SLEE Technical Guide.

ldapIF generates standard SMS alarm log messages to alert operators to any misconfiguration or
abnormal processing. For more information about the alarms generated by ldapIF, see LDAP Interface
for DAP Alarms Guide.

Output

The ldapIF process writes error messages to the system messages file. Under normal processing it will
echo all alarm messages to STDERR. As a SLEE process, this will be merged with all SLEE output.

See Debug output for more information.

Status reports

At any time, you can send ldapIF a SIGUSR1 which will cause it to generate a status output listing to
STDOUT. This will usually be redirected to /IN/service_packages/DAP/tmp/ldapIF.log file.

Sample output is:

** Connection Status **

 ASP: LDAP1

 Host: parker, port: 389

 Connection state: IDLE

** Connection Status **

 ASP: LDAP2

 Host: grimm, port: 389

 Connection state: READY

 Time connected: 11s

 Number of pending (unsent) requests: 0

 Number of requests waiting for response: 0

 Total requests processed: 30

Note: Generating the status report will not affect the connections, and can be done safely while the
system is under production load.

libdapChassisActions

Purpose

This slee_acs plug-in implements the chassis actions which are used by the DAP macro nodes when
they need to interact with components outside slee_acs.

Location

This library is located on SLCs.

Startup

If libdapChassisActions is configured in acs.conf, it is made available to slee_acs when slee_acs is
initialized. It is included in the acsChassis section of acs.conf in a ChassisPlugin entry.

acsChassis

 ChassisPlugin libdapChassisActions.so

Chapter 6

94 Data Access Pack User's and Technical Guide

Configuration

This binary has no specific configuration.

libDAPManager.so

Purpose

The libDAPManager.so is a combined connection manager and XML interface. A DAP client will use
libDAPManager.so to communicate with an ASP.

Start-up

The library is linked at run time by a DAP client.

Location

libDAPManager.so is located wherever a DAP client is installed (for example, on SMS, SLC or VWS.

eserv.config configuration

libDAPManager has configuration available in the DAP section of eserv.config. For more information,

see DAP eserv.config configuration (on page 47).

Command line parameters

Command line parameters for libDAPManager.so are the same as those for dapIF. Refer to Parameters.

Failure

In the event of a failure, alarms will be written to the system log.

Output

There is no output from this process.

openssl

Purpose

openssl is used by dapReadyCertificates.sh (on page 97) and c_rehash (on page 89) to concatenate and
rehash certificate files, creating links to the certificate files by hash value so that DAP can quickly find
the certificates that it requires.

Location

openssl is part of the operating system installation. It is used on the SLC and VWS nodes. Depending
on the operating systems version openssl is present as one of:

• /usr/sfw/bin/openssl

• /usr/bin/openssl with a symbolic link from /usr/sfw/bin/openssl to /usr/bin/openssl

 Chapter 6

•

 Chapter 6, Background Processes 95

Startup

openssl is started by dapReadyCertificates.sh (on page 97).

Note: dapReadyCertificates.sh attempts to use openssl at the location configured in the openSSLPath (on
page 57) parameter in the eserv.config file.

Configuration

openssl has some configuration which is set when used by dapReadyCertificates.sh (on page 97). To
configured this process, use the configuration available to dapReadyCertificates.sh.

sqlite3

Purpose

sqlite3 is an embedded SQL database engine which reads and writes directly to the database file on
disk. Programs that link with the sqlite3 library can have SQL database access without running a
separate RDBMS process.

It handles the DAP pending queue.

Location

This binary is located on the SMS node.

Configuration

sqlite3 accepts the following command line parameters.

/IN/service_packages/DAP/bin/sqlite3 path/pendingRequests.db '<VACUUM|PRAGMA

integrity_check>;'

To resize the database after a lot of data has been removed, run VACUUM as acs_oper.

To raise alarms about malformed db files, use PRAGMA integrity_check.

 Chapter 7, Tools and Utilities 97

Chapter 7

Tools and Utilities

Overview

Introduction

This chapter explains the Oracle Communications Network Charging and Control Data Access Pack
DAP tools and utilities that are available.

In this chapter

This chapter contains the following topics.

dapReadyCertificates.sh ... 97
dapSchemaTool .. 98

dapReadyCertificates.sh

Purpose

dapReadyCertificates.sh prepares the certificates located in the directory specified in the
certificatePath (on page 51) parameter into the form required by openssl (on page 94) (by

concatenating them into human-readable form and running c_rehash (on page 89) on them).
dapReadyCertificates.sh concatenates the files into the file specified by the certificatesName (on page

52) parameter.

See Certificate Management (on page 13) for an overview of how certificates are handled.

Warning: The concatenated file is overwritten each time dapReadyCertificates.sh is run. To keep the
existing file, move it to a directory other than the one specified by certificatePath, or rename it with

a suffix other than .pem (otherwise it will be concatenated into the new file along with the other *.pem files
in certificatePath).

Location

This binary is located on SLC and VWS nodes.

Configuration

dapReadyCertificates.sh accepts the following parameters from the DAP section of eserv.config:

• certificatePath (on page 51)

• certificatesName (on page 52)

• openSSLPath (on page 57)

Chapter 7

98 Data Access Pack User's and Technical Guide

dapSchemaTool

Purpose

This tool is used to export existing ASPs and operations from one server (that is, a testing server) and
import them to another server (that is, a production server).

Usage

Format
dapSchemaTool -E data|-I data -n name [-s operation_set_name] [-f filename] -u

db_user -p db_password [-c TNS_connect_string]

Export example
/dapSchemaTool -E asponly -n abc -u SMF -p SMF -c server_SMF

Import example
/dapSchemaTool -I operation -n xyz -f testOutput.txt -u SMF -p SMF -c server_SMF

Arguments

This table describes the function of each command argument.

Argument Description

-E Export from database

-I Import to database

-n ASP, operation, or operation set name to export or import

-s Operation set name (optional, only required if the given operation name is not
unique)

-f Filename for exported data (optional, required for importing, uses the standard
output for exporting if not specified)

-u Oracle username of database to use

-p Oracle password of database to use

-c Oracle TNS connect string (optional, uses $ORACLE_SID to connect to the local
database if not specified)

Data arguments for-E and -I options - one of these must be used

asponly Only the given ASP

asp The given ASP and all attached operations, as well as the operation set each
operation belongs to, and all parameters each operation contains

operation The given operation, its parameters, and the associated ASP and the operation
set (the associated operation set will be exported but will not be imported using
this argument)

operationset The given operation set and its all operations, as well as the associated ASP and
parameters of each operation

 Chapter 8, About Installation and Removal 99

Chapter 8

About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Network Charging and Control (NCC) application described in this guide. It also lists the files installed by
the application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and Removal Overview ... 99
Checking the Installation ... 99

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

• NCC system requirements

• Pre-installation tasks

• Installing and removing NCC packages

Checking the Installation

Checking the DAP SMS Installation

On successful installation, the package will have created the following directories:

• /IN/service_packages/DAP/db

• /IN/service_packages/DAP/lib

• /IN/service_packages/DAP/tmp

The following feature nodes will have been installed and added to the ACS database:

• Send Request

• DAP Send Request

• DAP VXML

Checking the DAP SLC Installation

On successful installation, the package will have created the following directories:

• /IN/service_packages/DAP/bin

• /IN/service_packages/DAP/db

Chapter 8

100 Data Access Pack User's and Technical Guide

• /IN/service_packages/DAP/etc

• /IN/service_packages/DAP/lib

• /IN/service_packages/DAP/tmp

The following binaries and interfaces will have been installed:

• /IN/service_packages/DAP/bin/dapIF

The following configuration files will have been installed:

• /IN/service_packages/DAP/etc/example.eserv.config

The following shared libraries will have been installed:

• /IN/service_packages/DAP/lib/dapMacroNodes.so

• /IN/service_packages/DAP/lib/libdapChassisActions.so

	About This Document
	Scope
	Audience
	Prerequisites
	Related documents

	Document Conventions
	Typographical Conventions

	Chapter 1
	System Overview
	Overview
	Introduction
	In this Chapter

	What is Data Access Pack?
	Introduction
	Diagram
	Synchronous and asynchronous connections
	Correlation
	HTTP and HTTPS Connections
	Supported protocols
	Message flow
	DAP and the PI

	Introduction to LDAP interface for DAP
	Introduction
	Functionality
	Diagram

	DAP Template Language
	Introduction
	Variables
	Repetition of subtrees
	Multiple variables

	Detailed example
	Template contents
	RAR Detailed Example

	Profile Tag Formats
	Introduction
	Supported tag types

	XML and SOAP over HTTP/HTTPS
	SOAP
	Parameter Substitution
	Message Header Construction
	ASP Message Parsing
	HTTPS Connections
	Certificate Checking
	Verifying ASP Certificates
	Server Authentication
	Response Validation
	Certificate Management
	SOAP Support Over HTTP

	HP-SA
	Introduction
	Parameter substitution
	HP-SA response messages
	Response status/details command received
	Response status/details command processed

	XML Interface
	Description
	Synchronous request
	Synchronous message flow
	Asynchronous request
	Asynchronous message flow
	Message contents

	WSDL
	SOAP bindings
	XSD support
	WSDL styles
	Other encodings
	Transmission services

	Statistics
	Introduction
	Statistics collected
	ASP based statistics
	LDAP IF Statistics

	LDAP IF Reports
	Accessing the DAP application
	Introduction
	SMS main menu
	DAP screens

	Chapter 2

	Resources
	Overview
	Introduction
	In this chapter

	Resources Screen
	Introduction
	Accessing the Resources screen

	ASP
	Introduction
	About Specifying URLs
	ASP tab
	ASP tab fields
	ASP configuration
	ASP Configuration screen
	Deleting an ASP

	Operations
	Introduction
	Operations tab
	Operations tab fields
	Correlation
	New Operation screen - Request tab
	New Operation screen - Response tab
	Adding an operation
	Script Format

	Request Parameter Configuration
	Response Parameter Configuration
	Editing an Operation
	Finding a DAP template
	Find Operations screen
	Copying DAP templates
	Copy DAP Operation screen
	Deleting an operation

	Operation Sets
	Introduction
	Operation Sets tab
	Add or edit an operation set
	Operation Set Configuration screen
	Deleting an operation set

	Chapter 3

	Import WSDL
	Overview
	Introduction
	In this chapter

	Import WSDL Screen
	Introduction
	What is WSDL?
	Accessing the Import WSDL screen

	Import WSDL Files
	Importing a WSDL file
	Import WSDL screen

	Operation Request Configuration
	Introduction
	Request tab
	Configuring requests

	Operation Response Configuration
	Introduction
	Response tab
	Configuring responses

	Chapter 4

	Configuration
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introduction
	Configuration components

	eserv.config Configuration
	Introduction
	Configuration File Format
	eserv.config Files Delivered
	Editing the File
	Loading eserv.config Changes

	DAP eserv.config configuration
	Introduction
	Example eserv.config DAP Section
	DAP parameters
	allowEmptyProfileValues
	allowINSECURESSLv3
	allowBugWorkArounds
	allowLegacyServerConnect
	appendCRLFAfterBody
	cacheAgeSeconds
	CARevocationListChecking
	certificatePath
	certificatesName
	cipherList
	clientCertificateFile
	concatenate
	connectionFailureRetryTime
	connectionTimeout
	correlationTagName
	DateTimeFormat
	disableTLS1_1
	discardPendingQueueRequestsAfterSeconds
	enableRetries
	hostnameInPost
	listenHost
	listenPort
	Mapping
	maxQueueCheckTimeout
	maxQueueLength
	maxRetries
	nonBlockingConnections
	openSSLPath
	pendingFilename
	pendingQueueInMemory
	persistentConnections
	persistentConnectionCheckTimeout
	PollCount
	pollIdleFDs
	PollInterval
	pollServiceCounter
	prefixTagName
	responseTagName
	retryTimeout
	sendRequestDateFormat
	sendRequestDateTZ
	sendXRequestID
	sendXSrcSysID
	sessionTimeout
	setNullInEmptyOptRespPT
	sqlBusyRetryCount
	sqlBusyWaitInterval
	sqlUseBusyHandler
	soapHeaderOverride
	suffixTagName
	templates
	timedConnectTimeout
	timestampTagName
	uncorrelatedRequestDir
	useTemplateSOAPTags
	useDefaultAddress
	Mapping parameters
	InterfaceHandle
	Protocol
	templates parameters
	id
	prefix
	sendHeaderTag
	soapAction
	Tracing Configuration for Checking DAP Requests
	enabled
	templates
	id
	msisdnParam
	msisdns
	Enabling DapTracing Debug

	About DAP Notifications
	LogType
	LogDirectory
	LogFileNamePrefix
	MaxAgeSeconds
	MaxSizeEntries

	SLEE.cfg Configuration
	Introduction
	DAP SLEE configuration
	Larger SLEE events

	Configuration for Optimal Performance
	Introduction
	HTTP version 1.1
	HTTP version 1.0
	Multiple instances
	General

	LDAP IF Configuration
	Configuration components

	eserv.config Configuration
	Introduction
	Configuration File Format
	Editing the File
	Loading eserv.config configuration changes
	eserv.config files delivered

	Global Configuration
	Introduction
	Example eserv.config file section
	DAP Mapping
	LDAP parameters
	cacheTimeoutInterval
	connectionRetryTime
	connectionTimeout
	disconnectWhenIdleTime
	houseKeepingInterval
	maxRequestAge
	noWorkSleepTime
	recordStatisticsEvery
	requestSchema
	responseSchema
	validateRequestXML

	SLEE.cfg
	Introduction

	DAP Resource Configuration
	Introduction

	Chapter 5

	Using LDAP with DAP
	Defining a DAP ASP for LDAP
	Introduction
	ASP Configuration screen
	ASP configuration fields

	Defining a DAP Operation for LDAP
	Introduction
	Basic configuration
	Request configuration
	Request parameter tab fields
	Request template
	LDAP Request template
	Elements
	Request parameters
	Response configuration

	DAP Control Plan
	Using the DAP LDAP operation

	Chapter 6

	Background Processes
	Overview
	Introduction
	In this chapter

	c_rehash
	Purpose
	Location
	Startup
	Configuration

	dapIF
	Purpose
	Location
	Startup
	Configuration
	Command line parameters
	-u usr/pwd
	--user /usr/pwd
	Failure
	Output

	dapMacroNodes
	Purpose
	Location
	Startup
	Configuration

	dapTypeConversion
	Purpose
	Location
	Startup
	Configuration

	ldapIF
	Purpose
	Location
	Startup
	Configuration
	Example configuration
	Failure
	Output
	Status reports

	libdapChassisActions
	Purpose
	Location
	Startup
	Configuration

	libDAPManager.so
	Purpose
	Start-up
	Location
	eserv.config configuration
	Command line parameters
	Failure
	Output

	openssl
	Purpose
	Location
	Startup
	Configuration

	sqlite3
	Purpose
	Location
	Configuration

	Chapter 7

	Tools and Utilities
	Overview
	Introduction
	In this chapter

	dapReadyCertificates.sh
	Purpose
	Location
	Configuration

	dapSchemaTool
	Purpose
	Usage
	Arguments

	Chapter 8

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction

	Checking the Installation
	Checking the DAP SMS Installation
	Checking the DAP SLC Installation

