

Oracle® Communications Network
Charging and Control
Diameter Control Agent Technical Guide

Release 15.2

January 2026

ii Diameter Control Agent Technical Guide

Copyright

Copyright © 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

 iii

Contents

About This Document .. v
Document Conventions .. vi

Chapter 1

System Overview .. 1

Overview .. 1
What is Diameter Control Agent? .. 1

Chapter 2

Configuration ... 5

Overview .. 5
Configuration Overview ... 5
eserv.config Configuration ... 6
SLEE.cfg Configuration ... 7
RAR Configuration ... 8
acs.conf Configuration ... 9
Prepaid Charging Configuration ..10
Feature Node Configuration ..12
INAP Extensions ..14
Parameter Mappings ...15
Business Scenarios ...19

Chapter 3

Background Processes .. 27

Overview ..27
dcaResPlugin ..27
diameterControlAgent Process ...28
xmlSleeDcaInterface ...30
DCADefaults Configuration Section ..31
DCAInstances Configuration Section ..41
Services Configuration ..66
PeerSchemes Configuration Section ..83
Statistics Logged by diameterControlAgent ..88

Chapter 4

Service Specific AVP Mappings ... 91

Overview ..91
Introduction ..91
Basic Array ..93
Key Array ...96
Array with Conditions ...99
Array with Context ...109
Conditional AVP ..115
Prefix Tree ...123
Timestamp ...125

iv Diameter Control Agent Technical Guide

Chapter 5

Control Plans .. 131

Overview .. 131
Check Balance .. 131
Direct Debiting ... 132
Price Enquiry ... 134
Refund Account ... 134
Session No Redirect .. 136
Session Redirect ... 137
Screening .. 138

Chapter 6

About Installation and Removal .. 141

Overview .. 141
Installation and Removal Overview ... 141
Checking the Installation ... 141

Chapter 7

Diameter Charging Agent Call Flows .. 143

Call Flow Overview .. 143
Initial Request Success ... 143
Initial Request Release Call .. 144
Initial Request Multiple Requested Service Units ... 144
AVP Pass-Through DCA to DCD .. 146
Screening Successful .. 148
Screening Call Disallowed ... 148
Screening Failure .. 149
Update Request... 149
Terminate Request .. 150

Chapter 8

Troubleshooting ... 151

Configuring Diameter Re-Authorization Request (RAR) Support ... 151

 v

About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the
Diameter Control Agent application.

Audience

This guide was written primarily for system administrators and persons installing, configuring and
administering the Diameter Control Agent application. However, sections of the document may be useful
to anyone requiring an introduction to the application.

Prerequisites

A solid understanding of UNIX and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to install, remove, configure or
otherwise alter the described system without the appropriate background skills, could cause damage to
the system; including temporary or permanent incorrect operation, loss of service, and may render your
system beyond recovery.

A familiarity with the Diameter protocol is also required. Refer to the following:

• Internet Engineering Task Force (IETF) specifications:

▪ RFC 3588 – Diameter Base Protocol
▪ RFC 4006 – Diameter Credit-Control Application
▪ RFC 4005 – Diameter Network Access Server Application

• 3GPP TS 32.299 V11.3.0 (2012-03) – 3rd Generation Partnership Project; Technical Specification
Group Service and System Aspects; Telecommunication management; Charging management;
Diameter charging applications (Release 11)

Although it is not a prerequisite to using this guide, familiarity with the target platform would be an
advantage.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

The following documents are related to this document:

• Advanced Control Services Technical Guide

• Charging Control Services Technical Guide

• Charging Control Services User's Guide

• Service Management System Technical Guide

• Service Management System User's Guide

• Service Logic Execution Environment Technical Guide

vi Diameter Control Agent Technical Guide

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network
Charging and Control (NCC) documentation.

Formatting Convention Type of Information

Special Bold Items you must select, such as names of tabs.

Names of database tables and fields.

Italics Name of a document, chapter, topic or other publication.

Emphasis within text.

Button The name of a button to click or a key to press.

Example: To close the window, either click Close, or press Esc.

Key+Key Key combinations for which the user must press and hold down one
key and then press another.

Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.

Monospace Bold Text that you must enter.

variable Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions

hypertext link Used to indicate a hypertext link.

 Chapter 1, System Overview 1

Chapter 1

System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control
(NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

What is Diameter Control Agent? .. 1

What is Diameter Control Agent?

Introduction

The Diameter Control Agent (DCA) is a SLEE interface used to translate between Diameter messages
and CAP 3 INAP.

Diameter is a protocol which has been designed to supersede RADIUS, and which facilitates AAA
(Authentication, Authorization and Accounting), and Credit-Control. This protocol forms the basis of a
Credit-Control solution for Oracle IMS (IP Multimedia Subsystem) products.

The DCA acts as a Diameter based credit control server. In doing so, it provides an interface to the
Prepaid Charging product (CCS component), to facilitate the use of the billing functionality provided
there.

Features

The DCA provides the following features:

• Provides support for AVPs specified in TS 32.299.

▪ Allows an AVP to be mapped to any INAP operation argument; for example,
InitialDP.calledPartyNumber

▪ Allows AVPs from any CCR to be mapped to ACS profile fields
▪ Allows ACS Profile fields to be mapped to any CCA response sent to a CC-Client
▪ Allows specification of complex mappings between AVPs and ACS Profile fields (including type

ARRAY)

• Supports call-screening without the need to start a billing session.

• Provides free call support (the ability to send DIAMETER_CREDIT_CONTROL_NOT_APPLICABLE
as a response).

• Support for Mobile Network operators (MNO) who provide their own variations on 3GPP and IETF
Diameter standards for Credit Control, including:

▪ Service triggering

Chapter 1

2 Diameter Control Agent Technical Guide

▪ Extensions to standards based enumerated values
▪ Default units may be assumed by operators, but be specified explicitly later in the call flows
▪ Ability to track elapsed-time at the interface and report back to the client
▪ Allows result-codes set by the interface to be mapped
▪ Supports the use of non-standard capabilities negotiation

Per-Message Type AVP Mapping

The AVP mapping rules configurable in DCA are:

• CCR INITIAL_REQUEST

• CCR EVENT_REQUEST

• CCA INITIAL_REQUEST

• CCA EVENT_REQUEST

• CCR UPDATE_REQUEST (one or more existing services) + CCA UPDATE_REQUEST

• CCR TERMINATION_REQUEST + CCA TERMINATION_REQUEST

 Chapter 1

•

 Chapter 1, System Overview 3

Diagram

Here is a high level diagram showing Diameter Control Agent in the context of NCC components.

DCA Components

In this diagram, the components that are specific to DCA are:

• Diameter Client

• Diameter messages

• DCA interface

• CAP3/INAP within the SLEE

Chapter 1

4 Diameter Control Agent Technical Guide

Screening

DCA screening provides the ability to configure one or more service entries in the eserv.config file that do
not specify a Service-Identifier or a Rating-Group. Additionally, these services contain a flag indicating
that they are for screening. Screening is only available if no default Rating-Group has been specified in
the config file.

When a Diameter Initial CCR is received by DCA with no Service-Identifier or Rating-Group, DCA will
check the configured services for a service that matches the remaining AVPs. If such a service is found,
then the corresponding control plan will be triggered.

The control plans used for screening can perform logic, and will return the result of screening by
returning either a continue for success, or a release for failure. In both cases, extra information can be
passed between the CCR/CCA and ACS using the inbound and outbound AVP mapping features listed
in Per-Message Type AVP Mapping (on page 2).

On receipt of the continue or release from ACS, DCA will shut down the dialog to ACS, and return the
relevant response to Diameter.

Refer to the following:

• Configuration file parameter screeningService (on page 71) in the Services section

• ACS Control Plan for Screening (on page 138)

 Chapter 2, Configuration 5

Chapter 2

Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Network Charging and Control
(NCC) application.

In this chapter

This chapter contains the following topics.

Configuration Overview ... 5
eserv.config Configuration ... 6
SLEE.cfg Configuration ... 7
DCA SLEE Configuration .. 7
RAR Configuration... 8
acs.conf Configuration ... 9
Prepaid Charging Configuration .. 10
Feature Node Configuration .. 12
INAP Extensions .. 14
Parameter Mappings ... 15
Business Scenarios ... 19

Configuration Overview

Introduction

This topic provides a high level overview of how the Diameter Control Agent (DCA) interface is
configured.

There are configuration options which are added to the configuration files that are not explained in this
chapter. These configuration options are required by the application and should not be changed.

Configuration Components

The Diameter Control Agent is configured by the following components:

Component Locations Description Further Information

eserv.config All SLC
machines

DCA is configured by the
DIAMETER section of

eserv.config.

eserv.config Configuration (on
page 6).

eserv.config All SLC
machines

DCA services mappings are
configured in the
ccsServiceLibrary section

of eserv.config.

CCS Service Library
configuration (on page 10).

Chapter 2

6 Diameter Control Agent Technical Guide

Component Locations Description Further Information

SLEE.cfg All SLC
machines

The SLEE interface is
configured to include the DCA
service.

SLEE.cfg Configuration (on
page 7) and SLEE Technical
Guide.

acs.conf All SLC
machines

Configures the cc extension
Digits/INAP extension
mappings

acs.conf Configuration (on page
9)

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many Oracle Communications Network
Charging and Control (NCC) applications read their configuration. Each NCC machine (SMS, SLC, and
VWS) has its own version of this configuration file, containing configuration relevant to that machine.
The eserv.config file contains different sections; each application reads the sections of the file that
contains data relevant to it.

The eserv.config file is located in the /IN/service_packages/ directory.

The eserv.config file format uses hierarchical groupings, and most applications make use of this to divide
the options into logical groupings.

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other
sections. Configuration details are opened and closed using either { } or [].

• Groups of parameters are enclosed with curly brackets – { }

• An array of parameters is enclosed in square brackets – []

• Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats can be used, as in this example:

{ name="route6", id = 3, prefixes = ["00000148", "0000473"] }

{ name="route7", id = 4, prefixes = ["000001049"] }

or

{ name="route6"

id = 3

prefixes = [

"00000148"

"0000473"

]

}

{ name="route7"

id = 4

prefixes = [

"000001049"

]

}

or

{ name="route6"

id = 3

prefixes = ["00000148", "0000473"]

}

{ name="route7", id = 4

 Chapter 2

•

 Chapter 2, Configuration 7

prefixes = ["000001049"]

}

eserv.config Files Delivered

Most applications come with an example eserv.config configuration in a file called eserv.config.example in
the root of the application directory. The example file for DCA is:

/IN/service_packages/eserv.config.dca.example

Warning: This file is not intended to be changed by the User. Please contact the Oracle support with your
queries.

Editing the File

Open the configuration file on your system using a standard text editor. Do not use text editors, such as
Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows
line termination characters (for example, ^M), which are not visible to the user, at the end of each row.
This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working
copy to which you can return.

Loading eserv.config Changes

If you change the configuration file, you must restart the appropriate parts of the service to enable the
new options to take effect.

Diameter eserv.config Configuration

The eserv.config file must be configured to enable the DCA to work. All necessary DCA configuration in
eserv.config is done at installation time by the configuration script. However, you must manually map the
service handles for services to the libdcaCcsSvcExtra.so library in the ccsPluginExtend section of
ccsServiceLibrary. Refer to CCS Service Library configuration (on page 10).

Note: The DCA configuration options in eserv.config are explained in the section on the
diameterControlAgent background process (on page 28).

SLEE.cfg Configuration

Introduction

The SLEE.cfg file must be configured to enable the DCA to work. All necessary SLEE configuration is
done at installation time by the configuration script, this section is for information only.

The SLEE configuration file is located at /IN/service_packages/SLEE/etc/SLEE.cfg.

For more information on SLEE configuration, see SLEE Technical Guide.

DCA SLEE Configuration

On installation, the following lines are added to the SLEE.cfg configuration file.

INTERFACE=dcaIf dca.sh /IN/service_packages/DCA/bin EVENT

SERVICEKEY=INTEGER 1230 Dca_Session

SERVICEKEY=INTEGER 1231 Dca_DD

SERVICEKEY=INTEGER 1232 Dca_RA

SERVICEKEY=INTEGER 1233 Dca_CB

SERVICEKEY=INTEGER 1234 Dca_PE

Chapter 2

8 Diameter Control Agent Technical Guide

SERVICE=Dca_Session 1 slee_acs Dca_Session

SERVICE=Dca_DD 1 slee_acs Dca_DD

SERVICE=Dca_RA 1 slee_acs Dca_RA

SERVICE=Dca_CB 1 slee_acs Dca_CB

SERVICE=Dca_PE 1 slee_acs Dca_PE

Note: It is essential for the correct operation of this application that the SLEE Interface type is always set
to EVENT.

SERVICEKEY

The SERVICEKEY entries specify the SLEE service keys for the Diameter service.

During dcaScp installation the value of the service keys can be specified, or modified manually after
installation, if necessary.

RAR Configuration

Diameter Charging Driver (DCD) can forward re-authorization requests (RARs) to DCA for forwarding on
to network elements such as the Online Charging Server (OCS). You enable DCA to process RARs by
setting the following parameter:

rarHandlingEnabled = true

When RAR processing is enabled in DCA, DCA informs DCD that it can process RAR messages, and
DCD uses this information to pass on any RARs it receives from the OCS. DCA then forwards the re-
authorization response that it receives back from the network to DCD, for DCD to forward on to the
OCS. If DCD is not informed by DCA, then DCD will respond to a RAR with a re-authorization
acknowledgement (RAA) containing the corresponding result code set in the rarResultCode

parameter.

Add the following parameters to the DIAMETER configuration section in the eserv.config file to enable
DCA to process RARs:

DIAMETER = {

DCAInstances = {

rarHandlingEnabled = true

rarClientTimeout = int

rarMaxRetry = int

}

}

See DCAInstances Parameters (on page 43) for more information.

You must also add service library entries to the CCS section of the eserv.config file using the following
syntax:

CCS = {

ccsServiceLibrary = {

ccsPluginExtend = {

library="libdcdCcsSvcExtra.so"

handleName="Dca_Session"

}

}

}

where Dca_Session is the name of the DCA session service.

Ensure the corresponding SERVICEKEY and SERVICE entries in the SLEE configuration file (SLEE.cfg)
are present for the DCA session service. For example:

 Chapter 2

•

 Chapter 2, Configuration 9

SERVICEKEY=INTEGER 1230 Dca_Session

SERVICE=Dca_Session 1 slee_acs Dca_Session

Add the following parameters to the CCS configuration section in the eserv.config file on VWS to enable
DAP IF to handle out-of-band balance update notification events, such as VWS balance top-ups or
depletions, which are likely to affect obtainable reservation durations. In these scenarios, the client (by
means of a server-initiated RAR message) is prompted to resubmit a new CCR-UPDATE:

CCS = {

 # dcaResPlugin.so config

 dcaResPlugin = {

 # Operation set for RAR notifications

 dapOperationSet = "RAR"

 }

}

BE = {

 plugins = [

 # Final plugin:

 "dcaResPlugin.so"

]

}

Note: Whenever an RAA is received with AVP parsing error, further RARs to the same GGSN will get
blocked.

For more information on RAR processing in DCD, see the RAR configuration section in Diameter
Charging Driver Technical Guide.

acs.conf Configuration

Introduction

The acs.conf file must be configured to enable the application to work. All necessary configuration is
done at installation time by the configuration script; this section is for information only.

The ACS configuration file is located at /IN/service_packages/ACS/etc/acs.conf.

Refer to ACS Technical Guide for details on ACS configuration.

INAP Extension

The following values for cc extension Digits and INAP extension mappings and format are set in acs.conf
on installation. You can change these, if required.

extensionNumber 3 506 asn1Integer value

extensionNumber 4 507 asn1Integer value

extensionNumber 5 501 asn1Integer value

extensionNumber 6 502 asn1Integer value

extensionNumber 7 503 asn1Integer value

extensionNumber 8 504 asn1Integer value

extensionNumber 9 505 octets value

Note: The extensionNumber n is displayed as CC Extension Digits n in the drop-down fields

(for example, Number of Events) in the macro node configuration screens. See Control Plans (on page
131) for examples.

Chapter 2

10 Diameter Control Agent Technical Guide

Prepaid Charging Configuration

CCS Service Library configuration

In order for the PRICE_ENQUIRY, DIRECT_DEBITING and REFUND_ACCOUNT services to work
properly, you must manually map the service handles for these services to the libdcaCcsSvcExtra.so
library in the CCS.ccsServiceLibrary.ccsPluginExtend section of the

/IN/service_packages/eserv.config file. For example:

CCS = {

...

ccsServiceLibrary = {

...

ccsPluginExtend = [

{

library="libdcaCcsSvcExtra.so"

handleName="Dca_PE"

}

{

library="libdcaCcsSvcExtra.so"

handleName="Dca_DD"

}

{

library="libdcaCcsSvcExtra.so"

handleName="Dca_RA"

}

]

...

Enabling Named Events

The DCA installation does as much as possible to be usable as soon as it is installed. However, you
need to perform one manual procedure in Prepaid Charging before you try to use it first-off. You need to
allow the use of the named events that are installed to whatever product types that you employ.

Here is an example of the procedure to follow to allocate product types to a DCA event set.

Step Action

1 In the SMS main screen, open Services > Prepaid Charging > Rating Management.

Result: The Rating Management screen will display.

2 Select the Named Event tab.

3 From the Event Set drop-down box, select DCA Sample Events.

 Chapter 2

•

 Chapter 2, Configuration 11

Step Action

4 From the Named Event grid, select Cent and click Edit.

Result: The Edit Named Event screen appears.

Chapter 2

12 Diameter Control Agent Technical Guide

Step Action

5 From the Available Named Event Catalogues field, select the named event catalogues for this
event that will use DCA billing and click >> Add >>.

6 Click Save.

7 Repeat steps 4 through 6 for the Second named event.

Refer to CCS User's Guide, Named Event topic for details.

Feature Node Configuration

Named Event Node

The Named Event node must be configured as shown for the following fields:

• Event Class – A Diameter (DCA) event class

• Number of Events Location – Incoming Session Data

 Chapter 2

•

 Chapter 2, Configuration 13

• Number of Events Field – CC Extension Digits 5

Chapter 2

14 Diameter Control Agent Technical Guide

INAP Extensions

Introduction

As INAP is not designed to contain Diameter AVPs, these will be carried, where necessary, in INAP
extensions in the InitialDP or the Connect. The following pre-defined INAP extension types are used,
where appropriate.

The IDP extensions are used by the service loader plug-in to modify the CCS/ACS call context. Also, the
control plans may access these extensions by means of suitable acs.conf configuration and by use of the
ExtensionDigits[0-9] call context fields. See Control Plans (on page 131) for examples of control plans
using these extensions.

In addition, inbound extension profiles may be set using the encodedExtension and

extensionFormat parameters. This enables inbound AVPs within INITIAL or EVENT based Credit-

Control-Request messages to be identified for mapping into the IDP passed to ACS. Multiple AVPs can
be identified and passed to the target profile tags available within the inbound extensions block.

Note: While you can have multiple AVP mappings, you can have only three extension mappings from
DCA to slee_acs. You can create extension mappings either by specifying an encoded extension value,
for example extensionType = 508, or by encoding as an extension profile block, which is extension type
701. Note that all profile tags go into one profile block and therefore use only one extension.

Therefore, if you define a profile encoded AVP, you have only 2 more user-defined extensions available.
For example, you can have either three AVPs mapped directly to INAP extensions or two AVPs mapped
directly to INAP extensions and multiple AVPs that are encoded in one profile block that is mapped to
extension type 701.

IDP

The following standard INAP extensions are used in the IDP. This table also lists the mapping of the
INAP extensions to the Call Content extension Digits profile buffers.

Extension Description Type cc extension Digits

501 Requested-Service-Units Asn1Integer 5

502 Requested service unit type:

• 1 = CC-Time

• 2 = CC-Money

• 3 = CC-Total-Octets

• 4 = CC-Input-Octets

• 5 = CC-Output-Octets

• 6 = CC-Service-Specific-Units

Asn1Integer 6

503 Requested-action:

• 0 = DIRECT_DEBITING

• 1 = REFUND_ACCOUNT

• 2 = CHECK_BALANCE

• 3 = PRICE_ENQUIRY

Asn1Integer 7

504 Event-Timestamp Asn1Integer 8

505 Subscription ID Asn1OctetString 9

506 Currency Asn1Integer.
Value from ISO
4217, for
example, 978 =
Euro

3

 Chapter 2

•

 Chapter 2, Configuration 15

Extension Description Type cc extension Digits

507 Exponent Asn1Integer.
Currency
exponent + 0x20.
for example, 1E
for -2

4

701 Multiple encoded AVPs Inbound
extension profile
block

Note: The cc extension Digits-INAP extension mappings are set in acs.conf on installation and can be
changed, if required. See acs.conf Configuration (on page 9).

Connection

The following INAP extensions are used in the Connect operation.

Extension Description Type

601 Granted service units Asn1Integer

602 Granted service unit type:

• 1 = CC-Time

• 2 = CC-Money

• 3 = CC-Total-Octets

• 4 = CC-Input-Octets

• 5 = CC-Output-Octets

• 6 = CC-Service-Specific-Units

Asn1Integer

603 Cost information (in system currency) Asn1OctetString

Parameter Mappings

Introduction

This topic describes the mappings between INAP parameters and Diameter AVPs.

CCR

This table describes the mappings for Credit-Control-Request AVPs.

AVP Action

Session-Id Used to look up the correct StateMachine in sessionIdToStatemachine.

Origin-Host The stack code in the DIAMETER module handles this.

Origin-Realm The stack code in the DIAMETER module handles this.

Destination-Realm The stack code in the DIAMETER module handles this.

Auth-Application-

Id
Throw it out if not 4

Service-Context-

Id
Used as part of the key to look up the service.

CC-Request-Type Used as part of the key to look up the service.

Chapter 2

16 Diameter Control Agent Technical Guide

AVP Action

Also used to determine the next state in the state machine.

CC-Request-Number Used in duplicate detection.

Destination-Host The stack code in the DIAMETER module handles this.

User-Name Ignored unless mapped to an IDP extension by the AVP mappings in
eserv.config.

CC-Sub-Session-Id Ignored after copying from the request to the answer message.

We do not support multiple session IDs but some clients may set this
anyway so we just ignore it.

Acct-Multi-

Session-Id
Ignored after copying from the request to the answer message.

We do not support multiple session IDs but some clients may set this
anyway so we just ignore it.

Origin-State-Id Used to detect a client re-booting and wipe sessions for the host if it has
rebooted.

Event-Timestamp For EVENT_REQUEST messages, this gets copied into IDP extension
type 504.

Subscription-Id One or more Subscription-Id AVPs may be supplied. The first SIP or E164
type Subscription-Id is copied to:

• CallingPartyNumber after applying the configured normalization
rules and

• IDP extension type 505.

The first IMSI type Subscription-Id is copied to IMSI.

Note: There must be an E164 or SIP type Subscription -Id present.
Otherwise the message will be rejected.

Service-

Identifier
Used as part of the key to look up the service.

Termination-Cause Use cmnDebug() to trace this if this transaction is being traced.

Otherwise, ignore.

Requested-

Service-Unit
The type of the service unit (derived from which sub-AVP is contained
within this one) is placed in IDP extension type 502. The value of the sub-
AVP is placed in IDP extension type 501.

Multiple unit types are supported. You can perform Basic and MSCC
services, with the following provisos:

• The units in Initial request are the units for the whole session, that
is, you cannot add another unit mid-session.

• If one unit fails to be granted, the entire service is denied.

• Multiple units are not suitable for use in event based credit control,
because the call or dialog with ACS is a one-shot for each type
(likely through a Named Event node). If multiple calls are opened to
ACS and one of them happens to fail, it is too late for DCA to go
back and revoke the successful cases.

Requested-Action Used as part of the key to look up the service.

Also used to determine the next state in the state machine.

Used-Service-Unit The cumulative total of all the Used-Service-Unit AVPs is copied to
ApplyChargingReport.timeNoTariffSwitch (multiplied by 10 to be in
deciseconds if the unit type is Time). The variable dca::StateMachine::
totalUsedUnits is used for storing this information.

 Chapter 2

•

 Chapter 2, Configuration 17

AVP Action

Multiple-

Services-

Indicator

If this is set to MULTIPLE_SERVICES_SUPPORTED then DCA will accept
the incoming message and subsequent Multiple-Services-Credit-Control
AVPs received in CCR/CCA update and final request messages.

Note: This parameter will not be mapped to the InitialDP.

Multiple-

Services-Credit-

Control

This is a grouped AVP that can contain these AVPs:

• Requested-Service-Unit

• Used Service-Unit

• Service-Identifier

• Rating Group

Requires that Multiple-Services-Indicator AVP has been received with
value set to MULTIPLE_SERVICES_SUPPORTED.

For multiple services credit control, a single session typically comprises
multiple services. Each service is identified by either the Service-identifier
or Rating-Group (where no Service-identifier). Requests received are
handled as follows:

• INITIAL-REQUEST – One IDP is sent for each service. The
Diameter session will have multiple INAP dialogs with slee_acs.

• UPDATE-REQUEST for a new Service-identifier/Rating-Group –
Starts a new service within the session and causes DCA to send
another IDP.

• UPDATE-REQUEST with no requested-service-unit AVP – Ends a
service within the session.

• TERMINATION-REQUEST – Ends the whole session.

Note:

• If more than one unit type is received within this AVP, DCA will
recognize the used-service-unit AVP in update and termination request
messages and will extract the relevant unit used. Typically this will be
the unit previously specified in the granted service unit.

• If no relevant unit is found then DCA returns CCA (Multiple-Services-
Credit-Control(result-Code = DIAMETER_INVALID_AVP_VALUE)).

Service-

Parameter-Info
Ignored unless mapped to an IDP extension by the AVP mappings in
eserv.config.

CC-Correlation-Id Ignored unless mapped to an IDP extension by the AVP mappings in
eserv.config.

User-Equipment-

Info
Ignored unless mapped to an IDP extension by the AVP mappings in
eserv.config.

Proxy-Info The stack code in the DIAMETER module handles this.

Route-Record Ignored at present.

CCA

This table describes the mappings for Credit-Control-Answer AVPs.

AVP Set from

Session-Id The Session-Id AVP of the first message in this transaction. (stored in
dca::StateMachine:: sessionId

Chapter 2

18 Diameter Control Agent Technical Guide

AVP Set from

Result-Code Set to DIAMETER_SUCCESS unless otherwise stated.

Origin-Host The stack code in the DIAMETER module sets this.

Origin-Realm The stack code in the DIAMETER module sets this.

Auth-Application-

Id
Set to 4

CC-Request-Type Leave as the stack default, that is, the value of CC-Request-Type from the
corresponding request.

CC-Request-Number Leave as the stack default, that is, the value of CC-Request-Number from
the corresponding request.

User-Name Not set

CC-Session-

Failover
Not set (will default to FAILOVER-NOT-SUPPORTED according to RFC
4006)

CC-Sub-Session-Id Set to the value from the corresponding request message, of present.

Acct-Multi-

Session-Id
Set to the value from the corresponding request message, of present.

Origin-State-Id Set to dca::ControlAgent::originStateId.

Event-Timestamp Set to the value of the Event-Timestamp AVP from the corresponding
request.

Granted-Service-

Unit
For session based services, this is ApplyCharging.maxDuration (divided by
10 if the unit type is Time). The unit type is obtained from the "DCA Unit
Type" profile tag, if it is available in the ApplyCharging extension profile
block.

For Requested-Action type DIRECT_DEBIT, in the success case, this is
the same as the Requested-Service-Unit AVP in the corresponding
request. Otherwise, not present.

Multiple-

Services-Credit-

Control

DCA will populate the MSCC AVPs in CCA messages with the following
sub-AVPs where applicable:

• Granted-Units

• Rating-Group or Service-Identifier

• Result-Code

• Time-Quota-Threshold (AVP code 868)

• Volume-Quota-Threshold (AVP code 869)

• Validity-Time (if applicable)

• Final-Unit-Indication (if applicable)

Note: Both Time-Quota-Threshold AVP and Volume-Quota-Threshold AVP
will be sent with:

• Vendor_ID 10415

• Quota-Threshold value 0

Cost-Information For Request-Action type PRICE_ENQUIRY, success case, this comes from
the value of extension 603 in the INAP Connect. Otherwise, not set.

Final-Unit-

Indication
Final-Unit-Action is set to REDIRECT or TERMINATE depending on the
INAP operations received. Redirect-Server is set to the number matched in
the redirectNumbers config list or TEL:<Connect
destinationRoutingAddress>@<Configured SIP host>.

Check-Balance-

Result
This is derived from the type of INAP operation received as described in
the Check balance, with a result of enough credit (on page 21) scenario.

 Chapter 2

•

 Chapter 2, Configuration 19

AVP Set from

Credit-Control-

Failure-Handling
Set to TERMINATE.

Direct-Debiting-

Failure-Handling
Not set. (According to RFC 4006, it will default to
TERMINATE_OR_BUFFER).

Validity-Time Set to the configured validity-time for the service in the graceful termination
scenarios only. See the Funds expiry, redirect, top-up and reconnect (on
page 23) scenario.

Redirect-Host Not set.

Redirect-Host-

Usage
Not set.

Redirect-Max-

Cache-Time
Not set.

Proxy-Info The stack code in the DIAMETER module sets this.

Route-Record Not set at the moment.

If we set this in the future, the stack code in the DIAMETER module will set
this.

Failed-AVP Set in some cases when Result-Code != success.

Business Scenarios

Introduction

This topic explains how the flow through the software achieves Diameter server services and also gives
more details on the mapping between INAP operations/parameters and Diameter messages/AVPs.

The following scenarios are based on (and named after) the relevant appendixes in RFC 4006.

For each business scenario, a message sequence chart is given.

For sample message flows, refer also to the DCA Messages Flows chapter in Sample Message Flows
Reference Guide.

Chapter 2

20 Diameter Control Agent Technical Guide

Successful session-based charging, client terminates session

Here is an example successful session-based charging, client terminates session.

CCR (INITIAL_REQUEST,

Requested-Service-Unit not present

or CC-Time present

SubscriptionId = “12345678”

DCAClient Slee_acs

InitialDp(

CallingPartyId = “12345678”

BearerCapability.ITC = 0 = speech)

RRBCSME (busy, no answer, RSF,

abandon, disconnect leg 1 (notify),

disconnect leg 2 (interrupted)

ApplyCharging (maxDuration = 5990)

Continue

CCA (Granted-Service-Unit.CC-Time = 599)

CCR (UPDATE_REQUEST,

Used-Service-Unit.CC-Time = 589)

start Tcc

ApplyChargingReport (

timeNoTariffSwitch = 5890

callActive = true)

ApplyCharging (maxDuration = 6100)

CCA (Granted-Service-Unit.CC-Time = 610)

restart Tcc

CCR (TERMINATION_REQUEST,

Used-Service-Unit.CC-Time = 311)

ERBCSM (oDisconnect,leg1)

ApplyChargingReport (timeNoTarrifSwitch = 900

callActive = false)

CCA

Stop Tcc

 Chapter 2

•

 Chapter 2, Configuration 21

Multimedia messaging direct debit scenario

Here is an example multimedia messaging direct debit scenario.

Check balance, with a result of enough credit

Here is an example check balance, with a result of enough credit.

CCR (Event_REQUEST,

Requested-Action=DIRECT_DEBITING

Requested-Service-Unit.CC-Service-Specific-Units = 5,

Event-Timestamp=”15:30:05"

SubscriptionId = “12345678”)

DCAClient Slee_acs

InitialDp(

CallingPartyId = “12345678”

BearerCapability.ITC = 17 = unrestricted digital with tones)

Extension 501 = 5

Extension 502 = 6

Extension 503 = 0

Extension 504 = “15:30:05”

Continue

CCA (Granted-Service-Unit.CC-Service-Specific-Units = 5)

CCR (Event_REQUEST,

Requested-Action=CHECK_BALANCE

SubscriptionId = “12345678”)

DCAClient Slee_acs

InitialDp(

CallingPartyId = “12345678”

BearerCapability.ITC = 17 = unrestricted digital with tones)

Continue

CCA (Check-Balance-Result = ENOUGH_CREDIT)

Chapter 2

22 Diameter Control Agent Technical Guide

Price enquiry

Here is an example price enquiry.

CCR (Event_REQUEST,

Requested-Action=PRICE_ENQUIRY

SubscriptionId = “12345678”)

DCAClient Slee_acs

InitialDp(

CallingPartyId = “12345678”

BearerCapability.ITC = 17 = unrestricted digital with tones)

Connect (destRoutingAddr = “0000”

Extension 603 = “123456”)

CCA (Cost-Information =

(Unit-Value=(Value-Digits=123456,Exponent=-2),

Currency-Code = 978))

 Chapter 2

•

 Chapter 2, Configuration 23

Funds expiry, redirect, top-up and reconnect

Here is an example funds expiry, redirect, top-up and reconnect.

Chapter 2

24 Diameter Control Agent Technical Guide

 Chapter 2

•

 Chapter 2, Configuration 25

Chapter 2

26 Diameter Control Agent Technical Guide

Multiple services credit control scenario

Here is an example multiple services credit control scenario.

 Chapter 3, Background Processes 27

Chapter 3

Background Processes

Overview

Introduction

This chapter explains the process which runs automatically as part of the Oracle Communications
Network Charging and Control (NCC) application. This process is started automatically by the SLEE.

In this chapter

This chapter contains the following topics.

dcaResPlugin .. 27
diameterControlAgent Process ... 28
xmlSleeDcaInterface ... 30
DCADefaults Configuration Section .. 31
DCAInstances Configuration Section .. 41
Services Configuration .. 66
PeerSchemes Configuration Section .. 83
Statistics Logged by diameterControlAgent .. 88

dcaResPlugin

This plugin runs on the VWS and triggers DAP events to trigger HTTP RAR requests to the SLC

Purpose

Sends DAP2 RAR requests to xmlSleeDcaInterface.

dcaResPlugin supplies the callback implementation for reservationAdded. Upon triggering,
dcaResPlugin checks the supplied reservation context EDR fields for any DIAMETER call details. If the
call is determined to be a DIAMETER call, dcaResPlugin stores in a map (keyed by walletId) the
DIAMETER reservations against that wallet (given by clientId and clientMsgId) and the DCA details
(DCA_INSTANCE, DCA_SCP, DCA_SESSION, DCA_ORIGIN_HOST), in the following format:

WALT -> [CLID,CMID] [DCA_SCP] [DCA_INSTANCE] [DCA_ORIGIN_HOST] [DCA_SESSION]

For example:

1 -> [1, 1] [slc1.example.com] [dcaIf1] [MIPT-TEST] [MIPT-TEST;1500000000;1]

2 -> [1, 2] [slc1.example.com] [dcaIf1] [MIPT-TEST] [MIPT-TEST;1500000001;1]

3 -> [2, 3] [slc2.example.com] [dcaIf2] [MIPT-TEST] [MIPT-TEST;1500000004;1]

During the call, an out-of-band balance update event (for example, account top-up) may be triggered by
the subscriber. The plugin (in addition to the new reservation callbacks) supplies methods for existing
wallet/balance/bucket callbacks.

Chapter 3

28 Diameter Control Agent Technical Guide

For example, if the balance update callback is triggered on a wallet previously determined as subject to
an open DIAMETER reservation, the plugin logic creates a DAP2 notification event to be populated with
relevant DCA session data (DCA_INSTANCE, DCA_SCP, DCA_SESSION, DCA_ORIGIN_HOST)
obtainable via reservation map lookup.

Startup

This process is started automatically by the SLEE. For more information see SLEE.cfg Configuration (on
page 7).

Default Configuration

CCS = {

 # dcaResPlugin.so config

 dcaResPlugin = {

 # Operation set for RAR notifications

 dapOperationSet = "RAR"

 }

}

BE = {

 plugins = [

 # other plugins

 "dcaResPlugin.so"

]

}

Alarms

The following alarms can be raised by dcaVWARSPlugin:

• ERROR [960601] Failed to read plugin config: <string>

• NOTICE [960602] Loaded plugin config.

• ERROR [960601] Failed to read plugin config: <string>

• ERROR [960603] Cannot read Tariff Handler data.

• ERROR [960604] Cannot read cascadeBalances in Tariff Handler data.

• ERROR [960605] Cannot read cascadeXBalances in Tariff Handler data.

• NOTICE [960606] Cannot read CDR tags in Tariff Handler data.

• WARNING [960607] Incomplete RAR tags in Tariff Handler CDR data.

diameterControlAgent Process

Purpose

The diameterControlAgent executable is a SLEE interface which converts between Diameter messages
and CAP3 operations to enable a Diameter client to communicate with a CAP3 SCF.

Startup

This process is started automatically by the SLEE. For more information see SLEE.cfg Configuration (on
page 7).

DIAMETER Configuration Structure

Here is the high-level structure of the DIAMETER configuration section of the eserv.config file.

 Chapter 3

•

 Chapter 3, Background Processes 29

DIAMETER = {

DCADefaults = {

DCADefaults_parameters

}

DCAInstances = [

First Instance

{

NumberRules = [

NumberRules_parameters

]

DCAIinstances_parameters

]

RedirectNumberMappings = [

{

RedirectNumberMappings_parameters

}

]

Tracing = {

Tracing_parameters

}

Services = [

{

Services_parameters

}

]

DiameterServer = {

DiameterServer_parameters

}

} # end of First Instance

] # end of DCAInstances section

PeerSchemes = [

First Scheme

{

schemeName = "SchemeA"

Peers = [

{

peerhost1_parameters

}

{

peerhost2_parameters

}

}

{

schemeName = "SchemeB"

SchemeB_parameters

}

] # End of PeerSchemes section

Chapter 3

30 Diameter Control Agent Technical Guide

TTC Based Rating and Charging

When Continuous-Time Rating is disabled, TTC based rating/charging is performed.

During TTC based charging, in CCR-Uptate/CCR-Terminate messages, rating engine expects before
and after usage. They are stored in the following profile tags:

a. DCA Unit Before Tariff Change

 profileTag = 6291472

 profileFormat = "INTEGER"

b. DCA Unit After Tariff Change

 profileTag = 6291473

 profileFormat = "INTEGER"

In SLC node's eserv.config file, the incoming Tariff-Change-Usage AVPs for before and after usage
should be mapped to those profile tags for TerminateRequest and UpdateRequest.

Entries should be added in the following section of eserv.config:

DIAMETER > DCAInstances > Services > AvpMappings

Example entry for TTC is provided in SLC node.

/IN/service_packages/DCA/etc/eserv.config.RAR.example.TTC

Failure

If the diameterControlAgent fails, no Diameter messages will be processed.

xmlSleeDcaInterface

Purpose

Converts DAP2 RAR requests to SLEE RAR Events and forwards to diameterControlAgent.

Accepts dcaRarReq messages and uses the data contained therein to construct a diameterSleeEvent
message.

Startup

This process is started automatically by the SLEE. For more information see SLEE.cfg Configuration (on
page 7).

Default Configuration

DIAMETER = {

 #xmlSleeDcaIF

 DCA = {

 # xmlSleeDcaIF listens for HTTP connections

 listenPort = 3088

 # Incoming connection detection polling timer

 # (microseconds)

 pollTime = 100000

 # Automatic periodic config reload time?

 # (seconds)

 Chapter 3

•

 Chapter 3, Background Processes 31

 # 0 = disabled

 reloadInterval = 0

 }

}

Alarms

The following alarms can be raised by xmlSleeDcaInterface:

• WARNING [960501] Terminated with INTERFACE_END.

• WARNING [960502] Terminated with INTERFACE_KILL.

• NOTICE [960503] Reread config management event.

• ERROR [960504] accept() failed. duplicate fd: %d

• CRITICAL [960505] Failed to get management event type from SLEE.

• NOTICE [960506] Received unknown EventType from SLEE: <String>.

• CRITICAL [960507] Failed to get SLEE API handle: <String>.

• CRITICAL [960508] Failed to initialise Xerces parser..

• ERROR [960509] sigaction() failed: <String>.

• CRITICAL [960510] Failed to read config: <String>.

• NOTICE [960511] xmlSleeDcaIF is now running.

• ERROR [960512] Failed to reread config: <String>.

• WARNING [960521] Outstanding request on fd: <Int>.

• NOTICE [960522] Connection closed by foreign host (fd: <int>).

• WARNING [960523] read() error (fd: <Int>) : <String>.

• WARNING [960524] Received invalid HTTP request.

• ERROR [960525] XMLException: <String>.

• ERROR [960526] SAXParseException: <String>.

• ERROR [960527] UnknownException: <String>.

• ERROR [960528] 503 Service Unavailable: Unable to send RAR event.

• ERROR [960529] 503 Service Unavailable: Could not create RAR event.

• NOTICE [960531] No existing entry found in cache for this interface.

• WARNING [960532] Unable to get SLEE handle for DCA interface.

• ERROR [960533] SLEE error: Could not sendEvent() to DCA.

• ERROR [960534] Unable to create a DiameterSleeEvent.

DCADefaults Configuration Section

Example DCADefaults Configuration in eserv.config File

Here is an example DCADefaults section of the DIAMETER configuration in the eserv.config file.

DCADefaults = {

sleeServiceKey = 1234

inapServiceKey = 1234

maxSessionLengthAfterFinalUnitIndicationsSeconds = 14340

tcc = 3600

gracefulTerminationValidityTime = 300

validityTime = 30

systemErrorResultCode = 5012

invalidMessageSequenceResultCode = 5012

Chapter 3

32 Diameter Control Agent Technical Guide

itc = "udi"

AvpMappings = [

{

AvpCodes = [

{

avpCode = 1234

mandatory = true

vendorId = "16747"

}

]

avpFormat = "OctetString"

sipScheme = "sip"

extensionType = 1234

extensionFormat = "inapnumber"

conversion = [

{ internal = 1, external = 5030 }

{ internal = 16, external = 2001 }

{ internal = 17, external = 3004 }

{ internal = 42, external = 5006 }

{ internal = 111, external = 3001 }

]

mappingTypes = ["InitialRequest", "InitialResponse", "EventRequest",

"EventResponse"]

}

]

}

DCADefaults Parameters

The following parameters are used as defaults if not specified in a Service. They are found within the
DCADefaults = { } statement.

avpMappings

Syntax: avpMappings = [mappings_parameters]

Description: The default service AVP mappings.

Optionality: Mandatory

Notes: See AvpMappings Parameters (on page 35).

gracefulTerminationValidityTime

Syntax: gracefulTerminationValidityTime = seconds

Description: The number of seconds granted for the user to top up the account during graceful
termination. Refer to RFC 4006 A.7.

Type: Integer

Optionality: Optional

Allowed: in seconds

Default:

Notes: Not present means no graceful termination.

Example: gracefulTerminationValidityTime = 300

 Chapter 3

•

 Chapter 3, Background Processes 33

inapServiceKey

Syntax: inapServiceKey = value

Description: The INAP Key value

Type: Integer

Optionality: Mandatory

Allowed: Any 32 bit integer

Example: inapServiceKey = 1234

invalidMessageSequenceResultCode

Syntax: invalidMessageSequenceResultCode = code

Description: The error code for an invalid message sequence result, for example, if
TERMINATION_REQUEST is the first message.

Type: Integer

Optionality: Mandatory

Allowed:

Default: 5012 [Diameter unable to comply]

Notes: See Part 7.1 of RFC 3588 and Part 9 of RFC 4006 for a list valid codes.

Example: invalidMessageSequenceResultCode = 5012

itc

Syntax: itc = infoTransferCapability

Description: The Bearer Capability Information Element (Q.931 section 4.5.5) contains an
Information Transfer Capability (ITC) field that is set automatically by DCA when
DCA triggers ACS.

This parameter overrides the ITC value within the Bearer Capability Information
Element.

For more details, please see itc (on page 70) parameter under the Services

section.

Type: Integer, or string

Optionality: Optional

Allowed:

Default:

Notes: If automatic setting of ITC is required, then this parameter should be absent.

Example: itc = 16

or

itc = "3.1kHzAudio"

or

itc = 0x10

mappingTypes

Syntax: mappingTypes = ["mapping_types"]

Description: Specifies the cases that the mapping applies to.

Type: String Array

Optionality: Optional

Allowed:

Chapter 3

34 Diameter Control Agent Technical Guide

Default:

Notes: For more details, please see the mappingTypes (on page 79) parameter under

the Services section.

Example: mappingTypes = ["InitialRequest", "UpdateRequest",

"EventRequest", "TerminateRequest"]

maxSessionLengthAfterFinalUnitIndicationsSeconds

Syntax: maxSessionLengthAfterFinalUnitIndicationsSecon

ds = secs

Description: The maximum number of seconds that a session can last after
the Final-Unit-Indication AVP has been sent to the client.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid integer.

Default: 14340

Example: maxSessionLengthAfterFinalUnitIndicationsSecon

ds = 14340

sleeServiceKey

Syntax sleeServiceKey = value

Description: The Service Key value

Type: Integer

Optionality: Mandatory

Allowed: Refer to SLEE Technical Guide

Default: N/A

Example: sleeServiceKey = 1234

systemErrorResultCode

Syntax: systemErrorResultCode = code

Description: The error code for a system error

Type: Integer

Optionality: Mandatory

Allowed:

Default: 5012 [Diameter unable to comply]

Notes: See Part 7.1 of RFC 3588 and Part 9 of RFC 4006 for a list valid codes

Example: systemErrorResultCode = 5012

tcc

Syntax: tcc = value

Description: The Session supervision timer timeout

Type: Integer

Optionality: Mandatory

Allowed: number of seconds

Default: 3600

Notes: Refer to RFC 4006.

Example: tcc = 3600

 Chapter 3

•

 Chapter 3, Background Processes 35

validityTime

Syntax: validityTime = seconds

Description: The validity time in seconds of granted units. Results in Validity-Time AVP being
placed in CCA.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: -1 (Not included)

Notes:

Example: validityTime = 30

AvpMappings Parameters

The following parameters are used for AVP mappings. They are all found within an AvpMappings = [

] array.

You can set up as many AVP mappings as required.

Within this section you can specify AVP codes for mapping. They are all found within an AvpCodes =

[] array.

There MUST be one specified for the base AVP, plus list all extras for grouped AVPs.

AVP Format to Extension Type

This table shows the allowable conversion of AVP format to the Extension type.

AVP Format Extension Type Notes

OctetString INAP Number Not allowed

Time INAP Number Not allowed

String/OctetStrin
g

Integer • Must be ASCII digits

• Converts to Integer

String INAP Number Must be Hex digits

Integer String/Octets Converts to string

Time Integer Number of seconds since 1 January 1970

Time String/Octets In format YYYYMMDDHH24mmss

AVP Casting

Casting between the AVP format and the encoded extension format is supported only for encoded
extension formats with variable sizes. All other encoded extension formats are fixed in size and cannot
be casted. In the eserv.config file, encoded extension formats are defined by the profileFormat

parameter. See profileFormat (on page 78) for more information.

This table shows the profileFormat values that have variable sizes (which can be casted) versus

fixed sizes (which cannot be casted).

Size Type profileFormat Value

Variable size LNSTRING, STRING, NSTRING, and RAW_DATA

Fixed size INTEGER, INTEGER64, UINTEGER, UINTEGER64, TIME, BOOLEAN,
and ARRAY

Chapter 3

36 Diameter Control Agent Technical Guide

For example, the following configuration casts an OctetString AVP format (1 byte) as a STRING
encoded extension format (1 byte), which is supported:

{

 AvpCodes = [

 {

 avpCode = 21 # RAT-Type

 mandatory = true

 vendorId = 10415

 }

]

 avpFormat = "OctetString"

 encodedExtension = {

 profileTag = 6760105

 profileFormat = "STRING"

}

In contrast, the following configuration attempts to cast an OctetString AVP format (1 byte) as an
INTEGER encoded extension format (4 bytes), which is not supported:

{

 AvpCodes = [

 {

 avpCode = 21 # RAT-Type

 mandatory = true

 vendorId = 10415

 }

]

 avpFormat = "OctetString"

 encodedExtension = {

 profileTag = 6760105

 profileFormat = "INTEGER"

}

avpCode

Syntax: avpCode = code

Description: The AVP code for this AVP.

Type: Integer

Optionality: Mandatory

Notes: This parameter is an element of the AvpCodes parameter array.

Example: avpCode = 1234

AvpCodes

Syntax: AvpCodes = [avpcodes]

Description: The AVP code[s] specifying the AVP.

Type: Array

Optionality: Optional

Allowed:

Default:

Notes: FULLY-QUALIFIED AVP CODE:

If more than 1 element is specified in this array, the AvpCodes refer to a Fully-
Qualified "path" into the AVP hierarchy.

RELATIVE AVP CODE:

If only a single entry is specified and if this "AvpCodes" is used within the "AVPs"
Array Section, each element in "AvpCodes" is relative and all the nested AVPs
collectively form the complete "path" to specifying the AVP within the hierarchy.

 Chapter 3

•

 Chapter 3, Background Processes 37

Example: AvpCodes = [
 {
 avpCode = 1234
 mandatory = true
 vendorId = "16747"
 }
]

avpFormat

Syntax: avpFormat = "format"

Description: The format of the AVP.

Type: String

Optionality: Mandatory

Allowed: Allowed values are:

• "OctetString"

• "Integer32"

• "Integer64"

• "Unsigned32"

• "Unsigned64"

• "Address"

• "Time"

• "UTF8String"

• "DiameterIdentity"

• "DiameterURI"

• "Enumerated"

• "Grouped" – Only valid if used in Service Specific AVP Mappings (on
page 91)

Example: avpFormat = "OctetString"

conversion

Syntax: conversion = [mappings]

Description: For Integer type formats, you can use this parameter to define a conversion table
(for outbound mapping) for further mapping of internal (typically INAP cause, or
acsProfile values) to external (that is, Diameter AVP) values.

Type: Parameter array

Optionality: Optional

Allowed:

Default:

Notes:

Example: This example is mapping from internal INAP Cause codes to its Diameter Result-
Code.

conversion = [
 { internal = 1, external = 5030 }
 { internal = 16, external = 2001 }
 { internal = 17, external = 3004 }
 { internal = 42, external = 5006 }
 { internal = 111, external = 3001 }
]

Chapter 3

38 Diameter Control Agent Technical Guide

extensionFormat

Syntax: extensionFormat = "format"

Description: The format of the extension in ACS.

Type: String

Optionality: Optional

Allowed: • "inapnumber"

• "asn1integer"

• "octets"

• "encoded" – Only valid if used in Service Specific AVP Mappings. See
encodedExtension (on page 76).

Notes:

Example: extensionFormat = "inapnumber"

extensionType

Syntax: extensionType = type

Description: The InitialDP extension type

Type: Integer

Optionality: Mandatory

Notes: Cannot be a pre-defined INAP extension

nonProfile Encoded Extensions should be considered deprecated

Example: extensionType = 1234

external

Syntax: external = value

Description: The external value to be put into the AVP to be sent.

Type: Integer

Optionality: Optional

Allowed:

Default:

Notes: Member of the conversion section.

Example: external = 5030

internal

Syntax: internal = value

Description: The internal value (typically INAP cause or acsProfile values) from ACS.

Type: Integer

Optionality: Optional

Allowed:

Default:

Notes: Member of the conversion section.

Example: internal = 1

 Chapter 3

•

 Chapter 3, Background Processes 39

mandatory

Syntax mandatory = true|false

Description: Whether the AVP code is mandatory

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: false

Notes: This parameter is an element of the AvpCodes parameter array.

Example : mandatory = true

noa

Syntax: noa = value

Description: The Nature of Address (NOA) for the INAP number. If a SIP Address AVP
telephone number is not international, the NOA of a mapped INAP Number will be
set to the value specified in this parameter.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: • 1 – Subscriber

• 2 – Unknown

• 3 – National

• 4 – International

Default: 4

Notes: The NoA field of an INAP Number will be set to International (4) if the mapped
SIP address AVP telephone number begins with '+'.

Example: noa = 2

sipScheme

Syntax: sipScheme = "sip_scheme"

Description: Indicates that the AVP contains a SIP address conforming to the URL scheme
configured.

Type: String

Optionality: Optional (default used if not present).

Allowed: Allowed values:

• "sip"

• "tel"

• “both”

Default: parameter not present. No mapping done.

Chapter 3

40 Diameter Control Agent Technical Guide

Notes: If specified, the SIP address (if found in the AVP) will be extracted and used in
the mapped field sent to ACS. See sipScheme example configurations (on page
40).

The following parameter must be set:

• avpFormat = "UTF8String" - if not set, AVP mapping will be

ignored.

If a sipScheme is used, the destination is restricted. It can only be mapped to one
of the following:

• inapField

• extensionFormat (of "inapnumber", or "octets")

If not specified, this indicates that the AVP does not contain a SIP address, so no
address information will be extracted from the AVP.

If the value set is "both", then it supports both tel and sip format for a single AVP.

Example: sipScheme = "sip"

sipScheme example configurations

The following examples illustrate the use of the sipScheme parameter in the AvpMappings

configuration, and the resulting mappings.

Example 1

Map AVP 1000 to the calledPartyNumber field in IDP. For example, with
"sip:+12125551212@phone2net.com;tag=887s", the digits+12125551212 are mapped to
calledPartyNumber.

{

AvpCodes = [

{

avpCode = 1001

}

]

avpFormat = "UTF8String"

sipScheme = "sip"

inapField = ["calledPartyNumber"]

mappingTypes = ["InitialRequest"]

}

Example 2

Map AVP 2000 to extension 7890 of type InapNumber. For example, with "tel:+358-555-1234567", the
digits+358-555-1234567 are mapped to extension 7890.

{

AvpCodes = [

{

avpCode = 2000

}

]

avpFormat = "UTF8String"

sipScheme = "tel"

extensionFormat = "inapnumber"

extensionType = 7890

mappingTypes = ["InitialRequest"]

}

Example 3

Map AVP 2000 to extension 8000 of type InapNumber. For example, with "tel:555-1234567", the digits
555-1234567 are mapped to extension 8000. Because the number is not internationalized (no leading '+'),
you must set the Nature of Address (noa parameter) to the configured value of 2.

 Chapter 3

•

 Chapter 3, Background Processes 41

{

AvpCodes = [

{

avpCode = 2000

}

]

avpFormat = "UTF8String"

sipScheme = "tel"

noa = 2

extensionFormat = "inapnumber"

extensionType = 8000

mappingTypes = ["InitialRequest"]

}

vendorId

Syntax: vendorId = "id"

Description: The vendor specific AVP, if present.

Type: String

Optionality: Optional

Notes: This parameter is an element of the AvpCodes parameter array.

Example: vendorId = "16747"

DCAInstances Configuration Section

Introduction

Due to the size and complexity of the DCAInstances configuration, the description is broken down into

the following topics:

• DCAInstances Parameters (on page 43)

• NumberRules Parameters (on page 50)

• RedirectNumberMappings Parameters (on page 52)

• Tracing Parameters (on page 53)

• DiameterServer parameters (on page 55)

• Services Configuration (on page 66)

• Service Specific AVP Mappings (on page 91)

DCAInstances configuration structure

Here is the high level structure of the configuration of an instance in the DCAInstances section of the

DIAMETER configuration in the eserv.config file.

DCAInstances = [

First Instance

{

NumberRules = [

NumberRules_parameters

]

dummyDestination = "0000"

systemCurrencyCode = 978

systemCurrencyExponent = -2

Chapter 3

42 Diameter Control Agent Technical Guide

multipleServicesRatingGroup = 0

allowDefaultRatingGroup = false

customDefaultUnits = false

dontDiscardRatingGroupInResponse = true

SIPDomain = "SIP_Domain"

SIPPrefix = "SIP_prefix"

ignoreRSU = true

}

rarHandlingEnabled = false

rarClientTimeout = 30

rarMaxRetry = None

RedirectNumberMappings = [

{

RedirectNumberMappings_parameters

}

]

Tracing = {

Tracing_parameters.

}

instanceName = "dcaIf"

scheme = "SchemeA"

systemErrorResultCode = 5012

invalidMessageSequenceResultCode = 5012

sessionBasedDuplicateDetection = true

returnServiceResultCodeInRoot = false

ggsnSupportsFinalUnitIndication = true

ccDuplicateStoreSize = 20

maxAnswerReorder = 2

roundingThreshold = "0.5"

roundingDetail = "ceil"

SubscriptionIdTypes = [

0,

2,

1

]

Services = [

{

Services_parameters.

}

]

DiameterServer = {

DiameterServer_parameters

}

} # end of First Instance

] # end of Instances section

Note: Default settings are specified at installation time.

 Chapter 3

•

 Chapter 3, Background Processes 43

DCAInstances Parameters

Here are the parameters for the DCAInstances section.

allowDefaultRatingGroup

Syntax: allowDefaultRatingGroup = true|false

Description: Whether or not to use the default Rating Group.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: If set to:

true and if no Service-Identifier AVP or Rating-Group AVP
is received in the initial request CCR, DCA will use
the Default Rating Group defined in
multipleServicesRatingGroup.

false DCA will not use the default Rating Group but instead
will wait for the Service-Identifier AVP or Rating-
Group AVP in the subsequent request.

Default: false

Notes:

Example: allowDefaultRatingGroup = false

ccDuplicateStoreSize

Syntax: ccDuplicateStoreSize = value

Description: The number of credit-control messages to maintain, when checking for
duplicates.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 20

Notes: Requires sessionBasedDuplicateDetection to be set to true.

Example: ccDuplicateStoreSize = 10

customDefaultUnits

Syntax: customDefaultUnits = true|false

Description: Applies only when multiple service credit control (MSCC) is in
use. Try to accommodate operator-specific ways of handling
default units in the following circumstances:

An initial request with an MSCC having:

• A Used-Service-Unit AVP containing CC-Time = 0

• No Requested-Service-Unit AVP

An update request with an MSCC having:

• An Used-Service-Unit AVP containing CC-Time =
<actual used>

• No Requested-Service-Unit AVP

Type: Boolean

Optionality: Optional (default used if not set)

Chapter 3

44 Diameter Control Agent Technical Guide

Allowed: • true – DCA behaves as if the RSU had been specified
with the unit type of CC-Time.

• false – DCA behaves as it normally does if no RSU
has been specified.

Default: false

Notes:

Example: customDefaultUnits = true

dummyDestination

Syntax: dummyDestination = "num"

Description: Used as the Called Party Number in the InitialDP.

Type: Number string

Optionality: Mandatory

Allowed: Digits

Default: 0000

Notes: DCA requires a destination; however we do not use it.

Example: dummyDestination = "0000"

dontDiscardRatingGroupInResponse

Syntax: dontDiscardRatingGroupInResponse = true|false

Description: If set to true, and a Service-Identifier AVP, and a Rating-
Group AVP are both received in the request AVP (for MSCC),
then the Rating-Group AVP is returned in the CCA response.
Otherwise the Rating-Group AVP is not returned.

Type: Boolean

Optionality: Optional (default used if not set).

Default: false

Example: dontDiscardRatingGroupInResponse = false

ggsnSupportsFinalUnitIndication

Syntax: ggsnSupportsFinalUnitIndication = true|false

Description: Whether or not the GGSN supports final unit indication AVPs.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: A false value implies a non-compliant GGSN.

Example: ggsnSupportsFinalUnitIndication = true

ignoreRSU

Syntax: ignoreRSU = true|false

Description: Specifies whether DCA ignores any unit types in Requested-Service-Unit AVPs that are
included in a request. This parameter applies to session request types only.

Type: Boolean

Optionality: Optional (default used if not set)

 Chapter 3

•

 Chapter 3, Background Processes 45

Allowed: • true – DCA ignores any unit types in Requested-Service-Unit AVPs that are
included in a request by treating them like empty RSUs.

• false – DCA recognizes all Requested-Service-Unit AVPs in requests.

Default: false

Notes:

Example: ignoreRSU = true

instanceName

Syntax: instanceName = "name"

Description: The unique identifying name for this instance.

Type: String

Optionality: Mandatory

Allowed: This must match the interface name in SLEE.cfg. See SLEE.cfg Configuration (on
page 7).

Default: no default

Notes:

Example: instanceName = "dcaIf"

invalidMessageSequenceResultCode

Syntax: invalidMessageSequenceResultCode = code

Description: The error code for an invalid message sequence result, for example, if
TERMINATION_REQUEST is the first message.

Type: Integer

Optionality: Mandatory

Allowed:

Default: 5012 [Diameter unable to comply]

Notes: See Part 7.1 of RFC 3588 and Part 9 of RFC 4006 for a list valid codes.

Example: invalidMessageSequenceResultCode = 5012

maxAnswerReorder

Syntax: maxAnswerReorder = number

Description: The maximum number of answers to consider for reordering, before giving up,
and answering.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 10

Notes:

Example: maxAnswerReorder = 2

multipleServicesRatingGroup

Syntax: multipleServicesRatingGroup = value

Description: Rating Group value used to populate Rating Group AVPs in Multiple Services
Credit Control AVPs.

Type: Integer

Chapter 3

46 Diameter Control Agent Technical Guide

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes:

Example: multipleServicesRatingGroup = 3

originHostMustBeFQDN

Syntax: originHostMustBeFQDN = true

Description: Sets whether the Origin-Host needs to be a fully qualified domain name.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true = DCA will reject messages

false = DCA will accept messages

Default: true

Notes: With this parameter set to true, DCA will reject messages from an Origin-Host which is
not a fully qualified domain name. If this parameter is set to false, DCA will accept
messages regardless of the Origin-Host parameter.

Example: originHostMustBeFQDN = true

rarClientTimeout

Syntax:
rarClientTimeout = int

Description: Specifies the time, in seconds, that the DCA will wait for an RAA response from the
Diameter client

Type: Integer

Allowed: >=0

Default: 30

Notes: Set rarClientTimeout to 0 (zero) to disable timeouts.

Example: rarClientTimeout=30

rarHandlingEnabled

Syntax: rarHandlingEnabled = true|false

Description: Determines whether RAR Handling is enabled in DCD

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes: When rarHandlingEnabled is set to false, the DCD responds to an RAR with an

RAA containing the corresponding result code set in the rarResultCode parameter

Example:
rarHandlingEnabled = false

rarMaxRetry

Syntax:
rarMaxRetry = int

Description: Specifies the maximum number of times that the DCA will attempt to re-transmit an
RAR to the Diameter client

Type: Integer

Allowed: >=1

 Chapter 3

•

 Chapter 3, Background Processes 47

Default: None

Notes: A single re-transmit is allowed per timeout.

returnServiceResultCodeInRoot

Syntax: returnServiceResultCodeInRoot = true|false

Description: Whether or not service result codes should always be returned in the root level
(against the dictates of RFC 4006).

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: A true value implies a non-compliant GGSN.

Important: This can only apply (work sensibly) where there is a single service.

Example: returnServiceResultCodeInRoot = false

gracefulTerminationFlag

Syntax: gracefulTerminationFlag = true|false

Description: Whether or not to allow graceful termination of the call for failed session, if the
session fails with result code 5012.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: True value allows the graceful termination of failed session if the session failed
with result code 5012. This flag is used only in session based call.

Important: This flag handles the graceful termination only when the termination
response result code is 5012 and when this flag and
returnServiceResultCodeInRoot flag is set to true.

Example: gracefulTerminationFlag = false

roundingThreshold

Syntax: roundingThreshold = "fraction"

Description: The threshold for rounding fractional unit values to integers.

Fractional parts less than this amount are rounded down, fractional parts greater
than this amount are rounded up.

Type: String containing a float

Optionality: Optional (default used if not set).

Allowed: Between 0.0 and 1.0

Default: "0.5"

Notes: If you want to truncate, set this to "1".

If you want to round all non-integers upwards, then set this to "0" and use "floor"
for roundingDetail parameter).

Example: roundingThreshold = "0.5"

Chapter 3

48 Diameter Control Agent Technical Guide

roundingDetail

Syntax: roundingDetail = "rounding"

Description: The direction to round the number when the fractional part equals the
roundingThreshold.

Type: String

Optionality: Optional (default used if not set)

Allowed: Allowed values are:

• "ceil" means upwards

• "floor" means downwards

Default: "ceil"

Notes:

Example: roundingDetail = "ceil"

scheme

Syntax: scheme = "name"

Description: The name of which scheme configuration this instance uses.

Type: String

Optionality: Mandatory

Allowed: This must be a SchemeName from the PeerSchemes section.

Default: no default

Notes:

Example: scheme = "SchemeA"

sessionBasedDuplicateDetection

Syntax: sessionBasedDuplicateDetection = true|false

Description: Whether to use CC-Request-Number and Session-Id for duplicate detection for
session based services, as specified in RFC 4006. Otherwise the algorithm from
RFC 3588 is used.

Type: Boolean

Optionality: Mandatory

Allowed: true, false

Default: true

Notes: Set to false if the clients do not implement this mechanism from RFC 4006.

Example: sessionBasedDuplicateDetection = true

SIPDomain

Syntax: SIPDomain= "domain"

Description: The SIP domain for telephone redirections.

Type: String

Optionality: Mandatory

Allowed:

Default: no default

Notes: Used when no redirectNumberMapping exists for the given value.

Example: SIPDomain = "oracle.com"

 Chapter 3

•

 Chapter 3, Background Processes 49

SIPPrefix

Syntax: SIPPrefix= "prefix"

Description: The SIP prefix for telephone redirections.

Type: String

Optionality: Mandatory

Allowed:

Default: "tel+"

Notes: Used in redirect-server-address when connect received from SLEE_acs.

Used when no RedirectNumberMapping exists for the given value.

Example: SIPDomain = "tel+"

SubscriptionIdTypes

Syntax: SubscriptionIdTypes = [Ids]

Description: If there is more than one Diameter Subscription-ID in the request, the
Subscription-ID with a Subscription-ID-Type nearest the top of this list is used.

Type: Integer array

Optionality: Optional (default used if not set).

Allowed: Subscription-ID-Types defined in RFC 3588 are:

0 END_USER_E164

The identifier is in international E.164 format (for
example, MSISDN), according to the ITU-T E.164
numbering plan defined in [E164] and [CE164].

1 END_USER_IMSI

The identifier is in international IMSI format, according
to the ITU-T E.212 numbering plan as defined in
[E212] and [CE212].

2 END_USER_SIP_URI

The identifier is in the form of a SIP URI, as defined in
[SIP].

3 END_USER_NAI

The identifier is in the form of a Network Access
Identifier, as defined in [NAI].

4 END_USER_PRIVATE

The Identifier is a credit-control server private identifier.

Default: 0, 2, 1

Notes: If an entry in the list is not matched, then a Diameter error is returned.

Example:
SubscriptionIdTypes = [

0,

2,

1

]

systemCurrencyCode

Syntax: systemCurrencyCode = code

Description: The ISO 4217 code of the currency.

Type: Integer

Optionality: Mandatory

Chapter 3

50 Diameter Control Agent Technical Guide

Allowed: ISO 4217 code of the currency.

Default: 978 (Euro)

Notes:

Example: systemCurrencyCode = 978

systemCurrencyExponent

Syntax: systemCurrencyExponent = code

Description: The exponent value of small units for a big unit in the currency.

Type: Integer

Optionality: Mandatory

Allowed:

Default: -2 (100 small units for every big unit.)

Notes:

Example: systemCurrencyExponent = -2

systemErrorResultCode

Syntax: systemErrorResultCode = code

Description: The error code for a system error

Type: Integer

Optionality: Mandatory

Allowed:

Default: 5012 [Diameter unable to comply]

Notes: See Part 7.1 of RFC 3588 and Part 9 of RFC 4006 for a list valid codes

Example: systemErrorResultCode = 5012

NumberRules Parameters

The following parameters define the number normalization rules for DCA. They are found within
NumberRules = [].

This section is optional.

Example NumberRules configuration

Here is an example NumberRules section of the DCAInstances configuration.

NumberRules = [

{ prefix="25", fromNoa=3, min=8, max=9, remove=0, prepend="0" }

{ fromNoa=4, remove=0, prepend="00" }

{ prefix="027", min=9, remove=1, resultNoa=3 }

{ prefix="00", min=5, remove=2, prepend="", resultNoa=4 }

]

fromNoa

Syntax: fromNoa = int

Description: Used when attempting to match the nature of address (NoA) number contained in
a message. If there is a match, the fromNoa part of the number rule is evaluated.

Type: Integer

Optionality: Required

 Chapter 3

•

 Chapter 3, Background Processes 51

Allowed: • 2 – For unknown NoAs

• 3 – For national NoAs

• 4 – For international NoAs

Notes: If you omit fromNoa from the NumberRules parameter section, then no

matching rule will be found.

Example: fromNoa = 3

max

Syntax: max = num

Description: Specifies the maximum number of digits a number may contain. To meet the max
part of the number rule, the number of digits in the number must be equal to or
less than the value of max.

Type: Integer

Optionality: Optional (default used if not set)

Default: 999

Example: max = 9

min

Syntax: min = num

Description: Specifies the minimum number of digits a number may contain. To meet the min
part of the number rule, the number of digits in the number must be equal to or
greater than the value of min.

Type: Integer

Optionality: Optional (default used if not set)

Default: 0

Notes: The value of the min parameter must be greater than or equal to the value of the

remove (on page 52) parameter.

Example: min = 5

prefix

Syntax: prefix = "pref"

Description: Contains a digit or digits. Used to attempt to match the first digit or digits of a
prefix number with the specified value. If the digit or digits match, the prefix part of
the number rule is met.

Type: String

Optionality: Optional

Allowed: One or more decimal digits

Notes: This parameter is an element of the NumberRules parameter array.

Example: prefix = "25"

prepend

Syntax: prepend = "digits"

Description: Defines digits added to the beginning of a number.

Type: String

Optionality: Optional

Chapter 3

52 Diameter Control Agent Technical Guide

Allowed: Any combination of decimal digits, or a null string ("")

Notes: • If the remove and prepend parameters are both used in the same

number rule, "prepend" is added to the beginning of the number after

the number has been modified by the remove parameter.

• The prepend parameter is an element of the NumberRules parameter

array.

Example: prepend = "0"

remove

Syntax: remove = num

Description: The number of digits stripped from the beginning of a number.

Type: Integer

Optionality: Required

Notes: The value of the remove parameter must be less than or equal to the value of the

min (on page 51) parameter.

Example: remove = 2

resultNoa

Syntax: resultNoa = noa

Description: A nature of address (NOA) sent to the network.

Type: Integer

Optionality: Optional

Notes: • A value is typically specified in demoralization rules

• This parameter is an element of the NumberRules parameter array

Example: resultNoa = 4

RedirectNumberMappings Parameters

The following parameters are used to map the redirect number. They are found within
RedirectNumberMappings = [].

This section in optional.

Example RedirectNumberMappings configuration

Here is an example RedirectNumberMappings section of the DCAInstances configuration.

RedirectNumberMappings = [

{

prefix = "641234"

destination = "oracle.com"

type = "SIP_URI"

}

]

destination

Syntax: destination = "address"

Description: The destination address string.

Type: String

Optionality: Mandatory if the RedirectNumberMappings section is included.

Allowed: See RFC 4006

 Chapter 3

•

 Chapter 3, Background Processes 53

Default: N/A

Example: destination = oracle.com

prefix

Syntax: prefix = pref

Description: A prefix of the destination Routing Address in the connect.

Type: Number string

Optionality: Mandatory if the RedirectNumberMappings section is included.

Allowed: Digits

Default: N/A

Example: prefix = 641234

type

Syntax: type = "type"

Description: The destination's type.

Type: String

Optionality: Required if the RedirectNumberMappings section is included.

Allowed: • IPv4

• IPv6

• URL

• SIP_URI

Default: N/A

Example: type = "SIP_URI"

Tracing Parameters

The following parameters are used for tracing activities. They are all found within the Tracing = { }

statement.

Example Tracing configuration

Here is an example Tracing section of the DCAInstances configuration.

Tracing = {

enabled = true

OrigAddress = [

"a.b.c.com.0064212",

"a.b.c.com.0064213",

"a.b.c.com.0064214"

]

destinationAddressAvp = 1234

DestAddress = [

"a.b.c.com.0064213",

"a.b.c.com.0064214"

]

traceDebugLevel = "all"

}

Chapter 3

54 Diameter Control Agent Technical Guide

destAddress

Syntax: destAddress = ["addr", "addr"]

Description: List of destination addresses that are to be traced.

Type: String array

Optionality: Optional

Allowed: • Any valid addresses

• ""

Default: ""

Notes: "" = trace all known destination addresses.

destAddress is set to Dest-Realm.Subscription-Id.

Example values: destAddress = [
 "a.b.c.com.0064213",
 "a.b.c.com.0064214"
]

destinationAddressAvp

Syntax: destinationAddressAvp = avp

Description: The AVP to use in destination address as RFC 4006 does not specify this.

Type: Integer

Optionality: Optional

Notes: If not specified, destinationAddress is hard-coded to 0000

Example: destinationAddressAvp = 1234

enabled

Syntax: enabled = true|false

Description: Switches tracing on or off.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: false

Notes: If false, then the parameters in the Tracing section are ignored.

Example: enabled = false

origAddress

Syntax: origAddress = ["addr", "addr"]

Description: List of originating addresses that are to be traced.

Type: String array

Optionality: Optional

Allowed: • Any valid addresses

• ""

Default: ""

Notes: "" = trace all known originating addresses.

origAddress is set to <Origin-Realm>.<Subscription-Id.>

 Chapter 3

•

 Chapter 3, Background Processes 55

Example values: origAddrress = [
 "a.b.c.com.0064212",
 "a.b.c.com.0064213",
 "a.b.c.com.0064214"
]

traceDebugLevel

Syntax: traceDebugLevel = "level"

Description: The debug level the tracing be at should.

Type: String

Optionality: Mandatory

Notes: This is a string, with comma separation in it. See traceDebugLevel in ACS
Technical Guide.

Useful flags are cdaconfig, diameterControlAgent, cdaObjectCounts

Example: traceDebugLevel = "all"

DiameterServer Parameters

The following parameters are used for a Diameter Server. They are all found within DiameterServer

= { }.

Example DiameterServer Configuration

Here is an example DiameterServer section in the DCAInstances configuration.

DiameterServer = {

protocol = "sctp"

sctpListenPort = "3868"

tcpListenPort = "3868"

tcpBindAddress = "192.168.1.1"

sctpBindAddress = "192.168.1.2"

diameterMessageLength = 10240

Auth-Application-Id = [4, 34, 42]

Acct-Application-Id = 21

Vendor-Specific-Application-Identifier = [

{

Vendor-Id = 111

Auth-Application-Id = 1234

}

{

Vendor-Id = 111

Acct-Application-Id = 4321

}

]

localOriginHost = "creditcontrol.realm3.oracle.com"

localOriginRealm = "realm3.oracle.com"

productName = "oracle-dca"

vendorId = 16247

Supported-Vendor-Id = [16247, 10415]

duplicateTime = 240

duplicateBytes = 31457280

connectionTimeout = 30

watchdogPeriod = 30

inBufferSize = 16384

outBufferSize = 16384

sendOriginStateId = false

sendQuotaThreshold = true

Chapter 3

56 Diameter Control Agent Technical Guide

thirtyTwoBitQuotaThresholds = true

percentTimeQuotaThreshold = 80

percentVolumeQotaThreshold = 80

commitGrantedOnTerminate = false

allowMultiServiceIdentifier = false

finalGrantUnused = false

sessionLimit = 0

throttleLimitError = 3004

overLimitError = 3004

counterLogInterval = 0

throttleThreshold = 100

throttleInterval = 100

sendCreditLimitReachedOnSessionEnd = false

chargeOnSessionTimeout = true

sendAbortOnSessionTimeout = true

commitGrantedOnSessionTimeout = true

sessionFallbackTcc = 3600

noMSCCsessionValidityTime = 0

} # End of DiameterServer section

Acct-Application-Id

syntax: Acct-Application-Id = [IDs]

Description: The Acct-Application-Id AVP values to include in the Capabilities Exchange
message.

Type: Integer – Single value, or array

Optionality: Optional

Notes: This array may have one or more values, or no value.

If there is only one value, brackets are not required.

If neither Auth-Application-Id, nor Acct-Application-Id is specified,

then Auth-Application-Id = 4.

Examples: Acct-Application-Id = 21

allowMultiServiceIdentifier

Syntax: allowMultiServiceIdentifier = true|false

Description: Whether or not more than one Service-Identifier is supported
for MSSC with a single multiple service credit control AVP.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – More than one allowed. Triggers a service per
Service-Identifier

• false – More than one not permitted. Only use the first
Service_Identifier

Default: false

Notes:

Example: allowMultiServiceIdentifier = true

Auth-Application-Id

syntax: Auth-Application-Id = [IDs]

Description: The Auth-Application-Id AVP values to include in the Capabilities Exchange
message.

Type: Integer – Single value, or array

Optionality: Optional (default used if not set)

 Chapter 3

•

 Chapter 3, Background Processes 57

Notes: For Credit control this is 4.

This array may have one or more values, or no value.

If there is only one value, brackets are not required.

The first Auth-Application-Id (or 4 if none) is placed in that AVP in the CCR
messages also.

If neither Auth-Application-Id, nor Acct-Application-Id is specified,

then Auth-Application-Id = 4.

Default: 4

Examples: Auth-Application-Id = [4, 34, 42]

or

Auth-Application-Id = 4

chargeOnSessionTimeout

Syntax: chargeOnSessionTimeout = true|false

Description: Indicates how DCA should manage a timeout with an access device (for example,
GGSN).

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: If set to true, DCA will attempt to finalize any sessions with ACS that are
associated with the timed-out session -

and..

there is an outstanding Apply
Charging

DCA will respond with an
Apply Charging Report with
either the Total Granted Units
or Total Used Units
depending on configuration.

a service's charging is via
SMCB (armed to report
oAnswer; no outstanding
ACh)

we send ERBCSM(oAnswer)
to ACS.

Default: false

Notes:

Example: chargeOnSessionTimeout = true

commitGrantedOnSessionTimeout

Syntax: commitGrantedOnSessionTimeout = true|false

Description: Indicates whether DCA should request that the Total Granted Units or the Total
Used Units should be committed.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default: false

Notes:

Example: commitGrantedOnSessionTimeout = false

Chapter 3

58 Diameter Control Agent Technical Guide

commitGrantedOnTerminate

Syntax: commitGrantedOnTerminate = true|false

Description: Whether or not to commit granted funds on session terminate where the used
units are not specified.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – Commit granted (that is, charges for granted units)

• false – Only commit reported used units (that is, does not charge)

Default: false

Notes:

Example: commitGrantedOnTerminate = true

connectionTimeout

Syntax: connectionTimeout = seconds

Description: How long to wait for a reply before considering there is a transport level problem

Type: Integer

Optionality: Mandatory

Allowed: Seconds

Default: 30

Example: connectionTimeout = 30

counterLogInterval

Syntax: counterLogInterval = secs

Description: The interval in seconds between sending request counts to the syslog file. Set to
0 (zero) if you do not want to log requests.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 600

Notes: This parameter is also used to control the frequency of notice messages that log
the number of requests received, and the frequency of warning messages that log
the number of throttled requests.

Example: counterLogInterval = 0

duplicateBytes

Syntax: duplicateBytes = bytes

Description: How many bytes to allocate to the duplicate detection buffer

Type: Integer

Optionality: Mandatory

Default: 31457280 (30 MB)

Example: duplicateBytes = 31457280

duplicateTime

Syntax: duplicateTime = seconds

Description: How long to hold End-to-End Identifiers, when considering them for potential
duplicates.

 Chapter 3

•

 Chapter 3, Background Processes 59

Type: Integer

Optionality: Mandatory

Allowed: Seconds

Default: 240

Example: duplicateTime = 240

finalGrantUnused

Syntax: finalGrantUnused = true|false

Description: Whether or not to allow re-granting of unused units after a final unit indication is
sent.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: finalGrantUnused = true

inBufferSize

Syntax: inBufferSize = size

Description: The size, in bytes, of inbound transport buffer.

Type: Integer

Optionality: Mandatory

Allowed:

Default: 0 (kernel default)

Example: inBufferSize =16384

throttleLimitError

Syntax: throttleLimitError = Int

Description: The error code generated when a throttle limit is breached.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 3004 – Diameter too busy

Notes:

Example: throttleLimitError = 5006

overLimitError

Syntax: overLimitError = int

Description: Sets the error code to use in a throttle-generated CCA, and when rejecting a
session because the memory or session limit has been exceeded.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 3004 – Diameter too busy

Chapter 3

60 Diameter Control Agent Technical Guide

Notes:

Example: overLimitError = 3004

protocol

Syntax: protocol = "protocol"

Description: The protocol for this server.

Type: String

Optionality: Mandatory

Allowed: • "sctp"

• "tcp"

Default: "tcp"

Example: protocol = "tcp"

sctpBindAddress

Syntax: sctpBindAddress = "addr"

Description: The SCTP port to listen on for this instance.

Type: String

Optionality: Mandatory

Default: 0 (that is, INADR_ANY)

Example: sctpBindAddress = "192.168.1.2"

diameterMessageLength

Syntax: diameterMessageLength = size

Description: Maximum size of CCA packet received.

Type: Integer

Optionality: Optional (default used if not set)

Default: 8192

Example: diameterMessageLength = 10240

sctpListenPort

Syntax: sctpListenPort = "port"

Description: The SCTP port to listen on

Type: String

Optionality: Mandatory

Default: "3868"

Example: sctpListenPort = "3868"

sessionLimit

Syntax: sessionLimit = int

Description: Limits the number of credit control sessions that may be created to the specified
value.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A positive value.

Default: 0 – Do not apply a limit.

 Chapter 3

•

 Chapter 3, Background Processes 61

Notes:

Example: sessionLimit = 0

tcpBindAddress

Syntax: tcpBindAddress = "addr"

Description: The TCP port to listen on for this instance.

Type: String

Optionality: Mandatory

Default: 0 (that is, INADR_ANY)

Example: tcpBindAddress = "192.168.1.1"

tcpListenPort

Syntax: tcpListenPort = "port"

Description: The TCP port to listen on

Type: String

Optionality: Mandatory

Default: 3868

Example: tcpListenPort = "3868"

throttleThreshold

Syntax: throttleThreshold = int

Description: The number of initial or event requests to allow in a single interval. You set the length of
the interval by using the throttleInterval parameter. The control agent counts the

number of initial reservations or events received in the current interval and rejects new
requests once the count has gone above the threshold.

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 0 – Allow all requests

Notes:

Example: throttleThreshold = 50

throttleInterval

Syntax: throttleInterval = int

Description: The length, in milli-seconds, of each interval for which new requests will be counted and
checked against the threshold specified in throttleThreshold.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: None

Default: 100

Notes: If the value of the throttleInterval is set to any value other than 0 (zero), DCA

rejects new requests and reports an error until the time set by the
throttleInterval.

Example: throttleInterval = 100

Chapter 3

62 Diameter Control Agent Technical Guide

localOriginHost

Syntax: localOriginHost = "hostname"

Description: The Origin-Host for messages sent out

Type: String

Optionality: Optional

Default: "hostname"

Notes: Recommended to keep the default value as the hostname of the target node, for
example the SLC.

Example: localOriginHost = "creditcontrol.realm3.oracle.com"

localOriginRealm

Syntax: localOriginRealm = "realmname"

Description: The Origin-Realm for messages sent out

Type: String

Optionality: Mandatory

Notes: Each realm may contain at most one SLC

Example: localOriginRealm = "realm3.oracle.com"

outBufferSize

Syntax: outBufferSize = size

Description: The size, in bytes, of inbound transport buffer.

Type: Integer

Optionality: Mandatory

Allowed: Bytes

Default: 0 (kernel default)

Example: outBufferSize = 16384

percentTimeQuotaThreshold

Syntax: percentTimeQuotaThreshold = percent

Description: The percentage of granted service units of the time quota threshold.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 0 to 100 per cent

Default: 0

Notes:

Example: percentTimeQuotaThreshold = 80

percentVolumeQuotaThreshold

Syntax: percentVolumeQuotaThreshold = percent

Description: The percentage of granted service units of the volume quota threshold.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 0 to 100 percent

Default: 0

Notes:

 Chapter 3

•

 Chapter 3, Background Processes 63

Example: percentVolumeQuotaThreshold = 80

productName

Syntax: productName = "name"

Description: The product name used in Capabilities-Exchange-Answer

Type: String

Optionality: Mandatory

Allowed:

Default: "esg-dca" (that is, Diameter Control Agent)

Notes:

Example: productName = "esg-dca"

sendAbortOnSessionTimeout

Syntax: sendAbortOnSessionTimeout = true|false

Description: Indicates whether DCA will send an abort session request to the access device
when the session with that device times out.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default: false

Notes:

Example: sendAbortOnSessionTimeout = false

sendCreditLimitReachedOnSessionEnd

Syntax: sendCreditLimitReachedOnSessionEnd = true|false

Description: Indicates if we should reply to the final update request for a service (which DCA
sometimes referred to as a sub-session) with a result code of
DIAMETER_CREDIT_LIMIT_REACHED (4012), rather than
DIAMETER_SUCCESS (2001).

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes: For the record, the last update request for a service contains an MSCC with used
service units but no requested-service-units AVP.

Example: sendCreditLimitReachedOnSessionEnd = false

sendOriginStateId

Syntax: sendOriginStateId = true|false

Description: To send or not send the origin state id flag.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: Must be set to false if you do not want to send

Chapter 3

64 Diameter Control Agent Technical Guide

Example: sendOriginStateId = false

sendQuotaThreshold

Syntax: sendQuotaThreshold = true|false

Description: Whether or not to send volume and quota threshold for MSCC.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: Must be set to false if you do not want to send volume and quota threshold.

Example: sendQuotaThreshold = false

sessionFallbackTcc

Syntax: sessionFallbackTcc = seconds

Description: The session fallback tcc timer (in seconds).

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 3600

Notes: This value is used as the tcc timer for sessions that do not have an associated
service.

Example: sessionFallbackTcc = 3600

noMSCCsessionValidityTime

Syntax: noMSCCsessionValidityTime = seconds

Description: Returns this validity time outside MSCC.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes: This value is used to show validity time in root level (outside MSCC) when no
RSU is set.

Example: noMSCCsessionValidityTime = 1500

Supported-Vendor-Id

Syntax: Supported-Vendor-Id = [values]

Description: The Supported-Vendor-Id AVP values to include in the Capabilities Exchange
message.

Type: Integer – Single value,or array

Optionality: Optional

Allowed:

Default:

Notes: This field may be specified as an array with either one or more values, or no
value.

If there is only one value, brackets are not required.

Example: Supported-Vendor-Id = [16247, 10415]

 Chapter 3

•

 Chapter 3, Background Processes 65

thirtyTwoBitQuotaThresholds

Syntax: thirtyTwoBitQuotaThresholds = true|false

Description: Whether to send the Time-Quota-Threshold and Volume-Quota-Threshold AVPs
as 32-bit integers (as supported by a Cisco Release 9 GGSN).

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: If this is false it is sent as a 64-bit integer(as supported by a Cisco Release 7

GGSN).

Example: thirtyTwoBitQuotaThresholds = true

Vendor-Specific-Application-Identifier

Syntax: Vendor-Specific-Application-Identifier = [values]

Description: The Vendor-Specific-Application-Id AVP values

Type: Array

Optionality: Optional

Allowed:

Default:

Notes:

Example: Vendor-Specific-Application-Identifier = [
{
 Vendor-Id = 111
 Auth-Application-Id = 1234
}
{
 Vendor-Id = 111
 Auth-Application-Id = 4321
}

vendorId

Syntax: vendorId = id

Description: The Vendor ID to be supplied in the Capabilities-Exchange-Answer.

Type: Integer

Optionality: Mandatory

Allowed: A valid ID

Default: 0

Notes:

Example: vendorId = 16247

watchdogPeriod

Syntax: watchdogPeriod = seconds

Description: The period between sending out Device Watchdog messages to next-hop peer.

Type: Integer

Optionality: Mandatory

Chapter 3

66 Diameter Control Agent Technical Guide

Allowed: Seconds

Default: 30

Example: watchdogPeriod =30

Services Configuration

Introduction

The Services section of the DCAInstances configuration allows you to select a specified service

based upon one of the following:

• Service Context ID, Service Identifier, Rating Group, UnitType

• Configurable list of AVP values matched against the inbound message

If the SelectionAVPs is specified, then the serviceContextId, serviceIdentifier,

ratingGroup, and unitType parameters cannot be specified.

Note: The service selection rules are tried in order. If you want the service configured by configurable
AVPs to be used first, then put the parameters first in the Services section of the eserv.config file.

Services configuration structure

Here is the high-level structure of Services configuration section of the DIAMETER configuration in the

eserv.config file.

Services = [

{

serviceName = "<Service name>"

serviceContextId = "<Service-Context-Id>"

serviceIdentifier = "<Service-Identifier>"

ratingGroup = "<Rating-Group>"

screeningService = false

unitType = "Time"

selectionAVPsIsChargingKey = false

conversionFactor = 1.0

requestedAction="DIRECT_DEBITING"

sleeServiceKey = 1231

inapServiceKey = 1231

tcc = 3600

gracefulTerminationValidityTime= 300

itc = "udi"

validityTime = 30

sleeTimeout = 10

validateDestinationNumber = true

SelectionAVPs = [

{

AvpCodes = [{ avpCode=5, vendorId=16247 },

 { avpCode=7, vendorId=16247 }],

avpType = "Unsigned64"

avpValue = 123

 Chapter 3

•

 Chapter 3, Background Processes 67

avpValue = "-0x5000000000"

avpValue = "This Really Is A String"

isChargingKey = false

}

]

AVPMappings = [

{

base_avpmappings

}

{

basic_arrayavpmappings

}

{

key_array_avpmappings

}

{

array_with_conditions_avpmappings

}

{

array_with_context_avpmappings

}

{

conditional_avp_avpmappings

}

{

prefix_tree_avpmappings

}

{

timestamp_avpmappings

}

}

}

See Service Specific AVP Mappings (on page 91) for a description of the AVPMappings configuration

and examples of specific configuration and mappings.

Services parameters

The following parameters are used for a service. They are all located within the Services array.

As many services as required can be set up.

AvpCodes

Syntax: AvpCodes = [avp_codes]

Description: For a description of the AVPCodes parameters, see AvpCodes in the

DCADefaults section.

Type: Array

Optionality: Optional

Allowed:

Default:

Chapter 3

68 Diameter Control Agent Technical Guide

Notes: AvpCodes may be included as a member of the following:

• DCADefaults

• SelectionAVPs (on page 71)

• typeCriteria (on page 82)

• the base Service Specific AVP Mappings (on page 91)

• within AVP mappings of each level of a nested array

Example: AvpCodes = [
{
 avpCode = 1234
 mandatory = true
 vendorId = "16747"
}
]

avpMappings

Syntax: avpMappings = [avpMappings_parameters]

Description: The service-specific AVP mappings.

Optionality: Optional

Default: If not present, will use the avpMappings in the DCADefaults section.

Notes: See Service Specific AVP Mappings (on page 91).

avpType

Syntax: avpType = "type"

Description: The AVP datatype to match.

Type: String

Optionality: Optional

Allowed: Allowed values are:

• Integer32

• Integer64

• Unsigned32

• Unsigned64

• UTF8String

• Enumerated

Default:

Notes: This is a member of the SelectionAVPs array.

Example: paraMeter = "Integer32"

avpValue

Syntax: avpValue = "value"

Description: The value to match.

Type: It may be specified either as a number or a quoted string.

Optionality: Optional

Allowed:

Default:

 Chapter 3

•

 Chapter 3, Background Processes 69

Notes: The config file supports only the signed 32-bit range for numbers. For numbers
outside of that range, put it in quotes.

This is a member of the SelectionAVPs array.

Example: avpValue = 123
avpValue = "-0x5000000000"
avpValue = "This Really Is A String"

conversionFactor

Syntax: conversionFactor = unit

Description: The conversion factor to use when communicating with ACS.

• Multiplies the value received from ACS by this factor to calculate the
Granted-Service-Unit AVP.

• Divides the Used-Service-Unit AVP by this value before sending it to
ACS.

Type: Float

Optionality: Mandatory

Allowed:

Default: Defaults to:

• 0.1 for time

• 1048576 for octets

• 1.0 for everything else

Notes: Ignored for CC-Time AVPs (always uses the default of 0.1)

Example: conversionFactor = 1.0

gracefulTerminationValidityTime

Syntax: gracefulTerminationValidityTime = seconds

Description: The number of seconds granted for the user to top up the account during graceful
termination. Refer to RFC 4006 A.7.

Type: Integer

Optionality: Optional

Allowed: in seconds

Default:

Notes: Not present means no graceful termination.

Example: gracefulTerminationValidityTime = 300

inapServiceKey

Syntax: inapServiceKey = value

Description: The INAP Key value

Type: Integer

Optionality: Optional

Allowed: Any 32 bit integer

Example: inapServiceKey = 1234

Chapter 3

70 Diameter Control Agent Technical Guide

isChargingKey

Syntax: isChargingKey = true|false

Description:

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default:

Notes: If true, then we may match a Diameter CCR INITIAL_REQUEST, or
UPDATE_REQUEST.

If false, then we may only match the INITIAL_REQUEST (or if that is empty, then
the first UPDATE_REQUEST).

This is a member of the SelectionAVPs array.

Example: isChargingKey = false

itc

Syntax: itc = infoTransferCapability

Description: The Bearer Capability Information Element (Q.931 section 4.5.5) contains an
Information Transfer Capability (ITC) field that is set automatically by DCA when
DCA triggers ACS.

This parameter overrides the ITC value within the Bearer Capability Information
Element.

Type: Integer or string

Optionality: Optional

Allowed: Allowed values are:

String Integer Hex Description

"speech" 0 0x00 Speech

"udi" 8 0x08 Unrestricted Digital
Information

"rdi" 9 0x09 Restricted Digital
Information

"3.1kHzAudio" 16 0x10 3.1 kHz audio

"udiTA"

or

"7kHzAudio"

17 0x11 Unrestricted Digital
Information with
tones/
announcements

"video" 24 0x18 Video

Default: Defaults to one of the following:

• "speech" (0x00), if the Requested-Service-Unit AVP is set to CC-Time.

• "udi" (0x08), if otherwise.

Notes: If automatic setting of ITC is required, then this parameter should be absent.

Example: itc = 16

or

itc = "3.1kHzAudio"

or

itc = 0x10

 Chapter 3

•

 Chapter 3, Background Processes 71

ratingGroup

Syntax: ratingGroup = "number"

Description: The number used to identify the rating group as part of a service triggering rule.

Type: String

Optionality: Optional

Allowed: The value in quotes must be a number.

Default:

Notes: This parameter must not be specified if SelectionAVPs is specified.

Example: ratingGroup = "2"

requestedAction

Syntax: requestedAction = "action"

Description: The action performed by the service

Type: String

Optionality: Optional

Allowed: • DIRECT_DEBITING

• REFUND_ACCOUNT

• CHECK_BALANCE

• PRICE_ENQUIRY

Default: not present

Notes: Not present indicates this service is for session based transactions.

See RFC 4006 Requested-Action AVP.

Example: requestedAction = "DIRECT_DEBITING"

screeningService

Syntax: screeningService = true|false

Description: If a screening service is not found for a particular service context ID, then DCA
assumes that no screening needs to take place, that is, the session is allowed.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: If the screeningService flag is true, then serviceIdentifier and

ratingGroup should be blank.

Example: screeningService = false

SelectionAVPs

Syntax: SelectionAVPs = [selection_avps]

Description: Specifies the AVPs to be matched in an incoming request for the service to be
triggered.

Type: Array

Optionality: Optional

Allowed:

Default:

Chapter 3

72 Diameter Control Agent Technical Guide

Notes: All of the selection AVPs must be matched in an incoming request for the service
to be triggered.

If SelectionAVPs is specified then none of serviceContextId,

serviceIdentifier, ratingGroup, or unitType can be specified.

Example: SelectionAVPs = [
 {
 AvpCodes = [
 { avpCode=5, vendorId=16247 },
 { avpCode=7, vendorId=16247 }],
 avpType = "Unsigned64"
 avpValue = 123
 avpValue = "-0x5000000000"
 avpValue ="This Really Is A String"
 isChargingKey = false
 }
]

selectionAVPsIsChargingKey

Syntax: selectionAVPsIsChargingKey = true|false

Description: Indicates whether this AVP is a charging key.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – Incoming UPDATE_REQUESTS messages matching this rule, for
which there is no current session, will start a new session.

• false – Such messages will be rejected with a Diameter answer with an
error result code.

Default: false

Notes:

Example: selectionAVPsIsChargingKey = false

serviceContextId

Syntax: serviceContextId = "id"

Description: The ID of the Service Context

Type: String

Optionality: Mandatory, if SelectionAVPs is not specified.

Notes: This parameter must not be specified if SelectionAVPs is specified.

You must specify both the ServiceContextId and serviceIdentifier to

identify the service. See RFC 4006.

Example: serviceContextId = "3"

serviceIdentifier

Syntax: serviceIdentifier = "Id"

Description: The service identifier number.

Type: Number string

Optionality: Optional

Notes: This parameter must not be specified if SelectionAVPs is specified.

You must specify both the ServiceContextId and serviceIdentifier to

identify the service. See RFC 4006.

 Chapter 3

•

 Chapter 3, Background Processes 73

Example: serviceIdentifier = "3"

serviceName

Syntax: serviceName = "name"

Description: The unique name of the service

Type: String

Optionality: Mandatory

Allowed: Any string

Default:

Example: serviceName = "DirectDebitService"

sleeServiceKey

Syntax: sleeServiceKey = value

Description: The Service Key value

Type: Integer

Optionality: Optional

Allowed: The value specified in the SERVICEKEY entry in the SLEE.cfg file.

For more information about the SERVICEKEY configuration, see SLEE Technical
Guide

Default: no default

Example: sleeServiceKey = 1234

sleeTimeout

Syntax: sleeTimeout = seconds

Description: How long (in seconds) to wait for a response from the SLEE before the session
times out

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 10

Notes:

Example: sleeTimeout = 15

tcc

Syntax: tcc = seconds

Description: The session supervision timer timeout

Type: Integer

Optionality: Mandatory

Allowed: number of seconds

Default: 3600

Notes: Refer to RFC 4006

Example: tcc = 3600

Chapter 3

74 Diameter Control Agent Technical Guide

terminateFlag

Syntax: terminateFlag = true|false

Description: The terminateFlag value.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: true

Notes:

Example: terminateFlag = true

unitType

Syntax: unitType = "type"

Description: The unit type used in the service

Type: String

Optionality: Mandatory, if SelectionAVPs is not specified.

Allowed: • "Time"

• "Money"

• "Total-Octets"

• "Input-Octets"

• "Output-Octets"

• "Service-Specific"

Default: "Time"

Notes: This parameter must not be specified if SelectionAVPs is specified.

Example: unitType = "Time"

validateDestinationNumber

Syntax: validateDestinationNumber = true|false

Description: This flag controls the validation of destination number in connect signal. This
validation happens in DCA.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: If this flag is set to false, then there will not be any validation of destination
number which is present in the connect signal. This flag is useful in case of call
redirection with Diameter protocol.

Example: validateDestinationNumber = true

validityTime

Syntax: validityTime = seconds

Description: The validity time in seconds of granted units. Results in Validity-Time AVP being
placed in CCA.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: -1 (Not included)

 Chapter 3

•

 Chapter 3, Background Processes 75

Notes:

Example: validityTime = 30

Service Specific AVP Mappings parameters

The AVPMappings configuration in the Services section contains the following parameters that are

used only in the Services section, not in other sections of the DIAMETER configuration.

For AVP parameters used throughout the DIAMETER configuration see AvpMappings Parameters (on
page 35).

contextAVP

Syntax: contextAVP = true|false

Description: Defines whether the avpCode in the specified AVPs array is the context AVP to

use in an Array with Context (on page 109)

Type: Boolean

Optionality: Optional.

Allowed:

Default:

Notes: When only a single unique AVP is used to establish context, that AVP is typically
the key AVP associated with a data record. However DCA also allows more than
1 sub-AVPs in a hierarchy to be marked for inclusion for context. These multiple
AVPs which form the context are known as the Context AVP.

Context AVPs are typically used when possible key values are not well known, or
unique, or the key might otherwise rely on multiple items from the hierarchy.

Example: contextAVP = true

dropMismatchedAVP

Syntax: dropMismatchedAVP = true|false

Description: Defines whether to drop outgoing AVPs those were found mismatched by
includeIfMatches / excludeIfMatches.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default:

Notes: This configuration is used in conjunction with includeIfMatches /

excludeIfMatches and literal configurations only.

Chapter 3

76 Diameter Control Agent Technical Guide

Example: dropMismatchedAVP = true

In the below example, if the value stored in profile tag 9503 is not equal to 2, then
the AVP 2000 is dropped from the outgoing message.

{

 mappingTypes = ["EventResponse"]

 AvpCodes = [

 {

 avpCode = 2000

 }

]

 avpFormat = "Enumerated"

 includeIfMatches = [2]

 encodedExtension = {

 profileTag = 9503

 profileFormat = "INTEGER"

 }

 dropMismatchedAVP = true

}

encodedExtension

Syntax: encodedExtension= {profile_parameters}

Description: This identifies the target tag and type in an incoming extension profile block for
this AVP, when extensionFormat = "encoded".

Type: Parameter list

Optionality: Optional

Allowed:

Default:

Notes: If encodedExtension is present and extensionFormat is absent,

extensionFormat = "encoded" is assumed. See extensionFormat (on page

38) for details.

RAW_DATA profile mappings also have extra options (octetsStart and

octetsLength) for specifying a part of the AVP (for inbound) or profile field (for

outbound) to extract.

Example: encodedExtension = {
 profileTag = 99123
 profileFormat = "INTEGER"
 octetsStart = 3
 octetsLength = 0
}

excludeIfMatches

Syntax: excludeIfMatches = [avpvalue]

Description: The value of the AVPs to exclude from the Type Criteria matching.

Type: Array

Optionality: Optional (default used if not set).

Allowed: Integer, string, hex string

Default:

 Chapter 3

•

 Chapter 3, Background Processes 77

Notes: This parameter can be used as part of the Base mapping outside AVPs = [...

].

If used inside AVPs = [...] it must be used as part of the typeCriteria

section. See typeCriteria (on page 82) for an example.

Example: Example 1

excludeIfMatches = [101, 105]

Example 2

excludeIfMatches = [“SPAM”]

inapField

Syntax: inapField = [field1, field2, ...]

Description: Identifies the:

• Target INAP field(s) for mapping from this AVP for Inbound Mapping

• Source INAP field(s) for mapping to this AVP for Outbound Mapping

Type: String array

Optionality: Optional

Allowed: The following INAP fields are allowed:

• "additionalCallingpartyId"

• "calledPartyBcdNumber"

• "calledPartyNumber"

• "callingPartyNumber"

• "cause"

• "destinationRoutingAddress"

• "imsi"

• "locationInformation" - see note below

• "locationNumber"

• "maxCallDuration"

• "mscAddress"

• "originalCalledPartyId"

• "redirectingPartyId"

• "timeIfNoTariffSwitch"

Default:

Notes: If the AVP mappings are to and from INAP Field(s), please do not configure or
specify parameters associated with acsProfile mapping (that is,
extensionFormat should not be set to "encoded". encodedExtension should

be absent).

The location information in the AVP is an encoded field. In ACS the location
information is split up, to populate the call context buffers of MCC, MNC, LAC,
and Cell ID, for originating and terminating. Refer to the ACS Buffers topic in ACS
Feature Nodes User's Guide.

Example: inapField= ["CalledPartyNumber"]

includeIfMatches

Syntax: includeIfMatches = [avpvalue]

Description: The value of the AVPs to include in the Type Criteria matching.

Type: Array

Chapter 3

78 Diameter Control Agent Technical Guide

Optionality: Optional (default used if not set).

Allowed: Integer, string, hex string

Default:

Notes: This parameter can be used as part of the Base mapping outside AVPs = [...

].

If used inside AVPs = [...] it must be used as part of the typeCriteria

section. See typeCriteria (on page 82) for an example.

Example: Example 1

includeIfMatches = [1, 10, 101, 1001, 10001]

Example 2

includeIfMatches = [“GoodNews!”, “PrettyGoodNews”]

keyArray

Syntax: keyArray = true|false

Description: Defines whether the avpCode in the specified AVPs array is the key to use in a

Key Array (on page 96).

Type: Boolean

Optionality: Optional

Allowed: true, false

Default:

Notes:

Example: keyArray = true

literal

Syntax: literal = "value"

Description: Applies the literal value to the AVP when the outbound message matches the
types defined for that mapping.

Type: String

Optionality: Optional

Default:

Notes: Outbound AVP only.

If a mapping specifies both a literal and an IncludesIfMatches conditional

AVP, then the literal will override the mapped value if the original value is found in
the IncludesIfMatches array.

Example: literal = "1"

profileFormat

Syntax: profileFormat = "format"

Description: The format of the profile.

Type: String

Optionality: Optional

Allowed: The value given for this must be one of the valid storage formats for ACS profile
fields. The allowable values for this parameter are:

• INTEGER

• INTEGER64

• UINTEGER

 Chapter 3

•

 Chapter 3, Background Processes 79

• UINTEGER64

• LNSTRING

• NSTRING

• STRING

• TIME

• BOOLEAN

• ARRAY

• RAW_DATA

Default: INTEGER

Notes: See also the related parameter, profileTag.

Part of encodedExtension.

If the avpFormat parameter is set to "Grouped" for the AVPs array, then

profileFormat must be "ARRAY"

Example: profileFormat = "LNSTRING"

profileTag

Syntax: profileTag = num

Description: The profile tag.

Type: Integer

Optionality: Optional

Notes: This parameter is used to identify the profile tag it will be stored into/retrieved
from. See also the related parameter, profileFormat.

Part of encodedExtension.

Example: profileTag = 999

mappingTypes

Syntax: mappingTypes = ["mapping_types"]

Description: Defines the message types between DCA and ACS that the mapping applies to.

Type: String Array

Optionality: Optional (default used if not set).

Allowed: For Inbound:

• "InitialRequest"

• "UpdateRequest"

• "EventRequest"

• "TerminateRequest"

For Outbound:

• "InitialResponse"

• "UpdateResponse"

• "EventResponse"

• "TerminateResponse"

• "FreeCallResponse" – See Notes.

One or more mapping types may be specified.

Note that the Configuration mappingType does not directly correspond to the CC-
Request-Type. See Mapping categories (on page 80).

Chapter 3

80 Diameter Control Agent Technical Guide

Default: mappingTypes = ["InitialRequest", "InitialResponse",

"EventRequest", "EventResponse"]

Notes: If the configuration, within the AVPs array, for inbound is the same as for

outbound, include the inbound and outbound message types in the list.

Each inbound configuration "Request" mappingType has a counterpart outbound

"Response" mappingType that (when defined) is applied to the outbound

Diameter message.

For example: If an inbound Diameter message has InitialRequest mappings
applied, then InitialResponse mappings will be applied to the corresponding
outbound Diameter answer. However, if a call is determined to be free, say after
screening, or become free mid-session, then any mappings classified as
"FreeCallResponse" (for the selected service) will be applied to the outbound
Diameter answer instead of the default response mapping type.

Example: mappingTypes = ["InitialRequest", "UpdateRequest",

"EventRequest", "TerminateRequest"]

Mapping categories

This table describes the relationship between CC-Request-Type and Configuration mappingTypes for

outbound request type mappings:

Diameter
Message

CC-Request-Type Credit
Control

Service Requested-Service-
Unit

Used-Service-Unit Configuration
mappingTypes

CCR INITIAL_REQ MSCC New New - InitialRequest

CCR INITIAL_REQ Basic New New - InitialRequest

CCR UPDATE_REQ MSCC New New - InitialRequest

CCR UPDATE_REQ MSCC Existin
g

Existing UT Existing UT UpdateRequest

CCR UPDATE_REQ Basic Existin
g

Existing UT Existing UT UpdateRequest

CCR UPDATE_REQ MSCC Existin
g

- Existing UT TerminateRequest

CCR TERM_REQ MSCC any - - TerminateRequest

CCR TERM_REQ Basic any - - TerminateRequest

CCR EVENT_REQ - - - - EventRequest

Here are the abbreviations used in the table.

Abbreviation Description

CCR Credit-Control-Request

INITIAL_REQ INITIAL_REQUEST

UPDATE_REQ UPDATE_REQUEST

TERM_REQ TERMINATION_REQUEST

EVENT_REQ EVENT_REQUEST

MSCC Multiple-Services-Credit-Control

Basic Basic Credit-Control

Existing UT Existing Unit Type

octetsLength

Syntax: octetsLength = num

Description: The number of octets to extract from the source data.

 Chapter 3

•

 Chapter 3, Background Processes 81

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0 (copy all octets from octetsStart until the end of the field)

Notes: Part of encodedExtension.

Used if profileFormat is RAW_DATA.

Used in conjunction with octetsStart.

Example: See examples in octetsStart.

octetsStart

Syntax: octetsStart = num

Description: The offset within the source data (AVP or profile field) to start copying from.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0 (start copying from the beginning)

Notes: Negative values can be used to specify an offset from the end of the data.

Part of encodedExtension.

Used if profileFormat is RAW_DATA.

Used in conjunction with octetsLength.

Example: Example 1: Copy all data except for the first 3 octets.
octetsStart = 3

octetsLength = 0

Example 2: Copy the third-to-last and second-to-last octets.
octetsStart = -3

octetsLength = 2

repeating

Syntax: repeating = true|false

Description: Specifies whether the avpCode is repeating, that is the Diameter message

contains an array-like structure where the avpCode is used more than once.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: For inbound mappings, the destination will need to be an Array, or Prefix Tree
type profile tag, in order to handle the complex structure.

Outbound mappings need to come from an Array or Prefix Tree.

Example: repeating = true

timestamp

Syntax: timestamp = "timestamp"

Description: The timestamp to record

Type: String

Optionality: Optional

Chapter 3

82 Diameter Control Agent Technical Guide

Allowed: The available timestamps are:

• "TIME_REQUEST_RECEIVED32"

• "TIME_REQUEST_RECEIVED64"

• "TIME_NOW32"

• "TIME_NOW64"

Default:

Notes: 'NOW' refers to the time the mapping is processed. For an outbound mapping, it
will be as the reply is being created, hopefully immediately before it is sent.

'REQUEST_RECEIVED' is the time the request [that we are processing] entered
the Diameter stack.

See Timestamp (on page 125) for example usage.

Example: timestamp = "TIME_REQUEST_RECEIVED32"

typeCriteria

Syntax: typeCriteria = [criteria]

Description: Lists the criteria to match on, then specifies the AVP that is searched and, if a
match is found, mapped to a profile tag.

Type: Parameter section

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes:

 Chapter 3

•

 Chapter 3, Background Processes 83

Example: In this example, if the value of AVP of 1000.2000.3000 is 1, then map the value of
each of the AVPs 1000.2000.3001 to array element as tag 100 in the sub-profile
block, as a string.

Note, the parent AvpCodes 1000.2000 are not shown in this example
configuration fragment.

typeCriteria = [
 {
 includeIfMatches = [1]
 AvpCodes = [
 { avpCode = 3000
 }
]
 avpFormat = "Integer32"

 # What is included if match found
 AVPs = [
 {
 AvpCodes = [
 { avpCode = 3001
 repeating = true
 }
]
 avpFormat = "UTF8String"
 encodedExtension = {
 profileTag = 100
 profileFormat = "STRING"
 }
 }
]
 }
]

See the example mapping for this configuration in Mapping (on page 102).

See more examples in:

• Array with Conditions (on page 99)

• Conditional AVP (on page 115)

PeerSchemes Configuration Section

PeerSchemes configuration structure

Here is a high level structure of the configuration of a scheme in the PeerSchemes section.

PeerSchemes = [

{

schemeName = "SchemeA"

Peers = [

{

name = "host1"

protocol = "sctp"

sctpBindAddress = "192.168.1.10"

permittedOriginHosts = [

"host1.realm1.oracle.com"

]

RemoteAddresses = [

Chapter 3

84 Diameter Control Agent Technical Guide

"192.168.1.10"

]

netmaskBits = 32

netmask6Bits = 128

permittedInstances = 0

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

} # end of Peer host1

{

peer_host2_parameters

} # end of Peer host2

]

} # End of Scheme A

{

schemeName = "SchemeB"

SchemeB_parameters

} # End of Scheme B

] # End of PeerSchemes section

Note: Default settings are specified at installation time.

PeerSchemes parameters

The following parameter is used in the PeerSchemes array.

schemeName

Syntax: schemeName = "name"

Description: The name identifying the scheme.

Type: String

Optionality: Mandatory

Example: schemeName = "SchemeA"

Peer host parameters

The following parameters are used for a peer host. They are members of the Peers array.

You can be set up as many peer hosts as required. A scheme can have no peers, in which case will
accept all connections.

name

Syntax: name = "name"

Description: The name identifying either peer, or group of peers.

Type: String

Optionality: Mandatory

Example: name = "host1"

 Chapter 3

•

 Chapter 3, Background Processes 85

netmaskBits

Syntax: netmaskBits = bits

Description: The number of bits for netmask.

Type: Integer

Optionality: Mandatory

Default: 32 (bits for netmask, that is, a single machine (/32))

Example: netmaskBits = 32

netmask6Bits

Syntax: netmask6Bits = bits

Description: The number of bits for the IP version 6 prefix

Type: Integer

Optionality: Mandatory

Default: 128 (bits for the address prefix, that is, a single machine (/128))

Example: netmask6Bits = 128

permittedInstances

Syntax: permittedInstances = num

Description: The number of permitted instances.

Type: Integer

Optionality: Mandatory

Notes: If set to 0 then allow all.

Example: permittedInstances = 0

permittedOriginHosts

Syntax: permittedOriginHosts = "host"

Description: The list of peer names which will be checked against the OriginHost AVP, during
the capabilities exchange.

Type: String

Optionality: Mandatory

Example value: permittedOriginHosts = "host1.realm1.oracle.com"

protocol

Syntax: protocol = "protocol"

Description: The protocol for this host peer.

Type: String

Optionality: Optional

Allowed: • "sctp"

• "tcp"

Default: If not specified, then it uses the protocol from the DiameterServer section. (on
page 55)

Example: protocol = "tcp"

Chapter 3

86 Diameter Control Agent Technical Guide

RemoteAddresses

Syntax: remoteAddresses = ["ipaddress"]

Description: The list of remote IP addresses.

Type: Array of string parameters

Optionality: Mandatory

Notes: If an address becomes unavailable the list will be cycled through.

Example: remoteAddresses = [
"192.168.1.10"
]

reqSctpInboundStreams

Syntax: reqSctpInboundStreams = num

Description: The number of requested inbound sctp streams.

Type: Integer

Optionality: Mandatory

Notes: There is no guarantee you will actually get these.

Example: reqSctpInboundStreams = 8

reqSctpOutboundStreams

Syntax: reqSctpOutboundStreams = num

Description: The number of requested outbound sctp streams.

Type: Integer

Optionality: Mandatory

Notes: There is no guarantee you will actually get these.

Example: reqSctpOutboundStreams = 8

sctpBindAddress

Syntax: sctpBindAddress = "addr"

Description: The sctp address for this peer host.

Type: String

Optionality: Optional

Notes: If not specified, sctpBindAddress from the DiameterServer section is used.

Example: sctpBindAddress = "192.168.1.10"

Example PeerSchemes section

Here is an example PeerSchemes section of the DIAMETER configuration in the eserv.config file.

PeerSchemes = [

{

schemeName = "SchemeA"

Peers = [

{

name = "host1"

protocol = "sctp"

permittedOriginHosts = [

 Chapter 3

•

 Chapter 3, Background Processes 87

"host1.realm1.oracle.com"

]

RemoteAddresses = [

"192.168.1.10"

]

netmaskBits = 32

netmask6Bits = 128

permittedInstances = 0

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

} # end of Peer host1

{

name = "host2"

protocol = "sctp"

permittedOriginHosts = [

"host1.realm1.oracle.com"

]

RemoteAddresses = [

"192.168.1.11"

]

netmaskBits = 32

netmask6Bits = 128

permittedInstances = 0

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

} # end of Peer host2

} # End of Scheme A

{

schemeName = "SchemeB"

Peers = [

{

name = "host1"

protocol = "sctp"

permittedOriginHosts = [

"host1.realm1.oracle.com"

]

RemoteAddresses = [

"192.168.1.10"

]

netmaskBits = 32

netmask6Bits = 128

permittedInstances = 0

Chapter 3

88 Diameter Control Agent Technical Guide

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

} # end of Peer host1

]

} # End of Scheme B

] # End of PeerSchemes section

Statistics Logged by diameterControlAgent

Introduction

Diameter statistics are generated by each SLC, and then transferred at periodic intervals to the Service
Management System (SMS) for permanent storage and analysis.

An existing statistics system (smsStats) provides functions for the collection of basic statistical events.
This is provided in the NCC SMS application. Refer to SMS Technical Guide for details.

DCA statistics

SMS statistics are logged with APPLICATION_ID = ‘DCA’ (application number 96)

The following statistics are defined:

• DUPLICATES_DETECTED

• INITIAL_REQUESTS_RECEIVED

• INITIAL_REQUESTS_ANSWERED

• UPDATE_REQUESTS_RECEIVED

• UPDATE_REQUESTS_REJECTED_ANSWERED

• TERMINATION_REQUESTS_RECEIVED

• TERMINATION_REQUESTS_ANSWERED

• DIRECT_DEBITS_RECEIVED

• DIRECT_DEBITS_ANSWERED

• ACCOUNT_REFUNDS_RECEIVED

• ACCOUNT_REFUNDS_ANSWERED

• BALANCE_CHECKS_RECEIVED

• BALANCE_CHECKS_ANSWERED

• PRICE_ENQUIRIES_RECEIVED

• PRICE_ENQUIRIES_ANSWERED

• UNSUPPORTED_MESSAGES

• SESSIONS_TIMED_OUT

• GENERIC_ACTION_RECEIVED (Tracks requests for non-standard triggering)

• GENERIC_ACTION_ANSWERED (Tracks answers for non-standard triggering)

• RAR_UNABLE_TO_BE_DELIVERED (RAR cannot deliver RAR to the Diameter client)

• RAR_ERRORS_RECEIVED (RAR received error response to RAR)

• RAR_TIMEOUT (RAR has timed out)

• RAR_SENT (RAR sent from DCA)

• RAR_ANSWERS_RECEIVED (RAA received in response to RAR)

• RAR_UNABLE_TO_COMPLY_RECIEVED (RAA received with UNABLE_TO_COMPLY)

• RAR_LIMITED_SUCCESS_RECEIVED (RAA received with LIMITED_SUCCESS)

 Chapter 3

•

 Chapter 3, Background Processes 89

• RAR_UNSOLICITED_ANSWER (Unexpected RAA received)

• RAA_EXCEPTION (RAA exception handling)

• RAA_UNKNOWN_SESSION_ID (RAA received with unknown session ID)

For all statistics, the Origin-Realm AVP from the message received is put into
SMF_STATISTICS.DETAIL.

Reports

The following reports are available:

• DCA System Stats

• DCA System Stats by Realm

Reports are generated using the SMS Report Functions screen. Refer to the SMS User's Guide for
details.

Example report

Here is an example DCA System Stats by Realm report.

DCA Statistics Listing by Realm

===============================

Start Date: 16 August 2007

Finish Date: 18 August 2007

Report Type: All Entries

Realm: realm2.oracle.com

28 August 2007, 22:50:56

Node Name Statistics ID Date Value

-------------------- ------------------------------ -------------------- ----------

mtv-tst-scp10 DUPLICATES_DETECTED 17 August 07 00:52 1

mtv-tst-scp10 DUPLICATES_DETECTED 17 August 07 00:54 1

mtv-tst-scp10 INITIAL_REQUESTS_ANSWERED 16 August 07 00:02 1

mtv-tst-scp10 INITIAL_REQUESTS_ANSWERED 16 August 07 03:04 1

mtv-tst-scp10 INITIAL_REQUESTS_ANSWERED 16 August 07 22:34 1

mtv-tst-scp10 INITIAL_REQUESTS_ANSWERED 7 August 07 00:52 2

mtv-tst-scp10 INITIAL_REQUESTS_ANSWERED 17 August 07 00:54 2

mtv-tst-scp10 INITIAL_REQUESTS_ANSWERED 17 August 07 01:00 1

mtv-tst-scp10 INITIAL_REQUESTS_RECEIVED 16 August 07 00:02 1

mtv-tst-scp10 INITIAL_REQUESTS_RECEIVED 16 August 07 03:04 1

mtv-tst-scp10 INITIAL_REQUESTS_RECEIVED 16 August 07 22:34 1

mtv-tst-scp10 INITIAL_REQUESTS_RECEIVED 17 August 07 00:52 2

mtv-tst-scp10 INITIAL_REQUESTS_RECEIVED 17 August 07 00:54 2

mtv-tst-scp10 INITIAL_REQUESTS_RECEIVED 17 August 07 01:00 1

mtv-tst-scp10 SESSIONS_TIMED_OUT 17 August 07 00:54 1

mtv-tst-scp10 UPDATE_REQUESTS_ANSWERED 16 August 07 00:02 1

mtv-tst-scp10 UPDATE_REQUESTS_ANSWERED 16 August 07 03:04 1

mtv-tst-scp10 UPDATE_REQUESTS_ANSWERED 16 August 07 22:34 1

mtv-tst-scp10 UPDATE_REQUESTS_ANSWERED 17 August 07 00:52 2

mtv-tst-scp10 UPDATE_REQUESTS_ANSWERED 17 August 07 00:54 2

mtv-tst-scp10 UPDATE_REQUESTS_ANSWERED 17 August 07 01:00 1

mtv-tst-scp10 UPDATE_REQUESTS_RECEIVED 16 August 07 00:02 1

mtv-tst-scp10 UPDATE_REQUESTS_RECEIVED 16 August 07 03:04 1

mtv-tst-scp10 UPDATE_REQUESTS_RECEIVED 16 August 07 22:34 1

mtv-tst-scp10 UPDATE_REQUESTS_RECEIVED 17 August 07 00:52 2

mtv-tst-scp10 UPDATE_REQUESTS_RECEIVED 17 August 07 00:54 2

mtv-tst-scp10 UPDATE_REQUESTS_RECEIVED 17 August 07 01:00 1

Completed

 Chapter 4, Service Specific AVP Mappings 91

Chapter 4

Service Specific AVP Mappings

Overview

Introduction

This chapter explains the structure of the AVP mappings for a service.

In this chapter

This chapter contains the following topics.

Introduction .. 91
Basic Array .. 93
Key Array ... 96
Array with Conditions... 99
Array with Context ... 109
Conditional AVP .. 115
Prefix Tree ... 123
Timestamp ... 125
RAR Example .. 126

Introduction

Introduction

The AVP mappings within the Services parameter section are organized as shown in Services

configuration structure (on page 66).

There are two types of configuration formats available:

• 'classic' format:

▪ Base

• 'nested' format. These are configured within an array of format AVPs = []

▪ Basic Array (on page 93)
▪ Key Array (on page 96)
▪ Array with Conditions (on page 99)
▪ Array with Context (on page 109)
▪ Conditional AVP (on page 115)
▪ Prefix Tree (on page 123)
▪ Timestamp (on page 125)

Note: If you use classic format, you cannot use nested format in the eserv.config file.

Base example

Here is an example of the base AVP mappings in the Services AVPMappings section.

General Example 1 – Classic Format. Specify AVP code(s) for this AVP. There MUST be one specified
for the base AVP, plus list all extras for grouped AVPs.

Chapter 4

92 Diameter Control Agent Technical Guide

{

AvpCodes = [

{

avpCode = 1234

mandatory = true|false

vendorId = "VendorID"

}

]

The AVP data format.

avpFormat =

"OctetString|Integer32|Integer64|UInteger32|UInteger64|Unsigned32|Unsigned64|

Address|Time|UTF8String|DiameterIdentity|DiameterURI|Enumerated|"

extensionType = 1234

extensionFormat = "inapnumber|asn1integer|octets|encoded"

encodedExtension= {

profileTag = 99123

profileFormat = "INTEGER | INTEGER64 | UINTEGER | UINTEGER64 | LNSTRING |

NSTRING | STRING | TIME | BOOLEAN | RAW_DATA"

octetsStart = 3

octetsLength = 0

}

inapField = [field1, field2, ...]

}

Simple conditional

Here is an example using includeIfMatches within Services AvpMappings section, that is,

outside an AVPs array in a typeCriteria (on page 82) array.

{

AvpCodes = [

{

avpCode = 4700

}

{

avpCode = 2000

}

]

avpFormat = "UTF8String"

includeIfMatches = ["Good News!", "Pretty Good News!", "Over the moon!"]

encodedExtension = {

profileTag = 94701

profileFormat = "STRING"

}

}

Nested format

Nested formats are generally used to define arrays and conditional AVPs. Definitions are nested in the
array formatted AVPs = [] and mirror the hierarchy of a Grouped AVP.

As groups can contain sub-groups, defined "AVPs" can contain sub-"AVPs".

Example nested format

The following example shows an AVP nested up to four levels deep:

• A root-level AVPs with one entry

• A first-level AVPs with one entry

• A second-level AVPs with two entries

• A third-level AVPs with two entries, which are part of the first entry of the second level AVPs.

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 93

Here is the configuration structure in the DIAMETER Services AvpMappings array of the example

eserv.config.

AVPs = [# Root-Level AVPs

{ # 1st Entry of Root-Level AVPs

AvpCodes = [...]

AVPs = [# 1st-Level AVPs

{ # 1st Entry of 1st-Level AVPs

AvpCodes = [...]

AVPs = [# 2nd-Level AVPs

{ # 1st Entry of 2nd-Level AVPs

AvpCodes = [...]

AVPs = [# 3rd-Level AVPs

{ # 1st Entry of 3rd-Level AVPs

AvpCodes = [...]

avpFormat = "..."

encodedExtension = {

 profileTag = 80301

 profileFormat = "..."

}

}

{ # 2nd Entry of 3rd-Level AVPs

AvpCodes = [...]

avpFormat = "..."

encodedExtension = {

 profileTag = 80303

 profileFormat = "..."

}

} # End of 2nd Entry of 3rd-Level AVPs

] # End of 3rd-Level AVPs

} # End of 1st Entry of 2nd-Level AVPs

{ # 2nd Entry of 2nd-Level AVPs (optional; specify if applicable)

AvpCodes = [...]

avpFormat = "..."

encodedExtension = {

profileTag = 80302

profileFormat = "..."

}

} # End of 2nd Entry of 2nd-Level AVPs

] # End of 2nd-Level AVPs

} # End of 1st Entry of 1st-Level AVPs

] # End of 1st-Level AVPs

} # End of 1st Entry of Root-Level AVPs

] # End of Root-Level AVPs

avpFormat = "Grouped"

encodedExtension = {

profileTag = 8234

profileFormat = "ARRAY"

}

Basic Array

Introduction

Basic Arrays are also known as "simple repeating AVPs". In the simplest case, the repeating AVP is the
one which requires mapping to an array in a profile block. DCA will need to establish multiple instances
of the same AVP. However you only need define a single Basic Array type mapping definition. The
mapping definition needs to establish:

• That the target (or source) profile field is an array

Chapter 4

94 Diameter Control Agent Technical Guide

• The format of the elements in the target array (for example, STRING)

• The format of the AVP (such as UTF8String)

• That the AVP code is repeating, that is, repeating = true. For a definition, see repeating (on

page 81).

Note that in this case (unlike Paired-AVPs or Array with Conditions), there is no key or sub-AVPs to
consider.

Basic Array configuration

Here is the example basic array configuration in the Services AVPMappings section of the eserv.config.

In this example, the basic array contains a list of string-type (that is, profileFormat = "STRING")

elements.

{

AVPs = [# Root-Level AVPs

{ # 1st Entry in Root-Level AVPs

AvpCodes = [

{

avpCode = 6000

}

]

AVPs = [# 1st Level AVPs

{

AvpCodes = [

{

avpCode = 1000

}

]

AVPs = [# 2nd Level AVPs

{

AvpCodes = [

{

 avpCode = 2000

 repeating = true

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 9998

profileFormat = "STRING"

}

}

] # End of 2nd Level AVPs

}

] # End of 1st Level AVPs

} # End of 1st Entry in Root-Level AVPs

] # End of Root-Level AVPs

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

avpFormat = "Grouped"

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

}

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 95

Note: The parameter setting of avpFormat = "Grouped" can only be used in this place in the config

file, that is, outside an "AVPs = [...]" array. Also an "AVPs = [...]" array must be defined

because "Grouped" makes all the AVPs defined inside the "AVPs = [...]" array as belonging to the

one group. Because of this it makes no sense to put avpFormat = "Grouped" anywhere else except

here.

Example Basic Array configuration

Here is a worked example of a basic array: inbound configuration.

{

AVPs = [

{

AvpCodes = [

{ avpCode = 1000 }

]

AVPs = [

{

AvpCodes = [

{ avpCode = 2000 # <-- 1000.2000

 repeating = true # <-- 2000 is repeating

}

]

avpFormat = "UTF8String"

encodedExtension {

profileTag = 9998 # Array element in sub-profile block

profileFormat = "STRING"

}

}

]

}

]

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

AVPs above are encoded into an ARRAY-type in an ACS Profile Block.

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

}

The configuration for basic arrays: outbound is identical to above, except the mapping types are:

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

Mapping

This table shows the mapping of Diameter AVPs to ACS profile blocks resulting from the worked
example basic arrays configuration section above. This example is for inbound.

Chapter 4

96 Diameter Control Agent Technical Guide

The mapping is a simple 1:1 mapping. For outbound, the mappings are the same, but in the reverse
direction.

Key Array

Introduction

A key array is a set of records where one of the elements within each record can be identified as a key
for accessing the record, using the parameter setting keyAVP = true.

Key Arrays configuration

Here is the example Key Array configuration in the Services AVPMappings section of the eserv.config. In

this example, elements of the key array contain:

• an integer type Key AVP (avpCodes = 3000)

• three Data AVPs.

{

AVPs = [# Root-Level AVPs

{ # 1st Entry in Root-Level AVPs

AvpCodes = [

{

avpCode = 6100

}

]

AVPs = [# 1st-Level AVPs

{ # 1st Entry in 1st-Level AVPs

AvpCodes = [

{

avpCode = 1000

}

]

AVPs = [# 2nd-Level AVPs

{ # 1st Entry of 2nd-Level AVPs

AvpCodes = [

{

 avpCode = 2000

 repeating = true

}

]

AVPs = [# 3rd-Level AVPs (Final Level)

{ # Mapping for Key AVP

 AvpCodes = [

 {

 avpCode = 3000

 }

]

 keyAVP = true

 avpFormat = "Integer32"

 encodedExtension = {

 profileTag = 100

 profileFormat = "INTEGER"

 }

} # End of Mapping for Key AVP

{ # Mapping for 1st Data AVP

 AvpCodes = [

 {

 avpCode = 3001

 }

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 97

]

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 101

 profileFormat = "STRING"

 }

} # End of Mapping for 1st Data AVP

{ # Mapping for 2nd Data AVP

 AvpCodes = [

 {

 avpCode = 3002

 }

]

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 102

 profileFormat = "STRING"

 }

} # End of Mapping for 2nd Data AVP

{ # Mapping for 3rd Data AVP

 AvpCodes = [

 {

 avpCode = 3003

 }

]

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 103

 profileFormat = "STRING"

 }

} # End of Mapping for 3rd Data AVP

] # End of 3rd-Level AVPs

} # End of 1st entry of 2nd-Level AVPs

] # End of 2nd Level AVPs

} # End of 1st Entry in 1st-Level AVPs

] # End of 1st-Level AVPs

} # End of 1st Entry in Root-Level AVPs

] # End of Root-Level AVPs Mappings

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

avpFormat = "Grouped"

encodedExtension = {

profileTag = 8001

profileFormat = "ARRAY"

}

}

Example Key Arrays configuration

Here is a worked example of Key Arrays: Inbound configuration.

{

AVPs = [

{

AvpCodes = [

{ avpCode = 1000 }

]

AVPs = [

{

AvpCodes = [

Chapter 4

98 Diameter Control Agent Technical Guide

{ avpCode = 4400 # <-- 1000.4400

 repeating = true # <-- 4400 is repeating

}

]

AVPs = [

{

AvpCodes = [

{ avpCode = 4410 # <-- 1000.4400.4410

}

]

keyAVP = true # <-- 4410 is the key,

others below are data AVPs.

avpFormat = "Integer32"

encodedExtension {

profileTag = 9998 # Array element in sub-profile

block

profileFormat = "INTEGER"

}

}

{

AvpCodes = [

{ avpCode = 4420 # <-- 1000.4400.4420

}

]

avpFormat = "UTF8String"

encodedExtension {

profileTag = 9999 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

{

AvpCodes = [

{ avpCode = 4410 # <-- 1000.4400.4430

}

]

avpFormat = "UTF8String"

encodedExtension {

profileTag = 10000 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

]

}

]

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

}

The configuration for Key Arrays: Outbound is identical to above, except the mapping types are:

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 99

Mapping

This table shows the mapping of Diameter AVPs to ACS profile blocks resulting from the worked
example key array configuration section above. This example is for inbound.

The mapping is a simple 1:1 mapping. For outbound, the mappings are the same, but in the reverse
direction.

Array with Conditions

Introduction

In the case where the AVP to be mapped is the child of a repeating AVP, or where there are multiple
mappings, to be made for different child AVPs, you may apply Array With Conditions mapping.

Array with conditions is a means of performing selective mapping based on the values of other AVPs,
that is, not all AVPs are mapped, as DCA only considers or allows specific AVPs to be mapped if and
only if a specified criterion is met.

Depending on the mapping type (inbound or outbound), the criteria involves matching the value of an
AVP or an acsProfile against a list of known values.

Array with Conditions configuration

Here is the example Array with Conditions configuration in the Services AVPMappings section of the

eserv.config.

{ # Array with Conditions Example

AVPs = [# Root-Level AVPs

{

AvpCodes = [# 1st Entry in Root-Level AVPs

{

avpCode = 7020

}

]

AVPs = [# 1st-Level AVPs

{ # 1st Entry in 1st-Level AVPs

AvpCodes = [

{

avpCode = 1000

repeating = true

}

]

AVPs = [# 2nd-Level AVPs

{ # 1st Entry in 2nd-Level AVPs

AvpCodes = [

{

 avpCode = 2000

Chapter 4

100 Diameter Control Agent Technical Guide

 repeating = true

}

]

TypeCriteria = [

{ # 1st Type Criterion

 includeIfMatches = [1, 11, 101]

 AvpCodes = [

 {

 avpCode = 3000

 }

]

 avpFormat = "Integer32"

 encodedExtension = {

 profileTag = 80100

 profileFormat = "INTEGER"

 }

 # AVPs below will be included if a match is found

for 1st Type Criterion

 AVPs = [# Conditional AVPs for 1st Type

Criterion

 {

 AvpCodes = [

 {

 avpCode = 3001

 repeating = true

 }

]

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 80101

 profileFormat = "STRING"

 }# End of Conditional AVPs for 1st Type

Criterion

 }

]

} # End of 1st Type Criterion

{ # 2nd Type Criterion

 includeIfMatches = [2, 22, 202]

 AvpCodes = [

 {

 avpCode = 3000

 }

]

 avpFormat = "Integer32"

 encodedExtension = {

 profileTag = 80100

 profileFormat = "INTEGER"

 }

 # AVPs below will be included if a match is found

for 2nd Type Criteria

 AVPs = [# Conditional AVPs for 2nd Type Criterion

 {

 AvpCodes = [

 {

 avpCode = 3001

 repeating = true

 }

]

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 80101

 profileFormat = "STRING"

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 101

 }

 }

] # End of Conditional AVPs for 2nd Type Criterion

} # End of 2nd Type Criterion

] # End of TypeCriteria

} # End of 1st Entry of 2nd-Level AVPs

] # End of 2nd-Level AVPs

} # End of 1st Entry of 1st-Level AVPs

] # End of 1st-Level AVPs

} # End of 1st Entry of Root-Level AVPs

] # End of Root-Level AVPs

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

avpFormat = "Grouped"

encodedExtension = {

profileTag = 8020

profileFormat = "ARRAY"

}

}

Array with Conditions - inbound - example 1

Here is a worked example of an array with conditions: inbound configuration.

Map only matching entry, not condition (AVP(3000)==1) inbound

{

AVPs = [

{

AvpCodes = [

{ avpCode = 1000 }

]

AVPs = [

{

AvpCodes = [

{ avpCode = 2000 # <-- 1000.2000

 repeating = true # <-- 2000 is repeating

}

]

TypeCriteria = [

{

includeIfMatches = [1]

AvpCodes = [

{ avpCode = 3000 # <-- 1000.2000.3000 Inbound

Only

}

]

avpFormat = "Integer32" # <-- Inbound Only

This is what is included if match found

AVPs = [

{

 AvpCodes = [

 { avpCode = 3001 # <-- 1000.2000.3001

 repeating = true # <-- 3001 is

repeating

 }

]

 avpFormat = "UTF8String"

 encodedExtension = {

Chapter 4

102 Diameter Control Agent Technical Guide

 profileTag = 100 # Array element in sub-

profile block

 profileFormat = "STRING"

 }

}

]

}

]

}

]

}

]

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

encodedExtension = {

profileTag = 8020

profileFormat = "ARRAY"

}

}

Mapping

This table shows the mapping of Diameter AVPs to ACS profile blocks resulting from the worked
example array with conditions configuration section above. This example is for inbound. For outbound
the arrows are reversed.

Array with Conditions - Inbound - example 2

Here is an example of the array with conditions configuration in the Services AVPMappings section.

Map both matching entry and condition.

{

AVPs = [

{

AvpCodes = [

{ avpCode = 1000 }

]

AVPs = [

{

AvpCodes = [

{ avpCode = 2000 # <-- 1000.2000

 repeating = true # <-- 2000 is repeating

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 103

}

]

TypeCriteria = [

{

includeIfMatches = [1]

AvpCodes = [

{ avpCode = 3000 # <-- 1000.2000.3000 Inbound

Only

}

]

avpFormat = "Integer32" # <-- Inbound Only

This is what is included if match found

AVPs = [

{

 AvpCodes = [

 { avpCode = 3000 # <-- 1000.2000.3000

 }

]

 avpFormat = "Integer32"

 encodedExtension = {

 profileTag = 99 # Array element in sub-

profile block

 profileFormat = "INTEGER"

 }

}

{

 AvpCodes = [

 { avpCode = 3001 # <-- 1000.2000.3001

 repeating = true # <-- 3001 is

repeating

 }

]

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 100 # Array element in sub-

profile block

 profileFormat = "STRING"

 }

}

]

}

]

}

]

}

]

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

encodedExtension = {

profileTag = 8020

profileFormat = "ARRAY"

}

}

Chapter 4

104 Diameter Control Agent Technical Guide

Mapping

This table shows the mapping of Diameter AVPs to ACS Profile Blocks resulting from the worked
example array with conditions configuration section above. This example is for inbound.

Array with Conditions - outbound - example 1

Here is the example array with conditions: outbound configuration.

Map only profileTag100. No typeCriteria against a profileTag. Outgoing AVP 3000 is set using a literal.

{

AVPs = [

{

AvpCodes = [

{ avpCode = 1000 }

]

AVPs = [

{

AvpCodes = [

{ avpCode = 2000 # <-- 1000.2000

}

]

Just map as follows (no type Criteria specified)

AVPs = [

{

AvpCodes = [

{ avpCode = 3000 # <-- 1000.2000.3000

}

]

avpFormat = "Integer32"

literal = 1 # i.e. Outbound only (*not*

mapping from profileTag99)

}

{

AvpCodes = [

{ avpCode = 3001 # <-- 1000.2000.3001

 repeating = true # <-- 3001 is repeating

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 100 # Array element in sub-profile

block

profileFormat = "STRING"

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 105

}

}

]

}

]

}

]

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

}

Mapping

This table shows the mapping ACS profile blocks to AVPs in the example array with conditions
configuration section in this topic. This example is for outbound.

Array with Conditions - outbound - example 2

Here is the example array with conditions: outbound configuration.

Map only profileTag 100. No typeCriteria against a profileTag. Outgoing AVP 3000 is set using a literal.

{

AVPs = [

{

AvpCodes = [

{ avpCode = 1000 }

]

AVPs = [

{

AvpCodes = [

{ avpCode = 2000 # <-- 1000.2000

 repeating = true # <-- 2000 is repeating

}

]

Just map as follows (no type Criteria specified)

AVPs = [

{

AvpCodes = [

Chapter 4

106 Diameter Control Agent Technical Guide

{ avpCode = 3000 # <-- 1000.2000.3000

}

]

avpFormat = "Integer32"

literal = 1 # i.e. Outbound only (*not*

mapping from profileTag99)

}

{

AvpCodes = [

{ avpCode = 3001 # <-- 1000.2000.3001

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 100 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

]

}

]

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

}

Mapping

This table shows the mapping ACS profile blocks to AVPs in the example array with conditions
configuration section in this topic. This example is for outbound.

Array with Conditions - outbound - example 3

Here is the example array with conditions: outbound configuration.

Map only profileTag 100 with typeCriteria specified against profileTag 99. Outgoing AVP 3000 is set
based on profileTag 99.

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 107

{

AVPs = [

{

AvpCodes = [

{ avpCode = 1000 }

]

AVPs = [

{

AvpCodes = [

{avpCode = 2000 # <-- 1000.2000

}

]

TypeCriteria = [

{

includeIfMatches = [1] # <-- Only profileTag(99)==1

are mapped

encodedExtension = {

profileTag = 99 # Array element in sub-profile

block

profileFormat = "INTEGER"

}

This is what is included if match found:

AVPs = [

{

 AvpCodes = [

 { avpCode = 3000 # <-- 1000.2000.3000

 }

]

 avpFormat = "Integer32"

 encodedExtension = {

 profileTag = 99 # Also include the matched

value(1) in outbound msg

 profileFormat = "INTEGER"

 }

}

{

 AvpCodes = [

 { avpCode = 3001 # <-- 1000.2000.3001

 repeating = true # <-- 3001 is

repeating

 }

]

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 100 # Array element in sub-

profile block

 profileFormat = "STRING"

 }

}

]

}

]

}

]

}

]

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

encodedExtension = {

profileTag = 8000

Chapter 4

108 Diameter Control Agent Technical Guide

profileFormat = "ARRAY"

}

}

Mapping

This table shows the mapping ACS profile blocks to AVPs in the example array with conditions
configuration section in this topic. This example is for outbound.

Array with Conditions - outbound - example 4

Here is the example array with conditions: outbound configuration.

Map only profileTag 100 with typeCriteria specified against profileTag 99. No AVP 3000 in outgoing
diameter message.

{

AVPs = [

{

AvpCodes = [

{ avpCode = 1000 }

]

AVPs = [

{

AvpCodes = [

{avpCode = 2000 # <-- 1000.2000

}

]

TypeCriteria = [

{

includeIfMatches = [1] # <-- Only profileTag(99)==1

are mapped

encodedExtension = {

profileTag = 99 # Array element in sub-profile

block

profileFormat = "INTEGER"

}

This is what is included if match found:

AVPs = [

 AvpCodes = [

 { avpCode = 3001 # <-- 1000.2000.3001

 repeating = true # <-- 3001 is

repeating

 }

]

 avpFormat = "UTF8String"

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 109

 encodedExtension = {

 profileTag = 100 # Array element in sub-

profile block

 profileFormat = "STRING"

 }

}

]

}

]

}

]

}

]

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

}

Mapping

This table shows the mapping ACS profile blocks to AVPs in the example array with conditions
configuration section in this topic. This example is for outbound.

Array with Context

Introduction

A key array has a limitation in that it cannot handle the situation when the possible key values are not
well known, for example, in cases when we may not have a unique key, or the key might otherwise rely
on multiple items from the hierarchy. For these cases, you may use Array with Context mapping.

The key here is that DCA allows other sub-AVPs in a hierarchy to be marked as a Context AVP, using
the parameter setting contextAVP = true. All AVPs marked as a Context AVP then collectively

make the items which provide context.

Chapter 4

110 Diameter Control Agent Technical Guide

Array with Context configuration

Here is the example Array with Context configuration in the Services AVPMappings section of the

eserv.config.

{ # Array with Context Example

AVPs = [# Root-Level AVPs

{ # 1st Entry of Root-Level AVPs

AvpCodes = [

{

avpCode = 7030

}

]

AVPs = [# 1st-Level AVPs

{ # 1st Entry of 1st-Level AVPs

AvpCodes = [

{

avpCode = 1000

}

]

AVPs = [# 2nd-Level AVPs

{ # 1st Entry of 2nd-Level AVPs

AvpCodes = [

{

 avpCode = 2000

 repeating = true

}

]

AVPs = [# 3rd-Level AVPs

{ # Context AVP

 AvpCodes = [

 {

 avpCode = 3000 # This is AVP

7030.1000.2000.3000

 }

]

 contextAVP = true

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 80301

 profileFormat = "STRING"

 }

}

{ # Data AVP

 AvpCodes = [

 {

 avpCode = 3001 # This is AVP

7030.1000.2000.3001

 repeating = true

 }

]

 avpFormat = "UTF8String"

 encodedExtension = {

 profileTag = 80303

 profileFormat = "STRING"

 }

} # End of Data AVP

] # End of 3rd-Level AVPs

} # End of 1st Entry of 2nd-Level AVPs

{ # 2nd Entry of 2nd-Level AVPs(Context AVP)

AvpCodes = [

{

 avpCode = 2001 # This is AVP 7030.1000.2001

}

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 111

]

contextAVP = true

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 80302

profileFormat = "STRING"

}

} # End of 2nd Entry of 2nd-Level AVPs (Content AVP)

] # End of 2nd-Level AVPs

} # End of 1st Entry of 1st-Level AVPs

] # End 1st-Level AVPs

} # End of 1st Entry of Root-Level AVPs

] # End of Root-Level AVPs

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

avpFormat = "Grouped"

encodedExtension = {

profileTag = 8030

profileFormat = "ARRAY"

}

} # End of Array with Context Example

Array with Context - inbound example

Here is an example of the Array with Context configuration in the Services AVPMappings section.

{

AVPs = [

{

AvpCodes = [

{

avpCode = 1000

}

]

AVPs = [

{

AvpCodes = [

{

avpCode = 2000 # <-- 1000.2000

repeating = true # <-- 2000 is repeating

}

]

AVPs = [

{

AvpCodes = [

{ avpCode = 3000 # <-- 1000.2000.3000

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 101 # Array element in sub-profile

block

profileFormat = "STRING"

}

contextAVP = true

}

{

AvpCodes = [

{ avpCode = 3001 # <-- 1000.2000.3001

Chapter 4

112 Diameter Control Agent Technical Guide

 repeating = true # <-- 3001 is repeating

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 102 # <-- Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

{

AvpCodes = [

{ avpCode = 2001 # <-- 1000.2001

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 100 # <-- Array element in sub-profile block

profileFormat = "STRING"

}

contextAVP = true

}

]

}

]

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

}

Mapping

This table shows the mapping AVPs to ACS profile blocks in the example array with context
configuration section in this topic. This example is for inbound.

Array with Context - outbound example 1

Here is an example of the array with context outbound configuration in the Services AVPMappings

section.

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 113

AVP 3001 is not repeating in the outbound Diameter message.

{

AVPs = [

{

AvpCodes = [

{

avpCode = 1000

}

]

AVPs = [

{

AvpCodes = [

{

avpCode = 2000 # <-- 1000.2000

repeating = true # <-- 2000 is repeating

}

]

AVPs = [

{

AvpCodes = [

{ avpCode = 3000 # <-- 1000.2000.3000

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 101 # Array element in sub-profile

block

profileFormat = "STRING"

}

contextAVP = true

}

{

AvpCodes = [

{ avpCode = 3001 # <-- 1000.2000.3001 (not

repeating)

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 102 # <-- Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

{

AvpCodes = [

{ avpCode = 2001 # <-- 1000.2001

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 100 # <-- Array element in sub-profile block

profileFormat = "STRING"

}

contextAVP = true

}

]

}

]

Chapter 4

114 Diameter Control Agent Technical Guide

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

}

Mapping

AVP 3001 is not repeating in the outbound Diameter message.

Array with Context - outbound example 2

Adding repeating to the AVP 3001 configuration shown in Array with Context - outbound example 1

(on page 112), produces the mapping shown in mapping example 2.

AvpCodes = [

{ avpCode = 3001 # <-- 1000.2000.3001

 repeating = true # <-- 3001 is repeating

}

Mapping

AVP 3001 is repeating in the outbound Diameter message.

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 115

Conditional AVP

Introduction

Conditional AVP enables you to perform a mapping based on the value of another AVP. For example,
we might want to map the Service-Parameter-Value AVP in a grouped Service-Parameter-Info AVP to a
profile field, but only if its type (specified in the Service-Parameter-Type AVP) is one we are interested
in. The conditional AVP includes the typeCriteria array to specify the condition to match.

For outbound mapping, conditional AVPs enable mapping to be performed based on the value:

• In a profile block, and/or

• Of another AVP in the outbound message being constructed

Conditional AVP configuration

Here is an example of the Conditional AVP configuration in the Services AVPMappings section of the

eserv.config.

{

AVPs = [# Root-Level AVPs

{ # 1st Entry of Root-Level AVPs

AvpCodes = [

{

avpCode = 4000

}

]

TypeCriteria = [

{ # 1st Criterion

AvpCodes = [

{

avpCode = 4001

}

]

includeIfMatches = [1, 10, 101, 1001, 10001]

avpFormat = "Integer32"

This is the AVP that is searched and map if a match is found

AVPs = [# Conditional AVPs for 1st Criterion

{

AvpCodes = [

{

 avpCode = 4002

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 99123

profileFormat = "STRING"

}

}

] # End of Conditional AVPs for 1st Criterion

} # End of 1st Criterion

{ # 2nd Criterion

AvpCodes = [

{

avpCode = 4001

}

]

includeIfMatches = [2, 20, 202, 2002, 20002]

avpFormat = "Integer32"

Chapter 4

116 Diameter Control Agent Technical Guide

This is the AVP that is searched and map if a match is found

AVPs = [# Conditional AVPs for 2nd Criterion

{

AvpCodes = [

{

 avpCode = 4002

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 99124

profileFormat = "STRING"

}

}

] # End of Conditional AVPs for 2nd Criterion

} # End of 2nd Criterion

] # End of TypeCriteria

} # End of 1st Entry of Root-Level AVPs

] # End of Root-Level AVPs

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

Profile tag 99123 or 99124 is encoded as a child element inside an acsProfile

Array.

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

} # End of Conditional AVP Example

Note: "Conditional AVPs" look similar to a non-repeating/non-ProfileArray case of "Array with
Conditions". See Array with Conditions - inbound - example 1 (on page 101).

If the avpCode being matched is not nested, you can map it without using typeCriteria, by

configuring the condition outside AVPs = [...]. See Simple conditional (on page 92).

Conditional AVP - inbound example 1

Here is an example of the conditional AVP configuration in the Services AVPMappings section.

Service-Parameter-Info (440)

• Service-Parameter-Type (441)

• Service-Parameter-Value (442)

Map only matching entry, not condition.

In this example, no parent level (ARRAY-type) encoding format is specified here as encoding specified
in leaf or child element of AVPs above are encoded at the root level of the ACS profile block.

{

AVPs = [

{

AvpCodes = [

{

avpCode = 440

}

]

TypeCriteria = [

{ # Criteria for match value [1]

includeIfMatches = [1]

AvpCodes = [

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 117

{ avpCode = 441 # <-- Inbound only: 441

}

]

or if specifying a fully qualified path:

AvpCodes = [

{ avpCode = 440 }

{ avpCode = 441 }

]

avpFormat = "Integer32" # <-- Inbound only

This is what to include if match found:

AVPs = [

{

AvpCodes = [

{ avpCode = 442 # <-- 440.442

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 99123 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

{ # Criteria for match value [2]

includeIfMatches = [2]

AvpCodes = [

{ avpCode = 441 # <-- Inbound only: 441

}

]

avpFormat = "Integer32" # <-- Inbound only

 # This is what to include if match found:

AVPs = [

{

AvpCodes = [

{ avpCode = 442 # <-- 440.442

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 99124 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

]

}

]

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

}

Chapter 4

118 Diameter Control Agent Technical Guide

Mapping example 1

This table shows the mapping AVPs to ACS profile blocks in the example conditional AVPs
configuration section in this topic. This example is for inbound.

Conditional AVP example 1

Here is an example of the conditional AVP configuration in the Services AVPMappings section.

Adding the following configuration to the AVPs to include if match is found to each criterion for match
value produces the mapping shown in mapping example 2.

Map only matching entry, not condition.

{

AvpCodes = [

{ avpCode = 441 # <-- 440.441

}

]

avpFormat = "Integer32"

encodedExtension = {

profileTag = 99001 # Array element in sub-profile block

profileFormat = "INTEGER"

}

}

Mapping example 2

This table shows the mapping AVPs to ACS profile blocks in the example conditional AVPs
configuration section in this topic. This example is for inbound.

Conditional AVP example 3

Here is an example of the conditional AVP configuration in the Services AVPMappings section.

This is the same as Conditional AVP - inbound example 1 (on page 116) but maps to an acsProfile
ARRAY, by adding the following configuration to the end.

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 119

Map only matching entry, not condition, but map to an acsProfile ARRAY.

encodedExtension = {

profileTag = 8000

profileFormat = "ARRAY"

}

Mapping example 3

This table shows the mapping AVPs to ACS profile blocks in the example conditional AVPs
configuration section in this topic. This example is for inbound.

Note similarity with the non-repeating array with conditions.

Conditional AVP - outbound example 1

Here is an example outbound conditional AVP configuration in the Services AVPMappings section.

No ACS profileTag conditions applicable when mapping to outbound Diameter message.

In this example, no parent level (ARRAY-type) encoding format is specified here as encoding specified
in leaf or child element of AVPs above are encoded at the root level of the ACS Profile Block.

{

AVPs = [

{

AvpCodes = [

{

avpCode = 440

}

]

TypeCriteria = [

{ # Criteria for match tag 99123

includeIfMatches = [] # <-- Match any value as long as

profileTag 99123 is present

encodedExtension = {

profileTag = 99123 # <-- Outbound Only

profileFormat = "STRING" # <-- Outbound Only

}

This is what to include if match found:

AVPs = [

#Include type sub-AVP 1

{

AvpCodes = [

{ avpCode = 441 # <-- 440.441

}

Chapter 4

120 Diameter Control Agent Technical Guide

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 99123 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

{ # Criteria for match tag 99124

includeIfMatches = [] # <-- Match any value as long as

profileTag 99124 is present

encodedExtension = {

profileTag = 99124 # <-- Outbound Only

profileFormat = "STRING" # <-- Outbound Only

}

 # This is what to include if match found:

AVPs = [

#Include type sub-AVP 2

{

AvpCodes = [

{ avpCode = 441 # <-- 440.441

}

]

avpFormat = "Integer32"

literal = 2 # not mapped from a tag in the profile

block

}

}

{

AvpCodes = [

{ avpCode = 442 # <-- 440.442

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 99124 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

]

}

]

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

}

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 121

Mapping example 1 - conditional - outbound

This table shows the mapping ACS profile blocks to AVPs to in the example conditional AVPs
configuration section in this topic. This example is for outbound.

Conditional AVP - outbound example 2

Here is an example outbound conditional AVP configuration in the Services AVPMappings section.

Only the matching entries in ACS Profile Block are mapped in outbound Diameter message (Condition
is "profileTag(90001) == 2")

In this example, no parent level (ARRAY-type) encoding format is specified here as encoding specified
in leaf or child element of AVPs above are encoded at the root level of the ACS Profile Block.

{

AVPs = [

{

AvpCodes = [

{

avpCode = 440

}

]

TypeCriteria = [

{ # Criteria for match value [1] In this example, this is NOT the

matching entry.

includeIfMatches = [1]

encodedExtension = {

profileTag = 90001 # <-- Outbound Only

profileFormat = "STRING" # <-- Outbound Only

}

This is what to include if match found:

AVPs = [

#Include type sub-AVP (the matching condition)

{

AvpCodes = [

{ avpCode = 441 # <-- 440.441

}

]

avpFormat = "Integer32"

encodedExtension = {

profileTag = 90001 # Array element in sub-profile

block

profileFormat = "INTEGER"

}

}

{

AvpCodes = [

Chapter 4

122 Diameter Control Agent Technical Guide

{ avpCode = 442 # <-- 440.442

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 99123 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

{ # Criteria for match value [2] In this example, this is the

matching entry.

includeIfMatches = [2]

encodedExtension = {

profileTag = 90001 # <-- Outbound Only

profileFormat = "INTEGER" # <-- Outbound Only

}

 # This is what to include if match found:

AVPs = [

#Include type sub-AVP (the matching condition)

{

AvpCodes = [

{ avpCode = 441 # <-- 440.441

}

]

avpFormat = "Integer32"

encodedExtension = {

profileTag = 90001 # Array element in sub-profile

block

profileFormat = "INTEGER"

}

}

{

AvpCodes = [

{ avpCode = 442 # <-- 440.442

}

]

avpFormat = "UTF8String"

encodedExtension = {

profileTag = 99124 # Array element in sub-profile

block

profileFormat = "STRING"

}

}

]

}

]

}

]

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

}

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 123

Mapping example 2 - conditional - outbound

This table shows the mapping ACS profile blocks to AVPs to in the example conditional AVPs
configuration section in this topic. This example is for outbound.

Prefix Tree

Introduction

Prefix Tree enables you to map repeating AVPs to and from a prefix tree ACS profile block, specified
using profileFormat = "PREFIXTREE".

Prefix Tree configuration

Here is an example of the Prefix Tree configuration in the Services AVPMappings section of the

eserv.config file.

{

AVPs = [# Root-Level AVPs

{

AvpCodes = [

{

avpCode = 7100

vendorId = "<Vendor ID>" # Optional. Vendor specific AVP, if

present.

}

]

AVPs = [# 1st-Level AVPs

{

AvpCodes = [

{

avpCode = 1000

}

]

AVPs = [# 2nd-Level AVPs

{

AvpCodes = [

{

 avpCode = 2000

 repeating = true

}

]

avpFormat = "UTF8String"

}

] # End of 2nd-Level AVPs

}

] # End of 1st-Level AVPs

}

] # End of Root-Level AVPs

avpFormat = "Grouped"

encodedExtension = {

profileTag = 8100

profileFormat = "PREFIXTREE"

}

Chapter 4

124 Diameter Control Agent Technical Guide

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

AVPs above are encoded into a PREFIXTREE-type in an ACS Profile Block.

encodedExtension = {

profileTag = 7000

profileFormat = "PREFIXTREE"

}

} # End of Prefix Tree example

Prefix Tree example

Here is an example of the prefix tree configuration in the Services AVPMappings section.

Note that the parent tag is specified outside of the AVPs array block. Parent tag 7000 has type
"PREFIXTREE", hence profileTag and profileFormat for child elements are not applicable as this

child AVP is encoded as entries within a prefix tree.

{

AvpCodes = [

avpCode = 1000

]

AVPs = [

{

AvpCodes = [

{

avpCode = 2000 # <-- 1000.2000

repeating = true # <-- 2000 is repeating

}

]

avpFormat = "UTF8String"

}

]

Specify mapping applies INBOUND only.

mappingTypes = ["InitialRequest", "UpdateRequest", "EventRequest",

"TerminateRequest"]

encodedExtension = {

profileTag = 7000

profileFormat = "PREFIXTREE"

}

}

To specify outbound, the mappingTypes are specified as:

Specify mapping applies OUTBOUND only.

mappingTypes = ["InitialResponse", "UpdateResponse", "EventResponse",

"TerminateResponse"]

Mapping

This table shows the mapping AVPs to ACS profile blocks in the example prefix tree configuration
section in this topic. This example is for inbound. For outbound, the mapping direction is reversed.

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 125

Timestamp

Introduction

The DCA interface on the SLC is able to record the time that the:

• Credit-Control-Request (CCR) was received (Time-In)

• Credit-Control-Answer (CCA) was ready to be assembled and sent (Time-Out)

This allows you to track processing time and, for example, identify bottle-necks.

You can map:

• The time a CCR was received into a configurable AVP in the CCA message

• The time a Credit-Control processing for a request was completed, into a configurable AVP in the
CCA message

You can copy the timestamp from the incoming Diameter message to the outgoing Diameter message.

Timestamp example 1

This example copies a timestamp (the 3GPP eventtimestamp) from the incoming Diameter message to
the outgoing Diameter message.

The data is copied through the profile tag 6291458; this is special cased to be copied from the incoming
profile block to the outgoing one. It is an ARRAY tag, so that you can put whatever data you like in it.

{

mappingTypes = ["InitialRequest", "InitialResponse", "UpdateRequest",

"UpdateResponse"]

avpFormat = "Grouped"

extensionFormat = "encoded"

encodedExtension = {

profileTag = 6291458

profileFormat = "ARRAY"

}

AVPs = [

{

AvpCodes = [

{

avpCode = 833

vendorId = 10415

}

{

avpCode = 6

vendorId = 16247

repeating = True

}

]

avpFormat = "Integer32"

extensionFormat = "encoded"

encodedExtension = {

profileTag = 8192004

profileFormat = "INTEGER"

}

}

]

}

Chapter 4

126 Diameter Control Agent Technical Guide

Timestamp example 2

This example places a received timestamp in the outgoing message. This uses the same repeating AVP
as the previous example, so it gets appended to the group.

{

mappingTypes = ["InitialResponse", "UpdateResponse"]

Any Integer/Unsigned 32/64 or OctetString may be used.

avpFormat = "Integer32"

timestamp = "TIME_REQUEST_RECEIVED32"

AvpCodes = [

{

avpCode = 833

vendorId = 10415

}

{

avpCode = 6

vendorId = 16247

repeating = True

}

]

}

Note: See the timestamp (on page 81) parameter description for a list of values.

Timestamp example 3

This example places a replying timestamp in the outgoing message.

{

mappingTypes = ["InitialResponse", "UpdateResponse"]

avpFormat = "Integer64"

timestamp = "TIME_NOW64"

AvpCodes = [

{

avpCode = 833

vendorId = 10415

}

{

avpCode = 7

vendorId = 16247

repeating = True

}

]

}

RAR Example

AvpMappings = [

 #

 # Request Mapping set

 #

 {

 AVPs = [

 {

 AvpCodes = [

 {

 # Session-Id

 avpCode = 263

 vendorId = -1

 }

]

 avpFormat = "UTF8String"

 extensionFormat = "encoded"

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 127

 encodedExtension = {

 profileTag = 6291461

 profileFormat = "STRING"

 }

 }

 {

 AvpCodes = [

 {

 # Origin-Host

 avpCode = 264

 vendorId = -1

 }

]

 avpFormat = "UTF8String"

 extensionFormat = "encoded"

 encodedExtension = {

 profileTag = 6291466

 profileFormat = "STRING"

 }

 }

 {

 AvpCodes = [

 {

 # Multiple-Services-Credit-Control

 avpCode = 456

 vendorId = -1

 }

]

 AVPs = [

 {

 AvpCodes = [

 {

 avpCode = 439

 }

]

 #name = "Service-Identifier"

 #ccsConcept = "acsProfile"

 avpFormat = "Unsigned32"

 extensionFormat = "encoded"

 encodedExtension = {

 profileBlock = 19 #Incoming Extensions Block

 profileTag = 6291480 # Diameter Service Identifier

 profileFormat = "UINTEGER"

 }

 }

 {

 AvpCodes = [

 {

 avpCode = 432

 }

]

 #name = "Rating-Group"

 #ccsConcept = "acsProfile"

 avpFormat = "Unsigned32"

 extensionFormat = "encoded"

 encodedExtension = {

 profileBlock = 19 # Incoming Extensions Block

 profileTag = 6291481 # Diameter Rating Group

 profileFormat = "UINTEGER"

 }

 }

]

 }

Chapter 4

128 Diameter Control Agent Technical Guide

]

 }

 #

 # Response Mapping set

 #

 {

 mappingTypes = [

 "InitialResponse"

 "UpdateResponse"

]

 AVPs = [

 {

 AvpCodes = [

 {

 # da_final_unit_indication

 avpCode = 430

 vendorId = -1

 }

]

 AVPs = [

 {

 AvpCodes = [

 {

 # da_redirect_server

 avpCode = 434

 vendorId = -1

 }

]

 AVPs = [

 {

 AvpCodes = [

 {

 # da_redirect_address_type

 avpCode = 433

 vendorId = -1

 }

]

 #avpFormat = "Enumerated"

 avpFormat = "UTF8String"

 extensionFormat = "encoded"

 encodedExtension = {

 # DCA Redirect Address Type

 profileTag = 6291464

 profileFormat = "STRING"

 }

 }

 {

 AvpCodes = [

 {

 # da_redirect_address

 avpCode = 435

 vendorId = -1

 }

]

 avpFormat = "UTF8String"

 extensionFormat = "encoded"

 encodedExtension = {

 # DCA Redirect Address

 profileTag = 6291465

 profileFormat = "STRING"

 }

 }

 Chapter 4

•

 Chapter 4, Service Specific AVP Mappings 129

] # 3rd level

 }

] # 2nd level

 }

] # 1st level

 }

] # end of AVP Mappings

 Chapter 5, Control Plans 131

Chapter 5

Control Plans

Overview

Introduction

This chapter explains the example Control Plans that are shipped with Oracle Communications Network
Charging and Control (NCC) Diameter Control Agent.

These are sufficient to run simple Diameter services. There are:

• for event based services:

▪ CHECK_BALANCE
▪ DIRECT_DEBITING
▪ PRICE_ENQUIRY
▪ REFUND_ACCOUNT

• for session based services:

▪ Without redirect
▪ With redirect to top-up-server functionality
▪ Screening

In this chapter

This chapter contains the following topics.

Check Balance .. 131
Direct Debiting ... 132
Price Enquiry ... 134
Refund Account ... 134
Session No Redirect .. 136
Session Redirect ... 137
Screening .. 138

Check Balance

Introduction

The Check Balance control plan determines if the user is able to reserve a specified number of units. It
returns either a success or failure only; it does not return the number of units in the balance.

This control plan consists of a start node followed by two Named Event nodes and a terminate
unchanged node, with Disconnect nodes as appropriate. The first Named Event node reserves an event
type (the Reserve Event option selected), appropriate for this service. If the first Named Event node:

• Fails to reserve the event, it goes to a Disconnect node with the reason set to the configured no
funds cause.

Successfully reserves the event, the second Named Event node cancels the reservation (the
Revoke Event option selected). Then, a Terminate Unchanged node sends an INAP Continue,

which signals to diameterControlAgent that the balance check succeeded.

Chapter 5

132 Diameter Control Agent Technical Guide

Check Balance control plan

Here is an example Check Balance control plan.

Direct Debiting

Introduction

This control plan starts with two profile branching nodes to determine if this is a time-based direct debit
(through INAP extension 502) with an Event-Timestamp AVP (INAP extension 504).

• If it is, a DUCR node is used with the Debit option selected to debit the account.

• If it is not, a Named Event node is used with the Direct Event option selected to debit the

account. The Named Event node reads its number of events from INAP extension 501 (Requested-
Service-Units).

Failure branches are connected to Disconnect nodes with appropriate cause values to produce the
correct Diameter Result-Code values.

Refer to INAP Extensions (on page 14) for details.

 Chapter 5

•

 Chapter 5, Control Plans 133

Direct Debiting control plan

Here is an example Direct Debiting control plan.

Chapter 5

134 Diameter Control Agent Technical Guide

Price Enquiry

Introduction

This control plan has a Named Event node connected to:

• Disconnect nodes (for failures)

• An unconditional terminate node (for successes)

The Named Event node has the Cost of event option selected and is configured to store the cost of

the event under a tag in the ACS temporary storage area. Then, the DCA service loader plug-in picks up
this tag and puts it in INAP extension 603 in the Connect. The diameterControlAgent copies this into the
Cost-information AVP.

Refer to INAP Extensions (on page 14) for details.

Price Enquiry control plan

Here is an example Price Enquiry control plan.

Refund Account

Introduction

The Refund Account control plan is identical to the Direct Debiting (on page 132) control plan, except, in
the DUCR node, the Credit option is selected.

 Chapter 5

•

 Chapter 5, Control Plans 135

Refund Account control plan

Here is an example Refund Account control plan.

Chapter 5

136 Diameter Control Agent Technical Guide

Session No Redirect

Introduction

The Session No Redirect control plan is a session based plan with no redirect to a top-up server.

This consists of a Start node connected to a UATB node. The exits of the UATB node are connected to
an End node (Success cases) and to the Disconnect nodes with various release causes. The release
causes in the Disconnect nodes are such as to cause diameterControlAgent to use the appropriate
Result-Code.

Session No Redirect control plan

Here is an example Session No Redirect control plan.

eserv.config configuration

As shown in the notes with this control plan, you need to ensure that the following values are set in the
CCS.ccsMacroNodes section of the eserv.config file.

CCS = {

ccsMacroNodes = {

UseDisconnectLeg = false

}

}

Refer to the CCS Technical Guide for details.

 Chapter 5

•

 Chapter 5, Control Plans 137

Session Redirect

Introduction

The Session Redirect control plan is a session based plan which will redirect to a top-up server on
Declined (no funds) and NSF branch exits from UATB node. This consists of a Start node connected to
a UATB node. The exits of the UATB node are connected to an End node (Success cases) and to the
DBC node with Declined (no funds) exit. From DBC node, on Not declined and No funds exits should go
to Set node to set the Redirection Address type. On success or failure it should go to another set node
which is used to set the Redirection Address for redirection in this no-funds at session start scenario.

Session Redirect control plan

Here is an example Session Redirect control plan.

eserv.config configuration

As shown in the notes with this control plan, you need to ensure that the following values are set in the
CCS.ccsMacroNodes section of the eserv.config file.

To achieve exiting the UATB node during a session, and to achieve these redirection scenarios,
eserv.config needs to be configured with the exits to true:

CCS = {

 ccsMacroNodes = {

 # UATB Node:

 # Enable UATB macronode loopback from the specified exits.

 # Optional.

 macronodeLoopbackBranch1 = true #IR_Ack no funds

Chapter 5

138 Diameter Control Agent Technical Guide

 macronodeLoopbackBranch15 = true #SR_Nack no funds

 macronodeLoopbackBranch16 = false #SR_Ack with funds

 }

 }

Branch 16 only needs to be true if you want to do additional logic in a successful scenario.

Ensure that the following parameter is set to true in eserv.config to redirect due to insufficient funds/quota
at session start:

Services = [

 {

redirectOnZeroGrant = true

 }

 [

Refer to CCS Technical Guide for details.

Screening

Introduction

The Screening control plan denies service for voice but allows service for data, based on the bearer
type received from DCA.

This consists of a Start node connected to a Transmission Type Branch node. The Transmission Type
Branch node exits for voice (Exits 1 and 4) are connected to a Disconnect node with a release cause of
50. The exits for non-voice are connected to a Terminate Uncharged node.

 Chapter 5

•

 Chapter 5, Control Plans 139

Screening control plan

Here is an example Screening control plan.

eserv.config configuration

As shown in the notes with this control plan, for this example, you need to ensure that the following
values are set in the DIAMETER Services section of the eserv.config file.

AvpMappings = [

{

AvpCodes = [

{

avpCode = 268 # result_code

vendorId = 0

}

]

mappingTypes = [

"InitialResponse"

]

inapField = ["cause"]

Chapter 5

140 Diameter Control Agent Technical Guide

avpFormat = "Unsigned32"

conversion = [

{ internal = 50, external = 5003 } #Return

DIAMETER_AUTHORIZATION_REJECTED if screening failed

]

}

]

 Chapter 6, About Installation and Removal 141

Chapter 6

About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Network Charging and Control (NCC) application described in this guide. It also lists the files installed by
the application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and Removal Overview ... 141
Checking the Installation ... 141

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

• NCC system requirements

• Pre-installation tasks

• Installing and removing NCC packages

DCA packages

An installation of Diameter Control Agent includes the following packages, on the:

• SMS:

▪ dcaSms

• SLC:

▪ dcaScp

Checking the Installation

Introduction

Refer to these check lists to ensure the Diameter Control Agent has been installed correctly.

DCA Scp directories and files

The DCA installation on the SLC creates the following directories:

• /IN/service_packages/DCA/bin

• /IN/service_packages/DCA/etc

Chapter 6

142 Diameter Control Agent Technical Guide

• /IN/service_packages/DCA/lib

• /IN/service_packages/DCA/tmp

The DCA installation installs the following binaries and interfaces:

• /IN/services_packages/DCA/bin/diameterControlAgent

The DCA installation installs the following example configuration file:

• /IN/services_packages/eserv.config.dca.example

The DCA installation installs the following shared library:

• /IN/services_packages/DCA/lib/libdcaCcsSvcExtra.so

DCA Sms directories

Check that the statistics and control plans have been installed correctly.

The DCA installation on the SMS creates the following directories:

• /IN/service_packages/DCA/db

• /IN/service_packages/DCA/lib

 Chapter 7, Diameter Charging Agent Call Flows 143

Chapter 7

Diameter Charging Agent Call Flows

Call Flow Overview

Introduction

This chapter lists a sample set of DCA message flows.

In this chapter

This chapter contains the following topics.

Initial Request Success ... 143
Initial Request Release Call .. 144
Initial Request Multiple Requested Service Units ... 144
AVP Pass-Through DCA to DCD .. 146
Screening Successful .. 148
Screening Call Disallowed ... 148
Screening Failure .. 149
Update Request ... 149
Terminate Request .. 150

Initial Request Success

Introduction

This example shows the flow for a successful initial request.

Call flow

Chapter 7

144 Diameter Control Agent Technical Guide

Comments

This table provides additional comments on the call flow.

Operation Comment

2 This operation contains a profile block encoded in extension 701, consisting of
data mapped from AVPs.

3 This operation contains a profile block encoded in extension 701, consisting of
data mapped to AVPs.

Initial Request Release Call

Introduction

This example shows the flow for a release call.

Call flow

Comments

This table provides additional comments on the call flow.

Operation Comment

2 This operation contains a profile block encoded in extension 701, consisting of
data mapped from AVPs.

3 This operation contains a profile block encoded in extension 701, consisting of
data mapped to AVPs.

Initial Request Multiple Requested Service Units

Introduction

This example shows the flow when multiple requests for service units (cash or time) are made.

 Chapter 7

•

 Chapter 7, Diameter Charging Agent Call Flows 145

Call flow

Chapter 7

146 Diameter Control Agent Technical Guide

AVP Pass-Through DCA to DCD

Introduction

This example shows the flow when a simple pass through from DCA to DCD is made.

DCA Parameters

A large part of configuration for DCA are AVP to profile block definitions.

The following configuration is required to allow an AVP received by DCA from a CC-Client to be passed
through to DCD.

• ACS is configured with an Inbound ARRAY-type profile tag, which is used to pass a repeating AVP
to ACS.

Note: This may not be necessary if data is not going to be manipulated in a Control Plan, however this
would risk having data corrupted if the chosen tag number already exists, and is used in the Control
Plan.

• DCA is configured with an inbound mapping from a repeating AVP in a single grouped AVP to an
ARRAY-type profile.

• DCD is configured with an outbound mapping from an ARRAY profile tag in the
INCOMING_EXTENSIONS profile block.

The following configuration is required to allow an AVP received from a CC-Server by DCD to be passed
through to DCA.

• ACS is configured with an Outbound ARRAY-type profile tag, which is used to pass data from ACS
to DCA in the OUTGOING_EXTENSIONS profile block.

Note: This may not be necessary if data is not going to be manipulated in a Control Plan, however this
would risk having data corrupted if the chosen tag number already exists, and is used in the control
Plan.

• DCD is configured with an inbound mapping to map a repeating AVP in a single grouped AVP to an
ARRAY profile in the OUTGOING_EXTENSIONS profile block.

• DCA is configured with an outbound mapping to map an ARRAY profile tag to an AVP.

Call flow

This diagram shows the flow.

 Chapter 7

•

 Chapter 7, Diameter Charging Agent Call Flows 147

Comments

This table provides additional comments on the call flow.

Operation Comment

1 CC-Client sends a CCR INITIAL_REQUEST to DCA.

2 DCA sends an InitialDP to ACS containing an ARRAY profile tag in the profile
block encoded in the generic_extension_val_extended_os extension (id: 701), in
the extensions argument.

3 Upon receipt of the operation, ACS copies the profile tags specified in the
generic_extension_val_extended_os into the INCOMING_EXTENSIONS profile
block.

• The INCOMING_EXTENSIONS profile block is stored in tsMap-
>incomingExtensionsBlock in acsChassisContext.

• In the case of an IDP, the whole generic_extension_val_extended_os
extension buffer is re-assigned to tsMap->incomingExtensionsBlock; for
an ACR, each profile tag in the extension is individually applied to tsMap-
>incomingExtensionsBlock.

4 A billing node in the invoked Control Plan results in the DCD actions library being
invoked.

5 The DCD actions library:

• encodes the ARRAY profile tag found in the INCOMING_EXTENSIONS
profile block as an AVP

• sends a request in a DiameterSleeEvent to the DCD diameterBeClient.

6 The diameterBeClient sends the CCR request to the CC-Server.

7 CC-Server send a CCA INITIAL_REQUEST.

8 The diameterBeClient sends the response encoded in a DiameterSleeEvent back
to ACS

Chapter 7

148 Diameter Control Agent Technical Guide

Screening Successful

Call flow

Screening Call Disallowed

Call flow

 Chapter 7

•

 Chapter 7, Diameter Charging Agent Call Flows 149

Screening Failure

Call flow

Comments

The call flow shows DIAMETER_RATING_FAILED being returned. This is the default, however the
actual returned Result-Code is configurable.

Update Request

Call flow

Chapter 7

150 Diameter Control Agent Technical Guide

Comments

This table provides additional comments on the call flow.

Operation Comment

2 This operation contains a profile block encoded in extension 701, consisting of
data mapped from AVPs.

3 This operation contains a profile block encoded in extension 701, consisting of
data mapped to AVPs.

Terminate Request

Call flow

Comments

This table provides additional comments on the call flow.

Operation Comment

2 This operation contains a profile block encoded in extension 701, consisting of
data mapped from AVPs.

3 This operation contains a profile block encoded in extension 701, consisting of
data mapped to AVPs.

 Chapter 8, Troubleshooting 151

Chapter 8

Troubleshooting

Configuring Diameter Re-Authorization Request (RAR)
Support

Problem Statement

While configuring Diameter Re-Authorization Request (RAR) support in Convergent Charging
Controller, you may find that ongoing Diameter sessions do not update after voucher balance
changes or you see errors related to RAR messages.

Cause

This happens because RAR handling is not fully enabled and not all required configuration
steps are completed on the Service Logic Controller (SLC), Voucher and Wallet Server (VWS),
and Data Access Pack (DAP).

Solution

To fix this, do the following:

1 Enable RAR support in both the SLC and VWS by updating their eserv.config files. In the

SLC, ensure you configure a DCA instance with rarHandlingEnabled set to true and

specify the correct instanceName, scheme, and DiameterServer settings. In the VWS, add

“dcaResPlugin.so” to the beVWARS plugins list and set dapOperationSet to “RAR” for the

dcaResPlugin.

2 Update the ACS Control Plan for data sessions. Add four “Set BE EDR” Feature Nodes

before the Universal Attempt Termination with Billing (UATB) node. Map the

DCA_INSTANCE, DCA_SESSION, DCA_ORIGINAL_HOST, and

DCA_ORIGINAL_SESSION_ID from the incoming Credit Control Request-Initial (CCR-I)

AVPs as follows.

EDR Tag Profile Tag Source

DCA_INSTANCE Session Data/Incoming Session
Data/DCA Instance

Automatically populated when
rarHandlingEnabled is set to true. Value is
taken from the instanceName setting for the
DCA instance. This must match the SLEE
interface name for the diameterControlAgent
instance.

DCA_SCP Session Data/Incoming Session
Data/DCA SLC

Automatically populated when
rarHandlingEnabled is set to true. Value is
taken from the localOriginHost setting for the
DCA instance.

DCA_SESSION Session Data/Incoming Session
Data/DCA Session-ID

Must be mapped from the incoming Credit
Control Request - Initial (CCR-I). See
example below.

Chapter 8

152 Diameter Control Agent Technical Guide

EDR Tag Profile Tag Source

DCA_ORIGINAL_H
OST

Session Data/Incoming Session
Data/DCA Origin-Host

Must be mapped from the incoming Credit
Control Request - Initial (CCR-I). See
example below.

Example

An example of how to map the DCA Session-ID and DCA Origin-Host from the CCR-I is as follows:

AvpMappings = [

{

mappingTypes = [

"InitialRequest"

]

AVPs = [

{

AvpCodes = [

{

Session-Id

avpCode = 263

vendorId = -1

}

]

avpFormat = "UTF8String"

extensionFormat = "encoded"

encodedExtension = { profileTag = 6291461

profileFormat = "STRING"

}

}

{

AvpCodes = [

{

Origin-Host

avpCode = 264

vendorId = -1

}

]

avpFormat = "UTF8String"

extensionFormat = "encoded"

encodedExtension = { profileTag = 6291466

profileFormat = "STRING"

}

}

 Chapter 8

•

 Chapter 8, Troubleshooting 153

]

}

] # end of AVP Mappings

3 Configure DAP, so that dapIF on the VWS can send triggers to the SLC.

▪ Create an Operation Set named “RAR”.
▪ For each SLC, define an Application Service Provider (ASP) with the following settings:

– Name: Arbitrary identifier

– Protocol: XML

– Destination URL = http://IP Address or resolvable Hostname of the SLC:3088.

– Note: 3088 is the defaultxmlSleeDcaIF port, if it is updated on the SLCs, it must also be
updated here.

– Connection: HTTP

Example

▪ For each ASP, create a DAP Operation with the following settings:

– Name: RAR. DCA SLC (replace DCA SLC with the correct identifier matching the DCA_SCP

EDR tag)

– Operation Set: RAR

– ASP Name: The ASP you defined above.

http://ip/

Chapter 8

154 Diameter Control Agent Technical Guide

– Request Template:

<RAR>

<instance></instance>

<session></session>

<origin_host></origin_host>

</RAR>

For each Request Parameter in the eXtensible Markup Language (XML), set the Node
Disposition to "Text".

4 Restart the SLEE environment for the changes to take effect.

5 Test the configuration by starting a data session and recharging the account during the session.
Check that a RAR is generated and sent from diameterControlAgent.

	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions

	Chapter 1
	System Overview
	Overview
	Introduction
	In this Chapter

	What is Diameter Control Agent?
	Introduction
	Features
	Per-Message Type AVP Mapping
	Diagram
	DCA Components

	Screening

	Chapter 2

	Configuration
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introduction
	Configuration Components

	eserv.config Configuration
	Introduction
	Configuration File Format
	eserv.config Files Delivered
	Editing the File
	Loading eserv.config Changes
	Diameter eserv.config Configuration

	SLEE.cfg Configuration
	Introduction
	DCA SLEE Configuration
	SERVICEKEY

	RAR Configuration
	acs.conf Configuration
	Introduction
	INAP Extension

	Prepaid Charging Configuration
	CCS Service Library configuration
	Enabling Named Events

	Feature Node Configuration
	Named Event Node

	INAP Extensions
	Introduction
	IDP
	Connection

	Parameter Mappings
	Introduction
	CCR
	CCA

	Business Scenarios
	Introduction
	Successful session-based charging, client terminates session
	Multimedia messaging direct debit scenario
	Check balance, with a result of enough credit
	Price enquiry
	Funds expiry, redirect, top-up and reconnect
	Multiple services credit control scenario

	Chapter 3

	Background Processes
	Overview
	Introduction
	In this chapter

	dcaResPlugin
	Purpose
	Startup
	Default Configuration
	Alarms

	diameterControlAgent Process
	Purpose
	Startup
	DIAMETER Configuration Structure
	TTC Based Rating and Charging
	Failure

	xmlSleeDcaInterface
	Purpose
	Startup
	Default Configuration
	Alarms

	DCADefaults Configuration Section
	Example DCADefaults Configuration in eserv.config File
	DCADefaults Parameters
	avpMappings
	gracefulTerminationValidityTime
	inapServiceKey
	invalidMessageSequenceResultCode
	itc
	mappingTypes
	maxSessionLengthAfterFinalUnitIndicationsSeconds
	sleeServiceKey
	systemErrorResultCode
	tcc
	validityTime
	AvpMappings Parameters
	AVP Format to Extension Type

	AVP Casting
	avpCode
	AvpCodes
	avpFormat
	conversion
	extensionFormat
	extensionType
	external
	internal
	mandatory
	noa
	sipScheme
	sipScheme example configurations

	vendorId

	DCAInstances Configuration Section
	Introduction
	DCAInstances configuration structure
	DCAInstances Parameters
	allowDefaultRatingGroup
	ccDuplicateStoreSize
	customDefaultUnits
	dummyDestination
	dontDiscardRatingGroupInResponse
	ggsnSupportsFinalUnitIndication
	ignoreRSU
	instanceName
	invalidMessageSequenceResultCode
	maxAnswerReorder
	multipleServicesRatingGroup
	originHostMustBeFQDN
	rarClientTimeout
	rarHandlingEnabled
	rarMaxRetry
	returnServiceResultCodeInRoot
	gracefulTerminationFlag
	roundingThreshold
	roundingDetail
	scheme
	sessionBasedDuplicateDetection
	SIPDomain
	SIPPrefix
	SubscriptionIdTypes
	systemCurrencyCode
	systemCurrencyExponent
	systemErrorResultCode
	NumberRules Parameters
	Example NumberRules configuration

	fromNoa
	max
	min
	prefix
	prepend
	remove
	resultNoa
	RedirectNumberMappings Parameters
	Example RedirectNumberMappings configuration

	destination
	prefix
	type
	Tracing Parameters
	Example Tracing configuration

	destAddress
	destinationAddressAvp
	enabled
	origAddress
	traceDebugLevel
	DiameterServer Parameters
	Example DiameterServer Configuration

	Acct-Application-Id
	allowMultiServiceIdentifier
	Auth-Application-Id
	chargeOnSessionTimeout
	commitGrantedOnSessionTimeout
	commitGrantedOnTerminate
	connectionTimeout
	counterLogInterval
	duplicateBytes
	duplicateTime
	finalGrantUnused
	inBufferSize
	throttleLimitError
	overLimitError
	protocol
	sctpBindAddress
	diameterMessageLength
	sctpListenPort
	sessionLimit
	tcpBindAddress
	tcpListenPort
	throttleThreshold
	throttleInterval
	localOriginHost
	localOriginRealm
	outBufferSize
	percentTimeQuotaThreshold
	percentVolumeQuotaThreshold
	productName
	sendAbortOnSessionTimeout
	sendCreditLimitReachedOnSessionEnd
	sendOriginStateId
	sendQuotaThreshold
	sessionFallbackTcc
	noMSCCsessionValidityTime
	Supported-Vendor-Id
	thirtyTwoBitQuotaThresholds
	Vendor-Specific-Application-Identifier
	vendorId
	watchdogPeriod

	Services Configuration
	Introduction
	Services configuration structure
	Services parameters
	AvpCodes
	avpMappings
	avpType
	avpValue
	conversionFactor
	gracefulTerminationValidityTime
	inapServiceKey
	isChargingKey
	itc
	ratingGroup
	requestedAction
	screeningService
	SelectionAVPs
	selectionAVPsIsChargingKey
	serviceContextId
	serviceIdentifier
	serviceName
	sleeServiceKey
	sleeTimeout
	tcc
	terminateFlag
	unitType
	validateDestinationNumber
	validityTime
	Service Specific AVP Mappings parameters
	contextAVP
	dropMismatchedAVP
	encodedExtension
	excludeIfMatches
	inapField
	includeIfMatches
	keyArray
	literal
	profileFormat
	profileTag
	mappingTypes
	Mapping categories

	octetsLength
	octetsStart
	repeating
	timestamp
	typeCriteria

	PeerSchemes Configuration Section
	PeerSchemes configuration structure
	PeerSchemes parameters
	schemeName
	Peer host parameters
	name
	netmaskBits
	netmask6Bits
	permittedInstances
	permittedOriginHosts
	protocol
	RemoteAddresses
	reqSctpInboundStreams
	reqSctpOutboundStreams
	sctpBindAddress
	Example PeerSchemes section

	Statistics Logged by diameterControlAgent
	Introduction
	DCA statistics
	Reports
	Example report

	Chapter 4

	Service Specific AVP Mappings
	Overview
	Introduction
	In this chapter

	Introduction
	Introduction
	Base example
	Simple conditional
	Nested format
	Example nested format

	Basic Array
	Introduction
	Basic Array configuration
	Example Basic Array configuration
	Mapping

	Key Array
	Introduction
	Key Arrays configuration
	Example Key Arrays configuration
	Mapping

	Array with Conditions
	Introduction
	Array with Conditions configuration
	Array with Conditions - inbound - example 1
	Mapping

	Array with Conditions - Inbound - example 2
	Mapping

	Array with Conditions - outbound - example 1
	Mapping

	Array with Conditions - outbound - example 2
	Mapping

	Array with Conditions - outbound - example 3
	Mapping

	Array with Conditions - outbound - example 4
	Mapping

	Array with Context
	Introduction
	Array with Context configuration
	Array with Context - inbound example
	Mapping

	Array with Context - outbound example 1
	Mapping

	Array with Context - outbound example 2
	Mapping

	Conditional AVP
	Introduction
	Conditional AVP configuration
	Conditional AVP - inbound example 1
	Mapping example 1

	Conditional AVP example 1
	Mapping example 2

	Conditional AVP example 3
	Mapping example 3

	Conditional AVP - outbound example 1
	Mapping example 1 - conditional - outbound

	Conditional AVP - outbound example 2
	Mapping example 2 - conditional - outbound

	Prefix Tree
	Introduction
	Prefix Tree configuration
	Prefix Tree example
	Mapping

	Timestamp
	Introduction
	Timestamp example 1
	Timestamp example 2
	Timestamp example 3
	RAR Example

	Chapter 5

	Control Plans
	Overview
	Introduction
	In this chapter

	Check Balance
	Introduction
	Check Balance control plan

	Direct Debiting
	Introduction
	Direct Debiting control plan

	Price Enquiry
	Introduction
	Price Enquiry control plan

	Refund Account
	Introduction
	Refund Account control plan

	Session No Redirect
	Introduction
	Session No Redirect control plan
	eserv.config configuration

	Session Redirect
	Introduction
	Session Redirect control plan
	eserv.config configuration

	Screening
	Introduction
	Screening control plan
	eserv.config configuration

	Chapter 6

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction
	DCA packages

	Checking the Installation
	Introduction
	DCA Scp directories and files
	DCA Sms directories

	Chapter 7

	Diameter Charging Agent Call Flows
	Call Flow Overview
	Introduction
	In this chapter

	Initial Request Success
	Introduction
	Call flow
	Comments

	Initial Request Release Call
	Introduction
	Call flow
	Comments

	Initial Request Multiple Requested Service Units
	Introduction
	Call flow

	AVP Pass-Through DCA to DCD
	Introduction
	DCA Parameters

	Call flow
	Comments

	Screening Successful
	Call flow

	Screening Call Disallowed
	Call flow

	Screening Failure
	Call flow
	Comments

	Update Request
	Call flow
	Comments

	Terminate Request
	Call flow
	Comments

	Chapter 8

	Troubleshooting
	Configuring Diameter Re-Authorization Request (RAR) Support
	Problem Statement
	Cause
	Solution

