

Oracle® Communications Network
Charging and Control
Diameter Charging Driver Technical Guide

Release 15.2

January 2026

ii Diameter Charging Driver Technical Guide

Copyright

Copyright © 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

 iii

Contents

About This Document .. v
Document Conventions .. vi

Chapter 1

System Overview .. 1

Overview .. 1
What is the Diameter Charging Driver ... 1
ccsConcepts .. 4

Chapter 2

Split Charging and Voucher Domains ... 15

Overview ..15
Wallets and Vouchers Split Recharging ..15
Bad PIN ...18

Chapter 3

SCAP Compliance ... 21

Overview ..21
SCAP ...21

Chapter 4

Configuration ... 23

Overview ..23
Configuration Overview ...23
eserv.config Configuration ...24
CCS eserv.config Configuration ..25
RAR Configuration ...26
SLEE.cfg Configuration ...26
PeerSchemes Configuration Section ..27
acs.conf Configuration ...32
DCD ...33
DomainTypes ..41
Routes ...72
HostSpecificData ...73
NamedEventTypes ..76

Chapter 5

Background Processes .. 79

Overview ..79
diameterBeClient ...79
Statistics Logged by diameterBeClient ..91
DCD EDRs ..93

iv Diameter Charging Driver Technical Guide

Chapter 6

About Installation and Removal .. 97

Overview .. 97
Installation and Removal Overview ... 97
Checking the Installation ... 97

 v

About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the
Diameter Charging Driver application.

Audience

This guide was written primarily for system administrators and persons installing, configuring and
administering the Diameter Charging Driver application. However, sections of the document may be
useful to anyone requiring an introduction to the application.

Prerequisites

A solid understanding of UNIX and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to install, remove, configure or
otherwise alter the described system without the appropriate background skills could cause damage to
the system; including temporary or permanent incorrect operation, loss of service, and may render your
system beyond recovery.

A familiarity with the Diameter protocol is also required. Refer to the following:

• RFC 3588 – Diameter Base Protocol

• RFC 4006 – Diameter Credit-Control Application

Although it is not a prerequisite to using this guide, familiarity with the target platform would be an
advantage.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

The following documents are related to this document:

• Advanced Control Services Technical Guide

• Charging Control Services Technical Guide

• Charging Control Services User's Guide

• Diameter Charging Driver Alarms Guide

• Service Management System Technical Guide

• Service Management System User's Guide

• Service Logic Execution Environment Technical Guide

vi Diameter Charging Driver Technical Guide

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network
Charging and Control (NCC) documentation.

Formatting Convention Type of Information

Special Bold Items you must select, such as names of tabs.

Names of database tables and fields.

Italics Name of a document, chapter, topic or other publication.

Emphasis within text.

Button The name of a button to click or a key to press.

Example: To close the window, either click Close, or press Esc.

Key+Key Key combinations for which the user must press and hold down one
key and then press another.

Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.

Monospace Bold Text that you must enter.

variable Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions

hypertext link Used to indicate a hypertext link.

Specialized terms and acronyms are defined in the glossary at the end of this guide.

 Chapter 1, System Overview 1

Chapter 1

System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control
(NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

What is the Diameter Charging Driver... 1
ccsConcepts .. 4

What is the Diameter Charging Driver

Overview

Diameter is a protocol that focuses on network access and accounting. The Diameter base protocol
provides the minimum requirements needed for Authentication, Authorization, and Accounting (AAA)
(RFC 3588). You can extend the base protocol by adding commands or AVPs. RFC 4006 specifies such
an extension for applications that can be used to implement real-time credit-control.

The Diameter Charging Driver (DCD) product provides functionality that allows the Prepaid Charging
product to interface with applications using the RFC 3588 and RFC 4006 protocol. Typically it is
expected that Prepaid Charging will interface with a third-party convergent real-time charging system.

DCD contains several components:

• Diameter protocol stack. Implements the RFC 3588/4006 protocol

• Dynamically loadable library (DLL), diamActions.so. Implements the required Prepaid Charging
functionality

• Diameter client. Implements the network interface to the Diameter

Diameter Credit Control

The Prepaid Charging product uses the Universal-Attempt-Termination-with-Billing (UATB) node for
credit-control of telephony (voice) calls. There are a number of other CCS nodes that also use Diameter
credit control actions.

RFC 4006 defines credit-control in the following way:

• Credit-control is a process of checking whether credit is available, credit-reservation, deduction of
credit from the end user account when service is completed and refunding of reserved credit that is
not used.

Chapter 1

2 Diameter Charging Driver Technical Guide

The Diameter terminology defines an "interrogation" as the request/answer transaction between the
client and server.

RFC 4006 defines session based credit-control as:

• A credit-control process that makes use of several interrogations:

▪ The first – Used to reserve money from the user's account and to initiate the process.
▪ A possible intermediate – May be needed to request new quota while the service is being

rendered.
▪ The final – Used to exit the process.

The credit-control server is required to maintain session state for session-based credit-control.

Telephony requires session based credit-control. A new session is created when the CCS product
detects that an end-user is trying to establish a new telephony call.

Other nodes may use the DCD to send event based (rather than session based) credit control
messages for one-time events, for example, SMS (text message).

Process

Prepaid Charging uses the dcdBeClient (Diameter Charging Driver) to send a first interrogation to the
Diameter Server. The server rates the request, reserves a suitable amount of money from the user's
account, and returns the corresponding amount of credit resources. Prepaid Charging connects the
telephony call and monitors the usage of the granted resources.

Prepaid Charging may send an intermediate interrogation to request a new quota of resources when the
granted resources have been consumed. When the telephony call ends, Prepaid Charging sends a final
interrogation to inform the Diameter Server of the actual amount of resources used. At this point the
session is terminated.

Credit Control Messages

RFC 4006 defines two commands used for credit-control encapsulated in the following messages:

• Credit-Control-Request (CCR). Used by the credit-control client to request credit authorization from
the credit-control server.

• Credit-Control-Answer (CCA). Used by the credit-control server to acknowledge a CCR from the
credit-control client.

AVPs

A detailed list of AVPs for the CCR and CCA messages is given in RFC 4006 and copied in the next
section of this document. Note the CC-Request-Type – an enumeration with the following values:

• INITIAL_REQUEST – First interrogation

• UPDATE_REQUEST – Intermediate interrogation

• TERMINATION_REQUEST – Final interrogation

• EVENT_REQUEST – Event based (not session based)

Note: DCD can be configured to support certain vendor specific applications that add AVPs to the
accounting commands of Diameter base protocol. For more information, see the vendor-specific AVPs
under DCD Parameters (on page 33).

Attribute Value Pairs

In the Diameter protocol message, parameters are specified as Attribute-Value Pairs (AVPs).

An AVP consists of a Code, Flags, Length, optional Vendor-ID, and Data fields. The AVP Code,
combined with the Vendor-ID field, identifies the attribute uniquely. The type (format) of the Data field is
implied by the Code and Vendor-ID field combination. The following Data formats are specified:

 Chapter 1

•

 Chapter 1, System Overview 3

• OctetString

• Integer32

• Integer64

• Unsigned32

• Unsigned64

• Float32

• Float64

• Address

• Time

• UTF8String

• DiameterIdentity

• DiameterURI

• Enumerated

• Grouped

• GroupedUnitValue

Additional EDR Tags

Resolved values for AVPs can be written to the ACS EDR under a configured tag. These tags are not
intended to be used to amend existing, predefined ACS tags. The feature is intended for situations
where the customer wishes to add some new tag to the EDR.

Conditions can be attached to the writing of the EDR value:

• Replace it unconditionally, after removing any existing tags of same name.

• Append a new value instance unconditionally.

• Leave the EDR alone if the tag is present, and append the new instance if the tag is not present.

Chapter 1

4 Diameter Charging Driver Technical Guide

Diagram

Here is a high-level diagram showing the Diameter Charging Driver.

ccsConcepts

Introduction

To match AVPs to variables in CCS, the DCD has “ccsConcepts”. These can be a specific parameter of
the CCS action, a general CCS variable, some of the call's context, or even an ACS profile value.

The DCD provides functionality to scale values by a factor, and also allows a mapping of one set of
integers to another while reading/writing to ccsConcepts. The specific formatting of the value field is
configurable. See AVPs parameters for formatting details.

Note: The availability of each concept depends upon the action involved, and the previous actions of the
control plan.

List of ccsConcepts

Here is the list of all of the ccsConcepts that can be used in the AVPs section of the eserv.config file.

 Chapter 1

•

 Chapter 1, System Overview 5

ACS Action Handler

Here are the ccsConcepts from the ACS action handler.

Concept Label Available Comments

cascade After a
setCascade
Override.

Also can be set by previous responses. The
integer ID of the cascade to apply.

chargeInfoBalanceSystemValue After a
chargeInfo
response

The balance Unit for the current item of the
Charge structure. This is in units of the system
currency.

chargeInfoBalanceType After a
chargeInfo
response

The CCS ID of the balance Type for the
current balance of the Charge structure.

chargeInfoBalanceUnitType After a
chargeInfo
response

The CCS of the balance Unit for the current
balance of the Charge structure. This is not
necessary for a ChargeInfo in a response, it
can be derived from the balance type.

chargeInfoBalanceUserValue After a
chargeInfo
response

The balance Unit for the current item of the
Charge structure. This is in units of the user's
currency.

Note that the system currency value is
mandatory, while this entry is optional.

discountMaxCharge After a
setDiscount

Present after a setDiscount node or a
response that has the discountMaxCharge
present.

discountPeriod After a
setDiscount

Present after a setDiscount node or a
response that has the discountPeriod present.

tariffCugName After a
setTariffPlan

The Closed User Group Name.

tariffPlan After a
setTariffPlan

Integer representing the tariff Plan.

terminationCause After a call is
terminated

The esg values in the configuration for the
ACS callEndReasons that map to specific
termination cause values.

• 0 = reasonNotSet

• 1 = precallAnnouncementFailure

• 2 = firstEventACRAbort

• 3 = firstEventATAbort

• 4 = secondEventACRAbort

• 5 = secondEventATAbort

• 6 = abortWaitingForBEResponse

• 7 = releasedOnTCPExpiry

• 8 = releasedNoFunds

• 9 = disconnectedLegBNoFunds

• 10 = calledPartyBusy

• 11 = routeSelectFailure

• 12 = callingPartyAbandon

• 13 = noAnswer

Chapter 1

6 Diameter Charging Driver Technical Guide

Concept Label Available Comments

• 14 = callingPartyDisconnected

• 15 = calledPartyDisconnected

walletInfoActivationDate After a walletInfo
response

time_t of the wallet's activation date. The DCD
handles conversion from time_t to DIAMETER
times.

walletInfoBalanceExpiry After a walletInfo
response

The expiry date (in time_t) of the current
balance. The DCD handles conversion from
time_t to DIAMETER times.

walletInfoBalanceExponent After a walletInfo
response

An exponent to apply to the balance system
value.

walletInfoBalanceLimitType After a walletInfo
response

The balances limit type: An integer
representing one of: limitedPostpaid, postpaid,
prepaid, singleUsePrepaid

walletInfoBalanceMaxCredit After a walletInfo
response

The maximum amount of credit allowed for
this subscriber.

walletInfoBalanceSystemValue After a walletInfo
response

The balance Unit for the current item of the
balance structure. This is in units of the
system currency.

walletInfoBalanceType After a walletInfo
response

The CCS ID of the balance Type for the
current balance of the Wallet structure.

walletInfoBalanceUnitType After a walletInfo
response

The CCS ID of the balance Unit for the current
balance item of the Wallet structure. This is
not necessary for a balance in a response, it
can be derived from the balance type.

walletInfoBalanceUserValue After a walletInfo
response

The balance Unit for the current item of the
Blance structure. This is in units of the user's
currency.

Note that the system currency value is
mandatory, while this entry is optional.

walletInfoExpiry After a walletInfo
response

The expiry date (in time_t) of the wallet. The
DCD handles conversion from time_t to
DIAMETER times.

walletInfoLastAccess After a walletInfo
response

time_t of the wallet's last access. The DCD
handles conversion from time_t to DIAMETER
times.

walletInfoMaxConcurrent After a walletInfo
response

The maximum number of concurrent users
allowed for this wallet.

walletInfoState After a walletInfo
response

A single character representing the wallet's
state. One of:

• 'A' = Active

• 'D' = Dormant

• 'F' = Frozen

• 'P' = Pre-Use

• 'S' = Suspended

• 'T' = Terminated.

Note that conversion to different
representations is possible.

walletInfoSystemCurrency After a walletInfo
response

The system currency.

 Chapter 1

•

 Chapter 1, System Overview 7

Concept Label Available Comments

walletInfoUserCurrency After a walletInfo
response

The CCS_ACCT.CURRENCY value for this
wallet.

ACS Service Context

Here are the ccsConcepts from the ACS service context.

Concept Label Available Comments

acsCallID always The call ID from the SLEE

acsChargingDomain always The destined billing domain (logical collection
of wallets) for this request.

acsProductType always The ACS product type ID

acsProfile always An ACS profile buffer from the Call plan. If the
buffer is not set, then the AVP is not included.

acsServiceProvider always The ACS service provider ID

acsSubscriber always The CCS subscriber ID

acsSubscriberReference always The CCS subscriber number (ie their
MSISDN)

acsTariffCode After an initial
reservation.

Tariff Code string returned in the Initial
Reservation Response (if present).

acsUnnormalisedCalledNumber always The called party number digits from the IDP,
without any attempt at normalization.

acsWallet always The CCS wallet ID (BE_WALLET.ID)

acsWalletReference always The CCS wallet Reference (the Billing
System's reference to the wallet)

acsWalletType always The CCS wallet type.
(CCS_WALLET_TYPE.ID)

CCS Time Reservation

Here are the ccsConcepts from CCS time reservation.

Concept Label Available Comments

callAnsweredTime ConfirmTimeRes
ervation

callDurationDelta Any Time
Charging Action

callDurationTotal Any Time
Charging Action

callerTimeZone After a
DirectTimeCharg
e or
InitialTimeReserv
ation

Chapter 1

8 Diameter Charging Driver Technical Guide

Concept Label Available Comments

cli After a
DirectTimeCharg
e or
InitialTimeReserv
ation

confirmTimeReservationStatus After set from a
response

Usually part of an
confirmTimeReservationResponse.

destinationNumber After a
DirectTimeCharg
e or
InitialTimeReserv
ation

discountPercentage After a
setDiscount or
DirectNamedEve
nt or
NamedEventRes
ervation

Present after a setDiscount node or a
response that has the discountPeriod present.

eventClass NamedEvent
Actions

A string representing the CCS event Class.

eventName NamedEvent
Actions

A string of the CCS event name.

eventType NamedEvent
Actions

An integer representing the type of CCS
named event.

expectedReservationDelta InitialTimeReserv
ation and
ExtendTimeRese
rvation

expectedReservationTotal InitialTimeReserv
ation and
ExtendTimeRese
rvation

extraInformation Usually call information for adding to Billing
CDRs. Content varies for each action.

freeCallDisposition After set from a
response

Usually part of an
initialTimeReservationResponse.

ignoreBalanceLimit DirectNamedEve
nt,
DirectTimeCharg
e,
NamedEventRes
ervation

initialLowBalanceAnnouncement After set from a
response

Usually part of an
initialTimeReservationResponse. The
Announcement ID of the announcement to
play.

initialLowBalanceIndicator After set from a
response

Usually part of an
initialTimeReservationResponse. If present
and non zero the indicated pre call warning
announcement should be played to the
subscriber.

 Chapter 1

•

 Chapter 1, System Overview 9

Concept Label Available Comments

lowCreditBuffer After set from a
response

Usually part of an
initialTimeReservationResponse. Number of
seconds from the end of the last good
reservation period until a low credit beep
should be played

maxCallLength After set from a
response

Usually part of an
initialTimeReservationResponse.

maxSeconds After set from a
response

Session Time left. Usually part of an
xxxTimeReservationResponse.

maxUnitsRequested NamedEvent
Actions

minUnitsRequested NamedEvent
Actions

numUnitsGranted After set from a
response

numUnitsUsed ConfirmNamedE
ventReservation

reservedLengthDelta After set from a
response

Usually part of an
xxxTimeReservationResponse.

reservedLengthTotal After set from a
response

Usually part of an
xxxTimeReservationResponse.

retrieveLCRNumbers After set from a
response

Usually part of an
initialTimeReservationResponse.

revokeTimeReservationStatus After set from a
response

Usually part of an
revokeTimeReservationResponse.

scpAction This AVP is an enumeration with the following
known values:

• 1 Supervise

• 2 Do not supervise

• 3 Release

• 4 Send message

• 5 Play announcement

• 6 Supervise without controlling

singleReservation After set from a
response

Usually part of an
initialTimeReservationResponse.

timeReservationStatus After set from a
response

Usually part of an
xxxTimeReservationResponse.

validityPeriod After set from a
response

Charge Details

Here are the ccsConcepts from charge details.

Concept Label Available Comments

balanceTypeFilter WalletInfo Request the Billing Engine to only return
balances of this type.

Chapter 1

10 Diameter Charging Driver Technical Guide

balanceUnitFilter WalletInfo Request the Billing Engine to only return
balances of this unit.

Direct Time Charge

Here are the ccsConcepts from direct time charge.

Concept Label Available Comments

callDate DirectTimeCharg
e

ratingPrecision InitialTimeReserv
ation

Integer representing seconds, tenths-of-a-
second, or hundredths-of-a-second

Others

Here are the ccsConcepts from others.

Concept Label Available Comments

freeform always Uses/updates the concept previously defined by
setFreeform.

setFreeform always The next AVP of concept “freeform” will instead
use/update the concept indexed by the value of
this AVP.

Voucher Details

Here are the ccsConcepts from voucher details.

Concept Label Available Comments

voucherInfoBalanceExpiryExt
ension

WalletInfoReque
st

The expiry extension period for adjusting the
balance expiry date of the voucher.

 Chapter 1

•

 Chapter 1, System Overview 11

Concept Label Available Comments

voucherInfoBalanceExpiryExt
ensionPolicy

WalletInfoReque
st

Indicates how to apply the balance expiry
extension period to the balance expiry date.

New Expiry Policies include the following:

• First Use with Offset – Allows a recharged
balance expiry date to be set a number of
months or hours after the first use of the
balance.

• First Use – Account Cycle allows a recharged
balance expiry date to be set, aligned with
the account cycle on the first use of the
balance.

• First Use – Bill Cycle allows a recharged
balance expiry date to be set, aligned with
the billing cycle on the first use of the
balance.

voucherInfoBalanceExpiryExtensionPolicy
returns the following values:

Value Name Meaning

0 best Take the
largest expiry
date based on
current, today,
other periods
and this
extension

1 extend Extend the
existing expiry
date by the
specified
extension
period

2 extendFromTo
day

Today +
extension
period, or the
existing expiry,
whichever is
larger

3 override Not used when
applying an
extension

4 dontChange Do not set or
change an
expiry date

Chapter 1

12 Diameter Charging Driver Technical Guide

Concept Label Available Comments

voucherInfoBalanceExpiryExt
ensionType

WalletInfoReque
st

The unit of the extension value available for this
balance (example: hours or months).

voucherInfoBalanceExpiryExtensionType returns
the following values:

Value Meaning

0 Hours

1 Months

voucherInfoBalanceType WalletInfoReque
st

The CCS ID of the balance type for the current
balance of the voucher structure.

voucherInfoBalanceValidityOff
set

WalletInfoReque
st

A relative offset from the current date when a
given balance, charged with a voucher, becomes
valid.

voucherInfoBalanceValiditySt
art

WalletInfoReque
st

A fixed date in the future when a given balance,
charged with a voucher, becomes valid.

voucherInfoBalanceValidityTy
pe

WalletInfoReque
st

The units of the relative offset from the current
date when the balance becomes valid.

voucherInfoBalanceValidityType returns the
following values:

Value Meaning

0 Hours

1 Months

voucherInfoMissingBalancePo
licy

WalletInfoReque
st

Indicates what to do if the specified balance type
is missing from the list of existing balances for the
voucher.

voucherInfoMissingBalancePolicy returns the
following values:

Value Name Meaning

0 allow Create the
balance (and
bucket, if
applicable)
and set it to
the specified
value

1 fail Reject the
recharge
(Invalid
Recharge
Value)

2 ignoreBalance Skip this
balance and
process the
rest of the
recharge

voucherInfoNewBucket WalletInfoReque
st

If this value is set to true, the voucher value will
be added to the balance as a new bucket.

voucherInfoReplaceBalance WalletInfoReque
st

If this value is set to true, all existing buckets of
the balance will removed, and a new bucket is
created with the specified voucher value.

 Chapter 1

•

 Chapter 1, System Overview 13

Concept Label Available Comments

voucherInfoValue WalletInfoReque
st

The voucher balance recharge details.

voucherInfoVoucher WalletInfoReque
st

The database key of the voucher being
redeemed.

voucherInfoVoucherNumber WalletInfoReque
st

The voucher number of the voucher being
redeemed.

voucherInfoVoucherSerialNu
mber

WalletRechargeR
equest

Populates the Voucher Serial Number in a DCD
AVP, so that it may be used to audit and track the
voucher redemption.

voucherInfoWalletExpiryExten
sion

WalletInfoReque
st

The extension period to apply to the wallet expiry
date of the recharged wallet.

voucherInfoWalletExpiryExten
sionPolicy

WalletInfoReque
st

Indicates how to apply the wallet expiry extension
period to the wallet expiry date.

voucherInfoWalletExpiryExten
sionType

WalletInfoReque
st

The unit of the expiry extension for the wallet that
the voucher will recharge (example: hours or
months).

voucherInfoWalletExpiryExtensionType returns
the following values:

Value Meaning

0 Hours

1 Months

voucherRechargeFailureDate
Time

WalletRechargeR
equest

Returns the timestamp of any previous voucher
recharge failure. If there has not been a previous
voucher recharge failure, then zero (0) is
returned.

voucherRechargeFailureFlag WalletRechargeR
equest

Returns the value of one (1) if the voucher is not
redeemed and a failed voucher redeem attempt
has been made.

Returns zero (0) for all other voucher states. For
example, if a redeem attempt has never been
made for the voucher or if the voucher has been
redeemed successfully.

voucherTypeName WalletInfoReque
st

Returns the name of the type of voucher being
redeemed.

Note: Voucher type name is only available if a
positive value is defined for
voucherTypeCacheSize in the ccsActions

section. When this cache is configured, CCS will
be able to use the batch of the voucher being
redeemed to lookup the voucher type, and that
name will then be available to the ccsConcept
voucherTypeName.

 Chapter 2, Split Charging and Voucher Domains 15

Chapter 2

Split Charging and Voucher Domains

Overview

Introduction

This chapter explains how the DCD components handle split charging and voucher redemption when
wallets and vouchers are hosted by different billing domains.

In this chapter

This chapter contains the following topics.

Wallets and Vouchers Split Recharging .. 15
Bad PIN ... 18

Wallets and Vouchers Split Recharging

Introduction

CCS supports charging services for redeeming vouchers and updating wallets when they reside on the
same billing domain. The DCD product provides functionality that allows the Prepaid Charging product
to extend this support to separate voucher and wallet domains in CCS.

DCD can be configured to support a CCS-based convergent billing solution where separate billing
systems are used to host:

• Vouchers and redemption functions

Example: Oracle VWS-Voucher Management

• Wallets and charging functions

Example: A third-party billing system.

In order to achieve this, DCD can be extended using ccsConcepts required to support voucher
redemption.

Key Components

The key components that enable this split-domain architecture with DCD are as follows:

Component Description Further Information

ACS voucherDelegator Configures the diamActions which support
different billing domains for recharges.

voucherDelegator (on
page 16)

ccsConcepts Support voucher redemption variables. Voucher details

Chapter 2

16 Diameter Charging Driver Technical Guide

voucherDelegator

The voucherDelegator is a slee_acs process which implements the following diamActions enabling split
domain recharging over DCD:

Action Expected Response Description

BadPIN • CCR named
BadPINRequest,

and

• CCA named
BadPINResponse

Sends a CCR to the BE, notifying that a given
MSISDN has failed to redeem a voucher.

CreateEDR • CCR named
CreateEDRRequest,

and

• CCA named
CreateEDRRespons

e

Sends a list of tags and values as AVPs to the third-
party BE which will be added to the BE EDR.

WalletRechar
ge

• CCR named
WalletRechargeRe

quest, and

• CCA named
WalletRechargeRe

sponse

Sends a CCR to the third-party BE with a wallet
rechage request, and expects a CCA with a wallet
recharge response.

 Chapter 2

•

 Chapter 2, Split Charging and Voucher Domains 17

Diagram

Here is an example of the split-domain wallet and voucher recharging process. Note that the third-party
billing engine server is also the Diameter Server in this example.

Split Recharging Process

This table describes the stages involved in redeeming a voucher using VWS-Voucher Management and
recharging a wallet on a third-party domain.

Stage Description

1 Voucher redemption is triggered using any of the following methods:

• IVR feature nodes in a control plan

• Interaction with a customer services representative (who uses the Voucher
Management screen)

• (If MM is installed) Short Messages sent from the subscriber's handset, and

• (If USSD GW is installed) menus and fast access.

Chapter 2

18 Diameter Charging Driver Technical Guide

Stage Description

The information from the request initiator is passed to the voucherDelegator, which sends
a message to the relevant BeClientIF process to reserve the voucher.

2 The BeClientIF sends a Voucher Reserve (VR_Req) request to VWS-Voucher
Management.

3 VWS-Voucher Management checks whether:

• This VWS holds the details for the requested voucher

• The voucher PIN number is correct

• If the voucher can be redeemed

If the voucher can be redeemed, VWS-Voucher Management reserves the voucher and
passes a Voucher Reserve acknowledgment (VR_Ack) back to the voucherDelegator.

4 The voucherDelegator processes the message and sends a Wallet Recharge request to
the dcdBeClientIF in an attempt to recharge the wallet on the Diameter Server (in this
case the third-party BE).

5 The dcdBeClientIF constructs a CCR with a WalletRecharge action and interrogates the
Diameter Server for wallet recharge.

6 The Diameter Server checks whether:

• The details for the requested wallet

• Whether the wallet state allows it to be updated

If the wallet can be recharged, the Diameter Server sends a CCA response back to the
dcdBeClientIF with a Wallet Recharge acknowledgment, which is reported back to the
voucherDelegator.

7 The voucherDelegator then sends a Commit Voucher Redeem (CVR_Req) request to the
BeClientIF which is sent to VWS-Voucher Management for redeeming the voucher.

If the voucher redeem succeeds, VWS-Voucher Management responds with a Commit
Voucher Redeem acknowledgement (CVR_Ack) to the BeClientIF which is reported back
to the voucherDelegator.

8 The voucherDelegator processes the message and informs the request initiator of the
successful voucher redemption wallet recharge.

9 The voucherDelegator then initiates the createEDR action for the relevant EDRs to be
produced on the Diameter Server.

10 If either the voucher redemption or the wallet recharge failed, appropriate Not
Acknowledgment (Nack) messages at each stage and this is recorded in the final set of
EDRs generated.

Bad PIN

Description

The ACS voucherDelegator also handles BadPIN processing and notifies the BE that controls wallet
recharging if a subscriber (MSISDN) has failed to redeem a voucher.

 Chapter 2

•

 Chapter 2, Split Charging and Voucher Domains 19

Diagram

Here is an example of Bad PIN processing on a split-domain wallet and voucher network. Note that the
third-party billing engine server is also the Diameter Server in this example.

Checking Voucher Bad PIN

This table describes an unsuccessful voucher redemption due to a Bad PIN.

Stage Description

1 When VWS-Voucher Management receives a Voucher Reserve (VR_Req) request, it
checks whether:

• The VWS holds the details for the requested voucher

• The voucher PIN number is correct

• If the voucher can be redeemed

If the voucher PIN is incorrect, VWS-Voucher Management updates the bad PIN counter
and returns a Bad PIN Increase (BPIN) count to the BeClientIF which informs the
voucherDelegator.

Chapter 2

20 Diameter Charging Driver Technical Guide

Stage Description

2 On successive Bad PIN attempts, the voucherDelegator cancels the voucher redemption
and sends a Revoke Voucher Redeem (RVR) request to the BeClientIF which is passed
onto VWS-Voucher Management.

3 VWS-Voucher Management responds with a Revoke Voucher Redeem (RVR_Ack)
acknowledgement which means that the voucher redemption request stands cancelled.

4 The voucherDelegator then sends a Bad PIN request to the dcdBeClientIF in an attempt
to cease any transactions on the wallet domain.

5 The dcdBeClientIF constructs a CCR with a BadPINRequest action and notifies the
Diameter Server.

6 The Diameter Server confirms and sends a CCA back to the dcdBeClientIF with a
BadPINResponse, which is reported to the voucherDelegator.

7 The voucherDelegator processes the message and informs the request initiator that the
voucher redemption was unsuccessful.

8 The voucherDelegator then initiates the createEDR action for the relevant EDRs to be
produced on the Diameter Server.

 Chapter 3, SCAP Compliance 21

Chapter 3

SCAP Compliance

Overview

Introduction

This chapter explains the summary of changes that affect DCD to make it SCAP compliant.

In this chapter

This chapter contains the following topics.

SCAP ... 21

SCAP

Introduction

Ericsson SCAP is a vendor specific protocol that utilizes the Draft version 8 of the Diameter Base
Protocol (the predecessor to RFC 3588).

The NCC Diameter protocol is based upon the final version of RFC 3588. The base protocol is further
extended to support the use of CCR (Credit-Control-Request) / CCA (Credit-Control-Answer) messages,
described by RFC 4006.

SCAP, on the other hand, adds Attribute Value Pair (AVP)s to Diameter base protocol’s Accounting-
Request (ACR) and Accounting-Answer (ACA) commands.

DCD may be reconfigured to permit it to interact with an Ericsson SCAP compliant server as a SCAP
client. Variances between the SCAP and normal Credit-Control charging approaches available within
DCD are described below.

Note: The necessary changes will take effect only if the enableDraft8 (on page 35) is set to true.

Application-Identifiers Values

This table lists the different Application-identifier values between the Diameter Base Protocol Draft 8 and
RFC 3588 final version.

Draft 8 Final

- Diameter Common Messages 0

NASREQ 1 NASREQ 1

CMS Security 2 Mobile-IP 2

Mobile IP 4 -

Relay 0xffffffff Relay 0xffffffff

Chapter 3

22 Diameter Charging Driver Technical Guide

Message Header

This table describes the changes to message header values.

Section Heading Comment

Vendor-Id This should be changed in outbound messages (at the Oracle
Diameter stack level).

See Vendor-Id (on page 40) for SCAP specific changes.

T-flag The T-flag (retransmit) is used by a Diameter client to indicate to the
server that a message has been retransmitted (possibly due to loss
of message).

This flag is not supported by Draft 8, and hence it is not set while
retransmitting duplicate DCD messages to SCAP.

Supported AVPs

This table describes the changes to the supported AVPs to enable SCAP compliance.

Supported AVP Comment

Event-Timestamp DCD to send vendor specific version for Ericsson SCAP.

Inband-Security-Id This AVP is not sent during capabilities exchange, if SCAP support
is configured, that is, when enableDraft8 (on page 35) is set to true.

Result-Codes

This table describes the changes to the Result-Codes to enable SCAP compliance.

Result Code [DRAFT8] Value [3588] Value

DIAMETER_UNSUPPORTED_TRANSFORM 5010 -

DIAMETER_NO_COMMON_APPLICATION 5011 5010

DIAMETER_UNSUPPORT_VERSION 5012 5011

DIAMETER_UNABLE_TO_COMPLY 5013 5012

INVALID_BIT_IN_HEADER 5014 5013

INVALID_AVP_LENGTH 5015 5014

INVALID_MESSAGE_LENGTH 5016 5015

INVALID_AVP_BIT_COMBO 5017 5016

DIAMETER_NO_COMMON_SECURITY - 5017

 Chapter 4, Configuration 23

Chapter 4

Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Network Charging and Control
(NCC) application.

In this chapter

This chapter contains the following topics.

Configuration Overview ... 23
eserv.config Configuration ... 24
CCS eserv.config Configuration .. 25
RAR Configuration... 26
SLEE.cfg Configuration ... 26
PeerSchemes Configuration Section .. 27
acs.conf Configuration ... 32
DCD ... 33
DomainTypes .. 41
Routes ... 72
HostSpecificData ... 73
NamedEventTypes .. 76

Configuration Overview

Introduction

This topic provides a high level overview of how the DCD interface is configured.

There are configuration options which are added to the configuration files that are not explained in this
chapter. These configuration options are required by the application and should not be changed.

Configuration Components

The Diameter Charging Driver is configured by the following components:

Component Locations Description Further Information

eserv.config all SLC
machines

DCD is configured by the
Diameter section of eserv.config.

eserv.config
Configuration (on page
24)

eserv.config all SLC
machines

The WalletInformation cache is
configured in the CCS section of
eserv.config.

CCS eserv.config
Configuration (on page
25)

SLEE.cfg all SLC
machines

The SLEE interface is configured
to include the DCD service.

SLEE.cfg Configuration
(on page 26) and the
SLEE Technical Guide

Chapter 4

24 Diameter Charging Driver Technical Guide

Component Locations Description Further Information

acs.conf all SLC
machines

Configures the diamActions
library.

acs.conf Configuration
(on page 32)

oracleConfig.xsd SMS Defines acceptable structure for
XML.

oracleConfigWorkin
g.xml

SMS The editable configuration. Configuration
Management

oracleConfigMaster.
xml

SMS The deployed (live) configuration
used to generate the eserv.config.

Configuration
Management

Note: The .xsd and .xml files are present only when the Configuration Management editor is installed.

eserv.config Configuration

Introduction

The eserv.config file is a shared configuration file, from which many Oracle Communications Network
Charging and Control (NCC) applications read their configuration. Each NCC machine (SMS, SLC, and
VWS) has its own version of this configuration file, containing configuration relevant to that machine.
The eserv.config file contains different sections; each application reads the sections of the file that
contains data relevant to it.

The eserv.config file is located in the /IN/service_packages/ directory.

The eserv.config file format uses hierarchical groupings, and most applications make use of this to divide
the options into logical groupings.

Configuration File Format

To organize the configuration data within the eserv.config file, some sections are nested within other
sections. Configuration details are opened and closed using either { } or [].

• Groups of parameters are enclosed with curly brackets – { }

• An array of parameters is enclosed in square brackets – []

• Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats can be used, as in this example:

{ name="route6", id = 3, prefixes = ["00000148", "0000473"] }

{ name="route7", id = 4, prefixes = ["000001049"] }

or

{ name="route6"

id = 3

prefixes = [

"00000148"

"0000473"

]

}

{ name="route7"

id = 4

prefixes = [

"000001049"

]

}

or

{ name="route6"

 Chapter 4

•

 Chapter 4, Configuration 25

id = 3

prefixes = ["00000148", "0000473"]

}

{ name="route7", id = 4

prefixes = ["000001049"]

}

eserv.config Files Delivered

Most applications come with an example eserv.config file named eserv.config.example. The example file for
DCD is:

/IN/service_packages/DCD/etc/eserv.config.dcd.example

Editing the File

You can edit the eserv.config file by using one of the following:

• The Configuration Management editor

• A text editor

Warning: If you are using the Configuration Management editor, you cannot use a text editor to edit the
DCD section.

Text Editor

Open the configuration file on your system using a standard text editor. Do not use text editors, such as
Microsoft Word, that attach control characters. These can be, for example, Microsoft DOS or Windows
line termination characters (for example, ^M), which are not visible to the user, at the end of each row.
This causes file errors when the application tries to read the configuration file.

Always keep a backup of your file before making any changes to it. This ensures you have a working
copy to which you can return.

Loading eserv.config Changes

If you change the configuration file, you must restart the appropriate parts of the service to enable the
new options to take effect.

Diameter eserv.config Configuration

The eserv.config file must be configured to enable the DCD to work. Most of the necessary DCD
configuration in eserv.config is done at installation time by the configuration script. However, realms and
hosts need to be configured.

Note: The DCD configuration options in eserv.config are explained in the section on the diameterBeClient
background process (on page 79).

CCS eserv.config Configuration

Introduction

DCD maintains a WalletInformation cache. To enable updates to the WalletInformation cache, the
service handles for the services using DCD must be mapped to the libdcdCcsSvcExtra.so library.

You will need to configure the mapping in the CCS.ccsServiceLibaray.ccsPluginExtend of

eserv.config.

Chapter 4

26 Diameter Charging Driver Technical Guide

ccsServiceLibrary Configuration

Here is an example of the ccsServiceLibrary configuration for DCD in the CCS section of eserv.config.

ccsServiceLibrary = {

ccsPluginExtend = [

{

library="libdcdCcsSvcExtra.so"

}

]

}

RAR Configuration

You enable processing of re-authorization requests (RARs) in Diameter Control Agent (DCA).

For information about enabling RAR processing in DCA, see the RAR configuration section in Diameter
Control Agent Technical Guide.

When RAR processing is enabled, DCA marks the first INITIAL_REQUEST as RAR enabled to allow
DCD to process any subsequent RARs. You can specify the amount of time DCD should wait for a
response to an RAR sent to the Diameter client via DCA by configuring the rarSleeTimeout

parameter in the DIAMETER section of the eserv.config file:

DIAMETER = {

DCD = {

rarSleeTimeout = seconds

}

}

where seconds is the amount of time in seconds that the DCD will wait for a response to an RAR sent to
the Diameter client via DCA.

After this timeout lapses, DCD responds to the Diameter server with a re-authorization
acknowledgement (RAA) containing the DIAMETER_UNABLE_TO_DELIVER (3002) result code. If the
DCA responds after the DCD has sent an RAA, the DCA response is ignored.

Note: The rarSleeTimeout value must be greater than 0 (zero), and is set to 10 by default. You are

recommended to set the value of the rarSleeTimeout greater than the value of the

rarClientTimeout in the DCAInstances section of eserv.config.

To disable the timeout, set rarSleeTimeout to 0 (zero). A value of 0 (zero) means that no SLEE

timeout will be used.

Note: If RAR processing is not enabled in DCA, then DCD will respond to the diameter server with an
RAA containing the corresponding result code set in the rarResultCode.

SLEE.cfg Configuration

Introduction

The SLEE.cfg file must be configured to enable the DCD to work. All necessary SLEE configuration is
done at installation time by the configuration script.

The SLEE configuration file is located at /IN/service_packages/SLEE/etc/SLEE.cfg.

See SLEE Technical Guide for details about SLEE configuration.

 Chapter 4

•

 Chapter 4, Configuration 27

DCD SLEE Configuration

On installation, the following line is added to the SLEE.cfg file.

INTERFACE=dcdBeClient diameterBeClient.sh /IN/service_packages/DCD/bin EVENT

Note: It is essential for the correct operation of this application that the SLEE Interface type is always set
to EVENT.

PeerSchemes Configuration Section

Example PeerSchemes

Here is a high-level structure of the configuration of a scheme in the PeerSchemes section.

Note: The PeersSchemes or Peers section is mandatory.

PeerSchemes = [

{

schemeName = "SchemeA"

Peers = [

{

name = "host1"

scheme = ["scheme1", "schmeme2"]

permittedOriginHosts = [

"host1.realm1.oracle.com"

]

peer_group = "host1"

transport = "tcp"

initiation = "connect"

RemoteAddresses = [

"192.168.1.10"

]

remote_port = 3868

netmask6Bits = 128

netmaskBits = 32

permittedInstances = 0

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

sctp_hbinterval = 1000

watchdogPeriod = 30

connectionTimeout = 30

inBufferSize = 0

outBufferSize = 0

Chapter 4

28 Diameter Charging Driver Technical Guide

} # end of Peer host1

{

Peer_Host2_Parameters

}

]

} # End of Scheme A

{

schemeName = "SchemeB"

Peers = [

Parameters_for_SchemeB_peers

]

} # End of Scheme B

] # End of PeerSchemes section

schemeName

Syntax: schemeName = "name"

Description: The name identifying the scheme.

Type: String

Optionality: Mandatory

Example: schemeName = "SchemeA"

Peer Host Parameters

The following parameters are used for a peer host. They are found within the Peers section.

Note: The PeerSchemes or Peers section is mandatory.

The available parameters are:

{

name = "host1"

scheme = ["scheme1", "schmeme2"]

permittedOriginHosts = [

"host1.realm1.oracle.com"

]

peer_group = "host1"

transport = "tcp"

initiation = "connect"

RemoteAddresses = [

"192.168.1.10"

]

remote_port = 3868

netmask6Bits = 128

netmaskBits = 32

permittedInstances = 0

 Chapter 4

•

 Chapter 4, Configuration 29

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

sctp_hbinterval = 1000

watchdogPeriod = 30

connectionTimeout = 30

inBufferSize = 0

outBufferSize = 0

} # end of Peer host1

Note: All the peer configuration items from "transport" on down can also have global defaults set in the
DIAMETER.DCD section. See DCD (on page 33).

connectionTimeout

Syntax: connectionTimeout = timeout

Description: The timeout for re-establishing connections (RFC 3588 Tc).

Type: Integer

Optionality: Optional

Allowed: In seconds

Default: 30

Example: connectionTimeout = 30

inBufferSize

Syntax: inBufferSize = size

Description: The size of the socket receive buffer.

Type: Integer

Optionality: Mandatory

Allowed: in bytes

Default: 0 (means to use the OS default)

Example: inBufferSize = 0

initiation

Syntax: initiation = "action"

Description: How to start the connection.

Type: String

Optionality: Mandatory

Allowed: • listen = listen for incoming connections

• connect = connect an outgoing connection.

Example: initiation = "connect"

name

Syntax: name = "name"

Description: The name identifying either peer or group of peers.

Type: String

Optionality: Mandatory

Chapter 4

30 Diameter Charging Driver Technical Guide

Example: name = "host1"

netmaskBits

Syntax: netmaskBits = bits

Description: The number of bits for netmask.

Type: Integer

Optionality: Mandatory

Default: 32 (bits for netmask, that is, a single machine (/32))

Example: netmaskBits = 32

netmask6Bits

Syntax: netmask6Bits = bits

Description: The number of bits for the IP version 6 prefix

Type: Integer

Optionality: Mandatory

Default: 128 (bits for the address prefix, that is, a single machine (/128))

Example: netmask6Bits = 128

outBufferSize

Syntax: outBufferSize = size

Description: The size of the socket send buffer.

Type: Integer

Optionality: Mandatory

Allowed: in bytes

Default: 0 (means to use the OS default)

Example: outBufferSize = 0

peer_group

Syntax: peer_group = "name"

Description: The peer group that the peer host connects to. If multiple peer hosts belong to the
peer group, only one peer host is connected.

The peer group works in failover mode only; it does not support round-robin
mode.

Type: String

Optionality: Optional

Default: Defaults to the value specified by the name parameter. For example, if the name

parameter is set to "host1", peer_group defaults to "host1".

Example: peer_group = "host1"

permittedInstances

Syntax: permittedInstances = number

Description: The number of permitted instances.

Type: Integer

Optionality: Mandatory

Notes: If set to 0 then allow all.

Example: permittedInstances = 0

 Chapter 4

•

 Chapter 4, Configuration 31

permittedOriginHosts

Syntax: permittedOriginHosts = ["host"]

Description: The list of peer names that will be checked against the OriginHost AVP during the
capabilities exchange.

Type: String

Optionality: Mandatory

Notes: This parameter accepts at least one host and will accept any one of them when it
gets the Capabilities Exchange Answer. These are the hosts allowed to talk to
this client.

Example: permittedOriginHosts = [
"host1.realm1.oracle.com"
"host2.realm1.oracle.com"
]

remote_port

Syntax: remote_port = number

Description: The remote post number.

Type: Integer

Optionality: Optional

Default: Defaults to the RFC specified 3868

Example: remote_port = 3868

RemoteAddresses

Syntax: remoteAddresses = ["ipaddress"]

Description: The list of remote IP addresses.

Type: Array of string parameters

Optionality: Mandatory

Notes: If an address becomes unavailable the list will be cycled through.

Example: remoteAddresses = [
"192.168.1.10"
]

reqSctpInboundStreams

Syntax: reqSctpInboundStreams = number

Description: The number of requested inbound sctp streams.

Type: Integer

Optionality: Mandatory

Notes: There is no guarantee you will actually get these.

Example: reqSctpInboundStreams = 8

reqSctpOutboundStreams

Syntax: reqSctpOutboundStreams = number

Description: The number of requested outbound sctp streams.

Type: Integer

Optionality: Mandatory

Chapter 4

32 Diameter Charging Driver Technical Guide

Notes: There is no guarantee you will actually get these.

Example: reqSctpOutboundStreams = 8

scheme

Syntax: scheme = ["scheme", "scheme"]

Description: The list of schemes to which you have limited the peer.

Type: Array of strings

Optionality: If using PeerSchemes this is mandatory.

Allowed: Names of configured schemes.

Example: scheme = ["scheme1", "scheme2"]

sctp_hbinterval

Syntax: sctp_hbinterval = interval

Description: The interval for sctp heartbeats.

Type: Integer

Optionality: Optional

Allowed: in milliseconds

Default: 1000

Example: sctp_hbinterval = 1000

transport

Syntax: transport = "type"

Description: The protocol for this host peer.

Type: String

Optionality: Optional

Allowed: • sctp

• tcp

Default: If not specified, then it uses the one from the global DCD section.

Example: transport = "tcp"

watchdogPeriod

Syntax: watchdogPeriod = period

Description: The quiet period before sending a DWR. (RFC 3588 Tw).

Type: Integer

Optionality: Mandatory

Allowed: in seconds

Default: 30

Example: watchdogPeriod = 30

acs.conf Configuration

Introduction

The acs.conf file must be configured to enable the application to work. All necessary configuration is
done at installation time by the configuration script; this section is for information only.

 Chapter 4

•

 Chapter 4, Configuration 33

The ACS configuration file is located at /IN/service_packages/ACS/etc/acs.conf.

Refer to ACS Technical Guide for details on ACS configuration.

DCD acs.conf Configuration

On installation, the following line is added to the acs.conf.

ChassisPlugin diamActions.so

DCD

Introduction

The DCD section holds global configuration for the DCD application.

Note: This section is optional.

DCD Parameters

Here are the parameters for the DCD section.

DCD = {

serviceDomainInterfaceName = "dcdBeClient"

loggedNotificationPeriod = 300

loggedInvalidPeriod = 300

databaseCacheValiditySeconds = 18000

Origin-Host = "ocpc.oracle.com"

Origin-Realm = "ocpc.oracle.com"

serviceContextID = "ocpc@oracle.com"

Auth-Application-Id = 4

Vendor-Specific-Application-Id = [

{

Vendor-Id = 193

Auth-Application-Id = 4

Acct-Application-Id = 19302

}

]

enableDraft8 = false

scheme = "SchemeA"

honour_disconnect = true

Vendor-Id = 16247

Product-Name = ""

timeout_x = 30000000

transmit_limit = 2

trace_debug_flags = "all"

Chapter 4

34 Diameter Charging Driver Technical Guide

statistics_interval = 300

statsCollection = false

NotificationFilter = {

CollectiveNotice = true

PerPeerNotice = {

initial_request = true

update_request = true

termination_request = true

event_request = true

unknown_request = true

total_request = true

request_timeout = true

non_request_type_result_codes = true

}

}

}

You may also set defaults for peer connection settings here. See Peer Host Parameters (on page 28)
for details of the available options.

Auth-Application-Id

Syntax: Auth-Application-Id = ID

Description: This AVP value is set to the Credit-Control as DCD uses Credit-Control capability
by default.

Type: Integer

Optionality: Optional (not sent if not set).

Allowed:

Default: Not sent

Notes: • This AVP can be configured as a sub-AVP to support Vendor-Specific-
Application-Id (on page 40).

• In case of vendor specific configuration, this value should NOT be set
globally.

Example: Auth-Application-Id = 4

Acct-Application-Id

Syntax: Acct-Application-Id = ID

Description: This AVP value is configured as a sub-AVP to support Vendor-Specific-
Application-Id (on page 40).

Type: Integer

Optionality: Optional (not sent if not set).

Allowed:

Default: Not sent

Notes: Either one, or both of Auth-Application-Id or Acct-Application-Id

should be set in order to support Vendor-Specific-Application-Id (on page 40).

Example: Acct-Application-Id = 12300

diameterMessageLength

Syntax: diameterMessageLength = size

Description: Maximum size of CCA packet received.

 Chapter 4

•

 Chapter 4, Configuration 35

Type: Integer

Optionality: Optional (default used if not set)

Allowed:

Default: 8192

Notes:

Example: diameterMessageLength = 32768

checkDefinedAvpFlags

Syntax: checkDefinedAvpFlags = true|false

Description: Whether to check incoming AVPs for flags that are defined in
the base Diameter protocol, or in any of the Diameter
application specifications, so that unknown mandatory AVPs
can be excluded.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true – Check flags of incoming AVPs.

false – Do not check flags of incoming AVPs.

Default: true

Example: checkDefinedAvpFlags = false

databaseCacheValiditySeconds

Syntax: databaseCacheValiditySeconds = seconds

Description: Defines how long to keep data from the database after loading it.

Type: Integer

Optionality: Optional

Allowed: Seconds

Default: 18000 seconds (5 hours)

Example: databaseCacheValiditySeconds = 18000

enableDraft8

Syntax: enableDraft8 = true|false

Description: Indicates if Draft 8 version of the Diameter base protocol should be used. This is
required to support the enableScap (on page 43) parameter.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: enableDraft8 = false

enableDraft8

Syntax: excludeWhenEmpty = true|false

Description: Causes DCD to not send a parent Attribute-Value Pair (AVP) if all its child AVPs
are empty.

Chapter 4

36 Diameter Charging Driver Technical Guide

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: excludeWhenEmpty = true

honour_disconnect

Syntax: honour_disconnect = true|false

Description: This is whether to use the RFC 3588 disconnect logic.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: false

Notes: By default the RFC3588 disconnect logic is enabled. If your server incorrectly
sends DPR messages, then disable this by setting to false.

Example: honour_disconnect = true

loggedInvalidPeriod

Syntax: loggedInvalidPeriod = period

Description: This is how often to announce the number of invalid messages.

Type: Integer

Optionality: Optional

Allowed: Seconds

Default: 300

Example: loggedInvalidPeriod = 300

loggedNotificationPeriod

Syntax: loggedNotificationPeriod = period

Description: This is how often to announce the number of recent message parse errors.

Type: Integer

Optionality: Optional

Allowed: Seconds

Default: 300

Example: loggedNotificationPeriod = 300

NotificationFilter

Syntax: NotificationFilter = {
 CollectiveNotice =
 PerPeerNotice = {}
}

Description: This section sets flags allowing the appropriate notification to be enabled or
suppressed.

Type: Section of boolean parameters

Optionality: Optional, default used if not set

Default: All values default to true (that is, statistics recording in DCD alarm log enabled).

 Chapter 4

•

 Chapter 4, Configuration 37

Notes: Settings are only applicable to statistics that are recorded in the DCD alarm log.

Example:

NotificationFilter = {

CollectiveNotice = true

PerPeerNotice = {

initial_request = true

update_request = true

termination_request = true

event_request = true

unknown_request = true

total_request = true

request_timeout = true

non_request_type_result_codes = true

}

}

CollectiveNotice

Syntax: collectiveNotice = true|false

Description: Enables or suppresses the recording of CCR request type statistics.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – Enable CCR request type statistics

• false – Suppress CCR request type statistics

Default: true

Notes: Counts are collective across all peers and not separated on a per peer basis.

Example: collectiveNotice = true

PerPeerNotice

Syntax: PerPeerNotice = {request_type = true|false> list}

Description: Enables/suppresses statistic counts per peer for both CCR and CCA for the listed
CC_Request_types.

Type: Section of boolean parameters

Optionality: Optional (default used if not set).

Allowed: Each request type can be set to:

• true (statistic enabled)

• false (statistic suppressed)

See example for list of request types.

Default: All values default to true (statistic enabled).

Notes:

Example: PerPeerNotice = {
initial_request = true

update_request = true

termination_request = true

event_request = true

unknown_request = true

total_request = true

request_timeout = true

non_request_type_result_codes = true

}

Chapter 4

38 Diameter Charging Driver Technical Guide

Origin-Host

Syntax: Origin-Host = "diameterId"

Description: The Diameter AVP Origin-Host - fully qualified domain name.

Type: String

Optionality: Optional

Notes: May be specified for each host. See HostSpecificData Parameters (on page 73).

Example: Origin-Host = "ocpc.oracle.com"

Origin-Realm

Syntax: Origin-Realm = "diameterId"

Description: The Diameter AVP Origin-Realm.

Type: String

Optionality: Optional

Notes: May be specified for each host. See HostSpecificData Parameters (on page 73).

Example: Origin-Realm = "ocpc.oracle.com"

Product-Name

Syntax: Product-Name = "name"

Description: The Product name for CER/CEA.

Type: String

Optionality: Optional

Default: empty

Example: Product-Name = ""

rarResultCode

Syntax: rarResultCode = integer

Description: What happens when diameterBeClient receives a Re-Auth-Request

Type: Integer

Optionality: Optional (default used if not set)

Allowed: Any integer

Default: rarResultCode = 3001, DIAMETER_COMMAND_UNSUPPORTED

Notes: When diameterBeClient receives a RAR:

• If the value is omitted or specified as 3001, it logs an error message and
responds with Re-Auth-Answer (Result-Code=3001).

• If a value other than 3001 is specified, it does not log an error message and
responds with Re-Auth-Answer (Result-Code=the specified rarResultCode).

diameterBeClient takes no further action and does not send the Re-Auth-Request to
slee_acs.

Example: rarResultCode = 3001

rarsleeTimeout

Syntax: rarSLEETimeout = int

Description: The number of seconds DCD will wait for a response from a RAR sent to the Diameter
client via DCA

Type: Integer

Optionality: Optional (default used if not set)

 Chapter 4

•

 Chapter 4, Configuration 39

Allowed: >=0

Default: 10

scheme

Syntax: scheme= "type"

Description: The global scheme to use.

Type: String

Optionality: If you use the peerSchemes section, then this is mandatory.

Example: scheme = "schemeA"

serviceDomainInterfaceName

Syntax: serviceDomainInterfaceName = "name"

Description: The interface name of the Diameter BE client (in SLEE.cfg).

Type: String

Optionality: Optional

Default: dcdBeClient

Example: serviceDomainInterfaceName = "dcdBeClient"

serviceContextID

Syntax: serviceContextID = "ContextID"

Description: The Diameter AVP Service-Context-Id.

Type: String

Optionality: Mandatory

Example: serviceContextID = "ocpc@oracle.com"

statistics_interval

Syntax: statistics_interval = seconds

Description: This is how often to record aggregate (average, min, max) latency statistics.

Type: Integer

Optionality: Mandatory

Allowed: In seconds.

Default: 300 (that is, 5 minutes)

Example: statistics_interval = 300

statsCollection

Syntax: statsCollection = true|false

Description: Whether to collect statistics in DCD.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true – Enable statistics collection.

false – Disable statistics collection.

Default: true

Example: statsCollection = false

Chapter 4

40 Diameter Charging Driver Technical Guide

timeout_x

Syntax: timeout_x = timer

Description: The RFC 4006 Tx timer.

Type: Integer

Optionality: Optional

Allowed: In microseconds

Default: 30000000

Example: timeout_x = 30000000

trace_debug_flags

Syntax: trace_debug_flags = "flags"

Description: The debug flags to turn on if tracing (in the client) is requested by the actions
library.

Type: String

Optionality: Optional

Default: "all"

Example: trace_debug_flags = "all"

transmit_limit

Syntax: transmit_limit = limit

Description: The maximum number of retransmits (including the original transmission) allowed
for a message.

Type: Integer

Optionality: Optional

Example: transmit_limit = 2

Vendor-Id

Syntax: Vendor-Id = ID

Description: The Vendor ID for CER/CEA.

Type: Integer

Optionality: Optional

Default: 16247 (the Oracle Vendor-Id)

Notes: • This AVP can be configured as a sub-AVP to support Vendor-Specific-
Application-Id (on page 40).

• It is mandatory to specify vendorId when configuring vendor specific

AVPs for SCAP.

Example: Vendor-Id = 16247

Vendor-Specific-Application-Id

Syntax:
Vendor-Specific-Application-Id = [

{

Vendor-Id = int

#Auth-Application-Id = int

Acct-Application-Id = int

}

]

Description: Lists the Vendor specific AVPs required for enabling SCAP.

Type: Parameter array

 Chapter 4

•

 Chapter 4, Configuration 41

Optionality: Optional (default used if not set).

Allowed:

Default: Parameter array is not specified.

Notes: Do NOT set the global Auth-Application-Id (on page 34) if configuring this
parameter array.

Example:
Vendor-Specific-Application-Id = [

{

Vendor-Id = 123

Acct-Application-Id = 12345

}

]

DomainTypes

Introduction

The DomainTypes section lists all DCD domain types and the associated configuration.

Note: This section is mandatory, and it must include one domain type, with a name and scheme defined.

DomainTypes Parameters

Here is an example high-level structure showing the parameters for the DomainTypes section.

DomainTypes = [

{

name = "DIAMETER"

schemeName = "SchemeA"

routing = "Round Robin"

voidUnusedReservation = false

releaseOnLowCredit = false

defaultSessionFailover = 0

defaultEventFailover = 0

defaultFailureHandling = 0

balanceEnquiryMethod = "balanceCheck"

includeDcdCdrFields = false

defaultFixedCostDuration = 86400

conversionScale = 1

enableScap = false

overwriteZeroCallAnswerTime = false

Domains = [

{First_Domain

}

{Next_Domain

}

Chapter 4

42 Diameter Charging Driver Technical Guide

]

AVPs = [

{First_AVP

}

{Next_AVP

}

{...

}

]

}

balanceEnquiryMethod

Syntax: balanceEnquiryMethod = "method"

Description: The method to use to allow balance queries.

Type: String

Optionality: Optional (default used if not set)

Allowed: • "balanceCheck" uses a Balance Check message with a Service Identifier
set to "Information" to trigger the query, or

• "reqActionViewBalance" uses a special Requested-Action AVP with a
value of VIEW_BALANCE(5) to trigger the query

Default: "balanceCheck"

Notes:

Example: balanceEnquiryMethod = "balanceCheck"

defaultEventFailover

Syntax: defaultEventFailover = failover

Description: The default event failover.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: The failover corresponds to the values defined for Credit Control Failure Handling
AVP in RFC 4006:

• 0 – Terminate

• 1 – Continue

• 2 – Retry and Terminate

Default: 0 (Failover not supported)

Notes: Until the BE responds for the event, the failover behavior is determined by this
and the defaultSessionFailover parameter.

Example: defaultEventFailover = 0

defaultFailureHandling

Syntax: defaultFailureHandling = number

Description: How to behave until a Credit-Control-Failure-Handling AVP (as defined in RFC
4006) is received from the server.

Type: Integer

Optionality: Optional (default used if not set).

 Chapter 4

•

 Chapter 4, Configuration 43

Allowed: • 0 – Terminate

• 1 – Continue

• 2 – Retry and Terminate

Default: 0 (Terminate)

Notes:

Example: defaultFailureHandling = 0

defaultFixedCostDuration

Syntax: defaultFixedCostDuration = duration

Description: The default time to use for free and fixed cost calls.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: In seconds. May be any positive value.

Default: 86400 (one day)

Notes:

Example: defaultFixedCostDuration = 86400

defaultSessionFailover

Syntax: defaultSessionFailover = failover

Description: The default session failover.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Corresponds to the values defined for Credit Control Failure Handling AVP in
RFC 4006:

• 0 – Terminate

• 1 – Continue

• 2 – Retry and Terminate

Default: 0 (Failover not supported)

Notes: Until the BE responds in a session, the failover behavior for a CC session is
determined by this.

Example: defaultSessionFailover = 0

enableScap

Syntax: enableScap = true|false

Description: If set to true, support for Ericsson SCAP (Service Charging Application Protocol)
to DCD is enabled. This ensures SCAP type accounting messages are used for
credit control, rather than CCR/CCA.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – Enabled for SCAP compliance

• false – Disabled for SCAP compliance

Default: false

Notes:

Example: enableScap = false

Chapter 4

44 Diameter Charging Driver Technical Guide

forceWalletReload

Syntax: forceWalletReload = true|false

Description: Defines whether or not the cache may be used for balance inquiries.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: forceWalletReload = true

includeDcdCdrFields

Syntax: includeDcdCdrFields = true|false

Description: Whether or not to record the Result-Code in call EDRs.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: See DCD EDR Tags (on page 93) for the list of DCD tags.

Example: includeDcdCdrFields = false

insufficientFundsDropCallResultCodes

Syntax: insufficientFundsDropCallResultCodes = [

Integer

Integer

]

Description: Indicates a call drop immediately without granting any further time reservation including
the withheld ones without sending back a CCR-T.

Type: Integer

Optionality: Optional

Allowed: Any predefined value

Default: None

Notes: insufficientFundsDropCallResultCodes parameter values are only enabled when
voidUnusedReservation is set to false. If voidUnusedReservation set to true,
insufficientFundsDropCallResultCodes parameter values are ignored and the default
result codes, 4010 and 4012 are used.

Example: insufficientFundsDropCallResultCodes = [

4013

4014

]

name

Syntax: name = "type"

Description: The name of the Domain Type as defined in Prepaid Charging.

Type: String

Optionality: Mandatory

 Chapter 4

•

 Chapter 4, Configuration 45

Allowed: Defined in Prepaid Charging from available DIAMETER domain types on the
Domain tab of the Service Management screen. Refer to CCS User's Guide.

Example: name = "DIAMETER"

overwriteZeroCallAnswerTime

Syntax: overwriteZeroCallAnswerTime = true|false

Description: Enables overwriting of Charging-Start-Timestamp using the EventTimestamp.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true – Overwrite the charging start time.

• false – If a call is not answered (that is, CallAnswerTime is zero), set the
charging start timestamp AVP to 'Jan 1, 1970 00:00:00.0000 UTC'.

Default: false

Notes:

Example: overwriteZeroCallAnswerTime = false

releaseOnLowCredit

Syntax: releaseOnLowCredit = true|false

Description: Whether to terminate a session after the expiry of the initial reservation when the
reservation length is less than or equal to the low credit buffer. When
releaseOnLowCredit is set to:

• true – DCD terminates sessions after the expiry of the initial reservation.

• false – DCD does not terminate the session.

Type: Boolean

Optionality: Required

Allowed: true, false

Default: false

Notes: When a call session using DCD with the UATB feature node is approaching a credit
threshold, the UATB node needs enough usage units to provide an insufficient funds
message. You should set releaseOnLowCredit to false if you have configured

Diameter servers to assume that unused units are still available for the client.
Otherwise, set releaseOnLowCredit to true to ensure that the client has enough

unused units reserved for the unsufficient funds message.

The releaseOnLowCredit parameter should be placed immediately after the

voidUnusedReservation parameter in the eserv.config file.

Example: releaseOnLowCredit = false

routing

Syntax: routing = "name"

Description: The algorithm to use when picking domains within the domain type.

Type: String

Optionality: Optional

Allowed: • "Round Robin" (a weighted round robin algorithm)

• "Failover"

Default: "Round Robin"

Example: routing = "Round Robin"

Chapter 4

46 Diameter Charging Driver Technical Guide

schemeName

Syntax: schemeName = "name"

Description: The name of the peer scheme to use with this domain type.

Type: String

Optionality: Mandatory

Example: schemeName = "SchemeA"

voidUnusedReservation

Syntax: voidUnusedReservation = true|false

Description: Whether or not to void unused reservations.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: false

Notes: Diameter states that the server and client should consider any previously
reserved, but unused, time in a subsequent reservation as no longer reserved.
This is counter to most telephony models, so is disabled by default. To enable (for
this domain type), set this parameter to true.

Example: voidUnusedReservation = false

dynamicWalletReload

The dynamicWalletReload section defines the profile to use to determine whether to dynamically

force wallet reloads. A wallet reload is forced when the profileFormat value is one of the following:

• "INTEGER" and the data in the profile is 1 (stored as 4-bytes)

• "BOOLEAN" and the data in the profile is 1 (stored as a single byte)

• "STRING" and the data in the profile is one of:

▪ "true"
▪ "yes"
▪ "y"
▪ "1"

The parameters are defined in the ContextCopy Parameters (on page 69) section.

Notes:

• Only the profile formats listed here are supported; all other values are ignored.

• The forceWalletReload parameter must be set to false (or not specified).

Example dynamicWalletReload

Here are the example parameters.

dynamicWalletReload = {

profileBlock = 17

profileTag = 6357900

profileFormat = "INTEGER"

}

Domains Parameters

Here is an example of the Domains section.

Domains = [

 Chapter 4

•

 Chapter 4, Configuration 47

{

name = "myDomainA"

routing = "Round Robin"

realmFailureWaitSeconds = 20

weighting = 1

}

{

name = "myDomainB"

routing = "Failover"

realmFailureWaitSeconds = 20

weighting = 1

}

]

name

Syntax: name = "name"

Description: The name of the domain as defined in Prepaid Charging.

Type: String

Optionality: Mandatory

Allowed: Defined in Prepaid Charging from available DIAMETER domains on the Domain
tab of the Service Management screen. Refer to CCS User's Guide.

Example: name = "myDomainA"

realmFailureWaitSeconds

Syntax: ArraySize = as

Description: How long we wait for a Realm that has had a failure before retrying it.

Type: Integer

Optionality: optional

Allowed: in seconds

Default: 30

Example: realmFailureWaitSeconds = 20

routing

Syntax: routing = "type"

Description: The routing type to use when picking Realms within this Domain.

Type: String

Optionality: Optional

Allowed: • "Round Robin" (a weighted round robin algorithm)

• "Failover"

Default: "Round Robin"

Example: routing = "Round Robin"

weighting

Syntax: weighting = weight

Description: The domain's weighting, if our Domain Type is using Round Robin routing.

Type: Integer

Optionality: Optional

Allowed:

Default: 1

Chapter 4

48 Diameter Charging Driver Technical Guide

Notes: The weighting determines how many times the domain is used. The weightings of
all the active domains are added together and the domain receives its percentage
of usage.

For example:

• myDomainA has a weighting of 1

• myDomainB a weighting of 1

• myDomainC a weighting of 2

myDomainA has 25% of the total usage. If myDomainC becomes unavailable,
then myDomainA will have 50%.

Example: weighting = 1

AVPs

The AVPs section defines (as a tree-like structure) the configurable AVP part of the message for every

action that uses Diameter requests and responses.

An example is provided in the eserv.config.default file.

The actions for which configuration is required are:

• BadPINRequest, BadPINResponse

• ConfirmNamedEventReservationRequest, ConfirmNamedEventReservationResponse

• ConfirmTimeReservationRequest, ConfirmTimeReservationResponse

• CreateEDRRequest, CreateEDRResponse

• DirectNamedEventRequest, DirectNamedEventResponse

• DirectTimeChargeRequest, DirectTimeChargeReponse

• ExtendTimeReservationRequest, ExtendTimeReservationReponse

• GetNamedEventRatesRequest, GetNamedEventRatesReponse

• InitialTimeReservationRequest, InitialTimeReservationReponse

• NamedEventReservationRequest, NamedEventReservationReponse

• RevokeNamedEventReservationRequest, RevokeNamedEventReservationReponse

• RevokeTimeReservationRequest, RevokeTimeReservationReponse

• WalletRechargeRequest, WalletRechargeResponse

• WalletInfoRequest, WalletInfoReponse

AVP Parameters

Here is an example of the AVPs section.

AVPs = [

{

name = "ConfirmNamedEventReservationRequest"

mandatoryContents = [

"Subscription-Id"

"Service-Identifier"

"NE-Used-Service-Unit"

]

optionalContents = []

}

{

avpCode = 443

name = "Subscription-Id"

type = "Grouped"

 Chapter 4

•

 Chapter 4, Configuration 49

mandatoryContents = [

"Subscription-Id-Type"

"Subscription-Id-Data"

]

optionalContents = []

}

{

avpCode = 450

name = "Subscription-Id-Type"

type = "Enumerated"

literal = "0" # END_USER_E164

}

{

avpCode = 444

name = "Subscription-Id-Data"

type = "UTF8String"

ccsConcept = "acsProfile"

profileBlock =18

profileTag = 327686

profileFormat = "LNSTRING"

conditionProfileBlock = 17

conditionProfileTag = 2009

conditionValue = 14

}

{

avpCode = 439

name = "Service-Identifier"

type = "Unsigned32"

ccsConcept = "eventType"

cdrTag = "DIAMETER_SERVICE_ID"

cdrOperation = "replace"

}

{

avpCode = 446

name = "NE-Used-Service-Unit"

type = "Grouped"

mandatoryContents = [

"CC-Service-Specific-Units-Used"

]

}

{

avpCode = 417

name = "CC-Service-Specific-Units-Used"

type = "Unsigned64"

ccsConcept = "numUnitsUsed"

vendorId = 0

flags = 0

repeating = false

maxOccurrences = 10

conversion = [

{

esg = 1

vendor = 2

serviceProvider = 1

}

{

esg = 3

vendor = 2

serviceProvider = 2

Chapter 4

50 Diameter Charging Driver Technical Guide

}

]

conversionScale = 1

conversionRounding = "floor"

interpretBase = 10

octetLength = 0

}

{

avpCode = 900

vendorId = 16247

name = "Custom-Scp-Action"

type = "Enumerated"

ccsConcept = "scpAction"

repeating = true

}

{

name = "DirectNamedEventRequest-Money Refund"

mandatoryContents = [

"Subscription-Id"

"SOS-TopUp-RequestedAction"

"Charging-Start-Timestamp"

]

}

{

name = "SOS-TopUp-RequestedAction"

type = "Enumerated"

value = "5"

avpCode = 436

}

{

name = "WalletRechargeRequest"

mandatoryContents = [

"Subscription-Id"

"TopUp-RequestedAction"

"Charging-Start-Timestamp"

"Topup-Amount"

"Topup-Voucher-Number"

"Topup-Voucher-Type"

"Topup-Voucher-Id"

"Topup-Voucher-Serial-Number"

"Source-System-Id"

]

optionalContents = [

"Voucher-Recharge_Failed-Flag"

"Voucher-Recharge_Failed_Date_Time"

"Topup-Voucher-Balance-Validity-Start"

"Topup-Voucher-Balance-Validity-Relative"

]

}

{

name = "Voucher-Recharge_Failed-Flag"

type = "Integer32"

vendorId = 581

avpCode = 50998

ccsConcept = "voucherRechargeFailureFlag"

includeIf = true

}

 Chapter 4

•

 Chapter 4, Configuration 51

{

name = "Voucher-Recharge_Failed-Date-Time"

type = "Integer32"

vendorId = 581

avpCode = 50999

ccsConcept = "voucherRechargeFailureDateTime"

excludeWhenIn = "0"

}

{

name = "TopUp-RequestedAction"

type = "Enumerated"

value = "4"

avpCode = 436

}

{

 name = "Charging-Start-Timestamp"

 type = "Integer32"

 profileBlock = 18

 profileTag = 327999

 avpCode = 12000

}

{

 name = "Topup-Voucher-Number"

 avpCode = 12001

 ccsConcept = "voucherInfoVoucher"

 type = "Integer32"

}

{

 name = "Topup-Amount"

 avpCode = 12002

 type = "Grouped"

 mandatoryContents = [

 "Value-Digits"

]

 optionalContents = [

 "Exponent"

]

}

{

name = "Value-Digits"

avpCode = 12003

ccsConcept = "voucherInfoValue"

type = "Integer32"

}

{

name = "Topup-Voucher-Type"

avpCode = 12005

ccsConcept = "voucherTypeName"

type = "UTF8String"

}

{

name = "Topup-Voucher-Id"

vendorId = 581

avpCode = 50026

ccsConcept = "voucherInfoVoucherId"

Chapter 4

52 Diameter Charging Driver Technical Guide

type = "Integer32"

}

{

name = "Topup-Voucher-Serial-Number"

avpCode = 12008

ccsConcept = "voucherInfoVoucherSerialNumber"

type = "Unsigned64"
}

{

name = "Topup-Voucher-Balance-Validity-Start"

avpCode = 12009

ccsConcept = "voucherInfoBalanceValidityStart"

type = "Time"

}

{

name = "Topup-Voucher-Balance-Validity-Relative"

avpCode = 12010

type = "Grouped"

optionalContents = [

"Topup-Voucher-Balance-Validity-Offset"

"Topup-Voucher-Balance-Validity-Type

]

}

{

name = "Topup-Voucher-Balance-Validity-Offset"

avpCode = 12011

ccsConcept = "voucherInfoBalanceValidityOffset"

type = "Integer32"

}

{

name = "Topup-Voucher-Balance-Validity-Type"

avpCode = 12012

ccsConcept = "voucherInfoBalanceValidityType"

type = "Enumerated"

}

{

name = "WalletRechargeResponse"

mandatoryContents = [

"Topup-Balance-Information"

"Topup-Receipt-Number"

]

}

{

name = "Topup-Balance-Information"

vendorId = 581 # Intec

avpCode = 50030

type = "Grouped"

mandatoryContents = [

"Topup-Balance-Type-ID"

]

optionalContents = [

"Topup-Balance-Expire-Date"

"Topup-Unit-Value"

]

}

 Chapter 4

•

 Chapter 4, Configuration 53

{

name = "Topup-Balance-Type-ID"

avpCode = 50020

vendorId = 581 # Intec

ccsConcept = "walletInfoBalanceType"

type = "Integer32"

}

{

name = "Topup-Balance-Expire-Date"

vendorId = 581 # Intec

avpCode = 50032

ccsConcept = "walletInfoBalanceExpiry"

type = "Integer32"

}

{

avpCode = 445

name = "Unit-Value-Topup"

type = "GroupedUnitValue"

ccsConcept = "voucherInfoValue"

conversionScale = -100

signInversion = true

mandatoryContents = [

"Value-Digits-Topup"

]

optionalContents = [

"Exponent-Outgoing"

]

}

{

avpCode = 447

name = "Value-Digits-Topup"

type = "Integer64"

}

{

avpCode = 429

name = "Exponent-Outgoing"

type = "Integer32"

literal = "1"

}

{

name = "Topup-Value-Digits"

avpCode = 50020

vendorId = 581 # Intec

ccsConcept = "walletInfoBalanceSystemValue"

type = "Integer32"

}

{

 name = "Topup-Exponent"

 avpCode = 50199 # the ICD doesn't define this but it's not an issue

for testing

 vendorId = 581 # Intec

 type = "Integer32"

}

{

name = "Topup-Receipt-Number"

Chapter 4

54 Diameter Charging Driver Technical Guide

avpCode = 50024

type = "UTF8String"

}

{

name = "CreateEDRRequest"

}

{

name = "CreateEDRResponse"

}

{

name = "BadPINRequest"

}

{

name = "BadPINResponse"

}

{

name = "Termination-Cause"

avpCode = 295

type = "Enumerated"

ccsConcept = "terminationCause"

conversion = [

{

esg = 8 # releasedNoFunds

vendor = 6 # DIAMETER_AUTH_EXPIRED

}

{

esg = 9 # disconnectedLegBNoFunds

vendor = 6 # DIAMETER_AUTH_EXPIRED

}

{

esg = 14 # callingPartyDisconnected

vendor = 1 # DIAMETER_LOGOUT

}

{

esg = 15 # calledPartyDisconnected

vendor = 1 # DIAMETER_LOGOUT

}

]

}

]

avpCode

Syntax: avpCode = code

Description: The numeric tag code that is to be set whenever an AVP of this type is created
(for example, added to a request message). It can also be used to ascertain the
type of AVP unpacked from a response message.

Type: Integer

Optionality: Mandatory

Example: avpCode = 888005

ccsConcept

Syntax: ccsConcept = "concept"

Description: The “CCS concept” to which the AVP directly relates.

 Chapter 4

•

 Chapter 4, Configuration 55

Type: String

Optionality: Optional. Used by some, though not all AVPs.

Allowed: The value is a string value, associated in the code with an enumeration. See
ccsConcepts (on page 4).

Notes: The AVPs are ultimately filled out from available "ccsConcepts". These represent
variables available to the DCD actions library at the time of sending the message.

Example: ccsConcept = "acsProfile"

cdrTag

Syntax: cdrTag = "tag_name"

Description: The EDR tag name to amend the EDR record with, depending on the
cdrOperation parameter value.

Type: String

Optionality: Optional

Allowed: Alphanumeric characters only, plus underscore.

Default: None

Notes: • cdrTag is optional, but if cdrOperation is specified then cdrTag must also
be specified.

• For an AVP you can just specify cdrTag, then cdrOperation will default to
"replace".

• The tag name should refer to a DCD tag, not one of the pre-defined ACS
tags. Otherwise the operation will have no effect.

Example: cdrTag = "CMX_EN"

cdrOperation

Syntax: cdrOperation = "operation"

Description: The operation to perform on the cdrTag value in the EDR record.

Type: String

Optionality: Optional – only referred to if cdrTag is non-blank.

Allowed: • replace

• leave

• append

Not case sensitive, for example Replace = REPLACE = replace

Default: replace

Notes: • If cdrOperation is specified, cdrTag must also be specified.

• replace – If this tag is present, all instances are removed from the EDR
and then append this instance to the EDR.

• leave – If this tag already exists, do nothing. Otherwise, append this
instance to the EDR.

• append – Regardless of existence or not of this tag, append this instance
to the EDR.

Example: cdrOperation = "replace"

conditionProfileBlock

Syntax: conditionProfileBlock = block_number

Description: The profile block to use for conditional AVP filling.

Chapter 4

56 Diameter Charging Driver Technical Guide

Type: Integer

Optionality: Optional (when omitted no condition checking is performed).

Allowed: Any valid profile block number.

Default: None

Notes: If both the block and tag are specified, and there is no data in the location, then
condition checking will fail and the AVP will not be populated.

Example: conditionProfileBlock = 17

conditionProfileTag - 1.0.4 - 94934

Syntax: conditionProfileTag = tag_number

Description: The profile block field to use for conditional AVP filling.

Type: Integer

Optionality: Optional (missing then no condition checking is performed).

Allowed: Any valid profile field number.

Default: None

Notes: If both the block and tag are specified, and there is no data in the location, then
condition checking will fail and the AVP will not be populated.

Example: conditionProfileTag = 2009

conditionValue

Syntax: conditionValue = condition

Description: The value to use to determine if AVP filling is to be performed.

Type: Integer

Optionality: Optional (default used if omitted).

Allowed: Any positive integer.

Default: 1

Notes: This example populates the AVP if and only if profile block/tag contains value 14.

Example: conditionValue = 14

conversion

Syntax: conversion = [mapping]

Description: An array of integer values, defining a mapping from the Oracle enumeration to the
billing vendor's equivalent enumeration value.

The serviceProvider array parameter is optional, and it allows you to limit a

conversion to a single service provider.

Type: Integer

Optionality: Mandatory

Notes: • It is used if the AVP type is any of the integer types (including
enumeration). This mapping is performed regardless of the ccsConcept,
and is the responsibility of the AVP traverser, not the ccsConcept helper
functions.

• For AVPs associated with Balance Type concepts, do not include in the
conversion array any balance types that are specified in the Balance

Type Mapping tab of the SMS Service Management screen. Otherwise, the
conversions from both sources could be applied.

Example:

conversion = [

{

 Chapter 4

•

 Chapter 4, Configuration 57

esg = 880

vendor = 880880

serviceProvider = 1

}

{

esg = 890

vendor = 890890

serviceProvider = 2

}

]

esg

Syntax: esg = int

Description: The integer value in the conversion array that indicates which equivalent value
should be used by the billing vendor.

Type: Integer

Optionality: Mandatory

Allowed:

Default:

Notes: This value differs based on the AVP that uses it.

For example, see ACS Action handler (on page 5) for esg values defined for the

Termination-Cause AVP in the configuration.

Example: esg = 3

vendor

Syntax: vendor = int

Description: The billing vendor's integer value in the conversion array that maps to the
equivalent esg value.

Type: Integer

Optionality: Mandatory

Allowed:

Default:

Chapter 4

58 Diameter Charging Driver Technical Guide

Notes: This value differs based on the AVP that uses it.

For example, the vendor values defined for the Termination-Cause AVP in the

configuration are as follows:

Integer Reason Comment

1 DIAMETER_LOGOUT The user initiated a disconnect

2 DIAMETER_SERVICE
_NOT_PROVIDED

This value is used when the user
disconnected prior to the receipt

of the authorization answer message.

3 DIAMETER_BAD_ANS
WER

This value indicates that the authorization
answer received by the

access device was not processed
successfully.

4 DIAMETER_ADMINIST
RATIVE

The user was not granted access, or was
disconnected, due to

administrative reasons, such as the receipt
of a Abort-Session-Request message.

5 DIAMETER_LINK_BR
OKEN

The communication to the user was abruptly
disconnected.

6 DIAMETER_AUTH_EX
PIRED

The user’s access was terminated since its
authorized session time has expired.

7 DIAMETER_USER_M
OVED

The user is receiving services from another
access device.

8 DIAMETER_SESSION
_TIMEOUT

The user’s session has timed out, and
service has been terminated.

Example: vendor = 6

serviceProvider

Syntax: serviceProvider = int

Description: If mentioned, the conversion is limited to the specific service provider.

Type: Integer

Optionality: Optional

Allowed:

Default:

Notes:

Example: serviceProvider = 2

conversionScale

Syntax: conversionScale = scale

Description: Defines a conversion factor of esg values to calculate server values.

Type: Integer

Optionality: Optional

 Chapter 4

•

 Chapter 4, Configuration 59

Allowed: • 0 – Applies the scale factor specified in the Balance Type Mapping tab of the
SMS Service Management screen. If the Balance Type Mapping tab does
not contain an applicable mapping, DCD applies a scale factor of 1. For
more information, see CCS User's Guide.

• Any non-zero integer – Applies the scale factor to all instances of the
AVP in request and response messages. For example, if you set
conversionScale to 100, DCD multiplies the values by 100 for all

balance type AVPs.

Default: 1

Notes: • For request AVPs – Positive means multiply, negative means divide.

• For response AVPs – Positive means divide, negative means multiply.

All conversion rules are applied before scaling is applied.

Example: conversionScale = -10

This example multiplies incoming Diameter values by 10.

conversionRounding

Syntax: conversionRounding = "rounding_type"

Description: The conversion method used between internal and server numeric values.

Type: String

Optionality: Optional (default used if not set).

Allowed: • floor – Drop any fractions.

• ceiling – Round up fractional parts.

• round – Round to the nearest whole number. That is, x.5 or higher is
rounded up and others are rounded down.

Default: floor

Notes: • If an AVP has the conversionScale parameter set,

conversionRounding can also be set.

• For GroupedUnitValue AVP types, use the conversionRounding

parameter to specify the type of rounding applied after applying an
exponent value.

Example: conversionRounding = "round"

excludeIf

Syntax: excludeIf = true|false

Description: DCD outgoing messages will exclude AVP values that match this rule.

Type: Boolean

Optionality: Optional.

Allowed: true, false

Default: N/A

Notes: The AVP type should be set to "Integer32".

If includeIf is also defined then DCD logs a warning that the configuration is

inconsistent. Depending on which parameter appears first in the configuration file
DCD will load either excludeIf or includeIf, but not both.

Example: excludeIf = false

Chapter 4

60 Diameter Charging Driver Technical Guide

excludeIfMatches

Syntax: excludeIfMatches = "search_string"

Description: DCD outgoing messages will exclude AVP values that match this rule. The AVP
type should be set to "UTF8String".

Type: String

Optionality: Optional

Allowed: "search_string" Check for the specified search string
anywhere in the string

"^search_string$" Check the specified search string
matches the whole string

"^search_string" Check for the specified search string at
the beginning of the string

"search_string$" Check for the specified search string at
the end of the string

Default: N/A

Notes: If includeIfMatches is also defined then DCD logs a warning that the

configuration is inconsistent. Depending on which parameter appears first in the
configuration file DCD will load either excludeIfMatches or

includeIfMatches, but not both.

Example: excludeIfMatches = "f006$"

excludeWhenIn

Syntax: excludeWhenIn = "range|list"

Description: DCD outgoing messages will exclude AVP values that match this rule.

Type: Integer

Optionality: Optional .

Allowed: delimited range

(numbers from x to y)

"x..y"

greater than or equal to x ">=x"

less than or equal to x "<=x"

any of the listed numbers x,
y or z

(list may be any length)

"x,y,z"

a single number x "x"

Default: N/A

Notes: The AVP type should be set to "Integer32".

If includeWhenIn is also defined then DCD logs a warning that the

configuration is inconsistent. Depending on which parameter appears first in the
configuration file DCD will load either excludeWhenIn or includeWhenIn, but

not both.

Example: excludeWhenIn = "1..99"

flags

Syntax: flags = number

Description: What flags to override in the AVP header (as octet value). For example, for M, V
bits: flags = 192

Type: Integer

 Chapter 4

•

 Chapter 4, Configuration 61

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes: If the vendorID parameter value is greater than zero, then V-bit will be set

regardless.

Example: flags = 192

includeIf

Syntax: includeIf = true|false

Description: DCD outgoing messages will include AVP values that match this rule.

Type: Boolean

Optionality: Optional.

Allowed: true, false

Default:

Notes: The AVP type should be set to "Integer32".

If excludeIf is also defined then DCD logs a warning that the configuration is

inconsistent. Depending on which parameter appears first in the configuration file
DCD will load either excludeIf or includeIf, but not both.

Example: includeIf = true

includeIfMatches

Syntax: includeIfMatches = "search_string"

Description: DCD outgoing messages will include AVP values that match this rule.

Type: Integer

Optionality: Optional .

Allowed: search_string Check for the specified search string
anywhere in the string

^search_string$ Check the specified search string matches
the whole string

^search_string Check for the specified search string at the
beginning of the string

search_string$ Check for the specified search string at the
end of the string

Default: N/A

Notes: The AVP type should be set to "UTF8String".

If excludeIfMatches is also defined then DCD logs a warning that the

configuration is inconsistent. Depending on which parameter appears first in the
configuration file DCD will load either excludeIfMatches or

includeIfMatches, but not both.

Example: includeIfMatches = "^f003"

includeWhenIn

Syntax: includeWhenIn = "range|list"

Description: DCD outgoing messages will include AVP values that match this rule.

Type: Integer

Chapter 4

62 Diameter Charging Driver Technical Guide

Optionality: Optional.

Allowed: delimited range

(numbers form x to y)

"x..y"

greater than or equal to x ">=x"

less than or equal to x <=x"

any of the listed numbers x,
y or z

(list may be any length)

"x,y,z"

a single number x "x"

Default: N/A

Notes: If includeWhenIn is also defined, then DCD logs a warning that the

configuration is inconsistent. Depending on which parameter appears first in the
configuration file DCD will load either excludeWhenIn or includeWhenIn,

but not both.

Example: includeWhenIn = "12,14,16,-18,20,22"

interpretBase

Syntax: interpretBase = number

Description: Defines the base to use when interpreting numbers that are stored as strings.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: • 0 – See notes

• 8 – Octal

• 10 – Decimal

• 16 – Hexadecimal

Default: 10 (decimal)

Notes: If the configured value is 0, strings are interpreted in the order of decimal
constant, octal constant, or hexadecimal constant. Any of these may be preceded
by a + or a – sign.

• Decimal constant – Begins with a non-zero digit and consists of a
sequence of decimal digits.

• Octal constant – Begins with a 0 (zero) followed by a sequence of the
digits 0 to 7.

• Hexadecimal constant – Begins with a 0x or 0X followed by a sequence
of the decimal digits and letters a (or A) to f (or F).

Example: interpretBase = 10

literal

Syntax: literal = "value"

Description: A literal value.

Type: String

Optionality: Optional

Default: empty

Notes: • In some cases where we use the AVP definition to create a request
message, we may wish to simply specify a literal value rather than obtain
the information from a ccsConcept field. In these cases we specify the
value here, in string form, and it will be converted to the required type
when requested from the configuration AVP object.

 Chapter 4

•

 Chapter 4, Configuration 63

• This parameter was previously "value".

Example: literal = "1"

mandatoryContents

Syntax: mandatoryContents = "avps"

Description: A simple string array, applicable to AVPs of type “Grouped” and those with no
type, specifying the AVPs (by name) that must be included in this AVP

Type: String array

Optionality: Optional

Default: empty

Example:
mandatoryContents = [

"Subscription-Id-Type"

"Subscription-Id-Data"

]

maxOccurrences

Syntax: maxOccurrences = value

Description: The number of repeating AVPs (whether a group or an individual field).

It does not actually limit how many AVPs can be processed; it limits how the AVP
is physically 'unloaded' into a contiguous range of profile variables.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0 – The default value means that all AVP values are unloaded into the same
configured profile block/tag (admittedly not very useful, but this ensures
backwards compatibility).

Notes: To unload an array of AVPs into a *series* of profile tag variables
maxOccurrences is set to the number of different values to be captured.

The first will be unloaded into the profile tag configured for the AVP.

The second will be unloaded into that tag+1, and so on.

Note: When unloading a repeating group the specially-defined variable 'index' can
be obtained by coding an AVP with variable="index". This takes the value of the
current loop index.

Example: maxOccurrences = 10

name

Syntax: name = "name"

Description: The name of the AVP, which can be used by the code for direct retrieval, as well
as logging and debug messages.

Type: String

Optionality: Mandatory

Example: name = "CC-Money"

octetLength

Syntax: octetLength = value

Description: How many bytes to use for integer quantities, if the type is "OctetString".

Chapter 4

64 Diameter Charging Driver Technical Guide

Type: Integer

Optionality: Optional

Allowed: Should be a number 0 through 4.

Notes: 0 is a special case meaning encode the value as an ASCII string, and determine
the number of bytes from the string size. For responses the values 1-4 simply
mean treat as integer encoded, and use the number of bytes given.

Example: octetLength = 0

optionalContents

Syntax: optionalContents = "avps"

Description: A simple string array, applicable to AVPs of type “Grouped” and those with no
type, specifying the AVPs (by name) that may be included in this AVP

Type: String

Optionality: Optional

Default: empty

Example:
optionalContents = [

"Service-Identifier"

"Requested-Service-Unit"

"Subscription-Id"

]

profileBlock

Syntax: profileBlock = num

Description: The profile block

Type: Integer

Optionality: Used only if the ccsConcept field is a profile variable.

Allowed: The value given for this is a number, and must be valid for a profile block (that is,
in the range 0 through 18).

Notes: This parameter is used to identify the profile block it will be stored into/retrieved
from. See also the related parameters, profileTag and profileFormat.

Example: profileBlock = 9

profileFormat

Syntax: profileFormat = "format"

Description: The format of the profile.

Type: String

Optionality: Used only if the ccsConcept field is a profile variable.

Allowed: The value given for this must be one of the valid storage formats for ACS profile
fields. The allowable values for this parameter are:

• STRING

• NSTRING

• LNSTRING

• INTEGER

• UNSIGNED64

• RAW

• TIME

• BOOLEAN

• ARRAY

 Chapter 4

•

 Chapter 4, Configuration 65

Default: INTEGER

Notes: This parameter is used to identify its storage format. See also the related
parameters, profileBlock and profileTag.

Example: profileFormat = "LNSTRING"

profileTag

Syntax: profileTag = num

Description: The profile tag.

Type: Integer

Optionality: Used only if the ccsConcept field is a profile variable.

Notes: This parameter is used to identify the profile tag it will be stored into/retrieved
from. See also the related parameters, profileBlock and profileFormat.

Example: profileTag = 999

repeating

Syntax: repeating = true|false

Description: Allows the configuration-driven code to recognize that there may be a number of
repeating instances of this AVP in its containing group, not just one.

Type: Boolean

Optionality: Mandatory

Allowed: true, false

Notes: In the building of a request, repeating AVPs are added until the getConcept call
indicates no more concept data is available. In the unpacking of a response,
repeating AVPs are extracted (and setConcept calls made) until the Diameter
stack indicates there are no more to retrieve.

Example: repeating = true

signInversion

Syntax: signInversion = true | false

Description: When this parameter is true it converts the value from positive to negative and vice
versa for AVP types of Integer32 and Integer64. If this parameter is true for an AVP
then:

• An outbound positive DCD concept value will be converted to a negative value in
the AVP.

• An outbound negative DCD concept value will be converted to positive value in the
AVP.

• An inbound positive AVP value will be converted to a negative DCD concept value.

• An inbound negative AVP value will be converted to a positive DCD concept value.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: false

Notes:

Example: signInversion = true

Chapter 4

66 Diameter Charging Driver Technical Guide

type

Syntax: type = "type"

Description: The type of AVP.

Type: String

Optionality: Optional. When defining the AVPs that make up a request message, you can list
them as mandatory or optional contents in an AVP that has no other information.
This means the contents should be directly placed into the request message
without (for example) an intervening group.

Allowed: If specified, this string value must be the name of any previously defined AVP in
the configuration, or one of the following base types that are described in the
Diameter RFC 3588 specification:

• OctetString

• Integer32

• Integer64

• Unsigned32

• Unsigned64

• Grouped

• GroupedUnitValue

• Address

• Time

• UTF8String

• DiameterIdentity

• DiameterURI

• Enumerated

Note: Float32 and Float64, although defined in RFC 3588, are not supported
because CCS does not use floating point values.

Notes: Specify the name of a previously defined AVP when you want to relate two CCS
concept fields to the same base type without having to repeat the full definition of
that base type. All the attributes of the base type are inherited except the base
type name, repeating attribute and ccsConcept value.

Example: type = "Grouped"

vendorId

Syntax: vendorId = ID

Description: A number that identifies the vendor ID of the corresponding Diameter AVP.

Type: Integer

Optionality: Optional

Default: 0

Notes: It will be used whenever we have to insert this AVP into a request message.

Example: vendorId = 0

Example Configuration for an AVP Type of GroupedUnitValue

This section shows how DCD converts balance-related AVPs with a type of GroupedUnitValue. For
more information, see type (on page 66).

Example Configuration for Request Messages:

 Chapter 4

•

 Chapter 4, Configuration 67

The following example configuration specifies to perform the following for outgoing request messages
with an AVP type of GroupedUnitValue:

• Divide the value by 100

• Apply sign inversion

{

avpCode = 445

name = "Unit-Value-Topup"

type = "GroupedUnitValue"

ccsConcept = "voucherInfoValue"

conversionScale = -100

signInversion = true

mandatoryContents = [

"Value-Digits-Topup"

]

optionalContents = [

"Exponent-Outgoing"

]

}

{

avpCode = 447

name = "Value-Digits-Topup"

type = "Integer64"

}

{

avpCode = 429

name = "Exponent-Outgoing"

type = "Integer32"

literal = "1"

}

For example, if a voucher top-up in NCC has a value of -2000, DCD converts it to 20 after applying
scaling and sign inversion. In this case, the GroupedUnitValue AVP in the outgoing request message to
the third-party application would have Value-Digits set to 2 and Exponent set to 1.

Note: An exponent is always sent for GroupedUnitValue AVPs. If the literal parameter is not defined,

it defaults to 0.

Example Configuration for Response Messages:

The following example configuration specifies to apply sign inversion to incoming response messages
with an AVP type of GroupedUnitValue:

{

avpCode = 252

name = "ORA-Credit-Floor"

vendorId = 3512

type = "GroupedUnitValue"

ccsConcept = "walletInfoBalanceMaxCredit"

signInversion = true

mandatoryContents = [

"Value-Digits-Credit-Floor"

]

optionalContents = [

"Exponent-Incoming"

]

}

{

avpCode = 447

name = "Value-Digits-Credit-Floor"

type = "Integer64"

}

Chapter 4

68 Diameter Charging Driver Technical Guide

{

avpCode = 429

name = "Exponent-Incoming"

type = "Integer32"

}

For example, if an incoming response message from a third-party application contains a
GroupedUnitValue AVP with Value-Digits set to 5 and Exponent set to 3, DCD converts the credit floor
value to -5000 after applying sign inversion.

Note: If the exponent is not supplied in the incoming answer message, DCD applies an exponent of 0 to
meet RFC 4006 guidelines.

Example cdrTag/Operation Configuration

The cdrTag and cdrOperation parameters can be used by any AVP/ccsConcepts pairing.

The following is just an example of how to configure these parameters.

{

This 'AVP' simply defines the list of AVPs for a direct named event

reservation.

Give this AVP a position in the configuration 'tree'. This is just

a label to allow representation of the tree to the actions library.

name = "DirectNamedEventRequest"

Define the list of AVPs (by name) for this node. Note that the AVPs are at the

sibling level for this node if there are no type or avpCode parameters for this

node.

An error will occur if mandatory contents are not available, but non-present

optional

contents are silently ignored.

mandatoryContents = [

"Service-Identifier"

"ChargingMaxEventClassAndEventName"

]

optionalContents = []

}

{

avpCode = 13000

name = "ChargingMaxEventClassAndEventName"

type = "Grouped"

mandatoryContents = [

"CMX-eventClass"

"CMX-eventName"

"DIA-Service-Identifier"

]

optionalContents = []

}

{

avpCode = 13001

name = "CMX-eventClass"

ccsConcept = "eventClass"

type = "UTF8String"

cdrTag = "CMX_EC"

cdrOperation = "append"

}

{

avpCode = 13002

name = "CMX-eventName"

 Chapter 4

•

 Chapter 4, Configuration 69

ccsConcept = "eventName"

type = "UTF8String"

cdrTag = "CMX_EN"

cdrOperation = "leave"

}

{

This 'AVP' represents the RFC 4006 Service-Identifier.

avpCode = 439

name = "DIA-Service-Identifier"

type = "Unsigned32"

ccsConcept = "eventType"

cdrTag = "DIA_SI"

cdrOperation = "replace"

}

...

ContextCopy Parameters

The ContextCopy section defines the profiles in which DCD call context data may be copied to at call
time. This is normally for the purposes of control plan branching.

Example ContextCopy Section

Here is an example of the ContextCopy section.

ContextCopy = [

{

contextItem = "scpActionSupervise"

profileBlock = 17

profileTag = 6356992 # Hex 0x00610000

profileFormat = "INTEGER"

}

{

contextItem = "scpActionDoNotSupervise"

profileBlock = 17

profileTag = 6356993 # Hex 0x00610001

profileFormat = "INTEGER"

}

{

contextItem = "scpActionRelease"

profileBlock = 17

profileTag = 6356994 # Hex 0x00610002

profileFormat = "INTEGER"

}

{

contextItem = "scpActionSendMessage"

profileBlock = 17

profileTag = 6356995 # Hex 0x00610003

profileFormat = "INTEGER"

}

{

contextItem = "scpActionPlayAnnouncement"

profileBlock = 17

profileTag = 6356996 # Hex 0x0061004

profileFormat = "INTEGER"

}

{

contextItem = "scpActionSuperviseWithoutControlling"

profileBlock = 17

profileTag = 6356997 # Hex 0x0061005

profileFormat = "INTEGER"

}

Chapter 4

70 Diameter Charging Driver Technical Guide

{

contextItem = "callState"

profileBlock = 17

profileTag = 6356998 # Hex 0x0061006

profileFormat = "INTEGER"

}

{

contextItem = "sendCount"

profileBlock = 17

profileTag = 6356999 # Hex 0x0061007

profileFormat = "INTEGER"

}

{

contextItem = "preCallAnnouncementId"

profileBlock = 17

profileTag = 6357000 # Hex 0x0061008

profileFormat = "INTEGER"

}

{

contextItem = "preCallLowBalance"

profileBlock = 17

profileTag = 6357001 # Hex 0x0061009

profileFormat = "INTEGER"

}

]

contextItem

Syntax: contextItem = "name"

Description: The name of the DCD context item from the allowed list.

Type: String

Optionality: Optional

Allowed: • "scpActionSupervise"

• "scpActionDoNotSupervise"

• "scpActionRelease"

• "scpActionSendMessage"

• "scpActionPlayAnnouncement"

• "scpActionSuperviseWithoutControlling"

• "callState"

• "sendCount"

• "preCallAnnouncementId"

• "preCallLowBalance"

Default:

Notes: All the supported context items are listed in the example.

Example: contextItem = "scpActionSupervise"

profileBlock

Syntax: profileBlock = val

Description: The profile block to use.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes: Examples all use 17 (temporary storage)

 Chapter 4

•

 Chapter 4, Configuration 71

Example: profileBlock = 17

profileFormat

Syntax: profileFormat = "format"

Description: The profile tag format

Type: String

Optionality: Optional (default used if not set).

Allowed: "INTEGER"

"STRING"

"TIME"

Default:

Notes:

Example: profileFormat = "INTEGER"

profileTag

Syntax: profileTag = decival

Description: The profile tag in which to store data.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes: Example tag values are all in the DCD range (0x0061nnnn), but will need to be
configured in ACS and Prepaid Charging before they are available for use.

In the example, 6356992 is value of Hex 0x00610000

Example: profileTag = 6356992

TimeIn and TimeOut

Use TimeIn and TimeOut to copy a timestamp at the beginning of a call (TimeIn) and to record elapsed
time during a call (TimeOut). If present, the timestamps are stored in the configured profile fields.

• TimeIn – The time the CCA was received by the SLC from the VWS.

• TimeOut – The time the CCR was sent from the SLC to the VWS.

These parameters are optional. If these parameters are omitted, no timestamps are recorded.

Example tag values are all in the DCD range (0x0061nnnn), but will need to be configured in ACS and
Prepaid Charging before they are available for use.

The parameters are defined in the ContextCopy Parameters (on page 69) section.

Example TimeIn and TimeOut

Here are the example parameters.

TimeIn = {

profileBlock = 17

profileTag = 6357002 # Hex 0x006100a, continuing from example ContextCopy

values

profileFormat = "TIME"

}

TimeOut = {

Chapter 4

72 Diameter Charging Driver Technical Guide

profileBlock = 17

profileTag = 6357003 # Hex 0x006100b

profileFormat = "TIME"

}

Routes

Introduction

The Routes section is used to specify the routing configuration for the BeClient, that is, how to select a

peer of the realm.

Routes Parameters

Here is an example routes section of the DIAMETER section of the eserv.config file.

routes = [

{

realm = "FirstRealm"

host = "host1.realm1.oracle.com"

priority = 1

round_robin = 0

direct = true

}

]

direct

Syntax: direct = true|false

Description: Whether this is a direct server connection, or if a proxy/agent is used.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: true

Notes: May be specified for each host. See HostSpecificData Parameters (on page 73).

Example: direct = true

host

Syntax: host = "permitted_origin_host"

Description: The host name of the next-hop as configured in
DCD.Peers.permittedOriginHosts for the relevant peer.

Type: String

Optionality: Mandatory

Allowed: This is the permittedOriginHosts value of the peer.

May be specified for each host. See HostSpecificData Parameters (on page 73).

Example: host = "host1.realm1.oracle.com"

priority

Syntax: priority = priority

Description: The priority of the route.

Type: Integer

Optionality: Optional

 Chapter 4

•

 Chapter 4, Configuration 73

Notes: Only those routes with the lowest priority are used.

May be specified for each host. See HostSpecificData Parameters (on page 73).

Example: priority = 1

realm

Syntax: realm = = name

Description: The Realm identity.

Type: String

Optionality: Mandatory

Allowed: As configured in the Domain tab of the Service Management screen. Refer to CCS
User's Guide for details.

May be specified for each host. See HostSpecificData Parameters (on page 73).

Example: realm = "FirstRealm"

round_robin

Syntax: round_robin = weight

Description: The weight for round_robin selection.

Type: Integer

Optionality: Optional

Default: 0

Notes: Zero indicates a failover type selection. See routing (on page 45) for details.

May be specified for each host. See HostSpecificData Parameters (on page 73).

Example: round_robin = 0

HostSpecificData

Introduction

The following is an optional section, with members defined according to hostname. The purpose is to
represent data specific to particular hosts. This permits a common configuration file to be deployed to
multiple machines.

Settings here should override global settings, for the specified host only. See DCD Parameters (on
page 33) and Routes Parameters (on page 72) for global settings of these parameters.

HostSpecificData Parameters

Here is an example of the HostSpecificData parameters.

HostSpecificData = [

{

name = "ocpc.oracle.com"

DCD = {

Origin-Host = "ocpc.oracle.com"

Origin-Realm = "ocpc.oracle.com"

}

routes = [

Chapter 4

74 Diameter Charging Driver Technical Guide

{

realm = "myDomainA"

host = "host1.realm1.oracle.com"

priority = 1

round_robin = 0

direct = true

}

]

}

]

direct

Syntax: direct = true|false

Description: Whether this is a direct server connection, or if a proxy/agent is used.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: true

Notes: See Routes Parameters (on page 72) for the global setting.

Example: direct = true

host

Syntax: host = "name"

Description: This is the host name of the next-hop.

Type: String

Optionality: Mandatory

Allowed: This is the permittedOriginHosts value of the peer.

Notes: See Routes Parameters (on page 72) for the global setting.

Example: host = "host1.realm1.oracle.com"

name

Syntax: name = "hostname"

Description: The identifier correlating to machine hostname (SLC node).

Type: String

Optionality: Mandatory if the optional HostSpecificData section is defined.

Allowed:

Default:

Notes:

Example: name = "ocpc.oracle.com"

Origin-Host

Syntax: Origin-Host = "diameterId"

Description: The Diameter AVP Origin-Host - fully qualified domain name.

Type: String

Optionality: Optional (default used if not set).

Allowed:

 Chapter 4

•

 Chapter 4, Configuration 75

Default:

Notes: See DCD Parameters (on page 33) for the global setting.

Example: Origin-Host = "ocpc.oracle.com"

Origin-Realm

Syntax: Origin-Realm = "diameterId"

Description: The Diameter AVP Origin-Realm.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default:

Notes: See DCD Parameters (on page 33) for the global setting.

Example: Origin-Realm = "ocpc.oracle.com"

priority

Syntax: priority = priority

Description: This is the priority of the route.

Type: Integer

Optionality: Optional

Notes: Only those routes with the lowest priority are used.

See Routes Parameters (on page 72) for the global setting.

Example: priority = 1

realm

Syntax: realm = "realmname"

Description: The realm name, as configured in the Prepaid Charging screens.

Type: String

Optionality: Mandatory

Allowed:

Default:

Notes: See Routes Parameters (on page 72) for the global setting.

Example: realm = "myDomainA"

round_robin

Syntax: round_robin = weight

Description: This is the weight for round_robin selection.

Type: Integer

Optionality: Optional

Default: 0

Notes: Zero indicates a failover type selection. See routing (on page 45) for details.

See Routes Parameters (on page 72) for the global setting.

Example: round_robin = 0

Chapter 4

76 Diameter Charging Driver Technical Guide

NamedEventTypes

Introduction

The NamedEventTypes section is used to define a mapping from the Prepaid Charging descriptor of a

named event (the eventClass and eventName) to a single integer (eventType) for availability to the

Service-Identifier AVP.

NamedEventTypes Parameters

Here is an example of the NamedEventTypes section.

NamedEventTypes = [

{

eventClass = "abc"

eventName = "def"

eventType = 123

isDebit = true

}

{

eventClass = "ghi"

eventName = "jkl"

eventType = 456

}

]

eventClass

Syntax: eventClass = "class"

Description: The event class.

Type: String

Optionality: Optional

Allowed: Defined on the Named Event tab on the Rating Management screen. Refer to CCS
User's Guide for details.

Example: eventClass = "abc"

eventName

Syntax: eventName = "name"

Description: The event name.

Type: String

Optionality: Optional

Allowed: Defined on the Named Event tab on the Rating Management screen. Refer to CCS
User's Guide for details.

Example: eventClass = "def"

eventType

Syntax: eventType = type

Description: The event type for availability to the Service-Identifier AVP.

Type: integer

Optionality: Optional

Allowed: Mapping to agreed event type with server vendor.

Example: eventType = 123

 Chapter 4

•

 Chapter 4, Configuration 77

isDebit

Syntax: isDebit = true|false

Description: Whether this named event represents a debit or credit for the subscriber.

Type: Boolean

Optionality: Optional

Allowed: true, false

Default: true

Example: isDebit = true

 Chapter 5, Background Processes 79

Chapter 5

Background Processes

Overview

Introduction

This chapter explains the process which runs automatically as part of the Oracle Communications
Network Charging and Control (NCC) application. This process is started automatically by the SLEE.

In this chapter

This chapter contains the following topics.

diameterBeClient ... 79
Statistics Logged by diameterBeClient.. 91
DCD EDRs .. 93

diameterBeClient

Purpose

The diameterBeClient takes SLEE messages from the diamActions library and converts them to
Diameter messages. It also maintains all Diameter connections.

Startup

The diamActions library and diameterBeClient will load the configuration (from the eserv.config file and
the SLC database) on startup and on receiving a SIGHUP, at which point it needs to reload the config.

Example DIAMETER Section

Here is an example DIAMETER section configuration in the eserv.config file.

DIAMETER = {

DCD = {

serviceDomainInterfaceName = "dcdBeClient"

loggedNotificationPeriod = 300

loggedInvalidPeriod = 300

databaseCacheValiditySeconds = 18000

Origin-Host = "ocpc.oracle.com"

Origin-Realm = "ocpc.oracle.com"

serviceContextID = "ocpc@oracle.com"

Auth-Application-Id = 4

Vendor-Specific-Application-Id = [

{

Chapter 5

80 Diameter Charging Driver Technical Guide

Vendor-Id = 193

Auth-Application-Id = 4

Acct-Application-Id = 19302

}

]

enableDraft8 = false

scheme = "SchemeA"

honour_disconnect = true

Vendor-Id = 16247

Product-Name = ""

timeout_x = 30000000

transmit_limit = 2

trace_debug_flags = "all"

statistics_interval = 300

NotificationFilter = {

CollectiveNotice = true

PerPeerNotice = {

initial_request = true

update_request = true

termination_request = true

event_request = true

unknown_request = true

total_request = true

request_timeout = true

non_request_type_result_codes = true

}

}

}

DomainTypes = [

{

name = "DIAMETER"

schemeName = "SchemeA"

routing = "Round Robin"

voidUnusedReservation = false

defaultSessionFailover = 0

defaultEventFailover = 0

defaultFailureHandling = 0

balanceEnquiryMethod = "balanceCheck"

includeDcdCdrFields = false

defaultFixedCostDuration = 86400

enableScap = false

overwriteZeroCallAnswerTime = false

Domains = [

 Chapter 5

•

 Chapter 5, Background Processes 81

{

name = "myDomainA"

routing = "Round Robin"

realmFailureWaitSeconds = 20

weighting = 1

}

{

name = "myDomainB"

routing = "Failover"

realmFailureWaitSeconds = 20

weighting = 1

}

]

AVPs = [

{

name = "ConfirmNamedEventReservationRequest"

mandatoryContents = [

"Subscription-Id"

"Service-Identifier"

"NE-Used-Service-Unit"

]

optionalContents = []

}

{

avpCode = 443

name = "Subscription-Id"

type = "Grouped"

mandatoryContents = [

"Subscription-Id-Type"

"Subscription-Id-Data"

]

optionalContents = []

}

{

avpCode = 450

name = "Subscription-Id-Type"

type = "Enumerated"

literal = "0" # END_USER_E164

}

{

avpCode = 444

name = "Subscription-Id-Data"

type = "UTF8String"

ccsConcept = "acsProfile"

profileBlock =18

profileTag = 327686

profileFormat = "LNSTRING"

conditionProfileBlock = 17

conditionProfileTag = 2009

conditionValue = 14

}

{

avpCode = 439

name = "Service-Identifier"

type = "Unsigned32"

ccsConcept = "eventType"

cdrTag = "DIAMETER_SERVICE_ID"

cdrOperation = "replace"

Chapter 5

82 Diameter Charging Driver Technical Guide

}

{

avpCode = 446

name = "NE-Used-Service-Unit"

type = "Grouped"

mandatoryContents = [

"CC-Service-Specific-Units-Used"

]

}

{

avpCode = 417

name = "CC-Service-Specific-Units-Used"

type = "Unsigned64"

ccsConcept = "numUnitsUsed"

vendorId = 0

flags = 0

repeating = false

maxOccurrences = 10

conversion = [

{

esg = 1

vendor = 2

serviceProvider = 1

}

{

esg = 3

vendor = 2

serviceProvider = 2

}

]

conversionScale = 1

conversionRounding = "floor"

interpretBase = 10

octetLength = 0

}

{

 name = ”3GPP-MS-TimeZone”

 vendorId = 10415 #3GPP

 avpCode = 23

 ccsConcept = “callerMsTimeZone”

 type = “OcterString”

 octetLength = 2

}

{

avpCode = 900

vendorId = 16247

name = "Custom-Scp-Action"

type = "Enumerated"

ccsConcept = "scpAction"

repeating = true

}

{

name = "DirectNamedEventRequest-Money Refund"

mandatoryContents = [

"Subscription-Id"

"SOS-TopUp-RequestedAction"

"Charging-Start-Timestamp"

 Chapter 5

•

 Chapter 5, Background Processes 83

]

}

{

name = "SOS-TopUp-RequestedAction"

type = "Enumerated"

value = "5"

avpCode = 436

}

{

name = "WalletRechargeRequest"

mandatoryContents = [

"Subscription-Id"

"TopUp-RequestedAction"

"Charging-Start-Timestamp"

"Topup-Amount"

"Topup-Voucher-Number"

"Topup-Voucher-Type"

"Topup-Voucher-Id"

"Topup-Voucher-Serial-Number"

"Source-System-Id"

]

optionalContents = [

"Voucher-Recharge_Failed-Flag"

"Voucher-Recharge_Failed_Date_Time"

"Topup-Voucher-Balance-Validity-Start"

"Topup-Voucher-Balance-Validity-Relative"

]

}

{

name = "Voucher-Recharge_Failed-Flag"

type = "Integer32"

vendorId = 581

avpCode = 50998

ccsConcept = "voucherRechargeFailureFlag"

includeIf = true

}

{

name = "Voucher-Recharge_Failed-Date-Time"

type = "Integer32"

vendorId = 581

avpCode = 50999

ccsConcept = "voucherRechargeFailureDateTime"

excludeWhenIn = "0"

}

{

name = "TopUp-RequestedAction"

type = "Enumerated"

value = "4"

avpCode = 436

}

{

 name = "Charging-Start-Timestamp"

 type = "Integer32"

 profileBlock = 18

 profileTag = 327999

 avpCode = 12000

}

Chapter 5

84 Diameter Charging Driver Technical Guide

{

 name = "Topup-Voucher-Number"

 avpCode = 12001

 ccsConcept = "voucherInfoVoucher"

 type = "Integer32"

}

{

 name = "Topup-Amount"

 avpCode = 12002

 type = "Grouped"

 mandatoryContents = [

 "Value-Digits"

]

 optionalContents = [

 "Exponent"

]

}

{

name = "Value-Digits"

avpCode = 12003

ccsConcept = "voucherInfoValue"

type = "Integer32"

}

{

name = "Topup-Voucher-Type"

avpCode = 12005

ccsConcept = "voucherTypeName"

type = "Unsigned64"
}

{

name = "Topup-Voucher-Id"

vendorId = 581

avpCode = 50026

ccsConcept = "voucherInfoVoucherId"

type = "Integer32"

}

{

name = "Topup-Voucher-Serial-Number"

avpCode = 12008

ccsConcept = "voucherInfoVoucherSerialNumber"

type = "Unsigned64"
}

{

name = "Topup-Voucher-Balance-Validity-Start"

avpCode = 12009

ccsConcept = "voucherInfoBalanceValidityStart"

type = "Time"

}

{

name = "Topup-Voucher-Balance-Validity-Relative"

avpCode = 12010

type = "Grouped"

optionalContents = [

"Topup-Voucher-Balance-Validity-Offset"

"Topup-Voucher-Balance-Validity-Type

 Chapter 5

•

 Chapter 5, Background Processes 85

]

}

{

name = "Topup-Voucher-Balance-Validity-Offset"

avpCode = 12011

ccsConcept = "voucherInfoBalanceValidityOffset"

type = "Integer32"

}

{

name = "Topup-Voucher-Balance-Validity-Type"

avpCode = 12012

ccsConcept = "voucherInfoBalanceValidityType"

type = "Enumerated"

}

{

name = "WalletRechargeResponse"

mandatoryContents = [

"Topup-Balance-Information"

"Topup-Receipt-Number"

]

}

{

name = "Topup-Balance-Information"

vendorId = 581 # Intec

avpCode = 50030

type = "Grouped"

mandatoryContents = [

"Topup-Balance-Type-ID"

]

optionalContents = [

"Topup-Balance-Expire-Date"

"Topup-Unit-Value"

]

}

{

name = "Topup-Balance-Type-ID"

avpCode = 50020

vendorId = 581 # Intec

ccsConcept = "walletInfoBalanceType"

type = "Integer32"

}

{

name = "Topup-Balance-Expire-Date"

vendorId = 581 # Intec

avpCode = 50032

ccsConcept = "walletInfoBalanceExpiry"

type = "Integer32"

}

{

avpCode = 445

vendorId = 581

name = "Topup-Unit-Value"

type = "GroupedUnitValue"

ccsConcept = "walletInfoBalanceSystemValue"

conversionScale =

signInversion - true

Chapter 5

86 Diameter Charging Driver Technical Guide

mandatoryContents = [

"Topup-Value-Digits"

]

optionalContents = [

"Topup-Exponent"

]

}

{

avpCode = 447

name = "Topup-Value-Digits"

type = "Integer64"

}

{

avpCode = 449

name = "Topup-Exponent"

type = "Integer32"

literal = "1"

}

{

name = "Topup-Receipt-Number"

avpCode = 50024

type = "UTF8String"

}

{

name = "CreateEDRRequest"

}

{

name = "CreateEDRResponse"

}

{

name = "BadPINRequest"

}

{

name = "BadPINResponse"

}

{

name = "Termination-Cause"

avpCode = 295

type = "Enumerated"

ccsConcept = "terminationCause"

conversion = [

{

esg = 8 # releasedNoFunds

vendor = 6 # DIAMETER_AUTH_EXPIRED

}

{

esg = 9 # disconnectedLegBNoFunds

vendor = 6 # DIAMETER_AUTH_EXPIRED

}

{

esg = 14 # callingPartyDisconnected

vendor = 1 # DIAMETER_LOGOUT

}

{

 Chapter 5

•

 Chapter 5, Background Processes 87

esg = 15 # calledPartyDisconnected

vendor = 1 # DIAMETER_LOGOUT

}

]

}

]

ContextCopy = [

{

contextItem = "scpActionSupervise"

profileBlock = 17

profileTag = 6356992 # Hex 0x00610000

profileFormat = "INTEGER"

}

{

contextItem = "scpActionDoNotSupervise"

profileBlock = 17

profileTag = 6356993 # Hex 0x00610001

profileFormat = "INTEGER"

}

{

contextItem = "scpActionRelease"

profileBlock = 17

profileTag = 6356994 # Hex 0x00610002

profileFormat = "INTEGER"

}

{

contextItem = "scpActionSendMessage"

profileBlock = 17

profileTag = 6356995 # Hex 0x00610003

profileFormat = "INTEGER"

}

{

contextItem = "scpActionPlayAnnouncement"

profileBlock = 17

profileTag = 6356996 # Hex 0x0061004

profileFormat = "INTEGER"

}

{

contextItem = "scpActionSuperviseWithoutControlling"

profileBlock = 17

profileTag = 6356997 # Hex 0x0061005

profileFormat = "INTEGER"

}

{

contextItem = "callState"

profileBlock = 17

profileTag = 6356998 # Hex 0x0061006

profileFormat = "INTEGER"

}

{

contextItem = "sendCount"

profileBlock = 17

profileTag = 6356999 # Hex 0x0061007

profileFormat = "INTEGER"

}

{

contextItem = "preCallAnnouncementId"

profileBlock = 17

profileTag = 6357000 # Hex 0x0061008

profileFormat = "INTEGER"

}

Chapter 5

88 Diameter Charging Driver Technical Guide

{

contextItem = "preCallLowBalance"

profileBlock = 17

profileTag = 6357001 # Hex 0x0061009

profileFormat = "INTEGER"

}

]

TimeIn = {

profileBlock = 17

profileTag = 6357002 # Hex 0x006100a, continuing from example ContextCopy

values

profileFormat = "TIME"

}

TimeOut = {

profileBlock = 17

profileTag = 6357003 # Hex 0x006100b

profileFormat = "TIME"

}

}

] # End of DomainTypes array

PeerSchemes = [

{

schemeName = "SchemeA"

Peers = [

{

name = "host1"

scheme = ["scheme1", "schmeme2"]

permittedOriginHosts = [

"host1.realm1.oracle.com"

]

peer_group = "host1"

transport = "tcp"

initiation = "connect"

RemoteAddresses = [

"192.168.1.10"

]

remote_port = 3868

netmask6Bits = 128

netmaskBits = 32

permittedInstances = 0

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

sctp_hbinterval = 1000

watchdogPeriod = 30

connectionTimeout = 30

 Chapter 5

•

 Chapter 5, Background Processes 89

inBufferSize = 0

outBufferSize = 0

} # end of Peer host1

{

name = "host2"

scheme = ["scheme1", "schmeme2"]

permittedOriginHosts = [

"host1.realm1.oracle.com"

]

peer_group = "host1"

transport = "tcp"

initiation = "connect"

RemoteAddresses = [

"192.168.1.11"

]

remote_port = 3868

netmask6Bits = 128

netmaskBits = 32

permittedInstances = 0

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

sctp_hbinterval = 1000

watchdogPeriod = 30

connectionTimeout = 30

inBufferSize = 0

outBufferSize = 0

} # end of Peer host1

} # End of Scheme A

{

schemeName = "SchemeB"

Peers = [

{

name = "host1"

scheme = ["scheme1", "schmeme2"]

permittedOriginHosts = [

"host1.realm1.oracle.com"

]

peer_group = "host1"

Chapter 5

90 Diameter Charging Driver Technical Guide

transport = "tcp"

initiation = "connect"

RemoteAddresses = [

"192.168.1.10"

]

remote_port = 3868

netmask6Bits = 128

netmaskBits = 32

permittedInstances = 0

reqSctpInboundStreams = 8

reqSctpOutboundStreams = 8

sctp_hbinterval = 1000

watchdogPeriod = 30

connectionTimeout = 30

inBufferSize = 0

outBufferSize = 0

} # end of Peer host1

]

} # End of Scheme B

] # End of PeerSchemes section

routes = [

{

realm = "FirstRealm"

host = "host1.realm1.oracle.com"

priority = 1

round_robin = 0

direct = true

}

]

NamedEventTypes = [

{

eventClass = "abc"

eventName = "def"

eventType = 123

isDebit = true

}

{

eventClass = "ghi"

eventName = "jkl"

eventType = 456

}

]

HostSpecificData = [

{

name = "ocpc.oracle.com"

 Chapter 5

•

 Chapter 5, Background Processes 91

DCD = {

Origin-Host = "ocpc.oracle.com"

Origin-Realm = "ocpc.oracle.com"

}

routes = [

{

realm = "myDomainA"

host = "host1.realm1.oracle.com"

priority = 1

round_robin = 0

direct = true

}

]

}

]

}

Statistics Logged by diameterBeClient

Introduction

Diameter statistics are generated by each SLC, and then transferred at periodic intervals to the Service
Management System (SMS) for permanent storage and analysis.

An existing statistics system (smsStats) provides functions for the collection of basic statistical events.
This is provided in the NCC SMS application. Refer to SMS Technical Guide for details.

Enabling Statistics

Follow these steps to enable statistics on an SCP after installing the database entries on the SMF.

Step Action

1 On the Table Replication tab of the SMS Node Management screen, select the DCD
replication entry:
SMS->SMF_STATISTICS_DEFN->SMF_STDEF_DCD

and drag it over to the allocated Replication Groups. Refer to Configuring Table
Replication in the SMS User's Guide for details.

2 After creating the config file, you need to send a HUP to the smsStatsDaemon to force a
reread of the database entries:
fuser -s 1 /IN/service_packages/SMS/bin/smsStatsDaemon

DCD Statistics

SMS statistics are logged with APPLICATION_ID = ‘DCD’ (application number 97)

The following statistics are defined:

• DIAMETER_MIN_LATENCY – Minimum Latency

• DIAMETER_MAX_LATENCY – Maximum Latency

• DIAMETER_AVERAGE_LATENCY – Average Latency

• DIAMETER_CC_TYPE_INITIAL – Initial Requests sent

Chapter 5

92 Diameter Charging Driver Technical Guide

• DIAMETER_CC_TYPE_UPDATE – Update Requests sent

• DIAMETER_CC_TYPE_TERMINATION – Termination Requests sent

• DIAMETER_CC_TYPE_EVENT – Event Requests sent

• DIAMETER_TIMEOUT – CCRs timed out

• DIAMETER_SUCCESS – CCAs received with success result code

• DIAMETER_FAILURE_3xxx – CCAs received, error code in range 3000 to 3999

• DIAMETER_FAILURE_4xxx – CCAs received, error code in range 4000 to 4999

• DIAMETER_FAILURE_5xxx – CCAs received, error code in range 5000 to 5999

• DIAMETER_FAILURE_1xxx – CCAs received, error code in range 1000 to 1999

• DIAMETER_FAILURE_UNKNOWN – CCAs received, error code in undefined range

• RAA_GENERATED_SENT – RAA generated from stored RAR, send to server

• RAA_NO_OUTSTANDING_RAR – Rejecting received RAA, no record of RAR

• RAA_RECEIVED – RAA received from DCA

• RAA_SENT – RAA send to Diameter server

• RAA_SENT_WITH_ERROR – RAA sent to Diameter server, with error indication

• RAA_TIMEOUT_ALREADY_CLEARED – RAA received, but timeout already cleared

• RAA_UNKNOWN_SESSION_ID – RAA rejecting received RAA, unknown session ID

• RAR_RECEIVED – RAR received from diameter server

• RAR_SEND_FAIL – RAR failed to send RAR to DCA, no dialog etc.

• RAR_SENT – RAR sent to DCA

• RAR_TIMEOUT_RAA_SENT – RAR send timeout, and RAA reject sent to server

• TERM_REQUEST_BEFORE_RAA – Termination request before RAA received

• RAR_UNKNOWN_SESSION_ID – RAR received with unknown session ID

• RAR_NOT_ENABLED_RESPONSE – RAR received gets configured resultcode

For all statistics, the Destination-Realm or Host ID involved is put into SMF_STATISTICS.DETAIL.

Reports

The following reports are available:

• DCD System Stats

• DCD System Stats by Realm/Host

Reports are generated using the SMS Report Functions screen. Refer to SMS User's Guide for details.

Example Report

Here is an example DCD System Stats report.

DCD Statistics Listing

==============================

Start Date: 15 October 2007

Finish Date: 30 October 2007

Report Type: Totals

24 October 2007, 21:20:12

Node Name Statistics ID Totals

-------------------- -- ----------

mtv-tst-scp10 DIAMETER_FAILURE_UNKNOWN 3

mtv-tst-scp10 DIAMETER_SUCCESS 319

mtv-tst-scp10 DIAMETER_FAILURE_5xxx 14

mtv-tst-scp10 DIAMETER_CC_TYPE_INITIAL 214

mtv-tst-scp10 DIAMETER_FAILURE_1xxx 2

mtv-tst-scp10 DIAMETER_TIMEOUT 63

 Chapter 5

•

 Chapter 5, Background Processes 93

mtv-tst-scp10 DIAMETER_CC_TYPE_UPDATE 185

mtv-tst-scp10 DIAMETER_FAILURE_3xxx 8

mtv-tst-scp10 DIAMETER_CC_TYPE_TERMINATION 86

mtv-tst-scp10 DIAMETER_CC_TYPE_EVENT 14

mtv-tst-scp10 DIAMETER_FAILURE_4xxx 39

Completed

DCD EDRs

EDR Generation

EDRs are generated and processed by the slee_acs on the SLC and uploaded at regular intervals to the
SMS using the cmnPushFiles process.

Diameter Charging Driver (DCD) tags are appended to the EDRs generated by the Advanced Control
Services application. See Event Detail Record Reference Guide for the full list and descriptions.

DCD EDR Tags

Here are the EDR tags produced by DCD.

DIA_RC (result code)

Description: Number indicating diameter result-code received in CCA message.

Format: Integer

Concept: Result-Code

Notes:

Example: DIA_RC=2001

DIA_REQ (current session message number)

Description: Sequential number, indicating message within the current session.

Format: Integer

Concept: CC-Request-Number

Notes: For Diameter event based messages, this will always be 0, and hence not
recorded.

Example: DIA_REQ=1

DIA_SID (session id)

Description: This is a unique value identifying the Diameter session.

Format: Of the form:

DiameterIdentity;time;SLEE_CallID

Where:

• DiameterIdentity is that of the SLC (that is, the Origin-Host used in the
CCR message)

• time is the time of the first request (expressed as the number of seconds
since the Unix epoch time)

• SLEE_CallID is a unique call identifier used by the SLEE processes to
track each active session

Concept: Session-ID

Notes: The values for time and SLEE_CallID are in decimal format, but they are actually
sent out in hexadecimal format.

Chapter 5

94 Diameter Charging Driver Technical Guide

Example: DIA_SID=scp1.oracle.com;47A228C3;15459A

DIA_TIME (time ccr sent)

Description: The time the CCR was sent, in hundredths of second

Format: Date - "YYYY-MM-DD-HH-MM-SSSS"

Concept: Session-ID

Notes:

Example: DIA_TIME=2008-03-27-20-41-3831

Custom Tag Names

The cdrTag configuration parameter allows for an EDR to have tag names that are customer defined.

Example EDRs

Here are some example EDRs generated by DCD.

Refer to ACS EDR Tags for the non-DCD tags.

Example 1

Whole EDR for an InitialTimeReservation and ConfirmTimeReservation:

EDR:

'VOICE_MO|CID=285222|OA=0|OTI=0|CUST=1|SN=0777666444|TN=0777666444|CGN=8888887|CLI=8

888887|SK=1|TCS=20080327204138|TCE=20080327204241|LPN=|LAC=|CS=4|CPC=10|CC=|CPNI=0|P

CNA=|TPNI=0|PTNA=|CGNA=|TGNA=|TFN=ST-2,SDTN-21,uatb-3,PB-22,END-

14|LGID=0|CPN=uatbWcseBrch|CAET=3|CCET=60.0|CA=60777666555|RELC=17|OCPI=|CPNN=3|CGNN

=3|CPPI=1|NOAT=1|CBAT=0|FATS=0|CCTS=20080327204138|HTS=20080327204138|AIDL=|DIA_SID=

nzwn-test03-z2;47ec0682;45a26|DIA_REQ=0|DIA_RC=2001|DIA_TIME=2008-03-27-20-41-

3831|DIA_SID=nzwn-test03-z2;47ec0682;45a26|DIA_REQ=1|DIA_RC=2001|DIA_TIME=2008-03-

27-20-41-3847|FCA=60777666555|WALR=86'

Note the DCD part of the EDR. All four tags are present twice:

• The Initial Time Reservation
DIA_SID=nzwn-test03-

z2;47ec0682;45a26|DIA_REQ=0|DIA_RC=2001|DIA_TIME=2008-03-27-20-41-3831|

• The Termination Time Reservation
DIA_SID=nzwn-test03-

z2;47ec0682;45a26|DIA_REQ=1|DIA_RC=2001|DIA_TIME=2008-03-27-20-41-3847|

Example 2

Whole EDR for DirectNamedEvent:

EDR:

'VOICE_MO|CID=287224|OA=0|OTI=0|CUST=1|SN=0777666444|TN=|CGN=8888887|CLI=8888887|SK=

1|TCS=20080327231115|TCE=0|LPN=|LAC=|CS=1|CPC=10|CC=|CPNI=0|PCNA=|TPNI=0|PTNA=|CGNA=

|TGNA=|TFN=ST-1,bevt-2,END-

3|LGID=0|CPN=DirectDebit|CAET=0|CCET=0.0|CA=|RELC=31|OCPI=|CPNN=3|CGNN=3|CPPI=1|NOAT

=0|CBAT=0|FATS=0|CCTS=0|HTS=0|AIDL=|DIA_SID=nzwn-test03-

z2;47ec2993;461f8|DIA_RC=2001|DIA_TIME=2008-03-27-23-11-1577'

Note in the DCD part of the EDR that event based EDRs only need to receive DIA_SID, DIA_RC and
DIA_TIME, that is, no DIA_REQ:

DIA_SID=nzwn-test03-z2;47ec2993;461f8|DIA_RC=2001|DIA_TIME=2008-03-27-23-11-1577'

 Chapter 5

•

 Chapter 5, Background Processes 95

Example 3

For cdrTag for MMM_TAG and ZZZ_TAG, the following would be an example of what the resulting EDR
would look like.

CCS_BE|CID=205383|OA=0|OTI=0|CUST=1|SN=1130|TN=|CGN=0212994768|CLI=0212994768|SK=3|T

CS=20091117192600|LPN=|LAC=|CS=1|CPC=10|CC=|CPNI=0|PCNA=|TPNI=0|PTNA=|CGNA=|TGNA=|TF

N=ST-1,CCDR-8,CCDR-12,CCDR-14,bevt-2,DISC-3,END-7|LGID=0|CPN=ST-BE-

END|OCPI=|CPNN=3|CGNN=3|CPPI=1|NOAT=0|CBAT=0|FATS=0|CCTS=0|HTS=0|AIDL=|AAA_TAG=11111

|CMX_EC=CR96791|CMX_EN=BasicTest|DIA_SID=eng-host06-

z6.usp.co.nz;4b02f8c8;32247|DIA_RC=2001|DIA_TIME=2009-11-17-19-26-

0062|MMM_TAG=55555|ZZZ_TAG=777

 Chapter 6, About Installation and Removal 97

Chapter 6

About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Network Charging and Control (NCC) application described in this guide. It also lists the files installed by
the application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and Removal Overview ... 97
Checking the Installation ... 97

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

• NCC system requirements

• Pre-installation tasks

• Installing and removing NCC packages

DCD Packages

An installation of DCD includes the following packages, on the:

• SMS:

▪ dcdSms

• SLC:

▪ dcdScp

Checking the Installation

Introduction

Refer to these check lists to ensure the package has been installed correctly.

DCD SLC Directories and Files

The DCD installation on the SLC creates the following directories:

• /IN/service_packages/DCD/bin

• /IN/service_packages/DCD/etc

Chapter 6

98 Diameter Charging Driver Technical Guide

• /IN/service_packages/DCD/lib

• /IN/service_packages/DCD/tmp

The DCD installation installs the following binaries and interfaces:

• /IN/services_packages/DCD/bin/diameterBeClient

The DCD installation installs the following example configuration file:

• /IN/services_packages/DCD/etc/eserv.config.dcd.example

The DCD installation installs the following shared library:

• /IN/services_packages/DCD/lib/diamActions.so

DCD SMS Directories

Check that the statistics and control plans have been installed correctly.

The DCD installation on the SMS creates the following directories:

• /IN/service_packages/DCD/db

• /IN/service_packages/DCD/lib

	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions

	Chapter 1
	System Overview
	Overview
	Introduction
	In this Chapter

	What is the Diameter Charging Driver
	Overview
	Diameter Credit Control
	Process
	Credit Control Messages
	AVPs

	Attribute Value Pairs
	Additional EDR Tags
	Diagram

	ccsConcepts
	Introduction
	List of ccsConcepts
	ACS Action Handler
	ACS Service Context
	CCS Time Reservation
	Charge Details
	Direct Time Charge
	Others
	Voucher Details

	Chapter 2

	Split Charging and Voucher Domains
	Overview
	Introduction
	In this chapter

	Wallets and Vouchers Split Recharging
	Introduction
	Key Components
	voucherDelegator
	Diagram
	Split Recharging Process

	Bad PIN
	Description
	Diagram
	Checking Voucher Bad PIN

	Chapter 3

	SCAP Compliance
	Overview
	Introduction
	In this chapter

	SCAP
	Introduction
	Application-Identifiers Values
	Message Header
	Supported AVPs
	Result-Codes

	Chapter 4

	Configuration
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introduction
	Configuration Components

	eserv.config Configuration
	Introduction
	Configuration File Format
	eserv.config Files Delivered
	Editing the File
	Text Editor

	Loading eserv.config Changes
	Diameter eserv.config Configuration

	CCS eserv.config Configuration
	Introduction
	ccsServiceLibrary Configuration

	RAR Configuration
	SLEE.cfg Configuration
	Introduction
	DCD SLEE Configuration

	PeerSchemes Configuration Section
	Example PeerSchemes
	schemeName
	Peer Host Parameters
	connectionTimeout
	inBufferSize
	initiation
	name
	netmaskBits
	netmask6Bits
	outBufferSize
	peer_group
	permittedInstances
	permittedOriginHosts
	remote_port
	RemoteAddresses
	reqSctpInboundStreams
	reqSctpOutboundStreams
	scheme
	sctp_hbinterval
	transport
	watchdogPeriod

	acs.conf Configuration
	Introduction
	DCD acs.conf Configuration

	DCD
	Introduction
	DCD Parameters
	Auth-Application-Id
	Acct-Application-Id
	diameterMessageLength
	checkDefinedAvpFlags
	databaseCacheValiditySeconds
	enableDraft8
	enableDraft8
	honour_disconnect
	loggedInvalidPeriod
	loggedNotificationPeriod
	NotificationFilter
	CollectiveNotice
	PerPeerNotice
	Origin-Host
	Origin-Realm
	Product-Name
	rarResultCode
	rarsleeTimeout
	scheme
	serviceDomainInterfaceName
	serviceContextID
	statistics_interval
	statsCollection
	timeout_x
	trace_debug_flags
	transmit_limit
	Vendor-Id
	Vendor-Specific-Application-Id

	DomainTypes
	Introduction
	DomainTypes Parameters
	balanceEnquiryMethod
	defaultEventFailover
	defaultFailureHandling
	defaultFixedCostDuration
	defaultSessionFailover
	enableScap
	forceWalletReload
	includeDcdCdrFields
	insufficientFundsDropCallResultCodes
	name
	overwriteZeroCallAnswerTime
	releaseOnLowCredit
	routing
	schemeName
	voidUnusedReservation
	dynamicWalletReload
	Example dynamicWalletReload

	Domains Parameters
	name
	realmFailureWaitSeconds
	routing
	weighting
	AVPs
	AVP Parameters
	avpCode
	ccsConcept
	cdrTag
	cdrOperation
	conditionProfileBlock
	conditionProfileTag - 1.0.4 - 94934
	conditionValue
	conversion
	esg
	vendor
	serviceProvider
	conversionScale
	conversionRounding
	excludeIf
	excludeIfMatches
	excludeWhenIn
	flags
	includeIf
	includeIfMatches
	includeWhenIn
	interpretBase
	literal
	mandatoryContents
	maxOccurrences
	name
	octetLength
	optionalContents
	profileBlock
	profileFormat
	profileTag
	repeating
	signInversion
	type
	vendorId
	Example Configuration for an AVP Type of GroupedUnitValue
	Example cdrTag/Operation Configuration
	ContextCopy Parameters
	Example ContextCopy Section

	contextItem
	profileBlock
	profileFormat
	profileTag
	TimeIn and TimeOut
	Example TimeIn and TimeOut

	Routes
	Introduction
	Routes Parameters
	direct
	host
	priority
	realm
	round_robin

	HostSpecificData
	Introduction
	HostSpecificData Parameters
	direct
	host
	name
	Origin-Host
	Origin-Realm
	priority
	realm
	round_robin

	NamedEventTypes
	Introduction
	NamedEventTypes Parameters
	eventClass
	eventName
	eventType
	isDebit

	Chapter 5

	Background Processes
	Overview
	Introduction
	In this chapter

	diameterBeClient
	Purpose
	Startup
	Example DIAMETER Section

	Statistics Logged by diameterBeClient
	Introduction
	Enabling Statistics
	DCD Statistics
	Reports
	Example Report

	DCD EDRs
	EDR Generation
	DCD EDR Tags
	DIA_RC (result code)
	DIA_REQ (current session message number)
	DIA_SID (session id)
	DIA_TIME (time ccr sent)
	Custom Tag Names
	Example EDRs
	Example 1
	Example 2
	Example 3

	Chapter 6

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction
	DCD Packages

	Checking the Installation
	Introduction
	DCD SLC Directories and Files
	DCD SMS Directories

