

Oracle® Communications Network
Charging and Control
Session Control Agent Technical Guide

Release 15.2

January 2026

ii Session Control Agent Technical Guide

Copyright

Copyright © 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

 iii

Contents

About This Document .. v
Document Conventions .. vi

Chapter 1

System Overview .. 1

Overview .. 1
What is the Session Control Agent? .. 1
Deploying the SCA .. 4
Configuration Overview ... 5
ENUM .. 6
ESC ... 7
Next Hop Processing ... 9
URI / E.164 Translation ...10
Parallel Hunting ...10
Presence and Availability ..11
PRACK Support ...11
Custom SIP Headers ...11
LAN Redundancy ..12
Local Address Redundancy ..13
Remote Address Redundancy ..14
Normalization and Denormalization ..17
CLIP and CLIR ..18
Feature Nodes ...18

Chapter 2

Prepaid Platform and NGN Integration .. 21

Overview ..21
Key Functionality ...21
Prepaid Platform Heartbeating ..22
Media Description Retrieval from SDP ..30
Call ID retrieval ..31

Chapter 3

Scenarios ... 33

Overview ..33
Call Forwarding ...33
Call Redirection ...36
Callback ...37
SIP Error Response ...41

Chapter 4

Configuration ... 45

Overview ..45
Configuration Overview ...45
sca.config Configuration ..46
SCA Configuration ...47
ESC Configuration ...81
Parser Configuration ..88

iv Session Control Agent Technical Guide

Presence Configuration ... 89
acs.conf Configuration ... 91
SLEE.cfg Configuration ... 92
Configuring EDR Collection ... 92
Configuring IN Call Model Triggers ... 93

Chapter 5

NHP Configuration .. 97

Overview .. 97
NHP Configuration File .. 97
NHP Rule Definition .. 98
NHP Commands.. 100
NHP Host Definition .. 103

Chapter 6

Background Processes .. 105

Overview .. 105
sca ... 105

Chapter 7

Tools and Utilities ... 107

Overview .. 107
registrar ... 107
remoteCommanderUser .. 108
SCA Remote Commander ... 109
Statistics .. 112
SCA EDRs ... 114

Chapter 8

About Installation and Removal .. 117

Overview .. 117
Installation and Removal Overview ... 117
Checking the Installation ... 117

 v

About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the
Session Control Agent application.

Audience

This guide was written primarily for system administrators and persons installing, configuring and
administering the Session Control Agent application. However, sections of the document may be
useful to anyone requiring an introduction to the application.

Prerequisites

A solid understanding of UNIX and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to install, remove, configure or
otherwise alter the described system without the appropriate background skills, could cause damage to
the system; including temporary or permanent incorrect operation, loss of service, and may render your
system beyond recovery.

Although it is not a prerequisite to using this guide, familiarity with the target platform would be an
advantage.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

The following documents are related to this document:

• Advanced Control Services Technical Guide

• Control Plan Editor User's Guide

• Service Management System Technical Guide

• Service Management System User's Guide

• Service Logic Execution Environment Technical Guide

vi Session Control Agent Technical Guide

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network
Charging and Control (NCC) documentation.

Formatting Convention Type of Information

Special Bold Items you must select, such as names of tabs.

Names of database tables and fields.

Italics Name of a document, chapter, topic or other publication.

Emphasis within text.

Button The name of a button to click or a key to press.

Example: To close the window, either click Close, or press Esc.

Key+Key Key combinations for which the user must press and hold down one
key and then press another.

Example: Ctrl+P or Alt+F4.

Monospace Examples of code or standard output.

Monospace Bold Text that you must enter.

variable Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option > Used to indicate the cascading menu option to be selected.

Example: Operator Functions > Report Functions

hypertext link Used to indicate a hypertext link.

 Chapter 1, System Overview 1

Chapter 1

System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control
(NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

What is the Session Control Agent?.. 1
Deploying the SCA .. 4
Configuration Overview ... 5
ENUM .. 6
ESC ... 7
Next Hop Processing ... 9
URI / E.164 Translation ... 10
Parallel Hunting ... 10
Presence and Availability .. 11
PRACK Support ... 11
Custom SIP Headers ... 11
LAN Redundancy .. 12
Local Address Redundancy .. 13
Remote Address Redundancy .. 14
Normalization and Denormalization .. 17
CLIP and CLIR .. 18
Feature Nodes ... 18

What is the Session Control Agent?

Overview

The Session Control Agent (SCA) is a highly available and scalable SIP transparent back-to-back user
agent (B2BUA), redirect server, proxy server and registrar. It provides support for SIP/SIMPLE
messaging and integrated triggering capabilities for Oracle Communications Network Charging and
Control and third-party applications.

The SCA enables real-time charging, instant messaging and personal mobility in SIP-based next
generation networks (IETF/ETSI NGNs) and in the IP Multimedia Subsystem (3GPP IMS, 3GPP2
MMD).

It can be integrated into NCC's Prepaid Charging solutions based on Charging Control Services (CCS),
with on-line charging interfaces to the NCC Voucher and Wallet Server and to third party real-time billing
systems.

Chapter 1

2 Session Control Agent Technical Guide

Features

The SCA has the following capabilities. It can:

• Send and receive SIP requests and responses to, and from:

▪ Remote SIP clients and servers, over TCP/IP or UDP
▪ SLEE interfaces or applications

• Query the DNS to retrieve IP addresses for hosts, and SRV records for domains

• Query custom-built PAMs through a SLEE PAM interface that translates SIP register requests

• Query SIP based PAMs directly

• Trigger IN applications such as ACS

• Provide next hop processing through a set of predefined rules

• Provide support for parallel hunting for connect requests received through ACS

• Send queries received through ACS to a remote presence server for subscriber presence and
availability information

• Publish subscriber presence and availability information, received through ACS, to a remote
presence server

• Provide support for PRACK

• Act as a B2B-UA when forwarding INVITE requests

• Support local and remote LAN redundancy

• Normalize and denormalize all numbers passed to and from the IN systems

• Handle calling line identification presentation based on values received in the incoming INVITE
request

• Restrict calling line identification by setting the appropriate fields within the IDP

 Chapter 1

•

 Chapter 1, System Overview 3

SCA components

Here is a diagram of the SCA components.

Chapter 1

4 Session Control Agent Technical Guide

Deploying the SCA

B2BUA or proxy

The SCA can be deployed in either transparent back-to-back user agent (B2BUA) mode or proxy mode.
This can be configured globally using the b2bua configuration option. When set to true, all calls will be
handled in B2BUA mode. When set to false, calls will be handled in proxy mode unless the B2B-UA
flag has been added to individual rules in the rules.nhp file.

Note: By default the SCA handles all calls in B2BUA mode.

SIP proxy deployment

A SIP proxy is used to forward a request from one physical location to another. This is the
recommended mode of operation for one of the following:

• The source and destination of SIP traffic are physically separate locations

• The SCA is running in standalone mode or is using a very simple control plan (for example, Start-
>Attempt-Terminate->End)

• The SCA is required to “get out of the loop” after forwarding the first request. For example, after
successfully forwarding the initial request the SCA will be bypassed and all subsequent requests
within a call will be sent directly between the endpoints.

SIP proxy deployment diagram

Here is an example SIP proxy deployment diagram. In the diagram a SIP user agent represents any
SIP capable device such as a softphone.

B2BUA deployment

A transparent B2BUA controls call legs independently allowing it to perform complex call scenarios and
to forward requests to the same physical location that originated the call. This type of deployment is
recommended if:

• The source and destination of SIP traffic is likely to be the same physical entity (for example, a
PSTN to SIP gateway)

• Complex control plans are being used that may redirect a call to a different destination, such as an
IVR. This may occur during the call or after it completes

 Chapter 1

•

 Chapter 1, System Overview 5

• Calls may be initiated by ACS (the call-back scenario)

• The SCA will be performing parallel hunting

Note: If the SCA is deployed in proxy mode and one of the above scenarios is triggered, the remainder
of the call will automatically be handled in B2BUA mode.

B2BUA deployment diagram

Here is an example SIP Transparent B2BUA deployment diagram.

Configuration Overview

Introduction

This section provides a brief overview of the mandatory and common configuration required to run the
SCA. The SCA configuration file (sca.config) is installed in /IN/service_packages/SCA/etc with all the
mandatory items configured. An example configuration file (sca.config.all.example) is also installed which
includes all configuration options.

Note: For a full description of all the configuration options refer to Configuration (on page 45).

Mandatory configuration

This table describes the parameters in the sca.config file that must be configured for the SCA to work.

Parameter Description

local_ip This must be set to the IP address of the machine on which the SCA is
running. The IP address will be inserted into all SIP requests sent by the
SCA to allow responses to be routed back to the SCA.

rem_comm_port If the remote commander is enabled, then it will listen on the specified TCP
port.

dns_server If the SCA is required to perform DNS lookups, then this must be set to a valid
DNS server address. If a DNS server is not required, then this option can be
left at the default value. Hostname to IP address mappings can be added to
the /etc/hosts file. If the dns_check_files configuration option is enabled, then
the SCA will read this file before attempting to query a DNS server.

Chapter 1

6 Session Control Agent Technical Guide

Parameter Description

default_domain This defines the default domain name that will be appended to E.164 numbers
returned from a control plan. The trans_mapping and trans_behaviour

configuration options allow different domains to be appended depending on
the prefix.

Common configuration

This table describes the common optional configuration decisions when deploying the SCA.

Configuration Description

EDRs By default the SCA logs EDRs to /IN/service_packages/SCA/cdr/closed. This can be
disabled by setting the enableCDRs configuration option to false.

UDP or TCP By default the SCA listens on TCP and UDP port 5060 for SIP traffic (this is
configurable). UDP is the recommended transport protocol for SIP traffic.

General

The SCA includes functionality to handle network and gateway failure. For details, see LAN
Redundancy (on page 12).

ENUM

Introduction

As part of the WaitingOnIN state, the SCA may be optionally configured to expect and look for results
from an ENUM lookup. This information will be available within an outgoing CONNECT message, as:

• An AUS, typically an e.164 number with a leading ‘+’ (for example: +016505550100)

• A URI, a string typically of the form: www.oracle.com

• One or more DNS NAPTR records, a NAPTR record contains a regular-expression based
replacement rule and protocol for the initial calling AUS, to convert it to a URI

• An AUS, a URI, or a set of NAPTR records, dynamically, data will have its type identified by a flag
value within the data

Encoding

This information is encoded into a profile block structure, and will be in a standard location.

Multiple URIs

Where multiple valid URIs are derived from ENUM NAPTR information, the SCA will use the parallel
INVITE feature to send INVITES to all identified parties at the "same" time.

Using NAPTR records

It is possible to configure the SCA to use NAPTR records of a particular service type, for example,
"E2U+SIP", and not use any other service type.

 Chapter 1

•

 Chapter 1, System Overview 7

Dynamic data identification

Where the data type is dynamically identified, the data must be in the ENUM dynamic record format.
This is the default for results from the ENUM Query, ENUM Call Out and NAPTR results from the ENUM
Naptr Response node.

Supported expressions

When processing NAPTR records, the SCA will use very limited regular expression support. For
example, a typical AUS replacement regular expression would be:

!^.*$!+016505550100@oracle.com!

Where ‘!’ is a delimiter (which splits the string into two sections). This will replace any input AUS with
the string: ‘+016505550100@oracle.com’.

Only full replacement expressions are supported, where the left-hand-side is: "^.*$" (as in the above
example).

Unsupported expressions

In full NAPTR support, the following could be used:

"!^+441234(.*)$!+441473\1@oracle.com!"

This response contains a back-reference to information in the input AUS (‘\1’). Such expressions are
not supported.

ESC

Introduction

The NCC SIP Chassis (ESC) component of the SCA provides the functionality for sending and receiving
SIP requests and responses over the following transport mechanisms:

• UDP

• TCP/IP

• SLEE

The available transport mechanisms are dependent on the configuration defined for the ESC in
sca.config. This part of the ESC is called the 'transport layer'.

Warning: TCP and UDP networking can be configured to be enabled or disabled. However, if they are
both disabled, then the SCA will fail.

TCP networking

The ESC polls for incoming TCP connections on a configurable network address and port. For more
information on how to configure TCP networking, see ESC Configuration (on page 81).

Once a connection has been accepted, the incoming data is read until the following information is
received:

• Request line,

• Message header

• Message body

Chapter 1

8 Session Control Agent Technical Guide

UDP networking

The ESC polls for incoming UDP datagrams on a configurable network address and port. It expects the
SIP requests and responses to be contained in the same datagram. For more information on
configuring UDP networking see ESC Configuration (on page 81).

SLEE networking

The ESC defines SLEE SIP request and SLEE SIP response events that allow the SCA to communicate
with external SLEE interfaces and applications, such as the IN application or PAM interface.

The SCA polls the SLEE for events, and filters out anything that is not a SIP request or SIP response.
These are then passed to the ESC for processing.

Request processing

Any incoming SIP message that does not start with the string "SIP/" is assumed to be a request. When
a SIP request is received, the request line is checked to ensure it contains a method name, request URI
and SIP version number (this must be 2.0).

The following SIP methods are supported. If the method name is anything else, then an error is
reported:

• ACK

• BYE

• CANCEL

• INFO

• INVITE

• MESSAGE

• NOTIFY

• OPTIONS

• PRACK

• PUBLISH

• REGISTER

• SUBSCRIBE

• UPDATE

Message header

The message header for both SIP request and SIP responses must contain the following mandatory
fields:

• To

• From

• Cseq

• Call-ID

• Max-Forwards

• Via

Request message headers that do not contain all the fields will result in an error. Response message
headers that do not contain all the fields will also result in an error and will be ignored.

Note: Cseq number for all SIP messages during PRACK and REINVITE scenarios are calculated as
below:

 Chapter 1

•

 Chapter 1, System Overview 9

Prack Cseq numbers get sequentially incremented from INVITE_CSeq_Number+100 and re-INVITE
Cseq numbers are sequentially incremented from just previous INVITE_CSeq_Number+200. BYE CSeq
number are calculated based on previous_INVITE_CSeq_Number+199.

DNS

This table describes the types of resource record retrieved when the ESC queries the DNS.

Record Type Description

SRV Indicates which proxies to use for particular domain and transport protocols.

CNAME Provides aliases for host redirection.

A Provides the actual IP addresses for hosts.

Next Hop Processing

Introduction to Next Hop Processing

The SCA uses next hop processing (NHP) to determine what action to take for incoming SIP requests
and partially processed SIP requests. The SCA also uses next hop processing when sending outbound
SIP INVITE messages during third-party call control (3PCC) call setup.

The NHP is controlled by a set of rules contained in the rules.nhp configuration file. This file is read and
preprocessed by the SCA at startup. For information about how to configure NHP rules, see NHP
Configuration (on page 97).

NHP SIP Request Actions

The next hop processing can perform the following actions on the SIP request:

• Redirect it to an alternative host/domain

• Forward it to an alternative host/domain using load-balancing

• Send multiple INVITE requests when the destination routing address (DRA) for the incoming request
contains a list of numbers

• Perform a location query and forward it to the location returned by the query. If multiple locations
are returned, they are tried in order

• Convert it to CS1 InitialDP and send it to an external IN application

• Forward it to an external SLEE application

• Handle it internally

NHP SIP Invite Actions

The next hop processing can perform the following actions on the SIP Invite to improve integration with
Oracle Communications Service Controller for third-party call control (3PCC):

• Insert custom Session Initiation Protocol (SIP) headers into INVITE messages during 3PCC setup.

• Insert a SIP header that contains content that was derived from a previously received SIP message.

NHP triggers

Next hop processing can be triggered on:

• A numerical address that starts with a given prefix in the From or To header field.

Chapter 1

10 Session Control Agent Technical Guide

• user@host, or user@domain in the From or To header field, where the host or domain ends with a
given suffix.

• user@host, or user@domain in the From or To header field, where the user starts or ends with a
given prefix/suffix.

• user@IPaddress in the From or To header field, and the IP address starts with a given prefix.

• user@host, or user@host in the VIA header.

• A regular expression in the From or To header field.

• A regular expression in the body of the message.

• The status code in the header in the SIP response.

• Unconditionally.

Location query

Location query can be performed as part of next hop processing. The responses from the PAM
regarding the location are stored in the location cache by sending one of the following:

• REGISTER SIP request to a remote SIP element, identified by its hostname or IP address

• REGISTER SIP event to a SLEE application or interface.

In both these cases the request URI determines where the request is actually sent.

Tip: For details on the registrar tool provided as part of the SCA see the registrar (on page 107).

URI / E.164 Translation

URI / E.164 translation

The SCA supports both URIs and E.164 numbers (as used in ACS). The ability to map URIs to E.164
numbers to facilitate conversion between the two types is provided. For information on mapping URIs
to E.164 numbers see SCA Configuration (on page 47).

Parallel Hunting

Introduction

The SCA supports parallel hunting for connect requests, received through ACS, which contain a list of
numbers in the destination routing address (DRA). It can be configured to send INVITE requests to
multiple destinations. As soon as the call is answered by one of the destination parties, the call to all
other parties is canceled.

Feature node

The Copy Hunting List feature node available in the ACS Control Plan Editor is used to obtain the list of
numbers in the DRA.

For more information on ACS feature nodes and the Control Plan Editor, see Feature Nodes Reference
Guide and Control Plan Editor User's Guide.

 Chapter 1

•

 Chapter 1, System Overview 11

Presence and Availability

Introduction

Subscribers to the SCA can publish their presence and availability details to a remote presence server.
The details can then be queried in order to influence routing of subsequent calls. For example, calls may
be redirected to voicemail if the subscriber is busy.

Presence configuration

The possible locations and availabilities that a subscriber may have are defined in the eserv.config
configuration file. See Presence Configuration (on page 89) for details.

Presence feature nodes

Requests to publish and query presence and availability details are sent to the SCA through ACS
feature nodes. The SCA routes the requests to the remote presence server and returns the responses
to the originating ACS feature nodes.

The following presence nodes are available in the ACS Control Plan Editor:

• Presence Branching

• Set Presence

For more information on ACS feature nodes and the Control Plan Editor, see Feature Nodes Reference
Guide and Control Plan Editor User's Guide.

PRACK Support

PRACK support

The SCA can be configured to provide support for PRACK. When this is enabled, the SCA will send a
standard SIP acknowledgment message for all provisional requests in the range 100 to 199.

For configuration details see ESC Configuration (on page 81).

Custom SIP Headers

About Custom SIP Header Support

The SCA provides the following features to support custom SIP headers for third-party call control
(3PCC):

• The ability, through configuration, to send an empty SDP connection address of c=IN IP4 0.0.0.0 in
the INVITE message of a 3PCC call-initiation scenario when sca.call_init_use_reinvite =

true.

You configure call_init_send_empty_address in the sca section of the sca.config file. For

information, see call_init_send_empty_address (on page 80).

• The ability to insert custom Session Initiation Protocol (SIP) headers into INVITE messages during
3PCC setup. For information, see PUT_HEADER Command (on page 103).

• The ability to insert a SIP header that contains content that was derived from a previously received
SIP message. See Adding Inbound Header to Subsequent INVITE Messages (on page 12).

For example, you could use these features to improve integration with Oracle Communications Service
Controller for third-party call control.

Chapter 1

12 Session Control Agent Technical Guide

Adding Inbound Header to Subsequent INVITE Messages

SCA supports the ability to insert into an outbound INVITE message a SIP header that contains content
that was derived from a previously received SIP response. For example, you can use this capability to
set the value of the retrieved header in an arbitrary header in a subsequent 3PCC INVITE message.

SCA supports this capability with the following features of NHP rules:

• The STATUSCODE identifier in the HOSTS section of the NHP configuration file, rules.nhp that allows

a command to be triggered based on a SIP response.

• The GET_HEADER command that allows a header to be retrieved from an inbound SIP response
and stores the value in memory with a specified key_name identifier.

• The PUT_HEADER command that can then be used to populate the header of subsequent
outbound INVITE messages with the value that the GET_HEADER command retrieved from the SIP
response.

For more information about NHP configuration and NHP commands, see NHP Configuration (on page
97).

Example configuration: Adding inbound header to subsequent INVITE message

RULES = {

"r1" = (DEFAULT) LOCATION (SK = 200);

"registrar" = (DEFAULT) FORWARD (SK = 200);

"trying" = (DEFAULT) GET_HEADER (NAME = "x-wcs-encode-uri"

ID = "ID_route" };

"get_route" = (DEFAULT) PUT_HEADER (NAME = "Route" ID =

"ID_route" };

}

HOST * = {}

STATUSCODE "183" = { "trying" }

METHOD "INVITE" = { "get_route", "r1" }

METHOD "REGISTER" = { "registrar" }

}

The receipt of a SIP 183 response triggers the trying rule, which stores the content of the x-wcs-

encode-uri header in memory with a key of ID_route.

When sending the SIP INVITE message, the rule get_route is triggered, adding a Route header to

the message, with its value set to the content that was stored in memory with the key value ID_route.

LAN Redundancy

Introduction

The SCA supports redundant LAN deployments for failover local addresses on the SLC or remote IP
addresses to which it is directing traffic. The two types of LAN redundancy supported are:

• Local address redundancy: this enables the SCA to detect failure of local network interfaces and
stop billing for calls if such failure occurs.

• Remote address redundancy: when initiating a call, this enables the SCA to detect LAN address
failures of the remote SIP entities to which it directs traffic and to try alternate destination URLs.

Note: These features are not a substitute for a fully redundant network architecture.

• If mid-call failover and redundancy in the mediastream is required, then the network on which the
SCA is deployed should include switches and routers that can detect failure and send traffic along
an alternate path.

 Chapter 1

•

 Chapter 1, System Overview 13

• If the SCA is being used to handle billed calls, then you should configure SCA to send heartbeat
messages to the gateways to detect remote gateway failure. For more information, see Prepaid
Platform Heartbeating (on page 22).

Diagram

Here is an example of a network layout with redundant addresses.

Local Address Redundancy

Introduction

To support local address redundancy, the SCA constantly monitors the status of user-defined LAN
addresses on the local SLC. It checks the operating system flags and determines if any local addresses
have failed. If all interfaces have failed, the SCA will notify the IN to release any active calls.

Procedure

The detailed process is explained below:

Chapter 1

14 Session Control Agent Technical Guide

1 Users can define a list of LAN addresses to be monitored in the SCA configuration file.

2 The SCA constantly monitors the LAN interface status flags on the defined addresses for LAN
failure.

3 If all interfaces are marked as DOWN, the SCA will raise an alarm notification and the IN will release
any active calls.

4 The SCA continues to monitor the interfaces.

Warning: If no interfaces are defined in the SCA configuration file, the SCA will not check for any failed
local interfaces and behave as per normal.

Remote Address Redundancy

Introduction

The SCA also monitors for user-defined remote client addresses when it is initiating requests to remote
SIP entities over the network.

The important features of remote address redundancy are:

• Load-balancing

• Transaction Timer

• Alternate Addresses

Process

The detailed process is explained below.

Stage Description

1 Users can define a list of destination URLs to be monitored in the DNS entry or in the
SCA Rules file.

2 The SCA sends a request message and retransmits it at intervals configured in the
transaction timer.

3 The timer is canceled when an appropriate response is received before the timer expires.

4 If the timer expires and no response is received, the SCA will mark the interface as
DOWN and notify the IN.

5 The SCA will send the message to the next alternate address provided in the User-
defined list.

6 The SCA continue through the list until an address is successful or all URLs have been
tried.

7 If all addresses fail, the SCA will notify the IN to release all active calls to the remote SIP
entity and sends an error message to the A-party.

Note: If a single address is specified for a remote SIP entity, the SCA behaves as per normal.

Load balancing

Users specify a list of remote addresses for each SIP client in the NHP file or the DNS server. The
SCA load balances requests between the defined IP addresses using a round robin approach. Once
an address is detected as failed, it will be cached for a specified period to avoid sending subsequent
messages to the failed address.

The load balancing feature can be optionally disabled. When disabled, all subsequent messages are
sent to the first available address. If the load balancing behavior is enabled, excluding failed
addresses, the messages will be sent to each address in the list in turn.

 Chapter 1

•

 Chapter 1, System Overview 15

Alternate addresses

In the event of a remote address failure, the SCA will try alternate destination IP addresses defined for
that client in the list of alternate destination URLs specified in a DNS entry or in the SCA Rules file.
When the transaction timer expires the SCA will send the message to the next URL in the provided list.
The SCA will continue through the list until an address is successful or all URLs are exhausted.

If all the URLs fail the IN will be notified and all active calls to the remote SIP entity will be released. A
"Request Timeout" error message is sent to the A-party, unless the A-party addresses have failed or the
SCA is directed otherwise by the Control Plan.

The failed address is cached for a configurable amount of time to prevent all subsequent messages
being sent to addresses that are known to have failed. A failed address is marked as available when
the cache timer expires. If all addresses for a client are detected as failed, this information is not
cached and they will all be marked as available.

Note: If the load-balancing behavior is disabled, subsequent messages after a failure is detected are
sent to the first address known to be available. If the load-balancing behavior is enabled, the messages
are sent to each address in the list using the round robin approach, apart from the addresses marked as
DOWN.

Example

Here's an example of a successful call transmission to the B-party's alternate address.

Transaction timer

A transaction timer starts when the SCA sends a request to the B-party. The message is periodically
retransmitted after an interval of for 64*T1 seconds, until an appropriate response is received from the
other end.

Chapter 1

16 Session Control Agent Technical Guide

Successful call response

The timer will be canceled when the SCA receives a response from the B-party in the range of 100 to
699 for an INVITE transaction, or a 200 to 699 response for any other request. The default value of T1
is 0.5 seconds, though it can be configured to a different value.

Here's an example of a successful call response received from the B-party.

Remote address failure

If the transaction timer expires and no response is received from the B-party, the SCA notifies the IN
and returns a "Request Timeout" error to the A-party, unless directed otherwise by the control plan.
This expiry of the transaction timer is interpreted as a remote address failure.

 Chapter 1

•

 Chapter 1, System Overview 17

Here is an example of a remote address failure caused due to no response received from the B-party.

Normalization and Denormalization

Introduction

Normalization and denormalization allow for incoming and outgoing numbers to be selected by their
prefix and then have numbers stripped or added (as prefix) if necessary. Normalization can be applied
to all numbers in an incoming IDP request. Denormalization can be applied to all numbers returned
from the IN (Intelligent Network).

Normalization

The SCA performs normalization by modifying the incoming and outgoing numbers to perform prefixing
and digit stripping. Normalization is applied to numbers in an IDP message sent to the IN after the
next-hop processing.

The following numbers are normalized:

• Called and calling party numbers

• Additional calling party numbers

• Additional called party numbers

• Redirection numbers

Denormalization

The SCA denormalizes numbers when they are returned from the IN. Denormalization is applied to the
numbers prior to applying the next hop processing rules.

Chapter 1

18 Session Control Agent Technical Guide

The SIP protocol does not have the ability to convey nature of address (NoA) information, so the SCA
encodes this information using a "+" prefix. If a number returned from the IN has a NoA value of 4, the
corresponding number in the outgoing INVITE message is optionally prefixed with a "+" by the SCA. If
an incoming INVITE message includes a number prefixed with a "+", then the NoA of the corresponding
number sent to the IN will have a NoA of 4. Otherwise a configurable default value will be set.

CLIP and CLIR

Introduction

The SCA performs calling line identification presentation and restriction (CLIP/R) when notified by the
incoming message from the A-party.

This CLI information is passed to the SCA in one of the following methods:

• Using the Privacy header in an INVITE message

• Setting the name in the FROM header to “Anonymous”

• Setting the URL in the FROM header to “anonymous@anonymous.invalid”

Privacy header

When the SCA is notified that the A-party CLI information is to be restricted, it will set the Presentation
Indicator field of the calling party number to 01 (Presentation Restricted) in the corresponding IDP sent
to the IN.

The SCA also ensures that if the Presentation Indicator field of the calling party number is set to 01 by
the IN, the outgoing INVITE message includes a Privacy header with a value of “id”.

Setting name in FROM header

If the Display Name parameter in the FROM header of an incoming INVITE message is set to
“Anonymous” and the URL in the From header contains an E.164 number, the SCA sets the
Presentation Indicator field of the CgPN to 01.

Setting URL in FROM header

If the URL parameter in the FROM header of an incoming INVITE message is set to
“anonymous@anonymous.invalid”, the corresponding INVITE message sent by the SCA includes a
Privacy header with a value of “id”.

Feature Nodes

ACS feature nodes

This table lists the ACS feature nodes available in the Control Plan Editor, which may be required when
using the SCA in conjunction with ACS.

Node name Node description

Set Presence This node must be included in the ACS control plan if the SCA will be handling
presence and availability requests.

It sends a request to a remote presence server to set the availability of a subscriber
at a selected location.

Presence
Branching

This node must be included in the ACS control plan if the SCA will be handling
presence and availability requests.

 Chapter 1

•

 Chapter 1, System Overview 19

Node name Node description

It sends a request to a remote presence server to check a selected location for the
presence and availability of a subscriber.

Copy Hunting
List

This node prompts the user for a hunting list and copies the hunting list contents to
the Pending TN and Additional Pending TNs buffers.

Tip: For information about NCC feature nodes, see Feature Nodes Reference Guide. For more
information about the Control Plan Editor, see Control Plan Editor User's Guide.

 Chapter 2, Prepaid Platform and NGN Integration 21

Chapter 2

Prepaid Platform and NGN Integration

Overview

Introduction

This chapter provides a high-level overview of the integration of IN prepaid systems into next generation
networks (NGN). It explains the role of the SCA as an interface between the prepaid platform and the
NGN components.

In this chapter

This chapter contains the following topics.

Key Functionality ... 21
Prepaid Platform Heartbeating .. 22
Media Description Retrieval from SDP .. 30
Call ID retrieval .. 31

Key Functionality

Introduction

The SCA enables real-time charging, instant messaging and personal mobility in SIP-based next
generation networks and in the IP multimedia subsystem (3GPP IMS, 3GPP2 MMD). It can be
integrated into Oracle's Prepaid Charging solutions based on Charging Control Services (CCS), with on-
line charging interfaces to the NCC Voucher and Wallet Server and to third party real-time billing
systems.

The key features of the SCA that support this integration are:

• Prepaid platform heartbeating towards CSCF

• Media description retrieval from SDP header

• Call ID retrieval

• Status determination of SCA (through OPTIONS)

All messaging between the SCA and the NGN passes through the existing call session control function
(CSCF) within the NGN environment.

Chapter 2

22 Session Control Agent Technical Guide

Diagram

Here is a diagram showing how the Oracle prepaid platform uses the SCA to interface with a NGN.

Prepaid Platform Heartbeating

Introduction

A heartbeating mechanism is used to send periodic SIP OPTIONS messages from the NCC prepaid IN
platform to the CSCF to determine the connectivity status between the two systems. This enables the
prepaid platform to cease charging and close down SIP sessions for end users if they are no longer
controllable by the IN platform, for example, because a signaling failure has occurred in the network.

SIP OPTIONS heartbeat message

A SIP OPTIONS message is sent to the CSCF at regular time intervals configured within the SCA
configuration file. Hence, it is also known as the SIP OPTIONS "heartbeat” message. It is sent to the
CSCF regardless of any SIP sessions currently running on the IN platform.

 Chapter 2

•

 Chapter 2, Prepaid Platform and NGN Integration 23

The SCA expects an OK message in response to the OPTIONS heartbeat message. If a response is
received, a timer is started and subsequent OPTIONS messages are sent to CSCF at regular intervals.
This time interval is configurable in seconds within the SCA configuration file, with a setting of 0 or no
entry indicating that no heartbeat messages will be sent.

If a response is not received to an OPTIONS message within the specified time interval, an OPTIONS
message is repeatedly sent one of the following:

• An OK message is received

• 64 OPTIONS messages have been retransmitted without an OK message being received

Note: The OPTIONS message is retransmitted at an interval that starts at T1 seconds and doubles until
it reaches T2 seconds. It is then retransmitted at an interval of T2 seconds until a total time of 64*T1
seconds has elapsed. T1 and T2 are configurable and default to 0.5 seconds and 4 seconds
respectively.

Message header

The message header for SIP OPTIONS heartbeat messages contains the following mandatory fields
configurable within the SCA configuration file:

• "To" field

• "From" field

• Request-URI

• Route

• P-Asserted-Identity (including username)

• P-Charging-Vector (optional)

Example

Here is an example of a OPTIONS heartbeat message sent from the prepaid platform to CSCF:

OPTIONS sip:bsas.sip.teleco.pl;transport=UDP; SIP/2.0

Via: SIP/2.0/UDP 12.0.0.21:6060

Max-Forwards: 70

To: <sip:bsas.sip.teleco.pl;transport=UDP>

From: <sip:prepaid.sip.teleco.pl;transport=UDP>;tag=1234567890

Call-ID: prepaid1234@12.3.4.56

CSeq: 10 OPTIONS

Route: <sip:scscf.sip.teleco.pl:6060;lr>

Contact: <sip:12.0.0.21:6060;transport=UDP>

Accept: application/sdp

P-Asserted-Identity: "45678901234" <sip:45678901234@sip.teleco.pl>

Content-Length: 0

P-Charging-Vector:

icid-value=prepaid34567aae0;orig-ioi=prepaid.sip.teleco.pl

Prepaid Heartbeat Process

The detailed process is explained below:

Step Action

1 The prepaid IN platform sends a SIP OPTIONS heartbeat message to the CSCF and
awaits an OK message.

2 If a response:

Chapter 2

24 Session Control Agent Technical Guide

Step Action

• Is received, a timer is started to send subsequent OPTIONS messages to CSCF
at regular intervals.

 • Is not received within a specified period, an OPTIONS message is retransmitted
until an OK message is received or 64 OPTIONS messages have been
retransmitted without any response.

Note: The OPTIONS message is retransmitted at an interval that starts at T1 seconds
and doubles until it reaches T2 seconds. It is then retransmitted at an interval of T2
seconds until a total time of 64*T1 seconds has elapsed. T1 and T2 are configurable
and default to 0.5 seconds and 4 seconds respectively.

3 A critical alarm is raised and charging for current SIP sessions is stopped, that is, all
concerned SIP sessions are placed in a “Charging void” state.

4 A VWS EDR is generated with an appropriate release cause value as configured in the
SCA configuration file.

5 The SCA notifies the IN to release the call using a RELEASE message that indicates the
release cause value.

6 If the restart charging option is enabled, the SCA will attempt to restart the charging
session upon receiving a re-INVITE message from the originating party, which is
successfully proxied to responded by the B-party. For details about the procedure, see
Restarting charging session (on page 28).

 Chapter 2

•

 Chapter 2, Prepaid Platform and NGN Integration 25

Diagram

Here is an illustration of the prepaid platform heartbeating mechanism. The resulting CS-AS
heartbeating activity is highlighted in red.

Stopping charging sessions

The prepaid heartbeating mechanism ensures that charging can be stopped for SIP endpoints affected
by a signaling problem between the prepaid platform and CSCF.

When 64 OPTIONS messages are retransmitted without any response, a critical alarm is raised as per
the alarm details configured within the SCA configuration file. Charging for current SIP sessions is
stopped and all concerned SIP sessions are placed in a 'charging void' state.

A VWS EDR is generated with the appropriate release cause value. For more details, see release
cause values (on page 26).

Chapter 2

26 Session Control Agent Technical Guide

Release cause values

When the charging is closed for a SIP session, a VWS EDR is generated with the appropriate release
cause value.

This value is configurable within the SCA configuration file, the permissible range being 0 to 127, with a
default value of 55. The release cause value written to the VWS EDR specified for a CS-AS heartbeat
mechanism failure is also configurable within the SCA configuration file, the permissible range being 0 to
127, with a default value of 60.

The SCA uses this value in a RELEASE message to disconnect the call to the IN service. The IN
service then includes the value in the VWS EDR, allowing a user’s account to be credited appropriately
if the release cause value is detected during EDR post-processing. It also alerts the EDR post-
processing system if more than one EDR exist for a call (in case a new EDR is generated when
charging restarts).

Warning: If a release cause value is specified outside the permissible range an appropriate alarm is
raised and the SCA will fail to restart.

Release cause mapping

This table lists valid INAP release cause codes, and the SIP error codes to which they are mapped.

Code INAP Release Cause Code SIP Error Code

1 Unallocated Number 404 Not Found

2 No Route To Network 404 Not Found

3 No Route To Destination 404 Not Found

17 User Busy 486 Busy Here

18 No User Responding 408 Request Timeout

19 No Answer From User 480 Temporarily Unavailable

20 Subscriber Absent 480 Temporarily Unavailable

21 Call Rejected 603 Decline

22 Number Changed 410 Gone

23 Redirection To New Dest 410 Gone

26 Non-Selected User Clearing 404 Not Found

27 Destination Out of Order 502 Bad Gateway

28 Address Incomplete 484 Address Incomplete

29 Facility Rejected 501 Not Implemented

31 Normal 404 Not Found

34 No Circuit Available 503 Service Unavailable

38 Network Out of Order 503 Service Unavailable

41 Temporary Failure 503 Service Unavailable

42 Switching Equipment Congestion 503 Service Unavailable

47 Resource Unavailable 503 Service Unavailable

55 Incoming calls barred within CUG 403 Forbidden

57 Bearer capability not authorized 503 Service Unavailable

58 Bearer capability not presently available 503 Service Unavailable

65 Bearer capability not implemented 488 Not Acceptable Here

70 Only restricted digital available 488 Not Acceptable Here

79 Service/option not implemented 501 Not implemented

 Chapter 2

•

 Chapter 2, Prepaid Platform and NGN Integration 27

Code INAP Release Cause Code SIP Error Code

87 User not member of CUG 403 Forbidden

88 Incompatible destination 503 Service unavailable

102 Recovery on timer expiry 504 Gateway timeout

111 Protocol error 500 Server internal error

127 Interworking unspecified 500 Server internal error

Note: These mappings can be ignored by setting the propagate_b_error = true configuration

item.

This will always ignore the above mapping and just forward the error response from the B-leg. Beware
that this will mean that the IN release cause will always be ignored.

CS-AS heartbeating mechanism

A heartbeat message is sent to the prepaid IN platform by the CS-AS (application server) associated
with each endpoint to indicate that the SCA must be able to handle all endpoints currently involved
within the SIP session. This is known as CS-AS heartbeat mechanism.

This allows the prepaid IN platform to determine signaling problems within the network. If a heartbeat
message is not received within the specified time limit, the prepaid IN platform will end the SIP session
and cease charging for the associated SIP endpoint.

Chapter 2

28 Session Control Agent Technical Guide

Diagram

Here is an illustration of the CS-AS heartbeating mechanism.

Restarting charging sessions

The CS-AS heartbeat mechanism enables restarting charging sessions that have entered the Charging
void state by periodically checking the connectivity status of the endpoints.

This process is initiated if a re-INVITE message received from the A-party (originating endpoint
connected to a CS-AS), proxied by the SCA to the B-party (destination endpoint) results in a successful
OK message from the B-party.

When an attempt is made to resume a charging session, the SCA will add a configurable prefix to the
called party address sent to the charging system so that the IN service can identify the resumed call and
suppress IVR messages.

 Chapter 2

•

 Chapter 2, Prepaid Platform and NGN Integration 29

Note: The SCA will attempt to resume a session in the Charging void state on if the resume charging
option is enabled in the SCA configuration file.

Process

The detailed restart charging process is explained below.

Stage Description

1 The CS-AS sends a periodic INVITE heartbeat message to the SCA on behalf of each
endpoint involved in a SIP session.

2 The SCA receives the message from the A-party, proxies it to the B-party (destination
endpoint) and awaits an OK response.

3 When the B-party responds with an OK, the SCA will recommence charging for A-party if
the restart charging option is enabled within the SCA configuration file.

4 The contents of the new INVITE are used to determine charging parameters, however, if
there is insufficient information, the charging parameters of the previous INVITE will be
used.

5 If the attempt to restart charging succeeds, then the OK message received from the B-
party is sent to the A-party and a re-INVITE timer is restarted to receive subsequent
heartbeat messages.

6 If the attempt to restart charging fails, then the session will be cleared by sending BYE
messages to both endpoints.

Note: The SCA interprets an INVITE message as a heartbeat message if it has the same call ID value
in the message header as an outstanding SIP session.

SCA message processing

The following scenarios describe the SCA action's response to possible messages received from the
CSCF when a SIP session is placed in the Charging void state.

Scenario Action

No heartbeat INVITE
message or non-terminating
SIP message

If no periodic INVITE message or non-terminating SIP message is
received within the configured time, the SIP session is closed and
charging is stopped.

Re-INVITE message received
from the A-party

The SCA will proxy it to B-party and await OK message.

OK message is received from
the B-party

The SCA will attempt to resume the charging session as per the
configuration options set in the SCA configuration file.

Charging information, if present in new INVITE is used, else contents
of previous message are used.

Re-INVITE received for
ongoing call currently being
charged

The SCA will proxy and then discarded this message.

Re-INVITE message received
from B-party

The SCA will proxy the message to A-party and take no further
action.

Any non-terminating message
other than INVITE received A-
party

The SCA will proxy the message to the B-party; the re-Invite timer is
restarted when B-party responds with an OK.

Chapter 2

30 Session Control Agent Technical Guide

Scenario Action

Any non-terminating message
other than INVITE received
from A-party for sessions in
Charging void state

The SCA will attempt to resume the charging session as per the
configuration options set in the SCA configuration file.

The message is proxied to the B-party and charging commences
when an OK is received from B-party.

Notes: Charging parameters will be used from previous charging
parameters unless an UPDATE is received overriding previous
message information.

Media Description Retrieval from SDP

Introduction

The SIP endpoints use the SDP portion of the initial INVITE message to indicate the type of media
session that should be initiated. This information is used by the SCA to pass tariff information to the
charging components.

The tariff can be re-evaluated by the prepaid platform during session setup or progress. The session
setup stage includes media session negotiation. During a call, the media type and tariff can be updated
using a re-INVITE or UPDATE message. The final agreed media type will be the type for which the call
is billed.

This media type information is written to the EDR generated for the session, by using the Branch on
Bearer Type node in combination with the Set BE EDR node. For more information on feature nodes,
refer to Feature Nodes Reference Guide.

Media description field

The media description field in the message body of the initial INVITE received for a session is used to
derive the tariff applied to the whole session.

The SCA searches for more than one occurrence of the Media description field and its associated
direction media attributes as more than one media can be applied to a call.

An example is shown below for a session with both audio and video:

Media Description, name and address (m): audio 21358 RTP/AVP 107 119 0

Media Attribute (a): sendrecv

Media Description, name and address (m): video 21360 RTP/AVP 115 34

Media Attribute (a): sendrecv

Media description string

The SCA looks for the occurrence of the following media description string within the message body:

Media Description, name and address (m):

The strings of interest generally associated with this tag are “audio” and “video”.

Example: An entry is shown below for an audio call:

Media Description, name and address (m): audio 12345 RTP/AVP 100 100 0

Media description attribute

After an occurrence of the media description string is found, the SCA looks for an occurrence of the
media attribute field that indicates if the type of media is send, send or receive.

Example: An example entry is shown below for a bi-directional media stream:

 Chapter 2

•

 Chapter 2, Prepaid Platform and NGN Integration 31

Media Attribute (a): sendrecv

Media mapping table

Once the SCA has completed deciphering the media description/attribute parameters from the INVITE it
looks up a media mapping table that indicates the bearer capability (tariff) to be used for the session.

The media mapping table is configured within the SCA configuration file and allows various
combinations of media description/attributes to be mapped to a bearer capability integer value. Unique
values of bearer capabilities must be used so that the control plan run by the IN service can check for a
particular bearer capability and write the correct media information to the EDR that is generated.

The result of not finding a bearer capability mapping in the media mapping table can be configured in
the SCA configuration file as:

• An alarm is raised showing the media description/attributes that have no mapping. The session
start-up is terminated and an appropriate error message is sent to the initiating party.

• The bearer capability is set to a default value in the SCA configuration file (blank setting indicates
that field is not populated) and the call continues.

Note: If an UPDATE message is received in a call not in the Charging void state is either rejected,
ignored or proxied as configured in the SCA configuration file. The SDP information cannot be used to
update charging information.

Example

Here are a few sample entries for a media mapping table:

Media Attribute Description Bearer Capability

audio:sendrecv::1 Indicates for only Audio - sendrecv 1

video:sendrecv::2 Indicates for only Video - sendrecv 2

video:send::3 Indicates for only Video send 3

video:recv::4 Indicates for only Video receive 4

audio:sendrecv,video:sendrecv::5 Indicates for Audio sendrecv and Video
send/recv

5

audio:sendrecv,video:send::6 Indicates for Audio sendrecv and Video
send

6

audio:sendrecv,video: recv::7 Indicates for Audio sendrecv and Video
recv

7

audio:inactive,video: recv::8 Indicates for Audio inactive and Video recv 8

audio:inactive,video: inactive::9 Indicates for Audio inactive and Video
inactive

9

Call ID retrieval

Introduction

The Call ID in the initial INVITE received while starting a SIP session must be included in all EDRs
generated by the prepaid platform for the SIP session. This helps correlate the EDRs generated for
that session by other applications across various platforms.

Chapter 2

32 Session Control Agent Technical Guide

The Call ID is written to the VWS EDR when the Set BE EDR node is triggered in a call Control Plan.
However, to write the Call ID in ASCII form to the EDR an MSC Address must be configured in the SCA
configuration file and a matching MSC address must be entered in the eserv.config file and set up for
ASCII decoding.

Call ID field

The Call ID field in the message header of the initial SIP INVITE received from the A-party is passed to
the call control plan. It is then written to the VWS EDRs by the Set BE EDR feature node.

The Call ID field is placed within the CAMEL call reference field within the IDP sent by the SCA to trigger
ACS. The maximum length of this field is 64 characters. If the Call ID is greater than 64 characters,
then the first 64 characters will be displayed in the EDR field and an alarm will be raised to indicate that
the Call ID has been truncated. The details of this alarm can be configured in the SCA configuration file
to display:

• Contents of 'To' field

• Contents of 'From' field

• Truncated Call ID

• Actual Call ID

Also, the SCA can be configured to operate in a back-to-back user agent (B2BUA) mode, so that the
call ID sent to the B-party is generated by the IN platform with a recognizable prefix.

 Chapter 3, Scenarios 33

Chapter 3

Scenarios

Overview

Introduction

This chapter explains how common scenarios are handled by the Session Control Agent.

In this chapter

This chapter contains the following topics.

Call Forwarding ... 33
Call Redirection ... 36
Callback ... 37
SIP Error Response... 41
SIP Re-INVITE Scenario Call Flow ... 2

Call Forwarding

Introduction

The most common use of the SCA is to trigger a control plan to process calls in conjunction with the IN
call model. This is referred to as an “IN controlled call”. Using this method the SCA acts as a
translator between the SIP protocol used in the VOIP network and the TCAP/INAP protocols used to
communicate with the control plan.

This example scenario shows how the SCA (running in B2BUA mode) can be used to forward calls. In
this scenario a SIP request triggers a control plan which changes the call destination number and
forwards the request accordingly.

Call Forwarding Process

The call forwarding process is described below.

Stage Description

1 A SIP INVITE request is received on UDP port 5060.

Chapter 3

34 Session Control Agent Technical Guide

Stage Description

 Example INVITE request:
INVITE sip:016505550100@oracle.com SIP/2.0

Via: SIP/2.0/UDP 192.168.25.80:5060;branch=z9hG4bKaaa

From: 016505550186<sip:016505550186@192.168.25.80>;tag=1

To: 016505550100 <sip:016505550100@oracle.com>

Call-ID: 1-8959@192.168.25.80

CSeq: 1 INVITE

Contact: sip: 016505550186@192.168.25.80:5060

Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 124

v=0

o=user1 53655765 2353687637 IN IP4 192.168.25.80

s=-

c=IN IP4 192.168.25.80

t=0 0

m=audio 21358 RTP/AVP 107 119 0

2 The SCA queries the rules.nhp configuration file and looks for a rule matching the INVITE
message. In this example the INVITE message triggers the "acs" default rule.

 Example Rules.nhp:
RULES = {

 "acs" = (DEFAULT) IDP (SK = 110);

 "fwd" = (TO USER MATCHES "666666")

 FORWARD (URI="sip:192.168.25.82");

}

HOST * = {

 METHOD "INVITE" = { "acs", "fwd" }

}

3 The rule translates the INVITE message into an IDP message.

For details on how the message is translated, see Invite message translation (on page
36).

4 The IDP message is forwarded to ACS on service key 110.

5 The IDP triggers a simple control plan containing an Attempt Termination node.

Example:

 Chapter 3

•

 Chapter 3, Scenarios 35

Stage Description

6 The Attempt Termination node redirects the number to 016505550187. A Connect
message is sent back to the SCA with this as the new called party number.

7 The SCA generates a new INVITE request for the second part of the call. The request
contains the new CdPN in the To header and the received CgPN in the From header.

 Example INVITE request:
INVITE sip:016505550187@oracle.com SIP/2.0

Via: SIP/2.0/UDP 192.168.26.182:5060;branch=z9hG4bK946513216548

From: 016505550186 <sip:016505550186@oracle.com>;tag=2895685

To: 016505550187 <sip:016505550187@oracle.com>

Call-ID: ESGSCA12345689746541321@192.168.26.182

CSeq: 1 INVITE

Contact: sip:016505550186@192.168.26.182:5060

Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 124

v=0

o=user1 53655765 2353687637 IN IP4 192.168.25.80

s=-

c=IN IP4 192.168.25.80

t=0 0

m=audio 21358 RTP/AVP 107 119 0

Chapter 3

36 Session Control Agent Technical Guide

Stage Description

8 ACS returns E.164 numbers which must be translated to a SIP URI. For details, see
E.164 number translation (on page 36).

9 The "fwd" rule in rules.nhp (the rule matching the username part of the new "To" header) is
fired. This forwards the request to the specified destination. In this case:
192.168.25.82.

10 A 200-OK success response is received, indicating that the B-party has answered.

11 A release cause of 31 is sent to the control plan which takes the success branch exit.

Invite message translation

The SCA uses the following process to translate between a SIP INVITE message and an INAP IDP.

1 The username part (before the "@") of the SIP URI in the From header is used as the CallingParty
number (for example, 016505550186). If the number is preceded by a "+" character, then the NoA of
the CgPN is set to 4. Otherwise it is set to a configurable default value.

2 The username part of the To header URI becomes the Called Party number (CdPN).

3 If present, the URI in the topmost Diversion header becomes the Redirecting Party ID.

4 If present, the P-Asserted-ID header can optionally be used as the CgPN.

5 Other default values can be configured in the sca.config file and tdp.conf files. For example, the
tdp.conf file sets information such as the Switch type for the trigger detection point information.

Note: For more information on the SCA configuration files, refer to Configuration (on page 45).

E.164 number translation

An E.164 number is translated to a SIP URL by adding a domain name to the end of the number. For
example, this method could be used to translate the To header:

To: {CdPN} <sip:{CdPN}@{default_domain}>

Where:

The default_domain configuration option contains a URI, such as, oracle.com and this is appended to
the E.164 Called-party number to create a SIP URI.

Note:

• The From URI has been changed (the default_domain is used).

• The trans_mapping configuration option allows different domains to be used depending on prefix.

• The destination address in the To header is the same as the Request-URI (the first line of the SIP
message).

• The displayname part of the To and From headers have been changed. If required, the original
displayname can be retained using the trans_behaviour configuration option.

• The To URI and Request-URI can be overridden with the URI in the “fwd” rule by specifying the
SET-URI configuration option.

Call Redirection

Introduction

Call redirection is a simple scenario often used for ported number queries.

 Chapter 3

•

 Chapter 3, Scenarios 37

Example redirection rules

Here is an example of call redirection configuration in the rules.nhp file.

RULES = {

 "redirect" = (DEFAULT) REDIRECT (SK = 110);

}

HOST * = {

 METHOD "INVITE" = { "redirect" }

}

Call Redirection Process

The call redirection process is described below.

Stage Action

1 An INVITE request triggers ACS on service key 110.

2 The called party number returned from ACS is translated to a SIP URI and sent to the A-
party in the contact header of a "302 Moved Temporarily" response.

For more information on number translation, see E.164 number translation (on page 36).

3 The A-party re-sends the INVITE request to the URI specified in this contact header.

Callback

Introduction

Callback or Third Party Call Control allows ACS to initiate calls between two parties.

Chapter 3

38 Session Control Agent Technical Guide

Callback control plan diagram

Here is an example control plan for handling Callback.

Callback Process

This process explains how Callback works.

Stage Description

1 The first leg of the call is triggered by the Call Initiation node. The Switch and Calling
Party sections configured in the node, specify the destination of the initial INVITE request.

 Chapter 3

•

 Chapter 3, Scenarios 39

Stage Description

2 The INVITE message is created with a To header containing the "Party To Call" and a
From header containing the "Calling Party".

3 The rule from the rules.nhp file matching the INVITE message is triggered.

4 When the A-party answers the call, the Call Initiation node transfers the dialog to a
different control plan by sending an IDP to ACS (as if the call had been initiated by the A-
party).

5 The IDP is sent on the service key configured in the node. It contains the CgPN and
CdPN configured in the Controller section of the node.

6 The SCA sends an INVITE to the CdPN, thus connecting the two call legs together.

Chapter 3

40 Session Control Agent Technical Guide

Configure Call Initiation example

Here is an example Configure Call Initiation screen showing how the node may be configured for
callback.

 Chapter 3

•

 Chapter 3, Scenarios 41

SIP Error Response

Introduction

This scenario explains how the SCA handles SIP error responses.

SIP error response example

This example shows a SIP 404 error response to a call forward request.

SIP/2.0 404 Not Found

Via: SIP/2.0/UDP 192.168.26.182:5060;branch=z9hG4bK946513216548

From:016505550186 <sip:016505550186@oracle.com>;tag=2895685

To:016505550187 <sip:016505550187@oracle.com>;tag=12135612

Call-ID: ESGSCA12345689746541321@192.168.26.182

CSeq: 1 INVITE

Reason: Q.850;cause=1

Content-Length: 0

SIP error response process

The detailed process is described below.

Stage Description

1 The SIP error response code is mapped to a release cause and sent to ACS. In this
example the error code 404 and error cause 'Not Found' is mapped to the release cause
1 and sent to ACS. For details of SIP error response mappings, refer to Release cause
mapping (on page 26).

2 The control plan sends the release cause back to the SCA.

3 The SCA performs one of the following:

• Maps the received release cause back to a SIP error code. This will always
happen if the control plan instructed the call to be released (for example, using a
Disconnect node with a release cause on the “no-answer” branch).

• Forwards the error it received from the B-leg back to the A-leg, ignoring the
release cause from ACS. To do this you must specify the propagate_b_error
flag in sca.config.

SIP Re-INVITE Scenario Call Flow

Introduction

A SIP Re-INVITE is an INVITE request sent within an existing SIP dialog and is typically used by SIP
endpoints to update session parameters, such as Session Description Protocol (SDP) information.

In supported implementations, the Session Control Agent (SCA) forwards the SIP re-INVITE (along with
any subsequent requests and responses) transparently between the SIP endpoints after the initial call
establishment.

SIP Re-INVITE Call Flow Diagram

The following figure illustrates the supported SIP Re-INVITE call:

Chapter 3

42 Session Control Agent Technical Guide

SIP Re-INVITE Process

The SIP Re-INVITE process is described below:

Stage Description

1 The A-leg sends an initial SIP INVITE request to the SCA to establish a call.

2 The SCA forwards the INVITE request to the B-leg.

3 The B-leg responds with provisional responses, which are forwarded by the SCA to the A-
leg.

4 The B-leg answers the call by sending a 200-OK response to the SCA.

5 The SCA forwards the 200-OK response to the A-leg.

 Chapter 3

•

 Chapter 3, Scenarios 43

Stage Description

6 The A-leg sends an ACK to the SCA, which is forwarded to the B-leg, completing the
initial SIP dialog establishment.

7 During the active call, the A-leg sends a SIP Re-INVITE request to the SCA.

8 The SCA responds with a 100 Trying response and forwards the Re-INVITE request to
the B leg.

9 The B-leg processes the Re-INVITE request and sends a 200 OK response to the SCA.

10 The SCA forwards the 200-OK response to the A-leg.

11 The A-leg sends an ACK to the SCA, which is forwarded to the B-leg, completing the Re
INVITE transaction.

12 Either the A-leg or the B-leg initiates call termination by sending a BYE request to the
SCA.

13 The SCA forwards the BYE request to the remote endpoint.

14 The receiving endpoint responds with a 200-OK, which is forwarded by the SCA,
completing the call termination.

 Chapter 4, Configuration 45

Chapter 4

Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Network Charging and Control
(NCC) application.

In this chapter

This chapter contains the following topics.

Configuration Overview ... 45
sca.config Configuration .. 46
SCA Configuration ... 47
ESC Configuration ... 81
Parser Configuration.. 88
Presence Configuration ... 89
acs.conf Configuration ... 91
SLEE.cfg Configuration ... 92
Configuring EDR Collection ... 92
Configuring IN Call Model Triggers ... 93

Configuration Overview

Introdution

This topic provides a high level overview of how the Session Control Agent (SCA) is configured.

There are configuration options which are added to the configuration files that are not explained in this
chapter. These configuration options are required by the SCA and should not be changed.

Configuration components

The Session Control Agent is configured by the following components:

Component Locations Description Further Information

SCA sca.config All SCA SLC
platforms

The SCA is configured by the sca

section of sca.config.

SCA Configuration (on
page 47).

ESC sca.config All SCA SLC
platforms

The Oracle SIP Chassis (ESC) is
configured by the esc section of

sca.config.

ESC Configuration (on
page 81).

eserv.config All SCA SLC
platforms

The translations to SIP availability
and location definitions are
configured by the presence section

of eserv.config.

Presence Configuration
(on page 89).

Chapter 4

46 Session Control Agent Technical Guide

Component Locations Description Further Information

acs.conf All SCA SLC
platforms

The acsChassis plugin library for
presence querying and setting is
configured by the acsChassis

section of acs.conf.

acs.conf Configuration
(on page 91) and the
Advanced Control
Services Technical
Guide.

SLEE.cfg All SCA SLC
platforms

The SLEE interface is configured to
include the SCA interface.

SLEE.cfg Configuration
(on page 92) and the
Service Logic Execution
Environment Technical
Guide.

rules.nhp All SCA SLC
platforms

The SCA Next Hop Processing is
configured by the rules.nhp file.

NHP Configuration (on
page 97).

tdp.conf All SCA SLC
platforms

The Trigger Point Definition file for
triggering SLEE requests to external
IN applications such as ACS.

Configuring IN Call
Model Triggers (on
page 93).

stats_config file All SCA SLC
platforms

Lists the SCA statistics. Required
for collecting SCA statistics where
ORACLE is not installed.

Statistics (on page 112)

sca.config Configuration

Introduction

The sca.config file is used to configure the Session Control Agent. It contains different sections defining
data relevant to the SCA itself, and the Oracle SIP Chassis (ESC shared library). It is located in the
/IN/service_packages/SCA/etc directory:

The sca.config file format uses hierarchical groupings to divide up the options into logical groups.

Configuration file format

To organize the configuration data within the sca.config file, some sections are nested within other
sections. Configuration details are opened and closed using either { } or [].

• Groups of parameters are enclosed with curly brackets - { }

• An array of parameters is enclosed in square brackets - []

• Comments are prefaced with a # at the beginning of the line

To list things within a group or an array, elements must be separated by at least one comma or at least
one line break. Any of the following formats may be used:

{ name="route6", id = 3, prefixes = ["00000148", "0000473"] }

{ name="route7", id = 4, prefixes = ["000001049"] }

or

{ name="route6"

id = 3

prefixes = [

"00000148"

"0000473"

]

}

{ name="route7"

id = 4

prefixes = [

 Chapter 4

•

 Chapter 4, Configuration 47

"000001049"

]

}

or

{ name="route6"

id = 3

prefixes = ["00000148", "0000473"]

}

{ name="route7", id = 4

prefixes = ["000001049"]

}

Editing the file

Open the sca.config file using a standard file editor. Do not use file editors such as Microsoft Word that
attach Microsoft DOS or Windows line termination characters (that is, ^M) at the end of each row, as this
will cause file errors when the application tries to read the configuration file.

Always keep a backup of your sca.config before making any changes to it, to ensure that you always
have a working copy.

Loading sca.config configuration changes

If you change the configuration file, then you must send a signal (SIGHUP) to the sca process, or restart
the SLEE, to enable the new options to take effect.

SCA Configuration

Introduction

The sca section in the sca.config file must be configured to enable the SCA to work. An example

sca.config file showing all the available configuration options is installed by the scaScp package in
/IN/services_packages/SCA/etc/sca.config.all.example.

The sca.config file needs to be present on all SCA SLCs.

Note: All mandatory configuration in sca.config is done at installation time by the configuration script.

Example sca configuration

The following is an example of sca configuration in sca.config:

sca = {

local_ip = "192.168.0.1"

enableCDRs = true

cdrTempDir = "/IN/service_packages/SCA/cdr/open"

cdrFinalDir = "/IN/service_packages/SCA/cdr/closed"

cdrSizeLimit = 100000

use_ALegCallID = true

local_contact = false

cdrAgeLimit = 600

rules = "/IN/service_packages/SCA/etc/rules.nhp"

b2bua = true

Chapter 4

48 Session Control Agent Technical Guide

noin_dropcall = false

inap_noa_calling_party = 4

inap_noa_called_party = 4

inap_noa_redirecting_party = 4

inap_scr = 3

inap_pres = 0

inap_numplan = 1

inap_inn = true

usePAssertedID = false

oracleUserAndPassword = "/"

rem_comm_port = 3615

propagate_b_error = false

remotePartyIdTrans = "NEVER"

include_rpi_privacy = false

update_rpi_privacy = false

include_rpi_screen = false

update_rpi_screen = false

include_rpi_pty_type = false

rpi_pty_type = "calling"

include_rpi_id_type = false

rpi_id_type = user

rpi_presentation_allowed = "full"

rpi_presentationRestricted = "off"

rpi_addressNotAvailable = "uri"

rpi_spare = "name";

rpi_user_not_verified = "no"

rpi_user_verified_passed = "yes"

rpi_user_verified_failed = "no"

rpi_network_provided = "no"

p_asserted_identity_trans = "NEVER"

include_pai_tel_header = false

cf_use_cdpn_from_request = false

Registrar = {

CacheSize = 0

DefaultExpiry = 3600

}

load_balancing_enabled=true

dns_cache_time=600

failed_address_timeout=300

invite_failover_only=true

replace_diversion_header=false

update_diversion_header=true

Configuration for heartbeating to a gateway ###

heartbeat_send_interval=30

heartbeat_send_timeout = 10

heartbeat_destination="gateway_rule"

heartbeat_to_address="gateway.uk.oracle.com"

heartbeat_from_address="uas.uk.oracle.com"

heartbeat_request_uri="gateway.uk.oracle.com"

heartbeat_route="gateway.uk.oracle.com"

 Chapter 4

•

 Chapter 4, Configuration 49

heartbeat_p_asserted_id = "\"uk.oracle.com\" <sip:01473289900@sip.uk.oracle.com>"

heartbeat_p_charging_vector = "icid-value=prepaid313264321646132;orig-

ioi=prepaid.sip.uk.oracle.com"

gateway_alarm_severity = 3

gateway_alarm_message = "Unable to Contact Gateway"

heartbeat_release_cause = 127

Configuration for receiving keepalive messages ###

restart_charging = true

heartbeat_receive_timeout = 5

charging_restart_svc_key = 2

reply_to_options_heartbeat = false

Configuration for parsing the Media attributes in the SDP ###

media_mapping = [{ sdp_params="audio:send,video:send", capability=1 },

 { sdp_params="audio:sendrecv", capability=2 },

 { sdp_params="audio:", capability=3 },

 { sdp_params="*:*", capability=4 }]

allow_unmapped_media = true

media_mapping_alarm_severity = 3

media_mapping_alarm_message = "Media Mapping Error"

media_change_no_dp = "REJECT_MEDIA"

UPDATE message handling configuration ###

update_message_handling = "REJECT"

Call-ID Retrieval configuration ###

msc_address="987654321"

msc_noa=4

msc_plan=1

call_id_alarm_severity = 1

call_id_alarm_message = "Call ID Greater than 64 Characters"

uniqueCallId="ESGSCA"

Hold Message configuration ###

inactive_media_hold = true

allow_overlap_invite=true

etc_append_cdpn=false

Number translation ###

trans_mapping= [{ domain = "abc.com" , prefix = "01" }

 { domain = "def.com" , prefix = "02" }

 { domain = "ghi.com" , prefix = "03" }

]

trans_behaviour = ["DISPLAYNAME","URI"]

strip_matched_prefix=false

default_prefix = ""

replace_plus=false

insert_plus=false

denorm_mapping= [{ prefix = "44" , remove_chars = "2" , add_chars = "" }

 { prefix = "*" , remove_chars = "2" , add_chars = "+" }

]

norm_mapping= [{ prefix = "0" , remove_chars = "1" , add_chars = "44" }

 { prefix = "*" , remove_chars = "2" , add_chars = "0" }

Chapter 4

50 Session Control Agent Technical Guide

]

hashEncodeChar=' '

starEncodeChar='f'

always_trans_map=true

Configuration for ENUM URI Support ###

enum_data_profile_tag = 0

enum_service_type = "E2U+sip"

enum_data_type = "AUS"|"URI"|"NAPTR"|"DYN"|"DYNAMIC"

enum_enabled = true

Configuration for INVITE messages ###

p_asserted_identity=false

call_init_use_reinvite=false

call_init_send_empty_address=false

call_init_a_include_cap4_xml=false

call_init_b_include_cap4_xml=false

call_init_a_cap4_use_suppress_t_csi = false

}

High level parameters

The SCA interface accepts the following high level parameters.

b2bua

Syntax: b2bua = true|false

Description: Sets whether or not the SCA handles all calls in transparent back-to-back user
agent mode.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true - all calls will be handled in b2bua mode

• false - all calls will be handled in proxy mode (unless otherwise specified
in a rule in rules.nhp.

Default: true

Notes:

Example: b2bua = true

cdrAgeLimit

Syntax: cdrAgeLimit = secs

Description: Defines the maximum number of seconds that a EDR file will remain open.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 600

Notes: If the specified maximum age is reached, then a new EDR file is created.

Example: cdrAgeLimit = 600

cdrFinalDir

Syntax: cdrFinalDir = "dir"

Description: The location for the final EDR files generated by the SCA.

 Chapter 4

•

 Chapter 4, Configuration 51

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/SCA/cdr/closed"

Notes:

Example: cdrFinalDir = "/var/cdr/SCA/final"

cdrSizeLimit

Syntax: cdrSizeLimit = num

Description: Defines the maximum number of records that can be created in a single EDR file.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 100000

Notes: If the specified maximum is exceeded, then a new EDR file is created to hold the
additional records.

Example: cdrSizeLimit = 100000

cdrTempDir

Syntax: cdrTempDir = "dir"

Description: The location for the temporary EDR files generated by the SCA.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/SCA/cdr/open"

Notes:

Example: cdrTempDir = "/var/cdr/SCA/open"

dns_cache_time

Syntax: dns_cache_time = secs

Description: The number of seconds between updates of the rules.nhp DNS cache.

Type: Integer.

Optionality: Optional (default used if not set).

Allowed: A valid integer.

Default: 300

Notes: All hostnames in the rules.nhp file are resolved to IP addresses when the SCA
starts. dns_cache_time defines the interval for periodically updating this cached
information.

Example: dns_cache_time = 500

enableCDRs

Syntax: enableCDRs = true|false

Description: Whether the SCA produces EDRs.

Type: Boolean

Optionality: Optional (default used if not set).

Chapter 4

52 Session Control Agent Technical Guide

Allowed: true, false

Default: true

Notes: If this parameter is not set because you do not want the SCA to produce EDRs,
then you do not need to set any other parameters relevant to EDR generation.

Example: enableCDRs = false

failed_address_timeout

Syntax: failed_address_timeout = secs

Description: Defines the number of seconds that failed target addresses (in the Rules file) will
remain in this state. Subsequent requests that trigger the rule will be forwarded
to alternate addresses until this timer expires.

Type: Integer.

Optionality: Optional (default used if not set).

Allowed: A valid integer.

Default: 300

Notes:

Example: failed_address_timeout = 200

inap_inn

Syntax: inap_inn = true|false

Description: Whether the Internal Network Number flag is set in the IDP sent by the SCA.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes:

Example: inap_inn = false

inap_noa_called_party

Syntax: inap_noa_called_party = noa

Description: The default nature of address to use in the IDP sent by the SCA for the called
party.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 4

Notes:

Example: inap_noa_called_party = 4

inap_noa_calling_party

Syntax: inap_noa_calling_party = noa

Description: The default nature of address to use in the IDP sent by the SCA for the calling
party.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

 Chapter 4

•

 Chapter 4, Configuration 53

Default: 4

Notes:

Example: inap_noa_calling_party = 4

inap_noa_redirecting_party

Syntax: inap_noa_redirecting_party = noa

Description: The default nature of address to use in the IDP sent by the SCA for the
redirecting party.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 4

Notes:

Example: inap_noa_redirecting_party = 4

inap_numplan

Syntax: inap_numplan = value

Description: The numbering plan value used in the IDP sent by the SCA.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A numeric value.

Default: 131

Notes:

Example: inap_numplan = 2

inap_pres

Syntax: inap_pres = value

Description: The presentation value used in the IDP sent by the SCA.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A numeric value.

Default: 0

Notes:

Example: inap_pres = 1

inap_scr

Syntax: inap_scr = value

Description: The screening value used in the IDP sent by the SCA.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: A numeric value

Default: 3

Notes:

Example: inap_scr = 1

Chapter 4

54 Session Control Agent Technical Guide

invite_failover_only

Syntax: invite_failover_only = true|false

Description: If a destination address is unreachable and this parameter is set to true, the SCA
will try an alternate address (if available) when forwarding an INVITE request..

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true - only try an alternate address when forwarding an INVITE request

• false - try alternate addresses for any request.

Default: true

Notes:

Example: invite_failover_only = false

load_balancing_enabled

Syntax: load_balancing_enabled = true|false

Description: Determines whether or not requests should be load balanced to multiple
destinations if a list of URIs is defined in a rule.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes:

Example: load_balancing_enabled = false

local_contact

Syntax: local_contact = true|false

Description: Whether contact should be set as sca IP and Port.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: Example:

If set to true:
200ok Contact: <sip:19425@10.11.188.19:7070> becomes Contact:
<sip:10.11.188.19:7070>

Example: local_contact = false

local_ip

Syntax: local_ip = "ipaddr"

Description: Defines the IP address of the local machine that is inserted into Via: header for
outgoing requests

Type: String

Optionality: Mandatory

Allowed: A valid IP address

Default:

Notes:

 Chapter 4

•

 Chapter 4, Configuration 55

Example: local_ip = "127.0.0.1"

media_change_no_dp

Syntax: media_change_no_dp = "action"

Description: Specifies what action to take if a media change is received but the
Service_Changed detection point is not set. This is usually set by a node in the
control plan.

Type: String

Optionality: Optional (default used if not set).

Allowed: • ALLOW_MEDIA - allow through the message with the new media

• CLEAR_MEDIA - terminate the call

• REJECT_MEDIA - respond to the message with a 415 Unsupported
Media Type response

Default: REJECT_MEDIA

Notes:

Example: media_change_no_dp = "REJECT_MEDIA"

noin_dropcall

Syntax: noin_dropcall = true|false

Description: Used when the SCA is required to forward a request and then "get out of the
loop".

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: Either:

• true - a call will be cleared internally after the first request is forwarded, or

• false - the SCA will remain in the loop for all messages within a call.

Default: false

Notes: The SCA must be operating in proxy mode when this option is set to true. The
control plan must use a termination node that exits as soon as the call is
connected. The SCA will then forward the request, but it will not add itself into
the Record-Route list. This means that subsequent requests within the same call
will not be routed via the SCA.

Example: noin_dropcall = true

propagate_b_error

Syntax: propagate_b_error = true|false

Description: Determines what error code is returned to the A-leg when the B-leg returns an
error.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true - return the B-party error code to the A-party unchanged, or

• false - map the release cause returned from ACS to a SIP error code and
return this error code to the A-party.

Default: false

Notes: By default, the SCA notifies the IN of an error and the call model can then change
the error code by setting a release cause. If this parameter is set, then the B-leg
error code will always be returned to the A-leg unchanged.

Chapter 4

56 Session Control Agent Technical Guide

Example: propagate_b_error = true

oracleUserAndPassword

Syntax: oracleUserAndPassword = "user/password"

Description: The login ID for the database on the SMS node. The remoteCommanderUser utility
uses this ID to log in to the database when setting the password for the SCA Remote
Commander.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: /

Notes:

Example: oracleUserAndPassword = "/"

registrar

Contains the registrar cache size and contact expiry parameters within {}. See registrar section (on page
58).

rem_comm_port

Syntax: rem_comm_port = port

Description: The port on which the remote commander is listening.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: A valid port number.

Default: 3615

Notes:

Example: rem_comm_port = 3615

replace_diversion_header

Syntax: replace_diversion_header = true|false

Description: Determines how a redirecting number returned from ACS is handled. It will
perform one of the following:

• Be added to a list of Diversion headers

• Replace any existing Diversion headers

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true - replace any existing Diversion headers with a single Diversion
header containing the redirecting number

• false - add a new Diversion header containing the redirecting number to
an existing list of Diversion headers.

Default: false

Notes:

Example: replace_diversion_header = true

rules

Syntax: rules = "dir/file"

Description: The location of the Next Hop Processing rules file.

 Chapter 4

•

 Chapter 4, Configuration 57

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "/IN/service_packages/SCA/etc/rules.nhp"

Notes:

Example: rules = "/IN/service_packages/sca_rules.nhp"

uniqueCallId

Syntax: uniqueCallId = "value"

Description: The text part of the SCA call ID. SCA generates the call ID when initiating a new call
leg.

For example, if you set uniqueCallID to "ESGSCA" and the first leg of a call has ID

143302914@10.170.23.22, SCA generates call ID ESGSCA143302914@10.170.23.22
for the next call leg.

Type: String

Optionality: Optional (default used if not set)

Allowed:

Default: ESGSCA

Notes:

Example: uniqueCallId = "ESGSCA"

update_diversion_header

Syntax: update_diversion_header = true|false

Description: This parameter controls the Diversion header change. Useful when you want to retain
the existing Diversion header.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: • true - retains default behaviour.

• false - restricts the replacement of any existing Diversion headers with new one.

Default: true

Notes:

Example: update_diversion_header = true

use_ALegCallID

Syntax: use_ALegCallID = true|false

Description: Whether to use the custom header for B-legs to assist in debugging with snoop
output.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes:

Example: use_ALegCallID = true

Chapter 4

58 Session Control Agent Technical Guide

usePAssertedID

Syntax: usePAssertedID = true|false

Description: Sets whether or not the SCA should use the number in the P-Asserted_ID header
(if present) as the calling party number in the IDP sent to the IN.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: Either:

• true - extract the calling party number from the P-Asserted-ID header, or

• false - extract the calling party number from the From header.

Default: false

Notes:

Example: usePAssertedID = true

registrar section

Here is an example of the registrar section configuration.
registrar = {

cacheSize = 0

defaultExpiry = 3600

}

The registrar section of the SCA configuration supports the following parameters.

cacheSize

Syntax: cacheSize= size

Description: The cache size for the registrar.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0 (Unlimited)

Notes:

Example: cacheSize= 0

defaultExpiry

Syntax: defaultExpiry = seconds

Description: The contact expiry time (in seconds) in the registrar.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 3600

Notes:

Example: paraMeter = 3600

Remote Party ID Header configuration

The configuration section for Remote Party ID Header supports the following parameters.

 Chapter 4

•

 Chapter 4, Configuration 59

cf_use_cdpn_from_request

Syntax: cf_use_cdpn_from_request = true|false

Description: Set this parameter to true to set the cdpn from the Request field

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: If the REQUEST: username and the TO: username are different and the
DIVERSION header is present then SIP call forwarding is in use.

Therefore the ACS IDP cdpn uses the REQUEST: username, the cgpn uses the
FROM: username.

cf means Calling forwarding

Example: cf_use_cdpn_from_request = false

include_pai_tel_header

Syntax: include_pai_tel_header = true|false

Description: If enabled the tel URI p-asserted id header will be generated/translated.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed:

Default: false

Notes: Used only when p_asserted_identity_trans is ALWAYS or

TRANSPARENT.

Example: include_pai_tel_header = false

include_rpi_id_type

Syntax: include_rpi_id_type = true|false

Description: If enabled the id-type token will be added to generated remote-party-id headers.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: include_rpi_id_type = false

include_rpi_privacy

Syntax: include_rpi_privacy = true|false

Description: If enabled the privacy token will be added to generated remote-party-id headers
based on the calling party presentation parameter in the call model.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: include_rpi_privacy = false

Chapter 4

60 Session Control Agent Technical Guide

include_rpi_pty_type

Syntax: include_rpi_pty_type = true|false

Description: If enabled the party token will be added to generated remote-party-id headers.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: include_rpi_pty_type = false

include_rpi_screen

Syntax: include_rpi_screen = true|false

Description: If enabled the screen token will be added to generated remote-party-id headers
based on the calling party screening parameter in the call model

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: include_rpi_screen = false

p_asserted_identity_trans

Syntax: p_asserted_identity_trans = "value"

Description:

Type: String

Optionality: Optional (default used if not set).

Allowed: • "ALWAYS"

• "TRANSPARENT"

• "NEVER"

Default: "NEVER"

Notes: If set to "ALWAYS":

• When the incoming INVITE contains a p-asserted-identity header the
header uri is to be set to match the from header uri in the outgoing
INVITE message.

• When the incoming INVITE does not contain a p-asserted-identity header
a new header will be configured according to the parameters below and
added to the outgoing INVITE, the header will contain a uri matching the
From header uri as a minimum.

If set to "TRANSPARENT"

• When the incoming INVITE contains a p-asserted-identity header the
header uri is to be set to match the from header uri in the outgoing
INVITE message.

• When the incoming INVITE does not contain a p-asserted-identity header
no action will be taken.

If set to "NEVER"

• No attempt to translate or generate p-asserted-identity headers

 Chapter 4

•

 Chapter 4, Configuration 61

Example: p_asserted_identity_trans = "NEVER"

remotePartyIdTrans

Syntax: remotePartyIdTrans = "value"

Description:

Type: String

Optionality: Optional (default used if not set).

Allowed: • "ALWAYS"

• "TRANSPARENT"

• "NEVER"

Default: "NEVER"

Notes: If set to "ALWAYS":

• When the incoming INVITE contains a remote-party-id header with the
party token absent or set to calling the header uri is be set to match the
from header uri in the outgoing INVITE message.

• When the incoming INVITE does not contain a remote-party-id header a
new header will be configured according to the parameters below and
added to the outgoing INVITE, the header will contain a uri matching the
From header uri as a minimum

If set to "TRANSPARENT"

• When the incoming INVITE contains a remote-party-id header with the
party token absent or set to calling the header uri is be set to match the
from header uri in the outgoing INVITE message.

• When the incoming INVITE does not contain a remote-party-id header no
action will be taken

If set to "NEVER"

• No attempt to translate or generate remote-party-id headers

Example: remotePartyIdTrans = "NEVER"

rpi_addressNotAvailable

Syntax: rpi_addressNotAvailable = "value"

Description: Maps Set Indicator feature node presentation restricted value to remote party id
header privacy tag value.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "uri"

Notes:

Example: rpi_addressNotAvailable = "uri"

rpi_id_type

Syntax: rpi_id_type = "value"

Description: Defines the value that will be given to id_type token.

Type: String

Optionality: Optional (default used if not set).

Chapter 4

62 Session Control Agent Technical Guide

Allowed: • "subscriber"

• "user"

• "alias"

• "return"

• "term"

Default: "user"

Notes: Used only if include_rpi_id_type parameter is true.

Example: rpi_id_type = "user"

rpi_network_provided

Syntax: rpi_network_provided = "value"

Description: Maps Set Indicator feature node screening value to remote party id header
privacy tag value.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "no"

Notes:

Example: rpi_network_provided = "no"

rpi_presentation_allowed

Syntax: rpi_presentation_allowed = "value"

Description: Maps Set Indicator feature node presentation restricted value to remote party id
header privacy tag value.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "full"

Notes:

Example: rpi_presentation_allowed = "full"

rpi_presentationRestricted

Syntax: rpi_presentationRestricted = "value"

Description: Maps Set Indicator feature node presentation restricted value to remote party id
header privacy tag value.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "off"

Notes:

Example: rpi_presentationRestricted = "off"

rpi_pty_type

Syntax: rpi_pty_type = "value"

Description: Defines the value that will be given to party token.

Type: String

 Chapter 4

•

 Chapter 4, Configuration 63

Optionality: Optional (default used if not set).

Allowed: • "calling"

• "called"

Default: "calling"

Notes: Used only if include_rpi_pty_type parameter is true.

Example: rpi_pty_type = "calling"

rpi_spare

Syntax: rpi_spare = "value"

Description: Maps Set Indicator feature node presentation restricted value to remote party id
header privacy tag value.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "name"

Notes:

Example: rpi_spare = "name"

rpi_user_not_verified

Syntax: rpi_user_not_verified = "value"

Description: Maps Set Indicator feature node screening value to remote party id header
privacy tag value.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "no"

Notes:

Example: rpi_user_not_verified = "no"

rpi_user_verified_failed

Syntax: rpi_user_verified_failed = "value"

Description: Maps Set Indicator feature node screening value to remote party id header
privacy tag value.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: "no"

Notes:

Example: rpi_user_verified_failed = "no"

rpi_user_verified_passed

Syntax: rpi_user_verified_passed = "value"

Description: Maps Set Indicator feature node screening value to remote party id header
privacy tag value.

Type: String

Chapter 4

64 Session Control Agent Technical Guide

Optionality: Optional (default used if not set).

Allowed:

Default: "yes"

Notes:

Example: rpi_user_verified_passed = "yes"

update_rpi_privacy

Syntax: update_rpi_privacy = true|false

Description: If enabled the privacy token will be modified in existing remote-party-id headers
based on the calling party presentation parameter in the call model.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: update_rpi_privacy = false

update_rpi_screen

Syntax: update_rpi_screen = true|false

Description: If enabled the screen token will be modified in existing remote-party-id headers
based on the calling party screening parameter in the call model.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: update_rpi_screen = false

heartbeating to a gateway configuration

The configuration section for heartbeating in the SCA configuration supports the following parameters.

gateway_alarm_message

Syntax: gateway_alarm_message = "string"

Description: Sets the message in the alarm raised as a result of no response to an OPTIONS
message to the gateway.

Type: String

Optionality: Optional

Allowed:

Default: "Detected Gateway Failure"

Notes:

Example: gateway_alarm_message = "Unable to Contact Gateway"

gateway_alarm_severity

Syntax: gateway_alarm_severity = sev

Description: Sets the severity of the alarm raised as a result of no response to an OPTIONS
message to the gateway.

 Chapter 4

•

 Chapter 4, Configuration 65

Type: Integer

Optionality: Optional

Allowed: • 0 (NOTICE)

• 1 (WARNING)

• 2 (ERROR)

• 3 (CRITICAL)

• 4 (CLEAR)

Default: 3

Notes: If this value is not defined, the header will not be present.

Example: gateway_alarm_severity = 3

heartbeat_destination

Syntax: heartbeat_destination= "rule"

Description: The destination of the heartbeat OPTIONS message.

Type: String

Optionality: Mandatory if heartbeat_send_interval is greater than 0

Allowed:

Default:

Notes: The value must be the name of a rule defined in rules.nhp (not a URI).

Example: heartbeat_destination = "gateway_rule"

heartbeat_from_address

Syntax: heartbeat_from_address = "address"

Description: Sets the URI part of the From header in the OPTIONS heartbeat message.

Type: String

Optionality: Mandatory if heartbeat_send_interval is greater than 0

Allowed:

Default:

Notes:

Example: heartbeat_from_address = "uas.uk.oracle.com"

heartbeat_p_asserted_id

Syntax: heartbeat_p_asserted_id = id

Description: Sets the entire P-Asserted-Identity header in the OPTIONS heartbeat message,
including the username.

Type: String

Optionality: Mandatory if heartbeat_send_interval is greater than 0

Allowed:

Default:

Notes: Skip the quotation marks to include the value in the outgoing message for the
username

Example: heartbeat_p_asserted_id = "\"uk.oracle.com\"

<sip:12345678900@sip.uk.oracle.com>"

Chapter 4

66 Session Control Agent Technical Guide

heartbeat_p_charging_vector

Syntax: heartbeat_p_charging_vector = "pcv"

Description: Sets the entire P-Charging-Vector header in the OPTIONS heartbeat message.

Type: String

Optionality: Optional

Allowed:

Default:

Notes: If this value is not defined, the header will not be present.

Example: heartbeat_p_charging_vector = "icid-

value=prepaid123456789012345;orig-

ioi=prepaid.sip.uk.oracle.com"

heartbeat_release_cause

Syntax: heartbeat_release_cause = code

Description: Sets the release cause that is written to the BE EDR in the RELC field, when no
response is received to an OPTIONS message.

Type: Integer

Optionality: Optional

Allowed: 0 to 127 (inclusive)

Default: 55

Notes:

Example: heartbeat_release_cause = 127

heartbeat_request_uri

Syntax: heartbeat_request_uri = "uri"

Description: Sets the URI part of the OPTIONS heartbeat message request line.

Type: String

Optionality: Mandatory if heartbeat_send_interval is greater than 0

Allowed:

Default:

Notes:

Example: heartbeat_request_uri="gateway.uk.oracle.com"

heartbeat_route

Syntax: heartbeat_route = "route"

Description: Sets the URI part of the Route header in the OPTIONS heartbeat message.

Type: String

Optionality: Mandatory if heartbeat_send_interval is greater than 0

Allowed:

Default:

Notes:

Example: heartbeat_route="gateway.uk.oracle.com"

 Chapter 4

•

 Chapter 4, Configuration 67

heartbeat_send_interval

Syntax: heartbeat_send_interval = seconds

Description: The frequency in seconds to send a heartbeat message to the gateway.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes: The timer is restarted when a response is received or the original message times-
out. If set to 0, heartbeats to the gateway and all further heartbeating options are
disabled. If a heartbeat message fails, all SIP interactions will be moved to the
Charging Void state and charging will be stopped.

Example: heartbeat_send_interval = 30

heartbeat_send_timeout

Syntax: heartbeat_send_timeout = seconds

Description: The default timeout period for receiving a response to the 64 OPTIONS
messages.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0 (uses 64*T1)

Notes: This value will override the default timeout of 64*T1 in the ESC section that is
normally used by the heartbeat OPTIONS message.

Example: heartbeat_send_timeout = 10

heartbeat_to_address

Syntax: heartbeat_to_address = "address"

Description: Sets the URI part of the To header in the OPTIONS heartbeat message.

Type: String

Optionality: Mandatory if heartbeat_send_interval is greater than 0

Allowed:

Default:

Notes:

Example: heartbeat_to_address="gateway.uk.oracle.com"

keepalive messages configuration

The configuration section for keepalive messages in the SCA configuration supports the following
parameters.

charging_restart_svc_key

Syntax: charging_restart_svc_key = key

Description: Defines the service key on which the IDP used to restart charging is sent.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Chapter 4

68 Session Control Agent Technical Guide

Default: 0

Notes: If this value is not defined or is set to 0, the service key used to send the original
IDP will be used.

Example: charging_restart_svc_key = 2

heartbeat_receive_timeout

Syntax: heartbeat_receive_timeout = seconds

Description: The timeout period for receiving a keepalive message.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 0

Notes: Setting the value to 0 will disable this feature.

Example: heartbeat_receive_timeout = 0

reply_to_options_heartbeat

Syntax: reply_to_options_heartbeat= true|false

Description: Send a 200-OK response to any OPTIONS messages received mid-call.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: Use this for interception OPTIONS heartbeat messages and responding to them.
Can be used with heartbeat_receive_timeout.

Example: reply_to_options_heartbeat= false

restart_charging

Syntax: restart_charging= true|false

Description: Determines whether charging will be restarted when a 200--OK response is
received from the B-Party to a keepalive message from the A-party.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: restart_charging = true

media attributes in SDP section

The media attributes section of the SCA configuration supports the following parameters.

allow_unmapped_media

Syntax: allow_unmapped_media = true|false

Description: Whether an INVITE with SDP information with no associated mapping should be
translated to an IDP with no bearer capability information.

Type: Boolean

 Chapter 4

•

 Chapter 4, Configuration 69

Optionality: Optional (default used if not set).

Allowed: true Translate SDP media details to IDP with no
bearer capability

false Raise alarm and reject the call

Default: false

Notes:

Example: allow_unmapped_media = true

media_mapping

Syntax: media_mapping = [
{ sdp_params="str", capability=int }

[...]

]

Description: The media_mapping table maps media fields (m= and a=) in the SDP of an
incoming INVITE to Bearer Capability information which will be sent in the IDP.

Type: Array

Optionality: Optional

Allowed:

Default:

Notes: For more details, see Media mapping table (on page 31).
A single row in the table must contain one sdp_params item and one capability
item, for example:

{ sdp_params="audio:send,video:recv", capability=1 }

will map an sdp with "m=audio,a=send,m=audio,a=recv" to a bearer capability of
1.
Media type attributes can be combined, for example:

{ sdp_params="audio:send,audio:recv", capability=1 }

will match an sdp with "m=audio,a=send,a=recv"

The following bearer capability parameters can also be defined in a rule:

• protocol (default 0xff)

• transfer_rate

• transfer_mode

• coding_standard

Using '*' as a media type or attribute in the sdp_params will match anything.

Using a blank attribute will match only media types with no attributes ("audio:").

Example:

media_mapping = [{ sdp_params="audio:send,video:send", capability=1 },

 { sdp_params="audio:sendrecv", capability=2 },

 { sdp_params="audio:", capability=3 },

 { sdp_params="*:*", capability=4 }]

media_mapping_alarm_message

Syntax: media_mapping_alarm_message = "str"

Description: The message in the alarm raised as a result of no mapping being found for
information in the SDP of an incoming INVITE.

Type: String

Optionality: Optional

Chapter 4

70 Session Control Agent Technical Guide

Allowed:

Default: "No media/attribute mappings found"

Notes:

Example: media_mapping_alarm_message = "Media Mapping Error"

media_mapping_alarm_severity

Syntax: media_mapping_alarm_severity = sev

Description: The severity of the alarm raised as a result of no mapping being found for
information in the SDP of an incoming INVITE.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 0 Notice

1 Warning

2 Error

3 Critical

4 Clear

Default: 2

Notes:

Example: media_mapping_alarm_severity = 3

UPDATE message handling section

The UPDATE message section of the SCA configuration supports the following parameter.

update_message_handling

Syntax: update_message_handling = "action"

Description: Sets the behavior of the SCA when an UPDATE message is received for a call
that is not in the Charging Void state.

Type: String

Optionality: Optional (default used if not set).

Allowed: PROXY Send the UPDATE message to its destination.

IGNORE Swallow the message.

REJECT Return a SIP_METHOD_NOT_ALLOWED message.

Default: PROXY

Notes:

Example: update_message_handling = "REJECT"

Call ID Retrieval section

The Call ID section of the SCA configuration supports the following parameters.

call_id_alarm_message

Syntax: call_id_alarm_message = string

Description: Sets the message in the alarm raised if the Call ID is greater than 64 characters..

Type: String

Optionality: Optional

Allowed:

 Chapter 4

•

 Chapter 4, Configuration 71

Default: "Call ID Truncated"

Notes:

Example: call_id_alarm_message = "Call ID Greater than 64 Characters"

call_id_alarm_severity

Syntax: call_id__alarm_severity = sev

Description: Sets the severity of the alarm raised if the Call ID is greater than 64 characters
(the maximum that can be sent in the call reference field in the IDP).

Type: Integer

Optionality: Optional

Allowed: • 0 (NOTICE)

• 1 (WARNING)

• 2 (ERROR)

• 3 (CRITICAL)

• 4 (CLEAR)

Default: 1 (WARNING)

Notes:

Example: call_id__alarm_severity = 1

msc_address

Syntax: msc_address = "addr"

Description: Sets the MSC Address in the IDP.

Type: Integer

Optionality: Optional

Allowed:

Default: not set

Notes: A matching MSC address can be entered in the eserv.config file to write the Call
ID in ASCII form.

Example: msc_address = "987654321"

msc_noa

Syntax: msc_noa = noa

Description: Sets the nature of address for the parameter msc_address

Type: Integer

Optionality: Optional

Allowed:

Default: 0

Notes:

Example: msc_noa = 4

msc_plan

Syntax: msc_plan = int

Description: Sets the plan of address for the parameter msc_address

Type: Integer

Optionality: Optional

Chapter 4

72 Session Control Agent Technical Guide

Allowed:

Default: 0

Notes:

Example: msc_plan = 1

Hold message section

The Hold message section of the SCA configuration supports the following parameters.

allow_overlap_invite

Syntax: allow_overlap_invite = true|false

Description: An overlap INVITE may be sent when a party is dialing slowly. A re-INVITE may
be sent before any response to the original INVITE is received.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • false - respond to any overlap INVITEs with a 491 Request Pending
response

• true - forward overlap INVITEs to the B-leg and respond to the original
INVITE with a 484 Address Incomplete message.

Default: false

Notes:

Example: allow_overlap_invite = true

etc_append_cdpn

Syntax: etc_append_cdpn = true|false

Description: If an establish temporary connection message is returned to the SCA from ACS
then the called party number will be forwarded in the To header of the outgoing
request. If etc_append_cdpn is set to true, then the original called party number
will be appended to the To header.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: • true - append the original called party number to the To header

• false - do not append the original called party number

Default: false

Notes:

Example: etc_append_cdpn = true

inactive_media_hold

Syntax: inactive_media_hold = true|false

Description: Determines the format of the SDP information in a re-INVITE used by the SCA to
put a call on hold.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: By default, the hold messages sent by the SCA have the c= field in the SDP set

to "IN IP4 0.0.0.0".

 Chapter 4

•

 Chapter 4, Configuration 73

If this option is set to true, the IDP will instead contain a single m= parameter set

to "inactive".

Example: inactive_media_hold = true

Number translation

The number translation section of the SCA configuration supports the following parameters.

always_trans_map

Syntax: always_trans_map = true|false

Description: Always run trans_mapping.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: If set to false, then the translation mapping will only be done if the IN has
changed the number.

Example: always_trans_map = true

default_prefix

Syntax: default_prefix = "pref"

Description: Defines the default prefix to add to numbers returned by the IN application, if the
prefix is not defined in the trans_mapping table.

Type: String

Optionality:

Allowed:

Default: ""

Notes:

Example: default_prefix = ""

denorm_mapping

List of prefixes and characters to be removed or added to numbers received from ACS. For details,
see the denorm_mapping section (on page 76).

hashEncodeChar

Syntax: hashEncodeChar = 'char'

Description: Defines the hexadecimal character to use to replace any hash (#) characters
when translating a SIP URI to an E.164 number (before sending an IDP to ACS.

Type: Hexadecimal string

Optionality: Optional.

Allowed: • '0' to 'F'

• ' ' - this will remove any # characters. There must be a space between
the single quote marks

Default: None

Notes:

Example: hashEncodeChar = '1'

Chapter 4

74 Session Control Agent Technical Guide

insert_plus

Syntax: insert_plus = true|false

Description: Determines whether or not a "+" character should be prepended to a URI if the
E.164 number returned from ACS has a NoA of 4 (international).

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false.

Default: false

Notes:

Example: insert_plus = true

norm_mapping

List of prefixes and characters to be removed or added to numbers sent to ACS. For details, see
norm_mapping section (on page 77).

replace_plus

Syntax: replace_plus = true|false

Description: Determines whether or not a "+" character preceding a URI received in a request
should be replaced with "00" before sending an IDP.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: replace_plus = true

starEncodeChar

Syntax: starEncodeChar = 'char'

Description: Defines the hexadecimal character to use to replace any star (*) characters when
translating a SIP URI to an E.164 number (before sending an IDP to ACS.

Type: Hexadecimal string

Optionality: Optional.

Allowed: • '0' to 'F'

• ' ' - this will remove any * characters. There must be a space between
the single quote marks.

Default: None

Notes:

Example: starEncodeChar = 'A'

strip_matched_prefix

Syntax: strip_matched_prefix = true|false

Description: Determines whether or not the prefix that is matched using trans_mapping should
be removed.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

 Chapter 4

•

 Chapter 4, Configuration 75

Default: false

Notes:

Example: strip_matched_prefix = true

trans_mapping

List of domains and prefixes within [] for mapping URIs to E.164 numbers and E.164 numbers to URIs.
For details, see trans_mapping section (on page 75).

trans_behaviour

Syntax: trans_behaviour = ["displayname","URI"]

Description: Defines the behavior of the trans_mapping table. The specified value(s) will be
replaced with the E.164 number. By default the display name and username
part of the URI is replaced.

Type: Array

Optionality: Optional (default used if not set).

Allowed: • "DISPLAYNAME","URI"

• "URI"

Default: "DISPLAYNAME","URI"

Notes: For an example, refer to the trans_mapping section.

Example: trans_behaviour = ["DISPLAYNAME","URI"]

trans_mapping section

The trans_mapping section maps E.164 numbers returned from ACS to domain names. If a mapping is
not found then the configured default_domain is used.

Trans_mapping performs the following actions:

• By default the matched prefix is stripped from the number. This action can be disabled by setting
the strip_match_prefix parameter to false

• If the returned E.164 number has a NoA value of 4 (international), then a "+" can optionally be
added. A "+" is added when the insert_plus parameter is set to true

• By default both the display name and username part of the URI are replaced with the translated
E.164 number. This can be changed using the trans_behaviour parameter

• Numbers are normalized or denormalized according to the configuration defined in the
norm_mapping and denorm_mapping sections.

Example

Here is an example trans_mapping section configuration.

trans_mapping = [

{domain = "abc.com", prefix = "01"}

{domain = "def.com", prefix = "02"}

{domain = "ghi.com", prefix = "03"}

]

The following process shows how this trans_mapping configuration is used.

1 An INVITE message is received with the following To header:

To: User1 <sip:+016505550100@example.com>

2 This triggers a rule that sends an IDP to ACS. According to the rule, the:

▪ IDP will contain the Called Party Number 016505550100
▪ + will be removed

Chapter 4

76 Session Control Agent Technical Guide

▪ NoA of the number will be set to 4 (international)

3 The control plan:

▪ Changes the number to 01473123456
▪ Sets the NoA to national

4 The domain defined in the trans_mapping configuration for the "01" prefix is used to create a
forwarded INVITE message. In this case the domain used is "abc.com" and therefore the To
header is set to:

To: 473123456 <sip:473123456@abc.com>

Note:

• The "01" prefix has be removed because the strip_matched_prefix parameter is set to true by

default

• The display name has been replaced because the trans_behaviour parameter is configured to

do this by default, and

• example.com has been replaced by abc.com from the trans_mapping configuration.

Configuration

This text shows the structure of the trans_mapping section configuration.
trans_mapping = [

{domain = "str", prefix = "str"}

[...]

]

domain

Syntax: domain = "URI"

Description: Defines a URI domain.

Type: String

Optionality:

Allowed:

Default: none

Notes:

Example: domain = "abc.com"

prefix

Syntax: prefix= "pref"

Description: Defines a number prefix that maps to a URI.

Type: String

Optionality:

Allowed:

Default: none

Notes:

Example: domain = "01"

denorm_mapping section

The denorm_mapping section strips and adds characters to matched numbers received from ACS
before forwarding the numbers in the outgoing SIP message.

 Chapter 4

•

 Chapter 4, Configuration 77

add_chars

Syntax: add_chars = "num"

Description: The number of characters to add to the start of a number.

Type: String

Optionality: Optional.

Allowed: Any number.

Default: None

Notes:

Example: add_chars = "44"

prefix

Syntax: prefix = "pref"

Description: The prefix number to match.

Type: String

Optionality: Optional.

Allowed: Any number or "*".

Default: None

Notes: The special character "*" can be used as a default to trigger a denormalization
rule if a prefix match is not found.

Example: prefix = "0"

remove_chars

Syntax: remove_chars = "num"

Description: The number of characters to remove from the start of a number.

Type: String

Optionality: Optional.

Allowed: Any number.

Default: None

Notes:

Example: remove_chars = "1"

norm_mapping section

The norm_mapping section strips and adds characters to matched numbers before sending the number
to ACS in an IDP.

Here is an example of the norm_mapping section configuration.

norm_mapping= [

 { prefix = "0" , remove_chars = "1" , add_chars = "44" }

 { prefix = "*" , remove_chars = "2" , add_chars = "0" }

]

add_chars

Syntax: add_chars = "num"

Description: The number of characters to add to the start of a number.

Type: String

Optionality: Optional.

Chapter 4

78 Session Control Agent Technical Guide

Allowed: Any number.

Default: None

Notes:

Example: add_chars = "44"

prefix

Syntax: prefix = "pref"

Description: The prefix number to match.

Type: String

Optionality: Optional.

Allowed: Any number, or "*".

Default: None

Notes: The special character "*" can be used as a default to trigger a normalization rule if
a prefix match is not found.

Example: prefix = "0"

remove_chars

Syntax: remove_chars = "num"

Description: The number of characters to remove from the start of a number.

Type: String

Optionality: Optional.

Allowed: Any number.

Default: None

Notes:

Example: remove_chars = "1"

ENUM URI support

The ENUM URI support section of the SCA configuration supports the following parameters.

enum_data_profile_tag

Syntax: enum_data_profile_tag = tag

Description: Data profile tag containing outgoing ENUM data. Used to search for ENUM data
in the outgoing profile extensions.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 210001 ("Enum NAPTR Temporary Store" - data tag: 210001)

Notes:

Example: enum_data_profile_tag = 0

enum_data_type

Syntax: enum_data_type = "value"

Description: Type used to interpret outgoing ENUM data.

Type: String

Optionality: Mandatory (If enum_enabled = true)

 Chapter 4

•

 Chapter 4, Configuration 79

Allowed: • "AUS" - Application Unique String (e.164 number of the form
+16505550188)

• "URI" - Standard URI text

• "NAPTR" - One or more ENUM NAPTR records (to be converted to URIs)

• "DYN"/"DYNAMIC" - Dynamic data type - type specified by the data

Default: None

Notes: At least one of the supported values must be used, but any mix, including all the
values is allowed.

Example: enum_data_type = "AUS"|"URI"|"NAPTR"|"DYN"|"DYNAMIC"

enum_enabled

Syntax: enum_enabled = true|false

Description: Enables (or disables) ENUM URI data extraction as part of IN processing.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: If true, enum_data_type must be configured.

Example: enum_enabled = true

enum_service_type

Syntax: enum_service_type = "value"

Description: Service type filter to use when reading ENUM NAPTR data.

Type: String

Optionality: Optional (default used if not set).

Allowed:

Default: [blank]

Notes: Suggested value: "E2U+sip"

Example: enum_service_type = "E2U+sip"

INVITE messages section

The INVITE messages processed by the SCA are configured by the following parameters in the
sca.config file:

call_init_a_include_cap4_xml

Syntax: call_init_a_include_cap4_xml = true|false

Description: If the sip INVITE message is for the A-Party, and
call_init_a_include_cap4_xml is set to true, then send the OCSC-

specific CAP4 XML to the A-Party; otherwise don't send the CAP4 XML to the A-
Party.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true or false

Default: false

Notes: The suppress-T-CSI XML tag is included in the A-Party CAP4 XML

Chapter 4

80 Session Control Agent Technical Guide

Example: call_init_a_include_cap4_xml = true

call_init_b_include_cap4_xml

Syntax: call_init_b_include_cap4_xml = true|false

Description: If the sip INVITE message is for the B-Party, and a B-Party to
A-Party assignment has occurred, and
call_init_b_include_cap4_xml is set to true, then

send the OCSC-specific CAP4 XML to the B-Party; otherwise
don't send the CAP4 XML to the B-Party.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true or false

Default: false

Notes: The suppress-T-CSI XML tag is not included in the B-Party
CAP4 XML

Example: call_init_include_cap4_xml = true

call_init_a_cap4_use_suppress_t_csi

Syntax: call_init_a_cap4_use_suppress_t_csi = true | false

Description: During call-initiation, adds suppress-T-CSI to the CAP4/XML of the SIP body in initial A-
leg INVITEs. This requires the use of MIME if both this and SDP are sent.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: true, false

Default: true

Notes:

Example: call_init_a_cap4_use_suppress_t_csi = true

call_init_send_empty_address

Syntax: call_init_send_empty_address = true|false

Description: Sends an empty connection address of
c=IN IP4 0.0.0.0 in the initial INVITE to parties A and B in a 3PCC call-initiation
scenario.

Type: Boolean

Optionality: Optional (default used if not set).

Default: false

Example: call_init_send_empty_address = true

call_init_use_reinvite

Syntax: call_init_use_reinvite = true|false

Description: During call-initiation, send the B-leg SDP to the A-leg in a re-INVITE rather than
an ACK.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

 Chapter 4

•

 Chapter 4, Configuration 81

Notes: Using the ACK reduces the delay where the A-leg hears nothing, but can cause
the A-leg to disconnect in networks where the B-leg is slow to respond.

Example: call_init_use_reinvite = false

p_asserted_identity

Syntax: p_asserted_identity = true|false

Description: Add a P-Asserted-Identity to the INVITE messages created by the SCA.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: The identity will be equal to the From: URI.

Example: p_asserted_identity = false

ESC Configuration

Introduction

The esc section in the sca.config file must be configured to enable the Oracle SIP Chassis (ESC) to

work. An example sca.config file showing the available esc configuration options is installed by the

scaScp package in /IN/services_packages/SCA/etc/sca.config.all.example.

The sca.config file needs to be present on all SCA SLCs.

Note: All necessary configuration for the ESC is done in the sca.config file at installation time by the
configuration script.

Example esc configuration

The following is an example of esc configuration in sca.config:

esc = {

default_domain = "telco.com"

dns_server = "192.168.25.59"

dns_check_files = true

use_tcp = true

tcp_addr = "0.0.0.0"

tcp_port = 5060

use_udp = true

udp_addr = "0.0.0.0"

udp_port = 5060

timers = {

T1 = 5

T2 = 40

T3 = 320

T4 = 50

T5 = 2400

MULTIPLIER = 64

}

device_list = ["bge0", "bge1"]

prack_support = true

Chapter 4

82 Session Control Agent Technical Guide

error_response_failover=false

rfc_2543_support = false

pollInterval = 10

persistant_connections=true

send_100_trying=true

ocsc_call_flow=false

txn_id_include_host=true

}

Parameters

The ESC accepts the following high level parameters.

default_domain

Syntax: default_domain = "dom"

Description: The default domain for this instance of the SCA.

Type: String

Optionality: Mandatory

Allowed:

Default: None

Notes:

Example: default_domain = "exampletelco.com"

device_list

Syntax: device_list = ["name1","name2","namen.."]

Description: List of network devices to monitor for their current state (UP or DOWN). If all
devices go DOWN, then all active calls will be canceled. If no devices are
specified, then this behavior will be disabled.

Type: Array

Optionality: Optional (default used if not set).

Allowed: Network device names

Default: Empty

Notes:

Example: device_list = ["bge0","bge1"]

dns_check_files

Syntax: dns_check_files = true|false

Description: Determines whether or not the SCA should check the /etc/hosts file for a DNS
entry before performing a DNS lookup.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: dns_check_files = true

 Chapter 4

•

 Chapter 4, Configuration 83

dns_server

Syntax: dns_server = "host"

Description: The DNS server that the SCA sends queries to.

Type: String

Optionality: Optional (default used if not set).

Allowed: A valid IP address or hostname.

Default: "127.0.0.1"

Notes:

Example: dns_server = "191.0.2.0"

error_response_failover

Syntax: error_response_failover = true|false

Description: Determines whether or not to treat 500 and 503 error responses as a remote
address failure and failover to an alternate address.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: error_response_failover = true

persistant_connections

Syntax: persistant_connections = true|false

Description: Sets whether or not to re-use stream connections (such as TCP connections)
between transactions. Connections to the same IP:port destination will remain
open between transactions until the end point closes the connection.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: Do not disable this if stream connections will be used in high-traffic environments
as the system will quickly run out of sockets.

Example: persistant_connections = true

pollInterval

Syntax: pollInterval = int

Description: Sets how often to poll the transport layer (in milliseconds).

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid integer

Default: 10

Notes:

Example: pollInterval = 20

Chapter 4

84 Session Control Agent Technical Guide

prack_support

Syntax: prack_support = true|false

Description: Defines whether support for PRACK (reliable transmission of provisional
responses) is enabled.

Type: Boolean

Optionality: Optional

Allowed: true , false

Default: false

Notes:

Example: prack_support = false

ocsc_call_flow

Syntax: ocsc_call_flow=true|false

Description: If ocsc_call_flow is set to true then the SCA ignores any SDP sent within a

183-Call-Progress response, thus suppressing any REINVITE that normally
would be triggered.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true or false

Default: false

Notes: Allows the SCA to comply with the OSCS SIP server.

Example: ocsc_call_flow=true

rfc_2543_support

Syntax: rfc_2543_support = true|false

Description: Defines whether or not support for messages that are not compliant with RFC
3261 is enabled.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes:

Example: rfc_2543_support = true

send_100_trying

Syntax: send_100_trying = true|false

Description: When set to true, the SCA will send a 100 trying response to an INVITE request
to prevent re-transmissions. In addition, 100 trying responses from the B-leg will
not be returned.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes:

Example: send_100_trying = false

 Chapter 4

•

 Chapter 4, Configuration 85

tcp_addr

Syntax: tcp_addr = "addr"

Description: Defines the address on which to listen for incoming TCP/IP connections.

Type: String

Optionality: Optional (default used if not set).

Allowed: Valid IP address

Default: "0.0.0.0"

Notes:

Example: tcp_addr = "0.0.0.0"

tcp_port

Syntax: tcp_port = port

Description: Defines the port on which to listen for incoming TCP/IP connections

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Valid port number

Default: 5060

Notes:

Example: tcp_port = 5060

timers

List of transaction timer parameters within {}.

Default: -

See timers section (on page 86).

txn_id_include_host

Syntax: txn_id_include_host=true|false

Description: When txn_id_include_host is set to true, the SCA includes the top Via

hostname or top Via IP address when generating transaction IDs. Transaction IDs
are used to match responses to the original request and are normally generated
as follows: top_via_branch@top_via_hostname/CSeq_method

Where:

• top_via_branch is the branch to use from the top Via header.

• top_via_hostname is the hostname or IP address to use from the top Via
header.

• CSeq_method is the Cseq method to use.

However, if the response is received on a different NIC to the one that sent the
request, then the IP in the top Via header will be different. This option allows the
hostname part of the transaction ID to be turned off and become:
top_via_branch/CSeq_method.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true or false

Default: false

Example: txn_id_include_host=true

Chapter 4

86 Session Control Agent Technical Guide

udp_addr

Syntax: udp_addr = "addr"

Description: Defines the address on which to receive incoming UDP datagrams.

Type: String

Optionality: Optional (default used if not set).

Allowed: Valid IP address

Default: "0.0.0.0"

Notes:

Example: udp_addr = "0.0.0.0"

udp_port

Syntax: udp_port = port

Description: Defines the port on which to receive incoming UDP datagrams

Type: Integer

Optionality: Optional (default used if not set).

Allowed: Valid port number

Default: 5060

Notes:

Example: udp_port = 5060

use_tcp

Syntax: use_tcp = true|false

Description: Determines whether the TCP/IP transport is enabled

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: false

Notes: At least one of use_tcp or use_udp must be set to true.

Example: use_tcp = true

use_udp

Syntax: use_udp = true|false

Description: Determines whether the UDP transport is enabled.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true, false

Default: true

Notes: At least one of use_tcp or use_udp must be set to true.

Example: use_udp = true

timers section

Here is an example of the timers section configuration. Please refer to RFC3261 for more information

on timer values.
timers = {

 Chapter 4

•

 Chapter 4, Configuration 87

T1 = 5

T2 = 40

T3 = 320

T4 = 50

T5 = 2400

MULTIPLIER = 64

}

MULTIPLIER

Syntax: MULTIPLIER = val

Description: The default transaction timer multiplier. For example a transaction will retransmit
a request for 64*T1 (MULTIPLIER*T1) seconds by default.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid number

Default: 64

Notes: Refer to RFC 3261 for more information.

Example: MULTIPLIER = 64

T1

Syntax: T1 = deciseconds

Description: Defines the initial value (in deci-seconds) for the T1 transaction timer.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid integer. The minimum value for T1 is 5.

Default: 5

Notes:

Example: T1 = 5

T2

Syntax: T2 = deciseconds

Description: Defines the initial value (in deci-seconds) for the T2 transaction timer.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid integer

Default: 40

Notes:

Example: T2 = 40

T3

Syntax: T3 = deciseconds

Description: Defines the initial value (in deci-seconds) for the T3 transaction timer.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid integer

Default: 320

Notes:

Chapter 4

88 Session Control Agent Technical Guide

Example: T3 = 320

T4

Syntax: T4 = deciseconds

Description: Defines the initial value (in deci-seconds) for the T4 transaction timer.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid integer

Default: 50

Notes:

Example: T4 = 50

T5

Syntax: T5 = deciseconds

Description: Defines the initial value (in deci-seconds) for the T5 transaction timer. The timer
sets the value of Timer C (see RFC 3261), which defines the maximum time for
which an INVITE transaction can exist without receiving a final response.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A valid integer

Default: 2400

Notes:

Example: T5 = 2400

Parser Configuration

Introduction to parser configuration

You can set whether or not the parser is case-sensitive by configuring the parser section of the

sca.config configuration file. For example, the following configuration sets the parser to be case-sensitive:

parser = {

case_sensitive=true

}

The parser section of sca.config supports the following parameter:

case_sensitive

Syntax: case_sensitive=true|false

Description: Sets whether or not the parser is case sensitive.

Type: Boolean

Optionality: Optional (default used if not set).

Allowed: true or false

Default: false

Example: case_sensitive=true

 Chapter 4

•

 Chapter 4, Configuration 89

Presence Configuration

Introduction

The presence section in the eserv.config file defines generic translations for SIP locations and

availabilities. It must be configured to enable ACS presenceQuery and presenceSetting chassis
actions to work.

The presenceQuery and presenceSetting chassis actions return location and availability information for
a subscriber/presence entity from a third party presence server.

This section is for information only, all necessary presence configuration is done at installation time by
the configuration script.

The eserv.config configuration file is located in /IN/service_packages/eserv.config.

Example

Here is an example of the configuration in the presence section of eserv.config:

Usage:

presence = {

sca_if_handle = "sca"

pidf_av = {

open = "Available"

closed = "N/A"

away = "Away"

busy = "Busy"

default = "N/A"

}

pidf_loc = {

home = "Home"

office = "Office"

default = "PlaceOther"

}

pidf_rev_av = {

Available = "open"

default = "closed"

}

pidf_rev_loc = {

Office = "office"

default = "home"

}

}

Parameters

The presence server supports the following parameters from the presence section of eserv.config.

Chapter 4

90 Session Control Agent Technical Guide

pidf_av

Syntax: pidf_av = {
open = "Available"

closed = "N/A"

away = "Away"

busy = "Busy"

default = "N/A"

}

Description: Configures the translations from SIP availability definitions to generic
availabilities. It is used for both presence querying and presence setting and is
dependent on the characteristics of the presence server being used.

Type: Parameter group

Optionality: Mandatory

Allowed:

Default:

Notes:

Example:

pidf_loc

Syntax: pidf_loc = {
home = "Home"

office = "Office"

default = "PlaceOther"

}

Description: Configures the translations from SIP location definitions to generic locations. It is
used for presence querying and presence setting and is dependent on the
characteristics of the presence server being used.

Type: Parameter group

Optionality: Mandatory

Allowed:

Default:

Notes:

Example:

pidf_rev_av

Syntax: pidf_rev_av = {
Available = "open"

default= "closed"

}

Description: Configures the translations from generic availabilities to SIP availabilities. It is
used for both presence setting and presence querying and is dependent on the
characteristics of the presence server being used.

Type: Parameter group

Optionality: Mandatory

Allowed:

Default:

Notes:

Example:

 Chapter 4

•

 Chapter 4, Configuration 91

pidf_rev_loc

Syntax: pidf_rev_loc = {
Office = "office"

default = "home"

}

Description: Configures the translations from generic locations to SIP locations. It is used for
both presence setting and presence querying and is dependent on the
characteristics of the presence server being used.

Type: Parameter group

Optionality: Mandatory

Allowed:

Default:

Notes:

Example:

sca_if_handle

Syntax: sca_if_handle = "handle"

Description: The SLEE interface handle for the sca.

Type: String

Optionality: Mandatory

Allowed:

Default: "sca"

Notes:

Example: sca_if_handle = "sca"

acs.conf Configuration

Introduction

The acs.conf file must be configured to enable presence querying and presence setting chassis actions
to work.

This section is for information only, all necessary acs.conf configuration is done at installation time by the
configuration script.

The acs.conf configuration file is located in /IN/service_packages/ACS/etc/acs.conf.

Refer to Advanced Control Services Technical Guide for details on ACS configuration.

acsChassis configuration

On installation the following line is added to the acsChassis section of acs.conf:

chassisPlugin libpresenceSipActions.so

Chapter 4

92 Session Control Agent Technical Guide

SLEE.cfg Configuration

Introduction

The SLEE.cfg file must be configured to enable the SCA to work. If you install the NCC SLEE registrar,
then this must also be configured in SLEE.cfg.

This section is for information only, all necessary SLEE configuration is done at installation time by the
configuration script. Refer to Service Logic Execution Environment Technical Guide for details on
SLEE configuration.

sca SLEE configuration

On installation the following line is added to the SLEE.cfg:

INTERFACE = sca sca.sh /IN/service_packages/SCA/bin EVENT

Warning: It is essential for the correct operation of the SCA that the SLEE Interface type is always set to
EVENT.

registrar SLEE configuration

If you installed the SLEE registrar during the scaScp package installation, then the following lines are
added to the SLEE.cfg:

APPLICATION=registrar registrar.sh /IN/service_packages/SCA/bin 1 1 1000

SERVICE=registrar 1 registrar registrar

SERVICEKEY=INTEGER 200 registrar

Note: You specify the service key value, in this case 200, during the installation process.

Configuring EDR Collection

Introduction

The SCA can be configured to produce EDRs for use in post processing as required. All EDR
configuration is done in the sca section of the sca.config file. The EDRs are saved to file in a location

specified in the sca.config.

EDR collection

EDRs are saved to file in tag/value pairs, separated by "|", in the following form:

tag1=value1|tag2=value2

They are initially written to the following temporary file:

SCA-ccyymmddHHMMSS.log, where:

cc = century
yy = year
mm = month
dd = day
HH = hours
MM = minutes
SS = seconds

This file is closed and moved to its permanent location either when one of the following occurs:

• It contains the maximum number of records as configured in sca.config

• It has reached its maximum age (in seconds) as configured sca.config

 Chapter 4

•

 Chapter 4, Configuration 93

Tip: The locations for the temporary and permanent EDR files are defined in the cdrTempDir and

cdrFinalDir parameters. For details, see SCA Configuration (on page 47).

EDR configuration example

EDR collection is enabled by the following lines in the sca section of sca.config:

sca = {

EnableCDRs = true

cdrTempDir = "/IN/service_packages/SCA/cdr/open"

cdrFinalDir = "/IN/service_packages/SCA/cdr/closed"

cdrSizLimit = 100000

cdrAgeLimit = 600

}

For further information on defining the EDR parameters in sca.config, see SCA Configuration (on page
47). For further details on the generation and format of EDRs, see SCA EDRs (on page 114).

Configuring IN Call Model Triggers

Introduction

This section introduces the configuration requirements of the NCC IN Call Model. The set of libraries
that the IN Call Model provides are used by the SCA to trigger SLEE requests to external IN applications
such as ACS.

Note: All necessary configuration for the IN Call Model is done in the tdp.conf file at installation time by
the configuration script. This section is for information only.

Environment variables

This table describes the UNIX shell environment variables to be configured.

Environment
Variable Name

Description

Default Value

TDP_DEFINITIONS Defines the full path name of the
Trigger Detection Point definition file.

/IN/service_packages/SCA/etc/tdp.c
onf

Note: The default value will be used
if this variable is not set.

Trigger detection point (TDP) definition file

The Trigger Detection Point (TDP) definition file, tdp.conf, defines a number of configuration parameters
and the trigger tables. These are used to determine when to trigger a call to the external IN application.

If there is no TDP definition file, then a default action is taken where ALL calls are triggered to the
external IN application with a service key of 1 (one) and a trigger point of 3 (analyzedInformation), and
none of the global configuration parameters are considered set.

Example tdp.conf

The trigger in this example causes all calls to be sent to the external IN application with the service key
1 (one) for ACS, and a trigger point of 3 (analyzed information).

Enable CAMEL3 extensions

CAMEL3

Chapter 4

94 Session Control Agent Technical Guide

#Default trigger

3 1 3 request all all

Tip: All lines that start with # are treated as comments.

Global configuration parameters

The following configuration parameter may be set once on an individual line in the TDP definition file.

Global Parameter Description

CAMEL3 This parameter enables CAMEL3 extensions.

If defined, the called party number is also copied into the intialDP’s
calledPartyBCDNumber CAMEL3 parameter. The NOA of the called party
number becomes the BCD number type.

Trigger detection point definitions

After any global parameters have been set, the configuration file may take one or more trigger detection
point (TDP) definitions.

Each line defines a single trigger; its trigger parameter values that get sent and the conditions under
which it gets sent.

Each line takes the following form:

tdp svcKey eventType msgType cgPn cdPn [wild] [keep]

The table below defines the meanings and forms of these parameters.

Global Parameter
Value

Type

Description

tdp integer This integer value defines the point that the TDP is triggered
at.

Together with cgPn, cdPn and wild it defines the condition

that the trigger will fire on.

See the TDP event type table for a list of valid values and
meanings.

svcKey integer This parameter defines the serviceKey value that will be
inserted into the initialDP message when this trigger fires.

eventType integer This parameter defines the eventTypeBCSM value that will be
inserted into the InitialDP message when this trigger fires.

See the TDP event type table for a list of valid values and
meanings.

Generally this will be the same value as tdp.

msgType request or notify This parameter defines whether the TDP is sent as a TDP-R
(request) or TDP-N(notify). Generally request is used here.

cgPn num or

nat:num or

all

This parameter defines the calling party numbers that will
trigger the TDP.

Together with tdp, cdPn and wild it defines the condition

that the trigger will fire on.

• num defines the prefix of the calling party digits,
numbers must begin with these digits for the trigger to
fire.

• nat is optional and defines additionally a nature of
address (NOA) of the calling party that must match for

 Chapter 4

•

 Chapter 4, Configuration 95

Global Parameter
Value

Type

Description

the trigger to fire. If not provided a nature of 2
(unknown) is assumed.

If all is defined then ALL calling party numbers will match.

cdPn num or

nat:num or

all

This parameter defines the called party numbers that will
trigger the TDP.

Together with tdp, cgPn and wild it defines the condition

that the trigger will fire on.

• num defines the prefix of the called party digits,
numbers must begin with these digits for the trigger to
fire.

• nat is optional and defines additionally a nature of
address (NOA) of the called party that must match for
the trigger to fire. If not provided a nature of 2
(unknown) is assumed.

If all is defined then ALL called party numbers will match.

wild integer This optional parameter defines the number of digits that must
be present in the called party numbers before the TDP will
trigger.

Together with tdp, cgPn and cdPn it defines the condition

that the trigger will fire on.

If set the trigger will not fire until the called party number has
this number of digits.

Note: The wild parameter can be set to a special value of

"stop". If it is set to this value, then the trigger will only fire
when a stop digit is received.

keep - If this optional flag is defined then all numbers triggered by this
TDP will keep their stop digits (if they have one).

TDP event type values

The following table defines the list of TDPs as defined by the CS-1 standard. It also defines the point at
which the trigger will be instantiated by the NCC IN Call Model.

TDP CS-1 Trigger Name Call Model TDP Creation Point

1 origAttemptAuthorized digitsReceived

2 collectedInfo digitsReceived

3 analyzedInformation digitsReceived

4 routeSelectFailure released (cause != 16, 17, 18, 19, 21 or 31)

5 oCalledPartyBusy released (Aparty, cause==17)

6 oNoAnswer released (Aparty, cause==18, 19 or 21)

7 oAnswer answered(Aparty)

8 oMidCall not supported

9 oDisconnect released (Aparty, cause==16 or 31)

10 oAbandon released (Aparty, cause==16 or 31)

Chapter 4

96 Session Control Agent Technical Guide

TDP CS-1 Trigger Name Call Model TDP Creation Point

12 termAttemptAuthorized digitsReceived

13 tCalledPartyBusy released (Bparty, cause==17)

14 tNoAnswer released (Bparty, cause==18, 19 or 21)

15 tAnswer answered(Bparty)

16 tMidCall not supported

17 tDisconnect released (Bparty, cause==16 or 31)

18 tAbandon released (Bparty, cause==16 or 31)

100 n/a ringing (Aparty)

101 n/a ringing (Bparty)

 Chapter 5, NHP Configuration 97

Chapter 5

NHP Configuration

Overview

Introduction

This chapter explains how to configure the next hop processing (NHP) for the SCA.

In this chapter

This chapter contains the following topics.

NHP Configuration File .. 97
NHP Rule Definition... 98
NHP Commands .. 100
NHP Host Definition... 103

NHP Configuration File

Introduction

The next hop processing (NHP) configuration defines the rules and associated commands that are used
by the SCA to determine how to process SIP messages. You configure the next hop processing that will
be performed by the SCA in the NHP configuration file called rules.nhp. The NHP configuration file is
located in the following directory:

/IN/service_packages/SIP/etc/

The NHP configuration file contains the following sections:

• A RULES section containing the list of rule definitions.

• One or more HOST sections that define the rules to apply to SIP response codes, and the methods
(SIP requests) available on the host and the rules to apply to each method.

Example rules.nhp

Here is an example of the NHP rules configuration in rules.nhp:

RULES = {

"r1" = (FROM STARTS "+441473") INTERNAL;

"r2" = (BODY MATCHES "[0-9].*") INTERNAL;

"r3" = (TO DOMAIN ENDS "oracle.co.uk") FWD (SK = 1);

"r4" = (TO PORT EQUALS "5959") REDIRECT (URI = "otherhost:5090");

"r5" = (FROM MATCHES "^[0-9].*" AND TO MATCHES "[ABS]") IDP ();

"r6" = (TO MATCHES "[0-9].*" OR BODY MATCHES "m=111") IDP (SK = 1);

"r7" = (TO DOMAIN MATCHES "oracle.com") LOCATION (URI = "sip:other2@host2");

"r8" = (DEFAULT) LOCATION (SK = 55);

"r9" = (TO DOMAIN NOT STARTS "oracle" AND TO USER NOT ENDS "simon") FORWARD (

);

"r10" = (FROM USER STARTS "simon") FORWARD (URI = "host1", "host2");

"r11" = (DEFAULT) LOCATION (SK = 200);

"r12" = (DEFAULT) PUT_HEADER (NAME = "route" ID = "ENCODE_URI_ID");

"register" = (DEFAULT) FORWARD (SK = 200);

Chapter 5

98 Session Control Agent Technical Guide

"encode-uri" (DEFAULT) GET_HEADER (NAME = "x-wcs-encode-uri" ID =

"ENCODE_URI_ID");

}

HOST * = {

METHOD "INVITE" = { "r2" }

METHOD "OPTIONS" = { "r1" }

METHOD * = { "r3", "r5", "r6", "r7", "r8", "r9", "r10", "r10", "r10" }

}

HOST "reldevsmp" = {

STATUSCODE "183" = { "encode-uri" }

METHOD "REGISTER" = { "registrar" }

METHOD "INVITE" = { "r11", "r12" }

}

HOST "reldevsmp" = {

METHOD "OPTIONS" = { "r1" }

METHOD * = { "r1" }

}

NHP Rule Definition

About NHP Rules

NHP rules are defined in the RULES section in the NHP configuration file. Rules have the following
format:

RULES = {

"rule_name" = (condition) command [flag [flag]] (parameter = value [parameter

= value]);

}

Where:

• rule_name is a unique name for the rule of up to 64 characters.

• condition defines the criteria used to trigger the rule command. For more information, see

Specifying Conditions in NHP Rules (on page 98).

• command is the command that is triggered by the rule.

• flag is a flag that may be set for the specified command. You many only set flags for specific

commands.

• parameter is the parameter that is set by the specified command to the specified value.

For more information about NHP commands, flags, and parameters, see NHP Commands (on page
100).

Specifying Conditions in NHP Rules

You must specify a condition, which must be enclosed in brackets (), for each NHP rule.

A condition comprises either one, or two boolean expressions combined together. The boolean
expressions used in conditions have the following format:

Header [Element] [NOT] Operator Constant

Tip: A boolean expression is a statement that evaluates to true or false.

 Chapter 5

•

 Chapter 5, NHP Configuration 99

This table describes the parameters used in boolean expressions in NHP rules.

Parameter Description

Header Sets the SIP header field that is used to evaluate the condition. Valid headers
are:

• HEADER

• ID

• FROM

• TO

• BODY - may only be used with the MATCHES operator

• DEFAULT - the DEFAULT header defines the default rule. No other
parameters are required and the rule command is triggered
unconditionally

Note: For FROM and TO headers, the characters appearing after the SIP
scheme, such as 'sip:', are used. If the header begins with a double quoted
string, then the data evaluated will be contained within the '<' and '>' symbols.

Element (Optional) Qualifies the header so that only specific data from the header is
evaluated. Valid elements are:

• USER – The characters before the '@' symbol.

• DOMAIN – The characters after the '@' symbol and, if present, before the
':' (colon).

• PORT – The characters after the ':' at the end of the host address.
Defaults to 5060 if not present in the header.

• VIA – The characters after the '@' symbol.

Operator Defines how the rule is evaluated. Valid operators are:

• EQUALS – The data must exactly match the specified Constant. No

regular expression processing takes place.

• STARTS – The data must start with the specified Constant.

• ENDS – The data must end with the specified Constant.

• MATCHES – The specified Constant is interpreted as a regular

expression, and the data must match the result.

Tip: Type NOT in front of the operator to negate it.

Constant The string value (up to 256 characters long) to compare with the data in the
header, or header element. The constant value:

• Must be enclosed in double quotes ("")

• Can contain any number or character that can occur in a SIP address

• Can be a regular expression. For more information, see A note about
regular expressions (on page 100).

Note: Regular expression constants are pre-compiled when the NHP file is
parsed. If a regular expression is invalid and fails to compile, then an error is
reported.

Combining boolean expressions

You can combine two boolean expressions in a condition for an NHP rule by using one of the following
words:

• AND – The rule command is run only if both expressions evaluate to true.

Chapter 5

100 Session Control Agent Technical Guide

• OR – The rule command is run if either expression evaluates to true.

Examples

(FROM MATCHES "^[0-9].*" AND TO MATCHES "[ABC]")

(TO MATCHES "[0-9].*" OR BODY MATCHES "m=111")

Note: You cannot combine the DEFAULT expression with another expression.

A note about regular expressions

The following is an explanation of regular expressions and their use.

Regular expressions can contain anchors ('^' and '$'), groups ('[]') and wild cards ('*'):

• '^' anchors the expression to the start of the string

• '$' anchors the expression to the end of the string

• '[]' groups characters into a class, for example [0-9] means any number

• '*' repeats the previous character class zero or more times, such as '[0-9]*'

Examples

This table shows some example expressions.

Expression Description

^1234$ Will match the exact string 1234.

^1234 Will match any string beginning with 1234.

1234$ Will match any string that ends with 1234.

^[0-9]*1234$ Will match a string that begins with zero or more numbers (0-9) and ends with
1234.

1234[0-9][0-9]* Will match a string that contains the substring 1234 and then 1 or more numbers
(0-9).

NHP Commands

About NHP Commands

When you configure NHP rules you must specify the command that is triggered by each rule. The
command defines what to do with the SIP message when the condition for the rule is met. You can
specify only one command per rule.

The following commands are supported:

• REDIRECT (or RED)

• FORWARD (or FWD)

• LOCATION (or LOC)

• IDP

• INTERNAL (or INT)

• GET_HEADER

• PUT_HEADER

The NHP commands have the following format:

command [flag [flag]] (parameter = value [parameter = value])

Where:

 Chapter 5

•

 Chapter 5, NHP Configuration 101

• command is a valid NHP command.

• flag is an optional flag that may be set for the specified command.

• parameter is the parameter that is set by the specified command to the specified value.

Redirect command

The REDIRECT (or RED) command redirects a SIP request to an alternative SIP URI. It accepts one of
the following parameters:

• URI = "SIP_URI"

• SK = service_key

Where:

• SIP_URI is the URI to which the request is redirected.

• service_key is the service key to which the request is redirected. You must specify an integer.

When a redirect rule is triggered, a 302 Moved Temporarily message is sent in response to the request
that triggered the redirect rule. The contact header of this response includes the SIP URI to which the
request should be redirected.

If the URI parameter is used, then the contact header includes the SIP URI defined in the rule.

If the SK parameter is used, then an IDP is sent to the defined service key. If the triggered control plan
includes a terminate feature node (for example, UATB feature node) and this returns a connect
response, then the contact header includes a SIP URI. This is built using the trans_mapping
configuration and includes the E.164 number returned in the connect.

Example:

Redirect (URI = "sip:otherhost:5090")

Redirect (SK = 1)

Forward command

The FORWARD (or FWD) command forwards SIP requests to one of the following locations:

• An alternative SIP URI

• A SLEE service key

• A destination determined by the Route/Request-URI header if no URI is specified

Flags

The following optional flags may be set by the FORWARD command:

• SET-URI - sets the request URI to the URI specified for the URI parameter. It also appends the
user part of the "TO" header from the SIP request to the front of the request URI.

• B2B-UA - this flag will result in the current call being handled as a Back-To-Back User Agent type
call.

Example usage:

FWD SET-URI,B2B-UA (URI="sip:192.168.24.178");

Parameters

The FORWARD command accepts one of the following parameters:

• URI = "SIP_URI"

• SRV = "SIP_URI"

• SK = service_key

Chapter 5

102 Session Control Agent Technical Guide

Where:

• SIP_URI is the SIP URI to which the request is forwarded. You can specify a single URI or a comma
separated list of up to 100 URIs. The list can be a mixture of IP addresses, and hostnames, that
resolve to multiple IP addresses. Each URI must be a complete URI enclosed in double quotes ("").

Example: "sip:host:port","sip:ipaddress:port","sip:ipaddress"

If you specify the URI parameter, and SIP_URI contains a hostname, then a DNS A record lookup is
performed that may return an IP address.

If you specify the SRV parameter, and SIP_URI contains a hostname, then a DNS SRV record
lookup is performed that may return a list of IP addresses.

• service_key is the service key of the SLEE location service.

Note: When forwarding to a list of URIs, the forward command remembers which URI was last used. If
the rule is re-triggered then the next URI in the list is used (or the command wraps to the first URI
again). This allows the SCA to perform load balancing between URIs when
load_balancing_enabled (on page 54) is set. The SCA attempts to forward to alternate destinations

if an address is unreachable.

Examples:

FWD(SK = 55)

FWD(URI="sip:host1")

FWD(URI="sip:host1", "sip:host2")

FWD(SRV="sip:host3")

Location command

The LOCATION (or LOC) command performs a location query using an external PAM service.

Flags

The following optional flag may be set by the LOCATION command:

• SET-URI - sets the request URI to the URI returned by the location query.

Example usage:

LOCATION SET-URI (URI = "sip:other2@host2");

Parameters

The LOCATION command accepts one of the following parameters:

• SK = service_key_of_the_SLEE_based_location_service

• URI = "SIP_URI_of_the_location_service"

Examples:

Location (SK = 55)

Location (URI = "sip:other2@host2")

IDP command

The IDP command converts the SIP request into a CS1 InitialDP (IDP) and sends it, through the IN-
CallModel, to the external IN application. When the IN application responds, the NHP rule evaluation
continues from the current position.

Note: This command does not accept any parameters.

 Chapter 5

•

 Chapter 5, NHP Configuration 103

Internal command

The INTERNAL (or INT) command uses internal processing rules to respond to the SIP request. It is
only used for an OPTIONS request. The SCA responds with the local capabilities in a 200 (OK)
response.

Note: This command does not accept any parameters.

PUT_HEADER command

Use the PUT_HEADER command to configure a custom SIP header for inclusion in an outbound SIP
INVITE message.

NHP processing applies NHP rules that include the PUT_HEADER command when sending INVITEs
during 3PCC call setup.

Configuring PUT_HEADER for Custom SIP Header

The PUT_HEADER command requires a parameter list that consists of a NAME parameter that
corresponds to the SIP header name and a VALUE parameter that corresponds to the SIP header
value. The following example illustrates the PUT_HEADER command:

RULES = { "put" = (DEFAULT)

PUT_HEADER (NAME = "x-wcs-cps" VALUE = "late");

}

HOST * = { METHOD "INVITE" = { "put" }

}

Note: PUT_HEADER commands apply only to SIP INVITE messages.

GET_HEADER Command

Use the GET_HEADER command to retrieve a header from an inbound SIP response and store the
value in memory with a specified key_name identifier.

The GET_HEADER command takes the following two parameters:

• NAME = header_name

• ID = key_name

Note: The GET_HEADER command is allowed only in rules applied to SIP responses.

Example: GET_HEADER

RULES = { "r1 = (DEFAULT) GET_HEADER (NAME = "x-wcs-encode-uri" ID = "ID_route");

}

NHP Host Definition

About Defining NHP Hosts

You define NHP hosts in one or more HOST sections in the NHP configuration file. Each HOST section
defines the rules to apply when processing SIP messages for the named host machine.

You must specify a unique name for each host. The host name is a case sensitive string of up to 64
characters. It must be enclosed in double quotes ("") unless it is the default host. You can define one
default host in the NHP file. The default host will be used when a host machine is undefined. It is
identified by the host name '*'.

Example: HOST * = { METHOD "INVITE" = {"R2"}}

Chapter 5

104 Session Control Agent Technical Guide

The configuration for each host has the following sections:

• Optional STATUSCODE sections. For information, see Status Code Rule Definition (on page 104).

• One or more METHOD sections. For information, see Defining Host Methods (on page 104).

Example

HOST "HostName" = {

STATUSCODE "183" = { “encode-uri" }

METHOD “REGISTER” = { “r1” , “r2” }

METHOD * = { “r1” }

}

Status Code Rule Definition

The STATUSCODE section defines the set of rules to apply to specific SIP responses. It uses the
following syntax:

STATUSCODE "SIP_status" = { “RULE” , “RULE” , .. }

Where:

• SIP_status is a valid SIP status code for a SIP response, for example, 183.

• Each RULE is defined in the RULES section in the rules.nhp file. The definitions for the specified

rules must contain the GET_HEADER command. For more information about rule definitions, see
NHP Rule Definition (on page 98).

Defining Host Methods

The METHOD section defines the set of rules to apply to specific SIP requests (methods). You must
define at least one method per host. You define methods using the following syntax:

METHOD “method_name” = { “RULE” , “RULE” , .. }

Where:

• method_name is a valid SIP method name, for example, INVITE or REGISTER.

• Each RULE is defined in the RULES section in the rules.nhp file.

For more information about rule definitions, see NHP Rule Definition (on page 98).

Default Method Configuration

The default method has the method name ‘*’. It defines the default set of rules to apply if the SIP
request from the SCA does not match any other method defined for the host. You can define one default
method per host.

Example: METHOD * = { “RULE” }

 Chapter 6, Background Processes 105

Chapter 6

Background Processes

Overview

Introduction

This chapter explains the processes that are started automatically by Service Logic Execution
Environment (SLEE).

Note: This chapter also includes some plug-ins to background processes which do not run
independently.

In this chapter

This chapter contains the following topics.

sca 105

sca

Purpose

The sca process analyzes incoming SIP requests and relays them around the system using different
SIP routers.

Startup

The sca process can be run in the following two ways:

1 As a SLEE interface capable of triggering IN applications such as ACS. In this case, the sca is
started automatically by the SLEE. For more information, see SLEE.cfg Configuration (on page
92).

2 As a standalone binary which cannot trigger IN applications. In this case, the sca can be started
from the command line or from inittab.

Example command: This text will start the sca process from the command line:

/IN/services_packages/SCA/bin/sca

Location

This binary is located on SLCs.

Command line parameters

There are no command line parameters for the sca process.

Configuration

The configuration parameters for the sca process are automatically added to the sca section of

sca.config at installation. For details, see SCA Configuration (on page 47).

Chapter 6

106 Session Control Agent Technical Guide

Failure

If the sca fails, alarms will be raised to the syslog and any incoming SIP messages will not be
processed.

Output

The sca process writes output to /IN/service_packages/SCA/tmp/sca.log.

 Chapter 7, Tools and Utilities 107

Chapter 7

Tools and Utilities

Overview

Introduction

This chapter explains the tools and utilities that are available.

In this chapter

This chapter contains the following topics.

registrar ... 107
remoteCommanderUser .. 108
SCA Remote Commander ... 109
Statistics .. 112
SCA EDRs ... 114

registrar

Purpose

The registrar is a SLEE application suitable for registering the IP addresses of SIP contacts. It can be
used when processing the following SIP requests:

• Register

• Invite

Register requests

When a SIP REGISTER request is received by the SCA (that is, when a SIP client logs into the system),
the SCA sends the IP address of the SIP contact to the registrar, and the registrar stores the address in
memory.

Invite request

When the SCA receives an invite request for a specific SIP contact for the first time, it sends a register
request to the registrar to retrieve the IP address of the SIP contact. The contact details are then
stored in the cache and the invite request is forwarded to the recipient. This means that when the SCA
receives subsequent invite requests for the SIP contact, it can retrieve the IP address directly from the
cache.

Startup

This process is started automatically by the SLEE, through the shell script
/IN/service_packages/SCA/bin/registrar.sh.

For details on configuring the SLEE for the registrar application, see SLEE.cfg Configuration (on page
92).

Chapter 7

108 Session Control Agent Technical Guide

Location

This binary is located on SLCs.

Parameters

There are no command line parameters for the registrar application.

Configuration

The registrar is configured by the following parameters. These are automatically added to the
Registrar section of sca.config at installation:

• cacheSize (on page 58)

• defaultExpiry (on page 58)

Failure

If the registrar fails, then the SCA will not be able to process incoming SIP INVITE and REGISTER
requests. Any alarms will be raised to the syslog.

Output

The registrar process writes output to /IN/service_packages/SCA/tmp/registrar.log.

remoteCommanderUser

Purpose

The remoteCommanderUser utility sets the password for the SCA Remote Commander and stores the
password in a secure credentials vault on the SMS node. The SCA Remote Commander enables
remote users to configure and monitor the SCA. See SCA Remote Commander (on page 109) for more
information.

Startup

You start the remoteCommanderUser utility from the command line by using the following syntax:

remoteCommanderUser [-d user/password] [-p RCpassword] [-r]

The following table describes the remoteCommander command line parameters.

Parameter Description

-d

user/password
(Optional) The oracle user and password to use to log in to the database. If the -

d option is not specified then remoteCommanderUser uses the database login

specified in the oracleUserAndPassword parameter in the sca section of
eserv.config. Defaults to '/' if -d is not specified and oracleUserAndPassword is

not set.

-p RCpassword (Optional) The new password for the SCA Remote Commander user.
remoteCommanderUser Prompts for a password if -p is not specified.

-r (Optional) Specifies to delete the password

 Chapter 7

•

 Chapter 7, Tools and Utilities 109

Setting the SCA Remote Commander Password

Follow these steps to set the password for the SCA Remote Commander.

Step Action

1 Log in to the SMS as user smf_oper.

2 Go to the directory where remoteCommanderUser is located.

3 Enter the following command to set the password for the SCA Remote Commander:

remoteCommanderUser -d user/password -p RC_password

Where:

• user/password is the login ID for the Oracle database. The login specified in

the oracleUserAndPassword parameter is used if you omit the -d option. If this is

not set, then "/" is used.

• RC_password is the new password for the SCA Remote Commander.

remoteCommanderUser prompts for a password if you omit the -p option.

Note: You can remove the SCA Remote Commander password by entering the following
command:

remoteCommanderUser -r

SCA Remote Commander

Introduction

The SCA Remote Commander lets you configure and monitor the SCA remotely using a Telnet
connection to a specific Remote Commander port.

The SCA Remote Commander is an integral part of the main sca process. It is therefore automatically
running whenever the sca process is running. For more information on the sca process and how to
start it, see sca (on page 105).

About the SCA Remote Commander Password

When you access the SCA Remote Commander, you are prompted to enter the password for the SCA
Remote Commander user. You are prompted to set the password for the SCA Remote Commander
user when you install the SCA component of NCC.

You can also set the password for the SCA Remote Commander after you install NCC by using the
remoteCommanderUser utility. See Setting the SCA Remote Commander Password (on page 109) for
more information.

Configuration

The SCA Remote Commander is configured by the rem_comm_port (on page 56) parameter that is
automatically added to the sca.config file at installation. The rem_comm_port parameter defines the SCA
Remote Commander listen port.

Chapter 7

110 Session Control Agent Technical Guide

Commands

This table describes the SCA Remote Commander commands.

Command Description

config Starts the SCA Configuration commander which lets you reload any of the
available configuration sections.

diagnostic Starts the SCA Diagnostic commander which lets you view and reset the SCA
related diagnostic flags.

statistic Starts the SCA Statistic commander which lets you view and modify SCA
statistics in real time.

watcher Starts the SCA Watcher commander which lets you monitor SCA CDR, statistic,
and diagnostic output, and lets you trace URIs.

help Lists the available commands.

quit Logs you out of the SCA Remote Commander.

Accessing the SCA Remote Commander

Follow these steps to access the SCA Remote Commander.

Step Action

1 Open a Telnet session on the SCA Remote Commander port. This is the port defined in
the rem_comm_port parameter in sca.config.

Result: You will be asked for the password.

Note: If the maximum number of SCA Remote Commander sessions has already been
reached, you will be disconnected.

2 Enter the password for the SCA Remote Commander.

Result: You see this prompt: SCA Remote Commander>

3 Enter the command you want, or enter help to display a list of the available commands.

4 To log out of the SCA Remote Commander, enter quit.

Configuration commander

Use the SCA Configuration commander to list the available SCA configuration sections and to reload
specified sections.

To access the SCA Configuration commander, at the SCA Remote Commander prompt, enter config.

This table describes the available commands. At the prompt, enter the command.

Command Description

list Lists the configuration sections that you can reload.

reload config_section Reloads the specified configuration section.

help Lists the available configuration commands.

return Returns to the SCA Remote Commander level.

quit Logs out of the SCA Remote Commander.

 Chapter 7

•

 Chapter 7, Tools and Utilities 111

Diagnostic commander

Use the SCA Diagnostic commander to list and reset the diagnostic flags relevant to the SCA.

To access the SCA Diagnostic commander, at the SCA Remote Commander prompt, enter
diagnostic.

This table describes the available commands. At the prompt, enter the command.

Command Description

list [all] Lists the diagnostic flags, and their descriptions, available to the
SCA.

If you type list all, then all registered diagnostic sections are

listed without descriptions.

set flag on|off Turns diagnostic output on or off for the specified flag. Type set

all on|off to turn all diagnostic output on or off.

Note: Flags which are not specific to the SCA can be set.

get flag Displays the current status of the specified flag.

save Saves the diagnostic flags that are currently set to on.

load Loads the most recently saved diagnostic flags.

help Lists the available diagnostic commands.

return Returns you to the SCA Remote Commander level.

quit Logs you out of the SCA Remote Commander.

Statistic commander

Use the SCA Statistic commander to view and modify SCA statistics in real time.

To access the SCA Statistic commander, at the SCA Remote Commander prompt, enter statistic.

This table describes the available commands. At the prompt, enter the command.

Command Description

list Lists the configuration sections that you can reload.

set id value Sets the statistic for the specified ID to the value specified.

delta id value Updates the statistic for the specified ID by the value specified.

get id Retrieves the current value for the specified statistic ID.

help Lists the available statistic commands.

return Returns you to the SCA Remote Commander level.

quit Logs you out of the SCA Remote Commander.

Watcher commander

Use the SCA Watcher commander to:

• View SCA related EDR, statistic and diagnostic output

• Trace URIs

To access the SCA Watcher commander, at the SCA Remote Commander prompt, enter watcher.

Chapter 7

112 Session Control Agent Technical Guide

This table describes the available commands. At the prompt, enter the command.

Command Description

cdr Invokes the cdr watcher.

stats Invokes the statistics watcher.

diagnostic Invokes the diagnostic output watcher.

trace uri [file] Traces the specified URI. The output may be redirected to the specified
file, if required.

help Lists the available watcher commands.

return Returns you to the SCA Remote Commander level.

quit Logs you out of the SCA Remote Commander.

Statistics

Introduction

The SCA collects statistics using the standard SMS statistic mechanism. The smsStatsDaemon
determines which statistics to collect according to a predefined list. If ORACLE is:

• Installed on the SLC, then the statistics list is stored in SMF_STATISTICS_DEFN table on the SMS
and then replicated to the SLC.

• Not installed, then the statistics list is stored in the /IN/service_packages/SCA/etc/stats_config file.

The smsStatsDaemon uses replication to update the statistics on the SMS. When starting the
smsStatsDaemon, the local node ID is specified through the –r parameter on the command line. It must
be in the range 512-1023. If ORACLE is not installed on the SLC, then you must also specify the
location of the stats_config file (-f parameter).

The replication configuration file contains the IP address of the SMS.

Example: This starts smsStatsDaemon for an SLC that doesn't have ORACLE installed. The location
of the stats_config file is /IN/service_packages/SCA/etc/stats_config and the replication node number is 700.

/IN/service_packages/SMS/bin/smsStatsDaemon -f

/IN/service_packages/SCA/etc/stats_config -r 700

Tip: For more information about the smsStatsDaemon and how statistics are collected, see Service
Management System Technical Guide.

stats_config file

The stats_ config file lists the statistics collected by the smsStatsDaemon for the SCA. It is installed
automatically when the scaScp package is installed. Statistics defined in the stats_config file have the
following format:

MID=StatisticID,ApplicationID,Description,Period,[Comment]

The available parameters are:

Parameter Description

StatisticID The event that occurred.

ApplicationID The application for which the statistic was generated. This is always SCA.

Description Describes the statistic.

Period Determines how frequently (in seconds) the statistic will be output to file.

Comment Provides any additional comments.

 Chapter 7

•

 Chapter 7, Tools and Utilities 113

Note: This file is only required where ORACLE is not installed on the SLC.

Example stats_config file

The following is an example of statistics configuration in the stats_config file:

MID=IN-REQUEST,SCA,Incoming SIP request,300

MID=OUT-REQUEST,SCA,Outgoing SIP request,300

MID=QUERY-IN,SCA,IN trigger (sending InitialDP),300

MID=QUERY-LOC,SCA,Location query,300

MID=CACHE-HIT,SCA,Cache hit,300

MID=CACHE-MISS,SCA,Cache miss,300

MID=IN-INVITE,Incoming INVITE request,300

MID=IN-REGISTER,Incoming REGISTER request,300

MID=IN-MESSAGE,Incoming MESSAGE request,300

MID=IN-CANCEL,Incoming CANCEL request,300

MID=OUT-INVITE,Outgoing INVITE request,300

MID=OUT-REGISTER,Outgoing REGISTER request,300

MID=OUT-MESSAGE,Outgoing MESSAGE request,300

MID=OUT-CANCEL,Outgoing CANCEL request,300

MID=ERR-REQUEST,Request failure (4xx) received,300

MID=ERR-SERVER,Server failure (5xx) received,300

MID=ERR-GLOBAL,Global failure (6xx) received,300

MID=PRL_HUNT,Parallel hunting attempts,300

Statistics collected

This table describes the statistics that are collected.

Field This statistic is incremented each time...

IN-REQUEST There is a new incoming SIP request.

OUT-REQUEST There is a new outgoing SIP request.

QUERY-IN An IN trigger (sending InitialDP) is sent.

QUERY-LOC There is a new location query.

CACHE-HIT The Cache is hit.

CACHE-MISS There is a Cache miss.

IN-INVITE There is an incoming INVITE request.

IN-REGISTER There is an incoming REGISTER request.

IN-MESSAGE There is aa incoming MESSAGE request.

IN-CANCEL here is an incoming CANCEL request.

OUT-INVITE There is an outgoing INVITE request.

OUT-REGISTER There is an outgoing REGISTER request.

OUT-MESSAGE There is an outgoing MESSAGE request.

OUT-CANCEL There is an outgoing CANCEL request.

ERR-REQUEST A request failure (4xx) is received.

ERR-SERVER A server failure (5xx) is received.

ERR-GLOBAL A global failure (6xx) is received.

PRL-HUNT Parallel hunting is attempted.

Chapter 7

114 Session Control Agent Technical Guide

SCA EDRs

EDR collection

The SCA can be configured to produce EDRs for use in post processing as required. The EDRs are
saved to file in a location specified in the sca.config.

EDRs are saved to file in tag/value pairs, separated by "|", in the following form:

tag1=value1|tag2=value2

Field formats

Each field in an EDR is in a particular format, summarized in this table.

Format Description

Date / Time A time to the nearest second, in format YYYYMMDDHHmmSS where:

• YYYY = year (for example, 2005)

• MM = month (for example, 03 for March)

• DD = day of the month (for example, 09)

• HH = hours (for example, 13 for 1pm)

• mm = minutes (for example, 32)

• SS = seconds (for example, 00)

Example: A request submitted on 16th November 2007 1 minute and 14
seconds after midnight TIMESTAMP=20071116000114

Integer A decimal number. Will never exceed a 32 bit number (11 digits), but is
often shorter. Leading zeros will not normally be present.

Example: DURATION=30

String String of characters. Can be any length. Should not contain the
characters = or |. May include spaces. When the parameter is a string,
the string consists of all the characters after the = sign up to the | separator
between this parameter and the next.

Example: REQUEST_URI=aname@oracle.com;SLEESK=1

Notes: Tags may not necessarily be in a fixed order, as the order of processing may vary from one call
type to another.

EDR fields

Here are the SCA tags within an EDR.

CDR_TYPE (sca reason for record generation)

Description: Type of EDR (that is, where and why it was generated).

Format: Integer

Version: SCA 1.0

Notes: 1 - Call attempt

2 - Success

3 - Error

Example: CDR_TYPE=2

 Chapter 7

•

 Chapter 7, Tools and Utilities 115

DURATION (session duration)

Description: The session duration (in seconds).

Format: Integer

Version: SCA 1.0

Notes: This tag value is only present where the CDR_TYPE is 2.

Example: DURATION=30

FROM (sip message from header)

Description: Contains the contents of the From header in the SIP message.

Format: String

Version: SCA 1.0

Notes:

Example: FROM=

METHOD (sip method of request)

Description: The SIP method for the request that caused the EDR to be generated.

Format: String

Version: SCA 1.0

Notes:

Example: METHOD=

REQUEST_URI (uri request content)

Description: Contains the contents of the URI request.

Format: String

Version:

Notes:

Example: REQUEST_URI=aname@oracle.com;SLEESK=1

TIMESTAMP (creation timestamp of sca edr)

Description: The date and time when the EDR was generated.

Format: Date

Version: SCA 1.0

Notes:

Example: TIMESTAMP=20071116000114

TO (sip to header content)

Description: Contains the contents of the To header in the SIP message.

Format: String

Version:

Notes:

Example: TO=

 Chapter 8, About Installation and Removal 117

Chapter 8

About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Network Charging and Control (NCC) application described in this guide. It also lists the files installed by
the application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and Removal Overview ... 117
Checking the Installation ... 117

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

• NCC system requirements

• Pre-installation tasks

• Installing and removing NCC packages

SCA packages

An installation of Session Control Agent includes the following packages, on the:

• SMS:

▪ scaSms

• SLC:

▪ scaScp

Checking the Installation

Introduction

Refer to these check lists to ensure the Session Control Agent has been installed correctly.

SCA directories and files

The SCA installation creates the following directories:

• /IN/service_packages/SCA/bin

• /IN/service_packages/SCA/cdr

Chapter 8

118 Session Control Agent Technical Guide

• /IN/service_packages/SCA/etc

• /IN/service_packages/SCA/lib

• /IN/service_packages/SCA/tmp

The SCA installation installs the following binaries and interfaces:

• /IN/services_packages/SCA/bin/sca

• /IN/services_packages/SCA/bin/registrar

The SCA installation installs the following example configuration files:

• /IN/services_packages/SCA/etc/rules.nhp

• /IN/services_packages/SCA/etc/sca.config

• /IN/services_packages/SCA/etc/sca.config.all.example

• /IN/services_packages/SCA/etc/stats_config

• /IN/services_packages/SCA/etc/tdp.conf

	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions

	Chapter 1
	System Overview
	Overview
	Introduction
	In this Chapter

	What is the Session Control Agent?
	Overview
	Features
	SCA components

	Deploying the SCA
	B2BUA or proxy
	SIP proxy deployment
	SIP proxy deployment diagram
	B2BUA deployment
	B2BUA deployment diagram

	Configuration Overview
	Introduction
	Mandatory configuration
	Common configuration
	General

	ENUM
	Introduction
	Encoding
	Multiple URIs
	Using NAPTR records
	Dynamic data identification
	Supported expressions
	Unsupported expressions

	ESC
	Introduction
	TCP networking
	UDP networking
	SLEE networking
	Request processing
	Message header
	DNS

	Next Hop Processing
	Introduction to Next Hop Processing
	NHP SIP Request Actions
	NHP SIP Invite Actions
	NHP triggers
	Location query

	URI / E.164 Translation
	URI / E.164 translation

	Parallel Hunting
	Introduction
	Feature node

	Presence and Availability
	Introduction
	Presence configuration
	Presence feature nodes

	PRACK Support
	PRACK support

	Custom SIP Headers
	About Custom SIP Header Support
	Adding Inbound Header to Subsequent INVITE Messages

	LAN Redundancy
	Introduction
	Diagram

	Local Address Redundancy
	Introduction
	Procedure

	Remote Address Redundancy
	Introduction
	Process
	Load balancing
	Alternate addresses
	Example

	Transaction timer
	Successful call response
	Remote address failure

	Normalization and Denormalization
	Introduction
	Normalization
	Denormalization

	CLIP and CLIR
	Introduction
	Privacy header
	Setting name in FROM header
	Setting URL in FROM header

	Feature Nodes
	ACS feature nodes

	Chapter 2

	Prepaid Platform and NGN Integration
	Overview
	Introduction
	In this chapter

	Key Functionality
	Introduction
	Diagram

	Prepaid Platform Heartbeating
	Introduction
	SIP OPTIONS heartbeat message
	Message header
	Example
	Prepaid Heartbeat Process
	Diagram
	Stopping charging sessions
	Release cause values
	Release cause mapping

	CS-AS heartbeating mechanism
	Diagram
	Restarting charging sessions
	Process
	SCA message processing

	Media Description Retrieval from SDP
	Introduction
	Media description field
	Media description string
	Media description attribute

	Media mapping table
	Example

	Call ID retrieval
	Introduction
	Call ID field

	Chapter 3

	Scenarios
	Overview
	Introduction
	In this chapter

	Call Forwarding
	Introduction
	Call Forwarding Process
	Invite message translation
	E.164 number translation

	Call Redirection
	Introduction
	Example redirection rules
	Call Redirection Process

	Callback
	Introduction
	Callback control plan diagram
	Callback Process
	Configure Call Initiation example

	SIP Error Response
	Introduction
	SIP error response example
	SIP error response process

	SIP Re-INVITE Scenario Call Flow
	Introduction
	SIP Re-INVITE Call Flow Diagram
	SIP Re-INVITE Process

	Chapter 4

	Configuration
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introdution
	Configuration components

	sca.config Configuration
	Introduction
	Configuration file format
	Editing the file
	Loading sca.config configuration changes

	SCA Configuration
	Introduction
	Example sca configuration
	High level parameters
	b2bua
	cdrAgeLimit
	cdrFinalDir
	cdrSizeLimit
	cdrTempDir
	dns_cache_time
	enableCDRs
	failed_address_timeout
	inap_inn
	inap_noa_called_party
	inap_noa_calling_party
	inap_noa_redirecting_party
	inap_numplan
	inap_pres
	inap_scr
	invite_failover_only
	load_balancing_enabled
	local_contact
	local_ip
	media_change_no_dp
	noin_dropcall
	propagate_b_error
	oracleUserAndPassword
	registrar
	rem_comm_port
	replace_diversion_header
	rules
	uniqueCallId
	update_diversion_header
	use_ALegCallID
	usePAssertedID
	registrar section
	cacheSize
	defaultExpiry
	Remote Party ID Header configuration
	cf_use_cdpn_from_request
	include_pai_tel_header
	include_rpi_id_type
	include_rpi_privacy
	include_rpi_pty_type
	include_rpi_screen
	p_asserted_identity_trans
	remotePartyIdTrans
	rpi_addressNotAvailable
	rpi_id_type
	rpi_network_provided
	rpi_presentation_allowed
	rpi_presentationRestricted
	rpi_pty_type
	rpi_spare
	rpi_user_not_verified
	rpi_user_verified_failed
	rpi_user_verified_passed
	update_rpi_privacy
	update_rpi_screen
	heartbeating to a gateway configuration
	gateway_alarm_message
	gateway_alarm_severity
	heartbeat_destination
	heartbeat_from_address
	heartbeat_p_asserted_id
	heartbeat_p_charging_vector
	heartbeat_release_cause
	heartbeat_request_uri
	heartbeat_route
	heartbeat_send_interval
	heartbeat_send_timeout
	heartbeat_to_address
	keepalive messages configuration
	charging_restart_svc_key
	heartbeat_receive_timeout
	reply_to_options_heartbeat
	restart_charging
	media attributes in SDP section
	allow_unmapped_media
	media_mapping
	media_mapping_alarm_message
	media_mapping_alarm_severity
	UPDATE message handling section
	update_message_handling
	Call ID Retrieval section
	call_id_alarm_message
	call_id_alarm_severity
	msc_address
	msc_noa
	msc_plan
	Hold message section
	allow_overlap_invite
	etc_append_cdpn
	inactive_media_hold
	Number translation
	always_trans_map
	default_prefix
	denorm_mapping
	hashEncodeChar
	insert_plus
	norm_mapping
	replace_plus
	starEncodeChar
	strip_matched_prefix
	trans_mapping
	trans_behaviour
	trans_mapping section
	Example
	Configuration
	domain
	prefix
	denorm_mapping section
	add_chars
	prefix
	remove_chars
	norm_mapping section
	add_chars
	prefix
	remove_chars
	ENUM URI support
	enum_data_profile_tag
	enum_data_type
	enum_enabled
	enum_service_type
	INVITE messages section
	call_init_a_include_cap4_xml
	call_init_b_include_cap4_xml
	call_init_a_cap4_use_suppress_t_csi
	call_init_send_empty_address
	call_init_use_reinvite
	p_asserted_identity

	ESC Configuration
	Introduction
	Example esc configuration
	Parameters
	default_domain
	device_list
	dns_check_files
	dns_server
	error_response_failover
	persistant_connections
	pollInterval
	prack_support
	ocsc_call_flow
	rfc_2543_support
	send_100_trying
	tcp_addr
	tcp_port
	timers
	txn_id_include_host
	udp_addr
	udp_port
	use_tcp
	use_udp
	timers section
	MULTIPLIER
	T1
	T2
	T3
	T4
	T5

	Parser Configuration
	Introduction to parser configuration
	case_sensitive

	Presence Configuration
	Introduction
	Example
	Parameters
	pidf_av
	pidf_loc
	pidf_rev_av
	pidf_rev_loc
	sca_if_handle

	acs.conf Configuration
	Introduction
	acsChassis configuration

	SLEE.cfg Configuration
	Introduction
	sca SLEE configuration
	registrar SLEE configuration

	Configuring EDR Collection
	Introduction
	EDR collection
	EDR configuration example

	Configuring IN Call Model Triggers
	Introduction
	Environment variables
	Trigger detection point (TDP) definition file
	Example tdp.conf

	Global configuration parameters
	Trigger detection point definitions
	TDP event type values

	Chapter 5

	NHP Configuration
	Overview
	Introduction
	In this chapter

	NHP Configuration File
	Introduction
	Example rules.nhp

	NHP Rule Definition
	About NHP Rules
	Specifying Conditions in NHP Rules
	Combining boolean expressions

	A note about regular expressions
	Examples

	NHP Commands
	About NHP Commands
	Redirect command
	Forward command
	Flags
	Parameters

	Location command
	Flags
	Parameters

	IDP command
	Internal command
	PUT_HEADER command
	Configuring PUT_HEADER for Custom SIP Header

	GET_HEADER Command

	NHP Host Definition
	About Defining NHP Hosts
	Status Code Rule Definition
	Defining Host Methods
	Default Method Configuration

	Chapter 6

	Background Processes
	Overview
	Introduction
	In this chapter

	sca
	Purpose
	Startup
	Location
	Command line parameters
	Configuration
	Failure
	Output

	Chapter 7

	Tools and Utilities
	Overview
	Introduction
	In this chapter

	registrar
	Purpose
	Register requests
	Invite request

	Startup
	Location
	Parameters
	Configuration
	Failure
	Output

	remoteCommanderUser
	Purpose
	Startup
	Setting the SCA Remote Commander Password

	SCA Remote Commander
	Introduction
	About the SCA Remote Commander Password
	Configuration
	Commands
	Accessing the SCA Remote Commander
	Configuration commander
	Diagnostic commander
	Statistic commander
	Watcher commander

	Statistics
	Introduction
	stats_config file
	Example stats_config file
	Statistics collected

	SCA EDRs
	EDR collection
	Field formats
	EDR fields
	CDR_TYPE (sca reason for record generation)
	DURATION (session duration)
	FROM (sip message from header)
	METHOD (sip method of request)
	REQUEST_URI (uri request content)
	TIMESTAMP (creation timestamp of sca edr)
	TO (sip to header content)

	Chapter 8

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction
	SCA packages

	Checking the Installation
	Introduction
	SCA directories and files

