
Oracle® Communications Network
Charging and Control
SDK Developer's Guide

Release 15.2
G48978-01
January 2026

Oracle Communications Network Charging and Control SDK Developer's Guide, Release 15.2

G48978-01

Copyright © 2011, 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 About This Content

1 About Customizing Network Charging and Control

Understanding the SDK Development Environment 1

Developing Convergent Charging Controller Components and Features with the SDK 3

About the SDK API 5

2 Getting Started

Prerequisites 1

Installing the SDK 1

Setting Environment Variables 2

SDK Contents 2

Building Examples 3

Installing the Examples 4

Accessing the API Documentation 6

Using Debugging, Alarms, Statistics, and Configuration 6

Using Debugging Statements 6

Using Debug Sections 7

Creating Debug Output 8

Using Display Options 9

Logging Alarms 9

Recording Statistics 11

Accessing the Configuration File 12

3 Creating Service Loaders

About Service Loaders 1

Creating a Custom Service Loader 2

acsChassisInitSL() 3

acsChassisLoadService() 3

acsChassisPreCTR() and acsChassisPreETC() 5

acsChassisPreCTR() 6

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page i of v

acsChassisPreETC() 6

acsChassisPrePOR() 7

Denormalization 7

Setting up Service-Specific Data 8

Setting up Extension Information 8

General Setup of Outgoing Information 9

Sending FurnishChargingInformation or SendChargingInformation 9

acsChassisCallTerminated() 9

Defining a Custom Service Loader Extender 10

4 Creating a Custom Feature Node

About Feature Nodes 1

About Creating Custom Feature Nodes 2

Defining a Feature Node 2

Creating a Feature Node Definition 2

Example: Feature Node Definition File 3

Loading Feature Node Definitions 4

Adding the Feature Node to a Feature Set 5

Creating the Shared Library 5

Initialization 5

Processing 6

Tracking the State 6

Making a Chassis Action Request 7

Exiting 8

Using the Node Context Block 9

Specifying the Location of the Shared Library 10

Creating the Feature Node Image Files 10

5 Creating a Custom Control Agent

About Control Agents 1

SLEE Dispatcher 1

The SDK TCAP API 2

The SDK INAP API 3

6 Creating Provisioning Interface Commands

About Provisioning Interface Commands 1

The PI Function 1

PI Command Actions 1

PI Function Return 2

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page ii of v

Adding a PI Command to the Database 2

Creating a PI Commands File 3

Example: PI Command Definition File 3

Running the PICommandInstaller Utility 4

7 Creating Provisioning Screens

About Creating Provisioning Screens 1

Creating Screens Using KFramework 1

Using the Service Screens 2

Find Mode 2

Display Mode 3

The Results Display Table 5

The Find Button Bar 5

The Modify All Selection Dialog Box 6

Data Entry Mode 6

Help Screen 6

Table Monitor 6

Creating a New Service Screen 8

The ABC Example 10

Creating DataEntryFrame Classes 10

Creating DataEntryPanels Classes 11

Language Translation 19

8 Creating Memory-Mapped Files

About Memory-Mapped Files 1

About Creating Memory-Mapped Files 1

Data Replication 2

Creating Alerts When Data Changes Occur 2

The Mfile Daemon 2

The Mfile Daemon API 3

enum AwaitResult{...} 3

initGPNA() 3

awaitGPNAChange() 4

startGPNAChange() 4

mallocGPNAEntry() 4

addGPNAEntry() 4

addGPNAIntEntry() 5

finishedGPNA() 5

finishedSingleEntry() 5

An Mfile Daemon Example 6

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page iii of v

The Mfile Application 6

The Mfile Application API 6

setupGPNA() 6

genericGPNA() 6

An Mfile Application Example 7

9 Creating and Replicating Database Tables

About Creating and Replicating Database Tables 1

Defining a Database Table 1

The TableDefinition Element 1

The TableColumnData Element 2

The TableConstraint Element 3

The IndexDefinition Element 3

The IndexColumnData Element 3

A Table Definition Example 4

Running the Database Table Installer 4

Defining the tableClientFile 5

The ClientTableDefinition Element 5

The ClientIndexDefinition Element 7

A tableClientFile Example 8

Replicating Tables 9

The Replication Element 10

The Platforms Element 10

The Platform Element 10

The Groups Element 10

The Group Element 11

The Dependency Element 11

A Table Replication Example 11

10

Creating an EDR Loader Plugin

About EDR Loader Plugins 1

The EDR Loader Plugin Shared Library 1

The EDR Loader Plugin 2

11

Creating a CcsAuth Voucher PAM Plugin

About CcsAuth PAM Plugins 1

The CcsAuth Plugin Shared Libraries 1

SDK Voucher PAM Plugins 2

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page iv of v

ccsAuthPluginInstaller 4

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page v of v

About This Content

This guide describes how to use the software development kit (SDK) for the Oracle
Communications Network Charging and Control (NCC) software. The SDK is based on the
NCC application programming interface (API) and allows you to create NCC components that
satisfy customer-specific requirements that the NCC software does not address.

Audience

This document is intended for software developers who are consultants or system integrators
tasked with addressing customer requirements within the NCC framework.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page i of i

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
About Customizing Network Charging and
Control

This chapter gives an overview of the Oracle Communications Network Charging and Control
(NCC) Software Development Kit (SDK).

Understanding the SDK Development Environment
The Oracle Communications Network Charging and Control (NCC) Software Development Kit
(SDK) provides C++ Application Programming Interfaces (APIs) and supporting files and tools
that enable you to develop custom NCC components and features and integrate them into the
core NCC product.

Figure 1-1 illustrates the major elements of the Network Charging and Control system.

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 6

Figure 1-1 NCC System Elements

The three major NCC components are the Service Management System (SMS), the Service
Logic Controller (SLC), and the Voucher and Wallet Server (VWS).

The SMS performs these tasks:

• System management, including centralized management of alarms, logs, and reporting

• Service management, including centralized configuration of products, control plans, and
rates

• Customer relationship management (CRM) and provisioning, including centralized
management of subscribers and wallets

Chapter 1
Understanding the SDK Development Environment

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 6

• Voucher management, including provisioning and management of vouchers and voucher
batches

• Replication management, including replication of service, subscriber, wallet and voucher
information to other nodes in the Convergent Charging Controller platform, including the
SLC and the Voucher and Wallet Server (VWS).

The SLC includes the following components:

• The Service Logic Execution Environment (SLEE), which manages a group of applications
that can communicate with each other and share resources efficiently

• The Advanced Control Services (ACS), which is the real-time engine for control plan
execution

• Charging drivers, which are SLEE interfaces that provide connectivity to the VWS, Billing
and Revenue Management (BRM), or third-party online charging systems

• The Control Agent layer, which is a framework for SLEE interfaces that connect the SLC to
the core network

Control agents communicate with ACS using the Intelligent Network Application Part
(INAP) language. In doing so, they translate network protocols such as SIP, MAP, or
Diameter into INAP so that a common service logic is possible, independent of the network
protocol.

A control agent issues an InitialDP request to initiate a dialog for a particular event or
session.

• Service Logic Layer, which includes feature nodes, chassis actions and service loaders for
charging, messaging and number services

The VWS handles prepaid rating, balance management, voucher management, and promotion
management. It includes the following key components:

• The beSync component, which synchronizes reservations, wallets, and vouchers between
VWS nodes.

• The beServer component, which handles incoming requests and distributes them to
beVWARS processes.

• The beVWARS component, which performs all business logic in the VWS, including rating,
recharging, promotions and voucher redemption. The beVWARS process is the engine of
the VWS.

Developing Convergent Charging Controller Components and
Features with the SDK

The SDK enables you to develop the following types of components and features to satisfy
your specific NCC requirements:

• Service loaders

Developing a custom service loader allows you to manipulate information contained in the
InitialDP according to your requirements and allows you to load a control plan according to
your own business rules. The InitialDP is the INAP request that a control agent, or external
network element, sends to slee_acs to trigger processing for a new event or session – for
example, for a call, SMS, or data session. The slee_acs is the Advanced Control Service
process that runs on the Service Logic Controller and processes service logic, generally by
executing a control plan.

Chapter 1
Developing Convergent Charging Controller Components and Features with the SDK

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 6

The purpose of a service loader is to prepare slee_acs for the execution of service logic for
the service associated with a new event or session. For example, for a chargeable mobile
voice call, the service loader typically would:

– Lookup the calling party number in the subscriber database

– Retrieve the subscriber profile for use in the control plan

– Retrieve all service configuration data for that subscriber, including the product, tariff
plans, and so on.

– Determine the details of wallets associated with the subscriber for charging and
tracking

– Set slee_acs up for execution of the control plan for charging a mobile originating
voice call

Furthermore, you can use a service loader to closely control the information returned by
the CONNECT operation.

You can also develop a custom service loader that extends an existing product-based
service by supplying one or more functions that are called after the ones in the standard
product library. This is known as a service loader extender.

For more information, see "Creating Service Loaders ".

• Feature nodes

You can create a custom feature node, which is invoked by a control plan, to perform
customer-specific processing that is not included by the NCC system feature nodes. A
custom feature node can retrieve information from a specific database table, read from and
write to profiles, set up charging information in a vendor-specific form, and perform various
Intelligent Network Application Part (INAP) operations. Use htonl or ntohl functions while
retrieving the value from profile fields, based on the architecture of host.

For more information, see "Creating a Custom Feature Node ".

• Control agents

A control agent provides a bridge between a particular protocol and the service logic being
run by slee_acs. A custom control agent allows you to interface the SLC with network
elements that use protocols that are not supported by the SLC.

For more information, see "Creating a Custom Control Agent ".

• Provisioning interface (PI) commands

Allow you to provision information that is stored in custom tables. Such tables could
contain routing data that is specific to the topology of your network. You can develop Man-
Machine Language (MML), Extensible Markup Language (XML), and Simple Object
Access Protocol (SOAP)-based PI commands.

For more information, see "Creating Provisioning Interface Commands ".

• Provisioning screens

Allow you to create screens to enter and maintain data in new database tables that you
create.

For more information, see "Creating Provisioning Screens ".

• Memory-mapped files (Mfiles)

Allow you to cache in memory, information from database tables that could contain routing
data specific to your topology. Mfiles are binary files that contain a copy of the database
table information. Processes access the Mfile information by mapping the Mfile into their
address space and reading it using memory-mapped input or output. This is useful, for

Chapter 1
Developing Convergent Charging Controller Components and Features with the SDK

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 6

example, when directly accessing these tables could have a negative impact on
performance. Mfiles provide rapid data retrieval through the runtime service flow with
negligible impact on performance.

For more information, see "Creating Memory-Mapped Files ".

• Event Detail Record plugins

An event data record (EDR) loader plugin processes an EDR produced by a VWS. The
VWS produces an EDR for every change to a wallet or voucher. An EDR loader process
on the SMS processes each EDR. The core purpose of the EDR loader is to load EDRs
into the database so customer care agents can read them in the screens. You can develop
custom plugins, for example, to format an EDR specifically for a third party billing system,
or convert an EDR into Oracle's Billing and Revenue Management (BRM) SQL42 format.

For more information, see "Creating an EDR Loader Plugin ".

• CcsAuth Voucher PAM plugins

A CcsAuth Voucher PAM plugin provides an implementation of a Voucher Pluggable
Authentication Module. This handles generation of the voucher secret (HRN) which is
written to the voucher print file and how the hashed or encrypted HRN (private secret) is
then created and stored in the database.

For more information, see "Creating a CcsAuth Voucher PAM Plugin".

About the SDK API
The NCC SDK is built on the NCC API, which provides a library of classes and files that enable
you to create NCC components and features to meet your specific NCC system requirements.

The NCC API consists of global classes and classes that are grouped namespaces listed in
Table 1-1, which provide scope for them and their member functions and definitions:

Table 1-1 NCC API Namespaces

Namespace Description

acs Contains all APIs related to the ACS software. See ncc and ncc:acs
namespaces also.

acsActionsAPI Contains classes that interact with the Advanced Control Service to
request discreet actions associated with making a call and processing
results. Actions include getting the wallet, requesting an initial
reservation, getting rates, setting the discount, getting subscriber credit
card details, and so on.

ccs Contains all APIs for the CCS software component.

ccs:cdr Contains classes and the interface for CDR loader plugins.

ccs::auth Contains classes and the interface for CCS Voucher PAM plugins.

cmn Contains the common, or generally-applicable, functions and classes
related to supporting features and functions.

cmn::cfg Defines configuration information object and values.

ncc Contains acs, inap, slee, and tcap namespaces.

ncc::acs: Stores ACR charging flags; throws unknown language exception;
creates and handles ACS notifications; defines a single slee_acs
transaction; gets a generic request and returns a generic response

ncc::inap Creates INAP operation, indication, and request primitives.

Chapter 1
About the SDK API

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 5 of 6

Table 1-1 (Cont.) NCC API Namespaces

Namespace Description

ncc::slee In general, provides functionality for passing messages across the
SLEE, between applications and interfaces. In particular, provides a
layer of abstraction, so that custom code can pass information between
processes without having to worry about handling the SLEE transport
layer.

ncc::tcap Contains classes that define the TCAP standard primitives.

sms Contains the APIs for the SMS software component.

sms::pi Contains the APIs for the Provisioning Interface.

sms::pi::common Contains classes that define error codes related to logging on and
session startup, request processing, XML, and internal errors.

For information on accessing the NCC API documentation, see "Accessing the API
Documentation".

Chapter 1
About the SDK API

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 6 of 6

2
Getting Started

This chapter explains how to install and get started with the Oracle Communications Network
Charging and Control (NCC) Software Development Kit (SDK) and describes the prerequisites.

Prerequisites
The NCC SDK is delivered in a zip file that also includes this guide. The general platform
requirements for the SDK are the same as they are for NCC. For more information on the
general platform requirements for NCC, see NCC Installation Guide.

Before using the SDK, you should have working knowledge and skills in the following areas:

• The C, C++, and Java programming languages

• The UNIX operating system, including system programming and system administration

• Structured Query Language (SQL) for managing databases in a relational database
management system, particularly Oracle Database 19

• The following NCC concepts:

– Advanced Control Services (ACS) system architecture

– The role of ACS in a service flow

– The configuration of the Service Management System (SMS) product features

In addition, the SDK requires the following software and tools for building components:

• For Oracle Linux:

– Linux 8.8 or higher

The NCC build environment must support the minimum version of the environment on
which the software will be deployed and run.

– Oracle Database 19 Release 18 (Oracle Database 19.18.0.0.0), including client
libraries

– Oracle Java 21.0.4

– GNU Compiler Collection (gcc) 12.2.1, included with C++

– GNU Binary Utilities (binutils) 2.30; binutils are ported to most major UNIX versions

– GNU make (gmake) 4.2.1, included with C++

– GNU Bison (bison) 3.0.4, included with C++

See the product documentation for these tools for information on installing and using them.

Installing the SDK
To install the SDK, you must extract the package to a directory and use the UNIX tar command
to extract the contents of the .tar file into the specified directory. For example, the following
commands unzip the package and extract the contents of the .tar file into the current directory.

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 14

gunzip SDK-12.0.2.0.0.tar.gz
tar -xf SDK-12.0.2.0.0.tar

Setting Environment Variables
You must specify the location of the SDK files by adding commands to your .profile file to set
the NCC_SDK_HOME environment variable and then export it. For example, the following lines
specify the location of the SDK as being /home/username/sdk, where username varies and
represents the name of a user's home directory.

NCC_SDK_HOME=/home/username/sdk
export NCC_SDK_HOME

In addition, you should set the environment variables described in Table 2-1:

Table 2-1 Environment Variable Settings for SDK

Environment Variables Value

LD_LIBRARY_PATH Specify the /lib directory for binutils and gcc before anything else.

For example:

On Linux, /usr/local/lib

PATH Specify the /bin directory for binutils and gcc before anything else.

For example:

On Linux, /usr/local/lib

ORACLE_HOME Specify the absolute path to Oracle 19 home. For example: /u01/app/
oracle/product/19.0.0

SDK Contents
The SDK installation process creates the following set of directories:

• bin: Contains utility programs such as the database table installer, the feature node
installer, and the PI command installer.

• doc: Contains the HTML files that document the application. For more information on the
contents of this folder, see "Accessing the API Documentation".

• example: Contains example files for each of the components that you can build with the
SDK. For more information on the contents of this folder, see "Building Examples".

• include: Contains the SDK header files that you will need to include in your applications.

For information about which files to include to have access to a particular function or class,
see the examples or the API reference. For information on accessing the API reference,
see "Accessing the API Documentation".

• jar: Contains SDK Java archive files that contain the classes to develop custom screens.

• lib: Contains a collection of static and dynamically linked libraries for use in the
applications that you develop. The following list indicates which libraries need to be linked
for each type of custom component:

– libcmnUtils.so - any process that requires access to the Oracle database

– libcmnUtilsNoOra.so - any process that does not require access to the Oracle
database

– libcmnConfig.a - any component that reads configuration files

Chapter 2
SDK Contents

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 14

– libcmnConfigFileImpl.a - any component that reads configuration files

– libsmsStats.a - any component that records statistics

– libSleeApiCallContext.so - service loaders or macro nodes that use service-specific
data

– libPI_common.so - PI commands

– ibsleeDispatcher.so - control agents and call-out interfaces

– libSLEE.so - control agents and call-out interfaces

– libacsSleeTransaction.so - control agents

– libtcapSleeTransaction.so - TCAP control agents

– libgenericEvent.so - call-out interfaces

– libgenericSleeTransaction.so - call-out interfaces

– libcmnMfile.a - an Mfile daemon or component that uses Mfile API

– libshare.a - an Mfile daemon or component that uses Mfile API

– libccsAuthPluginSDK.so - Ccs Auth Voucher PAM plugins

• make: Contains the makefile file, which defines the generic rules for creating each of the
example components. Use it to compile the examples. The additional files, such as install,
install.sh, and env.mk, are used by makefile. The install.sh file, for example, copies
custom libraries, once they are built, to $NCC_SDK_HOME/lib.

Building Examples
Follow these steps to build the examples that are provided with the SDK:

1. Change location to directory $NCC_SDK_HOME/example/example_dir where
example_dir is the name of the directory that holds the particular examples that you want
to build.

2. Enter the following command to build the examples:

gmake install

The gmake install command builds all of the examples in the specified directory.

The SDK includes the examples listed in Table 2-2:

Table 2-2 SDK Examples

Example Directory Examples

ABC/java Sample SMS screen, built into abc.jar

ABC/db Definitions for sample database tables, which can be
used with cmnTableInstaller.sh

sdkCDRLoaderPlugin Sample EDR loader plugin, which is built into the
sdkCDRLoaderPlugin.so shared library. Also contains
sdkCDRLoaderPlugin.h and Makefile files

sdkCallout Sample call-out SLEE interface, sdkCallout

sdkCommon Common utilities used by feature nodes and service
loaders

Chapter 2
Building Examples

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 14

Table 2-2 (Cont.) SDK Examples

Example Directory Examples

sdkMacroNodes Sample macro nodes, which are built into the
sdkMacroNodes.so shared library file and loaded by
slee_acs. Also contains feature node database
definitions in sdkMacroNodes.xml, which can be used
with acsMacroNodeInstaller

sdkMfileAPI Sample Mfile access library, which is build into
libsdkMfileAPI.a

sdkMfileDaemon Sample Mfile daemon, sdkMfileDaemon

sdkPiCommands/SDK_ABCNOA Sample PI command, built into libPI_SDK_ABCNOA.so,
loaded by PImanager. Definitions for sample PI
commands, which can be used with
PICommandInstaller.

sdkServiceLoader/generalExample Sample generic service loader, built into
libsdkServiceLoader.so, loaded by slee_acs

sdkServiceLoader/example1 Sample service loader, built into
libsdkServiceExample1.so, loaded by slee_acs

sdkServiceLoader/example2 Sample service loader, built into
libsdkServiceExample2.so, loaded by slee_acs

sdkServiceLoader/example3 Sample service loader, built into
libsdkServiceExample3.so, loaded by slee_acs

sdkServiceLoader/example4 Sample service loader, built into
libsdkServiceExample4.so, loaded by slee_acs

sdkTcapAgent Sample TCAP control agent, sdkTcapAgent

sdkccsAuthPlugin Sample CCS Auth plugin, which is built into the
libsdkCcsAuthPlugin.so shared library.

Also contains sdkCcsAuthPlugin.hh and Makefile files.

Installing the Examples
After building the examples, follow these steps to install them:

1. On the SLC, create the following directory:

/IN/service_packages/SDK

2. Copy the example applications in Table 2-3 to the specified directory on the SLC:

Table 2-3 SLC Install Locations for Examples

Files in Build Location Install Location

$NCC_SDK_HOME/lib/*.so /IN/service_packages/SDK/lib

$NCC_SDK_HOME/bin/
sdkCallout $NCC_SDK_HOME/bin/
sdkTcapAgent $NCC_SDK_HOME/bin/
sdkMfileDaemon

/IN/service_packages/SDK/bin

3. Copy the example applications listed in Table 2-4 to the specified directory on the SMS:

Chapter 2
Building Examples

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 14

Table 2-4 SMS Install Locations for Examples

Files in Build Location Install Location

$NCC_SDK_HOME/bin/abc.jar.sig /IN/html

$NCC_SDK_HOME/bin/acsMacroNodeinstaller /IN/service_packages/ACS/bin

$NCC_SDK_HOME/bin/ccsAuthPluginInstaller /IN/service_packages/CCS/bin

$NCC_SDK_HOME/bin/pluginschema.dtd /IN/service_packages/SDK/etc

$NCC_SDK_HOME/bin/nodeschema.dtd /IN/service_packages/SDK/etc

$NCC_SDK_HOME/example/sdkMacroNodes/
sdkMacroNodes.xml

/IN/service_packages/SDK/etc

$NCC_SDK_HOME/bin/
cmnTableInstaller.sh $NCC_SDK_HOME/bin/
cmnTableInstaller_temp_install.sh $NCC_SDK_HOM
E/bin/cmnTableInstaller_temp_uninstall.sh
schema.dtd client.dtd

/IN/service_packages/SDK/bin

$NCC_SDK_HOME/example/ABC/db/
SDK.xml $NCC_SDK_HOME/example/ABC/db/
SDK_Client.xml

/IN/service_packages/SDK/bin

$NCC_SDK_HOME/bin/
PICommandInstaller $NCC_SDK_HOME/bin/
CommandsSchema.dtd

/IN/service_packages/SDK/bin

$NCC_SDK_HOME/example/ sdkPiCommands/
SDK_ABCNOA/SDK_PI.xml

/IN/service_packages/SDK/bin

4. With the SDK mounted on the SMS via NFS at $NCC_SDK_HOME, run the following
commands:

cd /IN/service_packages
mkdir SDK
mkdir SDK/bin
mkdir SDK/etc
chgrp -R esg /IN/service_packages/SDK
chmod -R 750 /IN/service_packages/SDK

cp $NCC_SDK_HOME/bin/cmnTableInstaller*.sh SMS/bin
cp $NCC_SDK_HOME/bin/cmnDBInstallGenerator.jar SMS/bin
cp $NCC_SDK_HOME/bin/schema.dtd SDK/etc
cp $NCC_SDK_HOME/bin/client.dtd SDK/etc
cp $NCC_SDK_HOME/example/ABC/db/SDK.xml SDK/etc
cp $NCC_SDK_HOME/example/ABC/db/SDK_Client.xml SDK/etc

cp $NCC_SDK_HOME/bin/acsMacroNodeInstaller ACS/bin
cp $NCC_SDK_HOME/bin/ccsAuthPluginInstaller CCS/bin
cp $NCC_SDK_HOME/bin/nodeschema.dtd SDK/etc
cp $NCC_SDK_HOME/bin/pluginschema.dtd SDK/etc
cp $NCC_SDK_HOME/example/sdkMacroNodes/sdkMacroNodes.xml SDK/etc

5. Run the following commands to create the custom database tables and replication on the
SMS:

$ su - smf_oper
$ cmnTableInstaller.sh -U smf -D ../SDK/install -S ../SDK/etc/SDK.xml -C ../SDK/etc/
SDK_Client.xml
$../SDK/install/SMS/scripts/install.sh

Chapter 2
Building Examples

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 5 of 14

Note

The XML file either needs to be in the same directory as the DTD file, or you must
modify it to specify the DTD file location.

6. Run the following commands to define the custom nodes on the SMS:

su - acs_oper
acsMacroNodeInstaller -install ../SDK/etc/sdkMacroNodes.xml

Note

The XML file either needs to be in the same directory as the DTD file, or you must
modify it to specify the DTD file location.

7. Run the following commands to define the custom Voucher PAM plugins on the SMS:

su - ccs_oper
ccsAuthPluginInstaller -i -f ../SDK/etc/sdkCcsAuthPlugin.xml

Note

The XML file either needs to be in the same directory as the DTD file, or you must
modify it to specify the DTD file location.

See "Creating a New Service Screen" for information on installing the example screens.

Accessing the API Documentation
The SDK API is described in a set of HTML files in the doc folder under $NCC_SDK_HOME.

To access the API reference documentation, which describes the NCC SDK classes and their
members, open the following file using the browser of your choice:

$NCC_SDK_HOME/doc/html/index.html

Using Debugging, Alarms, Statistics, and Configuration
The NCC SDK includes supporting functions that enable you to add debug statements to your
code, define and raise alarms, define and record statistics, and access the configuration file.

Using Debugging Statements
To turn on all of the debugging output for any program, run the following commands before
starting the program:

DEBUG=all
export DEBUG

For slightly less output, you can run the following commands instead. The std flag sets all
debug flags except for those having the highest volume.

Chapter 2
Accessing the API Documentation

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 6 of 14

DEBUG=std
export DEBUG

You can add debug statements throughout your code to assist in tracing and debugging.

To implement debugging in your code, do the following:

1. Include the cmnDebugSDK.h file.

2. Choose a debug section by defining the DEBUG_SECTION variable in the Makefile.

3. Call the cmnDebug_SECTION_FLAG() function to make this debug section available.

4. Add IDOUT and DOUT statements to write debug output. The IDOUT statement indents
the subsequent output stream until the end of the current scope.

The following code illustrates these steps and writes out the name of the function and a line of
debug output:

#include <cmnDebugSDK.h>

cmnDebug_SECTION_FLAG();

someFunction() {
 IDOUT << "someFunction()" << std::endl;

 // Do something
 ...

 // Log some debug output
 DOUT << "Did something" << std::endl;
}

SDK debug output is distinguished from NCC product output with a prefix of SDK, as shown in
the following example:

acsEngine.c 503 [PID] Engine acsEngineProcessCall: Call macro node processor
customFile.cc 4 [PID] SDKsection someFunction()
customFile.cc 20 [PID] SDKsection Did something

The two lines output from SDKsection require that the following line has been added to the
Makefile:

DEBUG_SECTION=section

The following sections provide additional details.

Using Debug Sections
The SDK API implements the concept of debug sections, which marks all debug messages,
either explicitly or implicitly, with a DEBUG_SECTION flag. The DEBUG_SECTION flag allows
you to turn on or turn off debug output at runtime by debug sections. For example, you could
turn on debug output only for the section ACS_Chassis.

The software writes each line of debug to a particular section, which you have either defined
explicitly or else using the DEBUG_SECTION make variable by default. At runtime, the
operator can control which lines of debug are actually output by setting the DEBUG
environment variable. Each line of code that generates debug output will only write it out if the
relevant section is switched on by way of the DEBUG environment variable.

The DEBUG environment variable is always read before programs start, that is, before the
function main() is called. Consequently, you can set $DEBUG to a comma separated list of

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 7 of 14

debug section names to turn on debug output for those sections. The following line shows an
example:

DEBUG=misc, myDebugSection

When assigning debug section names, it is a good practice to use the format
PROGRAM_SUBSYSTEM for the flag. For example, for the program ACS and the subsystem
Chassis, use the flag ACS_Chassis, as in DEBUG_SECTION=ACS_Chassis.

If you want multiple subsections, you can append to the name, for example,
ACS_Chassis_Config. For programs, use the program name, such as acsStatsMaster.

The macros in Table 2-5 might be of interest.

Table 2-5 Debug Macros

Macro Description

cmnDebug_SECTION_INIT(); You must initialize C debug flags by hand because C does not allow
global variables to be initialized to the results of a function call.
Place this in main() or another function.

cmnDebug_INIT(name) Use this (or cmnDebug_SECTION_INIT()) on HP-UX to initialize
debug flags by hand. Global variables in shared libraries are not
initialized when the initializer is a function call. Also use to initialize a
debug section inside a function that gets called at startup time or in
a shared library. Running cmnDebug_INIT(name) on a flag that is
already initialized has no effect.

cmnDebug_FLAG(name) Initialize a debug section inside C++ source files in global scope.

cmnDebug_USE() To use another debug flag that is not declared in the current file. If
you use this inside a C++ namespace, the flag must also be defined
inside the same namespace.

You can override DEBUG_SECTION in a C or C++ source file as shown in the following
example:

#undef DEBUG_SECTION
#define DEBUG_SECTION SMS_Replication_filenames

You can discover the debug sections declared in an executable or library by searching for the
string cmnDebug_FLAG. The following commands show how to do this.

strings ./myApp | grep cmnDebug_FLAG

Creating Debug Output
To create debug output using the C++ cout style interface, use the DOUT and IDOUT
statements as shown in the following example.

DOUT << "read " << numBytes << " bytes from " << myName << std::endl;
IDOUT << "Entering new code chunk: " << name << std::endl;

IDOUT indents all output lines until the end of scope. All output goes to the same place.

The following output statements allow you to override the DEBUG_SECTION.

SDOUT(ACS_Chassis_details) << "read " << numBytes << " bytes from " << myName <<
std::endl;
SIDOUT(ACS_Chassis_details) << "Entering new code chunk: " << name << std::endl;

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 8 of 14

Like IDOUT, SIDOUT indents all output lines until the end of scope.

Use these statements to produce hex dumps of memory.

DBGMEM(pointer, length);
SDBGMEM(ACS_INAP_Messages)(pointer, length);

SDBGMEM allows you to override the DEBUG_SECTION flag.

Using Display Options
By default, the debugging output statements prefix each line with the current date and time, the
source filename, the source file line number, and the process ID.

You can use the pseudo debug flags shown in Table 2-6 to specify which values to include.

Table 2-6 Pseudo Debug Display Flags

Pseudo Debug Flag Description

display:name Displays the program name registered with the cmnErrorSetProgram()
function, which is off by default

display:date Displays the date in YYYY/MM/DD HH:MM:SS format

display:file Displays the source filename

display:line Displays the source file line number

display:pid Displays the process ID

display:section Displays the debug section flag name

display:all Displays all of the above

You can prefix the display value with '-' to turn the value off. The following example keeps the
process ID from being displayed by myApp.

DEBUG=display:-pid
./myApp

Logging Alarms
The SDK provides the functions shown in Table 2-7 to use in conjunction with logging alarms.

Table 2-7 Logging Alarm Functions

Function Description

cmnErrorSetProgram(const char * name) Registers the program name to use when logging
alarms.

const char* cmnErrorGetProgram() Returns the name of the program previously
registered by cmnErrorSetProgram() or cmnError if
no name has been registered.

int cmnAlarmSDK (int severity, unsigned char
appID, unsigned alarmTypeID, const char *const
format ...

)

Logs an error with alarmTypeID using variable
parameter format.

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 9 of 14

The cmnAlarmSDK() function prefixes the error text with the value of alarmTypeID, which is
associated with a specific error. The alarmTypeID parameter is the last four digits of the full
alarm type ID , the value of which is in the range allocated for SDK applications, and is
generated based on the application ID (appId) and the alarmTypeID parameter. It is in the form
<SMS Application ID><alarmTypeId>. The SMS Application ID is specified by the appId
argument, and will be 9xx where xx is the application ID. Custom applications use application
IDs in the range 900-999.

For example, the following call to cmnAlarmSDK():

cmnAlarmSDK(LOGGED_ERROR, 7, 1234, "There was a problem");

produces an error message like the one in the following example.

ERROR: {9071234} SDK: There was a problem

Note that alarms generated from custom SDK components are distinguished from product
alarms with the string "SDK".

The severity argument specifies the severity of the error message using one of the following
enumerators: LOGGED_NOTICE, LOGGED_WARNING, LOGGED_ERROR, LOGGED_CRITICAL,
LOGGED_CLEAR.

You must also define alarms in the SMF_ALARM_DEFN table, which is a database table that
describes all the different types of alarms that can be generated by the system and gives
information about the cause and what to do. The SMF_ALARM_DEFN table definition is shown
in Table 2-8:

Table 2-8 SMF_ALARM_DEFN Table Definition

Column Name Data Type Description

ALARM_TYPE_ID NUMBER(9) The unique identifier for the alarm

DEFAULT_EVENT_TYPE NUMBER(2) Default value of EVENT_TYPE
column.

DEFAULT_PROBABLE_CAUSE NUMBER(4) Default value of
PROBABLE_CAUSE column.

DEFAULT_SEVERITY NUMBER(1) Default value of SEVERITY
column.

DEFAULT_SPECIFIC_PROBLEM VARCHAR2(256) Default value of
SPECIFIC_PROBLEM column.

DEFAULT_RECOMMENDED_ACTION VARCHAR2(1000) Default value of
RECOMMENDED_ACTION
column.

DEFAULT_ADDITIONAL_TEXT VARCHAR2(1000) Default value of
ADDITIONAL_TEXT column.

EVENT_TYPE NUMBER(2) Helps categorize the alarm,
allowing quicker identification of
the probable cause and
recommended action.The Event
Type is attached to alarm
instances by the alarm definition
and may be changed as required.

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 10 of 14

Table 2-8 (Cont.) SMF_ALARM_DEFN Table Definition

Column Name Data Type Description

PROBABLE_CAUSE NUMBER(4) Displays the TMN standard
probable causes. It is congruent
with the association between
event type and probable cause
specified in the TMN
recommendations (see ITU-T
M.3100).

SEVERITY NUMBER(1) X.733 EFM severity:

0 (undefined) (only used by
alarm_type_id 0 and -1)

1 Cleared

2 Indeterminate

3 Critical

4 Major

5 Minor

6 Warning

SPECIFIC_PROBLEM VARCHAR2(256) The specific identification of the
fault.

RECOMMENDED_ACTION VARCHAR2(1000) The recommended action to
resolve all instances of this type of
alarm.

ADDITIONAL_TEXT VARCHAR2(1000) Any additional information about
this type of alarm

PRESENT_TO_AM NUMBER(1) Indicates whether or not the alarm
can be viewed in the SMS alarm
management screens (viewable)

PRESENT_TO_AR NUMBER(1) Indicates whether or not the alarm
can be presented to the alarm
relay daemon (relayable)

AUTOCLEAR_PERIOD NUMBER(10) The auto clear period determines
how long (in minutes) an alarm will
be available in the Alarm tab,
before it is automatically cleared
by smsAlarmManager.

REGULAR_EXPRESSION VARCHAR2(512) Regular expression for this alarm,
if any.

NOTES VARCHAR2(1000) Any additional notes about this
type of alarm.

The DEFAULT_... columns are only used when you edit an alarm definition in the screens and
then press the Reset button. This resets the alarm definition back to the original values, as
specified by the DEFAULT_... columns.

You can find additional information about alarms in the Service Management System User's
Guide and the Service Management System Technical Guide.

Recording Statistics
To record statistics in your code, do the following:

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 11 of 14

1. Include the smsStatsSDK.h file in your code.

2. Call the smsRecordStats() function to record statistics for a given event.

The following example illustrates these steps:

#include <smsStatsSDK.h>

someFunction() {
 // Do something
 ...

 // Record the event
 smsRecordStats("APP", "NEW TRANSACTION", 1);

}

The smsRecordStats() function has the following parameters

• application is the name of the application recording the statistics

• measurement is the name of the measurement or statistic to increment

• delta is the increment that is being added to the measurement

You must first define the statistic in the SMS_STATISTICS_DEFN table, which has the columns
described in Table 2-9:

Table 2-9 The SMS_STATISTICS_DEFN Table

Column Name Description

STATISTIC_ID A string that specifies the name for the statistic

APPLICATION_ID The name of the application that generates the statistic

DESCRIPTION A description of the statistic. For example, total calls to feature node
ABC.

PERIOD The measurement period in seconds. This is the interval at which the
measurement will be collected.

COM A short code name for the statistic. For example, sdkCall.

Accessing the Configuration File
The SDK enables you to access and read values from the configuration file, which defaults
to /IN/service_packages/eserv.config.

Configuration is accessed using a Config object, which contains a hierarchical tree of
ConfigValue objects.

The following example shows how to access the configuration file from the command line,
using the Config::standard() function.

#include <cmnConfigSDK.h>

main(int argc, char **argv) {
 cmn::cfg::Config *configFile
 = cmn::cfg::Config::standard(argc, argv);

 std::unique_ptr<cmn::cfg::Value> ourSection;
 try {
 ourSection = std::unique_ptr<cmn::cfg::Value>(

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 12 of 14

 configFile->get("CustomApp.controlAgent"));
 } catch (cmn::cfg::Exception &e) {
 cmnAlarmSDK(LOGGED_ERROR, 0, 1005, "Cannot read config");
 }

 config.serviceKey = ourSection->get("serviceKey", 123);
 cmnAlarmSDK(LOGGED_NOTICE, 0, 1002, "serviceKey = %lld",
 config.serviceKey);

 ...

}

This shows how the configuration file is first read into a Config object using the
Config::standard() function, then individual ConfigValue objects are extracted using the
get(path) function.

For the discussion below, assume a sample section in the configuration file as follows:

customApp = {
 serviceKey = 123

 plugins = [
 "library1"
 "library2"
 "library3"
]

 controlAgent = {
 timeout = 10
 serviceKey = 45
 }
}

Once this configuration file has been read, elements of the configuration can be retrieved using
the get() function, for example:

ConfigValue &controlAgent = config.get("customApp.controlAgent");

It is possible that the requested setting is not configured in the eserv.config file, in which case
an exception will be thrown, which the code should take into account, for example:

try {
 ConfigValue &controlAgent = config.get("customApp.controlAgent");
 } catch (cmn::cfg::NotFound &e) {
 cmnAlarmSDK(LOGGED_ERROR, 0, 1001, "No customApp.controlAgent configuration
section");
 return false;
 }

Each ConfigValue is either a single configuration setting in the eserv.config file, such as the
following example:

serviceKey = 123

or an array of values like this one:

plugins = [
 "library1"
 "library2"
 "library3"
]

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 13 of 14

or a map, such as the one in this example:

controlAgent = {
 timeout = 10
 serviceKey = 45
}

An array of values is represented as a cmn::cfg::ArrayValue. Each of the elements of the array
can be accessed using the [] operator, for example:

ConfigValue &firstPlugin = plugins[0];

A map of values is represented as a cmn::cfg::MapValue. Each of the elements in the map can
be accessed using the [] operator, for example:

ConfigValue &timeout = controlAgent["timeout"];

The get() function can also be used to select a particular setting from a map.

Once a ConfigValue has been retrieved, it needs to be converted to the expected type using
the to<Type>() functions. Because the operator may have configured a configuration setting to
be the wrong type, it is possible that an exception will be thrown when doing this conversion,
so the code needs to take this into account, as shown in the following example:

 try {
 int timeoutValue = timeout.toInt();
 } catch (cmn::cfg::WrongType &e) {
 cmnAlarmSDK(LOGGED_ERROR, 0, 1002, "The customApp.controlAgent.timeout setting is
not an integer");
 return false;
 }

If a configuration setting has a default value, it is not necessary to check for its presence or to
specify the conversion explicitly, for example:

int timeoutValue = controlAgent.get("timeout", 10);

Note that a WrongType exception will still be thrown if the setting has been configured with a
value of the wrong type.

Chapter 2
Using Debugging, Alarms, Statistics, and Configuration

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 14 of 14

3
Creating Service Loaders

This chapter describes how to create a custom service loader using the Oracle
Communications Network Charging and Control (NCC) Software Development Kit (SDK).

About Service Loaders
A service loader, which physically is a shared library that is loaded by slee_acs, is the part of
Advanced Control Services (ACS) that is responsible for initializing the right service for a call
and loading its control plan, profiles, and so on, if they are required. A service loader, however,
is not required to run a control plan; it can perform all of the service control logic itself.

A service loader also acts as a mediation layer between the inbound SLEE interface and the
service. The service loader also performs the final manipulation of data that is returned to the
network interface when a triggering interface sends back a network event.

NCC includes the following set of system service loaders that cannot be modified:

• Advanced Control Services (ACS)

Allows service providers to define enhanced call interaction and is able to provide a variety
of common call routing services. For more information, see Advanced Control Services
Technical Guide.

• Virtual Private Network (VPN)

Provides a virtual private network with user interfaces on industry-standard platforms. For
more information, see Virtual Private Network Technical Guide.

• Charging Control Services (CCS)

A pre-paid and post-paid service that allows customers greater flexibility and control over
their billing methods and furnishes customers with an adaptable range of services. For
more information, see Charging Control Services Technical Guide.

• Messaging Manager Service (XMS)

A service library that specializes in handling short messages.

• Subscriber Event Service (SES)

Enables service providers to send text messages to roaming subscribers when they roam
in and out of their networks. For more information, see the Subscriber Event Service
User's and Technical Guide.

Although you cannot modify these system service loaders, you can extend their functionality by
defining custom service loader extenders. A service loader extender extends an existing
product-based service loader by supplying one or more functions that are called after those in
the product-based service loader.

Furthermore, you can create your own custom service loaders to manipulate information
contained within the InitialDP according to your specific requirements, or to load a control plan
according to your own business rules.

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 10

The InitialDP is the Intelligent Networking Application Part (INAP) request that a control agent,
or external network element, sends to slee_acs to trigger processing for a new session or
event, such as a voice call, data session, or SMS message.

Creating a Custom Service Loader
Service loaders are dynamically loaded libraries that are configured into a slee_acs instance at
execution time. Use the SLEE configuration to steer a network originated session towards the
service loader that has been written to deal with that network trigger.

Follow these steps to create a new service loader for slee_acs:

1. Determine the service key values in InitialDPs that will trigger the service loader. These
values can come either directly from the network by way of the TCAP interface or through
a control agent.

2. Configure the service key values within the SLEE configuration file in /IN/
service_packages/SLEE/etc/SLEE.cfg.

Note that comments at the beginning of the SLEE.cfg file describe how to configure its
entries.

3. Assign service key values to a new service name within the SLEE configuration:

The following line in SLEE.cfg, for example, maps service key 70 to a service called
SDK_SERVICE:

SERVICEKEY=INTEGER 70 SDK_SERVICE

4. Map the service name to the name of a specific slee_acs application name that will have
the new service loader configured to link with it. For example, the following line specifies
that the SDK_SERVICE is handled by the slee_acs application.

SERVICE=SDK_SERVICE 1 slee_acs SDK_SERVICE

5. Map the service name to the name of the service loader's shared library in the file /IN/
service_packages/eserv.config, which allows you to specify multiple functions to call.

Note

You can also use the legacy method of mapping the service name to the service
loader's shared library in the /IN/service_packages/ACS/etc/acs.conf file. This
method is still supported but it does not allow you to specify multiple functions to
call.

6. From the shell that is executing the slee_acs instance, enter the following command to set
the LD_LIBRARY_PATH environment variable:

LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/IN/service_packages/SLEE/lib:/IN/
service_packages/ACS/lib:directory
export LD_LIBRARY_PATH

where directory is the directory where the custom service loader library has been installed.

7. Develop a shared library that includes the appropriate function entry points.

The following sections describe the functions that you can implement within a custom service
loader. The ACS chassis invokes these functions at appropriate times during initialization and

Chapter 3
Creating a Custom Service Loader

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 10

during the call flow. The subsections within each entry point function represent the processing
steps that the service loader can perform at that point.

You can implement the following functions within your custom service loader for the ACS
chassis to invoke:

• acsChassisInitSL()

• acsChassisLoadService()

• acsChassisPreCTR()

• acsChassisPreETC()

• acsChassisPrePOR()

• acsChassisCallTerminated()

acsChassisInitSL()
The ACS chassis invokes acsChassisInitSL() when it loads the shared library at startup time.
You can use this function to initialize global variables and read configuration tables and files.

In the following example, the acsChassisInitSL() function simply displays a message, indicating
the function has been called, and returns a value of true:

extern "C" u_int32 acsChassisInitSL() {
 DOUT << "sdkService: acsChassisInitSL(): Initial method called by service load
er" << std::endl;

 return true;
}

acsChassisLoadService()
The ACS chassis invokes the acsChassisLoadService() function at the beginning of a new
session, call, or event, that the network starts. You can use this function to perform the
following tasks in your service loader:

• Perform processing that is specific to the service name, which is set in the SLEE
configuration.

For an example of the acsChassisLoadService() function, see the
file, $NCC_SDK_HOME/example/sdkServiceLoader/example1/
sdkServiceExample1.cc

• Normalize numbers.

The numbers that you receive from the network interface, contained within the InitialDP,
are not normalized; they are identified by a Nature of Address (NoA) field and a digits field.
During control plan processing, numbers are normalized; only the digits are used so these
must contain sufficient information to fully identify the number. Usually this will be an E.164
number, which is generally an international telephone number.

Normalization and denormalization rules can be configured per service name within the
ACS configuration file. For information on configuring these rules, see the Advanced
Control Services Technical Guide.

The following example shows how to extract a number and normalize it:

char inCalled[DNODE_TN_MAX_SIZE];
char outCalled[DNODE_TN_MAX_SIZE];
u_int16 inNoA, outNoA;

Chapter 3
Creating a Custom Service Loader

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 10

ctd_getDigits(callInfo, ctd_called_num, inCalled);
inNoA = ctd_getNoA(callInfo, ctd_called_num);
if (acsNOANormalise(inNoA, inCalled, &outNoA, outCalled, DNODE_TN_MAX_SIZE)) {
 // Store the normalised number in the Normalised Called Number buffer
 ctd_setDigits(callInfo, ctd_normCalled_num, outCalled);
 ctd_setNoA(callInfo, ctd_normCalled_num, outNoA);
} else {
 cmnAlarmSDK(LOGGED_ERROR, 0, 2002, "Unable to normalise called number");
}

You must decide which number fields your service will normalize and use the same
principle for each one, or omit normalization altogether.

• Set up service-specific data.

Depending on the operation, you might want to store service-specific data in an ACS
memory area and access it later when this or another service loader is invoked again.

Follow these steps to store service-specific data in an ACS memory area:

1. Define a service-specific structure. The following code provides an example:

class CommonServiceData : public ncc::slee::ServiceDataAPI {
public:
 CommonServiceData();

 u_int32 status1;
 u_int32 status2;
 char data[100];
};

2. Call the storeServiceDataAPI() function to register an instance of the object as shown
here:

CommonServiceData *commonData = new CommonServiceData;
ncc::slee::storeServiceDataAPI(commonData);

3. Update the object as required. The following code provides an example:

customSLInfo->status1 = 1;
customSLInfo->status2 = 2;
strncpy(customSLInfo->data, “demo", 4);

See the acsChassisPrePOR() function for an example of retrieving the service-specific
data using retrieveServiceDataAPI().

• Check whether an emergency number is being dialed.

Use the acsChassisIsEmergencyNumber() function to check whether a dialed number is
an emergency number, as shown in the following example:

char toCheckForEN[DNODE_TN_MAX_SIZE];
ctd_getDigits(callInfo, ctd_called_num, toCheckForEN);
if (acsChassisIsEmergencyNumber(toCheckForEN)) {
 // Handle emergency number
}

• Extract values from extension fields in the InitialDP.

In some cases, you need to extract the extension parameters from the extension field of
the InitialDP to use in subsequent processing or to store for later use by another
component, such as a feature node. You can use the acsChassisGetGenericExtension()
function to retrieve the value of a given extension field from the InitialDP.

For an example of the acsChassisGetGenericExtension() function, see the file
sdkServiceExample1.cc in the following location:

Chapter 3
Creating a Custom Service Loader

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 10

$NCC_SDK_HOME/example/sdkServiceLoader/example1

• Set up profile fields that feature nodes can use or share.

A profile is an area of memory used to store data that is derived or retrieved by a service
loader.

ACS provides temporary storage that you can use in a custom service loader to store
information for use in a control plan.You can use ACS temporary-storage profile blocks to
store in memory the subscriber information, or any other information, that you retrieve from
the database.

The sample code below shows how to set up such a profile block:

setProfileField(0x09040101, myString);
setProfileField(0x09040102, myInteger);
setProfileField(0x09040103, (const void*)&myCustomData, sizeof(myCustomData));

You must allocate profile tags for custom applications as hexadecimal numbers in the
range 0x0aaa0000 to 0x0aaaFFFF where aaa is the hexadecimal representation of the
application ID. You can choose custom application IDs from the range 900 - 999, which is
0x384 - 0x3E7 in hexadecimal.

For more information, see the setProfileField() function in the acsChassisProfileSDK.h
file in the API reference documentation.

Note

The primary database for profiles is only updated at session end and not in mid-
session. This is a built-in performance feature. Therefore, if you update a tag
within the control plan, be aware that the tag will not be updated and replicated in
the database in mid-session.

You must determine the profile tag, which is the first parameter passed to setProfileField(),
and it must not conflict with any other profile tags that you need to create. Oracle
recommends that you define the profile tag within a header file that is available to both the
custom service loader and any custom feature node that might need to retrieve the data
from the profile. You also need to configure these profile tags in the ACS configuration
screens to make them available to control plans.

• Load the control plan based on name.

The acsGetControlPlan() function allows you to load a control plan to be run by ACS. For
example:

std::string controlPlanName = "MyControlPlan";
if (not acsGetControlPlan(controlPlanName.c_str(), dbData, callInfo)) {
 // Set some release cause chosen to indicate "no control plan"
 con_setReleaseCause(outData, 1);
 return RELEASE;
}

acsChassisPreCTR() and acsChassisPreETC()
The acsChassisPreCTR() function enables you to control FurnishChargingInformation (FCI)
and SendChargingInformation (SCI) that is sent with outbound Connect To Resource (CTR) or
ReleaseCall operations. The acsChassisPreETC() function enables you to control
FurnishChargingInformation and SendChargingInformation that is sent with outbound
EstablishTemporaryConnect (ETC) operations.

Chapter 3
Creating a Custom Service Loader

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 5 of 10

FurnishChargingInformation and SendChargingInformation are INAP operations that you can
send from the SLC to the service switching point (SSP). You define the content of the data
depending on the customer's requirements. It is defined as an operator-specific octet string.

The FurnishChargingInformation operation allows you to control call data records that the SSP
produces. One example could be a customer who has a custom service loader that requires
adding a list of played announcements and the number of connection attempts made to the
AMA record that the SSP produces.

The SendChargingInformation operation mainly influences how much the SSP charges, if the
SSP is doing the charging. For example, for a customer who has a friends and family service,
SLC responds to the InitialDP operation for a normal call with Continue, but for a friends and
family call, it responds with SendChargingInformation.

You can also call the acsChassisPrePOR() function to send FCI and SCI. See
"acsChassisPrePOR()" for more information.

acsChassisPreCTR()
The acsChassisPreCTR() function is defined in the service-loader.h file and allows you to
specify the FCI contents in the outgoingCallInfo_t structure.

The function is called by slee_acs in the following way before sending CTR operations:

1. The slee_acs process calls acsChassisPreCTR() when it needs to send a Connect or
ReleaseCall operation.

2. The acsChassisPreCTR() function calls one or both of the following sets of functions:

• The con_setDoWeFCI() and con_setFCI() functions to specify FCI contents

• The con_setDoWeSCI() and con_setSCI() functions to specify SCI contents

3. When the acsChassisPreCTR() function returns, the slee_acs process sends either the
FCI or SCI operation or both. Then slee_acs sends the CTR operation.

You declare the acsChassisPreCTR() function in the following way:

extern "C" void acsChassisPreCTR (
 callTelephonyData_t *callInfo,
 outgoingCallInfo_t *outData,
 acsEngineContext *engineFields);

The parameters have the following definitions:

• The callInfo parameter stores chassis information about the call, which is derived from the
IDP. The callinfo parameter is a pointer to an instance of the callTelephonyData_t class.
You can obtain access to this information through the callTelephonyData_t getter and
setter functions.

• The outData parameter sets the information to return to the network. The outData
parameter is a pointer to an instance of the outgoingCallInfo_t class. You can obtain
access to this information through the outgoingCallInfo_t getter and setter functions.

• The engineFields parameter stores information about the state of an individual call while it
is being processed by the engine.

acsChassisPreETC()
The acsChassisPreETC() function is defined in the service-loader.h file and allows you to
specify the FCI contents in the outgoingCallInfo_t structure.

Chapter 3
Creating a Custom Service Loader

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 6 of 10

The function is called by slee_acs in the following way before sending ETC operations:

1. The slee_acs process calls acsChassisPreETC() when it needs to send an
EstablishTemporaryConnect operation.

2. The acsChassisPreETC() function calls one or both of the following sets of functions:

• The con_setDoWeFCI() and con_setFCI() functions to specify FCI contents

• The con_setDoWeSCI() and con_setSCI() functions to specify SCI contents

3. When the acsChassisPreETC() function returns, the slee_acs process sends either the
FCI or SCI operation or both. Then slee_acs sends the ETC operation.

You declare the acsChassisPreETC() function in the following way:

extern "C" void acsChassisPreETC (
 callTelephonyData_t *callInfo,
 outgoingCallInfo_t *outData,
 acsEngineContext *engineFields);

The parameters have the following definitions:

• The callInfo parameter stores chassis information about the call, which is derived from the
IDP. The callinfo parameter is a pointer to an instance of the callTelephonyData_t class.
You can obtain access to this information through the callTelephonyData_t getter and
setter functions.

• The outData parameter sets the information to return to the network. The outData
parameter is a pointer to an instance of the outgoingCallInfo_t class. You can obtain
access to this information through the outgoingCallInfo_t getter and setter functions.

• The engineFields parameter stores information about the state of an individual call while it
is being processed by the engine.

acsChassisPrePOR()
The prePOR part of this function's name stands for pre-point-of-return, indicating that it allows
the service loader to do something at the last minute, such as denormalize a number, or add
an additional bit of information to the outgoing message or event.

ACS calls acsChassisPrePOR() when a feature node within the control plan requests a specific
network action or when acsChassisLoadService() returns a response that causes a specific
network action.

You can use the con_getPORToAttempt(outData) function to see which type of INAP/TCAP
action the feature node sends to the network.

You can override the control plan request by setting the acsChassisPrePOR() function's return
value. See acsPrePostProcessingReturn_t in the acsServiceEntryAccessSDK.h file in the SDK
API reference documentation for possible return values.

For an example of the acsChassisPrePOR() function, see the file $NCC_SDK_HOME/
example/sdkServiceLoader/example1/sdkServiceExample1.cc.

The following sections describe some of the tasks that you might perform in the
acsChassisPrePOR() function.

Denormalization
If a CONNECT request is to be sent back to the network, it is standard practice to first
denormalize the numbers in the operation. This does not have to be done if other feature

Chapter 3
Creating a Custom Service Loader

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 7 of 10

nodes have previously denormalized the numbers or if the service loader performs service-
specific processing on the numbers.

Denormalization is usually required because the ACS control plan engine expects numbers in
normalized form, but INAP operations expect numbers in denormalized form; that is, NoA and
digits. Typically, a normalized number would be in the full E.164 international format while a
denormalized number might be in the form it's used within an area code. For example,
447880555555 would be the normalized format of a United Kingdom phone number, while an
NoA value of 2 (unknown) and the digits 07880555555 could be the denormalized version of
the number.

You can denormalize numbers by using functions on the outData argument that
acsChassisPrePOR() receives, as seen in the following example:

// Denormalise Destination Routing Address
 char inDRA[DNODE_TN_MAX_SIZE];
 char outDRA[DNODE_TN_MAX_SIZE];
 u_int16 outNoA;
 con_getDigits(outData, con_normDRA_num, inDRA);
 acsNOADenormalise(acsNOANotApplicable(),
 inDRA,
 &outNoA,
 outDRA,
 DNODE_TN_MAX_SIZE);
 con_setDigits(outData, con_DRA_num, outDRA);
 if (outNoA != acsNOANotApplicable()) {
 con_setNoA(outData, con_DRA_num, outNoA);
 }

Setting up Service-Specific Data
In the acsChassisPrePOR() function you can also examine or access data that was previously
set up by the acsChassisLoadService() function. Likely you will access rather than store
service-specific data because you will most likely populate a custom field or extension in the
outgoing request based on data that you have already set up.

The following code shows how to examine and modify data using the service-specific type
CommonServiceData as shown in the acsChassisLoadService() example. The code sets the
somefield element, which commonData points to, to a value of 99.

CommonServiceData *commonData =
 dynamic_cast<CommonServiceData*>(ncc::slee::retrieveServiceDataAPI());
if (commonData) {
 commonData->someField = 99;
}

Setting up Extension Information
Typically, the information you populate an extension with corresponds with information you got
from service-specific data, or from temporary storage or profile tags that the service loader or a
feature node previously populated.

For some network interfaces, the service loader can use the extension field that is sent as part
of the INAP or TCAP CONNECT operation to transport information that the interface can use
to govern functionality or to send information back to the network in a protocol-specific form.
Similar to retrieving information within the InitialDP, to use this functionality, you must know the
tag values and types that the interface uses. You can obtain these tag values and types in the
acsChassisLoadService() function.

Chapter 3
Creating a Custom Service Loader

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 8 of 10

The following example sets up an extension field to contain a string value of "50" for a
parameter with the tag value of 100.

// Find an empty extension
for (int32 j = 0; j != MAX_OUTGOING_EXTENSIONS; ++j) {
 int bLength = 2048;
 unsigned char buffer[bLength];
 unsigned int tag = 0;
 if (acsChassisGetGenericExtension(outData, j, tag, buffer, bLength)) {
 if (tag == 0) {
 // ... and write the new extension to it
 acsChassisSetGenericExtension(outData, j, 100, "50");
 }
 }
}

General Setup of Outgoing Information
You can set up the cause of a release operation by calling the con_setReleaseCause()
function.

You can setup the destination routing address for a CONNECT operation by using the
con_setDigits() and con_setNoA() functions as shown in the following example:

con_setDigits(outData, con_normDRA_num, "12345678");
con_setNoA(outData, con_normDRA_num, 3);

You can set up cut-and-paste parameters using the con_setCutAndPasteFlag() and
con_setCutAndPasteNumDigits() functions.

Sending FurnishChargingInformation or SendChargingInformation
You can call the con_setDoWeFCI() and con_setFCI() functions to specify
FurnishChargingInformation or call the con_setDoWeSCI() and con_setSCI() functions to
specify SendChargingInformation contents. If so, the FurnishChargingInformation or
SendChargingInformation, or both, is sent before the Connect operation.

Note

To have the functions send an FCI, you must also set the sendFciWithReleaseCall
parameter to 1 in the acs.conf file. For more information, see Advanced Control
Services Technical Guide.

See "acsChassisPreCTR() and acsChassisPreETC()" for more information on
FurnishChargingInformation and SendChargingInformation.

acsChassisCallTerminated()
You can call acsChassisCallTerminated() from within a service loader to perform post-call
cleanup when a call has been terminated.

Any service-specific data that was created within the acsChassisLoadService() function is
available for you to use, for example, to generate a custom Event Detail Record.

For an example of the acsChassisCallTerminated() function, see the following file:

Chapter 3
Creating a Custom Service Loader

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 9 of 10

$NCC_SDK_HOME/example/sdkServiceLoader/example1/sdkServiceExample1.cc

Defining a Custom Service Loader Extender
You can use the example service loaders as service loader extenders by configuring a service
as follows in the eserv.config file:

ACS = {
 ServiceEntries = [
 {
 AddressSources = { }
 MinSleeEventSize = 2048
 ServiceName = "SDK_SERVICE"
 Methods = {
 acsChassisCallTerminated = [
 "libsdkServiceExample1.so"
]
 acsChassisPrePOR = [
 "libsdkServiceExample1.so"
]
 acsChassisInitSL = [
 "ccsSvcLibrary.so"
 "libsdkServiceExample1.so"
]
 acsChassisLoadService = [
 "ccsSvcLibrary.so"
 "libsdkServiceExample1.so"
]
 }
 }
]
}

These entries cause ACS to do the following:

• Run the standard CCS service loader's acsChassisLoadService() function, which does the
standard CCS product processing, such as looking up a subscriber, loading the subscriber
profile, determining a control plan, and so on

• Run the example service loader's acsChassisLoadService() function, which gets some
extension information out of the received InitialDP and then overrides the control plan

The example service loader, libsdkServiceExample1.so, is available in the SDK in
the $NCC_SDK_HOME/lib directory.

Chapter 3
Defining a Custom Service Loader Extender

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 10 of 10

4
Creating a Custom Feature Node

This chapter describes how to create custom feature nodes using the Oracle Communications
Network Charging and Control (NCC) Software Development Kit (SDK).

About Feature Nodes
A feature node represents a unit of functional logic that you can include within an NCC control
plan to implement a portion of the plan's overall logic flow.

The Advanced Control Services (ACS) component of NCC includes a set of default feature
nodes that you can access to build a control plan within the NCC Control Plan Editor.

Other NCC components such as Prepaid Charging, Messaging Manager, and Number
Manager also include feature nodes that you use to perform specific operations. These
operations include charging for a data session, sending an SMS or USSD message, and
performing a database lookup, for example.

The following are some NCC components that include feature nodes. You cannot modify these
system feature nodes, but you can use them to build a control plan:

• Subscriber Event Service (SES) enables service providers, or network operators, to send
text messages to roaming subscribers when they roam in or out of their network.

• Data Access Pack (DAP) provides the ability to send requests to external application
service providers (ASPs) and receive responses for further processing by the Service
Logic Controller.

• Open Services Development (OSD) enables NCC to provide control plans as a web
service. NCC supports generation of WSDL (web services description language) files
automatically based on control plans. NCC provides the WSDL to third parties such that
the third party platform knows how to generate and invoke a web services operation and,
consequently, a control plan on the NCC system.

• Advanced Control Services (ACS) allows service providers to define enhanced call
interaction that is triggered when one or more of the following calls occur:

– Calls to specific dialed numbers (Service Numbers)

– Calls from specific calling numbers (CLI numbers)

– All calls triggered to a specified INAP service key

• Virtual Private Network (VPN) connects multiple locations with each network having its
own private numbering plan or mapping numbers in the private plan to the numbers
required to correctly route the call via the public switched telephone network (PSTN) or
mobile network. Additional processing can be done to further add value to the service

• Charging Control Services (CCS), which handles online charging

• Messaging Manager (XMS)

• Location Capability Pack (LCP), which provides location services that identify where the
mobile subscriber is

• Unstructured Supplementary Services Gateway (USSD GW), which is a control agent that
handles a mobile-initiated USSD conversation. For example, when a mobile subscriber

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 10

enters *200# on the phone and receives a menu and then enters a number to select a
menu option, the USSD Gateway handles this interaction. It sends INAP requests to
slee_acs to trigger control plan processing, which defines the service logic.

You can also create a custom feature node to implement functional logic that is specific to your
business requirements.

About Creating Custom Feature Nodes
The process of creating a custom feature node consists of the following steps:

1. Defining the feature node and loading the definition into database tables.

2. Adding it to an ACS feature node set.

3. Creating the shared library.

4. Specifying the location of the shared library.

5. Creating the feature node image files.

Defining a Feature Node
Before you can use a feature node within the Control Plan Editor, you must first define it and
the parameters and functional branches that it offers.

You define your feature node in an XML file and load the definitions into the Service
Management System (SMS) database by running the acsMacroNodeInstaller utility.

Creating a Feature Node Definition
To define a feature node you create an XML file using the XML elements that Table 4-1
describes:

Table 4-1 Feature Node Definition Elements

XML Element Description

<MacroNodeDefinitions> The top-level element that contains all other elements.

<Nodes> Contains a <Node> element for each feature node you want to
define.

<Node> Contains the elements that define a specific feature node.

<Name> Specify a unique name for the feature node, which is stored
internally.

<FastKey> Specify the three character fast key identifier associated with this
node

<DefaultNodeName> Optional. Specify a default name for the node, such as an
abbreviated version of the value for <Name>. Defaults to the value of
the <Name> element, if not specified.

<DisplayName> Specify a user-friendly name, which can include spaces, that is
displayed in the Control Panel Editor in the Advanced Control
Services UI.

<Permission> The permission level required for a user to use this feature node.
Users and their permission levels are defined on the Users tab of
the ACS Customer screen in the ACS UI.

Chapter 4
About Creating Custom Feature Nodes

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 10

Table 4-1 (Cont.) Feature Node Definition Elements

XML Element Description

<Description> A description of the feature node

<Group> The name of the feature palette to which the feature node belongs.
The feature palette is the area of the Control Plan Editor in the ACS
UI that displays the feature node sets that are available to the user.

<NodeVersion> Numeric version number, which allows multiple versions to be
supported. For example, if you add a parameter to the feature node
and assign the node version number 2, the code should check the
version number and substitute a default value for the new parameter
if it's an old version of the node.

<UsesTelephony> Specifies whether the node does any telephony operations. More
accurately, it specifies whether it requires that the main dialog is still
active. Value can be true or false and is case sensitive. Defaults to
false.

The Control Plan Editor imposes the rule that you cannot connect an
exit branch with TelephonyAllowed=false to a subsequent feature
node that has UsesTelephony=true.

<Parameters> Contains the <Parameter> elements for each parameter you want to
define.

<Parameter> Contains the <Name>, <Group>, <Type>, and <DefaultData>
elements that define a specific parameter.

<Name> The label attached to the parameter in the node GUI

<Group> The label or name of the parameter group in the GUI to which this
parameter belongs

<Type> Values: radiobutton; table; checkbox; integerfield; stringfield;
profilefield.

<DefaultData> The default data to assign to the parameter, if none is specified.

<ExitBranch> Contains the <Name> and <TelephonyAllowed> elements that define
a specific exit branch for the feature node.

<Name> Name of the exit branch.

<TelephonyAllowed> Specifies whether the next feature node called can be one that
performs a telephony action. A value of true allows a telephony
action; false does not. The Control Plan Editor does not allow you to
follow a "no telephony" exit branch with a node that implements a
telephony action. For example, if you add a branch that indicates the
caller has hung up, you would specify false for TelephonyAllowed.
After that, you can't use a node that performs telephony because the
call has ended, but you can still use nodes to complete the charging
or send a notification.

Example: Feature Node Definition File
The following statements define a feature node named ExampleAttemptTerminate:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE MacroNodeDefinitions SYSTEM "nodeschema.dtd"[]>

<MacroNodeDefinitions>
<Nodes>
 <Node>

Chapter 4
Defining a Feature Node

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 10

 <Name>ExampleAttemptTerminate</Name>
 <FastKey>EAT</FastKey>
 <DefaultNodeName>ExampleAT</DefaultNodeName>
 <DisplayName>Example Attempt Terminate</DisplayName>
 <Permission>1</Permission>
 <Description>Attempt to terminate call to either dialled number or configured
parameter</Description>
 <Group>Example</Group>
 <NodeVersion>1</NodeVersion>
 <Parameters>
 <Parameter>
 <Name>Number</Name>
 <Group>Number</Group>
 <Type>stringfield</Type>
 <DefaultData></DefaultData>
 </Parameter>
 </Parameters>
 <ExitBranches>
 <ExitBranch><Name>Success</Name><TelephonyAllowed>false</TelephonyAllowed></
ExitBranch>
 <ExitBranch><Name>Busy</Name><TelephonyAllowed>true</TelephonyAllowed></ExitBranch>
 <ExitBranch><Name>RouteSelectFailure</Name><TelephonyAllowed>true</
TelephonyAllowed></ExitBranch>
 <ExitBranch><Name>Abort</Name><TelephonyAllowed>false</TelephonyAllowed></
ExitBranch>
 <ExitBranch><Name>Abandoned</Name><TelephonyAllowed>false</TelephonyAllowed></
ExitBranch>
 <ExitBranch><Name>NoAnswer</Name><TelephonyAllowed>true</TelephonyAllowed>
 </ExitBranch>
 <ExitBranch><Name>DisconnectLeg1</Name><TelephonyAllowed>false</TelephonyAllowed>
</ExitBranch>
 <ExitBranch><Name>DisconnectLeg2</Name><TelephonyAllowed>false</TelephonyAllowed></
ExitBranch>
 <ExitBranch><Name>Error</Name><TelephonyAllowed>false</TelephonyAllowed></
ExitBranch>
 </ExitBranches>
 </Node>

Loading Feature Node Definitions
You load feature node definitions into the database by running the acsMacroNodeInstaller
utility. The acsMacroNodeInstaller command-line utility reads a set of feature node definition
parameters from the XML file that you created and loads the definitions into the SMS
database.

The utility can create and delete feature node definitions, and update the definitions of existing
feature nodes.

Run the acsMacroNodeInstaller utility by using the following syntax:

acsMacroNodeInstaller {-install | -update | -uninstall}
 [-D destination_file] [-v] [-h | ?] XML_file

Where:

• -install installs the feature nodes defined in the XML file

• -update updates the feature nodes defined in the XML file

• -uninstall uninstalls the feature nodes defined in the XML file

• -D destination_file is the path and name of the debug file; for SQL only

Chapter 4
Defining a Feature Node

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 10

• -v verbose mode

• -h or ? shows help for this command

• XML_file is the path and name of the XML feature node definition file that you created.

Adding the Feature Node to a Feature Set
For the procedure to add a feature node to a feature set, see the discussion on ACS
configuration in Advanced Control Services User's Guide. Only the ACS system administrator
can access the ACS Feature Sets screen.

Creating the Shared Library
You implement the logic of the custom feature node in a C++ shared library. The logic of the
feature node is implemented within a framework that enforces certain predictable interactions
with ACS and the Control Plan Editor. This framework is constructed through the use of
particular API functions. From a functional standpoint, the framework consists of the following
tasks:

• Initialization, in which the shared library registers any nodes that can be called within it

• Processing, which is managed through the implementation of a processor function that is
of type acsEngineFNProcessor.

This function can be called multiple times during control plan processing. The multiple
entries are typically handled by implementing what's called a state machine. A state
machine is an abstract model in which a computer program records its current state as an
integer and later uses the value of the integer to branch to a particular function to perform
the processing that's required at that point. For an example of this type of processing, see
"Tracking the State".

• Exit branches

A feature node normally exits through one of its branches so the next node in the control
plan can begin executing.

Initialization
All feature nodes must be part of a shared library that is configured to be loaded by slee_acs.
Initialization occurs when slee_acs starts up and calls the shared library's
sharedLibraryInit() function, which you implement to register the feature nodes that the
shared library contains. You register a feature node by calling the acsEngineRegisterFNType()
function. This function has two parameters, the first identifies the node being registered by its
fast key value, and the second specifies the name of the callback function that is the node's
entry point when it's invoked by the control plan and also when a requested action has been
completed.

If the node uses a node context, you must call the acsEngineRegisterFNTypeSize() function
to register its size. For more information about a node context, see "Using the Node Context
Block".

The following example, which you can find in the API reference documentation
(see $NCC_SDK_HOME/doc/html/index.html) implements the sharedLibraryInit()
function, which registers a feature node that has a fast key value of _NOD and a callback
function named processFunction(). Note that the underscore prefix for the fast key is
required. The sharedLibraryInit() function also calls acsEngineRegisterFNTypeSize()to
register the size of the node context. The registration functions are called inside if statements

Chapter 4
Adding the Feature Node to a Feature Set

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 5 of 10

to determine whether registration occurred successfully. The sharedLibraryInit() function
returns a value of 1 on successful completion. Otherwise, it returns 0

extern "C" u_int32 sharedLibraryInit() {
 // Register first node
 if (not acsEngineRegisterFNType(acsEngineFastKey("_NOD"), processFunction)) {
 return 0;
 }
 // Register the node's context data size
 if (not acsEngineRegisterFNTypeSize(acsEngineFastKey("_NOD"), sizeof(NodeContext))) {
 return 0;
 }

 // Register other nodes
 // ...

 return 1;
}

Processing
The callback function that a feature node registers against its fast key value must be of type
acsEngineFNProcessor. The ACS engine calls this function each time it determines that the
feature node has processing to perform. The following steps summarize a typical interaction
between the ACS engine and the feature node's callback function:

1. The ACS engine enters the node for the first time, calling the node's processing function.

2. The node requires an external action, sets up the action, and returns from the processing
function with the ACS_ENGINE_MACRO_STAY_HERE result.

3. The ACS chassis runs the action and passes control back to the node by calling the
process function again with the result of the action.

4. The node continues processing, performing more actions in the same way until it finishes
processing.

5. The node specifies an exit branch and returns ACS_ENGINE_MACRO_FOLLOW_BRANCH.

Note

As slee_acs processes only one call at a time, all other calls must wait while a node's
process() function is running. You must ensure, therefore, that you do not perform any
blocking actions or excessive calculations that would unnecessarily delay returning
execution to the ACS engine. Instead, you should perform such processing by
invoking a chassis action. For more information, see "Making a Chassis Action
Request".

Tracking the State
During interaction with the ACS engine, the feature node must keep track of its current state.
You can accomplish this by implementing a state machine, which is a mechanism that stores
the state of an operation at a particular point in time in an event-driven workflow.

To implement a state machine, use the acsEngineContext structure, defined in
acsEngineSDK.h, to store the node's current state. Use aec_setNodeState() and
aec_getNodeState()to access the state.

Chapter 4
Creating the Shared Library

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 6 of 10

The following example illustrates how the main processing callback function can access
acsEngineContext to determine the node's current state.

// State functions
acsEngineFNProcessor nodeProcessStep1;
acsEngineFNProcessor nodeProcessStep2;
acsEngineFNProcessor nodeProcessStep3;

acsEngineFNProcessor *nodeStateFunctions [] = {
 nodeProcessStep1,
 nodeProcessStep2,
 nodeProcessStep3
};

u_int32 mainNodeProcessFunction(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 // Lookup and call the function appropriate to the current state
 return nodeStateFunctions[aec_getNodeState(context)](context,
 result,
 action,
 nodeContext,
 branch);
}

Here the return statement looks up the function appropriate to the current state in the
nodeStateFunctions array. The return statement could also be divided into three separate
statements as shown in the following example:

acsEngineFNProcessor *stateFn = nodeStateFunctions[aec_getNodeState(context)];
u_int32 processResult = (*stateFn)(context, result, action, nodeContext, branch);
return processResult;

The following example shows the type of processing that would be done by one of the
functions that's called by the main processing callback function.

u_int32 nodeProcessStep1(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 // Do some processing and set up an external action
 // ...

 aec_setNodeState(context, acsEngineState2);
 return ACS_ENGINE_MACRO_STAY_HERE;
}

The last two lines here set the next processing state and return a result that indicates that a
chassis action is required. The processing state determines which function will be called when
control is returned to the node after the external action.

Making a Chassis Action Request
When a feature node performs an external action, it requests it from the ACS Chassis and
suspends execution until the Chassis returns the result. Table 4-2 lists the actions that a node
can request from the Chassis and also lists the files where the actions are defined:

Chapter 4
Creating the Shared Library

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 7 of 10

Table 4-2 ACS Chassis Actions

Actions Files

Charging acsActionsSDK.hh

Telephony acsChassisActionSDK.h for requests

acsChassisStatusSDK.h for responses

Notification acsNotificationProcessorSDK.h

Replication acsChassisActionSDK.h

Call-out GenericSendActionHandlerSDK.h

To invoke an action, the node sets up the request in the argument of the action's function and
returns a value of ACS_ENGINE_MACRO_STAY_HERE.

The Chassis runs the requested action and then calls the node's callback function with the
result.

For example, the node might want to request a retrieve-profile action and then move to the
next state to receive the result. In the following example, the code stores the state that it has
reached and then returns control to the part of ACS that called the process function. Once ACS
completes the chassis action, it calls the node's main process function again, which looks at
the current state to determine which function among nodeStateFunctions to call.

// ...

 doRetrieveProfileAction(action, context);
 addRetrieveProfileTag(action, PROFILE_TEMPORARY_STORAGE, 0x3E90001);

 aec_setNodeState(context, acsEngineState2);
 return ACS_ENGINE_MACRO_STAY_HERE;
}

When the callback function, mainNodeProcessFunction(), is called for the second time, it calls
nodeProcessState2(), which interprets the result of the action using the result argument.

u_int32 nodeProcessStep2(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 if (getRetrieveProfileResultValid(result)) {
 acsProfileField *fieldPtr = aec_getProfileField(context, 0);
 if (fieldPtr) {
 std::string fieldValue;
 if (cmnBufferGetValue(fieldPtr->buffer, fieldPtr->length, fieldValue)){
 // Do something with the retrieved field
 }
 }
 }

Exiting
When the feature node finishes its operations, it exits and returns control to the control plan by
taking one of its defined branches.

Chapter 4
Creating the Shared Library

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 8 of 10

The following example illustrates how to do this, setting branch returning the constant
ACS_ENGINE_MACRO_FOLLOW_BRANCH:

#define NODE_BRANCH_SUCCESS 0
#define NODE_BRANCH_FAILURE 1

u_int32 nodeProcessStep3(acsEngineContext *context,
 acsChassisActionGenericResult *result,
 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 // Determine the outcome of the node processing
 // ...

 *branch = NODE_BRANCH_SUCCESS;
 return ACS_ENGINE_MACRO_FOLLOW_BRANCH;
}

Using the Node Context Block
At initialization time, the feature node can request the ACS engine to allocate a block of
memory that the node can use to keep track of its context between calls. The node requests
the block of memory and specifies its size by calling the acsEngineRegisterFNTypeSize()
function in sharedLibraryInit().

The ACS engine manages the context memory block so the node does not need to free it
when it has finished with it. The node does need to cast the memory block to the type that it
requires, however.

In the following example, the node defines the context memory as a struct that is made up of
an integer and an array of ten characters. It then calls acsEngineRegisterFNTypeSize() in
sharedLibraryInit() to ask the ACS engine to allocate the context block as
sizeof(NodeContext).

struct NodeContext {
 int field1;
 char field2[10];
};

extern "C" u_int32 sharedLibraryInit () {
 ...
 // Register the node's context data size
 if (not acsEngineRegisterFNTypeSize(acsEngineFastKey("_NOD"), sizeof(NodeContext))) {
 return 0;
 }
 ...
}

In the first processing function, nodeProcessStep1() defines context as a pointer of type
NodeContext and sets it to the value of nodeContext, a function parameter that points to the
node's context memory block. It then defines two local variables, std::string param2 and
paramOffset, which it uses to access the block's content. The getMacroNodeParameter()
function retrieves data from the block at the offset specified by paramOffset into the location
specified by the second parameter. The first call loads field1 of NodeContext, while the
second call and the following call to strlcpy() load field2. Note that the first call to
getMacroNodeParameter() also increments paramOffset by the length of field1.

u_int32 nodeProcessStep1(acsEngineContext *context,
 acsChassisActionGenericResult *result,

Chapter 4
Creating the Shared Library

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 9 of 10

 acsChassisAction *action,
 void *nodeContext,
 u_int32 *branch) {

 NodeContext *context = (NodeContext *) nodeContext;

 std::string param2;
 u_int32 paramOffset = 0;
 getMacroNodeParameter(paramOffset, context->field1);
 getMacroNodeParameter(paramOffset, param2);
 strlcpy(context->field2, param2.c_str());

 ...
}

Specifying the Location of the Shared Library
After creating the shared library that contains the feature node's functional logic, you must
update the LD_LIBRARY_PATH environment variable to identify its location. Usually, you start
slee_acs using the following script or one like it:

/IN/service_packages/ACS/bin/slee_acs.sh

To add the location of a custom feature node library, modify the script to add the library's
location to LD_LIBRARY_PATH, as shown in the following example:

LD_LIBRARY_PATH=${LD_LIBRARY_PATH:}:<path to shared library>MyMacroNode.so

Creating the Feature Node Image Files
Feature nodes are represented in the Control Panel Editor by a graphic image. You must
create a graphic image to represent your new feature node and add it to the image folder
where the Control Panel Editor can access it. You can use the graphic tool of your choice to
create the image.

To create the graphic image and make it available to the Control Plan Editor:

1. Create an image that represents your feature node. The image must be 64 pixels high by
40 pixels wide. Name the image file FNnodename.png. The image will be used in the main
Control Plan Editor panel.

2. (Optional) Create a tooltip file in HTML format that describes the feature node. Name the
file TTfeatureNodeType.htm. This text will be displayed in the CPE feature node palette
when the cursor hovers over the node's image.

3. Place the image file in the following location on the Service Management System (SMS):

/IN/html/Acs_Service/images/

4. If you create a tooltip file, place it in the following location on the Service Management
System (SMS):

/IN/html/Acs_Service/helptext/Default/

Chapter 4
Specifying the Location of the Shared Library

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 10 of 10

5
Creating a Custom Control Agent

This chapter describes how to create a custom control agent using the Oracle Communications
Network Charging and Control (NCC) Software Development Kit (SDK).

About Control Agents
A control agent is a process that provides a bridge between a particular protocol and the
service logic being run by slee_acs. To provide the bridge, the control agent must maintain a
protocol-specific dialogue with some network component on one side while handling the INAP
interaction with slee_acs on the other side.

The SIP control agent (SCA) is a good example. SIP is a TCP/IP based, HTTP-like, protocol
for handling multi-media session control. The SCA provides the translation layer between the
SIP protocol and the native INAP protocol that the SLC supports internally. This allows the SLC
to act as an SIP proxy and implement complex services for VOIP applications, such as VPN or
prepaid charging.

The TCAP API provides the interface for a TCAP-based control agent to communicate with
another network element.

The INAP API provides the interface that the control agent needs to trigger ACS, by sending
and receiving the required INAP operations.

For TCAP-based protocols, the control agent receives a TCAP payload and uses its routines to
decode the payload before triggering ACS using an API. The agent receives messages from
ACS through an API and it can use these messages to build the payload to return in a TCAP
response; an appropriate API retrieves the TCAP payload and sends it. You can use this to
support specific versions of INAP, for example.

Assume, for example, that you want to integrate with a service switching function that does not
support a standard INAP protocol because it has custom or non-standard message flows and
parameters. The protocol is still encapsulated in standard TCAP. To support it you can develop
a custom control agent that extracts, interprets, and translates the non-standard INAP protocol.
Then you can use the NCC INAP API to communicate with ACS.

For non-TCAP-based protocols, you are responsible for writing the network facing transport or
code. However, you will still use the INAP API to send and receive messages to ACS as in the
case of the TCAP-based control agent.

SLEE Dispatcher
Both the INAP API and the TCAP API use the Service Logic Execution Environment (SLEE) to
communicate with other processes.

The slee::Dispatcher class and its associated slee::Transaction objects handle all
interaction with the SLEE. The slee::Dispatcher class checks for events when the Control
Agent's main loop requests it and passes them to the appropriate slee::Transaction handler,
or if necessary, creates a new transaction.

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 4

The slee::Dispatcher has a poll() function that checks for any new events and needs to be
called explicitly by the custom program. Each handler is an instance of the slee::Transaction
class and is associated with a particular SLEE dialog. A factory object can create a new
transaction for a new dialog.

The slee::TransactionFactory interface defines a factory for creating transactions of a
particular type. This factory can then be registered with the dispatcher as the factory to use for
a particular event type. Whenever the dispatcher receives an event on a new dialog, it creates
an inbound transaction using the associated factory.

The SDK provides the following base transaction types:

• acs::AcsSleeTransaction

• tcap::TcapSleeTransaction

• GenericSleeTransaction

As a control agent or call-out interface developer, you are responsible for deriving your own
transaction classes from one of these transaction types. Then call the slee::Dispatcher::poll()
function periodically to check for events and pass them to the associated transaction instance.

The SDK TCAP API
For a description of the TCAP protocol, see the website:

http://www.itu.int/rec/T-REC-Q.771-199706-I/en

The SDK TCAP API provides the component and transaction sub-layers of the protocol.

The tcap::TcapSleeTransaction object manages an incoming TCAP dialogue. To provide
behavior that is specific to your application, you must implement a class that is derived from
the tcap::TcapSleeTransaction class.

The control agent registers its transaction class using the registerTransactionFractory()
method, as shown in the following example.

using namespace ncc;

slee::Dispatcher dispatcher;
slee::TransactionFactory<CustomTcapTransaction> factory;
dispatcher.registerTransactionFactory(&factory);

Whenever the slee::Dispatcher receives a TC-BEGIN message on a new SLEE dialogue, it
creates an instance of this transaction class and passes all incoming tcap::Primitives to it.
The transaction class can send back its own primitives using the
tcap::TcapSleeTransaction::sendTcapPrimitive() function.

The TC-user communicates with the component sub-layer using primitives. The API models
this communication. Each primitive can be a request from the TC-user telling the component
sub-layer to perform some function, or it can be an indication from the component sub-layer.

For example, the control agent can use the API to send an Invoke request primitive to request
an operation on the remote system. Once the remote system has performed the operation, the
control agent then receives a Result indication primitive.

Alternatively, the remote system might ask the control agent to invoke an operation, in which
case the control agent will receive an Invoke indication from the API and send back a Result
request.

Chapter 5
The SDK TCAP API

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 4

http://www.itu.int/rec/T-REC-Q.771-199706-I/en

The TCAP data classes provide the developer an interface that models the interaction between
a TC-user, the application that is using TCAP, and the component sub-layer defined in ITU
Q.771 or ANSI T1.114.1, the European and American versions of the TCAP protocol,
respectively.

For more information on ITU Q.771 see:

http://www.itu.int/rec/T-REC-Q.771-199706-I/en

Both dialogue and component-handling primitives are derived from a common
tcap::Primitive base class, that contains the following information:

• ITU / ANSI flag (type TcapProtocolVersion)

• Dialogue ID

Primitives can be either requests from the TC-user or indications to the TC-user. Any
parameter that is available in the request primitive has a setter and any parameter that is
available in the indication primitive has a getter. Use the setter functions when constructing a
request primitive. They let you set the various parameters of the primitive. Use the getter
functions to extract parameters from an indication primitive that the control agent receives.

The dialogue primitives request or indicate facilities of the underlying transport layer in
conjunction with controlling the dialogue or message flow. The component primitives handle
operations and replies, which are the content of the dialogue. These component primitives do
not require facilities from the underlying transport layer.

The SDK INAP API
For a description of the Intelligent Network Application Part (INAP) protocol standard, see the
following website:

http://www.telecomspace.com/ss7-in.html

Within the SDK API, the interaction with ACS for a single call is abstracted into the
ACSSleeTransaction interface class, which you implement to provide any behavior specific to
your application. The control agent creates an instance of this class when it wants to trigger
ACS. The Dispatcher then invokes the handleEvent() function of ACSSleeTransaction when it
receives an operation from slee_acs.

The ACSSleeTransaction class handles the dialogue primitives TC-BEGIN and TC-CONTINUE
transparently. It also passes each TC-INVOKE, TC-RESULT-L and TC-U-ERROR component
primitive to the corresponding receive function.

Your implementation of ACSSleeTransaction needs to define the following functions:

• acs::ACSSleeTransaction::receiveOperation()

• acs::ACSSleeTransaction::receiveResult()

• acs::ACSSleeTransaction::receiveError()

Similarly, it also can call these ACSSleeTransaction functions:

• acs::ACSSleeTransaction::queueOperation()

Passes a TC-INVOKE primitive to the TC component sub-layer

• acs::ACSSleeTransaction::send(bool last)

Sends all outstanding components as a TC-CONTINUE or TC-END operation.

Chapter 5
The SDK INAP API

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 4

http://www.itu.int/rec/T-REC-Q.771-199706-I/en
http://www.telecomspace.com/ss7-in.html

When you call the send() function, the AcsSleeTransaction object sends a TCAP message
containing any queued operations to slee_acs.

The transaction can finish the dialogue by calling slee::Transaction::end() or by sending
the operations with the last flag set to true.

The slee::Transaction::dialogClosed() function, which the derived transaction class must
implement, notifies the transaction when the dialogue finishes.

Chapter 5
The SDK INAP API

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 4

6
Creating Provisioning Interface Commands

This chapter describes how to create and install new Provisioning Interface commands using
the Oracle Communications Network Charging and Control (NCC) Software Development Kit
(SDK).

About Provisioning Interface Commands
The Provisioning Interface (PI) runs on the Service Management System (SMS) and runs
provisioning commands that it receives from a remote source, such as a SOAP request, for
example.

The available PI commands and their arguments are defined in the database. You can add
new commands using the PI Command Installer utility. For more information, see "Adding a PI
Command to the Database".

Each package of PI commands is implemented as a shared library, with one function for each
command. Each plugin can contain multiple commands. Using the SDK API, you can create a
new plugin that is a package of related commands that the PIprocess process loads on the
SMS. Each command in the package is implemented by a function in the shared library.

The PI Function
You must implement each PI command with a function that has the same name as the
command. The function's signature must be as shown in the following example:

int command_name(char *output, PIinfo *piInfo)

where:

• command_name the name of the function and matches the name of the command

• output is a pointer to a string that stores the output from the command or, alternatively, the
name of a file that stores the commands output

• piInfo contains the request information being passed to the PI command function

PI Command Actions
Each PI command, and function, can have multiple actions associated with it. For example:

COMMAND=Action1
COMMAND=Action2

The command function determines which action to run with code like this:

int COMMAND(char *output, PIinfo *piInfo) {

 ...

 if (PIcommonInfo_getAction(piInfo) == "Action1") {
 // Handle Action1
 } else if (PIcommonInfo_getAction(piInfo) == "Action2") {

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 4

 // Handle Action2
 }

 ...
}

The PIinfo structure is defined in the PIcommonInfoSDK.h file and can be accessed by the
functions that are defined there.You can find the PIcommonInfoSDK.h file in
the $NCC_SDK_HOME/include directory.

The PIcommonInfoSDK.h file is also documented in the SDK API documentation in
the $NCC_SDK_HOME/doc/html directory.

PI Function Return
The command function should return 0 (zero) if it runs successfully, or an integer code, if it
results in an error. You can use the output argument to store the commands output.
Alternatively, you can store the name of a file that contains the command's output.

You can use the PIcCommands_success() and PIcCommands_error() helper functions to set up
the response.

The following example illustrates a successful outcome:

int COMMAND(char *output, PIinfo *piInfo) {

 std::string cmd_name = "COMMAND=" + PIcommonInfo_getAction(piInfo);

 // Processing is successful
 // ...

 std::string responseText = ":Success";

 return PIcCommands_success(output, cmd_name.c_str(), responseText.c_str());
}

This example illustrates an error outcome:

int COMMAND(char *output, PIinfo *piInfo) {

 std::string cmd_name = "COMMAND=" + PIcommonInfo_getAction(piInfo);

 sms::pi::common::Errors piError;
 sms::pi::common::Errors::codes code;

 // Processing sets an error code
 // ...

 std::string errorText = piError.getText(code);
 return PIcCommands_error(output, cmd_name.c_str(), static_cast<int>(code),
 errorText.c_str());
}

Adding a PI Command to the Database
Follow these steps to define one or more PI commands and add them to the database:

1. Create an XML file that describes the PI commands.

2. Run the PICommandInstaller utility, found in the $NCC_SDK_HOME/bin directory, to add
the file to the database on the SMS.

Chapter 6
Adding a PI Command to the Database

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 4

The utility will prompt you for the database username and password.

Creating a PI Commands File
You define a PI Commands file by creating an XML file using the XML elements shown in
Table 6-1:

Table 6-1 PI Command Definition Elements

XML Element Description

<PICommandDefinition> The top level element that contains all other elements.

<Commands> Contains a <Command> element for each command that you want to
define.

<Command> Contains the elements that define a specific command and action. For
example, if a command has three actions like Add, Change, and
Delete, then the XML has three corresponding <Command> elements.

<Name> A string that specifies the PI command (and action) name.

<Package> A string that specifies a package for the PI command.

<Security> Optional. An integer that specifies the security level for the PI
command. Default value is 1.

<Type> Optional. A string that specifies the command type. Default value is C.

<Parameters> Contains a <Parameter> element for each parameter that you want to
define.

<Parameter> Contains the elements that define a specific parameter.

<Name> A string that defines the parameter name.

<Required> Specifies whether the parameter is required or not. Possible values are
True and False.

<Domain> A string that specifies the domain for the parameter.

Example: PI Command Definition File
The following statements define several PI command examples:

<PICommandDefinitions>
 <Commands>
 <Command>
 <Name>MY_CMD1=ADD</name>
 <Package>SDK_MY_CMD1</Package>
 <Security>1</Security>
 <Type>C</Type>
 <Parameters>
 <Parameter>
 <Name>PRODUCT</Name> <Required>True</Require> <Domain>S</Domain>
 </Parameter>
 <Parameter>
 <Name>STATUS</Name> <Required>False</Require> <Domain>S</Domain>
 </Parameter>
 </Parameters>
 </Command>
 <Command>
 <Name>MY_CMD1=CHG</name>
 <Package>SDK_MY_CMD1</Package>
 <Security>1</Security>

Chapter 6
Adding a PI Command to the Database

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 4

 <Type>C</Type>
 <Parameters>
 </Parameter>
 <Name>PRODUCT</Name> <Required>True</Require> <Domain>S</Domain>
 </Parameter>
 <Parameter>
 <Name>STATUS</Name> <Required>True</Require> <Domain>S</Domain>
 </Parameter>
 </Parameters>
 </Command>
 <Command>
 <Name>MY_CMD1=DEL</name>
 <Package>SDK_MY_CMD1</Package>
 <Parameters>
 <Parameter>
 <Name>PRODUCT</Name> <Required>True</Require> <Domain>S</Domain>
 </Parameter>
 </Parameters>
 </Command>
 </Commands>
</PICommandDefinitions>

Running the PICommandInstaller Utility
You load PI Command definitions into the database by running the PICommandInstaller
command-line utility, which is in the $NCC_SDK_HOME/bin directory. The utility reads a set of
PI command definition parameters from the XML file that you created and loads the definitions
into the SMS database.

The utility can create and delete PI command definitions, and update the definitions of existing
commands.

The PICommandInstaller utility has the following syntax:

PICommandInstaller -I=<InstallMode(true/false)> [options] <XML file>

Where:

• InstallMode is either true to install to install the commands in the input file or false to
uninstall the commands.

• options are:

– -F Optional. Upgrade flag; true to upgrade commands or false otherwise. Default is
false.

– -v verbose mode

– -h or ? for command line help

• XML file is the name of the PI command definition file

Chapter 6
Adding a PI Command to the Database

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 4

7
Creating Provisioning Screens

This chapter describes how to create provisioning screens using the Oracle Communications
Network Charging and Control (NCC) Software Development Kit (SDK).

About Creating Provisioning Screens
You can create new screens with minimal use of NCCclasses You can use the
UserScreens.Session class to create an instance of java.sql.Connection. Having created
this object, you can create new screens using the Java JDBC and Swing libraries, independent
of any NCC code.

Creating Screens Using KFramework
Create new Java screens by following the general look and feel that is used by existing
services that are based on KFramework in the core SMS system. You can access the compiled
KFramework classes here:

$NCC_SDK_HOME/jar/sms.jar

The classes belong to the UserScreens.KFramework package, of which the main classes are:

• DataEntryFrame: The main window

• DataEntryPanel: A tabbed panel placed into DataEntryFrame. For example, the sample
WindowA, which you can see in Figure 7-1, has two tabs, each of which is a
DataEntryPanel.

• FindDisplayPanel: A panel that displays the results of find operations

These three classes provide most of the required capabilities and you can extend them
through inheritance as necessary.

Follow these steps to make the new service available in the SMS, Services menu.

1. Provide a class named service_name.service_name that implements the SMS
UserScreens.ServiceScreen interface.

The interface contains the following two methods:

public abstract MenuItem getMenuItem();
public abstract void KillAll();

The getMenuItem() method creates the menu item on the Services menu. The class must
implement an ActionListener for the menu item to activate the screen when the user clicks
on the menu item.

Use the killAll() method to close down the screens.

2. Configure the following SMS database tables related to screen permissions:

• SMF_APPLICATION_PART

• SMF_APPLICATION_ACCESS

• SMF_TEMPLATE

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 21

• SMF_TEMPLATE_ACCESS

Note

the database installer, cmnTableInstaller.sh configures the SMF_APPLICATION
and SMF_APPLICATION_TABLE tables.

For more information on configuring screen permissions, see "Creating a New Service
Screen".

Using the Service Screens
The following sections describe the existing service screens. The base classes provide much
of the capabilities described. You can override a significant portion, however, if necessary.

The SMS system integrates the service-specific user screens and they use the SMS security
model to provide access to the various onscreen components.

Each database table that a service uses is normally associated with a data entry screen that
allows you to create, view, search, modify, and delete entries in the table.

Each data entry screen has the following three modes of operation:

• Find, in which the user can enter query criteria. For more information, see "Find Mode".

• Display, in which the screen displays the results of a query. For more information, see
"Display Mode".

• Data Entry, in which the user can create a new record or modify an existing one. For more
information, see "Data Entry Mode".

Note

Oracle recommends that you design screens to be compatible with a screen resolution
of 1024 x 768.

Find Mode
The find mode is the initial mode for a screen. The screen layout is similar to data entry mode
and allows the user to specify criteria to query the database. For components where the user
can select from a limited range of values, the user can select an Any or a Don't Care option to
specify the values to be matched as follows:

• Combo boxes and List components have an additional selection for the Any value.

• Checkboxes are implemented as tri-state components where the third state indicates the
Any value. The three checkbox states are:

1. White background and unchecked equals not selected

2. White background and checked equals selected

3. Grey background and checked equals Any or Don't Care value, which is different than
disabled and greyed out.

Chapter 7
Using the Service Screens

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 21

In this mode, each data entry panel contains the following two fields, located at the bottom of
the panel, which the user can use to query:

• Last Change User: The user who last modified the selected record

• Last Change Date: The date that the record was last changed

There is also an Order By drop-down box that contains the names of fields that the user can
use to specify the criteria for the query. The value that is currently selected determines the
initial sorting order for the results. The first entry in the list is the default value, which is always
the primary key.

Note

The Last Change Data fields - Last User, Last Date, and Order By - are automatically
generated by the base class.

Figure 7-1 illustrates Window A, Tab 1, in find mode.

Figure 7-1 ABC Window A Find Mode

Display Mode
The result panel displays the results of a query when it returns more than one record. It
consists of the following two components:

• Results display table

Chapter 7
Using the Service Screens

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 21

• Find button bar

The result panel is automatically generated and is associated with a specific data entry panel.
The results panel maintains a local variable that holds a Java JDBC ResultSet object. This
variable is defined as an input parameter when the panel is created or updated by its
associated data entry panel. It is scrollable to facilitate the implementation of the Next and
Previous buttons on the Find button bar.

The column widths of the result display table will be one of the following standard values:

• Narrow column, 50 pixels

• Small Column, 150 pixels

• Wide Column, 250 pixels

• Widest Column, 400 pixels

The custom panel determines which value is used by calling the
findDisplayPanel.setHeadersAndColumnWidths() function from its initGUI() function. The
following example shows the syntax of findDisplayPanel.setHeadersAndColumnWidths():

findDisplayPanel.setHeadersAndColumnWidths(namesArray, columnWidths, valuesArray);

The results display panel does not update automatically to display changes to the database
that other users make. The results panel automatically refreshes, using the existing query
criteria, after returning from the following operations: modifying a record, deleting a record, a
modify-all action, or a delete-all action.

Figure 7-2 illustrates Window A, Tab 1, in display mode.

Figure 7-2 ABC Window A Display Mode

Chapter 7
Using the Service Screens

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 21

The Results Display Table
The results display table is a sub-class of the Java Swing JTable component and is configured
to display a maximum of 100 rows. If the query returns more than 100 rows, the table displays
the first 100 rows and also displays a message that indicates the current page position and the
total records found, for example, "Displaying records 301-400 of 1234."

If the number of rows exceeds the available space to display them, a vertical scroll bar displays
to allow you to display the rows that are hidden.

If the width of the table is greater than the viewing area, a horizontal scroll bar appears to allow
you to display the columns that are hidden. Each column in the table has the same width as its
related component in the Data Entry panel and the column's name is the same as the
component's label.

The component extends the capabilities of the JTable class to add the ability to sort the result
records by clicking the column header. Clicking a second time reverses the sorting order.
Sorting only applies to the currently displayed data and does not affect any data that could be
obtained through the Next and Previous buttons.

You can change the order of a column by clicking on its header and dragging the column to its
new position. The ability to auto-resize columns is disabled.

The Find Button Bar
The results display panel has a button bar that displays whenever the panel is visible. The bar
is a fixed height and the width of the display area. It contains the buttons listed in Table 7-1:

Table 7-1 Button Bar Buttons

Button Description

Previous Enabled if the result set contains more than 100 rows. Displays the previous page
of records. Disabled on the first page of the result set.

Next Enabled if the result set contains more than 100 rows. Displays the next page of
records. Disabled on the last page of the result set.

Select Transitions to data entry mode and replaces the results panel with the data entry
panel, which it populates with the data from the currently selected row in the result
set.

Note: Double-clicking a row in the results table has the same effect.

Modify All Updates records returned by the current query. Displays a dialog box from which
you can select fields that you want to modify. Takes you to data entry panel to
enter new values for selected fields. Pressing the Save button displays a
confirmation message in a popup window, indicating how many records will be
modified. The window has Modify-All and Cancel (default) buttons. If any record
cannot be modified, any modified record is rolled back and all records are
unchanged.

Delete All Deletes all records returned by the query. Displays a confirmation message in a
popup window, indicating how many records will be deleted. The window has
Delete-All and Cancel (default) buttons.

Export Writes the records found by the query to a file. Displays a standard Java
JFileChooser dialog box from which you can select a file location. The location
defaults to C:\TEMP. Record fields are exported in comma-separated format with
records separated by Carriage Return / Line Feed (CR/LF).

Print Prints the records found by the query.

Chapter 7
Using the Service Screens

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 5 of 21

Table 7-1 (Cont.) Button Bar Buttons

Button Description

Return Closes the results display panel and releases any resources used by the screen.
Reverts to find mode and leaves the search criteria unchanged.

You cannot add or delete buttons from the button bar.

The Modify All Selection Dialog Box
The Modify-All Selection dialog box displays when the user presses the Modify-All button in
the Find button bar. In the Available list, the dialog box initially displays the names of each data
entry field that you can change with the Modify-All command. The Selected list is initially
empty.

You can move entries between the Available and the Selected lists, which are mutually
exclusive, using the following four buttons:

• > to move the selected item from the Available list to the Selected list

• >> to move all items from the Available list to the Selected list

• < to move the selected item from the Selected list to the Available list

• << to move all items from the Selected list to the Available list

Pressing Cancel ends the Modify-All command and closes the dialog box, leaving the
database unchanged. The results panel remains visible and displays the same data that it
contained prior to pressing the Modify-All button.

Pressing OK updates any changes you have made and closes the dialog box.

Data Entry Mode
Use data entry mode to create a new record or to modify an existing one. The screen layout is
the same as it is in find mode, except for the following differences:

• The Order By field is not present

• The Last Change User and the Last Change Date fields are greyed out

• Combo boxes, list components, check-boxes, and radio buttons do not have an Any or
Don't Care option

Help Screen
The query screens use the existing help mechanism that is part of the of the SMS system. This
mechanism uses the Java Help System and incorporates simple help pages in Hyper Text
Markup Language (HTML).

Each service screen has its own help screen, which is a single, simply formatted page of
HTML text that describes how that screen behaves.

Table Monitor
You can use a simple notification system to enable a data entry screen to notify other screens
when a change has been made. Using the table monitor, a data entry screen simply registers
its interest in being informed when specific database tables are modified. When a user uses a

Chapter 7
Using the Service Screens

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 6 of 21

data entry screen to modify data in the associated database table, the screen simply passes a
tableChanged message to the table monitor. The table monitor then informs any data entry
screens that have registered interest in that table that it has changed.

For example, assume that a screen has a dropdown box that is populated with data from
database table Y and registers its interest in the table using the table monitor. If a user
subsequently uses screen Y to modify table Y, the table monitor simply informs the original
screen that the table has changed. Screen X can then update the contents of the dropdown
box to ensure that the contents match the data in database table Y.

Note

The system only handles changes made by a user in that session. If users use
separate instances of the SMS screens, the table monitor is not able to inform one
user of changes made by the other. The table monitor is also not aware of changes
made to the database through SQL scripts such as SQLPlus.

Using the TableMonitor

There is only one TableMonitor object for each SMS session. This object maintains a
hashtable where the key is a database table name and the value is a vector of data entry
screens that have registered interest in that table.

The TableMonitor class does not have a public constructor. It has the following public interface:

• public static TableMonitor getTableMonitor();

• public void addTableMonitorListener(TableMonitorListener listener, String tableName);

• public void removeTableMonitorListener(TableMonitorListener listener, String tableName);

• public void tableChanged(String tableName);

Use the getTableMonitor() method to obtain an instance of TableMonitor. This method always
returns the same TableMonitor instance.

Use the addTableMonitorListener() method to register interest in a database table. Use the
removeTableMonitorListener() method to remove an entry for a specific database table. When
TableMonitor receives a message from one of these methods, it updates its internal hash table
accordingly.

Use the tableChanged() method to inform the TableMonitor that the table specified by the input
parameter has changed. When TableMonitor receives a message from tableChanged(), it
obtains the vector of TableMonitorListener objects that have registered interest in that table
and relays the message to all of the objects within that vector.

A data entry screen must implement the TableMonitorListener interface to be informed by
TableMonitor when a database table changes. The TableMonitorListener interface has the
following definition:

public interface TableMonitorListener() {
 public void tableChanged(String tableName);
}

Chapter 7
Using the Service Screens

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 7 of 21

Creating a New Service Screen
This section describes how to create a new service screen for data entry using KFramework.
To describe the process, it uses an example in the SDK called ABC. The example adds a new
ABC menu to the SMS Services menu. The menu contains two sub-menus, Window A, which
has two tabbed panels, and Window B, which has one tabbed panel. The service adds three
new database tables.

Note

Attempting to use the abc.jar file without signing it results in a warning message when
you log in to the SMS screens. The procedures that follow describe how to sign the
JAR file.

To create a new service screen:

1. Design the database schema for the new service.

2. Determine the application name and application ID for the new service.

The application name should not contain spaces and should be a valid Java variable
name. This example uses the name ABC.

The value for application ID should be between 900 and 999, which is the range allocated
to custom applications.

3. Configure the screen permissions for the new service by running the following commands:

sqlplus user/password
@$NCC_SDK_HOME/example/ABC/db/addPermissions

4. Create a new Java class called ABC.ABC.

This class must implement the UserScreens.ServiceScreen interface that adds the new
service to the core SMS Services menu. The name must match the value of the
APPLICATION column in the SMF_APPLICATION database table, which is ABC in this
example.

5. Create a new screen for the service.

This class is inherited from the UserScreens.KFramework.DataEntryFrame class. Each
instance of DataEntryFrame can contain one or more panels (DataEntryPanel instances),
which are managed in a JTabbedPane component. The parent class does the majority of
the work and usually requires some additional code. It primarily creates instances of
panels to be added to the JTabbedPane component.

6. Design and create the panels that need to be added to each instance of DataEntryFrame.

Each panel should extend the UserScreens.KFramework.DataEntryPanel class. Data
aware components that read and write to the database should belong to the
UserScreens.KFramework.DataEntryPanel class. The base class does a large portion of
the work required by the panel but you can override many of the DataEntryPanel methods
to provide customized behavior. For more information, see "Creating DataEntryPanels
Classes".

7. Build the custom app_name.jar file by running the following commands:

cd $NCC_SDK_HOME/app_name/java
gmake install

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 8 of 21

8. Create a SHA-256 signed version of the JAR file by running the following commands:

cd $NCC_SDK_HOME/bin
keytool -genkeypair -keyalg RSA -keysize 2048 -alias SDK
jarsigner -signedjar app_name.jar.sig app_name.jar SDK

9. Copy the signed JAR file from $NCC_SDK_HOME/bin to /IN/html on the SMS machine.

10. Open the /IN/html/smsGui.bat and /IN/html/smsGui.sh file and add a reference to the
new sdk.jar.sig file in classpath.

11. Save and close the file.

12. Register the service with SMS by logging into the SMS database as the SMF user and
running the following command:

$NCC_SDK_HOME/example/ABC/db/addPermissions.sql

13. Create Oracle error translation and language translation files as needed. For more
information, see "Language Translation".

14. Create and install a deployment rule for the SHA-256 signed version of the JAR file that
you created by doing the following:

a. Obtain the SHA-256 hash from the app_name.jar.sig file:

keytool -printcert -jarfile app_name.jar.sig

The hash is the 32-pair hexadecimal digit in the line that starts with SHA256.

b. Create a rule set file with the name ruleset.xml. See Oracle Java Platform, Standard
Edition Deployment Guide for instructions.

c. Open ruleset.xml and replace the certificate hash with the hash that you obtained in
Step 14. a:

<ruleset version="1.0+">
 <rule>
 <id location="http://xx.xxx.xxx.xxx/">
 <certificate algorithm="SHA-256"
hash="00:01:02:03:04:05:06:07:08:09:0A:0B:0C:0D:0E:0F:10:11:12:13:14:15:16:17:18:
19:1A:1B:1C:1D:1E:1F" />
 </id>
 <action permission="run" version="1.8.0+" />
 </rule>
</ruleset>

d. Create a deployment JAR file with the name DeploymentRuleSet.jar and include the
ruleset.xml file in the DeploymentRuleSet.jar file:

jar cf DeploymentRuleSet.jar ruleset.xml

e. Sign the DeploymentRuleSet.jar file with a valid certificate from a trusted certificate
authority.

f. On each client machine, install the signed DeploymentRuleSet.jar file in the following
location:

Linux: /etc/.java/deployment/DeploymentRuleSet.jar

Microsoft Windows: C:\Windows\Sun\Java\Deployment\DeploymentRuleSet.jar

OS X: /Library/Application Support/Oracle/Java/Deployment/DeploymentRuleSet.jar

15. Verify that the deployment rule set is installed and signed correctly:

a. On each client machine, open the Java control panel.

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 9 of 21

b. On the Security tab, the appearance of the "View the active Deployment Rule Set" link
indicates that the deployment rule is installed correctly.

To verify the validity of the signing certificate, click the "View the active Deployment
Rule Set" link.

The ABC Example
You can find the source files for the ABC screens example at $NCC_SDK_HOME/
example/ABC/java. The ABC.java file defines the ABC package, which contains the ABC
class. The ABC class implements the ServiceScreen interface.

The package name and class name must match the name in the APPLICATION column of the
SMF_APPLICATION database table because the core SMS system obtains the value when the
main applet starts and then uses the Java Reflection API to create an instance with that
package name and class name.

Once the ABC object has been created, the example calls the public MenuItem getMenuItem()
method to obtain a reference to the new menu object that provides access to the service. If the
current user does not have sufficient access permission, the method returns null and the
service is not available.

When the main applet closes, it calls the killAll() method, which releases any resources that the
service opened.

This example creates a new menu named ABC, with two sub-menus, Window A and Window
B. Each window can contain one or two panels. The getMenuItem() method creates a sub-
menu only if the user has permission to access at least one of the panels.

Each sub-menu is associated with an ActionListener object, which calls a static start() method
on a class that implements the UserScreens.DataEntryFrame class. The start() method
creates an instance of the class and makes it visible to the user.

As mentioned previously, you can create new service screens without using KFramework.
Once you create the database connection using UserScreens.Session.database.connection,
you can create new service screens using any of the standard Java, JDBC, AWT and Swing
libraries.

Use the UserScreens.General.trace() method to send output messages to the Java console.
These messages are visible in the console only if TRACE has been turned on using the SMS
Operator Functions / User Management screen to edit the user and set the Configuration
field to TRACE=ON. This method provides a simple but useful debugging facility.

The UserScreens.Language.getTranslatedString() method looks for a translated version for the
message in the input parameter. If found, it returns the translated value; otherwise, it returns
the original input message.

Creating DataEntryFrame Classes
Each frame for the service extends the UserScreens.KFramework.DataEntryFrame class. This
is a relatively simple subclass to implement because the parent class does most of the work.
For the ABC example, you can find these classes in the com.oracle.abc.screens package.

Please refer to the $NCC_SDK_HOME/example/ABC/java files for the actual source code.

There are two subclasses, AScreen and BScreen. Because each of these is virtually identical,
only AScreen will be described here.

The class needs to override the following two methods in the parent class:

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 10 of 21

public static void start();
public static void stop();

The ABC.ABC class calls these methods. It calls start() when the user selects the menu item
for this service. It creates the actual frame and its associated data entry panels. The ABC class
calls stop() in response to the main applet being closed and releases any resources held by
the screen.

Most of the remaining code consists of basic Swing library calls that create the required user
interface.

The canAddTab() method, which the parent class defines, checks to see if the current user has
sufficient permission to access a particular data entry panel.

Creating DataEntryPanels Classes
Each data entry panel for the service must extend the
UserScreens.KFramework.DataEntryPanel class. Again, the parent class does most of the
work. However, the majority of the work to implement the service screens takes place here.

The DataEntryPanel class contains a large number of methods, many of which you can
override, if necessary. For example, the parent class auto-generates the SQL search query, but
provides hooks so that you can override parts of the query, such as the WHERE clause, for
example, without rewriting the whole query.

The AbcPanelOne example provides a data entry screen for a database table with the columns
described in Table 7-2. This table is partly described in the following SDK file:

$NCC_SDK_HOME/example/ABC/db/SDK.xml

Table 7-2 Database Table for AbcPanelOne

Column Name Data Type

NOA NUMBER (3) (Primary Key)

DESCRIPTION VARCHAR2 (50)

CHANGE_REF VARCHAR2(50)

CHANGE_TERM VARCHAR2 (12)

CHANGE_USER CHAR (50)

CHANGE_DATE DATE

Figure 7-3 shows the Window A, Tab1, screen for entering the data described in Table 7-2.

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 11 of 21

Figure 7-3 Window A Tab1 Data Entry Screen

You can find the source code for this panel at this location:

$NCC_SDK_HOME/example/ABC/java/AbcPanelOne.java

This class is meant to use with components on the panel that are mapped to a single database
table.

The Constructor

The example uses the main constructor with four parameters:

public AbcPanelOne(DataEntryFrame parent, String newTableName, String
appName, String appPart);

The newTableName parameter is the name of the database table to which the screen panel
maps. The appName parameter is required to obtain access to the correct error and language
translations. The appPart parameter is required for the access permissions.

TableMonitor

The TableMonitor class has been described earlier in this document. This panel registers itself
with TableMonitor and then informs it when any changes are made. This requires the save(),
delete() and deleteAll() methods of the parent class to be overriden. The example shows how
this is done.

Help

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 12 of 21

The help() method calls the help(String section) method of the parent class. The section
parameter provides the key into the Help system.

Validation

The focusGained() and focusLost() methods place a simple message into the message display
area whenever the noaField has focus. The message displays the range of permissible
values.

The addDocuments() method adds DocumentListeners to the two main text fields to restrict
the input to a range of valid values. In the case of noaField, these values are numeric digits in
the range of 0 - 127 only. The descriptionField field can have any characters up to a
maximum length of 50.

The GUI
The initGUI() method creates the user interface:

The parent class displays the Find Display Panel. The parent class could obtain the database
table metadata automatically, but it needs to know what names to use for the column headings
and the column widths. Assigning a display name can sometimes be more descriptive than the
column name. The findDisplayPanel.setHeadersAndColumnWidths() method allows you to do
this.

The parent class automatically generates the Change Reference, Change User and Change
Date components.

Place the non auto-generated components into the customPanel variable;

You can use data-aware components for optional or mandatory values. If a field is mandatory,
you can call the setNotNullFlag(true) method on that component. In this case, the parent class
checks that a value has been provided before saving. If a value has not been provided, a
warning dialog displays.

The auto-generated Order By component allows the user to choose how to display the results
of a query. Use the commonPanel.setOrderByComboBoxValues() method to populate the
component. The selected component requires two arrays - one for database column names
and the other for the associated display name.

Call the customPanelModified() method after making any changes to customPanel.

The final line of the initGUI() method ensures that the panel is in the correct starting state

Some database tables are replicated and some are not. This has an impact on the data entry
screens. For tables that are replicated, you are not allowed to update their primary keys. In this
example, the table is not replicated. If a table is replicated, call the setReplicated(true) method,
which causes the parent class to disable the primary key fields when updates occur, and the
Check Consistency button becomes enabled. This button is only enabled for replicated
tables.

There are no foreign key fields in this example. Foreign key fields cause some complications
for the print and export mechanisms. Often the foreign key column contains an ID value such
as a number. This is not particularly meaningful for the user, so it is possible to map the ID
value to a more descriptive display value. You can do this with a simple array or through a
database join.

The Tab 2 panel, AbcPanelTwo.java, for the same window is a slightly more complicated
example. Figure 7-4 illustrates the display mode for the Tab 2 panel of Window A.

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 13 of 21

Figure 7-4 Window A, Tab2 in Display Mode

You can find the source code for this panel at this location:

$NCC_SDK_HOME/example/ABC/java/AbcPanelTwo.java

Table 7-3 shows the database table for this screen:

Table 7-3 Database Table for AbcPanelTwo

Column Description

NR_NOA NUMBER (3) (Primary Key)

NR_NUMBER VARCHAR2 (20) (Primary Key)

NR_DATE VARCHAR2 (50)

CHANGE_REF VARCHAR2 (50)

CHANGE_USER CHAR (50)

CHANGE_DATE DATE

While this screen does not look much different from the previous one, there are some
differences in the code. The NR_NOA column is a foreign key into the SDK_ABC_NOA
database table. Therefore, the component associated with this column provides a mapping
between the actual foreign key (NR_NOA) and the SDK_ABC_NOA.DESCRIPTION value.

Note that this time the class implements the TableMonitorListener interface. This allows the
panel to update the Nature of Address component whenever the panel in Tab 1 creates,
modifies or deletes an entry. The constructors make an additional call to register interest in the
SDK_ABC_NOA table with tableMonitor.

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 14 of 21

tableMonitor.addTableMonitorListener(this, NOA_TABLE_NAME);

The TableMonitorListener interface has just one method, which is shown here:

public void tableChanged(String tableName);

This method updates the Nature of Address component whenever it is called. The following
line of code does the update, forcing the component to refresh itself with the latest database
information:

noaComboBox.reReadDataBase();

Because we have registered an interest in another table, we must de-register when we close
the window frame. Do this by overriding the public void close() method.

The createCustomInnerPanel() method is straightforward.

The noaComboBox component is implemented within a try and catch block as a database
query is required to populate the component. This time a simple GridBagLayout is used to
layout the components.

The initGUI() method is virtually the same as in the previous example except that it has the
following additional line:

setSupplementaryQuery(supplementaryQueryArray);

This line is part of a mechanism that allows the screen to map a foreign key value to a more
meaningful value, in this case mapping the noa number to its description. This allows the Find
Display Panel to show the NoA description, which is probably more meaningful to the user,
instead of a number.

The following figure shows the final tab, on the Window B frame, which has some additional
differences.

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 15 of 21

Figure 7-5 Window B in Find Mode

The full source code for this example is available in the following location:

$NCC_SDK_HOME/example/ABC/java/AbcPanelThree.java

This time the Output Type, Input Type and Charging Flag components map to database
columns that are of type CHAR(1)and have the following values.

• Input Type: Has valid values of I and E which represent Internal and External respectively

• Output Type: Has valid values of A, B and C which represent Output A, Output B and
Output C. This employs the technique of using the component to map to an array as
opposed to a foreign key table relationship

• Charging Flag: Has valid values of T and F which represent true or false

The source code shows how you can use an instance of
ScreenComponentFilteredComboBox to create a set of key value pairs that map the
database values to the values that are displayed to the user.

You can create instances of ScreenComponentTriStateCheckBox to provide a mapping to
various database values. This is done using the constructor as shown in the following example:

flagCheckBox = new ScreenComponentTriStateCheckBox("CHARGING_FLAG", false, true,
 true, CHARGING_FLAG_STRING, TriStateCheckBox.NOT_SELECTED, "T", "F", null,
 "Active", "Not Active", "Don't Care");

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 16 of 21

In this case, the component is mapped to T when the checkbox is selected, and to F when it is
not selected. Note that these values could also be Y or N for yes or no.

The component also has a third state ("Any" or "Don't Care") for when the panel is in find
mode. It allows the search facility to match against any value.

Another difference in this screen is that the underlying database table uses an ID column as
the primary key, which is auto-generated by an Oracle sequence. Normally this value is of little
importance to the user so it is not usually displayed. This does have a couple of
consequences, the main one being whether the CheckConsistency() method needs to be
overridden. In the following code, the Name and NoA fields are unique so they are used to
obtain the primary key value (the ID) for this entry. Note that the CheckConsistency button is
only available when a database entry has been selected for update.

This time, the initGUI() method uses a slightly different setSupplementaryQuery() method call:

setSupplementaryQuery(supplementaryQueryArray, supplementaryDataArray,
 supplementaryDisplayArray);

The supplementaryDataArray and supplementaryDisplayArray parameters provide mapping
information to the Find Display Panel for the components that have hard-coded lists (arrays),
for example the Input and Output Type components.

Other useful methods in the parent class that you can override with subclasses are:

• The search mechanism comprises multiple methods and is used to automatically generate
the SQL search query, the main one being shown here:

protected String createFindQueryString(ScreenComponent[] screenComponents)

The input parameter is an array of components that contain search values. This method
makes use of a number of helper methods to generate the different parts of the query, for
example, the SELECt clause, FROM clause, WHERE clause and ORDER BY clause.

The helper methods are:

– getSelectionList(): To add columns from a join or add an Oracle hint

– getFromClause(): To include extra join information

– getWhereClause(): To exclude certain values, for example where ID > -1

– getOrderByClause(): To restrict to a subset all the fields that can be used in the
ORDER BY clause

– getFindableDateWhereClause (ScreenComponentIndentedFindableDate comp): A
findable date uses two parts, for example date >= ? and date <= ?. Normally the find
query performs an exact match, for example start_date = ?

– getExportFindQueryString(): By default, returns the same value as a call to
createFindQueryString(). You can override it, though, if that is required for exporting
data

– getExportFindQueryString() : The default implementation returns the same value as a
call to createFindQueryString(), but can be overridden if this is required for exporting
data

– protected PreparedStatement getExportStatement (): To return the a prepared
statement that performs the same query as a find that returns a scrollable result set
but instead uses a non-scrollable result set for use in exporting tables with a large
number of entries.

The save mechanism also consists of a number of methods that you can be override as
required:

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 17 of 21

• public boolean save() : This is the main entry point for the save mechanism

• protected boolean canSave(): This method is called from the save() method and provides
verification and validation of input data. The method should return true, if all of the data
entry fields contain valid data. Typical examples are mandatory fields that have a value
and data that is within specified limits. This often needs to be overridden when one field is
used in conjunction with another field, such as using minimum and maximum pairs to
check that the minimum value is less than the maximum value. Another common reason to
override this method is when a field is only mandatory when the value of another field is
set to a particular value (for example, a check box is selected).

• protected int doInsert(): This method performs the actual INSERT statement required to
create a new database record. It returns the number of rows inserted, which will normally
be 0 or 1, but it is conceivable that other values could be valid in some circumstances.

• protected int doUpdate (): Similar to the doInsert() method, but this updates existing
records in the database rather than create new records.

• protected String getUpdateSetClause(): This method generates the SET clause for the
UPDATE statement. By default this includes all onscreen components that implement the
ScreenComponent interface, are enabled and can be saved.

• protected int doModifyAllSave(): This method performs the actual UPDATE statement
required by a Modify All operation where the same updates are performed on multiple
rows.

• public Vector getModifyFields(): This method is used by the Modify All mechanism. It
contains a list of the fields that a user may modify. This would typically exclude any primary
key fields. Otherwise the result would be a UNIQUE constraint violation.

• protected String getUpdateSetClause(): This method generates the SET clause for the
UPDATE statement. Again, by default, it includes all on-screen components that implement
the ScreenComponent interface and are enabled and can be saved.

• delete() and deleteAll() : If the subclass needs to use these methods, they can be
overridden. This is usually done when the class needs to work with the TableMonitor class.

• public void dispose(): The default implementation is an empty stub, but this can be used to
free any held resources, if required.

• public void close(): In the default implementation this closes any open result sets or FIND
statements. As the results sets are scrollable, they are not closed immediately. You must
ensure that they are closed when the screen is no longer required.

• public boolean canClose(): This method determines whether a screen can close. The
default implementation checks to see if the panel data has been modified but not saved.
The method returns true if it is alright for the panel or window to close, and false
otherwise.

• public void setStatusMessage (String) and public String getStatusMessage(): These two
methods set and retrieve the contents of the message display area.

• public void focusGained(FocusEvent) and public void focusLost(FocusEvent): The default
implementation for these two methods does nothing. However, you can override them to
specify any behaviour that needs to occur when the panel gains or loses focus on the
screen.

• protected void setSupplementaryQuery(): Part of a very complicated mechanism that
ensures that the findDisplayPanel shows descriptive key data in the display table. This is
also used by the export operation.

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 18 of 21

Language Translation
The ABC example uses the SMS language translation mechanism. Statements similar to the
one shown in the following example appear at various points in the source code:

String translatedMsg = Language.getTranslatedString(String application, String message);

In this example, application will have a value of ABC and the message parameter is the text
that needs to be translated. The SMS system searches for a translated version of the message
text and, if found, returns it. Otherwise, it returns the original message.

The mechanism uses a flat, plain text file containing a list of key value pairs with the format:

<key>=<translated value>

where key is the message in the default language on the left-hand side and the translated
version is on the right-hand side. For example:

Hello=Bonjour

The file must reside in the directory /IN/html/<Application Name>/language and the name
must have the format <language name>.lang as shown in the following examples:

/IN/html/ABC/language/English.lang
/IN/html/ABC/language/Dutch.lang

In the English.lang file the key value pairs would be identical.

For the ABC example, a strings.txt file contains a list of all the strings that need to be
translated. You can find the strings.txt file in $NCC_SDK_HOME/example/ABC/html/.

You can use the Unix shell script, regen-lang to generate the English.lang file with the
following command:

$./regen-lang > English.lang

The regen-lang script can also generate a useful dummy language file by using the d_
parameter, as shown in the following example:

$./regen-lang d_ > Dutch.lang

This form of the command produces a new Dutch.lang file in which the right-hand side of each
key value pair is the same as the left-hand side, but is prefixed by d_. For example:

hello=d_hello

You can use this option to quickly see if any translations have been missed. Simply set the
SMS language configuration to Dutch and every visible string in the service should be prefixed
by d_. If not, then you need to add that string to the file.

SQL Error Translation Files

The service screens can generate an SQLException, for example, when trying to create a new
record that results in a non-unique constraint error. If the SQL error message that is produced
by JDBC and the Oracle drivers is not descriptive enough, you can provide a more descriptive
message. If a new service introduces new database constraints that users are likely to
encounter, then you must provide an error message and translation.

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 19 of 21

The translation files go in the directory /IN/html/<ApplicationName>/error/<language
name>. For example, for an application named ABC and the English language, the files would
go in /IN/html/ABC/error/English.

The name of the file that contains the text for the error code must be either <error_code> or
<error_code>.<detail>. The <detail> part allows you to have different messages for the same
error code. For example, error code 1, a unique constraint violation, indicates a different
problem for each constraint that might be violated.

In this case, the SQL error is parsed and the part in brackets after the first dot is taken as the
detail field. For example, given the SQL error "ORA-00001: unique constraint
(SMF.SMF_APP_PK) violated", the detail part will be "SMF_APP_PK", so the error file should
be named 1.SMF_APP_PK.

The ABC example contains several examples of message files in the $NCC_SDK_HOME/
example/ABC/html directory.

Service Help Files

The SMS system and the services that its supports use the Oracle Help for Java system. For
details on using the system, please refer to the official Oracle Help for Java documentation.

The help file name should be <language>_<application>.hs.

For the ABC example, you must create the following directory on the SMS server.

/IN/html/ABC/helptext

This directory must contain the file /IN/html/ABC/helptext/English_ABC.hs

This file tells the Help system where to find the rest of the help files, in particular the map.jhm
and toc.xml files.

The following example shows the English_ABC.hs file. For a new service, all that you would
need to change is the title and the homeID value.

<?xml version='1.0' ?>
<helpset version="1.1">

<!-- title -->
<title>ABC Helpset</title>

<!-- maps -->
<maps>
 <homeID>O56789</homeID>
 <mapref location="English/map.jhm" />
</maps>

<!-- views -->
<view>
 <name>TOC</name>
 <label>Contents</label>
 <type>oracle.help.navigator.tocNavigator.TOCNavigator</type>
 <data engine="oracle.help.engine.XMLTOCEngine">English/toc.xml</data>
</view>

<view>
 <name>Index</name>
 <label>Index</label>
 <type>oracle.help.navigator.keywordNavigator.KeywordNavigator</type>
 <data engine="oracle.help.engine.XMLIndexEngine">English/index.xml</data>
</view>

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 20 of 21

</helpset>

For details on how to create the actual help content, including the map.jhm and toc.xml files,
refer to the Java Help documentation.

Chapter 7
Creating a New Service Screen

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 21 of 21

8
Creating Memory-Mapped Files

This chapter describes how to create memory-mapped files using the Oracle Communications
Network Charging and Control (NCC) Software Development Kit (SDK).

About Memory-Mapped Files
The NCC SDK enables you to create memory-mapped files, which you can use to increase
application performance. Memory mapped files are disk flles that contain a copy of database
table information. A process accesses the file data via memory operations. This provides fast
database access for components that reside on Service Logic Controllers (SLCs), such as
feature nodes and service loaders. Applications that have the following characteristics can
benefit from using memory-mapped files:

• Require total data availability

• Require high rates of random reading

• Have data that rarely changes, such as routing tables and product-related tables

About Creating Memory-Mapped Files
The creation of memory-mapped files consists of the following processes:

• Data must be transferred from the Service Management System (SMS), where the primary
database resides, to the Service Logic Controller.

The data is transferred using the SMS replication facility.

• Changed data must be detected

This includes detecting the absence of change in the data and also the signalling of an
alert on each SLC to indicate when the data has changed.

• Providing the data to the application

The following steps describe the process in more detail:

1. Table X in the Oracle database is updated on the SMS.

2. The SMS replicates the table to the SLC.

3. When the updates are complete, an insert is done to the SMF_APPLICATION_ALERT
table on the SMS.

4. SMS replicates the change to the SMF_APPLICATION_ALERT table on the SLC

5. An Oracle alert triggers an Mfile daemon

6. The Mfile daemon reads the entries from Table X, formats them, and writes them to a file.

7. The file is mapped and read by the application.

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 7

Data Replication
SMS replicates data changes to the SLC just as it normally does. SMS replicates changes to
the database and updates to the SMF_APPLICATION_ALERT table automatically. No
development is required to accomplish the replication of data changes and alerts to the SLCs.
The cmnTableInstaller.sh utility allows you to configure the replication and create the
replication triggers.

For information on using the cmnTableInstaller.sh utility, see "Running the Database Table
Installer".

Creating Alerts When Data Changes Occur
On the SMS, inserts to the SMF_APPLICATION_ALERT table will be deleted automatically
and the insert and delete are replicated to all SLCs. Only inserts are audited; updates are not
permitted.

On the SLC, each insert causes an alert to be signalled.

For an application named myApp and a table named SDK_ANUMBER_BARRED the following
SQL code must be run on the SMS to ensure any change within the data produces an insert-
and-delete cycle on the SMF_APPLICATION_ALERT table, which signals the associated Mfile
daemon to detect the change and rebuild the Mfile.

create or replace trigger smf.SDK_ANUMBER_BARRED_mf_auid
after insert or update or delete on smf.SDK_ANUMBER_BARRED
referencing new as r for each row
begin
 insert into smf_application_alert (application, item) values ('SDK',
'SDK_ANUMBER_BARRED');
 delete from smf_application_alert where APPLICATION='SDK' and
ITEM='SDK_ANUMBER_BARRED';
end;

An Mfile daemon can register for these alerts and respond by regenerating the data or
following other instructions.

The Mfile Daemon
The daemon that creates the memory-mapped file runs on each SLC. It takes the following
parameters:

• mapped file name

• application and item

• date query

• data regeneration function

The SDK provides classes and functions that allow you to create the Mfile daemon and
organize the Mfile data in a number tree fashion. You can have multiple trees with each tree
referenced by an index. You can elect to store three integers or a block of data at each leaf on
the tree. Typically, each block of data is derived from a row in a specific database table. Leaves
in containing data blocks are referenced by a unique string.

Chapter 8
Data Replication

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 7

The SDK provides functions to build the tree and to add to it, as well as to search the tree. The
type of storage and searching that is used is referred to as General Purpose Number Analysis
(GPNA). Each block of data typically is derived from a row in an application-specific database.

The Mfile Daemon API
The SDK provides functions that allow you to create daemons to retrieve information from
database tables and create an Mfile.

The cmnMfileSDK.h and cmnMfileDaemonAPI.h files define the prototypes for these
functions. The static library libcmnMfile.a implements them.

The cmnMfileDaemonAPI.h file includes the functions described in the following sections.

enum AwaitResult{...}
Several of the functions in cmnMfileDaemonAPI.h return enum AwaitResult{...}, which is defined
as follows:

enum AwaitResult(...)

where the possible values are:

• AWAIT_FAILED = -1 if a catastrophic error occurred

• AWAIT_CHANGED if the data has changed, or the file is invalid

• AWAIT_EXIT if the daemon was asked to exit

initGPNA()
The initGPNA() function initializes the specified Mfile for the specified database file. You call it
once at the start of an Mfile daemon.

This function has the following syntax parameters, and return value:

int initGPNA(char *userpass, char *dbtable, char *app_name, char *filename,
 int init_sz)

Parameters

• userpass is the Oracle username and password

• dbtable is the name of the database table to map to the Mfile

• app_name is the application name

• filename is the Mfile file name, including the full path

• init_sz is the initial size to make the Mfile

Return

• 0 if successful

• -1 if creation of the Mfile fails

Chapter 8
The Mfile Daemon

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 7

awaitGPNAChange()
The awaitGPNAChange() function checks to see if a file is up to date and waits for an
appropriate alert or exit request through the Mfile API. This function blocks until there is a
change on the database table that was initialized by initGPNA().

This function has the following syntax and return values:

enum AwaitResult awaitGPNAChange()

Return

• 0 if successful

• -1 if failure

startGPNAChange()
The startGPNAChange() function forces reload of the Mfile but does not depend on a change
in the database. It is a non-blocking function.

This function has the following syntax and return value:

enum AwaitResult startGPNAChange()

Return

• 0 if successful

• -1 if failure

mallocGPNAEntry()
The mallocGPNAEntry() function retrieves the next available memory position at which to write
the next GPNA entry, returning a pointer to this location. You can then write a block of data
there, not to exceed the limit specified by the max_entry_size parameter.

This function has the following syntax, parameters, and return value:

void *mallocGPNAEntry(int max_entry_size)

Parameters

• max_entry_size is the maximum size of the memory block to allocate

Return

• pointer to available memory block for leaf data, if successful

• NULL, if failure

addGPNAEntry()
The addGPNAEntry() function adds a leaf entry at the location returned by the call to the
mallocGPNAEntry() function.

Chapter 8
The Mfile Daemon

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 7

This function has the following syntax, and parameters.

void addGPNAEntry(int size_of_entry, unsigned char *nature, char *number)

Parameters

• size_of_entry is the actual size of the entry, which must be the same as allocated through
mallocGPNAentry()

• nature is a pointer to the Nature of Address value, an integer that describes the type of
number, for example, national or international.

• number is a pointer to a string that contains the digits of the address

addGPNAIntEntry()
Adds a GPNAResult_t value element to the uncompressed tree.

This function has the following syntax and parameters:

void addGPNAIntEntry(GPNAResult_t res, unsigned char *nature, char *number)

Parameters

• res is the GPNAResult_t value element to add to the uncompressed tree. GPNAResult_t is
the result of the genericGPNA() function.

• nature is a pointer to the Nature of Address value, an integer that describes the type of
number, for example, national or international

• number is a pointer to a string that contains the digits of the address

finishedGPNA()
Call the finishedGPNA() function after all entries have been added to the uncompressed tree.
This function compresses the GPNA tree, frees up memory, and replaces the shared memory
version of the table with the version just created.

This function has the following syntax and return value:

int finishedGPNA(void)

Return

• 0 on success

• -1 on failure

finishedSingleEntry()
Call the finishedSingleEntry() function after adding a single entry to the uncompressed tree.
This function compresses the tree, and frees up memory.

This function has the following syntax and return value:

int finishedSingleEntry(void);

Chapter 8
The Mfile Daemon

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 5 of 7

Return

• 0 on success

• -1 on failure

You can find an Mfile daemon example in the following SDK file:

$NCC_SDK_HOME/example/sdkMfileDaemon/sdkMfileDaemon.cc

An Mfile Daemon Example
You can find an Mfile daemon example in the following SDK file:

$NCC_SDK_HOME/example/sdkMfileDaemon/sdkMfileDaemon.cc

The Mfile Application
The SDK also provides functions to allow you to create your own APIs to retrieve information
from memory-mapped files. You can use these APIs in service components to retrieve
information as rapidly as possible.

Before you access an Mfile from your application, you must create a global mapping of the
memory table identifiers to the shared memory files. You must include code in your application
that calls the setupGPNA() function to set up the application's global mapping.

The Mfile Application API
The cmnMfileSDK.h file defines prototypes for the Mfile application functions, which are
implemented in the static library libcmnMfile.a.

setupGPNA()
The setupGPNA() function associates a GPNA memory-mapped file with an identifier that the
service uses to reference it. Call this function only once from the function that performs the
query.

This function has the following syntax and parameters:

void setupGPNA(int id, char *app_name, char *mfilename)

Parameters

• id is the identifier for the Mfile.

• app_name is the application name (NULL => GENERIC)

• mfilename is the Mfile filename, including the full path

genericGPNA()
The genericGPNA() function allows you to query the memory-mapped file. It returns the entry
that has the longest number of matching digits against the digits for the given nature.

This function has the following syntax and parameters and return value:

Chapter 8
The Mfile Application

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 6 of 7

int genericGPNA(unsigned long memtableID, unsigned char nature, char *number,
 unsigned long start, unsigned long_minmatch,
 unsigned long maxmatch, GPNAresult_t *result, void **userdata,
 unsigned long *nummatched)

Parameters

• memtableID is the memory table ID, the index of the memory table as defined in the call to
setupGPNA(). Value can be from 1 to MAX_GPNA_MEM_TABLES.

• nature is the nature of number (225=>no nature). Identifies a specific nature for the
following number. For example, you can use this to specify the NOA of a number. In cases
where raw digits should be analyzed, a pseudo nature (NULL = 0) should be used. Values
can be from 0 to 254.

• number is a pointer to the number to find (NULL=>pointer to first word of singleEntry is
returned in userdata). Maximum length is 28.

• start is the starting digit of that number from which the search will begin. Values can be
from 1 to 28.

• minmatch is the minimum number of digits to match. A value of 0 indicates there is no
minimum. Values can be from 0 to 28.

• maxmatch is the maximum number of digits to match. A value of 0 indicates there is no
maximum. Values can be from 0 to 28.

• result is a pointer to the GPNAResult_t value. GPNAResult_t is the result of the
genericGPNA() function.

userdata is a pointer to the indexed value. Returns a pointer to the user-defined Mfile data
associated with the search number.

• nummatched is the number of digits matched. A value of 0 indicates that no match was
found. Values can be from 0 to 28.

Return

• 0 if successful

• -1 if a system or setup error occurred

• -2 if input parameters are invalid; for example, if maxmatch is less than minmatch.

• -3 if no entry is found that matches the set criteria

An Mfile Application Example
You can find an Mfile application example in the following SDK file:

$NCC_SDK_HOME/example/sdkMfileDaemon/sdkMfileAPI.cc

Chapter 8
The Mfile Application

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 7 of 7

9
Creating and Replicating Database Tables

This chapter describes how to create and replicate database tables using the Oracle
Communications Network Charging and Control (NCC) Software Development Kit (SDK).

About Creating and Replicating Database Tables
The NCC SDK enables you to create database tables on the Service Management System
(SMS) and replicate them to Service Logic Controllers (SLCs) for use in custom feature nodes.
You could define tables, for example, to store information such as routing data that is specific
to the topology of your network, allowing you to tailor services based on that information.

Creating and replicating custom database tables consists of the following tasks, which are
described in the sections that follow:

1. Defining the database table.

2. Running the database table installer, cmnTableInstaller.sh, to create the database table
and configure replication for it.

Defining a Database Table
You define your database table by creating an XML file using the XML elements shown in
Table 9-1:

Table 9-1 Table Definition XML Elements

XML Element Description

<TableDefinition> Specifies the table name, as well replication and auditing information.

<TableColumnData> Specifies the definition of a column in the table, including the column
name, data type, and so on.

<TableConstraint> Specifies constraints on the table such as what action to take when an
event occurs on a column that references a column in another table.

<IndexDefinition> Specifies the name and type of an index on the table.

<IndexColumnData> Specifies the name of the column on which to create the index.

Each of these tags has attributes, which the following sections describe.

The TableDefinition Element
The <TableDefinition> element has the following format:

<TableDefinition TableName="MMX_ROUTING_SCHEME" RepBaseName="MMX_ROUTING_SCHEME"
RepPkgName="MMX_REP_INTERNAL" AuditBaseName="MMX_ROUTING_SCHEME" Comment="Models a
Routing Scheme" >

Table 9-2 describes the attributes of the <TableDefinition> element:

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 12

Table 9-2 TableDefinition Attributes

Attribute Value

TableName A string that contains the name of the table.

RepBaseName A string that specifies the replication base name. It's used to create the
names of the triggers that invoke the replication process. Four triggers
are created with the following
names:REP_<RepBaseName>_AIUREP_<RepBaseName>_ADREP_
<RepBaseName>_BFRREP_<RepBaseName>_UPK

RepPkgName A string that specifies the name of replication package. Leave this as
the default, which is SMS.REP_INTERNAL.

AuditBaseName A string that specifies the base name of the audit log. Determines the
names of the triggers that invoke the audit process. Two triggers are
created with names:<AuditBaseName>_ABT<AuditBaseName>_AATIf
the AuditBaseName is empty, no audit triggers are created and
changes to the table are not audited.

Comment A string that provides an explanatory comment about the table, such
as its purpose.

The TableColumnData Element
The <TableColumnData> element tag has the following format:

<TableColumnData ColumnName="ID" ReplicKey="T" Audited="T" ColumnDataType="NUMBER"
ColumnLength="28" ColumnPrecision="28" ColumnScale="0" AllowNull="F"
SeqBaseName="MMX_ROUTING_SCHEME" SeqMax="nomaxvalue" Comment="Primary key" />

Table 9-3 describes the attributes of the <TableColumnData> element:

Table 9-3 TableColumnData Attributes

Attribute Value

ColumnName A string that specifies the name of the column.

ReplicKey A value of T for true or F for false that indicates whether this column
forms part of the key for replication.

Audited A value of T for true or F for false that indicates whether changes to
this column are included in the audit log.

ColumnDataType A string that specifies the column's data type.

ColumnLength A string that specifies the maximum length of the column

ColumnPrecision A string that specifies the decimal position for numeric values

ColumnScale A string that specifies the maximum number of digits to the right of the
decimal place

AllowNull A value of T for true or F for false that indicates whether the column
can have a value of NULL

SeqBaseName A string that defines the name of a sequence to populate this column.
A sequence called <SeqBaseName>_SEQ will be created by the
installer and used by a trigger called <SeqBaseName>_MT.

SeqMax A string that indicates sequence maximum.

Comment A string that describes the column.

Chapter 9
Defining a Database Table

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 12

The TableConstraint Element
The <TableConstraint> element has the following format:

<TableConstraint ConstraintType="P" State="ENABLED" ReferencedSchema=""
ReferencedTable="" CascadeOnDelete="" CheckCondition="" ConstraintName="RT_SC_PK">

Table 9-4 describes the attributes of the <TableConstraint> element:

Table 9-4 TableConstraint Attributes

Attribute Value

ConstraintType A string that specifies the type of constraint in force. Possible values
are:P - Primary keyU - UniqueR - Reference (foreign key)C - Check
(uses the CheckCondition element)

State A string that has a value of ENABLED to indicate that the constraint is
in force.

ReferencedSchema A string that specifies the name of the schema that the constraint
references. This element applies only to a constraint type of R.

ReferencedTable A string that specifies the name of the table that the constraint
references. This element applies only to a constraint type of R.

CascadeOnDelete A string that specifies the cascading action to take when a delete
occurs on a row in the table. A value of CASCADE specifies that
associated rows in a child table should be deleted when a row in this
table is deleted. A value of NO ACTION indicates no action will be
taken. This element applies only to a constraint type of R.

CheckCondition A string that indicates a particular condition exists.

The IndexDefinition Element
The <IndexDefinition> element has the following format:

<IndexDefinition IndexName="RT_SC_PK" Unique="T">

Table 9-5 describes the attributes of the <IndexDefinition> element:

Table 9-5 IndexDefinition Attributes

Attribute Value

IndexName A string that specifies the name of the index.

Unique A value of T for true or F for false that indicates whether the index is
unique.

The IndexColumnData Element
The <IndexColumnData> element has the following format:

<IndexColumnData ColumnName="ID" />

Table 9-6 describes the attribute of the <IndexColumnData> element:

Chapter 9
Defining a Database Table

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 12

Table 9-6 IndexColumnData Attribute

Attribute Value

ColumnName A string that specifies that name of the column that is being indexed.

A Table Definition Example
You can find several instances of XML table definitions in the following SDK files:

$NCC_SDK_HOME/example/ABC/db/SDK.xml

$NCC_SDK_HOME/example/ABC/db/SDK_Client.xml

The following example shows the XML elements and attributes that define the SDK_ABC_NOA
database table in the SDK.xml file:

 <TableDefinition TableName="SDK_ABC_NOA" RepBaseName="SDK_ABC_NOA" AuditBase
Name="SDK_ABC_NOA" Comment="Sample table for SDK PI commands, screens etc.">
 <TableColumnData ColumnName="NOA" ReplicKey="T" Audited="T" Col
umnDataType="NUMBER" ColumnLength="3" ColumnPrecision="3" ColumnScale="0" AllowN
ull="F" Comment="Primary key" />
 <TableColumnData ColumnName="DESCRIPTION" Replicated="T" Audited="T" Col
umnDataType="VARCHAR2" ColumnLength="50" ColumnPrecision="0" ColumnScale="0" Al
lowNull="T" Comment="Optional free text" />
 <TableColumnData ColumnName="CHANGE_USER" ColumnDataType="CHAR" Colu
mnLength="50" ColumnPrecision="0" ColumnScale="0" AllowNull="F" />
 <TableColumnData ColumnName="CHANGE_DATE" ColumnDataType="DATE" Colu
mnLength="7" ColumnPrecision="0" ColumnScale="0" AllowNull="F" />
 <TableColumnData ColumnName="CHANGE_TERM" ColumnDataType="VARCHAR2" Colu
mnLength="12" ColumnPrecision="0" ColumnScale="0" AllowNull="F" />
 <TableColumnData ColumnName="CHANGE_REF" ColumnDataType="VARCHAR2" Colu
mnLength="50" ColumnPrecision="0" ColumnScale="0" AllowNull="T" />

 <TableConstraint ConstraintType="P" State="ENABLED" ConstraintName="SDK_
ABC_NOA__PK" UseIndex="True">
 <ReferenceColumns TableColumn="NOA" />
 </TableConstraint>
 </TableDefinition>

Running the Database Table Installer
The database table installer, cmnTableInstaller.sh, creates the database table from the
supplied XML file and configures replication for it. You can find the database installer in the
following location:

$NCC_SDK_HOME/bin

The installer has the following command line options:

cmnTableInstaller.sh -U <ora_username> -D <OutputDir> -S <tableSchemaFile> -C
<tableClientFile> [-options]

Table 9-7 describes the command line options for cmnTableInstaller.sh:

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 12

Table 9-7 cmnTableInstaller.sh Command Line Options

Parameter Description

ora_username The name of the owner of the table to be installed.

OutputDir The output directory for the script.

tableSchemaFile The name of the XML file that contains the table's schema

tableClientFile The name of an XML file that defines storage information for tables and
indexes (sizing, tablespaces etc.). This is generally specific to a
particular installation.

options: NA

-t Node type of SMS (default) or Other.

-p Output prefix (describing the component being installed)

-n New install - end installation if any of the tables already exists

-v Verbose mode for debugging output

-h Print command line help message

Defining the tableClientFile
The tableClientFile is an XML file that specifies storage information, such as sizing,
tablespaces, and so on, for tables and indexes that are generally specific to a particular
installation.

You define the tableClientFile by creating an XML file using the XML elements shown in
Table 9-8.

Table 9-8 tableClientFile XML Elements

Element Description

<ClientTableDefinition> Specifies the storage attributes for a table

<ClientIndexDefinition> Specifies the storage attributes for an index

The ClientTableDefinition Element
The <ClientTableDefinition> element has the following format:

<ClientTableDefinition PCTINCREASE="0" INITRANS="1" MAXEXTENTS="UNLIMITED" M
INEXTENTS="1" NEXTEXTENT="1M" INITIAL="1M" BUFFER_POOL="KEEP" PCTFREE="10" PCTU
SED="80" TABLESPACE="SDK_DATA" TableName="SDK_ABC_NOA" MAXTRANS="255" CACHE="Fal
se" />

Table 9-9 describes the attributes of the <ClientTableDefinition> element:

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 5 of 12

Table 9-9 ClientTableDefinition Attributes

Attribute Value

PCTINCREASE In locally managed tablespaces, Oracle Database uses
PCTINCREASE to determine the initial segment size during segment
creation. It ignores the parameter during subsequent space allocation.
In dictionary-managed tablespaces, specify the percent by which the
third and subsequent extents grow over the preceding extent. The
default value is 50, which means that each subsequent extent is 50%
larger than the preceding extent. The minimum value is 0, meaning all
extents after the first are the same size. The maximum value depends
on your operating system.

INITRANS Specifies the initial number of concurrent transaction entries that will
be allocated within each data block that is allocated to the database
object. Value can range from 1 to 255 and defaults to 1, or, for a
cluster, 2 or the default INITRANS value of the tablespace in which the
cluster resides, whichever is greater.

MAXEXTENTS For objects in dictionary-managed tablespaces, specifies the total
number of extents, including the first, that Oracle can allocate for the
object. The minimum value is 1; rollback segments have a minimum of
2. Default value depends on your data block size. Oracle ignores
MAXEXTENTS for objects in a locally managed tablespace. Specify
UNLIMITED to automatically allocate extents as needed. Oracle
recommends UNLIMITED to minimize fragmentation.

MINEXTENTS In a locally managed tablespace, Oracle uses MINEXTENTS to
compute the initial amount of space to allocate, which is equal to
INITIAL * MINEXTENTS. Subsequently, Oracle sets the value to 1. In a
dictionary-managed tablespace, MINEXTENTS is the minimum
number of extents that must be allocated to the segment.

In dictionary-managed tablespaces, specify the total number of extents
to allocate when the object is created. The minimum and default value
is 1, in which case Oracle allocates only the initial extent. For rollback
segments, the minimum and default value is 2. The maximum value
depends on your operating system.

NEXTEXTENTS Specifies the size in bytes of the next extent to allocate to the object. In
locally managed tablespaces, if the tablespace is set for automatically
allocate extent management Oracle determines the size. In UNIFORM
tablespaces, the size of NEXTEXTENT is the uniform extent size
specified when the tablespace was created. In a dictionary-managed
tablespace, the default value is the size of 5 data blocks. Minimum
value is the size of 1 data block. Maximum value depends on your
operating system. For values less than 5 data blocks, Oracle rounds
the value up to the next multiple of the data block size. For values
greater than 5 data blocks, Oracle rounds up to a value that minimizes
fragmentation.

INITIAL Specify the size of the first extent of the object. Oracle allocates space
for this extent when you create the schema object. In locally managed
tablespaces, the value of INITIAL, in conjunction with the values of
MINEXTENTS, NEXT and PCTINCREASE, determines the initial size
of the segment

BUFFER_POOL Lets you specify a default buffer pool for a schema object. All blocks for
the object are stored in the specified cache.

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 6 of 12

Table 9-9 (Cont.) ClientTableDefinition Attributes

Attribute Value

PCTFREE A number that represents the percentage of space in each data block
of the database object that Oracle reserves for future updates to the
object. Specified as a value from 0 to 99. A value of 0 means that the
entire block can be filled by inserts of new rows. Defaults to 10. Total of
PCTUSED and PCTFREE cannot be greater than 100.

PCTUSED A number that represents the minimum percentage of used space that
Oracle maintains for each data block of the database object. Specified
as a positive integer from 0 to 99 and defaults to 40. Total of
PCTUSED and PCTFREE cannot be greater than 100.

TABLESPACE Specifies the name of the tablespace in which Oracle Database will
create the table. Tablespace represents an allocation of space in the
database to store schema objects. See the SQL CREATE
TABLESPACE statement for more information.

TableName Specifies the name of the database table to which this definition
applies.

MAXTRANS Determines the maximum number of concurrent update transactions
allowed for each data block in the segment.

CACHE When a full table scan is performed, CACHE specifies that you want
the blocks retrieved for this cluster to be placed at the most recently
used end of the least recently used (LRU) list in the buffer cache.
Useful for small lookup tables.

The ClientIndexDefinition Element
The <ClientIndexDefinition> element has the following format:

<ClientIndexDefinition IndexName="SDK_ABC_EXAMPLE__PK" TABLESPACE="SDK_DATA"
 INITIAL="1M" NEXTEXTENT="1M" MINEXTENTS="1" MAXEXTENTS="UNLIMITED" BUFFER_POOL=
"KEEP" PCTFREE="10" PCTINCREASE="0" INITRANS="2" MAXTRANS="255" />

Table 9-10 describes the attributes of the <ClientIndexDefinition> element:

Table 9-10 ClientIndexDefinition Attributes

Attribute Value

IndexName Specifies the name of the index.

TABLESPACE Specifies the name of the tablespace in which Oracle Database will
create the table. Tablespace represents an allocation of space in the
database to store schema objects. See the SQL CREATE
TABLESPACE statement for more information.

INITIAL Specify the size of the first extent of the object. Oracle allocates space
for this extent when you create the schema object. In locally managed
tablespaces, the value of INITIAL, in conjunction with the values of
MINEXTENTS, NEXT and PCTINCREASE, determines the initial size
of the segment

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 7 of 12

Table 9-10 (Cont.) ClientIndexDefinition Attributes

Attribute Value

NEXTEXTENT Specifies the size in bytes of the next extent to allocate to the object. In
locally managed tablespaces, if the tablespace is set for automatically
allocate extent managementOracle determines the size. In UNIFORM
tablespaces, the size of NEXTEXTENT is the uniform extent size
specified when the tablespace was created. In a dictionary-managed
tablespace, the default value is the size of 5 data blocks. Minimum
value is the size of 1 data block. Maximum value depends on your
operating system. For values less than 5 data blocks, Oracle rounds
the value up to the next multiple of the data block size. For values
greater than 5 data blocks, Oracle rounds up to a value that minimizes
fragmentation.

MINEXTENTS In dictionary-managed tablespaces, specify the total number of extents
to allocate when the object is created. The minimum and default value
is 1, in which case Oracle allocates only the initial extent. For rollback
segments, the minimum and default value is 2. The maximum value
depends on your operating system.

In a locally managed tablespace, Oracle uses MINEXTENTS to
compute the initial amount of space to allocate, which is equal to
INITIAL * MINEXTENTS. Subsequently, Oracle sets the value to 1. In a
dictionary-managed tablespace, MINEXTENTS is the minimum
number of extents that must be allocated to the segment.

MAXEXTENTS For objects in dictionary-managed tablespaces, specifies the total
number of extents, including the first, that Oracle can allocate for the
object. The minimum value is 1; rollback segments have a minimum of
2. Default value depends on your data block size. Oracle ignores
MAXEXTENTS for objects in a locally managed tablespace. Specify
UNLIMITED to automatically allocate extents as needed. Oracle
recommends UNLIMITED to minimize fragmentation.

BUFFER_POOL Lets you specify a default buffer pool for a schema object. All blocks for
the object are stored in the specified cache.

PCTFREE A number that represents the percentage of space in each index block
that Oracle reserves for future updates to the object. Specified as a
value from 0 to 99. A value of 0 means that the entire block can be
filled by inserts. Defaults to 10.

PCTINCREASE In locally managed tablespaces, Oracle Database uses
PCTINCREASE to determine the initial segment size during segment
creation. It ignores the parameter during subsequent space allocation.
In dictionary-managed tablespaces, specify the percent by which the
third and subsequent extents grow over the preceding extent. The
default value is 50, which means that each subsequent extent is 50%
larger than the preceding extent. The minimum value is 0, meaning all
extents after the first are the same size. The maximum value depends
on your operating system.

INITRANS Specifies the initial number of concurrent transaction entries that will
be allocated within each data block that is allocated to the index. Value
can range from 1 to 255 and defaults to 2.

MAXTRANS Determines the maximum number of concurrent update transactions
allowed for each data block in the segment.

A tableClientFile Example
The following example shows a sample definition of a tableClientFile file.

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 8 of 12

<?xml version="1.0"?>
<!DOCTYPE client SYSTEM "../../../bin/client.dtd">
<client>

 <ClientTableDefinition PCTINCREASE="0" INITRANS="1" MAXEXTENTS="UNLIMITED" M
INEXTENTS="1" NEXTEXTENT="1M" INITIAL="1M" BUFFER_POOL="KEEP" PCTFREE="10" PCTU
SED="80" TABLESPACE="SDK_DATA" TableName="SDK_ABC_NOA" MAXTRANS="255" CACHE="Fal
se" />
 <ClientTableDefinition PCTINCREASE="0" INITRANS="1" MAXEXTENTS="UNLIMITED" M
INEXTENTS="1" NEXTEXTENT="1M" INITIAL="1M" BUFFER_POOL="KEEP" PCTFREE="10" PCTU
SED="80" TABLESPACE="SDK_DATA" TableName="SDK_ABC_NUMBER_BARRED" MAXTRANS="255"
CACHE="False" />
 <ClientTableDefinition PCTINCREASE="0" INITRANS="1" MAXEXTENTS="UNLIMITED" M
INEXTENTS="1" NEXTEXTENT="1M" INITIAL="1M" BUFFER_POOL="KEEP" PCTFREE="10" PCTU
SED="80" TABLESPACE="SDK_DATA" TableName="SDK_ABC_EXAMPLE" MAXTRANS="255" CACHE=
"False" />

 <ClientIndexDefinition IndexName="SDK_ABC_EXAMPLE__PK" TABLESPACE="SDK_DATA"
 INITIAL="1M" NEXTEXTENT="1M" MINEXTENTS="1" MAXEXTENTS="UNLIMITED" BUFFER_POOL=
"KEEP" PCTFREE="10" PCTINCREASE="0" INITRANS="2" MAXTRANS="255" />
 <ClientIndexDefinition IndexName="SDK_ABC_NOA__PK" TABLESPACE="SDK_DATA" INI
TIAL="1M" NEXTEXTENT="1M" MINEXTENTS="1" MAXEXTENTS="UNLIMITED" BUFFER_POOL="KEE
P" PCTFREE="10" PCTINCREASE="0" INITRANS="2" MAXTRANS="255" />

</client>

Replicating Tables
When you run the database table installer, you register all of the tables with SMS. You can then
select which elements you want replicated, and to which nodes, through the standard SMS
Node Management screen. For more information, see the Service Management System User's
Guide.

To replicate tables, you must include the XML elements for replication in the table schema file
(tableSchemaFile parameter) that you submit to the database installer. The replication section
of the XML uses the elements shown in Table 9-11.

Table 9-11 XML Elements for Replication

XML Element Description

<Replication> Specifies the application name and the application ID.

<Platforms> Contains the <Platform> elements.

<Platform> Specifies the names of the platforms on which the tables for this
application will be replicated.

<Groups> Contains <TableReference> and <Group> elements.

<TableReference> Specifies the name of a table defined in a <TableDefinition> element.

<Group> Specifies the name of a group of tables to be replicated. You can
specify </Group> following a <TableReference> element to create a
default group with the same name as the table.

<Dependency> Specifies a dependency relationship between tables to control the
order in which data is replicated.

You can find additional information about these elements in the following file:

$NCC_SDK_HOME/bin/schema.dtd

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 9 of 12

The Replication Element
The <Replication> element has the following format:

<Replication ApplicationID="901" ApplicationName="ABC" Description="Test Install Table"
Status="4" DisplayName="TEST" Version="1.0">

Table 9-12 describes the attributes of the <Replication> element:

Table 9-12 Replication Attributes

Attribute Description

ApplicationID Specifies the application ID. Custom applications use IDs in the range
of 900-999.

ApplicationName A string that specifies the name of the application.

Description A description of the replication.

Status A string that specifies the status.

DisplayName The name to display in screens.

Version A string that specifies the version.

The Platforms Element
The <Platforms> element contains <Platform> elements and has no attributes. It has the
following format.

<Platforms>
 <Platform Type="SLC"></Platform>
</Platforms>

The Platform Element
The <Platform> Element is used to specify the types of platforms to which the tables for this
application need to be replicated. It has the following format:

<Platform Type="SLC"></Platform>

The <Platform> element has only the Type attribute, which is a string that specifies the type of
platform to which the tables needs to be replicated.

The Groups Element
The <Groups> element contains <Group> elements and has no attributes. It has the following
format:

<Groups>
 <TableReference Name="TABLE1">
 <Group/>
 ...
</Groups>

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 10 of 12

The Group Element
The <Group> element allows you to group tables for replication and to reference a group of
tables when defining dependency relationships. It has the following format:

<Group Name="SDK_ABC_MAIN" />

The <Group> element has only the Name attribute, which is a string that specifies the name of
the table group. If you don't include the Name attribute, as shown in the following example, the
name of the group defaults to the name of the table in the preceding <TableReference>
element.

<Groups>
 <TableReference Name="TABLE1">
 <Group/>

Once you have defined groups, you can define dependency relationships for replication.

The Dependency Element
The <Dependency> element allows you to define dependency relationships to control the order
in which data is replicated. The <Dependency> element has the following format:

<Dependency Dependent="Group1" DependsOn="Group2" />

Table 9-13 describes the attributes of the <Dependency> element:

Table 9-13 Dependency Attributes

Attribute Description

Dependent A string that specifies the name of a group (not a table) that has a
dependency.

DependsOn A string that specifies the name of a table on which the dependent
group depends.

A Table Replication Example
The following example illustrates a table replication definition:

 <Replication ApplicationID="901" ApplicationName="ABC" Description="Test Ins
tall Table" Status="4" DisplayName="TEST" Version="1.0">
 <Platforms>
 <Platform Type="SLC"></Platform>
 <Platform Type="VWS"></Platform>
 </Platforms>

 <Groups>
 <TableReference Name="SDK_ABC_NOA">
 <!-- The group name defaults to the table name -->
 <Group />
 </TableReference>
 <TableReference Name="SDK_ABC_NUMBER_BARRED">
 <!-- You can also specify the group name explicitly -->
 <Group Name="SDK_ABC_MAIN" />
 </TableReference>
 <TableReference Name="SDK_ABC_EXAMPLE">
 <!-- And groups can be replicated without being part of a

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 11 of 12

 dependency relationship -->
 <Group />
 </TableReference>
 </Groups>

 <Dependency Dependent="SDK_ABC_MAIN" DependsOn="SDK_ABC_NOA" />
 <!-- A new replication group can also depend on an existing (e.g. produc
t) group -->
 <Dependency Dependent="SDK_ABC_MAIN" DependsOn="ACS_CUSTOMER" />
 </Replication>

Chapter 9
Running the Database Table Installer

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 12 of 12

10
Creating an EDR Loader Plugin

This chapter describes how to create Event Detail Record (EDR) loader plugins using the
Oracle Communications Network Charging and Control (NCC) Software Development Kit
(SDK).

About EDR Loader Plugins
The Voucher and Wallet Server produces an EDR for every change to a wallet or voucher. An
EDR loader process on the SMS processes each EDR. The SDK includes an API that allows
you to create a custom EDR loader plugin.

Note

Some of the EDR function names and file names still refer to CDR (Call Detail Record)
for legacy reasons, but they are actually EDRs and not specific to calls.

A plugin could add more information to the EDR. For example, if an EDR contains a numeric
ID, you might write a plugin that replaces the ID with a more descriptive name. A plugin also
might filter some EDRs that must be passed to an external billing system, for post-paid billing
perhaps. In this case, the plugin would select the relevant EDRs based on the values in its
fields, then write a new EDR in the format required by the external system.

The EDR Loader Plugin Shared Library
You must make all EDR loader plugins part of a shared library that is configured to be loaded
by the EDR loader. When it starts up, the EDR Loader calls the shared library's initialization
function, ccsCDRLoaderPluginLibInit(). You must implement this function and also register
any plugins that are in the library using the registerCDRLoaderPlugin() function.

In the following example, ccsCDRLoaderPluginLibInit() registers two plugins:

extern "C" ccs::cdr::CDRLoaderPluginLib *ccsCDRLoaderPluginLibInit() {
 // Register first plugin
 ccs::cdr::CDRLoaderPluginLib *lib = ccs::cdr::registerCDRLoaderPlugin(myLibraryName,
new FirstPlugin());

 // Register other plugins
 ccs::cdr::registerCDRLoaderPlugin(myLibraryName, new SecondPlugin());
 // ...

 return lib;
}

As with service loaders and macro nodes, you must place the shared library in a directory that
you have specified in the LD_LIBRARY_PATH environment variable.The ccsCDRLoader
section of the eserv.config file lists the shared libraries that will be loaded. For more

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 2

information about using the ccsCDRLoader, see the Charging Control Services Technical
Guide.

The EDR Loader Plugin
An EDR loader plugin implements and derives from the ccs::cdr::CDRLoaderSDKPlugin class
and must implement the process() and flush() functions.

The EDR loader calls the process() function for every EDR and flush() when the whole file
has been processed.

In the following example, the process() function identifies the EDR that it's currently
processing, totals costs, if present, and records the processing time.

bool sdkCDRLoaderPlugin::process(ccs::cdr::CDRInterface &cdr) {
 DOUT << "Plugin " << getName() << " processing CDR with sequence number " <<
 cdr.getSeqNum() << std::endl;

 // ACCOUNT_TYPE=1|ACCT_ID=4|ACCT_REF_ID=4|ACS_CUST_ID=1|BALANCES=66076|BALAN
CE_TYPES=9|
 // BILLING_ENGINE_ID=1|CDR_TYPE=9|CLI=094454600|COSTS=-3000|CS=S|NEW_BALANCE
_EXPIRIES=|
 // OLD_BALANCE_EXPIRIES=|RECORD_DATE=20110328185229|RESULT=Success|SCP_ID=12
4153970|
 // SEQUENCE_NUMBER=2365233167|TERMINAL=192.168.10.229|USER=SU|WALLET_TYPE=3

 if (cdr.hasTag("COSTS")) {
 // Record the consumption of costs and update our running total
 const std::string &costs = cdr.getValue("COSTS");
 DOUT << "Has some costs: " << costs << std::endl;
 }

 // Record the fact that we were processed by this plugin, and when
 cdr.addExtraField("SDK","Y");
 time_t now = time(NULL);
 cdr.addExtraField("SDK_WHEN", ccs::cdr::CDRInterface::getGMTTimeString(now))
;

 return true;
}

Here the flush() function simply records that it is being called and returns a value of true:

bool sdkCDRLoaderPlugin::flush() {
 DOUT << "Plugin " << getName() << " is being flushed" << std::endl;
 return true;
}

You can find the complete example in the file in the $NCC_SDK_HOME/example/
sdkCDRLoaderPlugin/sdkCDRLoaderPlugin.cc file.

Chapter 10
The EDR Loader Plugin

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 2

11
Creating a CcsAuth Voucher PAM Plugin

This chapter describes how to create a custom CcsAuth Voucher PAM plugin using the Oracle
Communications Network Charging and Control (NCC) Software Development Kit (SDK).

About CcsAuth PAM Plugins
Generating a voucher secret HRN and a hashed/encrypted version of the HRN, and then
validating an input HRN is handled by CcsAuth PAM plugin libraries in CCS. The SDK includes
an API that allows you to create a custom CcsAuth PAM plugin.

With a custom PAM plugin, you can define custom solutions for the following actions:

• generating an HRN (secret) from voucher number and seed information.

• encrypting a secret to produce a private secret.

• decrypting a private secret to recover the HRN (secret).

A plugin can change how the HRN is generated. Five inputs are available to use when
generating a custom HRN: the voucher number, a sequence derived from the CB10 HRN, and
three integer parameters. One possible custom HRN might be to generate an alphanumeric
HRN instead of the numeric HRN created by CB10. Apart from HRN generation, a plugin can
also specify its own custom method for encrypting/hashing the secret (HRN) to produce the
private secret which is the entity stored in the database against the voucher.

You can also specify whether the private secret so produced is decryptable (as would be the
case if the method that produced the private secret used symmetric encryption instead of one-
way hashing).

You can define and install up to three different custom voucher PAM plugins with the SDK.

Once a custom SDK plugin is installed it is available as a selection from the PAM drop-down
menu when creating new CCS Authentication Rules in the Voucher Security screen. Installed
SDK plugins also have their own button for key generation in the Voucher Security Screen.

A SDK voucher PAM plugin is installed or uninstalled from the database on the SMS by using
the provided ccsAuthPluginInstaller command line utility, which takes an input XML directive
file describing the SDK voucher PAM plugin to be installed or uninstalled.

The CcsAuth Plugin Shared Libraries
Each defined SDK voucher PAM plugin is a different shared library. The shared library is
created by sub classing a SDK delivered abstract class defined by header file
ccsAuthPluginSDK.hh, providing definitions for pure virtual methods and overriding virtual
methods with default implementations as required. When the shared library is loaded by the
Ccs Auth subsystem, a factory routine is called to create an instance of the derived class that
the library defines. Similarly a factory routine must be defined to delete an instance of the
derived class.

If for example the plugin derived class is MyVoucherAuth, then these two routines need to be
implemented globally and declared extern "C" in the plugin class:

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 1 of 5

extern "C" ccs::auth::ccsAuthPluginSDK* createPluginInstance() {
 return new MyVoucherAuth;
}
extern "C" void destroyPluginInstance(ccs::auth::ccsAuthPluginSDK* p) {
 delete p;
}

As with service loaders and macro nodes, you must place the shared library in a directory that
you have specified in the LD_LIBRARY_PATH environment variable.

SDK Voucher PAM plugin shared libraries must be installed on all NCC nodes (SMS, SLC, and
VWS).

SDK Voucher PAM Plugins
A voucher PAM plugin implements and derives from the ccs::auth::CcsAuthPluginSDK abstract
class and must implement these pure virtual methods from that class:

const bool usingCB10ForSecret()
const bool usingSHA256ForPrivateSecret()
const bool usingSHA512ForPrivateSecret()
const bool usingAES256ForPrivateSecret()

Method usingCB10ForSecret() should be defined to return true if the CB10 algorithm only is
being used to create the secret (HRN) for a voucher. If a custom secret creation is required
then define usingCB10ForSecret() to return false and provide a definition of the custom secret
method by redefining virtual method makeSecret (see below).

The three using*ForPrivateSecret() methods are used to define which product supported
method of producing the private secret (encrypted/hashed HRN) from the secret is required. To
use a specific product method, e.g. SHA512, define the corresponding routine
(usingSHA512ForPrivateSecret()) to return true and define the other two
using*ForPrivateSecret() methods to return false. To use a custom method for creating the
private secret, define all three using*ForPrivateSecret() methods to return false and then
provide an implementation for method makePrivateSecret().

These following methods are virtual in ccs::auth::CcsAuthPluginSDK and may be overridden if
desired in the SDK subclass:

int makeSecret(const std::string& key, const int sdk_p1, const int sdk_p2, const int
sdk_p3, std::string& secret)
bool makePrivateSecret(const std::string& secret, std::string& private_secret)
bool canDecryptPrivateSecret()
bool regenerateSecretFromPrivateSecret()

These methods are called as required by the application framework.

Method makeSecret is called by the application framework if usingCB10ForSecret() is defined
to return false.

These arguments to makeSecret are then available to produce the secret which should be
returned in the final argument parameter, std::string& secret.

The makeSecret input parameters are:

const std::string& key - the input key (voucher number).

const std::seed_seq& seedSeq - a seed sequence initialized with the CB10 produced HRN.

const int sdk_s_length - the SDK Custom Secret Length value specified by the
Authentication Rule being used. This value allows the length of the custom HRN (in

Chapter 11
SDK Voucher PAM Plugins

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 2 of 5

characters) to be specified. This feature is used if the plugin is installed on the SMS with the
CustomHRN value specified as Y in the specification XML file for the plugin See section
"ccsAuthPluginInstaller".

const int sdk_p1

const int sdk_p2

const int sdk_p3

These values can be optionally defined in the Authentication Rule screen (fields SDK P1, SDK
P2, and SDK P3) and can be used as part of the makeSecret implementation. If they are left
blank in the Authentication Rule screen, then their values are 0 in the makeSecret call.

The output parameter for makeSecret is

std::string& secret

which should contain the created secret string of length sdk_s_length characters.

The return value of method makeSecret is int.

If makeSecret is successful, return the value 1 from the method. If there is an error, return the
value 0.

Method makePrivateSecret is called when all using*ForPrivateSecret() methods are defined
as returning false. In this case, the implementation for creating a private secret from an input
secret (HRN) should be supplied by redefining makePrivateSecret.

The input parameters for makePrivateSecret are secret and key.

const std::string& secret - the input sequence (HRN) to produce a private secret from.

const std::string& key - a custom encryption key generated for this plugin. This is a random
string of 256 hexadecimal characters created when the Generate button for the plugin is used
on the Service Management > Security > Voucher Security panel.

The output parameter for makePrivateSecret is private_secret.

std::string& private_secret - should contain the produced private secret as a hexadecimal
string.

The return value from makePrivateSecret is bool and should be true if the private secret was
created successfully and false otherwise.

Method canDecryptPrivateSecret is used to indicate whether the chosen private secret
production method uses a scheme that can be reversed to recover the secret from the private
secret. This will be possible if a form of symmetric encryption was used to produce the private
secret, but will not be possible if hashing is used as that is a one-way process only.

If makePrivateSecret is being used and the defined private secret production method is
reversible, define canDecryptPrivateSecret to return true. (The default version return false).

Method regenerateSecretFromPrivateSecret is used to implement the “regeneration"
method, the method that decrypts/reverses the private secret production method. This method
is called by the application framework if canDecryptPrivateSecret returns true.
regenerateSecretFromPrivateSecret takes as input private_secret and key.

const std::string& private_secret - private secret to be decrypted, hexadecimal string.

const std::string& key - custom encryption key for the plugin, 256 character hexadecimal
string, same value is provided to makePrivateSecret by its key argument.

Chapter 11
SDK Voucher PAM Plugins

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 3 of 5

The output parameter is secret.

std::string& secret - should contain the decrypted secret string

regenerateSecretFromPrivateSecret should return a bool value, true if the secret was
recovered successfully from the private_secret and false otherwise.

The following utility methods are also provided:

const std::string& getName() - returns the name of the plugin.

static const size_t maxKeyLen() - returns the maximum supported input key length
(voucher number).

static const size_t maxKeyLenZ() - returns the maximum supported input key length (null
terminated).

static const maxSecretLen() - maximum supported length of a secret (not null terminated).

static const maxPrivateSecretLen() - maximum supported length of a private secret
(hexadecimal string representation), not null terminated.

static const size_t maxSecretLenZ() - maximum length of a secret (null terminated).

static const size_t maxPrivateSecretLenZ() - maximum length of a private secret
(hexadecimal string representation), null terminated.

You can find the complete example in $NCC_SDK_ HOME/example/sdkCcsAuthPlugin/
sdkCcsAuthPlugin.cc and .hh files.

ccsAuthPluginInstaller
This utility installs and uninstalls a SDK Voucher PAM plugin from the database on the SMS.
After a plugin has been developed, the definition of the plugin needs to be installed in the
database so that:

• The Ccs Auth subsystem knows the plugin's name, its properties, and the path to the
shared library implementing the plugin.

• The screens can display a Generate button for the plugin in the Voucher Security tab.

• The screens can populate the PAM drop-down menu with the name of the plugin as one of
the available selections when defining a new Authentication Rule.

The ccsAuthPluginInstaller has the following usage:

ccsAuthPluginInstaller [-i | -u] -f specFile.xml

where -i says to install the plugin definition in the database and -u says to uninstall an existing
plugin definition from the database. The plugin specification is supplied in a xml file named with
the -f option.

Here is a specification xml file for the example sdkCcsAuthPlugin:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE CcsAuthPluginDefinitions SYSTEM "pluginschema.dtd"[]>

<CcsAuthPluginDefinitions>

<CcsAuthPlugin>

<DisplayName>SDK ccsAuthPlugin</DisplayName>

Chapter 11
ccsAuthPluginInstaller

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 4 of 5

<LibraryPath>/IN/service_packages/CCS/lib/libsdkCcsAuthPlugin.so</LibraryPath>

<CustomHRN>Y</CustomHRN>

<UsesIterations>N</UsesIterations>

<Description>SDK ccsAuthPlugin example</Description>

<SupportsDecryption>N</SupportsDecryption>

</CcsAuthPlugin>

</CcsAuthPluginDefinitions>

An xml file contains one <CcsAuthPluginDefinitions> element that can contain one or more
<CcsAuthPlugin> elements.

A <CcsAuthPlugin> should define these elements:

DisplayName - the name of the plugin as it presented to the user in the GUI on the label for a
Generate button or as a selection in a PAM drop-down box.

LibraryPath - the absolute path name to the location of the plugin shared library. Should
normally be a location in /IN/service_packages/CCS/lib.

CustomHRN - whether the plugin is implementing its own method for HRN generation as an
adjuct to CB10. If Y, then the Authentication Rule field SDK Custom Secret Length becomes
enabled.

UsesIterations - whether this plugin supports the specification of a number of iterations (> 1)
for producing the private secret from the secret (if hashing is being used for example).

Description - a longer form description for the plugin.

SupportsDecryption - whether this plugin supports decrypting the private secret to recover
the secret (HRN). This controls whether the decryption is attempted using the plugin, and
whether GUI buttons to decrypt the HRNs are present for authorised screens users.

Chapter 11
ccsAuthPluginInstaller

SDK Developer's Guide
G48978-01
Copyright © 2011, 2026, Oracle and/or its affiliates.

January 20, 2026
Page 5 of 5

	Contents
	About This Content
	1 About Customizing Network Charging and Control
	Understanding the SDK Development Environment
	Developing Convergent Charging Controller Components and Features with the SDK
	About the SDK API

	2 Getting Started
	Prerequisites
	Installing the SDK
	Setting Environment Variables

	SDK Contents
	Building Examples
	Installing the Examples

	Accessing the API Documentation
	Using Debugging, Alarms, Statistics, and Configuration
	Using Debugging Statements
	Using Debug Sections
	Creating Debug Output
	Using Display Options

	Logging Alarms
	Recording Statistics
	Accessing the Configuration File

	3 Creating Service Loaders
	About Service Loaders
	Creating a Custom Service Loader
	acsChassisInitSL()
	acsChassisLoadService()
	acsChassisPreCTR() and acsChassisPreETC()
	acsChassisPreCTR()
	acsChassisPreETC()

	acsChassisPrePOR()
	Denormalization
	Setting up Service-Specific Data
	Setting up Extension Information
	General Setup of Outgoing Information
	Sending FurnishChargingInformation or SendChargingInformation

	acsChassisCallTerminated()

	Defining a Custom Service Loader Extender

	4 Creating a Custom Feature Node
	About Feature Nodes
	About Creating Custom Feature Nodes
	Defining a Feature Node
	Creating a Feature Node Definition
	Example: Feature Node Definition File

	Loading Feature Node Definitions

	Adding the Feature Node to a Feature Set
	Creating the Shared Library
	Initialization
	Processing
	Tracking the State
	Making a Chassis Action Request

	Exiting
	Using the Node Context Block

	Specifying the Location of the Shared Library
	Creating the Feature Node Image Files

	5 Creating a Custom Control Agent
	About Control Agents
	SLEE Dispatcher
	The SDK TCAP API
	The SDK INAP API

	6 Creating Provisioning Interface Commands
	About Provisioning Interface Commands
	The PI Function
	PI Command Actions
	PI Function Return

	Adding a PI Command to the Database
	Creating a PI Commands File
	Example: PI Command Definition File

	Running the PICommandInstaller Utility

	7 Creating Provisioning Screens
	About Creating Provisioning Screens
	Creating Screens Using KFramework
	Using the Service Screens
	Find Mode
	Display Mode
	The Results Display Table
	The Find Button Bar
	The Modify All Selection Dialog Box

	Data Entry Mode
	Help Screen
	Table Monitor
	Using the TableMonitor

	Creating a New Service Screen
	The ABC Example
	Creating DataEntryFrame Classes
	Creating DataEntryPanels Classes
	The Constructor
	TableMonitor
	Help
	Validation
	The GUI

	Language Translation

	8 Creating Memory-Mapped Files
	About Memory-Mapped Files
	About Creating Memory-Mapped Files
	Data Replication
	Creating Alerts When Data Changes Occur
	The Mfile Daemon
	The Mfile Daemon API
	enum AwaitResult{...}
	initGPNA()
	Parameters
	Return

	awaitGPNAChange()
	Return

	startGPNAChange()
	Return

	mallocGPNAEntry()
	Parameters
	Return

	addGPNAEntry()
	Parameters

	addGPNAIntEntry()
	Parameters

	finishedGPNA()
	Return

	finishedSingleEntry()
	Return

	An Mfile Daemon Example

	The Mfile Application
	The Mfile Application API
	setupGPNA()
	Parameters

	genericGPNA()
	Parameters
	Return

	An Mfile Application Example

	9 Creating and Replicating Database Tables
	About Creating and Replicating Database Tables
	Defining a Database Table
	The TableDefinition Element
	The TableColumnData Element
	The TableConstraint Element
	The IndexDefinition Element
	The IndexColumnData Element
	A Table Definition Example

	Running the Database Table Installer
	Defining the tableClientFile
	The ClientTableDefinition Element
	The ClientIndexDefinition Element
	A tableClientFile Example

	Replicating Tables
	The Replication Element
	The Platforms Element
	The Platform Element
	The Groups Element
	The Group Element
	The Dependency Element
	A Table Replication Example

	10 Creating an EDR Loader Plugin
	About EDR Loader Plugins
	The EDR Loader Plugin Shared Library
	The EDR Loader Plugin

	11 Creating a CcsAuth Voucher PAM Plugin
	About CcsAuth PAM Plugins
	The CcsAuth Plugin Shared Libraries
	SDK Voucher PAM Plugins
	ccsAuthPluginInstaller

