Oracle® Communications Network
Charging and Control

Service Logic Execution Environment
Technical Guide

ﬁ Release 15.2

January 2026

Copyright

Copyright © 2026, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing
it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government’s use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use
of third-party content, products, or services, except as set forth in an applicable agreement between you
and Oracle.

i Service Logic Execution Environment Technical Guide

Contents

F Y oTo 101 A I g 15 B Io LT U La aT=T o | PPN v
DOCUMENT CONVENTIONS ...uuiuiiiiiiiiiititit s annnansanasnsnsnnnnnsnnnnnnnnnnnnnnnnnsnnnnns Vi

Chapter 1

SYSTEM OVEIVIEW ...oviiiiiiii et e e e e e e e e e e e 1
(@Y1 A/ = T 1
Introduction to the Service Logic Execution ENVIrONMENT..........occviviiiiiiieiiiiiie e 1
Main Components Of the SLEEooi ittt 2
S I [0] (=T = Vo = U 5
Application Programming INtEITACEuuuurriuiuieiiiiiiieieiiinieieieieieerereerereeee————. 7

Chapter 2

(70T o) { 1o U1 =11 o o PP 9
(@Y7 Y/ =T 9
CONFIGUIALION OVEIVIEWeiiiiiiiiiee ettt ettt e st e e et e e e e e aa e e e e e anbe e e e e anbaeeeenene 9
CoNfIGQUIING the SLEEoiiiiiiiiie ettt e et e e s s bb e e e e sbbe e e e sbreeeean 10
Configuring the SLEE Call IDccoouiiiiiiiiiee ettt et e e e e 26

Chapter 3

TOOIS ANA ULHITIES eeeeiieieeeeee et e e e ens 27
OVEBIVIEW.....ceettttce e e ettt e e e ettt et e e et et e te bt eeeeeeea s ta e seeeeeesta bt eeeeee s s st eaeesssestatanseeeseesasrnnns 27
LY [<YE=] o [T 27
L] (0] 0= o S PP UPTPRPT 28
(o (ST o [P RRT 28
(o 011 TR 29
LS V=111 ZSOPOPUPP T PUPRP 34

Chapter 4

Background PrOCESSESciiviiiiii i 37
OVEBIVIEW.....ceettttce e e ettt e e e ettt et e e et et e te bt eeeeeeea s ta e seeeeeesta bt eeeeee s s st eaeesssestatanseeeseesasrnnns 37
(=T 0] o= 10) o 1 37
(] L] Fo 1YY o] o PP PP PTPRP 40
LT 21 (o oo [o o [P OO PP PP 41

Chapter 5

TroubIESNOOTING .uuuiieeee e 45
(@ 1YL Y/ = T 45
Common Troubleshooting ProCEAUIES..........coiii it e e 45
[0 1ToY | o] (ST =d (0] o111 1 1 1 46

Chapter 6

About Installation and RemMoOVvalooeoveiiiiiii e, 47
(@ LYY V=X TR 47
Installation anNd REMOVAI OVEIVIEWcoeveeeeeeee ettt e e et et e e e e s e s e e e e eeataeeeeeaaaeees 47
Checking the INSLAllAtIONuueiiiii e e e e e e e b e e e e e e e e nas 47

iv Service Logic Execution Environment Technical Guide

About This Document

Scope

The scope of this document includes all the information required to install, configure and administer the
SLEE application.

Audience

This guide was written primarily for system administrators and persons installing, configuring and
administering the SLEE application. The documentation assumes that the person using this guide has a
good technical knowledge of the system.

Prerequisites

Although there are no prerequisites for using this guide, familiarity with the target platform would be an
advantage.

A solid understanding of Unix and a familiarity with IN concepts are an essential prerequisite for safely
using the information contained in this technical guide. Attempting to install, remove, configure or
otherwise alter the described system without the appropriate background skills, could cause damage to
the system; including temporary or permanent incorrect operation, loss of service, and may render your
system beyond recovery.

This manual describes system tasks that should only be carried out by suitably trained operators.

Related Documents

There are no documents related to this document.

Document Conventions

Typographical Conventions

The following terms and typographical conventions are used in the Oracle Communications Network
Charging and Control (NCC) documentation.

Formatting Convention

Type of Information

Special Bold Items you must select, such as names of tabs.
Names of database tables and fields.
Italics Name of a document, chapter, topic or other publication.
Emphasis within text.
Button The name of a button to click or a key to press.
Example: To close the window, either click Close, or press Esc.
Key+Key Key combinations for which the user must press and hold down one
key and then press another.
Example: Ctrl+P or Alt+F4.
Monospace Examples of code or standard output.

Monospace Bold

Text that you must enter.

variable

Used to indicate variables or text that should be replaced with an
actual value.

menu option > menu option >

Used to indicate the cascading menu option to be selected.
Example: Operator Functions > Report Functions

Used to indicate a hypertext link.

Specialized terms and acronyms are defined in the glossary at the end of this guide.

Terminology

This topic explains any terminology specific to this manual.

Term Definition

ACS Customer ACS customers are set up in the ACS Customer screen. They configure
systems to provide services to subscribers.

Service Provider CCS service providers are the same as ACS customers and are set up in

the ACS Customer screen. There is additional service provider
configuration provided in CCS.

Customer Customers in CCS refer to the customers configured on the Subscriber
Management screen.

Subscriber A subscriber account is set up for each MSISDN which uses services
provided by the service provider.

vi Service Logic Execution Environment Technical Guide

Chapter 1
System Overview

Overview

Introduction

This chapter provides a high-level overview of the application. It explains the basic functionality of the
system and lists the main components.

It is not intended to advise on any specific Oracle Communications Network Charging and Control
(NCC) network or service implications of the product.

In this Chapter

This chapter contains the following topics.

Introduction to the Service Logic Execution ENVIFONMENL.............uuviiiiiiiiieiiieiiininieieiennnenninnnnnn. 1
Main Components Of the SLEEuuuiiiiiiiiii e eseees e rnrererersrsrnrnnes 2
SLEE INEEITACES. ... etteeii ettt ettt e ettt e e e e ettt e e e e e s et e b e e et e e e e e e e nbbeeee e e e e e e e nnnnnees 5
Application Programming INterfaceooovvvviiiiiiiii 7

Introduction to the Service Logic Execution Environment

Introduction

The Service Logic Execution Environment (SLEE) provides a common execution environment for
existing Oracle NCC products, including:

e Advanced Control Services (ACS)

e Charging Control Services (CCS)

¢ Voucher and Wallet Server (VWS)

¢ Messaging Manager (MM)

It provides mechanisms for multiple interfaces to communicate events with the call, therefore simplifying
the service logic interfaces.

Functionality overview

The SLEE provides the following functionality:

e SLEE process monitoring/restart
e Simultaneous management of multiple different service logic applications.

Functionality for hosted services

The main functions of the SLEE are to provide hosted services with the following functionality:

e Event handling/call matching
e Event scheduling
e Call thread and context data control

Chapter 1, System Overview 1

e Service logic application management
e Interface management.

Service logic support

The SLEE implements the common components of service logic within a single environment.
It provides the following to service logic interfaces:

o A well-defined, open interface for the handling of call control threads, call context data and
application management
o Efficient flexible mechanisms for multiple interfaces to communicate events with the call.

The SLEE maintains integrity and ensures high performance when managing multiple messages from
multiple underlying networks to multiple applications.

Example setup

This figure shows a typical SLEE setup.

SLC
ACS |
[
SLEE
watchdog | L L JJ Applications
SLEE
Transactions
SLEE
Interfaces
SLEE.cfg | tys/lnij I:tai;tloil CDRs
v
LY To beServer on
@ Billing Engine
Main Components of the SLEE
Introduction
The NCC SLEE uses the following components.
Component Description Further Information
SLEE.cfg This file holds the main configuration for the Configuring the SLEE
SLEE and startup. (on page 10)
SLEE shared memory |Shared memory used by SLEE applications and
interfaces.
SLEE API Application Programming Interface used by SLEE
applications and interfaces.
watchdog The SLEE watchdog monitors SLEE applications |watchdog (on page 20)
and interfaces, restarting them if necessary.

2 Service Logic Execution Environment Technical Guide

Component

Description

Further Information

Application

An application consists of an executable program
that uses the SLEE application API to process
events for calls.

Applications (on page
4)

Application Instance

An application instance is a running instance of a
SLEE application program.

Application instance (on
page 4)

Service

A service is the functionality provided by an
application.

Service (on page 4)

Service Handle

A service handle is a name given to the service.

Service handles (on
page 4)

provides a service to the applications.

Service Key A service key maps to a service or interface. Service keys (on page
5)
Interface An interface is an executable program that Interfaces (on page 5)

Interface Handle

An interface handle identifies the associated
interface.

Interface handle (on
page 5)

SLEE tools

The SLEE has a set of common tools which can
be used to manage the SLEE and the SLEE
applications and interfaces.

SLEE tools (on page 5)

For a full description of each component, refer to the topics below.

SLEE shared memory

The Itmplslee is the default file used by all SLEE processes at start up to get the shared memory key of
the SLEE shared memory. This file must exist and must be the same for all processes wishing to
access the same shared memory.

If this file is removed, a SLEE process which is starting up will fail to find shared memory and will exit.
If this file is removed, you must restart the SLEE.

For information about overriding the location and filename by setting the environment variable
SLEE_FILE for all SLEE processes, see Optional environmental variables (on page 10).

Chapter 1, System Overview 3

Entity relationship

This diagram shows how entries in the SLEE.cfg file are related.

Sending Receiving
Application Links on Links on Links on Application
ar Interface service key service key sarviceMame ar Interface

:I_H Service Key | —»| Service Entry | —»{ Service |—{—»{ Application |
|:|—4>| Service Key |—>|Sorvlca Entry |—>| Service |—

|:|—4>| Service Key |—>|Sanrica Entry |—>| Service |—
—
[] servicekey | »|Interface handle | ——»{ Interface |
] »[Interface handle |+ Interface |

Links on
interface handle

+| Interface handle | ——»| Interface |

Applications

An example of an application is a piece of service logic that provides local number portability
processing. An application may support multiple services (for example, it may provide voice VPN in
addition to number portability). The SLEE can support multiple different applications simultaneously.

An application is a program that provides a specific set of services to the interfaces. The SLEE allows
multiple copies of an application to be started, to enable performance advantages in SMS environments
and in cases where an application can block (very briefly) during execution of service logic. This may
occur, for example, during an Oracle database read.

Note: Care must be taken to avoid applications from blocking.

Under ideal conditions, an application would never communicate directly with external entities.
However, in some cases, this cannot be avoided.

Applications are provided with a set of classes and objects, which provide an interface to the SLEE. All
the API functionality for an application is based around call instances. A call instance must be created

by an interface (or application acting like an interface). The application’s call context memory may also
be allocated via the API that is associated with the call instance.

Application instance

Each executing copy of the application is known as an application instance. The SLEE can support
multiple running instances of each application program. This is useful in multi-processor environments,
where it is possible to be processing events for more than one call in parallel.

Service

Each application may provide multiple services. In the above example, we have an application that
provides service and local number portability (SNP & LNP). That application would therefore have two
services defined - one for each SNP and LNP.

Service handles

The service handle is defined in the service entity. When a new call is presented to the application, the
service handle indicates the particular service for which the call is intended.

4 Service Logic Execution Environment Technical Guide

Service keys

The service key is the SLEE's mechanism for providing service discrimination. Each service key maps
to a service or interface.

Note: A service key is a generic name for the identifiers for a service or interface. Service keys may be
derived in some cases from the INAP InitialDP service key.

For more information about configuring service keys, see SERVICEKEY (on page 22).

Interfaces

Each service may include an interface to a protocol, which is used to talk to an external entity (SSP,
HLR, billing engine, alarm system).

An interface may also generate new calls for the services, applications and application instances.
Examples: Interfaces include:

e TCAP/SS7
Billing Access
Databases
Timers.

Interface handle

Interface handles are used by other elements within the SLEE (other interfaces or application instances)
to identify the associated interface.

SLEE tools

The SLEE package also includes a set of tools for managing the SLEE. This table describes these
tools.

Tool Description Further Information
slee.sh This script starts the SLEE. Starting the SLEE.
stop.sh This script shuts down the SLEE and clears the SLEE | Stopping the SLEE.
shared memory.
clean The clean utility is used to remove SLEE shared Removing Shared
memory and semaphores after a unclean SLEE Memory.
shutdown has occurred.
check This tool provides reports on SLEE attributes. check (on page 29).

SLEE Interfaces

Introduction

An interface is a process that converts messages or events from outside the system from an external
format into a common SLEE format. These may then be passed between elements of the SLEE. It
also converts SLEE format messages to the external format required. The common format is an object
representation of the event called a SLEE Event.

Chapter 1, System Overview 5

Interfaces are provided with a set of classes and objects, which provide an interface to the SLEE.
Interfaces are the main sources of calls requiring processing. This is done by call instances and
dialogs with those call instances. A dialog allows messages to be routed between call instances and
interfaces. A dialog also allows identification of the call instance or dialog that a SLEE Event can
support.

In addition to converting to and from SLEE events and external format events, the interfaces must also
respond to SLEE management events. SLEE management events are a specific type of SLEE event.

Types of interface

There are different types of interface. Any interface can be one or more of these types:

Type Description

Source Can generate new call instances and dialogs due to external events.

Server Can only respond to entities that create dialogs with it and make requests (that is, it can
only respond to existing call instances).

Sink A service that never sends a SLEE event. A special method of sending events to sinks
is provided that does not use a dialog.

Interface communication through dialogs

While it is normal for interfaces to only communicate through dialogs belonging to call instances, it is
also possible for an interface to talk to another interface, through a dialog. It is also possible for an
application to talk to another application, through a dialog and call objects.

Example interfaces

This table describes some of the interfaces that may be supplied with the SLEE package.

Interface Description Type

timerlF The Timer interface interacts with the system’s Server
real-time clock to provide time-out events to the
service logic on demand.

alarmlF The Alarm interface interacts with the system Sink
error logging functionality to report alarms passed
from the service logic application.

statslF The Statistics interface maintains and reports Sink
statistics to the management system. Statistics
are effectively peg counts.

statsIF requires a statistics.bin file to run. For
more information about creating a statistics.bin
file, see sfVerify (on page 34).

replicationlF The Database Replication interface is an update | Server/Sink
requester. It processes updates to the system
which are generated during call processing. For
example, when a client uses call plan
functionality to change their profile data.

The replicationlF sends an update request to the
smsMaster on an SMS. The SMF database is
updated with the new information, and is then
replicated to all other nodes.

For more information about update requests and
replication, see SMS Technical Guide.

6 Service Logic Execution Environment Technical Guide

Interface Description Type

cdrlF The CDR interface writes cdr files containing data | Server
received from SLEE CDR events.

Note: Different installations use different SLEE interfaces. If the interface is not listed in the SLEE.cfg
file, it is not being used by your installation.

Application Programming Interface

Introduction

The SLEE provides an Application Programming Interface (API), through which applications may
interact with the SLEE and elements within the SLEE, such as applications and interfaces.

All interactions between applications and other SLEE elements are performed via messages based on
objects, which are sub-classes of the SleeEvent class.

The SLEE itself only has one type of SleeEvent, the SleeManagementEvent class. Each of the
interfaces provided with the SLEE have their own sub-classes of SleeEvent. SleeEvents may be sent
as part of a dialog with another SLEE entity, in which case a SleeDialog object is used to associate
SleeEvents of the same dialog. Alternatively, messages may be sent as one-off events, which do not
require a response or associated message. In this case, there is no SleeDialog object.

SLEE Dialogs

A SleeDialog provides an association between related messages flowing between SLEE entities
(applications and interfaces).

Dialogs also store the 'addresses' of the two entities involved in the dialog. Each dialog has an
application side and an interface side.

Note: When an application instance opens a dialog with another application, the first application
instance is considered to be the ‘interface’ side of the dialog. Also, if a SLEE interface opens a dialog
with another SLEE interface, the first SLEE interface is considered to be the ‘application’ side of the
dialog.

Application instances can only open dialogs with interfaces and interfaces can only open dialogs with
applications. To enable application to application and interface to interface dialogs, the first application
or interface must pretend to be interface or application respectively.

SLEE Events

SLEE events are chunks of shared memory which are used to communicate data within a dialog.
Applications and interfaces monitor dialogs for new events.

Management Events

A SLEE management event is an implementation of a SLEE event, which is used to pass management
events from the SLEE to applications and interfaces.

The SLEE reserves a number of events user to send management events. These events are added to
the first list that has a size greater than, or equal to, 1024 bytes. This means the event count in the
check program will show more events than configured in the configuration file.

Chapter 1, System Overview 7

Supported management events

The following SLEE management events are supported.

Event

Description

WATCHDOG

The watchdog monitors the health of all SLEE elements by sending a
series of checks to each configured element. If an element fails to
respond, the watchdog will take action to restart the process.

Initially, it will send the element a SIGABRT. If the process does not die
after a period, a SIGKILL will be sent.

SERVICE_ENABLED

Indicates to an application instance that a service has been enabled. The
service handle is passed in the event. Can be used to trigger opening of
files, databases, etc.

SERVICE_DISABLED

Indicates to an application instance that a service has been disabled. The
service handle is passed in the event. Can be used to trigger closing of
files, databases, etc.

APPLICATION_END

Indicates that the application is currently being quiesed and that no new
calls will be received. An APPLICATION_KILL will be received when all
existing calls complete.

APPLICATION_KILL

Indicates that the application instance should be shutdown and exited.
Failure to perform this task within a time period will result in a SIGHTERM
being sent to the application instance. If the application instance is still
active after a further period, a SIGKILL will be sent.

INTERFACE_END

Indicates that the interface is currently being quiesed and that no new calls
will be received or should be generated. An INTERFACE_KILL will be
received when all existing dialogs are complete.

INTERFACE_KILL

Indicates that the interface process should be shutdown and exited.
Failure to perform this task within a time period will result in a SIGHTERM
being sent to the interface process. After a further period, if the interface
process is still active, a SIGKILL will be sent.

DIALOG_CLOSED

Indicates to an interface or application that a dialog has been closed by the
other end, but no message data has been sent.

REREAD_CONFIG

This message is sent to an application or interface to request it to re-read
its configuration. This is a user-management event which the SLEE will
never transmit on its own.

Not all interfaces support this request.

CALL_INSTANCE_KIL
L

The specified call instance has been terminated.

REPORT_REQUEST

This message is sent to an application or interface to generate a short
report to stdout or a pre-defined file. Not all interfaces support this
reqguest.

CALL_INSTANCE_
TIMED OUT

The specified call instance has timed out.

DIALOG_TIMED_OUT

The specified dialog has timed out.

STATUS_REQUEST

A status request is sent to an application or interface to generate a short
status summary. The receiver should send back a STATUS_RESPONSE
message with the current status of the process.

Not all interfaces support this request.

STATUS _RESPONSE

Contains the response for the STATUS REQUEST message.

8 Service Logic Execution Environment Technical Guide

Chapter 2
Configuration

Overview

Introduction

This chapter explains how to configure the Oracle Communications Network Charging and Control
(NCC) application.

In this chapter

This chapter contains the following topics.

CONfIGUIALION OVEIVIEWeiiiiiiiiieiitiee ettt ettt e sttt e e st e e sttt e e s et e e e e s anbn e e e s annneeas 9
CoNfiGUIING the SLEEoiiiiiiii ittt ettt eb e e e bt e e e s nbne e e e e 10
Configuring the SLEE Call IDuueeee s a e a e e e e e 26

Configuration Overview

Introduction

This topic provides a high level overview of how the SLEE is configured.

There are configuration options which are added to the configuration files that are not explained in this
chapter. These configuration options are required by the application and should not be changed.

Configuration process overview

This table describes the steps involved in configuring the SLEE for the first time.

Step Action

1 The SLEE.cfg file must be configured. This will include configuring:
e SLEE maximum values
e Watchdog

e SLEE interfaces which will be used for this installation (for example, timerlF,
cdrlF, and alarmsIF).

e SLEE Event Queue Limit

2 Any SLEE interface or application which has an additional configuration file must be
configured. For example, the cdrlF is configured using the cdrlF.cfg file.

Note: Most installations will require other applications and interfaces to be configured in
the SLEE.cfg also. This should be done after the other applications have been installed.
For more information about how to configure additional interfaces and applications, see
the documentation for the application.

Chapter 2, Configuration 9

Configuration components

The SLEE is configured by the following components:

Component Locations Description Further Information
SLEE.cfg all machines | The only file used to configure the Configuring the SLEE
SLEE is SLEE.cfg. (on page 10).
The configuration file is used to
configure the applications, services and
interfaces which the SLEE manager will
initialize. From this information the
SLEE manager also knows how much
shared memory to allocate.
SLEE.cfg is broken into three sections:
¢ Maximum object instances
e Application entries
e Interface entries
Environmental all machines | SLEE supports some environmental Optional environmental
variables variables. variables (on page 10)
SLEE_calllD.cfg all machines | This file configures the last written Configuring the SLEE
SLEE call ID value when the SLEE is CallID
shut down. On start up, SLEE reads this
file's value and adds a 1000 to it. This
guarantees that the next generated
EDR call ID is not a duplicate.
cdrlF.cfg all machines [This file configures the cdrlF.
tcRelayMappings.d | all machines | This file configures the tcRelayApp. Configuration (on page
ef 40)

Configuring the SLEE

Introduction

The SLEE must be configured at start-up. The default configuration file is
/IN/service_packages/SLEE/etc/SLEE.cfg.

Optional environmental variables

SLEE supports the following environmental variables:

SLEE FILE

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

The location of the file which stores the shared memory keys for the SLEE's

shared memory.

Optional.

/IN/service_packages/SLEE/tmp/slee_file
All SLEE processes must use the same SLEE_FILE.

10 Service Logic Execution Environment Technical Guide

Modifying SLEE.cfg

Each section of the SLEE.cfg configuration file is detailed below, with examples of appropriate settings.

The SLEE must be restarted for any configuration changes to take effect. For more information on
restarting the SLEE, see Tools and Utilities (on page 27).

Setting a SLEE Event Queue Limit

You can configure the SLEE to prevent new dialogs and calls from being created when a large queue of
events are waiting to be processed. Existing calls and events are still processed. This configuration
enables an overloaded system to reject calls instead of denying services.

You can set a limit to the number of events that can be queued on any SLEE interface or application. If
any SLEE interface or application exceeds that number in their queue, all SLEE interfaces and
applications are not allowed to create dialogs to create new SLEE calls. The interfaces and applications
will continue to process existing calls.

For example, if you set a limit of 60, when the Session Control Agent (SCA) queue grows beyond 60, no
more events are queued to the SCA, or to the Open Services Development (OSD) and Diameter Control
Agent (DCA) queues.

To configure the SLEE event limit, edit the SLEEWIDEEVENTLIMIT in the SLEE.cfg file. For example:

SLEEWIDEEVENTLIMIT=60
The value can be from 1 to 4294967295. The default is 4294967295.

The watchdog gives the following alarms, no more than one per second:

¢ When all queues are below 80% of the allowed maximum, for example: Oct 19
21:28:08.005983 watchdog (27270) NOTICE: Highest number of events queued
on any one process is now below 80% of allowed maximum. Allowed events:
60, current events: 42, process: slee acs.sh

e When a queue is between 80% and 90% of the allowed maximum, for example:Oct 19
21:27:54.007430 watchdog (27270) WARNING: Highest number of events queued
on any one process is now between 80% and 90% of allowed maximum. Allowed
events: 60, current events: 49, process: slee acs.sh

e When a queue exceeds 90% of the allowed maximum, for example:Oct 19 21:29:32.006240
watchdog (27270) ERROR: Highest number of events queued on any one process
is now above 90% of allowed maximum. Allowed events: 60, current events:
61, process: slee acs.sh

You can get information about the number of queued SLEE events by using option a in the check utility;

for example:

Select: a

Name A/I Status Events Limit Total
sleeTrafficCDMA I START 0 none 0
sca I ACTIVE O none 2
smsc I ACTIVE O none 2
xmsStorelf I ACTIVE O none 2
xmsAgentIf I ACTIVE O none 2
xmsIf I ACTIVE O none 2
ScriptTcIF I ACTIVE O none 2
osd I ACTIVE O none 2
dcalf I ERROR 0 none 0
slpitCAP4 2 I START 0 none 0
slpitCAP4 I START 0 none 0
slpitCSl I START 0 none 0
dcdBeClient I ACTIVE O none 2
rimsIf I ACTIVE O none 2

Chapter 2, Configuration 11

acsStatsLocalSLEETI START 0 none 0
Timer I ACTIVE O none 2
CdmaGw I ACTIVE O none 2
sua ifl I ACTIVE O none 2
m3ua_ 1if2 I ACTIVE O none 2
m3ua_ ifl I ACTIVE O none 2
textIF I ACTIVE O none 2
cdmaTraffic I ACTIVE O none 2
vssp I ACTIVE O none 2
tcRelayApp.sh A ACTIVE O none 0
ussdgw.sh A ACTIVE O none 0
slee acs.sh A ACTIVE O none 224
slee acs.sh A ACTIVE O none 226

Maximum events queued on one process:

61 events on slee acs.sh at Sun Oct 19 21:29:31 2014
When the SLEE event queue limit is reached, the individual SLEE applications prevent system
overloads by being marked as overloaded. The applications then use their own overload mechanisms to
reject new messages and report errors. For example, when the SLEE event queue limit is reached, the
Open Services Development (OSD) application uses the osdinterface to reject new messages and
return errors.

For example,

Oct 19 22:51:27.418425 osdInterface(18297) WARNING: {1100016} osdInterface is marked
as overloaded

Setting Up SLEE to Generate a Separate Log File for Each Application Instance

You can configure SLEE to generate a separate log file for each SLEE application instance. Separate
log files help you to identify the SLEE instance used for the call while analyzing and debugging the call
information.

To set up SLEE to generate a separate log file for each application instance:

Step Action

1. Update the following in slee.sh:
export APP INSTANCE PID EXPORT="yes"

2. Add the following in slee_acs.sh:
if [-n "S$APP INSTANCE"]; then
LOGFILE_INSTANCE=${SEPERATOR}$APP_INSTANCE
fi

3. (Optional) To add PID to the file name, add the following in
slee_acs.sh:
LOGFILE PID=""
SEPERATOR="-"
if [-n "S$1"]1; then
LOGFILE PID="${SEPERATOR}$1"
fi

4. Edit the exec line in slee_acs.sh to include the LOGFILE_INSTANCE
and LOGFILE_PID:

exec /IN/service packages/ACS/bin/slee acs >>

/IN/service packages/ACS/tmp/slee acs$S{LOGFILE INSTANCE} S {
LOGFILE PID).log

2>&1

Examples of output log files:

bash-3.00$ 1s -lct |head
Log file name with instance number:
-rw-r--r-- 1 acs oper esg 62281 Jul 30 12:57 slee acs0l.log

-rw-r--r-- 1 acs oper esg 62281 Jul 30 12:57 slee acs04.log
-rw-r--r-- 1 acs_oper esg 62281 Jul 30 12:57 slee acs02.log

12 Service Logic Execution Environment Technical Guide

-rw-r--r-- 1 acs_oper esg 62281 Jul 30 12:57 slee acs03.log
Log file name with instance number and PID:

-rw-r--r-- 1 acs oper esg 62406 Jul 30 13:07 slee acs-01-26030.log
-rw-r--r-- 1 acs_oper esg 62281 Jul 30 13:05 slee acs-03-26032.log
-rw-r--r-- 1 acs oper esg 62281 Jul 30 13:05 slee acs-02-26031.log
-rw-r--r-- 1 acs_oper esg 62281 Jul 30 13:05 slee acs-04-26033.log

Maximum values

The following maximum lengths apply to names used in the SLEE.cfg file:

e 20 characters for interface names
e 20 characters for service names
e 40 characters for application names

The first section of SLEE.cfg contains the maximum number of each type of object which can be held in
shared memory. |If this value is exceeded, an exception will be thrown and an entry made in the syslog.
In many cases this will cause the SLEE and all processes to restart.

Format:

MAXAPPLICATIONS=max
MAXSERVICES=max
MAXSERVICEHANDLES=max
MAXSERVICEKEYS=max
MAXDIALOGS=max
MAXEVENTS=max [size]
MAXCALLS=max
MAXINTERFACES=max
MAXEVENTTYPES=max

The available parameters are:

MAXAPPLICATIONS

Syntax: MAXAPPLICATIONS=max

Description: The maximum number of application objects which can be held in shared
memory.

Type: Integer

Optionality: Mandatory

Allowed:

Default: none

Notes: This also sets the maximum number of APPLICATION (on page 23) entries which
can be active in the SLEE.cfg file.

Example: MAXAPPLICATIONS=5

MAXSERVICES

Syntax: MAXSERVICES=max

Description: The maximum number of service objects which can be held in

shared memory.

Type: Integer

Optionality: Mandatory

Allowed:

Default: none

Chapter 2, Configuration 13

Notes: This also sets the maximum number of SERVICE entries (on
page 20) which can be active in the SLEE.cfg file.
Example: MAXSERVICES=5
MAXSERVICEHANDLES
Syntax: MAXSERVICEHANDLES=max
Description: The maximum number of service handles.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: 10
Notes: MAXSERVICEHANDLES has to be greater than or equal to the number of distinct
service handles specified in SERVICE entries (on page 20) in SLEE.cfg
Example: MAXSERVICEHANDLES=20
MAXSERVICEKEYS
Syntax: MAXSERVICEKEYS=max
Description: The maximum number of service key objects which can be held in shared
memory.
Type: Integer
Optionality: Optional (default used if not set).
Allowed:
Default: If this parameter is not specified, the count of serviceKey entries in the
configuration files are used.
Notes: This also sets the maximum number of SERVICEKEY (on page 22) entries which
can be active in the SLEE.cfg file.
Example: MAXSERVICEKEYS=5
MAXDIALOGS
Syntax: MAXDIALOGS=max
Description: The maximum number of dialog objects which can be held in shared memory.
Type: Integer
Optionality: Mandatory
Allowed:
Default: none
Notes:
Example: MAXDIALOGS=5
MAXEVENTS
Syntax: MAXEVENTS=max size
Description: The maximum number of event objects which can be held in shared memory.
Type: Integer
Optionality: Mandatory
Allowed:
Default: none

14 Service Logic Execution Environment Technical Guide

Notes: MAXEVENTS can be specified more than once for multiple lists of differing sizes
and the effects are cumulative.

This list will then have its count modified (when the SLEE starts up) to handle the
management event reservation. This affects the check tool event count. For
more information, see check (on page 29).

If the MAXEVENTS values are exceeded when the system is running, no more
events or calls will be accepted and alarm messages will be sent.
Example: To get 500 events of size 2k, and 200 of size 4k, set:

MAXEVENTS=500 2048
MAXEVENTS=200 4096

size

Syntax: size

Description: MAXEVENTS (on page 14). supports the size parameter which allows you to set
the maximum data segment size of an event.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1024

Notes: There must be at least one list with a size equal to or greater than 1024 bytes.

Example: For an example of this parameter in context, see MAXEVENTS (on page 14).

MAXCALLS

Syntax: MAXCALLS=max

Description: The maximum number of call objects which can be held in shared memory.

Type: Integer

Optionality: Mandatory

Allowed:

Default: none

Notes: If the MAXCALLS values are exceeded when the system is running, no more
events or calls will be accepted and alarm messages will be sent.

Example: MAXCALLS=500

MAXINTERFACES

Syntax: MAXINTERFACES=max

Description: The maximum number of interface objects which can be held in shared memory.

Type: Integer

Optionality: Mandatory

Allowed:

Default:

Notes: This also sets the maximum number of INTERFACE entries which can be active
in the SLEE.cfq file.

Example: MAXINTERFACES=5

Chapter 2, Configuration 15

MAXEVENTTYPES

Syntax: MAXEVENTTYPES=max

Description: The maximum number of Event Type objects which can be held in shared
memory.

Type: Integer

Optionality: Mandatory

Allowed:

Default:

Notes:

Example: MAXEVENTTYPES=5

APPENDINTERVAL

Syntax: APPENDINTERVAL=<secs>

Description: The delay/interval between ending SLEE interfaces and SLEE applications during
the SLEE stop operation.

Type: Integer

Optionality: Optional (default O if not set).

Allowed:

Default: 0

Notes:

Example: APPENDINTERVAL=2

Other parameters

These parameters are set after the Maximum values configuration in SLEE.cfg.
NOWIPESOCKETS

Syntax: NOWIPESOCKETS=int

Description: How to handle pre-existing sockets on startup.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: 0 Socket files corresponding to SLEE.cfg-

specified interfaces are removed.
anything else No socket files will be removed.

Default: 0
Notes: This setting is designed for use in testing environments where more than one
SLEE is running concurrently. It should not be used in production.

Example:

SLEEWIDEEVENTLIMIT

Syntax: SLEEWIDEEVENTLIMIT = Events

Description: Sets the limit of events for SLEE calls, after which the SLEE does not create dialogs for
new SLEE calls.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: 1 to 4294967295

Default: 4294967295

16 Service Logic Execution Environment Technical Guide

Notes: If more than SLEEWIDEEVENTLIMIT SLEE events are queued on any one SLEE
interface or any one SLEE application instance, then all SLEE applications and SLEE
Interfaces will not be able to create dialogs that create new SLEE calls.

Example: SLEEWIDEEVENTLIMIT = 60

INTERFACE

You use the INTERFACE entries to configure the interfaces you want the SLEE to run. You can run
multiple instances of the same interface. You specify the number of instances of a particular interface to

run in an INTERFACE entry parameter. Messages can be sent directly to an interface handle, or to a
service key.

Installing and removing packages may add or remove interface entries. Do not manually remove entries
from the SLEE.cfg file that have been added by the package installation or removal process.

Usage:

INTERFACE=interface handle interface name interface path instance count

interface type [int event count] [dialog count] [Suspect Cycles = n] [Throttle
Cycles = n]

INTERFACE parameters

interface handle

Syntax: To see this parameter in context, see Usage (on page 17).

Description: The unique name that identifies this SLEE interface. You can run multiple
instances of a particular interface by specifying the number of instances to run in
the instance_count (on page 18) parameter.

Type: String

Optionality: Required.

Allowed: The last character in the name should not be numeric.

Default: None

Notes: If you configure the SLEE to run multiple instances of an interface, the SLEE

appends a unique number to each instance of the interface handle, at startup.
The system also creates a separate log file for each interface instance and
appends the number of the interface instance to the log file name.

Example: For an example of this parameter used in context, see Example INTERFACE
Configuration (on page 20).

interface name

Syntax: To see this parameter in context, see Usage (on page 17).

Description: The name of the executable file that enables this interface.

Type: String

Optionality: Required

Allowed: A valid NCC binary.

Default: None

Notes:

Example: For an example of this parameter used in context, see Example INTERFACE

Configuration (on page 20).

Chapter 2, Configuration 17

interface path

Syntax: To see this parameter in context, see Usage (on page 17).

Description: The full path to the interface binary file.

Type: String

Optionality: Required

Allowed: A valid path.

Default: None

Notes:

Example: For an example of this parameter used in context, see Example INTERFACE

Configuration (on page 20).

instance count

Syntax: To see this parameter in context, see Usage (on page 17).

Description: The number of instances to run of the defined SLEE interface.

Type: Integer

Optionality: Optional (default used if not set).

Allowed: A numeric value that is greater than or equal to 1(one).

Default: 1

Notes: If you configure to run more than one instance of a particular interface, then the

SLEE creates a unique ID for each instance of the interface by appending a
number to the interface name. The number will be in the range 0 to n-1, where n
is the configured instance_count value. A number will not be appended to the
interface name if there is only one instance of the interface.

Example: For an example of the parameter used in context, see Example INTERFACE
Configuration (on page 20).

interface type

Syntax: To see this parameter in context, see Usage (on page 17).
Description: The type of interface.
Type: String
Optionality: Required
Allowed: EVENT
UGD
Default: None
Notes:
Example: For an example of this parameter used in context, see Example INTERFACE

Configuration (on page 20).

int event count

Syntax: To see this parameter in context, see Usage (on page 17).

Description: The maximum number of events allowed to wait for processing before call limiting
for the interface starts.

Type: Integer

Optionality: Optional, but required if dialog_count is set.

Allowed:

Default: Unlimited

18 Service Logic Execution Environment Technical Guide

Notes:

Example:

If the number of events exceeds the limit specified in the configuration file, then
any further attempts to create another dialog to the interface will fail. This failure
will then be handled by the process attempting to create the dialog.

For an example of this parameter used in context, see Example INTERFACE
Configuration (on page 20).

dialog count

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

To see this parameter in context, see Usage (on page 17).

The maximum number of dialogs that can be open on the interface.
Integer

Optional (default used if not set).

1

The SLEE tracks the number of dialogs open on the interface. If the interface
has exceeded the limit specified in the configuration file, any further attempts to
create a dialog on the interface will fail.

For an example of this parameter used in context, see Example INTERFACE
Configuration (on page 20).

Suspect Cycles

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

To see this parameter in context, see INTERFACE (on page 17).

Specifies the number of watchdog cycles to wait before restarting the interface, in the
event that it becomes non-responsive. Use this parameter to allow the interface time to
finish dumping core for diagnostic purposes.

Integer

Optional

0 to maximum integer value (2,147,483,647)

0

If greater than 0, overrides WATCHDOGSUSPECTCYCLES.
Suspect Cycles=2

Throttle Cycles

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

To see this parameter in context, see INTERFACE (on page 17).

Specifies the number of watchdog cycles to use for the throttle period (Throttle Cycles
times WATCHDOGCYCLETIME), which begins when an interface starts. If an interface
dies or becomes unresponsive during the throttle period, the watchdog process restarts
it after an additional watchdog cycle. This prevents the watchdog process from
continuously restarting processes that die immediately due to incorrect configuration, for
example. If the interface dies or becomes unresponsive after the throttle period, the
watchdog process treats it like any other unresponsive process.

Integer
Optional
0 to maximum integer value (2,147,483,647)

0

If greater than 0, overrides WATCHDOGTHROTTLECYCLES.
Throttle Cycles=2

Chapter 2, Configuration 19

Example INTERFACE Configuration

These lines in SLEE.cfg configure three timer interface instances, one replication interface instance, and
two notificationlF interface instances:

INTERFACE=Timer timerIF /IN/service packages/SLEE/bin 3 EVENT
INTERFACE=Replication replicationIF.sh /IN/service packages/SLEE/bin 1 EVENT
INTERFACE=notificationIF notificationIF /IN/service packages/SLEE/bin 2 UDG

At startup, the SLEE creates a unique ID for each instance of an interface by appending a number in the
range 0 to n-1 to the interface name, where n is the number of interface instances configured in the
instance_count (on page 18) parameter. If there is only one instance of an interface, then the SLEE
does not append a number to the interface name. This means that the three Timer interface instances
in the example would have the following IDs: Timer0, Timer1, and Timer2. Whereas the ID for the
single instance of the Replication interface would be: Replication.

watchdog

This section defines the location and cycle time for the watchdog. You should not need to alter these
settings.

WATCHDOG=/IN/service packages/SLEE/bin/ watchdog
WATCHDOGCYCLETIME=30

You can also specify values for WATCHDOGSUSPECTCYCLES and WATCHDOGTHROTTLECYCLES
parameters. For more information, see watchdog (on page 41).

SERVICE entries

The SERVICE entries define each service object to be created in shared memory. The service name,
priority and the name of the application that provides this service are defined here. Each service must
be associated with an application.

Note: You cannot have more SERVICES than the number allowed by MAXSERVICEHANDLES (on
page 14).

Usage:

SERVICE=serviceName priority appName serviceHandle [callCount]
The available parameters are:

serviceName
Syntax: To see this parameter in context, see SERVICE entries (on page 20).
Description: The name of the service provided by an application.
Type: String
Optionality: Mandatory
Allowed:
Default:
Notes: This matches the dest (on page 22) parameter in the SERVICEKEY (on page 22)
entry for the service keys which will use this service.
It must match at least one service key entry.
Example: For an example of this parameter used in context, see Examples (on page 22).
priority
Syntax: To see this parameter in context, see SERVICE entries (on page 20).
Description: The priority the scheduler gives this service.
Type: Integer
Optionality: Mandatory

20 Service Logic Execution Environment Technical Guide

Allowed:
Default:
Notes:
Example:

appName

Syntax:
Description:
Type:
Optionality:
Allowed:
Default:
Notes:

Example:

serviceHandle

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

callCount

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:

Example:

For an example of this parameter used in context, see Examples (on page 22).

To see this parameter in context, see SERVICE entries (on page 20).
The name of the application which enables this service.

String

Mandatory

This matches to the appName (on page 23) parameter in the APPLICATION (on
page 23) for the application which will handle this service.

It must match at least one application entry.
For an example of this parameter used in context, see Examples (on page 22).

To see this parameter in context, see SERVICE entries (on page 20).

The service handle which is sent to the application to enable it to provide more
than one service.

String
Mandatory

It must match the service handle defined in the application entry this service entry
links to.

Example: serviceHandles for slee_acs must match serviceNames in
ServiceEntries in acs.conf. For more information about ACS ServiceEntries, see
ACS Technical Guide.

There will typically be multiple lines of this type for each appName as one
application will usually handle more than one service.

For an example of this parameter used in context, see Examples (on page 22).

To see this parameter in context, see SERVICE entries (on page 20).

The maximum number of concurrent calls which can be processed by this
service.

Integer
Optional

unlimited

If the number of calls active on this service exceeds the specified limit, all
attempts to create a call for this service will fail.

For an example of this parameter used in context, see Examples (on page 22).

Chapter 2, Configuration 21

Examples

This text shows some examples of SERVICE entries in a SLEE.cfg file.

SERVICE=PREPAID 1 slee acs CCS
SERVICE=ACS Outgoing 1 slee acs ACS Outgoing

SERVICEKEY

The service key entries define each service key. They also include information on which service or
interface will handle this service key. Each service key must be associated with either a service or an
interface instance.

Service keys have the following configuration options:

SERVICEKEY=keyType serviceKey dest
The available parameters are:

keyType

Syntax: To see this parameter in context, see SERVICEKEY (on page 22).
Description: The type of service key.

Type: Integer

Optionality:

Allowed:

Default:

Notes:

Example: For an example of this parameter used in context, see Examples (on page 23).
serviceKey

Syntax: To see this parameter in context, see SERVICEKEY (on page

22).

Description: The service key from interface.

Type:

Optionality:

Allowed: Format depends on interface.

Default:

Notes:

Example: For an example of this parameter used in context, see

Examples (on page 23).

dest

Syntax: To see this parameter in context, see SERVICEKEY (on page 22).
Description: Service name or interface name.

Type:

Optionality:

Allowed:

Default:

Notes: Must match a serviceName (on page 20) or ifHandle.

Example: For an example of this parameter used in context, see Examples (on page 23).

22 Service Logic Execution Environment Technical Guide

Examples

This text shows examples of SERVICEKEY entries.

SERVICEKEY=INTEGER 101 PREPAID
SERVICEKEY=INTEGER 1 0800

The serviceKey depicts the service key that this application will handle. There will typically be multiple
lines of this type for each appName as one application will usually handle more than one service key.

APPLICATION

The application entry enables the SLEE to run the binary files.
Usage:

APPLICATION=appName execName execDir startInstances maxInstances [appEventCount]
[Suspect Cycles] [Throttle Cycles]

The available parameters are:

appName

Syntax: To see this parameter in context, see APPLICATION (on page 23).
Description: The name of the application.

Type: String

Optionality: Mandatory

Allowed:

Default: none

Notes: This is used to refer to the application in other parts of the configuration file,

including SERVICE entries (on page 20), where it must be matched by appName
(on page 21).

Example: For an example of this parameter used in context, see Example (on page 25).
execName

Syntax: To see this parameter in context, see APPLICATION (on page 23).

Description: The name of the binary file to be run.

Type: String

Optionality: Mandatory

Allowed:

Default: none

Notes:

Example: For an example of this parameter used in context, see Example (on page 25).
execDir

Syntax: To see this parameter in context, see APPLICATION (on page 23).

Description: Full path to the directory where the executable binary is stored.

Type: String

Optionality: Optional (default used if not set).

Allowed: Any directory path.

Default: "/IN/service_packages/SLEE/bin"

Notes:

Example: For an example of this parameter used in context, see Example (on page 25).

Chapter 2, Configuration 23

startInstances

Syntax: To see this parameter in context, see APPLICATION (on page 23).

Description: The number of instances of the application the SLEE should initially start.
Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1

Notes:

Example: For an example of this parameter used in context, see Example (on page 25).
maxInstances

Syntax: To see this parameter in context, see APPLICATION (on page 23).

Description: The maximum number of instances of the application that the SLEE will support.
Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1

Notes:

Example: For an example of this parameter used in context, see Example (on page 25).
appEventCount

Syntax: To see this parameter in context, see APPLICATION (on page 23).

Description: The maximum number of events allowed to be awaiting processing before call

limiting for the application starts.

Type: Integer

Optionality: Optional

Allowed:

Default:

Notes: e app event count applies to the application as a whole, that is, all the

application instances combined. If app event count is setto 1000
and start num instance and max num instance are both setto 2,

then two application instance processes will run and each one can have
up to 500 events queued.

e If the number of events exceeds the limit specified in the configuration
file, then any further attempts to create another call instance will fail.

Example: For an example of this parameter used in context, see Example (on page 25).

Suspect Cycles

Syntax: To see this parameter in context, see APPLICATION (on page 23).

Description: Specifies the number of watchdog cycles to wait before restarting the application in the
event that it becomes unresponsive. Use this parameter to allow the application time to
finish dumping core for diagnostic purposes.

Type: Integer

Optionality: Optional

Allowed: 0 to maximum integer value (2,147,483,647)
Default: 0

24 Service Logic Execution Environment Technical Guide

Notes: If greater than 0, overrides WATCHDOGSUSPECTCYCLES
Example: Suspect Cycles=2

Throttle Cycles

Syntax: To see this parameter in context, see APPLICATION (on page 23).

Description: Specifies the number of watchdog cycles to use for the throttle period (Throttle Cycles
times WATCHDOGCYCLETIME), which begins when an application starts. If an
application dies or becomes unresponsive during the throttle period, the watchdog
process restarts it after an additional watchdog cycle. This prevents the watchdog
process from continuously restarting processes that die immediately due to incorrect
configuration, for example. If the application dies or becomes unresponsive after the
throttle period, the watchdog process treats it like any other unresponsive process.

Type: Integer
Optionality: Optional

Allowed: 0 to maximum integer value (2,147,483,647)

Default: 0

Notes: If greater than 0, overrides WATCHDOGTHROTTLECYCLES
Example: Throttle Cycles=2

Example

This text shows an example of an APPLICATION entry.
APPLICATION=appExample appExample ../appExample 1 1

Example SLEE.cfg file

This is an example of the configuration part of a SLEE.cfg file.

MAXAPPLICATIONS=10
MAXSERVICES=10
MAXSERVICEHANDLES=10
MAXSERVICEKEYS=20
MAXDIALOGS=70000
MAXEVENTS=50000
MAXCALLS=25000
MAXINTERFACES=20
MAXEVENTTYPES=30
MAXCORRELATIONIDS=10000
SLEEWIDEEVENT=60

INTERFACE=Timer timerIF /IN/service packages/SLEE/bin 1 EVENT
INTERFACE=acsStatsLocalSLEE acsStatsLocalSLEE /IN/service packages/ACS/bin 1 EVENT
INTERFACE=Replication replicationIF.sh /IN/service packages/SLEE/bin 1 EVENT
INTERFACE=hssScIf hssScIf.sh /IN/service packages/SLEE/bin 1 EVENT

WATCHDOG=/IN/service packages/SLEE/bin/ watchdog
WATCHDOGCYCLETIME=30

WATCHDOGSUSPECTCYCLES=2

WATCHDOGTHROTTLECYCLES=3

APPENDINTERVAL=2

SLEE Process Manager (statistics collection)
#INTERFACE=sleeProcMan sleeProcMan /IN/service packages/SLEE/bin 1 UDG

APPLICATION

Chapter 2, Configuration 25

APPLICATION=mngApp mngApp /IN/service packages/SLEE/bin 1 1
SERVICE

SERVICE=ACS 1 slee acs ACS

SERVICE=ACS Outgoing 1 slee acs ACS Outgoing

SERVICEKEY

SERVICEKEY=INTEGER 111 ACS
SERVICEKEY=INTEGER 110 ACS Outgoing

Configuring the SLEE Call ID

Introduction

The SLEE call ID must be configured at start-up. The default configuration file is
[IN/service_packages/SLEE/etc/SLEE_calllD.cfg.

You can change this by setting the SLEE_FILE environmental variable.
Parameters

The following configuration parameters are provided to control the SLEE call ID:
GLOBALCIDWRITEFREQ

Syntax: GLOBALCIDWRITEFREQ = num

Description: The global call ID write frequency. Specifies how often to write the SLEE's current call
ID to the SLEE_callID.cfg file.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: A value of O or greater:

e 0 - The value of 1000 is added to the value in SLEE_calllD.cfg on SLEE start up.

e Greater than 0 — The value of GLOBALCIDWRITEFREQ is added to the
SLEE_calllD.cfg value on SLEE startup.

Default: 0
Notes:
Example: GLOBALCIDWRITEFREQ = 100

26 Service Logic Execution Environment Technical Guide

Chapter 3
Tools and Utilities

Overview

Introduction

This chapter explains how to use the utilities provided with the SLEE. To:

e Start the SLEE, see stop.sh (on page 28).

e Shut down the SLEE, see stop.sh (on page 28).

¢ Remove Shared Memory and semaphores, see clean (on page 28).
e Display what SLEE resources are in use, see check (on page 29).

¢ Create a statistics.bin file for statsIF, see sfVerify (on page 34).

Warning: All these scripts must be run from /IN/service_packages/SLEE/bin. Unpredictable results will occur
if run from elsewhere.

In this chapter

This chapter contains the following topics.

LY (ST o 27
SEO .S e —————— 28
(o1 ST o 1 28
(o] 0[S 29
S N B Y 34
slee.sh

Purpose

slee.sh provides a standardized way of starting the SLEE.
Warning: Running this script while the SLEE is already running will result in the SLEE becoming
unstable.

Configuration

The slee.sh does not support any configuration options.

Failure

If slee.sh fails, the SLEE will not start properly. To ensure you start the SLEE in a stable environment,
complete the following before you run slee.sh again:

¢ Run stop.sh

e Runclean

e Ensure all SLEE processes are terminated

Chapter 3, Tools and Utilities 27

Output

slee.sh writes error messages to the system messages file.

stop.sh

Purpose

The stop.sh script shuts down the SLEE in a controlled manner. This ensures the SLEE shared
memory and semaphores are cleared.

Configuration

stop.sh does not support any configuration options.

Failure
If the stop.sh script has failed, the SLEE may not have been shut down properly. Attempt to run the

stop.sh script again, and run clean to ensure all SLEE shared memory has been properly removed and
all processes have been removed.

Output

stop.sh writes error messages to the system messages file.

clean

Purpose
The clean tool uses the Unix clean tool to remove an current SLEE shared memory and semaphores.

This must be completed if the SLEE has exited without being shut down properly, for example if there
was a network outage.

Startup

clean is started by acs_oper from the command line using the following command:
/IN/service packages/SLEE/bin/clean

Configuration

clean does not support any configuration options.

Failure

If clean fails, SLEE Shared Memory may still exist. Attempt to rerun the script.

Output

clean writes error messages to the system messages file.

28 Service Logic Execution Environment Technical Guide

check

Purpose

The check utility provides a method of monitoring the SLEE, verifying start-up, and analyzing the SLEE
configuration file, SLEE.cfg. It can produce either periodic reports or general reports.

About Reported Events

The total number of events reported by check will not match the total event number specified in the
configuration file. This is because SLEE reserves a set of events for exclusive use by the watchdog
process. These events are used to clean up the SLEE if a runaway process allocates all the available
SLEE resources and needs to be cleaned up. The additional number of events is calculated as:

Extra Events = (Max dialogs * 2) + (Max application instances * 2) + (Max interfaces
* 2)

These events are added into the list with a size greater than, or equal to, the default of 1024.

Configuration

check supports several different usage modes with different parameters available to each mode. For

information about:

e Checking the SLEE in batch mode, see Checking the SLEE by Using Batch Mode (on page 29).

e Confirming if SLEE processes are running, see Confirming if SLEE Processes Are Running (on
page 30).

e Getting parsing information, see Getting Parsing Information on SLEE Processes (on page 30).

e Checking correlation IDs, see Checking Correlation IDs (on page 31).

e Testing event consumption, see Testing Event Consumption, Spillage, and Leakage (on page 32).

For information about check menu options, see Main Menu Options (on page 32).

Checking the SLEE by Using Batch Mode

check supports the following command-line parameters in batch mode:

check [mode] [-S] [-Q] [-iN items] [-pPID] [-tevent type] [[-u] [-m] [-z]]
[output mode]

where:

e mode is one of the following options: -c, -C, -d, -D, —-e, -E, —f, or —q. The mode is setto - £ by
default.

e output_mode is the following: [-v] [-nN items] [-b]|[-B] delay [count]

The following table describes the available parameters. The parameters appear in the table in order of
usage.

Parameter Description

mode Display information about SLEE processes where mode specifies the type of
information to display in the report: Specify one of:

-c, to include floating calls
-C, to display all calls

Chapter 3, Tools and Utilities 29

Parameter Description

-d, to display active dialogs

-D, to display all dialogs

-e, to display floating events

-E, to display all events

-f, to display free object counts

-q, to display event queues

If not specified, mode defaults to -£.

-S Exit the check utility if the SLEE connection fails.

-Q Quiet the logging of exceptions into messages log (turn off logging messages into
messages log).

-IN_items Display the state of each of the listed correlation IDs used by specialized resource

functions (SRFs) such as IVRs. The check report will pause after N_items rows. If
you set N items to O (zero), the check report lists the state of all the correlation IDs.

-pPID Specify with the —-E option. Filter for events with the PID number specified in PID.

-tevent_type | Specify with the -E option. Filter for events with the event type specified in
event_type.

-u Specify with the - £ option. Display the check report in table format. Use the
COLUMN_WIDTH SLEE environment variable to set the column width in the report.

-m Specify with the —u option. Display the maximum of each object type used or over-
spilled instead of the current values.

-z Specify with the —u option. Display only free event object counts; for example, do not
display calls or dialogs.

-V Verbose. If specified with the —-E mode, include data in event dumps and print the

SLEE connect and disconnect times.

-NN_items Display the top N_items items when specified with the -£, -g, or -E mode. When
specified with:

e -for-g, N itemsisthe number of rows before header insertion

e -E, limit the number of events displayed to between 1 and N_items items

-b Print the report header only once. Specify -b or —-B, but not both.

-B Do not print the report header. Specify -b or -B, but not both.

delay The number of seconds before the specified report is repeated.

count The number of times the report should be repeated. If not specified, count defaults
to 1.

Confirming if SLEE Processes Are Running

You can use the check utility to confirm that the SLEE started up correctly and that all SLEE processes
are running by entering the following command:

check -av
Getting Parsing Information on SLEE Processes

You can use the check utility to get parsing information about SLEE processes by entering the following
command:

30 Service Logic Execution Environment Technical Guide

check -a[mode] [-]j] [-s configuration file]

where mode is one of:

Mode Description

a Show parsed applications.
A Show SLEE view of applications.

i Show parsed interfaces.

[Show SLEE view of interfaces

w Show parsed watchdog information.
s Show parsed service information.

P Show parsed parameter information.
k Show parsed service key information.
e

c

v

Show parsed event information.
Show all parsed information.
Verify that parsed applications and interfaces are running.

By default, check connects to the SLEE and you use the —a command-line parameter to parse the
default /IN/service_packages/SLEE/etc/SLEE.cfg file. To find out which SLEE processes should be available
by parsing the SLEE.cfg file without connecting to the SLEE, use the -j command-line parameter; for
example:

check -ai -j

You can then check which SLEE interfaces are running by using the mode 1 with the -a command-line
parameter; for example:

check -al

You can parse a local configuration file instead of the default /IN/service_packages/SLEE/etc/SLEE.cfg file by
using the -s command-line parameter; for example:

check -a[mode] -s configuration file

where configuration_file is the name of the local configuration file being parsed.

Checking Correlation IDs

You can use the check utility to get information about correlation IDs. To perform a correlation ID check,
enter the following command:

check -g [-B] delay [count]

where:
Command Option Description
-g Continuous output, with a header.
-B Do not print the report header.
delay The number of seconds before the specified report is repeated. delay
must be greater than O (zero).
count The number of times the report should be repeated. count must be
greater than 0 (zero).

Chapter 3, Tools and Utilities 31

Testing Event Consumption, Spillage, and Leakage

You can use the check utility to test event consumption and event spill-over and to test for event
leakage.

Note: You are recommended to use this mode of operation only on test systems. Events that are either
accidentally or intentionally leaked will not be released until the SLEE is restarted; this can result in
system instability. Therefore, do not to use this mode of operation on a production system.

You test consumed events by running two check sessions concurrently; one to display information about
event consumption and the other to monitor event usage.

To monitor event usage, run check in batch mode. See Checking the SLEE by Using Batch Mode (on
page 29) for more information.

To test consumed events, enter the following command:

check -xevent size -yevent number [-rinterval]

where:

Command Option Description

-xevent_size Sets the size of events to consume, where event_size specifies the size of
events in bytes.

-yevent_number Sets the number of events of event_size to consume, where event_number
specifies the number of events.

-rinterval Displays events consumed or deleted at intervals specified by interval,
where interval can be greater than 0 (zero). For example, if 1000 events are
consumed and interval is set to 100, then instead of displaying 1000 events
in the check report, only every 100th event is reported.

Do not display events consumed or deleted if interval is 0.

After reporting on consumed events, the check utility displays the check menu options. You can then
select to:

¢ Consume another y events

e Free all events consumed in this session

e Confirm or abandon consumption of leaked events

See Main Menu Options (on page 32) for more information.

Main Menu Options

To access the main menu options from the check report menu, run check without specifying any
command-line options; for example, enter the following command:

check

The following menu displays:

Check which type of object?

: Dialogs

: Events

: Calls

: Services

: Applications

: Application Instances
Interface Instances

oUW N

32 Service Logic Execution Environment Technical Guide

: General Status

: Free Objects

: Event Queues

: Repeat consume events
: Free consumed events

Leak consumed events

Clear maximum event usage and maximum over spill counters

Correlation Ids

Quit

To select an option, type the character before the colon for the option you want.

The following table describes the check report menu options:

Option Description

1: Dialogs Reports the number of open SLEE dialogs.

2: Events Reports the number of current SLEE events.

3: Calls Reports the number of current calls.

4. Services Reports the number of SLEE services that are running.

5: Applications Reports the number of SLEE applications that are currently running.

6: Application Instances | Reports the number of instances of SLEE applications that are currently

running.

7: Interface Instances

Reports the number of SLEE interface instances that are currently running.

8:General Status

Reports general information and statistics about the SLEE.

9: Free Objects

Reports the number of free objects still available in the SLEE shared
memory.

a: Event Queues

Reports the number of events queued and waiting for the application or
interface to process.

b: Repeat consume
events

Consumes the next event_number events, where event_number is the
number of events consumed when you enter the following syntax to check
event size and event type:

check -xevent size -yevent number -rinterval

c: Free consumed

Frees all events consumed in this session.

events
d: Leak consumed Allows for the following menu extensions:
events c: Confirm leak consumed events

d: Abandon leak

e: Clear maximum
event usage and
maximum over spill

Clears data logged on maximum event usage and maximum over-spill
counters.

counters

f: Correlation Ids Reports correlation ID states.
g: Quit Exits from check.

Output

check writes reports to stdout. The different reports have different formats. Reports will be the same
whether run from the command line or from the check report menu.

Chapter 3, Tools and Utilities 33

Note: The total number of events reported by check will not match the total event number specified in
the configuration file. This is because SLEE reserves a set of events for exclusive use by the watchdog
process.

check writes error messages to the system messages file.

General reports

If you choose option 8 from the check report menu, check outputs a summary report of the information
available from the other reports.

Example:
The following report is an example of a general report.

Select: 8
SLEE Status Report

Service: ACS

Using application: 0xc0013d28
Service: ACS Outgoing

Using application: 0xc0013d28
Application: slee acs at 0xc0013d28
Contains the following Instances....
Instance at : 0xc0014b88

Process ID: 5493

Status: 3

Call Count: 0

Free Dialogs: 70000

Free Applications: 9

Free Application Instances: 90
Free Services: 8

Free Events: 49998

Free Calls: 25000

Exiting check

To exit from the check report running in periodic report mode, press Ctrl+C.

To exit from the menu, choose option g.

sfVerify

Purpose

sfVerify creates the statistics.bin file that is needed to run statsIF.

Configuration

sfVerify supports the following command-line options:

Usage:

34 Service Logic Execution Environment Technical Guide

sfVerify
filename]

[-v--verbose-c--commit-f--force]

[-d path --dir path] [-o filename --output

[-s KB --size KB]
The available parameters are:

Parameter Default Description

Y false Controls the amount of information output from the program.

--verbose

-c false Commits the changes to the stats interface. This will only work if the

——commit SLEE is running and the stats interface is configured. This parameter
writes the output file and then signals the stats interface to reread the
configuration file statistics.bin.

-f false Force the commit without asking the user.

-—force

-d stats_defn | The directory to import the statistics definitions from.

--dir

e output.defn | The name of the output file.

—-—-output

-s 128 The maximum size in Kb for the stats interface output files.

--size

Note: Any of the parameters (except the period) can either be a single word, or specified as a quote-
delimited string.

Import files

The import files for the statistics interface take the following form:

applicationName statisticName description period comment

Output

The output file used by the statistics interface is:

/IN/service packages/SLEE/etc/statistics.bin
sfVerify writes error messages to the system messages file.

Chapter 3, Tools and Utilities 35

Chapter 4
Background Processes

Overview

Introduction

This chapter explains the processes that are started automatically by Service Logic Execution
Environment (SLEE).

Note: This chapter also includes some plug-ins to background processes which do not run
independently.

In this chapter

This chapter contains the following topics.

LT 0] o> 1T | 37
LCREIAYADD oo 40
WALCNAOG ..o 41

replicationlF

Purpose

replicationlF responds to SLEE replication events by sending data to another machine (usually the
SMS).

Startup

replicationlF is started by the following line in SLEE.cfg:

INTERFACE=replicationIF replicationIF.sh /IN/service packages/SLEE/bin 1 EVENT
For more information about using the INTERFACE entry, see INTERFACE (on page 17).

Configuration

replicationlF supports the following command line parameters:

replicationIF -r node -d microsecs -enableNonBlockWrite 0|1 -infoResetInterval secs
-infoReportInterval secs -updateRequestAcksPendingAlarmThreshold threshold -
updateRequestsPendingAlarmThreshold num -updateRequestResendLimit microsecs -
writeBlockSleepTime microsecs -writeBlockPendingUpdateLimit num

-r

Syntax: -r node

Description: The node number of the requester node (that is, the node number of the
replicationlF itself).

Type: Integer

Optionality: Mandatory (disallowed default of O used if not set).

Allowed: A number between 512 and 1023.

Chapter 4, Background Processes 37

Default: 0

Notes:

Example: -r 601

-d

Syntax: -d microsecs

Description: The number of microseconds between processing large SLEE events.

Type: Integer

Optionality: Optional (default used if not set).

Allowed:

Default: 1000

Notes:

Example:

—enableNonBlockWrite

Syntax: -enableNonBlockWrite 0]1

Description: Enables or disables non-blocking writes.

Type: Boolean

Optionality: Optional (default used if not set)

Allowed: e 0 - Disabled. replicationlF can block writes during congestion. Generally, this
blocking state is interrupted by a signal generated when data arrives from
smsMaster.

e 1 - Enabled. replicationlF does not block writes.

Default: 0 (disabled)

Notes:

Example: -enableNonBlockWrite 1

-infoResetInterval

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-infoResetInterval secs

The minimum amount of time, in seconds, before update requester information/statistics
are reset.

No reset occurs when the following additional conditions are true:
e Aresend is in progress after a connection loss (or a write fail)

e A transmit blocking/congestion state exists
e Update requests are yet to be acknowledged
Integer
Optional (default used if not set)
An integer greater than 0
300

-infoResetInterval 500

-infoReportInterval

Syntax:
Description:

Type:

-infoReportInterval secs
The minimum interval, in seconds, between updates to requester information/statistics.
Integer

38 Service Logic Execution Environment Technical Guide

Optionality:
Allowed:
Default:
Notes:
Example:

Optional (default used if not set)
A number greater than 0
10

If you set this parameter, you must also enable the REP_UPDATE debug flag.
-infoReportInterval 5

-updateRequestAcksPendingAlarmThreshold

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-updateRequestAcksPendingAlarmThreshold threshold

The threshold for the number of outstanding update requests requiring an
acknowledgment from smsMaster before an alarm is generated.

Integer

Optional (default used if not set)
An integer greater than 5,000
40,000

-updateRequestAcksPendingAlarmTheshold 10000

-updateRequestsPendingAlarmThreshold

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-updateRequestsPendingAlarmTheshold num

The threshold for the number of pending update requests to be sent to smsMaster
before an alarm is generated.

Integer

Optional (default used if not set)
An integer greater than 1,000
20,000

-updateRequestsPendingAlarmThreshold 10000

-updateRequestResendLimit

Syntax:
Description:

Type:
Optionality:
Allowed:
Default:
Notes:
Example:

-updateRequestResendLimit microsec

After connection loss, all unacknowledged update requests are re-transmitted. This can
result in a large number of update requests, depending on the rate of acknowledgments
from smsMaster.

updateRequestResendLimit specifies the duration of the re-transmit period, in
microseconds, with no handling of new update requests. After this duration, update
reqguests are re-transmitted in maximal block sizes determined by
writeBlockPendingUpdateLimit. This allows a large re-transmit and the ability to
service newly arriving update requests.

Integer

Optional (default used if not set)

An integer from 300 to 20,0000 (inclusive)
500

-updateRequestResendLimit 1000

Chapter 4, Background Processes 39

-writeBlockSleepTime

Syntax: -writeBlockSleepTime microsecs

Description: The latency, in microseconds, between attempts to write a further update. This allows
time for smsMaster to consume data.

Type: Integer

Optionality: Optional (default used if not set)

Allowed: A number greater than O

Default: 10,000

Notes:

Example: -writeBlockSleepTime 9000

-writeBlockPendingUpdateLimit

Syntax: -writeBlockPendingUpdatelLimit num
Description: The maximum number of latencies associated with sending large amounts of pending
updates.

This parameter helps with transmission congestion when update requests accumulate
and are then transmitted before new updates. These writes are limited to blocks of size
writeBlockPendingUpdatelLimit

Type: Integer

Optionality: Optional (default used if not set)

Allowed: An integer greater than 0

Default: 10

Notes:

Example: -writeBlockPendingUpdateLimit 5
tcRelayApp

Purpose

tcRelayApp is a SLEE application which relays TCAP primitives. This enables SLEE interfaces to send
TCAP primitives to other SLEE interfaces (particularly TCAP IF).

You can use tcRelayApp to add destination number and originating number information to the TCAP
primitive.

Startup

tcRelayApp is started by the following line in SLEE.cfg:

APPLICATION=tcRelayApp tcRelayApp.sh /IN/service packages/SLEE/bin 1 1
Configuration

tcRelayApp supports the following parameters in each line of tcRelayMappings.def:

serviceHandle IF name dest ssn dest pc dest GT orig ssn orig pcC
The available parameters are:

Parameters Default Description
serviceHandle Incoming service handler. The SLEE service handle this
message has been sentto. (Required.)

40 Service Logic Execution Environment Technical Guide

Parameters Default Description

IF name Outgoing interface name. The SLEE interface name the
message should be forwarded to. (Required.)

dest ssn Destination SSN. The Destination SSN value which the
TCAP primitive should have. (Required.)

dest pc Destination PC. The Destination Point Code value which the
TCAP primitive should have. (Required.)

dest gt Destination GT. The Destination Global Title value which the
TCAP primitive should have. (Optional, use "-" to not
specify.)

orig ssn Originating SSN. The Originating SSN value which the TCAP
primitive should have. (Optional.)

orig pc Originating PC. The Originating PC value which the TCAP
primitive should have. (Optional.)

Failure

If tcRelayApp fails, TCAP primitives which must be relayed through the SLEE will fail. If the process is
not running, the SLEE watchdog will attempt to restart the service.

Output

tcRelayApp writes error messages to the system messages file, and also writes additional output to:
/IN/service packages/SLEE/tmp/tcRelayApp.log

watchdog

Purpose

The watchdog process checks on SLEE processes to see that they are running as expected. It also
ensures that the current time of day is correct in the shared memory segment.

The watchdog process performs the following actions:

e Every 10 milliseconds the watchdog writes the current time of day to the shared memory segment. If
it is unsuccessful, it writes an error code to the shared memory segment so that SLEE processes
can respond appropriately.

e When a process starts, the watchdog begins a throttle period, which is the product of
WATCHDOGCYCLETIME times the value of WATCHDOGTHROTTLECYCLES. If the process dies
or becomes unresponsive during the throttle period, the watchdog restarts it after an additional
watchdog cycle (WATCHDOGCYCLETIME). If the process dies or becomes unresponsive after the
throttle period, the watchdog process treats it in the same way as other unresponsive processes.

Note: The throttle period prevents the watchdog from continuously restarting a process that dies
immediately, for example due to an incorrect configuration.

e Every 100 milliseconds the watchdog scans SLEE processes to see if they are still processing and
responsive. If a process is not processing at all, watchdog considers it a zombie and restarts it
immediately. If a process is running but has not responded to a watchdog message within a
watchdog cycle the watchdog considers that process unresponsive and marks it as suspect. If a
suspect cycle responds to a watchdog message within one watchdog cycle, the watchdog reverses
its status from suspect to normal.

Chapter 4, Background Processes 41

e If a suspect process remains unresponsive, the watchdog process allows it to continue processing
for a period of time that is the product of WATCHDOGSUSPECTCYCLES times the value of
WATCHDOGCYCLETIME. At that point, the watchdog process terminates the unresponsive
process and restarts it.

Note: The WATCHDOGSUSPECTCYCLES parameter is designed to allow a process sufficient time to
finish dumping core for diagnostic purposes. It prevents an immediate restart that could result in a
truncated core file, which would be useless.

You can override WATCHDOGSUSPECTCYCLES and WATCHDOGTHROTTLECYCLES for a given
application or interface. See the APPLICATION (on page 23) and INTERFACE (on page 17)
configuration parameters for more information.

The watchdog process also tracks SLEE resource usage. If a resource drops below 80% of the start
value, the watchdog alerts the user to the condition. A notice is posted when the value rises back up to
70% of the start value. The watchdog keeps track of usage for the following resources: dialogs, call
instances, and event lists.

When the watchdog begins a check loop, it starts a timer running to ensure that it will not remain
deadlocked on a semaphore forever. If the timer expires the watchdog restarts the SLEE.

Startup

The watchdog application resides in the following shared library:

/IN/service packages/SLEE/lib/libSleeWatchdog.so
It is started by the following line in SLEE.cfg:

APPLICATION=tcRelayApp tcRelayApp.sh /IN/service packages/SLEE/bin 1 1

Configuration

The watchdog process accepts the following parameter options from the SLEE.cfg file. The watchdog
parameters are set at installation and should not need changing. They define the location and cycle time
for the watchdog.

WATCHDOG=/IN/service packages/SLEE/bin/ watchdog
WATCHDOGCYCLETIME=30

WATCHDOGSUSPECTCYCLES = 1
WATCHDOGTHROTTLECYCLES = 1

The available parameters are:

Parameters Default |Description

WATCHDOG The path and binary filename for the watchdog
executable.

WATCHDOGCYCLETIME 30 The number of seconds between checks on SUSPECT

processes. For more information about SUSPECT
processes, see Purpose.

WATCHDOGSUSPECTCYCLES |1 Specifies the number of watchdog cycles to wait before
restarting a non-responsive process.The delay allows an
unresponsive process time to finish dumping core for
diagnostic purposes before it is restarted.

42 Service Logic Execution Environment Technical Guide

Parameters Default | Description

WATCHDOGTHROTTLECYCLES |1 Specifies the number of watchdog cycles to use for the
throttle period (WATCHDOGTHROTTLECYCLES times
WATCHDOGCYCLETIME), which begins when an
application starts. If an application or interface dies or
becomes unresponsive during the throttle period, the
watchdog process restarts it after an additional
watchdog cycle. This prevents the watchdog process
from continuously restarting processes that die
immediately due to incorrect configuration, for example.
If the application or interface dies or becomes
unresponsive after the throttle period, the watchdog
process treats it like any other unresponsive process.

Failure

If the watchdog fails, SLEE processes will not be monitored. This will mean SLEE processes are not
restarted if they fail. You must restart the SLEE. For more information about restarting the SLEE, see
Tools and Utilities (on page 27).

Output

watchdog writes error messages to the system messages file.

Chapter 4, Background Processes 43

Chapter 5
Troubleshooting

Overview

Introduction
This chapter explains the important processes on each of the server components in NCC, and describes

a number of example troubleshooting methods that can help aid the troubleshooting process before you
raise a support ticket.

In this chapter

This chapter contains the following topics.

Common Troubleshooting ProCEAUIES.couuiiiiiiii e 45
POSSIDIE PrOBIEMIS ... 46

Common Troubleshooting Procedures

Introduction

Refer to System Administrator's Guide for troubleshooting procedures common to all NCC components.

Checking current processes

You can check which processes are running using the standard UNIX command: ps. To find processes
being run by Oracle software, you can grep for the string 'oper’, which will display all processes being
run by the application operator accounts (for example, acs_oper, ccs_oper and smf_oper).

Note: Some processes which are required for proper functioning may be run by other users, including
root or the user which runs the webserver.

Example command: ps -ef | grep oper
For more information about the ps command, see the system documentation for the ps command.

You can also check how much of the processor a process is using by running the standard UNIX tool:
top. If you have some baseline measurements, you will be able to compare it with the current load.

Example command: top

Tip: Some processes should only have one instance. If there are two or more instances, this may
indicate a problem. For example, there will usually only be one timerlF running on each SLC.

For more information about which processes should be running on each node, check the Process List
for each node in Installation Guide.

Checking configuration files

One of the significant areas where faults can occur and be remedied is in the configuration of
processes. Configuration files can be edited by any standard text editor. A backup of the existing
configuration file should always be taken before editing a configuration file.

Chapter 5, Troubleshooting 45

For more information about the configuration files used in this application, see Configuration User's
Guide.

For more information about the configuration file for a specific program or tool, see the section named
after the binary in question.

Possible Problems

Introduction

This topic lists common problems and actions you can take to investigate or solve them. This list
enables you to check for alarms based on the overall behavior you are experiencing.

SLEE failing on startup

This table describes possible reasons why the SLEE may be failing to startup:

Reason Remedy Alarms

sleeStartup could not Check that the SLEE.cfg file exists in the expected
parse the SLEE.cfg file. |location and that it can be read.

Check that the syntax of the file is correct.

For more information about the SLEE.cfg file, see
Configuration (on page 9).

46 Service Logic Execution Environment Technical Guide

Chapter 6
About Installation and Removal

Overview

Introduction

This chapter provides information about the installed components for the Oracle Communications
Network Charging and Control (NCC) application described in this guide. It also lists the files installed by
the application that you can check for, to ensure that the application installed successfully.

In this Chapter

This chapter contains the following topics.

Installation and REMOVAI OVEIVIEWcouveieiiieiei ettt e et e e et e e e e e e st e e e e et e e aeaaseesenas 47
Checking the INSTAIIALION e 47

Installation and Removal Overview

Introduction

For information about the following requirements and tasks, see Installation Guide:

¢ NCC system requirements
e Pre-installation tasks
e Installing and removing NCC packages

SLEE packages

An installation of SLEE includes the following packages, on the:

e SLC:

= SLEE
e VWS:

» SLEE

Checking the Installation

Introduction

Refer to this checklist to ensure that SLEE has installed correctly.

Checklist

Follow these steps in this checklist to ensure the SLEE has been installed on the SLC machine
correctly.

Chapter 6, About Installation and Removal 47

Step Action
1 Log onto the machine as root.

2 Check the following directory structure exists with subdirectories:
o [IN/service_packages/SLEE

3 Check the directories and subdirectories are all owned by:
root user (group other)

48 Service Logic Execution Environment Technical Guide

	About This Document
	Scope
	Audience
	Prerequisites
	Related Documents

	Document Conventions
	Typographical Conventions
	Terminology

	Chapter 1
	System Overview
	Overview
	Introduction
	In this Chapter

	Introduction to the Service Logic Execution Environment
	Introduction
	Functionality overview
	Functionality for hosted services
	Service logic support
	Example setup

	Main Components of the SLEE
	Introduction
	SLEE shared memory
	Entity relationship
	Applications
	Application instance
	Service
	Service handles
	Service keys
	Interfaces
	Interface handle
	SLEE tools

	SLEE Interfaces
	Introduction
	Types of interface
	Interface communication through dialogs
	Example interfaces

	Application Programming Interface
	Introduction
	SLEE Dialogs
	SLEE Events
	Management Events
	Supported management events

	Chapter 2

	Configuration
	Overview
	Introduction
	In this chapter

	Configuration Overview
	Introduction
	Configuration process overview
	Configuration components

	Configuring the SLEE
	Introduction
	Optional environmental variables
	SLEE_FILE
	Modifying SLEE.cfg
	Setting a SLEE Event Queue Limit
	Setting Up SLEE to Generate a Separate Log File for Each Application Instance
	Maximum values
	MAXAPPLICATIONS
	MAXSERVICES
	MAXSERVICEHANDLES
	MAXSERVICEKEYS
	MAXDIALOGS
	MAXEVENTS
	size
	MAXCALLS
	MAXINTERFACES
	MAXEVENTTYPES
	APPENDINTERVAL
	Other parameters
	NOWIPESOCKETS
	SLEEWIDEEVENTLIMIT
	INTERFACE
	Usage:
	INTERFACE parameters

	interface_handle
	interface_name
	interface_path
	instance_count
	interface_type
	int_event_count
	dialog_count
	Suspect Cycles
	Throttle Cycles
	Example INTERFACE Configuration

	watchdog
	SERVICE entries
	serviceName
	priority
	appName
	serviceHandle
	callCount
	Examples

	SERVICEKEY
	keyType
	serviceKey
	dest
	Examples

	APPLICATION
	appName
	execName
	execDir
	startInstances
	maxInstances
	appEventCount
	Suspect Cycles
	Throttle Cycles
	Example

	Example SLEE.cfg file

	Configuring the SLEE Call ID
	Introduction
	Parameters
	GLOBALCIDWRITEFREQ

	Chapter 3

	Tools and Utilities
	Overview
	Introduction
	In this chapter

	slee.sh
	Purpose
	Configuration
	Failure
	Output

	stop.sh
	Purpose
	Configuration
	Failure
	Output

	clean
	Purpose
	Startup
	Configuration
	Failure
	Output

	check
	Purpose
	About Reported Events
	Configuration
	Checking the SLEE by Using Batch Mode
	Confirming if SLEE Processes Are Running
	Getting Parsing Information on SLEE Processes
	Checking Correlation IDs
	Testing Event Consumption, Spillage, and Leakage
	Main Menu Options
	Output
	General reports
	Exiting check

	sfVerify
	Purpose
	Configuration
	Import files
	Output

	Chapter 4

	Background Processes
	Overview
	Introduction
	In this chapter

	replicationIF
	Purpose
	Startup
	Configuration
	-r
	-d
	-enableNonBlockWrite
	-infoResetInterval
	-infoReportInterval
	-updateRequestAcksPendingAlarmThreshold
	-updateRequestsPendingAlarmThreshold
	-updateRequestResendLimit
	-writeBlockSleepTime
	-writeBlockPendingUpdateLimit

	tcRelayApp
	Purpose
	Startup
	Configuration
	Failure
	Output

	watchdog
	Purpose
	Startup
	Configuration
	Failure
	Output

	Chapter 5

	Troubleshooting
	Overview
	Introduction
	In this chapter

	Common Troubleshooting Procedures
	Introduction
	Checking current processes
	Checking configuration files

	Possible Problems
	Introduction
	SLEE failing on startup

	Chapter 6

	About Installation and Removal
	Overview
	Introduction
	In this Chapter

	Installation and Removal Overview
	Introduction
	SLEE packages

	Checking the Installation
	Introduction
	Checklist

